MPF -1

EXPERIMENT MANUAL

(SOFTWARE/HARDWARE)

MICR

\

0-PROFESSOR

P me s L

8 e gy

An wre

MPF -]
EXPERIMENT

MANUAL
(SOFTWARE/HARDW ARE)

COPYRIGHT

Copyright ©1981by MULTITECH INDUSTRIAL CORP. All rights
reserved. No part of this publication may be reproduced, trans-
mitted, transcribed, stored in a retrieval system, or translated into
any language or computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual or other-
wise, without the prior written permission of MULTITECH INDUS-
TRIAL CORP.

DISCLAIMER

MULTITECH INDUSTRIAL CORP. makes no representations or
warranties, either express or implied, with respect to the contents
hereof and specifically disclaims any warranties or merchantability
or fitness for any particular purpose. MULTITECH INDUSTRIAL
CORP. software described in ‘this manual is sold or licensed ‘‘as is’".
Should the programs prove defective following their purchase, the
buyer (and not MULTITECH INDUSTRIAL CORP., its distributor,
or its dealer) assumes the entire cost of all necessary servicing, re-
pair, and any incidental or consequentiai damages resulting from any
defect in the software. Further, MULTITECH INDUSTRIAL CORP.
reserves the right to revise this publication and to make changes from
time to time in the content hereof without obligation of MULTI-
TECH INDUSTRIAL CORP. to notify any person of such revision
or changes.

Multitech

INDUSTRIAL CORP.

OFFICE/ 9FL, 266 SUNG CHIANG ROAD, TAIPE! 104 TAIWAN R.O.C.

TEL:(02)551-1101 TELEX:"19162 MULTIC" FAX:(02)542-2805

FACTORY/ 1 INDUSTRIAL E. RD., Il HSINCHU SCIENCE - BASED
INDUSTRIAL PARK, HSINCHU, TAIWAN. R.O.C.

£

PREFACE

The first 50 years of the 20th century witnessed the invention of the internal combustion
engine, which greatly extended the physical strength of the human body.

In the second half of the century, the birth of the microprocessor further extended our
mental capabilities. Applications of this amazing product in various industries have intro-
duced so much impact on our lives, hence, it is called the second Industrial Revolution.

Microcomputers represent a total change in designing systems. Both industrial and acade-
mic institutions are active in the development and search for new applications for micro-
computers.

This book is designed to be used in conjunction with the “multitech” MPF-1 Microcom-
puter as part of a one-year laboratory class on microcomputers. With the aid of this book,
students will be able to learn the fundamentals of microcomputers, from basic CPU ins-
tructions to practical applications.

The first part of this book is an introduction to the basic concepts of microcomputer pro-
gramming. It lays the foundation for later studies, the second part of this book is the
source list of monitor program, the third part begins with a series of experiments using
microcomputer instructions, such as, data transfers, arithmetic and logic operations, jump
and subroutine and memory address allocation in simple programs. Experiments involving
more complicated arithmetic operations, such as, binary to decimal conversion, decimal to
binary conversion, multiplication, division and square root are presented.

There are two experiments in this book which are designed to familiarize the student with
the fundamentals of input/output programming. These programs are centered around the
keyboard and display. These experiments establish the foundation for later experiments
involving a simple monitor program, which leads to more complicated MPF-1 programs.

Preparations

MPF-I EXPERIMENT MANUAL

TABLE OF CONTENTS

Introduction To Designing Microcomputer Programsottt iiiaraanenaenns

Experiment
Experiment

Experiment
Experiment
Experiment
Experiment

Experiment
Experiment
Experiment
Experiment
Experiment
Experiment
Experiment
Experiment
Experiment
Experiment
Experiment
Experiment

A
2

3
4
5
6

7
-8

9

-10
1
12
13
14
15
-16
17
18

Data-Transfer EXperiment. ov ittt it iin i a e e enaeanns

Basic Applications of Arithmetic and
Logic Operation INStrUCLiONS.ottt it e ittt iie i

Binary Addition and Subtraction i it
Branch Instructions and Program LOopscvviiin it
Stack and SUDFOULINES. . . o oot i e it it et et it e an e aaa s

Rotate Shift Instructions and
multiplication ROUtINeS.o ittt

Binary Division ROULINE vttt ittt
Binary-to-BCD Conversion Programvuitnnnrnenvneneaneananan
BCD-to-Binary Conversion Programc.uuiieeneniniarianeannncnss
SqUAre-ROOt Program ... v v oce ittt ii i n i iaaaa e
Introduction to MPF-I1 Displayt i ittt e
[T e Yo o X C -2 T R R
StOP-WatCh . ..ttt e e
Clock 1 {Howtodesignaclock)oviunnvniirirne it
Clock 2 (with CTCinterrupt mode 2) oo v vt i it e it e n et aanas
TelephoneTonec.covunnn ettt
Microcomputer Organ.ot i it it iae et neaaiaeraennasenananeansses
MUSIC BOX . o v i ittt i e e st tanen e P R

Preparations
Introduction To Designing Microcomputer Programs

A computer program is an organized series of instructions. The
central processing unit will perform a series of logical actions to
obtain the desired result.

Before a proram is executed by CPU it must be stored in memory
in binary form. This type of program is called a "machine language
program". This is the only type of language the computer understands.
The machine language program is usually represented by Hexadecimal
digits. For example, the 8-bit instruction 1010 1111B(B represents
binary) in the Z80 CPU it can be replaced by OAFH (H indicates
Hexidecimal). Interpreting a machine language program is extremely
difficult and time consuming for the User. The microprocessor
manufacturer divides the CPU instructions into several categories
according to their functions. The CPU instructions and registers
are usually represented by symbols called "mnemonics". For example,
the Z80 CPU instruction 70H can be represented by the mnemonic code
LD A,L (Load Data into register A from register L). A program written
in mnemonic codes is called an "assembly language program.'" Before
an assembly language program can be executed by the CPU, it must be
translated into machine language by a special software program
called an "Assembler'.

Normally a program is written in assembly language. The main
advantage of assembly language program over machine language
programming is that assembly language programming is much faster
to code, the mnemonics makes it much easier for the User to remember
the instruction set, and normally the assembler will contain a
sel f-diagnostic package for debugging programs. The main disadvantage
of assembly larnguage programs is that it requires an assembler and
microcomputer development system. These two items are very costly.
With the MPF-1 microcomputer the User has to translate assembly
rrograms into machine level rprograms by hand before executing
programs

A. Problem Analysis

The software program of a simple problem may be easily designed
with a well-defined flowchart. It may also be obtained by revising
some existing programs or combining some simple routines. The design
of more complicated programs, such as monitor programs, system control
programs or a special purpose program, are usually started after some
detailed analysis of the problem has been made. Problem analysis and
solution requires a good understanding of the following:

See page (II1I-3)

1) Characteristic and requirements of the problem
2) Conditions which are known

3) Input information formmat and how it is converted
4) Output data formmat and how it is converted
Type of data and how precise it is

6) Execution speed required

7) CPU instructions and perfommance

8) Memory size

9) The possibility that the problem can be solved
(10) Methods to solve the problem

(11) Evaluation of the program

(12) How the resultant program will be disposed

PNSNNNNSNNNN
9]
N

lProblen Analysis}
\Llé
[Flowchart]
1

r Program Design 1
L

v

Assembly language: lProgram Writing |
|
v

Machine Language: IProgram Assemb1§1
|
v

IMonitor Progra@:F:::ﬁigrogram Loading l
I

&

-:::::::::Sprecution and Debuggiﬁé]

T
W 7
[Resultant Program Disposalj

Figure 2-A-1

B. Flowchart

A flowchart can be used to indicate the behavior of algorithms by
suitable graphs. Once the complete flowchart has been completed, a full
picture of the programmer's thought processes in reaching a solution to
the problemn may be followed. Flowcharts are especially important in
program-debuggiang. It is an important part of the finished program. It
may help other people to understand the exact algorithm used by the
programmer.

Two levels of flowcharts are often desirable:
System flowchart -- showing the general flow of the program

Detailed flowchart -- providing details that are of interest mainly
to the programmer.

Usually, a complicated program is introduced using a systaen flowchart
outlining the program, and then a detailed flowchart is presented.

The advantage of a flowchart is that it emphasizes the sequential nature of
steps by using arrows pointing from each step to its successor. Various
symbols are used to indicate the operation that is to be performed at each
step. Figure 3-A-2 gives some standard symbols used in flowcharts:

Process

L ¢«—0
«— 16H

RL E,D
HL ¢ HL+HL
HL<HL-BC

!Input/Output/ Yes
No
HL &— HL+BC

O

Connector

>

Decision

CCF
DEC A

Terminal
Interrupt

I — RET
Flow Line

Figure 2-A-2

C Program Design

There are many types of programs. Programs for mathematical equations,
conversion of input and output signals, coding and decoding of the program
data, peripheral device drives, etc. are example of simple programs.
Assembler, monitor and system control programs or special purpose
applications are examples of more complicated programs. The following
items are usually considered in program design:

(1) Acquisition of input signals or data

(2) Generation or conversion of output signals and data

(3) Logical analysis and calculations in the main program

(4) Relation between the main program and subroutines

(5) Use of internal registers

(6) Memory allocation of the main program

(7) Memory allocation of subroutines

(8) Memory allocation of data tables and indexed addressing method
(9) System initialization and constants in the program
(10) Definition of the variables in the program
(11) Consideration of timing sequences and program execution speed
(12) Limitations of memory size
(13) Length and precision of data
(14) Availability of documents and references

(15) Other special items

D. Program Writing

In this book, the programs are written mainly in assembly language.
Here only the fomat of the assembly language program is given.

A statement in the program is composed of four parts : Label, Opcode,
Operand and Comment. An example is shown below

LABEL OPCODE & OPERAND COMMENT

DTB4 LD B,16

DB3 SRL H
RR L
RR D]
RR E ; ROTATE HL DE RIGHT
LD AH
CALL DB1
LD H,A ; CORRECT H
LD AL
CALL DB4
LD L,A ; BINARY CORRECT L
DJNZ DB3
RET

BINARY CORRECT ROUTINE

DB4 BIT 7,A
JR %,DB1 . IF BIT 7 OF A = 1, SUB FROM 30H
SUB 30H

DB1 BIT 3,A
JR 7 ,DB2 ; IF BIT 3 OF A = 1, SUB FROM O3H
SUB 3

DB2 RET

Sometimes, a program statement without a comment is not easy to understand.
The comments in the statements are very important especially for a
complicated program. Statements with a label and comment field are more
convenient for calling and debugging.

E. Program Assembly

Using the resident assembler in a microcomputer system is an effective
way to assemble the source program. However, a beginner or a proram designer
not familiar with the microcomputer development system must assemble his/her
program by hand. The usual procedure for hand assembly is:

(1) Translate each instruction (mnemonic) into the machine code by looking
it up in the conversion table. The comment field of each statement is
ignored.

(2) After deciding the starting address of the program. Assign an appropriate
address to the first byte of each instruction. The exact number of
bytes needed must be reserved including space for instructions such as
JR, DJNZ, and destination addresses of instructions JP, CALL, etc.

(3) Calculate the relative displacement and put it in the assembled program.
A simple formmula for calculating the relative displacement is:)

displacement = (destination address) - (next instruction address)

If the calculated result is positive, then it is the desired value. If the
calculated result is negative, then subtract the result from 100l (i.e.
take its 2's complement) and the final result is taken as the operand of
this instruction. For instance, in the program listed above, the
instruction DJNZ DB3 at address 0014H is first translated into 10xx and
then the xx value is calculated.

xx = 0002H (destination address) - 1016H (next instruction's address)
= -14H (negative value)
xx = 100H - 14H = OECH

Therefore, the instruction DJNZ DB3 must be translated into 10EC. In
addition, the instruction JR Z, DB 1 at address 0019H is first translated
into 28xx, and then the xx value is calculated.

XX O001DH' (destination address) -~ O0O01BH (next instruction's address)
2 H

The instruction JR Z, DB 1 must be translated into 2802.

The translated machine language is given below:

Machine
Address Language Label Opcode & Operand Comment

** 4 DIGIT BCD TO BINARY CONVERTION ROUTINE **
EXTRY : BCD DATA IN HL ’

EXIT : BINARY DATA IN DE

REGISTER CHANGED : AF BC DE HL

e woe s we

0000
0002
0004
0006
0008
000A
000B
000E
OOOF
0010
0013
0014
0016

0017
0019
001B
001D
001F
0021
0023

0610
CB3C
CB1D
CB1A
CB1B

CD1DO00
67
7D
CD1700

10EC
c9

CB7F
2802
D630
CBSF
2802
D603

DTB4
DB3

=
[}

e «
WP AP m

-

?

Ut"‘U>.’.ﬂg">mUL":ﬂW

. BINARY CORRECT ROUNTINE

DB4

DB1

DB2

BIT
JR

SUB
BIT
JR

SUB
RET

7,A
7,DB1 ;
30H

3,A
z,DB2
3

; B = BIT COUNT

ROTATE HL DE RIGHT

CORRECT H

IF BIT 7 OF A

IF BIT 3 OF A

; BINARY CORRECT L

1,

1,

SUB FROM 30H

SUB FROM 03H

F. Program Loading

The monitor program can be used to assist the user in loading the
program into the reserved memory address in MPF-I. The program can be
inputted from the keyboard or read from a magnetic tape. After the prgram
is loaded into MPF-I RAM, an error-checking process is required to eliminate
any errors. Redundant instructions or data may be replaced by an "NOP"
instruction. Missed instructions or data are inserted into the desired
addresses by using the Block Data Transfer method or simply by reloading
the program. While revising the program, it is very important to check
whether Jump instructions (JP, JR, DJNZ, CALL, etc.) are affected by the
the change in memory addresses. If this happens, then make the necessary
correction(s) immediately.

G. Program Execution and Debugging

Before executing a program, it is necessary to set the initialization
parameters and set the program counter at the starting address of the
program. Pressing the GO key will start the program execution. After
the program execution is completed, check the result. If there is any
error, the program must be checked step by step with the aid of the
monitor program. After the program is revised, execute it again and check

the result agian.

10

Experiment 1

Data-Transfer Experiment

Purposes:

1. To familiarize the user with the function of data-transfer
instruction

2. To practise setting the initial value of data

3. To practise assembling, loading and executing a program

Time required: 4 hours

I. Theorectical Background:

1. Most of the data-~transfer operation is accomplished by using
LD (load) instructions. Data can be transferred in units of 8
bits or 16 bits. Also, instructions such as EX, EXX,

PUSH and POP can be used to transfer 16-bit data.
Instructions such as LDI and LDIR can be used to transfer
blocks of data by moving a series of bytes.

2. A LD instruction must include two operands. The first operand
represents the location where data will be stored (register
or memory section). This is called its "destination". The
second operand represents the original location of the data to
be transferred. This is called the "source'. For instance,
LD A,B indicates that data in register B will be transferred to
register A. Register A is the "destination" and Register B is
the "source".

3. The direction of data transfer may be:

(1) register <~ register e.g. LD A,B ; LD HL,BC
(2) register <{- memory e.g. LD A,(HL) ; POP AF
(3) register <- immediate data

e.g. LD A,625H ; LD HL,125AH
(4) memory <~ register e.g. LD (HL),A ; PUSH BC
(5) memory <{-= memory e.g. LDD ; LDIR

(6) memory <- immediate data
e.g. LD (HL),5BH

II. Experiment 1-1
Write an assembly language program to set the contents of the registers

as follows : A=0, B=1, C=2, D=3, E=4, H=5, L=6 (use 8-bit LD instructions
to transfer one byte of data each time).

Step 1 Write the assembly language program in the following blank fom.
The last instruction is RST 38H which returns control of the
MPF-1 to the monitor program after executing the whole program.

11

Step 2 Using the table of 8-bit LD instructions, translate the
program into machine language with the starting address at
1800H. Assign the proper address to each instruction.

Step 3 Prepare the MPF-I microcomputer. Key in the program from the
keyboard. Check the program stored in memory. Set the PC
(program counter) to the starting address 1800H and execute
the program.

Step 4 Press the REG key and check if the content of each register
is correct. If there is any error then return to step 1 and

recheck.

Memory Machine Assenbly
Address Language Language
1800H 3E00 LD A,O0

FF RST 38H

III. Experiment 1-2

Write an assembly language program to set the contents of registers as
follows: B=12, C=34, D=56, E=78, H=9, L=A (use 16-bit LD instruction
to transfer two bytes of data each time). .

Step 1 Same as in Experiment 2-1-1 (Write an assembly language program).
Step 2 Using the 16-bit LD instruction table, translate the program
into machine language with starting address at 1820H. Assign the

proper address to each instruction.

Step 3 Load the program (same as Experiment 2-1-1). Set the PC to 1820H
and execute the program.

Step 4 Check contents of each register same as Experiment 2-1-1.
Note A 16-bit piece of data is composed of two bytes of data. The
high-order byte is in the higher memory address and the low-order

byte is in the lower meory address. For instance, the 16-bit data
1234H is stored in addresses 1820H - 1821H in the following way:

12

16-bit data - memory contents memory address

f'—“)\'_““ﬂ [
low order
12 34 byte J3 4 18208 (lower address)
(pigh order byte 1 2 1821H (higher address)
L —
Machine Assembly
Address Language Language
1820H 013412 LD BC,1234H
18234
Tw RST 38H
Example :

Write a program to clear the contents of memory addresses 1850H - 186FH.

Explanation:
(1) If we use an 8-bit LD instruction to transfer the data to
each destination, then 32 (20H) executions of data-transfer is
required. It is more convenient to use the loop method in
the program.

(2) Use register B as a loop counter. Set register B equal to
20H before the loop program is executed. Use HL as the memory
address pointer and set HL to the starting address 1850H.

HL is incremented by one and B is decremented by one for each
loop. If B=0, then all loops have been executed; otherwise,
run the loop again.

(3) The program is given below:

Machine
Address Language Label Opcode & Operand Comment

1800 LD B, 20H ; Set loop counter equal to 32
: LD HL,1850H ; Set HL equal to the starting address
; of memory to be cleared
XOR A ; Set A=0
LOOP LD (HL) ,A ; Load O into the memory address
; pointed to by HL
INC HL ; Increment HL by 1
DEC B ; Decrenent B by 1
JR NZ,LOOP ,; If B not = 0, return to LOOP
FF RST 38H ; Return to the monitor program

13

IV. Experiment 1-3

Translate the program in Example 1-1 into machine language and load
it into MPF-I RAM. Then, execute the program and check if the contents of
1850H - 186FH have been cleared. If not, correct the program and
execute it again.

Y. Experiment 1-4

Write an assembly language program to set the contents of memory
address 1840H - 184FH as follows: 0, 1, 2, 3,F.

(HINT: Change the loop counter and the value of the starting address.
register A is incremented by 'l' in the next loop)

MACHINE
ADDRESS LANGUAGE LABEL OPCODE & OPERAND

—~ - - - - - - - - -

14

Experiment 2
Basie Applications of Arithmetic and
Logie Operation Instructions

Purposes:

1. To familiarize the user with the arithmetic and logic operation
instructions

2. To understand the memory addressing mode

3. To understand the meaning of the register status flag

4. To practise arranging data for CPU registers and memory sections

Time Required: 4 hours

I.

Theoretical Background:

1. 8-bit arithmetic and logic operation instructions:

The 8-bit arithmetic and logic operations in the 280 CPU are
performed in register A (accumulator). Registers A, B, C, D,
E, H, and L can be used as operands in conjunction with register
A in the LD instructions. If data are transferred between memory
and register A, the memory address can be pointed to by HL, IX
or IY registers. The meaning of the following instructions are
given in the right-side comment field:

(1) ADD A ; Data in register A is added to itself, i.e. the
data is doubled shifted left one bit.

(2) ADC B ; Register B and the carry flag are added to
register A.

(3) SUB C ; Data in register C is subtracted from
register A.

(4) SBC (HL) ; Subtract the data in the memory address pointed
to by HL and the contents of the carry flag from
register A.

(5) AND D . ; Logical "AND" of register D and register A.
(6) OR OFH ; Logical "OR" of data OFH and register A .
(7) XOR A ; Exclusive "OR" register A and itself. (Since

register A is equal to register A, the result
is zero).

(8) INC H +* Increment the contents of register H by 1.

(9) INC (IX) ; Increment the contents of the memory address
pointed to by register IX by 1.

(10) DEC C ; Decrement the contents of register C by 1.
15

(11) DEC (IY+3)

; The sun of the contents of register IY and
3 is used as the menory address pointer.

Decrement the coantents of memory address
IY +3.

2. Data Addressing Mode

In the above assembly language instructions, the addressing
modes used can be summarized below. Other addressing modes can
be found in the Z80 CPU technical manual.

. (1) Register Addressing

Example: In the instruction ADC A,B , ADC is the opcode
- which represents what kind of operation will be
perfomed. The character A in the right
means that the data will be added to A. The
character B at the far right means that the
data to be added to A is taken from register B.

(2) Register Indirect Addressiag

(3)

A 16-bit register is used to store the memory address.

Example: In the instruction SBC A,(HL) , (HL) does not
mean that HL will be subtracted from register A.
Instead, the CPU takes the 16-bit data contained
in HL as the memory address and then accesses the
8-bit data stored in this memory address. The
8-bit data pointed to by HL is finally subtracted
from register A. IX and IY are called index
registers. When a memory address is pointed
to by IX or 1Y, an 8-bit byte which is less than
+127 but larger than -128 can be added to this
register.

For instance, the following two instructions can be used to
add the data stored in the meaory address pointed to by IX
to the 8-bit data stored in the memory address pointed to by
IX+2. The result is stored in register A.

LD A, (IX)
ADD A, (IX+2)

Immediate Addressing

Example : OR OFH. On the right-hand side of the opcode OR,
a hexadecimal number, OFH, is given. It means that
the number OFH is logically ORed with the contents
of register A. Therefore, the data is part of the
instruction which is stored®in memory. The CPU
fetches .the data by using the program counter (PC)
as a reference address. The following instructions
are examples of immediate addressing.

16

LD B,8
ADD A, 44H
SUB A, OA4H

3. Status Flags

After a logical or arithmetic operation is finished, the
result will be stored in register A and some of the status flags
(Carry, Overflow, Change Sign, Zero Result, Parity) will also be
affected. These status flags will be stored in the flip flops in
the Z-80 CPU. These flip flops form a register called the Flag
Register. The data in this register can be moved to memory, like

data

in other registers, by specific instructions (PUSH instruction).

Some of the status flags are given below.

(1) Carry Flag

(2)

1

This flag is the carry from highest order bit of the
Accumulator. The carry flag will be set in either a signed or
unsigned addition where the result is larger than an 8-bit
munber. This flag is also set if a borrow is generated during
a subtraction instruction. The carry flag can be used as

a condition for jump, call, or return instructions. The carry
flag also serves as an important linkage in multi-byte arith-
metic operations. Three 8-bit data can be connected as a
24~-bit data by using carry flag and four 8-bit data can be
connected as a 32-bit data.

Overflow/Parity Flag

When signed two's complement arithmetic operations are
performed, this flag represents overflow. The Z-80 overflow
flag indicates that the signed two's complement number in
the accumulator has exceeded the maximum possible (+127) or
is less than minimum possible (-128).

When an arithmetic operation is performmed in the Z280-CPU,

the number in register A can be assumed to be unsigned data

(0 - 255) or signed data (-128 ~+127). Thus, either the

carry flag or the overflow flag can be affected by the arithmetic
operation. The programmer decides which interpretation is
desired. The following arithmetic operations are described

on the right—-hand side.

10101100 {- unsigned number 172 or signed number -84
+) 11101000 <~ unsigned number 232 or signed number -24
<= 10010100 {- unsigned number 148 with carry or signed

number -108 but no overflow

17

01001010 (- signed or unsigned number 74

+) 01000010 {- signed or unsigned number 66

0 <~ 10001100 <= unsigned number 140 but no carry, or

(3)

(4)

signed number -116 but overflow has
occurred and the result becomes negative
change sign

For logical operations in the Z80~-CPU, this flag is set if the
parity of the 8-bit result in the accumulator is even. This
flag is very useful in checking for parity errors occurring
during data transmission. Since carry and overflow will

never occur in logical operations, the parity and overflow
status can be stored in the same flip flop. This flip flop

is called the P/V flag. By testing this flip flop the
programmer can check overflow after arithmetic operations

and check parity after logical operations.

Zero Flag

If register A is zero after a logical or arithmetic

operation, this status will be registered in a flip flop

called zero flag. The zero flag can be used as a condition for
branch instructions. It is very useful in program looping.

Sign Flag

If the leftmost bit (bit 7) of register A is 1 after a
logical or arithmetic operation, the number in register A is
interpreted as a negative number. The sign flag is then set
to 1. This flag will be ignored if the programmer has
assigned the data as unsigned numbers.

The other flags designed for BCD arithmetic are not important
for the programmer. The bit positions of the flags discussed
above are shown below:

IS)I T| [Tem] Ic\l
Sign Zero Parity Carry

or Overflow

In microcomputers, it is usual to represent the contents

of the flag register by two hexadecimal digits. The reader
reader has to express this two-digit data with an 8-bit binary
number. By referring to the bit positions in the flag register,
the reader can obtain the status of the flag. For instance,

if the flag register is 3CH, then the sign is positive, the
value is non-zero, the parity is even or there is overflow

has occurred but there is no carry. To know which flags will

18

be affected by an instruction, the reader has to refer to
the assembly language manual. Not all instructions will affect
the status flags.

II. Example of Experiments

1. The following program can be used to add the contents of
register D and register E together. The result will be stored
in the pair register HL. Load the program into MPF-I and then
execute it. Record the result.

ORG 1800H ; Starting Address <- 1800H
LD AVE ;s A <~ E
ADD A,D ; A<~ A +D
LD L,A ; L <= A
LD A,O ; A K= 0
ADC A,O ; A<~ A + 0 + Carry
LD H,A ; H<= A
RST 38H ; Return to Monitor
Preset Value Result of Program Execution
Register Register Flag
D E HL Sign Zero P/V Carry
5AH AGH
46H 77H

2. The following program can be used to add the 16-bit data in memory
addresses 1A00H - 1A01H to the 16-bit value in the register pair
DE. The result will be stored in the register pair HL. Load the
program into MPF-I and execute it. Discuss the result obtained.

preset values of memory: (1AQlH) = , (1AO00H) =
preset value of register DE pair =

ORG 1800H ; Starting address <- 1800H
LD A, (1AO00H) ; A <= (1AO00H)

ADD A,E ; A<=~ A +E

LD L,A ; L <= A

LD A, (1AO01H) ; A <= (1A01H)

ADC A,D ; A<~ A +D + Carry

LD H,A ; H <= A

RST 38H ; Return to monitor.

19

Result:

result HL
Carry
Zero
Overflow
Sign

[I

v w v v -

Revise the above program for a subtraction operation.

The following program can be used to add the 32-bit data in
memory addresses 1AOO0OH - 1A03H to the 32-bit data in memory
addresses 1A04H - 1A07H. The result will be stored in memory
addresses 1A08H - 1AOBH. The higher-order byte is stored in a
higher address (This is conventional in microcomputer programming)

preset memory contents: (1A03H - 1AO00H)

]

(1A07H - 1A04H)

ORG 1800H
LD B,4
LD IX, 1A00H
AND A

LOOP LD A, (IX)
ADC A, (IX+4)
LD (IX+8),A
INC IX
DEC B
JP NZ , LOOP
RST 38H

Result of program testing:

results of program execution: (1AOBH - 1AO08H)

[]

Flag Register

If the instruction ADC A,(IX+4) is replaced by SBC A, (IX+4),
then the above program can be used for a subtraction operation.
If the instruction DAA is inserted immediately after the ADC or
SBC instruction, then the program becomes a program for decimal
addition or subtraction. Load the revised program to MPF-I and
test it.

20

Experiment 3

Binary Addition and Subtraction

Purposes:

1. To understand how an addition or subtraction operation is
performed on a microcomputer.

2, To familiarize the reader with software programming
techniques.

Time Required: 4 hours

I. Theoretical Background:

1. In this experiment, we only discuss unsigned binary integer
addition and subtraction. For a N-bit binary number, its range
is < 0,2 -1 >. For instance, if N = 8, the range is < 0,255 >;
if N = 16, the range is < 0,65535 >. If the range of the numbers
are expressed by hexadecimal digits, the ranges are < 0,FFH >
and < O,FFFFH >, respectively. If the sum of an addition
operation is larger than the maximum value that can be
represented by N bits, then carry is generated and the carry
flag is set. In the subtraction operation, if the subtrahend is
more than the minuend, a borrow is generated and the carry flag
is set in the high order byte. The set carry bit indicates an
incorrect result.

Example 3-1:
Single byte addition and subtraction.
Addition: 7FH + ADH = 12CH

01111111 -> 7FH
+) 10101101 -> ADH

100101100 -> 12CH

Carry

21

Subtraction: 7FH - ADH Subtraction: ADH - 7FH = 2EH

01111111 10101101
-) 10101101 -) 01111111
111010010 000101110
Borrow Borrow
The answer is incorrect The answer is correct
(CY =1) ‘ (CY =0)

Example 3-2
Three-byte addition and subtraction
Addition: 6A7CBDH + 4B65ACH = B5E269H

6A 7C BD
4B 65 AC

— - ——

Carry Carry

85 43 72
- 69 - AC - BF
0 1B 1 97 1 B3

-[1f¢— -[3l¢«q - [0] <- Borrow

Borrow Borrow Borrow

The borrow of the highest-order byte is 0, thus the answer is
correct. In multi-byte subtraction, the correctness of the result
depends upon the borrow of the highest-order byte. If the borrow
is 1, then the result is incorrect.

2. Order of data stored in memory:

The conventional way of storing multi-byte data in memory is:

the lowest order byte is stored in the lowest address and the
highest order byte is stored in the highest address. The address
of the multi-byte data is usually expressed by its lowest address.
For beginning atstance, the number 7325H is stored beginning at
memory address A in the following way:

22

address A |[25| <~ low-order byte

A + 1 (73] <~ high-order byte

If the starting address of 4 three~byte numbers stored in memory
is A, the data and their addresses can be shown as follows

Address A [56
7C 987C56H

AD6943H

2501BCH

439578H

A+ 12 |21

b
+
©
®

3. Design of Addition/Subtraction Programs:

The data used in addition/subtraction operation are stored in
memory according to the conventional method given above. The
starting address of the augend/minuend is stored in index
register IX. The starting address of addend/subtrahend is
stored in index register IY. The byte-number of the data is
stored in register B. First, clear CY and load the augend/
minuend into the accumulator. Then, use the indexed addressing
mode instruction ADC (SBC) to proceed with the addition/
subtraction operation. The result is stored in the original
address of the augend/minuend. Increment the index registers
and compare register B with zero. Repeat the load augend, add,
store increment cycle until the B register equals zero. Finally,
test the carry flag to check if the result is correct. The
only difference between the addition program and subtraction
program is that the instruction ADC is used for addition
operation and the instruction SBC is used for subtraction op-
eration. The flowcharts and programs are given below for com-
parison:

23

Addition: Subtraction:

l Clear Carry [L, Clear Carry J
Load Byte-number Load Byte-number
Into Register B Into Register B
[A <= (IX) | [A<= (1X)]
| A<=A+(IY)+CY| ADC [A<-A-(1Y)-CY| 8BC
Instruction Instruction
[(IX) <= A | [(1x) <-4 |
IX <~ IX + 1 IX <= IX + 1
1Y <- 1Y + 1 1Y <- 1Y + 1

The following block diagram is given to demonstrate data
transfer in an addition operation.

24

LD A,(IX)
A BD
ADC : (1Y) 7C
Instruction
+ cY 6A

cYy ->@Ba a

After executing the instruction
LD (IX), A, the contents of A
are stored in (IX).

69 <~ (IX)

7C

64] AC
65
4B

AC <~ (IY)

48]

Starting address
of augend

<~ (IX)

Starting address
of the addend
<= (1Y)

Instruction INC IX increases the value of IX by one.
In the comment field the incrementation
IX + 1

of IX can be shown as IX
INC IY leads to 1Y <- IY +

1

In each of frames showing the results of an instruction
step the current value pointed to by the index registers

are indicated by

25

69

7C| <= (IX)
A
ADC (1Y)
Instruction
+ cY AC
65| <= (IY)

cYy ->[0] A 4B

After the instruction LD (IX), A
is executed, the memory becomes

\69 CY from last
E3 {~ (IX) instruction ADC
|64 |
AC
65| <~ (IY)
4B

When B = 0, the program execution is finished
and the memory becomes

69

cy [0 [B5] a E3

<~ (IX)

W 10y [
(] (3] [@]

<= (IY)

26

The addition program is given below. By replacing the instruction
ADC A, (IY) by SBC A, (IY), the addition program becomes a
subtraction program. :

1. **x MPF-I EXAMPLE PROGRAM ***
2. 3-BYTE ADDITION (UNSIGNED INTEGER)
3. ENTRY ; AUGEND ADDRESS IN IX,

4. ADDEND ADDRESS IN IY.

5. EXIT : SUM IN AUGEND ADDRESS

6.

7. ADD3 : XOR A ; CLEAR CARRY FLAG
8. LD B, 3 ; BYTE NUMBER IN B
9. ADDLP : LD A, (IX)
10. ADC A, (IY)
11. LD (IX), A
12. INC IX
13. INC IY
14. DJNZ ADDLP
15. RET

4. Programming Technique:

From the above examples (3-1 and 3-2), we can see that the
multibyte addition/subtraction operation can be accomplished by
repeating the single-byte addition/subtraction operation, that
is, by the loop operation of single-byte addition/subtraction.

In the above program, register B is used as a loop counter. If the
byte-number is 4, then 4 is loaded into B initially. Register B
is decremented by 1 after each loop operation. The loop ends
when B = 0. The instruction DIJNZ is used for conditional jump.
When B = 0, the program no longer executes the jump operation.
Since ADC and SBC instructions are used in the programs, the CY
is included in each addition/subtraction operation. Therefore,
before the first byte addition/subtraction operation, the carry
flag must be cleared (instruction XOR A). The index registers IX
and IY are used as address pointers. By incrementing IX and IY,
the CPU can access multibyte values stored in memory.

II. Student Exercises:

1. Load the above addition program into MPF-I and store it on
magnetic tape.

2. Replace the last instruction RET in the program by RST 38H.
Load the following data into memory. The starting addresses of
augend and addend are assigned as 1900H and 1AOOH,

respectively.Execute the program and record the result in the
following table.

27

Augend Addend Answer Check
793865H ABCEDFH CY =
009543H AB1236H CY =
954717H 003390H CY =

3. Replace the ADC instruction by the SBC instruction. Assign the
starting addresses of minuend and subtrahend as 1900H and 1AOOH,
respectively. Execute the program and record the results

obtained.
Mi nuend Subtrahend Answer Check
683147H 336700H
5935ABH 5877FFH
049677H F65B79H

4. Express the data in the above two tables as five-byte data.
Change the byte-counter to the proper value and execute the
addition/sutraction program.

5. Write a program to add the 7-byte data in memory addresses
1A00H = 1A06H to the 7-byte data in memory addresses
1900H - 1906H and then subtract the 7-byte data in memory
addresses 1940H - 1946H from the sun. The final result must be
stored in memory with the starting address 1900H.

Experiment 3-1:

The carry/borrow flag is used to indicate whether a carry/borrow
is generated during an arithmetic or logical operation. If a carry/borrow
is generated, then the flag is set to 1. Otherwise, the flag is zero. The
carry flag is represented by bit O of the flag register.

HEEEE

REG.F

t—Carry/Borrow

In other words, the contents of the F register will be an even
number if a carry/borrow is generated during the arithmetic or logical
operation. If register F is an odd number, then no carry/borrow has
been generated. Load the following program into MPF-I. Execute every
instruction by using the Single Instruction method. Observe the variations
of register F and record the results in the table.

28

Address Machine
Language
-1800H AF
1801H 3E7F
1803H Cé6 AD
1805H Cé 23
1807H D6 13
1809H D6 B3
180BH D6 15
180DH AF
180EH 3E7F
1810H CEAD
1812H CE23
1814H DE13
1816H DEB3
1818H DE15
181AH FF
INSTRUCTION

BEFORE EXECUTION

AFTER EXECUTION

e e e
DR WNHOWWOI®MUWN

(3)

A

+ A D

CY A

(10)

o
r

+ A D

e OO O

Assembly
Language
XOR A A,CY <~- 0
LD A, 7FH A (==~ 7FH
ADD A, ADH CY,A <-- A + ADH
ADD A, 23H CY,A <-- A + 23H
SUB A, 13H CY,A <-- A - 13H
SUB A, B3H CY,A <-- A - B3H
SUB A, 15H CY,A <-- A - 15H
XOR A A,CY <-- 0
LD A, 7FH A (== 7FH
ADC A, ADH CY,A <~- A + ADH + CY
ADC A, 23H CY,A <-- A + 23H + CY
SBC A, 13H CY,A (- A - 13H - CY
SBC A, B3H CY,A <(-- A - B3H - CY
SBC A, 15H CY,A <(-- A - 15H - CY
RST, 38H
(4) (5) (6))
A A A A
I O I R W]
+2 3 - 13 - B 3 -15
1 O OO0Od oo »4Oco43
CY A CY A CY A CY A
(11) (12) (13) (14)
CcY A A A
A
[:[] - 13 - B 3 -15
+ 2 3 —DCY —DCY - DCY
CcYy A CY A CY A CY A

CY A

29

Experiment - 3-2:

Referring to the operation for of 3-byte addition in example
3-3-2, write a basic addition program using only three kinds of instructions:
XOR A, LD A,(nn) and ADD A,(nn). Assume that the memory addresses of the
addend, augend and sun are assigned as follows:

1820H| A A 1823H| A A 1826H| A A
1821H| O O 1824H| O © 1827H|0 O
1822m | ¥ ¥ 1825H | K X 1828m | X ¥
Augend Addend Sum
kkOOAA kO 0OAA CY Xk O0AA

Explanation: In the above example, we see the following rules of addition:

(1) The additioﬁ operation moves from the low-order byte to the
high-order byte, the carry generated in the low-order byte
addition is added to the next higher order byte.

(2) The addition operation is executed with the aid of the
accunulator. Its result is also stored in the accumulator. Thus
to add two bytes together, one byte must be loaded into the
accunulator first (using the LD A,(nn) instruction). The other
byte is then added to the accumulator (using the ADD A,(nn)
instruction or the ADC A,(nn) instruction). The final result
is stored in an assigned memory address (using the LD(nn),A
instruction).

30

Purposes:
1.

2.

3.

Experiment 4
Branch Instructions and Program Loops

To familiarize the reader with the applications of conditional
and unconditional branch instructions.

To familiarize the reader with the technique of designing
program loops.

To practice using status flags in decision-making.

Time Required: 4 hours

I. Theoretical Background:

1.

Program Counter:

The program counter (PC) is an important 16-bit register in

the CPU. When the voltage level of the RESET pin (pin 26) of the
€PU drops to O and then rises to 1 (by pressing the RS key), the
PC will be cleatred to 0000H. The program execution is then
started from address O00OH according to the clock pulses supplied
by the system hardware. Once the CPU has fetched one byte of each
instruction from memory, the PC will be incremented by one
automatically. (The internal control circuit in the CPU
determmines how many bytes are contained in the instruction after
the CPU has fetched the first byte of the instruction. The
instruction will be executed only when the PC has been
incranented by the number of bytes in the instruction). Usually,
the program is fetched from the memory instruction by the instruc-
tion for execution, starting from the low memory address.

Branch Instructions:

At any address, the PC can be changed to another address if the
programmer doesn't want the program executio to continue se-
quentially (For instance, when there is no memory beyond that
address or the program is not stored in that area). The program
then jumps to another address and continue its execution. For
example, the following assembly language means that the PC will
be changed to 1828H after this instruction has been executed,
and the program execution continues from address 1828H.

31

LD PC, 1828H (This instruction is illegal in Z80 assembly
language)

Actually, in assembly language, JP (Jump) is used to indicate
the change in sequence of brogram execution. The instruction
has the same meaning as:

LD -PC, 1828H
JP 1828H

Conditional Branch Instructions:

A conditional branch instruction performs the jump operation if
some specified conditions are met. These conditions are all
dependent on the data in the flag register. This function makes
the microcomputer capable of responding to various external
conditions. It is also an indispensable tool for designing
program loops. The actions of the following instructions are
described in the comments to the right of the instruction:

CP 10H ; Compare the accumulator with 10H and
set the proper flag.

Jp zZ, 1828H ; If the zero flag is set, i.e. A = 10H,
then jump to address 1828H and continue
the program execution.

Jp C, 245AH ; If the carry flag is set, i.e. A ¢ 10H,
then junp to 245AH to execute other
program.

ADD A,B ; Otherwise, i.e. A > 10, continue the
program execution.

The condition of a conditional branch instruction is written after

JP:

(1) JP C, XXXX ; If there is a carry, or carry flag = 1,
then jump to XXXX,.

(2) JP NC, XXXX ; If there is no carry, or carry flag = 0
then junp to XXXX.

(3) JP Z, XXXX ; If zero flag = 1, or the result of previous
operation is zero, then jump to XXXX.

(4) JP NZ, XXXX ; If zero flag = 0, then jump to XXXX.

(5) Jp PE, XXXX ; If parity flag = 1 (evenf, or there was
an overflow in the previous arithmetic
operation, then jump to XXXX.

(6) JP PO, XXXX ; If P/V flag = 0 (odd parity or no overflow)
then jump to XXXX.

32

(7) JP P, XXXX ; If sign flag = 0 (the sign of result of
previo s operation is positive) then jump
to XXXX.

(8) JP M, XXXX ; If sign flag = 1 (negative) then jump to
XXXX.

Jump Relative:

To reduce the memory space occupied by the program and also
reduce the cost of the microcomputer system, the Z80
microcomputer can use relative addresses to specify the
displacement of a program jump. Since most displacements

in a jump are within the rage between +127 and -128, a one

byte number can be used to indicate this displacement. One byte
of memory is saved for each jump operation compared with the
two-byte absolute address in JP instructions. The operations of
the following instructions are described in the commands to the
right of the instruction.

JR 10H ; Junp forward 10H (16) locations from the
present program counter (the address of the
next instruction). Actually, the address
of the next instruction to be executed is
obtained by adding 10H to the present PC.

JR C,FOH ; If carrry flag = 1, then jump backward 10H
(16) locations from the present program
counter. Since the leftmost bit of FOH
is 1, it is recognized as a negative
pumber (its 2's complement is 10H).

JR NC,7FH ; If carry flag = 0, than jump forward 127
locations (maximum value)

JR Z,80H ; If zero flag = 1, i.e. the result of the
previous operation is zero, then jump
backward 128 locations. 80H (-128) is
the minimum negative number that can be
used in a relative address.

From the above examples, we can see that a positive relative
address means junping forward. The largest displacement then

is 7FH (+127). A negative relative address means jumping backward.
Its largest displacement is 80H (-128). The displacement is

2lways measured from the address of the next instruction's op code.
Relative jumps can be unconditional or conditional. The
conditional jump depends on the status of the carry or zero flag.
In the 280 system, the data in the sign or P/V flag cannot be

used as the condition of a relative jump.

Program Loop:

One of the important advantages of a computer is that it can
repeat the steps in a repetitive task as many times as is

33

necessary to complete the task. This is accomplished by
using a program loop. Looping is a very powerful tool in
program design. A basic program loop must contain the following:

(1) A loop's counter preset with the number of loops to be executed.
Usually, a CPU register is used as a loop counter. Of
course, memory can also be used as a counter.

(2) The loop counter is decremented by 1 after one cycle of the
loop has been executed. After each cycle the value of the
loop counter must be checked. If the counter is not 0, then
the loop repeats until the loop counter equals to O.

The following program can be used to add the 8-bit data in memory
addresses 1900H - 190FH and store the result in the DE
register pair. This is a typical application of a program loop.

LD C,10H ; Use register C as the loop counter. Since
sixteen bytes data are to be added together,
10H is preset in C.

XOR A ; Clear the accunulator

LD HL, 1900H ; Use the HL register pair as the address pointer.
The contents of the memory pointed to by HL
will be added to register A.
The first address is 1900H.

LD D,A ; Register D is used to store the carry
generated during the addition operation.
Clear Register D.

XX ADD A, (HL) ; Add the contents of the memory address pointed
to by HL to Register A. This instruction will
be repeated 16 times. XX is assigned
as the label of this instruction's address.

INC HL ; Increment HL by 1. The new HL points to the
next byte in data memory to be added to
Register A.

JR NC,YY ; If no carry is generated, jump to address
YY to continue program execution.

INC D ; If a carry is generated, add this carry to
Register D.

YY DEC C ; Decrement register C by 1.
JR NZ,XX ; If the result is not zero (zero flag = 0),

the program loop has not finished. Jump to
XX to repeat the loop.

34

LD E,A ; If zero flag = 1, then all data have been
added together. Load A into E, the answer
will be stored in the DE register pair.

END

There are various methods of designing a program loop. Try to
design the program loops described in the following illustrations.

I1I. Example Experiments:

1. A program loop with a loop number of less than 25€ : If the locg
number is less than 256, register B is recommended as the loop
counter. At the end of the loop, the DJNZ instruction can be used
to decrement register B. If the result is not zero, jump to the
assigned location using the relative jump method to continue the
program execution. Try to analyze the following program and
verify its function by loading it into the MPF-I and executing it.

ORG 1800H

LD HL, 1900H

LD B,20H
—>LOOP LD (HL),A

INC HL

DJNZ LOOP

RST 38H

Experimental result:

(1) Preset register A to 0 and then execute the above program

Results:
Contents of memory addresses 1900H - 191FH:

Contents of mémory address 1920H:

(2) Preset register A to 55H and execute the above program.
Results:

(3) Preset register A to 64H and replace the second instruction
LD B,20H by the instruction LD B,0 . Execute the program again.

Results:
Contents of memory addresses 1900H - 19FFH:

Discussion:
2. Nested loops:
In a more complicated program, a loop can be totally nested or
embedded inside another loop. The following program can be used
to divide the 256 bytes of data stored in memory into 16 groups.

The starting address of the memory is 1900H. Put the contents of
each group of data in the formm of a hexadecimal number:

35

(1)

(2)

3.

Ocesse(lst set), 1l.....(2nd set), 2.....(3rd set),ceeeyFecenn
(16th set).

LD HL, 19FFH
LD C,OFH
LOOP2 LD B,10H
r————:>L00P1 LD (HL),C
DEC HL
Small loop _-DJNZ LOOP1

DEC Cc

Large loop _~JP NZ ,LOOP2
RST 38H

Translate the above program into machine language and then load
it into the MPF-I. Execute the program.
Result :

Revise the above program such that the 16 bytes of the first
group are all "F", and the 16 bytes of the last group are all
llO".

A program loop with loop number larger than 256: If the loop
nunmber is larger than 256, a 16-bit register can be used as the

loop counter. But, in the Z80 system, incrementing or decrementing

a 16-bit register can not affect the status flag. Thus, some auxili-

ary instruction is used to determine whether the loop counter is
zero. The following program is supposed to be able to set all
data in RAM 1880H - 19FFH to AAH. Try to find the errors in this
program and correct them. Load the correct program into the MPF-I
and record the result of the program execution.

ORG 1800H
LD BC, 0180H
LD HL, 1880H
LOOP LD (HL), QAAH

INC HL

DEC BC

JR NZ , LOOP
HALT

A program loop without a down counter : A program loop need not
use a down counter. The function of the down counter can be
replaced by using an up counter or using the method of address
comparision or data comparison. Study the method used in the

following program loops. Load the programs into MPF-I and execute
them.

36

(1) Move the data string in the memory (RAM) section with
starting address 1BOOH to the memory (RAM) section with
starting address 1A00H. The movement will be teminated when
data OFFH is found.

ORG 1800H
LD HL, 1BOOH
LD DE, 1A00H
LOOP LD A, (HL)
LD (DE),A
cP OFFH
JR Z,EXIT
INC HL
INC DE
JR LOOP
EXIT RST 38H

(2) Replace all the data stored in the memory section starting
from the address pointed to by HL to the address pointed to.
by DE with their corresponding 2's complement. 1In testing
the program, the values of HL and DE must be preset first.

. The value of HL must be larger than that of DE.

ORG 1800H
LOOP LD A, (HL)
NEG .

LD (HL),A
INC HL
AND A

SBC HL, DE
ADD HL, DE

JR Nz ,LOOP

Purposes:
10
2.

Time Requi

Experiment 5
Stack and Subroutines

To understand the meaning and applications of s?ack'
To understand the designing technigues and applications of
subroutines.

red: 4 hours

I. Theoretical Background

1.

Stack: In program design, a stack is recognized as a memory
section which has only one port for input and output. Data are
written in or retreived from stack via this port. The first
item of data placed in stack is said to be at the bottom of
stack. The data most recently placed in stack is said to

be at the top of stack. Thus, a stack is also called a last-in
first-out memory. A stack can be constructed by hardware shift
registers or general RAMs. In the %80 microcomputer system,

the programmer can assign a region of RAM as the stack. To define
a stack at the top of RAM, the highest address of RAM is incre-
mented by 1 and then loaded into the stack pointer (SP) in the

CPU. The folilowing program and diagrams illustrate the operation
of stack.

Instruction Instruction Comment

Number

(1) LD SP,1FAFH ; Stack pointer is set towlFAFH, i.e. the
RAM section with address less than or
equal to 1FAEH is assigned as stack.

(2) DEC SP ; Decrement SP by 1. Stack pointer is at
1FAEH, i.e. at the bottom of stack.

(3) LD (SpP),H ; Load the contents of register H into
memory (RAM) address 1FAEH.

(4) DEC 8P ; Decrement SP by 1 again.

(5) LD (sp), L ; Place the contents of L at the top of
stack (i.e. above H).

(6) DEC SP

(7) LD (SpP),A ; Place the contents of A at the top of
stack (i.e. above L).

(8) DEC SP

38

(9) LD (SpP), F ; Place the contents of F at the top of
stack (i.e. above A).

(10) LD C, (SP) ; Pop one byte of data from the top
of stack and move it to register C.
(11) INC SP ; Increment SP by 1. SP is moved towards
the top of the stack.
(12) LD B,(SP) ; Pop data from the top ot stack.
(13) 1INC SP ; Increment SP by 1 again.
(14) LD E,(SP) ; Pop data from the top of stack and

move it to register E.

(15) INC SP

(16y LD D,(SP) ; Pop data from the top of stack and
move it to register D. This data is the
first one that is stored in stack.

(17) INC SP ; SP is at the initial value.
RAM RAM
SP assigned by //F SP assigned by ™ C
the 9th instruction ->| F4 the 10th instruction => | F/
//A SP assigned by } /zB
.C the 12th instruction => | AA
L SP assigned by E
IJ// the 14th instruction => Lf/z
SP assigned by //H SP assigned by /zD
the 3rd instruction ->| Hf the 16th instruction =>| H
Initial value of SP SP assigned by
1FAFH -> the 17th instruction => ~\U
Push data onto the stack Pop data from the stack

]

From the above illustrations of stack operation, we can see that
data can be stored in RAM by using SP as the pointer. SP is
decremented by 1 whenever one~byte of data is stored in and the
stack area becomes larger. The SP will be incremented by 1 whenever
one~byte data is retrieved from the stack area and the stack area
becomes smaller. The process of decrementing SP (pushing data onto
stack) or incrementing SP (popping data out of stack) can be
accomplished automatically by special hardware design. A stack can

also be used to store a 16-bit address (or data). In the Z80/8085
system, there are instructions to push a 16-bit register pair onto
stack and pop a 16-bit data out of stack. During each operation, SP
is decreanented or increanented by 2. The following program is
equivalent in function to that of the program given above.

LD SP, 1FAFH Same as 1st instruction.

PUSH HL ; Same as no. (2)(3)(4)(5) instructions.
PUSH AF ; Same as no. (6)(7)(8)(9) instructions.
POP BC ; Same as no. (10)(11)(12)(13) instructions.
POP DE ; Same as no. (14)(15)(16)(17) instructions.

Instructions PUSH and POP can be used to temporarily store data
in registers and also used to transfer register data. An example
is given below.

PUSH BC .

POP IX ; Move the 16-bit data in BC to IX

PUSH HL

AND A

SBC HL, DE ; Compare HL with DE to generate status
flags. The value of HL is kept
unchanged.

It is very important to keep the number of PUSH instructions
equal to the number of POP instructions in the stack operation.

2. Subroutine:

Programs for arithmetic (addition, subtraction, multiplication or
division), keyboard and display control, etc are often used as part
of a large program in practical applications. If the programmer
rewrites these small programs everytime he needs them, the whole
program would be very tedious to write. To save memory space for
the program and reduce errors, subroutines are often used in a large
program. Instructions CALL and RET are used to manipulate the
swroutines. The subroutines can be executed unconditionally or
according to the conditiohs of flags. The instruction CALL in the
main program is used to call the subroutine. Its function consists
of two operations which are illustrated below.

——>CALL 1A38H ; Call the subroutine stored in address 1A38H.

Equivalent to

PUSH PC ; Push the current program counter onto
JP 1A38H ; Junp to address 1A38H and continue the

program execution.

RET instruction doesn't need an operand (1 byte instruction),
it is the same as 'POP PC' instruction.

40

RET ; Return to original program and continue
l to execute.

Equivalent to ; Retrive 16-bit data in stackand load into
PC, then execute program according PC
; contents.
—PQOP PC

Calling a subroutine is an important step in a program.
Subroutines in a program can be in a nested form that is a sub-
routine can be another subroutine. The relationship is shown

below:
Main Program

Subroutine 1

CALL —>
1
CALL
2
CALL Subroutine 2
1
RET
CALL RET

L/2\

Usually, subroutines are written by a specialist. The user only
has to understand its calling procedure . If the subroutine is
written by the user himself, the following items must be considered
in designing a subroutine:

(1) An easily-renembered name must be chosen for the subroutine.

(2) How to get the data required in the subroutine before

executing the subroutine.

(3) How to express the result after executing the subroutine.

(4) Which register will be changed after executing the subroutine.

(5) How much memory will be occupied by the subroutine and how

much time is needed for the CPU to execute the subroutine.

The following items must also be considered when a subroutine is
called by the main program: '

(1) Registe?s that should not be changed by the execution of the
subroutine must be pushed onto stack before calling the
subroutine.

.41

LOC

0000
0001
0002
0003
0004
0007
0008
0009
000B
000D

II.

(2) How the results obtained from the subroutine execution will
be transmitted by the main routine (the calling routine).

The following listing is a sample subroutine named MADD.
It can be used for multi-byte BCD addition.

OBJ CODE

ASSEMBLY ERRORS

MADD LISTING PAGE 1

STMT SOURCE STATEMENT ASM 3.0

1 ; *** MULTIBYTE BCD ADDITION ROUTINE ***

2 ; ENTRY: HL POINTS TO LOW ORDER BYTE OF AUGEND

3 ; DE POINTS TO LOW ORDER BYTE OF ADDEND

4 ; B = BYTE NUMBER, 1 BYTE = 2 BCD DIGIT

5 ; EXIT : IX POINTS TO LOW ORDER BYTE OF RESULT

6 ; REG. CHANGE : AF,B,HL,DE, IX

7 ; MEMORY USED : 15 BYTES

8

9 MADD XOR A ; CLEAR CARRY FLAG

10 MADD1 LD A, (DE)

11 ADD A, (HL)

12 DAA

13 LD (IX),A

14 INC DE

15 INC HL

16 INC IX

17 DJNZ MADD1

18 RET

Two 4-byte BCD data are stored in the memory with starting

addresses at 1A00H and 1A40H,
together and store the result in RAM address 1A08H,

MADD is called by the following procedure:

LD
CALL

Example Experiment:

(1) Using the instructions for stack operation,

B, 4
HL, 1AOOH
DE, 1A40H
IX, 1AO08H
MADD

respectively. To add these BCD data
subroutine
Set Byte Number = 4 .

H
; HL points to the address of augend.
; DE points to the address of addend.
; IX points to the address of sunm.

write a routine to

move the data in HL, DE and BC to HL', BC' and DE',

respectively.

Load the program into MPF-I and execute it.

|
|
42

(2)

(3)

(4)

(5)

(6)

In the following program, a small loop is embedded in a large
loop. The function of this program is to shift all the 8-bit
the data in bytes in the address 1A11H - 1A20H left four bits.
Use register B as the loop counter for both small and large
loops. Load the program into MPF-I and execute it. Discuss
}he reason why register B can be used as the counter for both
oopSs.

1800 1 ORG 1800H
1800 0621 2 LD B,21H
1802 21001A 3 LD HL,1AOOH
1805 c5 4 LOOP1 PUSH BC
1806 7E 5 LD A, (HL)
1807 0604 6 LD B,4
1809 87 7 LOOP2 ADD A,A
1804 10FD 8 DJNZ LOOP2
180C 77 9 LD (HL),A
180D 23 10 . INC HL
180E c1 11 POP RC
180F 10F4 12 DJNZ LOOP1
1811 76 13 HALT

By calling the subroutine given in part 1 of this experiment
(multi-byte BCD addition routine), write a program to add two
8-byte data stored in memory lA@@H and 1A@8H. The result
must be stored in the 8-byte memory starting at 1A@@H.

Revise the above program for BCD subtraction or multi-byte
binary addition/subtraction. Test the program and record the
method of revision used.

Write a subroutine to change the 16-bit data in HL to its
2's complement. Write a main program to change the data in
IX and IY to their 2's complements. Load the program into
MPF-I and test it.

By using the above routine for complementing the HL register
pair, write a program to subtract DE from the data in IY and
store the result in IY.

43

Experiment 6
Rotate Shift Instructions and
multiplication Routines

Purposes: .)
1. To understand the use of Rotate and Shift instructions

2. To understand the designing techniques and uses of a binary
multiplication suroutine.

Time Required: 4 - 8 hours

I. Theoretical Background:

1. The 9-bit data formed by the carry flag and 8-bit data in a
register or memory can be shifted one bit left or right by
ROTATE or SHIFT instructions. The ROTATE and SHIFT instructions
are mainly used for multiplication and division. We multiply
a number by rotating and shifting left the bits that constitute
a number, while a division operation is done by rotating or
shifting right the bits that constitute a number. There are
many ways to rotate or shift the bits of a number. So, there
are 13 different types of ROTATE and SHIFT instructions. Please
refer to the MPF-I User's Manual, Appendix C. ~ The mnemonic
codes of these instructions are described below.

(1) If the leftmost character of an instruction is "R", it is a
"ROTATE" instruction. Such instructions can be used to rotate
the 9-bit data (fomed by 8-bit data and carry flag) left or
right one bit, e.g. RLCA, RL, RRA, etc.

If the leftmost character is "S", then it is a "SHIFT"
instruction. All the 9-bits of the data are shifted left or
right by one bit. The bit shifted out from one side will

not be moved in from other side. Examples of such instructions
are SAL and SRL.

(2) If the second character from the left is "R", it means '"shift
right" or "rotate right". Instructions RR, SRL, RRCA, etc.
are examples.

If the second character in the left is "L", it means "shift
left" or "rotate ieft". Instructions RL, SLA, RLCA, etc. are
the exampl es.

(3) The meaning of the third character is more complicated, but
it can be summarized as follows:

(a) In ROTATE instructions:
The third character "C" represents the circular rotation
of 8-bit data, carry flag is not included. The third
character (or the fourth character) "A" means that this
instruction is operated with the accumulator.
Instructions RLA, RRA, RLCA and RRCA are examples.
The third character '"D" indicates the shift operation
on decimal or hexadecimal numbers, for example, RLD and
RRD. These instructions are designed to rotate the
memory pointed to by HL left or right one digit (4 bits)

44

The digit entering from the left or right direction comes
from bit 0 - bit 3 of the accumulator. The digit moving
out from the other side is sent to bit 0 - bit 3 of the
accunulator.

(b) In SHIFT instructions:
The third character "A" indicates "Arithmetic Shift".
Binary data shifted left means multiplying it by 2 .
Binary data shifted right means dividing it by 2 . Two
of these instructions are SLA and SRA. Because bit 7 is
assigned as "sign bit" and the sign of the data is not
changed by these operations, the leftmost bit (bit 7)
must be kept unchanged.
The third character "L" means '"logical shift".
Instruction SRL is an example. In these operations, a
"0" is always moved to bit 7 from the left direction.

2. Binary Multiplication:

The operation of unsigned binary multiplication can be
accomplished by shifting the binary number left or by a program
loop of addition. An example of binary multiplication by
hand-calculation is illustrated below.

0101 ¢<—<~ Multiplicand =-> — 0101
X 1011 ¢—<~ Multiplier ->——>X 1011

0101 0101
0101 0000 partial
0000 0101 product
+) 0101 0101
0110111 {==~ Answer --—-=> 0110111

In the above calculation, one bit of the multiplier is checked.
If that bit is 1, the multiplicand is copied as the partial product.
If that bit is 0, 0000 is given instead. The position of the
partial product is arranged such that the least significant bit of
the multiplicand is aligned with the bit of the multiplier being
checked. In this example, multiplicand and multiplier are both 4-bit
data. Thus, it is necessary to repeat the operations of checking,
shifting and addition four times. Similarly, the operations
must be repeated 8 times for 8-bit data multiplication and 16
times for 16-bit data multiplication. In the left-hand side
calcuiation given above, the bit-checking process starts from
the least significant bit of the multiplier. In the right-hand
side calculation, the bit-checking process starts from the most
significant bit. But the results of the two calculations are
identical. The program of binary multiplication for microcomputers
can be designed by a method similar to the above calculation.

45

Example: Multiply the 8-bit data in register E by the 8-bit data
in register A. The product is stored in the HL register
pair.

Answer: gSpecific registers have been assigned to store multiplicand,
multiplier and product according to the characteristics
of the Z80 instruction set. Using the calculation algorithm
given in the right-hand side of the above example, the
program is designed as follows,

1. In the above hand calculation, the bit-checking process starts
from the least significant bit. A program loop can be employed
in the example. The multiplier is 8-bits long, thus the loop
number is equal to 8 . In every loop execution, the bit. being
checked (in register A) can be shifted into the carry flag by
the RLCA instruction. Then, according to the condition of the
carry flag, we can decide what will (or will not) be done next.

2. If the first bit checked (the leftmost bit) is 1, the partial
result is actually obtained by shifting the multiplicand left
(n-1) bits, where n is the number of bits in the multiplier.
The other partial results are obtained by shifting the partial
products left (n-2) bits, (n-3) bits,......., etc.

In this example, no other registers are required to store the
partial results. Each partial result can be added directly to
the HL register pair.

3. From the above description, we can see that the partial products
must be shifted left (n-1) bits, (n-2) bits, (n-3) bits,...,etc.
Since the bit-checking is also moving left in the process, we
can generate a new intemediate result by immediately adding
each partial product to the previous intermmediate result. This
method is more efficent and is used in the following program
flowchart.

4. Register Assignments:

E: ::__—D___-—__“—_—:L E . J <~ Multiplicand
L A | <~ Multiplier
l H , L](- Answer

5. Program Flowchart

{~ Set B as the loop counter. For an 8-bit
multiplier, B is set to 8

{~ 16-bit addition will be perfommed.
First clear D.

= Set the initial value of answer to O .,

¢~ Shift the intemediate result left one
bit. The first shift process is invalid.
Thus the first partial produwet will be
shifted left n-1 bits after the loop is
executed once.

A {~ The leftmost bit of the multiplier is
{— moved to the carry flag for testing.

If the leftmost bit of the multiplier
=1 is 1, the multiplicand is added to

the intemediate result.

Otherwise, the addition is ignored.

HL <~ HL +E|

B#0

B<<~-B <"1 {~ Check if the program loop has been
B= completed. If it is, stop execution.
Otherwise, repeat the loop operation.

47

LOoC

0000
6002
0004
0005
0006
0007

0008
000A
0008
¢00D

OBJCODE

0608
1600
62
6A
29
07

3001
19
10F9
C9

STMT

1:

MP8

#z MM

ULTiPLY 223

2;ENTRY

3
4

LISTING
SOURCE STATEMENT

sMULTIPLER IN E

iMULTIPLICAND INA

5;EXIT:

6

;s PRODUCT IN HL

7;REG. CHANGE :
83 MEMORY BYTE
9;EXICUTION TIME:<395 CLOCK / <197.5 #S.

10

11MP8:
12MULTI LD B,8

13
14
15
16
17

18
19
20
21

LOOP

NADD

LD D,0
LD H,D
LD L,D
ADD HL,HL
RLCA

JR NC,NADD
ADD HL ,DE
DJNZ LCOP
RET

B,D,HL

14

3 SET BYTE COUNTER =8

ASM 3.0

;CLEAR D, HL REGISTER

3ySHIFT HL LEFT
sROTATE BIT 7 OF
;s CARRY FLAG
sTEST CARRY FLAG
sADD DE TO HL

.
’

END?

“A”

INTO

48

II.

Example Experiments:

1.

The following program can be used to shift the 32-bit data

stored in the HL and DE register pairs, which are adjacent, right
one bit (or divide the data by 2). Load the program into MPF-I
and test it. Next, revise the program such that it can be used
to shift the 32-bit data left one bit (or multiply it by 2).

ORG 1800H
SRA H

RR L

RR D

RR E
RST 38H

Write a program to shift the 32-bit data, stored in RAM addresses
1A00H - 1A03H, left five bits (or multiply it by 20H). Load the
program into MPF-I and test it. The starting address of the
program is assigned as 1810H.

Using the RLD instruction, write a program to shift the BCD data,
stored in RAM addresses 1A00H - 1A03H, left four bits. The
starting address is assigned as 1830H. Load the program into
MPF-I and test it.

The following program can be used to multiply the 16 bit data
stored in the DE register pair by the contents of register A.
Load the program into MPF-I and test it. Compare this program
with the program given in Theoretical Background. Discuss the
advantages and disadvantages of this program.

MPYS8 LD BC, 800H
LD H,C
LD L,C

M1 ADD HL, HL
RLA
JR NC, M2
ADD HL, DE
ADC A,C

M2 DJNE M1
RST 38H

Write a program to multiply the 32-bit data stored in RAM
addresses 1A00H - 1A03H by the 32-bit data stored in RAM

addresses 1A04H - 1A07H. The product must be stored in RAM
addresses 1A08H - 1AOQOFH.

49

Purposes:
1.

2.

Experiment 7

Binary Division Routine

To understand how to write a binary division subroutine for
a microcomputer.

To familiarize the reader with the technique of software
programming.

Time Required: 4 - 8 hours

I. Theoretical Background:

1.

Binary division by hand-calculation:

The following example will be used to illustrate the detailed
procedure of binary division.
Divide 11101101 by 00010100

(1)

(2)

(3)

Write the dividend on the right-hand side, divisor on the
left-hand side, and put the quotient above the divisor.

{- Quotient

11101101 <~ Dividend (237)

00010100 <= Divisor (20)

Shift the dividend and the quotient left one bit.

0 {~ Quotient (Answer)

11101101 <~ Dividend

00010100 <~ Divisor

To compare the dividend and the divisor, place seven zeros
after the divisor in the columns beneath the dividend. It
can then be seen that the dividend is smaller than the
divisor. Therefore put "0" in the position of quotient.

Continue to test if the dividend is less than the divisor
with each shift. If the dividend is still less than the
divisor, then put a "O" in the quotient. Otherwise, put a
"1" in the quotient and the divisor is subtracted from
the dividend. 1In this example, the dividend and ‘the quo-
tient must be shifted left five bits before a "1" can

be put in the quotient. Thus four "0"s and one "1"

are put in the quotient in the following way.

50

(4)

(5)

(8)

(7)

(8)

00001 <~ Quotient (when the dividend

: is larger than
11101101 {= Dividend the divisor "1" is
put in the quotient.
00010100 <~ Divisor

Subtract the divisor from the dividend.
The difference becomes the dividend.

00001 <= Quotient (Answer)
01001101 ¢~ Dividend after subtraction
100010100] {~ Divisor

The dividend and the quotient are shifted left two bits,
then a "1" is put in the quotient.

0000101 {~ Quotient (Answer)
01001101 <~ Dividend
00010100 {- Divisor

Subtract the divisor from the dividend.
The difference becomes the dividend.

0000101 {~ Quotient (Answer)
00100101} <= Dividend after subtraction

<~ Divisor

Both dividend and quotient are shifted one bit again. Since
the dividend is not less than the divisor, put "1" in the

quotient.
' 00001011| <~ Quotient (Answer)

00100101 <~ Dividend
00010100 <~ Divisor

Subtract the divisor from the dividend, the remainder is
placed in the position of the dividend.

00001011 {- Quotient (11)
00010001 <~ Remainder (17)
00010100 - Divisor

]

Q
o
o
[t
o
et
o

(9) If the remainder is not zero, the division process can be

continued, but the result will contain fractions.
. 51

2. Division Program Design:

For the above algorithm, three memory locations are required to
store the dividend, divisor and quotient.

Example :

Solution:

Write a program to divide the 16-bit data in the DE
register pair by the 16-bit data in the BC register pair.
The result (quotient) must be stored in the HL register
pair and the remainder in the DE register pair.

The register assignment has been given in the problem
description. The HL register pair can be used as the
working register for 16-bit arithmetic subtraction. Shift
the 16-bit data in DE left one bit to the HL register
pair. Compare HL with BC. If HL is not less than BC, then
subtract BC from HL and the carry flag is set to 1
automatically. Otherwise, no subtraction operation is
performed and the carry flag will be 0 . Since the
right-most bit of DE is now empty, the carry flag is then
moved to this position.

The flowchart and the assembly language program are given below.

[Counter 4 = 18]

Subtraction working
register HL = 0

!

[CARRY <~ 0

!

Connect HL & DE side by side,
then shift left one bit

l

Compare HL with BC. If HL is
larger than BC, then subtract BC
from HL. Otherwise, no subtraction.

|

If the subtraction is perfomed

then set CARRY equal to 1 . Otherwise
CARRY is equal to 0 . Move CARRY into
the right-most bit of DE

>

F Store the result]

€D

52

0000
0001
0002
0003

0005

0007
0009

000B
000D
000OF

0010
0011
0012

0014
0015
0017

AF
67

3E10

CB13
CB12
ED6A

ED42
3001
09
3F
20F1
EB

ED6A
Cc9

(L

(2)

; *** MPF-I EXAMPLE PROGRAM 008 ***
;16 BIT DIVISION ROUTINE
;ENTRY:DIVIDEND IN 'DE'

; :DIVISOR IN 'BC!'

;EXIT :RESULT IN 'HL'

; :REMAINDER IN 'DE'

;REG. CHANG :AF,DE, HL

OO0 U WN -

DIV16 XOR A ;CLEAR CARRY FLAG

10 LD H,A

11 LD L,A ;HL=0

12 LD A,16 ;A = 16,LOOP COUNTER

13

14 DVO ;HL&DE 4 BYTE ROTATE LEFT 1 BIT

15 RL E ;SHIFT LEFT,STORE PARTIAL RESULT
16 IN BIT O

17 RL D

18 ADC HL, HL ;ROTATE HL LEFT

19

20 ; IF HL GREAT THAN BC, SUBTRACT FROM BC
21 SBC HL, BC ;HL = HL - BC

22 JR NC,DV1

23 ADD HL,BC ; IF NEGATIVE,RESTORE HL
24

25 DV1 CCF ; PARTIAL RESULT ‘IN CARRY FLAG
26 DEC A

27 JR NZ,DVO

28

29 EX DE HL

30 ADC HL, HL ;STORE LAST BIT OF RESULT
31 RET

Statement 10 and 11 of the program can be replaced by
instruction LD HL,0 . But this instruction occupies 3 bytes
memory and takes 10 clock cycles to execute. Instead, in
this example, LD H,A and LD L,A are used (A is cleared to
zero by statement 9). They occupy 2 bytes of memory and can
be executed in 8 clock cycles.

Addition and subtraction instructions can be used for 'shift
left" or "rotation'" operations. In this example, instructions
ADC HL,HL is identical with rotating the 16-bit data in HL
pair left one bit (The bit moved to the carry flag comes from
the leftmost bit of register D). The functions of the
following instructions are described on the right-hand side.

ADD AVA ; Shift register A left one bit;
or multiply A by 2.

ADC AA ; Rotate A left one bit

83

ADD HL, HL ; Shift HL left one bit; or double it.

- ADC HL, HL ; Rotate HL left one bit.
ADD IX, IX ; Shift IX left one bit; or double it.
ADD 1Y, IY ; Shift IY left one bit; or double it.

II. Illustrations of Experiments :

1. Load the above program into MPF-I and then store it on audio
tape.

2. Replace the last instruction (RET) in the above division
subroutine by RST 38H and execute it. Record the obtained results
in the following table.

Dividend Divisor Answer Remainder Check
8686H 0020H
FFFFH 0003H
5A48H 0142H
OH 0142H
1234H OH

3. Modify the above program such that the division process can be
continued until a 16-bit fractional quotient is obtained.

4. Using the above program as a subroutine, write a main program
to divide the data in RAM addresses 1AO0H - 1AOl1H by the data
in RAM addresses 1A04H - 1A05H. The result (quotient) must be
stored in addresses 1A00H - 1AOl1H.

5. Write a program to divide the 4-byte data stored in addresses
1AO00H - 1A03H by the 4-byte data stored in the memory address
pointed to by the HL register pair. The result (quotient) must
be in addresses 1A00H - 1A03H. The remainder must be stored
in addresses 1A04H -~ 1A07H.

54

Experiment 8
Binary-to-BCD Conversion Program

Purposes:

1. To understand the programming techniques of binary-to-BCD
conversion and its applications.

2. To understand the relation between subroutines and the
main program.

3. To familiarize the reader with the technique of program writing.

Time Required: 4 hours
I. Theoretical Background:
1. Methods of binary-to-BCD conversion:

There are several methods for binary-to-BCD conversion. The
method given below will be very neat because it uses the DAA
instruction. Two memory sections are assigned to store binary and
BCD data, respectively. The memory addresses for BCD data are
initially cleared to zero. The following process of shifting and
checking data is repeated until all binary data bits are shifted
left completely: shift the binary data left one bit, and its
leftmost bit is automatically transferred to CARRY. The BCD data
is then doubled and its rightmost bit-position is filled with the
CARRY of binary data.

The flowchart will be:

(1) Preparation:
Store the binary data in RAM with a starting address of 1AOOH.
Assign register D as the byte counter for the binary data,
and register E as byte counter for the BCD data. (Since the bit
| number of the BCD data may be larger-than that of the binary data,
: the value of E is usually not less than that of D).

(2) Clear the RAM section (starting address at 1AO08H) for the BCD
data.

(3) Shift the binary data (stored in RAM with starting address at
1A00H) left one bit. The leftmogt bit is automatically
transferred to CARRY Flag.

(4) Add CARRY to the BCD data (starting address at 1A08H) and then
double the BCD data.

(5) Check if all the bits of binary data have been shifted out of
the original memory section. If not, repeat step (3). If yes,
it is end of the program.

The actual assembly language program is listed below.

§5

LOC OBJ CODE STMT SOURCE STATEMENT

1800

1800
1801
1802
1805
1806
1807

1809
180A
180B
180C
180D

180E
1810
1811
1813
1814

1816
1818
1819
181A
181B
181cC
181D
181E

1820
1821
1823

;KK
sMULT
;ENTR
;EXIT
;REGI
’

»

QmEEO

e we we we

BINBC
; CLEA
CLEAR

CLR

s CALC

LOOP:

; SHIF

SHIB

;ADD

EX001 LISTING PAGE

MPF-I EXAMPLE PROGRAM 0O01***

IBYTE BINARY TO BCD CONVERTION

Y:BINARY DATA STORED IN ADDR. 1AOOH
:BCD DATA STORED IN ADDR. 1A08H

STER USE

CONTAINS BYTE NUMBER OF BINARY DATA

CONTAINS BYTE NUMBER OF BCD DATA

BCD DATA WORKING REGISTER

LOOP COUNTER

BINARY BIT NUMBER

ORG 1800H
D:
R BCD DATA BUFFER
XOR A ;A=0
LD B,E ; B=BCD BYTE NUMBER
LD HL,1A08H
LD (HL),A ;CLEAR MEMORY
INC HL ;NEXT ADDRESS
DJNZ CLR

ULATE BIT NUMBER
LD A,D ;A=BYTE NUMBER
ADD A,A
ADD A,A
ADD A,A ;A=A%8
LD C,A ;C=BIT NUMBER

T BINARY DATA LEFT
LD L,0 :HL=1A00=BINARY STARTING ADDRESS
LD B,D
RL (HL)
INC HL
DJNZ SHLB

CARRY & DOUBLE BCD DATA
LD L 8 ;HL=1A08=BCD STARTING ADDRESS
LD B,E

BCDADJ LD A, (HL)

0 ASSEMBLY ERRORS

ADC A,A

DAA

LD (HL),A
INC HL

DJNZ BCDADJ

DEC C
JR NZ,LOOP
RST 38H

1

ASM 3.0

56

2.

Assembly Language Programming Technique.

(a) Multiply (or divide) a piece of binary data by a fixed
number:

Of course, the standard multiplication (or division)
subroutine can be used to multiply (or divide) a binary number
by a constant. However, a simple multiplication (or division)
can be easily accomplished by shifting, additions or subtraction
operations. For instance, in the above program, if the byte
number of the binary data is known, then the bit number of the
data can be easily obtained by multiplying the byte number by
8. In statements 22 - 27, instruction ADD A,A is used three times
for multiplying the data in register D by 8 and then storing
the result in register C. If the multiplier is not an exponential
of 2, then addition or subtraction instructions must also be
used.

Example: Multiply the data in D register by 6 and then store the
result in register A. The program can be designed as

follows. :
LD A,D ; A=D
ADD AA ; A =2 %D
ADD A,D ;s A=3*D
ADD AVA ; A =6 *D

(b) Addressong method for memory on the same page:

A memory address can be pointed to indirectly by a register
pair (16 bits). To change a memory address pointed to by a
required pair within the same page (each page contains 256 bytes),
only a change in the low-order byte of the register pair is
required. For instance, in the program listed above, the binary
and BCD data are stored on the same page of memory (page 1AH).
Since statement 1A assigns the contents of register H as 1AH,
only a change in the contents of register L is required to change
the pointed address in statements 31 and 38.

I1I. Example Experiments:

1.

2.

Load the binary-to~-BCD conversion program listed in part I into
MPF-I and then store it on audio tape for future applications.

Test the above program:
First, store the byte numbers of binary and BCD data in registers
D and E, respectively. Next, load the binary data into RAM,

with a starting address at 1AQ0OH. Record the obtained result and
check if is correct.

57

3'

Binary Hexadecimal BCD registers D & E
1000000000 | 0200H D=2, E=2
FFFFH D=2, E=3
18000H D=3, E=4
5A48347FH D=4, E=6

3% D =8, E = OAH

2% D=8, E=0AH

2% -1 D =28, E = OAH

Change the above program to a subroutine format (Replace the

last instruction RST 38H by RET). Using this subroutine, write

a program to convert the contents of the DE register pair into a
BCD number and then store the converted BCD data in the HL register
pair. The contents of the DE register pair will not be changed
after the program execution. Test the program and write down the
complete program in the blanks below.

Write a program to multiply the binary data in register E (<20H)
by 7 and store the result in register A.

58

Experiment 9
BCD-to-Rinary Conversion Program

Purpuses:

1. To understand the methods of BCD-to-Binary conversion.
2, To familiarize the reader with programming technique.

Time Required: 4 - 8 hours

I. Theoretical Background:
1. Methods of BCD-to-Binary conversion:

There are also several method for BCD~to-Binary conversion. In
this experiment, the simple yet efficient method of shifting and
checking is used. The RAMs used for storing the binary and BCD
data are adjacent (in a row with the low-order digit on the right
side). The BCD data is stored on the left~hand side and the
converted binary data is stored on the right-hand side. The
conversion procedure is given as follows.

(1) Assign the bit number of the binary number as N for N
program loops.

(2) Shift the connected data right one bit.

(3) Check the left-most bit of each digit (4 bits). If the
checked bit is 1, then subtract 3 from the corresponding
digit.

(4) Repeat step (2) & (3) N times. The conversion process is
then compl eted.

2. Principle of the checking process
The real purpose of steps (2) & (3) of the above method is to

divide the BCD number by 2 and put the remainder in the memory.The
principle is illustrated in the following figure.

Hundred's Ten's One's
Binary Data

800 400 200 100 80 40 20 10 8 4 2 1

0 0 1 1 1 0 0] 1 0 1 0 1

A 4

B CD Data
59

(1) Each BCD digit contains 4 bits. Shifting the 4 bits of a

(2)

(3)

digit right one bit will divide this digit by 2. For

instance, the leftmost digit of the ten's four bits represents
80 if it is "1". If this bit is shifted right, then it
represents 40, that is, half of its original val ue.

If a "1" is shifted from high a order digit to a lower order
digit, the value is reduced to 5 (or 50, 500, ---, etc).
However, the resulting BCD code will interprete this bit as
8 (or 80, 800, =--, etc). Thus 3 (or 30, 300, ---, etc) must
be subtracted from the resulting BCD number.

The conversion method can be illustrated by the following
hand-calculation.

205 <~ Decimal 2 205 -=~1 BIT O
- 2 2 (102 --- 0 BIT 1
""102 Remainder 2 |51 ---1 BIT 2
— 2 2 |25 ---1 BIT 3
sl 2 12 ---0 BIT 4
— 2 2 |6 ---0 BIT 5
a5 2 |3 ---1 BIT 6
= g L1 BIT 7
12 1100 1101

c D
-~ g
-
- 2
~mm-
- 2
-
—= 2
““““““ \ A S

60

3. BCD-to-Binary conversion program:

Once the conversion method is decided, it is very easy to design
the program. The following program can be used to convert 5-byte
(or 10-digit) BCD data stored in RAM into 4-byte binary data.

Since the largest value of 4-byte binary data is 4,294,967,295,
the BCD number to be converted can not exceed this value. In RAM,
the memory of addresses 1A00H - 1A03H are reserved for storing the
binary data (lowest-order byte in 1A00H). The memory of addresses
1AO04H - 1A08H are assigned to store the BCD data. Sample programs
for BCD-to-Binary conversion and Binary-to BCD conversion are
listed below for reference.

61

LOC OBJ CODE STMT

1

2

3

4

5

6

7

1800 8
1800 O0E20 9
18

11

1802 0605 12
1804 AF 13
1805 21081A 14
1808 7E 15
1809 1F 16
180A F5 1A
18

180B CB7F 19
180D 2802 20
180F D630 21
1811 CBSF 22
1813 2802 23
1815 D603 24
25

181A 77 26
1818 2B 27
1819 F1 28
181A 10EC 29
30

31

181C 0604 32
181E CB1E 33
1820 2B 34
1821 10FB 35
36.

1823 0D 37
1824 20DC 38
1826 C9 39

EX007 LISTING
SOURCE STATEMENT

;%% MPF-I EXAMPLE PROGRAM 007 **x
; 10 DIGIT BCD TO BINARY CONVERSION
; ENTRY: BCD DATA IN RAM 1A04H TO 1A08H
; : MAX. BCD DATA IS (4294967295)
; EXIT : BINARY DATA IN RAM 1A00H TO 1AO03H
; REG. CHG : AF,HL,BC
ORG 1800H
LD C,32 ; PRESET CONV. LOOP = 32
DBLP:
; DECIMAL DIVID BY 2
LD B,5 ;BCD BYTE COUNT = 5
XOR A ;CLEAR CARRY FLAG
LD HL,1A08H ;HL POINT TO LEFT BYTEL
CORO LD A, (HL) ; TRANSFER DATA TO A REG.
RRA ;ROTATE RIGHT
PUSH AF ;SAVE CARRY FLAG
;* BCD DIVID CORRECTION
BIT 7,A ;TEST BIT 7
JR Z,COR1 ;NO CORRECT IF BIT 7 = 0
SUB 30H ‘;SUBTRACT FROM 30H IF BIT 7
COR1 BIT 3,A ;TEST BIT 3
JR Z,COR2
SUB 3
COR2 LD (HL),A ;STORE TO MEMORY
DEC HL sNEXT BYTE
POP AF ;RESTORE CARRY FLAG
DJNZ CORO ;DONE LOOP
;ROTATE BINARY RIGHT
LD B,4 ;BINARY BYTE = 4
SHR4 RR (HL)
DEC HL
DJNZ SHR4
DEC C
JR NZ,DBLP
RET

1

62

LOC OBJ CODE STMT

1827
182A
182C
182E
182F

1831

1833
1834
1836
1837
1839
183A

183C
183E
183F
1840
1841
1842
1843

1845
1846
1848

210414
0605
3600
23
10FB

OE20

68
0604
AF
CB1é6
23
10FB

ASSEMBLY

EX007 LISTING
SOURCE STATEMENT

40 *E
41 ;4 BYTE BINARY TO BCD CONVERSION
42 ; ENTRY:BINARY DATA STORE IN ADDR. 1AO00H TO 1AO03H
43 ; EXIT :BCD DATA STORE IN ADDR. 1A04H TO 1AO08H
44 ; REG. CHANG : AF,BC,HL
45
46 BINBCD:
47 ;CLEAR BCD DATA BUFFER
48 LD HL 1A04H
49 LD B,5
50 CLEAR LD (HL),O0
51 INC HL
52 DINZ CLEAR
53
54 LD C,32
55 LOOP
56 ;SHIFT BINARY -DATA LEFT
57 LD L,B ; HL=1A00=BINARY STARTING ADDRESS
58 LD B,4
59 XOR A
60 SHLB RL (HL)
61 INC HL
62 DJNZ SHLB
63
64 ;ADD CARRY & DOUBLE BCD DATA
65 LD B,5
' 66 BCDADJ LD A, (HL)
67 ADC A, A
68 DAA
69 LD (HL),A
70 INC HL
71 DINZ BCDADJ
72
73 DEC C
74 JR NZ, LOOP
75 RET
ERRORS

63

11I. Example Experiments:

1. Load the two subroutines for BCD-to-~Binary anb Binary-to-BCD
conversion into MPF-I and then store them on audio tape for
future application.

2. Replace the last instruction RET of the above subroutines by RST
38H so that control of the microcomputer MPF-I will be returned
to monitor after program execution. Load an arbitrary 5-byte BCD
number in RAM address 1A04H - 1A08H. Convert this BCD data
into binary data by using the above program. Check if the result
is correct.

3. By a method similar to that described in part I (Theoretical
Background), write a program to convert the 4-digit BCD data
into binary data : The processing must be held within CPU
registers and the result will be stored in the DE register pair.

Assigned Converted Re~converted
Decimal Number Binary Number Decimal Number
1
2
3
4
5

4. Using the binary multiplication routine and the routines for
.conversion between binary and BCD data, write a program for
decimal multiplication. The decimal multiplier and multiplicand
must be stored in the HL and DE register pairs, respectively.
The result must be stored in RAM addresses 1A04H - 1A08H. The
data in HL and DE must be unchanged after program execution.

.64

Experiment 10

Square-Root Program

Purposes:

1. To understand how the microcomputer calculates the square root
of a binary number.

2. To practice microcomputer programming.
Time Required: 4 - 8 hours

I. Theoretical Background:

1. Calculating square roots of binary numbers by hand:

There are several methods for calculating the square root of a
binary number. The following method for hand-calculation can be
easily converted into a microcomputer program. This method is
illustrated by calculating the square root of 010r0001 (or 81):

(1) Each of the following blocks represents ‘the position for
storing data. The original binary number is stored in Y
block, the number 01 is permanently stored in P block. X
and R blocks are prestored with O.

X Y
01010001
[[ooo000o]
R P

(2) Subtract the number formed by the R & P blocks from the pumber
formmed by the X and Y blocks. If the result is non-negative,
then put 1 at the rightmost position in the R block and shift
the original data in the R block left one bit. If the result is
negative, then restore the original data in the X & Y blocks
and shift the data in R left one bit. In this example, the
result of sutraction is positive. Thus, the following
result is obtained.

X Y
00010001

1,01

R P

65

(3)

(4)

(5)

(6)

Shift the data in the X & Y blocks left two bits.

X Y
| loo 01000100 |
| 1]o1]

R p

Since the number in the X and Y blocks after the shift process
is still less than that in the R and P blocks, thus the data
in the R block must be shifted left one bit and a "0" is put
in the rightmost position. The data in the X and Y blocks
remains unchanged.

Shift the data in the X and Y blocks left two bits.

X Y

0001|0001oooo

1 10| o1

R P

The new data in the X and Y blocks is still less than the R
and P block. Thus, shift the data in the R block left one bit
again. An "0" is put in the rightomst position of the R block.
The data in the X and Y blocks is also shifted left two bits.

X Y
000100{01

[100]o01 |
R P

66

2.

(7) The number in the X and Y blocks is not less than that in the

R and P blocks. Subtract the number in the R and P blocks from
the number in the X and Y blocks. Shift the data in R left one

bit and put a "1" in the left-most bit-position.

X Y
| 000000] 00|
[1001] 01]
R P

(8) Shift data in the X and Y blocks left two bits. Since the
the orginal data in the Y blocks has been shifted out compl=—
etly, the final result is given in the R block.

X Y

| 1001/ o1]

R P

(9) If the original data in the Y block is not the square root
of some integral binary number, then the above method may be
continued to find the fractional part of the square root.

Square root routine

The square root routine can be designed by the method described

above. A subroutine for calculating the square root of a 16-bit
piece of data is illustrated below.

Example: Find the square root of a 16-bit piece of data stored in

the BC register pair. The calculation must be continued
till the fractional part of the solution contains 8 bits.

The integral part of the solution will be stored in register

D, while the fractional part will be stored in register E.

67

Solution: The CPU registers are assigned as follows:

X Y
ot &« ¢

o =] |

R P

The original data is stored in registers A and C (Y block).
The HL register pair is used as the working area of subtr—
action operation. The answer will be stored in the DE
register pair (R block). The data in the P block is a
fixed number, its left-most two bits are 01, i.e. the data
in the P block may be written as 01000000B (40H). The
program and its flowchart are given below.

68

4
A& B

B <16

N
X

| HL<—DE<—0]

HLA ~—HLA —DEN |

4@»

c

| HLA<HLA + DEN]

| CcY<—TCTv |
!

ROTATE DE LEFT
WITH CARRY

y

SHIFT HLAC
LEFT TWO BIT

69

1 ; *** MPF-I EXAMPLE PROGRAM 009 ***
2 ; 16 BIT SQUARE ROOT ROUTINE
3 ;ENTRY: BINARY DATA IN 'BC'

4 ;EXIT : RESULT IN 'D'(INTEGER)

5 ; 'E' (FRACTION)

6 ;REG. CHANG.AF,BC,DE,HL
0000 78 7 SQRT16 LD A,B ;A&%C = ENTRY DATA
0001 0610 8 LD B,16 ;LOOP COUNTER
0003 210000 9 LD HL,O ;HL:WORKING AREA
0006 54 10 LD D,H
0007 5C 11 LD E,H ;DE=0,RESULT PRESET TO 0
0008 D640 12 SQO SUB 40H ;A=A-40H,40H IS A FIXED DATA
000A ED52 13 SBC HL,DE ; HL=HL~DE
000C 3004 14 JR NC,SQ1 ;IS HL > DE ?
000E C640 15 ADD A, 40H
0010 ED5A 16 ADC HL,DE ;IF NOT, RESTORE A&HL
0012 3F 17 SQ1 CCF . ;PARTIAL RESULT IN CARRY FLAG
0013 CB13 18 RL E ;STORE PARTIAL RESULT
0015 CB12 19 RL D ; & SHIFT 'DE' (RESULT) LEFT

20 ;'HL.A C' 4 BYTE SHIFT LEFT TWICE
0017 CB21 21 SLA C
0019 17 © 22 RLA
001A ED6A 23 ADC HL, HL
001C CB21 24 SLA C
001E 17 25 RLA
001F ED6A 26 ADC HL,HL

27
0021 10E5 28 DJNZ SQO0 ;DONE LOOP
0023 C9 29 RET

0O ASSEMBLY ERRORS

II. Example Experiments:

1. Load the above program onto MPF-I and then store it in audio
tape for future applications.

2. Replace the last instruction (RET) by RST 38H. Prestore a 16-bit
data in the BC register pair and then execute the square root
program. Write down the result obtained.

Data Prestored Result of Check
in BC Program Execution

0051H

0000H

FFFFH

4000H

70

Revise the above program such that it can be used for calculating
the square root of a 32-bit piece of data. Store the original
data in the BC and IX registers. The answer will be stoed in
the De register pair. Only the integial part of the square root
is required.

Using the square root routine and binary multiplication routine,
write a program for finding the absolute value of the vector

fomed by two mutual perpendicular vectors. The length of each
vector component can be represented by an 8-bit binary number.
These two numbers are stored in the H and L registers, respectively.
The result of the program execution will be stored in register D.

() = [@ + @ .

71

Experiment 11
Introduction to MPF-1 Display

Purposes:

1.

2.

To understand how to use subroutines of the monitor program.

To understand how a character is displayed by a seven segment
display.

To understand the application of conversion tables of
characters.

To understand the structure and characteristics of a matrix-form
keyboard.

Time Required: 8 hours

I. Theoretical Background:

1.

Structure of seven-segment display

The seven-segment display is one of the least expensive displays
for alphanumeric characters. The display is very suitable for
applications in microcomputer systems. Illumination of each
individual segment can be accomplished by using LEDs, fluo-
rescent devices or small incandescent lamps. The hardware con-
nection is shown in Fig. 11-1. Each digit consists of

seven independently controlled segments which are designated as

a, b, ¢, d, e, £, and g. All the cathodes (or anodes) of the same
segment in all digits are connected together by a common wire. The
control lines for the seven segments are designated as Sa, Sb,even,
Sg, respectivly. A common line (e.g. DO, D1, D2,....) connected to
each segment of a digit is used for digit selection. A segment
is illuminated only when both the control signal and the
digit-selection signal are applied simultaneously. The structure
of this kind of display is simple but it requires a fast
scanning circuit to display each digit,)

72

2.

|
;

]
]

|
E

- == Connected
) > to other
digit display

Fig. 11-1 7 Segment Display Connecting Circuit

Scanning method of the seven-segment display

The principle of scanning the seven-segment display is as follows:
output a digit-selection signal and activate the segment-control line
of the corresponding word format. For instance, if the digit-
selection line chosen is DO and only the segment-control line

Sa, Sb, and Sc are activated, then a digit "7" will be displayed

at the position indicated by the DO line. The scanning method

is : Apply a signal voltage to the digit-selection lines DO,
Dl,...., Dn in sequence. When a digit-selection line is activated,
voltage signals are applied to the segment-control lines Sa, Sb,...
Sg of the corresponding word format. After digits have been scanned
once, the scanning is repeated from the beginning. Each digit must
be scanned at least 40 times per second. Due to persistence of
vision of human eyes, all digits in the display appear to be 1lit
simultaneously. The scanning speed can not be too fast, since the
residual light of the neighboring digit may cause confusion.

73

3. Scanning period and keybounce:

The keypad is usually depressed by hand. In general, the micro-
computer's reaction is much faster than a human's response. To

key in data or a command from the keyboard, the microcomputer must
scan the keyboard repeatedly until a key is found depressed. A key
bounces for a short time when being depressed or released. Fig.

11-2 is a time response diagram of typical key-depressing or
key-releasing operation. Thus, a key-depression might be identif-
ied as two or more key-depressions if the key-board scanning rate

is too fast. To avoid this problem the period of scanning must

be longer than the bouncing time (usually bouncing time is no longer
than 10m sec). The period of scanning is between 10m sec and 50m
sec. In the figure below an upward arrow indicates when the key

is examined. At Tn+2, microcomputer program found that the key

was depressed and identified the keycode. At Tn+3, the key

was also found depressed. Since the key was found depressed in a
previous scan, the microcomputer program would determine that

this was not a new key-depression (i.e. the key had not been released
during this time interval). Only if the key is found depressed at
Tn+4 or Tn+5 is a key-depression found at Tn+6 really a new key-
depression. A program for getting data from a, keyboard designed by
this rule will be error-free, no matter how long the duration of key-
depression is and whatever is found at Tn+l and Tn+4 (0 or 1).

The hardware connection is shown in Fig 11-3

depressing releasing
bouncing bouncing
oo P e, /¢
)]
key rel, key .dep, , key rel.]|lkey dep.
, —4 gL ~ —
TIME
Tn Tn+1 Tn+2 Tn+3 Tn+3 Tn+4 Tn+5

Fig 11-2 The Time Response of Keyboard Scanning

T4

4-1 Construction of MPF-I display:

The display of the MPF-I is composed of 6 LEDs. 14 output lines are

used to control the display. The addresses of the 14 output ports are

given in Fig 11-3, The 8 output lines with addresses PBO - PB7 are
used to control the seven segments and a decimal point in the display.

The 6 output lines with addresses PCO - PC5 are connected to the
7418492 to select the digit to be displayed. All the segments are
controlled by logic "1" signals. If a segment is at logic "1", then
it is lit. If a segment is at logic "0", then it is extinguished.
Before MPF-I executes the user's program, the output ports PBO - PB7,
PCO - PC5 are set at logic "0". If the output port PCO is set at
logic "1", then digit 1 is selected. If the output ports PBO - PB7
are at logic "1'", then only digit 1 of the display is illuminated.

75

4-2 The structure of matrix-from keyboard:

45v
+5v
>—s
10
100 .
. SRl
18 1 2
bo; 13 g£A7 C%Eg
e Gk f
+5v L4
N
%%%%oe 10
22 1 [VSE1C2C3C4C 2
e m ma N
PEoI2s 14 :Zi75491 03
Iz
_3 5 &4 6 7 9 10 _1
. .
— L
e . 4’] D6 D5] D4 D3] D2] OI
14 A
s o
2
IF2C3 g 101«‘\75492:33 g
e D™
+5v
. Y
e A4 a8 8 s
& d8q]
o | 39 Q988 8L o0
Fig. 11-3 47K

T6

A matrix-form keyboard is an important yet inexpensive input device
for the microcomputer. The structure of the keyboard is a number of
wires in a matrix form. At each node of the matrix a keypad |is
positioned. The 6 vertical lines and 6 horizontal lines (6x6) in

Fig. 11-3 provide 36 contact points for keyboards. When a key is
depressed, it makes a contact between one row and one column of the
matrix. The 6 horizontal lines are connected to the microcomputer
input port. The input port addresses are PAf - PAS. When no key is
depressed, the 6 input addresses are connected to +5V power supply

via 6 resistors. Thus, logic "1" will be read in by the microcomputer
input ports. The 6 column lines ave connected to the output ports

PC@ - PC5 which are also connected to the display circuit.

4-3 Keyboard scanning program

The microcomputer may select the rightmost column line from the
output line PCO. The voltage of the 6 row lines are then examined
in sequence. At the beginning of keyboard scanning, a counter is
set to zero, port "C" will output '11000001", the value of

PC5 - PC6 are "000001". PC6 and PC7 must always be high during
keyboard scanning because the output line of PC6 is connected to
BREAK and PC7 is connected to the speaker. The voltage of the 6 row
lines are then examined in sequence. If a key is depressed (a zero
voltage at the corresponding row), it can be identified from the
port address. If no key in the first column is depressed then the
microcomputer port C will output '"11000010" to select the second
column for examination. In general the keyboard scanning proceeeds
in sequence, from upper side to lower side, from right side to left
side of the key matrix, to examine if any key is depressed. Each
key in the keyboard is encoded. Once a key being examined is found
to be not pressed, the counter's value is increased until a key is
found depressed. Then the counter's value is the position code of
that key.

T7

4-4 Conversion table

A subroutine SCAN in MPF-I monitor program with starting address OSF

can be used to control simultaneously 6 byte of data stored in
The addresses of the display buffer are 1FB6 - 1FBB.

RAM.

11-4 is a conversion table.

.
‘II.’.I"’ 716 s alz]1
e €
- d p ¢ b a g
DISPLAY FORMAT:
CODE |ED 30 98 BA 36 AE AF 38 BF BE 3F A7 80 B3
DATA 1 2 3 4 5 & 7T B8 9 A B C D
oee | | 244585 T89RE L
CODE |BF ©F AD 37 89 oi 97 85 2B 23 A3 iF 3 03
DATA E F 6 H I J K L M N O P @ R
e |E FOHCOJEP LARoP Y-
CODE |A6 B7 BS B7 A9 @7 B4 BA B3 A2 32 02 CO @0
DATA s T U V W X Y 1z () 4+ =
oiee S EUHOUEFEY 2 co 4 - _

Fig.

11-4 Conversion Table

T8

1. Position-Code (CALL SCANI) :

iE i 12 ec 06 @0
S8R CBR ‘e’ ‘1 2’ ‘3’
iF i9 13 eb @7 o1
1 PC rq 5 X g
20 1A 14 ot o8 o2
DATA REG ‘8’ A ‘A’ ‘B’
21 iB 15 oF e9 a3
4t ADDR ICI IDI E IFl
22 ic 16 ie oA o4
INS DEL GO STEP

23 1D 17 11 2B @5
MOVE RELA TPWR TPRD

2. Internal-Code (CALL SCAN) .

15 1A 20 oL %2 23
SBR CBR Q7 ry - i
11 i8 ' 04 es (22 07
ey PC 14/ 15/ '6' /7/
14 1B 28 9 QA or
DATA REG ‘g rge ‘A’ Y
ie 19 ec oD QE OF
ty ADDR c Y rE’ -
16 17 i2 i3 a2 20
INS DEL GO SYEF

ic iD 1E 1F 23 21
MOVE - RELA TPWR TFRD

Fig. 11-5

[£°)

Fig. 11-5 are table of Position-code and internal-code. If

a scanned key is depressed, then we can pick up a Position-

code (by CALL SCAN1). Adding this data to the starting addess
of the KEYTAB (The address of KEYTAB in monitor program is

077B) then key position code is converted to key internal code.
For example when "F KEY" is depressed we pick up a position code
03, then by the conversion gives the internal code with OF.

4-5 Keyboard and display program

The microcomputer usually executes some part of the user's program
before it scans the keyboard to fetch new data or command. Since

the keyboard scanning need not be very fast, the microcomputer has:

can assign time-slot to scan the display. In MPF-I, a combined program
is written for both keyboard and display scanning. The interval
between two consecutive scans is 10 msec, ie. 100 times per

second.

5. Useful Subroutines of the Monitor Program

5.1 Summary

r

ADDRESS | MNEMONIC FUNCTION
0624 SCAN1 Scan Keyboard and the display one cycle.
OSFE SCAN Scan keyboard and the display until a new
key=in.
0689 HEX7 Convert a hexadecimal digit into the

7-segment dispaly formmat.

0678 HEX78G Convert two hexadecimal digits into 7-segment
display fomat.

0665 ADDRDP Convert two bytes data stoed in DE to
7-segment display format. The output is
stored in the address field of display buffer
1FB8 - 1FBB.

0671 DATADP Convert the data stoed in A to 7-segment
display format. The output is stored in
the data field of display buffer 1FB6 - 1FB7.

80

5.2 SCAN1

[Address]: 0624

Function]: Scan the keyboard and the display 1 cycle from right to left.
Execution time is about 10ms (9.97ms exactly).

[Input]: IX points to the display buffer which contains six bytes.
[Output]: (1) If no key-in, then carry flag = 1.
(2) If key-in, carry flag = O and the position-code of the
key is stored in register A.
[Supplement]: (1) 6 bytes are required for 6 LED's.

(2) IX points to the rightmost LED, IX+5 points to
the left most LED.

the right LED

I X

the left LED

(3) See Fig. 11-4 for the relation between each
bit and the seven segments.
[Register]: Destroy the contents of AF, B , HL , AF', BC', DE'.,
5.3 SCAN
[Address]: OSFE
[Function]: Similar to SCAN1 except:
(1) SCAN1 scans one cycle, but SCAN will scan till
a new key-in.
(2) SCAN1 returns the position while SCAN returns the
internal code of the key pressed.
[Input]: IX points to the display buffer.
[Output]: Register A contains the internal code of the key pressed.

[Register]: Destroy AF,B, HL, AF', BC', DE'.

81

5.4 HEX7
[Address]: 0689

Function]: Decode a hexadecimal number to its 7-segment display
fomat.

[Input]: The least significant 4 bits of A register contain the
hexdecimal number. (O-F).

[Output]: The result is also stored in A register.

[Register]: Destroy AF only.

5.5 HEX7SG

[Address]: 0678

[Function]: Convert two hexadicimal number into 7-segment display
format.

[Input]: The first number is stored in the right 4 bits of A. The
second number is stored in the left 4 bits of A.

[Output]: The first display pattern is stored in (HL), the second is
in (HL+1), HL is increased by 2.

[Register]: Destroy AF, HL.

II. Program Examples

EXAMPLE 1: Display HELPUS , HALT when Step 1is pressed.

1 DISPLAY 'HEL US' UNTIL KEY-STEP PUSHED:
1800 2 ORG 1800H
1800 DD212018 3 LD IX, HELP
1804 CDFEO5 4 DISP CALL SCAN
1807 FE13 5 CcP 13H ;KEY-STEP
1809 20F9 6 JR NZ,DISP
180B 76 7 HALT

8 H
1820 9 ORG 1820H
13820 AE 10 HELP DEFB OAEH ; '8!
1821 BS 11 DEFB OB5H ; ‘U
1822 1F 12 DEFB O1FH ; 'P!
1823 85 13 DEFB 085H ; 'L
1824 8F 14 DEFB 08FH ; 'E'
1825 37 15 DEFB 037H ; 'H!

16 ;

17 SCAN EQU 05FEH

18 END

Details of the display buffer are given below:

a
____4
f" ‘Vb
e
g
AR
d p
Display Segment of
Position Fomat I1lumination |d pc b a f g e |[Data Addr
[a,c,d,f,g, |1 0101110 | AE 1820
Right ! b,c,d,e,f, 10110101 | B5 1821
;17 a,b,e,f,g, (00011111]| 1F 1822
L d,e,f, 10000101 | 85 1823
P a,d,e,f,g, [10001111 /| 8F | 1824
Left }{ b,c,e,f,g, 0011011 1| 37 1825

EXAMPLE 2:

Flash

'HELP US'

Use routine SCAN1 to display 'HELPUS' and blank alternately.
Each pattern is display 500ms by looping SCAN1 50 times.

1800 .
1800 212618
1803 E5

1804 DD212018

1808 DDE3
180A 0632
180C CD2406
180F 10FB
1811 18F5

1820

1820 AE
1821 B5
1822 1F
1823 85
1824 8F
1825 37
1826 00
1827 00
1828 00
1829 00
182A 00
182B 00

OO0 O W

;FLASH

Loopr
HELFSEG

HELP

BLANK

SCAN1

'"HELP US'

ORG 1800H
LD HL, BLANK
PUSH HL

LD IX, HELP
EX (SP), IX
LD B, 50
CAL SCAN1
DJINZ HELF SEG
JR LOOP
ORG 1820H
DEFB OAEH
DEFB OB5H
DEFB 01FH
DEFB 085H
DEFB 08FH
DEFB 037H
DEFB 0

DEFB 0

DEFB 0

DEFB 0

DEFB 0

DEFB 0

EQU 0624H
END

The content of 180B determines the flash frequency.

it to any value.

'S'
'U'
lp’
ILI
lE'
lH!

we we we we we we

You may change

84

EXAMPLE 3: Display the key code of the key pressed.

1800
1800
1804
1807
180A
180D

1900
1900
1901
1902
1903
1904
1905

DD210019
CDFEO5
210019
CD7806
18F5

00
00
00
00
00
00

OO0 3O U WN -

;DISPLAY INTERNAL CODE

LooP

OUTBF

SCAN
HEX7SG

1800H
IX,OUTBF
SCAN

HL, OUTBF
HEX7SG
LOOP

1900H

[eXoNoNoNoNo)

O5FEH
0678H

When a key is pressed, the internal code of it is displayed on
the data filed.

The user may compare it with Fig. 2-11-5,

If you want to display the position code of the keys, you may
change the program as follow:

1800
1800
1800
1807
1809
180C
180F

DD210019
CD2406
38FB
210019
CD7806
18F3

OO W -

;DISPLAY POSITION CODE

LOOP

1800H
IX,OUTBF
SCAN1

C, LOOP
HL, OUTBF
HEX7SG
LOOP

85

EXAMPLE 4: Convert 3 continuous bytes into 7-segment display fommat.
- Store the results in 1903 - 1908 then display them.

1800
1800
1803
1806
1808
1809
180C
180D

180F
1813
1816

1900
1900
1901
1902
1903

The three bytes binary data are stored in 1900 - 1902.

110019
210319
0603

DD210319
CDFEO5
76

10
32
54

[y

WOk WwN

;DISPLAY 3 BYTES IN RAM TO 6

HEXA=-DIGITS
ORG 1800H
LD DE, BYTEO
LD HL, OUTBF
LD B,3
LOOP LD A, (DE)
CALL HEX7SG
INC DE
DJNZ LOOP
; CONVERSION COMPLETE, BREAK FOR CHECK
LD IX, OUTBF
CALL SCAN
HALT
ORG 1900H
BYTEO DEFB 10H
DEFB 32H
DEFB 54H
OUTBF DEFS 6
HEX7SG EQU 0678H
SCAN EQU O5FEH
END

The user

can set break point at 180F to check if the conversion is correct
before displaying the result.

86

III. Illustrations of Experiments

(1)
(a) Load program 1 into MPF-I and store it on audio tape
for future application.
(b) Test this program and record the display response.
(c) Change the content of 1808 to 1A, then display will HALT
with STEP-KEY replaced by CBR-KEY, why?
(d) Change the contents of 1820 - 1822 with 3F, BD, 85 respec-
tively what will the display show?
(e) Write a program to display "SYS-SP", HALT when PC-KEY is
depressed.
(2)
(a) Load program 2 into MPF-I and store it on audio tape for
future application.
(b) Test this program and record the display response.
(c) Change the content of 180B to 01, what will the display
show?
(d) Change the content of 180B to 05 and to see what display will
show?
(e) Write a~program to change the flash frequency. The word format
"HELP US" is required to be 1lit at a rate of 2 secc per cycle.
(3
(a) Change the contents of 1900 - 1905 to FF, what will the
display show?
(b) What is the meaning of position code and internal code in
monitor program?
(4)

(a) Change the contents of 1900 - 1902 so that the display
will show '333446".

87

Experiment 12
Fire-Loop Game

Purpose:

1. To understand how to use a subroutine contained in the monitor program.

2. To familiarize the reader with programming techniques.

Time Required: 4 hours
I. Theoretical Background:
1. Monitor Program:

After the microcomputer is powered on, it will execute programs from
the designated address. Besides some initialization task

(e.g. setting 8255 or selecting I/O mode), a special software
program called monitor is used to monitor the presence of data

or commands from peripheral devices (e.g. a keyboard, an external
switch, a button, a sensor, etc.) If no signal is monitored, then
the scanning process continues (using the looping method to

search) until a signal input is detected. The input signal is

then analyzed and the microcomputer jumps to the service routine

to perform the job assigned by the input signal. After this service
routine has been executed, the microcomputer returns to scan

the peripheral devices.

Since MPF-I is a general-purpose microcomputer, it has a monitor.
The main function of this monitor is to respond to key closures

on the keyboard and displaying necessary data. Tracing the monitor
program will improve your programming skill.

2. Fig. 12-1 is the flowchart of the Fire Loop.

START

HL €<—— TABLE
IX€«—— OUTBF

|

| ca11 cLrBF |

Get the digit |
Selected data

Get-back E and

use E as an offest
to calculale the
location of the
selected digit

Get display pattern
and put in display
buffer

A\l

| ca11 scani|

Yes “'iiliiiiﬂ.>

no

Key pressed and
Save key—-code in C

7

Test KEY-STEP of SCAN1
if yes decrement HL to
get the same data for
display then it look
like STOP, otherwise,
get next pattern.

(STOP)

Fig. 12-1 The Flowchart of Fire Loop

89

LocC OBJ CODE M STMT SOURCE STATEMENT

1
2 ; Segment Illuminates one by one until key-step is pushed
3 ; Any other key will resume looping again.
4
1800 5 ORG 1800H
1800 214018 6 INI LD HL, TABLE
1803 DD210019 7 LD IX,OUTBF
1807 CD3018 8 LOOP CALL CLRBF ;Clear display buffer
180A SE 9 LD E, (HL) ;Get the DIGIT-select data
180B 1C 10 INC E ;Test REPEAT code: FF
180C 28F2 11 JR Z,INI ;If yes, go to INI
180E 1D 12 DEC E ;O0therwise, get back E
180F 1600 13 LD D, O ;Use E as an offset to
1811 DD19 14 ADD IX,DE ;Calculate the location of
15 ;the selected digit.
1813 23 16 INC HL
1814 7E 17 LD A, (HL) ;Get display PATTERN
1815 DD7700 18 LD (IX),A ;Put in display buffer
1818 DD210019 19 LD IX,O0UTBF
181C 0603 20 LD B,SPEED
21
22 ; The following 4 instruction display the pattern
23 ; for B times (can be adjusted in the above SPEED)
24
181E CD2406 25 LIGHT CALL SCAN1
1821 3801 26 JR C,NSCAN
1823 4F 27 LD C,A ;Key pressed, save key-code in C
28 ;Note that, reg C will not be
29 ;Changed until next key input
1824 10F8 30 NSCAN DJNZ LIGHT
31 ;
1826 79 32 LD A,C
1827 FE10 33 Ccp 10H ;Test KEY-STEP of SCAN1
1829 2802 34 JR Z,STOP ;If yes, decrement HL to get
35 ;the same data for display
36 ;Then it locks like STOP.
182B 23 37 INC HL ;Otherwise, get next pattern
182C 23 38 INC HL
182D 2B 39 STOP DEC HL
182E 18D7 40 JR LOOP
41
42
43 CLRBF:
1830 0606 44 LD B,6
1832 DD360000 45 CLR LD (IX),0
1836 DD23 46 INC IX
1838 10F8 47 DJINZ CLR
183A 11FAFF 48 LD DE, -6 ;Get original IX
183D DD19 49 ADD IX,DE
183F Cc9 50 RET

90

52 ; The 1st byte indicates which DIGIT is to be seleced
53 ; The 2nd byte indicates what PATTERN to be displayed
54 ;

1840 05 55 TABLE DEFB 5

1841 08 56 DEFB SEG_A

1842 04 57 DEFB 4

1843 08 58 DEFB SEG_A

Loc OBJ CODE M STMT SOURCE STATEMENT

1844 03 59 DEFB 3
1845 08 60 DEFB SEG_A
1846 02 61 DEFB 2
1847 08 62 DEFB SEG A
1848 o1 63 DEFB 1 =
1849 08 64 DEFB SEG_A
1844 00 65 DEFB 0
184B 08 66 DEFB SEG_A
184C 00 67 DEFB 0
184D 10 68 DEFB SEG B
184E 00 69 DEFB o -
184F 20 70 DEFB SEG_C
1850 00 71 DEFB 0
1851 80 72 DEFB SEG_D
1852 01 73 DEFB 1
1853 80 74 DEFB SEG D
1854 02 75 DEFB 2
1855 80 76 DEFB SEG_D
1856 03 77 DEFB 3
1857 80 78 DEFB SEG_D
1858 04 79 DEFB 4
1859 80 80 DEFB SEG_D
1854 05 81 DEFB 5
185B 80 82 DEFB SEG_D
185C 05 83 DEFB 5
185D 01 84 DEFB SEG_E
185E 05 85 DEFB 5
185F 04 86 DEFB SEG F
1860 FF 87 DEFB OFFH

88 ;
1900 89 ORG 1900H
1900 90 OUTBF DEFS 6

91 ;

92 SPEED EQU 3

93 SEG A EQU 08H

94 SEG B EQU 10H

95 SEG_C EQU 20H

91

3.

96 SEG_D EQU 80H

97 SEG_E EQU O1H
98 SEG F EQU 04H
99 SCAN1 EQU 0624H
100 END

Further Expriments

(a)

(b)

(e)

(d)
(e)

(£)

Load the above program into MPF-I and then store it on audio

tape for future applications.

Test this program and record the display response.

Write a program to make the Fire-Loop illuminate counterclockwise.

Change the contents of 1828. Then KEY-STEP will not respond as
before. Why?

Change the contents of 181D and the display will change. Why?

Write a program that will cause the segments to move in a pattern
of your choice.

Write a delay program to display "HELP US" for 20 secs, then the
display will play the "Fire Loop Game".

Experiment 13
Stop-Watch

Purpose:

1. To illustrate how to use monitor subroutines.

2. To practise programming skills.

Time Required: 2 hours

I. Theoretical Background:
1. The object specification of this experiment is to design a 1/100
second-based stop watch. Actually, this is only roughly accurate.

The accuracy varies with the system clock and the number of
instructions used in the keyboard/display scan subroutine.

2. The demonstration program calls two monitor subroutines SCAN1
and HEX7SG which are located at 0624H and 0678H respectively.

The flowchart is given below.

3. The counting procedure is halted by depressing a key. This
is done by checking the result of SCAN1 routine.

4. Flow Chart of STOP WATCH

93

{ ENTRY)

IX ¢&— OUTBUF
Load display
Buffer Pointer

\ 4

DE &— O
Load Initial
Display data

Loop Display the same pattern

1/100 seconds
CALL SCAN1
scan keyboard/disp

Key

depressing?

Yes

no

1. Increment the
counter DE

2. DECIMAL adjust
the counter
contents

J

1. Transfom data to
pattern CALL
HEX7SG

2. Store pattern into
Buffer

Fig 13-1 Flowchart of stop watch

o4

Stop %atch program

LOC OBJ CODE M STMT SOURCE STATEMENT

1800 1 ORG 1800H

1800 DD210019 2 LD IX,OUTBF ;initial display pointer

1804 110000 3 LD DE, O ;initial SEC & 1/100 SEC 1n DE

1807 CD2406 4L0OOP CALL SCAN1 ;display for 0.01 second

180A 30FB 5 JR NC,LOOP ;if any key pressed, then NC

6 ;s0 looping the same pattern

180C 7B 7 LD AE ;otherwise increment 1/100
SEC by 1

180D C601 8 ADD A,1

180F 27 9 DAA

1810 5F 10 LD E,A

1811 7A 11 LD A,D ;if carry, increment SEC again

1812 CEOO 12 ADC A,O :

1814 27 13 DAA

1815 57 14 LD D,A

1816 7B 15 LD A,E ;convert 1/100 SEC to display
fomat

1817 210019 18 LD HL,OUTBF ;and put them into display
buffer

181A CD7806 17 CALL HEX7SG

181D 3602 18 LD (HL),2 ;put into display of '-'

181F 23 19 INC HL

1820 7A 20 LD A,D ;convert SEC to display fommat

1821 CD7806 21 CALL HEX7SG ;and put them into display

buffer
1824 3600 22 LD (HL), O ;put BLANK into MSD
1826 18DF 23 JR LOOP
24
1900 25 ORG 1900H
1900 26 OUTBF DEFS 6

27 HEX7SG EQU 0678H
28 SCAN1 EQU 0624H
29 END

95

II.

Illustration of the Experiments

(1) Load the program and GO!

(2)
(3)

(4)

(5)

Depress any key other than RS and MONI, rscord the results.

Note that the program will loop continuously. The user can
interrupt the execution only by RS or MONI.

Users are encouraged to modify the program:

a. Build a 1/10 second based stop watch.

b. Display all zeros at the beginning, start the stop
watch by depressing an arbitrary key or the user defined
key.

c. Build a stop key.

Check the timing on the display with your watch for one minute.

Perhaps, there is an error. Try to find the reasons for the
error and note them.

96

Experiment 14
Clock 1 (How to design a cloek)

Purposes:

1. To practise calculating the clock cycle of a program.

2. To construct a software driven digital clock.

Time Required: 4 hours.
I. Theoretical Background:

1. This is an example of how to use the software delay to build
a digital clock.

2. All the timing is based on the system clock, which is 1.79 MHZ.
So that 1 cycle is about 0.56 micro-seconds.

3. The total number of cycles in ONE LOOP has been carefuly
calculated.

4. The cycle count calculation is given as follow:

SCAN1 : 17812
LOOP1 : (17 + 17812 + 13) * 100 - 5 = 1784195
TMUPDT : 258
BFUPDT : 914
LOOP2 : (4 + 13) * 256 - 5 = 4347

The total number of counts is 1789755

and
0.56 usec x 1789755 < 1 sec

5. Flowchart of clock

o7

{ ENTRY)

4

1. Disable Interrupt
2. Set Display Buffer
Pointer

ONESEC

| B «— 100 |

<::k Loop

CALL SCAN1

B ¢— B-1

Q_

. Clock data update
(TMUPOT)
2. Display Buffer
(BFUPDT)

Loop 2 delay

Timing Compensation
delay, Total 4347
States

No.
Finished?

Another second

Fig 14-1 Flowchart of clock

Time Update Flowchart Display buffer Update Flowchart

(TMUPDT) < BFUPDT)

1. Load timing data 1. Load display buffer
pointer DE pointer to HL

2. Load timing maximum 2. Load time buffer pointer
range table pointer HL to DE

1. Load counter B with 3 B €«<— 3
for hour, minute, sceond
Updating, 2 set carry Loop Counter
for adding

1. Update timing, then LD A,(DE)
check maximum range, CALL HEX7SG
if reached then carry INC DE
Propagated B¢— B-1

2. Point to next timing
item B&— B -1

No.
1. Set decimal point
between minute and
Yes second
2, Set decimal point
. between hour and
minute

Fig 14-2 Flowchart of Update

29

8. Program of software designed clock

LOC OBJ CODE M STMT SOURCE STATEMENT

1800
1800

1801

18056
1807
1804
180C
180F
1812
1813
1815

1817
181A
181D
181F
1820
1821
1823
1824
1825

1826
1828
1829
182A
182B
182C
182E

F3

DD21031A

0664
CDh2406
10FB
CD1718
CD2F18
00*
10FD
18EE

S [\

ORG
DI

LD

1800H

;Disable interrupt, which affects
timing

I1X,0UTBF

H
yONESEC loop takes 1 second to execute, it

consists of 3

;subroutines & 1 additional delay process

;ONESEC:
LD

LOOP1 CALL
DJINZ
CALL
CALL

LOOP2 NOP
DJINZ
JR

B, 100 ;7

SCAN1

LOOP1 ; (17+17812+13)*100~5=1784195
TMUPDT ;17+258=275

BFUPDT ;17+914=931

LOOP2 ; (4+13)%256-5=4347

ONESEC ;12

H

;Time~buffer is updated here.

;Note that this routine takes the same time in any
;eondition, 275 cycles.

’

TMUPDT:
LD
LD
LD
SCF

TMINC LD
ADC
DAA
LD
SUB

JR

COMPL CCF
INC
INC
DJNZ
RET

HL, MAXTAB

DE, SEC

B, 3
;Set carry flag: force add 1

A, (DE)

A,O

(DE),A

(HL) ;Compare wth data in MAX TAB
;1f the result is less than
that.
;the following loop will be
null.
;delay, because of no carry
propagation
’

C, COMPL

(DE),A
;complement carry flag

HL

DE

TMINC

100

LOC OBJ CODE M STMT SOURCE STATEMENT

44 ;Display_buffer is updated here.
45 ;It takes 914 cycles.

46 ;
47 BFUPDT:
182F 21031A 48 LD HL, OUTBF
1832 11001A 49 LD DE, SEC
1835 0603 50 LD B,3
1837 1A 51 PUTBF LD A, (DE)
1838 CD6DO06 52 CALL HEX7SG
183B 13 53 INC DE
183C 10F9 54 DJNZ PUTBF
183E 2B 55 DEC HL
183F 2B 56 DEC HL
1840 CBFé6 57 SET 6, (HL) ;Set decimal point of HOUR
1842 2B 58 DEC HL
1843 2B 59 DEC HL
1844 CBF6 60 DEC HL ;Set decimal point of MTNUTE
1846 C9 61 RET ;B=0 when, return
62 ;
63 MAXTAB:
1847 60 64 DEFB 60H
1848 60 65 DEFB 60H
1849 12 66 DEFB 12H
67 ;
1A00 69 ORG 1A00H
70 TMBF:
1A00 71 SEC DEFS 1
1A01 72 MIN DEFS 1
1A02 73 HOUR DEFS 1
74
1A03 75 OUTBF DEFS 6
76 ;

77 éCANl EQU 624H
78 HEX7SG EQU 66DH
79 END

101

II.

2'

3.
4.

6.

Illustrations of the Experiments

Load the progfém

Load the timé data into TMBF (1A00 - 1A02)

Observe the results.

What will happen if preceed as follows?
Display

EEEEE CEEEED
=Raln

This program can be modified to be a second counter with arbitrary
base. Design a 20 seconds, 20 minutes and 1 hour counter.

Trace the program, and draw your own flowchart. Are there any
differences between your flow chart and the demonstrated flowchart
above?

Explain why differences occurred.

102

Experiment 15
Cloeck 2 (with CTC interrupt mode 2)

Experiment Purpose:

1. To practise using Interrupt Mode 2 through the CTC.
2. To practise programming.

Time Required: 8 hours

I. Theoretical Background:

I-1. Introduction to the Z80 CPU interrupt:
1. 780 CPU Interrupt Request Lines

: The Z80 CPU can suspend the current program execution by external
interrupt request. The CPU then starts executing the interrupt
service routine. Once the service routine is completed, the CPU
returns to the main program from which it was interrupted.

The Z80 CPU has two interrupt inputs : a non-maskable interrupt
and a software maskable interrupt. The non-maskable interrupt (NMI)
line can not be disabled by the programmer and will be activated
whenever an external device inputs an interrupt reguest to it. The
maskable interrupt (INT) line can be disabled by resetting an
internal Interrupt Enable Flip Flop (IFF). The enable flip flop can
be set or disabled by the programmer using Enable Interrupt (EI)
and Disable Interrupt (DI) instructioms.

2. NMI Request

The NMI signal is sampled by the CPU at the rising edge of the
last clock at the end of any instruction. The NMI regquest line will
be at logic "O" if there is a non-maskable interrupt request. The
CPU automatically saves the program counter (PC) in the stack area
and junps to location 0066H (a fixed memory address assigned by the
7Z80 CPU). THE CPU will not respond to any further NMI request. The
CPU then executes the service routine until a RETN instruction
appears and then it fetches the PC of main program from the stack
to continue the execution of main program. At this time, the CPU
can accept another NMI request.

In MPF-I, memory addresses O000H through O7FFH are for the monitor
program. Once a non-maskable interrupt is accepted, the CPU
automatically jumps to location 0066H . The non—maskable interrupt
request line has a higher priority than any other interrupt.

It is very useful in event of a power failure, which obviously
takes precedence over all other activities. For instance, if the
voltage level of the power supply battery of the micro computer

103

drops to a certain level, then a voltage comparator circuit will
activate a non-maskable interrupt request signal. The CPU then
Suspends its current program execution and starts battery-recharging.
The recharging process is controlled by a software program.)

The starting address of this control sequence must be at 0066H.

3. INT Interrupt Request

The interrupt request at the INT line can be masked. For
instance, after the battery-~recharging process has been started,
the CPU can return to its main program execution. When the
battery is charged to certain level, another voltage comparator
circuit will generate an INT interrupt request signal. If the
CPU is not executing a very important program, then it may
acknowledge the interrupt request and Jjump to a service routine
designed to stop the recharging process. Uswally, stopping the
recharging process is not an emergency task, thus the CPU may
continue to execute an important program and ignore this kind of
interrupt request. For instance, when the CPU is reading data
from a tape, and interrupt will cause the data in the tape to be
missed. Thus, if a DI instruction is included at the beginning
of the '"Read Tape" routine, then the INT interrupt request will be
masked. An EI (Enable Interrupt) is usually included at the end
of the "Read Tape" routine in order to enable the INT interrupt
request line.

The Z80 CPU can be programmed to respond to the maskable
interrupt in three possible modes by the IM (Interrupt Mode)
instruction. With IMO mode, whenever the CPU receives an instruc-
tion (usually, it is a "RESTART" operation) in the data bus from a
peripheral device, then the CPU will Junp to one of the 8 fixed
of memory addresses (0000-0038H) and execute the program. When
the IM1 mode has been selected by programmer, the CPU will respond
to an interrupt by executing a restart instruction to location 0038H.
In MPF-I mode O can not be used because the addresses specified
for the restart instructions are already reserved for the monitor
program.

The last mode is the IM2 mode which is the most powerful interrupt
response mode. With this mode, the programmer maintains a table of
16~bit starting addresses for interrupt service routines, The
low-order 8-bits of the pointer must be supplied by the interrupting
device. The high-order 8 bits of the pointer is formmed from the
contents of the internal I register (Interrupt Vector Register).
When an interrupt is accepted, the 16-bit pointer must be formed to
obtain the starting address of the desired interrupt service routine
from the table.

If the Z80 input/output interface devices (PIO, CTC, SIO) are
used in the microcomputer system, then the IM2 mode will give rise
to the most useful interrupt request response.

104

II.

Exampl e Experiments:

1. Testing the NMI interrupt response :

(1) An interrupt request may be generated by touching a
copper wire connected to the NMI input line of the CPU
to the ground. After touching the NMI input line of
the CPU, then the CPU will execut the program with
starting address at O066H.

2. Testing the INT interrupt response :

After a reset, the 280 CPU will be automatically in the IMO
interrupt response mode and will disable the interrupt enable flip
flop. Thus, before the CPU responds to the interrupt request,
the following program must be executed.

Fogg IM 2 ; Select interrupt mode 2.

:e+§ LD A, 18H

teswy LD I,A ; Assign 18H as the high-order byte of
the interrupt vector address.

F2 - EI ; Enable the interrupt request line INT.

AN

\
In case the Z80 peripheral devices are not used in the system,
the interrupt reguest signal is sent directly
to the CPU.\ When the CPU acknowledges an interrupt request, the
8-bit data must be read in as the low-order byte of the vector
address. If!there is no electronic circuit for supplying this 8-bit
vector address, then the data bus will be pulled up to "high"
voltage state (logic "1") and read as FFH. That is, the CPU will
form 18FFH as the 16-bit vector address. This 16-bit vector address
is used as a pointer to obtain the starting address of the desired
interrupt service routine from the table.

Suppose the starting address of the interrupt service routine is
arranged at 1920H, then the number 1920H must be stored in memory
addresses 18FFH and 1900H. Load the following program into MPF-I
for later testing.

105

FF
LOC OBJ CODE M STMT SOURCE STATEMENT

1800 1 ORG 1800H

1800 3E18 2 LD A,18H

1802 ED47 3 LD I,A ; Define high-order vector address.
1804 212019 4 LD HL, 1920H

1807 22FF18 5 LD (18FFH),HL ;Store interrupt vector.

180A EDSE 6 M 2

180C FB 7 EI

180D F7 8 RST 30H ; Return to monitor program.
1920 9 ORG 1920H ; Interrupt service routine.
1920 211234 10 LD HL,3412H

1923 224019 11 LD (1940H) ,HL ;Store 3412H to RAM (1940H).
1926 FB 12 EI ; Enable another interrupt.

1927 ED4D 13 RETI ; Return from interrupt.

(1) Execute the above program by depressing the control key on
the keyboard. After the program is executed, the monitor
will resume control of the microcomputer. The interrupt
request line INT is also enabled. Then, key in some
arbitrary numbers into RAM addresses 1940H and 1941H,
and depress the INTR key in the keyboard. That is, an
interrupt request signal is input to the CPU INT line.
Depress the AD key in teh keyboard to reset the display
buffer in the monitor program. Check if the interrupt
service routine with starting address 1920H is executed so
that the designated numbers have been stored in RAM addresses
1940H - 1941H. Repeat the testing several times (change the
contents of RAM before each test).

Results of test:

(2) Instruction RETI is used as the end of an interrupt service
It is a routine to signal the I/O device that the interrupt
routine has been completed. It facilitates the nesting of
routine allowing higher priority devices to suspend service
of lower priority service routines. The standard Z80 I/O
devices are not used in this experiment, thus, RETI is not
a necessary instruction. Replace instruction RETI in the
above program by RST 30H and then repeat the test in (1).
Record the result shown in the display after the interrupt
request signal is input to the CPU. Discuss the results of
the test. ~

(3) instruction EI (Enable Interrupt) must be included in every
interrupt service routine, otherwise the INT line will be
disabled after the CPU acknowledges an INT interrupt request.
Instruction EI must be used to enable the maskable interrupt.
The function of the EI instruction can not be replaced by
that of the RETI instruction.

106

Replace instruction Repeat the test for interrupt request and
to show that only the first interrupt is acknowledged and all
other interrupts are ignored.

Results of test:

(4) Write a program that will cause the PAO line of the Z80 PIO
to output "1" after the CPU receives an INT interrupt request
and clear this line to "0" after 3 seconds has elapsed.

(I=2) Introduction to the Z80-CTC :
1.0 INTRODUCTION

The Z80-Counter Timer Circuit (CTC) is a programmable component
with four independent channels that provide counting and timing
functions for microcomputer systems based on the Z80-CPU. The CPU
can configure the CTC channels to operate under various modes and
conditions as required to interface with a wide range of devices.

In most applications, little or no external logic is required.

The Z80~CTC utilizes N-channel silicon gate depletion load technology
and is packaged in a 28-pin DIP. The Z80-CTC requires only a single
5 volt supply and a one~phase 5 volt clock. Major features of the
%80~CTC inciu\de : o

* All inpufs and outputs are fully TTL compatible.

* Each chann may be selected to operate in either Counter Mode
or Timer Mode.

* Used in either mode, a CPU-readable Down Counter indicates
nunber of counts—-to-go until 2zero.

* A Time Constant Register can automatically reload the Down
Counter at Count Zero in both Counter and Timer Modes.

* A selectable positive or negative trigger initiates time
operation in Timer Mode. The same input is monitored for
event counts in Counter Mode.

* Three channels have Zero Count/Timeout outputs capable of
driving Darlington transistors.

* Interrupts may be programmed to occur on the zero count
condition in any channel.

* Daisy chain priority interrupt logic included to provide for
automatic interrupt vectoring without external logic.

107

2.0 CTC ARCHITECTURE
2.1 OVERVIEW

A block diagram of the Z80-CTC is shown in figure 2.0-1. The
internal structure of the Z80-CTC consists of a Z80-CPU bus
interface, Internal Control Logic and four sets of Counter/Timer
Channels. Timer channels are identified by sequential numbers from
0 to 3. The CTC has the capability of generating a unique interrupt
vector for each separate channel (for automatic vectoring to an
interrupt service routine). The 4 channels can be connected into
four contiguous slots in the standard 280 priority chain with
channel number O having the highest priority. The CPU bus interface
logic allows the CTC device to interface directly to the CPU with
no other external logic. However, port address decoders and/or line
buffers may be required for large systems.

(rme——
L‘ ZERO COUNT/TIMEOUT §

4 [CHANNEL ¢

INTERNAL
CONTROL

+SV GND @
[@uummemm CLOCK /TRIGGER ¢

DATA

prm— ZERQ COUNT/TIMEOUT 1

[CHANNEL 1

CONTROL o
ONTRO yor HOmm— CLOCK/TRIGGER |

prssmmep ZERO COUNT/TIMEOUT 2

NIERRUPY CHANNEL 2
LOGIC
@mmemn CLOCK [TRIGGER 2
L
1T
INTERRUPT CONTROL [CHANNEL 3
INES PR
CLOCK/TRIGGER 3
FIGURE 2.0-1

CTC BLOCK DIAGRAM

108

2.2 STRUCTURE OF CHANNEL LOGIC

The structure of one of the four sets of Counter/Timer Channel
Logic is shown in figure 2.0-2. This logic is composed of 2 registers,
2 counters, and control logic. The registers are an 8-bit Time

. Constant Register and an 8-bit Channel Control Register. The counters
are an 8~bit CPU-readable Down Counter and an 8-bit prescaler.

CHANNEL
CONTROL
REGISTER
AND LOGIC
(8 BITS)

TIME
CONSTANT
REGISTER
(8 BITS)

'I l/
DOWN ZER(lCOUNT/TIMEOUT

COUNTER
(8 BITS)

(—

6[INTERNAL BUS

PRESCALER
(8 BITS)

EXTERNAL CLOCK/TIMER TRIGGER

FIGURE 2.0-2
CHANNEL BLOCK DIAGRAM

2.2.1 THE CHANNEL CONTROL REGISTER AND LOGIC

The Channel Control Register (8-bits) and Logic is written
to by the CPU to select the modes and parameters of the channel.
Within the entire CTC device there are four such registers,
corresponding to the four Counter/Timer Channels. Which of the four
is being written into depends on the encoding of two channel select
input pins : CSO and CS1 (usually attached to AO and Al of the CPU
address bus. This is illstrated in the truth table below.

CSI Cso
ChoO 0 0
Chil 0 1
Ch2 1)
Ch3 1 1

109

In the control word written to program each Channel Control
Register, bit 0 is always set and the other 7 bits are programmed
to select alternative channel's operating modes and parameters,
as shown in the diagram below, (For a more complete discussion
see section 4.0 "CTC Operating Modes" and section 5.0 "CTC
Programming'").

CHANNEL CONTROQL REGISTER

D7 De Ds Da D3 D2 D1 Do
L0AD
e | MODE | RanGEe | stope |TRiGeeR| TiME | ReseT 1
CONSTANT,
USED IN

TIMER MODE ONLY

2.2.2 THE PRESCALER

Used in the Timer Mode only, the Prescaler is an 8-bit device
which can be programmed by the CPU via the Channel Control Register
to divide its input, the System Clock (), by 16 or 256. The
output of the Pre-scaler is then fed as.an input to clock the
Down Counter, which initially, and every time it clocks down to
zero, is reloaded automatically with the contents of the Time
Constant Register. In effect this again divides the System Clock
by an additional factor of the time constant. Every time the
Down Counter counts down to zero, its output, Zero Count/Timeout
(2C/TO), is pulsed high.

2.2.3 THE TIME CONSTANT REGISTER

The Time Constant Register is an 8-bit register, used in both
Counter Mode and Timer Mode, programmed by the CPU just after the
Channel Control Word. It has an integer time constant value of 1
through 256. This register loads the programmed value into the
Down Counter when the CTC is first initialized and reloads the same
value into the Down Counter automatically whenever it counts down
thereafter to zero. If a new time constant is loaded into the Time
Constant Register while a channel is counting or timing, the present
down count will be completed before the new time constant is loaded
into the Down Counter. (For details of how a time constant is written
into a CTC channel, see section 5.0: "CTC Programming.')

110

2.2.4 THE DOWN COUNTER

The Down Counter is an 8-bit register, used in both Counter
Mode and Timer Mode loaded initially, and later when it counts
down to zero, by the Time Constant Register. The Down Counter
is decremented by each external clock edge in the Counter Mode
or in the Time Mode, by the clock output of the Prescaler. At
any time, by performing a simple I/O Read at the port address
assigned to the selected CTC channel, the CPU can access the
contents of this register and obtain the number of counts—-to-zero.
Any CTC channel may be programmed to generate an interrupt
request sequence each time the zero count is reached.

In channels O, 1 and 2, when the zero count condition is
reached, a pulse appears on the correspronding ZC/TO pin. Due to
package pin limitations, however, channel 3 does not have this
pin and so may be used only in applications where this output
pulse is not required.

2.3 INTERRUPT CONTROL LOGIC

The Interrupt Control Logic insures that the CTC acts in
accordance with Z80 system interrupt protocol for nested priority
interrupting and return from interrupt. The priority of any system
device is determmined by physical location in a daisy chain
configuration. Two signal lines (IEI and IEO) are provided in CTC
devices to form this system daisy chain. The device closest to the
CPU has the highest priority: within the CTC interrupt priority is
predetermined by channel number with channel O having highest
priority down to channel 3 which has the lowest priority. The
purpose of a CTC-generated interrupt, as with any other peripheral
device is to force the CPU to execute an interrupt service routine.
According to Z80 system interrupt protocol, lower priority devices
or channels may not interrupt higher priority devices or channels
that have already interrupted and have not had their interrupt
service routines completed. However, high priority devices or
channels may interrupt the servicing of lower priority devices or
channels.

A CTC channel may be programmed to request an interrupt every
time its Down Counter reaches a count of zero. (To utilize this
feature requires that the CPU be programmed for interrupt mode 2.)
Sometime after the interrupt request, the CPU will send out an
interrupt acknowledge, and the CTC's Interrupt Control Logic will
determine the highest-priority channel which is requesting an
interrupt within the CTC device. Thus if the CTC's IEI input is
active, indicating that it has priority within the system daisy
chain, it will place an 8-bit Interrupt Vector on the system data
bus. The high—-order 5 bits of this vector will have been written to
the CTC earlier as part of the CTC initial programming process the
next two bits will be provided by the CTC's Interrupt Control Logic
as a binary code corresponding to the highest-priority channel
requesting an interrupt; finally the low~order bit of the vector will
always be zero according to a convention described below.

INTERRUPT VECTOR

D7 D¢ Dg D4 D3 D2 D1 Do

A% Ve Vs A7 V3 X X 0
T T
0 0 CHANNEL O
0 1 CHANNEL 1
1 0 CHANNEL 2
1 1 CHANNEL 3

This interrupt vector is used to form a pointer to a location in
memory where the address of an interrupt service routine is stored
in a table. The vector represents the least singificant 8 bits,
while the CPU reads the contents of the I register to provide the
most significant 8-bits of the 16~bit pointer. The address in memory

pointed to will contain the low—-order byte, and the next highest
address will contain the high-order byte of an address which in turn
contains the first opcode of the interrupt service routine. Thus in
mode 2, a single 8-bit vector stored in an interrupting CTC can
result in an indirect call to any memory location.

Z80 16-BIT POINTER (INTERRUPT STARTING ADDRESS)

| REG 7 BITS FROM

CONTENTS PERIPHERAL 0

VECTOR

There is a 7Z80 system convention that all addresses in the
interrupt service routine table should have their low-order byte
in the next highest location in memory, and their high-order
byte in the next highest location in memory. Which will alway be
odd so that the least significant bit of any interrupt vector will
always be even. Hence the least significant bit of any interrupt
vector will always be zero.

The RETI instruction is used at the end of any interrupt service
routine to initialize the daisy chain enable line IEO for proper
control of nested priority interrupt handling. The CTC monitors
the system data and decodes this instruction when it occurs. Thus
the CTC channel control logic will know when the CPU completed
servicing an interrupt, without any further communication with the
CPU being necessary.

3.0 CTC PIN DESCRIPTION

A diagram of the Z80-CTC pin configuration is shown in figure
3.0.1. This section describes the function of each pin.

D7-D0O
Z80-CPU Data Bus (bi-~directional, tri-state)

This bus is used to transfer all data and command words between
the Z80-CPU and the Z80-CTC. There are 8 bits on this bus, of which
DO is the least significant.

CS1-CS0

Channel Select (input, active high)

These pins fom a 2-bit binary address code for selecting one
of the four independent CTC channels for an I/O Write or Read.
(See truth table below.)

CS1 CSO
Cho 0 0
Ch1 0 i
Ch2 1 0
Ch3 1 i

CE
Chip Enable (input, active low)

A low level on this pin enables the CTC to accept control words,
Interrupt Vectors, or a time constant, date words from the Z80
Data Bus during and I/O Write cycle, or to transmit the contents of
the Down Counter to the CPU during an I/O Read cycle. In most
applications this signal is decoded from the 8 least significant bits
of the address bus for any of the four I/O port addresses that are
mapped to the four Counter/Timer Channels.

Clock (@)
System Clock (input)

This single~phase clock is used by the CTC to synchronize certain
signals internally.

113

M1
Machine Cycle One Signal from CPU (input, active low)

When M1 is active and the RD signal is active, the CPU is
fetching an instruction from memory. When M1 is active and the IORO
signal is active, the CPU is acknowledging an interrupt or alerting
the CTC to place an interrupt Vector on the Z80 Data Bus if it has
daisy chain priority and one of its channels has requested an
interrupt.

IORQ
Input/Output Request from CPU (input, active low)

The IORQ signal is used in conjunction with the CE and RD signals
to transfer data and Channel Control Words between the Z80-CPU and
the CTC, During a CTC Write Cycle, IORQ and CE must be true and RD
FALSE. The CTC does not receive a specific write signal. Instead
it generates its own internally from the inverse of a valid RD signal.
In a CTC Read Cycle, IORQ, CE, and RD must be active to place the
contents of the Down Counter on the Z80 Data Bus. If IORQ and M1
are both true, the CPU is acknowledging an interrupt request. and
the highest-priority interrupting channel will place its Interrupt
Vector on the Z80 Data Bus.

3.0 CTC PIN DESCRIPTION (CONT'T)

RD
Read Cycle Status from the CPU (input, active low).

The RD signal is used in conjunction with the IORQ and CE signals
to transfer data and Channel Control Words between the Z80-CPU and
the CTC. During a CTC Write Cycle, IORQ and CE must be true and RD
false. The CTC does not receive a specific write signal, instead
generating its own internally from the inverse of a valid RD signal.
In a CTC Read Cycle, IORQ, CE and RD must be active to place the
contents of the Down Counter on the Z80 Data Bus.

IEI
Interrupt Enable In (input, active high)
This signal is used to help fomm a system-wide interrupt daisy

chain which establishes priorities when more than one peripheral
device in the system has interrupting capability. A high level on

this pin indicates that no other interrupting devices of higher
priority in the daisy chain are being sericed by the Z80-~CPU.

IEO
Interrupt Enable Out (output, active high)

The IEO signal, in conjunction with IEI, is used to form a
system-wide interrupt priority daisy chain. IEO is high only if
IEI is high and the CPU is not servicing an interrupt from any CTC
channel. Thus this signal blocks lower priority devices from
interrupting while a higher priority interrupting device is being
serviced by the CPU.

INT
Interrupt Request (output, open drain, active low)
This signal goes true when any CTC channel which has been

programmed to enable interrupts has a zerocount condition in its
Down Counter.

RESET
Reset (input, acive low)

This signal stops all channels from counting and resets channel
interrupt enable bits in all control resisters thereby disabling
CTC-generated interrupts. The ZC/TO and INT outputs go to their
inactive states. IEO reflect IEI, and the CTC's data bus output
drivers go-to the high impedance state.

CLK/TRG3-CLK/TRGO

External Clock/Timer Trigger (input, user—-selectable active high or
low)

There are four CLK/TRG pins, corresponding to the four
independent CTC channels. In the Counter Mode every active edge
on this pin decrements the Down Counter. In the Timer Mode, an
active edge on this pin initiates the timing function. The user
may select the active edge to be either rising or falling.

ZC/T02-AC/TOO
Zero Count/Timeout (output, active high)

There are three ZC/TO pins, corresponding to CTC channels 2
through 0. (Due to package pin limitations channel 3 has no ZC/TO
pin.) In either Counter Mode or Timer Mode, when the Down Counter
decrements to zero an active high going pulse appears at this pin.

115

3.0 CTC PIN DESCRIPTION

2 23
Do"g' [CLT/T RGg
D4 <5 —>7 ZC/Toqg

2! 22
cPU 034—& [¢—— CLK/TRG4

1 8
DATA BUS Dy <+ " ZC/TO4 CHANNEL
0 2 SIGNALS

21
054—3> <=— CLK/TRG,

\ p7<—4> |9, Zc/T0,

1
¢ cso— 3 <22 cLk/TRGy

Z80-CTC
Z80ACTC

cTe 4 EenEBLE
CONTROL Wi

GND—5»
o5

INT<12-

INTERRUPT| INT ENABLE_13
CONTROL IN
INT ENAgb$<11_ FIGURE 3.0-1

CTC PIN CONFIGURATION

4,0 CTC OPERATING MODES

At power-on, the Z80-CTC state is undefined. Asserting RESET
puts the CTC in a known state. Before any channel can begin
counting or timing, a Channel Control Word and a time constant
data word must be written on the appropriate registers of that
channel.

Further, if any channel has been programmed to enable int
interrupts, an Interrupt Vector word must be written to the CTC's
Interrupt Control Logic (For further details, refer to section 5.0
"CTC Programming"). When the CPU has written all of these words
to the CTC all active channels will be programmed for immediate
operation in either the Counter Mode or the Time Mode.

4.1 CTC COUNTER MODE

In this mode the CTC counts edges of the CLK/TRG input. The
Counter Mode is programmed for a channel when its Channel Control
Word is written with bit 6 set. The Channel's External Clock
CLK/TRG) input is monitored for a series of triggering edges; after
each edge, in synchronization with the next rising edge of the
System Clock, the Down Counter (which was initialized with the time
constant data word at the start of any sequence of down-counting)
is decremnented. Although there is no set—~up time requirement
between the triggering edge of the External Clock and the rising
edge of the Clock, the Down Counter will not be decremented until
the following pulse. (See the parameter ts (CK) in section 8.3:
"A.C. Characteristics"). A channels's External Clock input is
pre-programmed by bit 4 of the Channel Control Word to trigger
the decrementing sequence with either a high or a low going edge.

In any of Channels 0, 1, or 2, when the Down Counter is

successively decremented from the original time constant until

it finally reaches zero, the Zero Count (ZC/TO) output pin for that
channel will be pulsed active (high). However, due to package pin
limitations channel 3 does not have this pin and so may only be used
in applications where this output pulse is not required. Further,

if the channel has been so pre-programmed by bit 7 of the Channel
Control Word, an interrupt regquest sequence will be generated.

As the above sequence is proceeding, the zero count condition
also results in the automatic reload of the Down Counter with the
original time constant data word in the Time constant Register.
There is no interruption in the sequence of continued down—-counting.
If the Time Constant Register is written on with a new time constant
data word while the Down Counter is decrementing, the present count
will be completed before the new time constant will be loaded into
the Down Counter.

CHANNEL
CONTROL
REGISTER
AND LOGIC
{8 BITS)

TIME
CONSTANT
REGISTER
[t BITS)

2 INTERNAL BUS

DOWN ZERO COUNT/TIMEOUT
COUNTER ~
[t] BITS)

(
L™

FIGURE 4.1-0
CHANNEL-COUNTER MODE

EXTERNAL CLOCK TIMER TRIGGER

4.2 CTC TIMER MODE

In this mode the CTC generates timing intervals that are an
integer value of the system clock period. The Time Mode is
pbrogrammed for a channel when its Channel Control Word is written
with bit 6 reset. The channel then may be used to measure intervals
of time based on the System Clock Period. The System Clock is fed
through two successive counters, the Prescaler and the Down Counter.
Depending on the pre-programmed bit 5 in the Channel Control Word
the Prescaler divides the System Clock by a factor of either 16 or
256. The output of the Prescaler is then used as a clock to
decrement the Down Counter, which may be pre-programmed with any time
constant integer between 1 and 256. As in the Counter Mode, the time
constant is automatically reloaded into the Down Counter at each
zero—-count condition, and counting continues. Also at zero-count,
the channel's Time Out (ZC/TO) output (which is the output of the
Down Counter) is pulsed, resulting in a uniform pulse train of the
precise period given by the product:

te * P * TC

where t is the System Clock period, P is the Prescaler factor of
16 or 256 and TC is the pre-programmed time constant.

Bit 3 of the Channel Control Word is pre-programmed to select
whether timing will be automatically initiated, or whether it will
be initiated with a triggering edge at the channel's Timer Trigger
(CLK/TRC) input. If bit 3 is reset the timer automatically begins
operation at the start of the CBU cycle following the I/O Write

machine cycle that loads the time constant data word into the
channel. If bit 3 is set the timer begins operation on the second
succeeding rising edge after the Time Trigger edge following the
loading of the time constant data word. If no time constant data
word is to follow then the timer begins operation on the second
succeeding rising edge of after the Time Trigger edge following the
control word write cycle. Bit 4 of the Channel Control Word is
pre-programmed to select whether the Timer Trigger will be sensitive
to a rising or falling edge. Although there is no set-up requirement
between the active edge of the Timer Trigger and the next rising
edge. If the Timer Trigger edge occurs closer than a specified
minimun set-up time to the rising edge, the Down Counter will

not begin decrementing until the following rising edge.

If bit 7 in the Channel Control Word is set, the zero—count
condition in the Down Counter, besides causing a pulse at the
channel's Time Out pin, will be used to initiate an interrupt request
sequence.

CHANNEL
CONTROL
REGISTER
AND LOGIC
(8 BITS)

TIME
CONSTANT
REGISTER
(8 BITS)

:

:; INTERNAL BUS
PRESCALER |

(8 BITS)

DOWN ZERO COUNT/TIMEOUT
COUNTER
(8 BITS)

EXTERNAL CLOCK/TIMER TRIGGER

FIGURE 4.2.0
CHAIMNEL--TIMER MODE

5.0 CTC PROGRAMMING

Before a Z80-CTC channel can begin counting or timing operations,
a Channel Control Word and a Time Constant data word must be written
on it by the CPU. These words will be stored in the Channel Control
Register and the Time Constant Register of that channel. In addition,
if any of the four channels have been programmed with bit 7 of their
Channel Control Words to enable interrupts, an Interrupt Vector must
be written an the appropriate register in the CTC. Due to automatic
features in the Interrupt Control Logic, one pre~programmed Interrupt
Vector suffices for all four channels.

5.1 LOADING THE CHANNEL CONTROL REGISTER

To load a Channel Control Word, the CPU performs a normal I/O
write sequence to the port address corresponding to the desired CTC
channel. Two CTC input pins, namely CSO and CS1, are used to fomm
a 2-bit binary address to select one of four channels within the
device (For a truth table, see section 2.2.1: "The Channel Control
Register and Logic"). 1In many system architectures, these two input
pins are connected to Address Bus lines AO and Al respectively,
so that the four channels on a CTC device will occupy contiguous
I/0 port addresses. A word written on a CITC channel will be
interpreted as a Channel Word and loaded into the Channel Control
Control Register, its bit 0 is a logic 1. The other seven bits of
this word select operating modes and conditions as indicated in the
diagram below. Following the diagram the meaning of each bit will
be discussed in detail.

120

5.1 LOADING THE CHANNEL CONTROL REGISTER (CONT'D)

D7 De Ds Da D3 D2 D1 Do
LOAD
O ReLE | MODE | RANGE | SLOPE [TRIGGER| TIME | RESET | |
CONSTANT #
USED IN USED IN
TIMER MODE ONLY TIMER MODE ONLY

Bit 7=1

The channel is enabled to generate an interrupt request
sequence every time the Down Counter reaches a zero—count sondition.
To set this bit to 1 in any of the four Channel Control Registers
necessitates that an Interrupt Vector also be witten on the CTC
before operation begins. Channel interrupts may be programmed in
either Counter Mode or Timer Mode. If an updated Channel Control
Word is written on a channel already in operation, with bit 7 set,
the interrupt enable selection will not be retroactive to a preceding
zero—-count condition.

Bit 7=0

Channel interrupt disabled
Bit 6=1

Counter Mode selected. The Down Counter is decremented by
each triggering edge of the External Clock (CLK/TRG) input. The
Prescaler is not used.
Bit 6=0

Timer Mode selected. The Prescaler is clocked by the System
Clock(é), and the outpt of the Prescaler in turn clocks the Down
Counter. The output of the Down Counter (the channel's ZC/TO
output) is a uniform pulse train of period given by the product:

toe*x P*xTC

where t is the period of the System Clock, P is the Prescaler
factor of 16 or 256, and TC is the time constant data word.

Bit 5=1
(Defined for Timer Mode only) Prescaler factor is 256.

121

Bit 5=0

(Defined for Timer Mode only) Prescaler factor is 16.

5.1 LOADING THE CHANNEL CONTROL REGISTER (CONT'D)

Bit 4=1

TIMER MODE -- positive edge trigger starts timer operation.
COUNTER MODE -- positive edge decrements the down counter.

Bit 4=0

TIMER MODE -- negative edge trigger starts timer operation.
COUNTER MODE ~-- negative edge decrements the down counter.

Bit 3=1

Timer Mode Only —-- External trigger is valid for starting timer
operation after rising edge T of the machine cycle following the
one that loads the time constant. The Prescaler is decremented 2
clock cycles later if the setup time is met, otherwise 3 clock
cycles later.

Bit 3=0

Timer Mode Only -- Timer begins operation on the rising edge
T of the machine cycle following the one that loads the time
constant.

Bit 2=1

The time constant data word for the Time Constant Register will
be the next word written on this channel. If an updated Channel
Control Word and time constant data word are written on a channel
while it is already in operation, the Down Counter will continue
decrementing to zero before the new time constant is loaded into it.

122

Bit 2=0

No time constant data word for the Time Constant Register should
be expected to follow. To program bit 2 to this state implies that
this Channel Control Word is intended to update the status of a
channel already in operation, since a channel will not operate
without a correctly programmed data word in the Time Constant
Register, and a set bit 2 in this Channel Control Word provides the
only way of writing to the Time Constant Register.

123

Bit 1=1

Reset channel. Channel stops counting or timing. This is not
a stored condition. Upon writing into this bit a reset pulse
discontinues current channel operation, however, none of the bits in
the channel control register are changed. In both bit 2=1 and bit
1=1 the channel will resume operation upon loading a time constant.

Bit 1=0

Channel continues current operation.

5.2 LOADING THE TIME CONSTANT REGISTER

A channel may not begin operation in either Timer Mode or
Counter Mode unless a time constant data word is written into the
Time Constant Register by the CPU. This data word will be expected
on the next I/0 write to this channel following the I/0 Write of the
Channel Control Word, provided that bit 2 of the Channel Control
Word is set. The time constant data word may be any integer value in
the range 1-256. If all eight bits in his word are zero, it is
interpreted as 2586. If a time constant data word is loaded into a
channel already in operation the Down Counter will continue
decrementing to zero before the new time constant is loaded from the
Time Constant Register in to the Down Counter.

124

5.3 LOADING THE INTERRUPT VECTOR REGISTER

The Z80-~CTC has been designed to operate with the Z80-CPU
programmed for mode 2 interupt response. Under the requirements of
this mode, when a CTC channel requests an interrupt and is acknow—
ledged, a 16-bit pointer must be formed to obtain a corresponding
interrupt service routine starting address from a table in memory.
The upper 8 bits of this pointer are provided by the CPU's I register
and the lower 8 bits of the pointer are provided by the CTC in the
form of an Interrupt Vector unique to the particular channel that
requsted the interrupt.

MODE 2 INTERRUPT OPERATION
/
Desired starting address pointed to'by:

INTERRUPT
SERVICE
ROUTINE LOW ORDER | REG 7BITSFROM | o
STARTING HIGH ORDER CONTENTS PERIPHERAL
ADDRESS
TABLE

\

The high order 5 bits of this Interrupt Vector must be
written to the CTC in advance as part of the initial programming
sequence. To do so, the CPU must write to the I/O port address
corresponding to the CTC channel 0, just as it would if a Channel
Control Word were being written to that channel, except that bit
0 of the word being written must contain a O (As explained above
in section 5.1, if bit O of a word written to a channel were set
to 1, the word would be interpreted as a Channel Control Word,
so a 0 in bit O signals the CTC to load the incoming word into the
Interrupt Vector Register). Bits 1 and 2, however, are not used
when loading this vector. At the time when the interrupting channel
must place the Interrupt Vector on the Z80 Data Bus, the Interrupt
Control Logic of the CTC automatically supplies a binary code in*
bit 1 and 2 identifying which of the four CTC channels is to be
serviced.

125

INTERRUPT VECTOR REGISTER

INTERRUPT VECTOR REGISTER

D7 D¢ Dg D4 D3 D2 D1 Do
\ Ve Vs Va V3 X X 0
N — i
N/
SUPPLIED BY 0 0 CHANNEL 0 {Highest Priority)
USER 0 1 CHANNEL 1
1 0 CHANNEI 2
1 1 CHANNEL 3 (Lowest Priority)
~ v/

N
AUTOMATICALLY INSERTED
BY Z80-CTC

6.0 To see the program as follows you will have the whole ieda
about CTC programming.

START LD A, 18H
LD I,A
LD A,10110101B
ouT (CTCO),A
LD A, 020H
OUT (CTCO),A
LD A,OA8H
ouT (CTCO),A
M 2
EI

In MPF-1I the four port addresses of the CTC are 40, 41, 42, 43
respectively. Since the contents of the Channel Control Register
is "10110101B", So CHO is programmed to be in the timer mode.
Since bit 5 in the Channel Control word is set the Prescaler divides
the System Clock by a factor of 256. Since the content of Time
Constant Register is 020H, CTC channel O will request a interrupt
every time its Down Counter reaches a count of zero. In other
words, CTC will generate an interrupt when the count of the System
Clock reaches 8192 (i.e. 256 x 32). Since RESET forces the
program counter to zero and initializes the CPU. The CPU
initialization includes:

1. Disabling the interrupt enable flip-flop
2. Setting Register I=00H

126

II. The flowchart of the clock are given below.

Initial €TC CHO Set
Interrupt Vector Prescalab
Time Constant

1. Set Display Buffer
Pointer

2. Call SCAN

Interrupt

[Call Add-Time-Buffer |

UP. data Display data
Buffer

UP. data Display

Segment
Fig 15-3 The flowchart of clock

127

LoC

1800

1800
1802
1804

1806
1808
180A
180C

180E
1810
1812

1813
1817
181A

181C
181F
1820
1821
1822
1824
1826
1827
1828
1829
182A
182B

182E
182F
1831
1832
1833

1834
1835
1836
1837
1838
183A

183B

183E
1841

OBJ CODE M STMT SOURCE STATEMENT

1
2 ORG 1800H
3
4 CTCO EQU 40H
5 SCAN EQU O5FEH
6 START:
3E18 7 LD A,18H ;Loading the interrupt register
ED47 8 LD I,A
3EBS 9 LD A,10110101B ;Loading the channel
control
D340 10 ouT (CTCO0),A
3E20 11 LD A,020H ;Loading the constant register
D340 12 ouT (CTCO),A
3EAS8 13 LD A,0A8H ;Loading the interrupt vector
register
D340 14 ouT (CTCO0),A
EDSE 15 M 2 ;Set interrupt mode 2
FB 16 EI
17 MAIN:
DD21041A 18 LD IX,DISP_BUFFER
CDFEO5 19 CALL SCAN
18F7 20 JR MAIN
: 21 RRRRRRRORORRKCRORICRORROR KRR KRR KR KR R KR Kok ok ok X
22 ADD TIME BUFFER:
11001A 23 - LD DE, TIME BUFFER
1A 24 LD A,(DE) ~
3C 25 INC A
12 26 LD (DE),A
FEDA 27 CP ODAH ;Increment SEC only if the
0604 28 LD B,4 ;number of interrupt reaches
co 29 RET NZ ;218 (ie ODAH).
AF 30 XOR A
05 31 DEC B
12 32 LD (DE),A
13 33 INC DE
215318 34 LD HL,MAX TIME TABLE
35 ATB1: - -
1A 36 LD A, (DE)
C601 37 ADD Al
27 38 DAA
12 39 LD (DE),A
96 40 SUB (HL) ;Comparea with data in
MAX TIME TABLE
D8 41 : RET C - -
12 42 LD (DE),A
23 43 INC HL ;If the result is less that, tI
13 44 INC DE
10F4 45 DJNZ ATB1 ;following loop will be null.
C9 46 RET
47 SET _DISP_BUFFER:
21041A 48 LD HL,DISP_BUFFER ;Convert data in
display buffer
11011A 49 LD DE, SECOND ;to display fomat.
0603 50 LD B,3

128

1843
1844
1847
1848
184A
184B
184C

LOC

-184E

184F
1850

1852

1853
1854
1855

- 18A8
. 18A8

18AA
18AB
18AC
18AD
18AE
18B1
18B2
18B4
18B7
18B8
18B9
18BA
18BB
18BC

1400

1A00

|
~1a01

© 1A02

|

 1A03

1A04

51 SDB1

1A 52 LD A,(DE)
CD7806 53 CALL HEX7SG
13 54 INC DE
10F9 55 DJNZ SDB1
2B 56 DEC HL
2B 57 DEC HL
CBF6 58 SET 6,(HL) ;Set decimal point for hour
OBJ CODE M STMT SOURCE STATEMENT
2B 59 DEC HL
2B 60 DEC HL
CBF6 61 SET 6, (HL)
co 62 RET
63 sk o s ok ok o ok e 3k ok o ok 3k ok ok ok ok ok ki o ok ok ok o bk ok ok ok sk ok ok ok ok o o ok k ok ok ok ok ok
64 MAX TIME TABLE:
60 65 - DEFB 60H ;The maximal value of the
time constant
60 66 DEFB 60H ;e.g. the maximum of second
is 60,
12 67 DEFB 12H ;the maximum of hour is 12.
(The use may change
68 ORG 18A8H ;12 to 24 as he wished)
AA18 69 DEFW INTERRUPT
70 INTERRUPT: ;Entry point of interrpt
service
F5 71 PUSH AF ;routine.
C5 72 PUSH BC
D5 73 PUSH DE
E5 74 PUSH HL
CD1C18 75 CALL ADD TIME BUFFER
78 76 LD A,B -
FEO4 77 CP 4
C43B18 78 CALL NZ,SET DISP BUFFER
E1l 79 POP HL - -
D1 80 " POP DE
ci 81 POP BC
F1 82 POP AF
FB 83 EI
ED4D 84 RETI
85 HEX7SG EQU 678H
86 ORG 1A00H
87 TIME BUFFER:
00 88 ~ DEFB 0
89 SECOND
20 DEFS 1 ;Locations for pressetting
values.
91 MINUTE
92 DEFS 1
93 HOUR
94 DEFS 1
95 DISP BUFFER:
96 - DEFS 6

129

III.

Illustration of Experiments 3-15

1. The timer mode is used in this experiment. This program
carefully calculates the total number of counts of System Clock.

The frequency of the System Clock is 1.7898 MHZ. 1In this experiment
we use 1785856 (256 x 32 x 218) count for each SECOND, so the count
error per second is 1789772-1785856=39186.

The SECOND error is (1%1798772) x 3916 = 2.2 msec

Hence there is 1 second error for every 455 seconds.

2. This program uses the Z80 CPU interrupt mode 2. The contents

of the Interrupt Register are O18H and the content of the Interrupt
vector Register are 0A8H, then the contents of the Interrupt Service
Routine's starting address is stored in addresses 18A8 - 18A9.

We can see that the Interrupt Service Routine's starting address

in this expriment is 18AAH.

3. The statements 6-15 set the CTC with control words. Now in

this expimernt we use the CTC Timer Mode and the prescaler is set to
256. The contents of the Time Constant Register are 20H. The
interrupt service routine's starting address is 18AAH. Statements
21-32 check whether the count of interrupts reaches 218 or not.
Statements 33-45 compares data with MAX-TIME-TABLE. Statements
46-61 convert data in the display buffer to a 7-segment diaplay
format. Statements 64-67 set the decimal points for both hour and
minute.

4. Load the program into MPF-I and record it on audio tape for
future use.

5. Convert the contents of 1823 to 6D. What will the display show ?
6. If we want to use CH2 of the CTC what shall do ?

7. If we change the contents of the MAX-TIME-TABLE, what will
the display show?

8. Typically, there are 1789772 T-cycles in one second. This
program approximates one second with 1785856 T-cycles, it is
pretty rough. So if a user needs more precise timing, Software
compensation is needed.

130

Experiment 16
Telephone Tone

Purposes:
1. To simulate a telephone ring.

9. To familiarize the reader with the application of 'tone'
subroutine.

Time requirod: 4 hours.

I. Theoretical Background:

1. The telephone ring can be simulated as a repeating 1 second tone
with 2 seconds silence.

2. This tone is a frequency shift keying signal modulated by two
20HZ square waves (half-period of 25 m sec).
The low & high states of this 20HZ signal correspond to 320HZ and
480HZ, so that it takes 8 & 12 cycles respectively.

3. In the following program, register C controls the frequency of the
sound and register pair HL controls the length of the sound.

a. Low frequency: C = 211, HL 8, so the period is

(44 + 13 x 211) x 2 x 0.56 3121 micro-sec.
frequency : £ = 1/3121 = 320Hz
length of the sound: 3121 micro-sec x 8 = 25m sec.
b. High frequency: C = 140, HL = 12, so the period is

(44 + 13 x 140) x 2 x 0.56 = 2087 micro-sec

frequency: 1/2087 480HZ.

length of the sound: 2087 micro-sec x 2 = 25m sec.

4. Output Circuit of tone

+5V
+5V
8255 3300 T RO 68Q
RS

10

Pe?

Fig 2~16~1 Output Circuit of tone

The output of the tone i's sent via PC7 of 8255, 2N9015, R8, to the
speaker. When the voltage of PC7 is low, the transistor will conduct;
the volotage of PC7 is high, the transistor will nonconduct. By
means of the transistor conducts and nonconducts, the speaker will

make sound.

132

5.

Flowchart of Telephone Tone

START

Y

Set 20Hz shift
rate

B

A

Set low froquency
=320Hz

length of the sound
=25 msec

Y

Set high frequency
= 480Hz
Length of the sound
= 25msec

No.

Two second
Silence

Fig

16-2 Flowchart of a telephone tone simalation

133

6. Telephone Tone Program

LOC OBJ CODE M STMT SOURCE STATEMENT

1
1800 2 ORG 1800H
1800 3E14 3 RINGBK LD A,20 ;20HZ FREQ SHIFT RATE
4 ;SO THAT 1 SEC HAS 20 LOOPS
1802 08 5 RING EX AF,AF' ;SAVE TO A'
1803 OED3 6 LD C,211
1805 210800 7 LD HL,8
1808 CDE405 8 CALL TONE ;320HZ, 25 MSEC
180B OE8C 9 LD C,140
180D 210C00 10 LD HL,12
1810 CDE405 11 CALL TONE ;480HZ, 25 MSEC
1813 08 12 EX AF,AF' ;RETRIEVE FROM A'
1814 3D 13 DEC A ;DECREMENT 1 COUNT
1815 20EB 14 JR NZ ,RING :
15 ;
1817 0150C3 16 LD BC, 50000
181A CD1F18 17 CALL DELAY sSILENT, 2 SEC
181D 18E1 18 JR RINGBK
19 ;DELAY SUBROUTINE: (BC) * 40 MICRO-SEC
20 ;BASED ON THE 1. 79 MHZ SYSTEM CLOCK
181F E3 21 DELAY EX (SP),HL ;19 STATES
1820 E3 22 EX (SP),HL ;19
1821 EDA1 23 CPI ;16
1823 EO 24 RET PO ;5
1824 18F9 25 JR DELAY ;12
26
27
28 TONE EQU O5E4H
29 END

II. Example and Practice Experiments

1. Load the above program into MPF-I and then store it on audio
tape.

2. Execute the program and listen to it. Does it like the telephone
ring? If it doesn't try to modify the frequency of tone to closer
simulate the sound.

3. Try to simulate the telephone busy tone

Hint: The busy tone can be simulated as follows: a repeating
0.5 seccond 400HZ tone with 0.5 seconds of silence.

134

Experiment 17
Microcomputer Organ
Purposes:

1. To enable the part of the Microprofessor to simulate an electronic
organ.

2., To familiarize the reader with the application of the keyboard
-scaning routine.
Time Rquired: 4 hours
I. Theoretical Background:
1. This experiment converts the MPF-I into a simple electronic organ.
2. When a key is pressed, the speaker will generate a tone
corresponding this key. This tone will not terminate until
the key is released.
3. Acceptable keyboard: key O - key F.
If other keys are entered, the response is unpredictable.

4, Key Mapping To Tones

C Sz-H D _PNC SZ-H!' PNC!
G A B C
8 9 A B
IX zy SP 1-1F
C D E F
4 5 6 7
AFI BCI DEI I{L'

e
>
o]

0 1 2 3
AF BC DE HL
B C D E
Fig 17 Key Mapping To Tone

5. An octave ranges from a C to a B. The cotave is divided into 5 full-
tone and 2 half-tones, which equals to 12 half-tones, as follows:

C# D #D E F #F G #G A #A B
135

6.

The next octave is just twice the frequency of the current one,
There is a lograrithmic relationship between each half-tone.

The frequency of each half-tone can be calculated by multiplying
the last one by 2 ** (1/12), which is approximately 1.059.

For example, if the frequency of E is 503HZ, then the
frequency of F is equal to

503Hs x 1.059 = 532HZ.

Flow chart of microcomputer organ program

(START)

A

Display Dblank

Initialize
frequency table
pointer HL

|t

any key pressed?

The desired frequency
is stored in address
HL + A

Output tone signal
to tone = out

Fig 17-2 Flowchart of orgran

136

LOC
1800
1800
1804

1807

180A
180B
180C

180E
1810

1811
1812
1813
1814
1816

1818
1819

181B
181D

181E
181F

1821

OBJ CODE M STMT SOURCE STATEMENT

DD21A507
CDFEO05

212318

85

3ECO

D302

46

F6CO
3C
79

28DF

18EB

© 0 LN NN W

38
39
40
41
42

43
44

45
46

ORG
START:

LD

CALL

LD

1800H

IX,BLANK
SCAN ;Display blank, return when
any
;Key is pressed. A register
;Contains the key-code.
HL,FREQTAB ;Base address of freque
-ncy table.

;After routine SCAN, A contains the code of the key

pressed.

;Use this code as table offset. The desired £
;frequency is stored in address HL+A.

ADD
LD
LD

HALF_PERIOD:
OuT

LD

DELAY: NOP
» NOP
NOP
DJNZ
XOR

LD

OR
INC

LD
JR

JR

FREQTAB:

A,L ;Add A to HL.
L,A
A, 11000000B

(DIGIT),A ;Output tone signal to
TONE-OUT.

;Activate all 6 columns of
;the Keyboard matrix.

B, (HL) ;Get the frequency from
FREQTAB.
;HL has been calculated in
;previous instructions.

DELAY ;Loop B times.

80H ;Complement bit 7 of A.
;This bit will be output to
TONE.

C,A ;Store A in C

A,(KIN) ;Check if this key is released.

;Al1l 6 columns have been
activated.
;If any key is pressed, the
;corres-ponding matrix row
;input must be at low.
11000000B ;Mask out bit 6 (tape input)
;and bit 7 (User's K) of
register A.
A ;If A is 11111111, increase
;A by one will make A zero
;Zero flag is changed here.

A,C ;Restore Q from register C.
Z.,START ;If all keys are released,
re~start.
;Otherwise, continue this
frequency.

HALF_PERIOD

137

1823
1824
1825
1826
1827
1828
1829
182A
182B
182C
182D
182E

LOC

182F
1830
1831
1832

B2 47 DEFB
A8 48 DEFB
96 49 DEFB
85 50 DEFB
7E 51 DEFB
70 52 DEFB
64 53 DEFB
59 54 DEFB
54 55 DEFB
4A 56 DEFB
42 57 DEFB
3E 58 DEFB

OBJ CODE M STMT SOURCE STATEMENT

37 59 DEFB

31 60 DEFB

2C 61 DEFB

29 62 DEFB
63

64 BLANK EQU
65 SCAN EQU
66 DIGIT EQU
67 KIN EQU
68 END

II. Example and Practice Experiments

1.

2.

T

OB2H
OA8H
096H
085H
O7EH
070H
064H
059H
054H
04AH
042H
O3EH

037H
031H
02CH
029H

07A5H
O5FEH

;Key
;Key
;Key
;Key
;Key
;Key
;Key
;Key
;Key
;Key
;Key
;key

WOk WO

Load the above program into MPF-I and then store it on audio

tape.

Execute the program. When a key is pressed, the speaker
will generate a tone corresponding to this key.

are key O to key F.
Are these tones accurate?

Try to play a song using organ.

Acceptable keys

Extend this program so that more keys of the key board can
be used as input keys of the organ. '

138

Experiment 18

Musie Box

Purposes:

1.

To construct a music box.

2. To familiarize the reader with programming techniques.

Time Required: 4 hours.

I. Theoretical Background:

1.

2.

This experiment generates a song using programming techniques.

There are two tables (frequency-table & song-table) in this program,
which is described below:

a.

Frequency-table

Every element of this table has 2 bytes, the 1lst byte is the
frequency parameter and the 2nd byte is the number of
half-periods in a unit-time duration.

One octave ranges from C to B. It is divided into 5 full-tones
and 2 half-tones, which equals 12 half-tones, as follows:

C# D#D E F #F G #G A #A B

The next octave is just twice the frequency of the current one,
and there is a logarithmic relationship between each half-tone.
So that the fregquency of each half-tone can be calculated by

multiplying the last tone by 2 ** 1/12, which is approximately
1.059.

Song-Table:
Each element of this table has 2 bytes:

The 1lst byte contains the code of the NOTE or REST or command
of REPEAT or STOP. These codes are:

bit 7 ---- STOP

bit 6 ---- REPEAT

bit 5 ---- REST

bit 4-0 ---- NOTE CODE

The 2nd byte contains the counts of the unit-time, i.e. the NOTE
length.

139

{ START)

Initialize
Song—-Table pointer
IX

3. A flowchart of music box simulation is given below:

| Get note data |

Check
Stop, play or

Repeat epeat?

Play

Initialize
frequency table
pointer HL

[ﬁTone out *1

]
| Increment IX |

Stop

l Halt '

Fig 18-1 Flowchart of music box simulation

’

140

LOC

1800

1800
1804
1807
1808
180A
180D
180F
1811
1813
1815
1817
181A
181B
181C

181D
181E

181F
1821
1824

1826
1827
182¢
182A
182B
182C
182D
182F

1830
1831
1833
1834

1836
1838

183A

PAGE 1

OBJ CODE M STMT SOURCE STATEMENT ASM 5.8
1
2 ORG 18C0H
3
DD218018 4 START LD IX,SONG ;Initial SONG-TABLE pointer
DD7EO0 5 FETCH LD A, (IX) ;Get note data
87 6 ADD AVA ;Each note data have 2 bytes
3830 7 JR C,STOP ;STOP?
FAQ018 8 Jp M,START ;REPEAT?
OEOQO 9 LD c,0 ;Reset TONE-BIT (BIT-7 of C)
CB77 10 BIT 6,A ;REST?
2002 11 JR NZ, PLAY
CBF9 12 SET 7,C ;Set ONTE-BIT
EG3F 13 PLAY AND 3FH ;Mask out note data
213B18 14 1D HL, FRQTAB
85 15 ADD A,L
6F 16 LD L,A ;Locate pointer in FRQTAB
5E 17 LD E, (HL) ;Counts of loop per HALF-PERIOD
delay
23 18 INC HL
56 19 LD D, (HL) ;Counts of HALF-PERIODS per UNIT-
TIME
DD23 20 INC IX
DD6600 21 LD H, (IX) ;Counts of UNIT-TIME for this note
3EFF 22 LD A, OFFH
23
24 ;The following loop runs for one NOTE or REST:
25
26 TONE:
6A 27 LD L,D
D302 28 UNIT ouT (02H) ,A ;Bit 7 is NOTE-OUT
43 29 LD B,E
00 30 DELAY NCP ;delay loop B*25-5 states
00 31 NOP
00 32 NOP
10FB 33 DJNZ DELAY
AS 34 XOR C ;If C=80H then TONE-OUT.
35 ;I1f C=00H then REST.
2D 36 DEC L
20F4 37 JR NZ,UNIT
25 38 DEC H
20F0 3¢ JR NZ, TONE
40 ;
41 ;The current note has ended, increment pointer next.
42
DD23 43 INC IX
18CA 44 JR FETCH
45
76 46 STOP HALT
47
48

141

183B
183D
183F

LOC

1841
1843

1845
1847
1849
184B
184D
184F
1851
1853
1855
1857
1859
185B

185D
185F
1861
1863
1865
1867
1869
186B
186D
186F
1871
1873

1875
1877
1879

E118
D41A
C81B

49
50
51
52
53
54
55
56
57
58

OBJ CODE M STMT

BD1D
B21E

A820
9F22
9624
8D26
8529
7E2B
772E
7031
6A33
6437
S5E3A
593D

5441
4F 45
4A49
464D
4252
3E57
3B5C
3762
3467
316E
2E74
2C7B

2982
278A
2592

FRQTAB:

s

;1st byte: counts of delay loop per HALF-~PERIOD.
;2nd byte: counts of HALF-PERIOD per UNIT-TIME.

;OCTAVE

PO

SOURCE STATEMENT

; OCTAVE

;OCTAVE

;OCTAVE

3.

DEFW
DEFW
DEFW

DEFW
DEFW
4

DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
5

DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
6

DEFW
DEFW
DEFW

18E1H
1AD4H
1BC8H

1DBDH
1EB2H

20A8H
229FH
2496H
268DH
2985H
2B7EL
2E77TH
3170H
336AH
3764H
3A5EH
3D59H

4154H
454FH
494AH
4D46H
5242H
573EH
5C3BH
6237H
6734H
6E31H
742EH
7B2CH

8229H
8A27H
9225H

; CODE
; CODE
; CODE

; CODE
; CODE

; CODE
; CODE
; CODE
; CODE
; CODE
; CODE
; CODE
; CODE
; CODE
; CODE
; CODE
; CODE

; CODE
; CODE
; CODE
; CODE
; CODE
; CODE
; CODE
; CODE
; CODE
; CODE
; CODE
; CODE

; CODE
; CODE
; CODE

00
o1
02

- v v

D T R T T R S S

- W % % e e w

G

#G
A

PAGE 2
ASM 5.8

142

92
93 lst byte, bit 7,6,5 & 4-0 STOP, REPEAT, REST & NOTE
94 Code of STOP 80H
95 Code of REPEAT: 40H
96 Code of REST: 20H
97 2nd byte, NOTE LENGTH: counts of UNTI~-TIME (N*0.077 sec)
98
99 ;JINGLE BELL: (Truncated)

1880 100 SONG ORG 1880H

1880 09 101 DEFB 9

1881 04 102 DEFB 4

1882 09 103 DEFB 9

1883 04 104 DEFB 4

1884 09 105 DEFB 9

1885 06 106 DEFB 6

13886 20 107 DEFB 20H ;REST

1887 02 108 DEFB 2

1388 09 109 DEFB 9

1889 04 110 DEFB 4

188A 09 111 DEFB 9

188B 04 112 DEFB 4

188C 09 - 113 DEFB 9

188D 06 114 DEFB 6

188E 20 115 DEFB 20H ;REST

188F 02 116 DEFB 2

PO

LoC OBJ CODE M STMT SOURCE STATEMENT

1890 09 117 DEFB 9

1891 04 118 DEFB 4

1892 ocC 119 DEFB 0CH

1893 04 120 DEFB 4

1894 05 121 DEFB 5

1895 04 122 DEFB 4

1896 07 123 DEFB 7

1897 04 124 DEFB 4

1898 09 125 DEFB 9

1899 08 126 DEFB 8

189A 20 127 DEFB 20H ;REST

189B 08 128 DEFB 8

189C 80 129 DEFB 80H ; STOP

143

IT1.

1.

2.

130

131 ;The following data are codes of the song 'GREEN SLEEVES'.
132 ;The user can put them at the SONG-table, i.e. from 1880H.
133 ;It will play until 'RS' key is pressed.

134

135 ;

136 ;1880 07 08 0A 10 OC 08 OE 10 10 04 OE 04 0OC 10 09 08
137 ;1890 05 10 07 04 09 04 0A 10 07 08 07 10 06 04 07 04
138 ;18A0 09 10 06 08 02 10 07 08 O0A 10 OC 08 OE 10 10 04
139 ,;18B0 OE 04 OC 10 09 08 05 10 07 04 09 04 0A 08 09 08
140 ;

141 ;18C0 07 08 06 08 04 08 06 08 07 10 20 08 11 10 11 08
142 ;18DO0 11 10 10 04 OE 04 OC 10 09 08 05 10 07 04 09 04
143 ;18E0 OA 10 07 08 07 10 06 04 07 04 09 10 06 08 02 10
144 ;18F0 20 08 11 10 11 08 11 10 10 04 OE 04 OC 10 09 08
145 ;

146 ;1900 05 10 07 04 09 04 OA 08 09 08 07 08 06 08 04 08
147 ;1910 06 08 07 18 20 10 40

148 ;

149

150 ;The ending address is 1916H.

151

152

153

154

Example and practice Experiments:

Load the above program into MPF-I and them store it on
avdio tape.

Execute the program beginning at line 100 and listen to it. Does it
sound like the song "JINGLE BELLS"?

On the last page of the above program line 30 there are codes for.the
song "GREEN SLEEVES". Put them on the SONG-table. The program will
play until "RS" key is pressed.

Try to translate your favorite song into code and load it into
MPF-1I.

144

- g
A FREQUENCY COUNTER

An Application Example of Z80-CTC.

MULTITECH INOUSTRIAL CORPORATION

OFFICE - 977, MIN SHEN E ROAD. TAIPEL 105 TAIWAN, RO.C
TEL (02)769-1225 (10 LINES) TELEX: 23756 MULTIC
FACTORY 5. TECHNOLOGY ROAD i
HSINCHU SCIENCE-BASED INDUSTRIAL PARK
HSINCHU, TAIWAN. 300. ROC
TEL: (035)775102 (3 LINES)

m— 2 e 0 e 1 S S S ST L ST T S

US$1.00

Purpose:

Use CTC to design a frequency counter

Required Equipment: MpF-1 (included CTC)

Expriment Explanation:

1.

CTC has four channels CH@ - CH3 is mapping to 4@H,41H,
42H,43H. In this program, we use CH# & CHl. The
function is shown below.

CHl: wused for timer interrupt, triggered by the

internal clock of MPF-1 (1789772 Hz), we set
CHP to

Mode: timer

Range: 256

Time constant: 233 (@E9H)
So after interrupt 30 (P1EH) times., It will be
approximately 1 sec, 256%233*3@=@FFH*@E9H*01EH=
1789440. 1t has error (1789772-1789440)/1789772=
0.00185%

{
CH@: wused for counter interrupt, triggered by user
signal
Mode: counter
And set 'down counter'=1¢@. Each time interrupts
happen, we can add frequency counter by 1. We can
get signal frequency when one sec is up.

LED display is in decimal format (six digit). So the
largest value is 999999. When frequency is over this it
will get some warning message, eg., display ‘over'
message,and tone 2K

Special care should be exerted when using the CcTC. To-
avoid burning out the CTC, you should first refer to
the Z8¢ Handbook, Z80-CTC Technical Manual, section
8.1 D.C. Characteristics. User signal used to trigger
the CTC should comply with the following characteris-
tics:

INPUT LOW VOLTAGE: -#.3V -—- 0.8V
INPUT HIGH VOLTAGE: 2.0V — Vcce.
OUTPUT LOW VOLTAGE: 8.4v

OUTPUT HIGH VOLTAGE: 2.4V

INPUT LEAKAGE CURRENT: 1.0 vA

After 1 sec, program is finished and result will display
at LED. If user want to count again, you can pressed
key 'GO' then it will count again. Othersize, it
will continue to display data.

Flowchart:

START

CLEAR BUFFER

SET 'CTC' INITIAL
ONDITIONS

HO: COUNTER MODE
Hl: TIMER MODE
INTERRUPT SERVICE
ROUTINE,'FREQ_INT]
& 'TIME_INT'

WAIT FOR
INTERRUPT

- EI

INCREASE COUNTER
BUFFER BY ONE

CONVERT TO DECIMAL
FORMAT

FREQUENCY>99999

RETI

YES

DISPLAY
'-OVER-'

(TIME_INT)
[Ex |

READ CH@® DOWN

COUNTER RESIDUE VALUE

[('rmsw'r) p— ('rme:m'r)ﬂ

1S
TIMEINT) >3
(PLEH) 2

NO

RETI

YES

G0

DISPLAY RESULT

CALL SCAN1

1800
1803
1804

1806
1807
1808

180A

180C
1B0E

1810
1812

1814
1816
1818

181A

181C
181E
1820
1822
1824
1825

1827

1840

LOC OBJ CODE M STMT SOURCE STATEMENT

21A500
AF
A60A

77
23
10FC

3E20

ED47
3EDS

D340
3E64

D340
3E40
D349

3EBS

D341
3EE9
D341
EDSE
FB

18FE

4400

OO LA S WA -

'Q..Q.Q.QQ...QQOQ'..QQQl'ﬂ..'Q'i..‘..t.'..t..i.'h.

; FREQUENCY COUNTER : COUNT THE FREQUENCY OF THE

INPUT §

*
IGNAL *

i
,QQQQQ......Q*QQ..Q..QQ.i.tﬁ........'OQ.Q'...Q'I..

i

CTC@: EQU
CTCl: EQU
SCANl: EQU
DATADP EQU

DEY_GO EQU

481 ;CHANNEL @ OF CTC
41H ;CHANNEL 1 OF CTC

#624H
@671H

;CHANGE DATA IN

;A_REG TO DISPLAY FORMAT

16H

i
;7 PROGRAM BEGIN HERE!

’

START:
LD
XOR
LD

CLEAR LD
INC
DJINZ

i
;SET CTC INITIAL

i
LD

LD
LD

ouT
LD

ouTt
LD
ouT
i
LD

ouT
LD
ouT
M
EI
JR

i
DEFS

HL, TIMECNT
A
B, OAH

(HL) ,A

HL

CLEAR
CONDITION
A, 20H

1.A
A,11010101B

(cTce) ,A
A,100

(CTC@) ,A

A, 40H
(cTCO) ,A
A,10110101B
(CTC1) ,A
A,0E9H
(CTC1) ,A

2

$

40H-($-STAR

;+4+4++4+{+4§++§#+#++Q00###+

CTC_INT:

DEFW

3 SE

;3 HL ==> COUNT BUFFER
; RESET A

; CLEAR FREQ &

; COUNT BUFFER

TIMER

;SET INTERRUPT REGISTER
3 VALUE

;SET CH@ COUNTER MODE,
;POSITIVE TRIGGER

;SET THE VALUE OF
7 DOWN COUNTER

;SET INTERRUPT VECTOR
;SET CH1 TIMER CODE,

;RANGE 256, POSITIVE

i TRIGGER

;SET TIME CONSTANT

T)
e R S
T INTERRUPT SERVICE ROUTINE

POINTER

FREQ INT

1842

1844

1845
1848

184A
1848
184C
1B4E
1B4F
18590
1852

1853
1855

1859
1858

185D

185E

18680
1862
1864

1867

186A
1868
186C
186D
186F
1871

5000

FB

21A700
n6a2

10F5
DD21AF@@

1838

EDAD

FB

DB4Q

D664
ED44
32A600

21A500

7E
3C
77
FEI1E
3ee2
ED4D

45
46
47

49
50
51
52

DEFW
i

TIME_INT

;#+§+§4##0++0§++++40+4++++##0{$+0+§#++Q#Q+++++4+++0¢4++#+

FREQ INT:

;FREQUENCY COUNTER INTERRUPT SERVICE ROUTINE
INCREASE COUNTER AND CONVERT TO DECIMAL FORMAT

;
EI

LD
LD

ADDONE :
EI
LD
ADD
DAA
LD
JR
INC

DJINZ
LD

JR
NOTOVER:
RETI

JWHEN C
i SERVIC

PU ENTER THIS INTERRUPT
E

;ROUTINE, IT WILL DISABLE
i ANOTHER INTERRUPT

;S0 "E

s HAPPEN
HL, FREQCNT+1
B,2

A, (HL)

Al

(HL) /A
NC,NOTOVER
HL

ADDONE
1X,0VER

DISPLAY

I" CAN LET COUNT_INT

:SET FREQUENCY BUFFER
; COUNTERR

7 INCREASE COUNTE BY ONE
;CHANGE TO DECIMAL FORMAT
JRESTORE VALUE

:NOT OVER 99

;OVER,MUST INCREASE HIGH
jORDER BUE ONE

; FREQUENCY LARGER THEN
1999999 DISPLAY '-OVER-'

i
B R e R e AR e A e SRR SRS s g

TIME_INT:
;CH1 (TIMER MODE)

INTERRUPT SERVICE ROUTINE

;CH1: TRIGGERED BY 'MPF-1' CLOCK
;EVERY 256%233 HZ, THIS SERVICE ROUTINE WIDL DO AGAIN
jJUNTIL 30 TIMES (--1 SEC),PROGRAM HALT AND SIGNAL

; FREQUENCY GET
EI

N

SUB
NEG
LD

LD

LD
INC
LD
cp
JR
RETI

A, (CTCH)
100
(FREQCNT) , A
HL, TIMECNT
A, (HL)

A

(HL) , A

@1EH
NC,END

(1789772H2)

s LET ANOTHER INTERRUPT
:CAN HAPPEN ANYTIME
;GET CH@ GOWN COUNTER
;RESIDUE VALUE

;SAVE THIS TO BUFFER
3 INCREASE TIME COUNTER BY

;ONE

;RESTORE VALUE
;CHECK ONE SEC ?
;YES

1873
1874

1876
1877
187A
187C
187E
187F
1881

1883
1885

1888

1888
188C
188D
1890

1892
1896
1899

1898
189D
189F

18A2
18A3

18A5
18A6
18A9

18AF
1880
1881
1882
1883
18B4

F3
0602

AF
217600
ED67
CERQ
27
10F9
ED67

9603
11A600

21A900

1A

13
CD7406
10F9

DD21A9%¢@9
CD2406
38FB

FE16
20F7
210000

E3
ED4D

95
96
97
98
99
100
101
182
103
104

105
106
107
108
189
l1e
111
112
113
114

115
116
117

118
119
120
121
122
123
124
125
126
127
128
129
130
131

,i.'i.‘...ﬁ..i...........'.i'....QQQ...QQQQ‘Q'Q.QQQQQ.O..

END:
DI
LD

XOR
LD
CHANGE: RRD
ADC
DAA
DJINZ
RRD
i
LD
LD

LD
CONVERT:

LD

INC

CALL

DINZ

i

DISPLAY:CALL
JR

cp
JR
LD

EX
RETI
i

i
TIMECNT DEFS
FREQCNT DEFS
OUTBUF DEFS
OVER:
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

B,2

A
HL, FREQCNT

A,0

CHANGE

B,3
DE ,FREQCNT

HL,OUTBUF

A, (DE)
DE
DATADP+3
CONVERT

IX,0UTBUF
SCAN1
C,DISPLAY

KEY GO
NZ,DISPLAY
HL, START

(SP) ,HL

@2H gt
@3H i'R'
@8FH
@B7H
@A3H
#2n 3'='

;CHANGE LOWER BYTE
;OF FREQUENCY COUNTER
:TO DECIMAL FORMAT

iCHANGE FREQ TO DISPLAY
: PATTERN

;DISPLAY DATA TO LED

iNO KEY PRESSED,SCAN

3 AGAIN

1 PRESSED 'GO' ?

:NO

;RETURN TO PROGRAM
;STRTING ADDR. &
;COUNT FREQUENCY AGAIN

;i TIMER COUNT BUFFER
;s FREQUENCY COUNT BUFFER
;DISPLAY BUFFER

Micro-Professor Application Note
—DOC. NO. MPF-1-02-210A —

MPF-I AS A TRAFFIC
LIGHT CONTROLLER

An Application Example of 7Z8@-PIO.

MULTITECH INDUSTRIAL CORPORATION

OFFICE : 977. MIN SHEN E. ROAD. TAIPEl, 105, TAIWAN, ROC
TEL: (02)769-1225 (10 LINES) TELEX 23756 MULTIC
FACTORY: 6, TECHNOLOGY ROAD W
HSINCHU SCIENCE-BASED INDUSTRIAL PARK
HSINCHU, TAIWAN, 300, RO.C
TEL: (035) 775102 (3 LINES)

et e e e e e .

UsS$1.00

Purpose!:

Use PIO for traffic light control

Required Equipment: A

lamps (one in

PIO chip, & 75492,
green, one in red,

three LED
and one in

in

1green LED330 ()
2yellowLED330 (Q
6red LED 330()

yellow), three resistors, and some wire.
You are required to use the necessary devices
to make the hardware connections
accordance with the diagram shown below:
+ 5V
M
Vss
Ad |15 14 1A 1Y
Al |14 3|l2A 2Y
Ulio
A2 |13 S513A Y
°
P10 75492
G

Expriment Explanation:

1.

The PIO is

circuit (LSI) especially designed to
peripheral®

TTL
devices
configure
wide range
other extern
peripheral

compatib
and
th

a 40-pin large-scale

le interface between
the 280 CPU. The

e Z8A-PIO to interface

of
al

peripheral devices
logic required.

integrated

provide

CPU can
with a
with no
Typical

devices that are fully compatible

with the Z80-CPU include most keyboard, paper

tape readers
programmers,
PIO has two
Each port is
addresses of
hexadecimal).
be used. For
and its
Microprocesso

and punches,
etc.

printers, and PROM
It is programmable. The

1/0 ports—--port A and port B.
connected to eight pins. The
the PIO are from 80 to 83 (in

In this experim~nt, port A will
detailed description of the PIO

operation, refer
r Programming and

to
Interfacing,

"z80

Book 2" by Nichols, Rony, published by Black-

sburg; or 2840
|

Handbook.

+5V

Each of the two ports of the PIO has four
modes of operation; namely, byte output, byte
input, byte bidirectional bus, and bit con-
trol mode. The mode of operation must be
established by writing a control word to the
PIO in the following format:

mode of
operation

(=}

7

Byte input

D6

¢ Byte output
1

¢ Byte bidirectional
1

- = e|

fig B Bit control

We can change the contents of bit D7 and D6
to form a control word in order to change the
mode of operation of port A.

In this experiment, the mode of operation of
port A is byte output. Thus, the contents of
bit D7 and D6 should be zero, and the
contents of bit D3 through bit D@ should be
one. The contents of bit D5 and D4 make no
difference to the control word.

D7 D6 D5 D4 D3 D2 D1 D¢

Go[we L= [[T o]]

control word

0of the four addresses of PIO, two addresses
are assigned to port A-—8@H is used as the
data port of port A, and 82H is used as the
control port of port A. Since we use port A
in its byte output mode, the control word is
set 0@PA1111(binary) (or @FH). The value of
the control word should be sent to the con-
trol port of Port A to set Port A to its byte
output mode.

54 We use the bit @ (Af@) of Port A to control
the green light, Al to control the yellow
light, and A2 to control the red light. To
illuminate the red light, the value @1 should
be sent to the data port of PIO (whose add-
ress is 8@H). By sending @1H to the data port
of PIO, the eight bits on the Port A will
become

A7 A6 A5 A4 A3 A2 Al A0

g.90. @ @ el Sayl

The 75492 will convert the input from A@ to
low, so the output at pin 1Y of 75492 is low.
This will cause the electrical- current to
flow from the resistor to the green LED lamp.

To illuminate the yellow LED, the byte (@2H)
should be sent to the data port of the PIO.
This byte will cause the Al high and 2Y low.
To illuminate the red lamp, the byte (@4H) is
sent to the data port of the PIO. ™

6. For how 1long will a lamp be illuminated?
This is controlled by time delay subrou-
tines--DELAY, DELAYl, and DELAY2.

Since the MPF-I operates at 1.79MHz, a T
state is 0.56 micro—-seconds. Therefore, the
time delay achieved by the DELAY subroutine
is

8.56 micro-seconds x {7+4[10+(16+4+4+10)x65536+4+12]-5+10}=4.9912867 sec
And the time delay for DELAY1 is
9.56 x [10+(16+44+4+11+12)x19000)=0.50080856 sec

The time delay for DELAY2 is

0.56 x [18+(16+4+44+11+12)x65536)=1.7249131 sec

(START)

ET PIO PORT
A OUTPUT
MODE

SET BIT A@ O
PORT A HIGH

DELAY 5 SECONDS

GREEN LED

GREEN LED
FLASHES 4
SECONDS

YELLOW LED
LIGHT
1.725 SECONDS

RED LED LIGHT
5 SECONDS

Loc

1800

1800
1802

1804
1806
1808
1808

188D
180E
1819
1812
1815
1817
1819
1B1C
181D

181F
1821
1823
1826
1828
182A
182D

1830
1832

1835
1837
1838
1839
183C
183D
183F

1849
1843

OBJ CODE M STMT SOURCE STATEMENT

3EOF
D382

3E01
D384
Cb3p18
0604

Cc5
3JEQ@
D389
Ch4¢18
3E01
D380
Cb4g18
cl
10EE

3E02
D380
CD4A18
3E04
D3se
CcD3918
C30418

16084

A16000

91384A

EDA1

N -

.

PAGE 1
ASM 5.8

;DATA PORT OF PIO
CHANNEL A

:CONTROL PORT .OF.PIO
CHANNEL A

:PIO PORT A OUTPUT MODE
;GREEN LED LIGHT

;DELAY 5 SEC

;FLASH 4 SEC

;YELLOW LED LIGHT
$11.725 SEC

;RED LED LIGHT
35 SEC

R R R R R R R R R R R R R R R R R SRR R R R

DELAY 4 * 1,25 SEC = 5 SEC SUBROUTINE
0.56 us * (16 + 4 + 4 + 10) * 65536 =1.25 SEC

GRERRIIRRGNIGIIGINVIERINRNIGNNiiiiiidivaiiiiiiiiaia;

3 7T

10T

16T
4T
4aT
16T

v e e

R R R R R R R R R R R R RS R R R R R R R R R R R R R N

MPF 821015
ORG 1800H
PIODA EQU B80H
PIOCA EQU 82H
START:
LD A,OFH
ouT (PIOCA) ,A
BEGIN:
LD A,01H
ouT (PIODA) ,A
CALL DELAY
LD B,4
FLASH:
PUSH BC
LD A0
ouT (PIODA) ;A
CALL DELAY1
LD A,01
ouT (PIODA) ,A
CALL DELAY1
POP BC
DJINZ FLASH
7'll7?’3}337}?}3;;6)"’)33’}313
’
ouT (PIODA) ,A
CALL DELAY2
LD A, 04
ouT (PIODA) ,A
CALL DELAY
Jp BEGIN .
H
;
H
i
iiiii
DELAY
LD D,4
DELX:
LD BC,0
DE@:
CPI
NOP
NOP
ap PE,DE9
DEC D
JR NZ,DELX
RET
H
i DELAY @.5 SEC SUBROUTINE
i
i
iiiiig
DELAY1
LD BC,4A38H
DEl:
CcPI

0.56 us * (16 + 4 + 4 + 11 + 12) * 19000 =0.5 SEC

FRERRIFIRRGRGRGRRNNINGRRRiGaaniidasvasiinaann

MPF 821015 PAGE 2

LOC OBJ CODE M STMT SOURCE STATEMENT ASM 5.8
1845 00 59 NOP
1846 o0 60 NOP
1847 E@ 61 RET PO
1848 18F9 62 JR DE1l
g: idiriisINININIININNIINNNIONINIQNIIIGG
H
65 ; DELAY 1.725 SEC SUBROUTINE
66 ;
67 3532338808083 330330333303333300003
68 DELAY2:
184A 010000 69 LD BC,0
70 DE2:
184D EDA1l 71 CPI
184F a0 72 NOP
1856 a0 73 NOP
1851 EQ 74 RET PO

1852 18F9 75 JR DE2

Micro-Professor Application Note l
—DOC. NO. MPF-1-03-210A —

MPF-I AS A GAME
SOUND GENERATOR

Flying Sducer & Laser Gun.

OFFICE 977. MIN SHEN E ROAD. TAIPEIL, 105. TAIWAN, ROC
TEL (02)769-1225 (10 LINES) TELEX 23766 MULTIC
FACTORY: 5. TECHNOLOGY ROAD Il
HSINCHU SCIENCE-BASFD INDUSTRIAL PARK
HSINCHU, TAIWAN, 300. ROC
TEL' (035)775102 (3 LINES)

ﬁ MULTITECH INDUSTRIAL CORPORATION

==

R IR 7™ 7 US$0.50

Purpose: Simulating flying saucer sound and other computer-controlled.
sound.

Required Equipment: MPF-I

Expriment Explanation:

1. The simulated flying saucer sound is created by rapidly
raising the frequency from 80@Hz to 2400Hz.

2. The frequency table is stored in the memory locations
pointed to by the addresses following 1819H. The first
byte is the parameter of frequency, and the second byte
is used to store the length of a sound. The machine code
"FF" at the end of the frequency table is designed to begin
another sound cycle.

3. The frequency table can be changed so that various computer
synthesized sounds can be generated.

4. The frequency table for the sound of a laser gun is.
provided. The sound of the laser gun is generated by
rapidly reducing the frequency from 2400Hz to 800Hz.

Flowchart

START

LOOP1

LOOP2

YES

ke

rHL<——FREQTABJ

e

data in the DE

etch the data

stored in FREQTAB

and put the fetched
register pair.

NO

Compute the
values from
DE register

[Generate the sound |

r HL<-—HL+1]

|

hddress Machine Code

1800
1803
1804

1805
1807
1808
1809
180A
180C
180F
180F
1811
1813
1814
1816
1817

Address

1819
1818
181D
181F
1821
1823
1825
1827
1829
1828
182D
182F
1831
1833
1835
1837
1839
1838
183D
183F
1841
1843
1845
1847

211918

Label

LOOP1
LOOP2

LOOP3

OP Code

LD
LD
INC

JR
DEC
INC
LD
LD
ouT
LD
DJINZ
XOR
DEC
JR
INC
JR

Operand

HL, FREQTAB
D, (HL)
D

z,LO0P1
D

HL

E, (HL)
A,@FFH
(02) ,A
B,D

$

80H

E
NZ,LOOP3
HL
LOOP2

Comment

Check FEPEAT code
~-FF

LOOP B times

LOOP E times

FREQUENCY TABLE for Laser Gun

Machine Code

850E
TEQE
TI1VE
TA0E
GAOA
6AQE
SEAF
590F
SA40E
AFQFE
ANPE
AG0OE
4120F
3EQE
3BAE
370E
340FE
310E
2EQE
2CAE
2998
270E
250E
FF
END

Address
1819 250C
1818B 278C
181D 29@C
181F 2Cpc
1821 2EQC
1823 310C
1825 349C
1827 370E
1829 3B@aC
182B 3E@C
182D 420C
182F 460C
182D 420C
1833 4F@C
1835 54@C
1837 59@C
1839 SE@C
183B 640C
183D 6ABC
183F 7088C
1841 778C
1843 TEBC
1845 850C
1847 FF
END

Machine Clde

PART NO.: 49.00710.001

	em00_0002
	em00_0003
	em00_0004
	em00_0005
	em00_0006
	em01_0001
	em01_0002
	em01_0003
	em01_0004
	em01_0005
	em01_0006
	em01_0007
	em01_0008
	em01_0009
	em01_0010
	em01_0011
	em01_0012
	em01_0013
	em01_0014
	em01_0015
	em01_0016
	em01_0017
	em01_0018
	em01_0019
	em01_0020
	em01_0021
	em01_0022
	em01_0023
	em01_0024
	em01_0025
	em01_0026
	em01_0027
	em01_0028
	em01_0029
	em01_0030
	em01_0031
	em01_0032
	em01_0033
	em01_0034
	em01_0035
	em01_0036
	em01_0037
	em01_0038
	em01_0039
	em01_0040
	em01_0041
	em01_0042
	em01_0043
	em01_0044
	em01_0045
	em01_0046
	em01_0047
	em01_0048
	em01_0049
	em01_0050
	em01_0051
	em01_0052
	em01_0053
	em01_0054
	em01_0055
	em01_0056
	em01_0057
	em01_0058
	em01_0059
	em01_0060
	em01_0061
	em01_0062
	em01_0063
	em01_0064
	em01_0065
	em01_0066
	em01_0067
	em01_0068
	em01_0069
	em01_0070
	em01_0071
	em01_0072
	em01_0073
	em01_0074
	em01_0075
	em01_0076
	em01_0077
	em01_0078
	em01_0079
	em01_0080
	em01_0081
	em01_0082
	em01_0083
	em01_0084
	em01_0085
	em01_0086
	em01_0087
	em01_0088
	em01_0089
	em01_0090
	em01_0091
	em01_0092
	em01_0093
	em01_0094
	em01_0095
	em01_0096
	em01_0097
	em01_0098
	em01_0099
	em01_0100
	em01_0101
	em01_0102
	em01_0103
	em01_0104
	em01_0105
	em01_0106
	em01_0107
	em01_0108
	em01_0109
	em01_0110
	em01_0111
	em01_0112
	em01_0113
	em01_0114
	em01_0115
	em01_0116
	em01_0117
	em01_0118
	em01_0119
	em01_0120
	em01_0121
	em01_0122
	em01_0123
	em01_0124
	em01_0125
	em01_0126
	em01_0127
	em01_0128
	em01_0129
	em01_0130
	em01_0131
	em01_0132
	em01_0133
	em01_0134
	em01_0135
	em01_0136
	em01_0137
	em01_0138
	em01_0139
	em01_0140
	em01_0141
	em01_0142
	em01_0143
	em01_0144
	MPF-1-01-210A
	MPF-1-02-210A
	MPF-1-03-210A
	MPF-1-04-210A

