NextZX0S API (Updated 11 Jan 2019)

This document describes the NextZX0S API, which directly descends from the +3DOS
API present in the Sinclair ZX Spectrum +2A/+2B/+3 and the IDEDOS API
additionally provided with the zZX Spectrum +3e ROMs.

It also describes the provided esxDOS-compatible API, which is compatible with
esxD0S 0.8.x, but contains several enhancements.

This should be read in conjunction with the other documents:
NextBASIC file-related commands and features
NextBASIC new commands and features
NextZX0S Editor features
NextZX0S Unimplemented features

A list of updates made to this document is now provided at the end.

Page 1 of 82

Available APIs

NextZX0S provides 2 distinct and separate APIs:
e a +3D0S-compatible API, providing the main NextzZX0S API
e an esxDOS-compatible API, providing file-based calls for SD card access

The +3D0S-compatible API descends directly from the original +3D0S, provided
with the Sinclair ZX Spectrum +3/+2A/+2B.

The esxDOS-compatible API is provided by a thin layer on top of +3D0S, and is
compatible with esxD0S 0.8.x, with some additional facilities such as support
for long filenames (LFNs), wildcards in filenames, enhanced dot command features
and a low-overhead file streaming facility.

Both APIs provide general file-access calls. The esxDOS-compatible API is
generally easier to use, but lacks the ability to access files on filesystems
which are not FAT16/32 (such as the RAMdisk, and mounted CP/M and +3 disk
images). It also lacks some of the more advanced features of the +3DOS-
compatible API, such as bank allocation, BASIC command execution and file-
browser dialogs.

The +3D0S-compatible API is described in the first section of the following
pages, with the esxD0S-compatible API described in second section.

IMPORTANT NOTE.:

When calling either the +3D0S-compatible or esxDOS-compatible API, make sure you
have not left layer 2 writes enabled (ie bit @ of port $123b should be zero when
making any API call).

This is important because if layer 2 writes are left enabled, they can interfere
with the operation of the system calls, which page in DivMMC RAM to the same
region of memory ($0000-$3fff).

It is perfectly okay to leave layer 2 turned on and displayed (with bit 1 of
port $123b) during API calls; only the writes need to be disabled.

Page 2 of 82

The +3D0S-compatible API

The +3D0S-compatible API provides most of the facilities available on both the
original +3/+2A/+2B, and the later +3e ROMs, with many additional facilities
specific to the Next.

To make a +3D0OS API call, you must first ensure that the memory bank
configuration is set up correctly (with ROM 2 selected at the bottom of memory,
RAM bank 7 at the top of memory and the stack located below $BFEO).

Once this is done, call the address indicated in the API call. You then probably
want to restore the memory configuration to normal (with ROM 3 selected at the
bottom of memory, and RAM bank 0 at the top of memory).

Please note that a few calls require the memory configuration to be slightly
different on entry (with RAM bank @ at the top of memory); this is noted in the
individual documentation for those calls, which are generally BASIC-releated (eg
IDE_STREAM_* and IDE_BASIC).

Some calls (eg IDE_BROWSER) may access the system variables region (eg for
keyboard scanning or other purposes). Therefore, you should generally ensure
that IY still points to the system variable ERR_NR ($5c3a) before making such a
call.

Useful example code showing how to use the API is available in the original +3
manual (section “Calling +3DOS from BASIC”), online here:

http://www.worldofspectrum.org/ZXxSpectrumli28+3Manual/chapter8pt26.html
This document does not describe unchanged calls, which are available in these
online documents:

http://www.worldofspectrum.org/zZXSpectrumi28+3Manual/chapter8pt27.html
http://www.worldofspectrum.org/zxplus3e/idedos.html

Page 3 of 82

The following filesystem-related API calls are provided (*=effects have changed
since originally documented in +3 manual or on +3e website; %=new for NextZXO0S):

DOS_VERSION ($0103)
*DOS_OPEN ($0106)
DOS_CLOSE ($0109)
DOS_ABANDON ($010C)
DOS_REF_HEAD ($010F)
DOS_READ ($0112)
DOS_WRITE ($0115)
DOS_BYTE_READ ($0118)
DOS_BYTE_WRITE ($011B)
*DOS_CATALOG ($011E)
*DOS_FREE_SPACE ($0121)
DOS_DELETE ($0124)
DOS_RENAME ($0127)
DOS_BOOT ($012A)
DOS_SET_DRIVE ($012D)
DOS_SET_USER ($0130)
*DOS_GET_POSITION ($0133)
DOS_SET_POSITION ($0136)
*DOS_GET_EOF ($0139)
DOS_GET_1346 ($013C)
DOS_SET_1346 ($013F)
DOS_FLUSH ($0142)
DOS_SET_ACCESS ($0145)
DOS_SET_ATTRIBUTES ($0148)
DOS_SET_MESSAGE ($014E)

IDE_VERSION ($00A0)
*IDE_SWAP_OPEN ($00D9)
IDE_SWAP_CLOSE ($00DC)
IDE_SWAP_OUT ($0ODF)
IDE_SWAP_IN ($00E2)
*IDE_SWAP_EX ($00E5)
IDE_SWAP_POS ($00E8)
IDE_SWAP_MOVE ($00EB)
IDE_SWAP_RESIZE (S$OOEE)
IDE_PARTITION_FIND ($00B5)
*IDE_DOS_MAP ($00F1)
*IDE_DOS_UNMAP ($00F4)
*IDE_DOS_MAPPING ($00F7)
*IDE_SNAPLOAD ($00FD)
*IDE_PATH ($01b1)
%IDE_CAPACITY ($01b4)
%IDE_GET_LFN ($01b7)
%IDE_BROWSER ($01ba)
%IDE_MOUNT ($01d2)

Get +3D0OS issue and version numbers
Create and/or open a file

Close a file

Abandon a file

Point at the header data for this file
Read bytes into memory

Write bytes from memory

Read a byte

Write a byte

Catalog disk directory

Free space on disk

Delete a file

Rename a file

Boot an operating system or other program
Set/get default drive

Set/get default user number

Get file pointer for random access

Set file pointer for random access

Get end of file position for random access
Get memory usage in pages 1, 3, 4, 6
Re-allocate memory usage in pages 1, 3, 4, 6
Bring disk up to date

Change open file's access mode

Change a file's attributes

Enable/disable error messages

Get IDEDOS version number

Open a swap partition

Close a swap partition

Write block to swap partition

Read block from swap partition

Exchange block with swap partition

Get current block number in swap partition
Set current block number in swap partition
Change block size of swap partition

Find named partition

Map drive to partition

Unmap drive

Get drive mapping

Load a snapshot

Create, delete, change or get directory
Get card capacity

Get long filename

File browser

Unmount/remount SD cards

Page 4 of 82

The following non-filesystem-related API calls are provided:

IDE_STREAM_OPEN ($0056)
IDE_STREAM_CLOSE ($0059)
IDE_STREAM_IN ($005c)
IDE_STREAM_OUT ($005f)
IDE_STREAM_PTR ($0062)
%IDE_BANK ($01bd)
%IDE_BASIC ($01c0)
%IDE_WINDOW_LINEIN ($01c3)
%IDE_WINDOW_STRING ($01c6)
%IDE_INTEGER_VAR ($01c9)
%IDE_RTC ($01cc)
%IDE_DRIVER ($01cf)
%IDE_MODE ($01d5)

Open stream to a channel

Close stream and attached channel

Get byte from current stream

Write byte to current stream

Get or set pointer information for current stream
Allocate or free 8K banks in ZX or DivMMC memory
Execute a BASIC command line

Input line from current window stream

Output string to current window stream

Get or set NextBASIC integer variable

Query the real-time-clock module

Access the driver API

Query NextBASIC display mode info, or change mode

The following API calls are related to floppy drives and will not be useful for
most software (included for legacy software use only):

DOS_REF_XDPB ($0151)
DD_L_XDPB ($0187)
DD_L_DPB ($018A)

Point at XDPB for low level disk access
Initialise an XDPB from a disk specification
Initialise a DPB from a disk specification

The following API calls are present but generally for system use only and not
useful for games/applications:

DOS_INITIALISE ($0100)
IDE_INTERFACE ($00A3)
IDE_INIT ($00A6)

IDE_DRIVE ($00A9)
*IDE_SECTOR_READ ($00AC)
*IDE_SECTOR_WRITE ($00AF)
IDE_PARTITON_READ ($00C4)
IDE_PARTITION_OPEN ($00CD)
IDE_PARTITION_CLOSE ($00D0)
IDE_PARTITIONS ($01a5)

Initialise +3DOS

Initialise card interfaces
Initialise IDEDOS

Get unit handle

Low-level sector read
Low-level sector write

Read a partition entry

Open a partition

Close a partition

Get number of open partitions

The following API calls were previously available in +3DOS/IDEDOS but are now
deprecated and will return an error of rc_notimp:

DOS_OPEN_DRIVE ($014B)
DOS_MAP_B ($0154)
DD_INTERFACE ($0157)
DD_INIT ($015A)
DD_SETUP ($015D)
DD_SET_RETRY ($0160)
DD_READ_SECTOR ($0163)
DD_WRITE_SECTOR ($0166)
DD_CHECK_SECTOR ($0169)
DD_FORMAT ($016C)
DD_READ_ID ($016F)
DD_TEST_UNSUITABLE ($0172)
DD_LOGIN ($0175)
DD_SEL_FORMAT ($0178)
DD_ASK_1 ($017B)
DD_DRIVE_STATUS ($017E)
DD_EQUIPMENT ($0181)
DD_ENCODE ($0184)
DD_L_SEEK ($018D)
DD_L_READ ($0190)
DD_L_WRITE ($0193)
DD_L_ON_MOTOR ($0196)

Open a drive as a single file

Map B: onto unit 0 or 1

Is the floppy disk driver interface present?
Initialise disk driver

Specify drive parameters

Set try/retry count

Read a sector

Write a sector

Check a sector

Format a track

Read a sector identifier

Test media suitability

Log in disk, initialise XDPB
Pre-initialise XDPB for DD FORMAT
Is unit 1 (external drive) present?
Fetch drive status

What type of drive?

Set intercept routine for copy protection
UPD765A seek driver

UPD765A read driver

uPD765A write driver

Motor on, wait for motor-on time

Page 5 of 82

DD_L_T_OFF_MOTOR ($0199) Start the motor-off ticker

DD_L_OFF_MOTOR ($019C) Turn the motor off
IDE_FORMAT ($00B2) Format a partition
IDE_PARTITION_NEW ($00B8) Create partition

IDE_PARTITION_INIT ($00BB) Initialise partition

IDE_PARTITION_ERASE ($00BE) Delete a partition

IDE_PARTITION_RENAME ($00C1l) Rename a partition

IDE_PARTITION_WRITE ($00C7) Write a partition entry

IDE_PARTITION_WINFO ($00CA) Write type-specific partition information
IDE_PARTITION_GETINFO ($00D3) Get byte from type-specific partition information
IDE_PARTITION_SETINFO ($00D6) Set byte in type-specific partition information
IDE_DOS_UNPERMANENT ($00FA) Remove permanent drive mapping

IDE_IDENTIFY (%$01a2) Return IDE drive identity information

Page 6 of 82

Updated calls

The following calls have new/updated features, which are highlighted in GREEN.
(Some changes are due to removed parameters which are not shown). NOTE: Calls
for internal use only have not yet been included here.

As well as the changes described here, the following calls take a 16K page
number in either C or B which indicates what memory should be present at
$c000..$ffff for the read/write operation. On the +3/+3e, page numbers 0-7 were
allowed; on NextzZX0S any valid 16K RAM page 0-111 may be used:

DOS_READ (0112h)

DOS_WRITE (0115h)

IDE_SWAP_OUT (06DFh)

IDE_SWAP_IN (©0E2h)

It should additionally be noted that the IDE_STREAM_* calls may corrupt the
alternate register set, in addition to the effects on the standard register set
noted for each individual call.

As well as describing additional features, DOS_CATALOG contains additional text

which clarifies points that are not obvious from the documentation in the
original +3 manual.

DOS_OPEN
0106h (262)

Create and/or open a file

There is a choice of action depending on whether or not the file
already exists. The choices are 'open action' or 'create action', and
are specified in DE. If the file already exists, then the open action
is followed; otherwise the create action is followed.

Open action

@. Error - File already exists.

1. Open the file, read the header (if any). Position file
pointer after header.

2. Open the file, ignore any header. Position file pointer at
000000h (0).

3. Assume given filename is 'filename.type'. Erase
'filename.BAK' (if it exists). Rename 'filename.type' to
'filename.BAK'. Follow create action.

4. Erase existing version. Follow create action.

Create action

0. Error - File does not exist.

1. Create and open new file with a header. Position file
pointer after header.

2. Create and open new file without a header. Position file
pointer at 000000h (0).

Page 7 of 82

(Example: To simulate the tape action of... 'if the file exists open
it, otherwise create it with a header', set open action = 1, create
action = 1.)

(Example: To open a file and report an error if it does not exist, set
open action = 1, create action = 0.)

(Example: To create a new file with a header, first renaming any
existing version to '.BAK', set open action = 3, create action = 1.)

Files with headers have their EOF position recorded as the smallest
byte position greater than all written byte positions.

Files without headers have their EOF position recorded as the byte at
the start of the smallest 128 byte record position greater than all
written record positions.

Soft-EOF is the character 1Ah (26) and is nothing to do with the EOF
position, only the routine DOS BYTE READ knows about soft-EOF.

The header data area is 8 bytes long and may be used by the caller for
any purpose whatsoever. If open action = 1, and the file exists (and
has a header), then the header data is read from the file, otherwise
the header data is zeroised. The header data is available even if the
file does not have a header. Call DOS REF HEAD to access the header
data.

Note that +3 BASIC makes use of the first 7 of these 8 bytes as
follows:

Fom e e e m oo - oo o - oo o - oo o - oo o - oo o - oo o - oo o - +
| BYTE | 0 | 1 | 2 | 3 | 4 | 5 | 6

SRR —— Fomme o Fomme o Fomme o Fomme o Fomme o Fomme o Fomme o +
| Program 0 file length 8000h or LINE offset to prog |
| Numeric array 1 file length XXX name XXX XXX |
| Character array 2 file length XXX name XXX XXX |
| CODE or SCREENS$ 3 file length load address XXX XXX |
e m e mm - +

(xxx = doesn't matter)

If creating a file that will subsequently be LOADed within BASIC, then
these bytes should be filled with the relevant values.

If the file is opened with exclusive-write or exclusive-read-write
access (and the file has a header), then the header is updated when
the file is closed.

A file that is already open for shared-read access on another file
number may only be opened for shared-read access on this file number.

A file that is already open for exclusive-read or exclusive-write or
exclusive-read-write access on another file number may not be opened
on this file number.

If the open action is 1 or 2 and the create action is 0 (ie only an existing
file is to be opened) then the filename may optionally contain the wildcard
characters * and ?. In this case, the first file that matches the wildcard will
be opened.

ENTRY CONDITIONS
B = File number 0...15

Page 8 of 82

C = Access mode required
Bits 0...2 values:
1 = exclusive-read
2 = exclusive-write
3 = exclusive-read-write
5 = shared-read
Bits 3...7 = 0 (reserved)
D = Create action
E = Open action
HL = Address of filename (no wildcards, unless D=0 and E=1 or 2)

EXIT CONDITIONS
If file newly created:
Carry true
Zero true
A corrupt
If existing file opened:
Carry true
Zero false
A corrupt
Otherwise:
Carry false
A = Error code
Always:
BC DE HL IX corrupt
All other registers preserved

DOS_CATALOG
011Eh (286)

Fills a buffer with part of the directory.

The filename optionally specifies the drive, path, user and a (possibly
ambiguous) filename (which may contain wildcard characters ? and *).

Since the size of a directory is variable (and may be quite large),
this routine permits the directory to be catalogued in a number of
small sections. The caller passes a buffer pre-loaded with the first
required filename, or zeroes for the start of the directory. The
buffer is loaded with part (or all, if it fits) of the directory
sorted in ASCII order. If more of the directory is required, this
routine is re-called with the buffer re-initialised with the last file
previously returned. This procedure is followed repeatedly until all
of the directory has been catalogued.

Note that +3D0S format disks (which are the same as single-sided,
single track AMSTRAD PCW range format disks) may have a maximum of 64
directory entries.

Buffer format:

Entry
Entry
Entry
Entry
...to...
Entry n

WNPRE O

Entry © must be preloaded with the first 'filename.type'
required. Entry 1 will contain the first matching filename greater

Page 9 of 82

than the preloaded entry (if any). A zeroised preload entry is OK.

If the buffer is too small for the directory, this routine can be
called again with entry 0 replaced by entry n to fetch the next part
of the directory.

Entry format (13 bytes long):

Bytes 0...7 - Filename (ASCII) left justified, space
filled

Bytes 6...10 - Type (ASCII) left justified, space filledd

Bytes 11...12 - Size in kilobytes (binary)

Any of the filename or extension characters may have bit 7 set, as described in
the section on file attributes, so these should be masked off if not required.

The file size is the amount of disk space allocated to the file, not
necessarily the same as the amount used by the file.

ENTRY CONDITIONS
B = n+tl1, size of buffer in entries, >=2
C = Filter (if bit 1is set)
bit @ = include system files
bit 1 = set bit 7 of f7 (the 7t character in the filename) if
the entry has a valid LFN (long filename) which can be
obtained with the IDE_GET_LFN call
bit 2 = include directories, and set bit 7 of f8 (the 8t
character in the filename) if the entry is a directory
bits 3...7 = 0 (reserved)
DE = Address of buffer (first entry initialised)

HL = Address of filename (wildcards permitted)
EXIT CONDITIONS
If OK:
Carry true
A corrupt
B = Number of completed entries in buffer, 0...n.
(If B = n, there may be more to come).
HL = Directory handle, required to obtain long filenames
with IDE_GET_LFN
Otherwise:
Carry false
A = Error code
B HL corrupt
Always:

C DE HL IX corrupt
All other registers preserved

DOS_FREE_SPACE
0121h (289)

How much free space is there on this drive?

ENTRY CONDITIONS
A = Drive, ASCII 'A'...'P'

EXIT CONDITIONS
If OK:

Page 10 of 82

Carry true

A corrupt

HL = Free space (in kilobytes, clamped to maximum 65535K)
BCDE = Free space (in kilobytes)

Otherwise:
Carry false
A = Error code
HL corrupt
Always:
BC DE IX corrupt
All other registers preserved

DOS_GET_POSITION
0133h (307)

Get the file pointer.

ENTRY CONDITIONS
B = File number

EXIT CONDITIONS

If OK:
Carry true
A corrupt
DEHL = File pointer
(D holds most significant byte; L holds least
significant byte)

Otherwise:
Carry false
A = Error code
DE HL corrupt

Always:
BC IX corrupt
All other registers preserved

DOS_GET_EOF
0139h (313)

Get the end of file (EOF) file position greater than all written byte
positions.

Does not affect the file pointer.
Does not consider soft-EOF.

ENTRY CONDITIONS
B = File number

EXIT CONDITIONS

If OK:
Carry true
A corrupt
DEHL = File pointer
(D holds most significant byte; L holds least
significant byte)

Otherwise:
Carry false

Page 11 of 82

A = Error code
DE HL corrupt
Always:
BC IX corrupt
All other registers preserved

IDE_SWAP_OPEN ($00D9)
Open a swap file

IN: A(bits 6..0)=block size in sectors, 1 (0.5K) to 32 (16K)
If bit 7 of A is 0, then:
BC=max block number required
and NextzZX0S will open an available system swap file
(c:/nextzxos/swp-N.p3d) large enough
If bit 7 of A is 1, then:
BC=$ff-terminated name of file to use
(maximum block number will be determined from file)

OUT(s): Fc=1
IX=swap handle
OUT(f): Fc=0, A=error code

Register status on return:
........ /.. same
AFBCDEHL/IX different

NOTE: The block size specified (any multiple of 0.5K up to 16K) determines the
amount of data that is swapped in and out with the other IDE_SWAP_ calls. The
size of the swap partition required is calculated as (blocksize)* (max block
number+1). The current block number is set to 0.

NOTE: Only unfragmented files can be opened as swap files. The error code
rc_fragmented (%$4a) will be returned for fragmented files.
IDE_SWAP_EX ($00E5)

IN: -
OUT(f): Fc=0, A=rc_notimp

NOTE: This call is inefficient and has been deprecated.
Use IDE_SWAP_IN and IDE_SWAP_OUT instead.

IDE_DOS_MAP ($00F1)
Map a drive to the specified partition or physical device

IN: A=unit (0..15), including special device:
4=RAMdisk
$ff=filesystem image (.P3D or .DSK file)
BC=partition number (if A!=4 or $ff)
BC=image filename ($ff-terminated) (if A=$ff)
L=drive letter 'A' to 'P' (uppercase)

OUT(s): Fc=1
OUT(f): Fc=0, A=error code

Page 12 of 82

Register status on return:
........ /IX same
AFBCDEHL/.. different

IDE_DOS_UNMAP ($00F4)
Remove mapping from the specified drive
IN: L=drive letter 'A' to 'P' (uppercase)

OUT(s): Fc=1
OUT(f): Fc=0, A=error code

Register status on return:
........ /IX same
AFBCDEHL/.. different

IDE_DOS_MAPPING ($00F7)
Obtain mapping information for the specified drive

IN: L=drive letter 'A' to 'P' (uppercase)
BC=buffer (18 bytes in length)

OUT(s): Fc=1
Fz=1 if drive not mapped (and other info not valid)
Fz=0, mapping is as follows:
A=unit (0..15), including special device:
4=RAMdisk
$ff=filesystem image (.P3D or .DSK file)
BC=partition number (not for special devices)
buffer is filled with text description, or blanked if no mapping
OUT(f): Fc=0, A=error code

Register status on return:
........ /IX same
AFBCDEHL/.. different

IDE_SNAPLOAD ($00OFD)
Load a snapshot
IN: HL=filespec, terminated with $ff

OUT(s): Does not return if successful
OUT(f): Fc=0, A=error code

Register status on return:
........ /.. same
AFBCDEHL/IX different

Loads and runs a supported snapshot file (files with extension .Z80, .SNA, .0

and .P are supported, with others potentially supported in future).

NOTE: SP must be <$8000 if a ZX80 or zZX81 snapshot (.0 or .P) is to be loaded.

NOTE: This call should only be made in LAYER © mode. You can force this mode
simply (if not intending to return to BASIC on an error) by disabling
Timex, layer2 and lo-res modes (using ports $ff & $123b, and NextReg $15)

Page 13 of 82

and ensuring MMU3 is set to the default of $0b.

IDE_PATH ($01b1)

IN: A=reason code,
rc_path_change (0),
rc_path_get (1),
rc_path_make (2),
rc_path_delete (3)

HL=address of pathspec (terminated with $ff)
NB: For rc_path_get, this must also be a 256-byte buffer
into which the returned path will be written

OUT(s): Fc=1
OUT(f): Fc=0, A=error code

Register status on return:
........ /.... same
AFBCDEHL/IXIY different

This call allows the current directory or path for a particular drive (and user
area) to be changed or obtained. It also allows creation and deletion of
directories.

For rc_path_change, rc_path_make and rc_path_delete, HL points to a directory
specification, terminated by $ff. This may optionally include a drive letter,
user area and full path (if not, the current default values are used). For
rc_path_change, the current path on that drive is changed to the directory or
path specified. For rc_path_make and rc_path_delete, the named directory is
created or deleted.

For rc_path_get, HL points to a location specification (ie a drive and/or user
area, terminated with a colon and $ff). The current path for that location will
then be written to the buffer at HL and terminated with $ff.

Note that this call will return an error of rc_notimp if the drive on which it
is operating is formatted with a filesystem that does not support directories
(eg a +3D0S floppy drive or RAMdisk).

Note that for rc_path_change, the current default drive is *not* changed; only
the current directory for the specified drive. To change the default drive, use
the DOS_SET_DRIVE call (and, optionally, change the system variables LODDRV
and/or SAVDRV which affect the default drives for NextBASIC's
LOAD/SAVE/VERIFY/MERGE commands).

Page 14 of 82

New calls

The following calls are new for NextzZXOS.

IDE_CAPACITY ($01b4)
Get card capacity
IN: C=unit (0 or 1)

OUT(s): Fc=1
DEHL=total card capacity in 512-byte sectors
OUT(f): Fc=0, A=error code

Register status on return:
........ /.. same
AFBCDEHL/IX different

IDE_GET_LFN ($01b7)
Obtain a long filename and other file information

IN: HL=address of filespec provided to the last DOS_CATALOG call
IX=directory handle returned by the last DOS_CATALOG call
DE=address of a file entry within buffer filled by the last DOS_CATALOG call
BC=address of a 261-byte buffer to receive the long filename

OUT(s): Fc=1
Buffer at BC is filled with the long filename for the requested entry,
terminated with $ff. If no long filename was available, the buffer will
contain the properly-formatted short filename instead.
BC=date (in MS-DOS format)
DE=time (in MS-DOS format)
HLIX=filesize (in bytes)

OUT(f): Fc=0, A=error code

Register status on return:

........ /.. same

AFBCDEHL/IX different

This call allows a long filename (or properly-formatted short filename) for an
entry in the buffer returned by DOS_CATALOG to be obtained. It also returns
additional directory entry details (date, time, file size).

NOTE: No other +3D0OS calls should be made between the DOS_CATALOG call and the
(multiple) IDE_GET_LFN calls used to obtain the long filenames.

NOTE: If the file entry is a directory, the filesize returned in HLIX will be
zero.

IDE_BROWSER ($01ba)

Run the file browser

IN: HL=address of supported filetypes buffer, laid out as follows:
+0 (1 byte) Length of next entry, n

Page 15 of 82

+1 (n bytes) 1-3 byte extension (letters must be capitalised),
colon, optional BASIC command(s)
If n=$ff there are no further entries.

DE=address of $ff-terminated help text for 2 lines at bottom of screen
A=browser capabilities mask, made by ORing together any of:

$01, BROWSERCAPS_COPY - files may be copied

$02, BROWSERCAPS_RENAME - files/dirs may be renamed

$04, BROWSERCAPS_MKDIR - directories may be created

$08, BROWSERCAPS_ERASE - files/dirs may be erased

$10, BROWSERCAPS_REMOUNT- SD card may be remounted

$20, BROWSERCAPS_UNMOUNT- drives may be unmounted

$80, BROWSERCAPS_SYSCFG - system use only - use browser.cfg
Alternatively just use one of the two special values:

$00, BROWSERCAPS_NONE - no special capabilities

$3f, BROWSERCAPS_ALL - all capabilities enabled

OUT(s): Fc=1
If Fz=1, ENTER was pressed with a filetype that is present in the
filetype buffer, and:
HL=address of short filename (terminated with $ff) in RAM 7
DE=address of long filename (terminated with $ff) in RAM 7
If Fz=0, SPACE/BREAK was pressed
OUT(f): Fc=0, A=error

Register status on return:
........ /.. same
AFBCDEHL/IX different

NOTES:
IY must point to the system variable ERR_NR ($5c3a) on entry to this call.

The help text can contain any standard full-screen mode window control codes,
but if the character size is changed, it should be changed back to size 5 at the
end.

It is intended that applications wishing to use the Browser as a “save file”
dialog should direct the user to navigate to the correct drive/directory and
press SPACE. At this point the call will exit with the current drive and
directory set as the user selected and Fz=0 to indicate SPACE was pressed. Since
the screen is not cleared on exit, the application can then request input of the
filename on the bottom two lines of the screen, giving a seamless user
experience.

Call does not return if a supported filetype was selected which had anything
following the colon in the filetype buffer. In this case, the additional data is
treated as plain text, then tokenized and executed as a BASIC command. NOTE: No
terminator should be added to the end of the command.

The ? character may be used as a wildcard to match a single character in the
filetype.

The * character may be used as a wildcard to match remaining characters in the
filetype.

Most applications will not want a BASIC command to be executed and so should
provide a simple list of all the filetypes that they want to be selectable.

Example filetype buffer contents:

defb 4 ; length of first entry
defm “Xvyz:” ; match this filetype and return to caller with it
defb 12 ; length of second entry

Page 16 of 82

defm “X:.hexdump |” match this filetype and execute .hexdump on it

defb 3 ; length of third entry
defm *“z?2:." ; matches .z3, .z4, .z5 etc
defb 3 ; length of fourth entry
defm “z*:" ; matches .z, .zip etc
defb $ff ; table terminator
To match all files, you can provide a simple table like this:
defb 2
defm " *x : n
defb &$ff

IDE_BANK ($01bd)
Allocate or free 8K RAM banks in main ZX memory or DivMMC memory

IN: H=bank type:

rc_banktype_zx (0), zZX memory half-banks (8K size)
rc_banktype_mmc (1), DivMMC memory banks (8K size)

L=reason:
rc_bank_total (@), return total number of 8K banks of specified type
rc_bank_alloc (1), allocate next available 8K bank
rc_bank_reserve (2), reserve bank specified in E (0..total-1)
rc_bank_free (3), free bank specified in E (0..total-1)
rc_bank_available (4), return number of currently-available 8K banks

of specified type
E=8K bank ID (0..total-1), for rc_bank_reserve/rc_bank_free

OUT(s): Fc=1
E=8K bank ID (0..total-1), for rc_bank_alloc
E=total number of 8K banks of specified type, for rc_bank_total
E=available number of 8K banks of specified type, for rc_bank_available

OUT(f): Fc=0
A=error: rc_inuse if no available banks to allocate
rc_badparam if H, L or E is invalid

Register status on return:
........ /.. same
AFBCDEHL/IX different

NOTE:

This call is provided for applications that wish to co-exist with other
applications, dot commands and BASIC programs without overwriting each other's
memory .

Bank IDs are for 8K half-banks, numbered from O upwards. For ZX memory they can
be paged using the MMU instructions.

Banks are allocated starting with the highest-numbered available bank. This
helps to ensure low-numbered banks remain available for longer (important for
layer 2 which can only use banks within the first RAM chip).

NextZX0S/NextBASIC normally reserves the first 18 x 8K banks of ZX memory for
its own use, and the first 6 x 8K banks of DivMMC memory. However, BASIC
programs or TSR machine code programs could also reserve memory before your
program is loaded, so it is usually easier to allocate using rc_bank_alloc
rather than rc_bank_reserve.

NextZX0S/NextBASIC also owns the layer 2 banks (normally 16K banks 9,10,11: 8K

Page 17 of 82

banks 18-23, but may have been changed by the LAYER BANK command). However, you
can use such banks if you are in control of the system and not using layer 2:
the current layer 2 banks can be found by reading Next registers $12 and $13 to
find the base of the current front and back buffers, respectively.

Take care to free any banks you allocate before exiting, otherwise they will be

unavailable to the user until after a reset. A NEW command *does not* free
reserved banks back into the system.

IDE_BASIC ($01c0)
Execute a BASIC command line
IN: HL=address of tokenized BASIC command line, terminated with $0d
OUT(s): Fc=1
System variable ERR_NR contains generated BASIC error code-1
($ff means BASIC command completed successfully)
Register status on return:
........ /.. same
AFBCDEHL/IX different
NOTES:
This call must be made with the ROM2/RAM5/RAM2/RAMO memory configuration rather
than the usual +3D0S configuration. The stack must be located between STKEND and
RAMTOP (the normal location for the stack during BASIC operation).

Any number of BASIC commands may be executed, separated by colons (:), and the
line must be terminated with an ENTER character ($0d).

This call may be particularly useful for setting particular screen modes with

the LAYER command, which will ensure that the system variables are correctly set
up for printing to windows or the main screen in the selected mode.

IDE_WINDOW_LINEIN ($01c3)

Input line from current window stream

IN: required window has been made current via ROM 3 / $1601
HL=buffer address (must lie entirely below $c000)
A=buffer size (1..255 bytes)
E=number of characters already in the input buffer (0 for an entirely new

input). Must be less than A.

OUT: E=number of characters returned in input buffer

Register status on return:

........ /.. same

AFBCDEHL/IX different

NOTES:

This call invokes the window line input handler, allowing the user to enter new
characters and edit the input with the cursor keys and delete.

Page 18 of 82

The input buffer can be primed with an initial string for the user to edit. If
this is the case, E should be set to the number of characters in the initial
string (otherwise, set E=0).

+3 BASIC errors may be invoked

IDE_WINDOW_STRING ($01c6)
Output string to current window stream

IN: required window has been made current via ROM 3 / $1601
HL=address of string (must lie entirely below $c000)
E=string termination condition:

if E=$ff, string is terminated with a $ff character

if E=$80, last character in the string has bit 7 set

if E<$80, E=number of characters in the string (may be
terminated earlier with $ff)

ouT: -

Register status on return:

........ /.. same

AFBCDEHL/IX different

NOTES:

This call is intended for efficient outputting of strings to window channels,
avoiding the significant per-character overhead associated with outputting each
individual character via RST $10 or IDE_STREAM_OUT.

+3 BASIC errors may be invoked

IDE_INTEGER_VAR ($01c9)
Get or set NextBASIC integer variable

IN: B=0 for standard variable, B=1 for array
C=variable number (0=A,1=B...25=Z7)
L=array index (0..63) if B=1
H=0 to get variable, 1 to set variable
DE=value (if H=1)

OUT(s): Fc=1
DE=value (if H=0)

OUT(f): Fc=0
A=error: rc_badparam if H, L or E is invalid

Register status on return:
........ /.. same
AFBCDEHL/IX different
NOTE:

This call provides a convenient interface to pass values between BASIC and
machine-code processes.

Page 19 of 82

IDE_RTC ($01cc)
Query the real-time-clock module
IN: -
OUT(s): Fc=1
BC=date, in MS-DOS format
DE=time, in MS-DOS format
OUT(f): Fc=0, real-time-clock module not present
Register status on return:
........ /.. same
AFBCDEHL/IX different
NOTE:

This call returns the results provided by the RTC.SYS loadable module.

IDE_DRIVER ($01cf)

Access the driver API

IN: C=driver 1id
B=call id

HL, DE=other input parameters as described in driver API

OUT(s): Fc=1
Other results as described in M_DRVAPI

OUT(f): Fc=0, error
Other results as described in M_DRVAPI

Register status on return:

........ /.. same

AFBCDEHL/IX different

NOTE:

This call is equivalent to the M_DRVAPI hook provided in the esxD0OS API.
Applications will probably find M_DRVAPI more convenient to use; this call is
designed for use by the NextzZX0S ROMs.

This call should be made with the ROM2/RAM5/RAM2/RAM@ memory configuration
rather than the usual +3DOS configuration.

HL is used as an input value instead of IX (ie same as calling M_DRVAPI from a
dot command).

IDE_MOUNT ($01d2)

Unmount/remount SD cards

IN: A=0, close all files, unmap all drives and swap partitions
A=1, mount SD cards and automap drives

Page 20 of 82

OUT(s): Fc=1

OUT(f): Fc=0, error
A=error code

Register status on return:
........ /.. same
AFBCDEHL/IX different

NOTE:

This call can be used to allow users to change SD cards, as if the REMOUNT
command was being executed.

First, call IDE_MOUNT with A=0 to close all files and unmap drives.

If successful, request the user to change the SD card(s) and then call IDE_MOUNT
with A=1 to mount the new SD cards and automap drives.

IDE_MODE ($01d5)
Query current NextBASIC display mode information, or change mode

IN: A=0, query current mode information
A=1, change mode to:
B=layer (0,1,2)
C=sub-mode (if B=1): ©=lo-res, 1=ula, 2=hi-res, 3=hi-col

OUT(f): Fc=0
A=rc_badparam (bad parameter)

OUT(s): Fc=1

A=current (or new) mode/layer (same as lower 4 bits of GMODE):
bits 0..1=layer (0,1,2)
bits 2..3=sub-mode for layer 1 (@=lores,1=ula,2=hires, 3=hicol)

H=printable lines on screen:
22 for layer 0O
12 for lo-res, standard height printing
16 for lo-res, reduced height printing
24 for ula/hi-res/hi-col/layer2, standard height printing
32 for ula/hi-res/hi-col/layer2, reduced height printing

L=printable columns on screen:
32 for layer 0O
from 16 to 170 on other modes, depending on character size

E=current attributes, for layer 0/ula/hi-res/hi-col
current ink, for lo-res/layer2

D=current paper, for lo-res/layer2

B=character width in pixels (3-8)

C=flags: bit 0=1 if reduced-height mode is currently in force
bit 4=1 if double-width mode is currently in force
bit 5=1 if double-height mode is currently in force

IX=mode window handle (not valid if A=0, layer 0)

Register status on return:
........ /.. same

Page 21 of 82

AFBCDEHL/IX different

NOTE: H and L don't take account of the double-width/height flags in C, so
if those bits are set then the current number of printable lines/columns
will be half the reported values. (The number of lines in H *does* take
account of the reduced height setting, bit 0 of C).

NOTE: For layer 1 and 2 modes, the mode window handle is returned in IX. This
can be stored in the system variable CURCHL before making calls to
IDE_WINDOW_STRING or IDE_WINDOW_LINEIN, so that these calls use the
full-screen mode windows. It is important to restore the original value
of CURCHL after doing this.

NOTE: Changing the mode does *not* cause the screen to be cleared. This can be
useful if switching between layer 0 and layer 1,1 (or if switching between
layer 2 and one of the other modes, since layer 2 uses different memory
to the ULA modes).

Simple dot commands can just use the standard RST $10 call to output characters
and assume a screen width of 32 characters, which will work regardless of the
current layer/mode.

The information provided by this call can be useful if, however, you want to
write a dot command that respects the user's current display settings, and
formats output appropriately to use the entire screen.

If the current mode is layer 0 (ie A=0 on return from this call), you can clear
the screen using a standard 48K ROM call:

rst $18

defw $0D6B ; 48K ROM CLS call

For all other layers/modes this will not work correctly. Instead you should just
send the “clear window” control code using RST $10:

1d a,14 ; clear window control code

rst $10

For all layers/modes except for layer 0, you can also use the other window
control codes in this way (for example to change character width, enable double-
width/height etc). It is good practice to restore any settings that you change
before exiting your dot command.

If you wish to use the windowing controls but the current mode is layer 0, you

can use this call to first change to layer 1 mode 1. However, be sure to change
the mode back to layer 0 before exiting the dot command.

Page 22 of 82

Error codes

The error codes that may be returned by +3DOS/IDEDOS calls are as follows:
Recoverable disk errors:

0 rc_ready Drive not ready

1 rc_wp Disk is write protected

2 rc_seek Seek fail

3 rc_crc CRC data error

4 rc_nodata No data

5 rc_mark Missing address mark

6 rc_unrecog Unrecognised disk format

7 rc_unknown Unknown disk error

8 rc_diskchg Disk changed whilst +3D0OS was using it
9 rc_unsuit Unsuitable media for drive

Non-recoverable errors:

20 rc_badname Bad filename

21 rc_badparam Bad parameter

22 rc_nodrive Drive not found

23 rc_nofile File not found

24 rc_exists File already exists

25 rc_eof End of file

26 rc_diskfull Disk full

27 rc_dirfull Directory full

28 rc_ro Read-only file

29 rc_number File number not open (or open with wrong access)
30 rc_denied Access denied

31 rc_norename Cannot rename between drives
32 rc_extent Extent missing

33 rc_uncached Uncached

34 rc_toobig File too big

35 rc_notboot Disk not bootable

36 rc_inuse Drive in use

56 rc_invpartition Invalid partition

57 rc_partexist Partition already exists
58 rc_notimp Not implemented

59 rc_partopen Partition open

60 rc_nohandle Oout of handles

61 rc_notswap Not a swap partition

62 rc_mapped Drive already mapped

63 rc_noxdpb No XDPB

64 rc_noswap No suitable swap partition
65 rc_invdevice Invalid device

67 rc_cmdphase Command phase error

68 rc_dataphase Data phase error

69 rc_notdir Not a directory

74 rc_fragmented File is fragmented, use .DEFRAG

Page 23 of 82

The esxD0S-compatible API

The esxD0OS-compatible API is a bit simpler to use than the +3D0S-compatible API.

To make a call, you only need to set up the entry parameters as indicated and
perform a RST $08; DEFB hook_code. On return, registers AF,BC,DE,HL will all be
changed. IX,IY and the alternate registers are never changed (except for
M_P3DOS) .

(Note that the standard 48K BASIC ROM must be paged in to the bottom of memory,
but this is the usual situation after starting a machine code program with a USR
function call).

Notice that error codes are different from those returned by +3D0S calls, and
also the carry flag is SET for an error condition when returning from an esxDO0S
call (instead of RESET, as is the case for +3D0S).

If desired, you can use the M_GETERR hook to generate a BASIC error report for
any error returned, or even use it to generate your own custom BASIC error
report.

All of the calls where a filename is specified will accept long filenames (LFNs)

and most will accept wildcards (for an operation such as F_OPEN where a single
file is always used, the first matching filename will be used).

Page 24 of 82

Dot commands

Dot commands can also be written using the esxD0OS-compatible API. Normally dot
commands run from the C:/DOT/ directory, but they can be run from anywhere if
fully-pathed. For example:

.mydot ; executes C:/DOT/mydot
./mydot ; executes /mydot on current drive
../mydot ; executes mydot from current directory on current drive

The default Browser configuration supports selecting and running dot commands if
they have a .DOT extension.

Requirements
A dot command must be assembled to run at origin $2000, and will be loaded into
DivMMC RAM to execute. The maximum code/data size available is 8K.

It is permissable to relocate the stack to within the 8K area if desired (except
when calling an external ROM with RST $16, RST $18 or the M_P3DOS hook code).

On entry to your dot command, HL contains the address of the arguments following
the command name (or © if there are no arguments). Additionally, BC contains the
address of the entire command line (including the command name but excluding the
leading “.").

The arguments/command line may be terminated by $00, $0d or ':' (since the
address usually points within a BASIC statement, but may also be a system-
supplied null-terminated line). A ':' character within double-quotes does *not*
indicate the end of the command line. For example the termination of the
following command line is the second ':', not the first:

.mydot “c:/dir/file”:

On exit from your dot command, return with the the carry flag reset if execution
was successful.

To report a standard esxDOS error, set the carry flag and return with A=error.

To generate a custom error report, set the carry flag and return with A=0 and
HL=address of error message (last character must have bit 7 set).

Calling esxDOS-compatible API hooks
When called from within dot commands, the entry parameters used for RST $8 hook

codes are slightly different: HL should be used instead of IX. Exit parameters
are unchanged.

Calling external ROM routines
Within dot commands, two further restarts are available to call routines in the

standard 48K BASIC ROM:

RST $10
Print the character in A (NOTE: A must not be $80).

RST $18; DEFW address
Call any routine in the standard 48K BASIC ROM.

If a BASIC error occurs during a RST $10 or RST $18 call (eg the user presses

BREAK at a “scroll?” prompt) the dot command will be terminated and the error
reported, unless you have registered an error handler with the M_ERRH hook.

Page 25 of 82

Large dot commands

If your dot command is >8K in length, only the first 8K is loaded (at $2000),
but the file is left open (with the pointer directly after the first 8K). It is
possible to obtain the file handle using the M_GETHANDLE hook. This allows you
to read further code/data from your dot command into another memory area
(perhaps a bank allocated using IDE_BANK via M_P3D0S) or into the standard 8K
area as required.

Bootstrapping a game/application from a dot command

You can write large dot commands that load all the initial assets for a
game/application into memory (probably in the way described for large dot
commands above) and then start running them.

The recommended way to start your game/application after loading from within a
dot command is to use RST $20 with HL=address. This will cleanly terminate your
dot command, and return to the address provided in HL.

Note that this still leaves your dot command file open (as well as any other
files you may have opened), so you may continue to load further assets from it
if desired.

NOTE:

Although it is possible to start your game/application by simply jumping to the
code you have loaded (rather than using the RST $20 mechanism), this is not
recommended since doing so will leave the DivMMC ROM/RAM paged in place of the
standard 48K BASIC ROM. The main disadvantages of this would be:

e writing to Next registers MMUO/1 will have no effect

* needing to continue to use RST $8 hooks as if the dot command was running
*+ ipability to run any further dot commands

« standard IM1 interrupt routine (including ROM keyscanning) unavailable

e NMI unavailable, so Multiface replacement can't be activated

(NOTE: If you don't want your game to be interruptible/snapshottable by the

Multiface replacement, this can be achieved anyway by clearing the multiface
enable bit (bit 3) in the Next's peripheral2 register, $06).

Page 26 of 82

Installable device drivers

NextzZzX0S allows for a number of drivers to be installed/uninstalled at will
using the .install/.uninstall dot commands (currently a maximum of 4 drivers may
be installed at any one time). These are mainly intended for use as drivers for
external peripherals such as printers, mice, network devices etc, but could be
used for other purposes.

Each driver occupies a maximum of 512 bytes, which is loaded into DivMMC RAM and
relocated by the .install command. It is possible to allocate additional 8K
banks of DivMMC RAM and/or standard ZX Spectrum Next RAM during installation if
required (note that RAM is a limited resource).

Drivers have two entry points: an (optional) routine which is run during
interrupts, and an API routine which allows the driver to respond to user
requests. The driver's API is accessible from the M_DRVAPI hook (in the esxDO0S-
compatible API), the IDE_DRIVER call (in the +3D0S-compatible API) and the
DRIVER command in NextBASIC.

Each driver is identified by a unique single-byte id, so when writing a new
driver you should ensure that it's id does not clash with any other existing
driver. However, it would be acceptable for multiple different drivers to all
use the same identifier as long as they provide the same functionality via their
APIs (for example, multiple drivers for different printer interfaces might all
use the 'P' identifier).

Keyboard driver

In addition to the 4 general-purpose drivers, it is also possible to replace the
standard keyboard driver with a 512-byte driver. This is defined in the same
way, except that it always has a fixed id (0) and provides only a single entry
point, for the interrupt routine; no driver API is supported for this special
driver.

It might be desired to replace the standard keyboard driver in order to support
different international keyboard layouts, or perhaps to add support for a multi-
keystroke buffer.

An example keyboard driver (keyboard.asm and keyboard_drv.asm) is available
separately, and included at the end of this document.

Printer drivers

The id “P"” is reserved for printer drivers. If such a driver is installed in the
system then NextBASIC will automatically send any output on #3 (ie LLIST,
LPRINT, PRINT #3 etc) to it. CP/M will also use any such driver as its LPT
device.

CP/M will also use any driver with id “X” as its AUX device. AUX drivers can be
written in a similar way to printer drivers.

An example printer driver (sample_prt.asm and sample_prt_drv.asm) is available
separately, and included at the end of this document.

Channel support

Drivers can optionally be written to support i/o via the streams and channels
system of the Spectrum Next. This would allow the following BASIC commands to
open and close streams to the device (it is up to your documentation to describe
which of the OPEN # variants should be used):

Page 27 of 82

OPEN #n,"D>X"
open stream n to simple channel for device 'X'

OPEN #n,"D>X>string”
open stream n to channel described by string on device 'X'

OPEN #n,"”D>X,p1"
open stream n to channel described by numeric value pl1 on device 'X'

OPEN #n,"”D>X,p1, p2"
open stream n to channel described by numeric values p1 and p2 on device 'X'

CLOSE #n
close stream n

Once a channel is open, devices can (optionally) accept any of stream input,
output or pointer manipulation through their APIs which will allow other stream-
related BASIC commands to be used, eg:

PRINT #n;....

INPUT #n;....

INKEY$ #n

GOTO #n, value (set current stream pointer)

RETURN #n TO var (get current stream pointer to variable var)

DIM #n TO var (get current stream size/extent to variable var)

NEXT #n TO var (wait for next input character from stream and store in var)

For information on writing device drivers, see the worked example in border.asm
and border_drv.asm (available separately or at the end of this document).

Page 28 of 82

The following calls are available in the esxDOS-compatible API:

; Low-level calls

disk_filemap

disk_strmstart

disk_strmend

l4

14

4

; $85
; $86
; $87

; Miscellaneous calls.

m_dosversion
m_getsetdrv
m_tapein
m_tapeout
m_gethandle
m_getdate
m_execcmd
m_setcaps
m_drvapi
m_geterr
m_p3dos
m_errh

; File calls.

f_open
f_close
f_sync
f_read
f_write
f_seek
f_fgetpos
f_fstat
f_ftruncate
f_opendir
f_readdir
f_telldir
f_seekdir
f_rewinddir
f_getcwd
f_chdir
f_mkdir
f_rmdir
f_stat
f_unlink
f_truncate
f_chmod
f_rename
f_getfree

N® NE Ns Ns= Ns= Ns Ns N= N= Ns N= N=

NE NE NE NE= NE Ns N= N= NE NE N= W= Ns Ns N= W= Ns Ns Ns= N= N= N= N+ N=

$88
$89
$8b
$8c
$8d
$8e
$8f
$91
$92
$93
$94
$95

$9a
$9b
$9c
$9d
$9e
$9of
$ao
$ai
$a2
$a3
$a4
$a5
$a6
$a7
$a8
$a9
$aa
$ab
$ac
$ad
$ae
$af
$bo
$b1

(133)
(134)
(135)

(136)
(137)
(139)
(140)
(141)
(142)
(143)
(145)
(146)
(147)
(148)
(149)

(154)
(155)
(156)
(157)
(158)
(159)
(160)
(161)
(162)
(163)
(164)
(165)
(166)
(167)
(168)
(169)
(170)
(171)
(172)
(173)
(174)
(175)
(176)
(177)

obtain file allocation map
start streaming operation
end streaming operation

get NextzX0S version/mode information
get/set default drive

tape redirection control (input)
tape redirection control (output)
get handle for current dot command
get current date/time

execute a dot command

set additional capabilities

access API for installable drivers
get or generate error message
execute +3D0S/IDEDOS/NextZX0S call
register dot command error handler

open file

close file

sync file changes to disk
read file

write file

set file position

get file position

get open file information
truncate/extend open file
open directory for reading
read directory entry

get directory position

set directory position
rewind to start of directory
get current working directory
change directory

make directory

remove directory

get unopen file information
delete file

truncate/extend unopen file
change file attributes
rename/move file

get free space

Page 29 of 82

esxD0S-compatible error codes

Unknown error

OK

Nonsense in esxDOS
Statement end error
Wrong file type

No such file or dir
I/0 error

Invalid filename
Access denied

Drive full

Invalid i/o request
No such drive

Too many files open
Bad file number

No such device

File pointer overflow
Is a directory

Not a directory
Already exists
Invalid path
Missing system

Path too long

No such command

In use

Read only

Verify failed

Sys file load error
Directory in use
MAPRAM is active
Drive busy

Unknown filesystem
Device busy

NE N® NE N N® Ns NE Ns NE NE NE N= NE NE N= W= NE NE N= W= Ns NE W= W= NE Ns W= N= W= N= N+ w=

~

~

~ ~

~ N N~ 0~

OCoO~NOOOA~AWNEREO

esx_ok
esx_eok
esx_nonsense
esx_estend
esx_ewrtype
esx_enoent
esx_eio
esx_einval
esx_eacces
esx_enospc
esx_enxio
esx_enodrv
esx_enfile
esx_ebadf
esx_enodev
esx_eoverflow
esx_eisdir
esx_enotdir
esx_eexist
esx_epath
esx_esys
esx_enametoolong
esx_enocmd
esx_einuse
esx_erdonly
esx_everify
esx_eloadingko
esx_edirinuse
esx_emapramactive
esx_edrivebusy
esx_efsunknown
esx_edevicebusy

Page 30 of 82

NE N® NE N Ns® N= NE N N® NE Ns NE N® NE N= W= NE NE N= N= NE W= N= N=

N® NE NE NE N® Ns NE Ns= NE NE N= W= NE NE N W= NE NE N= W= NE Ns W= N= W= N= N+ w=

Rk Sk S R R S S O R S R I S A R R b O S R S S R I b

* DISK_FILEMAP ($85) *
kkhkhkkhkhkkhhkkhkkhhkkhhkkhkhkkhhkkhhkhhhkhhkdhhkhhkhhkhhkhdhhkdhhkdhhdhkhkhhkhhkhkdhhkdhhkdhhdhkhkhhkhkhhdhhkdkhkdhkhkhkhhkhhkhdxhdxx
Obtain a map of card addresses describing the space occupied by the file.
Can be called multiple times if buffer is filled, continuing from previous.
Entry:

A=file handle (just opened, or following previous DISK_FILEMAP calls)

IX=buffer

DE=max entries (each 6 bytes: 4 byte address, 2 byte sector count)
Exit (success):

Fc=0

DE=max entries-number of entries returned

HL=address in buffer after last entry

A=card flags: bit O=card id (0 or 1)

bit 1=0 for byte addressing, 1 for block addressing

Exit (failure):

Fc=1

A=error

NOTES:

Each entry may describe an area of the file between 2K and just under 32MB
in size, depending upon the fragmentation and disk format.

Please see example application code, stream.asm, for full usage information
(available separately or at the end of this document).

EE R I I S R I I R R O R I I I R I I R R I R I R I I R R I R I R I R I

* DISK_STRMSTART ($86) *
khhkkkhhhkkhhhkhkkhhhkkhhhhdhhkhdhddhhhdhhdhhhdhkddddxhdhdddhxddhdxddhxddhdxddhxrdh*x*dx*,k*x%
Start reading from the card in streaming mode.
Entry: IXDE=card address
BC=number of 512-byte blocks to stream
A=card flags
additionally, from NextzX0S v2.01, bit 7 may be set to indicate that
the user will perform the initial wait for data token
Exit (success): Fc=0
B=0 for SD/MMC protocol, 1 for IDE protocol
C=8-bit data port
Exit (failure): Fc=1, A=esx_edevicebusy

NOTES:

On the Next, this call always returns with B=0 (SD/MMC protocol) and C=$EB
When streaming using the SD/MMC protocol, after every 512 bytes you must read
a 2-byte CRC value (which can be discarded) and then wait for a $FE value
indicating that the next block is ready to be read.

On NextzX0S v2.01+, you may optionally set bit 7 of A to indicate that the
call should return without waiting for the initial $FE data token, allowing
other work to be done to cover the latency. In this case, the user must wait
for the $FE token before any data is read from the stream.

Please see example application code, stream.asm, for full usage information
(available separately or at the end of this document).

Page 31 of 82

Rk Sk S R R S S O R S R I S A R R b O S R S S R I b

* DISK_STRMEND ($87) *
R I S I S kO S I S kR R I I b b S I I I I O b R R O S b S O
Stop current streaming operation.

Entry: A=card flags

Exit (success): Fc=0

Exit (failure): Fc=1, A=esx_edevicebusy

NOTES:

This call must be made to terminate a streaming operation.

Please see example application code, stream.asm, for full usage information
(available separately or at the end of this document).

Page 32 of 82

NE NE NE= Ns Ns Ns N= Ns® Ns Ns W= N® Ns N= W= NE N= N= N= NE N= N=

NE NE NE N Ns Ns NE Ns N® Ns N Ns NE NE NE Ns NE Ns N= Ns® Ns NE W= NE Ns NE W= NE N= N= NE NE N= N= NE NE N= W=

Rk Sk S R R S S O R S R I S A R R b O S R S S R I b

* M_DOSVERSION ($88) *
EE R R I I S I S I b I I I b I I I
Get API version/mode information.
Entry:
Exit:
For esxD0OS <= 0.8.6
Fc=1, error
A=14 ("no such device")

For NextzZXO0S:
Fc=0, success
B='N',C='X"' (NextzX0S signature)
DE=NextZX0S version in BCD format: D=major, E=minor version
eg for NextzX0S v1.94, DE=$0194
HL=language code:
English: L='e',H="n"'
Spanish: L='e',H='s"
Further languages may be available in the future
A=0 if running in NextzZX0S mode (and zero flag is set)
A<>0 if running in 48K mode (and zero flag is reset)

Rk S S R R R R Ok O R S R I b S A R R O b S R S S R O R

* M_GETSETDRV ($89) *
kkhkhkkhkhkkhkhkhkkhkhkkhhkkhhkkhhkhhkhhhkhhkdhhkhkhkhhkhhkhkdhhkdhhkdhhdhkhkhhkhhhdhhkdhhkdhhdhhkhhkhkhhdhhkdhdhdkhkhhkhhhdhdxx
Get or set the default drive.
Entry:
A=0, get the default drive
A<>0, set the default drive to A
bits 7..3=drive letter (0=A...15=P)
bits 2..0=ignored (use 1 to ensure A<>0)
Exit (success):
Fc=0
A=default drive, encoded as:
bits 7..3=drive letter (0=A...15=P)
bits 2..0=0
Exit (failure):
Fc=1
A=error code

NOTE:
This call isn't often useful, as it is not necessary to provide a
specific drive to calls which need a drive/filename.
For such calls, you can instead provide:

A="*! use the default drive

A='$' use the system drive (C:, where the NEXTZX0S and BIN dirs are)
Any drive provided in such calls is also overridden by any drive letter
that is specified in the filename (eg “D:/myfile.txt\0”).

NOTE:

When setting a drive, this call only affects the default drive seen by other
esxD0S API calls. It does *not* change the default drive seen by +3D0S API
calls, or the default LOAD/SAVE drives used by NextBASIC. This is because the
RAM used to hold these defaults (RAM 7 and the system variables area) could
potentially be being used for other purposes by programs using only the
esxD0OS API.

If running in NextZX0S mode (not 48K mode) and you intend to use +3D0OS API
calls or return to NextBASIC, you can instead use the +3D0S DOS_SET_DRIVE
call (which sets the default drive for +3D0OS and esxD0S), and optionally

change the LODDRV and SAVDRV system variables (affecting NextBASIC LOAD/SAVE).

Page 33 of 82

NE NE NE Ns N® Ns NE Ns= NE Ns NE W= NE N= N= NE NE N= W= NE NE N= N=

Ne N® N® Ns= Ns® Ns Ns N= N= N= N= N N»

N® Ns NE N= N® Ns N N= N® Ns N= N= Ns N= N= N= Na

Rk Sk S R R S S O R S R I S A R R b O S R S S R I b

* M_TAPEIN ($8b) *
kkhkhkkhkhkkhhkkhkkhhkkhhkkhkhkkhhkkhhkhhhkhhkdhhkhhkhhkhhkhdhhkdhhkdhhdhkhkhhkhhkhkdhhkdhhkdhhdhkhkhhkhkhhdhhkdkhkdhkhkhkhhkhhkhdxhdxx
Tape input redirection control.
Entry:
B=0, in_open:
Attach tap file with name at IX, drive in A
B=1, in_close:
Detach tap file
B=2, in_info:
Return attached filename to buffer at IX and drive in A
B=3, in_setpos:
Set position of tape pointer to block DE (@=start)
B=4, in_getpos:
Get position of tape pointer, in blocks, to HL
B=5, in_pause:
Toggles pause delay when loading SCREEN$
On exit, A=1 if pause now enabled, A=0 if not
B=6, in_flags:
Set tape flags to A
bit 0: 1=pause delay at SCREEN$ (as set by in_pause)
bit 1: 1=simulate tape loading with border/sound
On exit, A=previous value of the tape flags

hkhkhkkhkhkhhkhhhhhhhhhhhhhhhdhhhdhhhdhdhhdhdhhdhdhdhhdhdhhhdhhhdhhhdhhhdhhhddhdddhddrddddrrdrrdr*x

* M_TAPEOUT ($8c) *
kkhkhkkhkhkkhkhkkhkkhhkkhkhkkhkhkkhkhkkhkhkhkhhkdhhkdhhkhkhkhkhkhkhhkhhkdhkhkdhdhkhkkhkhkhkhhkhhkdhhkdhhdhkhkkhkhkkhkhhkhkhkdkhdhkhrkhkhkhhkhdkhdkhdxx
Tape output redirection control.
Entry:
B=0, out_open:
Create/attach tap file with name at IX for appending, drive A
B=1, out_close:
Detach tap file
B=2, out_info:
Return attached filename to buffer at IX and drive in A
B=3, out_trunc:
Create/overwrite tap file with name at IX, drive A

EE R I R I R I R I R O I R R O R S R S R I R I I R R I R I R I R O R

* M_GETHANDLE ($8d) *

khkhkkhkhkhkhkhhhkhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhkhhhhhhhhhhhdhhhkhdhkhdhkrhkhkrkkdrkk*x*x

Get the file handle of the currently running dot command

Entry:
Exit:
A=handle
Fc=0
NOTES:

This call allows dot commands which are >8K to read further data direct
from their own file (for loading into another memory area, or overlaying
as required into the normal 8K dot command area currently in use).

On entry to a dot command, the file is left open with the file pointer
positioned directly after the first 8K.

This call returns meaningless results if not called from a dot command.

Page 34 of 82

NE N® NE Ns= Ns® Ns Ns Ns= N= N= N= N= N»

NE N® NE N Ns® Ns Ns Ns N® Ns NE Ns NE NE N N= NE NE N= N= W= Na Nw=

NE N® NE NE Ns® N= Ns N= N® N= Ns N= W= NE N= N= N= Na

Rk Sk S R R S S O R S R I S A R R b O S R S S R I b

* M_GETDATE ($8e) *
kkhkhkkhkhkkhhkkhkkhhkkhhkkhkhkkhhkkhhkhhhkhhkdhhkhhkhhkhhkhdhhkdhhkdhhdhkhkhhkhhkhkdhhkdhhkdhhdhkhkhhkhkhhdhhkdkhkdhkhkhkhhkhhkhdxhdxx
Get the current date/time.
Entry:
Exit:
Fc=0 if RTC present and providing valid date/time, and:
BC=date, in MS-DOS format
DE=time, in MS-DOS format
Fc=1 if no RTC, or invalid date/time, and:
BC=0
DE=0

hkhkhkkhkhkhhkhkhhhkhhhkhhhhhhhhhhhhhhdhhhdhhhhhhhhhhhhhhhhhhhhdhhhdhhhddhkhddhdddhrrdrkkx*x*x

* M_EXECCMD ($8f) *
R S S I S S S b S S I S S I O O
Execute a dot command.
Entry:

IX=address of commandline, excluding the leading "."

terminated with $00 (or $0d, or ':')

Exit (success):

Fc=0
Exit (failure):

Fc=1

A=error code (0 means user-defined error)

HL=address of user-defined error message within dot command

NOTES:
The dot command name can be fully-pathed if desired. If just a name is
provided, it is opened from the C:/DOT directory.

eg: defm "hexdump afile.txt",0 ; runs c:/dot/hexdump

defm "./mycommand.dot afile.txt", 0 ; runs mycommand.dot in current

; directory
If A=0, the dot command has provided its own error message but this is not
normally accessible. It can be read using the M_GETERR hook.
This hook cannot be used from within another dot command.

EE R I R I R I R I R O I R R O R S R S R I R I I R R I R I R I R O R

* M_SETCAPS ($91) *
khkkhkkhkhhkhkhkhkhkhkhhhhhkhkhkhhhhhhhkhkhkhhhhhhkhkhhkhhhhhhkhkhkhkhhhkhhhkhkhkhhhkhhhkhkhkkkkk k k ok k*k*x*%x
Entry: A=capabilities to set:

bit 7=1, do not erase new file data in f_truncate/f_ftruncate

(increases performance of these calls)

bits 0..6: reserved, must be zero

Exit: Fc=0, success
E=previous capabilities

NOTE: This call is only available from NextZX0S v1.98M+.
Earlier versions will return with Fc=1 (error) and A=esx_enocmd
NOTE: You should save the original value of the capabilities which is
returned in E. After completing the calls you need with your altered
capabilities, restore the original value by calling M_SETCAPS again
with the value that was previously returned in E.
This will ensure that other programs running after you have exited
will continue to see the original expected behaviour.

Page 35 of 82

NE NE N® NE= N® Ns N= Ns= NE Ns N= N= NE Ns N=

N® NE NE Ns® NE Ns N N® NE N= N= Ns Ns N= W= NE Ns N= W= NE N= W= N= N= N= w=

hkhkhkkhkhkhhkhhhhhhhhhhhhhhhdhhhdhhhdhdhdhdhhdhdhdhhhdhhhdhhhdhhhdhhhdhhhddhddhdddddrdrrdrrdx*x

* M_DRVAPI ($92) *
EIE R R I I b R I L
Access API for installable drivers.
Entry:

C=driver id (O=driver API)

B=call id

HL, DE=other parameters
Exit (success):
Fc=0
other values depend on API call
Exit (failure):
Fc=1
A=0, driver not found
else A=driver-specific error code (esxD0OS error code for driver API)

If C=0, the driver API is selected and calls are as follows:
(Note that these are not really useful for user applications; they are used
by the .install/.uninstall dot commands).

B=0, query the RTC
(returns the same results as M_GETDATE)

B=1, install a driver
D=number of relocations (0-255)
E=driver id, with bit 7=1 if should be called on an IM1 interrupt
HL=address of 512-byte driver code followed by D x 2-byte reloc offsets
Possible error values are:

esx_eexist (18) driver with same id already installed
esx_einuse (23) no free driver slots available
esx_eloadingko (26) bad relocation table

B=2, uninstall a driver
E=driver id (bit 7 ignored)

B=3, get paging value for driver banks
C=port (always $e3 on ZXNext)
A=paging value for DivMMC bank containing drivers (usually $82)

B=4, get driver image

E=driver id (bit 7 ignored)
HL=address of 512-byte buffer

Page 36 of 82

N® Ns NE Ns= N® Ns N® N= NE N= N= W= NE N= W= NE NE N= N=

NE Ns NE Ns Ns Ns NE Ns N® Ns NE N® NE NE N= Ns NE N= W= NE NE N= W= NE NE N N= Ns Ns Ns W= W= W= W= W= N= N= N+ N= N

Rk Sk S R R S S O R S R I S A R R b O S R S S R I b

* M_GETERR ($93) *
kkhkhkkhkhkkhhkkhkkhhkkhhkkhkhkkhhkkhhkhhhkhhkdhhkhhkhhkhhkhdhhkdhhkdhhdhkhkhhkhhkhkdhhkdhhkdhhdhkhkhhkhkhhdhhkdkhkdhkhkhkhhkhhkhdxhdxx
Entry:

A=esxD0OS error code, or O=user defined error from dot command

if A=0, IX=error message address from dot command

B=0, generate BASIC error report (does not return)
B=1, return error message to 32-byte buffer at DE

NOTES:

Dot commands may use this call to fetch a standard esxD0OS error message
(with B=1), but must not use it to generate an error report (with B=0) as
this would short-circuit the tidy-up code.

User programs may use the call to generate any custom error message (and not
just a custom message returned by a dot command). To do this, enter with

A=0 and IX=address of custom message, where IX>=$4000.

Custom error messages must be terminated with bit 7 set on the final
character.

EE R R R R R R R R R I R S

* M_P3D0S ($94) x
khkhkhkhkhkhkhkhkhkhhhhhhkhkhhhhhhdhhhkhhhhhhdhhhhhhhhdhdhhkhhhhhhhdhkhhhddhhdhdkhkhhhdhhddkdrhx*x*x
Make a +3D0S/IDEDOS/NextZX0S API call.
Entry:
DE=+3D0S/IDEDOS/NextZX0S call ID
C=RAM bank that needs to be paged (usually 7, but @ for some calls)
B'C',D'E',H'L',AF,IX contain entry parameters for call

Exit:
exit values as described for +3DOS/IDEDOS/NextZX0S call ID
EXCEPT: any value to be returned in IX will instead be in H'L'
All registers except IX,IY may be changed.

NOTES:

B'C', D'E', H'L' contain the entry parameters that the +3D0S API call
expects to be in BC, DE, HL.

As with other esxD0OS API calls, any IX entry parameter should instead be
loaded into HL if making the call from within a dot command.

Do not attempt to use this hook code unless you are running in NextZX0S mode
(can be determined by using the M_DOSVERSION hook).

Any parameters which are addresses of data (eg filenames etc) must lie between

$4000. . .$BFEO.

Any errors returned will be +3DOS/IDEDOS/NextZX0S error codes, not esxDOS
error codes. Additionally, carry flag RESET indicates an error condition.

No $DFFD paging should be in force.

MMU2 ($4000-$5fff) must be the default (lower half of RAM bank 5), containing
the system variables.

The stack should be in normal configuration (not in TSTACK).
For calls requiring normal configuration (ROM2/5/2/0), RAMO must already

be paged. For other calls, any banks can be paged at $c000, and will be
restored when the +3D0S call has completed.

Page 37 of 82

NE N® N® N® Ns= Ns Ns Ns= N= N= N= N= N= N»

Rk Sk S R R S S O R S R I S A R R b O S R S S R I b

* M_ERRH ($95) *
kkhkhkkhkhkkhhkkhkkhhkkhhkkhkhkkhhkkhhkhhhkhhkdhhkhhkhhkhhkhdhhkdhhkdhhdhkhkhhkhhkhkdhhkdhhkdhhdhkhkhhkhkhhdhhkdkhkdhkhkhkhhkhhkhdxhdxx
Install error handler for dot command.
Entry: HL=address of error handler within dot command

(0 to change back to standard handler)

NOTES:
Can only be used from within a dot command.
If any BASIC error occurs during a call to ROM3 (using RST $10 or RST $18)
then your error handler will be entered with:
DE=address that would have been returned to if the error had not
occurred
A=BASIC error code-1 (eg 8=9 STOP statement)

Page 38 of 82

Rk Sk S R R S S O R S R I S A R R b O S R S S R I b

* F_OPEN ($9a) *
R I S I S kO S I S kR R I I b b S I I I I O b R R O S b S O
Open a file.

Entry:

A=drive specifier (overridden if filespec includes a drive)
IX=filespec, null-terminated
B=access modes, a combination of:

any/all of:
esx_mode_read $01 request read access
esx_mode_write $02 request write access
esx_mode_use_header $40 read/write +3D0OS header

plus one of:
esx_mode_open_exist $00 only open existing file
esx_mode_open_creat $08 open existing or create file
esx_mode_creat_noexist $04 create new file, error if exists
esx_mode_creat_trunc $0cC create new file, delete existing

DE=8-byte buffer with/for +3D0S header data (if specified in mode)

(NB: filetype will be set to $ff if headerless file was opened)
Exit (success):

Fc=0

A=file handle
Exit (failure):

Fc=1

A=error code

hkhkhkkhkhkhhhkhhhkhhhkhhhhhhhhhhhhhhdhhhhhhhhhhhhhhhhhhhhhhhdhhhdhdhdhdhkhddhrddhrrdrkkx*x*x

* F_CLOSE ($9b) *
kkhkhkkhkhkkhkhkkhkhkhkkhkhkkhkhkkhkhkkhkhkkhkhhkdhhkdhkhkhkhkkhkhkkhkhhkhhkdhhkdhkhdhkhkkhkhkkhkhhkhhkdhhkdhkhhkhkkhkhkkhkhkhkdhhkdhkhkdhkhrkhkhkhhkhhkhdkkdxx
Close a file or directory.
Entry:

A=file handle or directory handle
Exit (success):

Fc=0

A=0
Exit (failure):

Fc=1

A=error code

khkhkkhkhkhkhkhhhkhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhkhhhhhhhhhhhdhhhkhdhkhdhkrhkhkrkkdrkk*x*x

* F_SYNC ($9c) *
kkhkhkkhkhkkhkhkkhkhkhkdhhkkhkhkkhkhkkhkhkkhkhhkdhkhkdhkhdhkhkhkhkhkhkhkhhkdhhkdhhdhkhkkhkhkkhkhhkhhkdhhkdhdhkhdhkhkkhkhhkdhhkdhkhkdhrhkhhkhkhhkkhdkkdxx
Sync file changes to disk.
Entry:

A=file handle
Exit (success):

Fc=0
Exit (failure):

Fc=1

A=error code

Page 39 of 82

NE NE N= N® Ns N= W= Ns Ns N= Ns= N= N= N= N® Ns NE Ns= N® Ns N® N= NE N= N= W= NE N= W= NE NE N= N=

Ne N® NE NE N® Ns Ns Ns NE Ns NE N= NE Ns N= N= NE Ns N= N= N»

Rk Sk S R R S S O R S R I S A R R b O S R S S R I b

* F_READ ($9d) *
kkhkhkkhkhkkhhkkhkkhhkkhhkkhkhkkhhkkhhkhhhkhhkdhhkhhkhhkhhkhdhhkdhhkdhhdhkhkhhkhhkhkdhhkdhhkdhhdhkhkhhkhkhhdhhkdkhkdhkhkhkhhkhhkhdxhdxx
Read bytes from file.
Entry:

A=file handle

IX=address

BC=bytes to read
Exit (success):

Fc=0

BC=bytes actually read (also in DE)

HL=address following bytes read
Exit (failure):

Fc=1

BC=bytes actually read

A=error code

NOTES:
EOF is not an error, check BC to determine if all bytes requested were read.

EE R R R R R R R R R I R S

* F_WRITE ($9e) *
kkhkhkkhkhkkhkkhkhkkhkhkkhkhkkhhkkhhkhhkhhkhkhhkkhhkhhkhhkhhkhhkhkhhkdhhkhhkhhkhhkhkhkhkhkhkkhhkhhkhhkhhkhhkhkkhhkk hkhhkhhkhhkhkk*x*%x
Write bytes to file.
Entry:

A=file handle

IX=address

BC=bytes to write
Exit (success):

Fc=0

BC=bytes actually written
Exit (failure):

Fc=1

BC=bytes actually written

EE R I I R R I I R I R O R R R R I I I R S R I I I I R R I I R I R I R

* F_SEEK ($9f) *
khhkkkhhhkkhhhkhkkhhhkhhhhdhhkhhhhdhhhdhhdhhhdhdddhxhdhdxdddxddhdxdddxddhdxdddxddh*x*dkx*,k*x%
Seek to position in file.
Entry:

A=file handle

BCDE=bytes to seek

IXL=seek mode:

esx_seek_set $00 set the fileposition to BCDE
esx_seek_fwd $01 add BCDE to the fileposition
esx_seek_bwd $02 subtract BCDE from the fileposition

Exit (success):

Fc=0

BCDE=current position
Exit (failure):

Fc=1

A=error code

NOTES:

Attempts to seek past beginning/end of file leave BCDE=position=0/filesize
respectively, with no error.

Page 40 of 82

NE NE N®= Ns= Ns Ns N= W= Ns N= N= N=

NE NE N N® N® N= N= Ns Ns N= W= Ns N= N= W= N= N= N= N= N= Ns

NE N® NE N Ns® Ns Ns Ns N® Ns Ns Ns NE NE N N= NE Ns N= N= NE W= N= N= Na

Rk Sk S R R S S O R S R I S A R R b O S R S S R I b

* F_FGETPOS ($a0) *
kkhkhkkhkhkkhhkkhkkhhkkhhkkhkhkkhhkkhhkhhhkhhkdhhkhhkhhkhhkhdhhkdhhkdhhdhkhkhhkhhkhkdhhkdhhkdhhdhkhkhhkhkhhdhhkdkhkdhkhkhkhhkhhkhdxhdxx
Get current file position.
Entry:

A=file handle
Exit (success):

Fc=0

BCDE=current position
Exit (failure):

Fc=1

A=error code

hkhkhkkhkhkhhkhhhhhhhhhhhhhhhdhhhdhhhdhhhdhhhdhdhdhhhdhhhdhhhdhhhdhhhdhhhdhhdddhddrdddrdrrdrrdxr*x

* F_FSTAT (%al) *
EIE R R I I I I R I I
Get file information/status.
Entry:

A=file handle

IX=11-byte buffer address
Exit (success):

Fc=0
Exit (failure):

Fc=1

A=error code

NOTES:

The following details are returned in the 11-byte buffer:
+0(1) %1
+1(1) $81

+2(1) file attributes (MS-DOS format)
+3(2) timestamp (MS-DOS format)

+5(2) datestamp (MS-DOS format)

+7(4) file size in bytes

EE R I I R R I I R I R O R R R R I I I R S R I I I I R R I I R I R I R

* F_FTRUNCATE ($a2) *
EIE IR I I I I R b b b b I b I b I b I I I b I I I I I I I I I b b I I I I I I I b I b I S I I b I I b I b b I b b I b b b b I
Truncate/extend file.
Entry:

A=file handle

BCDE=new filesize
Exit (success):

Fc=0
Exit (failure):

Fc=1

A=error code

NOTES:

The M_SETCAPS ($91) hook can be used to modify the behaviour of this call
so that is doesn't zeroise additional file sections (improving performance).
Sets the filesize to precisely BCDE bytes.

If BCDE<current filesize, the file is trunctated.

If BCDE>current filesize, the file is extended. The extended part is erased
with zeroes.

The file position is unaffected. Therefore, if truncating, make sure to

set the file position within the file before further writes (otherwise it
will be extended again).

+3D0S headers are included as part of the filesize. Truncating such files is
not recommended.

Page 41 of 82

NE NE NE= Ns Ns Ns N= Ns® Ns Ns W= N® Ns N= W= NE N= N= N= NE N= N=

NE NE N NE NE N= N Ns Ns N= W= Ns Ns N Ns Ns NE W= Ns Ns NE W= Ns Ns NE W= Ns Ns N W= W= NE N N= Na

Rk Sk S R R S S O R S R I S A R R b O S R S S R I b

* F_OPENDIR ($a3) *
kkhkhkkhkhkkhhkkhkkhhkkhhkkhkhkkhhkkhhkhhhkhhkdhhkhhkhhkhhkhdhhkdhhkdhhdhkhkhhkhhkhkdhhkdhhkdhhdhkhkhhkhkhhdhhkdkhkdhkhkhkhhkhhkhdxhdxx
Open directory.
Entry:

A=drive specifier (overridden if filespec includes a drive)

IX=directory, null-terminated

B=access mode

add together any or all of:

esx_mode_use_1fn $10 return long filenames

esx_mode_use_wildcards $20 only entries matching wildcard
passed to F_READDIR are returned

esx_mode_use_header $40 read/write +3D0OS headers

Exit (success):
A=dir handle
Fc=0

Exit (failure):
Fc=1
A=error code

NOTES:
Access modes determine how entries are formatted by F_READDIR.

Rk S S R R R R Ok O R S R I b S A R R O b S R S S R O R

* F_READDIR ($a4) *
kkhkhkkhkhkkhkhkhkkhkhkkhhkkhhkkhhkhhkhhhkhhkdhhkhkhkhhkhhkhkdhhkdhhkdhhdhkhkhhkhhhdhhkdhhkdhhdhhkhhkhkhhdhhkdhdhdkhkhhkhhhdhdxx
Read next directory entry.
Entry:

A=handle

IX=buffer

Additionally, if directory was opened with esx_mode_use_wildcards:

DE=wildcard string (null-terminated)
Exit (success):

A=number of entries returned (0 or 1)

If 0, there are no more entries

Fc=0
Exit (failure):

Fc=1

A=error code

Buffer format:

byte file attributes (MSDOS format)

bytes file/directory name, null-terminated
bytes timestamp (MSDOS format)

bytes datestamp (MSDOS format)

bytes file size

A NNV

NOTES:

If the directory was opened with the esx_mode_use_1fn bit, long filenames
(up to 260 bytes plus terminator) are returned; otherwise short filenames
(up to 12 bytes plus terminator) are returned.

If opened with the esx_mode_use_header bit, after the normal entry follows the
8-byte +3D0S header (for headerless files, type=$ff, other bytes=zero).

If opened with the esx_mode_use_wildcards bit, then only the next filename
matching the wildcard string provided in DE is returned.

Page 42 of 82

Rk Sk S R R S S O R S R I S A R R b O S R S S R I b

* F_TELLDIR ($a5) *
kkhkhkkhkhkkhhkkhkkhhkkhhkkhkhkkhhkkhhkhhhkhhkdhhkhhkhhkhhkhdhhkdhhkdhhdhkhkhhkhhkhkdhhkdhhkdhhdhkhkhhkhkhhdhhkdkhkdhkhkhkhhkhhkhdxhdxx
Get current directory position.
Entry:

A=handle
Exit (success):

BCDE=current offset in directory

Fc=0
Exit (failure):

Fc=1

A=error code

hkhkhkkhkhkhhkhhhhhhhhhhhhhhhdhhhdhhhdhhhdhhhdhdhdhhhdhhhdhhhdhhhdhhhdhhhdhhdddhddrdddrdrrdrrdxr*x

* F_SEEKDIR ($a6) *
kkhkhkkhkhkkhkhkkhkkhhkkhhkkhkhkkhkhkkhkhkhkhhkdhkhkdhkhdhkhkhkhkhkhhhhkdhkhkdkhdhkhkdhkhkhkhhkhhkdhkhkdhkhkdhkhkkhkhkkhkhhkhkhkdhdkhrkhkhkhhkhdkhdkhdxx
Set current directory position.
Entry:

A=handle

BCDE=0offset in directory to seek to (as returned by F_TELLDIR)
Exit (success):

Fc=0
Exit (failure):

Fc=1

A=error code

hkhkhkkhkhkhhhkhhhkhhhkhhhhhhhhhhhhhhdhhhhhhhhhhhhhhhhhhhhhhhdhhhdhdhdhdhkhddhrddhrrdrkkx*x*x

* F_REWINDDIR (%a7) *
kkhkhkkhkhkkhkhkkhkhkhkkhkhkkhkhkkhkhkkhkhkkhkhhkdhhkdhkhkhkhkkhkhkkhkhhkhhkdhhkdhkhdhkhkkhkhkkhkhhkhhkdhhkdhkhhkhkkhkhkkhkhkhkdhhkdhkhkdhkhrkhkhkhhkhhkhdkkdxx
Rewind directory position to the start of the directory.
Entry:

A=handle
Exit (success):

Fc=0
Exit (failure):

Fc=1

A=error code

R R I I R I I I I I I R I O I R I I I I I I R R I S I R I R O I

* F_GETCWD ($a8) *
khkkkhhhkkhkhhkhkkhhhkhhhhkkhhhkhhhhkhhhhdhhkhhhhdhhkhdhhhkdhdkddhhhdhdxkddrhkdhdxddxhkdhxk*dxkk,k*x%
Get current working directory (or working directory for any filespec)
Entry:
A=drive, to obtain current working directory for that drive
or: A=$ff, to obtain working directory for a supplied filespec in DE
DE=filespec (only if A=$ff)
IX=buffer for null-terminated path
Exit (success):
Fc=0
Exit (failure):
Fc=1
A=error code

NOTE:

If obtaining a path for a supplied filespec, the filename part (after the
final /, \ or :) is ignored so need not be provided, or can be the name of a
non-existent file/dir.

NOTE:

IX and DE may both address the same memory, if desired.

Page 43 of 82

Page 44 of 82

Rk Sk S R R S S O R S R I S A R R b O S R S S R I b

* F_CHDIR ($a9) *
kkhkhkkhkhkkhhkkhkkhhkkhhkkhkhkkhhkkhhkhhhkhhkdhhkhhkhhkhhkhdhhkdhhkdhhdhkhkhhkhhkhkdhhkdhhkdhhdhkhkhhkhkhhdhhkdkhkdhkhkhkhhkhhkhdxhdxx
Change directory.
Entry:

A=drive specifier (overridden if filespec includes a drive)

IX=path, null-terminated
Exit (success):

Fc=0
Exit (failure):

Fc=1

A=error code

hkhkhkkhkhkhhkhhhhhhhhhhhhhhhdhhhdhhhdhhhdhhhdhdhdhhhdhhhdhhhdhhhdhhhdhhhdhhdddhddrdddrdrrdrrdxr*x

* F_MKDIR (%$aa) *
kkhkhkkhkhkkhkhkkhkkhhkkhhkkhkhkkhkhkkhkhkhkhhkdhkhkdhkhdhkhkhkhkhkhhhhkdhkhkdkhdhkhkdhkhkhkhhkhhkdhkhkdhkhkdhkhkkhkhkkhkhhkhkhkdhdkhrkhkhkhhkhdkhdkhdxx
Create directory.
Entry:

A=drive specifier (overridden if filespec includes a drive)

IX=path, null-terminated
Exit (success):

Fc=0
Exit (failure):

Fc=1

A=error code

hkhkhkkhkhkhhhkhhhkhhhkhhhhhhhhhhhhhhdhhhhhhhhhhhhhhhhhhhhhhhdhhhdhdhdhdhkhddhrddhrrdrkkx*x*x

* F_RMDIR ($ab) *
kkhkhkkhkhkkhkhkkhkhkhkkhkhkkhkhkkhkhkkhkhkkhkhhkdhhkdhkhkhkhkkhkhkkhkhhkhhkdhhkdhkhdhkhkkhkhkkhkhhkhhkdhhkdhkhhkhkkhkhkkhkhkhkdhhkdhkhkdhkhrkhkhkhhkhhkhdkkdxx
Remove directory.
Entry:

A=drive specifier (overridden if filespec includes a drive)

IX=path, null-terminated
Exit (success):

Fc=0
Exit (failure):

Fc=1

A=error code

Page 45 of 82

NE NE N®= Ns= Ns Ns N= W= Ns N= N= N= NE NE NE= Ns Ns Ns N= Ns® Ns Ns W= N® Ns N= W= NE N= N= N= NE N= N=

NE NE NE Ns Ns Ns NE Ns N® Ns Ns W= NE Ns N Ns NE N= W= Ns NE N= N=

Rk Sk S R R S S O R S R I S A R R b O S R S S R I b

* F_STAT ($ac) *
kkhkhkkhkhkkhhkkhkkhhkkhhkkhkhkkhhkkhhkhhhkhhkdhhkhhkhhkhhkhdhhkdhhkdhhdhkhkhhkhhkhkdhhkdhhkdhhdhkhkhhkhkhhdhhkdkhkdhkhkhkhhkhhkhdxhdxx
Get unopened file information/status.
Entry:
A=drive specifier (overridden if filespec includes a drive)
IX=filespec, null-terminated
DE=11-byte buffer address
Exit (success):
Fc=0
Exit (failure):
Fc=1
A=error code

NOTES:
The following details are returned in the 11-byte buffer:
+0(1) drive specifier
+1(1) $81
+2(1) file attributes (MS-DOS format)
+3(2) timestamp (MS-DOS format)
+5(2) datestamp (MS-DOS format)
+7(4) file size in bytes

Rk S S R R R R Ok O R S R I b S A R R O b S R S S R O R

* F_UNLINK ($ad) *
kkhkhkkhkhkkhkhkhkkhkhkkhhkkhhkkhhkhhkhhhkhhkdhhkhkhkhhkhhkhkdhhkdhhkdhhdhkhkhhkhhhdhhkdhhkdhhdhhkhhkhkhhdhhkdhdhdkhkhhkhhhdhdxx
Delete file.
Entry:
A=drive specifier (overridden if filespec includes a drive)
IX=filespec, null-terminated
Exit (success):
Fc=0
Exit (failure):
Fc=1
A=error code

hkhkhkkhkhkhhkhhhhhhhhhhhhhhhdhhhdhhhdhdhhdhdhhdhdhdhhdhdhhhdhhhdhhhdhhhdhhhddhdddhddrddddrrdrrdr*x

* F_TRUNCATE ($ae) *
kkhkhkkhkhkkhkhkkhkkhhkkhkhkkhkhkkhkhkkhkhkhkhhkdhhkdhhkhkhkhkhkhkhhkhhkdhkhkdhdhkhkkhkhkhkhhkhhkdhhkdhhdhkhkkhkhkkhkhhkhkhkdkhdhkhrkhkhkhhkhdkhdkhdxx
Truncate/extend unopened file.
Entry:

A=drive specifier (overridden if filespec includes a drive)

IX=source filespec, null-terminated

BCDE=new filesize
Exit (success):

Fc=0
Exit (failure):

Fc=1

A=error code

NOTES:

The M_SETCAPS ($91) hook can be used to modify the behaviour of this call

so that is doesn't zeroise additional file sections (improving performance).
Sets the filesize to precisely BCDE bytes.

If BCDE<current filesize, the file is trunctated.

If BCDE>current filesize, the file is extended. The extended part is erased
with zeroes.

+3D0S headers are included as part of the filesize. Truncating such files is
not recommended.

Page 46 of 82

NE NE NE Ns N® Ns NE Ns= NE Ns NE W= NE N= N= NE NE N= W= NE NE N= N=

Ne N® N® Ns= Ns® Ns Ns N= N= N= N= N N»

NE N® N® N®= Ns Ns= Ns N= N= N= N= N=

Rk Sk S R R S S O R S R I S A R R b O S R S S R I b

* F_CHMOD ($af) *
kkhkhkkhkhkkhhkkhkkhhkkhhkkhkhkkhhkkhhkhhhkhhkdhhkhhkhhkhhkhdhhkdhhkdhhdhkhkhhkhhkhkdhhkdhhkdhhdhkhkhhkhkhhdhhkdkhkdhkhkhkhhkhhkhdxhdxx
Modify file attributes.
Entry:
A=drive specifier (overridden if filespec includes a drive)
IX=filespec, null-terminated
B=attribute values bitmap
C=bitmap of attributes to change (1=change, ©0=do not change)

Bitmasks for B and C are any combination of:

A_WRITE %00000001
A_READ %10000000
A_RDWR %10000001

A_HIDDEN %00000010
A_SYSTEM %00000100
A_ARCH %00100000

Exit (success):
Fc=0

Exit (failure):
Fc=1
A=error code

hkhkhkkhkhkhhkhhhhhhhhhhhhhhhdhhhdhhhdhdhhdhdhhdhdhdhhdhdhhhdhhhdhhhdhhhdhhhddhdddhddrddddrrdrrdr*x

* F_RENAME ($b0) *
R S S S S S S I I S I O b S I I S I I I b O
Rename or move a file.
Entry:

A=drive specifier (overridden if filespec includes a drive)

IX=source filespec, null-terminated

DE=destination filespec, null-terminated
Exit (success):

Fc=0
Exit (failure):

Fc=1

A=error code

EE R I R I R I R I R O I R R O R S R S R I R I I R R I R I R I R O R

* F_GETFREE ($b1) *
khhkkkhhhkkhhhkhkkhhhkhhhhkdhhkhhhhdhhhdhhdhhhdhdddhhxhdhdxddhhhdhdxddhxddhdxddxrdh*x*dx*k*k*x%
Gets free space on drive.
Entry:

A=drive specifier
Exit (success):

Fc=0

BCDE=number of 512-byte blocks free on drive
Exit (failure):

Fc=1

A=error code

Page 47 of 82

Streaming API example - stream.asm

NE NE Ns NE= Ns Ns Ns N= Ns= Ns Ns N= N= N»

EE R I I R I R I I R I R R I O R I O R I S R S I I R I I R R I R I R I R I R

* Streaming file access example code for NextzZX0S via esxD0OS API *
khkkhkkhkhhhkhkhkhkhkhhhhhkhkhkhhhhhhhkhkhkhhhhhhkhkhhkhhhhhhkhkhkhkhhhkhhhkhkhkhhhkhhhkhkhkkkkk k k k k*k*x*%

Assemble with: pasmo stream.asm stream.bin

Execute with stream.bin and test.scr (any 6912-byte headerless screen file)
in the same directory, using:

CLEAR 32767:LOAD "stream.bin" CODE 32768
LET x=USR 32768

PRINT x to show any esxDOS error code on return.
Additionally, 255 means "out of data"
and 65535 means '"completed successfully".

khkkhkkhkhkhkhkhhhkhhhkhhhkhhhhhhhkhhhhhhhhhhhhhhhhkhhhkhhhhhhhhdhhhhhhkhdhkhdhkrkkhkrkk rkkx**x

* esxD0S API and other definitions required *

EE R R R R R R R R R I R S

; Calls

f_open equ $9a ; opens a file

f_close equ $9b ; closes a file

disk_filemap equ $85 ; obtains map of file data
disk_strmstart equ $86 ; begin streaming operation
disk_strmend equ $87 ; end streaming operation

; File access modes

esx_mode_read equ $01 ; read access
esx_mode_open_exist equ $00 ; open existing files only

; Next registers

next_register_select equ $243b

nxr_peripheral2 equ $06

; Size of filemap buffer (in 6-byte entries)

; To guarantee all entries will fit in the filemap at once, allow 1 entry for
; every 2K of filesize. The example uses a 6.75K SCREEN$, so 4 entries is

; sufficient.

; (NOTE: Reducing this to 1 *may* force the example code to refill the filemap
; multiple times, but only if your card has a cluster size of 2K or 4K
; and the file is fragmented).

filemap_size equ 4

Ns Ns Ns Ns

Rk o S R R R R Ok O R S R I b S A R R I O S R S IRk I b

* Initialisation *

EE R I I R R I I R I R O R R R R I I I R S R I I I I R R I I R I R I R

org $8000

Before starting we will disable the Multiface button, since filesystem
access will not be possible during a streaming operation, and could cause
unexpected effects, including possibly the machine locking up until a soft
reset is performed.

1d bc, next_register_select
1d a,nxr_peripheral2
out (c),a

Page 48 of 82

.
l4

.
l4
.
l4
14
4
l4
4
4
4
4
14
l4
l4
4
14
.
l4
l4
4
4
4
4
4
l4
14
4
l4
.
l4
14
4

inc b

in a, (c) ; get current peripheral2 value
and %11110111 ; clear bit 3 (multiface enable)
out (c),a

First the file must be opened in the normal way

1d a,'*' ; use default drive if none specified
1d ix, test_filename

1d b, esx_mode_read+esx_mode_open_exist

rst $08

defb f_open

jp c,exit_with_error

1d (filehandle), a ; store the returned file handle

For this example, we are going to "stream" a standard Spectrum SCREEN$
file to the screen. This is a convenient point to set up parameters
for this.

1d hl, $4000 ; address to stream data to
1d de, 6912 ; size of data left to stream
exx ; save in alternate registers

Rk S S R R R R Ok O R S R I b S A R R O b S R S S R O R

* Filemap buffer setup *

EE R I I S R I I R R O R I I I R I I R R I R I R I I R R I R I R I R I

Next, obtain the map of card addresses for the file.
Note that this call (DISK_FILEMAP) must be made directly after opening the
file - no other file access calls should be made first.

A buffer must be provided to hold the card addresses.

Each entry in the buffer occupies 6 bytes and describes an area of the
file which can be anywhere between 2K and 32MB in size (depending on the

; way the card was formatted, and how fragmented the file is).

Therefore, it is possible to calculate the absolute maximum number of buffer
entries required by dividing the size of the file by 2K.

It is also possible to use a smaller buffer and call disk_filemap multiple
times when a refill is required (provided the last streaming operation has
been stopped before the next disk_filemap call is made).

often, files are unfragmented, and so will use only 1 entry. You could
potentially write your code to assume this (which would therefore be simpler
than this example), and cause an error if more than 1 entry is returned,
citing "framentation" and suggesting the user run the .defrag dot command

on the file. (Note that some CompactFlash, and other IDE, may be limited

to a maximum section size of 64K).

The byte/block addressing flag returned in bit 1 of A may be useful if you

; wish to start streaming data from a particular 512-byte block offset within

the file, as it indicates how to adjust the 4-byte card addresses:
if bit 1 of A=0, then add 512 to the card address for every block
if bit 1 of A=1, then add 1 to the card address for every block

refill_map:
1d a, (filehandle)
1d ix, filemap_buffer ; address of buffer
1d de, filemap_size ; size of buffer (in 6-byte entries)
rst $08

Page 49 of 82

NE Ns N= N= N-

4

4

4
4
l4
14

defb disk_filemap
jp c,close_and_exit_with_error

On exit from disk_filemap, the return values are:
DE=size of buffer unused (in 6-byte entries)
HL=address in buffer after last written entry
A=flags: bit O=card id (0 or 1)
bit 1=0 for byte addressing, 1 for block addressing

1d (cardflags), a ; store card flags for later use

First we will check whether there were any entries returned, and exit with

; a dummy error code ($ff) not used by esxD0OS to indicate "out of data" if not.

push hl

1d de, filemap_buffer ; initialise buffer address

and a ; not needed as no error, so carry=0
sbhc hl, de ; any entries in the buffer at all?
pop hl

1d a, $ff ; dummy error to indicate out of data
jr z,close_and_exit_with_error

khkkkhhhkkhkhhkhkkhhhkhkhhhkkhhhhkhhhkhhhhkhhhkkhdhrhkhhhkhdrxhkhhhkddrxhkdhhhkkddrxhkdhdrkkddrxhkdkhxrdxk,x*x*

* Main streaming loop *

hkhkhkkhkhkhhkhhhhhhhhhhhhhhhdhhhdhhhdhdhhdhdhhdhdhdhhdhdhhhdhhhdhhhdhhhdhhhddhdddhddrddddrrdrrdr*x

Now we can enter a loop to stream data from each entry in the buffer.

stream_loop:

N® N® Ns N®= Ns= N= Ns N= N= N»

push hl ; save buffer end address

ex de, hl ; HL=address of next entry in buffer
1d e, (hl)

inc hl

1d d, (hl)

inc hl

1d c, (hl)

inc hl

1d b, (hl) ; BCDE=card address

inc hl

push bc

pop ix ; IXDE=card address

1d c, (hl)

inc hl

1d b, (hl) ; BC=number of 512-byte blocks
inc hl

push hl ; save updated buffer address
push bc ; save number of blocks

Streaming is initiated by calling DISK_STRMSTART with:

IXDE=card address

BC=number of 512-byte blocks to stream

A=card flags, as returned by DISK FILEMAP
After this call is issued it is important that no further esxDOS calls
(or NextzX0S calls which might access a filesystem) are issued until the
matching DISK_STRMEND call has been made.
It is also important to ensure that the Multiface (which could access files)
is disabled for the duration of the streaming operation. (Done earlier in
this example).

1d a, (cardflags) ; A=card flags

rst $8
defb disk_strmstart

Page 50 of 82

NE Ns N®= Ns Ns Ns N= N= N»

pop ix ; retrieve number of blocks to IX
jr c,drop2_close_and_exit_with_error

If successful, the call returns with:

B=protocol: ©0=SD/MMC, 1=IDE

C=data port
NOTE: On the Next, these values will always be:

B=0

C=$EB
Therefore, your code code be slightly faster and simpler if writing a
Next-only program. However, these values are provided to allow portable
streaming code to be written (if NextzZX0S is later ported to other platforms).

1d a,c

exx ; switch back to "streaming set"
; HL=address, DE=bytes to stream

1d c,a ; C=data port

khkkhkkhkhkhkhkhhhkhhhkhhhkhhhhhhhkhhhhhhhhhhhhhhhhkhhhkhhhhhhhhdhhhhhhkhdhkhdhkrkkhkrkk rkkx**x

* Block streaming loop *

EE R R R R R R R R R I R S

stream_block_loop:

Ns Ns N= N

1d b,0 ; prepare for 256-byte INIR
1d a,d

cp 2 ; at least 1 block to stream?
jr c,stream_partial_block

Read an entire 512-byte block of data.
These could be unrolled to INIs for maximum performance.

inir ; read 512 bytes from the port
inir
dec d ; update byte count
dec d

Check the protocol being used.
exx
1d a,b ; A=protocol (0=SD/MMC, 1=IDE)
exx
and a ; The IDE protocol doesn't need
jr nz,protocol_ide ; this end-of-block processing

For SD protocol we must next skip the 2-byte CRC for the block just read.
Note that maximum performance of the interface is 16T per byte, so nops
must be added if not using INI/OUTI.

The interface can run at CPU speeds of at least 21MHz (as in ZX-Badaloc).

in a, (c)
nop
in a, (c)
nop

And then wait for a token of $FE, signifying the start of the next block.
A value of $FF indicates "token not yet available". Any other value is an
error.

wait_token:

in a, (c) ; wait for start of next block
cp $ff ; (a token is != $ff)

Page 51 of 82

.
l4

jr z,wait_token
cp $fe ; the correct data token is $fe
jr nz, token_error ; anything else is an error

IDE protocol streaming can rejoin here.

protocol_ide:

Ns Ns N= N= N-

Ne Ns N N= N=

NE Ns N= N= N-

1d a,d ; check if any more bytes needed

or e

jr z,streaming_complete

dec ix ; decrement block count

1d a,ix1l

or ixh

jr nz,stream_block_loop ; continue until all blocks streamed
exx ; switch "streaming set" to alternates

khkhkkhkhkhhkhkhhhkhhhhhhkhhhhhhhhhhhhhhhhhhhhhhhkhhhhhhhhhhhhhhdhhhhdhkhdhkhhkhkrrkdrkkx*x*x

* Main streaming loop end *

R I R I R I I O I I R I I R I R I I I R R I R O I S I O I I L R

After all the 512-byte blocks for a particular card address have been
streamed, the DISK_STRMEND call must be made. This just requires A=cardflags.

1d a, (cardflags)

rst $08

defb disk_strmend

jr c,drop2_close_and_exit_with_error

Following disk_strmend, the system is back in a state where any other esxdos
calls may now be used, including (if necessary) DISK_FILEMAP to refill the
buffer. This can be an expensive call, though, so it would be preferable to
ensure that the buffer is large enough to be filled with the first call.
This would also simplify the code a little.

pop de ; DE=current buffer address

pop hl ; HL=ending buffer address

and a ; not needed; carry=0 since no error
sbc hl,de ; any more entries left in buffer?
jr z,refill_map ; if not, refill

add hl, de ; re-form ending address

jr stream_loop ; back for next entry in the buffer

EE R I R R I I O I I R I I R S R I I I R I I R O I I I O I

* 3 *
Stream a partial block
R IR R I I R R R R I I S A R S R I I R I R R R I I I I R I S I O I A I R R S I

It is entirely okay to stream a partial block, since the streaming operation
can be terminated at any point by issuing the DISK_STRMEND call.

stream_partial block:

and a ; at least 256 bytes left?

jr z,stream_final_bytes

inir ; read 256 bytes from the port
stream_final_bytes:

1d b,e

inc b

dec b

jr z,streaming_complete

Page 52 of 82

inir ; read last few bytes from the port

streaming_complete:

1d a, (cardflags)

rst $08

defb disk_strmend ; terminate the streaming operation
jr drop2_close_and_exit_with_error

khkhkkhkhkhkhkhhkhkhhhkhhhhhhhkhhhkhhhhhhhhhkhhhhhhhkhhhkhhhhhkhhkhhhhkdhhkhkhkhkhkhkrkk rkk *k*x**x

14

. * 3 3 *
; Tidy up and exit

. kkkkkhkkhkhkhkhkhkhkhkhkkhhkhkhkhkkhkkhkhhhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkrkhkkkkkkhk k k khkkkkkhk k *,***x*%

token_error:
1d a, $ff ; dummy error to indicate out of data
scf

drop2_close_and_exit_with_error:

pop hl ; discard buffer addresses
pop hl
close_and_exit_with_error:
push af ; save error status
1d a, (filehandle)
rst $08

defb f_close
pop af ; restore error status

exit_with_error:

1d hl, $2758

exx ; BASIC requires H'L'=$2758 on return
1d b,0

1d c,a ; BC=error, for return to BASIC

ret c ; exit if there was an error

1d bc, $Ffff ; use 65535 to indicate "no error"
ret

EE R I R I R I R I R O I R R O R S R S R I R I I R R I R I R I R O R
4

. * *
; Data
khkkhkkhkhhkhkhkhkhkhkhhhhhkhkhkhhhhhhhkhkhkhhhhhhkhkhhkhhhhhhkhkhkhkhhhkhhhkhkhkhhhkhhhkhkhkkkkk k k ok k*k*x*%x

test_filename:
defm "test.scr",0 ; filenames must be null-terminated

filehandle:
defb 0]

filemap_buffer:
defs filemap_size*6 ; allocate 6 bytes per entry

cardflags:
defb 0

Page 53 of 82

Driver example (file 1 of 2) - border.asm

EE R I I R R I I R I R O R R R R I I I R S R I I I I R R I I R I R I R

* Simple example NextZX0S driver *
khhkkkhhhkkhhhkhkkhhhkhhhhdhhkhhhddhhhdhhdhhhdhdddhxhdhdxdddxddhdxddhxddhdxdddxddh*x*dx**k*x%

This file is the 512-byte NextZX0S driver itself, plus relocation table.
Assemble with: pasmo border.asm border.bin border.sym

After this, border_drv.asm needs to be built to generate the actual
driver file.

NE Ns N®= Ns= Ns Ns N= N= N= N»

hkhkhkkhkhkhhkhhhhhhhhhhhhhhhdhhhdhhhdhhhdhhhdhdhdhhhdhhhdhhhdhhhdhhhdhhhdhhdddhddrdddrdrrdrrdxr*x

* Entry points *
R I S S S O b S I O S
Drivers are a fixed length of 512 bytes (although can have external 8K
banks allocated to them if required).

They are always assembled at origin $0000 and relocated at installation time.

Your driver always runs with interrupts disabled, and may use any of the
standard register set (AF,BC,DE,HL). Index registers and alternates must be
preserved.

No esxDOS hooks or restarts may be used. However, 3 calls are provided
which drivers may use:

jp $2000 ; drv_drvswapmmc
; Can be used to aid switching between allocated
; DivMMC banks (see example usage below).

call $2003 ; drv_drvrtc
; Query the RTC. Returns BC=date, DE=time (as M_DATE)

call $2006 ; drv_drvapi
; Access other drivers. Same parameters as M_DRVAPI.

The stack is always located below $4000, so if zZX banks have been allocated
they may be paged in at any location (MMU2..MMU7). However, when switching

to other allocated DivMMC banks, the stack cannot be used unless you set

it up/restore it yourself.

If you do switch any banks, don't forget to restore the previous MMU settings
afterwards.

NE Ns N N® NE N= Ns= Ns Ns N= W= Ns Ns W= Ns Ns NE W= Ns Ns NE W= W= Ns N N= N= Ns N N= Nw

khkkkhkhhkkhkhhkhkkhhhkkhkhhhkkhhhkhkhhhkkhhhhkhkhhkkhhrhkhhhkkhdrxhkhhhkkddrhkhhhkkddrxhkdhdrkddrxhkkdkhxkddxkhx*x*%

* Switching between allocated DivMMC banks *
khhkkkhhhkkhhhkhkkhhhkhdhhdhhhdhhdhhhdhddhdrhdhdddhddhdxdddrddhdxdddxddhdxdddxddh*x*dkx*dk*x%
You can request DivMMC banks to be allocated to your driver, as well as

(or instead of standard zZX memory banks). However, DivMMC banks are a more
limited resource and are more awkward to use, since they can only be paged
in at $2000..$3fff (where your driver code is already running in another
DivMMC bank).

If you wish to use DivMMC banks, the following helper code is provided
in the driver's DivMMC bank at $2000 (drv_drvswapmmc):
$2000: out (%$e3),a
ret

NE N® N® NE= Ns® Ns Ns N= N= N= N= N= N= N= N

One suggested method for switching between your allocated DivMMC banks

Page 54 of 82

and your driver is as follows:

1. In the preload data for each DivMMC bank (specified in the .DRV
file), include a copy of the above routine at the start (ie $2000).

2. Provide the following subroutine somewhere within your driver code:
call_externmmc:

push hl ; stack external bank routine address
ex af,af'

in a, ($e3) ; save driver bank in A'

ex af,af'

set 7,a ; set bit 7 on DivMMC bank id to page
jp $2000 ; jump to switch banks and "return"

; to routine in external DivMMC bank

3. To call a routine in one of your allocated DivMMC banks, use this in
your driver code:

1d hl, routineaddr
1d a,divmmcbankid ; (to be patched by .INSTALL)
call call_externmmc

4. The routines in your allocated DivMMC banks should end with:
ex af,af' ; A=driver bank id
jp $2000 ; switch back to driver and return

NE N® NE N Ns® N= NE N N® NE Ns NE N® NE N= W= NE NE N= N= NE W= N= N=

EE R I I S R I I R R O R I I I R I I R R I R I R I I R R I R I R I R I

14

. * 1 *
; Entry points

. khhkkkhhhkkhhhkhkkhhhkkhhhhdhhkhdhddhhhdhhdhhhdhkddddxhdhdddhxddhdxddhxddhdxddhxrdh*x*dx*,k*x%

org $0000

; At $0000 is the entry point for API calls directed to your driver.
; B,DE,HL are available as entry parameters.

If your driver does not provide any API, just exit with A=0 and carry set.
eg:

xor a

scf

ret

NE Ns N= N= N.

api_entry:
jr border_api
nop

; At $0003 is the entry point for the interrupt handler. This will only be
; called if bit 7 of the driver id byte has been set in your .DRV file, so
; need not be implemented otherwise.

iml_entry:
reloc_1:
1d a, (colour)
inc a ; increment stored border colour
and $07
reloc_2:
1d (colour),a
out ($fe), a ; set it
ret
; kkhkhkkhkhkkhkkhkhkkhhkkhhkkhhkkhhkkhhkhhkhkhhkkhhkhhkhhkhhkhhkhkdhhkdhhkhhkhhkhhkhhkhkhhkkhhkhhkhhkhhkhhkhkhhkk kkhhkhhkhhkhkk*x*%x
; ¥ Simple example API *

Page 55 of 82

Rk Sk S R R S S O R S R I S A R R b O S R S S R I b

4
; On entry, use B=call id with HL,DE other parameters.

; (NOTE: HL will contain the value that was either provided in HL (when called
; from dot commands) or IX (when called from a standard program).
’
4

; When called from the DRIVER command, DE is the first input and HL is the
second.

4

; When returning values, the DRIVER command will place the contents of BC into
; the first return variable, then DE and then HL.

border_api:

bit 7,b ; check if B>=%$80
jr nz,standard_api ; on for standard API functions if so
djnz bnot1l ; On if B<>1

; B=1: set values.

reloc_3:
1d (valuel), de
reloc_4:
1d (value2),hl
and a ; clear carry to indicate success
ret

; B=2: get values.

bnoti:
djnz bnot2 ; On if B<>2
reloc_5:
1d a, (colour)
1d b,0
1d c,a
reloc_6:
1d de, (valuel)
reloc_7:
1d hl, (value2)
and a ; clear carry to indicate success
ret

; Unsupported values of B.

bnot2:

api_error:
xor a ; A=0, unsupported call id
scf ; Fc=1, signals error
ret

EE R I I R R I I R I R O R R R R I I I R S R I I I I R R I I R I R I R

* 3 *
Standard API functions
EIE IR I I I I R b I b b I b I b I b I I I b I I I I I I I I I b I b I I I I I I I b I b b b I I I b I I I b I b b I b b I b I b b I o I

API calls $80..$ff are used in a standard way by NextZX0S.

If (and only if) you have set bit 7 of the "mmcbanks" value in your
driver file's header, then 2 special calls are made to allow you to
perform any necessary initialisation or shutdown of your driver
when it is .INSTALLed and .UNINSTALLed:

B=$80: initialise
B=$81: shutdown

NE N® N® N®= Ns Ns Ns N= N= N= N= N

Page 56 of 82

Each of these calls is made with the following parameters:
HL=address of structure containing:

bytes 1+: list of bank ids for the allocated 8K ZX RAM banks
DE=address of structure containing:

bytes 1+: list of bank ids for the allocated 8K DivMMC RAM banks

These bank lists are in main RAM ($4000-$ffff) so be careful not to
page them out during use. They are temporary structures and only
available during the initialise ($80) and shutdown ($81) calls.

Note that the initialise ($80) call is made after the allocated RAM

banks have been erased and preloaded with data from your .DRV file.

Most drivers will therefore probably not need to use these lists, as
the allocated bank ids can also be patched directly into your driver
code during the .INSTALL process.

The shutdown ($81) call does NOT need to deallocate the RAM banks -
this will be done by the .UNINSTALL dot command.

When exiting the calls, return with carry clear to indicate success.
If carry is set on call $80, the .INSTALL procedure will be aborted.
If carry is set on call $81, the .UNINSTALL procedure will be aborted.

N® NE N N= NE N= N= Ns NE N= N= Ns Ns W= W= N= Ns W= W= W= W= W= N= N= N

byte 0: # of 8K ZX RAM banks allocated (as specified in .DRV header)

byte 0: # of 8K DivMMC RAM banks allocated (as specified in .DRV header)

standard_api:

NE Ns N= N= N.

B=$81:

; The example border driver sets bit 7 of mmcbanks,
; SO needs to provide API calls $80 and $81.

1d a,b

and $7f

jr z,driver_init ; on for call $80, initialise

dec a

jr nz,channel_api ; 1f not $81, must be a channel API call

shutdown driver

This call is optional and should be provided if you set bit 7 of
the mmcbanks value in the driver header.

Exit with carry clear if the driver can be safely UNINSTALLed, or
carry set to abort the UNINSTALL process.

driver_shutdown:

Ns N® N®= N= N= N= N=

B=$80:

and a ; always safe to uninstall this driver
ret

initialise driver

This call is optional and should be provided if you set bit 7 of
the mmcbanks value in the driver header.

Exit with carry clear if the driver can be safely INSTALLed, or
carry set to abort the INSTALL process.

This call is provided for drivers that might need additional
hardware initialisation.

driver_init:

Ns Ns N= N= N=

and a ; always safe to install this driver
ret

The following calls are used to allow your driver to support
channels for i/o (manipulated with BASIC commands like OPEN #).
Each call is optional - just return with carry set and A=0

for any calls that you don't want to provide.

Page 57 of 82

N® Ns N®" Ns N= Ns N= N= N=

B=$f7: return output status
B=$f8: return input status

B=$f9: open channel

B=$fa: close channel

B=$fb: output character

B=$fc: input character

B=$fd: get current stream pointer
B=$fe: set current stream pointer
B=$ff: get stream size/extent

channel_api:

N® N® N® N= Ns N= N= N N=

4
4
4
14
l4
l4
4
14

1d a,b
sub $f7 ; set zero flag if call $f7
; (return output status)
jr c,api_error ; exit if unsupported (<$f7)
1d b,a ; B=0..8
jr nz,bnotf7 ; on if not $f7 (output status)

B=$f7: return output status

This call is entered with D=handle.

You should return BC=$ffff if the device is ready to accept a character

to be output, or BC=$0000 if it is not ready.

NOTE: NextBASIC does not use this call for standard channel i/o, but it
may be useful to provide it for use by machine-code programs or
for NextBASIC programs using the DRIVER command.

This call is also used by CP/M for printer drivers (with id "P") and

AUX drivers (with id "X").

1d bc, $Ffff ; our device always ready for output
and a ; clear carry to indicate success
ret

B=$f8: return input status

; This call is entered with D=handle.
; You should return BC=$ffff if the device has an input character available

to be read, or BC=$0000 if there is no character currently available.

NOTE: NextBASIC does not use this call for standard channel i/o, but it
may be useful to provide it for use by machine-code programs or
for NextBASIC programs using the DRIVER command.

This call is also used by CP/M for AUX drivers (with id "X").

bnotf7:
djnz bnotf8
1d bc, $Ffff ; our device always ready for input
and a ; clear carry to indicate success
ret

14
4
l4
l4
14
4
’
’
p

4

14

B=$f9: open channel
In the documentation for your driver you should describe how it should be
opened. The command used will determine the input parameters provided to
this call (this example assumes your driver id is ASCII 'X', ie $58):
OPEN #n, "D>X" ; simple open: HL=DE=0
OPEN #n,"D>X>string" ; open with string: HL=address, DE=length
; NOTE: be sure to check for zero-length strings
; open with numbers: DE=p1, HL=p2 (zeros if not

OPEN #n, "D>X, p1, p2"

rovided)

: This call should return a channel handle in A. This allows your driver

to support multiple different concurrent channels if desired.

Page 58 of 82

4
l4
14
4
.
l4
l4
14
4

If your device is simple you may choose to ignore the channel handles
in this and other calls.

If you return with any error (carry set), "Invalid filename" will be reported
and no stream will be opened.

For this example, we will only allow a single channel to be opened at

; a time, by performing a simple check:

bnotf8:
djnz bnotf9
reloc_8:
1d a, (chanopen_flag)
and a
jr nz,api_error ; exit with error if already open
1d a1
reloc_9:
1d (chanopen_flag),a ; signal "channel open"
ret ; exit with carry reset (from AND above)

4

; and A=handle=1

; Subroutine to validate handle for our simple channel

validate_handle:

Ns Ns N= N

dec d ; D should have been 1

ret z ; return if so

pop af ; otherwise discard return address
jr api_error ; and exit with error

B=$fa: close channel

This call is entered with D=handle, and should close the channel

If it cannot be closed for some reason, exit with an error (this will be
reported as "In use").

bnotf9:
djnz bnotfa ; on if not call $fa
reloc_10:
call validate_handle ; check D is our handle (does not return
; 1f invalid)
xor a
reloc_11:
1d (chanopen_flag), a ; signal "channel closed"
ret ; exit with carry reset (from XOR)

N® Ns N®= N= Ns N= N=

B=$fb: output character

This call is entered with D=handle and E=character.

If you return with carry set and A=$fe, the error "End of file" will be
reported. If you return with carry set and A<$fe, the error

"Invalid I/0 device" will be reported.

Do not return with A=$ff and carry set; this will be treated as a successful
call.

bnotfa:
djnz bnotfb ; on if not call $fb
reloc_12:
call validate_handle ; check D is our handle (does not return
; 1f invalid)
reloc_13:
1d a, (output_ptr)
reloc_14:

Page 59 of 82

call calc_buffer_add

1d (hl),e
inc a
and $1f
reloc_15:
1d (output_ptr),a
ret

B=$fc: input character
This call is entered with D=handle.

is available.

NE Ns Ns Ns Ns= N= N= N= N=

bnotfb:

djnz bnotfc
reloc_16:

call validate_handle

reloc_17:
1d a, (input_ptr)
reloc_18:
call calc_buffer_add
1d e, (hl)
inc a
and $1f
reloc_19:
1d (input_ptr),a
1d a,e
ret

; B=$fd: get current stream pointer
; This call is entered with D=handle.
; You should return the pointer in DEHL

bnotfc:

djnz bnotfd
reloc_20:

call validate_handle

reloc_21:
1d a
1d 1
1d h
1d d
1d e
and a

ret

B=$fe: set current stream pointer

an "end of file" error).

Ne Ns N®= Ns Ns Ns N=

; HL=address within buffer
; store character

; update pointer
; exit with carry reset (from AND)

You should return the character in A (with carry reset).
If no character is currently available, return with A=$ff and carry set.
This will cause INPUT # or NEXT # to continue calling until a character

If you return with carry set and A=$fe, the error "End of file" will be
reported. If you return with carry set and any other value of A, the error
"Invalid I/0 device" will be reported.

; on if not call $fc

; check D is our handle (does not return
; if invalid)

; HL=address within buffer
; get character

; update pointer
; A=character
; exit with carry reset (from AND)

(with carry reset).
; on if not call $fd

; check D is our handle (does not return
; if invalid)

; HL=stream pointer

; reset carry (successful call)

This call is entered with D=handle and IXHL=pointer.
Exit with A=$fe and carry set if the pointer is invalid (will result in

NOTE: Normally you should not use IX as an input parameter, as it cannot
be set differently to HL if calling via the esxDOS-compatible API.
This call is a special case that is only made by NextzXO0S.

Page 60 of 82

bnotfd:
djnz
reloc_22:
call

1d
and
or
or
or
scf
1d
ret
1d
reloc_23:
1d
and
ret

bnotfe
validate_handle

a,l
$e0

h

ix1
ixh
a, $fe

nz
a,l

(input_ptr),a
a

; B=$ff: get stream size/extent
; This call is entered with D=handle
; You should return the size/extent in DEHL (with carry reset).

bnotfe:
reloc_24:
call

1d
1d
1d
and
ret

validate_handle

hl, 32
d,h
e, h

a

; on if not call $fe

; check D is our handle (does not return
; 1f invalid)

; check if pointer >$i1f

; exit with A=$fe and carry set if so

; set the pointer
; reset carry (successful call)

; check D is our handle (does not return
; if invalid)
; our simple channel is always size 32

; reset carry (successful call)

Rk S S R R R O O R S R I b S A O R R O O S R S SRR I O

; * Validate handle for our simple channel *

EE R I I R R I I R I R O R R R R I I I R S R I I I I R R I I R I R I R

calc_buffer_add:
push

reloc_25:
1d
add
1d
1d
adc
1d
pop
ret

af

hl, channel_data

; save offset into buffer

; base address
; add on offset

; restore offset

hkhkhkkhkhkhhkhhhhhhhkhhhhhhhhhhhhhhdhhhdhhhhhhhhhhhhhhhhhdhhhdhhhdhhhdhdhkhddhdddrrdrkkx*x*x

4
; * Data

*

EE R I R I I I I I I O R I R I R R I S I R S R O I

colour:
defb

valuel:
defw

0

0

Page 61 of 82

value2:

defw 0
chanopen_flag:

defb 0
input_ptr:

defb 0
output_ptr:

defb 0

channel_data:
defs 32

; Our driver header will specify these values to be patched with the ids
; of the external banks allocated to us.
bankid_mmcoO:

defb 0]
bankid_zx0:
defb 0]
bankid_zx1:
defb 0]
bankid_zx2:
defb 0]
EIE R R I R I L
* Relocation table *

khkhkkhkhhkhkhhhkhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhhhhhhhhhhhhdhhhhdhrdhkhdkhkrrk rkk*x*x

This follows directly after the full 512 bytes of the driver.

Ns Ns Ns Ns

if ($ > 512)
.ERROR Driver code exceeds 512 bhytes
else
defs 512-%
endif

; Each relocation is the offset of the high byte of an address to be relocated.

reloc_start:

defw reloc_1+2
defw reloc_2+2
defw reloc_3+3
defw reloc_4+2
defw reloc_5+2
defw reloc_6+3
defw reloc_7+2
defw reloc_8+2
defw reloc_9+2

defw reloc_10+2
defw reloc_11+2
defw reloc_12+2
defw reloc_13+2
defw reloc_14+2
defw reloc_15+2
defw reloc_16+2
defw reloc_17+2
defw reloc_18+2
defw reloc_19+2
defw reloc_20+2
defw reloc_21+2

Page 62 of 82

defw
defw
defw
defw
reloc_end:

reloc_22+2
reloc_23+2
reloc_24+2
reloc_25+2

Page 63 of 82

Driver example (file 2 of 2) - border_drv.asm

EE R I I R R I I R I R O R R R R I I I R S R I I I I R R I I R I R I R

* Simple example NextzX0S driver file *

hkhkhkkhkhkhhkhkhhhhhhkhhhhhhhhhhhhhhdhhhhhhhhhhhhkhhhhhdhhhdhhhdhhhdhhhdhdhkhddhrddhrrdrrkx*x*x

This file generates the actual border.drv file which can be installed or
uninstalled using the .install/.uninstall commands.

The driver itself (border.asm) must first be built.

Assemble this file with: pasmo border_drv.asm border.drv

hkhkhkkhkhkhhkhhhhhhhhhhhhhhhdhhhdhhhdhhhdhhhdhdhdhhhdhhhdhhhdhhhdhhhdhhhdhhdddhddrdddrdrrdrrdxr*x

* Definitions
R I S S S O b S I O S
Pull in the symbol file for the driver itself and calculate the number of
relocations used.

*

include "border.sym"

relocs equ (reloc_end-reloc_start)/2

hkhkhkkhkhkhhkhhhhhhhhhhhhhhhdhhhdhhhdhdhhdhdhhdhdhdhhdhdhhhdhhhdhhhdhhhdhhhddhdddhddrddddrrdrrdr*x

* .DRV file header *
kkhkhkkhkhkkhkhkkhkkhhkkhkhkkhkhkkhkhkkhkhkhkhhkdhhkdhhkhkhkhkhkhkhhkhhkdhkhkdhdhkhkkhkhkhkhhkhhkdhhkdhhdhkhkkhkhkkhkhhkhkhkdkhdhkhrkhkhkhhkhdkhdkhdxx
The driver id must be unique, so current documentation on other drivers
should be sought before deciding upon an id. This example uses $7f as a
fairly meaningless value. A network driver might want to identify as 'N'
for example.

org $0000
defm "NDRV" ; DRV file signature
defb $77+$80 ; 7-bit unique driver id in bits 0..6

; bit 7=1 if to be called on IM1 interrupts
defb relocs ; number of relocation entries (0..255)
defb $80+301 ; number of additional 8K DivMMC RAM banks

; required (0..8); call init/shutdown
; NOTE: If bit 7 of the "mmcbanks" value above is set, .INSTALL and

; .UNINSTALL will call your driver's $80 and $81 functions

; to allow you to perform initialisation/shutdown tasks

; (see border.asm for more details)

defb 3 ; number of additional 8K Spectrum RAM banks

; required (0..200)

khkhkkhkhkhkhkhhhkhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhkhhhhhhhhhhhdhhhkhdhkhdhrdkhkrrk rkkx*x*x

*

* Driver binary

R I R I I I R S R I I I R I I S R I S O I L

The driver + relocation table should now be included.

incbin "border.bin"

EE R I I R R I I R I R O R R R R I I I R S R I I I I R R I I R I R I R

Page 64 of 82

NE NE NE Ns NE Ns N= Ns® Ns Ns W= N® Ns N= W= NE Ns N= W= NE N= W= NE NE N= N=

* Additional bank images and patches *
kkkkkhkhkhkhkhkkhkhkhkhhkhkhkhkhkhkhkhhhhkhkhkhkhkhkhhhhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkrkhkkkkkkhkhk k khkkkkk k k *,***x*%

If any 8K DivMMC RAM banks or 8K Spectrum RAM banks were requested, then
preloaded images and patch lists should be provided.

First, for each mmcbank requested:

defb bnk_patches number of driver patches for this bank id

defw bnk_size size of data to pre-load into bank (0..8192)
(remaining space will be erased to zeroes)
defs bnk_size data to pre-load into bank

defs bnk_patches*2 for each patch, a 2-byte offset (0..511) in
; the 512-byte driver to write the bank id to
NOTE: The first patch for each mmcbank should never be changed by your

driver code, as .uninstall will use the value for deallocating.

" NE NE= Ns N= Ns

Then, for each zxbank requested:

defb bnk_patches number of driver patches for this bank id

defw bnk_size size of data to pre-load into bank (0..8192)
(remaining space will be erased to zeroes)
defs bnk_size data to pre-load into bank

defs bnk_patches*2 for each patch, a 2-byte offset (0..511) in
; the 512-byte driver to write the bank id to
NOTE: The first patch for each zxbank should never be changed by your

driver code, as .uninstall will use the value for deallocating.

" NE NE= Ns N= Ns

; Although our simple driver doesn't actually need any additional memory banks,
; we have requested 1 DivMMC bank and 3 Spectrum RAM banks as an example.

; First, the 1 DivMMC bank that was requested:

defb 1 ; 1 patch

defw 0 ; no data to be preloaded into this bank
; (it will be erased to zeroes)

; List of patches to be replaced with this bank's id

defw bankid_mmco ; offset in driver to patch the bank id

; Then the 3 Spectrum RAM banks that were requested:

; First bank:

defb 1 ; 1 patch
defw bodata_end-bodata ; size of preload data

; The actual preloaded data follows (the remainder of the 8K bank will
; be erased to zeroes)

bOdata:
defs 800, $aa ; 800 bytes filled with $AA
defm "This is the first allocated ZX bank"
defs 20, $55 ; 20 bytes filled with $55
bOdata_end:

; List of patches to be replaced with this bank's id
defw bankid_zx0 ; offset in driver to patch the bank id

; Second bank:

defb 1 ; 1 patch

defw 0 ; no data to be preloaded into this bank
; (it will be erased to zeroes)

; List of patches to be replaced with this bank's id

defw bankid_zx1 ; offset in driver to patch the bank id

; Third bank:

Page 65 of 82

defb 1

; 1 patch
defw b2data_end-b2data

; size of preload data

; The actual preloaded data follows (the remainder of the 8K bank will
; be erased to zeroes)
b2data:

defm
b2data_end:

; List of patches to be replaced with this bank's id
defw bankid_zx2 ; offset in driver to patch the bank id

"This is the third allocated ZX bank"

Page 66 of 82

Printer driver example (file 1 of 2) - sample prt.asm

N N N NE NE N= Ns= NE Ns N= Ns= Ns Ns Ns Ns NE NE Ns W= Ne NE Ns N® Ns NE W= NE Ns NE N® NE Ns W= NE NE N= W= NE NE N N= N= Na

Ns Ns N= N= N

EE R I I R R I I R I R O R R R R I I I R S R I I I I R R I I R I R I R

* Example NextzXO0S printer driver *
khhkkkhhhkkhhhkhkkhhhkhhhhdhhkhhhddhhhdhhdhhhdhdddhxhdhdxdddxddhdxddhxddhdxdddxddh*x*dx**k*x%

This file is the 512-byte NextZX0S driver itself, plus relocation table.
Assemble with: pasmo sample_prt.asm sample_prt.bin sample_prt.sym

After this, sample_prt_drv.asm needs to be built to generate the actual
driver file.

GENERAL NOTES ON PRINTER/AUX DRIVERS:

A printer driver should use "P" as its driver id. This allows the user
to install whatever printer driver is appropriate for them, and for
software to use it in a standardised way.

In particular, NextBASIC will automatically send data LPRINT/LLISTed
(or PRINTed to #3, or any other stream that has been opened to
BASIC channel "P") to any installed driver with id "P".

Similarly, if a "P" driver has been installed, CP/M will use this for
output to its logical LST: device (also referred to as the physical
LPT device).

In order to support NextBASIC and CP/M, a printer driver only needs to
support the standard calls $f7 (return output status) and $fb (output
character). You may of course support any other standard calls that
you like (or additional driver-specific calls, for example to set the
communications parameters for a serial printer).

CP/M also supports an AUX physical device (with default input/output
through the logical AUXIN: and AUXOUT: devices). This will
automatically be routed to any installed driver with id "X".

An AUX driver can be written in the same way as a printer driver, but
should additionally support standard calls $f8 (return input status)
and $fc (input character).

See the example border.asm/border_drv.asm driver if your driver needs to

be run on the IM1 interrupt, or if it needs additional 8K DivMMC/ZX RAM
banks. This sample printer driver (and probably most printer drivers) do not
require these, so discussion of them is not present in the example

printer driver.

khkhkhkhkhkhkhkhkhhhhhdhhhkhhhhhhdhhhkhhhhhhdhhhhhdhhhdhdhhhhhhhhdhdhhkhhhdhhhdhddkhhhdhhddhrhh*x*x
* pefinitions *
khhkkkhhhkkhhhkhkkhhhkhdhhdhhhdhhdhhhdhddhdrhdhdddhddhdxdddrddhdxdddxddhdxdddxddh*x*dkx*dk*x%
The port used by our hypothetical printer. Don't try and use this driver

as it won't do anything!

printer_port equ $ff

4

khkhkkhkhkhkhkhhhkhhhkhhhkhhhhhhhkhhhhhhhrhhhhhhhhhkhhhkhhhhhhhhhhhdhhhkhkhkhdkhkrkkhkrkk rkk**x

* Entry points *

ER R R R R R R R R R R R R R R S S I S O

org $0000

Page 67 of 82

Ne N= N= Ns= N= Ns N=

At $0000 is the entry point for API calls directed to the printer

driver.

NOTE: If your printer driver needs to be called on the IM1 interrupt
you will need to provide an entry point at $0003 for this (see
border.asm example driver for full details).

This simple printer driver doesn't need interrupts so there is
no need to provide the $0003 entry point.

api_entry:

On entry, B=call id with HL,DE other parameters.
You may provide any standard or driver-specific calls that you wish.
See the example border.asm driver for a description of the standard calls.
However, a standard printer driver that supports NextBASIC and CP/M only
needs to provide 2 standard calls:

B=$f7: return output status

B=$fb: output character

1d a,b

cp $fb ; "output character" call?

jr z,output_char ; on if so

cp $f7 ; "return output status" call?

jr z,return_status ; on if so

api_error:

xor a ; A=0, unsupported call id

scf ; Fc=1, signals error

ret
kkhkhkkhkhkkhkhkkhkhkhkkhkhkkhkhkkhkhkkhkhkkhkhhkdhhkdhkhkhkhkkhkhkkhkhhkhhkdhhkdhkhdhkhkkhkhkkhkhhkhhkdhhkdhkhhkhkkhkhkkhkhkhkdhhkdhkhkdhkhrkhkhkhhkhhkhdkkdxx
* Return output status ($f7) *

NE N® N® Ns= N® Ns Ns= N= N= N= N=

khkhkkhkhkhkhkhhhkhhhkhhhkhhhhhhhkhhhhhhhrhhhhhhhhhkhhhkhhhhhhhhhhhdhhhkhkhkhdkhkrkkhkrkk rkk**x

This call is entered with D=handle.

CP/M always calls with D=1 (system handle) and a printer

driver can generally ignore the handle id unless you support standard
calls for opening/closing multiple different streams and wish them all
to be handled independently.

This call should return with carry clear to indicate success and
BC=$ffff if the printer is ready to accept a character for output, or
BC=$0000 if the printer is not ready.

Our hypothetical printer interface has a BUSY signal connected to bit
@ of the input data on the printer port, so we will check this and
return the status accordingly.

return_status:

Ns Ns N= N= N= N=

1d bc, $ffff

and a ; clear carry to indicate success
in a, (printer_port) ; get signals from printer

bit 0,a ; check BUSY signal

ret z ; exit with BC=$ffff if not busy
inc bc

ret ; exit with BC=$0000 if bust

khkhkkhkhkhkhkhhhkhhhkhhhkhhhhhhhkhhhhhhhrhhhhhhhhhkhhhkhhhhhhhhhhhdhhhkhkhkhdkhkrkkhkrkk rkk**x

* Qutput character ($fb) *

ER R R R R R R R R R R R R R R S S I S O

This call is entered with D=handle and E=character.
NextBASIC and CP/M always call with D=1 (system handle) and a printer
driver can generally ignore the handle id unless you support standard

Page 68 of 82

calls for opening/closing multiple different streams and wish them all

to be handled independently.

This call should return with carry clear to indicate success.

If you return with carry set and A=$fe, the error "End of file" will be
reported. If you return with carry set and A<$fe, the error

"Invalid I/0 device" will be reported.

Do not return with A=$ff and carry set; this will be treated as a successful
call.

NE Ns N= N= N= Ns N= N=

output_char:
; It's good practice to allow the user to abort with BREAK if
; the printer is stuck in a busy loop.

1d a,$7f

in a, ($fe)

rra

jr c,check_printer ; on if SPACE not pressed

1d a, $fe

in a, ($fe)

rra

jr c,check_printer ; on if CAPS SHIFT not pressed
1d a, $fe ; exit with A=$fe and carry set
scf ; so "End of file" reported
ret

check_printer:
; Wait for the printer to become ready.

in a, (printer_port) ; get signals from printer

bit 0,a ; check BUSY signal

jr nz,output_char ; loop back if printer is busy

1d a,e ; A=character to output

out (printer_port),a ; send to the printer

and a ; clear carry to indicate success
ret

ER R R R R R R R R R R R R R R S S I S O

* Relocation table

khkkkhhhkkhkhhkhkkhhhkhkhhhkkhhhhkhhhkkhhhhkhhhkkhhrhkhhhkkhdrxhkdhhhkkhdrhkhhhkkhdrxhkdhdkddrxhkkdkhxkddxkk,kx*x*%

*

Ns Ns N= N=

This follows directly after the full 512 bytes of the driver.

if ($ > 512)
.ERROR Driver code exceeds 512 bytes
else
defs 512-%
endif

Each relocation is the offset of the high byte of an address to be relocated.
This particular driver is so simple it doesn't contain any absolute addresses
needing to be relocated. (border.asm is a slightly more complex driver that
does have a relocation table).

Ns Ns N= N

reloc_start:
reloc_end:

Page 69 of 82

Printer driver example (file 2 of 2) - sample prt drv.asm

N N N NE NE N= Ns= NE Ns N= Ns= Ns Ns Ns Ns NE NE Ns W= Ne NE Ns N® Ns NE W= NE Ns NE N® NE Ns W= NE NE N= W= NE NE N N= N= Na

Ns Ns N= N= N

EE R I I R R I I R I R O R R R R I I I R S R I I I I R R I I R I R I R

* Example NextzXO0S printer driver file *
khhkkkhhhkkhhhkhkkhhhkhhhhdhhkhhhddhhhdhhdhhhdhdddhxhdhdxdddxddhdxddhxddhdxdddxddh*x*dx**k*x%

This file generates the actual sample_prt.drv file which can be installed or
uninstalled using the .install/.uninstall commands.

The driver itself (sample_prt.asm) must first be built.
Assemble this file with: pasmo sample_prt_drv.asm sample_prt.drv
GENERAL NOTES ON PRINTER/AUX DRIVERS:

A printer driver should use "P" as its driver id. This allows the user
to install whatever printer driver is appropriate for them, and for
software to use it in a standardised way.

In particular, NextBASIC will automatically send data LPRINT/LLISTed
(or PRINTed to #3, or any other stream that has been opened to
BASIC channel "P") to any installed driver with id "P".

Similarly, if a "P" driver has been installed, CP/M will use this for
output to its logical LST: device (also referred to as the physical
LPT device).

In order to support NextBASIC and CP/M, a printer driver only needs to
support the standard calls $f7 (return output status) and $fb (output
character). You may of course support any other standard calls that
you like (or additional driver-specific calls, for example to set the
communications parameters for a serial printer).

CP/M also supports an AUX physical device (with default input/output
through the logical AUXIN: and AUXOUT: devices). This will
automatically be routed to any installed driver with id "X".

An AUX driver can be written in the same way as a printer driver, but
should additionally support standard calls $f8 (return input status)
and $fc (input character).

See the example border.asm/border_drv.asm driver if your driver needs to

be run on the IM1 interrupt, or if it needs additional 8K DivMMC/ZX RAM
banks. This sample printer driver (and probably most printer drivers) do not
require these, so discussion of them is not present in the example

printer driver.

khkkkhkhhkkhkhhkhkkhhhkkhkhhhkkhhhkhkhhhkkhhhhkhkhhkkhhrhkhhhkkhdrxhkhhhkkddrhkhhhkkddrxhkdhdrkddrxhkkdkhxkddxkhx*x*%

. o .
Definitions
khkhkkhkhkkhkhkhdhhkdhhdhdhhkhhkhkhhkdhhkdhdhhhhdhkhhkdhhkdhhdhdhhdhhokhkhhkdhhkdhhkdddhdhhkhkhhkdhhkdhkddddrkhhkhkdkdxk*dx*x

Pull in the symbol file for the driver itself and calculate the number of
relocations used.

include "sample_prt.sym"

relocs equ (reloc_end-reloc_start)/2

4

ER R R R R R R R R R R R R R R S S I S O

* DRV file header *

khkkkhhhkkhkhhkkkhhhkkhkhhhkkhhhhkhhhkkhhhhkhkhhkkhdhrhkhhhkkhdrxhkhhhkkddrhkdhhhkkddrxhkdhkhkkddrxhkdkhxkrdxkdhx*x*

Page 70 of 82

Ns Ns Ns ~=

org

defm

defb

defb

defb
defb

$0000
"NDRV"
npn
relocs

(0]
(0]

14

.DRV file signature
standard driver id for printer device.
number of relocation entries (0..255)

number of 8K DivMMC RAM banks needed
number of 8K Spectrum RAM banks needed

khhkkkhhhkkhkhhkhkkhhhkkhkhhhkkhhhhkhhhkkhhhhkhhhkkhhhhkhhhkhdrxhkhhhkddrhkdhhkkddrxhkdhkhkddrxhkdkhxkddxk,x*x*%

* Driver binary

hkhkhkkhkhkhhkhhhhhhhhhhhhhhhdhhhdhhhdhhhdhhhdhdhdhhhdhhhdhhhdhhhdhhhdhhhdhhdddhddrdddrdrrdrrdxr*x

*

The driver + relocation table should now be included.

incbin

"sample_prt.bin"

Page 71 of 82

Keyboard driver example (file 1 of 2) - keyboard.asm

NE Ns N= N= N-

NE Ns N®= Ns= N= N=

N NE Ns= Ns NE Ns N= N® Ns NE W= N= Ns N= W= NE N= N= Ns NE N W= Ns NE N= W= W= N= N W=

4
l4

14

EE R I I R I R I I R I R R I O R I O R I S R S I I R I I R R I R I R I R I R

* Example NextzX0S keyboard driver *
khhkkkhhhkkhhhkhkkhhhkhhhhdhhhhhhdhhhdhhdhhhdhdddhhxhdhdxddhhdhdxddhxddhdxddxrdh*x*dx*k,kx*x%
The keyboard driver used by NextZX0S may be replaced by installing a
special driver with id 0.

This file is the 512-byte NextzX0S driver itself, plus relocation table.
Assemble with: pasmo keyboard.asm keyboard.bin keyboard.sym

After this, keyboard_drv.asm needs to be built to generate the actual
driver file.

Keyboard drivers are installed using the same .install dot command
as standard drivers, and immediately replace the existing keyboard
driver (the keyboard driver does not count towards the total number
of standard installable NextzZX0S drivers).

The main differences between the keyboard driver and standard drivers
are as follows:

The keyboard driver always has driver id 0.

The keyboard driver cannot provide an API.

The keyboard driver is always called at every IM1 interrupt.
The keyboard driver has just a single entry point, at $0000,
which is called during IM1 interrupts.

A WN R

Replacement keyboard drivers should perform the same effective
functionality as the standard KEYBOARD routine at $02bf in the ROM of
the original 48K Spectrum.

The following driver replicates the code from the original

ROM (although slightly re-ordered). It additionally reads the Kempston
joystick port so a joystick may be used for navigation purposes within
NextZX0S. It may be used as a base for a replacement driver.

Possible uses for replacement keyboard drivers might be:
* For use with alternative international keyboard layouts
* Adding a multi-byte buffer to allow faster typing

Be aware that the driver is called by all ROMs, so should support
keyword tokens (unless you don't intend to use 48K BASIC mode, or only
intend to use 48K BASIC mode using the Gosh Wonderful ROM in standard
single-letter entry).

Rk o S R R R R Ok O R S R I b S A R R I O S R S IRk I b

* System variable definitions *

EE R I I R R I I R I R O R R R R I I I R S R I I I I R R I I R I R I R

KSTATE equ $5c00
LAST_K equ $5c08
REPDEL equ $5c09
REPPER equ $5c0a

ER R R R R R R R R R R R R R R S S I S O

* KEYBOARD routine (at $02bf in original 48K ROM) *

khkkkhhhkkhkhhkkkhhhkkhkhhhkkhhhhkhhhkkhhhhkhkhhkkhdhrhkhhhkkhdrxhkhhhkkddrhkdhhhkkddrxhkdhkhkkddrxhkdkhxkrdxkdhx*x*

Page 72 of 82

org

keyboard:
reloc_1:
call
ret
1d
keyboard_2:
bit
jr
inc
dec
dec
jr
1d
keyboard_3:
1d
1d
cp
jr
reloc_2:
call

; NOTE: At this point,

$0000

key_scan
nz
hl, KSTATE

7, (hl)

nz, keyboard_3
hl

(h1)

hl

nz, keyboard_3
(hl), $ff

a,l

hl, KSTATE+$04
1

nz, keyboard_2

k_test

; this is the entry point for the driver

the driver in the original ZX ROM simply returned

; if no key is pressed (carry clear). In the NextzZX0S driver, we
; additionally check for the Kempston joystick.

jr
in
cp
ret
and
ret
reloc_13:
1d

inc
srl
jr
ret
1d

c,1lk_gotkey
a, ($1f)

$ff

z

$3f

z

; on if valid keycode
; else read kempston port

; exit if $ff (no Kempston port)

; exit if none of bits 0..5 set

hl, kempston_keys-1
kemp_decode_loop:

hl
a

nc, kemp_decode_loop

nz
a, (hl)

next table address

next port bit to carry

until found a set bit

exit if more than one set bit
A=code

Ns Ns N= N N=

; The standard ZX ROM keyboard routines now continue.

1k_gotkey:
1d
cp
jr
ex
1d
cp
jr
bit
jr
ex
bit
ret

keyboard_4:
1d
1d
inc
1d

hl, KSTATE
(hl)

z, k_repeat
de, hl

hl, KSTATE+$04
(hl)

z, k_repeat

7, (hl1)

nz, keyboard_4
de, hl

7, (hl)

z

e,a
(hl),a
hl
(hl1),$05

Page 73 of 82

inc hl

1d a, (REPDEL)

1d (hl),a

inc hl

1d c, (1y+%$07)

1d d, (iy+$01)

push hl
reloc_3:

call k_decode

pop hl

1d (hl),a
keyboard_5:

1d (LAST_K), a

set 5, (1y+%$01)

ret

EE R I I I I I I I R R I O I R O I I I R I R I I I I R I I R I R S R O I R

14
; ¥ Kempston key translation table *
khkhkhkkhhhkhkhkhkhhhhhhhkhkhkhhhhhhhkhkhkhhhhhhhkhhkhhhhhhkhkhkhkhhhhhhkhkhkhkhhhhkhh k khkkkhkk k k ok k*k*x*%x

kempston_keys:
defb 9 ; cursor right

defb 8 ; cursor left

defb 10 ; cursor down

defb 11 ; cursor up

defb 13 ; fire (ENTER)
defb 32 ; button 2 (SPACE)

EE R I I I I I S I R I O I I R S R I I I I R I I S I R I I S O I R

; ¥ K-REPEAT routine (at $0310 in original 48K ROM) *

khkhkkhkhkhkhkhhhkhhhkhhhkhhhhhhhkhhhhhhhrhhhhhhhhhkhhhkhhhhhhhhhhhdhhhkhkhkhdkhkrkkhkrkk rkk**x

k_repeat:
inc hl
1d (hl), $05
inc hl
dec (hl)
ret nz
1d a, (REPPER)
1d (hl),a
inc hl
1d a, (hl)
jr keyboard_5

khkkkhkhhkkhkhhkhkkhhhkkhkhhhkkhhhkhkhhhkkhhhhkhkhhkkhhrhkhhhkkhdrxhkhhhkkddrhkhhhkkddrxhkdhdrkddrxhkkdkhxkddxkhx*x*%

* Keytables *

hkhkhkkhkhkhhkhhhhhhhhhhhhhhhdhhhdhhhdhdhhdhdhhdhdhdhhdhdhhhdhhhdhhhdhhhdhhhddhdddhddrddddrrdrrdr*x

These are copies of the key tables from original 48K ROM

Ns Ns Ns ~=

; The L-mode keytable with CAPS-SHIFT

keytable_1:
defm "BHYB5TGV"
defm "NJU74RFC"
defm "MKI83EDX"
defm $0e, "LO92WSZ"
defm " ", $0d, "PO1QA"

; The extended-mode keytable (unshifted letters)

Page 74 of 82

keytable_e:
defb
defb
defb
defb
defb
defb
defb

$e3, $c4, $e0, $e4
$b4, $bc, $bd, $bb
$af, $b0, $b1, $coO
$a7, $a6, $be, $ad
$b2, $ba, $e5, $a5
$c2, $e1, $b3, $b9
$c1, $b8

; The extended mode keytable (shifted letters)

keytable_e_s:

defb
defb
defb
defb
defb
defb
defb

$7e, $dc, $da, $5c
$b7,$7b, $7d, $d8
$bf, $ae, $aa, $ab
$dd, $de, $df, $7F
$b5, $d6, $7¢c, $d5
$5d, $db, $b6, $d9
$5b, $d7

; The control code keytable (CAPS-SHIFTed digits)

keytable_cc:
defb
defb
defb

; The symbol

keytable_sym:

defb
defb
defb
defb
defb
defb
defb

$0c, $07, $06, $04
$05, $08, $0a, $0b
$09, $0f

$e2, $2a, $3f, $cd
$c8, $cc, $cb, $5¢e
$ac, $2d, $2b, $3d
$2e, $2c, $3b, $22
$c7, $3c, $c3, $3e
$c5, $2f, $c9, $60
$c6, $3a

code keytable (letters with symbol shift)

; The extended mode keytable (SYM-SHIFTed digits)

keytable_e_d:

defb $d0o, $ce, $a8, Sca

defb $d3, $d4, $d1, $d2

defb $a9, $cf
; kkhkhkkhkhkkhkkhkhkkhhkkhkhkkhhkhhkhhkhhkhkhkhkkhhkhhkhhkhhkhhkhkhhkdhhkhhkhhkhhkhhkhkhkhkdhhkhhkhhkhhkhhkhkdhhkk hkhhkhhkhhkkhkk*x*%x
; * KEY-SCAN routine (at $028e in original 48K ROM) *
. kkkkkhkhkhkhkhkkhkkhkhhhkhkhkhhkhkhkhkhkhhkhkhkhkhkhhhhkhkhkhkhkhhkhhkhhkhkhkhkkhhkhkhkhkrkhkkkkkkhkhk k khkkkkk k k * k**x*%
key_scan:

1d 1, $2f

1d de, $Ffff

1d bc, $fefe
key_scan_2:

in a, (c)

cpl

and $1f

jr z,key_scan_5

1d h,a

1d a,l

Page 75 of 82

key_scan_3:
inc d
ret nz
key_scan_4:
sub $08
srl h
jr nc, key_scan_4
1d d, e
1d e, a
jr nz, key_scan_3
key_scan_5:
dec
rlc
jr
1d
inc
ret
cp
ret
cp
ret
1d
1d
1d
cp
ret

ey_scan_2

o x

%Q.(DQJN{:QN(:GNSDQJOUI—'
(e¢]

hkhkhkkhkhkhhhkhhhkhhhkhhhhhhhhhhhhhhdhhhhhhhhhhhhhhhhhhhhhhhdhhhdhdhdhdhkhddhrddhrrdrkkx*x*x

4
; * K-TEST routine (at $031e in original 48K ROM) *

EE R I I I I I S I R I O I I R S R I I I I R I I S I R I I S O I R

k_test:
1d b,d
1d d, $00
1d a,e
cp $27
ret nc
cp $18
jr nz,k_test2
bit 7,b
ret nz
k_test2:
reloc_4:
1d hl, keytable_1 ; the main keytable
add hl, de
1d a, (hl)
scf
ret

EE R I R I R I I I R I O I R R R I R S R I R I I R R I I R I R I R O R R

; * K-DECODE routine (at $0333 in original 48K ROM) *

khkhkkhkhkhkhkhhhkhhhkhhhkhhhhkhhhkhhhhhhhdhhhhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhhhkhdhkrrhrxk*x*x

k_decode:
1d a,e
cp $3a
jr c, k_decode_6
dec c
reloc_5:
jp m, k_decode_4

Page 76 of 82

jr
add
ret
k_decode_2:
reloc_6:
1d
inc
jr
reloc_7:
1d
k_decode_3:
1d
add
1d
ret
k_decode_4:
reloc_8:
1d
bit
jr
bit
jr
bit
ret
inc
ret
add
ret
k_decode_5:
add
ret
k_decode_6:
cp
ret
dec
reloc_9:
jp
jr
reloc_10:
1d
bit
jr
cp
jr
sub
inc
ret
add
ret
k_decode_7:
sub
inc
ret
add
ret
k_decode_8:
reloc_11:
1d
cp
jr
cp
jr

z,k_decode_2
a, $4f

hl, keytable_e-"'A'
b
z,k_decode_3

hl, keytable_e_s-'A'

d, $00
hl, de
a, (hl)

hl, keytable_sym-'A'
0,b

z,k_decode_3

3,d

z,k_decode_5

3, (iy+$30)

nz

b

nz

a, $20

a, $ab

$30
c
c

m, k_decode_9
nz, k_decode_8

hl, keytable e d-'0Q'
5,b

z, k_decode_3

$38

nc, k_decode_7

$20

b

z

a, $08

$36

b

z

a, $fe

hl, keytable_cc-'0'
$39

z,k_decode_3

$30

z, k_decode_3

Page 77 of 82

and $07

add a, $80
inc b
ret z
Xor $of
ret
k_decode_9:
inc b
ret z
bit 5,b
reloc_12:
1d hl, keytable_cc-'0'
jr nz, k_decode_3
sub $10
cp $22
jr z,k_decode_10
cp $20
ret nz
1d a, $5f
ret
k_decode_10:
1d a, $40
ret

hkhkhkkhkhkhhkhhhhhhhhhhhhhhhdhhhdhhhdhdhhdhdhhdhdhdhhdhdhhhdhhhdhhhdhhhdhhhddhdddhddrddddrrdrrdr*x

* Relocation table *

EE R I R I R I R I R O I R R O R S R S R I R I I R R I R I R I R O R

This follows directly after the full 512 bytes of the driver.

Ns Ns Ns N

if ($ > 512)
.ERROR Driver code exceeds 512 bytes
else
defs 512-%
endif

; Each relocation is the offset of the high byte of an address to be relocated.

reloc_start:

defw reloc_1+2
defw reloc_2+2
defw reloc_3+2
defw reloc_4+2
defw reloc_5+2
defw reloc_6+2
defw reloc_7+2
defw reloc_8+2
defw reloc_9+2

defw reloc_10+2

defw reloc_11+2

defw reloc_12+2

defw reloc_13+2
reloc_end:

Page 78 of 82

Keyboard driver example (file 2 of 2) - keyboard drv.asm

Ns N= ~-

EE R I I R I R I I R I R R I O R I O R I S R S I I R I I R R I R I R I R I R

* Example NextzX0S keyboard driver file *

khkhkkhkhkhkhkhhhkhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhhhhhhhhhhhhdhhhkhhhrdhkrdkhrrk rkkx*x*x

This file generates the actual keyboard.drv file which can be installed
using the .install command, to replace the built-in keyboard driver.

The driver itself (keyboard.asm) must first be built.
Assemble this file with: pasmo keyboard_drv.asm keyboard.drv

hkhkhkkhkhkhhkhkhhhkhhhkhhhhhhhhhhhhhhdhhhdhhhhhhhhhhhhhhhhhhhhdhhhdhhhddhkhddhdddhrrdrkkx*x*x

* pefinitions *

EE R I I I I I I I R R I O I R O I I I R I R I I I I R I I R I R S R O I R

Pull in the symbol file for the driver itself and calculate the number of
relocations used.

include "keyboard.sym"

relocs equ (reloc_end-reloc_start)/2

Ns N= ~-

EE R I I S R I I R R O R I I I R I I R R I R I R I I R R I R I R I R I

* .DRV file header *
khhkkkhhhkkhhhkhkkhhhkkhhhhdhhkhdhddhhhdhhdhhhdhkddddxhdhdddhxddhdxddhxddhdxddhxrdh*x*dx*,k*x%
The keyboard driver id is always zero (bit 7 may be set but will always be
treated as if it is set, since the keyboard driver is always called on
interrupts).

org $0000

defm "NDRV" ; DRV file signature

defb $00 ; keyboard driver id

defb relocs ; number of relocation entries (0..255)

defb 0] ; number of additional 8K DivMMC RAM banks
defb 0 ; number of additional 8K Spectrum RAM banks

khkkhkkhkhkkhkhkhhkhkhhhkhhhhkhhhkhhhkhhhhhhhhhhhhhkhhhkhhhkhhhkhhhhkhhhhkdhhkhkhhkhkhkhkrkk krkk *k***x

* Driver binary *
EE IR R I I R I A I I A I I b B I I I
The driver + relocation table should now be included.

incbin "keyboard.bin"

Page 79 of 82

List of updates

Updates: 11 Jan 2019
Added Kempston joystick support to sample keyboard driver.

Clarified that some calls in the +3D0OS API require IY to be unchanged from the
standard value set by BASIC (ERR_NR, $5c3a).

Updates: 22 Sep 2018
Added more notes on usage of IDE_BROWSER.

Added option to DISK_STRMSTART to avoid the initial wait for the data token, to
allow the user to cover the latency (from v2.01).

Updates: 8 Sep 26018
Added option for F_OPENDIR/F_READDIR to use wildcards.

Updates: 2 Sep 2018
Noted that the IDE_MODE call also returns the mode window handle in IX.

Updates: 30 Augq 2018
Enhanced F_GETCWD call to additionally allow a consistently named path to be
returned for any supplied filespec.

Noted that M_GETSETDRV now ignores the lower 3 bits, so these can be used to
ensure A<>0 if needing to set the current drive.

Clarified entry parameters for M_P3DOS.
Updates: 25 Aug 2018

The M_TAPEIN hook with B=in_flags now also returns the original setting of the
flags in A.

Clarified that command-lines for dot commands may include ':' as part of the
line if enclosed within double-quotes.

Updates: 24 Aug 2018
Added new IDE_MODE call in the +3D0OS API for querying the current NextBASIC
display mode setting, or changing mode.

Updates: 19 Augq 2018
Noted that dot commands are now loaded from C:/DOT rather than C:/BIN. This
makes it easier for esxD0OS and NextZX0S to co-exist.

Updates: 17 Aug 2018
Added new IDE_MOUNT call in the +3D0OS API for unmounting/remounting SD cards.

Updates: 15 Auq 2018

Added new reason to the system driver API used by .UNINSTALL.

Added more information to the driver section.

Updated example driver (border.asm and border_drv.asm) with sample code for bank
allocation and usage.

Page 80 of 82

Added sample printer driver.

Updates: 6 Aug 2018
Updated M_DOSVERSION which now additionally provides ROM language information.
Updated lists of deprecated +3D0OS/IDEDOS calls.

Updates: 31 Jul 2018
Added further notes on IDE_SNAPLOAD.

Updates: 15 Jul 2018
Added BROWSERCAPS_UNMOUNT capability to IDE_BROWSER.

Updates: 13 Jul 2018

Added new rc_fragmented error code.

Added new options to IDE_SWAP_OPEN to allow any named (unfragmented) file to be
opened and used as a swap file.

Deprecated IDE_SWAP_EX.

Noted that DOS_READ/DOS_WRITE/IDE_SWAP_IN/IDE_SWAP_OUT can take any valid 16K
RAM page number 0-111, not just 0-7 as on the +3/+3e.

Updates: 8 Jul 2018
Updated IDE_DOS_MAP and IDE_DOS_MAPPING calls with special device $ff indicating
a mounted filesystem image (.P3D or .DSK file).

Updates: 28 Jun 2018
Added new rc_bank_available reason to the IDE_BANK call.
Added note about the order of bank allocation.

Updates: 26 Jun 2018

Added M_SETCAPS hook to modify behaviour of other calls. Currently allows
F_FTRUNCATE/F_TRUNCATE to be sped up by omitting to zeroise any new file
sections.

Updates: 8 Jun 2018
The IDE_BROWSER call now returns the address of an LFN (in DE), as well as the
short name (in HL).

Updates: 12 Mar 2018
Updated driver API to allow an additional driver for the keyboard to be
installed, replacing the standard keyboard driver.

Added example keyboard driver (keyboard.asm & keyboard_drv.asm).

Updates: 28 Jan 2018
Added new M_DRVAPI hook providing acceess to a new API for installable drivers.

Added new IDE_DRIVER call to access new driver API from +3DOS.

Added notes on the new driver API and optional driver channel API, with a worked
example (border.asm & border_drv.asm).

Rewrote the notes about dot commands.

Page 81 of 82

Added RST $20 facility to terminate a dot command and bootstrap a
game/application.

Updates: 18 Jan 2018
Added more information about dot commands.

Added M_GETHANDLE, M_EXECCMD and M_GETERR hooks.

Updates: 17 Jan 2018
Added note about turning off layer 2 writes.

Added note about layer 2 banks in IDE_BANK call.

Updates: 15 Jan 2018
Added general descriptions of the +3D0S-compatible and esxDOS-compatible APIs.

Added full documentation for the esxDOS-compatible API.

Updates: 12 Dec 2017
Updated details of the IDE_GET_LFN call. This now additionally returns the
file's size and last update time & date.

Added new IDE_RTC call for querying the real-time-clock (if present).

Updates: 30 Nov 2017

Updated details of the IDE_BROWSER call. This now has a capabilities mask
allowing selected functionality to be enabled or disabled as desired. Also added
note about using as a save file dialog.

Updates: 23 Nov 2017
The IDE_STREAM_LINEIN call has been removed and replaced by a new
IDE_WINDOW_LINEIN call.

Added new IDE_INTEGER_VAR call for accessing NextBASIC integer variables.

Noted that the IDE_STREAM_* calls may corrupt the alternate register set, in
addition to the effects on the standard register set noted for each individual
call. (The special note about memory configuration has also been removed for the
IDE_WINDOW_* calls; this applies only to the IDE_STREAM_* calls).

Updates: 14 Nov 2017
Added note that it is now possible to use the wildcard character * in the
IDE_BROWSER call to match remaining characters in the filetype (with examples).

Added more notes on the IDE_STREAM_LINEIN call.

Added new IDE_WINDOW_STRING call.

Page 82 of 82

