

Contents

Part1 Construction. Basic Principles. Operating Instructions
Part 2 Application Programmes

Section 1
Section 2
Section 3
Section 4
Section 5
Section 6
Section 7
Section 8
Section 9

Part 1

Introductionto the kit W

The Manual-its objectives and usage :
Construction procedure, Notes on soldering
Power Connect and Switch On

Usage Familiarisation

Basic Principles of the MK 14

MK 4 Language-Binary and Hex ariemmal dala |55

Programming Notes
Architecture and Instruction Set

Section 10 RAM I/O

£ WM

10
11
14

.18

21
24

Introduction to the kit

The MK 14 comprises a full set of components to build up a
completely functional computer.
When the unit has been correctly assembled only the connection of a
suitable power source is needed for the display to light up and the user
then finds that command and control of the unit is literally at his fingertips
via the keyboard.
Having mastered the simple rules for operation of the keyboard and
interpretation of the display, it is immediately possible to study the
workings of the system and the computer’s instructions, and experiment
with elementary programming.
From this point the user can progress to the library of ready-written
programmes available in Part Il of this manual, and to programmes of his
own invention. Because of the inherently enormous versatility of the
digital computer it is hard to suggest any particular direction which the
independent programmer may take. Arithmetic, logic, time measurement,
complex decision making, learning ability, storage of data, receiving
signals from other equipment and generating responses and stimuli can
all be called upon.
Thus calculators, games, timers, controllers (domestic, laboratory,
industriall, or combinations of these are all within the scope of the
machine.

External circuits Fig. 1.1
T
1
input/ | | RAM cey || ROM TERMINAL
output Write-able Memory Fixed Memory kb. Display
{user's programme) {user control
[} [supervision prog.) \

| Y) * Y

Components of the kit include central processor, pre-programmed control
memory, read-write memory, input/output circuits, the terminal section
i.e. the keyboard and display, and interfacing to the terminal.

This line-up corresponds to the basic elements present in even the most
sophisticated multi-million pound computer. Indeed the fundamental
principles are identical. However, the user of the MK 14 who wishes to
understand and utilise these principles has the advantage of being able to
follow in detail the action and inter-action of the constituent parts,

which are normally inaccessible and invisible to the big computer operator,
Do notregard the MK 14 as an electronics construction project. The
MK14 is a computer, and computers are about software. It is the
programme which brings the computer to life, and it is the programme
which is capable of virtually infinite variation, adjustrnent and expansion.
Of course an understanding of the architecture of the machine and the
functions of the separate integrated circuits is valuable to the user. But
these aspects conform to a fairly standard pattern and the same
straightforward set of interconnection rules regardless of the task or
function the computer is performing.

-

The Manual
-its objectives and uses

The MK14 isintended to bring practical computing to the widest

possible range of users by achieving an absolute minimum cost. The wider the

user spectrum, the wider, to be expected will be the variation of expertise

the manual has to cater for; from the total novice, who wishes to learn the

basic principles and reguires thorough explanation of every aspect, to the
experienced engineer who has immediate practical applications in view.

Additionally, the needs of the beginner can be sub-divided into three parts:-

1. Aninformal step by step procedure to familiarise with the operation
of the MK 14, If this is arranged as an inter-active 'do’ and 'observe’
sequence, it becomes a comparatively painless method of getting a
practical ‘feel’ for the computing process. Section b.

2. Aformal definition/description of the significant details of the
microprocessor itself, i.e. its architecture and instruction set. Users
of all levels are strongly recommended to study this section, (Section
0) atan early stage. Itis supported by a programme of practical
exercises aimed to precisely demonstrate the elemental functions of
the device, and the framewaork inside which they operate. Itis
emphasised that to gain the most complete fluency in what are the
basics of the whole subject is not merely well worth the effort but is
essential to the user's convenience?

3. Anexplanation of the general principles of the digital processor,
along with the associated notation and conventions. Sectien O this
also breaks down into the joint aspects of hardware and software.

Clearly parts of the above will also prove useful to the knowledgable user

who, however, will probably be able to skip the advice in section 3 on

basic electronic assembly technigue. The control part of this section
contains information specifically pertinent to the MK 14 and should be
read by all.

Further sections to be referenced when the MK 14 has been assembled,

and the user has built up a working understanding, are those discussing

programming technigues and methodology. From that point the
applications examples of varying degrees of complexity and function, in

Part I, should be possible for the reader to tackle.

Construction procedure
Notes on soldering

The construction of the unitis a straightforward procedure consisting of
inserting the components in the correct positions and soldering them in
place. If this is done without error the system should become functional as
soon as power is applied. To ensure that this happens without any hitches
some recommendations and advice are offered. A step-by-step
construction procedure with a diagram is laid down. An appendix to this
section contains notes on soldering technigues.
Plug in socket option for integrated circuits
The |.C. components utilised in the MK 14 are both robust and reliable.
But accidents are possible—and should an |.C. be damaged either during
construction or later, it's identification and replacement is made many
orders easier if devices are mounted in sockets. Socket usage is therefore
most strongly recommended, particularly where the user is concerned
with computing rather than electronics. Science of Cambridge offer a
MK 1 4 rectification service specifying a component cost only replacement
charge when the system in question is socket equipped.
Integrated Circuit Device Handling
M.0O.S. integrated circuits historically have gained a reputation for
extreme vulnerability to damage from static electricity. Modern devices
while not unbreakable embody a high degree of protection. This means
that high static voltages will do no harm as long as the total energy
dissipated is small and a practical rule of thumb is that if the environment
is:'such that you yourself don't notice static shocks, neither will the 1.C.
It is essential for the soldering iron to be earthed if |.C.'s are being soldered
directly into the P.C. board. The earth must ground the soldering iron bit.
This warning applies to any work carried out which might bring the
soldering iron into contact with any |.C. pin.
Catastrophe is achievable with minimum trouble if certain components are
fitted the wrong way round.
Component Orientation and |.C. Pin Numbering
Three types belonging to the kit must be oriented correctly. These are the
I.C."s, the electrolytic capacitors and the regulator.
(i) |.C’'s are oriented in relation to pin 1. Pin 1 can be identified by
various means; fig. 3.1 illustrates some of these:-

Drawing Viewed Fig. 3.1
from Top Pin n+1

Cut out 79

Slight indentation Pin 1

or protuberance Piin

=

Pin 1 itself may bear a faint indentation or a slight difference frpm other_
pins. The remaining pins are numbered consecutively clockwise from Pin
1 viewing device as in Fig. 3.1.

Note position of type no. is not a reliable guide. _ ;

(i) Electrolytic capacitors have a positive and a negative terminal. The
positive términal is indicated by a’ + * sign on_the printed circuit. The
capacitor may show a ' + * sign or a bar marking by the p_o_smve
terminal. The negative is also differentiated from the pos_l‘gve by
being connected to the body of the device while the positive appears
to emerge from an insulator. ! _

(i} The regulator has a chamfered edge and is otherwise assymmetrical-
refer to assembly diagram.

Assembly Procedure

Equipment required —soldering iron, solder, side-cutters or wire snippers.

Step No. Operation
1 Identify all resistors, bend leads according to diagram and

place on layout diagram in appropriate positions.

2 Insert resistors into printed circuit and slightly bend leads at
back of board so that resistors remain in place firmly agajnst
the P.C.

3 Solder resistorsin place and cut surplus leads at back of
printed circuit.

4 Re-check soldered joints and component positioning.

B Identify all capacitors, bend leads according to diagram and
place on layout diagram in appropriate positions.

(5] Insert capacitors into printed circuit and slightly bend leads
behind board so that capacitors remain in place firmly against
the P.C.

7 Solder capacitorsin place and cut surplus leads behind P.C.

8 Check soldered joints, component pasitions and orientation.

9 (If sockets are being used skip to step 14). |dentify and place
in position on diagram all |.C's with particular reference to
orientation.

10 Insert |.C's into P.C. Note:- The |.C. pins will exhibit a degree
of "splay’. This allows the device to be retained in the P.C.
mechanically after insertion so do not attempt to straighten,
and use the following technique: place one line of pins so they
just enter the board; using a suitable straight edged implement,

press opposing row of pins until they enter the board; push
companent fully home.

11 Re-check device positioning and orientation with EXTREME
care!

- e e —

Step No.
12

13

14

18

19
20
21
22
23

24

25

27

28

Operation _ 2y
Solder | .C'sin place. It is not necessary to snip projecting pins.

Re-check all |.C. soldered joints.
(skip to step 20)

Place appropriate sockets in position on diagram. See Fig. 3.3
Insert first or next socket in P.C. board. These components are
not self retaining so invert the board and press onto a suitably
resilient surface to keep socket firmly against the board while
soldering.

Solder socket into position.

{repeat steps 14-16 until all sockets are fitted)

ldentify and place into position on diagram all I.C"s with
particular reference to orientation.

Transfer |.C's one-by-one to P.C. assembly and place in
appropriate sockets.

Check all socket soldered joints.

Insert regulator and solder into position. See Fig. 3.4 (a).
Insert push button and solder into position. See Fig. 3.4 (b).
Mount keyboard. See Fig. 3.5.

Mount display. See Fig. 3.4 (c).

Ensure that all display interconnections are correctly aligned
and inserted,

Solder display into position.
Re-check all soldering with special reference to dry joints and
solder bridges as described in appendix on soldering technique.

{Optional but advisable). Forget the whole job for 24 hours.

Re-inrspect the completed card by retracing the full assembly
procedure and re-checking each aspect (component type,
orientation and soldering) at each step.

When the final inspection is satisfactorily completed proceed to
section 4, Power Connect and Initial Operation.

Fig 3.4(al

Fig 3.4(b)

Push Button

Fig 3.4(c)

Display

Fig 3.5

- R ‘W' Buttons
BACK %
Keyboard g

Keyboard
Legend
Sheet

Keyboard
Contact
Sheet

Appendix Soldering Technique

Poor soldering in the assembly of the MK 4 could create severe
difficulties for the constructor so here are a few notes on the essentials

of the skill.

The Soldering Iron Ideally, for this job, a 15W/25W instrument should
be used, with a bit tip small enough 1o place against any device pin and
the printed circuit without fouling adjacent joints. IMPORTANT —ensure
that the bitis earthed.

Solder resin cored should be used. Approx. 18 S.W.G. is most
convenient.

Using the Iron The bit should be kept clean and be sufficiently hot to
form good joints.

A plated type of bit can be cleaned in use by wiping on the dampened
sponge (if available), or a damp cloth. A plain copper bit corrodes fairly
rapidly in use and a clean flat working face can be maintained using an old
file. A practical test for both cleanness and temperature is to apply a touch
of solder to the bit, and observe that the solder melts instantly and runs
freely, coating the working face.

Forming the Soldered Joint—with the bit thus ‘wetted’ place itinto

firm contact with both the component terminal and the printed circuit
‘pad’, being soldered together. Both parts must be adequately heated.
Immediately apply solder to the face of the bit next to the joint. Solder
should flow freely around the terminal and over the printed circuit pad.
Withdraw the iron from the board in a perpendicular direction.

Take care not to 'swamp’ the joint, a momentary touch with the solder
should be sufficient. The whole process should be complete in one or
two seconds. The freely flowing solder will distribute heat to all part of the
joint to ensure a sound amalgam between solder and pad, and solder and
terminal. Do not hold the bit against the joint for more than a few seconds
either printed circuit track or the component can be damaged by
excessive heat.

Checking the Joint A good joint will appear clean and bright, and the
solder will have spread up the terminal and over the pad to a radius of
about v inch forming a profile as in Fig. 3.2(a).

£ 3.2 Unreliahle or no contact
Printed circuit
track Printed circuit card
I | 1
a b c

W S L Tl B TR T SR AT e e . AR T T Pk

Fig 3.2 (b) and (¢} show exaggerated profiles of unsuccessful jeints.
These can be caused by inadequate heating of one part, or the other, of
the joint, due to the iron being too cool, or not having been in direct
contact with both parts; or to the process being performed too quickly. An
alternative cause might be contamination of the unsoldered surface.

Re-making the Joint Place the 'wetted' iron against the unsatisfactory
joint, the solder will then be mostly drawn off. Re-solder the joint. If
contamination is the problem it will usually be eliminated after further
applications by the flux incorporated within the solder.

Solder ‘Bridges’—can be formed between adjacent tracks on the printed
circuil in various ways: —
(il too coolan iron allowing the molten solder to be slightly tacky
{ii) excessive solder applied to the joint
. (i) bit moved away from the joint near the surface of the board instead
of directly upwards
These bridges are sometimes extremely fine and hard to detect, butare
easily removed by the tip of the cleaned soldering iron bit.

Solder Splashes—can also cause unwanted short circuits. Careless
shaking of excess solder from the bit, or allowing a globule of solder o

accumulate on the bit, must be avoided. Splashes are easily removed with
the iran.

In summary, soldering is a minor manual skill which requires a little
practise to develop. Adherence to the above notes will help a satisfactory
result to be achieved.

Power Connect

and Switch On

The MK 14 operates from a 5V stabilised supply. The unit incorporates its
own regulator, so the user has to provide a power source meeting the
following requirements: —

Current Basic kit only —400mA
consumption +RAM 1/0 option — + 5OmA
+ extra RAM option — + 30mA

Max |/P permitted voltage (including ripple) 35V

Min I/P permitted voitage (including ripple} 7V
Batteries or a mains driven power supply may be used. When using
unregulated supplies ensure that ripple at the rated current does not
exceed the |/P voltage limits.
If a power source having a mean output voltage greater than IOV has to be
used, a heat sink must be fitted to the regulator. A piece of aluminium or
copper, approx. 18 s.w.g., of about two square inches in area, bolted to
the lug of the regulator should permit input voltages up to about 18V to
be employed.
Alternatively a suitable resistor fitted in series with the supply can be used.
To do this the value of the series resistor may be calculated as follows:-

2 x [minimum value |/P voltage -7} #

Resistor dissipation will be 0.5W/ %
Having selected a suitable power supply the most important precaution to
observe is that of correct polarity. Connect power supply positive to
regulator I/P and power supply negative to system ground,
Switch on. =
Proper operation is indicated by the display showing this: —

Congratulations—now proceed to the section on usage familiarisation
and learn to drive the MK 14,

- mul

5 Usage Familiarisation

To help the user become accustomed to commanding and interrogating
the MK 14 an exercise consisting basically of a sequence of keyboard
actions, with the expected display results, and an explanatory comment,
is provided.

Readers who are not familiar with hexadecimal notation and data
representation should refer to section 7.

It will be clear to those who have perused the section dealing with MK14
basic principles that to be able to utilise and understand the unit itis
necessary firstly to have the facility to look at the contents of locations in
memory 1/0 and registers in the CPU, and secondly to have the facility to
change that information content if desired.

The following shows how the monitor programme held in fixed memory
enables this to be done.

Operator Display Comment
Action
Examining MK 14 Memory
Switchon ---- -- The left hand group of four characters is called
the address field, the right hand group is the
data field.
Dashes indicate thatthe MK 14 is waiting for a
GO or a MEM command.

MEM 0000 08 The contents of memory location zero is
displayed in the data field.

MEM 0001 80 Nextaddressinsequence is displayed, and the
data at that address.

MEM 0002 1D Addressagain incremented by one, and the
data at the new address is displayed.

MEM 0003 C2 Nextaddressand contents are displayed

The user is actually accessing the beginning of the monitor programme
itself. The iterns of data 08, 80, 1D, C2 are the first four instructions in
the monitor programme.

It is suggested that for practise a list of twenty or thirty of these is made
out and the appropriate instruction nmemonics be filled in against them
from the list of instructions in Section 9. Additionally, this memory
scanning procedure offers an introduction to the hexadecimal numbering
method used by the addressing system, as each MEM depression adds
one to the address field display.

11

Operator
Action

MEM

TERM

TERM
MEM

TERM

TERM
MEM
TERM
22
TERM
MEM
TERM
33
TERM

MEM

Display

XXXX

0000

0O0O0F

0O0F1

OF12

OF12

OF12

OF12
OF13

OF13

OF13
OF13
OF13
OF14
OF14
OF14
OF14
OF1b
OF15
OF15
OF15

OF16

XX

KX

XX

XX

XX

AKX

01

01
KX

AX

01

11

AX
KX
22
22
AKX
XX
33
33

xXX

Comment

Loading MK 14 Memory

note: —symbol X indicates when digit value is
unpredictable or un-important.

First digit is entered to L & D address field,
higher digits become zero.

Second address digit keyed enters display from
right.

Third address digit keyed enters display from
right.

This is first address in RAM available to the user
{basic version of kit).

TERM enters displayed address and prepares for
operator to load data.

Memory data has been keyed but is not yet
placed in RAM.

Data is now placed in RAM
Address is incremented.

New address is entered and unit waits for
memaory data input.

New data.

is keyed

and placed in memory
Data

is

loaded

into

successive

locations

F—‘

Operator Display Comment
Action
L OF16 44

TERM OF16 44

OF12 OF12 01 Enteroriginal memory address and
MEM [0} i 2 Tl check that data
MEM OF14 22 remains as
MEM QE1BE 33 was
= MEM OF16 44 loaded.
- Switch power off and on again. Re-check contents of above locations.

Note that loss of power destroys read-write memory contents.
Repeat power off/on and re-check same locations several times—itis
expected that RAM contents will be predominately zero, and tend to
switch on in same condition each time, This effect is not reliable.

Operator Display Comment

Action

MEM XXXX XX Entera very small programme

OF12TERMOF12 XX ltconsists of one instruction JMP-2 (S0OFE in

90 OF12 90 machine code). 90 represents JUMP programme

TERM MEM OF13 XX counter relative. FE represents — 2, the direction
REBMIEES SUELS S EE of the jump.
TERM OF13 FE

-8 ABORT ----- B
GO OFF3 == Prepare to start user programme (TERM at
this point would start execution from
QF12).
- OF12 OF12 -- Enterstartaddress.
TERM BLANK Commence execution. The dispiay becomes

blank, indicating that CPU has entered user
programme, and remains blank.

We have created the most elementary possible programme —one that
loops round itself. There is only one escape—RESET which will force
the CPU to return to location 1.

RESET ———— == Reset does not affect memory the instruction
JMP— 2 is still lurking to trap the user.

13

14

Basic Principles of the MK 14

Essentially the MK 14 operates on exactly the same principles as do all
digital computers. The ‘brain’ of the MK 14 is a SC/MP micro-processor,
and therefore aspects of the SC/MP will be used to illustrate the following
explanation. However the principles involved are equally valid for a huge
machine from International Computers down to pocket calculators.
Moreover, these principles can be stated quite briefly, and are essentially
very simple.

‘Stored Programme’ Principle

The SC/MP CPU (Central Processing Unit) tends to be regarded as the
centre-piece because itis the 'clever’ component—and so it is. But by
itself it can do nothing. The CPU shows its paces when it is given
INSTRUCTIONS. It can obey a wide range of different orders and perform
many complex digital operations. This sequence of instructions is termed
thePROGRAMME, and is STORED in the MEMORY element of the system.
Since these instructions consist of manipulation and movement if data, in
addition to telling the CPU what to do, the stored programme contains
information values for the CPU to work on, and tells the CPU where to get
information, and where to put results.

Three Element System

By themselves the two fundamental elements CPU and MEMORY can™
perform wondrous things—all of which would be totally useless, since no
information can be input from the outside world and no results can be
returned to the user. Consequently a third element has to be incorporated
—the INPUT/QUTPUT (1/Q) section.

Fig. 6.1 The Three Element System

1/0 CPU Memory

These three areas constitute the HARDWARE of the system, so called
because however you may use or apply the MK 14, these basic structures
remain the same,

Independence of Software (Stored Programme) and Hardware

As with the other hardware, whatever particular instruction sequence is
present within the memory at any one time, the basic structure of the
memory element itself is unaltered.

Itis this factor which gives the MK 1 4 its great versatility: by connecting
up its 1/0 and entering an appropriate programme into its memory it can
perform any digital function that can be contained within the memory
and 1/0 size.

Random Access Memory (RAM)

Further, when the memory in question consists of a read and write
element (RAM), in contrast to read only memory (ROM), this flexibility

is enhanced, as programme alterations, from minor modifications, to
completely different functions, can be made with maximum convenience.

Interconnection of Basic Elements

Element inter-connection is standardised as are the elements themselves.
Three basic signal paths, ADDRESS BUS (ABUS), DATA BUS (DBUS)
and CONTROL BUS, are required.

Fig. 6.2 Interconnections of Three Element System

: ! '

J{e} CPU Memory

i B IR,

Address Bus.

Data Bus.

These buses are, of course, multi-line. In the MK14 the Abus= 12 lines,
Dbus = 8 lines and Control bus = 3lines. Expansion of memory or 1/0
simply requires connection of additional elements to this basic bus
structure.

MK 14 System Operation

Consider the MK 1 4 with power on and the RESET signal applied to the
SC/MP. This forces all data inside the CPU to zero and prevents CPU
operation.

When the RESET is released the CPU will place the address of the first
instruction on the Abus and indicate thatan address is present by a signal
on the ADDRESS STROBE (NADS) line which is within the control bus.
The memory will then respond by placing the first instruction on the Dbus.
The CPU accepts this information and signals a READ STROBE (NRDS) via
a line within the control bus.

The CPU now examines this instruction which we will define as a no-
operation, (instructions are normally referred to by abbreviations called
NMEMONICS, the nmemanic fof this one is NOP).

In obedience the CPU does nothing for one instruction period and then
sends out the address of the second instruction. The memory duly
responds with a Load Immediate (LDI). The CPU interprets this to mean
that the information in the next position, in sequence, in memory will not
be an instruction but an item of data which it must place into its own main
register (ACCUMULATOR). so the CPU puts out the next address in
sequence, and when the memory responds with data, then obeys the
instruction.

The CPU now addresses the next position (LOCATION) in memory and
fetches another instruction—store (ST). This will cause the CPU to place
the data in the accumulator back on the Dbus and generate a WRITE
STROBE (NWRDS) via the control bus. (The programme’s intention here
is to set output lines in the 1/0 element to a pre-determined valug).
Before executing the store instruction the CPU addresses the next
sequential location in memory, and fetches the data contained in it. The
purpose of this data word is to provide addressing information needed,
at this point, by the CPU.

So far, consecutive addresses have been generated by the CPU in order
to fetch instructions or data from memory. In order to carry out the store

15

16

instruction the CPU must generate a different address, with no particular
relationship to the instruction address itself, i.e. an addressin the 1/0
region.

The CPU now constructs this address using the aforementioned data
word and outputs it to the Abus. The 1/0 element recognises the address
and accepts the data appearing on the Dbus (from the CPU accumulator),
when signalled by the write strobe (NWRDS], also from the CPU.

Now the CPU reverts to consecutive addressing and seeks the next
instruction from memaory. This is an Exchange Accumulator with
Extension register (XAE) and causes the CPU to simultaneously move the
contents of the accumulator into the extension (E) register, and move

the contents of the extension register into the accumulator. The
programmer’s intention in using this instruction here, could be to preserve
a temporary record of the data recently written to the 1/0 location.

No new data or additional address information is called for, so no second
fetch takes place. Instead the CPU proceeds to derive the next instruction
in sequence.

For the sake of this illustration we will look at a type of instruction which is
essential to the CPU's ability to exhibit intelligence.

This is the jump (JMP) instruction, and causes the CPU to depart from the
sequential mode of memory accessing and ‘jump’ to some other location
from which to continue programme execution.

The JMP will be back to the first location.

A JMP instruction reguires a second data word, known as the
DISPLACEMENT to define the distance and direction of the jump.
Examining the memory 1/0 contents map, Fig 6.3, shows location O to
be seven places back from the JMP displacement which therefore must
have a numerical value equivalentto—7. (Detail elsewhere in this manual
will show that this value is not precisely correct, but it is valid as an
example).

The instruction fetched after executing the JMP will be the NOP again.

In fact the sequence of five instructions will now be re-iterated continually__
The programme has succumbed to a common bug—an endless loop, in
which for the time being we will leave it.

Fig. 6.3 Map of Memory Location Contents.

LOCATION No. LOCATION CONTENTS
0 NOP (instruction) A
1 LDI {instruction)
2 data (for use by LDI)
3 ST (instruction) MEMORY
4 address information (for use by ST) " REGION
5 XAE (instruction)
] JMP (instruction)
7 —7 (displacement for JMP)
— .
Formed by Initially undefined—after 3 becomes
CPU using same as loc. 2 ~ 1/0 REGION
data in loc. 4

This brief review of a typical sequence of MK14 internal operations has
emphasised several major points, All programme control and data derives
from the memory and 1/0. All programme execution is performed by the
CPU which can generate an address to any location in memory and 1/0,
and can control data movement to or from memory and 1/0.

Some instructions involve a single address cycle and are executed within
the CPU entirely. Other instructions involve a second address cycle to
fetch an itemn of data, and sometimes a third address cycle is also needed.
For the sake of simplicity this outline has deliberately avoided any detail
concerning the nature of the instruction/data, and the mechanics of the

system. These subjects are dealt with in greater depth in sections 5 and 7.

T

18

MK14 Language-Binary
and Hexadecimal

Discussion of the MK1 4 in this handbook so far has referred to various
categories of data without specifying the physical nature of that data. This
approach avoids the necessity of introducing too many possibly unfamiliar
concepts at once while explaining other aspects of the warkings of

the system.

This section, then, gives electrical reality to the abstract forms of
information such as address, data, etc., which the computer has to
understand and deal with.

Binary Digit Computers use the most fundamental unit of information

that exists—the binary digit or BIT—the bit is quite irreducible and
fundamental. It has two values only, usually referred toas ‘0’ and "1°.
Human beings utilise a numbering system possessing ten digits and a
vocabulary containing many thousands of words, but the computer
depends on the basic bit.

However, the bit is readily convertible into an electrical signal. Five volts

is by far the most widely used supply line standard for electronic logic
systerns. Thus a zero volt (ground) level represents '0’, and a positive five
volt level represents ‘1'. Note that the SC/MP CPU follows this convention
which is known as positive logic; negative logic convention determines
inverse conditions, 1.e, BV="0", OV="1".

Logic Signal Voltage Limits For practical purposes margins must be
provided on these signal levels to allow for logic device and system
tolerances. Fig. 7.1 shows those margins.

Fig. 7.1
5 VOLT LEVEL

Margin for

Oy Margin for
logie “1' signal

logic ‘1" error

’ Margin for
Margin for i logic ‘O° error
loi3ic 0 sigral | LOGIC '0" REGION
0O VOLT
LEVEL
- i ,

logic device legic device
output input

‘O’s and '1's Terminology Many of the manipulation rules for ‘0’s and
"1'sare rooted in philosophical logic, conseguently terms like 'true’ and
‘false’ are often used for logic signals, and a "truth table’ shows all
combinations of logic values relating to a particular configuration. The

Ambiguous area

control engineer may find ‘'on’ and "off’ more appropriate to his
application, while an electronic technician will speak of ‘high" and “low’,
and to a mathematician they can represent literally the numerals one
and zero.

Using Bits in the MK 14 The two state signal may appear far too limited
for the complex operations of a computer, but consider again the basic
three element system and it’s communication bus,

Fig. 7.2
3 lines
T Control bus
1o CcPU MEMORY

D Bus

12 lines A bus

The data bus for example comprises eight lines. Using each ling separately
permits eight conditions to be signalled. However, eight lines possessing
two states each, yield 256(2%) combinations, and the A bus can yield
4096 combinations.

A group or WORD of eight bits is termed a BYTE

Decoding In order to tap the information potential implied by the use of
combinations, the elements in the MK 14 all possess the ability to
DECODE bit combinations. Thus when the CPU generates an address,

the memory 1/O element is able to select one out of 4086 locations.
Similarly, when the CPU fetches an instruction from memory it obeys one
out of 128 possible orders.

Apart from instructions, depending on context, the CPU treats information
on the data bus sometimes as a numerical value, or sometimes simply

as an arbitrary bit pattern, thereby further expanding data bus information
capacity.

Bits as Numbers When grouped into a WORD the humble bit is an
excellent medium for expressing numerical quantities. A simple set of
rules exist for basic arithmetic operations on binary numbers, which
although they lead to statements suchas 1 +1=10,0r 2,5and 2,,
make 100,, they can be executed easily by the ALU (Arithmetic and Logic
Unit) within the CPU. Note that the subscripts indicate the base of the
subscripted numbers.

Binary Numbers The table below compares the decimal values 0—15
with the equivalent binary notation.

19

20

Decimal Binary
0000

? 0001 Most Le_zgst

2 0010 significant sig!‘l1f|cant

3 0011 digit (MSD) digit (LSD)

4 0100

5 0101

6 0110

7 0111 8 4 2 1 BINARY
8 1000

9 1001 10005| 1004 104 1g DECIMAL
10 1010

Till 1011

T2 1100 Place values in binary and

13 1101 decimal systems

14 1110

15 ! Fig. 7.3

The binary pattern is self evident, and it can also be seen how place value
of a binary number compares with that in the decimal system.
Expressed in a different way, moving a binary number digit one place to
the left doubles its value, while the same operation on a decimal digit
multiplies its value by ten.
The Binary pattern is self evident, and it can also be seen how place
value of a binary number compares with that in the decimal systerm.
Binary Addition—requires the implementation of four rules: —
0+0=0
O+1or1+0=1
1+ 1 =1 with carry (to next higher digit)
141 +carry (from next lower digit) = 1 with carry (to next higher digit)

Example: — 1110110
+1010101
11001011
kA .
Yh® X e—carry indications

Binary Subtraction

0—0=0
1—1=0
1—0=1

0—1 =1 with borrow {from next higher digit)
0—1 —borrow (from next lower digit) = 1 with borrow (from next

higher dlg![} O-Ii O-I\T* o101 borrow
Examples: — A01 AP0 110 indications
—010 —001 —011
011 011 011

Program Notes

At the point the reader is likely to be considering the application
programmes in Part Il and perhaps devising some software of his own.
This section examines the manner in which a programme is written and
set out, the planning and preparation of a programmes, and some basic
technigues.

When embarking on a programme two main factars should be
considered, they are: (i) hardware requirements, (i) sequence plan.
Hardware Requirements An assessment should be made of the amount
of memory required for the instruction part of the programme, and the
amaunt needed for data storage. In a dedicated micro-processor system
these will occupy fixed, and read-write memory areas respectively. In the
MK 14, of course, all parts of the programme will reside in read-write
memory, simplifying the programmers task considerably, since local pools
for data can be set up indiscriminately.

However, even in the MK 14 more care must be given to the allocation of
memory space for common groups of data and for input/output needs.
The SC/IMP C.P.U. offers a certain amount of on-chip input/outputin
terms of three latched flags, two sense inputs, and the serial in/serial out
terminals. So the designer must decide if these are more appropriate to
his application than the memory mapped |/0 available in the RAMIO
option.

Memory Map A useful aid in this part of the process is the memory map
diagram which gives a spatial representation to the memory and [ie}
resources the programmer has at his disposal. Fig. 8.1 shows the MK14
memory map including both add-in options

Standard RAM=-=| RAM The map displays the memory as a column of
BRAMIO 4K locations, (in this case each of eight bits),
DISPLAY | with location zero at the base and addresses

RAMIO ascending upwards.

Optional RAM—| RAM The reader may be surprised that various
RAMIO sections of mermory appear to reside in several

256 DISPLAY | areasatonce.

iolocations —=|] RAMIO For example the monitor is repeated four

MONITOR |} times in the lower 2K block. Note also that the
MONITOR | monitor will only operate correctly if executed
MONITOR | in the lowest section, as only this section has
512locations —=| MONITOR] the proper relationship to the RAM at the top.

Fig. 8.1

These multiple appearances of memory blocks are due to partial address
decoding technique employed to minimise decode components.

The map readily indicates that a CPU memory pointer (which can permit
access to a block of 256 1/0 locations) set to 0900, ; would give the
programme a stepping stone into the display O/P or the RAMIO facilities.

Flow Chart The flow chart provides a graphical representation of the
sequence plan. A processor is essentially a sequential machine and the
flow chart enforces this discipline. Fig. 8.2 is a very simple example of a
programme to count 100 pulses appearing at an input. Three symbols are
used (i) the circle for entry or exit points (i) the rectangle for programme
operations (iii) the diamond for programme decisions.

A flow chart should always be prepared when constructing a programme.
Each block isa convenient summary of what may be quite a large number
of instructions. Of particular value is the overview provided of the paths
arising from various combinations of branch decisions.

Clear Count Location

is
Count Pulse
present

No

Count Pulse

absent
?

No

Yes
Add One to Count Location I

Count
Location
=1007

Fig. 8.2 @

The flow chart can reveal wasteful repetition or logical anomalies, and
ensures that like a good story, the programme starts at the beginning,
progresses through the middle, and comes to a satisfactory end,
Programme Notation There is a well established convention and format
for writing down a programme listing, We will examine two lines extracted
from the MK 14 monitor programme itself in order to define the various
functions of the notation.

(a) (b) (c)
1172 0003 GOQUT:
(d) el (f) (g)

13 0003 C20E LD ADH (2) ;GET GO ADDRESS

a) Line Number. All lines in the listing are consecutively numbered for
reference.

b) Location Counter. The current value of the location counter
(programme counter in the CPU) is shown wherever it is relevant
e.g. when the line contains a programme instruction or address label.

cl Symbolic Address Label. This is followed by a colon. Entry points to
sub-sections of programme can be labelled with meaningful
abbreviations making the programme easier to follow manually e.g.
at some other place in the programme a JUMP TO 'GOOUT' might
occur. Automatic assemblers ¢create an internal list of labels and
calculate the jump distances.

However the MK 14 user must do it the hard way.

d} Machine Code. The actual code in the memory is shown here. As it
is a two byte instruction the first two hexadecimal digits C2 are in
location 3 and OE is in location 4,

g) Nmemonic LD is the nmemonic for LOAD. This is the instruction
represented by C2 in machine code.

f) Displacement. ADH is another label, in this case for a data value. Note
that a table is provided in alpha-numeric order at the end of the listing,
of all symbols and their values.

gl Pointer Designation. Define the pointer to be referenced by this
instruction.

h) Comment. All text following the semi-colon is explanatory material to
explain the purpose of the instruction or part of programme.

23

Architecture and
Instruction Set

The SC/MP microprocessor contains seven registers which are accessible
to the programmer. The 8-bit accumnulator, or AC, is used in all
operations. In addition there is an 8-bit extension register, E, which can
be used as the second operand in some instructions, as a temporary
store, as the displacement for indexed addressing, or in serial input/
output. The 8-bit status register holds an assortment of single-bit flags
and inputs:

SC/MP Status Register
7 6 5 (L b S e e SO R 0]
CYIL oV Sg SB s (B Feo | By Fo
Flags Description
Fo-Fo User assigned flags O through 2.
IE Interrupt enable, cleared by interrupt.
Sa.SB Read-only sense inputs. If IE=1, Sa isinterrupt
input.
oV Overflow, set or reset by arithmetic operations.
CY/L Carry/Link, set or reset by arithmetic operations or
rotate with Link.

The program counter, or PC, is a 16-bit register which contains the
address of the instruction being executed. Finally there are three 16-bit
pointer registers, P1, P2, and P3, which are normally used to hold
addresses. P3 doubles as an interrupt vector.

Addressing Memory

All memory addressing is specified relative to the PC or one of the

pointer registers. Addressing relative to the pointer registers is called
indexed addressing. The basic op-codes given in the tables below are

for PC-relative addressing. To get the codes for indexed addressing the
number of the pointer should be added to the code. The second byte of
the instruction contains a displacement, or disp., which gets added to the
value in the PC or pointer register to give the effective address, or EA, for
the instruction. This disp. is treated as a signed twos-complement binary
number, so that displacements of from —128,,t0 +127,, can be
obtained. Thus PC-relative addressing provides access to locations within
about 128 bytes of the instruction; with indexed addressing any location
in memory can be addressed.

Instruction Set
7 312|110 Ve R 0
Op |m]|ptr disp
Memory Reference byte 1 byte 2
Op Code

Mnemonic | Description Operation Base
LD Load (AC)=(EA) C000
ST Store (EA)=(AC) C800
AND AND (AC)=(AC) A (EA) DOOO
OR OR (AC)=(AC) V (EA) D800
XOR Exclusive-OR (AC)={AC) V (EA) EQQO
DAD Decimal Add (AC)*=(AC), o +(EA); o + (CYIL);(CYIL) EB00
ADD Add (AC)=(AC) + (EA) + (CY/L); (CYIL),(OV) FOOO
CAD Complement and Add| (AC)<(AC) + —(EA) + (CY/L);(CY/L),(OV]) F800

Base Code Modifier

Op Code = Base + m + ptr + disp

Address Mode| m ptr disp Effective Address

PC-relative 0000 [0000 |00xx EA=(PC)+disp

Indexed 0000 (0100 |OOxx EA = (ptr) + disp
0200
0300

Auto-indexed | 0400 | 0100 |0O0xx If dispz0, EA = (ptr)
0200 If disp<0Q,EA = (ptr) +disp
0300

Note: If disp=— 128, then (E) is substituted for disp in calculating EA.

xx=—1281t0 +127

The operands for the memory reference instructions are the AC and a
memory address,

With these eight instructions the auto-indexed mode of addressing is
available; the code is obtained by adding 4 to the code for indexed
addressing. If the displacement is positive it is added to the contents of
the specified pointer register after the contents of the effective address
have been fetched or stored. If the displacement is negative it is added
to the contents of the pointer register before the operation is carried out.
This asymmetry makes it possible to implement up to three stacksin
memory; values can be pushed onto the stacks or pulled from them

with single auto-indexed instructions. Auto-indexed instructions can also
be used to add constants to the pointer registers where 16-bit counters
are needed.

A special variant of indexed or auto-indexed addressing is provided when
the displacement is specified as X'80. In this case it is the contents of
the extension register which are added to the specified pointer register
to give the effective address. The extension register can thus be used
simultaneously as a counter and as an offset to index a table in memory.

25

For binary addition the ‘add’ instruction should be preceded by an
instruction to clear the CY/L. For binary subtraction the ‘complement’
and add’ instruction is used, having first set the CY/L. Binary-coded-
decimal arithmetic is automatically handled by the ‘decimal add’

instruction.
T 0 il LA 0
Op data
Immediate byte 1 byte 2
Mnemonic|Description Operation Op Code
Base
LDI Load Immediate (AC)=data C400
ANI AND Immediate (AC)=(AC) A data D400
ORI OR Immediate (AC)+=(AC) V data DCOO
%Rl Exclusive-OR Immediate | (AC}=(AC) V data E400
DAl Decimal Add Immediate | (AC)=(AC), o +data, o + (CY/L);(CY/L) ECOO0
ADI Add iImmediate (AC)+(AC) +data + (CY/L);(CYIL],(OV) F400
CAl Complementand Add [(AC)+(AC) +“~~data + (CY/L);(CY/L),(QV])| FcOO
Immediate
Base Code Modifier
Op Code = Base +data
the immediate instructions specify the actual data for the operation in
the second byte of the instruction.
Tl Tz A 0
Extension Register £E
Mnemonic| Description Operation Op Code
LDE Load AC from Extension| (AC)=(E} 40
XAE Exchange AC and Ext. |(AC)*(E) 01
ANE AND Extension (AC)=(AC) A (E) 50
ORE OR Extension (AC)=(AC) V (E) 58
XRE Exclusive-OR Extension | (AC)=(AC) V (E) 60
DAE Decimal Add Extension | (AC)+{AC), o +(E), o+ (CY/L), (CY/L) 68
ADE Add Extension (AC)=(AC)+ (E) +(CYIL); (CYIL), (OV) 70
CAE Complementand Add | (AC)={AC) +~ (E) + (CY/L); 78
Extension (CYIL), (OV)

26

The extension register can replace the memory address as one operand in
the above two-operand instructions, The extension register can be loaded
by means of the XAE instruction.

&g e 2ie T LA 0
Op__ lptr disp___|
Memory Increment/Decrement byted byte 2
Mnemonic Description Operation Op Code
Base
ILD Increment and Load | (AC), (EA}={EA)+ 1 A800
DLD Decrementand Load | (AC), (EAJ<{EA)—1 B80OO

Note: The processor retains control
of the input/output bus between the
data read and write operations.

Base Code Modifier

Op Code = Base + ptr + disp

ptr disp Effective Address
0100 | 0O0xx EA = (ptr) +disp
0200

0300

¥x=—1281t0 +127

The 'decrement and load’ instruction decrements the contents of the
memory location specified by the second byte, leaving the resultin the
accumulator. This provides a neat way of performing a set of instructions
several times. For example:

LDI 9

ST COUNT
LOOP:

DLD COUNT

JNZ LOOP
will execute the instructions within the loop 9 times before continuing.
Both this and the similar ‘increment and load’ instruction leave the CY/L
unchanged so that multibyte arithmetic or shifts can be performed with
a single loop.

27

28

Eac o2 300 §T i 0
I Op - iptr disp
Transfer byte 1 byte 2
Mnemonic | Description Operation Op Code
Base
JMP Jump (PC)=EA 3000
JP Jump if Positive |If (AC)Z20, [PC)<EA | 8400
JZ Jump if Zero If fAC)=0, (PC)=—EA | 9800
JNZ Jump if Not Zero |If (AC)#0, (PC)—EA | 8COO

Base Code Modifier

Op Code = Base + ptr + disp

Address Mode ptr disp Effective Address
PC-relative 0000 | 00xx | EA=(PC)+disp
Indexed 0100 | 00xx | EA=(ptr] +disp
0200
0300

xx=—128t0 +127

Transfer of control is provided by the jump instructions which, as with
memory addressing, are either PC-relative or relative to one of the pointer
registers. Three conditional jumps provide a way of testing the value of
the accumulator. “Jump if positive’ gives a jump if the top bit ot the AC is
zero. The CY/L can be tested with:

;Copy status to AC

JP NOCYL ;CY/Lis top of bit status
which gives a jump if the CY/L bit is clear.

CSA

T WL
Pointer Register Move Op py
Op Code]
Mnemonic | Descripton operation Base
XPAL Exchange Pointer Low [(AC)=(PTR,:0) 30
XPAH Exchange Pointer High [(AC)*(PTR, 4:s) 34
XPPC Exchange Pointer with PC|{PC)=+(PTR) 3C

Base Code Modifier

Op Code = Base + ptr

The XPAL and XPAH instructions are used to set up the pointer registers,
or 1o test their contents. For example, to setup P3 to contain X'1234
the following instructions are used:

LDI X"12

XPAH 3

LDI X'34

XPAL 3

The XPPC instruction is used for transfer of control when the point of
transfer must be saved, such as in a subroutine call. The instruction
exchanges the specified pointer register with the program counter,
causing a jump. The value of the program counter is thus saved in the
register, and a second XPPC will return control to the calling point. For
example, if after the sequence above an XPPC 3 was executed the next
instruction executed would be the one at X"1235. Note that this is one
beyond the address that was in P3 since the PC is incremented before
each instruction. P3 is used by the MK14 monitor to transfer control to
the user's program, and an XPPC 3 in the user’s program can therefore
be used to get back to the monitor provided that P3 has not been altered.

T fr T 0
Shift Rotate Serial 1/0 P
Mnemonic | Description Operation Op Code
Slo Serial Input/Output (Ei)—=(Ei-,), SIN—=(E;), (E;)>SOUT | 19
SR Shift Right (ACi)—~{ACj-;), O—~(AC,) e
SRL Shift Right with Link (ACi)—*{ACi-,), CY/L)—=(AC;) 1D
RR Rotate Right (ACi}=*(ACi-,), (ACo)=(AC,) 1E
RRL Rotate Right with Link | (ACi}>(ACi-;), (ACo)—=(CY/LI=(AC;) | 1F

The 510 instruction simultaneously shifts the SIN input into the top bit of
the extension register, the bottom bit of the extension register going to the
SOUT output; it can therefore form the basis of a simple program to
transfer data along a two-way serial line. The shift and rotate with link
make possible multibyte shifts or rotates.

7L 0 7 0]
Op Disp
Double Byte Miscellaneous ~ byte byte 2
Op Code
Mnemaonic | Description Operation Base
DLY Delay countACto —1, 8FOO
' delay=13+ 2(AC) + 2 disp + 2°
disp microcycles

Base Code Modifier

Op Code = Base +disp

29

The delay instruction gives a delay of from 13 to 131593 microcycles
which can be specified in steps of 2 microcycles by the contents of the
AC and the second byte of the instruction.
Note that the AC will contain X'FF after the instruction.

7 0
Op
Single-Byte Miscellaneous
Mnemonic | Description Operation Op Code
HALT Halt Puise H-flag 00
852 Clear Carry/Link (CY/L)<0 02
SCL Set Carry/Link {CY/L)*=1 03
DINT Disabled Interrupt (IE)=0 04
IEN Enable Interrupt (IE)=1 05
CSA Copy Status to AC (AC)=(SR} 06
CAS Copy AC to Status (SR)=(AC) o7
NOP No Operation {PCI=—(PC) +1 08

30

The remaining instructions provide access to the status register, and to
the |IE and CY/L bits therein. The HALT instruction will act as a NOP in the
MK 1 4 kit unless extra logic is added to detect the H-flag at NADS time,
in which case it could be used as an extra output.

Mnemonic Index of Instructions

Read Write Total

Mnemonic | Opcode | Cycles Cycles Microcycles
ADD FO 3 0 19

ADE 70 1 0)

ADI] F4 2 0 1

AND DO 3 0 18

ANE 50 1 0 6

ANI D4 2 0 10

CAD F8 3 0 20

CAE 78 1 0 8

CAl Bz 2 0 12

CAS 07 1 0 6

CCl 02 1 0 5

CSA 06 1 0 5

DAD ES8 3 0 23

DAE 68 1 0 11

DAl EC 2 0 15

DINT 04 1 0 6

DLD B8 3 1 22

DLY 8F 2 0 13-131593

Read Write Total
Mnemonic | Opcode |Cycles Cycles Microcycles
HALT 00 2 0 8
IEN 05 1 0 6
ILD A8 3 1 22
JMP 20 2 0 11
JNZ ac 2 0 9, 11 for Jump
JP 94 2 0 9, 11 for Jump
4P 98 2 O 9, 11 for Jump
LD co 3 0 18
LDE 40 1 0 6
LDI c4 2 0 10
NOP 08 1 0 5
OR D8 3 0 18
ORE 58 1 0 6
ORI DC 2 0 10
RR 1E 1 6] 5
RRL 1E 1 0 5]
Sel 03 1 0 5
SIo 19 1 0 3
SR 1€ 1 0 5
SRL 1D 1 0 5
ST C8 2 1 18
XAE 01 1 0 7
XOR EO 3 0 18
XPAH 34 1 0 8
XPAL 30 1 0 8
XPPC 36 1 0 7
XRE 60 1 0 6
XRI E4 2 0 10

Program Listings

The application program listings at the end of this manual are givenina
symbolic form known as ‘assembler listings’. The op codes are
represented by mnemonic names of from 2 to 4 letters, with the operands
specified as shown:

LD disp ;PC-relative addressing

LD disp (ptr) :Indexed addressing

LD @disp (ptr) :Auto-indexed addressing

Constants and addresses are also sometimes represented by names of up
to six letters; these names stand for the same value throughout the
program, and are given that value either in an assignment statement, or
by virtue of their appearing as a label to a line in the program. Some
conventions used in these listings are shown below:

31

32

Statements

Directive

Assembler Format

Function

.END (address)

.BYTE exp/(,exp...)

.DBYTE expl,exp,...)

Signifies physical end of
source pprogram.

Generates 8-bit (single-byte)
data in successive memory
locations.

Generates 1 6-bit (double-
byte) data in successive
memory locations,

Statements

Assignment

=20

TABLE: .=.4+10

LABEL: SYMBOL=EXPRESSION ;Symbol is assigned

;value of expression
;Set location counter
;10 20

:Reserve 10 locations
for table

RAM I/O

A socket is provided on the MK 14 to accept the 40 pin RAM /O device
{manufacturers part no. INS8154). This device can be added without
any additional modification, and provides the kit user with a further 128
words of RAM and a set of 16 lines which can be utilised as logic inputs in
any combination.

These 16 lines are designated Port A (8 lines) and Port B (8 lines) and

are available at the edge connector as shown in Fig. 10.1.

SA (CPU interrupt [/P)

=
3
2
7 4
B
1
Port A
3 5
0
'data ready’ —handshake 6
input mode
‘data reguest’ —handshake INTR
output mode
L E
= 0 IC8
‘ 1
2
" 3
PortB ﬁ
‘Data present’ handshake 4
I[P mode
‘Data ack’—handshake 7
O/P mode -
‘Data ready’ handshake O/P 6 /
| mode RAM 1/O Device Mounting Pasition
‘Data ack’, handshake |/P mode

Fig. 10.1 RAM I/O Signal Lines

33

34

The RAM 1/O can be regarded as two completely separate functional
entities, one being the memory element and the other the input/output
section. The only association between the two is that they share the same
package and occupy adjacent areas in the memory 1/ space. Fig. 10.2
shows the blocks in the memory map occupied by the RAM I/O, and it
can be seen that the one piece of hardware is present in four separate
blocks of memory.

800

8FF
300

9FF
A0O
AFF
BOO

BFF
C00
CFF
DOO
DFF
E0O
EFF
FOO

FFF

BEE———

RAM 11O

DISPLAY

RAM 11O

RAM
(optional)

RAM IO

DISPLAY

RAM /O

RAM
{standard)

Note:—Memory area is shown divided
into 256 byte blocks. The lowest
and highest location address is
shown in hex' at left.

Fig. 10.2 Memory |/O Map Showing RAM I/O Areas

The primary advantage for the user, in this, is that programme located in
basic RAM, or in the extra RAM option, has the same address relationship
to the RAM |/O.

Fig. 10.3 shows how memory I/0 space within the RAM |/O block is

allocated
00

07T

CLEAR BIT PORT A %

W

Selected bit out

08

OFff

CLEAR BITPORTB == of 8 determined by

104

171

SET BIT PORT A

low 3 bits of address
e.g. Addr. =0, bit=0 (Port A)

Lo
W

18%
e

SET BIT PORT B ¥

Addr. =IF, bit=7 (Port B)

20

READ/WRITE PORT A

21

READ/WRITE PORT B

22

D BUS (ACC) to ODA

23

D BUS (ACC) to ODB

24

D BUS (ACC) to MDR

25
7F

LR

80

FET

T
- 128 BYTES RAM -I-
]

Fig. 10.3 RAM I/O Locations and Related Functions

-

RAM Section

This is utilised in precisely the same manner as any other area of RAM.
Input/Qutput Section

The device incorporates circuitry which affords the user a great deal of
flexibility in usage of the 16 input/cutputlines. Each line can be
separately defined as either an input or an output under programme
control. Each line can be independently either read as an input, or set to
logic ‘I' or 'O’ as an output. These functions are determined by the
address value employed.

A further group of usage modes permit handshake logic i.e. a ‘data
request’, 'data ready’, ‘data receieved’, signalling sequence to take place
in conjunction with 8 bit parallel data transfers in or out through Port A.
Reset Control

This input from the RAM I/O is connected in parallel with the CPU power-
on and manual reset. When reset is present all port lines are high
impedance and the device is inhibited from all operations.

Following reset all port lines are set to input mode, handshake facilities
are deselected and all port output latches are set to zero.

input/Output Definition Control

At start-up all 16 lines will be in input mode. To convert a line or lines to
the output condition a write operation must be performed by programme
into the ODA (output definition port A) or ODB locations e.g. writing the
value 80 (Hex.) into ODB will cause bit 7 port B to become an output.
Single Bit Read

The logic value atan input pin is transferred to the high order bit (bit 7)
by performing a read instruction. The remaining bits in the accumulator
become zero.

The required bit is selected by addressing the appropriate location (see
Figs. 3 & 4).

By executing JP (Jump if Positive) instruction the programme can respond
to the input signal i.e. the jump does not occur if the |/P is a logic 'i".

If a bit designated as an output is read the current value of that O/P is
detected.

Single Bit Load

This is achieved by addressing a write operation to a selected location
(see Figs. 10.1 & 10.4). Note that it is not necessary to preset the
accumulator to define the written bit value because itis determined by bit
4 of the address.

Eight Bit Parallel Read or Write

An eight bit value can be read from Port A or B to the accumulator, or the
accumulator value can be cutput to Port A or B, See Figs. 10.3 & 10.4
for the appropriate address locations. Input/output lines must be pre-
defined for the required mode.

Port A Handshake Operations

To achieve eight bit data transfers with accompanying handshake via Port
A, two lines (6 and 7) from Port B are allocate special functions and must
be pre-defined by programme as follows:- bit 7-input, bit 6-output.
Additionally the INTR signal line is utilised,

Three modes of handshake function are available to be selected under
programme control. Fig. 10.4 shows values to be written into the three
higher order bits of the Mode Definition Register {see Fig, 10.1 for
location) for the various modes.

35

Bit Position & value in MDR

this condition
BASICO selected by reset XIX|O]
Note:-
STROBEDINPUT| X | O | |) il X=don'tcare
ii) Lower order
STROBED QUTPUT) O | | | \ bits are don't
sTroBeD ouTPUT| | | | { Garselag.
WITH TRI-STATE

O LSS
Fig. 10.4 Mode Definition Register (MDR) Values and Operation Modes

‘Data Ready’, |/P Mode
‘Data Acknowledge’, O/P Mode

INTR to CPU
< Six lines (bits 0-5) Port B >
PERIPHERAL <Eight lines Port A (handshake porti> RAM /0
B6 ‘Data Present’, |/P Mode B7 'Data Reguest/Acknowledge’, |/P Mode

'Data Request/Acknowledge’, O/P Mode 'Data Ready', O/P Mode

36

Fig. 10.5 Handshake Interconnections and Function

INTR Signal

In order to inform the CPU of the state of the data transfer in handshake
mode the RAM 1/O generates the INTR SIGNAL: This signal will usually be
connected to the CPU interrupt input SA.

The INTR signal is activated by writing a logic ‘I" into B7 and is inhibited
by alogic 'O’. Note that although B7 must be defined as an input, in
handshake mode the B7 output latch remains available to perform this
special function,

Strobed Input Mode

A peripheral circuit applies a byte of information to Port A and a low pulse
to B7. The pulse causes the data to be latched into the RAM /0 Port A
register, and B6 is made high as a signal to the peripheral indicating that
the latch is now occupied. At the same time INTR (if enabled) goes high
indicating ‘data ready’ to the CPU,

The CPU responds with a byte read from Port A. The RAM |/O recognises
this, and removes INTR and the 'buffer full’ signal on BB, informing the
peripheral that the latch is available for new data.

Fig. 10.6 Signal Timing Relationship —Handshake I/P Mode

Peripheral data valid 3\
R
X t L3 \‘ r i
AD-A7 1 Rk Signals
S ¢ generated
87 S by peripheral
L4
Datastione ’/J_A— Load data to RAM 1/0 latch
from peripheral 5 2
‘Data acknowledge’ " Data request :
B9 IOZ:,.?;ETSFW = 0 ST ‘ t" to peripheral Signals
1) generated
i
INTR 'Data ready’ to CPU ,_,/ _ J by RAM |/O
NRDS \ \ F . 2 Signal
o8 Data acknfowlec(!:%‘a‘} } generated
ek by CPU
Strobed Output Mode
N The CPU performs a byte write to Port A, and the RAM |/O generates a
‘data ready’ signal by making B6 low. The peripheral responds to ‘data
ready’ by accepting the Port A data, and acknowledges by making B7
low. When B7 goes low the RAM 1/0 makes INTR high (if enabled)
informing the CPU that the data transaction is complete.
generated
LR B R B R b p
NWDS __/,“_J PEEY
Load data to RAM /O
L Sy ’ / 'Data acknowledge’ Signals
INTR Data reguest’ from Hm from RAM 110 gegnerated
B6 ‘Dataready’ to penphe:alT—-\—\}_! by RAM 110
-~
: e\
BY 'Data acknowledge’
5 from peripheral
AO-AT e i ;
L O IR Previous data X Ne\:r\data Signals
i generated
AQ-A7

tri-state mode

High impedance condition T High impedance by RAM /O
- . W - a b L]
*

Fig. 10.7 Signal Timing Relationship—Handshake O/P Mode

Strobed Output with Tri-State Control

This mode employs the same signalling and data sequence as does
QOutput Mode above. However the difference lies in that Port A will, in

this mode, normally be in Tri-state condition (i.e. no load on peripheral
bus), and will only apply data to the bus when demanded by the peripheral
by a low acknowledge signal to B7

37

38

Applications for Handshake Mode

Handshake facilities afford the greatest advantages when the MK14 is
interfaced to an external system which Is independent to a greater or
lesser degree. Another MK 14 would be an example of an completely
independent system.

In comparison the simple read or write, bit or byte, modes are useful when
the inputs and outputs are direct connections with elements that are
subservient to the MK14.

However whenever the external system is independently generating and
processing data the basic 'data request’, 'data ready’, 'data
acknowledge’, sequence becomes valuable. The RAM 1/0O first of all
relieves the MK 14 software of the task of creating the handshake.
Secondly it is likely in this kind of situation that the MK 14 and external
system are operating asynchronously i.e. are not synchronised to a
common time source or system protocol. This implies that when one
element is ready for a data transfer, the other may be busy with some
other task.

Here the buffering ability of the Port A latch eases these time constraints
by holding data transmitted by one element until the other is ready to
receive.

Therefore, for example, if the CPU, in the position of a receiver, is unable,
due to the requirements of the controlling software, in the worst case, to
pay attention for 2 millisecs the transmitter would be allowed to send data
once every millisecond.

Monitor program IStInG.o e Siiiin dadve Ve s e oo 40
Mathematieallmniss, 0. FVes vl 5 Erem e L O R, 49
Multiply

Divide

Sguare Root

Greatest Common Divisor

ElaEtromcs e oI | 000 INEINE el |, NS UO ST 8L e [54
Pulse Delay

Digital Alarm Clock

Random Noise

SYETOTH i i i A e e tems w2 T o s A AP S it 58
Single Step

Decimal to Hex

Relocator

Serial data input”®

Serial data output™

T T T e B e N B e e e e e Sl 68
Moon Landing

Duck Shoot

Mastermind

Silver Dollar Game

PGS = el BTes o b LMo e T b i e 7.9
Function Generator

Music Box

Organ

MisCellaneols o —isras v v Al e v s AN e e e 84
Message

Self-Replicating Program

Reaction Timer

Devised and written by:
David Johnson— Davies
except programmes marked thus*

38

Monitor program listing

SCMPKB

SCIMP ASSEMBLER REV—-C 02/06/786
SCMPKB POD523BA 7/14176

1 TITLE SCMPKB, 'PO0B235A 7/14/76"
2 T P P SV G o e L e e S R A
3 R

4 it BOARD
5 i PROM# ADDRESS COORDINATE BOARD#
& .

¥ * 460305235-001 0000 BA 9804879
3 5

g .

10 B R R R e TR e e e
)

12

13 OFO0 RAM = OF0D

14 0DOO DISP = oDoo

15

16 : SEGMENT ASSIGNMENTS

T

18 0001 SA =

19 0002 SB =

18 00071 SA .]

19 0002 SB = 2

20 0004 SC = 4

21 0008 S = a8

22 0010 SE = 18

73 0020 SF = 32

24 0040 $G = 54

25

26 7 SEGMENT CONVERSION

27

28 003F NO = SA+SB+SC+SD+ SE+SF

29 0006 N1 = SB+5C

30 0058 N2 - SA+SB+SD+SE+5G

31 004F N3 = SA+SB+SC+SD+SG

32 0066 N4 - SB+SC+SF+5G

33 006D N5 = SA+SC+SD+SF+56G

34 007D N6 = SA+SC+SD+SE+SF+SG

35 0007 N7 = SA+SB+SC

38 007F N8 = SA+SB+SC+5D+SE+SF+5G
37 0067 N9 = SA+SB+SC+SF+5G

38 0077 NA = SA+SB+SC+SE+SF+SG

39 007C NB = C+3D+SE+5F+5G

40 0039 NC = SA+SD+SE+5F

a1 O0BE ND = SB+SC+SD+SE+SG

42 0079 NE = SA+5D+SE + SF+ 506

43 0071 NF = SA+SE+S5F+5G

44 0040 DASH £ G

45 0079 KE = NE

46 0050 KR = SE+5G

47 005C KO - SC+5SD+SE+SG

48

49

g? PAGE ‘HARDWARE FOR KEYBOARD'
52

53 : FUNCTION DATA KYBFUNCTION

54

55 : 0 080 0

56 E 1 081 1

¥ ; 2 082 2

58
59
60
61
62
63
64
65

67
68
69
70
Ll
T
73
74
75
76
T
78
79
80O
81
82
83
B4
85
B7
88
B9
90
91
92
33
94
95
96
27
98
99
100
101
102
103

104
105
106
107
108
109
110
111
112
113
114
1156
116
117
118
119
120
121
122
123
124
125
126
127
128

0000
0001
0001

0003
0003
0005
0008
0008
0009
000B
000D
0CO0E
0010
0011

0013
0014
0016
0017
0019
001A

OFF9
OFFA
OFFB
OFFC
OFFD
OFFE
OFFF

08

301D

PTH
PiL
P2ZH
P2L

E
S

JABORT:

TMEM:

JGO:

INIT:

GOOUT:

083

084

085

0B6

087
040 8
041 9
010 +
011 —
012 MUL
013 DIy
0186 SQUARE
017 SART
GO 022 %
MEM 023 =
ABORT 024 CEIC
TERM 027

~N oo W
~ oo bW

TMMOOm >0

RAM POINTERS USED BY KITBUG, P3 1S SAVED ELSEWHERE

OFF8
OFFA
OFFB
OFFC
OFFD
OFFE
OFFF
COMMANDS

T T A 1

THIS ABORTS THE PRESENT OPERATION. DISPLAYS—,

ALLOWS USER TO READ/MODIFY MEMORY.

ADDRESS IS ENTERED UNTIL TERM THEN DATA IS ENTERED.
TO WRITE DATA IN MEMORY TERM IS PUSHED.

DATA IS READ TO CHECK IFIT GOT WRITTEN IN RAM.

ADDRESS IS ENTERED UNTIL TERM,

THE REGISTERS ARE LOADED FROM RAM AND PROGRAM
IS TRANSFERRED USING XPPC P3.

TO GET BACK DD A XPPC P3.

PAGE "INITIALIZE'

NOP

JMP START
DEBUG EXIT

RESTORE ENVIRONMENT

LD ADH(2) ,GET GO ADDRESS.

XPAH 3

LD ADLI2)

XPAL 3

LD @-1(3) ,FIX GO ADDRESS.
LD E ;RESTORE REGISTERS.
XAE

LD PiL

XPAL 1

LD P1H

XPAH 1

LD P2L

XPAL 2

LD P2H

XPAH 2

LD S

41

42

128
130
131
182
133
134
135
136
137
138
138
140
141
142
143
144
145
146
147
148
149
150
=5
162
163
154
155

156
157
168
168
160
161

162
163
164
165
166
167
168
168
170
171

172
173
174

175
1786
A
178
179
180
181
182

183
184
185
186
187
188
189
180
191

182
183
194

ooic
001D
QQ1TF

0020
0020
0022
0023
0025
00286
0028
0029
0028
pozc
002E
0030
0031
0033
0035
00386
0038
003A
0038
003D
CO3E

0040
0040
0042
0044
0046
0048
0044
004cC
004E
0050
0052
0054
0056
Q058
oos8
DOBA
00sC
005D
DO5F

00861
00861
Q0B3
0085
ooe7

0069
0068
Q068
006D
Q06F

0071

0073
0073

o7
CODF
3F

C400
CAD2
CAD3
CADB
C440
CAQD
CAD1
CAD4
CADS
CADB
CAD7

C401
37C4
B433
3F

2002
S0DF

E4a7
9856
E401

9cD7

C4FF
CAOF
C440
CAOD
CAO1

C459

START:

ABORT:

WAIT:

WEK:

GO:

GOL:

CAS
LD
XPPC

A
3

,TO BET BACK.

ENTRY POINT FOR DEBUG

ST A

LDE

87

CSA

T

XPAH 1

ST PIH
XPAL 1

51 Pl

LDl H(RAM)
KPAH 2

ST P2H

LDl LIRAM)
XPAL 2

ST P2L

LD @113
XPAL 3

ST ADL(Z)
XPAH 3

ST ADH(2)
PAGE

ABORT SEQUENCE
ol o

ST D3(2)
ST D4(2)
ST D9(2)
LDl DASH
ST bu2)
ST DHI(2)
ST ADDLL(2)
ST ADLH(2)
ST ADHL(2)
ST ADHHIZ)
JS 3,KYBD
JMP WCK
JMP ABORT
XAl 07

Jz MEM
XRl 01

JNZ ABORT
PAGE ‘GO TO’

GO WAS PUSHED

JSAVESTATUS

;SET P2 TO POINT TO RAM.

hy
-BUMP P3 FOR RETURN
SAVEP3.

i
:SET SEGMENTS TO—.
:DISPLAY AND READ KEYBOAF ol
;COMMAND RETURN. ,
:RETURN FOR NUMBER. %
{CHECK IE MEM.
:CHECK IF GO.

GO TO USER PROGRAM

LDI
ST
LDI
ST
ST

LDl

—1
DDTA(Z)
DASH
DLI2)
DHI(2)

;SET FIRST FLAG.

;SET DATATO DASH.

LIDISPAI-1 FIX ADDRESS SEG.

’l"

185
186
187
198
198
200
201

202
203
204
205
206
207
208
209
210
211

212
213
214
2775
2186
2
218
219
220
221

222
223
224

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
2486
247
248
249
250
251
Z52
253
254
255
256
257
258
259
260
261
262
263
264

0075
0076
0a77
0079
0a7B
Qo7c
007D
DO7F
DO7F

0081

00B3
D083
0085
0a87
00889
00BE
DOBD
DO8BF

0081

0083
0085
0087
0088
Doge

068D
008D
0O8F

00A1
ooAl
00A3
00A4
0CAB
DOAT
00AZ
00AB

CCAD
00AD
OOAF
00B1

00B3
00BE
0aB7
00BY

0CBB
00BE
00BD
O0BF
00C1
00C1
00C3
0oc4
00C8
0OC7
0oC9
0OCB
0GCD
00CE

33
aF
3008
C4T1A
33
3F
a0F4

E403
9880

C479
CaD7
C450
CADE
CAOB
CAD3
C45C
CAD4
C400
CADZ
CAD1
CAQD
90B9

czn
9C386

C20E

Cz20C
=N

C20D
€300
S00E

E406
98D2
E405
38EB
AADC
9c02
AADE

CA4FF
CA11
CAOF

C20E
35
C20C
3
C100
CAOD
C43F
33
JE

GOCK:

ERROR:

DTACK:

MEMDN:

MEMCK:

MEM:

MEML:

XPAL 3

XPPC. 3 ;DO DISPLAY AND KEYBRD
JMP GOCK JCOMMAND RETURN,

LOI L(ADR)-1 ;SET ADDRESS,

XPAL 3

XPPC' 3

JMP GOL yNOT DONE.

XRI 03 {CHECK FOR TERM.

JZ GoouT sERROR IFNQO TERM.

INCORRECT SEQUENCE
DISPLAY ERROR WAIT FOR NEW INPUT

LDI KE tFILL WITH ERROR.
ST ADHHI2)
LDI KR

BT ADHL(2]
ST ADLH(Z)
ST D4§2}
LDI KO

ST ADLLEZ)
LDI 0

5T Da3i2)
5T DHi2)
5T DL{2)
JMP WAIT

PAGE ‘MEMORY TRANSACTIONS'

LD NEXTi2) ;CHECK IFDATAFIELD
JNZ DATA ;ADDRESS DONE.

LD ADHIZ) PUT WORD IN MEM

XPAH 1

LD ADLI2Z)

XPAL 1

LD WORD(2}

=2l {1}

JMP MEM

XAl 086 JCHECK FOR GO.

JZ ERROR ;CAN NOT GO NOW.
XAl 0B ;CHECK FOR TERM.
JZ DTACK ;CHECK IF DONE,

LD ADLI2) JUPDATE ADDRESS LOW,
JNZ MEM ;CHECK IF UPDATE HI.
ILD ADHI2)

MEM KEY PUSHED

LDI =1 ;SET FIRST FLAG.

) NEXT(2) ;SET FLAG FOR ADDRESS NOW.
ST DDTA(2)

LD ADHI2)

XPAH 1 ;SET P1 FOR MEM ADDRESS.
LD ADLI2)

XPAL 1

LD (]

ST WORDI(2] ;SAVE MEM DATA

LDI L(DISPD}-1 ;FIX DATA SEG

XPAL 3

F ;G0 TO DISPD SET SEG FOR DATA,

43

265 OOCF SODC JMP MEMCK COMMAND RETURN.

266 00D1 C41A LDI LIADR)-1 :MAKE ADDRESS.

267 00D3 33 XPAL. 3

268 00D4 3F XPPC 3

269 00D5 SOEA JMP MEML GET NEXT CHAR.

270 00D7 DATA:

271 ODD7 CAFF LDI -1 ;SET FIRST FLAG.

272 00D2 CAOF ST DDTAL2)

273 00DB C20t LD ADH(2) sSETP1 TO MEMORY ADDRESS.
274 0Q0DD 35 XPAH 1 275

275 OODE C20C LD ADL(2)

276 OOEO 31 XPAL 1

277 O0E1 C10Q LD 11} ;READ DATA WORD.

278 OOE3 CAQD ST WORD{2) ;SAVE FOR DISPLAY.

279 .PAGE

280 OOEEB DATAL:

281 OOEb C43F LDl LIDISPD)-1 ;FIX DATA SEG.

282 00E7 33 XPAL 3

283 0O0E8 3F XPPC: 3 ;FIX DATA SEG-GO TO DISPD.
284 00E9 80C2 JMP - MEMCK ‘CHAR RETURN. N
285 OOEB C404 LDI 4 ‘SET COUNTER FOR NUMBER OF SHIFTS. \
286 OO0OED CADS ST CNT(2)

287 0QQEF AAOF ILD DDTA{Z2) CHECKIFFIRST.

288 00OF1 93CO0s8 JNZ DNEST j
289 00F3 C400 LDt 0 :ZEROWORD IF FIRST. \
290 DOF5 CalD ST WORD(2)

291 00F) CAN ST NEXT(2) ;SET FLAG FOR ADDRESS DONE.
292 0OOF9 DNEST:

293 OOF8 02 CCL

294 QO0FA C€C20D LD WORD(2) SHIFT LEFT.

295 DOFC F20D ADD WORD{2}

296 OOFE CAQOD ST WORDI2!

297 0100 BAQS DLD CNT(2) ;CHECK FOR 4 SHIFTS.

298 0102 8CFh JNZ DNFST

299 0104 C20D LD WORDI2) ADD NEW DATA.

299 0104 €296

299 0104 C208 LD WORD(2) ADD NEW DATA.

300 0106 BB . ~ ORE

3071 0107 §BOD' —HOD 5T WORDI{2]

302 0109 90DA JMP DATAL

302 0109 S6DA JMP DATAL

303 PAGE 'HEXNUMBBER TO SEGMENT TABLE'

305

306 : ‘HEX NUMBER TO SEVEN SEGMENT TABLE'

307 i‘
308

309 010B CROM:

310 0108 3F .BYTE NO

311 010C 06 BYTE NI

312 010D BB BYTE N2

313 O10E 4F BYTE N3

314 010F 66 .BYTE N4

315 0110 6D .BYTE N5

318 0111 7D .BYTE N6

31F D12

316 0111 7A -BYTE N6

317 0112 07 BYTE N7

2318 0113 7F BYTE N8

319 0114 67 BYTE NS

320 0116 77 BYTE NA

321 0116 7€ .BYTE NB

322 0117 38 BYTE NC

323 0118 5E BYTE ND

324 0119 79 BYTE NE

3256 011A 71 .BYTE NF

326 PAGE '"MAKE 4 DIGIT ADDRESS'

327 0118 ADR:

328
329
330
331

330

330

337

332

333

334

335

336

337

338

338

340

341

342
. 343
\ 344

345

346
/ 347
\ 348
349
350
357
352
353
354
355
356
357
358
359
260
361
362
363
364
365
366
367
368
369
370
371
372
373
374
a7s
376
377
378
3789
380
381
382
383
384
385
386

387
388
389
330
39
392

D11B
011D
011F

0121

0123
0125
0127
0129
0129
012A
012C
012E
0130
0132
0134
0136
0138
D13A
013C
0130
013F

0140
0140
0142
0143
0145
0148
0148
014A
0148
014D
014F
0151
0152
0153
0154
01565
01586
0158

can4
CAOS
AMDF
9C06
C400
CAOE
CAOC

02
C2oc
F20C
CADC
CZ20E
F20E
CAOQE
BAOS
8CEF
C20C
58
CAQC
3F

C401

C40B
31
Cz20D
D40F
01
C180
CAQD
C20D
1C
1€
1C
TG
01
C180
CADT

NOTEST:

DISPD:

PAGE

SHIFT ADDRESS LEFT ONE DIGIT THEN

SHIFT ADDRESS LEFT ONE DIGIT THEN
ADD NEW LOW HEX DIGIT,

HEX DIGIT IN E REGISTER.

P2 POINTS TO RAM

LDl 4 ;SET NUMBER OF SHIFTS.
ST CNT(2) _

ILD DDTA(2} ;CHECKIFFIRST.

JNZ NOTFST ;JMP IF NO.

bl © ;ZERQ ADDRESS.

ST ADHI2I

ST ADL(2)

coL ;CLEAR LINK

LD ADL(2) ;SHIFT ADDRESS LEFT 4 TIMES.
ADD ADL(2)

ST ADLIZI SAVEIT.

LD ADHIZ) :NOW SHIFT HIGH,

ADD ADHI(2)

ST ADH(2)

DLD CNTI2) ;CHECKIFSHIFTED 4 TIMES.
JNZ NOTFST ;JMPIF NOT DONE

LD ADLI2] ;NOW ADD NEW NUMBER,
ORE

ST ADL(2] :NUMBERIS NOW UP DATED.
XPPC 3

PAGE 'DATA TO SEGMENTS'

CONVERT HEX DATA TO SEGMENTS.
P2 POINTS TO RAM.
DROPS THRU TO HEX ADDRESS CONVERSION,

LDI HICROM) ;SET ADDRESS OF TABLE.
XPAH 1
Lol LICROM]
XPAL 1
Id ‘word62) GET MEMCRY WORD.
ANl OF
KAE
LD -128(1}) ;GET SEGMENT Di5P,
sT DL(Z) :SAVE AT DATA LOW.
LD WORDI(Z] [FIX HL
SR ;SHIFT HI TO LOW.
SR
SR
SR
XAE
LD -128{1) ;GET SEGMENTS.
ST DHIZ) ;SAVE IN DATA HL.

ADDRESS TO SEGMENTS

CONVERT HEX ADDRESS TO SEGMENTS,
P2 FOINTS TO RAM.

45

L ———

46

393
384
385
396
397
388
399
400
401
402
403
404
405
408
407
408
409
410
411
412
413
414
416
416
417
418
419
420
421
422
423
424
425
426
427

428
429
430
431

432
433
434
435
436
438
439
440
441

442
443
444
445
446
447
448
443
450
451

452
453
454
455
456
457
458
459
460
461

462
463

Q15A
015bA
01568
016D
015E
0160
0181

0161

0163
0185
0166
0168
0164
016C

016D ...

016E
016F
0170
0171

0173
0175
0176
0178
017A
017e
0170
BT
0181

0183
0183

0185
0185
0187
0189
0188
018C
018C
O1BE
0180
0192
0194
0186
0188
0188
01899
0188
018C
018E
01A0

€180
CADS
08

D480
3809
02

C400
CAD3
CB02
90DE

CEFE

C400
CAOB
C40D
35

C4FF
CA10
CADA
CaDg
C400
CADA
31

AATO
01

280
€880
8FDO

DISPA:

LOOPD:

SR

DONE:

DROPS THRU TO KEYBOARD AND DISPLAY.

LD
XPAH
LD

XPAL

LD
AN
XAE
LD
ST
LD
SR
SR
SR

XAE
LD
ST
CSA
ANI
JZ
CCL
LDI
ST
LD
JMP

LD

HICROM}
1
LICROM)
i

ADLIZ)
OF

JSET ADDRESS OF TABLE.

;GET ADDRESS.

JGET SEGMENTS.

ADLLIZ)
ADLI2)

;SAVE SEG OF ADR LL.

SSHIFT HI DIGIT TO LOW.

-12811})
ADLHI2]

JGET SEGMENTS

:CHECK IF DONE.

080
DONE

JCLEAR FLAG.

9]
D4i2}
@212)
LOCPD

@-212)

JZERO DIGIT 4
;FIX P2 FOR NEXT LOOP,

JFIX P2

PAGE 'DISPLAY AND KEYBOARD INPUT'

KYBD:

OFF:

LOOP:

CALL

XPPC 3

JMP COMMAND IN A GO =6 ,MEM =7 TERM =3

INEGO=22 MEM =23, TERM=27.

NUMBER RETURN HEX NUMBER IN E REG.

ABORT KEY GOES TO ABORT,
ALL REGISTERS ARE USED,

P2 MUST POINT TO RAM. ADDRESS MUST BE XXX0.

TO RE-EXECUTE ROUTINE DO XPPC P3.

LDI
5T
LDI
XPAH

LDI
5T
LDI
ST
LDI
5T
XPAL

ILD
XAE
LD
)
DLY

Q
CHAR(2)

H{DISP}
1

=]
ROW(2)
10
CNTI2]
o]
PUSHEDI2} ;
]

ROWI(2)
-128(2)

-128(11
0

;ZERD CHAR.
SET DISPLAY ADDRESS.
;SET ROW/DIGIT ADDRESS.

;SAVE ROW COUNMTER.
,SET ROW COUNT.

ZERO KEYBOARD INPUT.

;SET DISP ADDRESS LOW.
;UP DATE ROW ADDRESS.
JGET SEGMENT.

JSENDIT.
:DELAY EOR DISPLAY.

¥

507
508
508
510
511

h12

533

514
515
516
517
518
518
520
521

522
523
524
525
526
BZ7
528
529

01A2
0144
O1A8
01A8
0148
01AA
01AC
O1AE
O1B0O
01B2
01B4
0..B&
0188
01BA
01BA
01BC

01BE
01BE
01BF
gico
01c2
g1ca
01Ce
(0R [or)
01Cs
01CB
o1ce
071CE
0100
0101
01D3
0104
01DB
0106
0107
0109
01DA

01DC
07DE
01EOQ
01E2
01E4
01E4
01EB
OT1E7
01E7
01EB
GTEA

Q1EC
Q1EC
O1ED
OTEF
O1F]

01F2
01F4
01F4
Q1FE
01F7

01F9

C180
E4FF
9c4c

BADY
SCED
CZ20A
g80A
C208
9CD8
C20A
CAOB
a0D2

C208B
38CE

o1
40
D420
8C28
C480
508K
9C1B
C440
50
9C¢19
C40F
50
Fao/
01
Co80

01
croz
aF

9049

0AOS
0coD
elajaje]
OEGF

60
S0EF

60
F408
SGEA

80
E404
8808
3F

9091

58
CADA
S0AF

BACK:

CKMORE:

LD

KR

JNZ

bLD
JNZ
LB
JZ
LD
JNZ
LD
3
JMP

LD
JZ

PAGE

-1281(1)
OFF
KEY

CNT(2)
eloly
PUSHED{ 2}
CKMORE
CHAR(2)
OFF
PUSHED(2]
CHAR({2)
OFF

CHARI2]
OFF

GET KEYBOARD INPUT
;CHECK |F PUSHED.
+JUMP IF PUSHED.

JCHECK |F DONE.
JNO IF JUMP.
"CHECK IF KEY:

‘WAS THERE A CHAR?
;YES WAIT FOR RELEASE.
,NOSET CHAR.

;CHECK IF THERE WAS A CHAR.
;NO KEEF LOOKING.

COMMAND KEY PROCESSING

COMMAND

KEYRTM;

{37

NEG:!

CMND:

KEY:

ABRT:

XAE
LDE
AN
dNZ
LD
ANE
INZ
]
ANE
INZ
LD
ANE
AD
XAE
Lo

XAE
LD
XPPC
JMP

HYTE

XRE
JMP

XRE
ADI
JMpP

PAGE

XRE
XAl
JZ
XPPC

JMP

ORE
ST
dme

SSAVE CHAR.
\GET CHAR.
020 .CHECK FOR COMMAND
CMND :JUMP iF COMMAND.
080 :FIND NUMBER,
LT7 017
040
NEg JEORS
OF
7 IMAKE OFF SET TO TABLE,
PUT OFF SET AWAY .
S128(0) (GET NUMBER.
SAVE INE,
@213} FIX RETURN.
3 RETURN.
KYBD ALLOWS XPPC P3 TO RETURN.
04, 0B, 0C, 0D, 0, OE, OF
:KEEP LOW DIGIT
KEYRTN
(GET LOW
08 MAKEDIGITEOR 9.
KEYRTN
04 ‘CHECK IF ABORT
ABRT :ABORT.
3 JINE 23 =MEM,22=G0,27 = TERM
[INA7=MEM,6=060,3=TERM.
KYBD ALLOWS JUST A XPPCP3 TO
‘RETURN
:MAKE CHAR
PUSHEDI(2) ‘SAVE CHAR.
BACK

47

48

530 O01F9 C400 LDI H{ABORT
531 Q1FB 37 XPAH 3
532 O1FC CA43F LDI LIABORTI-1
633 01FE 33 XPAL 3
534 O1FF 3F XPPC 3 ;GO TO ABORT
535 PAGE ‘RAM SEDFF-
536
537
538 0000 DL = 0 :SEGMENT FOR DIGIT 1
539 0001 DH = 1 :SEGMENT FOR DIGIT 2
540 0002 D3 = 2 ;SEGMENT FOR DIGIT 3
541 0003 D4 = 3 ;SEGMENT FOR DIGIT 4
542 0004 ADLL = 4 JSEGMENT FOR DIGIT &
543 0005 ADLH = 5 \SEGMENT FOR DIGIT &
544 0006 ADHL = 5] JSEGMENT FOR DIGIT 7
545 Q007 ADHH = 7 ;SEGMENT FOR DIGIT 8
546 Qo008 DS = & ;SEGMENT FOR DIGIT 8
547 G008 CNT = 9 JCOUNTER.
548 000A PUSHED = 10 KEY PUSHED
548 0C08 BHAR 11
543 0COB CHAR = 11 JCHAR READ.
550 000C ADL = 12 'MEMORY ADDRESS LOW.
551 000D WORD = 13 :MEMORY WORD.
552 QO0OE ADH = 14 ;MEMORY ADDRESS HI.
5563 D06F = = 15 FIRST FLAG.
564 0010 ROW = 16 ;ROW COUNTER.
555 0011 NEXT = T JFLAG FOR NOW DATA.
bb6
557
558 0000 -END

samewne QERRORS IN ASSEMBLY "= "*
A ABORT ABRT ADH ADHH ADHL ADL ADLH ADLL
OFFD 0040 01F2 O00E 0007 0008 000C 0005 Q004
BACK CHAR CKMORE CMND CNT COMMANCROM D3 D4
0O1A8 000B 0O1BA OIEC 0003 O1BE 010B 0002 0003
DASH DATA DATAL DDTA DH DISP DisPA DISPD DL
0040 00DV OOER OQOOF QOO oDog G1bA 0140 0000
DONE DTACK E ERROR GO GOCK GOL GOOUT INIT
0183 009D OFFE 0g83 0089 007F 0073 0003 0DCO1
KEY KEYRTN KO KR KYBD LOOP LOOPD LT7 MEM
01F4 0Oi1D8 005C 0060 0185 0198 0181 01E4 0O0BB
MEMDN MEML NO N1 N2 N3 N4 NE NE
00A1 D0OC1 O03F 0006 00BB 0O04F 0086 006D 0QOVD
N8 NBY N9 NA NB NC NC NE NEXT
DO7F O1E7 0os7 0077 007C 0039 005 0078 0011
NOTEST OFF P1H P1L P2H B2L PUSHED RAM ROW
0129 018C OFF9 OFFA OFFB OFFC 000A OFDO 0010
SA 5B SCG 5D SE 5F 56 START WAIT
0001 0002 0004 0008 0010 0020 0040 0020 00586
WORD
000D
A798 0BAB

ADR
0118

Dg
0008

DNFST
DOF9

KE
0079

MEMCK
QOAD

N7
0007

NF
0071

s
OFFF

WCK
0061

Mathematical

The mathematical subroutines all take their arguments relative to
the pointer register P2. Pointer P3 is the subroutine calling register. All
of these routines may be repeated without reloading P3 after the
first call.

‘Multiply’ gives the 1 6-bit unsigned product of two 8-bit unsigned
numbers,

e.g. A=X'FF(255)

B=X'FF(255)

RESULT=X'FEO1 (65025).
‘Divide’ gives the 16-bit unsigned quotient and 8-bit remainder of a
16-bit unsigned dividend divided by an 8-bit unsigned divisor.

e.g. DIVISOR=X"05 (b)

DIVISOR=X'5768(22376)
QUOTIENT=X"117B (4475}
REMAINDER=X'01 (1).
‘Square Root’ gives the 8-bit integer part of the square root of a
16-bit unsigned number. |t uses the relation:
(n+1¥2—n?=2n+1,
and subtracts as many successive values of 2Zn+ 1 as possible from the
number, thus obtaining n.
e.g. NUMBER=X'D5F6 (54774)
ROOT=X'EA (234).
‘Greatest Common Divisor’ uses Euclid’s algorithm to find the GCD of
two 16-bit unsigned numbers; i.e. the largest number which will
exactly divide them both. If they are coprime the resultis 1.
e.g. A=X'FFCE (65486=478x137)
B=X'b9Ch (23701 =173x137)
GCD=X'89(137).

Multiply

: Multiplies two unsigned 8-bit numbers
; (Relocatable)

'

; Stack usage:

: REL: ENTRY: USE: RETURN:
; — Temp
AP2)-> 0} A A A
: 1 B B B
: 2 Result (H) Result (H)
' 3 Result (L) Result (L)
0000 A = 0
0001 B = 1
FEEE Temp = —1
0002 RH = 2
0003 RL = 3

49

0000
OF50
OFb2
OF54
OF56
OF58
OFb5A
OF5C
OF5D
OFbE
OF 60
OF62
OF64
0OF66
OF67
OF69
OF6B
OF 6C
OF6E
OF70
OF72
OF73
OF75
aF77

0000
OF80
OFB2
OF83
OF85

FFFF

0000
0001
0002

€200

C400
CAOQ0

Mult:

Nbit:

Shift:

Clear:

XPPC
JMP
LD
JMP

.END

Temp (2)

RH(2)
RL(2)
B(2)

B(2)
Clear
RH{2)
Al2)

RH(2)
RL(2)

RL(2)
Temp(2)
Nbit

Mult
RH(2)
Shift

Divide
: Divides an unsigned 1 6-bit number by
. an unsigned 8-bit number giving

. 1 6-bit quotient and 8-bit remainder.
: (Relocatable)

; Stack usage:

[(P2)->
Quot
DSOR
DNDH
DNDL

[

Div:

REL:
—1

0
Zh)
+i2

T T |

.=0F80

XAE
LDI
ST

ENTRY: USE: RETURN:
Quotient(l}

Divisor Quotient(H)

Dividend(H) Quotient(L)

Dividend(L) Remainder

—7

0

1

2

DSOR(2)

Q

DSOR(2) ;Now Quotient(H)

OF87
0FB89
OF 8B
OF8C
OF8D
OF 8F
OF90
OF92
0F94
OF96
OFg8
OF99
OF9B
OF8D
OF 9E
OFAD
OFA2
OFA4
OFAB
OFAB
OFA9
OF AB
OFAD
OFAF
OFB1
OFBZ
OFB4
OFB6
OFB8
OFBY

0F20
=

CAFF
C201
03
78
CAO1
1D
9404
AADO
90F3
C201

CAO1
cz202

78
CAOZ
C201
FCOO
CAO1
1D
9404
AAFF
90ED
€202

CAO2
C2FF
CADT

90Cs

0000

0000
0001
FFFF

0000
C400
CAFF

Subh: LD

Stoph: H B}

Subl: LD

Stopl: LD

Quotl(2)
DNDH(2)

:Quotient{L)

DNDH(2)

Stoph
DSOR(2)
Subh
DNDH(2)

:Carry is clear
DNDH(2) ;Undo damage !
DNDL(2)

DNDL{2)
DNDH(2)
0

DNDH(2)

Stopl

Quot (2) :
Subl |
DNDL{2)

DNDL(2)
Quot!2)
DNDHI(2)
3 ‘Return
Div

;Remainder

Square Root

: Gives square root of 16-bit unsigned number
; Integer part only. (Relocatable).

EStackusage:

: REL:
; —1
(AP2)-> 0
: +1
HI =
LO =
Temp =
.=0F20
SQRT: LDI
ST

ENTRY: USE: RETURN:
Temp

Number{H) Root(H)

Number(L) Root(L)

0

1

—1

X'00

Templ(2)

81

52

OF 24
OF 25
OF27
OF 29
OF 2A
OF 2C
OF 2E
OF 2F
OF 31
OF33
OF34
OF 36
OF38
OF39
OF38B
OF3D
OF 3F
OF41
OF43
OF45
OF46

OF48

OFFB

03
BAFF
F2FF
01
C4FE
F400

F201
CAOD1

F200
CAQO

9402
90E7
C400
CAOO
FAFF

CAO1

90D8

OF80

0000

Loop:

Exit:

XPPC
JMP

.=0FFB
.DBYTE

.END

Temp(2)
Temp(2)

X'FE
X'00

LO(2]
LO(2)

HI(2)
HI{2)

EXIT

LOOP

X'00

HI(2)

Temp(2)

LO(2)

3 :Return
SQRT ;For Repeat

OF80 :P2-> Number

Greatest Common Divisor

: Finds Greatest Common Divisor of two
: 1 6-bit unsigned numbers
: uses Euclid’s Algorithm. (Relocatable).

0000
0OF20
OF 21
OF 23
OF 25
oF27

0000
0001
0002
0003

03
€203
FAO1
CAO3

; Stack usage:

‘(P2)>

REL:

W =0

ENTRY: USE: RETURN:
A(H) AlH) 0]

AlL) AlL) 0

B(H) B(H) GCD(H)
BiL) BIL) GCD(L)

6]
1
2
3

BL(2)
AL(2)
BL(2)

OF4E

Swap:

BH(2)
AH(2)
BH(2)

Swap'

GCD

AL(2)

AL(2)

BL{2)
AH(2)

BH(2)
AH(2)
BH(2)

AL(2)
GCD

GCD

; Put carry in top bit

;Subtract again

:Get new AH(2)
:OR with new AL(2)
:Not finished yet
;Return

:For repeat run

53

54

Electronic

'Pulse Delay’ uses a block of memory locations as a long shift-register,
shifting bits in at the serial input SIN and out from the serial output SOUT
By varying the delay constants the input waveform can be delayed by up
to several seconds, though for a fixed block of memory the resolution

of the delay chain obviously decreases with increased delay

With the program as shown the shift-register uses the 128 locations
0OF80 to OFFF, thus providing a delay of 1024 bits.

The ‘Digital Alarm Clock’ gives a continuously changing display of the
time in hours, minutes and seconds. In addition, when the alarm time
stored in memory tallies with the actual time the flag ocutputs are taken
high. The time can be setin locations OF16, OF17, and OF18, and the
alarm time is stored in locations OF12, OF13, and OF14.

The program depends for its timing on the execution time of the
main loop of the program, which is executed 80 times a second, so this
is padded out to exactly 1/80th of a second with a delay instruction. The
delay constants at OF7F and OF8 1 should be adjusted to give the
correct timing.

‘Random Noise’ generates a pseudo-random sequence of 2'%-1 or
65535 bits at the flag outputs. If one flag output is connected to an
amplifier the sequence sounds like random noise. Alternatively, by
converting the program to a subroutine to return one bit it could be used
to generate random coin-tosses for games and simulations. Note that
the locations OF1E and OF1F must not contain 00 for the sequence

to start

Pulse Delay

; Pulse delayed by 1024 bit-times.
; (Relocatable). Uses serial in/out.

¢

0000 .=0F1F

OF1F Bits: S ef] :bit counter
0OF20 C40F Enter; LDI H{Scrat)

BE22 35 XPAH 1

0OF23 (€480 LDIL (Scrat)

OF25 31 Next: XPAL 1

OF 26 C408 LDI 8

OF28 C8F6 ST Bits

OF2A C100 LD (1) :Get old byte
OF2C @ 01 XAE ;Exchange
OF2D CDO1 ST @+ 1(1) ;Putback new byte
OF2F 19 Qutput: SIO :Serial 10

OF30 C400 LDI TC1

OF32 8F04 DLY TC2 ;Delay bits
OF34 B8EA DLD Bits

OF36 9CF7 JNZ QOutput

OF38 31 XPAL 1 ;:P1=0D00 Yet?

OR339
OF 38

' 0000
OF12
OF13

OF15
OF16
OF1A
OF1B
OF1C
OF1D
OF1E
OF20
OF22
OF23
\ 0OF25

0OF 26
0OF28
OF 28
OF 2B
; OF 2C
OF 2E
OF2F
OF 31
0OF32
OF33
OF35
OF37
OF39
OF3B
OF 3D
OF3F
OF41
OF43
OF45

9CEA
90E3

0000
0004

OF80
0000

TC1
TC2

Scrat

JMP

i

.END

Next

Enter

0 ;Bit-time

4 :Delay constants
OF80 .Start of scratch area

Digital Alarm Clock

;Outputs are held on when alarm
‘time = Actual time, i.e. for one sec.

010B
0DOO
0F0O0
OF10

Crom
Disp
Ram
Row

Time:

Speed:

Clock:

New:

Cs:

0108 ;Segment table

0DOO0 ;Display address

OFQO0

Ram+010
;Alarm time:hours
:Minutes
,Seconds
‘Not used
;Actual time

076 :Excess: Hours

040 :Minutes

040 ;seconds

020 (Speed

HtCrom)

3

LICrom)

3

H(Disp)

2

L (Disp) + 0D

2

H{Time)

1

LITime) + 4

1

b ;Loop count

Row

@—1(1)

0

(1)

+4(1)

Csi

Cs ;Equalize paths

Cont

(1)

b5

56

OF47
OF49
OF 4B
OF4C
OF4E
0OF50
OF52
OF54
OF56
OF57
OF58
OF59
OFBA
OF 5B
OF5D
OF &F
OF 61
OF63
OF6b
OF 67
OF69
OFBA
OF6C
OF6E
OF 6F
OF70
OF72
OF74
OF75
OF77
OF78
QF7A
OF7C
OF7D
OF 7E
OF80
OF82

OF1E

OF 20
OF22
0F23
OF 25

COFD
1F

C8FA
COFg

Cont: LD

Loop: LD

JMP

Alarm: LDl
NOP

Contin: CAS
9 LDI
IS DLY
JMP

.END

(1)
OF

—128(3) ;,Get segments
@+ 1(2) ;Write to display
040

00 :Equalize display
(1)

—128(3)

@+2(2) ;lLeaveagap
Row

Again

3

Row :Digitcount
0

@—1(1)

+4(1) ;Same time?

Row
Loop

Alarm ;Times tally

Contin

07 JAll flags on
;Pad out path
:Output to flags

OFD ;Pad out loop to
06 :1/1100-speed) secs.
New

Random Noise

; Relocatable

; Generates sequence 2115 bits long

.=0F1E
Line: =41
Noise: LD

RRL

ST

LD

:For randem number
:Must not be zero
Line

Line
Line+ 1

OF 27
OF 28
OF 2A
OF 2B
OF 2D
GF2E
OF 2F
OF 30
OF32
OF 33

RRL

CEL
ADI
RR
RR
RR
ANI
CAS
JMP

.END

Line+1
;Ex-or of bits 1 and 2
02 JInbit3
;Rotate bit 3 to
:Bit 7
087 ;Putitincarry and
:Update flags
Noise

b7

58

System

‘Single Step’, or SS, add the facility of being able to step through a
program being debugged, executing it an instruction at a time, the next
address and op-code being displayed after each step. SS is set up by
storing the start address of the user program at OFF7 and OFF8. Then
‘GO’ing to SS will cause the user program’s start address and first
instruction to be displayed.

Pressing '‘MEM’ then executes that instruction and displays the next one.
Thus one can step through checking that jumps lead to the correct
address and that the expected flow of control is achieved. if, in between
steps, 'ABORT' is pressed, control is returned to the monitor and the
contents of the registers from that point in the execution of the user
program may be examined in memory where they are stored between
steps:

OFF7 PCH

} Program Counter
OFF8 PCL
OFF9 P1H

} Pointer 1
OFFA PAL
OFFB P2H

Pointer 2

OFFC P2L
OFFD A Accumulator
OFFE E Extension Register
@EEE S Status Register

'GO'ing to the start of SS again will take up execution where it was left
off. The values of the registers are taken frem these locations so it is
possible to alter themn between steps.

The additional circuitry needed to implement the single step facility
is shown in Fig. 1. A CMOS counter, clocked by the NADS signal from
SCIMP, is reset from the SS program by a pulse at FLAG-0. After
B NADS pulses it puts SENSE—A high; this will be the instruction fetch of
the nextinstruction in the user’s program, and an interrupt will be
caused after that instruction has been executed. The interrupt returns
control to SS ready for the next step. A TTL binary counter could be used
in this circuit instead.

The '‘Decimal to Hex' conversion program displays in hex the decimal
number entered in at the keyboard as it is being entered. Negative
numbers can be entered too, prefixed by "MEM'.

e.g. 'MEM' ‘1" '6" "7’ displays 'FFB63'

‘'TERM’ clears the display ready for a new number entry.

Any of the programs marked relocatable can be moved, without
alteration, to a different start address and they will execute in exactly

the same manner. The program 'Relocator’ will move up to 256 bytes
ata time from any start address to any destination address.

These two addresses and the number of bytes to be moved are

specified in the 5 locations before the program. Since the source
program and destination area may overlap, the order in which bytes are
transferred is critical to avoid overwriting data not yet transferred, and so
the program tests for this.

Fig. 1

39
hiims MC14024
1
Clock
19 2
FLAG-0 Reset
6 04 Vb 14
+ 5V
-
17 vss
SENSE-A
e
T e L A ___J
SC/IMP =
[]
Single Step
: Adds a facility for executing programs a
; Single instruction at a time, displaying
; The program counter and op-code
: After each step.
- To examine registers, abort and
; use the monitor in the usual way.
: To continue, go to OF30.
OFF7 P3H = OFF7 ;For program to be
OFF8 Pal = OFF8 ;Single-stepped
OFF9 P1H = OFF9 :Save user's registers:
OFFA PTL = OFFA ;lcan be examined or
OFFB P2H = OFFB ;altered between
OFFC P2L = OFFC ;steps from monitor)
QFFD A = OFFD
OFFE E = OFFE
OFFF S = QFFF
ooocC ADL = 12
000E ADH = 14
000D Word = 13
OF00 Ram = OF00
0140 Dispd & 0140
:Program enter here
0000 .=0F90
OF80 (C86C SS: &I A
0F92 CO065 LD P3L ;Pick up user's program
QOF24 33 XPAL 3 ;Address
OF95 COB1 LD P3H
QFES7 13y XPAH 3
OF98 C7FF LD @—1(3) ;Ready forjump
OF9A 9025 Ret

JMP

)

58

60

OFSC
OF9E
OF9F
OFA1
OFAZ
OFA4
OFAB
OFA7
OFAS
OFAA
OFAC
OFAD
OFAF
0FBO
OFB2
OFB3
OFB5
OFB6
OFB8
OFBA
OFBB
OFBD
OFBE
OFBF
OFCO

OFC1
OFC3
OFC4
OFCB
OFC7
OFCS
OFCA
OFCC
OFCD
OFCF
OFD1
OFD2
0OFD4
OFDB
OFD7
OFD9
OFDB
OFDD
OFDF
OFE1
OFE2
OFE4
OFEG
OFE8
OFES
OFEB
OFED

Step:

Ret:

LD ADH(2)

XPAH 3

LD ADL{(2)

XPAL 3

LD @—1(3)

LD E ;Restore user's context:

XAE

LD P1L

XPAL 1

LD P1H

XPAH 1

LD P2L

XPAL 2

LD P2H

XPAH 2

LDI 01 ;Flag O Resets counter

CAS ;Putit high

LD S

ANI YRR ;Put flag O low

CAS ;Start counting nads

LD A

IEN

NOP :Pad outto 8

NOP

XPPC 3 :Go to user's program
:Here on interrupt after one instruction

ST A ;Save user's context

LDE

ST E

CSA

ST S

XPAH 1

ST P1H

XPAL 1

5T P1L

LDI H{Ram) ;SetP2->Ram

XPAH i

SO P2H

LD L(Ram)

XPAL 2

ST P2L

LD @1(3)

LD (3) :Get op-code

ST Word(2)

LDI H(Dispd)

XPAH 3

ST ADH(2)

ST P3H :So can enter via 'SS’

LDI L(Dispd)—1

XPAL 3

ST ADL(2)

ST P3L

XPPC 3 :Go to display routine

No:

OFEE
OFFO

0000
OF50
OF52
OF54
OF56
OF58
OF5A
OF5B
OF5D
OF5E
OF5F
OF61
OF63
OF65
OF66
0F68
OF69
OFBA
OF6B
OF6C
OF6D
OF6E
OF6F
OF71
OF73
OF74
OF76
OF78
OF79
OF78
OF7C
OF7E

90AC JMP Step :Command return so step
90FB JMP No :Number return illegal
0000 .END
L]
Decimal to Hex

: Converts decimal number entered at

: keyboard to hex and displays result

- 'MEM' =minus, 'TERM’ clears display

. (Relocatable)
000C ADL = oc
000E ADH = OE
OFQ0 Ram = OF00
015A Dispa = 015A
0011 Count = 011
0012 Minus = 012
0013 Ltemp = 013

.=0F50

C400 Dhex: LDI 0
CA12 ST Minus(2)
CAQE ST ADH(2)
CAQC ST ADL(2)
c401 Disp: LDI H{Dispa)
37 XPAH 3
C459 LDI L(Dispal-1
33 XPAL 3
3F XPPC 3
9028 JMP Comd :Command key
C40A LDI 10 :Number in extension
CA11 Sl Count{2) ;Multiply by 10
03 SCL
c212 LD Minus(2)
01°- XAE
60 XRE
78 CAE
01 XAE
40 LDE :Same as: LDI O
78 CAE ; CADO
01 XAE
9002 JMP Digit
C213 Addd: LD Ltemp(2) ;Low byte of product
02 Digit: CEL
F20C ADD ADL(2)
CA13 =il Ltermp(2)
40 LDE ;High byte of product
F20E ADD ADH(2)
01 XAE ;Put back
BA11 DLD Count(2)
9CF1 JNZ Addd

61

62

OF80
0F81

0F83
OF85
0F87
OF89
OF88B
OF8D
OF8F
OF91

OF93
OFFB

0000

OF1B
OF1D
OF1F

OF20
0OF22
0F23
OF24
0F26
OF28
OF2A
0F2C
OF2D
OF2F
OF31

OF32
0OF33
0F35
0OF386
OF27
OF39
OF3B
OF3C
OF3D
OF3F

40

CAQE
€213
CAOC
90CF
E403
98C3
CAFF
CA12
90C5

OF00

0000

FF80

LDE

ST Adh(2)

LD Ltempi2)

ST Adl(2)

JMP Disp

Comd: XRI 3

JZ Dhex

LDI X'FF

ST Minus(2)

JMP Disp

.=0FFB

.DBYTE Ram

.END
Relocator

;Moves block of memory
;'From’ = source start address
:'To’ =destination start address
‘Length” = No of bytes
:(Relocatable)

E 2

= —128
.=0F1B

From: e

To: =.+2

Length: =.+1

Entry: LDI (6]
XAE
SCL
LD To+1
CAD From + 1
LD To
CAD From
SRL
4P Fat
LD Length
XAE

Fat: CCL
LD From+ 1
ADE
XPAL 1
LD From
ADI 0
XPAH .
CCL
LD To+1
ADE

:Display result
'TERM'?
-Restart if so
iMust be ‘MEM'’

;SetP2->Ram

:Extension as offset

;'From’ greater than ‘To’

:Start from end

OF40
OF41

OF43
OF45
OF46
OF47
OF48
OF4A
OF4cC
OF4D
OF4E
OFbO
OF52
OF54
OF586

Up:

Move:

XPAL

ADI
XPAH
CCL
LDE
JNZ
LDI
CAE
XAE
LD
Sk
DLD
JNZ
XPPC

.END

2

To
0
2
Up
2
;i.e. subtract 1
:Putitinext.
E(1)
@E(2) :Move byte
Length
Move
a ;Return

63

64

Serial Data Transfers with SC/MP-ii

This application note describes a method of serial data input/output (1/Q)
data transfer using the SC/MP-II (ISP-8A/600) Extension Register. All
data 1/O is under direct software control with data transfer rates between
110 baud and 9600 baud selectable via software modification.

Data Output

Data to be output by SC/MP-Il is placed in the Extension Register and
shifted out through the SOUT Port using the Serial Input/Qutput
Instruction (S10). The Delay Instruction (DLY), in turn, creates the
necessary delay to achieve the proper output baud rate. This produces a
TTL-level data stream which can be used as is or can be level-shifted to an
RS-232C level. Numerous circuits are available for level shifting. As an
example, either a DS 1488 or an operational amplifier can be used.
Inversion of the data stream, if needed, can be done either before the
signal is converted or by the level shifter itself,

Data Input

Data input is received in much the same way as data is output. The Start
Bitis sensed at the SIN Port and then received using the SIO Instruction
and the DLY Instruction. After the Start Bit is received, a delay into the
middle of the bit-time is executed. the data is then sensed at each full bit-
time (the middle of the bit) until all data bits are received. If the data is at
an RS-232C level, it must be shifted to a TTL level which SC/MP-Il can
utilize. This can be done with either a DS 1489 or an operational
amplifier, Ifinversion if the data is necessary, it should be done before itis
presented to the SIN Port.

Timing Considerations

Using the |/O routines presented in this application note, the user will be
able to vary serial data transmission rates by simply changing the delay
constants in each of the programs. Table 1 contains the delay constants
needed for the various input baud rates. Table 2 contains the delay
constants needed for the various output baud rates. Figure 1 is the outline
used for Serial Data Input. Figure 2 is the routine used for Serial Data

Qutput.
Baud Bit
Rate Time HBTF | HBTC BTF BTC
110 9.09 ms |X'C3 X'8 X'92 X1
300 333 ms |X'29 |X'3 X'BE | X'6
600 1.67 ms [X'BA X' X'20 X'3
1200 0.833ms [X'BB X0 X'81 X1
2400 0.417ms [X'H2 X'0 X'B2 X'0
4800 0.208ms |X"1F |X'0 X'4A | X0
6400 0.156ms [X'12 X0 X'30 X'0
9600 0.104ms |X'B X'0 X'16 X'0
Table 1. Input Delay Constants (4 MHz SC/MP-11)

-

Baud Bit

Rate Time BTF1| BTF2| BTC
110 9.09 ms | X'91 X8B6- | X1
300 e, mg BE Xe3l s
600 167 ms & TE X114 | X'3
1200 |0.833ms | X'81 X'76 | X'1
2400 0.417ms | X'B2 X'A7 | X'0
4800 0.208ms | X'49 [X'3E | X'0
6400 0.156 ms | X'2F X'24 | X0
9600 0.104ms [X'15 [X'A X'0

Table 2. Output Delay Constants (4 MHz SC/MP-II)

NOTES:

1. The Serial Data Output routine requires that the bit-count (BITCNT)
in the program be set to the total number of data bits and stop bits to
be used per character.

2. Two stop bits are needed for the 110 baud rate; all other baud rates
need only one stop bit.

Do~ ma bWk =

Serial Data Input

Title Recv, 'SERIAL DATA INPUT'

0001 P1=1
0002 P2=2
0003 P3=3

; Routine is called with a "' XPPC P3"' instruction

. Data is received through the serial 1/Q Port.

: Before executing routine, Pointer 2 should point
; to one available location in R/W memory for a

; counter.
; On return from routine, data received will be in the
; Accumulator and the Extension Register.

: Delay Constants, user defined for desired Baud rate.

: The following example is for 1200 Baud;

26 0000 C408
27 0002 CAQO

Q0BB HBTF =
0000 HBTC -
0081 BTF =
0001 BTC =
Search:
LDl
Sl

Again:

08B
0
081
01

08
(P2)

. Half Bit time, Fine
: Half Bit time, Coarse
: Full Bit Time, Fine
: Full Bit time, Coarse

; Initialize Loop Counter
; Save in memory

65

66

50

0004 C400 LDI 0 :Clear Accumulator

0006 01 XAE : Clear E. Reg.
0007 19 S10 :Look for Start Bit
0008 40 LDE ; Bring into Acc.
0009 9CF9 JNZ Again ; If not zero, look again
000B C4BB LDI HBTF ; Load Acc Half Bit time
000D 8F00 DLY HBTC; Delay Half Bit time
O00F 18 SI0 ; Check Input again to
0010 01 XAE : be sure of Start Bit
0011 9CF1 JNZ Again ; If notzero, was not
0013 C400 LDI 0 :start B
0015 01 XAE
Loop:

0016 C481 LDI BTF ; Load Bit time Fine
0018 B8FO01 DLY BTC ; Delay one Bit time
0001A19 SIO ; Shiftin Data Bit
001B BAOO DLD (P2) : decrement loop counter
001D 9CF7 JNZ Loop ;Test for done
001F 40 LDE : Done, put datain acc.
0020 3F XPPE P3

0000 END

AGAIN 0004 BTC 0001 BTF 0081 HBTC 0000

HBTF

P3

OO~-NDO S Wh—

OOBE: LU OU16: Fil 0001 P2 0002
0003 SEARCHOO0O0O*®

Serial Data Output

TITLE XMIT, 'SERIAL DATA OUTPUT’

0001 P1=1
0002 P2=2
0003 P3=3

: Routine is called with a "' XPPC P3"" instruction.
: Data is transmitted through Serial |/O Port.

; Before executing subroutine, pointer 2 should

. point to one available byte of RIW memory for a

, counter.

; Upon entry, character to be transmitted must be in
: the accumulator.

. Delay constants, user defined for desired baud rate.
; The following example is for 1200 baud:

0081 BTF1 = 081 : Bit time Fine, first loop
0076 BTF2 = 076 ; Bit time Fine, second loop
0001 BTC = 01 : Full Bit time, Coarse

: Character Bit-count. This should be set for the
: desired number of Data Bits and stop Bits.

24

25

26

27 0009 BITCNT =
28

29 Start:

30 0000 01 XAE
31 0001 C400 LDI
32 0003 03 XAE
33 0004 19 SIO
34 0005 01 XAE
36 0006 C481 LD
36 0008 BFO1 DLY
37 ©0QO00A C409 LDI
38 000C CAQ00 ST
39 Send:

40 OQ0OE 19 SIo
41 QO0O0F 40 LDE
42 0010 DC8BO ORI
43 0012 01 XAE
44 (0013 C476 LD
45 0015 8F01 DLY
46 0017 BAOQ DLD
47 0019 9CF3 JNZ
48 001B 3F XPPC
49

50 0000 END
BITCNT 0009 BTC 0001
P1 0001* P2 0002
START 000*

9 : 8dataand 1 Stop Bit

; Save data in E. Reg.
0 : Clear acc.

: Putdata in acc, clear E.

. Send Start Bit
: Putdatain E. Reg.
BTF1 : Load Bit time Fine

BTC ; Wait one Bit time
BITCNT ; Setloop count for data
(P2} ; and Stop Bit(s). Save

; In count.

;- Send Bit

080 : SetlastBitto 1
: Put back in E. Reg.
BTF2 ; Load Bit time Fine

BTC : Delay one Bit time
(P2) ; decrement Bit counter
Send . If not done, loop back
P3 ; otherwise, return

BTF1 0081 BTF2 0076
P3 0003 SEND OOOCE

67

- Games

The first two games are real-time simulations which provide a test of
skill, and they can be adjusted in difficulty to suit the player’s ability. The
last two games are both tests of clear thinking and logical reasoning, and
in the last one you are pitted against the microprocessor which tries
to win.

'Moon Landing’ simulates the landing of a spacecraft on the moon.

The displays represent the control panel and give a continuously changing
readout of altitude (3 digits), rate of descent (2 digits), and fuel remaining
(1 digit). The object of the game is to touch down gently; i.e. to reach zero
altitude with zero rate of descent. To achieve this you have control over
the thrust of the rockets: the keys 1 to 7 set the thrust to the
corresponding strength, but the greater the thrust the higher the rate of
consumption of fuel. When the fuel runs outan 'F’ is displayed in the

fuel gauge, and the spacecraft will plummet to the ground under the force
of gravity.

On reaching the moon's surface the display will freeze showing the
velocity with which you hit the surface if you crashed, and the fuel
remaining. Pressing 'TERM’ will start a new landing.

The speed of the game is determined by the delay constants at OF38
and OF3A_ The values given are suitable fora 1 MHz clock and they
should be increased in proportion for higher clock rates. The initial values
for the altitude, velocity, and fuel parameters are stored in memory at
OF14 to OF1F and these can be altered to change the game;

‘Duck Shoot' simulates ducks flying across the skyline. At first there is
one duck, and it can be shot by hitting the key corresponding to its
position: 7 =leftmost display, O = rightmost display. If you score a hit the
duck will disappear; if you miss however, another duck will appear to
add to you task.

The counter at OF 1D varies the speed of flightand can be increased
to make the game easier.

In "Mastermind’ the player tries to deduce a ‘code’ chosen by the
machine. The code consists of four decimal digits, and pressing ‘'TERM’
followed by"MEM' causes the machine to choose a new code. The
player makes guesses at the code which are entered at the keyboard.
Pressing ‘GO’ then causes the machine to reveal two pieces of
information, which are displayed as two digits:

(1) The number of digits in the guess which are correct and in the

right position, (known as ‘Bulls’) and

(2] the number of digits correct but in the wrong position, (known

as 'Cows').

For example, suppose that the machine’s code was '6678'. The
following guesses would then score as shown:

1234 0—0 1278 2—-0

7812 0—2 7687 1—2
Subsequent guesses are entered in a similar way, and the player tries
to deduce the code in as few attempts as possible.
‘Silver Dollar Game' is traditionally played with a number of coins which
are moved by the players in one direction along a line of squares. In his
turn a player must move a coin to the right across as many unoccupied

68

squares as he wishes. The player first unable to move—when all the
coins have reached the right-hand end of the line—loses, and the other
player takes the coins!

In this version of the game the coins are represented by vertical bars
moving along a dashed line. There are five coins numbered, from right
toleft, 1 to 5. The player makes his move by pressing the key
corresponding to the number of the coin he wishes to move, and each
press moves the coin one square along to the right. The machine plays
against you, and pressing "MEM’ causes it to make its move. Note that
the machine will refuse to move in its turn unless you have made a legal
maove in your turn. ‘'TERM' starts a new game.

The machine allows you to take first move and it is possible to win
from the starting position given, though this is quite difficult. The five
numbers in locations OF 13 to OF 17 determine the starting positions of
each coin and these can be altered to any other values in the range 00 to
OF provided they are in ascending order..

Moon Landing

; Land a rocket on the moon
; Display shows altitude-velocity-fuel
: Keys 1-7 control the thrust

0005 Grav

= 5 :Force of gravity
0Doo Disp = 0DOo0 :Display address
0108 Crom = 0108B ;Segment table
FF80 E =5 — 128 :Extension as offset
FFE3 Row = - Ret-OF03 ;Ram offsets
FFE4 Count = Ret-OF04
‘Variables

0000 =QF05

OF05 Save: =.+1

OF06 H1: = +1

QF07 Bl =41

QF08 Alt: = +3 Altitude

OFOB Vel: =.+3 :Velocity

OFOE Accn: =, +2 - :Acceleration

OF10 Thr: =2 ‘Thrust

0OF12 Fuel: =.+2 ;Fuel left

- :Original values

0OF14 08 Init: BYTE 08,050,0;Altitude =850
50
00

OF17 99 BYTE 099,080,0;Velocity = — 20
50 1
00

OF1A - 99 .BYTE 099,098 ;Acceleration=—2
98

OF1C 00 BYTE 0,02 ;Thrust=2
02

OF1E 68 .BYTE 05b8,0 ;Fuel=5
(o]0}

69

:Subroutine to display AC as two digits

QE20 BE Ret: XPPC 2 P2 contains OF20
OF21 CBE3 Disp: ST Save
0F23 C401 LDI H{Crom)
GE25, 36 XPAH 1
OF26 CBDF ST H1 ;Run out of pointers
0F28 C40B LDI L{Crom)
GEZA V31 XPAL 1
OF2B C8DB ST L1
OF2b CoD7 LD Save
BFE2FE 02 CCE
OF30 D40OF ANI OF
QE324 04 Loop: XAE
OF33. (CEE0 LD E(1)
AFE35. CFOi ST @+ 1(3)
OF37 C400 LDI 0 " :Delay point
OF39 8F02 DLY 2 ;Determines speed
QF3B C0C9 LD Save
OEZE: \S1E SR
GFE3E " 8 SR
OE3E e SR
OFE40 1C SR
0F41 01 XAE
0F42 06 CSA
0F43 03 SEL
OF44 94ED JP Loop ;Do it twice
0F46 €400 LDI 0
OF48 CFO1 ST @+ 1(3) ;Blank between
OF4A COBB LD H1 :Restores P1:
gFrac 35 XPAH 1
OF4D COB9 LD 1]
GE4E & XPAL i
OF50 90CE JMP Ret -Return
;Main moon-landing program
QOF52 CA40F Start: LDI H{lnit}
0OF54 35 XPAH 1
OF56 (C414 LDI L{Init)
OEbLY 31 XPAL 1
OF58 C40F LDI H(Ret)
OFBA 386 XPAH 2
OFBB €420 LDI L(Ret)
OFBD 32 XPAL 2
OFBE C40C LDI 12
0OF60 CAE4 ST Count(2)
OF&2 ICG1GB Set: LD +1 11D
OF64 CDEE S @—1(1)
OF66 BAE4 DLD Count(2)
OF68 9CF8 JNZ Set
:Main loop
OFBA C40C Again: LDI H(Displ—1
QF8C 37 XPAH 3
OF6D C4FF LDI L(Disp}—1
OFB6F 33 XPAL 3 .
OF70 C401 LDI 1 :
OF72 CAE4 ST Count{2) ‘

OF74
0F76
OF78
OF7A
OF7C
OF7E
OF80
OF81
0OF83
OF 85
OF87
OF 8y
OF 8B
OF8D
OF 8F
OF 81
0F93
OF 85
OF97
0OF98
OF 9B
OF 8D
OF 8E
OFAD
OF A2
OF A4
OF A5
OFA7
OFAS

OF AA

OFAC
OF AE
OF BO
OF B2
OF B4
OF B5
OFB7
OF B9
OF BB
7 OFBC
" OFBF
OFC1
OFC2
OF C4
OFC6
OFC8
OFC9
OFCB
OFCC
OFCE
OF DO
OF D2
OFD3

C506
9404
C504
8032
c402
CAE3

C5FF
ES02
€900
BAES3
9CF6

Twice:

Dadd:

Pos:

D sub:

Off:

Accns:

Dispy:

Paosv:
Sto:

LDI
SCL
CAD
SCL
DAl
JMP
LD
XPPC

@+6(1) ;P1->Vel+2
Twice :Altitude positive?
@+4(1) ,P1->Thr+1

Off ;Don’t update

2 ;Update velocity anc
Row(2} ;Then altitude....

@—1(1)

+211)

1)

Row(2)

Dadd

+2(1)

Pos :Gone negative?
X899

@—11(1)

(1)

Count(2)

Twice

@12(1) ;P1->Akl
Row(2) ;Row:=1

@—1(1) ;Fuel
—2(1) :Subtract thrust
(1)
Rowl(2)
Dsub

;P 1-> Fuel now
Off :Fuel run out?
Accns
0

—1{1) :Zero thrust
—A)

098 —Grav

—3(1) -Acen+ 1
X'89

O 2

—4(1) ‘Accn

(1} :Fuel

2 :Display it OK
—7(1) Vel

Posv

X'99

—6(1) Vel+1

0

STO

—6(1) ;Vel+1

2 :Display velocity
—9(1) Alt+1

71

72

OF D5
OF DB
OFD8
OF DA
OF DB
OF DD
OFDF
OFE1
OFE3
OFEb5
OF E7
OFE9
OFEB
OFED
OFEF
OFF1
OFF2
OFF4

0000
OFOF
OF10
0OF11

OF12
OF 14
OF15
OE1
OF18
OF1A
OF1C
OF1E
OF 20
OF22
OF24
OF 26
OF27
OF 28
OF 2A
OF2C

3E
C7FF
CHF6

C40A
CAE4
C7FF
940A
E4DF
9A31
BAE4
9CF4
9249
c109
9803

C909
9249
0000

C40D
35
C400

C401
C8F4
C410
C8F1
C400
C8EE
c408
01
COE7

C8E4
9404

Toil:

Back:

LD

Jz
XPAL
St
JMP
END

2 ;Display it
@—1(3) ;Getnd of lank
@—10(1);P1-> Alt now
2

10

Count{2)

@—1(3) ;Key pressed?
Press Key 0-77

X'DF :Command Key?

Start{2} ;Beginagainif so
Count{2)

Tail

Again(2) ;Another circuit
+9(1) ;Thr+1

Back :Engines stopped?
T :Which row?
+9(1) :Set thrust

Again(2) ;Carry on counting

Duck Shoot

; Shoot Ducks flying display
; By hitting key with number corresponding
; To their position: 7 = Leftmost,

; 0 =Rightmost.
. If you miss, another duck appears
; (Relocatable)
Duck = 061 ;Segment pattern
Disp = oDoo :Display address
= OFOF
Row: =4 :Bits set =ducks
Count: .=.+1
Sum: = +1 :Key pressed
Shoot: LDI HiDisp)
XPAH 1
LDl L{Disp)
XPAL 1
LDI 1 'Start with 1 duck
ST Row
React: LDI 16 :Speed of flight,
&T Count :Smaller = harder
LDI 0
ST Sum
Shift: LDI a8 ‘Move ducks this time
Ndig: XAE
LD Row
RR
ST Row
JP No

B N — v R TR SRR " WS-

.-

OF2E C461 LDI Duck

OF30 8002 JMP Go
0F32 C400 No: LDI 0] :No duck
OF34 (980 Go: ST —128(1) ;E as offset
0F36 8FO1 DLY 01 ;Shine digit
0OF38 CODB LD Sum
OF3A 39COE JNZ Nok :Key already pressed
OF3C C180 LD —128(1) ;Testforkey
OF3E E4FF XRI OFF
OF40 9808 JZ Nok ‘No key
OF42 C8CE 5T Sum
OF44 COCA LD Row
OF46 E480 XRI 080
OF48 CBCB ST Row ;Change top bit
OF4A 40 Nok: LDE
OF4B 03 SCL
OF4C FCO1 CAl 1 :Subtract 1
OF4E 94D6 J2 Ndig ;Do next digit
OF50 B8BF DLD Count
OF52 9BCS8 JZ React ;Start new position
OF54 C407 LDI 7
OF56 90CE JMP Ndig ;Another sweep
0000 .END
L]
Mastermind
OFO0 Ram = OF00
0DOO Disp = 0DOo0 ;Display address
0108B Crom 010B ;Hex to segment table
0118 Adr 011B ;'Make 4 digit address’

015A Dispa 015A ;' Address to segments’

ariables in RAM

<)

0000 DI

= 0
0002 D3 = 2
0004 Adll = 4
000C Adl — 12
000E Adh = 14
000F Ddta = 15
00710 Row = 16
0011 Next = 17
0014 Key = 20
| Begin at OFIC
G000 .=0FIC
OF1C Cc400 Start: LDI 0
OEIE CHED ST ADL
OF20 CB8ED ST ADH
OF22 32 XPAL 2
OF23 CA40F LDI OF
OF25 386 XPAH 2
2 Choose random number
OF26 C401 LDI H(Crom)

OF28 37 XPAH 3

74

OF 29
OF 2B
OF2C
OF 2E
OF 30
OF32
OF33
OF35
0OF 36
OF37
OF39
OF 3B
OF3D
OF 3F
OF40
0OF 42
0OF44
OF46
0OF 48
OF4A
OF 4B
0OF4D
OF4E
0OF b0
OF52

OF54
OF 58
OFb8
OF5A
OF5C
OFBE
OF bF
OF61
OF62
OF64
OF6b
OF66
OF68
OF69
OF6B
OF6D
OF6F
0F70
OF71
OF73
OF75
OF77
OF79

OF78B
QF7D
OF7F
OF81

No Key:

Incr:

Clear:

Nchar:

Comd:

LDI L{Crom)

KPAL 3

LDI 04

ST Row(1)

LDI Hidigits)

XPAH 1

LDI L{Digits)

XPAL 1

sCL

LD +4(1)

DAl 080

ST +4(1)

ANI OF

XAE

LD —128(3)

8T @+1(1)

DLD Row(2)

JNZ Incr

LDI H(Disp)

XPAH 1

LDI L(Disp)

XPAL 1

LD 3(1) [Key pressed?
XRI OFF

JZ No key

Enter your guess

LDI OFF

ST Ddtal2)

LDI 0

ST DL(2)

Sk D3(2)

CeL

LDI H{Dispa)

XPAH 3

LDI L{Dispa)—1

XPAL 3

XPPC g ;Jump to subroutine
JMP COMD :Command key return
LDE ;Number key return
ADI OF6

JP Nchar ;lgnore digits > 9
LDI L{Adr)—1

XPAL 3

XPPC 3

JMP Blank :Get next digit
XRI 03 (term?

JzZ Start{2) ;lf so—new game
XRI 06 :Go?]
JNZ Clear ;lgnore if not
Work out answer to guess

LDI L{Crom)

ST DL(2)

ST D3(2)

LDI HiKey)

| R —

@F83 3b XPAH 1

QF84 C414 LDI LiKey)
OF86 31 XPAL 1
OF87 C480 LDI 080
0F89 01 XAE
OFBA (€404 LDI 04 :No. of digits
OF8C CA11 ST Next(2)
OFB8E CI1FO Bull 2: LD Adll-Key(1)
0OF90 EBO1 XOR @+1(1)
QF92 g8cCocC JNZ Nobul
OFg4 AA02 ILD DH(2)
0OF96 CI1FF LD —1{1)
OF88 b8 ORE ;Set negative
OF99 C9FF ST —1{1)
OF8B CI1EF LD Adll-Key-11(1)
OF9D 58 ORE
OF9E CB8SEF ST Adll-Key-11(1)
OFAQ BAT1 fBobul: DLD Next(2)
OFA2 9CEA JNZ Bull 2
OFA4 C404 Cows: LDI 04
OFAB CA11 St Nexti2) ;P71 pointstoKey+ 4
OFA8 C404 Nerow: LDl 04
OFAA CA10 ST Row(2)
OFAC C40F LDI 04
OFAA CA10 ST Row(2)
OFAC C40F LDI HiAdll)
QFAE 37 XPAH 3
OFAF C408 LDI LiAdI + 4
OFBT 33 XPAL 3
OFB2 CBFF LD @—1(1)
‘OFB4. 940A JF Try :Already counted as bull?
OFB6 BA11 Nocow: DLD Next(2) Yes
OFB8 9CEE INZ Nerow
OFBA 9013 JMP Finito
OFBC BA1Q Notry: DLD Row(2)
OFBE 98F6 JZ Nocow
OFCO C100 Try: LD (1)
OFC2. EVEE XOR @—1(3) :Same?
OFC4 9CF6 JNZ Notry
OFCB AAQO0 ILD DL(2)
OFC8 (€300 LD (3)
QFCA 58 ORE
OFCB CBOO S (3)
OFCD 90E7 JMP Nocow
: Now unset top bits of Key
OFCF C404 Finito: LDI 04
OFD1 CA11 ST Next(2)
OFD3 - C100 Unset: LD (1)
OFD5 DA47F ANI D7F
OFD7 CDO1 ST @+1(1)
OFD9 BA11 DLD Next{2)
OFDB 9CF6 JNZ Unset ;All done?

75

76

OFDD
OFDF
OFEO
OFE2
OFE3
OFEbL
OFE7
OFE9
OFEA
OFEC
OFEE
OFFO
OFF2

0000

OF12
@F13
OF14
BELS
OF16
OF17

CF18

OF1E
OF28
OF 2A
OF 2B
OF 2D
OF 2E
OF30
OF31
OF33
OF34
0F36
OF38
OF 3A
OF3C

;Set up segments of result

C401 LDI H{Crom)
356 XPAH 1
C200 LD DLi2) ;L{Crom) + Cows
31 XPAL 1
C100 LD (1) ;Segments
CAOQ ST DL(2)
C202 LD D3(2) ;L{Crom) + Bulls
31 XPAL 1
C100 LD (11 ;Segments
CAQ2 ST D3(2)
C4FF LDI OFF
CAQF - ST Ddta(2)
925D JMP Nchar(2) :Display result
0000 .END
Silver Dollar Game

; Machine plays against you in moving five

. 'Silver Dollars’ along a track

; Player unable to move loses

=0F12

; Starting position: Must be ascending order
FF Start: .BYTE OFF
03 .BYTE 03
05 .BYTE 05
08 .BYTE 08
09 BYTE 09
OF .BYTE 0
QF00 Ram — 0OF0O0

Pos: .=.4+8 ;Current position
0024 Count = 024 ;Ram offsets:
0025 Key = 025 ;For key last pressed
0026 Init = 026 Zero
0185 Kybd = 0185 ;In monitor
0080 E = —128 ;Extension reg.

.=0F28

C40F Begin: LDI H(Ram)
36 XPAH 2
C400 LDI L{Ram}
32 XPAL 2
C40F LDI H{Paos)
3h XPAH 1
c418 LDI L(Pas)
il XPAL 1
C406 LDI 6
Caz24 ST Count (2)
C1FA Setup: LD —86(1) ;Transfer start to pos
CDO1 8T @+1(1)
BA24 DLD Count(2)

[P T T o W T

OF 3E
0OF40
OF42

OF44
OF486
OF47
0OF49
OF4A
OF4cC
OF 4D
OF4F
OFB1
OFb2
OF54
OF56
OF58
OF BA
OF5BC
OF5BD
OF5F
OF61
OF62
OF64
OF 66
OF68
OFBA
OF 6B
OF 8D
OF 6F
OF 71
OF73

OF75b
O
OF78
OF7A
OF7B
OF7C
OF7E
OF 7F
OF81
OF82
OF84
OF 86
OF88
OF89
OF 8B
OF8C
OF 8D
OF 8E
OF 90
OF 91

JNZ Count(2)

Ymaove: LDI 0 :You go first!
ST Key(2) :Clear key store
:Generate display from Pos
Disp: LDI H{Pos)
XPAH)
LDI L(Pos)+1
XPAL 1
LDI 9
Clear: XAE :Clear Display buffer
LDI 08 ‘Underline
ST E(2)
LDE
CAl 1
JP Clear
LDI 5]
ST Count{2)
Npos: LD @+1(1)
RR
JP Even
Odd: ANI 07F
XAE
LD E(2)
ORI 030 :SegmentsE&F
ST E(2)
JMP Cont
Even: XAE
LD E(2)
ORI 06 :SegmentsB&C
ST E(2)
Cont: DLD Count(2)
JNZ Npos
:Display current position
Show: LDI H(Kybd)
XPAH 3
LDI LIKybd}-1,
XPAL 3
XPPC 3
JMP Coma :Command key
LDE
4 il Show
SCL
CAl 6 ;1-b allowed
JP Show
LDI HiPos)
XPAH 1
LDI L(Pos)
ol
ADE
XPAL 1
LD (1)
SEL
ADI —1

77

78

OF93
OF 94
OF 96
QOF 98
OF9A
OFgcC
OF 9E
OF 9F
OF AT
OFA2
OFA4
OFAB
OFAS8
OF AA
OFAC
OFAE
OFBO
OFB2
OFB3
OFBb
OFBB
OFB8
OFB9
OFBB
0OFBc
OFBE
OFCO
OFC1
OFC2
OFC4
OFC4
OFC6
OFC7
QOFC9
OFCB
OFCC
OFCE
OFDO
OFD1
OFD3
OFD5B
OFD7
OFD9
OFDB
OFDD
OFDE
OFEO
OFE1
OFE3
OFEB
OFE7
OFEQ
OFEB
OFED

Fine 2:

Firstn:

Coma:

Go:

Try:

Solve:

Nogo:

Fine:

CCL
CAD

JMP
LD

JNZ
LDE

XRE
JNZ
DLD
JMP
LD
J2
LDI

LDI
XPAH
LDI
XPAL
LDI

—(1)

Fine 2 ;Valid move
Show

Key(2)

Firstn

Key(2) ;First key press

;Not first press
Disp(2) ;not allowed
(1) :Make move
Disp(2) :Display result
Key(2) ;Mem pressed
Displ2) ;You haven't moved!
3
Count(2)
H(Pos)
1
L(Pos)
1
0

+1(1)

@+2(1)
4(1)
;Keep nim sum

Count(2)
Try

Nogo ;Safe position
(1)

@+2(7)
Solve

—7(1) :Make my move
—7(1)

Ymove(2) ;Now you, good luck!
0b

Countl2) ;Make first move

@—1(1)
=

=i

Fine

Count(2)

No

+ 7(3) ;i.e. Abort—| lose
(1) :Make my move

Ymove(2) ;now you chum.

I E——— g A

PR e —

Music

The ‘Function Generator’ produces a periodic waveform by outputting
values from memory cyclically to a D/A converter. It uses the 8-bit port
B of the RAM I/O chip to interface with the D/A, and Fig. 1 shows the
wiring connections. The D/A chosen is the Ferranti ZN4 25E, a low-cost
device with a direct voltage output,

Any waveform can be generated by storing the appropriate values in
memory. The example given was calculated as an approximation to a
typical musical waveform.

'Music Box' plays tunes stored in memory in coded form. The cutput can
be taken from one of the flag outputs. Each note to be played is encoded
asone byte. The lower 5 bits determine the frequency of the note, as
follows:

Rest A A®¥ B C C# D D# E F F# G G¥

ag - 01 02 03 04 (0508 G/ 08 09 04 BB gt

(05 O} =88 0 o= B = S [s O 1 vl (7 8 2

There are two octaves altogether.

The top three bits of the byte give the duration of the note, as

follows:
Relative Duration: 1 2 3 4 B 6 7 B

00 20 40 60 BO A0 CO EO
Thus for any specific note required the duration parameter and
frequency parameter should be added together, A zero byte is reserved
to specify the end of the tune.
To slow down the tempo locations OF58 and OF59 should be altered to
D4FC (ANI X'FC).

The program uses two look-up tables, one giving the time-constant
far a delay instruction determining the period of each note and the other
giving the number of cycles required for the basic note duration.

'Organ’ generates a different note for each key of the keyboard by using
the key value as the delay parameter in a timing loop. Great skill is
needed to produce tunes on this organ.

5
PBO Bit 8 o b i
pe1 |8 6git 7 16
= 21 out
9
pB3 2 B vaer i =
PB4 3 10} git 4 14 == 0.22uF
2 1601 == 1
PB5 — Bit 3 ANALOGUE
1 12] . GRAUND QUTPUT
PE6 7 Bit 2 5
pE7 |22 Bit 1 SELECT
BRAM /O ZNA2BE w=dbs
D/A CONVERTER v

79

Function Generator

: Generates arbitrary waveform by outputting
- values to D/A Converter.
: uses Ram /O chip. (Relocatable}.

Portb = QE21

Ext = —128 :Extension as offset
0000 .=0E80 :Start of Ram in Ram/10
QEBO CA40F Start: LDI H(Endw)
0E82 36 XPAH 2
QE83 (C448 LDI L(Endw)
OERL 32 XPAL 2 :P2-> End of waveform
OE86 C40E LDl H(Portb)
QOE88 3b XPAH 1
OE89 (€421 LDI L({Partb)
QOEBB 31 XPAL 1
QE8C CA4FF LDI X'FF +All bits as outputs
QEBE (CB302 ST +2(1) ;Output definition B
OESC C4D8 Reset: LDl —Npits.
OE92 02 CEL
0ES93 O1 Next: XAE
OE94 (C280 LD E(2) ;Get nextvalue
0OE96 C800 ST (1) :Send to D/IA
OE98 40 LDE
OE9A F401 ADI 1 :Point to next value
OESC 98F3 JZ Reset ;New sweep
OE9E 04 DINT :Equalize paths
QESF 90F3 JMP Next ;Next point

1

; Sample waveform of 40 points

: Fundamental amplitude 1

- 2nd Harmonic amplitude 0.5 zero phase
- 3rd Harmonic amplitude 0.5 90 deg. lag.

; Equation is:
- Sin(X) +0.5*Sin(2.0*X)40.5°Sin(3.0"X—0.5"Pl) F
: With appropriate normalization 2
OEAT =0F20
0F20 Wave: .BYTE 077,092,0B0,0CB,0E1,0ED
OF28 BYTE OEF,0E6,0D5,0BE,0A5,08E
OF2C BYTE 07F077,076,07D,087,092
OF32 BYTE 09B,09E,08A,080,080,06F
OF38 BYTE 05C, 04D,042,03D,08D,040
OF3E BYTE 046,04B.04D,04D,04A,046
QF44 BYTE 0441047,050.060
OF48 Endw & I
0028 NPTS = Endw—Wave ;No. af points
0000 END

Music Box

; Plays a tune stored in memory

;1 Byte per note

; top 3 bits =duration (00-EQ) =1 to 8 units
: bottom 5 bits=note (01-18) = 2 octaves

0000 .=0F12
:Table of notes
0F12 Scale: BYTE 0 :Silence
OF13 BYTE OFF,0EC,0DB,0CA,0BB,0AC
OF18 BYTE 09E,091,085,079,06E,063
OF1F .BYTE 059,050,047,03F,037,030
OF25 BYTE 029,022,01C,016,011,00C
;Table of cycles per unit time
OF2B BYTE 044,048,04C,051,055,06B
OF31 BYTE 060,066,06C,072,079,080
QF37 BYTE 088,090,098,0A1,0AB,0B5
OF3D BYTE 0CO0,0CB,0D7,0E4,0F2,0FF
;Program now:
OF43 Cycles: .=.+1
OF44 Count: =.+1
QOF45 3F Stop: XPPC 3 ;'Go, 'term’, to play again
OF46 C40F Begin: LDI H(Scale)
0OF48 35 XPAH 1
0F49 CA40F LDI H{Tune)
0OF4B 36 XPAH 2
QF4C C480 LDI L{Tune}
QOF4E 32 XPAL 2 ;P2 points to tune
OF4F €601 Play: LD @ +1(2) ;Getnext note code
OFs1 01 XAE :Savein ext.
0OFb2 40 LDE
OF53 98F0 JZ Stop :Zero=terminator
OFeb 1C SR
0OFb6 1C SR
GFEBFL TS SR
BEES . 1€ SR
OFhZ 140G SR ;Shift duration down
OFBA CB8E9 ST Count
OFBC €412 LDI L(Scale)
OFRE" 0] XAE
OFBF D41F ANI X"1F ;Get note part
0OF61 02 CCL
2 OF62 70 ADE ;no carry out
| OF63 31 XPAL 1 ;:PointP1 to note
OF64 C100 LD (1) ‘Note
| OFee 01 XAE Putitinext.
: OF67 €118 Hold: LD +24(1) :Cycle count
0F69 (C8DS ST Cycles
OF6B 40 Peal: LDE

81

82

OF6C
OF6E
OF70
OF72
OF74
OF75
OF77
OF78B
OF7A
OF7C
OF7D
OF7F
OF81

OF83
OF85
OF87
OF89

OF8B
0OF80
OF96
OF8C
OFA2
OFASB
OFAE
OFB4
OFBA

OF1F

0OF20
0OF22
OF23+
OF25
OF286
0OF28
OF2A
OF2C
OF2E
OF30
0F32
OF33

0000

Sound:

More:

Tune:

!

Count:
Disp:

Enter:

New:

Again:

JNZ
DLY
JMP
DLY
CSA
XRI
CAS
DLD
JZ
NOP
LDI
DLY
JMP
DLD
JP
DLY
JMP

.=0F90
BYTE
.BYTE
.BYTE
BYTE
.BYTE
.BYTE
BYTE
.BYTE

.END

Sound .Zero=silence
X'80 ;Unitgap
More

X'00

X'07 ;Change flags

Cycles
More

;Equalize paths to
X110 ;Prevent clicks in
X'00 ;Sustained notes
Peal
Count
Hold
X'20 ;:Gap between notes
Play ;Get next note

02D,02D,02F,04C,00D,02F
031,031,032,051,00F,02D,
02F,02D,02C,02D,00D,00F
011,012,034,034,034,054,
012,031,032,032,032,052,
011,02F,031,012,011,00F
00D,051,012,034,016,032
071,06F,08D,0

Organ

; Each key on the keyboard generates a
; Different note (though the scale is
; Somewhat unconventional!)Relocatable,

.=0F1F

e e |

LDI
XPAH
LDl
XPAL
LDI
ST
LD
XRI
JZ
DLY
CSA
xRl

0Doo ;Display & keyboard

H(Disp)

1

L(Disp)

1

08

Count :Key row

@+1(1)

OFF :Key pressed?

No

00 ‘Delay with AC =key

07 :Change flags

OF35
OF386
OF38
OF3A
OF3C

07

90EB
BSEG
9CEE
90E5

0000

No:

CAS
JMP
DLD
JNZ
JMP

.END

New
Count
Again
New

83

Miscellaneous

‘Message’ gives a moving display of segment arrangements according
to the contents of memory locations from 'Text' downwards until an
‘end-of-text’ character with the top bit set (e.g. 080). Each of the bits
0-6 of the word in memory corresponds, respectively, to the seven
display segments a-g; if the bit is set, the display segment will be lit.
Most of the letters of the alphabet can be formed from combinations of the
seven segments: e.g. 076 correspondsto 'H', 038 to 'L’, etc. The speed
with which the message moves along the display depends on the counter
at OF2D. If the first and last 7 characters are the same, as in the sample
message given, the text will appear continuous rather than jumping from
the end back to the start.
The 'Reaction Timer' gives a readout, in milliseconds, of the time taken
to respond to an unpredictable event. To reset the timer the 'O’ key
should be pressed. After a random time a display will flash on. The
program then counts in milliseconds until the 'MEM’ key is pressed,
when the time will be shown on the display.

The execution time of the main loop of the program should be
exactly one millisecond, and for different clock rates the delay constants
will have to be altered:

Rate Location: OF2A OF37 OF39

1MHz 07D 0AS8 00
2 MHz OFA 0A1 01
4 MHz OFF 093 03

The 'Self-Replicating Program’ makes a copy of itself at the next free
memory location. Then, after a delay, the copy springs to life, and itsslf
makes a copy. Finally the whole of memory will be filled by copies of the
program, and from the time taken to return to the monitor one can
estimate the number of generations that lived.

Message

; Displays a moving message on the
. 7-segment displays

; (Relocatable)
0000 .=0F1F
OF1F Speed: .=.+1
OF20 C40D Tape: LDI H(Disp)
OF22! 385 XPAH 1
OF23 C400 LDI L(Disp)
Q25" 31 XPAL 1
0OF26 C40F LDI H(Text)
OF28 36 XPAH 2
OF29 C4CA LDI L{Text)-8
OF2B 32 ' XPAL 2

QF2C C€4C0 Move: LDI X'CO :Determines sweep speed

OF2E
OF30
OF32
OF33
OF35
OF37
OF39
OF3A
OF3B
OF3D
OF3F
OF41
OF43
OF45

OF47
OFAD
OFAB
OFAC
0FB2
OFB8
OFBE
OFC4
OFCA
OFDO

0000
OF12
OF14
GF15

OFD2

FFFC
000D

C4FC

CO80

Again:
Loop:

Disp

1

; A sample message

Speed
k

-128(2)
-128(1)
X'FF

l.e. decrement ext.
Loop
Speed
Again
@-1(2) ;Move letters
Move :X'80 =end of text
Go

0DO0O0

: Message is stored backwards in memory
- first character is ‘end of text’, X'80.

: For a continuous message, first and

- Last seven characters must be the

. same (as in this case).

v

Text

.=0FAO
BYIE
.BYTE
BYTE
BHTE
.BYTE
BYTE
BATE
BYTE
.BYTE

END

080,079,079,06D,040,037
077,039,040,03E,08F,06E
040,06D,077,040,06E,03E
07F,040,079,037,030,071
040,06E,038,038,03F,01F
040,077,040,06D,030,040
039,040,071,03F,040,06D
040,079,079,06D,040,037
077,039

wJ

;start of message

Self-Replicating Program

: Makes a copy of itself and then

: executes the copy.

: Only possible in a processor which permits
- pne to write relocatable code, like SC/MP

LDX
STX

Head:

Loop:

=0F12
LDI

XAE

LD

Loop-Head-1 ;offset for load
Last-Store-1 :offset for store

LDX

-12810) :PC-relative-ext = offset

85

OF17
OF18
OF18
OF1B
OF1C
OF1E
OF1F
0OF20
0OF22
OF23
0OF24
OF28
0OF28
OF2A

0000
QF20
0OF22
0F23
OF25
OF26
OF28
OF29
OF2B
OF2C
OF2D
OF2F

0F31

OF32
0F34

OF36
OF38
OF3A
OF3B

86

O1E4
OF00
0bDoo
000b
000C

. 000E

0156A

XAE

CElL
ADI STX-LDX
XAE
Store: ST -128(0) .ditto
LDE
SCL
CAl STX-LDX-1 ;i.e.increment ext.
XAE
LDE
XRI Last-Loop-1 ;finished?
JNZ Loop
DLY X'FF :shows how many copies
Last = “were executed.
.END
L] L]
Reaction Timer

: Gives readout of reaction time in milliseconds
; display lights up after a random delay

; Press’MEM' as quickly as possible.

; Press "0’ to play again. (Relocatable)

; 150 =excellent, 250 =average, 350 = poor

500 ;SCIMP cycles per msec
OF00

0Do0

5

12

14

015A ;' Address to segments’

H{Dispa)
3
L{Dispa)
3
AdIh(2) :'Random’ number
Cycles/4

;Count down
Wait
+3(1) ;Light'8' on display
:Now zero
Adl(2)

Adh(2}

:Main loop ; length without DLY =151 pcycles

Cycles =
Ram. =
Disp =
Adlh =
Adl =
Adh =5
Dispa —
=0F20
Begin: LDI
XPAH
LDI
XPAL
LD
Wait: XAE
DLY
CCL
ADE
JP
ST
LDE
ST
ST
Time: LDI
DLY
SCL
LD

(Cycles-151—13)/2
0

Adl(2)

"

T —

OF3D
OF3E
QF40
OF42
0F43
OF45
OF46
OF47
OF49
OF4B
OF4cC
OF4E

0OF50

OFF3
OFFB

0000

Stop:

ST Adl(2)

LD Adh(2)

DAE

ST Adh(2)

LDE

GGL

CAD +3(1) :Test for key

JZ Time

XPPC 3 :Go display time

JMP Stop Jlegal return

JMP Begin :Number key

. =0FF9 :Pointers restored
:Fromram

.DBYTE Disp :P1-> Display

.DBYTE Ram ;P2->Ram

LEND

87

Science ot Cambridge Limited
6 King's Parade

Cambridge CB2 1SN

Telephone Cambridge (0223) 311488

Remove from Book

o — RsT INTR
icz -] wos PAD e
o roS 1 =
D1 Do 3 ——;
D2 ww 3 — —
03 L
AB D3 i)
EN O ——
+5Y Al D4 & o—
05 8 iy
D& i
R11 D7 _.m.w —
ic3 20 — 2 ==
N Z pa—
IC18 CB |_ o WIRING OF IC4,5,6 & 7 MAY 4 — —
NOT FOLLOW CONVENTIONAL —
o H N o a D6 PINNING AS IN DATA BODKS B
o o7 Ag 8
B8 Al cs 7 —
R1 Rl 14 En [D—et—— b +5w
Al AT R M/10
Do & i RE
. BREQ 1 DO;. y
+ By AQ =
2 A
: e o A ¥ i1 L
Do A ¥ A
g2 4 o1 o2 B ce) e
RST 5 & 114
= : - = E THD
ONT o 3 Ag A11 L —— 1A STROBE
HOLD 7 mw = e & ic14
T CE - SELECT 85| & =
AD r AW oE O |_.I DISPLAY
o ict 1 114 u
A3 D
R4 2
| e S o] AD
e . b , ™ B Lty .
. M / o os g |
DB
ENIN 7 Ercm| 7 i 08 . 1egs g AT &
8 A
ok o7 j=—| IC15
— A 4 © mmbm Lt B 4 2
e A 4 STROBE 3
— B 10 R OE -
= R B) 1 b | BELECLHSY o 1615
L _ o O 6 8101214 1618
[2 4 6 B0 1214
pr— Fo AQ + 5y 01 3 4 7
T
== g 1 Ce [
F1 wos [O——— &
— e i ¥ LAl [— 3
F2 RODS o - R7-10
< D4
oz = st o
AT < D5 - J|I
= L e % en | < (< |0 | <8 (<8 | | <o | &
CE ——+ J [l peos iR 2ie 3is a8 sie sis 7
A0 B e o I 4
- AW ok e F ma I 8] 8
A or
‘ T READDATA m ENABLE | D | DU | S (B
1 _I GO |MEM| aB TERM
Talls g — & +5v | AQ = = % -
= o~ L NN I
D4 = ov (i} &
c2 “ (2] = AD o e E
o
C3 (8] _ ﬂ]w a] i o 2 O||.|.v|._. ———s—
H P v 157 2 Gl 5 12 E & ol Ic13 S
= : of -1 CE A0 ; _ M en % o : 8 4 — el
u + 5 TO VCE OF ALLIC'S = a 0 b -
Ov TO GND DF ALL IC’S R/W o€ (O - D cx o & mu.. ==
READ OR WHITE DATA CLR : —
oc il @
£l o) =
WRITE DATA _ - o 1 o
READ DATA L =
-

Edge connector details

Top connector—from left

OO0 Wk =

o

Positive supply 8V

OVonissue 11. NADS onissue 111.
iloPort B6
Bb
B7
B4
B3
82 RS E SR
B1
BO
iloport A7
Interrupt
ifo A6
AQ
AB

SCMP Sense A
Serial IN
Sense B
Serial QUT
Flag 0

i 2

i 1

‘uip-0lekepm gl

A

<
i

T

G O
OROROZORG
AURORGE O

JE M NoYololel

COMPONENT LIST

Semiconductors

No Type

IC1 1SP-8A/600(8
IC2 DM 748671
IC3 DM 74855671
1C4 MM 2111-1N
ICH MM 2111-1N
ICB MM 2111-1N
IC7 MM 21T1-1N
IC8 INSB154N
IC9 DM 74 LS157
IC10 DM 74 LS157
IC11 DM 80LS5
IC12 DM 74LS173
() DM 7445
IC14 DM 7408
IC15 Dm 7408
IC16 DM 741508
IC17 DM 74L500
IC18 DM 741504
IC19 LM 340T-5.0
RESISTORS

R1 4.7 ke -l
R2 2.4k

R3 100k

R4 Tk

R5 2.4k

R6 1.2k

R7-10 1.2k

R11 4.7k
R12-15 1.2k
CAPACITORS

C1 27pfor33p
c2 1000uF 40V
C3 0.01uF

C4 0.01uF

C6 22 uF 16V

MISCELLANEOUS

%

Printed circuit board

Description

060) SC MP-11 Microprocessor
512 x4 ROM (Whitespot)
512 x4 ROM
256 x4 RAM
256 x 4 RAM)
256 x4 RAM) optional extra
256 x4 RAM)
128 x 8 RAM /O
Quad 2 to 1 line selector
Quad 2 to 1 line selector
Hex tri-state buffer
Quad tri-state latch
BCD to decimal decoder
Quad two input and
Quad two input and
Quad two input and
Quad two input and
Hex inverter
5 volt regulator

may be any value between 1k and 15k
may be any value between 1k and 15k
ceramic

not supplied—only needed with
unsmoothed supply marked 10 nf

double sided fibreglass through hole
plated and annotated

2 Reset switch

45 Crystal 4.433619 MH2

4. Display NSA1198/1188 eight or nine digit magnified 7 segment LED
5. Keyboard separator self adhesive clear PVC

6. Keyboard contact sheet conductive silicon rubber

7L Keyboard legend sheet reverse printed PVC

8. Keyboard panel dark grey stoved steel plate

9 "W’ buttons x 4

1:05 Display connector strip

RECOMMENDED EXTRAS

IC Sockets: 5x 14 pin, 7x 16 pin, 4 x 18 pin, 2 x 40 pin
stick on feetx 6

Radiospares 12.5mm

S

	Conv_0.jpg
	Conv_1.jpg
	Conv_2.jpg
	Conv_3.jpg
	Conv_4.jpg
	Conv_5.jpg
	Conv_6.jpg
	Conv_7.jpg
	Conv_8.jpg
	Conv_9.jpg
	Conv_10.jpg
	Conv_11.jpg
	Conv_12.jpg
	Conv_13.jpg
	Conv_14.jpg
	Conv_15.jpg
	Conv_16.jpg
	Conv_17.jpg
	Conv_18.jpg
	Conv_19.jpg
	Conv_20.jpg
	Conv_21.jpg
	Conv_22.jpg
	Conv_23.jpg
	Conv_24.jpg
	Conv_25.jpg
	Conv_26.jpg
	Conv_27.jpg
	Conv_28.jpg
	Conv_29.jpg
	Conv_30.jpg
	Conv_31.jpg
	Conv_32.jpg
	Conv_33.jpg
	Conv_34.jpg
	Conv_35.jpg
	Conv_36.jpg
	Conv_37.jpg
	Conv_38.jpg
	Conv_39.jpg
	Conv_40.jpg
	Conv_41.jpg
	Conv_42.jpg
	Conv_43.jpg
	Conv_44.jpg
	Conv_45.jpg
	Conv_46.jpg
	Conv_47.jpg
	Conv_48.jpg
	Conv_49.jpg
	Conv_50.jpg
	Conv_51.jpg
	Conv_52.jpg
	Conv_53.jpg
	Conv_54.jpg
	Conv_55.jpg
	Conv_56.jpg
	Conv_57.jpg
	Conv_58.jpg
	Conv_59.jpg
	Conv_60.jpg
	Conv_61.jpg
	Conv_62.jpg
	Conv_63.jpg
	Conv_64.jpg
	Conv_65.jpg
	Conv_66.jpg
	Conv_67.jpg
	Conv_68.jpg
	Conv_69.jpg
	Conv_70.jpg
	Conv_71.jpg
	Conv_72.jpg
	Conv_73.jpg
	Conv_74.jpg
	Conv_75.jpg
	Conv_76.jpg
	Conv_77.jpg
	Conv_78.jpg
	Conv_79.jpg
	Conv_80.jpg
	Conv_81.jpg
	Conv_82.jpg
	Conv_83.jpg
	Conv_84.jpg
	Conv_85.jpg
	Conv_86.jpg
	Conv_87.jpg
	Conv_88.jpg
	Conv_circuitDiag1.jpg
	Conv_circuitDiag2.jpg
	Conv_layout1.jpg
	Conv_layout2.jpg

