Mk14 Micro Computer Training Manual

Contents

Part 1 Construction. Basic Principles, Operating Instructions Part 2 Application Programmes

Part 1

Section 1	Introduction to the kit
Section 2	The Manual-its objectives and usage
Section 3	Construction procedure. Notes on soldering
Section 4	Power Connect and Switch On
Section 5	Usage Familiarisation
Section 6	Basic Principles of the MK14
Section 7	MK14 Language-Binary and Hexadecimal data 18
Section 8	Programming Notes
Section 9	Architecture and Instruction Set
Section 1	O RAM I/O

Introduction to the kit

The MK14 comprises a full set of components to build up a completely functional computer.

When the unit has been correctly assembled only the connection of a suitable power source is needed for the display to light up and the user then finds that command and control of the unit is literally at his fingertips via the keyboard.

Having mastered the simple rules for operation of the keyboard and interpretation of the display, it is immediately possible to study the workings of the system and the computer's instructions, and experiment with elementary programming.

From this point the user can progress to the library of ready-written programmes available in Part II of this manual, and to programmes of his own invention. Because of the inherently enormous versatility of the digital computer it is hard to suggest any particular direction which the independent programmer may take. Arithmetic, logic, time measurement, complex decision making, learning ability, storage of data, receiving signals from other equipment and generating responses and stimuli can all be called upon.

Thus calculators, games, timers, controllers (domestic, laboratory, industrial), or combinations of these are all within the scope of the machine.

Components of the kit include central processor, pre-programmed control memory, read-write memory, input/output circuits, the terminal section i.e. the keyboard and display, and interfacing to the terminal.

This line-up corresponds to the basic elements present in even the most sophisticated multi-million pound computer. Indeed the fundamental principles are identical. However, the user of the MK14 who wishes to understand and utilise these principles has the advantage of being able to follow in detail the action and inter-action of the constituent parts, which are normally inaccessible and invisible to the big computer operator. Do not regard the MK14 as an electronics construction project. The MK14 is a computer, and computers are about software. It is the programme which brings the computer to life, and it is the programme which is capable of virtually infinite variation, adjustment and expansion. Of course an understanding of the architecture of the machine and the functions of the separate integrated circuits is valuable to the user. But these aspects conform to a fairly standard pattern and the same straightforward set of interconnection rules regardless of the task or function the computer is performing.

The Manual -its objectives and uses

The MK14 is intended to bring practical computing to the widest possible range of users by achieving an absolute minimum cost. The wider the user spectrum, the wider, to be expected will be the variation of expertise the manual has to cater for; from the total novice, who wishes to learn the basic principles and requires thorough explanation of every aspect, to the experienced engineer who has immediate practical applications in view. Additionally, the needs of the beginner can be sub-divided into three parts:-

- An informal step by step procedure to familiarise with the operation of the MK14. If this is arranged as an inter-active 'do' and 'observe' sequence, it becomes a comparatively painless method of getting a practical 'feel' for the computing process. Section 5.
- 2. A formal definition/description of the significant details of the microprocessor itself, i.e. its architecture and instruction set. Users of all levels are strongly recommended to study this section, (Section 0) at an early stage. It is supported by a programme of practical exercises aimed to precisely demonstrate the elemental functions of the device, and the framework inside which they operate. It is emphasised that to gain the most complete fluency in what are the basics of the whole subject is not merely well worth the effort but is essential to the user's convenience?
- An explanation of the general principles of the digital processor, along with the associated notation and conventions. Section 0 this also breaks down into the joint aspects of hardware and software.

Clearly parts of the above will also prove useful to the knowledgable user who, however, will probably be able to skip the advice in section 3 on basic electronic assembly technique. The control part of this section contains information specifically pertinent to the MK14 and should be read by all.

Further sections to be referenced when the MK14 has been assembled, and the user has built up a working understanding, are those discussing programming techniques and methodology. From that point the applications examples of varying degrees of complexity and function, in Part II, should be possible for the reader to tackle.

3 Construction procedure Notes on soldering

The construction of the unit is a straightforward procedure consisting of inserting the components in the correct positions and soldering them in place. If this is done without error the system should become functional as soon as power is applied. To ensure that this happens without any hitches some recommendations and advice are offered. A step-by-step construction procedure with a diagram is laid down. An appendix to this section contains notes on soldering techniques.

Plug in socket option for integrated circuits

The I.C. components utilised in the MK14 are both robust and reliable. But accidents are possible—and should an I.C. be damaged either during construction or later, it's identification and replacement is made many orders easier if devices are mounted in sockets. Socket usage is therefore most strongly recommended, particularly where the user is concerned with computing rather than electronics. Science of Cambridge offer a MK14 rectification service specifying a component cost only replacement charge when the system in question is socket equipped.

Integrated Circuit Device Handling

M.O.S. integrated circuits historically have gained a reputation for extreme vulnerability to damage from static electricity. Modern devices while not unbreakable embody a high degree of protection. This means that high static voltages will do no harm as long as the total energy dissipated is small and a practical rule of thumb is that if the environment is such that you yourself don't notice static shocks, neither will the I.C. It is essential for the soldering iron to be earthed if I.C.'s are being soldered directly into the P.C. board. The earth must ground the soldering iron bit. This warning applies to any work carried out which might bring the soldering iron into contact with any I.C. pin.

Catastrophe is achievable with minimum trouble if certain components are fitted the wrong way round.

Component Orientation and I.C. Pin Numbering

Three types belonging to the kit must be oriented correctly. These are the I.C.'s, the electrolytic capacitors and the regulator.

(i) 1.C's are oriented in relation to pin 1. Pin 1 can be identified by various means; fig. 3,1 illustrates some of these:-

Pin 1 itself may bear a faint indentation or a slight difference from other pins. The remaining pins are numbered consecutively clockwise from Pin 1 viewing device as in Fig. 3.1.

Note position of type no. is not a reliable guide.

- (ii) Electrolytic capacitors have a positive and a negative terminal. The positive terminal is indicated by a' + ' sign on the printed circuit. The capacitor may show a ' + ' sign or a bar marking by the positive terminal. The negative is also differentiated from the positive by being connected to the body of the device while the positive appears to emerge from an insulator.
- The regulator has a chamfered edge and is otherwise assymmetricalrefer to assembly diagram.

Assembly Procedure

Equipment required - soldering iron, solder, side-cutters or wire snippers.

Step No. Operation

- 1 Identify all resistors, bend leads according to diagram and place on layout diagram in appropriate positions.
- Insert resistors into printed circuit and slightly bend leads at back of board so that resistors remain in place firmly against the P.C.
- 3 Solder resistors in place and cut surplus leads at back of printed circuit.
- 4 Re-check soldered joints and component positioning.
- 5 Identify all capacitors, bend leads according to diagram and place on layout diagram in appropriate positions.
- 6 Insert capacitors into printed circuit and slightly bend leads behind board so that capacitors remain in place firmly against the P.C.
- 7 Solder capacitors in place and cut surplus leads behind P.C.
- 8 Check soldered joints, component positions and orientation.
- 9 (If sockets are being used skip to step 14). Identify and place in position on diagram all I.C's with particular reference to orientation.
- Insert I.C's into P.C. Note:- The I.C. pins will exhibit a degree of 'splay'. This allows the device to be retained in the P.C. mechanically after insertion so do not attempt to straighten, and use the following technique: place one line of pins so they just enter the board; using a suitable straight edged implement, press opposing row of pins until they enter the board; push component fully home.
- 11 Re-check device positioning and orientation with EXTREME care!

Step No. Operation

- 12 Solder I.C's in place. It is not necessary to snip projecting pins.
- 1.3 Re-check all I.C. soldered joints. (skip to step 20)
- 14 Place appropriate sockets in position on diagram. See Fig. 3.3
- 15 Insert first or next socket in P.C. board. These components are not self retaining so invert the board and press onto a suitably resilient surface to keep socket firmly against the board while soldering.
- 16 Solder socket into position.
 - (repeat steps 14-16 until all sockets are fitted)
- 17 Identify and place into position on diagram all I.C's with particular reference to orientation.
- 18 Transfer I.C's one-by-one to P.C. assembly and place in appropriate sockets.
- 19 Check all socket soldered joints.
- 20 Insert regulator and solder into position. See Fig. 3.4 (a).
- 21 Insert push button and solder into position. See Fig. 3.4 (b).
- 22 Mount keyboard. See Fig. 3.5.
- 23 Mount display. See Fig. 3.4 (c).
- 24 Ensure that all display interconnections are correctly aligned and inserted.
- 25 Solder display into position.
- 26 Re-check all soldering with special reference to dry joints and solder bridges as described in appendix on soldering technique.
- 27 (Optional but advisable). Forget the whole job for 24 hours.
- 28 Re-inspect the completed card by retracing the full assembly procedure and re-checking each aspect (component type, orientation and soldering) at each step.

 When the final inspection is satisfactorily completed proceed to section 4, Power Connect and Initial Operation.

Appendix Soldering Technique

Poor soldering in the assembly of the MK14 could create severe difficulties for the constructor so here are a few notes on the essentials of the skill.

The Soldering Iron Ideally, for this job, a 15W/25W instrument should be used, with a bit tip small enough to place against any device pin and the printed circuit without fouling adjacent joints. IMPORTANT—ensure that the bit is earthed.

Solder resin cored should be used. Approx. 18 S.W.G. is most convenient.

Using the Iron The bit should be kept clean and be sufficiently hot to form good joints.

A plated type of bit can be cleaned in use by wiping on the dampened sponge (if available), or a damp cloth. A plain copper bit corrodes fairly rapidly in use and a clean flat working face can be maintained using an old file. A practical test for both cleanness and temperature is to apply a touch of solder to the bit, and observe that the solder melts instantly and runs freely, coating the working face.

Forming the Soldered Joint—with the bit thus 'wetted' place it into firm contact with both the component terminal and the printed circuit 'pad', being soldered together. Both parts must be adequately heated. Immediately apply solder to the face of the bit next to the joint. Solder should flow freely around the terminal and over the printed circuit pad. Withdraw the iron from the board in a perpendicular direction.

Take care not to 'swamp' the joint, a momentary touch with the solder should be sufficient. The whole process should be complete in one or two seconds. The freely flowing solder will distribute heat to all part of the joint to ensure a sound amalgam between solder and pad, and solder and terminal. Do not hold the bit against the joint for more than a few seconds either printed circuit track or the component can be damaged by excessive heat.

Checking the Joint A good joint will appear clean and bright, and the solder will have spread up the terminal and over the pad to a radius of about 14 inch forming a profile as in Fig. 3.2(a).

Fig 3.2 (b) and (c) show exaggerated profiles of unsuccessful joints. These can be caused by inadequate heating of one part, or the other, of the joint, due to the iron being too cool, or not having been in direct contact with both parts; or to the process being performed too quickly. An alternative cause might be contamination of the unsoldered surface.

Re-making the Joint Place the 'wetted' iron against the unsatisfactory joint, the solder will then be mostly drawn off. Re-solder the joint. If contamination is the problem it will usually be eliminated after further applications by the flux incorporated within the solder.

Solder 'Bridges'—can be formed between adjacent tracks on the printed circuit in various ways:—

- (i) too cool an iron allowing the molten solder to be slightly tacky
- (ii) excessive solder applied to the joint
- (iii) bit moved away from the joint near the surface of the board instead of directly upwards

These bridges are sometimes extremely fine and hard to detect, but are easily removed by the tip of the cleaned soldering iron bit.

Solder Splashes—can also cause unwanted short circuits. Careless shaking of excess solder from the bit, or allowing a globule of solder to accumulate on the bit, must be avoided. Splashes are easily removed with the iron.

In summary, soldering is a minor manual skill which requires a little practise to develop. Adherence to the above notes will help a satisfactory result to be achieved.

Power Connect and Switch On

The MK14 operates from a 5V stabilised supply. The unit incorporates its own regulator, so the user has to provide a power source meeting the following requirements:—

Current

Basic kit only -400mA

consumption

+ RAM I/O option — + 50mA + extra RAM option — + 30mA

Max I/P permitted voltage (including ripple) 35V Min I/P permitted voltage (including ripple) 7V

Batteries or a mains driven power supply may be used. When using unregulated supplies ensure that ripple at the rated current does not exceed the I/P voltage limits.

If a power source having a mean output voltage greater than IOV has to be used, a heat sink must be fitted to the regulator. A piece of aluminium or copper, approx. 18 s.w.g., of about two square inches in area, bolted to the lug of the regulator should permit input voltages up to about 18V to be employed.

Alternatively a suitable resistor fitted in series with the supply can be used. To do this the value of the series resistor may be calculated as follows:-

2 × (minimum value I/P voltage -7) Ω Resistor dissipation will be 0.5W/ Ω

Having selected a suitable power supply the most important precaution to observe is that of correct polarity. Connect power supply positive to regulator I/P and power supply negative to system ground.

Switch on

SWITCH On.

Proper operation is indicated by the display showing this: —

Congratulations—now proceed to the section on usage familiarisation and learn to drive the MK14.

5 Usage Familiarisation

To help the user become accustomed to commanding and interrogating the MK14 an exercise consisting basically of a sequence of keyboard actions, with the expected display results, and an explanatory comment, is provided.

Readers who are not familiar with hexadecimal notation and data representation should refer to section 7.

It will be clear to those who have perused the section dealing with MK14 basic principles that to be able to utilise and understand the unit it is necessary firstly to have the facility to look at the contents of locations in memory I/O and registers in the CPU, and secondly to have the facility to change that information content if desired.

The following shows how the monitor programme held in fixed memory enables this to be done.

Operator	Displa	зу	Comment
Action			Examining MK14 Memory
Switch on			The left hand group of four characters is called the address field, the right hand group is the data field. Dashes indicate that the MK14 is waiting for a GO or a MEM command.
MEM	0000	08	The contents of memory location zero is displayed in the data field.
MEM	0001	90	Next address in sequence is displayed, and the data at that address.
MEM	0002	1D	Address again incremented by one, and the data at the new address is displayed.
MEM	0003	C2	Next address and contents are displayed

The user is actually accessing the beginning of the monitor programme itself. The items of data 08, 90, 1D, C2 are the first four instructions in the monitor programme.

It is suggested that for practise a list of twenty or thirty of these is made out and the appropriate instruction nmemonics be filled in against them from the list of instructions in Section 9. Additionally, this memory scanning procedure offers an introduction to the hexadecimal numbering method used by the addressing system, as each MEM depression adds one to the address field display.

Operator	Display		Comment
Action			Loading MK14 Memory
MEM	xxxx	XX	note:—symbol X indicates when digit value is unpredictable or un-important.
0	0000	XX	First digit is entered to L & D address field, higher digits become zero.
F	000F	XX	Second address digit keyed enters display from right.
1	00F1	XX	Third address digit keyed enters display from right.
2	0F12	XX	This is first address in RAM available to the user (basic version of kit).
TERM	0F12	XX	TERM enters displayed address and prepares for operator to load data.
1	0F12	01	Memory data has been keyed but is not yet placed in RAM.
TERM	0F12	01	Data is now placed in RAM
MEM	0F13	XX	Address is incremented.
TERM	0F13	XX	New address is entered and unit waits for memory data input.
1	0F13	01	New data.
1	0F13	11	is keyed
TERM	0F13	11	and placed in memory
MEM	0F14	XX	Data
TERM	0F14	XX	is pall of the second of the second of
22	0F14	22	loaded
TERM	0F14	22	into
MEM	0F15	XX	successive
TERM	0F15	XX	locations
33	0F15	33	
TERM	0F15	33	
MEM	0F16	XX	

Operator Action	Display	-	Comment
44	OF16	44	
TERM	0F16	44	
0F12	0F12	01	Enter original memory address and
MEM	0F13	11	check that data
MEM	OF14	22	remains as
MEM	0F15	33	was
MEM	0F16	44	loaded.

Switch power off and on again. Re-check contents of above locations. Note that loss of power destroys read-write memory contents. Repeat power off/on and re-check same locations several times—it is expected that RAM contents will be predominately zero, and tend to switch on in same condition each time. This effect is not reliable.

Operator Action	Display	/	Comment
MEM 0F12TERM 90 TERM MEM TERM FE TERM ABORT GO	OF12	XX 90 XX FE FE	Enter a very small programme It consists of one instruction JMP-2 (90FE in machine code). 90 represents JUMP programme counter relative. FE represents —2, the direction of the jump. Prepare to start user programme (TERM at
0F12	0F12		this point would start execution from OF12). Enter start address.
TERM	BLANK		Commence execution. The display becomes blank, indicating that CPU has entered user programme, and remains blank.

We have created the most elementary possible programme—one that loops round itself. There is only one escape—RESET which will force the CPU to return to location 1.

RESET	 57.76	Reset does not affect memory the instruction
.,		JMP-2 is still lurking to trap the user.

Basic Principles of the MK14

Essentially the MK14 operates on exactly the same principles as do all digital computers. The 'brain' of the MK14 is a SC/MP micro-processor, and therefore aspects of the SC/MP will be used to illustrate the following explanation. However the principles involved are equally valid for a huge machine from International Computers down to pocket calculators. Moreover, these principles can be stated quite briefly, and are essentially very simple.

'Stored Programme' Principle

The SC/MP CPU (Central Processing Unit) tends to be regarded as the centre-piece because it is the 'clever' component—and so it is. But by itself it can do nothing. The CPU shows its paces when it is given INSTRUCTIONS. It can obey a wide range of different orders and perform many complex digital operations. This sequence of instructions is termed the PROGRAMME, and is STORED in the MEMORY element of the system. Since these instructions consist of manipulation and movement if data, in addition to telling the CPU what to do, the stored programme contains information values for the CPU to work on, and tells the CPU where to get information, and where to put results.

Three Element System

By themselves the two fundamental elements CPU and MEMORY can perform wondrous things—all of which would be totally useless, since no information can be input from the outside world and no results can be returned to the user. Consequently a third element has to be incorporated—the INPUT/OUTPUT (I/O) section.

Fig. 6.1 The Three Element System

1/0 CPU Memory

These three areas constitute the HARDWARE of the system, so called because however you may use or apply the MK14, these basic structures remain the same.

Independence of Software (Stored Programme) and Hardware

As with the other hardware, whatever particular instruction sequence is present within the memory at any one time, the basic structure of the memory element itself is unaltered.

It is this factor which gives the MK14 its great versatility: by connecting up its 1/0 and entering an appropriate programme into its memory it can perform any digital function that can be contained within the memory and 1/0 size.

Random Access Memory (RAM)

Further, when the memory in question consists of a read **and write** element (RAM), in contrast to read **only** memory (ROM), this flexibility is enhanced, as programme alterations, from minor modifications, to completely different functions, can be made with maximum convenience.

Interconnection of Basic Elements

Element inter-connection is standardised as are the elements themselves. Three basic signal paths, ADDRESS BUS (ABUS), DATA BUS (DBUS) and CONTROL BUS, are required.

Fig. 6.2 Interconnections of Three Element System

These buses are, of course, multi-line. In the MK14 the Abus = 12 lines, Dbus = 8 lines and Control bus = 3 lines. Expansion of memory or 1/0 simply requires connection of additional elements to this basic bus structure.

MK14 System Operation

Consider the MK14 with power on and the RESET signal applied to the SC/MP. This forces all data inside the CPU to zero and prevents CPU operation.

When the RESET is released the CPU will place the address of the first instruction on the Abus and indicate that an address is present by a signal on the ADDRESS STROBE (NADS) line which is within the control bus. The memory will then respond by placing the first instruction on the Dbus. The CPU accepts this information and signals a READ STROBE (NRDS) via a line within the control bus.

The CPU now examines this instruction which we will define as a nooperation, (instructions are normally referred to by abbreviations called NMEMONICS, the nmemonic fof this one is NOP).

In obedience the CPU does nothing for one instruction period and then sends out the address of the second instruction. The memory duly responds with a Load Immediate (LDI). The CPU interprets this to mean that the information in the next position, in sequence, in memory will not be an instruction but an item of data which it must place into its own main register (ACCUMULATOR). so the CPU puts out the next address in sequence, and when the memory responds with data, then obeys the instruction.

The CPU now addresses the next position (LOCATION) in memory and fetches another instruction—store (ST). This will cause the CPU to place the data in the accumulator back on the Dbus and generate a WRITE STROBE (NWRDS) via the control bus. (The programme's intention here is to set output lines in the 1/0 element to a pre-determined value). Before executing the store instruction the CPU addresses the next sequential location in memory, and fetches the data contained in it. The purpose of this data word is to provide addressing information needed, at this point, by the CPU.

So far, consecutive addresses have been generated by the CPU in order to fetch instructions or data from memory. In order to carry out the store

instruction the CPU must generate a different address, with no particular relationship to the instruction address itself, i.e. an address in the 1/0 region.

The CPU now constructs this address using the aforementioned data word and outputs it to the Abus. The 1/0 element recognises the address and accepts the data appearing on the Dbus (from the CPU accumulator), when signalled by the write strobe (NWRDS), also from the CPU. Now the CPU reverts to consecutive addressing and seeks the next instruction from memory. This is an Exchange Accumulator with Extension register (XAE) and causes the CPU to simultaneously move the contents of the accumulator into the extension (E) register, and move the contents of the extension register into the accumulator. The programmer's intention in using this instruction here, could be to preserve a temporary record of the data recently written to the 1/0 location. No new data or additional address information is called for, so no second fetch takes place. Instead the CPU proceeds to derive the next instruction in sequence.

For the sake of this illustration we will look at a type of instruction which is essential to the CPU's ability to exhibit intelligence.

This is the jump (JMP) instruction, and causes the CPU to depart from the sequential mode of memory accessing and 'jump' to some other location from which to continue programme execution.

The JMP will be back to the first location.

A JMP instruction requires a second data word, known as the DISPLACEMENT to define the distance and direction of the jump. Examining the memory 1/0 contents map, Fig 6.3, shows location 0 to be seven places back from the JMP displacement which therefore must have a numerical value equivalent to—7. (Detail elsewhere in this manual will show that this value is not precisely correct, but it is valid as an example).

The instruction fetched after executing the JMP will be the NOP again. In fact the sequence of five instructions will now be re-iterated continually___ The programme has succumbed to a common bug—an endless loop, in which for the time being we will leave it.

Fig. 6.3 Map of Memory Location Contents.

The William
MEMORY
REGION
1 3 100
≻ 1/0 REGION

This brief review of a typical sequence of MK14 internal operations has emphasised several major points. All programme control and data derives from the memory and 1/0. All programme execution is performed by the CPU which can generate an address to any location in memory and 1/0, and can control data movement to or from memory and 1/0. Some instructions involve a single address cycle and are executed within the CPU entirely. Other instructions involve a second address cycle to fetch an item of data, and sometimes a third address cycle is also needed. For the sake of simplicity this outline has deliberately avoided any detail concerning the nature of the instruction/data, and the mechanics of the system. These subjects are dealt with in greater depth in sections 5 and 7.

MK14 Language-Binary and Hexadecimal

Discussion of the MK14 in this handbook so far has referred to various categories of data without specifying the physical nature of that data. This approach avoids the necessity of introducing too many possibly unfamiliar concepts at once while explaining other aspects of the workings of the system.

This section, then, gives electrical reality to the abstract forms of information such as address, data, etc., which the computer has to understand and deal with.

Binary Digit Computers use the most fundamental unit of information that exists—the binary digit or BIT—the bit is quite irreducible and fundamental. It has two values only, usually referred to as '0' and '1'. Human beings utilise a numbering system possessing ten digits and a vocabulary containing many thousands of words, but the computer depends on the basic bit.

However, the bit is readily convertible into an electrical signal. Five volts is by far the most widely used supply line standard for electronic logic systems. Thus a zero volt (ground) level represents '0', and a positive five volt level represents '1'. Note that the SC/MP CPU follows this convention which is known as positive logic; negative logic convention determines inverse conditions, i.e. 5V = '0', 0V = '1'.

Logic Signal Voltage Limits For practical purposes margins must be provided on these signal levels to allow for logic device and system tolerances. Fig. 7.1 shows those margins.

'0's and '1's Terminology Many of the manipulation rules for '0's and '1's are rooted in philosophical logic, consequently terms like 'true' and 'false' are often used for logic signals, and a 'truth table' shows all combinations of logic values relating to a particular configuration. The

control engineer may find 'on' and 'off' more appropriate to his application, while an electronic technician will speak of 'high' and 'low', and to a mathematician they can represent literally the numerals one and zero.

Using Bits in the MK14 The two state signal may appear far too limited for the complex operations of a computer, but consider again the basic three element system and it's communication bus.

The data bus for example comprises eight lines. Using each line separately permits eight conditions to be signalled. However, eight lines possessing two states each, yield 256(28) combinations, and the A bus can yield 4096 combinations.

A group or WORD of eight bits is termed a BYTE

Decoding In order to tap the information potential implied by the use of combinations, the elements in the MK14 all possess the ability to DECODE bit combinations. Thus when the CPU generates an address, the memory I/O element is able to select one out of 4096 locations. Similarly, when the CPU fetches an instruction from memory it obeys one out of 128 possible orders.

Apart from instructions, depending on context, the CPU treats information on the data bus sometimes as a numerical value, or sometimes simply as an arbitrary bit pattern, thereby further expanding data bus information capacity.

Bits as Numbers When grouped into a WORD the humble bit is an excellent medium for expressing numerical quantities. A simple set of rules exist for basic arithmetic operations on binary numbers, which although they lead to statements such as 1+1=10, or 2_{10} and 2_{10} make 100_2 , they can be executed easily by the ALU (Arithmetic and Logic Unit) within the CPU. Note that the subscripts indicate the base of the subscripted numbers.

Binary Numbers The table below compares the decimal values 0-15 with the equivalent binary notation.

The binary pattern is self evident, and it can also be seen how place value of a binary number compares with that in the decimal system.

Expressed in a different way, moving a binary number digit one place to

Expressed in a different way, moving a binary number digit one place to the left doubles its value, while the same operation on a decimal digit multiplies its value by ten.

The Binary pattern is self evident, and it can also be seen how place value of a binary number compares with that in the decimal system.

$$0+0=0$$

0+1 or 1+0=1

1 + 1 = 1 with carry (to next higher digit)

1 + 1 + carry (from next lower digit) = 1 with carry (to next higher digit)

Binary Subtraction

Program Notes

At the point the reader is likely to be considering the application programmes in Part II and perhaps devising some software of his own. This section examines the manner in which a programme is written and set out, the planning and preparation of a programme, and some basic techniques.

When embarking on a programme two main factors should be considered, they are: (i) hardware requirements, (ii) sequence plan. **Hardware Requirements** An assessment should be made of the amount of memory required for the instruction part of the programme, and the amount needed for data storage. In a dedicated micro-processor system these will occupy fixed, and read-write memory areas respectively. In the MK14, of course, all parts of the programme will reside in read-write memory, simplifying the programmers task considerably, since local pools for data can be set up indiscriminately.

However, even in the MK14 more care must be given to the allocation of memory space for common groups of data and for input/output needs. The SC/MP C.P.U. offers a certain amount of on-chip input/output in terms of three latched flags, two sense inputs, and the serial in/serial out terminals. So the designer must decide if these are more appropriate to his application than the memory mapped I/O available in the RAMIO option.

Memory Map A useful aid in this part of the process is the memory map diagram which gives a spatial representation to the memory and I/O resources the programmer has at his disposal. Fig. 8.1 shows the MK14 memory map including both add-in options

Standard RAM-	RAM	1
	RAMIO	4
	DISPLAY	V
	RAMIO	ć
Optional RAM-	RAM	3
	RAMIO	5
256	DISPLAY	6
io locations -	RAMIO	F
	MONITOR	
	MONITOR	1
	MONITOR	i
512 locations →	MONITOR	1

The map displays the memory as a column of 4K locations, (in this case each of eight bits), with location zero at the base and addresses ascending upwards.

The reader may be surprised that various sections of memory appear to reside in several areas at once.

For example the monitor is repeated four times in the lower 2K block. Note also that the monitor will only operate correctly if executed in the lowest section, as only this section has the proper relationship to the RAM at the top.

Fig. 8.1

These multiple appearances of memory blocks are due to partial address decoding technique employed to minimise decode components. The map readily indicates that a CPU memory pointer (which can permit access to a block of 256 I/O locations) set to 0900₁₆ would give the programme a stepping stone into the display O/P or the RAMIO facilities.

Flow Chart The flow chart provides a graphical representation of the sequence plan. A processor is essentially a sequential machine and the flow chart enforces this discipline. Fig. 8.2 is a very simple example of a programme to count 100 pulses appearing at an input. Three symbols are used (i) the circle for entry or exit points (ii) the rectangle for programme operations (iii) the diamond for programme decisions.

A flow chart should always be prepared when constructing a programme. Each block is a convenient summary of what may be quite a large number of instructions. Of particular value is the overview provided of the paths arising from various combinations of branch decisions.

Fig. 8.2

The flow chart can reveal wasteful repetition or logical anomalies, and ensures that like a good story, the programme starts at the beginning, progresses through the middle, and comes to a satisfactory end. **Programme Notation** There is a well established convention and format for writing down a programme listing. We will examine two lines extracted from the MK14 monitor programme itself in order to define the various functions of the notation.

(a) 112	(b) 0003	(c) GOOUT				
		(d)	(e)	(f)	(g)	
113	0003	C2OE	LD	ADH	(2)	GET GO ADDRESS

- Line Number. All lines in the listing are consecutively numbered for reference.
- b) Location Counter. The current value of the location counter (programme counter in the CPU) is shown wherever it is relevant e.g. when the line contains a programme instruction or address label.
- c) Symbolic Address Label. This is followed by a colon. Entry points to sub-sections of programme can be labelled with meaningful abbreviations making the programme easier to follow manually e.g. at some other place in the programme a JUMP TO 'GOOUT' might occur. Automatic assemblers create an internal list of labels and calculate the jump distances.
 - However the MK14 user must do it the hard way.
- d) Machine Code. The actual code in the memory is shown here. As it is a two byte instruction the first two hexadecimal digits C2 are in location 3 and OE is in location 4.
- Nmemonic LD is the nmemonic for LOAD. This is the instruction represented by C2 in machine code.
- f) Displacement. ADH is another label, in this case for a data value. Note that a table is provided in alpha-numeric order at the end of the listing, of all symbols and their values.
- g) Pointer Designation. Define the pointer to be referenced by this instruction.
- h) Comment. All text following the semi-colon is explanatory material to explain the purpose of the instruction or part of programme.

Architecture and Instruction Set

The SC/MP microprocessor contains seven registers which are accessible to the programmer. The 8-bit accumulator, or AC, is used in all operations. In addition there is an 8-bit extension register, E, which can be used as the second operand in some instructions, as a temporary store, as the displacement for indexed addressing, or in serial input/output. The 8-bit status register holds an assortment of single-bit flags and inputs:

SC/MP Status Register

7	6	5	, 4	3	, 2	. 1	. 0
CY/L	OV	SB	SA	IE	F ₂	F ₁	Fo

Flags	Description
Fo-F2	User assigned flags 0 through 2.
IE	Interrupt enable, cleared by interrupt.
SA,SB	Read-only sense inputs. If IE = 1, SA is interrupt input.
OV	Overflow, set or reset by arithmetic operations.
CY/L	Carry/Link, set or reset by arithmetic operations or rotate with Link.

The program counter, or PC, is a 16-bit register which contains the address of the instruction being executed. Finally there are three 16-bit pointer registers, P1, P2, and P3, which are normally used to hold addresses. P3 doubles as an interrupt vector.

Addressing Memory

All memory addressing is specified relative to the PC or one of the pointer registers. Addressing relative to the pointer registers is called indexed addressing. The basic op-codes given in the tables below are for PC-relative addressing. To get the codes for indexed addressing the number of the pointer should be added to the code. The second byte of the instruction contains a displacement, or disp., which gets added to the value in the PC or pointer register to give the effective address, or EA, for the instruction. This disp. is treated as a signed twos-complement binary number, so that displacements of from -128_{10} to $+127_{10}$ can be obtained. Thus PC-relative addressing provides access to locations within about 128 bytes of the instruction; with indexed addressing any location in memory can be addressed.

Instruction Set

1 3		10	1
Up	m	ptr	disp

Memory Reference

Mnemonic	Description	Operation	Op Code Base
LD	Load	(AC)←(EA)	C000
ST	Store	(EA)←(AC)	C800
AND	AND	(AC)←(AC) A (EA)	D000
OR	OR	(AC)←(AC) V (EA)	D800
XOR	Exclusive-OR	(AC)←(AC) V (EA)	E000
DAD	Decimal Add	(AC)←(AC) ₁₀ + (EA) ₁₀ + (CY/L);(CY/L)	E800
ADD	Add	(AC)←(AC) + (EA) + (CY/L);(CY/L),(OV)	F000
CAD		(AC)←(AC) + ¬(EA) + (CY/L);(CY/L),(OV)	F800

Address Mode	m	ptr	disp	Effective Address
PC-relative	0000	0000	00xx	EA = (PC) + disp
Indexed	0000	0100 0200 0300	00xx	EA = (ptr) + disp
Auto-indexed	0400	0100 0200 0300	00xx	If disp \geqslant 0, EA = (ptr) If disp $<$ 0, EA = (ptr) + disp

The operands for the memory reference instructions are the AC and a memory address.

With these eight instructions the auto-indexed mode of addressing is available; the code is obtained by adding 4 to the code for indexed addressing. If the displacement is positive it is added to the contents of the specified pointer register **after** the contents of the effective address have been fetched or stored. If the displacement is negative it is added to the contents of the pointer register **before** the operation is carried out. This asymmetry makes it possible to implement up to three stacks in memory; values can be pushed onto the stacks or pulled from them with single auto-indexed instructions. Auto-indexed instructions can also be used to add constants to the pointer registers where 16-bit counters are needed.

A special variant of indexed or auto-indexed addressing is provided when the displacement is specified as X'80. In this case it is the contents of the extension register which are added to the specified pointer register to give the effective address. The extension register can thus be used simultaneously as a counter and as an offset to index a table in memory.

For binary addition the 'add' instruction should be preceded by an instruction to clear the CY/L. For binary subtraction the 'complement' and add' instruction is used, having first **set** the CY/L. Binary-coded-decimal arithmetic is automatically handled by the 'decimal add' instruction.

| 7 0 | 7 0 | data | byte 1 | byte 2

Mnemonic	Description	Operation	Op Code Base
ORI XRI DAI ADI	AND Immediate OR Immediate Exclusive-OR Immediate Decimal Add Immediate Add Immediate	(AC)←data (AC)←(AC) A data (AC)←(AC) V data (AC)←(AC) V data (AC)←(AC) ₁₀ +data ₁₀ +(CY/L);(CY/L) (AC)←(AC)+data+(CY/L);(CY/L),(OV) (AC)←(AC)+ ^data+(CY/L);(CY/L),(OV)	C400 D400 DC00 E400 EC00 F400 Fc00

Base Code Modifier

Op Code = Base + data

the immediate instructions specify the actual data for the operation in the second byte of the instruction.

Extension Register

Mnemonic	Description Operation		Op Code	
LDE XAE ANE ORE XRE DAE ADE CAE	Load AC from Extension Exchange AC and Ext. AND Extension OR Extension Exclusive-OR Extension Decimal Add Extension Add Extension Complement and Add Extension	$(AC) \leftarrow (E)$ $(AC) \leftrightarrow (E)$ $(AC) \leftrightarrow (E)$ $(AC) \leftarrow (AC) \land (E)$ $(AC) \leftarrow (AC) \lor (E)$ $(AC) \leftarrow (AC) \lor (E)$ $(AC) \leftarrow (AC)_{10} + (E)_{10} + (CY/L), (CY/L)$ $(AC) \leftarrow (AC) + (E) + (CY/L); (CY/L), (OV)$ $(AC) \leftarrow (AC) + \sim (E) + (CY/L);$ (CY/L), (OV)	40 01 50 58 60 68 70 78	

The extension register can replace the memory address as one operand in the above two-operand instructions. The extension register can be loaded by means of the XAE instruction.

7 . . . 2 10 7 0 disp

byte 1 byte 2

Memory Increment/Decrement

Mnemonic	Description	Operation	Op Code Base
ILD DLD	Increment and Load Decrement and Load	(AC), (EA) ← (EA) + 1 (AC), (EA) ← (EA) — 1 Note: The processor retains control of the input/output bus between the data read and write operations.	A800 B800

The 'decrement and load' instruction decrements the contents of the memory location specified by the second byte, leaving the result in the accumulator. This provides a neat way of performing a set of instructions several times. For example:

	LDI ST	9 COUNT
LOOP:	101 851	
	DLD	COUNT
	INIZ	LOOP

will execute the instructions within the loop 9 times before continuing. Both this and the similar 'increment and load' instruction leave the CY/L unchanged so that multibyte arithmetic or shifts can be performed with a single loop.

Transfer

7 . . . 2 10 Op ptr byte 1

1	7	0			(g)		0
I			d	is	p	1	
Ī	1	E	y	te		2	141

Mnemonic	Description	Operation	Op Code Base
JMP	Jump	(PC)←EA	9000
JP	Jump if Positive	If (AC)≥O, (PC)←EA	9400
JZ	Jump if Zero	If (AC) = 0, (PC) ← EA	9800
JNZ	Jump if Not Zero	If (AC) ≠ 0, (PC) ← EA	9C00

Base Code Modi	fier		
Op Code = Base Address Mode	+ ptr + dis	p disp	Effective Address
PC-relative	0000	00xx	EA = (PC) + disp
Indexed	0100 0200 0300	00xx	EA = (ptr) + disp

Transfer of control is provided by the jump instructions which, as with memory addressing, are either PC-relative or relative to one of the pointer registers. Three conditional jumps provide a way of testing the value of the accumulator. 'Jump if positive' gives a jump if the top bit of the AC is zero. The CY/L can be tested with:

CSA ;Copy status to AC

JP NOCYL ;CY/L is top of bit status
which gives a jump if the CY/L bit is clear.

Pointer Register Move

Mnemonic	Descripton	operation	Op Code Base
XPAL	Exchange Pointer Low	(AC) (PTR, s:s)	30
XPAH	Exchange Pointer High		34
XPPC	Exchange Pointer with PC		3C

Base Code Modifier	
Op Code = Base + ptr	

The XPAL and XPAH instructions are used to set up the pointer registers, or to test their contents. For example, to set up P3 to contain X'1234 the following instructions are used:

LDI X'12

XPAH 3

LDI X'34

XPAL 3

The XPPC instruction is used for transfer of control when the point of transfer must be saved, such as in a subroutine call. The instruction exchanges the specified pointer register with the program counter, causing a jump. The value of the program counter is thus saved in the register, and a second XPPC will return control to the calling point. For example, if after the sequence above an XPPC 3 was executed the next instruction executed would be the one at X'1235. Note that this is one beyond the address that was in P3 since the PC is incremented before each instruction. P3 is used by the MK14 monitor to transfer control to the user's program, and an XPPC 3 in the user's program can therefore be used to get back to the monitor provided that P3 has not been altered.

Shift Rotate Serial I/O

Mnemonic	Description	Operation	Op Code
SIO SR SRL RR	Serial Input/Output Shift Right Shift Right with Link Rotate Right Rotate Right with Link	$ \begin{array}{c} (E_i) \rightarrow (E_{i-1}), SIN \rightarrow (E_7), (E_0) \rightarrow SOUT \\ (AC_i) \rightarrow (AC_{i-1}), O \rightarrow (AC_7) \\ (AC_i) \rightarrow (AC_{i-1}), CY/L) \rightarrow (AC_7) \\ (AC_i) \rightarrow (AC_{i-1}), (AC_0) \rightarrow (AC_7) \\ (AC_i) \rightarrow (AC_{i-1}), (AC_0) \rightarrow (CY/L) \rightarrow (AC_7) \end{array} $	19 1C 1D 1E 1F

The SIO instruction simultaneously shifts the SIN input into the top bit of the extension register, the bottom bit of the extension register going to the SOUT output; it can therefore form the basis of a simple program to transfer data along a two-way serial line. The shift and rotate with link make possible multibyte shifts or rotates.

Double Byte Miscellaneous

Mnemonic	Description	Operation	Op Code Base
DLY	Delay	count AC to -1, delay = 13 + 2(AC) + 2 disp + 2* disp microcycles	8F00

Base Code Modifier

Op Code = Base + disp

The delay instruction gives a delay of from 13 to 131593 microcycles which can be specified in steps of 2 microcycles by the contents of the AC and the second byte of the instruction.

Note that the AC will contain X'FF after the instruction.

Single-Byte Miscellaneous

Anemonic Description Operation		Operation	Op Code	
HALT	Halt	Pulse H-flag	00	
CCL	Clear Carry/Link	(CY/L)←0	02	
SCL	Set Carry/Link	(CY/L)←1	03	
DINT	Disabled Interrupt	(IE)←O	04	
IEN	Enable Interrupt	(IE)←1	05	
CSA	Copy Status to AC	(AC)←(SR)	06	
CAS	Copy AC to Status	(SR)←(AC)	07 .	
NOP	No Operation	(PC)←(PC) + 1	08	

The remaining instructions provide access to the status register, and to the IE and CY/L bits therein. The HALT instruction will act as a NOP in the MK14 kit unless extra logic is added to detect the H-flag at NADS time. in which case it could be used as an extra output.

Mnemonic Index of Instructions

Mnemonia	Opcode	Read Cycles	Write Cycles	Total Microcycles
ADD ADE ADI AND ANE ANI CAD CAE CAI CAS	F0 70 F4 D0 50 D4 F8 78 FC	3 1 2 3 1 2 3 1 2 2 1 1 2 2 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0	19 7 11 18 6 10 20 8 12 6
CCI CSA DAD DAE DAI DINT DLD DLY	02 06 E8 68 EC 04 B8 8F	1 1 3 1 2 1 3 2	0 0 0 0 0 0	5 5 23 11 15 6 22 13-131593

Mnemonic	Opcode	Read Cycles	Write Cycles	Total Microcycles
HALT IEN ILD JMP JNZ JP JZ LD LDE LDI NOP OR ORE ORI RR RRL SCL SIO SR SRL ST XAE XOR XPAH XPAL XPPC XRE XRI	00 05 A8 90 92 94 98 C0 40 C4 08 D8 58 DC 1E 1F 03 19 1C 1D C8 01 E0 34 30 3C 60 E4	2 1 3 2 2 2 2 3 1 2 1 3 1 2 1 1 1 1 1 1	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 6 22 11 9, 11 for Jump 9, 11 for Jump 9, 11 for Jump 18 6 10 5 18 6 10 5 5 5 5 5 5 5 18 7 18 8 8

Program Listings

The application program listings at the end of this manual are given in a symbolic form known as 'assembler listings'. The op codes are represented by mnemonic names of from 2 to 4 letters, with the operands specified as shown:

LD disp ;PC-relative addressing
LD disp (ptr) ;Indexed addressing
LD @disp (ptr) ;Auto-indexed addressing

Constants and addresses are also sometimes represented by names of up to six letters; these names stand for the same value throughout the program, and are given that value either in an assignment statement, or by virtue of their appearing as a label to a line in the program. Some conventions used in these listings are shown below:

Statements

Directive

Assembler Format	Function
.END (address)	Signifies physical end of source pprogram.
.BYTE exp(,exp)	Generates 8-bit (single-byte) data in successive memory locations.
.DBYTE exp(,exp,)	Generates 16-bit (double- byte) data in successive memory locations.

Statements

Assignment

LABEL:	SYMBOL = EXPRESSION	;Symbol is assigned ;value of expression
	. = 20	;Set location counter ;to 20
TABLE:	. = . + 10	;Reserve 10 locations for table

10 RAM 1/0

A socket is provided on the MK14 to accept the 40 pin RAM I/O device (manufacturers part no. INS8154). This device can be added without any additional modification, and provides the kit user with a further 128 words of RAM and a set of 16 lines which can be utilised as logic inputs in any combination.

These 16 lines are designated Port A (8 lines) and Port B (8 lines) and are available at the edge connector as shown in Fig. 10.1.

Fig. 10.1 RAM I/O Signal Lines

The RAM I/O can be regarded as two completely separate functional entities, one being the memory element and the other the input/output section. The only association between the two is that they share the same package and occupy adjacent areas in the memory I/O space. Fig. 10.2 shows the blocks in the memory map occupied by the RAM I/O, and it can be seen that the one piece of hardware is present in four separate blocks of memory.

Note: — Memory area is shown divided into 256 byte blocks. The lowest and highest location address is shown in hex' at left.

Fig. 10.2 Memory I/O Map Showing RAM I/O Areas

Fig. 10.3 RAM I/O Locations and Related Functions

The primary advantage for the user, in this, is that programme located in basic RAM, or in the extra RAM option, has the same address relationship to the RAM I/O.

Fig. 10.3 shows how memory I/O space within the RAM I/O block is allocated.

RAM Section

This is utilised in precisely the same manner as any other area of RAM.

Input/Output Section

The device incorporates circuitry which affords the user a great deal of flexibility in usage of the 16 input/output lines. Each line can be separately defined as either an input or an output under programme control. Each line can be independently either read as an input, or set to logic 'I' or 'O' as an output. These functions are determined by the address value employed.

A further group of usage modes permit handshake logic i.e. a 'data request', 'data ready', 'data receieved', signalling sequence to take place in conjunction with 8 bit parallel data transfers in or out through Port A.

Reset Control

This input from the RAM I/O is connected in parallel with the CPU poweron and manual reset. When reset is present all port lines are high impedance and the device is inhibited from all operations. Following reset all port lines are set to input mode, handshake facilities are deselected and all port output latches are set to zero.

Input/Output Definition Control

At start-up all 16 lines will be in input mode. To convert a line or lines to the output condition a write operation must be performed by programme into the ODA (output definition port A) or ODB locations e.g. writing the value 80 (Hex.) into ODB will cause bit 7 port B to become an output.

Single Bit Read

The logic value at an input pin is transferred to the high order bit (bit 7) by performing a read instruction. The remaining bits in the accumulator become zero.

The required bit is selected by addressing the appropriate location (see Figs. 3 & 4).

By executing JP (Jump if Positive) instruction the programme can respond to the input signal i.e. the jump does not occur if the I/P is a logic 'i'. If a bit designated as an output is read the current value of that O/P is detected.

Single Bit Load

This is achieved by addressing a write operation to a selected location (see Figs. 10.1 & 10.4). Note that it is not necessary to preset the accumulator to define the written bit value because it is determined by bit 4 of the address.

Eight Bit Parallel Read or Write

An eight bit value can be read from Port A or B to the accumulator, or the accumulator value can be output to Port A or B. See Figs. 10.3 & 10.4 for the appropriate address locations. Input/output lines must be predefined for the required mode.

Port A Handshake Operations

To achieve eight bit data transfers with accompanying handshake via Port A, two lines (6 and 7) from Port B are allocate special functions and must be pre-defined by programme as follows:- bit 7-input, bit 6-output. Additionally the INTR signal line is utilised.

Three modes of handshake function are available to be selected under programme control. Fig. 10.4 shows values to be written into the three higher order bits of the Mode Definition Register (see Fig. 10.1 for location) for the various modes.

Fig. 10.4 Mode Definition Register (MDR) Values and Operation Modes

Fig. 10.5 Handshake Interconnections and Function

INTR Signal

In order to inform the CPU of the state of the data transfer in handshake mode the RAM I/O generates the INTR SIGNAL: This signal will usually be connected to the CPU interrupt input SA.

The INTR signal is activated by writing a logic '1' into B7 and is inhibited by a logic '0'. Note that although B7 must be defined as an input, in handshake mode the B7 output latch remains available to perform this special function.

Strobed Input Mode

A peripheral circuit applies a byte of information to Port A and a low pulse to B7. The pulse causes the data to be latched into the RAM I/O Port A register, and B6 is made high as a signal to the peripheral indicating that the latch is now occupied. At the same time INTR (if enabled) goes high indicating 'data ready' to the CPU.

The CPU responds with a byte read from Port A. The RAM I/O recognises this, and removes INTR and the 'buffer full' signal on B6, informing the peripheral that the latch is available for new data.

Fig. 10.6 Signal Timing Relationship - Handshake I/P Mode

Strobed Output Mode

The CPU performs a byte write to Port A, and the RAM I/O generates a 'data ready' signal by making B6 low. The peripheral responds to 'data ready' by accepting the Port A data, and acknowledges by making B7 low. When B7 goes low the RAM I/O makes INTR high (if enabled) informing the CPU that the data transaction is complete.

Fig. 10.7 Signal Timing Relationship - Handshake O/P Mode

Strobed Output with Tri-State Control

This mode employs the same signalling and data sequence as does Output Mode above. However the difference lies in that Port A will, in this mode, normally be in Tri-state condition (i.e. no load on peripheral bus), and will only apply data to the bus when demanded by the peripheral by a low acknowledge signal to B7.

Applications for Handshake Mode

Handshake facilities afford the greatest advantages when the MK14 is interfaced to an external system which is independent to a greater or lesser degree. Another MK14 would be an example of an completely independent system.

In comparison the simple read or write, bit or byte, modes are useful when the inputs and outputs are direct connections with elements that are subservient to the MK14.

However whenever the external system is independently generating and processing data the basic 'data request', 'data ready', 'data acknowledge', sequence becomes valuable. The RAM I/O first of all relieves the MK14 software of the task of creating the handshake. Secondly it is likely in this kind of situation that the MK14 and external system are operating asynchronously i.e. are not synchronised to a common time source or system protocol. This implies that when one element is ready for a data transfer, the other may be busy with some other task.

Here the buffering ability of the Port A latch eases these time constraints by holding data transmitted by one element until the other is ready to receive

Therefore, for example, if the CPU, in the position of a receiver, is unable, due to the requirements of the controlling software, in the worst case, to pay attention for 2 millisecs the transmitter would be allowed to send data once every millisecond.

Part 2

Monitor program listing	40
Mathematical	49
Square Root	
Greatest Common Divisor	54
Electronic	54
Random Noise	
System Single Step Decimal to Hex Relocator	58
Serial data input*	
Serial data output*	
Games Moon Landing Duck Shoot Mastermind	68
Silver Dollar Game Music	79
Function Generator Music Box Organ	, 5
Miscellaneous	84
Message Self-Replicating Program Reaction Timer	5,

Devised and written by: David Johnson — Davies except programmes marked thus*

Monitor program listing

SCMPKB

```
SC/MP ASSEMBLER REV - C 02/06/76
SCMPKB P005235A 7/14/76
                        TITLE SCMPKB, 'P005235A 7/14/76'
             BOARD
PROM# ADDRESS COORDINATE BOARD#
                                       BOARD
            460305235-001 0000 5A 9804879
      OFOO RAM = OFOO
ODOO DISP = ODOO
 13
          ; SEGMENT ASSIGNMENTS
 17
 18 0001 SA
      0002 SB
     0001 SA = 1
0002 SB = 2
0004 SC = 4
0008 SD = 8
0010 SE = 16
0020 SF = 32
0040 SG = 64
 18
 19
 20
 21
 22
23
 24
 25
7 SEGMENT CONVERSION
                    = NE
SE+SG
= SC+SD+SE+SG
        005C KO =
 47
 48
 49
 50
                   .PAGE 'HARDWARE FOR KEYBOARD'
 51
                FUNCTION DATA KYB FUNCTION
 53
 54
 55
                          080
 56
                     1
                          081
                          082
```

```
58
                      3 083
                      4 084 4
5 085 5
59
60
                                  5
                          086
                     6
61
                                   6
62
                       7
                             087
                                      7
                      8
                           040
                                    8
63
                      9
                           041
                                    9
64
65
                      A
                           010
                                   +
66
                      В
                           011
67
                      C
                           012
                                   MUL
                         013
68
                      D
                                   DIV
                      E
                           016
69
                                  SQUARE
70
                      F
                          017
                                  SORT
71
                      GO 022
MEM 023
                                   9/0
72
73
                      ABORT 024
                                   CE/C
74
                      TERM 027
75
76
                      RAM POINTERS USED BY KITBUG, P3 IS SAVED ELSEWHERE
77
78
         OFF9 P1H
79
                           OFF9
80
         OFFA P1L
                      = OFFA
81
         OFFB P2H
                           OFFR
         OFFC P2L
82
                           OFFC
         OFFD A
                           OFFD
83
                      =
84
        OFFE E
                           OFFE
                      =
         OFFF S
85
                           OFFF
                      COMMANDS
87
88
89
               :ABORT:
                      THIS ABORTS THE PRESENT OPERATION. DISPLAYS -.
90
91
92
              :MEM:
                      ALLOWS USER TO READ/MODIFY MEMORY.
93
94
                      ADDRESS IS ENTERED UNTIL TERM THEN DATA IS ENTERED.
95
                      TO WRITE DATA IN MEMORY TERM IS PUSHED.
96
                      DATA IS READ TO CHECK IF IT GOT WRITTEN IN RAM.
97
98
              :GO:
99
                      ADDRESS IS ENTERED UNTIL TERM.
100
                      THE REGISTERS ARE LOADED FROM RAM AND PROGRAM
101
                      IS TRANSFERRED USING XPPC P3.
102
                      TO GET BACK DO A XPPC P3.
103
104
                      .PAGE 'INITIALIZE'
105 0000 08
                      NOP
106 0001 INIT:
107 0001 901D
                      JMP START
108
109
                      DEBUG EXIT
110
                      RESTORE ENVIRONMENT
111
              GOOUT:
112 0003
113 0003 C20E
                      LD ADH(2) :GET GO ADDRESS.
                      XPAH 3
114 0005 37
                      LD
115 0006 C20C
                           ADL(2)
                      XPAL 3
116 0008 33
117 0009 C7FF
                      LD @-1(3)
                                  ;FIX GO ADDRESS.
118 000B COF2
                      LD
                          E
                                    :RESTORE REGISTERS.
119 000D 01
                      XAE
120 000E COEB
                      LD
                           P1L
121 0010 31
                      XPAL 1
                    LD
122 0011 COE7
                           P1H
123 0013 35
                      XPAH 1
                    LD P2L
124 0014 COE7
125 0016 32
                      XPAL 2
126 0017 COE3
                      LD P2H
127 0019 36
                      XPAH 2
128 001A COE4
                   LD S
```

```
129 001C 07 CAS
130 001D CODF LD A
131 001F 3F XPPC 3
                                                      ;TO BET BACK.
                 ; TO BET BAC
; ENTRY POINT FOR DEBUG
133
                                                               SET P2 TO POINT TO RAM.
                          .PAGE
 156
  157
  158
            ; ABORT SEQUENCE
  159
  160
 161 0040 ABORT:

162 0040 C400 LDI 0

163 0042 CA02 ST D3(2)

164 0044 CA03 ST D4(2)

165 0046 CA08 ST D9(2)

166 0048 C440 LDI DASH ;SET SEGMENTS TO—.

167 004A CA00 ST DL(2)

168 004C CA01 ST DH(2)

169 004C CA01 ST DH(2)

170 0050 CA05 ST ADLL(2)

171 0052 CA06 ST ADLL(2)

172 0054 CA07 ST ADHL(2)

173 0056 WAIT:
  161 0040 ABORT:
  173 0056 WAIT:
174 0056 C401 JS 3,KYBD ;DISPLAY AND READ KEYBOAF
  0058 3764

005A 8433

005C 3F

175 005D 9002 JMP WCK ;COMMAND RETURN.

176 005F 90DF JMP ABORT ;RETURN FOR NUMBER.
         0058 37C4
  178 0061 WCK:
  179 0061 E407 XRI 07 ;CHECK IF MEM.
180 0063 9856 JZ MEM
181 0065 E401 XRI 01 ;CHECK IF GO.
182 0067 9CD7 JNZ ABORT
                                  .PAGE 'GO TO'
 184

185 ; GO WAS PUSHED

186 ; GO TO USER PROGRAM

187 0069 GO:

188 0069 C4FF LDI —1 ;SET FIRST FLAG.

189 006B CAOF ST DDTA(2)

190 006D C440 LDI DASH ;SET DATA TO DASH.

191 006F CA00 ST DL(2)

192 0071 CA01 ST DH(2)

193 0073 GOL:
  183
  193 0073 GOL:
194 0073 C459 LDI L(DISPA)-1 ;FIX ADDRESS SEG.
```

```
195 0075 33 XPAL 3
196 0076 3F XPPC 3 ;DO DISPLAY AND KEYBRD.
197 0077 9006 JMP GOCK ;COMMAND RETURN.
198 0079 C41A LDI L(ADR)-1 ;SET ADDRESS.
199 007B 33 XPAL 3
200 007C 3F XPPC 3
201 007D 90F4 JMP GOL ;NOT DONE.
202 007F GOCK:
203 007F E403 XRI 03 ;CHECK FOR TERM.
   202 007F GOCK:
203 007F E403 XRI 03 ;CHECK FOR TERM.
204 0081 9880 JZ GOOUT ;ERROR IF NO TERM.
   205
   206
  207 ; INCORRECT SEQUENCE
208 ; DISPLAY ERROR WAIT FO
                                            DISPLAY ERROR WAIT FOR NEW INPUT
   209
  210
211 0083 ERROR:
212 0083 C479
213 0085 CA07 ST ADHH(2)
214 0087 C450 LDI KR
215 0089 CA06 ST ADHH(2)
216 008B CA05 ST ADHH(2)
217 008D CA03 ST D4(2)
218 008F C45C LDI KO
219 0091 CA04 ST ADLL(2)
220 0093 C400 LDI O
221 0095 CA02 ST D3(2)
222 0097 CA01 ST DH(2)
223 0099 CA00 ST DL(2)
224 009B 90B9 JMP WAIT
  211 0083 ERROR:
                                                    .PAGE 'MEMORY TRANSACTIONS'
   225
   226
227 009D DTACK:
228 009D C211 LD NEXT(2) ; CHECK IF DATA FIELD.
229 009F 9C36 JNZ DATA ; ADDRESS DONE.
   230
 232 00A1 MEMDN:
233 00A1 C20E LD ADH(2) ;PUT WORD IN MEM.
234 00A3 35 XPAH 1
235 00A4 C20C LD ADL(2)
236 00A6 31 XPAL 1
237 00A7 C20D LD WORD(2)
238 00A9 C900 ST (1)
239 00AB 900E JMP MEM
240
   231
   240
  241 00AD MEMCK:
 241 00AD MEMCK:
242 00AD E406 XRI 06 ;CHECK FOR GO.
243 00AF 98D2 JZ ERROR ;CAN NOT GO NOW.
244 00B1 E405 XRI 05 ;CHECK FOR TERM.
245 00B3 98E8 JZ DTACK ;CHECK IF DONE.
246 00B5 AAOC ILD ADL(2) ;UPDATE ADDRESS LOW.
247 00B7 9CO2 JNZ MEM ;CHECK IF UPDATE HI.
248 00B9 AAOE ILD ADH(2)
```

```
        265
        OOCF
        90DC
        JMP
        MEMCK
        COMMAND RETURN.

        266
        00D1
        C41A
        LDI
        L(ADR)-1
        ;MAKE ADDRESS.

        267
        00D3
        33
        XPAL
        3

        268
        00D4
        3F
        XPPC
        3

        269
        00D5
        90EA
        JMP
        MEML
        ;GET NEXT CHAR.

SET P1 TO MEMORY ADDRESS
.PAGE
 279
 291 00F) CA11
292 00F9 DNFST:
293 00F9 02 CCL
294 00FA C20D LD WORD(2) ;SHIFT LEFT.
295 00FC F20D ADD WORD(2)
296 00FE CA0D ST WORD(2)
297 0100 BA09 DLD CNT(2) ;CHECK FOR 4 SHIFTS.
298 0102 9CF5 JNZ DNFST
299 0104 C20D LD WORD(2) ;ADD NEW DATA.
  299 0104 C296
 299 0104 C206 LD WORD(2) ;ADD NEW DATA.
300 0106 58 ORE
301 0107 660D CAOD ST WORD(2)
302 0109 96DA JMP DATAL
303 0109 96DA JMP DATAL
  302 0109 96DA
                                                    JMP DATAL
  303
                                                     .PAGE 'HEX NUMBBER TO SEGMENT TABLE'
  305
                                  'HEX NUMBER TO SEVEN SEGMENT TABLE'
  306
  307
 308
309 010B CROM:
310 010B 3F BYTE NO
311 010C 06 BYTE N1
312 010D 5B BYTE N2
313 010E 4F BYTE N3
314 010F 66 BYTE N4
315 0110 6D BYTE N5
316 0111 7D BYTE N6
  308
  317 0112
 316 0111 7A BYTE N6
317 0112 07 BYTE N7
318 0113 7F BYTE N8
319 0114 67 BYTE N9
320 0115 77 BYTE NA
321 0116 7C BYTE NB
322 0117 39 BYTE NC
323 0118 5E BYTE ND
324 0119 79 BYTE NE
325 011A 71 BYTE NF
  .PAGE 'MAKE 4 DIGIT ADDRESS' 327 011B ADR:
```

328 329 330 331	i.	SHIFT	ADDRESS L	LEFT ONE DIGIT THEN
330				
330 331 332 333 334		ADD NE	ADDRESS LE EW LOW HE GIT IN E REC NTS TO RAM	GISTER.
335 011B C404 336 011D CA09 337 011F AA0F 338 0121 9C06 339 0123 C400 340 0125 CA0E 341 0127 CA0C 342 0129 343 0129 02 344 012A C20C 346 012E CA0C 347 0130 C20E 348 0132 F20E 349 0134 CA0E 350 0136 BA09 351 0138 9CEF 352 013A C20C 353 013C 58 354 013D CA0C 355 013F 3F 356 356	NOTFST:	ST ILD JNZ LDI ST ST CCL LD ADD ST LD ADD ST LD ADD ST LD CORE ST CORE	4 CNT(2) DDTA(2) NOTFST O ADL(2) ADL(2) ADL(2) ADL(2) ADL(2) ADH(2) ADH(2) ADH(2) ADH(2) ADH(2) ADH(2) ADL(2) 3 CNT(2) TADL(2) 3	;SET NUMBER OF SHIFTS. ;CHECK IF FIRST. ;JMP IF NO. ;ZERO ADDRESS. ;CLEAR LINK. ;SHIFT ADDRESS LEFT 4 TIMES. ;SAVE IT. ;NOW SHIFT HIGH. ;CHECK IF SHIFTED 4 TIMES. ;JMP IF NOT DONE. ;NOW ADD NEW NUMBER. ;NUMBER IS NOW UP DATED.
358 359 360 361 362 363 364 365 366 0140 367 0140 C401 368 0142 35 369 0143 C408 370 0145 31 371 0146 C20D 372 0148 D40F 373 014A 01 374 014B C180 375 014D CA00 376 014F C20D 377 0151 1C 378 0152 1C 379 0153 1C 380 0154 1C 381 0155 01 382 0156 C180 383 0158 CA01 384 385 386	DISPD:	P2 POII DROPS LDI XPAH LDI XPAL Id ANI XAE LD ST LD SR SR SR SR XAE LD ST LD ST XAE LD SR SR SR XAE LD ST XAE	H(CROM) 1 L(CROM) 1 word62) OF -128(1) DL(2) WORD(2)	;SET ADDRESS OF TABLE. ;GET MEMORY WORD. ;GET SEGMENT DISP. ;SAVE AT DATA LOW. ;FIX HI. ;SHIFT HI TO LOW. ;GET SEGMENTS. ;SAVE IN DATA HI.
387 388 389 390 391 392	PAGE	CONVE	ERT HEX AD	DRESS TO SEGMENTS.

```
; DROPS THRU TO KEYBOARD AND DISPLAY.
393
394
395
               DISPA:
396 015A
397 015A 03
                        SCL
                             H(CROM) ;SET ADDRESS OF TABLE.
398 015B C401
                      LDI
                       XPAH 1
399 015D 35
400 015E C40B
                        LDI L(CROM)
XPAL 1
401 0160 31
                LOOPD:
                        LD
402 0161
                ANI OF
                             ADL(2) ;GET ADDRESS.
403 0161 C20C
404 0163 D40F
                        XAE
405 0165 01
                    LD
ST ADLL(2)
LD ADL(2)
                                       GET SEGMENTS.
406 0166 C180
                                       ;SAVE SEG OF ADR LL.
407 0168 CA04
408 016A C20C
                    SR
SR
                                        SHIFT HI DIGIT TO LOW.
409 016C 1C
410 016D ...c
                 SR XAE
411 016E 1C
412 016F 1
413 0170 01
                              -128(1) ;GET SEGMENTS.
414 0171 C180
                LD -128(1)
ST ADLH(2)
CSA
415 0173 CA05
416 0175 06
                                        ;CHECK IF DONE.
417 0176 D480
                     ANI 080
JZ DONE
418 0178 9809
                    CCL
LDI 0
ST D4(2)
LD @2(2)
                                        CLEAR FLAG.
419 017A 02
420 017B C400
                               D4(2) ;ZERO DIGIT 4.
@2(2) ;FIX P2 FOR NEXT LOOP.
421 017D CA03
422 017F C602
                        JMP LOOPD
423 0181 90DE
                DONE: LD @-2(2) ;FIX P2.
424 0183
425 0183 C6FE
426
427
               .PAGE 'DISPLAY AND KEYBOARD INPUT'
429
                    CALL XPPC 3
430
431
                         JMP COMMAND IN A GO = 6, MEM = 7, TERM = 3
432
                              IN E GO = 22, MEM = 23, TERM = 27.
433
                         NUMBER RETURN HEX NUMBER IN E REG.
434
435
                        ABORT KEY GOES TO ABORT.
436
                       ALL REGISTERS ARE USED.
438
439
                       P2 MUST POINT TO RAM. ADDRESS MUST BE XXXO.
440
441
                    TO RE-EXECUTE ROUTINE DO XPPC P3.
442
443
444
445 0185

        LDI
        O
        ;ZERO CHAR.

        ST
        CHAR(2)

        LDI
        H(DISP)
        ;SET DISPLAY ADDRESS.

                         LDI 0
446 0185 C400
447 0187 CAUB
448 0189 C40D
449 018B 35
450 018C OFF:
447 0187 CAOB
                         XPAH 1
                         LDI -1
                                         ;SET ROW/DIGIT ADDRESS.
                        ST ROW(2) ;SAVE ROW COUNTER.
452 018E CA10
                         LDI 10
453 0190 C40A
                                        ;SET ROW COUNT.
454 0192 CA09
                         ST
                               CNT(2)
454 0192 CAOC
455 0194 C400
                         LDI 0
456 0196 CA0A ST PUSHED(2);ZERO KEYBOARD INPUT.
457 0198 31 XPAL 1 ;SET DISP ADDRESS LOW.
458 0199 LOOP:
459 0199 AA10 ILD ROW(2) ;UP DATE ROW ADDRESS.
                         XAF
460 019B 01
                         LD -128(2) ;GET SEGMENT.
ST -128(1) ;SEND IT.
461 019C C280
                       ST -128(1) ;SENDIT.
DLY 0 ;DELAYFO
462 019E C980
463 01A0 8F00
                                         :DELAY FOR DISPLAY.
```

```
464 01A2 C180 LD -128(1) ;GET KEYBOARD INPUT.
465 01A4 E4FF XRI 0FF ;CHECK IF PUSHED.
466 01A6 9C4C JNZ KEY ;JUMP IF PUSHED.
467 01A8 BACK:
477 01BA CKMORE:

478 01BA C20B LD CHAR(2) ;CHECK IF THERE WAS A CHAR.

479 01BC 98CE JZ OFF ;NO KEEP LOOKING.
             PAGE
 480
        ; COMMAND KEY PROCESSING
 481
482
483
 505
 506 01DC 0A0B
                              .BYTE OA, OB, OC, OD, O, OE, OF
01E2 0E0F

507 01E4 LT7:

508 01E4 60 XRE ;KEEP LOW DIGIT.

509 01E5 90EF JMP KEYRTN

510 01E7 80
 510 01E7 N89:

511 01E7 60 XRE ;GET LOW.

512 01E8 F408 ADI 08 ;MAKE DIGIT 8 OR 9.

513 01EA 90EA JMP KEYRTN
                             PAGE
 514
515 01EC CMND:
516 01EC 60 XRE
XRI

    516 01EC 60
    XRE

    517 01ED E404
    XRI 04

    518 01EF 9808
    JZ ABRT ;ABORT.

    519 01F1 3F
    XPPC 3

    ;IN E 23 = MEM, 22 = GO, 27 = TERM.

    520
    ;IN A 7 = MEM, 6 = GO, 3 = TERM.

                             JMP KYBD ;ALLOWS JUST A XPPC P3 TO
 521 01F2 9091
 522
                                                           :RETURN.
 523
 523

524 01F4 KEY:

525 01F4 58 ORE ;MAKE CHAR.

526 01F5 CAOA ST PUSHED(2) ;SAVE CHAR.

527 01F7 90AF JMP BACK
 529 01F9 ABRT:
```

```
530 01F9 C400 LDI H(ABORT)
531 01FB 37 XPAH 3
                                  L(ABORT)-1
                  LDI
532 01FC C43F
                           XPAL
                                  3
533 01FE 33
                                                  GO TO ABORT
                           XPPC
                                    3
534 01FF 3F
                          .PAGE 'RAM
                                            SEOFF-
535
536
537
                        = 0
           0000 DL
                                                   :SEGMENT FOR DIGIT 1
538
                                ĭ
                                                  ;SEGMENT FOR DIGIT 2
          0001 DH =
539
       0001 DH -
0002 D3 =
0003 D4 =
                                                   ;SEGMENT FOR DIGIT 3
                                    2
540
                                   3
                                                  SEGMENT FOR DIGIT 4
542 0004 ADLL = 4

543 0005 ADLH = 5

544 0006 ADHL = 6

545 0007 ADHH = 7

546 0008 D9 = 8

547 0009 CNT = 9

548 000A PUSHED = 10

549 000B GHAR 11
541
                                            SEGMENT FOR DIGIT 5
                                       SEGMENT FOR DIGIT 7
                                                  SEGMENT FOR DIGIT 8
                                              SEGMENT FOR DIGIT 9 COUNTER.
                                                 KEY PUSHED.

        549
        000B
        CHAR
        =
        11
        ;CHAR READ.

        550
        000C
        ADL
        =
        12
        ;MEMORY ADDRESS LOW

        551
        000D
        WORD
        =
        13
        ;MEMORY WORD.

        552
        000E
        ADH
        =
        14
        ;MEMORY ADDRESS HI.

        553
        000F
        =
        =
        15
        ;FIRST FLAG.

                                               MEMORY ADDRESS LOW.
           0010 ROW = 16 ;FIRST FLAG.
0011 NEXT = 17 ;FLAG FOR NOW DA
 553 000F =
554
555
                                                 ;FLAG FOR NOW DATA.
 556
557
          0000
 558
                         .END
                  ***** O ERRORS IN ASSEMBLY *****
 A ABORT ABRT ADH ADHH ADHL ADL ADLH ADLL ADR
OFFD 0040 01F9 000E 0007 0006 000C 0005 0004 011E
BACK CHAR CKMORE CMND CNT COMMAN CROM D3 D4 01A8 000B 01BA 01EC 0009 01BE 010B 0002 0003
                                                                           0008
                                                           0002 0003
        DATA DATAL DDTA DH DISP DISPA DISPD DL 00D7 00E5 000F 0001 0D00 015A 0140 0000
 DASH
                                                                            DNEST
                                                                    0000 00F9
 0040
 DONE DTACK E ERROR GO GOCK GOL GOOUT INIT
 0183 009D 0FFE 0083 0069 007F 0073 0003
                                                                    0001
 KEY KEYRTN KO
                        KR KYBD LOOP LOOPD LT7 MEM
                                                                            MEMCK
 OOBB OOAD
                                                  N4
 MEMDN MEML NO
00A1 00C1 003F
                         N1
                                 N2
                                          N3
                                                           N5
                                                                    N6
                                 005B 004F 0066
                         0006
                                                           006D
                                                                   007D
                                                                            0007
 N8 N89 N9 NA
                                          NC NC
                                                          NE
                                 NB
                                                                   NEXT
                                 007C 0039 005E 0079
 007F 01E7 0067 0077
                                                                   0011
                                                                           0071
 NOTEST OFF P1H P1L P2H P2L PUSHED RAM
                                                                    ROW
 0129 018C 0FF9
                         OFFA
                                OFFB OFFC
                                                 000A 0F00 0010
                                                                           OFFF
               SC SD SE SF SG START WAIT 0004 0008 0010 0020 0040 0020 0056
 SA SB
                                                                          WCK
        0002
 0001
 WORD
 000D
```

A799 08AB

Mathematical

The mathematical subroutines all take their arguments relative to the pointer register P2. Pointer P3 is the subroutine calling register. All of these routines may be repeated without reloading P3 after the first call.

'Multiply' gives the 16-bit unsigned product of two 8-bit unsigned numbers.

e.g. A = X'FF(255)

B = X'FF(255)

RESULT = X'FEO1 (65025).

'Divide' gives the 16-bit unsigned quotient and 8-bit remainder of a 16-bit unsigned dividend divided by an 8-bit unsigned divisor.

e.g. DIVISOR = X'05 (5)

DIVISOR = X'5768 (22376)

QUOTIENT = X'117B (4475)

REMAINDER = X'01 (1).

'Square Root' gives the 8-bit integer part of the square root of a 16-bit unsigned number. It uses the relation:

 $(n+1)^2-n^2=2n+1$,

and subtracts as many successive values of 2n + 1 as possible from the number, thus obtaining n.

e.g. NUMBER = X'D5F6 (54774) ROOT = X'EA (234).

'Greatest Common Divisor' uses Euclid's algorithm to find the GCD of two 16-bit unsigned numbers; i.e. the largest number which will exactly divide them both. If they are coprime the result is 1.

e.g. A = X'FFCE (65486 = 478 × 137) B = X'59C5 (23701 = 173 × 137) GCD = X'89 (137).

Multiply

; Multiplies two unsigned 8-bit numbers ; (Relocatable)

Stack usage:

REL: ENTRY: USE: RETURN:

Temp

(P2)-> 0 A A A

B B B

Result (H) Result (H)

Result (L)

0000	Α	=	0
0001	В	=	1
FFFF	Temp	=	-1
0002	RH	=	2
0003	RL	=	3

0000 0F50	C408	Mult:	. = 0F50 LDI	8
0F52	CAFF	With.	ST	Temp (2)
0F54	C400		LDI	0
OF 56	CA02		ST	RH(2)
0F58	CA03		ST	RL(2)
OF 5A	C201	Nbit:	LD	B(2)
OF 5C	02		CCL	
OF5D	1E		RR	
OF 5E	CA01		ST	B(2)
OF 60	9413		JP	Clear
OF 62	C202		LD	RH(2)
OF 64	F200		ADD	A(2)
OF 66	IF	Shift:	RRL	
OF 67	CA02		ST	RH(2)
OF 69	C203		LD	RL(2)
OF6B	1F		RRL	
OF 6C	CA03		ST	RL(2)
OF6E	BAFF		DLD	Temp(2)
OF 70	9CE8		JNZ	Nbit
OF 72	3F		XPPC	3
OF 73	90DB		JMP	Mult
OF 75	C202	Clear:	LD	RH(2)
OF77	90ED		JMP	Shift
		;	-115	
	0000		.END	

Divide

```
; Divides an unsigned 16-bit number by
         ; an unsigned 8-bit number giving
          ; 16-bit quotient and 8-bit remainder.
          (Relocatable)
           Stack usage:
                             ENTRY: USE:
                                                 RETURN:
                   REL:
                                       Quotient(I)
          :(P2)->
                    0
                             Divisor
                                                 Quotient(H)
                                                 Quotient(L)
                    +1
                             Dividend(H)
                             Dividend(L)
                                                 Remainder
FFFF
          Quot
0000
          DSOR
                             0
0001
          DNDH
                              1
                              2
0002
          DNDL
                    . = 0F80
                    LD
                              DSOR(2)
C200
          Div:
                   XAE
01
C400
                   LDI
                    ST
                              DSOR(2) ; Now Quotient(H)
CAOO
```

0000

QF80

OF 82

OF 83

OF 85

```
CAFF
                         ST
                                  Quot(2) ;Quotient(L)
OF 87
                                   DNDH(2)
                Subh:
                         LD
OF 89
       C201
OF8B
       03
                         SCL
                         CAE
OF8C
       78
                         ST
                                   DNDH(2)
       CA01
OF8D
OF8F
       1D
                         SRL
       9404
                         JP
                                   Stoph
0F90
                                   DSOR(2)
0F92
       AAOO
                         ILD
OF 94
       90F3
                         JMP
                                   Subh
                         LD
                                   DNDH(2)
OF 96
       C201
                Stoph:
                         ADE
                                            ;Carry is clear
0F98
       70
                         ST
                                   DNDH(2); Undo damage
0F99
       CA01
OF9B
       C202
                Subl:
                         LD
                                   DNDL(2)
OF9D
       03
                         CCL
OF 9E
       78
                         CAE
       CA02
                         ST
                                   DNDL(2)
OFAO
                          LD
                                   DNDH(2)
OFA2
       C201
OFA4
       FC00
                         CAL
                                   0
OFA6
       CA01
                          ST
                                   DNDH(2)
                          SRL
OFA8
       1D
       9404
OFA9
                          JP
                                   Stopl
       AAFF
                          ILD
                                   Quot (2)
OF AB
                                   Subl
OFAD
       90ED
                          JMP
OFAF
       C202
                Stopl:
                          LD
                                   DNDL(2)
OFB1
       70
                          ADE
       CA02
                                   DNDL(2) ;Remainder
OFB2
                          ST
OFB4
       C2FF
                          LD
                                   Quot(2)
                          ST
                                   DNDH(2)
OFB6
       CA01
                                   3
OFB8
       3F
                          XPPC
                                            :Return
OFB9
       9006
                          JMP
                                   Div
       0000
                          .END
```

Square Root

; Gives square root of 16-bit unsigned number ; Integer part only. (Relocatable).

		; Stack u	sage:			
			ŘEL:		JSE: Femp	RETURN:
		;(P2)->	0	Number(H)		Root(H)
		:	+1	Number(L)		Root(L)
	0000	HI	=	0		
	0001	LO		1		
	FFFF	Temp :	=	-1		
	0000		. = OF20			
0F20 0F22	C400 CAFF	SQRT:	LDI ST	X'00 Temp(2)		

OF 24 OF 25 OF 27 OF 29 OF 2A OF 2C OF 2E OF 31 OF 33 OF 34 OF 36 OF 38 OF 39 OF 3B OF 3D OF 3F OF 41 OF 43 OF 45 OF 46	03 BAFF F2FF 01 C4FE F400 01 F201 CA01 40 F200 CA00 ID 9402 90E7 C400 CA00 FAFF CA01 3F 90D8	Loop:	SCL DLD ADD XAE LDI ADI XAE ADD ST LDE ADD ST SRL JP JMP LDI ST CAD ST XPPC JMP	Temp(2) Temp(2) X'FE X'00 L0(2) L0(2) HI(2) HI(2) EXIT LOOP X'00 HI(2) Temp(2) LO(2) 3 SQRT	;Return ;For Repeat
OF48		1	. = OFFB		
OFFB	OF80	;	.DBYTE	0F80	;P2-> Number
	0000		.END		

Greatest Common Divisor

```
; Finds Greatest Common Divisor of two
         : 16-bit unsigned numbers
         ; uses Euclid's Algorithm. (Relocatable).
          Stack usage:
                                                 RETURN:
                                       USE:
                   REL:
                             ENTRY:
                                       A(H)
                                                 0
          :(P2)->
                   0
                             A(H)
                   1
                             A(L)
                                       A(L)
                                                 0
                                                 GCD(H)
                   2
                             B(H)
                                       B(H)
                                                 GCD(L)
                   3
                             B(L)
                                       B(L)
         AH
                             0
0000
         Al
                             1
0001
         BH
                             2
0002
                             3
0003
         BL
                   = 0F20
         GCD:
                   SCL
03
                             BL(2)
C203
                   LD
FA01
                   CAD
                             AL(2)
                   ST
                             BL(2)
CA03
                   XAE
01
```

0000 0F20

OF 21

OF 23

OF 25

OF 27

2	LD	BH(2)	
0	CAD	AH(2)	
2	ST	BH(2)	
	SRL		; Put carry in top bit
12	JP	Swap '	
D	JMP	GCD	;Subtract again
Swap:	CCL		and the state of t
The state of the s		AL(2)	
	XAE		
	ADE		
1		AL(2)	
3	A TOTAL ST	BL(2)	
)2		BH(2)	
me and the			
00		AH(2)	
THE RESIDENCE		7 11.11.27	
12	Control of the contro	BH(2)	
	25-11	Dinz	;Get new AH(2)
11		Δ1 (2)	;OR with new AL(2)
			;Not finished yet
,3			:Return
00			;For repeat run
	JIVII	GCD	,i or repeat ruit
00	FND		
	02 00 02 02 01 02 01 03 00 02 01 03 00 00	O CAD O CAD O ST SRL O JP D JMP Swap: CCL O LD XAE ADE O ST LDE O XAE LD ADE O ST XAE ADE O ST LD ADE O ST XAE O ST LDE O ST XAE O ST ADE O ST XAE O ST ADE	O CAD AH(2) ST BH(2) SRL D JMP GCD Swap: CCL D AL(2) XAE ADE ST BL(2) LD AL(2) XAE ADE ST BL(2) LD AH(2) XAE ADE ST BL(2) LD AH(2) XAE D ADE ST AH(2) XAE ADE ADE ADE ADE ADE ADE ADE ADE ADE A

Electronic

'Pulse Delay' uses a block of memory locations as a long shift-register, shifting bits in at the serial input SIN and out from the serial output SOUT. By varying the delay constants the input waveform can be delayed by up to several seconds, though for a fixed block of memory the resolution of the delay chain obviously decreases with increased delay.

With the program as shown the shift-register uses the 128 locations OF80 to OFFF, thus providing a delay of 1024 bits.

The 'Digital Alarm Clock' gives a continuously changing display of the time in hours, minutes and seconds. In addition, when the alarm time stored in memory tallies with the actual time the flag outputs are taken high. The time can be set in locations 0F16, 0F17, and 0F18, and the alarm time is stored in locations 0F12, 0F13, and 0F14.

The program depends for its timing on the execution time of the main loop of the program, which is executed 80 times a second, so this is padded out to exactly 1/80th of a second with a delay instruction. The delay constants at 0F7F and 0F81 should be adjusted to give the correct timing.

'Random Noise' generates a pseudo-random sequence of 2^{15} -1 or 65535 bits at the flag outputs. If one flag output is connected to an amplifier the sequence sounds like random noise. Alternatively, by converting the program to a subroutine to return one bit it could be used to generate random coin-tosses for games and simulations. Note that the locations OF1E and OF1F must not contain 00 for the sequence to start.

Pulse Delay

; Pulse delayed by 1024 bit-times. ; (Relocatable). Uses serial in/out.

0000			. = OF1F		
OF1F		Bits:	. = . + 1		;bit counter
0F20	C40F	Enter:	LDI	H(Scrat)	
OF 22	35		XPAH	1	
OF 23	C480		LDIL	(Scrat)	
OF 25	31	Next:	XPAL	1	
OF 26	C408		LDI	8	
OF 28	C8F6		ST	Bits	
OF 2A	C100		LD	(1)	:Get old byte
OF 2C	01		XAE		Exchange
OF 2D	CD01		ST	@+1(1)	;Put back new byte
OF 2F	19	Output:	SIO		:Serial I/O
OF 30	C400		LDI	TC1	
OF 32	8F04		DLY	TC2	;Delay bits
OF 34	B8 EA		DLD	Bits	100001 0000
OF 36	9CF7		JNZ	Output	
OF 38	31		XPAL	1	;P1 = 0D00 Yet?

OF39 OF3B	9CEA 90E3		JNZ JMP	Next Enter	
	0000	; TC1 TC2	=	0 4	;Bit-time ;Delay constants
	0F80 0000	; Scrat	= .END	0F80	;Start of scratch area

Digital Alarm Clock

;Outputs are held on when alarm ;time = Actual time, i.e. for one sec.

```
010B
                  Crom
                                     010B
                                               ;Segment table
        0D00
                  Disp
                                     0D00
                                               ;Display address
        OFOO
                  Ram
                                     OF00
        0F10
                  Row
                                     Ram + 010
                           . = 0F12
OF 12
                                               ;Alarm time:hours
OF 13
                                               :Minutes
0F14
                           . = . + 1
                                               :Seconds
OF 15
                           . = . + 1
                                               :Not used
0F16
                  Time:
                           . = . + 4
                                               :Actual time
OF 1A
        76
                            BYTE
                                     076
                                               :Excess: Hours
OF 1B
        40
                           BYTE
                                     040
                                               :Minutes
OF1C
        40
                           .BYTE
                                     040
                                               ;seconds
OF1D
        20
                  Speed:
                           .BYTE
                                     020
                                               :Speed
OF1E
                           . = 0F20
0F20
        C401
                  Clock:
                           LDI
                                     H(Crom)
OF 22
        37
                           XPAH
                                     3
0F23
        C40B
                           LDI
                                     L(Crom)
0F25
        33
                           XPAL
                                     3
OF 26
        C40D
                  New:
                           LDI
                                     H(Disp)
0F28
        36
                           XPAH
OF 29
        C40D
                           LDI
                                     L (Disp) + OD
OF 2B
        32
                           XPAL
OF2C
        C40F
                           LDI
                                     H(Time)
OF 2E
                           XPAH
        35
OF 2F
        C41A
                           LDI
                                     L(Time) + 4
0F31
        31
                           XPAL
0F32
        03
                           SCL
OF 33
        C405
                           LDI
                                     5
                                               ;Loop count
OF35
        C8DA
                           ST
                                     Row
0F37
        C5FF
                           LD
                                     0 - 1(1)
                  Again:
OF 39
        EC00
                           DAI
                                     0
OF3B
        C900
                           ST
                                     (1)
OF3D
        E904
                           DAD
                                     +4(1)
OF3F
        9804
                           JZ
                                     Cs
0F41
        9802
                           JZ
                                     Cs
                                               :Equalize paths
0F43
        9002
                           JMP
                                     Cont
0F45
        C900
                  Cs:
                           ST
                                     (1)
```

OF 47 OF 49 OF 4B	C100 D40F 01	Cont:	LD ANI XAE	(1) OF	A SIA ARTIC
OF4C OF4E OF50	C380 CE01 C440		LD ST LDI	@ + 1(2) 040	;Get segments ;Write to display
OF52 OF54 OF56 OF57 OF58 OF59 OF5A	8F00 C100 1C 1C 1C 1C 1C		DLY LD SR SR SR SR SR XAE	00 (1)	;Equalize display
OF 5B	C380		LD	-128(3)	
OF 5D OF 5F	CE02 B8B0		ST DLD	(a) + 2(2) Row	;Leave a gap
OF 61	9CD4		JNZ	Again	
OF 63	C403		LDI	3	D:-:++
OF 65 OF 67	C8AA C400		ST	Row	;Digit count
OF 69	01		XAE		
OF 6A	C5FF	Loop:	LD	@-1(1)	
OF 6C OF 6E OF 6F	E104 58 01		XOR ORE XAE	+4(1)	;Same time?
0F70	B89F		DLD	Row	
OF 72 OF 74	9CF6 01		JNZ XAE	Loop	
OF 75 OF 77	9803 40		JZ LDE	Alarm	;Times tally
OF 78	9003		JMP	Contin	
OF7A OF7C OF7D	C407 08 07	Alarm: Contin:	LDI NOP CAS	07	;All flags on ;Pad out path ;Output to flags
OF 7E	C4FDHS	69	LDI	OFD	;Pad out loop to
0F80	8F06-16	15	DLY	06	;1/(100-speed) secs.
OF82	90A2		JMP	New	
	0000		.END		

Random Noise

; Relocatable

; Generates sequence 2115 bits long . = OF1E ;For random number OF1E . = . + 1 Line: ;Must not be zero COFD 1F OF 20 Noise: LD Line OF 22 RRL OF 23 C8FA ST Line OF 25 COF9 Line + 1 LD

OF 27 OF 28 OF 2A OF 2B OF 2D OF 2E OF 2F OF 30 OF 32 OF 33	1F C8F6 O2 F4O2 1E 1E 1E 0487 O7	RRL ST CCL ADI RR RR RR ANI CAS JMP	Line + 1 02 087 Noise	;Ex-or of bits 1 and 2 ;In bit 3 ;Rotate bit 3 to ;Bit 7 ;Put it in carry and ;Update flags
0F33	0000 90ER	.END	Noise	

System

'Single Step', or SS, add the facility of being able to step through a program being debugged, executing it an instruction at a time, the next address and op-code being displayed after each step. SS is set up by storing the start address of the user program at OFF7 and OFF8. Then 'GO'ing to SS will cause the user program's start address and first instruction to be displayed.

Pressing 'MEM' then executes that instruction and displays the next one. Thus one can step through checking that jumps lead to the correct address and that the expected flow of control is achieved. If, in between steps, 'ABORT' is pressed, control is returned to the monitor and the contents of the registers from that point in the execution of the user program may be examined in memory where they are stored between

steps:

OFF7 Program Counter OFF8 OFF9 P1H Pointer 1 **OFFA** P1L OFFB OFFC OFFD A Accumulator OFFF F Extension Register OFFF Status Register

'GO'ing to the start of SS again will take up execution where it was left off. The values of the registers are taken from these locations so it is possible to alter them between steps.

The additional circuitry needed to implement the single step facility is shown in Fig. 1. A CMOS counter, clocked by the NADS signal from SC/MP, is reset from the SS program by a pulse at FLAG-0. After 8 NADS pulses it puts SENSE—A high; this will be the instruction fetch of the next instruction in the user's program, and an interrupt will be caused after that instruction has been executed. The interrupt returns control to SS ready for the next step. A TTL binary counter could be used in this circuit instead.

The 'Decimal to Hex' conversion program displays in hex the decimal number entered in at the keyboard as it is being entered. Negative numbers can be entered too, prefixed by 'MEM'.

e.g. 'MEM' '1' '5' '7' displays 'FF63'

'TERM' clears the display ready for a new number entry. Any of the programs marked relocatable can be moved, without alteration, to a different start address and they will execute in exactly the same manner. The program 'Relocator' will move up to 256 bytes at a time from any start address to any destination address. These two addresses and the number of bytes to be moved are specified in the 5 locations before the program. Since the source program and destination area may overlap, the order in which bytes are transferred is critical to avoid overwriting data not yet transferred, and so the program tests for this.

Single Step

; Adds a facility for executing programs a ; Single instruction at a time, displaying ; The program counter and op-code ; After each step.

; To examine registers, abort and ; use the monitor in the usual way. ; To continue, go to 0F90.

```
OFF7
                                        ;For program to be
OFF7
          P3H
OFF8
          P3L
                              OFF8
                                        ;Single-stepped
                              OFF9
                                        ;Save user's registers:
OFF9
          P1H
          P1L
                              OFFA
                                        :(can be examined or
OFFA
                                        ;altered between
OFFB
          P2H
                              OFFB
OFFC
          P2L
                              OFFC
                                        ;steps from monitor)
OFFD
                              OFFD
          A
```

OFFE

S OFFF OFFF -12 0000 ADL = 14 000F ADH Word 13 000D **OF00** 0F00 Ram 0140 0140 Dispd

OFFE

E

;Program enter here

0000			. = 0F90	0	
0F90	C86C	SS:	ST	Α	
0F92	C065		LD	P3L	;Pick up user's program
0F94	33		XPAL	3	;Address
0F95	C061		LD	P3H	
0F97	37		XPAH	3	
0F98	C7FF		LD	@-1(3)	;Ready for jump
OF9A	9025		JMP	Ret	

```
C20E
                                     ADH(2)
OF9C
                 Step:
                           ID
OF9E
                           XPAH
        37
                                     3
OF9F
        C2OC
                           LD
                                     ADL(2)
                           XPAL
OFA1
        33
                                     3
OFA2
        C7FF
                           LD
                                     \mathbf{0} - 1(3)
OFA4
        CO59
                           ID
                                              ;Restore user's context:
                           XAF
OFA6
        01
        C052
OFA7
                           ID
                                     P1I
                           XPAL
OFA9
        31
OFAA
        CO4E
                                     P1H
                           LD
OFAC
        35
                           XPAH
                                     1
OFAD
        CO4E
                           LD
                                     P2L
OFAF
        32
                           XPAL
                                     2
                                     P2H
OFBO
        CO4A
                           LD
OFB2
        36
                           XPAH
                                     2
OFB3
        C401
                                     01
                                              ;Flag O Resets counter
                           LDI
OFB5
                           CAS
        07
                                              ;Put it high
        C048
                                     S
OFB6
                           LD
OFB8
        D4FE
                           ANI
                                     X'FE
                                              ;Put flag 0 low
OFBA
        07
                           CAS
                                              :Start counting nads
OFBB
        CO41
                           LD
                                     Α
OFBD
        05
                           IEN
OFBE
        08
                           NOP
                                              :Pad out to 8
OFBF
        08.
                           NOP
OFCO
        3F
                           XPPC.
                                     3
                                              :Go to user's program
                  :Here on interrupt after one instruction
OFC1
        C83B
                           ST
                                              :Save user's context
OFC3
        40
                 Ret:
                           LDE
OFC4
                                     E
        C839
                           ST
OFC6
                           CSA
        06
OFC7
        C837
                                     S
                           ST
OFC9
                                     1
        35
                           XPAH
        C82E
OFCA
                                     P1H
                           ST
OFCC
        31
                           XPAL
OFCD
        C82C
                                     P1L
                           ST
OFCF
        C40F
                           LDI
                                     H(Ram)
                                              :Set P2-> Ram
OFD1
        36
                           XPAH
                                     2
OFD2
                                     P2H
        C828
                           ST
OFD4
        C400
                           LDI
                                     L(Ram)
OFD6
        32
                           XPAL
                                     2
OFD7
        C824
                                     P2L
                           ST
OFD9
        C701
                           LD
                                     @1(3)
OFDB
        C300
                                              ;Get op-code
                           LD
                                     (3)
OFDD
        CAOD
                           ST
                                     Word(2)
OFDF
        C401
                           LDI
                                     H(Dispd)
OFE1
                           XPAH
        37
                                     3
OFE2
        CAOE
                           ST
                                     ADH(2)
OFE4
        C812
                           ST
                                              :So can enter via 'SS'
                                     P3H
OFE6
        C43F
                           LDI
                                     L(Dispd)-1
OFE8
        33
                           XPAL
                                     3
OFE9
        CAOC
                           ST
                                     ADL(2)
OFEB
        C80C
                           ST
                                     P3L
OFED
        3F
                 No:
                           XPPC.
                                     3
                                              :Go to display routine
```

OFEE 90AC JMP Step ;Command return so step
OFFO 90FB JMP No ;Number return illegal

0000 .END

Decimal to Hex

; Converts decimal number entered at ; keyboard to hex and displays result

'MEM' = minus, 'TERM' clears display

; (Relocatable)

000C ADL OC ADH 0E 000E 0F00 0F00 Ram 015A 015A Dispa 011 0011 Count 012 0012 Minus 013 0013 Ltemp

= 0F500000 0 **OF50** LDI C400 Dhex: ST Minus(2) 0F52 CA12 ST ADH(2) 0F54 CAOE ST ADL(2) 0F56 CAOC LDI H(Dispa) **OF58** C401 Disp: OF5A 37 **XPAH** 3 L(Dispa)-1 OF5B C459 LDI OF5D 33 XPAL 3 OF5E 3F **XPPC**

:Command key 9028 JMP Comd OF5F ;Number in extension 0F61 C40A LDI 10 Count(2) ; Multiply by 10 0F63 CA11 ST SCL OF65 03

OF66 C212 LD Minus(2) OF68 O1 XAE

 0F69
 60
 XRE

 0F6A
 78
 CAE

 0F6B
 01
 XAE

 0F6C
 40
 LDE
 ;Same as: LDI 0

 0F6D
 78
 CAE
 ; CAD 0

 0F6E
 01
 XAE

0F6F 9002 JMP Digit

 OF71
 C213
 Addd:
 LD
 Ltemp(2) ;Low byte of product

 OF73
 O2
 Digit:
 CCL

 OF74
 F20C
 ADD
 ADL(2)

 OF76
 CA13
 ST
 Ltemp(2)

 OF78
 40
 LDE
 ;High byte of product

 0F79
 F20E
 ADD
 ADH(2)

 0F7B
 01
 XAE
 ;Put back

 0F7C
 BA11
 DLD
 Count(2)

 OF7C
 BA11
 DLD
 Count

 OF7E
 9CF1
 JNZ
 Addd

OF80 OF81 OF83 OF85 OF87 OF89 OF8B OF8D OF8F OF91	40 CAOE C213 CAOC 90CF E403 98C3 C4FF CA12 90C5	Comd:	LDE ST LD ST JMP XRI JZ LDI ST JMP	Adh(2) Ltemp(2) Adl(2) Disp 3 Dhex X'FF Minus(2) Disp	;Display result ;'TERM'? ;Restart if so ;Must be 'MEM'
OF93 OFFB	0F00		. = OFFB .DBYTE	Ram	;Set P2-> Ram
	0000	-;	.END		

Relocator

:Moves block of memory

```
: 'From' = source start address
                  :'To' = destination start address
                 : 'Length' = No of bytes
                  :(Relocatable)
        FF80
                                     -128
                                              :Extension as offset
                           = OF1B
0000
OF1B
                           . = . + 2
                  From:
OF1D
                            . = . + 2
                 To:
                            . = . + 1
OF1F
                 Length:
0F20
        C400
                 Entry:
                           LDI
                                     0
0F22
        01
                           XAE
0F23
        03
                           SCL
                                     To + 1
0F24
        COF9
                           LD
                                     From + 1
OF26
        F8F5
                           CAD
OF28
        COF4
                           LD
                                     To
OF2A
        F8F0
                           CAD
                                     From
OF2C
                           SRL
        1D
OF2D
                                     Fqt
                                               ; 'From' greater than 'To'
        9403
                           JP
                                               ;Start from end
OF2F
        COFF
                                     Length
                           LD
OF31
        01
                           XAE
0F32
        02
                  Fgt:
                           CCL
0F33
        COE8
                           LD
                                     From + 1
0F35
        70
                           ADE
OF36
        31
                           XPAL
0F27
        COE3
                           LD
                                     From
OF39
        F400
                           ADI
                                     0
                                     1
OF3B
        35
                           XPAH
OF3C
        02
                           CCL
                                     To + 1
OF3D
        COEO
                           LD
OF3F
        70
                           ADE
```

OF40 OF41 OF43 OF45 OF46 OF47 OF48 OF4A OF4C OF4D OF4E OF50 OF52 OF54 OF56	32 CODB F400 36 02 40 9C02 C402 78 01 C580 CE80 B8CC 9CF8 3F	Up: Move:	XPAL LD ADI XPAH CCL LDE JNZ LDI CAE XAE LD ST DLD JNZ XPPC	2 To O 2 Up 2 E(1) @E(2) Length Move 3	;i.e. subtract 1 ;Put it in ext. ;Move byte ;Return
	0000		END		

Serial Data Transfers with SC/MP-ii

This application note describes a method of serial data input/output (I/O) data transfer using the SC/MP-II (ISP-8A/600) Extension Register. All data I/O is under direct software control with data transfer rates between 110 baud and 9600 baud selectable via software modification.

Data Output

Data to be output by SC/MP-II is placed in the Extension Register and shifted out through the SOUT Port using the Serial Input/Output Instruction (SIO). The Delay Instruction (DLY), in turn, creates the necessary delay to achieve the proper output baud rate. This produces a TTL-level data stream which can be used as is or can be level-shifted to an RS-232C level. Numerous circuits are available for level shifting. As an example, either a DS 1488 or an operational amplifier can be used. Inversion of the data stream, if needed, can be done either before the signal is converted or by the level shifter itself.

Data Input

Data input is received in much the same way as data is output. The Start Bit is sensed at the SIN Port and then received using the SIO Instruction and the DLY Instruction. After the Start Bit is received, a delay into the middle of the bit-time is executed, the data is then sensed at each full bit-time (the middle of the bit) until all data bits are received. If the data is at an RS-232C level, it must be shifted to a TTL level which SC/MP-II can utilize. This can be done with either a DS 1489 or an operational amplifier. If inversion if the data is necessary, it should be done before it is presented to the SIN Port.

Timing Considerations

Using the I/O routines presented in this application note, the user will be able to vary serial data transmission rates by simply changing the delay constants in each of the programs. Table 1 contains the delay constants needed for the various input baud rates. Table 2 contains the delay constants needed for the various output baud rates. Figure 1 is the outline used for Serial Data Input. Figure 2 is the routine used for Serial Data Output.

Baud Rate	Bit Time	НВТЕ	нвтс	BTF	втс
110	9.09 ms	X'C3	X'8	X'92	X'11
300	3.33 ms	X'29	X'3	X'5E	X'6
600	1.67 ms	X'8A	X'1	X'20	X'3
1200	0.833ms	X'BB	X'0	X'81	X'1
2400	0.417ms	X'52	X'0	X'B2	X'0
4800	0.208ms	X'1F	X'0	X'4A	X'0
6400	0.156ms	X'12	X'0	X'30	X'0
9600	0.104ms	X'5	X'0	X'16	X'0

Table 1. Input Delay Constants (4 MHz SC/MP-II)

Baud Rate	Bit Time	BTF1	BTF2	втс
110	9.09 ms	X'91	X'86	X'11
300	3.33 ms	X'5E	X'53	X'6
600	1.67 ms	X'1F	X'14	X'3
1200	0.833 ms	X'81	X'76	X'1
2400	0.417 ms	X'B2	X'A7	X'0
4800	0.208 ms	X'49	X'3E	X'0
6400	0.156 ms	X'2F	X'24	X'0
9600	0.104 ms	X'15	X'A	X'0

Table 2. Output Delay Constants (4 MHz SC/MP-II)

NOTES:

- The Serial Data Output routine requires that the bit-count (BITCNT) in the program be set to the total number of data bits and stop bits to be used per character.
- 2. Two stop bits are needed for the 110 baud rate; all other baud rates need only one stop bit.

Serial Data Input

1				Title R	ecv, 'SER	IAL DATA INPUT'			
2 3 4 5 6		0001 0002 0003	P1 = 1 P2 = 2 P3 = 3						
7 8			; Routin	e is calle	ed with a '	'XPPC P3" instruction			
9			; Data is received through the serial I/O Port.						
10 11 12 13 14 15 16 17			; Before executing routine, Pointer 2 should point ; to one available location in R/W memory for a ; counter. ; On return from routine, data received will be in the ; Accumulator and the Extension Register. ; Delay Constants, user defined for desired Baud rate. ; The following example is for 1 200 Baud:						
19 20 21 22 23 24		00BB 0000 0081 0001	HBTF HBTC BTF BTC	= = = = = = = = = = = = = = = = = = = =	0BB 0 081 01	; Half Bit time, Fine ; Half Bit time, Coarse ; Full Bit Time, Fine ; Full Bit time, Coarse			
25 26 27 28	0000	C408 CA00	Search:	LDI ST	08 (P2)	; Initialize Loop Counter ; Save in memory			

29 30 31 32	00	04 06 07 08	C400 01 19 40)	LDI XAE S10 LDE	0		; Clea ;Look	r Accum ar E. Reg k for Star ig into Ac	t Bit
33	1000	09	9CFS		JNZ	Agai	n			ook again
34		OB	C4BE		LDI	HBT		; Loa	d Acc Ha	alf Bit time
35	00	OD	8F00)	DLY	HBT	C; D	elay F	Half Bit ti	me
36	00	OF	19		SIO			; Che	ck Input	again to
37	00	10	01		XAE			; be s	sure of S	tart Bit
38	00	11	9CF1		JNZ	Agai	n	; If no	ot zero, v	vas not
39	00	13	C400)	LDI	0		; star	t B	
40	00	15	01		XAE					
41				Loop						
42		116	C48		LDI	BTF		05.410.5272	d Bit tim	
43		118	8F01		DLY	BTC		J. Commercial Commerci	ay one B	
44		01/	The second	avol.	SIO				ft in Data	
45	1100000	1B	BAO		DLD	(P2)				oop counter
46		1D	9CF7		JNZ	Loop)		for done	
47		1F	40		LDE			; Dor	ne, put d	ata in acc.
48	00	20	3F		XPPC	P3				
49			0000	,	END					
50			0001)	END					
AGA HBTI		000		BTC LOOP	0001 0016	BTF P1		081	HBTC P2	0000
P3		000			40000*	11	00	101	1 2	0002

Serial Data Output

1 2 3			TITLE X	MIT, 'SEF	RIAL DATA OUTPUT'
2					
3	0001	P1 = 1			
4	0002	P2 = 2			
5	0003	P3 = 3			
6					
7		: Routi	ne is cal	led with a	"XPPC P3" instruction.
8		After Statement			
9		· Data	s transn	nitted thro	ugh Serial I/O Port.
10		,	0 (10)		-3.100.101.101
11		: Befor	e execu	tina subro	utine, pointer 2 should
12					te of R/W memory for a
13		; count		valiable b	, i.e. o. ; ii. ; i ; ii. o. ; i e. ; o
14				haracter to	o be transmitted must be in
15			cumula		o be transmitted made be in
16		, 110 00	cumula	itor.	
17		· Delay	constar	ate licar de	efined for desired baud rate.
18					is for 1200 baud:
19		, 111611	Jiiovviing	example	15 101 1 2 0 0 badd.
20	0081	BTF1		081	; Bit time Fine, first loop
21	0076	BTF2	=	0.000	
22		PER STATE	=	076	; Bit time Fine, second loop
22	0001	BTC	=	01	; Full Bit time, Coarse

23 24 25					count. This er of Data E			
26 27		0009	BITCN	Γ =	9	; 8 da	ita and 1	Stop Bit
28 29			Start:					
30	0000	01	Otart.	XAE		; Save	e data in l	E. Reg.
31	0001	C400		LDI	0		racc.	
32	0003	01		XAE		P. C. San Contract		c, clear E.
33	0004	19		SIO			d Start Bi	
34	0005	01 C481		LDI	BTF1		data in E. d Bit time	
35 36	0006	8F01		DLY	BTC	5. UTD 0.000	t one Bit	
37	0000 A000	C409		LDI	BITCNT			nt for data
38	000C	CAOO		ST	(P2)	; and	Stop Bit(s). Save
39			Send:			; in co		
40	000E	19		SIO		; Sen	d Bit	
41	000F 0010	40 DC80		LDE ORI	080	· Sot	last Bit to	1
43	0010	01		XAE	000	# CONT. CO.	back in E	
44	0013	C476		LDI	BTF2	* 10 years - 10 years	d Bit time	SI O COLUMN
45	0015	8F01		DLY	BTC	; Dela	ay one Bit	t time
46	0017	BA00		DLD	(P2)			it counter
47	0019	9CF3		JNZ	Send			oop back
48	001B	3F		XPPC	P3	; otne	erwise, re	eturn
49 50		0000		END				
30		0000		LIVE				
BITC				0001		0081	BTF2	0076
P1 STAF	- 1757 TH	01 * P: 0 *	2 (0002	P3 C	0003	SEND	000E

Games

The first two games are real-time simulations which provide a test of skill, and they can be adjusted in difficulty to suit the player's ability. The last two games are both tests of clear thinking and logical reasoning, and in the last one you are pitted against the microprocessor which tries to win.

'Moon Landing' simulates the landing of a spacecraft on the moon. The displays represent the control panel and give a continuously changing readout of altitude (3 digits), rate of descent (2 digits), and fuel remaining (1 digit). The object of the game is to touch down gently; i.e. to reach zero altitude with zero rate of descent. To achieve this you have control over the thrust of the rockets: the keys 1 to 7 set the thrust to the corresponding strength, but the greater the thrust the higher the rate of consumption of fuel. When the fuel runs out an 'F' is displayed in the fuel gauge, and the spacecraft will plummet to the ground under the force of gravity.

On reaching the moon's surface the display will freeze showing the velocity with which you hit the surface if you crashed, and the fuel remaining. Pressing 'TERM' will start a new landing.

The speed of the game is determined by the delay constants at OF38 and OF3A. The values given are suitable for a 1 MHz clock and they should be increased in proportion for higher clock rates. The initial values for the altitude, velocity, and fuel parameters are stored in memory at OF14 to OF1F and these can be altered to change the game. 'Duck Shoot' simulates ducks flying across the skyline. At first there is one duck, and it can be shot by hitting the key corresponding to its position: 7 = leftmost display, 0 = rightmost display. If you score a hit the duck will disappear; if you miss however, another duck will appear to add to you task.

The counter at 0F1D varies the speed of flight and can be increased to make the game easier.

In 'Mastermind' the player tries to deduce a 'code' chosen by the machine. The code consists of four decimal digits, and pressing 'TERM' followed by 'MEM' causes the machine to choose a new code. The player makes guesses at the code which are entered at the keyboard. Pressing 'GO' then causes the machine to reveal two pieces of information, which are displayed as two digits:

- The number of digits in the guess which are correct and in the right position, (known as 'Bulls') and
- (2) the number of digits correct but in the wrong position, (known as 'Cows').

For example, suppose that the machine's code was '6678'. The following guesses would then score as shown:

1234 0-0 7812 0-2 1278 2-0 7687 1-2

Subsequent guesses are entered in a similar way, and the player tries to deduce the code in as few attempts as possible.

'Silver Dollar Game' is traditionally played with a number of coins which are moved by the players in one direction along a line of squares. In his turn a player must move a coin to the right across as many unoccupied

squares as he wishes. The player first unable to move—when all the coins have reached the right-hand end of the line—loses, and the other player takes the coins!

In this version of the game the coins are represented by vertical bars moving along a dashed line. There are five coins numbered, from right to left, 1 to 5. The player makes his move by pressing the key corresponding to the number of the coin he wishes to move, and each press moves the coin one square along to the right. The machine plays against you, and pressing 'MEM' causes it to make its move. Note that the machine will refuse to move in its turn unless you have made a legal move in your turn. 'TERM' starts a new game.

The machine allows you to take first move and it is possible to win from the starting position given, though this is quite difficult. The five numbers in locations 0F13 to 0F17 determine the starting positions of each coin and these can be altered to any other values in the range 00 to 0F provided they are in ascending order.

Moon Landing

		; Display	rocket on the shows altited to the shows altited to the shows altited to the shows altited to the shows all the sh	ude-veloci	ty-fuel
	0005	; Grav		5	;Force of gravity
	0D00	Disp		0D00	;Display address
	010B	Crom		010B	;Segment table
	FF80	F	= /	-128	;Extension as offset
	FFE3	Row			3 ;Ram offsets
	FFE4	Count		Ret-OFO	
	1124	;Variable		1161-010	
0000		, variable	. = 0F05		
0F05		Save:	.=.+1		
0F06		H1:	= + 1		
0F07		L1:	. = . + 1		
0F08		Alt:	.=.+3		;Altitude
OFOB		Vel:	.=.+3		;Velocity
OFOE		Accn:	= . + 2		;Acceleration
0F10		Thr:	. = . + 2		;Thrust
0F12		Fuel:	. = . + 2		;Fuel left
~		;Original	l values		
0F14	08 50 00	Init:	BYTE	08,050	,0;Altitude = 850
0F17	99		BYTE	099 080	,0; Velocity = 20
	80		.0112	000,000	,0, v clocity — 20
	00				
OF1A	99		BYTE	099 09	8; Acceleration = -2
	98				- // /
OF1C	00		BYTE	0.02	;Thrust = 2
	02				
OF1E	68		BYTE	058,0	;Fuel = 5
	~ ~				

00

```
;Subroutine to display AC as two digits
                                    2
                                             :P2 contains OF20
0F20
       3E
                 Ret:
                          XPPC
                          ST
                                    Save
0F21
       C8E3
                 Disp:
OF 23
       C401
                                    H(Crom)
                          LDI
0F25
       35
                          XPAH
OF 26
       C8DF
                          ST
                                    H1 ;Run out of pointers
0F28
       C40B
                          LDI
                                    L(Crom)
                                    1
OF 2A
        31
                          XPAL
                                    1.1
OF 2B
       C8DB
                          ST
OF2D
       COD7
                          LD
                                    Save
OF 2F
                          CCL
       02
                                    OF
       D40F
                          ANI
0F30
OF 32
        01
                 Loop:
                          XAL
0F33
       C180
                          LD
                                    E(1)
OF 35
       CF01
                          ST
                                    (0 + 1(3))
OF 37
        C400
                          LDI
                                    0
                                             ;Delay point
                                    2
OF39
        8F02
                          DLY
                                             ;Determines speed
        COC9
                          LD
OF 3B
                                    Save
                          SR
OF3D
        1C
        1C
                          SR
OF3E
OF 3F
        1C
                           SR
        1C
                          SR
0F40
OF 41
        01
                           XAE
        06
                          CSA
OF 42
OF 43
        03
                           SCL
OF 44
        94ED
                          JP
                                             ;Do it twice
                                    Loop
OF46
        C400
                          LDI
                                    0
0F48
        CF01
                           ST
                                    @+1(3) :Blank between
OF4A
       COBB
                          LD
                                    H1
                                             ;Restores P1:
OF 4C
                          XPAH
        35
OF4D
                                    11
        COB9
                          LD
OF4F
                          XPAL
        31
OF 50
        90CE
                          JMP
                                    Ret
                                             :Return
                 :Main moon-landing program
0F52
        C40F
                 Start:
                           LDI
                                    H(Init)
OF 54
        35
                           XPAH
OF 55
        C414
                           LDI
                                    L(Init)
OF 57
        31
                           XPAL
                                    1
OF 58
        C40F
                           LDI
                                    H(Ret)
OF 5A
        36
                           XPAH
                                    2
OF 5B
        C420
                                    L(Ret)
                          LDI
OF5D
        32
                          XPAL
                                    2
OF 5E
        C40C
                          LDI
                                    12
OF 60
        CAE4
                          ST
                                    Count(2)
OF 62
        C10B
                 Set:
                          LD
                                    +11(1)
OF 64
        CDFF
                          ST
                                    0 - 1(1)
OF 66
        BAE4
                          DLD
                                    Count(2)
OF 68
        9CF8
                          JNZ
                                    Set
                 ;Main loop
OF6A
        C40C
                 Again:
                                    H(Disp)-1
                          LDI
OF6C
        37
                          XPAH
                                    3
OF6D
        C4FF
                          LDI
                                    L(Disp)-1
OF6F
        33
                          XPAL
                                    3
0F70
        C401
                          LDI
                                    1
        CAE4
0F72
                          ST
                                    Count(2)
```

```
C506
                          LD
 0F74
                                            :Altitude positive?
 0F76
         9404
                           JP
                                    Twice
                                            P1 -> Thr + 1
                           LD
                                    (0+4(1))
 0F78
        C504
                                    Off
                                             :Don't update
 OF7A
         9032
                           JMP
                                    2
                                             :Update velocity and
 OF7C
         C402
                  Twice:
                           LDI
                                            ;Then altitude....
                           ST
         CAE3
                                    Row(2)
 OF7E
                           CCL
 0F80
         02
                                    0 - 1(1)
 OF 81
         C5FF
                  Dadd:
                           LD
                                    +2(1)
 OF 83
         E902
                           DAD
                           ST
                                    (1)
 OF 85
         C900
                           DLD
                                    Row(2)
 OF 87
         BAE3
         9CF6
                           JNZ
                                    Dadd
 OF 89
                           LD
                                    +2(1)
 OF8B
         C102
                           JP
 OF 8D
         9402
                                    Pos
                                             :Gone negative?
                           LDI
                                    X'99
 OF 8F
         C499
                                    0 - 1(1)
 0F91
         EDFF
               Pos:
                           DAD
                           ST
                                    (1)
 OF 93
         C900
                           DLD
                                    Count(2)
         BAE4
 0F95
                           JP
                                    Twice
 OF 97
         94E3
                                            ;P1-> Alt
 OF 99
         C50C
                           LD
                                    @12(1)
                           ILD
                                    Row(2)
                                             :Row:=1
 OF 9B
         AAE3
                           SCL
 OF 9D
         03
                                    @-1(1) ;Fuel
 OF 9E
         C5FF
                  D sub:
                           LD -
                           CAD
                                    -2(1)
                                             :Subtract thrust
 OF AO
         F9FE
                                    (1)
                           ST
 OFA2
         C900
 OFA4
         08
                           NOP
                           DLD
         BAE3
                                    Row(2)
 OF A5
                           JP
                                    Dsub
 OFA7
         94F3
                                             :P1-> Fuel now
 OFA9
         06 .
                           CSA
                           JP
                                    Off
                                             ;Fuel run out?
         9402
 OF AA
                           JMP
                                    Accns
         9004
 OFAC
         C400
                  Off:
                           LDI
                                    0
 OFAE
                                    -1(1)
                                             :Zero thrust
         C9FF
                           ST
 OF BO
                           LD
                                    -1(1)
 OFB2
         C1FF
                  Accns:
                           SCL
 OFB4
         03
                           DAI
                                    099-Grav
 OF B5
         EC94
                           ST
                                    -3(1)
                                             ;Accn + 1
 OF B7
         C9FD
                           LDI
                                    X'99
 OFB9
         C499
                           DAI
                                    0
 OF BB
         EC00
7 OFBC
                           ST
                                    -4(1)
                                             :Accn
         C9FC
                           LD
                                    (1)
                                             ;Fuel
 OF BF
         C100
                  Dispy:
                           XPPC
                                    2
                                             :Display it OK
 OFC1
         3E
                                    -7(1)
                                             :Vel
                           LD
 OFC2
         C1F9
                           JP
                                    Posv
         940A
 OFC4
                           LDI
                                    X'99
 OFC6
         C499
                           SCL
         03
 OFC8
                           CAD
                                    -6(1)
                                             :Vel + 1
         F9FA
  OFC9
  OFCB
         03
                           SCL
                           DAI
                                    0
  OF CC
         EC00
                           JMP
                                    STO
  OFCE
         9002
                                             :Vel+1
         C1FA
                  Posv:
                           LD
                                    -6(1)
  OF DO
                                             :Display velocity
                           XPPC
                                    2
                  Sto:
  OFD2
         3E
                                    -9(1)
                                             ;Alt+1
                           LD
  OFD3
         C1F7
```

OF D5 OF D6 OF D8 OF DA	3E C7FF C5F6 3E C4OA		XPPC LD LD XPPC LDI ST	0.000	;Display it ;Get rid of lank);P1-> Alt now
OF DD	CAE4 C7FF	Toil:	LD	@ -1(3)	;Key pressed?
OF E1	940A		JP	Press	;Key 0-7?
OFE3	E4DF		XRI	X'DF	;Command Key?
OF E5	9A31		JZ	Start(2)	;Begin again if so
OF E7	BAE4		DLD	Count(2)	
OFE9	9CF4		JNZ	Toil	
OFEB	9249		JMP	Again(2)	;Another circuit
OFED	C109		LD	+9(1)	;Thr + 1
OFEF	9803		JZ	Back	;Engines stopped?
OFF1	33		XPAL	3	;Which row?
OFF2	C909		St	+9(1)	;Set thrust
OFF4	9249	Back:	JMP	Again(2)	;Carry on counting
	0000		END		

Duck Shoot

; Shoot Ducks flying display

By hitting key with number corresponding

061 ;Segment pattern

; To their position: 7 = Leftmost,

; 0 = Rightmost. ; If you miss, another duck appears

; (Relocatable)

0000		Disp	= . = OFOF	0D00	;Display address
OF OF 10		Row: Count:	.=.+1 .=.+1		;Bits set = ducks
OF 1 1		Sum:	. = . + 1		;Key pressed
OF 12	C40D	Shoot:	LDI	H(Disp)	
OF 14	35		XPAH	1	
OF 15	C400		LDI	L(Disp)	
OF 17	31		XPAL	1 -	
OF 18	C401		LDI	1	;Start with 1 duck
OF1A	C8F4		ST	Row	
OF 1C	C410	React:	LDI	16	;Speed of flight,
OF1E	C8F1		ST	Count	;Smaller = harder
OF 20	C400		LDI	0	
OF 22	C8EE		ST	Sum	
OF 24	C408	Shift:	LDI	8	;Move ducks this time
OF 26	01	Ndig:	XAE		
OF 27	COE7		LD	Row	
OF 29	1E		RR -		
OF 2A	C8E4		ST	Row	
OF 2C	9404		IP	No	

OF 2E OF 3O OF 32 OF 34 OF 36 OF 38 OF 3A OF 3C	C461 9002 C400 C980 8F01 C0D8 9C0E C180	No: Go:	LDI JMP LDI ST DLY LD JNZ LD	01 Sum Nok -128(1)	;No duck ;E as offset ;Shine digit ;Key already pressed ;Test for key
OF 40 OF 42 OF 44 OF 46 OF 48 OF 4A	E4FF 9808 C8CE C0CA E480 C8C6 40	Nok:	XRI JZ ST LD XRI ST LDE	OFF Nok Sum Row 080 Row	;No key ;Change top bit
OF4B OF4C OF4E OF50 OF52 OF54 OF56	03 FC01 94D6 B8BF 98C8 C407 90CE 0000		SCL CAI JP DLD JZ LDI JMP .END	1 Ndig Count React 7 Ndig	;Subtract 1 ;Do next digit ;Start new position ;Another sweep

Mastermind

	0500	D		0500	
	0F00	Ram		0F00	
	0D00	Disp	=	0D00	;Display address
	010B	Crom	=	010B	;Hex to segment table
	011B	Adr		011B	;'Make 4 digit address'
	015A	Dispa	=	015A	; 'Address to segments'
		-;	Variables	s in RAM	
	0000	DI	_	0	
	0002	D3	=	2	
	0004	Adll		4	
	000C	Adl	=	12	
	000E	Adh	_	14	
	000F	Ddta		15	
	0010	Row		16	
	0011	Next		17	
	0014	Key		20	
	0014	icey	Begin at		
0000				OFIC	
	0400	0	= OFIC	0	
OF1C	C400	Start:	LDI	0	
OF 1E	C8ED		ST	ADL	
OF 20	C8ED		ST	ADH	
OF 22	32		XPAL	2	
OF 23	C40F		LDI	OF	
OF 25	36		XPAH	2	
		;	Choose	random r	number
OF 26	C401		LDI	H(Crom)	
OF 28	37		XPAH	3	

```
OF 29
        C40B
                            LDI
                                     L(Crom)
OF 2B
        33
                            XPAL
                                     3
OF 2C
        C404
                                     04
                  No Key:
                           LDI
OF 2E
                            ST
        CA10
                                     Row(1)
OF 30
        C40F
                            LDI
                                     H(digits)
OF 32
        35
                            XPAH
        C414
OF 33
                            LDI .
                                     L(Digits)
OF35
        31
                           XPAL
OF 36
        03
                            SCL
OF37
        C104
                  Incr:
                            LD
                                      +4(1)
OF 39
        EC90
                            DAL
                                     090
OF3B
        C904
                            ST
                                      +4(1)
OF3D
        D40F
                            ANI
                                     OF
OF3F
        01
                            XAE
0F40
        C380
                                      -128(3)
                            LD
OF 42
        CD01
                            ST
                                     (0+1(1))
OF 44
        BA10
                            DLD
                                     Row(2)
OF 46
        9CEF
                            JNZ
                                     Incr
OF 48
        C40D
                            LDI
                                     H(Disp)
OF4A
                           XPAH
        35
                                     1
OF 4B
        C400
                            LDI
                                     L(Disp)
OF4D
        31
                           XPAL
OF4E
        C103
                           LD
                                     3(1)
                                               ;Key pressed?
OF 50
        E4FF
                           XRI
                                     OFF
OF 52
        98D8
                           JZ
                                     No key
                            Enter your guess
OF 54
        C4FF
                  Clear:
                                     OFF
                           LDI
OF 56
        CAOF
                           ST
                                     Ddta(2)
OF58
        C400
                           LDI
                                     0
OF 5A
        CAOO
                           ST
                                     DL(2)
OF5C
        CA02
                           ST
                                     D3(2)
OF 5E
                  Nchar:
        02
                           CCL
OF 5F
        C401
                           LDI
                                     H(Dispa)
OF 61
        37
                           XPAH
                                     3
OF 62
        C459
                                     L(Dispa) - 1
                           LDI
OF 64
        33
                           XPAL
                                     3
OF 65
        3F
                           XPPC
                                     3
                                               ;Jump to subroutine
OF 66
        900B
                           JMP
                                     COMD
                                               ;Command key return
OF 68
        40
                           LDE
                                               ;Number key return
OF 69
        F4F6
                           ADI
                                     OF6
        94F1
OF6B
                           JP
                                     Nchar
                                               ; Ignore digits > 9
OF6D
        C41A
                           LDI
                                     L(Adr) - 1
OF6F
        33
                           XPAL.
                                     3
0F70
        3F
                           XPPC
                                     3
0F71
        90E5
                           JMP.
                                     Blank
                                               ;Get next digit
0F73
        E403
                  Comd:
                           XRI
                                     03
                                               :term?
0F75
        9A1B
                           JZ
                                     Start(2)
                                               ;If so-new game
0F77
        E405
                           XRI
                                     05
                                               :Go?
OF 79
        9CD9
                           JNZ
                                     Clear
                                               ; Ignore if not
                           Work out answer to guess
        C40B
                  Go:
OF7B
                           LDI
                                     L(Crom)
OF7D
        CAOO
                           ST
                                     DL(2)
OF7F
        CA02
                           ST
                                     D3(2)
OF 81
        C40F
                  Bulls:
                           LDI
                                     H(Key)
```

```
XPAH
                                   1
OF83
       35
                                   L(Kev)
                          LDI
OF84
       C414
                          XPAL
                                   1
OF86
       31
                          LDI
                                   080
OF87
       C480
OF89
       01
                          XAF
                          LDI
                                             ;No. of digits
OF8A
       C404
                                   04
                          ST
                                   Next(2)
OF8C
       CA11
                                   Adll-Key(1)
                          LD
OF8E
       C1FO
                 Bull 2:
                                   @+1(1)
                          XOR
0F90
       E501
                          JNZ
                                   Nobul
OF 92
       9COC
OF 94
       AAO2
                          ILD
                                   DH(2)
       C1FF
                          LD
                                    -1(1)
OF 96
0F98
        58
                          ORE
                                             ;Set negative
OF 99
       C9FF
                          ST
                                    -1(1)
                          LD
OF-9B
       C1EF
                                   Adll-Key-1(1)
                          ORE
OF9D
        58
                                   Adll-Key-1(1)
OF 9E
        C9EF
                          ST
OFAO
        BA11
                 fBobul:
                          DLD
                                   Next(2)
OFA2
        9CEA
                          JNZ
                                   Bull 2
OFA4
       C404
                 Cows:
                          LDI
                                   04
                          St
        CA11
                                    Next(2) ;P1 points to Key + 4
OF A6
                          LDI
OFA8
       C404
                 Nerow:
                                   04
OFAA
        CA10
                          ST
                                    Row(2)
OFAC
       C40F
                          LDI
                                   04
                          ST
                                   Row(2)
OFAA
       CA10
                                   H(Adll)
OFAC
       C40F
                          LDI
OFAE
                          XPAH
                                   3
        37
                                   L(AdII) + 4
OFAF
       C408
                          LDI
                          XPAL
OFB1
        33
                          LD
                                    0 - 1(1)
OFB2
       C5FF
                          JP
                                   Trv
                                             :Already counted as bull?
OFB4
        940A
                                             :Yes
OFB6
        BA11
                 Nocow:
                          DLD
                                    Next(2)
                          JNZ
                                    Nerow
OFB8
        9CEE
                                    Finito
OFBA
        9013
                          JMP
OFBC
        BA10
                 Notry:
                          DID
                                    Row(2)
                          JZ
                                   Nocow
OFBE
        98F6
                          LD
                                    (1)
OFCO
        C100
                 Try:
OFC2
        E7FF
                          XOR
                                    @-1(3) :Same?
        9CF6
                          JNZ
                                    Notry
OFC4
                          ILD
OFC6
        AA00
                                    DL(2)
                          LD
OFC8
        C300
                                    (3)
                          ORE
OFCA
        58
                          ST
                                    (3)
        CBOO
OFCB
                          JMP
OFCD
        90E7
                                    Nocow
                 : Now unset top bits of Key
                 Finito:
                                    04
OFCF
        C404
                          LDI
                          ST
OFD1
        CA11
                                    Next(2)
                          LD
                                    (1)
OFD3
      - C100
                 Unset:
                          ANI
                                    07F
OF D5
        D47F
OFD7
        CD01
                          ST
                                    (0+1(1))
OFD9
        BA11
                          DLD
                                    Next(2)
OF DB
        9CF6
                          JNZ
                                    Unset
                                             :All done?
```

		;Set up	segments o	of result	
OFDD	C401		LDI	H(Crom)	
OFDF	35		XPAH	1	
OFEO	C200		LD	DL(2)	;L(Crom) + Cows
OFE2	31		XPAL	1	7-10101117 1 00110
OFE3	C100		LD	(1)	;Segments
OFE5	CAOO		ST	DL(2)	7-13.1107110
OFE7	C202		LD	D3(2)	;L(Crom) + Bulls
OFE9	31		XPAL	1	/=(=:0)() Dallo
OFEA	C100		LD	(1)	;Segments
OFEC	CA02		ST	D3(2)	73
OFEE	C4FF		LDI	OFF	
OF FO	CAOF -		ST	Ddta(2)	
OFF2	925D		JMP	Nchar(2)	;Display result
		;			7
	0000		.END		

Silver Dollar Game

```
; Machine plays against you in moving five
                   ; 'Silver Dollars' along a track
                   ; Player unable to move loses
0000
                             = 0F12
                   ; Starting position: Must be ascending order
OF 12
         FF
                   Start:
                             .BYTE
                                       OFF
OF 13
         03
                             .BYTE
                                       03
OF 14
         05
                             BYTE
                                       05
OF 15
         08
                             BYTE
                                       08
OF 16
        09
                             .BYTE
                                       09
OF 17
         OF
                             BYTE
                                       0
        0F00
                   Ram
                                       OFOO
OF18
                   Pos:
                                                 ;Current position
        0024
                  Count
                                      024
                                                 ;Ram offsets:
        0025
                   Kev
                                      025
                                                 :For key last pressed
        0026
                  Init
                                      026
                                                 :Zero
        0185
                   Kvbd
                                      0185
                                                :In monitor
        0080
                  E
                                       -128
                                                 :Extension reg.
OF1E
                             . = 0F28
0F28
        C40F
                            LDI
                                      H(Ram)
                   Begin:
OF 2A
        36
                            XPAH
                                      2
OF 2B
        C400
                            LDI
                                      L(Ram)
OF 2D
        32
                            XPAL
OF 2E
        C40F
                            LDI
                                      H(Pos)
0F30
        35
                            XPAH
                                      1
0F31
        C418
                            LDI
                                      L(Pos)
0F33
        31
                            XPAL
                                      1
OF 34
        C406
                            LDI
                                      6
OF 36
        CA24
                            ST
                                      Count (2)
OF 38
        C1FA
                  Setup:
                            LD
                                      -6(1)
                                                ;Transfer start to pos
OF3A
        CD01
                            ST
                                      (0+1(1))
OF3C
        BA24
                            DLD
                                      Count(2)
```

OF 3E	9CF8		JNZ	Count(2)	Contraction
OF 40	C400	Ymove:	LDI	0	;You go first!
OF 42	CA25		ST	Key(2)	;Clear key store
	0.405		display from		
OF 44	C40F	Disp:	LDI	H(Pos)	
OF 46	35		XPAH	1	
OF 47	C419		LDI	L(Pos) + 1	
OF 49	31		XPAL	1 9	
OF 4A	C409	Class	LDI XAE	9	;Clear Display buffer
OF 4C	01 C408	Clear:	LDI	08	;Underline
OF 4D OF 4F	CA80		ST	E(2)	, Oriderinie
0F51	40		LDE	LIZI	
OF 52	FC01		CAI	1	
0F54	94F6		JP	Clear	
OF 56	C405		LDI	5	
0F58	CA24		ST	Count(2)	
OF 5A	C501	Npos:	LD	@+1(1)	
OF 5C	1E		RR		
OF5D	940B		JP	Even	
OF5F	D47F	Odd:	ANI	07F	
OF 61	01		XAE		
OF 62	C280		LD	E(2)	
OF 64	DC30		ORI	030	;Segments E & F
OF 66	CA80		ST	E(2)	
OF 68	9007		JMP	Cont	
OF 6A	01	Even:	XAE		
OF 6B	C280		LD	E(2)	
OF 6D	DC06		ORI	06	;Segments B & C
OF 6F	CA80	The Park	ST	E(2)	
OF 71	BA24	Cont:	DLD	Count (2)	
OF 73	9CE5	District	JNZ	Npos	
0575	0401		urrent posi		
OF 75	C401	Show:	LDI XPAH	H(Kybd)	
OF 77	37		LDI	3 L(Kybd)-1	
OF 78	C484 33		XPAL	3	
OF 7A OF 7B	3F		XPPC	3	
OF7C	902A		JMP	Coma	;Command key
OF 7E	40		LDE	Coma	, Command Roy
OF 7F	98F4		JZ	Show	
0F81	03		SCL		
0F82	FC06		CAI	6	:1-5 allowed
0F84	94EF		JP	Show	
OF 86	C40F		LDI	H(Pos)	
OF 88	35		XPAH	1	
OF 89	C418		LDI	L(Pos)	
OF 8B	0.2		CCL		
OF 8C	70		ADE		
OF 8D	31		XPAL	1	
OF 8E	C100		LD	(1)	
OF 90	02		CCL		
OF 91	F4FF		ADI	-1	

OF 93 OF 94	02 F9FF		CCL	—(1)	No. 6
OF 96 OF 98 OF 9A	9402 90DB C225	Fine 2:	JP JMP LD	Fine 2 Show Key(2)	;Valid move
OF 9C OF 9E OF 9F	9C03 40 CA25		JNZ LDE ST	Firstn Key(2)	;First key press
OFA1 OFA2	60 9E43	Firstn:	XRE JNZ	Disp(2)	;Not first press ;not allowed
OFA4 OFA6 OFA8	B900 9243 C225	Coma:	JMP LD	(1) Disp(2) Key(2)	;Make move ;Display result ;Mem pressed
OFAC OFAC	9A43 C403 CA24	Go:	JZ LDI ST	Disp(2) 3 Count(2)	;You haven't moved!
OFBO OFB2 OFB3	C40F 35 C418		LDI XPAH LDI	H(Pos) 1 L(Pos)	
OFB5 OFB6	31 C400		XPAL LDI	1 0	
OFB8 OFB9 OFBB	01 C101 02	Try:	LD CCL	+1(1)	
OFBC OFBC OFCO	FD02 C904 60		CAD ST XRE	@ + 2(1) 4(1)	;Keep nim sum
OFC1 OFC2 OFC4	01 BA24		XAE DLD	Count(2)	, Keep Hill Sull
OFC4 OFC6	9CF3 40	Solve:	JNZ LDE	Try.	
OFC7 OFC9 OFCB	980E E100 03		JZ XOR SCL	Nogo (1)	;Safe position
OFCC OFCE OFDO	FD02 94F6 02		CAD JP CCL	@+2(1) Solve	
OFD1 OFD3	F1F9 C9F9		ADD ST	-7(1) -7(1)	;Make my move
OFD5 OFD7 OFD9	923F C405 CA24	Nogo:	JMP LDI ST	Ymove(2) 05 Count(2)	;Now you, good luck! ;Make first move
OFDB OFDD OFDE	C5FF O2 F4FF	No:	LD CCL	@-1(1)	
OFEO OFE1	02 F9FF		ADI CCL CAD	-1 -1(1)	
OFE3 OFE5 OFE7	9406 BA24 9CF2		JP DLD JNZ	Fine Count(2) No	
OFE9 OFEB OFED	9307 B900 923F	Fine:	JMP DLD JMP	+ 7(3) (1)	;i.e. Abort—I lose ;Make my move ;now you chum.
0, 20	0000		.END	THOVE(2)	,now you chum.

Music

The 'Function Generator' produces a periodic waveform by outputting values from memory cyclically to a D/A converter. It uses the 8-bit port B of the RAM I/O chip to interface with the D/A, and Fig. 1 shows the wiring connections. The D/A chosen is the Ferranti ZN425E, a low-cost device with a direct voltage output.

Any waveform can be generated by storing the appropriate values in memory. The example given was calculated as an approximation to a

typical musical waveform.

'Music Box' plays tunes stored in memory in coded form. The output can be taken from one of the flag outputs. Each note to be played is encoded as one byte. The lower 5 bits determine the frequency of the note, as follows:

Rest A A# B C C# D D# E F F# G G#
00 01 02 03 04 05 06 07 08 09 0A 0B 0C
0D 0E 0F 10 11 12 13 14 15 16 17 18

There are two octaves altogether.

The top three bits of the byte give the duration of the note, as follows:

Relative Duration: 1 2 3 4 5 6 7 8 00 20 40 60 80 A0 C0 E0

Thus for any specific note required the duration parameter and frequency parameter should be added together. A zero byte is reserved to specify the end of the tune.

To slow down the tempo locations OF58 and OF59 should be altered to D4FC (ANI X'FC).

The program uses two look-up tables, one giving the time-constant for a delay instruction determining the period of each note and the other giving the number of cycles required for the basic note duration.

'Organ' generates a different note for each key of the keyboard by using the key value as the delay parameter in a timing loop. Great skill is needed to produce tunes on this organ.

Function Generator

```
: Generates arbitrary waveform by outputting
                 : values to D/A Converter.
                 : uses Ram I/O chip. (Relocatable).
                                    0E21
                 Portb
                                    -128
                                             :Extension as offset
                 Ext
                           =0E80
                                              :Start of Ram in Ram/IO
       C40F
                           IDI
                                    H(Endw)
0E80
                 Start:
                           XPAH
                                    2
0F82
        36
                                    L(Endw)
0E83
                           LDI
        C448
                           XPAL
                                     2
                                              :P2-> End of waveform
        32
0F85
                           LDI
                                    H(Portb)
0F86
        C40F
                           XPAH
OE88
        35
                           LDI
                                    L(Portb)
OF89
        C421
        31
                           XPAL
                                     1
OF8B
                                     X'FF
                                              :All bits as outputs
        C4FF
                           IDI
OE8C
                                              :Output definition B
                           ST
                                     +2(1)
OE8E
        C902
0E90
        C4D8
                  Reset:
                           IDI
                                     -Nots:
                           CCL
0E92
        02
                           XAF
0E93
        01
                  Next.
                                              :Get next value
0E94
        C280
                           LD
                                     E(2)
                                              ;Send to D/A
                           ST
        C900
0E96
                           LDE
0E98
        40
                                              :Point to next value
OE9A
        F401
                           ADI
                                              :New sweep
                           JZ
                                     Reset
OF9C
        98F3
                                              ; Equalize paths
        04
                           DINT
OE9E
                                              :Next point
OE9F
        90F3
                           JMP
                                  Next
                  ; Sample waveform of 40 points
                  ; Fundamental amplitude 1
                   2nd Harmonic amplitude 0.5 zero phase
                   3rd Harmonic amplitude 0.5 90 deg. lag.
                   Equation is:
                   Sin(X) + 0.5*Sin(2.0*X)40.5*Sin(3.0*X-0.5*PI)
                   With appropriate normalization
OEA1
                            = 0F20
                                     077,092,0B0,0CB,0E1,0ED
                  Wave:
0F20
                            .BYTE
                                     OEF, OE6, OD5, OBE, OA5, O8E
0F26
                            .BYTE
                                     07F,077,076,07D,087,092
OF2C
                            .BYTE
                                     09B,09E,09A,090,080,06F
                            .BYTE
0F32
                                     05C, 04D, 042, 03D, 03D, 040
OF38
                            .BYTE
                                     046,04B,04D,04D,04A,046
                            .BYTE
OF3E
                                     044,047,050,060
0F44
                            BYTE
          0F48
                   Endw
                                       Endw-wave ; No. of points
          0028
                   NPTS
                             =
          0000
                             END
```

Music Box

```
: Plays a tune stored in memory
                 : 1 Byte per note
                  top 3 bits = duration (00-E0) = 1 to 8 units
                  bottom 5 bits = note (01-18) = 2 octaves
                           = 0F12
0000
                  :Table of notes
                 Scale:
                                              :Silence
0F12
                            BYTE
                                     0
                            BYTE
                                     OFF.OEC.ODB.OCA.OBB.OAC
0F13
                                     09E,091,085,079,06E,063
                           BYTE
OF19
                                     059,050,047,03F,037,030
OF1F
                            BYTE
                           BYTE
                                     029,022,01C,016,011,00C
0F25
                 ;Table of cycles per unit time
                                     044,048,04C,051,055.05B
OF2B
                           .BYTE
0F31
                           BYTE
                                     060,066,06C,072,079,080
                                     088,090,098,0A1,0AB,0B5
0F37
                           .BYTE
                                     OCO.OCB.OD7.0E4.0F2.0FF
OF3D
                           .BYTE
                 :Program now:
                 Cycles:
0F43
                           . = . + 1
                           . = . + 1
0F44
                 Count:
                           XPPC
                                              ; 'Go, 'term', to play again
0F45
        3F
                 Stop:
                                     3
                           LDI
                                     H(Scale)
0F46
        C40F
                  Begin:
0F48
        35
                           XPAH
                                     1
        C40F
                           LDI
                                     H(Tune)
0F49
                           XPAH
OF4B
        36
                           LDI
                                     L(Tune)
OF4C
        C490
                                               :P2 points to tune
OF4E
        32
                           XPAL
                                     2
        C601
                  Play:
                           LD
                                     (0+1(2))
                                              ;Get next note code
OF4F
                                               :Save in ext.
0F51
        01
                           XAE
OF52
                           LDE
        40
        98F0
                           JZ
                                     Stop
                                               :Zero = terminator
0F53
0F55
        1C
                           SR
        1C
                           SR
0F56
                           SR
OF57
        1 C
OF58
        1C
                           SR
                                               :Shift duration down
0F59
        1C
                           SR
                                     Count
OF5A
        C8E9
                           ST
OF5C
        C412
                           LDI
                                     L(Scale)
OF5E
        01
                           XAE
                                     X'1F
OF5F
        D41F
                           ANI
                                               ;Get note part
0F61
        02
                           CCL
                                               :no carry out
        70
                           ADE
0F62
                                               :Point P1 to note
                           XPAL
0F63
        31
0F64
        C100
                           LD
                                     (1)
                                               :Note
OF66
        01
                           XAE
                                               :Put it in ext.
0F67
        C118
                  Hold:
                           LD
                                     +24(1)
                                               :Cycle count
                           ST
0F69
        C8D9
                                     Cycles
OF6B
        40
                  Peal:
                           LDE
```

OF6C OF6E OF70 OF72 OF74	9C04 8F80 9011 8F00 06	Sound:	JNZ DLY JMP DLY CSA	Sound X'80 More X'00	;Zero = silence ;Unit gap
0F75 0F77 0F7B 0F7A	E407 07 B8CA 9807		XRI CAS DLD JZ	X'07. Cycles More	;Change flags
OF7C OF7D OF7F OF81 OF83 OF85 OF87	08 C410 8F00 90E8 B8C0 94E0 8F20	More:	NOP LDI DLY JMP DLD JP DLY	X'10 X'00 Peal Count Hold X'20	;Equalize paths to ;Prevent clicks in ;Sustained notes ;Gap between notes
0F89	90C4		JMP	Play	;Get next note
OF8B OF90 OF96 OF9C OFA2 OFA8 OFAE OFB4 OFBA		Tune:	.= OF90 .BYTE .BYTE .BYTE .BYTE .BYTE .BYTE .BYTE	031,03 02F,02[011,01: 012,03 011,02[D,02F,04C,00D,02F 1,032,051,00F,02D, 0,02C,02D,00D,00F 2,034,034,034,054, 1,032,032,032,052, F,031,012,011,00F 1,012,034,016,032 F,08D,0
	0000		.END		

Organ

; Each key on the keyboard generates a ; Different note (though the scale is ; Somewhat unconventional!)Relocatable.

OF1F	0D00	Count: Disp:	. = 0F1F . = . + 1 =	0D00	;Display & keyboard
0F20 0F22	€40D 35	Enter:	LDI XPAH	H(Disp)	
OF231 OF25 OF26	C400 31 C408	New:	LDI XPAL LDI	L(Disp) 1 08	
OF28 OF2A	C8F6 C501	Again:	ST LD	Count @+1(1)	;Key row
OF2C OF2E	E4FF 9808		XRI JZ	OFF No	;Key pressed?
0F30 0F32	8F00 06		DLY CSA	00	;Delay with AC = key
OF33	E407		XRI	07	;Change flags

OF35 OF36 OF38 OF3A	07 90EB B8E6 9CEE	No:	CAS JMP DLD JNZ	New Count Again
OF3C	90E5		JMP	New
	0000		.END	

Miscellaneous

'Message' gives a moving display of segment arrangements according to the contents of memory locations from 'Text' downwards until an 'end-of-text' character with the top bit set (e.g. 080). Each of the bits 0-6 of the word in memory corresponds, respectively, to the seven display segments a-g; if the bit is set, the display segment will be lit. Most of the letters of the alphabet can be formed from combinations of the seven segments: e.g. 076 corresponds to 'H', 038 to 'L', etc. The speed with which the message moves along the display depends on the counter at 0F2D. If the first and last 7 characters are the same, as in the sample message given, the text will appear continuous rather than jumping from the end back to the start.

The 'Reaction Timer' gives a readout, in milliseconds, of the time taken to respond to an unpredictable event. To reset the timer the 'O' key should be pressed. After a random time a display will flash on. The program then counts in milliseconds until the 'MEM' key is pressed, when the time will be shown on the display.

The execution time of the main loop of the program should be exactly one millisecond, and for different clock rates the delay constants will have to be altered:

Rate	Location:	OF2A	0F37	0F39
1MHz		07D	0A8	00
2 MHz		OFA	OA1	01
4 MHz		OFF	093	03

The 'Self-Replicating Program' makes a copy of itself at the next free memory location. Then, after a delay, the copy springs to life, and itself makes a copy. Finally the whole of memory will be filled by copies of the program, and from the time taken to return to the monitor one can estimate the number of generations that lived.

Message

; Displays a moving message on the ; 7-segment displays ; (Relocatable)

		. = OF1F		
	Speed:	. = . + 1		
	SUL FEMALE			
C40D	Tape:	LDI	H(Disp)	
35		XPAH	1	
C400		LDI	L(Disp)	
31		XPAL	1	
C40F		LDI	H(Text)	
36		XPAH	2	
C4CA		LDI	L(Text)-8	
32		XPAL	2	
C4C0	Move:	LDI	X'CO	:Determines sweep speed
	35 C400 31 C40F 36 C4CA 32	C40D Tape: 35 C400 31 C40F 36 C4CA 32	Speed: .=.+1 ; C40D Tape: LDI 35 XPAH C400 LDI 31 XPAL C40F LDI 36 XPAH C4CA LDI 32 XPAL	Speed: .=.+1 ; C40D Tape: LDI H(Disp) 35 XPAH 1 C400 LDI L(Disp) 31 XPAL 1 C40F LDI H(Text) 36 XPAH 2 C4CA LDI L(Text)-8 32 XPAL 2

```
ST
                                    Speed
OF2E
        C8F0
                           LDI
0F30
        C407
                 Again:
                           XAE
0F32
        01
                 Loop:
                                    -128(2)
        C280
                           ID
0F33
                           ST
                                    -128(1)
        C980
0F35
                                    X'FF
        C4FF
                           I DI
0F37
0F39
        02
                           CCL
                           ADE
                                              :i.e. decrement ext.
OF3A
        70
                           .IP
        94F5
                                    Loop
OF3B
OF3D
        B8E1
                           DLD
                                    Speed
                           JN7
                                    Again
OF3F
        9CEF
                           LD
                                    (0-1(2))
                                              :Move letters
        C6FF
0F41
                                              :X'80 = end of text
0F43
        94E7
                           JP
                                    Move
                           JMP
                                    Go
        90DF
0F45
                                    0D00
                 Disp
                  A sample message
                  Message is stored backwards in memory
                  first character is 'end of text', X'80.
                   For a continuous message, first and
                  Last seven characters must be the
                   same (as in this case).
0F47
                           = OFAO
                                    080,079,079,06D,040,037
OFAO
                           BYTE
                                                                    37
                                    077,039,040,03E,08F,06E
                           BYTE
OFA6
                                    040.06D.077,040,06E,03E
OFAC
                            BYTE
                           BYTE
                                     07F.040.079.037.030.071
OFB2
                            BYTE
                                     040.06E,038,038,03F,01F
OFB8
                           BYTE
                                     040.077.040.06D.030,040
OFBE
                            BYTE
                                     039,040,071,03F,040,06D
OFC4
                                     040,079,079,06D,040,037
                           BYTE
OFCA
                           .BYTE
                                     077,039
OFD0
                                                  ;start of message
        OFD2
                  Text
```

.END

Self-Replicating Program

; Makes a copy of itself and then

executes the copy. Only possible in a processor which permits one to write relocatable code, like SC/MP **FFFC** LDX Loop-Head-1; offset for load Last-Store-1 ; offset for store 000D STX 0000 = 0F12LDI LDX C4FC 0F12 Head: 0F14 XAE 01 OF 15 C080 LD -128(0):PC-relative-ext = offset Loop:

OF17 OF18	01		XAE		
0F19	F411		ADI	STX-LDX	
OF1B	01		XAE		
OF1C	C880	Store:	ST	-128(0)	;ditto
OF1E	40		LDE		
OF1F	03		SCL		
0F20	FC10		CAI	STX-LDX-1	;i.e. increment ext.
OF22	01		XAE		
OF23	40		LDE		
0F24	E414		XRI	Last-Loop-1	;finished?
OF26	9CED		JNZ	Loop	
0F28	8FFF		DLY	X'FF	;shows how many copies
OF2A		Last	=		;were executed.
	0000		.END		

Reaction Timer

```
: Gives readout of reaction time in milliseconds
                   display lights up after a random delay
                   Press'MEM' as quickly as possible.
                   Press '0' to play again. (Relocatable)
                   150 = excellent, 250 = average, 350 = poor
        01E4
                  Cycles
                                      500
                                                ;SC/MP cycles per msec
        OF00
                  Ram.
                                      0F00
        0D00
                  Disp
                                      0D00
        0005
                  Adlh
                                      5
        000C
                  Adl
                                      12
        000E
                  Adh
                                      14
        015A
                  Dispa
                                      015A
                                                ; 'Address to segments'
                            = 0F20
0000
0F20
        C401
                  Begin:
                            LDI
                                      H(Dispa)
0F22
        37
                            XPAH
                                      3
0F23
        C459
                            LDI
                                      L(Dispa)
0F25
        33
                            XPAL
                                                : 'Random' number
0F26
        C205
                                      Adlh(2)
                            LD
0F28
        01
                  Wait:
                            XAE
0F29
        8F7D
                            DLY
                                      Cycles/4
OF2B
        02
                            CCL
OF2C
                                                :Count down
        70
                            ADE
        94F9
OF2D
                            JP
                                      Wait
OF2F
                                                ;Light'8' on display
        C903
                            ST
                                      +3(1)
0F31
        40
                            LDE
                                                :Now zero
        CAOC
                            ST
0F32
                                      Adl(2)
0F34
        CAOE
                            ST
                                      Adh(2)
                  ;Main loop; length without DLY = 151 µcycles
                                      (Cycles-151-13)/2
OF36
        C4A8
                  Time:
                            LDI
0F38
        8F00
                            DLY
OF3A
        03
                            SCL
OF3B
        C20C
                                      Adl(2)
                            LD
```

OF3D	68		DAE		
OF3E	CAOC		ST	Adl(2)	
0F40	C20E		LD	Adh(2)	
0F42	68		DAE		
0F43	CAOE		ST	Adh(2)	
0F45	40		LDE		
0F46	02		CCL		
0F47	F903		CAD	+3(1)	:Test for key
0F49	98EB		JZ	Time	
		Chan	XPPC	3	:Go display time
OF4B	3F	Stop:	751177.5		
OF4C	90FD		JMP	Stop	;Illegal return
OF4E	90CF		JMP	Begin	;Number key
0F50		- F	. = OFF9		;Pointers restored
		;			;From ram
OFF9	0D00	, fe	DBYTE	Disp	:P1-> Display
			DBYTE	Ram	;P2-> Ram
OFFB	0F00			Haill	,1 2 7 110111
	0000		END		

Edge connector details

Top connector—from left

```
Positive supply 8V
2 3 4 5
          ..
          ov
..
6 7
8
          OV on issue 11. NADS on issue 111.
          i/o Port B6
B5
9
10
11
                    B7
12
13
                    В4
                    ВЗ
                    B2
B1
14
15
16
17
                    ВО
          i/o port A7
18
19
                    Interrupt
          i/o
                    A6
20
21
22
23
24
25
26
27
28
                    A0
                    A5
                    A1
                    A4
                    A2
                    АЗ
          SCMP
                    Sense
                              A
                    Serial
                    Sense
Serial
                               В
29
                               OUT
30
31
                    Flag
                              0 2 1
32
```

16 Way at 0-1 in.

Remove from Book

COMPONENT LIST

Semice	onductors	
No	Type	Description
IC1	1SP-8A/600(8060)	SC MP-11 Microprocessor
IC2	DM 74S571	512 × 4 ROM (Whitespot)
IC3	DM 74S571	512×4 ROM
IC4	MM 2111-1N	256 × 4 RAM
IC5	MM 2111-1N	256×4 RAM)
IC6	MM 2111-1N	256 × 4 RAM) optional extra
IC7	MM 2111-1N	256×4 RAM)
IC8	INS 8154N	128 × 8 RAM I/O
IC9	DM 74 LS157	Quad 2 to 1 line selector
IC10	DM 74 LS157	Quad 2 to 1 line selector
IC11	DM 80L95	Hex tri-state buffer
IC12	DM 74 LS173	Quad tri-state latch
IC13	DM 7445	BCD to decimal decoder
IC14	DM 7408	Quad two input and
IC15	Dm 7408	Quad two input and
IC16	DM 74LS08	Quad two input and
IC17	DM 74LS00	Quad two input and
IC18	DM 74LS04	Hex inverter
IC19	LM 340T-5.0	5 volt regulator

RESISTORS

R1	4.7 k	
R2	2.4 k	
R3	100 k	
R4	1.2 k	
R5	2.4 k	
R6	1.2 k	
R7-10	1.2 k	may be any value between 1k and 15k
R11	4.7 k	
R12-15	1.2 k	may be any value between 1k and 15k

CAPACITORS

C1	27p for 33p	ceramic
C2	1000uF 40V	not supplied—only needed with
C3	0.01uF	unsmoothed supply marked 10 nf
C4	0.01uF	
C6	22 uF 16V	

MISCI	ELLANEOUS	
1.	Printed circuit board	double sided fibreglass through hole plated and annotated
2.	Reset switch	
3.	Crystal 4.433619 MH2	
4.	Display NSA1198/1188	eight or nine digit magnified 7 segment LED
5.	Keyboard separator	self adhesive clear PVC
6.	Keyboard contact sheet	conductive silicon rubber
7.	Keyboard legend sheet	reverse printed PVC
8.	Keyboard panel	dark grey stoved steel plate
9.	'W' buttons × 4	
10.	Display connector strip	

RECOMMENDED EXTRAS

IC Sockets: 5×14 pin, 7×16 pin, 4×18 pin, 2×40 pin stick on feet $\times 6$ Radiospares 12.5mm