MPF-1

EXPERIMENT MANUAL
(SOFTWARE/HARDWARE)

ROFESSOR

e
Y MANLAL

MICRO-p

VAT S Ann py

AN EVE YO Yi guvuees

MPF-IP

EXPERIMENT MANUAL
(SOFTWARE/HARDWARE)

P

Copyright © 1983 by MULTITECH INDUSTRIAL CORP. All rights
reserved. No part of this publication may be reproduced, trans-
mitted, transcribed, stored in a retrieval system, or translated into
any language or computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual or other-
wise, without the prior written permission of MULTITECH INDUS-
TRIAL CORP.

COPYRIGHT

DISCLAIMER

MULTITECH INDUSTRIAL CORP. makes no representations or
warranties, either express or implied, with respect to the contents
hereof and specifically disclaims any warranties or merchantability
or fitness for any particular purpose. MULTITECH INDUSTRIAL
CORP. software described in this manual is sold or licensed “as is"".
Should the programs prove defective following their purchase, the
buyer (and not MULTITECH INDUSTRIAL CORP., its distributor,
or its dealer) assumes the entire cost of all necessary servicing, re-
pair, and any incidental or consequential damages resulting from any
defect in the software. Further, MULTITECH INDUSTRIAL CORP.
reserves the right to revise this publication and to make changes from
time to time in the content hereof without obligation of MULTI-
TECH INDUSTRIAL CORP. to notify any person of such revision
or changes.

M | Multitech

INDUSTRIAL CORP.

OFFICE/

9FL, 266 SUNG CHIANG ROAD. TAIPE! 104,
TAIWAN, R.O.C.

TEL: (02)561-1101

TELEX: 19162 MULTHC FAX: (02)542-2806
FACTORY/

1 INDUSTRYE. ROAD. 1iI,

HSINCHU SCIENCE-BASED INDUSTRIAL PARK,

HSINCHU. TAIWAN 300, R.O.C.

MPF-IP EXPERIMENT MANUAL
TABLE OF CONTENTS

Preparations
Introdution To Designing Microcomputer Programs

Experiment 1 Data-Transfer Experiment
Experiment 2 Basic Applications of Arithmetic and Logic Operation Instructions

Experiment 3 Binary Addition and Subtracti

Experiment 4 Branch Instructions and Program Loops

Experiment 5 Stack and Subroutines

Experiment 6 Rotate, Shift Instructions, and Multiplication Routines

.

Experiment 7 Binary Division R

Experiment 8 Binary-to-BCD Conversion Program

Experiment 9 BCD-to-Binary Conversion Program

Experiment 10 Square-Rooot Program

Experiment 11 Introduction to MPF-IP Display
Experiment 12 Fire-Loop Game

Experiment 13 Stop-Watch

Experiment 14 Designing a Clock Using Software
Experiment 15 Telephone Tone Simulation ..
Experiment 16 Microcomputer Organ

Experiment 17 Music Box Simulation ...

1A

Preparations :

Introduction to Designing Microcomputer Programs

A computer program is an organized series of instructions. The
central processing unit will perform a series of logical actions to
obtain the desired result.

Before a program is executed by CPU it must be stored in memory
in blnary form. This type of program is called a "machine language
program" This is the only type of language the computer understands.
The machlne language program is usually represented by Hexadecimal
digits. For example, the 8-bit instruction 1¢1¢ 1111B (B represents
binary) in the 288 CPU it can be replaced by @0AFH (H represents
hexadecimal) . Interpreting a machine lanquage program is extremely
difficult and time consuming for the |user. the microprocessor
manufacturer divides the CPU instructions into several categories
according to their functions. The CPU instructions and registers are
usually represented by symbols called "mnemonics" For example, the
Z88 CPU instruction 70H can be represented by the mnemonic code LD A,L
(Load Data into regxster a from register L). A program written in
mnemonic codes is called an “"assembly language program." Before an
assembly language program can be executed by the CPU, it must be
translated into machine language by a special software program called
an "Assembler".

Normally a program is written in assembly language. The main
advantage of assembly language program over machine language
programming is that assembly language programming is much faster to
code, the mnemonics makes it much easier for the user to remember the
instruction set, and normally the assembler will contain a self-
diagnostic package for debugging programs. The main disadvantage of
assembly language programs is that it requires an assembler and
microcomputer development system. these two items are very costly.
With the MPF-IP microcomputer the user has to translate assembly
programs into machine 1level programs by hand before executing
programs.

3A

A. Problem Analysis

The software program of a simple problem may be easily designed
with a well-defined flowchart. It may also be obtained by revising
some existing programs or combining some simple routines. The design
of a more complicated programs, such as monitor programs, system
control programs or a special purpose program, are usually started
after some detailed analysis of the problem has been made. Probler
analysis and solution requires a good understanding of the following:

See page (III-3)

1) Characteristic and requirements of the problem
2) Conditions which are known

3) Input information format and how it is converted
4) Output data format and how it is converted

5) Type of data and how precise it is

6) Execution speed required

7) CPU instructions and performance

8) Memory size

9) The possibility that the problem can be solved
(18) Methods to solve the problem

(11) Evaluation of the program

(12) How the resultant program will be disposed

e e e T e Py

l Problem Analysis]
|3

v
[7 Flowcharting AJ
k:
[Program Desigqgj

Tr

Assembly language: I Program w:itingAW

1

Machine Language: l Program Assembly]

1r

Monitor Program Program Loading J

—
Execution and Debugging|
le

¥
[Resultant Program Disposal]

Figure A-1

4A

B. Flowchart

A flowchart can be used to indicate the behavior of algorithms by
suitable graphs. once the complete flowchart has been completed, a
full picture of the programmer's thought processes in reaching a
solution to the problem may be followed. Flowcharts are especially
important in program-debugging. It 1is an important part of the
finished program. It may help other people to understand the exact
algorithm used by the programmer.

Two levels of flowcharts are often desirable:
System flowchart -- showing the general flow of the program

Detailed flowchart -- providing details that are of interest mainly
to the programmer.

Usually, a complicated program is introduced using a system flowchart
outlining the program, and then a detailed flowchart is presented.
The advantage of a flowchart is that it emphasizes the sequential
nature of steps by using arrows pointing from each step to its
successor. Various symbols are used to indicate the operation that
is to be performed at each step. Figure 2-A-2 gives some standard
symbols used in flowcharts:

5A

Process

HL «—0
A —16H

élj;kﬁ

RL E,D
HL < HL+HL
HLHL-BC

HL — HL+BC

Input/Output Yes

Connector

CCF
DEC A

Terminal
Interrupt

Flow Line

Figure A-2

6A

C. Program Design

There are many types of programs. Programs for mathematical
equations, conversion of input and output signals, coding and decoding
of the program data, peripheral device drives, etc. are example of
simple programs. Assembler, monitor and system control programs or
special purpose applications are examples of more complicated programs.
The following items are usually considered in program design:

(1) Acquisition of input signals or data
(2) Generation or conversion of output signals and data
(3) Logical analysis and calculations in the main program
(4) Relation between the main program and subroutines
(5y Use of internal registers
(6) Memory allocation of the main program
(7) Memory allocation of subroutines
(8) Memory allocation of data tables and indexed
addressing methods
(9) System initialization and constants in the program
(10) Definition of the variables in the program
(11) Consideration of timing sequences and program
execution speed
(12) Limitations of memory size
(13) Length and precision of data
(14) Availability of documents and references
(15) Other special items

7A

D. Program Writing

In this book, the programs are written mainly in assembly
language. Here only the format of the assembly language program is
given.

A statement in the program is composed of four parts : Label,
Opcode, Operand and Comment. An example is shown below

LABEL OPCODE & OPERAND COMMENT
DTB4 LD B,16
DB3 SRL H
RR L
RR D
RR E ; ROTATE HL DE RIGHT
LD A H
CALL DB1
LD H,A ; CORRECT H
LD A,L
CALL DB4
LD L,A ; BINARY CORRECT L
DJNZ DB3
RET
BINARY CORRECT ROUTINE
DB4 BIT 7,A
JR Z,DB1 ; IF BIT 7 OF A = 1, SUB FROM 3¢H
suB 30H
DB1 BIT 3,A
JR Z,DB2 ; IF BIT 3 OF A = 1, SUB FROM 03H
SUB 3
DB2 RET

Sometimes, a program statement without a comment 1is not easy to
understand. The comments in the statements are very important
especially for a complicated program. Statements with a label and
comment field are more convenient for calling and debugging.

8A

E. Program Assembly

Using the resident assembler in a microcomputer system is an effect@ve
way to assemble the source program. However, a beginner or a proram dgslgner
not familiar with the microcomputer development system must assemble his/her
program by hand. The usual procedure for hand assembly is:

(1) Translate each instruction (mnemonic) into the machine code by looking
it up in the conversion table. The comment field of each statement is

ignored.

(2) After deciding the starting address of the program. Assign an appropriate
address to the first byte of each instruction. The exact number of
bytes needed must be reserved including space f9r instructions such as
JR, DJNZ, and destination addresses of instructions JP, CALL, etc.

(3) Calculate the relative displacement and put it in the assembled program.
A simple formula for calculating the relative displacement is:

displacement = (destination address) - (next instruction address)

If the calculated result is positive, then it is the desired value. If the
calculated result is negative, then subtract the result from 10@H (i.e.
take its 2's complement) and the final result is taken as the operand of
this instruction. For instance, in the program listed above, the
instruction DJNZ DB3 at address 0@014H is first translated into 1@6xx and
then the xx value is calculated.

XX = 0P02H (destination address) - 1016H (next instruction's address)
= -14H (negative value)
XX = 10@0H - 14H = QECH

Therefore, the instruction DJNZ DB3 must be translated into 19EC. In
addition, the instruction JR Z, DB 1 at address @@19H is first translated
into 28xx, and then the xx value is calculated.

@01DH (destination address) - @01BH (next instruction's address)
2 H

XX

The instruction JR Z, DB 1 must be translated into 2802.
The translated machine language is given below:

Machine
Address Language Label Opcode & Operand Comment

** 4 DIGIT BCD TO BINARY CONVERTION ROUTINE **
EXTRY : BCD DATA IN HL

EXIT : BINARY DATA IN DE

REGISTER CHANGED : AF BC DE HL

~o e we we

0000 0610 DTB4 LD B,16 ; B = BIT COUNT
0002 CB3C DB3 SRL H

9A

0004
0006
0008
BO0A
0008
POOE

000F.

0010
00813
0014
0016

8017
0019
001B
801D
001F
0021
0023

CB1D
CBlA
CB1B

CD1D00

. 67

7D
CD1700

108EC
c9

CB7F
2802
D630
CBSF
2802
D603
c9

i
i

DB4

DBl

DB2

BIT
JR

SuB
BIT
JR

SUB
RET

Oroy»To»morr

10A

~

~

BINARY CORRECT ROUNTINE

’

'

ROTATE HL DE RIGHT

CORRECT H

BINARY CORRECT L

IF BIT 7 OF A

IF BIT 3 OF A

1,

1,

SUB FROM 30H

SUB FROM #3H

Experiment 1
Data-Transfer Experiment

Purposes:

1.
instruction
2.

3. To practise assembling,

Time required: 4 hours

I. Theorectical Background:

To familiarize the user with the function of data-transfer

To practise setting the initial value of data

loading and executing a program

1. Most of the data-transfer operation is accomplished by
using LD (load) instructions. Data can be transferred
in group of 8 bits or 16 bits. Also, instructions
such as EX, EXX, PUSH and POP can be used to transfer
16-bit data. Instructions such as LDI and LDIR can be
used to transfer blocks of data by moving a series of
bytes.

A LD instruction must have two operands. The first
operand represents the location where data will be
stored (register or memory section). This is called
its "destination". The second operand represents the
original location of the data to be transferred. This
is called the "source". For instance, LD A,B indi-

cates that data in register B will be transferred to
register A. Register A is the “"destination® and
Register B is the "source".
3. Data transfer instructions can be wused in the
following ways:
(1) register <- register e.g. LD A,B ; LD HL,BC
(2) register <- memory e.g. LD A,(HL) ; POP AF
(3) register <- immediate data
X e.g. LD A,25H ; LD HL,125AH
(4) memory <- register e.g. LD (HL),A ; PUSH BC
(5) memory <- memory e.g. LDD ; LDIR
(6) memory <- immediate data
e.g. LD (HL),SBH
II. Experiment 1-1
t an assembly language program to set the contents of the
registers as follows : A=p¢, B=1l, C=2, D=3, E=4, H=5, L=6 (use 8-bit LD

instruction to transfer one byte of data each time).

Step 1 Write the assembly language program in the following blank
form. The last instruction is RST 38H which returns control
of the MPF-IP to the monitor program after executing the whole
program.

Step 2 Key in the source program using the text editor or input
mchine code directly to the MPF-IP.

Step 3 Use the two-pass assembler to assemble the source code to
machine code without modifying the default values. Then
key in G F B @ @ and to execute the program.

Step 4 Examine the contents in the A, B, C, D, E, H, L
registers. If the values are not stored properly, repeat
from step 1.

* Table --- from Chinese MPF-IP Manual p.l2

Memory Machine Assembly

Address Language Language

1800H 3E00 LD A,0
FF RST 38H

III. Experiment 1-2

Write

an assembly language program to set the contents of

registers as follows: B=12, C=34, D=56, E=78, H=9, L=A (use 16-
bit LD instruction to transfer two bytes of data each time).

Step 1
Step 2
Step 3

Step 4

Same as the step 1 in Experiment 1-1.
Same as the step 2 in Experiment 1-1.
Press G F B @ @ and to execute the program.

Use the v key to check contents of each register.

Note
16-bit data is composed of two bytes of data. The high-order

A
i i ddress and the low-
is stored in the higher ordered memory a
:ﬁ;:r lbyte is stored in the lower ordered memory address. For

instance, the 16-bit data 1234H is stored in addresses 1820H -
1821H in the following way:

16-bit data memory contents memory addrecss
FBOGH (lower order address)
f“"A__—“ low order
12 34 byte 3 4
high order byte 1 2 FBB1H (higher order address)
TN
Machine Assembly
Address Language Language
FBOOH 913412 LD BC,1234H
FBO1H
FF RST 38H

Example 1-1 : THE USE OF A LOOP

Write a program to clear the contents of memory addresses FAQ@H -
FAlFH.

Explanation:

(1) If we wuse an 8-bit LD instruction to transfer the data to
each destination, the single load instruction would be
executed for 32 (20H) times. It is more convenient to use the
loop method in the program.

(2) Use register B is generally used as a loop counter. Set
register B to 20H before the loop is executed. Use HL as a
memory address pointer, and set the starting address FA@@H to
HL. HL is incremented by one and B is decremented by one for
each loop. 1If B=@, then all loops have bean executed; other-
wise, run the loop again.

(3) The program is given below:

Machine
Address Language Label Opcode & Operand Comment

F8oe LD B,20H ;i Set loop counter equal to 32
LD HL,@FAP@H; Set HL equal to the starting address
; of memory to be cleared
XOR A ; Set A=9
Loop LD (HL) ,A i Load # into the memory address
; pointed to by HL
INC HL ; Increment HL by 1
DEC B ; Decrement HL by 1
JR NZ,LOOP ; If B not = @, return to LOOP
FF RST 38H i Return to the monitor program

IV. Experiment 1-3
Enter the program in the Example 1-1, assemble the source code to

machine code, execute the program. Then check if the contents of the
memory range from FAB@H through FAlFH has been cleared.

V. Experiment 1-4 :

Write an assembly language program to set the contents of memory
address FAS0H - FA7FH as follows: 6, 1, 2, 3,F.

(HINT: Change the loop counter and the value of the starting address.
register A is incremented by 'l' in the next loop)

MACHINE
ADDRESS LANGUAGE LABEL OPCODE & OPERAND

Experiment 2
Basic Applications of Arithmetic and
Logic Operation Instructions

Purposes:

1. To familiarize the user with the arithmetic and logic operation
instructions .

2. To understand the memory addressing podes

3. To understand the meaning of the register status flag .

4. To practise arranging data for CPU registers and memory sections

Time Required: 4 hours
I. Theoretical Background:
1. 8-bit arithmetic and logic operation instructions:

The 8-bit arithmetic and 1logic operations in the 280 CPU are
performed in register A (accumulator). Registers A, B, C, D, E, H,
and L can be used as operands in conjunction with register A in the LD
instructions. If data are transferred between memory and register A,
the memory address can be pointed to by HL, IX or 1Y registers. The
meaning of the following instructions are given in the right-side
comment field:

(1) ADD A ; Data in register A is added to itself, i.e. the
data is doubled shifted left one bit.

(2) ADC B ; Register B and the carry flag are added tc
register A,
(3) SuB C ; Data in register C is subtracted from

register A,
(4) SBC (HL) Subtract the data in the memory address pointed
to by HL and the contents of the carry flag from
register A.

(5) AND D i Logical "AND" of register D and register A.
(6) OR @FH ; Logical "OR" of data @FH and register A .
(7) XOR A i Exclusive "OR" register A and itself. (Since

register A is equal to register A, the result
is zero).

(8) INC H i Increment the contents of register H by 1.

(9) INC (IX) i Increment the contents of the memory address
pointed to by register IX by 1.

(19) DEC C Decrement the contents of register C by 1.

L

(11) DEC (IY+3)

The sum of the contents of register IY and
3 is used as the memory address pointer.
Decrement the contents of memory address

IY +3.

~

2. Data Addressing Mode

In the above assembly language instructions, the addressing modes used
can be summarized below. Other addressing modes can be found in the

280 CPU technical manual.
(1) Register Addressing

Example:

In the instruction ADC A,B, ADC is the opcode which represents what
kind of operation will be performed. The character A in the right
means that the data will be added to A. The character B at the far
right means that the data to be added to A is taken from register B.

(2) Register Indirect Addressing

A 16-bit register is used to store the memory address.

Example: In the instruction SBC A,(HL) , (HL) does not
mean that HL will be subtracted from register A.
Instead, the CPU takes the 16-bit data contained
in HL as the memory address and then accesses the
8-bit data stored in this memory address. The
8-bit data pointed to by HL is finally subtracted
from register A. IX and IY are called index
registers. When a memory address is pointed
to by IX or 1Y, an 8-bit byte which is less than
+127 but larger than -128 can be added to this

register.

For instance, the following two instructions can be used to
add the data stored in the memory address pointed to by IX
to the 8-bit data stored in the memory address pointed to by
IX+2. The result is stored in register A.

LD A, (IX)
ADD A, (IX+2)

(3) Immediate Addressing

Example : OR @FH. On the right-hand side of the opcode OR,
a hexadecimal number, #FH, is given. It means that
the number OFH is logically ORed with the contents
of register A. Therefore, the data is part of the
instruction which is.stored in memory. The CPU
fetches the data by using the program counter (PC)
as a reference address. The following instructions
are examples of immediate addressing.

LD B,8
ADD A,44H
sus A,0A4H

3. Status Flags

After a logical or arithmetic operation is finished, the
result will be stored in register A and some of the status flags
(Carry, Overflow, Change Sign, Zero Result, Parity) will also be
affected. These status flags will be stored in the flip flops in
the z-88 CPU. These flip flops form a register called the Flag
Register. The data in this register can be moved to memory, like
data in other registers, by specific instructions (PUSH instruction).
Some of the status flags are given below.

(1) Carry Flag

This flag is the carry from highest order bit of the
Accumulator. The carry flag will be set in either a signed or
unsigned addition where the result is larger than an 8-bit
munber. This flag is also set if a borrow is generated during
a subtraction instruction. The carry flag can be used as

a condition for jump, call, or return instructions. The carry
flag also serves as an important linkage in multi-byte arith-
metic operations. Three 8-bit data can be connected as a
24-bit data by using carry flag and four 8-bit data can be
connected as a 32-bit data.

(2

-

Overflow/Parity Flag

When signed two's complement arithmetic operations are
performed, this flag represents overflow. The 2-8¢ overflow
flag indicates that the signed two's complement number in
the accumulator has exceeded the maximum possible (+127) or
is less than minimum possible (-128).

When an arithmetic operation is performed in the z80-CPU,

the number in register A can be assumed to be unsigned data

(@ - 255) or signed data (-128 - +127). Thus, either the

carry flag or the overflow flag can be affected by the arithmetic
operation. The programmer decides which interpretation is
desired. The following arithmetic operations are described

on the right-hand side.

10101190 <- unsigned number 172 or signed number -84
+) 11101000 <- unsigned number 232 or signed number -24
1 <- 10010109 <- unsigned number 148 with carry or signed
number -108 but no overflow
010601010 <- signed or unsigned number 74
+) 01000010 <- signed or unsigned number 66
0 <- 10001100 <= unsigned number 14¢ but no carry, or

(3)

(4)

signed number -116 but overflow has
occurred and the result becomes negative
change sign

For logical operations in the Z80-CPU, this flag is set if the
parity of the 8-bit result in the accumulator is even. This
flag is very useful in checking for parity errors occurring
during data transmission. Since carry and overflow will

never occur in logical operations, the parity and overflow
status can be stored in the same flip flop. This flip flop

is called the P/V flag. By testing this flip flop the
programmer can check overflow after arithmetic operations

and check parity after logical operations.

operations.

Zero Flag

If register A is zero after a logical or aritnmetic

operation, this status-will be registered in a flip flop
called zero flag. The zero flag can be used as a condition for
branch instructions. It is very useful in program looping.

Sign Flag

If the leftmost bit (bit 7) of register A is 1 after a
logical or arithmetic operation, the number in register A is
interpreted as a negative number. The sign flag is then set
to 1. This flag will be ignored if the programmer has
assigned the data as unsigned numbers.

e other flags designed for BCD arithmetic are not i@portant
= :2: the proqrgmmer. The bit positions of the flags discussed

above are shown below:

Ll T [Tenl [<]
) |

Sign Zero Parity Ccarry
or Overflow

In microcomputers, it is usual to represent the contents

of the flag register by two hexadecimal digits. The reader
reader has to express this two-digit data with an 8-bit binary
number. By referring to the bit positions in the flag register,
the reader can obtain the status of the flag. For instance,
if the flag register is 3CH, then the sign is positive, the
value is non-zero, the parity is even or there is overflow

has occurred but there is no carry. To know which flags will
be affected by an instruction, the reader has to refer to

the assembly language manual. Not all instructions will affect
the status flags.

II. Example of Experiments

1. The following program can be used to add the contents of
register D and register E together. The result will be
stored in the register pair HL. Load the program into MPF-
IP and then execute it. Record the result.

ORG @FB@PH ; Starting Address <~ @FB@OH
LD A,E ; A<= E
ADD A,D ;i A<-A+D
LD L,A ; L <= A
LD A,0 ; A<-0
ADC A,0 i A<- A+ 0 + Carry
LD H,A ; H<- A
RST 38H ; Return to Monitor
Preset Value Result of Program Execution
Register Register Flag
D E HL Sign Zero P/V Carry
SAH AG6H
46H 77H

2.

The following program can be used to add the 16-bit data in memory
addresses FAGOH - FAQlH to the 16-bit value in the register pair
DE. The result will be stored in the register pair HL. Load the
program into MPF-IP and execute it. Discuss the result obtained.

Preset values of memory: (FA@1lH) = + (FAQOH) =
Preset value of register DE pair = y

ORG OF800H ; Starting address <- @F8@@H

LD A, (OFAQQOH) ; A <~ (FAQOH)

ADD A,E ;i A<- A+ E

LD L,A ;i L <- A

LD A, (OFAQ1H) ; A <= (FA@1H)

ADC A,D ;i A<~ A+ D+ Carry

LD H,A ; H<- A

RST 38H ; Return to monitor.
Result:

Preset values of memory: (FA@1lH) (FAQQH) =
Preset value of register DE pair
result HL
Carry
Zero
Ooverflow
Sign

S s s s s s

l

ll

Revise the above program for a subtraction operation.

The following program can be used to -add the 32-bit data in
memory addresses @FA@PH - @FAO3H to the 32-bit data in memory
addresses FAPG4H - PFAP7H. The result will be stored in memory
addresses @FA@8H -~ OFA@BH. The higher-order byte is stored in a
higher address (This is conventional in microcomputer programming)

ORG OFB@POH
LD B,4
LD IX,0FAQBQH
AND A

LooP LD A, (IX)
ADC A, (IX+4)
LD (IX+8),A
INC IX
DEC B
Jp NZ,LOOP
RST 38H

Result of program testing:
Preset memory contents: (@FAQ3H -~ PFAQQH) =
(@FAPTH - FAG4H) =
results of program execution: (@FA@GBH < QFA@S8H) =
Flag Register =
If the instruction ADC A, (IX+4) is replaced by SBC A, (IX+4),
then the above program can be used for a subtraction operation.
If the instruction DAA is inserted immediately after the ADC or

SBC instruction, then the program becomes a program for decimal
addition or subtraction. Load the revised program to MPF-IP and

test it.

1"

Experiment 3
Binary Addition and Subtraction

Purposes:

1. To understand how an addition or subtraction operation is
performed on a microcomputer.

2. To familiarize the reader with software programming
techniques.

Time Required: 4 hours
I. Theoretical Background:

1. In this experiment, we only discuss unsigned binary integer
addition and subtraction. For a N-bit binary number, its range
is < 0,2 =1 >. For instance, if N = 8, the range is < 8,255 >;
if N = 16, the range is < #,65535 >. If the range of the numbers
are expressed by hexadecimal digits, the ranges are < @,FFH >
and < ¢,FFFFH >, respectively. If the sum of an addition
operation is larger than the maximum value that can be
represented by N bits, then carry is generated and the carry
flag is set. In the subtraction operation, if the subtrahend is
more than the minuend, a borrow is generated and the carry flag
is set in the high order byte. The set carry bit indicates an
incorrect result.

Example 3-1:
Single byte addition and subtraction.
Addition: 7FH + ADH = 12CH

¢1111111 -> 7FH
+) 101611081 ~> ADH

100101186 -> 12CH

Carry

Subtraction: 7FH - ADH Subtraction: ADH - 7FH = 2EH

16101101
-) 81111111

000101110

91111111
-) 10101101

111010010

12

Borrow Borrow
The answer is incorrect The answer is correct
(cYy = 1) (CcY =0)
Example 3-2
Threeabyte addition and subtraction
Addition: 6A7CBDH + 4B65ACH = BSE269H

6A 7C BD
4B 65 AC

+ [0 + + <- carry
[e]Bs (o] E2 69
Carry Carry Carry
Subtraction: 854372H - 69ACBFH =
85 43 72
- 69 - AC - BF

<- Borrow

Borrow Borrow Borrow

The borrow of the highest-order byte is @, thus the answer is
correct. In multi-byte subtraction, the correctness of the result
depends upon the borrow of the highest-order byte. If the borrow
is 1, then the result is incorrect.

2. Order of data stored in memory:
The conventional way of storing multi-byte data 1n meméry is:
the lowest order byte is stored in the lowest address and the
highest order byte is stored in the highest address. The address
of the multi-byte data is usually expressed by its lowest address.
For beginning atstance, the number 7325H is stored beginning at
memory address A in the following way:

address A <~ low-order byte

A + 1 |73 <- high-order byte

13

If the starting address of 4 three<byte numbers stored in memory
is A, the data and their addresses can be shown as follows :

} 987C56H

AD6943H

Address A

2501BCH

I
j

A+ 12

>
+
(=)
| [BEEsERERERs
) L (SIS (- I [V,] [(@] (e} ¥o] (W] L. -] (@]

3. Design of Addition/Subtraction Programs:

The data used in addition/subtraction operation are stored in
memory according to the conventional method given above. The
starting address of the augend/minuend is stored in index
register IX. The starting address of addend/subtrahend is
stored in index register IY. The byte«~number of the data is
stored in register B. First, clear CY and load the augend/
minuend into the accumulator. Then, use the indexed addressing
mode instruction ADC (SBC) to proceed with the addition/
subtraction operation. The result is stored in the original
address of the augend/minuend. Increment the index registers
and compare register B with zero. Repéat the load augend, add,
store increment cycle until the B register equals zero. Finally,
test the carry flag to check if the result is correct. The
only difference between the addition program and subtraction
program is that the instruction ADC is used for addition
operation and the instruction SBC is used for subtraction op-
eration. The flowcharts and programs are given below for com=~
parison:

14

Addition: Subtraction:

(Start)
Clear Carry Clear Carry

Load Byte-number Load Byte-number
Into Register B Into Register B

A<-A+ (1Y) +CY

ADC A<=A=~(1Y)-CY SBC
Instruction Instruction

(IX) <+ A ' IX) <« A
IX <= IX + 1 IX <= IX + 1
IY <- IY + 1 IY <~ IY + 1

The following block diagram is given to demonstrate data
transfer in an addition operation.

15

Starting address
of augend
LD A,(IX)
[BD] A « BD| <= (IX)

]
ADC (1Y)
Instruction

+ [o] o

" —————————

CY => 1 69 A

7c

After executing the instruction
LD (IX), A, the contents of A
are stored in (IX).

69 <= (IX)
c
6A

Starting address
of the addend

<= (1Y)

AC <= (IY)

Instruction INC IX increases the value of IX by one.

In the comment field the incrementation

of IX can be shown as IX IX + 1

INC IY leads to IY <= IY + 1
In each of frames showing the results of an instruction
step the current value pointed to by the index registers
are indicated by

index register

16

(69 |
/ <= (IX)
7C A

[6A]
ADC 65 (1Y)
Instruction
+ 1 (o34 [AC |
--------------- - [65] <~ (1Y)
cYy -> 8 E3 A (4B |
After the instruction LD (IX), A
is executed, the memory becomes
L
69 CY from last
E3 <~ (IX) instruction ADC
6A
AC
65 <=~ (1Y)
[4B

When B = @, the program execution is completed
and the memory becomes

169 |
CY # BS5 A [E3]
[BS |
<= (IX)
x
48 |
[]
<= (1Y)

17

II.

The addition program is given below. By replacing the instruction
ADC A, (IY) by SBC A, (IY), the addition pProgram becomes a
subtraction program.

1., ®*** MPF-IP EXAMPLE PROGRAM ###
2. 3-BYTE ADDITION (UNSIGNED INTEGER)
3. ENTRY ; AUGEND ADDRESS IN IX,

4. ADDEND ADDRESS IN IY.

2. EXIT : SUM IN AUGEND ADDRESS

7. ADD3 : XOR A ; CLEAR CARRY FLAG
8. LD B, 3 ; BYTE NUMBER IN B
9. ADDLP : LD A, (IX)
10. ADC A, (1Y)
11. LD (IX), A
12. INC IX

13. INC 1Y
14. DJNE ADDLP
15. RET

4. Programming Technique:

From the above examples (3-1 and 3~2), we can see that the
multibyte addition/subtraction operation can be accomplished by
repeating the single-byte addition/subtraction operation, that
is, by the loop operation of single-byte addition/subtraction.
In the above program, register B is used as a loop counter. If the
byte-number is 4, then 4 is loaded into B initially. Register B
is decremented by 1 after each loop operation. The loop ends
when B = @. The instruction DINZ is used for conditional jump.
When B = @, the program no longer executes the jump operation.
Since ADC and SBC instructions are used in the programs, the CY
is included in each addition/subtraction operation. Therefore,
before the first byte addition/subtraction operation, the carry
flag must be cleared (instruction XOR A). The index registers IX
and 1Y are used as address pointers. By incrementing IX and 1Y,
the CPU can access multibyte values stored in memory.

Student Exercises:

1.

2.

Load the above addition program into MPF-IP and store it on
magnetic tape.

Replace the last instruction RET in the program by RST 38H.
Load the following data into memory. The starting addresses
of augend and addend are assigned as F98#H and FABOH,
respectively.Execute the program and record the result in
the following table.

18

Augend Addend Answer Check
793865H ABCEDFH CcY =
009543H AB1236H cYy =
954717H 003390H cY =

3. Replace the ADC instruction by the SBC instruction. Assign the
starting addresses of minuend and subtrahend as F900H and FA@@H,
respectively. Execute the program and record the results

obtained.
Minuend Subtrahend Answer Check
683147H 336708H
5935ABH 5877FFH
049677H F65B79H

4. Express the data in the above two tables as five-<byte data.
Change the byte-counter to the proper value and execute the
addition/subtraction program.

5. Write a program to add the 7-byte data in memory addresses

FAPOH -~ FAQG6H to the 7-byte

- F986H and

subtract

the 7-byte

addresses F94PH - F946H from the sum. The f

be stored in memory with the

Experiment 3-1:

data in memory addresses F900H

data in memory
inal result must

starting address F900H.

The carry/borrow flag is used to indicate whether a carry/borrow
is generated during an arithmetic or logical operation. If a carry/borrow
is generated, then the flag is set to 1. Otherwise, the flag is zero. The
carry flag is represented by bit @ of the flag register.

et LTI T

19

|‘——(:arry/Borrow

In other words, the contents ot the F register will be an even
number if a carry/borrow is generated during the arithmetic or logical
operation. If register F is an odd number, then no carry/borrow has
been generated. Load the following program into MPF-IP. Execute every
instruction by using the Single Instruction method. Observe the variations
of register F and record the results in the table.

Address Machine Assembly

Language Language
FBOOH AF 1 XOR A A,CY <-- @
FBO1lH 3E7F 2 LD A,7FH A <-- 7FH
FBO3H C6AD 3 ADD 7,ADH CY,A <=- A + ADH
FBOASH C623 4 ADD A,23H CY,A <-- A + 23H
FBA7H D613 5 SUB A,13H CY,A <-- A - 13H
FBO9H D6B3 6 SUB A,B3H CY,A <=- A - B3H
FBOBH D615 7 SUB A,15H CY,A <-- A ~ 15H
FBODH AF 8 XOR A A,CY <K-- 8
FBOEH 3E7F 9 LD A,7FH A <-- T7FH
FB10H CEAD 10 ADC A,ADH CY,A <-- A + A DH + CY
FB12H CE23 11 ADC A,23H CY,A <-- A + 23H + CY
FB14H DE13 12 SBC A,13H CY,A <-— A - 13H - CY
FB16H DEB3 13 SBC A,B3H CY,A <-- A - B3H - CY
FBFBH DE1S 14 SBC A,15H CY,A <-- A - 15H - CY
FB1AH 76 15 HALT

INSTRUCTION

BEFORE EXECUTION

AFTER EXECUTION

(3) (4) (5) (6) (7)

A A A A A
[171 11 11
+AD +23 -13 -B3 -15
Oom O g OoOd O
CcY A cY A cY A cY A cY A

(10) (11) (12) (13) (14)

cy cy A A A
A A
o [13 “B3 -15
+AD +23 - cy - cy - ey
OO OO oo OoCOgad oo
cYy A cY A cY A cY a cY A

21

Experiment 3-2:

Referring to the operation for of 3-byte addition in example 3-2,
write a basic addition program using only three kinds of instructions:
XOR A, LD A,(nn) and ADD A, (nn). Assume that the memory addresses of
the addend, augend and sum are assigned as follows:

FB2@H FB23H FB26H
FB21H FB24H FB27H
FB22H FB25H FB28H
/'\ '\
Augend Addend Sum

Explanation: In the above example, we see the following rules of addition:

(1) The addition operation moves from the low=-order byte to the
high-order byte, the carry generated in the low-order byte
addition is added to the next higher order byte.

(2) The addition operation is executed with the aid of the
accumulator. Its result is also stored in the accumulator. Thus
to add two bytes together, one byte must be loaded into the
accumulator first (using the LD A,(nn;) instruction). The other
byte is then added to the accumulator (using the ADD A, (nnj)
instruction or the ADC A, (nnj) instruction). The final result
is stored in an assigned memory address (using the LD(nn3),A
instruction).

22

Experiment 4

Branch Instructions and Program Loops

Purposes:

1. To familiarize the reader with the applications of conditional
and unconditional branch instructions. .
2. To familiarize the reader with the technique of designing

program loops. . . .
3. To practise using status flags in decision-making.

Time Required: 4 hours

I. Theoretical Background:

1.

N
.

Program Counter:

The program counter (PC) is an important 16-bit register in

the CPU. When the voltage level of the RESET pin (pin 26) of the
CPU drops to @ and then rises to 1 (by pressing the RS key), the
PC will be cleared to @#60PH. The program execution is then
started from address @@8PH according to the clock pulses supplied
by the system hardware. Once the CPU has fetched one byte of each
instruction from memory, the PC will be incremented by one
automatically. (The internal control circuit in the CPU
determines how many bytes are contained in the instruction after
the CPU has fetched the first byte of the instruction. The
instruction will be executed only when the PC has been
incremented by the number of bytes in the instruction). Usually,
the program is fetched from the memory instruction by the instruc«
tion for execution, starting from the low memory address.

Branch Instructions:

At any address, the PC can be changed to another address if the
programmer doesn't want the program executio to continue se-
quentially (For instance, when there is no memory beyond that
address or,the program is not stored in that area). The program
then jumps to another address and continue its execution. For
example, the following assembly language means that the PC will
be changed to 1828BH after this instruction has been executed,
and the program execution continues from address 1828H.

LD PC, 1828H (This instruction is illegal in 280 assembly
language.)

23

Actually, ip assembly language, JP (Jump) is used to indicate
the change in sequence of program execution. The instruction
has the same meaning as LD PC, F@28H

JP F@28H
3. Conditional Branch Instructions:

A conditional branch instruction performs the jump operation if
some specified conditions are met. These conditions are all
dependent on the data in the flag register. This function makes
the microcomputer capable of responding to various external
conditions. It is also an indispensable tool for designing
program loops. The actions of the following instructions are
described in the comments to the right of the instruction:

CP 108H ; Compare the accumulator with 18H and
set the proper flag.

JP z, FA28H ; If the zero flag is set, i.e. A = 10H,
then jump to address F028H and continue
the program execution.

Jp Cc, 245AH ; If the carry flag is set, i.e. A < 10H,
then jump to 245AH to execute other
program.

Otherwise, i.e. A > 18, continue the
program execution.

ADD A,B

~

The condition of a conditional branch instruction is written after
JP:

(1) Jp C, XXXX ; If there is a carry, or carry flag = 1,
then jump to XXXX.

If there is no carry, or carry flag = @
then jump to XXXX.

(2) JP NC, XXXX

~

If zero flag = 1, or the result of previous

(3) JP Z, XXXX
operation is zero, then jump to XXXX.

~

(4) JP NZ, XXXX If zero flag = @, then jump to XXXX.

~

1f parity flag = 1 (even parity), or there
and an overflow in the previous arithmetic
operation, then jump to XXXX.

(5) Jp PE, XXXX

~

If P/V flag = @ (odd parity or no overflow)

(6) JP PO, XXXX
then jump to XXXX.

~

24

(7) JP P, XXXX ; If sign flag = @ (the sigp 9£ result qf
previous operation is positive) then jump
to XXXX.

(8) JP M, XXXX ; If sign flag = 1 (negative) then jump to
XXXX.

Jump Relative:

To reduce the memory space occupied by the program and also
reduce the cost of the microcomputer system, the 280
microcompﬁter can use relative addresses to sPecify the
displacement of a program jump. Since most displacements

in a jump are within the rage between f127.and -128, a one

byte number can be used to indicate this displacement. One byte
of memory is saved for each jump operation compared wlth.the
two-byte absolute address in JP instructions. The operations of
the following instructions are described in the commands to the
right of the instruction.

JR 10H ; Jump forward 10H (16) locations from the
present program counter (the address of the
next instruction). Actually, the address
of the next instruction to be executed is
obtained by adding 18H to the present PC.

JR C,FOH ; If carrry flag = 1, then jump backward 10H
(16) locations from the present program
counter. Since the leftmost bit of FOH
is 1, it is recognized as a negative
number (its 2's complement is 10H).

JR NC,7FH ; If carry flag = @, than jump forward 127
locations (maximum value)

JR Z,80H ; If zero flag = 1, i.e. the result of the
previous operation is zero, then jump
backward 128 locations. 80H (-128) is
the minimum negative number that can be
used in a relative address.

From the above examples, we can see that a positive relative
address means jumping forward. The largest displacement then

is 7FH (+127). A negative relative address means jumping backward.
Its largest displacement is 8PH («128). The displacement is

always measured from the address of the next instruction's op code.
Relative jumps can be unconditional or conditional. The

conditional jump depends on the status of the carry or zero flag.
In the Z88 system, the data in the sign or P/V flag cannot be

used as the condition of a relative jump.

25

S.

Program Loop:

One of the important advantages of a computer is that it can
repeat the steps in a repetitive task as many times as is
necessary to complete the task. This is accomplished by

using a program loop. Looping is a very powerful tool in
program design. A basic program loop must contain the following:

(1) A loopss counter preset with the number of loops
to be executed. Usually, a CPU register is used as
a loop counter. Of course, memory can also be used
as a counter.

(2) The loop counter is decremented by 1 after one cycle of the
loop has been executed. After each cycle the value of the
loop counter must be checked. 1If the counter is not @, then
the loop repeats until the loop counter equals to @.

The following program can be used to add the 8-bit data in memory
addresses 1900H - 190FH and store the result in the DE
register pair. This is a typical application of a program loop.

LD C,10H ; Use register C as the loop counter. Since
sixteen bytes data are to be added together,
1@H is preset in C.

XOR A ; Clear the accumulator

LD HL,19060H ; Use the HL register pair as the address pointer.
The contents of the memory pointed to by HL
will be added to register A.
The first address is 1900H.
LD D,A Register D is used to store the carry
generated during the addition operation.
Clear Register D.

~

XX ADD A, (HL) ; Add the contents of the memory address pointed
to by HL to Register A. This instruction will
be repeated 16 times. XX is assigned
as the label of this instruction's address.

Increment HL by 1. The new HL points to the
next byte in data memory to be added to
Register A.

INC HL

~

JR NC,YY ; If no carry is generated, jump to address
YY to continue program execution.

If a carry is generated, add this carry to
Register D.

INC D

~

26

YY DEC C ; Decrement register C by 1.

JR NZ,XX ; If the result is not zero (zero flag = 9),
the program loop has not finished. Jump to
XX to repeat the loop.

LD E,A ; If zero flag = 1, then all data have been
added together. Load A into E, the answer
will be stored in the DE register pair.

END

There are various methods of designing a program loop. Try to
design the program loops described in the following illustrations.

II. Example Experiments:

1. A program loop with a loop number of less than 256 : If the loop
number is less than 256, register B is recommended as the loop
counter. At the end of the loop, the DINZ instruction can be used
to decrement register B. If the result is not zero, jump to the
assigned location using the relative jump method to continue the
program execution. Try to analyze the following program and
verify its function by loading it into the MPF-IP and executing it.

ORG PFOAOH
LD HL, @FAGOH
LD B,20H
LOOP LD (HL) ,A
I INC HL
DJNZ LOOP
RST 38H

Experimental result:

(1) Preset register A to @ and then execute the above program
Results:
Contents of memory addresses F9@@H — F91FH:
Contents of memory address F920H:

(2) Preset register A to S55H and execute the above program,
Results:

(3) Preset register A to 64H and replace the second instruction
LD B,2@H by the instruction LD B,d . Execute the program again.
Results:
Contents of memory addresses F9@0H - F9FFH:

27

Discussion:

2.

(1)

(2)

3.

Nested loops:

In a more complicated program, a loop can be totally nested or
embedded inside another loop. The following program can be used
to divide the 256 bytes of data stored in memory into 19 groups.
The starting address of the memory is F988H. Put the contents of
each group of data in the form of a hexadecimal number:

P.....(1lst set), l.....(2nd set), 2.....(3rd set),eeeeeFeu.on.
(19th set).

LD HL,@F9FFH
LD C,dFH

———> LOOP2 LD B,10H

———>LOOP1 LD (HL) ,C
DEC HL
Small loop DJNZ LooP1

DEC C

Large loop ~JP NZ,LOOP2
RST 38H

Translate the above program into machine language and then load
it into the MPF-IP. Execute the program.
Results:

Revise the above program such that the 19 bytes of the first
group are all "F", and the 16 bytes of the last group are all

A program loop with loop number larger than 256: If the loop

number is larger than 256, a 19-bit register can be used as the
loop counter. But, in the Z8¢ system, incrementing or decrementing

a 16-bit register can not affect the status flag. Thus, some auxili-
ary instruction is used to determine whether the loop counter is
zero. The following program is supposed to be able to set all

data in RAM F980QH - FAFFH to AAH. Try to find the errors in this
program and correct them. Load the correct program into the MPF-IP
and record the result of the program execution.

28

ORG GFeooH

LD BC,0#180H

LD HL,PF980H
LooP LD (HL) ,8AAH

INC HL

DEC BC

JR NZ,LOOP

HALT

4. A program ‘lgop without a down counter : A program loop need not
use a down counter. The function of the down counter can be
replacéd by using an up counter or using the method of address
comparision or data comparison. Study the method used in the
following program loops. Load the programs into MPF-IP and execute
them.

(1) Move the data string in the memory (RAM) section with
starting address FA@@H to the memory (RAM) section with
starting address F988H. The movement will be terminated when
data AFFH is found.

ORG PFAQOH
LD HL,FABQH
LD DE,PF900H
LOOP b A, (HL)
LD (DE) ,A
cp BFFH
JR 2 ,EXIT
INC HL
INC DE
JR LOOP
EXIT RST 38H

(2) Replace all the data stored in the memory section starting
from the address pointed to by HL to the address pointed to
by DE by their corresponding 2's complement. In testing
the program, the values of HL and DE must be preset first.
The value of HL must be larger than that of DE.

ORG OF@@0oH
LooP LD A, (HL)

NEG

LD (HL) ,A

INC HL

AND A

SBC HL,DE

ADD HL,DE

JR NZ,LOOP

29

Purposes:

Experiment 5
Stack and Subroutines

1. To understand the meaning and applications of the stack.
2. To understand the designing techniques and applications of subroutines.

Fime Required: 4 hours

[. Theoretical Background

1.

Stack: In program design, a stack is recognized as a memory
section which has only one port for input and output. Data are
written in or retreived from stack via this port. The first

data placed in stack is said to be at the bottom of stack.

The data most recently placed in stack is said to be at the

top of stack. Thus, a stack is also called a last-in

first-out memory. A stack can be constructed by hardware shift
registers or general RAMs. In the 288 microcomputer system,

the programmer can assign a region of RAM as the stack. To define
a stack at the top of RAM, the highest address of RAM is incre-
mented by 1 and then loaded into the stack pointer (SP) in the
CPU. The following program and diagrams illustrate the operation
of stack.

Instruction Instruction Comment

Number

(1) LD SP, @FEAQH ; Stack pointer is set to @FEA@H, i.e. the
RAM section with address less than or
equal to FEAPH is assigned as stack.

(2) DEC SP ; Decrement SP by 1. Stack pointer is at
FE9FH, i.e. at the bottom of stack.
(3) LD (sP),H ; Load the contents of register H into

memory (RAM) address FE9FH.

Decrement SP by 1 again.

Place the contents of L at the top of
stack (i.e. above H).

(4) DEC sP
(5) LD (sP), L

(6) DEC sp
(7) LD (sp),A Place the contents of A at the top of

stack (i.e. above L).

~

(8) DEC sp
(9) LD (SP), F ; Place the contents of F at the top of
stack (i.e. above A).

30

;. Pop one byte of data from the top
(19) LD C, (SP) ofpstack an move it to register C.
(11) INC SP ; Increment SP by 1. SP is moved towards
the top of the stack.
pop data from the top of stack.
Increment SP by 1 again.
pop data from the top of stack and
move it to register E.

(12) LD B,(SP)
(13) INC SP
(14) LD E,(SP)

. s we

(15) 1INC SP
(16) LD D, (SP) ; Pop data from the top of §tack anq
move it to register D. This data is the

first one that is stored in stack.

(17) INC SP ; SP is at the initial value.
RAM RAM
SP assigned by F SP assigngd by .
the 9th instruction -> | F the 10th instruction ->
A SP assigned by
A the 12th instruction ->
L SP assigned by
L the 14th instruction =>
SP assigned by H SP assigned by
the 3rd instruction => |H the 16th instruction ->
Initial value of SP SP assigned by
FEAGH -> the 17th instruction ->
Push data onto the stack Pop data from the stack

From the above illustrations of stack operation, we can see that
data can be stored in RAM by using SP as the pointer. SP is
decremented by 1 whenever one-byte of data is stored in and the
stack area becomes larger. The SP will be incremented by 1 whenever
one-byte data is retrieved from the stack area and the stack area
becomes smaller. The process of decrementing SP (pushing data onto
stack) or incrementing SP (popping data out of stack) can be
accomplished automatically by special hardware design. A stack can
also be used to store a 16-bit address (or data). In the 288/8085
system, there are instructions to push a 16-bit register pair onto
stack and pop a 16-bit data out of stack. During each operation, SP
is decremented or incremented by 2. The following program is
equivalent in function to that of the program given above.

31

LD SP, OFEA@H Same as lst instruction.

PUSH HL ; Same as no. (2)(3)(4)(5) instructions.
PUSH AF ; Same as no. (6)(7)(8)(9) instructions.
POP BC ; Same as no. (10)(11)(12)(13) instructions.
POP DE ; Same as no. (14) (15)(16) (17) instructions.

Instructions PUSH and POP can be used to temporily store data
in Iegisters and also used to transfer register data. An example
is given below.

PUSH BC

POP IX ; Move the 16-bit data in BC to IX

PUSH HL

AND A

SBC HL,DE ; Compare HL with DE to generate status
; flags. The value of HL is kept
; unchanged.

POP HL

It is a very important that the number of PUSH instructions
be equal to the number of POP instructions in the stack operation.

2. Subroutine:

Programs for arithmetic (addition, subtraction, multiplication or
division), keyboard and display control, etc are often used as part
of a large program in practical applications. If the programmer
rewrites these small programs everytime he needs them, the whole
program would be very tedious to write. To save memory space for
the program and reduce errors, subroutines are often used in a large
program. Instructions CALL and RET are used to manipulate the
subroutines. The subroutines can be executed unconditionally or
according to the conditions of flags. The instruction CALL in the
main program is used to call the subroutine. Its function consists
of two operations which are illustrated below.

CALL @FA38H ; Call the subroutine stored in address @FA38H.

i

Equivalent to

PUSH PC ; Push the current program counter onto
stack.
Jp @FA38H ; Jump to address FA38H and continue the

program execution.

RET instruction does'nt need an operand (1 byte instruction), it
is the same as 'POP PC' instruction.

32

RET ; Return to original program and continue
to execute.

Retrieve 16-bit data instack and load into
PC, then ececute program according PC
; contents.

Equivalent to
POP PC

calling a subroutine is an important step in a program.
Subroutines in a program can be in a nested f?rm tpat.ls a sub-
routine can be another subroutine. The relationship is shown

below:

Main Program

Subroutine 1
CALL
1
CALL
2
CALL Subroutine 2
1
RET
CALL RET
2
N

Usually, subroutines are written by a specialist. The user only
has to understand its calling ;rocedure . If the subroutine is
written by the user himself, the following items must be considered
in the design:
(1) An easily-remembered name must be chosen for the subroutine.
(2) How to get the data required in the subroutine before
executing the subroutine.
(3) How to express the result after executing the subroutine.
(4) Which register will be changed after executing the subroutine.
(5) How much memory will be occupied by the subroutine and how
much time is needed for the CPU to execute the subroutine.

The following must also be considered when a subroutine is
called by the main program:

33

LoC

FBO@
FBO1
FBO2
FBO3
FBO4
FBO7
FBP8
FBOO9
FBOB
FB@D

Reglsters that should

not be changed by the execution of the

subroutine must be pushed onto stack before calling the

subroutine.
(2)
be transmitted by the

The
It can

following listing is
be used for multi-byt

MADD

O0BJ CODE STMT SOURCE
l;tt'M
2 ; ENTRY
3
4 ;
5 ;'EXIT
6 ; REG.
7 ; MEMOR
8

AF 9 MADD

1A 18 MADD1

86 11

27 12

DD77080 13

13 14

23 15

DpD23 16

10F4 17

c9 18

Two 4-byte BCD data are stor
addresses at PFA@@H and PFA4
together and store the resul

How the results obtained from the subroutine execution will

main routine (the calling routine).

a sample subroutine named MADD.
e BCD addition.

LISTING
STATEMENT
ULTIBYTE BCD ADDITION ROUTINE
: HL POINTS TI LOW ORDER BYTE
DE POINTS TO LOW ORDER BYTE
B = BYTE NUMBER, 1 BYTE = 2
: IX POINTS TO LOW ORDER BYTE
CHANGE : AF,B,HL,DE,IX
Y USED : 15 BYTES

PAGE 1
ASM 3.9
*kn

OF AUGEND
OF ADDEND
BCD DIGIT
OF RESULT

XOR A ; CLEAR CARRY FLAG
LD A, (DE)

ADD A, (HL)

DAA

LD (IX),A

INC DE

INC HL

INC IX

DJNZ MADD1

RET

ed in the memory with starting
@H, respectively. To add the BCD data
t in RAM address FA@8H, subroutine

MADD is called by the following procedure:

LD B, 4
LD HL, BFAGOH
LD DE, BFA4QH
LD IX, BFABSH
CALL MADD

Set Byte Number = 4 .

Hl points to the address of augend.
DE points to the address of addend.
IX points to the address of sum.

~o we we s

34

II. Example Experiment:

(1)

(2)

(3)

(4)

(5)

(6)

Using the instructions for stack operation, write a routine to
move the data in HL, DE and BC to HL', BC' and DE', .
respectively. Load the program into MPF-IP and execute it.

In the following program, a small loop is embedded in a large
loop. The function of this program is to shift all the 8-bit
the data in bytes in the address FAllH - FA20H left four bits.
Use register B as the loop counter for both snall and large
loops. Load the program into MPF-IP and execute it. Discuss
the reason why register B can be used as the counter for both

loops.

F800 1 ORG @F8G@H
F800 0621 2 LD B,21H
F882 21901A 3 LD HL,@FA4PH
F805 cs 4 LOOP1 PUSH BC
F806 7E 5 LD A, (HL)
F807 2604 6 LD B,4

F809 87 7 LOOP2 ADD A,A
F8@A 19FD 8 DJNZ LOOP2
F86C 77 9 LD (HL),A
F80D 23 10 INC HL

F8OE cl 11 POP BC

F8@F 10F4 12 DJNZ LOOP1
F811 76 13 HALT

By calling the subroutine given in part I (multi-byte BCD
addition routine), write a program to add two 8-byte data
stored in memory FA@@H and FA@8H. The result must be stored in
the 8-byte memory starting at @FA40@H.

Revise the above program for BCD subtraction or multi-byte
binary addition/subtraction. Test the program and record the
method of revision used.

Write a subroutine to change the 16-bit data in HL to its
2's complement. Write a main program to change the data in
IX and 1Y to their 2's complements. Load the program into
MPF-IP and test it.

By using the above routine for complementing the HL register

pair, write a program to subtract DE from the data in IY and
store the result in IY.

35

Purposes:

1.
2.

Experiment 6
Rotate, Shift Instructions, and
Multiplication Routines

To understand the use of Rotate and Shift instructions
To understand the designing techniques and uses of a binary
multiplication subroutine.

Time Required: 4 - 8 hours

I. Theoretical Background:

1.

The 9-bit data formed by the carry flag and 8-bit data in a
register or memory can be shifted one bit left or right by
ROTATE or SHIFT instructions. The ROTATE and SHIFT instructions
are mainly used for multiplication and division. We multiply

a number by rotating and shifting left the bits that constitute
a number, while a division operation is done by rotating or
shifting right the bits that constitute a number. There are
many ways to rotate or shift the bits of a number. So, there
are 13 different types of ROTATE and SHIFT instructions. Please
refer to the MPF-IP User's Manual, Appendix C. The mnemonic
codes of these instructions are described below.

(1) If the leftmost character of an instruction is "R", it is a
"ROTATE" instruction. Such instructions can be used to rotate
the 9-bit data (formed by 8-bit data and carry flag) left or
right one bit, e.g. RLCA, RL, RRA, etc.

I1f the leftmost character is "S", then it is a "SHIFT"
instruction. All the 9-bits of the data are shifted left or
right by one bit. The bit shifted out from one side will

not be moved in from other side. Examples of such instructions
are SAL and SRL.

(2) If the second character from the left is "R", it means "shift
right" or "rotate right". Instructions RR, SRL, RRCA, etc.

are examples. i
I1f the second character in the left is "L", it means "shift
left" or "rotate left". Instructions RL, SLA, RLCA, etc. are

the examples.

(3) The meaning of the third character is more complicated, but
it can be summarized as follows:

36

(a) In ROTATE instructions:
The third character "C" represents the circular rotation

of 8-bit data, carry flag is not included. The third
character (or the fourth character) "A"™ means that this
instruction is operated with the accumulator.
Instructions RLA, RRA, RLCA and RRCA are examples.

The third character "D" indicates the shift operation

on decimal or hexadecimal numbers, for example, RLD and
RRD. These instructions are designed to rotate the
memory pointed to by HL left or right one digit (4 bits)
The digit entering from the left or right direction comes
from bit # - bit 3 of the accumulator. The digit moving
out from the other side is sent to bit @ - bit 3 of the

accumulator.

(b) In SHIFT instructions:
The third character "A" indicates "Arithmetic Shift".
Binary data shifted left means multiplying it by 2 .
Binary data shifted right means dividing it by 2 . Two
of these instructions are SLA and SRA. Because bit 7 is
assigned as "sign bit" and the sign of the data is not
changed by these operations, the leftmost bit (bit 7)
must be kept unchanged.
The third character "L" means "logical shift".
Instruction SRL is an example. In these operations, a
"p" is always moved to bit 7 from the left direction.

2. Binary Multiplication:

The operation of unsigned binary multiplication can be
accomplished by shifting the binary number left or by a program
loop of addition. An example of binary multiplication by
hand-calculation is illustrated below.

0191<——<- Multiplicand -> ——> 91941
X 1811¢—<~ Multiplier ->——>Xx 1011

———————— ————————

2101 p101
0101 0000 partial
0009 8101 product
+) PloL: 9101
2110111 <--- Answer ---> 0110111

37

In the above calculation, one bit of the multiplier is checked.
If that bit is 1, the multiplicand is copied as the partial product.
If that bit is @, 0000 is given instead. The position of the
partial product is arranged such that the least significant bit of
the multiplicand is aligned with the bit of the multiplier being
checked. In this example, multiplicand and multiplier are both 4-bit
data. Thus, it is necessary to repeat the operations of checking,
shifting and addition four times. Similarly, the operations
must be repeated 8 times for 8-bit data multiplication and 16
times for 16-bit data multiplication. In the left-hand side
calculation given above, the bit-checking process starts from
the least significant bit of the multiplier. In the right-hand
side calculation, the bit=checking process starts from the most
significant bit. But the results of the two calculations are
identical. The program of binary multiplication for microcomputers
can be designed by a method similar to the above calculation.

Example: Multiply the 8-bit data in register E by the 8-bit data
in register A. The product is stored in the HL register
pair.

Answer: Specific registers have been assigned to store multiplicand,
multiplier and product according to the characteristics
of the Z8¢ instruction set. Using the calculation algorithm
given in the right-hand side of the above example, the
program is designed as follows.

1. In the above hand calculation, the bit-checking process starts
from the least significant bit. A program loop can be employed
in the example. The multiplier is 8-bits long, thus the loop
number is equal to 8 . In every loop execution, the bit being
checked (in register A) can be shifted into the carry flag by
the RLCA instruction. Then, according to the condition of the
carry flag, we can decide what will (or will not) be done next.

2. If the first bit checked (the leftmost bit) is 1, the partial
result is actually obtained by shifting the multiplicand left
(n=1) bits, where n is the number of bits in the multiplier.
The other partial results are obtained by shifting the partial
products left (n-2) bits, (n-3) bits,......., etc.

In this example, no other registers are required to store the
partial results. gach partial result can be added directly to
the HL register pair.

3. From the above description, we can see that the partial products
must be shifted left (n-1) bits, (n-2) bits, (n-3) bits,...,etc.
Since the bit-checking is also moving left in the process, we
can generate a new intermediate result by immediately adding
each partial product to the previous intermediate result. This
method is more efficent and is used in the following program
flowchart.

38

3. Register Assignments:

| A ,(- Multiplier

1

L](- Answer

5. Program Flowchart :

Set B as the loop counter. For an 8-bit
multiplier, B is set to 8

16-bit addition will be performed.
First clear D.

Set the initial value of answer to @ .

Shift the intermediate result left one
bit. The first shift process is invalid.
Thus the first partial product will be
shifted left n-1 bits after the loop is
executed once.

The leftmost bit of the multiplier is
moved to the carry flag for testing.

If the leftmost bit of the multiplier
is 1, the multiplicand is added to
the intermediate result.

Otherwise, the addition is ignored.

Check if the program loop has been
completed. If it is, stop execution.
Otherwise, repeat the loop operation.

39

MP8 LISTING

LOC OBJCODE STMT SOURCE STATEMENT ASM 3.8

FBO9
FBO2
FBo4
FB@S
FBO6

FBB7

FB@8
FBGA
FBOB

FB@D

0608
1600
62
6A
29
87

3001
19
10F9
Cc9

1;
2:
3
4

***MULTIPLY**#*
ENTRY:
;MULTIPLER IN E

sMULTIPLICAND IN A

5;EXIT:

6 ;PRODUCT IN HL

7;REG CHANGE : B,D,HL

8;MEMORY BYTE : 14

9;EXECUTION TIME :<395 CLOCK / 221.2 uS.
10;

11MP8:

12MULTI LD B,8

13
14
15
16
17

18
19
20
21

;SET BYTE COUNTER=8

LD D,8
LD H,D
LD L,D ;CLEAR D,HL REGISTER
LOOP ADD HL,HL ;SHIFT HL LEFT
RLCA ;ROTATE BIT 7 OF "A" INTO
;CARRY FLAG
JR NC,NADD ;TEST CARRY FLAG
ADD HL,DE ;ADD DE TO HL
NADD DJNZ LOOP ;END?
RET

40

II. Example Experiments:

1.

The following program can be used to shift‘the 32—bi§ data .
stored in the HL and DE register pairs, which are adjacent, right
one bit (or divide the data by 2). Load the program into MPF-IP
and test it. Next, revise the program such that it can be used
to shift the 32-bit data left one bit (or multiply it by 2).

ORG OF800H
SRA H

RR L

RR D

RR E

RST 38H

Write a program to shift the 32-bit data, stored in RAM addresses
FAOOH - FA@3H, left five bits (or multiply it by 2@H). Load the
program into MPF-IP and test it. The starting address of the
program is assigned as FBO@H.

Using the RLD instruction, write a program to shift the BCD data,
stored in RAM addresses FAPOH - FA@3H, left four bits. The
starting address is assigned as F83@H. Load the program into
MPF-IP and test it.

The following program can be used to multiply the 16 bit data
stored in the DE register pair by the contents of register A.
Load the program into MPF-IP and test it. Compare this program
with the program given in Theoretical Background. Discuss the
advantages and disadvantages of this program.

MPY8 LD BC,800H
LD H,C
LD L,C

M1 ADD HL,HL
RLA
JR NC,M2
ADD HL,DE
ADC A,C

M2 DJNE M1
RST 38H

Write a program to multiply the 32-bit data stored in RAM
addresses FAQG@H ~ FA@3H by the 32-bit data stored in RAM
addresses FAG4H - FA@7H. The product must be stored in RAM
addresses FAPBH - FAQFH.

a1

Purposes:

Experiment 7
Binary Division Routine

l. To understand how to write a binary division subroutine for
a microcomputer.

2. To familiarize the reader with the technique of software
programming.

Time Required:

4 - 8 hours

I. Theoretical Background:

1. Binary division by hand-calculation:

The following example will be used to illustrate the detailed
procedure of binary division.
Divide 11101101 by 00018100

(1)

(2)

(3)

Write the dividend on the right-hand side, divisor on the
left-hand side, and put the quotient above the divisor.

<- Quotient

111061101 <- Dividend (237)

00010100 <- Divisor (20)

shift the dividend and the quotient left one bit.

[*] <= Quotient (Answer)

11 <- Dividend
191101 v

00010100 <- Divisor

To compare the dividend and the divisor, place seven zeros
after the divisor in the columns beneath the dividend. It
can then be seen that the dividend is smaller than the
divisor. Therefore put "@" in the position of quotient.

Continue to test if the dividend is less than the divisor
with each shift. If the dividend is still less than the
divisor, then put a "@" in the quotient. Otherwise, put a
"1" in the quotient and the divisor is subtracted from
the dividend. In this example, the dividend and the quo-
tient must be shifted left five bits before a "1" can

be put in the quotient. Thus four "#"s and one "1"

are put in the quotient in the folluwing way.

42

(4)

(5)

(6)

(7)

(8)

00001 <- Quotient (when the dividend
is larger than
11191101 <- Dividend the divisor "1" is

put in the quotient.
00010100 <- Divisor

Subtract the divisor from the dividend.
The difference becomes the dividend.

00001 <- Quotient (Answer)
71001101 <~ Dividend after subtraction

00010100 <- Divisor

The dividend and the quotient are shifted left two bits,
then a "1" is put in the quotient.

0000101 <~ Quotient (Answer)
01001101 <- Dividend

00010100 <- Divisor

Subtract the divisor from the dividend.
The difference becomes the dividend.

9000101 <- Quotient (Answer)
00100101 <~ Dividend after subtraction

00010100 <- Divisor

i

Both dividend and quotient are shifted one bit again. Since
the dividend is not less than the divisor, put "1" in the
quotient.

00001011 <- Quotient (Answer)

20100141 <~ Dividend

20010100 <~ Divisor

Subtract the divisor from the dividend, the remainder is
placed in the position of the dividend.

00001011 <- Quotient (11)
00010001 <- Remainder (17)

00010100 <~ Divisor

i

a3

(9) If the remainder is not zero, the division process can be
continued, but the result will contain fractions.

2. Division Program Design:

For the above algorithm, three memory locations are required to
store the dividend, divisor and quotient.

Example :

Solution:

Write a program to divide the 16-bit data in the DE
register pair by the 16-bit data in the BC register pair.
The result (quotient) must be stored in the HL register
pair and the remainder in the DE register pair.

The register assignment has been given in the problem
description. The HL register pair can be used as the
working register for 16-bit arithmetic subtraction. Shift
the 16-bit data in DE left one bit to the HL register
pair. Compare HL with BC. If HL is not less than BC, then
subtract BC from HL and the carry flag is set to 1
automatically. Otherwise, no subtraction operation is
performed and the carry flag will be @ . Since the
right-most bit of DE is now empty, the carry flag is then
moved to this position.

The flowchart and the assembly language program are given below.

[7 Counter A = 16

L

Subtraction working
register HL = 0

l

[7 CARRY <- ¢

3

L

Connect HL & DE side by side,
then shift left one bit

L

Compare HL with BC. If HL is
larger than BC, then subtract BC
from HL. Otherwise, no subtraction.

L

If the subtraction is performed

then set CARRY equal to 1 . Otherwise
CARRY is equal to @ . Move CARRY into
the right-most bit of DE

~r e

L Store the result

[

45

FBOO
FBO1l
FBO2
FBO3

FBO5S

FBO7
FBO9

FBOB
FB@D
FBOF

FB10
FB11l
FB12

FBl4
FB15
FB17

AF
67
6F
3El10

CB13
CBl12

ED6A

ED42
3001
09

3F
3D
20F1
EB

ED6A
c9

(1)

(2)

1 ; *** MPF-IP EXAMPLE PROGRAM (@8 #**
2 ;16 BIT DIVISION ROUTINE

3 ;ENTRY:DIVIDEND IN 'DE*

4 ; :DIVISOR IN 'BC'

S ;EXIT :RESULT IN ‘HL'

6 ; :REMAINDER IN 'DE’

7 ;REG. CHANG :AF,DE,HL

8

9 DIV16 XOR A ;CLEAR CARRY FLAG

10 LD H,A

11 LD L,A ;HL=0 1y

ig LD A,l6 ;A = 16,LOOP COUNTER

14 DV@ ;HL&DE 4 BYTE ROTATE LEFT 1 BIT

15 RL E ;SHIFT LEFT,STORE PARTIAL RESULT
16 IN BIT 0

17 RL D

18 ADC HL,HL ;ROTATE HL LEFT

19

20 IF HL GREAT THAN BC, SUBTRACT FROM BC
21 SBC HL, BC ;HL = HL - BC

22 JR NC,DV1

23 ADD HL,BC ; IF NEGATIVE,RESTORE HL
24

25 DV1 CCF ; PARTIAL RESULT IN CARRY FLAG
26 DEC A

27 JR NZ,DV@

28

29 EX DE HL

30 ADC HL,HL ;STORE LAST BIT OF RESULT
31 RET

Statement 10 and 11 of the program can be replaced by
instruction LD HL,® . But this instruction occupies 3 bytes
memory and takes 10 clock cycles to execute. Instead, in
this example, LD H,A and LD L,A are used (A is cleared to
zero by statement 9). They occupy 2 bytes of memorv and can
be executed in 8 clock cycles.

Addition and subtraction instructions can be used for "shift
left" or "rotation" operations. In this example, instructions
ADC HL,HL is identical with rotating the 16-bit data in HL
pair left one bit (The bit moved to the carry flag comes from
the leftmost bit of register D). The functions of the .
following instructions are described on the right-hand side.

46

ADD A,A ; Shift register A left one bit;

or multiply A by 2.
ADC A,A ; Rotate A left one bit
ADD HL,HL ; Sshift HL left one bit; or double it.
ADC HL,HL ; Rotate HL left one bit.
ADD IX,IX ; Shift IX left one bit; or double it.
ADD IY,IY ; Shift 1Y left one bit; or double it.

II. Illustrations of Experiments :

1. Load the above program into MPF-IP and then store it on audio
tape.

2. Replace the last instruction (RET) in the above division
subroutine by RST 38H and execute it. Record the obtained results
in the following table.

Dividend Divisor Answer Remainder Check
8686H 0020H
FFFFH P0063H
5A48H 0142H
@H P142H
1234H oH

3. Modify the above program such that the division process can be
continued until a 16-bit fractional quotient is obtained.

4. Using the above program as a subroutine, write a main program
to divide the data in RAM addresses FAPGOH - FA@1H by the data
in RAM addresses FAD4H - FA@SH. The result (quotient) must be
stored in addresses FA@@H - FAQ1lH.

5. Write a program to divide the 4-byte data stored in addresses
FAGOH -~ FA@3H by the 4-byte data stored in the memory address
pointed to by the HL register pair. The result (quotient) must
be in addresses FA@@H - FAB3H. The remainder must be stored
stored in addresses FA@4H - FA@7H.

47

Experiment 8
Binary-to-BCD Conversion Program

Purposes:

1. To understand the programming techniques of binary-to-BCD
conversion and its applications.

2. To understan” the relation between subroutines and the
main program.

3. To familiarize the reader with the technique of program writing.

Time Required: 4 hours
I. Theoretical Background:
1. Methods of binary-to-~BCD conversion:

There are several methods for binary-to-BCD conversion. The
method given below will be very neat because it uses the DAA
instruction. Two memory sections are assigned to store binary and
BCD data, respectively. The memory addresses for BCD data are
initially cleared to zero. The following process of shifting and
checking data is repeated until all binary data bits are shifted
left completely: shift the binary data left one bit, and its
leftmost bit is automatically transferred to CARRY. The BCD data
is then doubled and its rightmost bit-position is filled with the
CARRY of binary data.

The flowchart will be:

(1) Preparation:
Store the binary data in RAM with a starting address
of FA@PH. Assign register D as the byte counter for
the binary data, and register E as byte counter for
the BCD data. (Since the bit number of the BCD data
may be larger than that of the binary data, the value
of E is usually not less than that of D).

(2) Clear the RAM section (starting address at FA@8H) for
the BCD data.

(3) Shift the binary data (stored in RAM with startiyg
address at FA@PH) left one bit. The leftmost bit is
automatically transferred to CARRY Flag.

(4) Add CARRY to the BCD data (starting address at FA@8H)
and then double the BCD data.

a8

(5) Check if all the bits of binary date have been shifted out of
the original memory section. If not, repeat step (3). If yes,
it is end of the program.

The actual assembly language program is listed below.

EX@01 LISTING PAGE 1
LOC OBJ CODE STMT SOURCE STATEMENT ASM 3.9
1 ;*** MPF-IP EXAMPLE PROGRAM @@1%***
2 ;MULTIBYTE BINARY TO BCD CONVERTION
3 ;ENTRY:BINARY DATA STORED IN ADDR. 1AQ0H
4 ;EXIT :BCD DATA STORED IN ADDR. 1A@8H
5 ;REGISTER USE
6 ; D CONTAINS BYTE NUMBER OF BINARY DATA
7 ; E CONTAINS BYTE NUMBER OF BCD DATA
8 ; A BCD DATA WORKING REGISTER
9 ; B LOOP COUNTER
180 ; C BINARY BIT NUMBER
11
FB@O 12 ORG OFB@OH

13 BINBCD:
14 ;CLEAR BCD DATA BUFFER

FB@O AF 15 CLEAR XOR A ;A=0
FBO1 43 16 LD B,E ; B=BCD BYTE NUMBER
FBO2 21081A 1A LD HL,1A@88H
FB@S 77 18 CLR LD (HL),A ;CLEAR MEMORY
FBO6 2 19 INC HL ;NEXT ADDRESS
FB@7 10FC 20 DJINZ CLR
21
22 ;CALCULATE BIT NUMBER
FB@9 7A 23 LD A,D ;A=BYTE NUMBER
FBOA 87 24 ADD A,A
FB@B 87 25 ADD A,A
FBOC 87 26 ADD A,A ;A=A*8
FB@D 4F 27 LD C,A ;C=BIT NUMBER
28
29 LOOP:
30 ;SHIFT BINARY DATA LEFT
FBOE 2E00 31 LD L,0 ;HL=1APP=BINARY STARTING ADDRESS
FB10@ 42 32 LD B,D
FB11 CBl16 33 SHLB RL (HL)
FB13 23 34 INC HL
FB14 18FB 35 DJINZ SHLB
36
37 ;ADD CARRY & DOUBLE BCD DATA
FBl6 2E08 38 LD L 8 ;HL=1AP8=BCD STARTING ADDRESS
FB18 43 39 LD B,E
FB19 7E 40 BCDADJ LD A, (HL)
FB1A 8F 41 ADC A,A
FB1B 27 42 DAA

49

FB1C
FB1D
FBLE

FB20
FB21
FB23

77 43 LD (HL) ,A

23 44 INC HL

10F9 45 DINZ BCDADJ
46

éD 47 DEC C

20EB 48 JR NZ,LOOP

FF 49 RST 38H

2, Assembly Language Programming Technique.

(a) Multiply (or divide) a piece of binary data by a fixed
number ¢

Of course, the standard multiplication (or division)
subroutine can be used to multiply (or divide) a binary number
by a constant. However, a simple multiplication (or division)
can be easily accomplished by shifting, additions or subtraction
operations. For instance, in the above program, if the byte
number of the binary data is known, then the bit number of the
data can be easily obtained by multiplying the byte number by
8. In statements 22 - 27, instruction ADD A,A is used three times
for multiplying the data in register D by 8 and then storing
the result in register C. If the multiplier is not an exponential
of 2, then addition or subtraction instructions must also be
used.

Example: Multiply the data i1n D register by 6 and then store the
result in register A. The program can be designed as

follows.
LD A,D ; A=D
ADD A,A ; A=2*D
ADD A,D ; A=3*D
ADD A,A ; A=6*D

(b) Addressong method for memory on the same page:

A memory address can be pointed to indirectly by a register
pair (16 bits). To change a memory address pointed to by a
required pair within the same page (each page contains 256 bytes),
only a change in the low-order byte of the register pair is
required. For instance, in the program listed above, the binary
and BCD data are stored on the same page of memory (page 1AH).
Since statement 1A assigns the contents of register H as 1lAH,
only a change in the contents of register L is required to change
the pointed address in statements 31 and 38.

50

1I. Example Experiments:

1.

2.

Load the binary«to-BCD conversion program listed in part I.into
MPF-IP and then store it on audio tape for future applications.

Test the above program:

First, store the byte numbers of binary and BCD data in registers
D and E, respectively. Next, load the binary data into RAM,

with a starting address at FAG@H. Record the obtained result and
check if it is correct.

Binary Hexadecimal BCD registers D & E
1000000000 0200H D=2, E=3
FFFFH D=2, E=3
10000H D=3, E=4
SA48347FH D=4, E=6

232 D=8, E = BAH

283 D=8, E = gAH

264-1 D =8, E = 0AH

Change the above program to a subroutine format (Replace the

last instruction RST 38H by RET). Using this subroutine, write

a program to convert the contents of the DE register pair into a
BCD number and then store the converted BCD data in the HL register
pair. The contents of the DE register pair will not be changed
after the program execution. Test the program and write down the
complete program in the blanks below.

Write a program to multiply the binary data in register E (<20H)
by 7 and store the result in register A.

51

Experiment 9
BCD-to-Binary Conversion Program

Purpuses:

l. To understand the methods of BCD-to-Binary conversion.
2. To familiarize the reader with programming technique.

Time Required: 4 - 8 hours

I. Theoretical Background:
1. Methods of BCD=to-Binary conversion:

There are also several method for BCD-to-Binary conversion. In
this experiment, the simple yet efficient method of shifting and
checking is used. The RAMs used for storing the binary and BCD
data are adjacent (in a row with the low~order digit on the right
side). The BCD data is stored on the left~hand side and the
converted binary data is stored on the right-hand side. The
conversion procedure is given as follows.

(1) Assign the bit number of the binary number as N for N
program loops.

(2) Shift the connected data right one bit.

(3) Check the left-most bit of each digit (4 bits). If the
c¢hecked bit is 1, then subtract 3 from the corresponding
digit.

(4) Repeat step (2) & (3) N times. The conversion process is
then completed.

2. Principle of the checking process :
The real purpose of steps (2) & (3) of the above method is to

divide the BCD number by 2 and put the remainder in the memory.The
principle is illustrated in the following figure.

Hundred's Ten's One's
A N Binary Data
800 400 200 100 80 20 19 8 4 2 1
Lo o [Illllﬂl Dleele =T
Data

52

(1) Each BCD digit contains 4 bits.
digit right one bit will divide
instance, the leftmost digit of
8@ if it is "1". If this bit is
represents 40, that is, half of

(2) If a "1" is shifted from high a

Shifting the 4 bits of a

this digit by 2. For

the ten's four bits represents
shifted right, then it

its original value.

order digit to a lower order

digit, the value is reduced to 5 (or 5@, 500, ---, etc).
However, the resulting BCD code will interprete this bit as
8 (or 8¢, 800, ---, etc). Thus 3 (or 3¢, 300, ---, etc) must
be subtracted from the resulting BCD number.

(3) The conversion method can be illustrated by the following

hand-calculation.

205 <- Decimal

102 Remainder

UL

P ->11001101

63

2 12085 ---1 BIT @

2 (162 --=- 9 BIT 1

2|51 --——1 BIT2

2 25 ---1 BIT 3

2 12 --—- 9 BIT 4

1 BIT 7

1100 1101
C D

3. BCD-to-Binary conversion program:

Once the conversion method is decided, it is very easy to design
the program. The following program can be used to convert 5-byte
(or 19-digit) BCD data stored in RAM into 4-byte binary data.

Since the largest value of 4-byte binary data is 4,294,967,295,
the BCD number to be converted can not exceed this value. In RAM,
the memory of addresses FA@OH - FA@3H are reserved for storing the
binary data (lowest-order byte in FA@@H). The memory of addresses
FAG4H - FAOG8H are assigned to store the BCD data. Sample programs
for BCD-to-Binary conversion and Binary-to BCD conversion are
listed below for reference.

EX087 LISTING PAGE 1

LOC OBJ CODE STMT SOURCE STATEMENT ASM 3.0
1 ;*** MPF-IP EXAMPLE PROGRAM @87 ***
2
3 ; 10 DIGIT BCD TO BINARY CONVERSION
4 ; ENTRY: BCD DATA IN RAM FA@4H TO FAQBH
S ; : MAX. BCD DATA IS (4294967295)
6 ; EXIT : BINARY DATA IN RAM FA@OH TO FA@3H
7 ; REG. CHG : AF,HL,BC
FBOO 8 ORG FB@@H
FBO® OE20 9 LD C,32 ;PRESET CONV. LOOP = 32
FB DBLP:
11 ; DECIMAL DIVID BY 2
FBB2 0605 12 LD B,5 ;BCD BYTE COUNT = 5
FBB4 AF 13 XOR A ;CLEAR CARRY FLAG
FBBS 21@8FA 14 LD HL @FA@8H ;HL POINT TO LEFT BYTEL
FBO8 7E 15 COR@ LD A, (HL) ; TRANSFER DATA TO A REG.
FB@9 1F 16 RRA ;ROTATE RIGHT
FBOA F5S 17 PUSH AF ;SAVE CARRY FLAG
18 ;* BCD DIVID CORRECTION
FB@B CB7F 19 BIT 7,A ;TEST BIT 7
FBOD 2882 20 JR Z,COR1"’ ;NO CORRECT IF BIT 7 = @
FB@F D630 21 SUB 30H ;SUBTRACT FROM 30H IF BIT 7 =1
FB1l1l CBSF 22 COR1 BIT 3,A ;TEST BIT 3
FB13 2882 23 JR Z,COR2
FB1S D683 24 SuB 3
25
FB17 77 26 COR2 LD (HL),A ;STORE TO MEMORY
FB18 2B 27 DEC HL ;NEXT BYTE
FB19 F1l 28 POP AF ;RESTORE CARRY FLAG
FB1A 18EC 29 DJINZ COR@’ ; DONE LOOP
30
31 ;ROTATE BINARY RIGHT
FBI1C 0684 32 LD B,4 ;BINARY BYTE = 4
FB1E CBI1E 33 SHR4 RR (HL)
FB20 2B 34 DEC HL
FB21 18FB 35 DJINZ SHR4
36
FB23 @D 37 DEC C
FB24 20DC 38 JR NZ,DBLP
FB26 C9 39 RET

55

LOC O0BJ CODE STMT

FB27
FB2A
FB2C
FB2E
FB2F

FB31

FB33
FB34
FB36
FB37
FB39
FB3A

FB3C
FB3E
FB3F
FB49
FB41
FB42
FB43

FB45
FB46
FB48

2104FA
0605
3600
23
10FB

PE20

10F9

#D
20EB
c9

40
41

EX@87 LISTING PAGE 2
SOURCE STATEMENT ASM 3.9
*E
,4 BYTE BINARY TO BCD CONVERSION
ENTRY:BINARY DATA STORE IN ADDR. FA@@H TO FA@3H
EXIT :BCD DATA STORE IN ADDR. FA34H TO FA@8H
REG. CHANG : AF,BC,HL

BINBCD:
;CLEAR BCD DATA BUFFER
LD HL FA@4H
LD B,5
CLEAR LD (HL),®
INC HL
DJINZ CLEAR

LD C,32
LOOP
;SHIFT BINARY DATA LEFT
LD L,B ; HL=FAO@=BINARY STARTING ADDRESS
LD B,4
XOR A
SHLB RL (HL)
INC HL
DJINZ SHLB

;ADD CARRY & DOUBLE BCD DATA
LD B,5
BCDADJ LD A, (HL)
ADC A,A
DAA
LD (HL),A
INC HL
DJINZ BCDADJ

DEC C
JR NZ, LOOP
RET

ASSEMBLY ERRORS

II. Example Experiments:

1.

Load the two subroutines for BCD-to-Binary anb Bi?a:y-to-BCD
conversion into MPF-IP and then store them on audio tape for

future application.

Replace the last instruction RET of the above subgoutines by RST
38H so that control of the microcomputer MPF-IP will be returned
to monitor after program execution. Load an arbitrary S5-byte BCD
number in RAM address FAG4H - FA@PB8H. Convert this BCD data

into binary data by using the above program. Check if the result

is correct.

By a method similar to that described in part I (Theoretical
Background), write a program to convert the 4-digit BCD data
intd binary data : The processing must be held within CPU .
registers and the result will be stored in the DE register pair.

Assigned Converted Re-converted

Decimal Number Binary Number Decimal Number
1
2
3
4
5

Using the binary multiplication routine and the routines for
conversion between binary and BCD data, write a program for
decimal multiplication. The decimal multiplier and multiplicand
must be stored in the HL and DE register pairs, respectively.
The result must be stored in RAM addresses FA@4H - FA@SH. The
data in HL and DE must be unchanged after program execution.

57

Experiment 10
Square-Root Program

Purposes:

1. To understand how the microcomputer calculates the square root
of a binary number.
2. To practice microcomputer programming.

Time Required: 4 - 8 hours
I. Theoretical Background:
1. Calculating square roots of binary numbers by hand:

There are several methods for calculating the square root of a
binary number. The following method for hand-calculation can be
easily converted into a microcomputer program. This method is
illustrated by calculating the .square root of 91018001 (or 81):

(1) Each of the following blocks represents the position for
storing data. The original binary number is stored in Y
block, the number @1 is permanently stored in P block. X
and R blocks are prestored with @.

[| o1010001 |
[[21000000 |

(2) Subtract the number formed by the R & P blocks from the number
formed by the X and Y blocks. If.the result is non-negative,
then put 1 at the rightmost position in the R block and shift.
the original data in the R block left one bit. If the result is
negative, then restore the original data in the X & Y blocks
and shift the data in R left one bit. In this example, the
result of subtraction is positive. Thus, the following
result is obtained.

58

X Y

r47 IGEDIGOGIJ

R P

(3) shift the data in the X & Y blocks left two bits.

X Y

[ao]omoomo |

R P

(4) Since the number in the X and Y blocks after the shift process
is still less than that in the R and P blocks, thus the data
in the R block must be shifted left one bit and a "@" is put
in the rightmost position. The data in the X and Y blocks
remains unchanged.

(5) shift the data in the X and Y blocks left two bits.

X Y

| 000100010000 |

R P

59

(6) The new data in the X and Y blocks is still less than the R
and P block. Thus, shift the data in the R block left one bit
again. An "8" is put in the rightomst position of the R block.
The data in the X and Y blocks is also shifted left two bits.

X Y

108]01]

R P

(7) The number in the X and Y blocks is not less than that in the
R and P blocks. Subtract the number in the R and P blocks from
the number in the X and Y blocks. Shift the data in R left one
bit and put a ®"1" in the left-most bit-position.

[090000] 00 |
[1001]01 |

(8) Shift data in the X and Y blocks left two bits. Since the
the orginal data in the Y blocks has been shifted out compl-
etly, the final result is given in the R block.

X Y

00200000
1001

R P

(9) If the original data in the Y block is not the square root
of some integral binary number, then the above method may be
continued to find the fractional part of the square root.

2. Square root routine

The square root routine can be designed by the method desc;ibed
above. A subroutine for calculating the square root of a 16-bit
piece of data is illustrated below.

Example: Find the square root of a 16-bit piece of data storgd in
the BC register pair. The calculation.must be continued
till the fractional part of the solution contains 8 bits.
The integral part of the solution will be stored in register
D, while the fractional part will be stored in register E.

Solution: The CPU registers are assigned as follows:

The original data is stored in registers A and C (Y block).
The HL register pair is used as the working area of subtr-
action operation. The answer will be stored in the DE
register pair (R block). The data in the P block is a
fixed number, its left-most two bits are 91, i.e. the data
in the P block may be written as 01000000B (406H). The
program and its flowchart are given below.

61

A B
B 16

| HLA HLA + DEN l

L

| cy cy J

|

ROTATE DE LEFT
WITH CARRY

L

SHIFT HLAC
LEFT TWO BIT

62

1 ; *** MPF-IP EXAMPLE PROGRAM @09 ***

2 ; 16 BIT SQUARE ROOT ROUTINE
3 ;ENTRY: BINARY DATA IN 'BC'
4 ;EXIT : RESULT IN 'D' (INTEGER)
5 ; 'E' (FRACTION)
6 ;REG. CHANG.AF,BC,DE,HL
FBO® 78 7 SQRT16 LD A,B ;A&C = ENTRY DATA
FBA1 0610 8 LD B,16 ; LOOP COUNTER
FB@3 2100FB 9 LD HL,0 ;HL:WORKING AREA
FBO6 54 10 LD D,H
FB@7 SC 11 LD E,H ;DE=0,RESULT PRESET TO @
FBP8 D640 12 sQ@ SUB 40H ;A=A-40H,40H IS A FIXED DATA
FBOA ED52 13 SBC HL,DE ; HL=HL-DE
FBOC 3004 14 JR NC,SQl ;IS HL > DE ?
FBOE C649 15 ADD A,40H
FB1® EDS5SA 16 ADC HL,DE ;IF NOT, RESTORE A&HL
FB12 3F 17 sQ1 CCF ; PARTIAL RESULT IN CARRY FLAG
FB13 CB13 18 RL E ;STORE PARTIAL RESULT
FB15 CB1l2 19 RL D ; & SHIFT 'DE' (RESULT) LEFT
20 ;'HL.A C' 4 BYTE SHIFT LEFT TWICE
FB17 CB21 21 SLA C
FB19 17 22 RLA
FB1A ED6A 23 ADC HL,HL
FB1C CB21 24 SLA C
FB1E 17 25 RLA
FB1F ED6A 26 ADC HL,HL
27
FB21 10ES 28 DJINZ SQ@ ;DONE LOOP
FB23 C9 29 RET

@ ASSEMBLY ERRORS

I1. Example Experiments:

1. Load the above program onto MPF-IP and then store it in audio
tape for future applications.

2. Replace the last instruction (RET) by RST 38H. Prestore a l6-bit

data in the BC register pair and then execute the square root
program. Write down the result obtained.

63

3.

Data Prestored Result of Check
in BC Program Execution

B8051H

0000H

FFFFH

4000H

Revise the above program such that it can be used for calculating
the square root of a 32-bit piece of data. Store the original
data in the BC and IX registers. The answer will be stoed in

the DE register pair. Only the integial part of the square root
is required.

Using the square root routine and binary multiplication routine,
write a program for finding the absolute value of the vector

formed by two mutual perpendicular vectors. The length of each
vector component can be represented by an 8-bit binary number.
These two numbers are stored in the H and L registers, respectively.
The result of the program execution will be stored in register D.

(D)=y (H)*+ (L)?

Experiment 11
Introduction To MPF-IP Display

Purposes:

1. To understand how to use subroutines of the monitor
program for designing display pattern.

2. To understand how the display is designed.

3. To understand the structure and characteristics of a
matrix-form keyboard.

Time Required: 4 hours

I. Theoretical Background:
The structure and the characteristics of the MPF-IP

display and keyboard are discussed in detail in Chapter
8 of the MPF-IP User's Manual. In Chapter 5, a number
of useful monitor subroutines are 1listed for users’

reference. In this experiment, the sample programs
will use some of the monitor subroutines to control the
display.

65

Example 1:

Display 'HELP US' until the SPACE key is pressed. Once the
SPACE key is pressed, the CPU will be halted and the red LED
lamp will get lighted. The program is shown as below:

EXPl1l.1
LocC OBJ CODE M STMT SOURCE STATEMENT

1 ;Display 'HELP US', HALT when

2 ;space key is pressed.

3
FBOO 4 ORG @FBOOH
FBOO 210EFB 5 LD HL,HELP
FB@3 CD86@8 6 CALL PRTMES
FB@6 CD4682 7 DISP CALL SCAN
FB@9 FE29 8 cp 20H
FBOB 20F9 9 JR NZ,DISP
FB@D 76 10 HALT

11
FBOE 20202020 12 HELP DEFM ' '
FB14 48454C50 13 DEFM 'HELP US'
FB1B @D 14 DEFB @DH

15 ;

16 PRTMES EQU #886H

17 SCAN EQU 0246H

18 END

66

Example 2:

Flash ‘HELP US'.) .]
Because the execution time of the SCANl subroutine is 15.67

micro-second, to <cause the display flashes 'HELP US' and
then blank out alternately, the display buffer pointer - IX
- should be changed after the SCAN1l has been executed 32
times. The program is as follows:

EXP11.2
LocC 0OBJ CODE M STMT SOURCE STATEMENT

1 ;Flash 'HELP US':
FBOQ 2 ORG OFB@OH
FBOO CDB90@9 3 CALL CLEAR
FBO3 211CFB 4 LD HL,HELP
FBO6 CDCA®9 5 CALL MSG
FBO9 DD212CFF 6 LD IX,DISPBF
FBOD 21D@6F 7 LD HL,BLANK
FB1@ ES 8 PUSH HL
FB11 0620 9 LOOP1 LD B,32
FB13 CD9B@2 14 LOOP2 CALL SCAN1
FB16 10FB 11 DJINZ LOOP2
FB18 DDE3 12 EX (SP),IX
FB1A 18F5S 13 JR LOOP1

14 ;
FB1C 20202020 15 HELP DEFM ' '
FB22 48454C50 16 DEFM 'HELP US'
FB29 @D 17 DEFB @DH

18 ;

19 BLANK EQU 6FD@H

20 CLEAR EQU P9B9H

21 DISPBF EQU @FF2CH

22 MSG EQU #9CAH

23 SCAN1 EQU #29BH

24 END

If you want to change the frequency at which the display
flashes, you can achieve that by changing the times SCAN] is
called. If you intend to change the pattern to be

displayed, vyou can alter the operand following the DEFM
pseudo-op.

67

Example 3:

Display the ASCII code of the key pressed.

Fill "FF" into each memory location of the memory range from
FF2C to FF54, the dlsplay will blank out when the program is
executed. When a key is pressed, the ASCII code of the key
pressed will be displayed. The user may compare it with the
ASCII, code table provided in the appendix of MPF-IP User's
Manual.

EXP11.3
LocC OBJ CODE M STMT SOURCE STATEMENT

1 ;Display ASCII code:
FBOO@ 2 ORG @OFBOOGH
FBOO CDB9089 3 CALL CLEAR
FB@3 DD212CFF 4 LOOP LD IX,DISPBF
FBO7 CD4602 5 CALL SCAN
FBOA CDB94@9 6 CALL CLEAR
FB@D CD9AGA 7 CALL HEX2
FB1#@ 18F1 8 JR LOOP

9

18 CLEAR EQU @9B9H

11 DISPBF EQU @FF2CH

12 HEX2 EQU @A9AH

13 SCAN EQU @246H

14 END

68

Example 4:

Display the position code of the key pressed. When a key is
pressed, the position code of the key pressed will be dis-
played. The wuser may compare it with the position code
table provided in the appendix of MPF-IP User's Manual. The
program is as follows:

EXP11.4
LoC OBJ CODE M STMT SOURCE STATEMENT

1 ;Display position code:
2
FBOO 3 ORG @FB@OGH
FBOO CDB969 4 CALL CLEAR
FBO3 DD212CFF 5 LD IX,DISPBF
FBO7 0603 6 LOOPl LD B,3
FB@A9 CD9B@2 7 LOOP2 CALL SCAN1
FB@C 308F9 8 JR NC,LOOP1
FBOE 10F9 9 DJINZ LOOP2
FB1@ CR9BO2 12 LOGCP3 CALL SCAN1
FB13 38FB 11 JR C,LOOP3
FB1S CDB999 12 CALL CLEAR
FB18 CD9AGA 13 CALL HEX2
FB1B CD9903 14 CALL DECSP
FB1E 18E7 15 JR LOOP1
16 ;
17 CLEAR EQU #9B9H
18 DISP EQU @FF84H
19 DECSP EQU 9399H
20 DISPBF EQU @FF2CH
21 HEX2 EQU GA9AH
22 SCAN1 EQU 829BY
22 END

69

Exercises

1.

2.

3.

4.

Example 1:

(a) If you want to change program in Example 1 so that
the MPF-IP will display "HELP US"™ until the "Q" key
is pressed, how will you change the program?

(b) Try to write a program so that "NESBITT" will be
displayed wuntil the carriage return key is pressed.
After the carriage return key is pressed, the red LED
will get illuminated.

Example 2:

(a)
(b)
(c)

(d)

(e)

Save the program in Example 2 on casette tape.
Execute the program and examine the results.

Change the instruction "LD B,32" to "LD B,S5@H", and
then execute the modified program. Examine the
results. Explain why the results of the modified
pragram are different from that of the original

program?
Change the instruction "LD B,32" to "LD B,5", and
then execute the modified program. Examine the
results.

Modify the program by changing the contents of the
memory so that "HELP US" is displayed for two seconds
on the display and then blanked out for two seconds
alternately.

Example 3:

(a) Save the program in Example 2 on casette tape.

(b) Execute the program and examine the results.

(c) Why does the cursor "n" appear after the ASCII code?
How to eliminate the cursor?

Example 4:

(a)
(b)
(c)

(d)

Save the program in Example 2 on casette tape.
Execute the program and examine the results.

Why is the displayed position code not followed by
the cursor?

What does the position code mean? .
(You can figure this out by examining the detailed
functions of the subroutines SCAN1 and SCAN2.)

70

Experiment 12
Fire-Loop Game

Purpose:

1. To understand how to use a subroutine contained in the

monitor program

2. To familiarize the reader with programming techniques.

Time Required: 4 hours
I. Theoretical Background:
1. Monitor Program:

After the microcomputer is powered on, it will execute
programs from the designated address. Besides some initia-
lization task (e.g. setting 8255 or selecting I/O mode), a
special software program called monitor is used to monitor
the presence of data or commands from peripheral devices
(e.g. a keyboard, an external switch, a button, a sensor,
etc.) If no signal is monitored, then the scanning process
continues (using the 1looping method to search) until a
signal input is detected. If an input signal is detected,
the input signal is then analyzed and the microcomputer
jumps to the service routine to perform the jab assigned by
the input signal. After this service routine has been
executed, the microcomputer returns to scan the peripheral
devices.

Since MPF-IP is a general-purpose microcomputer, it has a
monitor. The main function of this monitor is to respond to
key presses on the keyboard and to display necessary data.
Tracing the monitor program will improve your programming
skill.

2. Fig. 12-1 is the flowchart of the Fire Loop.

71

START
E—
HL «<—— TABLE
IX «— DISPBF

Call CLEAR

Is REPEAT

Yes code FF?

Get back E and

use E as an offest
to calculate the
location of the
selected digit

L

Get display pattern
and put in display
buffer

Call SCAN1

Yes

Key pressed and
Save key-code in C

Test if the SPACE key
is pressed, if yes,
decrement HL to

get the same data for
display then it look
like STOP, otherwise,
get next pattern.

Fig. 12 -1 The Flowchart of Fire Loop

72

EXP12 PAGE 1

Loc oBJ CODE M STMT SOURCE STATEMENT ASM 5.9
1
2 ;Segment illuminates one by one until KEY-SPACE
3 ;is pressed.Any other key will resume looping
4 ;again.
5 3
FBOO 6 ORG @FBOOGH
FBOO 213CFB 7 INI LD HL, TABLE
FBO3 DD212CFF 8 LD IX,DISPBF
FB@7 CDB989 9 LOOP CALL CLEAR ;Clear display buffer.
FBBA 5E 10 LD E,(HL) ;Get the digit-select data.
FBOB 1C 11 INC E ;Test repeat code:FF.
FBBC 28F2 12 JR Z,INI ;If yes, go to INI.
FBOE 1D 13 DEC E ;Otherwise, get back E.
FBOF 7B 14 LD A,E
FB10 87 15 ADD A,A
FB11 SF 16 LD E,A
17 ;The following 9 instructions get display
18 ;pattern and put into display buffer.
FB12 1600 19 LD D,0
FB14 DD19 20 ADD IX,DE
FB16 23 21 INC HL
FB17 7E 22 LD A, (HL)
FB18 DD7700 23 LD (IX) ,A
FB1B 23 24 INC HL
FB1C DD23 25 INC IX
FB1E 7E 26 LD A, (HL)
FB1F DD7789 27 LD (IX),A
FB22 DD212CFF 28 LD IX,DISPBF
FB26 2683 29 LD B,SPEED ;Using B registr as SCAN1
30 ;counter.
31 ;The following 4 instructions display the pattern
32 ;for B times.
FB28 CD9B@2 33 LIGHT CALL SCAN1
FB2B 3801 34 JR C,NSCAN
FB2D 4F 35 LD C,A ;Key pressed, save key code
36 ;in C. Note that, reg C will
37 ;not be changed until next
38 ;key is pressed.
FB2E 10F8 39 NSCAN DJINZ LIGHT
FB32 79 40 LD A,C
FB31 FEB2 41 CP 92H ;Test KEY-SPACE of SCANI.
FB33 2803 42 JR Z,STOP ;If yes, decrement HL to get
43 ;the same pattern for display.
44 ;Then it looks like stop.
FBIS 23 :g ;Otherwise, get next pattern.
INC HL
FB36 23 47 INC HL
FB37 23 48 INC HL
FB38 2B 49 STOP DEC HL
FB39 2B 50 DEC HL
FB3A 18CB 51 JR Loorp
52 ;
53 CLEAR EQU @9B9H
54 DISPBF EQU @FF2CH
55 SCAN1 EQU @29BH
56 SPEED EQU 3
57 ;
FB3C 87 58 TABLE DEFB 7 ;DIGIT 8

73

100 MPF-1P Tt J- it

Loc

FB3D
FB3F
FB40
FB42
FB43
FB45S
FB46
FB48
FB49
FB4B
FB4C
FB4E
FBA4F
FBS1
FB52
FBS54
FB55
FBS7
FBS8
FBSA
FBSB
FB5D
FBSE
FB60@
FB61
FB63
FB64
FB66
FB67
FB69
FB6A
FB6C

0BJ CODE M STMT

FEFF

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

EXP12

SOURCE STATEMENT

DEFW
DEFB
DEFW
DEFB
DEFW
DEFB
DEFW
DEFB
DEFW
DEFB
DEFW
DEFB
DEFW
DEFB
DEFW
DEFB
DEFW
DEFB
DEFW
DEFB
DEFW
DEFB
DEFW
DEFB
DEFW
DEFB
DEFW
DEFB
DEFW
DEFB
DEFW
DEFB
END

74

@FFFEH
8
OFFFEH
9
OFFFEH

OFFF7H
9
@FFF7H
8

@FFF7H
7
@FFF7H
7
@FFEFH
7

OFFDFH
@FFH

iSEG_a
;DIGIT 9
;SEG_a
;DIGIT 10
;SEG_a
;DIGIT 11
iSEG_a
;DIGIT 12
;SEG_a
;DIGIT 13
;SEG_a
;DIGIT 13
iSEG_b
;DIGIT 13
;SEG_c
;DIGIT 13
;SEG_d
;DIGIT 12
iSEG_g
;DIGIT 11
;SEG_d
;DIGIT 190
;SEG_d
;DIGIT 9
;SEG_d
;DIGIT 8
iSEG_d
;DIGIT 8
iSEG_e
;DIGIT 8
;SEG_f
;REPEAT CODE.

PAGE 2
ASM 5.9

3.

Further Expriments

(a)

(b)

(c)

(d)
(e)

(£)

Load the above program into MPF-IP and then store it on audio

tape for future applications.
Test this program and record the display response.

Write a program to make the Fire~Loop illuminate counterclockwise.

Change the contents of FB32. Then pressing space key
will not respond as before. Why?

Change the contents of FB27 and the display will change. Why?

Write a program that will cause the segments to move in a pattern
of your choice.

Write a program to display "HELP US" for 28 secs, then
play the "Fire-Loop Game" 28 times. Then display "HELP
Us®, and play fire-loop game over and over again.

75

Experiment 13
Stop-Watch

Purpose:

1.

2.

To illustrate how to use monitor subroutines.

To practise programming skills.

Time Required: 2 hours

I. Theoretical Background:

1.

The object of this experiment is to design a 2/100
second~based stop=-watch. Actually, this is only roughly
accurate. The total execution time of the SCAN1
subroutine is 16.184 msec, plus the time required to
perform the delay loop, results in the counter to be added
by 2 each time all the instructions of the program are
executed. The accuracy varies with the system clock and
the number of instructions used in the keyboard/display
scan subroutine.

The demonstration program calls two monitor subroutines SCAN1

and HEX2 which are located at 29BH and @A9AH respectively.

The counting procedure is halted by depressing a key. This
is done by checking the result of SCAN1 routine.

76

START

CALL CLEAR
Subroutine

|

l.Set display
buffer pointer

2.Load intial
display data

|

Loop

Call SCAN1, scan
s YES
keyboard/disp

Is key
pressed?

NO

1. Increment the
counter by 2

2. DECIMAL adjust the
counter contents

|

1. Call HEX2
2. Store pattern
into buffer

Fig 13-1 Flowchart of stop watch

77

LocC

FBOO
FBOO
FBO4
FBO6

FBO9
FBOC

FBOE
FB11
FB12
FB14
FB15
FB16
FB17
FB19
FB1A
FB1B

FB1D
FB1F
FB21
FB22
FB24
FB25

FB26
FB29
FB2A

FB2D
FB2E

FB31
FB32

FB35
FB37
FB39

FB3B
FB3E
FB41
FB44
FB47
FB48
FB49

DD212CFF
OEQQ
110000

CD9B@2
30FB

CDB9@9
7B
C602
27

SF

A
CE0Q®@
27

57
D669

2007
1600
79
c601
27
4F

2138FF
79
CD3BFB

A
CD3BFB

7B
CD3BFB

0601
10FE
18CE

2284FF
CD9AGA
CD9983
2AB4FF
23
23
c9

VO S WN -

EXP13
OBJ CODE M STMT SOURCE STATEMENT

; STOP-WATCH

LooP

BFUPDT:

DELAY

PA:

CLEAR
DISP
DISPBF
DEC
HEX2
SCAN1

ORG
LD
LD
LD

CALL
JR

CALL
LD
ADD
DAA
LD
LD
ADC
DAA
LD
suB

JR
LD

-LD

ADD
DAA
LD

LD
LD
CALL

LD
CALL

LD
CALL

LD
DJNZ
JR

LD
CALL
CALL
LD
INC
INC
RET
EQU
EQU
EQU
EQU
EQU
EQU
END

78

PAGE 1
ASM 5.9
@FBOOH
IX,DISPBF ;Initial display pointer.
c,o ;Initial MIN in C.
DE, @ ;Initial SEC & 2/1808 SEC
;in DE.
SCAN1 ;Display for 15.6 m sec .

NC, LOOP ;1f any key pressed, then
;looping the same pattern.
;Otherwise, increment 2/100

-

;sec.

CLEAR

ALE

A,2

E,A

A,D

A,Q

D,A

60H ;If SEC=68, then set SEC=8 and
;increment MIN by 1.

NZ ,BFUPDT

D,0

A,C

A,l

C,A

HL,DISPBF+12

A,C ;Convert MIN to display

PA ;format, and put them
;into display buffer.

A,D ;Convert SEC to display

PA ;format, and put them
;into display buffer.

A,E ;Convert 2/188 SEC to dis_

PA ;play format, and put them
;into display buffer.

B,1

$

LOOP

(DISP) ,HL

HEX?2

DEC

HL, (DISP)

HL

HL

09B9H

@FF84H

@FF2CH

@399H

@ASAH

829BH

II.

Illustration of the Experiments

(1) Load the program and GO!

(2) Press the [RESET|[CONTROL] and [SHIFT keys. Watch how

the MPF-IP respond? Why?

(3) Note that the program will loop continuously. How can
the execution of the program be interrupted?

(4) Users are encouraged to modify the program:
a. Build a 1/18 second based stop watch.

b. Display all zeros at the beginning, start the stop
watch by depressing an arbitrary key or the user defined

key.
c. Build a stop key.

(5) Check the timing on the display with your watch for one minute.
Perhaps, there is an error. Try to find the reasons for the

error and note them.

79

Experiment 14
Designing a Clock Using Software

Purposes:
1. To practise calculating the clock cycle of a program.

2. To construct a software driven digital clock.

Time Required: 4 hours.
I. Theoretical Background:

1. This is an example of using the software delay to build
a digital clock.

2. All the timing is based on the system clock, which is
3.579545 MHz 52 = 1.789772 MHz
So that 1 cycle is about @.55873 micro-seconds.

3. The total number of cycles in ONE LOOP has been carefuly
calculated.

4. The cycle count calculation is given as follow:

CLEAR : 1941 T

MSG : 4956 T

BFUPDT : 1747 T

SCAN1 : 28898 T

TMUPDT : 258 T

The total number of counts is 1800610.

and

#.56 usec x 1800610 1.008 sec

S. Flowchart of clock

80

ENTRY

set time buffer to
000000

k

—
1.Get time base
2.Call READLN

YES @
R —

YE

Load time base
to time buffer

1. Clear display buffer
2. Update display buffer

LA?ime delay compensation J

B <-- 61

A\2
| Call SCAN1 B<--B-1]

YES

Lg?date the contents
of time buffer

Fig. 13-1 Flowchart of clock

81

Time Update Flowchart

TMUPDT

1. Load timing data
pointer to DE

2. Load timing maximum
range table pointer
to HL

1

1. Load counter B with 3
for hour, minute, second
Jpdating. 2. set carry bit
for adding

1. Update timing, then
check maximum range,
if reached then carry
propagated

2. Point to next timing
item B<--B-1

YES

82

pisplay buffer Update Flowchart

BFUPDT

1. Load display buffer
pointer to HL

2. Load time buffer pointer
to DE

)

B <---3
Loop Counter

1. A <--(DE)
2. CALL HEX2
3., CALL DECSP
4, CALL SPACEl

N
HL <-- HL + 1

B<--B-1

83

Loc

FBOO

FBOO
FBO3
FBOS
FBO8
FBOA
FB@B
FB@D
FB19
FB13
FBl6

FB18
FB1B
FB1D
FB20
FB21
FB24
FB25
FB26
FB27

FB29
FB2C
FB2F
FB31
FB35
FB38
FB3A
FB3D

FB3F
FB42
FB45S
FB46
FB48

FB49
FB4A
FB4C
FB4D
FB4E

FB4F
FBS1

EXP1l4
OBJ CODE M STMT SOURCE STATEMENT

PAGE 1
ASM 5.9

1
2 ;A software driven digit clock.
3
4 ORG @FBOGH
S START:
CDB909 6 CALL CLEAR
0603 7 LD B,3
217SFB 8 LD HL, HOUR
3600 9 LOOPl LD (HL) ,@ ;This loop initial
23 10 INC HL ;the time buffer.
18FB 11 DJINZ Loorl
217BFB 12 LD HL, FORMAT
CDCAB9 13 CALL MSG
CDD49@9 14 CALL READLN ;Get time base.
2811 15 JR Z ,MAIN ;If input line contain
16 ;jonly <CR>,then jump to
17 ;MAIN.Otherwise, get HOUR
18 i+ MIN and SEC.
CDDF@8 19 CALL CHKHEX
0603 20 LD B,3
2175FB 21 LD HL, HOUR
ES 22 LOOP2 PUSH HL
CDES508 23 CALL GETHL
El 24 POP HL
77 25 LD (HL) ,A
23 26 INC HL
10F7 27 DJINZ LOOP2
28 MAIN:
CDB90@9 29 CALL CLEAR
CD59FB 30 CALL BFUPDT
063E 31 LD B,62
DD212CFF 32 LD IX,DISPBF
CD9B@2 33 LOOP3 CALL SCAN1
10FB 34 DJINZ LOOP3
CD3FFB 35 CALL TMUPDT
18EA 36 JR MAIN
37
38 -T1me buffer is -updated here.
39 ;This routine takes almost the same time
48 ;in any condition.
41 ;
42 TMUPDT:
217AFB 43 LD HL,MAXTAB+2
1177FB 44 LD DE,SEC
CS 45 PUSH BC
0603 46 LD B,3
37 47 SCF ;Set carry fag: force
48 ;add 1.
1A 49 TMINC LD A, (DE)
CEQ0 50 ADC A,0
27 51 DAA
12 52 LD (DE) ,A
96 53 suB (HL) ;Compare with data in
54 ;MAX_TAB. If the result is
55 ;less than that,the follow-
56 ;ing loop will be null.
3801 57 JR C,COMPL
12 58 LD (DE) ,A

84

LocC

FB52
FB53
FB54
FB55
FBS7
FB58

FB59

FBSC
FBSF
FB62
FB64
FB65
FB68
FB6B
FB6E
FB6F
FB71
FB74

FB75
FB76
FB77
FB78
FB79
FB7A
FB7B
FB8S

OBJ CODE M STMT SOURCE STATEMENT

3F
2B
1B
10F2
Cl
c9

2138FF

2284FF
1175FB
0603
1A
CD9ADA
CD9983
CD950A
13
10F3
CD9903
c9

24
60
60
54494D45
oD

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

EXP14

COMPL CCF
DEC
DEC
DJN
POP
RET

z

HL
DE
TMINC
BC

PAGE 2
ASM 5.9

H
;Display buffer is updated here.
;This rountine takes the same time in

;any condition.

i

BFUPDT:
LD
LD
LD
LD

Loor4 LD
CAL
CAL
CAL
INC
DJN
CAL
RET

IRRR

TMBF

HOUR DEF

MIN DEF

SEC DEF

MAXTAB DEF
DEF
DEF

FORMAT DEF
DEF

CLEAR EQU
CURSOR EQU
DISP EQU
MSG EQU
DECSP EQU
CHKHEX EQU
DISPBF EQU
HEX2 EQU
READLN EQU
GETHL EQU

SCAN1 EQU
SPACEl EQU
END

L
L
L

A
L

S
S
S
B
B
B
M
B

85

HL,DISPBF+12

(DISP) ,HL
DE, TMBF
B,3

A, (DE)
HEX2
DECSP
SPACE1

DE

LOOP4
DECsP

1

1

24H
60H
60H
'TIME BASE="'
@DH
09B9H
OA79H
OFF84H
@9CAH
0399H
@8DFH
OFF2CH
OA9AH
09D4H
@8ESH
029BH
OA95H

;Set display buffer
;pointer.

II.
1.

Illustrations of the Experiments

Load the program

wWhen the program is executed, the MPF-IP display will first

display TIME BASE =,\. , prompting the user to enter hour,
minute, second. Hour, minute, second should be separated by
the space key, and followed by a carriage return. When the
carriage return key is pressed, the clock begins clicking.
If the user does not key in time, the clock begins from @
hour, @ minute, @ second.

Example: The clock is to begin counting from 10:36:080, then
type in

1) The display will show
TIME BASE =/,
2) Type in 10 36 00 The display will show
10 30 00
3) The clock begins counting.
Modify the program to improve the accuracy of the clock.

Make the MPF-IP al2-hour clock, and display “"AM" or “PM"
when the time is shown.

86

Experiment 15
Telephone Tone Simulation

Purposes:
1. To simulate a telephone ring.

2. To familiarize the reader with the application of 'tone'
subroutine.

Time requirod: 4 hours.
I. Theoretical Background:

1. The telephone ring can be simulated as a repeating 1 second tone
with 2 seconds silence.

2. This tone is a frequency shift keying signal modulated by two
20HZ square waves (half-period of 25 m sec).
The low & high states of this 20HZ signal correspond to 320HZ and
480HZ, so that it takes 8 & 12 cycles respectively.

3. In the following program, register C controls the frequency of the
sound and register pair HL controls the length of the sound.

a. Low frequency: C = 211, HL = 8, so the period is
(44 + 13 x 211) x 2 x 0.56 = 3121 micro-sec.
frequency : f = 1/3121 = 320Hz
length of the sound: 3121 micro-sec x 8 = 25m sec.

b. High frequency: C = 140, HL = 12, so the period is
(44 + 13 x 149) x 2 x 8.56 = 2087 micro~sec
frequency: 1/2087 = 480HZ.

length of the sound: 2087 micro-sec x 2 = 25m sec.

87

4. Output Circuit of tone

+5V

+5V

8255
U13

PC5 R3

2N9015

The output of the tone is sent via PC5 of 8255, 2N9415, R3, to the
speaker. When the voltage of PC5 is low, the transistor will
conduct; when the voltage of PC7 is high, the transistor will
nonconduct. By means of the transistor conducts and nonconducts,
the speaker will make sound.

88

5. Flowchart of Telephone Tone

k-2

Set 20Hz shift
rate
Tc

o

Set low frequency
=320Hz

length of the sound
=25 msec

|

Set high frequency
= 480Hz
Length of the sound
= 25msec

eck
second tone

—

Two second
Silence

]

Flowchart of a telephone tone simulation

89

6. Telephone Tone Program

EXP15 PAGE 1
Loc OBJ CODE M STMT SOURCE STATEMENT ASM 5.9
1 ;TELEPHONE TONE
FBOO 2 OFBAGH
FBOO 3E14 3 RINGBK LD A,20 ;20HZ freq shift rate
4 iso that 1 sec has 28 loops.
FBO2 o8 S RING EX AF ,AF* ;Save to A'
FBO3 0ED3 6 LD Cc,211
FBOS 210800 7 LD HL,8
FBO8 CD7408 8 CALL TONE :320HZ, .25 m sec
FBOB @EBC 9 LD C,l40
FB@D 210Ce0 10 LD HL,12
FBl@ CD7408 11 CALL TONE ;480HZ, 25 m sec
FB13 28 12 EX AF,AF' ;Retrieve from A'
FB14 3D 13 DEC A ;Decrement 1 count
FB1S 20EB 14 JR NZ,RING
FB17 @150ecC3 15 LD BC,50000
FB1A CD1FFB 16 CALL DELAY ;Silent 2 sec
FB1D 18E1 17 JR RINGBK

18 ;Delay subroutine: (BC)*48 micro_sec
19 ;based on the 1.79 MHZ system clock

FB1F E3 2@ DELAY EX (SP) ,HL ;19 states
FB20 E3 21 EX (SP) ,HL ;19
FB21 EDAl 22 o3 ;16
FB23 E® 23 RET PO)
FBz4 18F9 24 JR DELAY :12
25 ;
26 TONE EQU 8874H
27 END

I1. Example and Practice Experiments

1. Load the above program into MPF-IP and then execute it.

2. Execute the program and listen to it. Does it sound like a
telophone ring? If it doesn't, try to modify the frequency
of the tone.

3. Try to simulate the telephone busy tone

Hint: The busy tone can be simulated as follows: a {epeating
p.5 second 4P@HZ tone with 8.5 seconds of silence.

90

Experiment 16
Microcomputer Organ

Purposes:
1. To enable the part of the Microprofessor to simulate an electronic
organ.

2. To familiarize the reader with the application of the keyboard
~scaning routine.

Time Rquired: 4 hours
I. Theoretical Background:
1. This experiment converts the MPF-IP into a simple electronic organ.
2. When a key is pressed, the speaker will generate a tone
corresponding to this key. This tone will not terminate until
the key is released.
3. Acceptable keyboard: key 8 - key F.

If other keys are entered, the response is unpredictable.

4. Key Mapping To Tones

W E R
S D F

Q

91

5. An octave ranges from a C to a B. The octave is divided into 5 full-
tone and 2 half-tones, which equals to 12 half-tones, as follows:

C# D 4D E F #F G #G A #A B

The next octave is just twice the frequency of the current one,
There is a logarithmic relationship between each half-tone.

The frequency of each half-tone can be calculated by multiplying
the last one by 2 ** (1/12), which is approximately 1.859.

For example, if the frequency of E is 503HZ, then the
frequency of F is equal to

SP3HZ x 1.859 = 532HZ.

92

6. Flow chart of microcomputer organ program

START

[Display blankJ

|

Initialize
frequency table
pointer HL

k

Check
any key pressed?

The desired frequency
is stored in address
HL + A

L
¥

Output tone signal
to tone - out

Check
key released?

Yes

Flowchart of orgran

93

Loc

FBOO
FB@O
FBO4

FB@7

FBBA
FBOC
FB@D
FBOE

FB10O
FB12
FB13
FBl4
FB15
FBl16
FB18
FB1A
FB1B
FB1C
FB1E
FB20

FB22

FB24
FB26

FB27
FB29

FB2B

FB2D

FB2F
FB30

FB32

7. ORGAN

DD21D@6F
CD4D@2

2134FB

F6F8
3C

3EFF
D389

D381

D382

79
28CE

18DC

VOIOAV S WN -~

Program:

EXP16
OBJ CODE M STMT SOURCE STATEMENT

;MICROCOMPUTER ORGAN

START

ORG
LD
CALL

LD

@FBOGH

IX,BLANK

SCAN2

PAGE 1
ASM 5.9

;Display blank,return
;when any key is pressed
iA reg contains the key_ code

HL,FREQTAB ;Based address of

;frequency table

H
;After routine SCAN2, A reg contain the code of the
ikey pressed. Using this code as table offset.

iThe desired frequency is stored in addresss HL+A

HALF:

DELAY

suB
ADD
LD
LD

ouT
LD
NOP
NOP
NOP
DJINZ
XOR
LD
XOR
ouTt
ouT
out

IN

OR
INC

LD
ouT

ouT

ouT

LD
JR

JR

41H
A,L
L,A
A,@DFH
(KIN) ,A

B, (HL)

DELAY
20H
C,A

(80H) ,A
(81H) ,A
(82H) ,A

A, (KIN)

OF8H

A,8FFH
(80H) ,A

(81H) ,A

(82H) ,A

A,C
Z,START

HALF

94

:Get offset of FREQTAB
;Add A to HL

;Output tone singal to
;tone_out

;Get the frequency from
; FREQTAB.

;Complement bit 5 of A.

;Activate the first 8 columns
;of the keyboard matrix.
;Activate next 8 columns of
;the keyboard matrix.

;Activate the last 4 columns
;of the keyboard matrix.

;Check whether this key is
;pressed or not. If any key

;is presssed, the corresponding
;matrix row input must be low.

;If A is 11111111B, increase A
;by one will make a zero and
;set zero flag.

;Disable the first 8 columns
;of the keyboard matrix and
;digits.

;Disable next 8 columns of
;the keyboard matrix and
;digits

;Disable the last 4 columns
;of the keyboard matrix and
;digits.

;Restore A from reg C.

;If all key released,restart.
;9therwise,continue this
;frequency.

Loc

FB34
FB3S
FB36
FB37
FB38
FB39
FB3A
FB3B
FB3C
FB3D
FB3E
FB3F
FB48
FB41
FB42
FB43
FB44
FB4S
FB46
FB47
FB48
FB49
FB4A
FB4B
FB4C
FB4D

EXP16
0BJ CODE M STMT SOURCE STATEMENT

59 FREQTAB:
A8 60 DEFB BABH
8 61 DEFB PE@H
20 62 DEFB 00
85 63 DEFB 85H
42 64 DEFB 42H
7E 65 DEFB 7EH
70 66 DEFB 76H
64 67 DEFB 64H
20 68 DEFB 00
59 69 DEFB S59H
29 70 DEFB 00
%0 71 DEFB 00
B2 72 DEFB @B2H
c8 73 DEFB BCBH
00 74 DEFB 00
80 75 DEFB @0
sS4 76 DEFB S4H
IE 77 DEFB 3EH
96 78 DEFB 96H
37 79 DEFB 37H
2¢ 88 DEFB 2CH
FB 8l DEFB @FBH
4A 82 DEFB 4AH
ee 83 DEFB 1}
31 84 DEFB 31H
(L} 85 DEFB 00

86 ;

87 BLANK EQU 6FDOH

88 KIN EQU 92H

89 SCAN2 EQU @24DH

96 END.

II. Example and Practice Expeiments

1.

2.

iKey
i Key
iKey
iKey
iKey
iKey
iKey
i Key
iKey
iKey
iKey
iKey
iKey
iKey
iKey
iKey
;Key
iKey
iKey

iKey
iKey
iKey
iKey
iKey

NKXECCHVIODWOZICRURNIOMMOO® >

PAGE 2
ASM 5.9

Load the above program into MPF-IP and then store it on

audio tape.

Execute the program. When a key is pressed, the speaker

will generate a tone coesponding to this key.

Are these tones accurate?

Try to play a song using this organ.

Extend this program so that more keys of the keyboard can

be used as input keys of the organ.

95

Experiment 17
Music Box Simulation

Purposes:

1. To. construct a music box.

2. To familiarize the reader with programming techniques.

Time Required: 4 hours.

I. Theoretical Background:

l. This experiment generates a song using programming techniques.

2. There are two tables (frequency-table & song-table) in this program,
which is described below:

Frequency-table

Every element of this table has 2 bytes, the lst byte is the
frequency parameter and the 2nd byte is the number of
half-periods in a unit-time duration.

One octave ranges from C to B. It is divided into 5 full-tones
and 2 half-tones, which equals 12 half~tones, as follows:

C4#C D #D E F #F G #G A #A B

The next octave is just twice the frequency of the current one,

and there is a logarithmic relationship between each half-tone.

So that the frequency of each half-tone can be calculated by multiplying
the last tone by 2 ** 1/12, which is approximately 1.859.

Song-Table: ’

Each element of this table has 2 bytes:

The 1st byte contains the code of the NOTE or REST or command
of REPEAT or STOP. Thebke codes are:

bit 7 ---- STOP

bit 6 —---- REPEAT

bit 5 ---- REST

bit 4-¢ ---- NOTE CODE

96

The 2nd byte contains the counts of the unit-time, i.e. the NOTE
length.

3. A flowchart of music box simulation is given below:

Initialize
Song-Table pointer
IX

Get note data

Check
Stop, play or
epeat?

Repeat Stop

Play

l

Initialize
frequency table
pointer HL

Increment IX

Fig 17-1 Flowchart of music box simulation

97

Loc

FBOO@
FBO®

FBO4
FB@7

FBOS8
FBOA
FBOD
FBOF
FB11l
FB13
FB15
FB17
FB1A
FB1B
F31C

FB1D
FB1E

FB1F
FB21

FB24

FB26
FB27
FB29
FB2A
FB2B
FB2C
FB2D
FB2F

FB39
FB31
FB33
FB34

FB36
FB38
FB3A

FB3B

0BJ CODE M STMT

1

2

3

4

DD210@0F9 5
6

DD7EB9 7
87 8
9

3830 10
FAQOFB 11
QEQQ 12
CcB77 13
2002 14
CBE9 15
E63F 16
213BFB 17
85 18
6F 19
SE 20
21

23 22
56 23
24

DD23 25
DD660@ 26
27

3EFF 28
29

30

31

6A 32
D392 33
43 34
29 35
00 36
00 37
10FB 38
A9 39
40

2D 41
20F4 42
25 43
20F0 44
45

46

47

48

DD23 49
18CA 50
76 51
52

53

54

55

56

57

E11l8 58

EXP17 PAGE 1

SOURCE STATEMENT ASM 5.9
;MUSIC BOX
H
ORG OFBOOH
START LD IX,SONG ;Initial song table
;pointer. -
FETCH LD A, (IX) ;Get note data
ADD A,A ;Each note data have 2
;bytes.
JR C,STOP ;Stop?
Jp M,START ;Repeat?
LD c,0 iReset tone bit.
BIT 6,A ;Reset? -
JR NZ,PLAY
SET s,C ;Set tone bit
PLAY AND 3FH ;Mask out note data.
LD HL, FRQTAB
ADD A,L
LD L,A ;Locate pointer in FRQTAB.
LD E,(HL) ;Counts of loop per HALF
; PERIOD delay. -
INC HL
LD D, (HL) ;Counts of HALF PERIODS
;per UNIT TIME.™
INC IX -
LD H, (IX) ;Counts of UNIT_TIME for
;this note.
LD A,QFFH
H
;The following loop runs for one ncte or rest:
i
TONE LD L,D
UNIT ouT (92H) ,A ;Bit 5 is tone_out.
LD B,E
DELAY NOP
NOP
NOP
DJINZ DELAY
XOR (o ;If C=0BH then reset.
;If C=00H then tone_out
DEC L
JR NZ,UNIT
DEC H
JR NZ,TONE
H
;The current note has ended, increment pointer
jnext.
INC IX
JR FETCH
STOP HALT
FRQTAB:
H
;1st byte:counts of DELAY loop per HALF_PERIOD.
;2nd byte:counts of HALF_PERIOD per UNIT-TIME.
;OCTAVE 3
DEFW 18E1lH ;Code 00 , G

98

Loc

FB3D
FB3F
FB41
FB43

FB45
FB47
FB49
FB4B
FB4D
FB4F
FBS1
FB53
FB55
FB57
FB59
FB5B

FB5D
FBSF
FB61
FB63
FB65
FB67
FB6Y
FB6B
FB6D
FB6F
FB71
FB73

FB75
FB77
FB79

EXP17

0BJ CODE M STMT SOURCE STATEMENT

D41A
Cc81B
BD1D
B21E

AB2#@
9F22
9624
8D26
8529
7E2B
7723
7031
6A33
6437
SE3A
593D

5441
4F45
4A49
464D
4252
3E57
3B5C
3762
3467
316E
2E74
2C7B

2982
278A
5592

i
i

;

i
i
i
H
i
i
H
i
i

DEFW
DEFW
DEFW
DEFW
OCTAVE 4
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
OCTAVE 5
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
OCTAVE 6
DEFW
DEFW
DEFW

lst byte,bit 7,6,5 &-4-0
Code of stop
Code of repeat
Code of rest

1AD4H
1BC8H
1DBDH
1ER2H

20A8H
229FH
2496H
268DH
2985H
2B7EH
2E77H
3170k
336AH
3764H
3AS5EH
3D59H

4154H
454FH
494AH
4D46H
5242H
573EH
5C3BH
6237H
6734H
6E31H
742EH
7B2CH

8229H
8A27H
9255H

;Code
;Code
;Code
;Code

;Code
;Code
;Code
;Code
;Code
;Code
;Code
;Code
;Code
;Code
;Code
;Code

;Code
;Code
;Code
;Code
;Code
;Code
;Code
;Code
;Code
;Code
;Code
;Code

;Code
; Code
;Code

—
L

20H

)
S S S s SN s s s s s~

PAGE 2
ASM 5.9

(e}

0

(2] o]

>

Cv: O DD mmmO O

repsat, rest, note

2nd byte, note lenth: counts of UNIT TIME
1 —

N*@.77 sec).

JINGLE BELL:

99

(TRUNCATED)

LoC

FB3D
FB3F
FB49
FB42
FB43
FB45
FB46
FB48
FB49
FB4B
FB4C
FB4E
FB4F
FBS1
FBS2
FBS54
FBS55
FB57
FB58
FBSA
FBSB
FB5D
FBSE
FB60
FB61
FB63
FB64
FB66
FB67
FB69
FB6A
FB6C

FEFF

F900
F900
F901
F902
F983
F904
F9085
F906
F907
F9e8
F909
F90A
F908B
F9eC
F90D

89
[Z]
e9
04

26
20

29
04

04
09
06

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

182
103
184
185
106
107
108
189
lle
111
112
113
114
115
116

EXPl2
OBJ CODE M STMT SOURCE STATEMENT

DEFW
DEFB
DEFW
DEFB
DEFW
DEFB
DEFW
DEFB
DEFW
DEFB
DEFW
DEFB
DEFW
DEFB
DEFW
DEFB
DEFW
DEFB
DEFW
DEFB
DEFW
DEFB
DEFW
DEFB
DEFW
DEFB
DEFW
DEFB
DEFW
DEFB
DEFW
DEFB
END

SONG ORG

100

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

OFFFEH
8

OFFFEH
9
OFFFEH

OFFFEH
12
@FFFDH

@FFF7H
11
@FFF7H
10
@FFF7H

9
OFFF7H

8
OFFF7H
7
@FFF7H
7
@FFEFH
7
OFFDFH
@FFH

OF900H

NV HEOVDHBONNNANOYEODO

iSEG_a
;DIGIT 9
;SEG_a
;DIGIT 10
iSEG_a
;DIGIT 11
;SEG_a
;DIGIT 12
;SEG_a
;DIGIT 13
iSEG_a
;DIGIT 13
;SEG_b
;DIGIT 13
;SEG_c
;DIGIT 13
;SEG_d
;DIGIT 12
iSEG_g
;DIGIT 11
;SEG_Ad
;DIGIT 10
;SEG_d
;DIGIT 9
;SEG_d
;DIGIT 8
;SEG_d
;DIGIT 8
;SEG_e
;DIGIT 8
iSEG .f

; REPEAT CODE.

PAGE 2
ASM 5.9

Loc

F90QE
F9@F
F910
F911
F912
F913
F914
F915
F916
F917
F918
F919
F91A
F91B
F91C

20
82
09
04
ocC
04
25
24
87

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
149
141
142
143
144
145
146
147
148
149
150

;The following data are codes of song 'GREEN SLEEVES'

EXP17
0BJ CODE M STMT SOURCE STATEMENT

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

20H

Qs OVN
(2]
T

ONODOSBIDUND

@
o)
T

PAGE

3

ASM 5.9

;The user can put them at the SONG-TABLE, i.
;@F900 it will play until 'RESET' key is pressed.

27
25
29
OE

87

11
oA
20
05
06

o8
19
10
24
08

END

oA
87
06
ec
06

101

190
24
28
10
28

oc
29
082
29
04

8
04
10
28
o8

OE
OA
97
85
06

ac
06
11
BA
40

190
190
08
10
28

10
04
10
28

19
87
BA
27
07

29
87
10
29

24
o8
10
24
10

08
04
04
28

@E
87
ec
29
20

5
29
OE
87

24
10
028
04
08

10
10
04
o8

e,

ocC
06
0E
oA
11

27
26
ecC
06

from

10
04
10
028
10

24
28
10
08

29
87
10
29
11

29
82
89
04

08
84
84
08
2]

24
10
28
08

Multitech

INDUSTRIAL CORP.

OFFICE/

9FL. 266 SUNG CHIANG ROAD. TAIPEI 104,
TAIWAN. R.O.C

TEL: (02)551-1101

TELEX: 19162 MULTIIC FAX: (02)542-2805
FACTORY/

1 INDUSTRYE. ROAD. Iil,

HSINCHU SCIENCE-BASED INDUSTRIAL PARK,
HSINCHU, TAIWAN 300, R.O.C

DOC.NO.:MIP05-8412A

	00_0000
	00_0001
	00_0002
	00_0003
	00_0004
	00_0005
	00_0006
	00_0007
	00_0008
	00_0009
	00_0010
	00_0011
	00_0012
	00_0013
	00_0014
	00_0015
	00_0016
	00_0017
	01_0001
	01_0002
	01_0003
	01_0004
	02_0005
	02_0006
	02_0007
	02_0008
	02_0009
	02_0010
	02_0011
	03_0012
	03_0013
	03_0014
	03_0015
	03_0016
	03_0017
	03_0018
	03_0019
	03_0020
	03_0021
	03_0022
	04_0023
	04_0024
	04_0025
	04_0026
	04_0027
	04_0028
	04_0029
	05_0030
	05_0031
	05_0032
	05_0033
	05_0034
	05_0035
	06_0036
	06_0037
	06_0038
	06_0039
	06_0040
	06_0041
	07_0042
	07_0043
	07_0044
	07_0045
	07_0046
	07_0047
	08_0048
	08_0049
	08_0050
	08_0051
	09_0052
	09_0053
	09_0054
	09_0055
	09_0056
	09_0057
	10_0058
	10_0059
	10_0060
	10_0061
	10_0062
	10_0063
	10_0064
	11_0065
	11_0066
	11_0067
	11_0068
	11_0069
	11_0070
	12_0071
	12_0072
	12_0073
	12_0074
	12_0075
	13_0076
	13_0077
	13_0078
	13_0079
	14_0080
	14_0081
	14_0082
	14_0083
	14_0084
	14_0085
	14_0086
	15_0087
	15_0088
	15_0089
	15_0090
	16_0091
	16_0092
	16_0093
	16_0094
	16_0095
	17_0096
	17_0097
	17_0098
	17_0099
	17_0100
	17_0101
	99_0000
	Seite 1 _1.png

