. h -
o3 ‘h-t f”“.l.-ﬂ

. = s
e

CHR. M.T.S. MATNYS Al POTTER
Postbus 40413
2504 LK 's-GRAVENHAGE

MPE-IP

USER’S MANUAL

P

Copyright © 1983 by MULTITECH INDUSTRIAL CORP. All rights
reserved. No part of this publication may be reproduced, trans-
mitted, transcribed, stored in a retrieval system, or translated into
any language or computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual or other-
wise, without the prior written permission of MULTITECH INDUS-
TRIAL CORP.

COPYRIGHT

DISCLAIMER

MULTITECH INDUSTRIAL CORP. makes no representations or
warranties, either express or implied, with respect to the contents
hereof and specifically disclaims any warranties or merchantability
or fitness for any particular purpose. MULTITECH INDUSTRIAL
CORP. software described in this manual is sold or licensed “as is".
Should the programs prove defective following their purchase, the
buyer (and not MULTITECH INDUSTRIAL CORP., its distributor,
or its dealer) assumes the entire cost of all necessary servicing, re-
pair, and any incidental or consequential damages resulting from any
defect in the software. Further, MULTITECH INDUSTRIAL CORP.
reserves the right to revise this publication and to make changes from
time to time in the content hereof without obligation of MULTI-
TECH INDUSTRIAL CORP. to notify any person of such revision
or changes.

M | Multitech

INDUSTRIAL CORP.

OFFICE/

9FL. 266 SUNG CHIANG ROAD. TAIPEI 104.
TAIWAN, RO C

TEL (02)551-1101

TELEX 19162 MULTIC FAX (02)542-2805
FACTORY/

1 INDUSTRYE. ROAD. Il

HSINCHU SCIENCE BASED INDUSTRIAL PARK
HSINCHU. TAIWAN 300, RO.C

TABLE of CONTENTS

Chapter 1 Overview and InstallatioNeccecececeeceacal=1

Chapter 2

2.1

IntroduCtioN..eeeeeeoecssccccccscsaseccasal=3

An Overview of MPF-IP Specifications.....1-4

Installation ProceduUr@...cceceecceescscessassl=H

MPF-IP SpecificationS..ccececececcsccscecs2-1

MPF-1P

2.1.10
2.1.11
2.1.12

2.1.13

Hardware Specification....eeeeee..2-3

Central Processing Unit.....c.....2=-3

ROM:coeooooscoccoccassasocanosncassl=3
RAM::eeeeeoeoeaoencocsanonannonseal=3
Memory EXpansion Area.....e.eeee...2-3
Input/Output POrt....ceeeceeeeeaeal=3
DisSpPlayeeeceeseeeceeosccesaasaseaseseal3
Keyboard....eeeieeeeeoeceoncnnneaa=3
SpeaKer.ecieeeeeceennccssns ceeesvcae 2-3
Audio Tape Interface.......c.eeee..2-4
System Clock Rate€.....ceeecccecess2-4
System Power Consumption..........2-4
Main Power Input..................2-4

Physical Characteristics..........2-4

2.2 MPF-IP Software Specifications...........2-5

20201 tiiieciecctecetttstcctetcternnnaeea2=5
20202 tieiieierseecctttsettesstesscnanas2=5
R .
20204 ciiiiecetcenccencssetsscssssesaneal=5
A L - |
R
2 e -
R

2.2.9 EQitOr.iciieeeeeeeaecceccacesceeea=b

2.2.10 Line Assembler
(One Pase Assembler)...ccecececeessa2=6

2.2.11 TwO Pass Assembler....cceeeeecceseal=6

2.2.12 DisassemMbDler...ceceescccssccescsesl=6b

Chapter 3 System DescCriptioONicccecccecccccccscscscs3-l
3.1 The Functions of the Monitor.............3-3

3.2 DBattery BaCKUP.:eseeooesooscccccocesassoseeld—d
3.2.1 RAMS..eeesescacssasesscsasencosseseld=d

3.2.2 Address DecCOder..cescecccccccccssal—d

N I 1

w
.
w

Keyboard FamiliarizatioN......eceeeesseee3=5
3.3.1 The MOnitor CoOmMandS.....eoeeee.es«3=5
3.3.2 The TAB KeY.eeeeeocaseoooosnasaasesld=b

3.3.3 Input Line Buffer........ee.c.e....3-6

Chapter 4
4.1

4.2

PRT=MPF=IP.ccececccscccscsccssoscssoscscscccccs 3-7

Addresses Related with System Expansion..3-7

LED LAQMP.cecocossscocscccsosscscsscscssssasesasld—8

When the Monitor doesn't Respond.........3-8

software Break-The Instruction: RST 3@H..3-9

Number

Audio

SYyStemMS.ceeeeeeeasossscossosocsocosesld=9
A
. e 1)
A R e 1)

. B

Tape Interface...c.ieeeecescceeeeeesesid-1l

CONTROL Q OF Qucececccosccccoscsccccaseessid—ll

CONTROL P and CONTROL Geceeeoecooconoeaeseld=12

Ooperating MPF=IP.cececcccsccsacsccsccssceesd=l

The Major Monitor CommandS....cceecececesad=3

Major

Function Entry and EXit....ceeeee..4=5

E Command - Enter and
Initialize the Editor.....cceeeee.. 4-5

B Command - Enter and
Initialize the BASIC.:eeceeeeeeeeead=-5

R Command - Re-enter the
Text EAitOr.i.cereueenenecnnnneassd=5

C Command - Re-enter BASIC........4-5

L Command - Enter the One Pass
Line Assembler.......eeeeeeeeesesad=5

A Command - Enter and Initialize
the Two Pase Assembler............4-5

4.2.7

Basic

D Command - Enter and Initialize
the Disassembler....eeeeeenceeeeesd=6

OpPerationS.ceeeeeeccececscasncennsssd=7

System Initialation
- The RESET KeYieeeeosesooooooonooad=T

Printer Control - CONTROL P.......4-7
Software Escape - CONTROL Q.......4-8

Bell Control - CONTROL Gu.eeeeeoeeo..4-8

SUpPpPOrt FUNCLiONS.ieecectescccacacaccaeasd=9

4.4.1

Display/Alter the Contents
Of MeMOrY..eeeeeeoesososnanosossesd=9

The F Command...ceeeeeescsccscsessd=12

Display/Alter the Contents
of Registers.....ceeeeeeecnconecsad=12

The W Command - The Command Used
for Storing Data on Tap€..........4-14

The L Command - The Command to
Read Data from Tape back to
MEMOLYeeeeoossoossscosscoccsnscsasead=l’

The J Command - The Command used
to Calculate Relative Address.....4-16

The I Command - The Command for
Inserting Data into Memory........4-17

The D Command - The Command for
Deleting Data from MemOrY.........4-19

Program DebuUgging...c.eeceesecsccoscosceesd=22

The B Command - The Command to
Set and Clear BreakpoinNt..........4-22

The S Command - The Command to
Single-step a Program...........+.4-22

4.5.3 The G Command - The Command for
Executing a Program.....cceceeee..4=-24
Chapter 5 Useful Subroutines......ccccccceccececcssb-1
5.1 MPF-IP System Parameters........ceeeeee..5=3

5.2 Input/Output Parameters and Summary
Oof SUDroutineS..ceeccccccececccscccncccessd=5

5.2.1 BEEP.cecececccecasecccccncccacsased=b
50242 CHK 40.ccceecccccccscccccccscsanaad=b
5.2.3 CHRWR:.eeeeeeeoccocascccasasacsseesd=b
5.2.4 CLEAR.:cccceccssccsccscscscssccnsesd=b
5.2.5 CLRBF:.ccececscsestscsccnconsansnsssd=?
5.2.6 CLRDSP.cececcccccsscccccosscsanssead=?
5.2.7 CONVER:ceceeossccccscccccanascnsesd=?
5.2.8 CRecececccocnccccocoscoansocnsnssed=?
5.2.9 CRl.cceeeeececconcecososanccsnessad=8
502.10 CRZ2:eceeeconcoscosoecccncncsesesnssd=8
5:.2.11 CR3.ueieceeeecceoennssssoocessseesad=8
5:.2.12 CURSOR.cceeeevesseesooascecacsssessbd=8
5.2.13 DECBIN:cteeeeoeecnconoeossssacasssd8
5.2.14 DECIMAL..ceveeeenoeaaosnsscasnsossd=9
5.2.15 DEC-SP.cucccecccccsoscsccssasassssd=9
5.2.16 ERROR:ueeeeeeeeecseensscssaecnsneasa5=9
5.2.17 GETCHR:eeteeeeuscenoonscooansanassd=10
5¢2.18 GETHLeeeereueeoenecacaanoaanconaead=10

5¢2.19 HEXBIN.tuieeuouooreaseanoooanaaneased=-10

5.2.20
5.2.21
5.2.22
5.2.23
5.2.24
5.2.25
5.2.26
5.2.27
5.2.28
5.2.29
5.2.30
5.2.31
5.2.32
5.2.33
5.2.34
5.2.35
5.2.36
5.2.37
5.2.38
5.2.39
5.2.40
5.2.41
5.2.42
5.2.43

5.2.44

HEX loceeccerocecececacansenanssaab=1l
HEX 2cccececccccencccesesensoaseasad=ll
HEX 4.cieececeececeencencnnneasaaasd=ll
HEXX.teoneooeoooeooeeoocsecaeanssnasd=l2
LDA.ieeeeeeeraceresencsenasenesessd=l2
MSG.eeeeeaeeeececensceonasesososeaeesead=13
MTPPRT .eeeescecescoeccscocccacaneaad=l3
ONE..ceceeeeooescosceacocnsasnacceasad=ll
PLINE...ceeeeceeccsccacascconanossad=ld
PLINEFD:ecececececccccacaosseanssed=ld
PRINT .eeeeeeeeecaceoscoanccsosneaead=ld
PRTMES . cceeeeeeecececccccccaseaanad1ld
PTEST ceeeeecesceccossooasoesensassad-ld
PTESTTeeeeceeceecseocnsanccsosaseead=15
RAMCHK.eveveoosssoosccosacnnssssesd-1l5
READLN.veeceeecssocsasceceanssessssd=l5
SCAN..veeeeosoosossosesassansessssd15
SCAN Lleveeevcecasoscsceaansessesssdld
SCAN 2uuveereoensaccsoassonoansesesd=lb
SHIFT . ueeeooanesnanassasasansncssesdlb
SKIP.veseoeoonasaaasssssnasanassesd=lb
SPACE Lleveesennecacessosasnoasesssd=1l?
TONE. eeoeseeoeonnsnasassesannossssdl?
TONE L1Kewoeoooonoaansasooasanssessd=1?

TONE 2K...........................5-17

Chapter 6

6.1

The Text EQitOr...ccccecceccccccscccacaaab-l
Text BUffeCl..ccececccscececcsscccccncanessab=5
6.1.1 Line POiNt..csceeeccccccccoccosseab=5
6.1.2 Length of a Line.ceceeeeeeecceeeca6=-6
Enter and Re-enter the Editor............6-6

6.2.1 The "E" Command-Using the
Editor in Input Mode...cceceeeees..6=-6

6.2.2 The "R" Command-Using the
Editor in Edit Mode...ceecsccceseab6=7

6.2.3 The [-->] Key (TAB) eeeeecsocsscsessb6-8
Summary of the EditOor....ceecececccccecas6=9
Editor Entry and Exit CommandS.....ecc...6=-9

6.4.1 The E Command - Enter and
Initialize the editor......cccc...6-9

6.4.2 The R Command - Re-enter
the EAitOr..ciieeececcecescaconceseab=9

Text Manipulating Commands -

The Commands for Data
Input/Output/Updateeeeeeeceecccscscccaesab-10
6.5.1 The I Command - Insert Lines......6-18
6.5.2 The D Command - Delete a line.....6-11

6.5.3 The P Command - Print a specified
number of lineS...ceceececceceaesab=-12

6.5.4 The Z Command - Print all the
lines in the text buffer..........6-14

Line Point Manipulating Commands.........6-15

6.6.1 The B Command - Move the cursor
to the bottom of a file..ceeeeeeeeeb-15

The G n Command - Move the line
pointer to the nth line of

the file currently in the

text buffer...........c.6=-15

The U Command - The Command
that move the line pointer
One line UP.ieeeeeeeeeenesseneeee.6=-16

The N Command - The Command
that moves the line pointer
N line down...eeeereeeeneeennneaaab=17

The T Command - The Command that
moves the line point to the top
of the file......iiiviiiiinriinn.6=-17

The L Command - The Command that
prints the line number which is

now pointed to by the line

POINter .ttt ereceeesssesscansaseab=18
Handling CommandS..cecececscsessesb=-19

The F Command -
To Locate @ String.eeecesccescsesa6-19

The C Command -
To Change a String....ceceecescss.6=-20

COMMANAS.seeecescasosascsseassecssssb=22
The S Command -
Display the Default Values and
the Current Text Fil€...eeceooses.6-22

The X Command -
Printer Control Command......c....6=-22

The W Command -
Write Data from Memory to Tape....6-22

The R Command -
Read Data from Tape to Memory.....6-23

EFTOr MESSAQES.eesececcacccsssasesb-23

The E] Key -
shift Data on the Display of MPF-IP......6-24

Chapter 7

7.1

Chapter 8

The Assembler and Disassembler....c.....7-1
Two-Pass ASSemMbler...cceceececccccsccasesl=5

7.1.1 The Use of MPF-IP Two-Pass
ASSEeMbler..ceececesccccscscsscceansel=D

7.1.2 Assembly Language Pseudo-OpsS......7-7

7.1.3 Examples of the Use of the
PSEUAO=OP.eesesesoscscasasccccscsesl=9

Line Assembler (One-Pass Assembler)......7-12
7.2.1 The Use of the Line Assembler.....7-12

7.2.2 Tﬁe Methed for Calculating
Displacement for Relative Jumps...7-13

EELOY MESSAJESecssseccccssccssccsscscssesl=15

7.3.1 Errors Resulted from the
use of Assembler.....cceceeceeeceee./7-15

7.3.2 Errors Resulted from Mistakes in

the Assembly Language

Instruction..ceceeeeceeeeceaecsesas=15
Disassembler.c.cieeeeececcecccccoccaaoeeel=20
Summary of Text Editor and Assembler
PAraMEeterSeeeeseesececncccscancossocoocsnsl=22
System Hardware ConfigurationN..ecceeeceee8-1
System Memory Organization (Map)...e.....8-3
Input/Output AdAreSSeS..ccccecccccccceesaB8-6
Interrupt....ceeeceeeeecscecececcnceeeess8-8
StacKk..e.oiieeeeeeeeenn
e S : E 2 1
8.5.1 POWer-on RESET.c.eceocsccccccasessa8-10

8.5.2 WArm RESET...ceeeecececcccenacaeesB8-10

Tape Data FOrMat..ciieeeeceosacescececeasaal-1l
8.6.1 Bit FOrMat.c.eececeeeeeencaaeaneesB=1ll
8.6.2 Byte FOIMAt....eeeeeeeeeeenncnaneaB=11
8.6.3 File FOIMAt...eieeesoacaonoaenaanaB=1l
8.6.4 Audio Cassette Tap€.......... R Vi
System CloCK.e.ceeeeeeeeesaseacncassonneeaB=12
Reset...cicieeeeecncceccecanannan ceeeseea8-12
Audio Tape Inteface..c.ceeececccccccaeees8=-12
The Display and Keyboard...........
8.10.1 Principle of Operation.......c....8-13
8.10.2 The Driving ModeS....cceveececeese.8=-13
8.10.3 FID Buffer Driver.....ecceeeees...8-14

TR s 2 Y

Appendices

Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix
Appendix

Appendix

A: 2-806 Pin Configuration

B: Z-80-CPU Instruction Set

C: 2-80-CPU Programming Reference
D: MPF-IP Schematic

E: MPF-IP Monitor Command Summary
F: Editor Command Summary

G: Assembler Operation Sequeince
H: MPF-IP ASCII Code

I: MPF-IP Keyboard Position Code

J: The Display Patterns for Alphanumeric
Letters and Special Symbols

Appendix K: Memory Mapping & I/O Ports

Appendix L: Fluorenscent Indicator Panel Specifications
Appendix M: uPA80OC Specifications

Appendix N: DC DC Converter

Appendix O: MPF-IP Model 1 & Model 2

Chapter 1

Overview
and Installation

1.1 Introduction

The Micro-Professor I Plus (MPF-IP) is a low-cost,
versatile microcomputer system featuring sophisticated
software and hardware capabilities. It is not only
ideal for those who intend to familiarize themselves
with micro-processing and advanced microcomputer
hardware and software, but also can be used for many
dedicated purposes and OEM applications such as
industrial control and instrumentation.

Good design techniques and the use of a Z-80 central
processing wunit (CPU) results in a high performance
unit.

The 280 microprocessor features a powerful instruction
set, which has 158 instructions. The 280 operates at
2.5 MHz and processes 8 bits of data at a time. Thus,
Z80¢ 1is one of the most commonly used microprocessors
with wide-ranging applications.

The MPF-IP uses a display panel that can display 20
characters using l16-segment font. All the 64 standard
ASCII characters can be displayed. The display length
corresponds with the 2@-column printer.

Printing at 48 lines per minute, the printer provides
the means to permanently record the commands, data,
programs, status, and other messages. Each character
printed by the printer is in a 5 by 7 dot matrix.

The keyboard has 49 keys.

The operation of MPF~IP is controlled by an 8K monitor
program which resids in the read only memory (ROM).
The monitor, aided by 4K random access memory (RAM),
enables the user to enter a comprehensive set of single
keystroke commands, which make it easier for the user
to use the CPU, memory, and I/0 devices. Thus, the
user can concentrate on microprocessor software
development and application design.

1.2 An Overview of MPF-IP Specifications

1) CPU: Z8U

2) ROM: 8K

3) RAM: 4K
(Refer to the system memory map illustrated in
section 8.1)

4) Contains a text editor

5) The MPF-1P can execute programs written in assembly
language, because 1its 8K ROM contains a two-pass
assembler, line assembler, and a disassembler.

6) Battery backup.

7) A 20-character display that can display a full 64
ASCII character set.

8) A 4Y-key standard typewriter keyboard.

9) 8K BASIC Interpreter provided as an option.

Options for the MPF-IP also include:

PRT-MPF-1P: a thermal printer.

EPB-MPF-1P: an EPROM programmer board.

SSB-MPF-1IP: a speech synthesizer board.

SGB-MPF-1IP: a sound generation board.

IOM-MPF~1P: an Input/Output and Memory Board.

EPB-MPF-IBP: an EPROM programmer board which can

used on MPF-IP or MPF-1 at random,

* FORTH-MPF-IP: an 38K EPROM which enables a user to
program in FORTH language.

* BASIC-MPF-IP: an 8K EPROM which enables a user to

program in BASIC language.

* * ¥ * H ¥

Note:

In order to make it easier for the user to learn
the operation of MPF-IP, a comprehensive, yet easy-to-
read, student work book is available which provides
effective, explanation-exercise-answer formats on all
key operations, applications and functions.

1.3 Installation Procedure

1)

2)

3)

4)

5)

If the MPF-IP is to be used with the PRT-MPF-IP,
connect PRT-MPF-IP to the MPF-IP first with a flat
cable connector. (For details, please refer to
PRT-MPF-IP Printer Operation Manual.)

Insert the thermal paper into the printer as
illustrated in PRT-MPF Printer Operation Manual, 1II
Installation Procedure. Note that the finer surface
of the thermal paper should face up, because that
side of the paper is specially treated so that dot
matrix characters can be formed by the heat produced
by the thermal head of the printer.

Connect AC power adaptor (9V/1A) to the PRT-MPF-IP.
Connect AC power adaptor (9V/600mA) to the MPF-IP.
When the display shows

** X *MPF—I-PLUS****

and the printer prints out the same, the MPF-IP is
ready to run.

Chapter 2

MPF-IP
Specifications

2.1 MPF-IP Hardware Specification
2.1.1 Central Processing Unit

The 2Zilog 2Z-88 CPU has a powerful instruction set,
comprising of 158 instructions. It can operate at a
maximum speed of 2.5 MHz. However, MPF-IP operates at
1.79 MHz.

2.1.2 ROM

The ROM of the MPF-IP is a single +5V EPROM 2764 that
can store up to 8K bytes of data. The monitor EPROM
address is from 0800 to 1FFF.

2.1.3 RAM

The MPF-IP has two static RAMs, thus the total
capacity of RAM is 4K bytes. The user can Jjump at
board 1location U4 so that an 12732 or TMS2532 can be
used at location U4.

The address of the RAMs ranges from F@@@ to FFFF (The
locations from F@P@#@ to F7FF is assigned for the chip at
board location U4.).

2.1.4 Memory Expansion Area

The board location U3 is reserved for a single +5V
EPROM 2764 x 1 or 2732 x 1. The addresses reserved for
this location are from 2000 to 3FFF.

2.1.5 Input/Output Port

The I/0 port of the MPF-IP consists of two programmable
8255 chips, which have 48 parallel 1/0 lines.

I/0 addresses: 80 ~ 83 (at board location Ul4)
90 ~ 93 (at board location Ul3)

2.1.6 Display

The display of the MPF-IP is a fluorescent indicator
panel that can display 20 l6-segment font characters.

2.1.7 Keyboard

The MPF-IP has 49 keys, including alphanumeric keys
(from A to Z, and @ to 9) and function keys.

2.1.8 Speaker

A 2.25 inch speaker is built on the MPF-IP main board.
2-3

2.1.9 Audio Tape Interface

The MPF-IP can be connected to any cassette tape
recorders. The speed of data transfer is 165 bits per
second (bps).

2.1.10 System Clock Rate

The crystal oscillator of the MPF-IP oscillates at the
frequency of 3.5795 MHz. Between the crystal circuit
and the CPU is an IC, namely, 74LS14, which divides the
clock frequency by 2. Thus, the system clock rate is
1.79 MHz. The cycle time is @.56 microseconds.

2.1.11 System Power Consumption

Single +5V power supply, current consumption is 450mA.
2.1.12 Main Power Input

The main power input to the MPF-IP is DC 9V/600mA.
2.1.13 Physical Characteristics

6-1/6" X 8-2/3" X 3/8"

2.2 MPF-IP Software Specifications

(The major functions of the monitor program)

Immediately after power-up of the MPF-IP, the monitor
program is executed immediately. The monitor program
resides in the 8K ROM. It performs the following
tasks:

2.21

Initializes a reset cycle:
Initializes the MPF-IP so that it is ready to execute
user programs.

222

Keyboard scanning:
Scans the keyboard for any key press and responds

accordingly.
223

Scans the display buffer and can display any character
in the MPF-IP ASCII character set, which contains 64
characters.,

224

Stores and retrieves data through audio tape interface
at the speed of 165 bits per second (bps). Each time
the monitor reads from or write to tape, a checksum
will be produced by the monitor and will be matched
with the checksum on tape. Filenames can be given to
data stored on tape for easy access.

225

Displays and alters the data stored in memory or
registers. Commands used for performing these tasks
include DISPLAY, CHANGE, FILL, MOVE, INSERT, DELETE,
NEXT, and LAST.

2.26
Sets or clears the breakpoint in a program.
227

Program debugging can be achieved by setting breakpoint
or executing a program in STEP mode. One breakpoint is
allowed in a program. A programmer can examine the
contents of registers or memory locations if a break-
point is set in a program. A programmer can also look
into the contents of certain memory locations or

2-5

registers each time an instruction is executed, if the
progyram is executed in STEP mode.

2.2.8

Calculates the relative addresses to be used by the JR
or DINZ instructions.

2.2.9 Editor

Provides a text editor. It enables a user to input,
change, or list source programs, data, or general text
conveniently.

2.2.10 Line Assembier (One Pass Assembler)

Provides a line assembler (one pass assembler), which
only converts one line of assembly language program
into machine code at a time and does not process pseudo
instructions such as ORG, EQU, LABEL, DEFB, DEFW, DEFS,
DEFM, and comments. It uses less memory than two pass
assembler does, but it can only process absolute
values.

2.2.11 Two Pass Assembler

Provides a two pass assembler, which can convert source
programs into machine codes and process pseudo
instructions. It has the functions of a 1linker, and
can print program listings when using together with a
printer.

2.2.12 Disassembler

The disassembler can convert machine codes back into
the form of assembly program.

Note: 1In addition to that specified otherwise, all the
addresses used in this book are expressed in
hexadecimal.

Chapier 3
System Descripfion

3.1 The Functions of the Monitor

1)

2)

3)

4)

5)

Stores the program into the RAM. Change or examine
the data in the RAM.

Executes the program stored in RAM.

Executes the program in STEP mode or sets breakpoint
in a program. Executing the program in STEP mode is
very helpful for learning and debugging purposes.

Other functions include audio tape interface,
relative address calculation, and text editing.

The user can develop a dedicated computer system
based on the MPF-IP. The MPF-IP is very flexible
for both software and hardware development.

3.2 Battery Backup

The MPF-IP features a battery backup so that data will
not disappear even after power is turn off.

Oon the left of the MPF-IP main board, there is a
switch. wWhen the switch 1is on, the power of the
battery backup is not supplied to the MPF-IP. When the
system power supply from the adaptor is cut out sudden-
ly (because of a power failure or the adaptor is
disconnected), power will be supplied automatically
from the battery to the RAM of MPF-IP and CDA4S56BE.
Thus, data stored in the RAM will be preserved.

To test the battery backup, the user can disconnect the
adaptor and then re-connect it to see if data in RAM is
lost.

If you don't intend to use the battery backup, turn off
the switch. The batteries are to be installed on the
back of the PC board.

321 RAMs

If the RAM of the MPF-IP consists of two CMOS HM6116
(4K bytes), the battery backup--which includes four UM3
batteries--can preserve the data in RAM for about a
year.

If NMOS chips such as TMM2#16P-2 or M58725P-15- are used
as the RAM of the MPF-IP, the battery backup can
preserve the data in RAM for only five hours.

If the TC5516APL is used as the RAM of the MPF-IP, data

in RAM can be preserved for several years. However, to
use TC5516APL, refer to Chapter 8 for the correct wire
cutting and jumping at J2.

3.2.2 Address Decoder

Thie DAL RS 5 CD4556BE) is used as the address
decoder.

3.23
If 2732 or 2532 is installed at board location U4 as

RAM, the power from battery backup will be consumed
much quicker.

3.3 Keyboard Familiarization

The MPF-IP can generates 64 ASCII characters. They
include alphanumerical letters (from A to Z, and ¢ to
9), space, special signs, etc. To enter any of these
characters, press the key marked accordingly.

The SHIFT key, which is located at the lower left
corner of the keyboard, 1is used to generate the
characters which are marked above the keyboard keys.

3.3.1 The Monitor Commands

The CONTROL key is wused to enter major monitor
commands. The monitor commands are entered by typing
the control characters while holding down the CONTROL
key. They are listed as follows:

CONTROL A (Assembler)
CONTROL B (BASIC)

CONTROL C (Re-enter BASIC)
CONTROL D (Disassembler)
CONTROL E (Editor)

CONTROL L (Line Assembler)
CONTROL R (Re-enter Editor)
CONTROL P (Printer Control)
CONTROL Q (Software Escape)
CONTROL G (Beep Control)

The monitor commands and their functions are explained
in detail in Chapter 4. Only CONTROL P and Q will be
discussed here. Because the printer of the MPF-IP
PRT-MPF~IP) only prints on thermal paper, CONTROL P is
used as an on/off (toggle) switch. When a user thinks
there is no need for printing paper copies, he can turn
off the printer with the CONTROL P command. For
example, when the assembler is converting a source
program into machine code, the user can turn off the
printer to save thermal paper. If there are errors in

thg source program, the user can use CONTROL R to re-
edit the source program. After the source program has
been modified and the assembly completed, the user can
turn on the printer to print hard copies.

CONTROL Q stands for software escape. After pressing
CONTROL Q, the monitor regain control without affecting
any parameters in the RAM,

3.3.2 The TAB Key

The TAB key can be used efficiently by a programmer to
type 1in assembly programs. The [=5] key on the MPF-IpP
keyboard 1is used as the tab key. Pressing this key
once causes the cursor to move six spaces to the right
on the display. The key code of this key can be found
on the table of MPF-IP ASCII Code. The use of this key
enables a programmer to save RAM space when entering a
program.

3.3.3 Input Line Buffer

The input 1line buffer accepts input line of up to 48
characters. Therefore, each time a programmer type in
an input line, the length of the input line should not
exceed this limit. Because the length of the display
is 2@ <characters, the display will shift right to
display the characters typed after the 20th character
of an input line.

3.4 PRT-MPF-IP

The printer of the MPF-IP is discussed in detail in
PRT-MPF-IP manual. Please refer to that manual for

detailed operation of the printer. The wuse of
disassembler and memory dump usually synchronizes with
the operation of the printer. If no printer is

connected to the MPF~-IP, the functions of disassembler
and memory dump can not be performed.

3.5 Addresses Related with System Expansion

To determine whether peripherals are interfaced to the
MPF-IP, the MPF-IP examines the values of certain
memory locations -- 6000, 2000, and A0G0. If the
values of these memory locations are the same with
their preset values, then the MPF-IP is connected with
peripherals. The memory range form 6000 to 6FFF is
used by the PRT-MPF-IP, and that for TVB (TV Interface,
Board) is from AP@P to AT7FF, and 8K BASIC Interface,
from 2000 to 3FFF. The MPF-IP checks the values of
memory locations 20008, 6000, and AQO@ to see whether
these external devices are interfaced to the MPF-IP.
If the values of these locations are FF, then the MPF-
IP 1is not connected with external devices. If the
monitor program returns the values that are identical
with the preset values of location 2006, 60008, and
AGP®, then the MPF-IP 1is connected with external
devices.

It should be noted that when a programmer accesses
these locations, the programmer should take into
consideration the use of these addresses.

3.6 LED Lamp

There are two LED (light emitting diode) on the upper
right part of the MPF-IP main board. The functions of
them are as follows:

Green LED: When the monitor program scans the keyboard
and detects a key press, the green LED lamp
will illuminate. The speaker will generate a
"beep" sound at the same time.

Red LED: Once the CPU executes the HALT instruction,
the red LED lamp will illuminate.

3.7 When the Monitor doesn’t Respond

When the monitor doesn't respond to a command line
after the carriage return[€&—] key is pressed (This
is usually resulted from 1incorrect format of the
command line), use the back space key ¢ to revise the
format of the command line or re-type a correct command
line after typing [CONTROL) [Q} For example, if you
intend to 1look at the contents of memory 1locations
from F800 to F803. You should press

<M>=F800

Instead of typing in F80@, you typed incorrectly F80P.
Because the letter "P" is not a hexadecimal character,
MPF-IP does not respond to this command line. You can
use the back space key & to backspace to P and type in
a # and then a to re-enter the command line.

3.8 Software Break—The Instruction: RST 30H

The instruction RST 30H causes a software break to tpe
program being executed. A programmer can place t§1s
instruction at locations wherever he intends to examine
the results after certain instructions have been exe-
cuted, e.g., the contents of certain memory locations
and registers. Multiple software breakpoints can be
set within a program with the use of the RST 3@H ins-
truction for program debugging. After the CPU executed
an RST 30H instruction, control will be returned to the
monitor. Pressing the [G key and causes the CPU of
the MPF-IP to continue to execute the instructions
following the software break.

The instruction RST 38H also causes a software break.
For details of the use of the RST 38H for software
break, refer to the MPF-IP Monitor Program Listing.

The RST 30H has the same effect as the hardware break
achieved by pressing the B key. After a program is
entered into the RAM, pressing B will cause the display
to show

which prompts a programmer to enter a breakpoint in a
program. When the CPU proceeds to the breakpoint as
the program is being executed, the monitor will gain
control. Only one breakpoint can be set using the B
key.

3.9 Number Systems
3.9.1

Hexadecimal numbers are frequently used with microcom-
puters. The following table (Table 3-1) shows the
hexadecimal, binary, and decimal numbers.

Hexadecimal Decimal Binary
0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

3.9.2

Whenever a programmer is prompted to set default values
in the following functions--Editor, Line Assembler, Two
Pass Assembler, and Disassembler, the values to be
input should be in hexadecimal. Leading =zero and
trailing H (which stands for hexadecimal) may be omit-
ted.

3.9.3

When the MPF-IP is in Editor and Line Assembler modes,
hexadecimal values are identified by a trailing H. For
example, "1@" represents a decimal 10, while "10H"
stands for a hexadecimal 18--which equals to 16 in
decimal. For hexadecimal values preceded by the
letters from A through F, leading zero should be placed
so that they will not be mistaken as symbols or labels.
An example is listed as follows:

DISPBF EQU @FF2CH
ORG @FO00H
DEFW @FF65H
DEFB @BDH
LD HL,@F560H
LD A,QF8H

3.9.4

When the MPF-IP is in other modes than the Editor and
Line Assembler modes, all values to be input should be
in hexadecimal. But the trailing H is not required.

3.10 Audio Tape Interface

If operating in the Editor mode, a programmer can store
the program or data on tape with the "W" (write)
command; or read back program or data from tape with
the "L" command and return to the monitor. 1If the user
intends to re-enter the editor mode after 1loading a
tape to the MPF-IP, the monitor control command
"CONTROL R" 1is used. If a user uses the "R" (read)
command in the Editor to read data or program from
tape, the MPF-IP will remain in the Editor after
reading.

3.11 CONTROL QorQ

The Q command 1is wused to re-enter the monitor.
Pressing the Q key will re-enter the monitor when the
display shows the following:

* ERRORS

SYS-SPp

ERR-SP

The contents of registers or memory locations

* * *

3.12 CONTROL P and CONTROL G

CONTROL P and CONTROL G (they are usually shortened to
t P and T G.) only function under the following
conditions:

* When the display shows ****MPF-I-PLUS***%*
* When the MPF-IP is unde; condition 3.12
* When the display shows /

Otherwise, pressing the CONTROL P or CONTROL G will
cause the display to show meaningless characters.

Chapter 4
Operating
MPF-IP

This chapter will discuss the basic operations of Fhe
MPF-IP. At the end of this chapter, the reader will
have a basic understanding 1) how to operate the MPF-
1P, 2) program debugging, 3) support functions.
Readers are suggested to learn how to operate the MPF-
IP by following this chapter closely.

4.1 The Major Monitor Commands

The major monitor commands of the MPF-IP are listed in
the following table (Table 4-1):

ategory Command Function
* Major RESET Enter and initialize the monitor
Function
Entry .
Q Re—-enter the monitor
E Enter and initialize
the text editor
R Re-enter the text editor
A Enter two pass assembler
L Enter one pass assembler
D Enter disassembler
B Enter the BASIC language
C Re—-enter BASIC
Fill in Data | F Store data in the RAM buffer
Jump Relativel J Calculate the relative address
Insert Data I Insert the contents of a memory|
block into the RAM
Delete Data D Dalete one byte of data from
the memory
Execution G Execute a program which starts
from a specified address
Step S Single-step a program
(Execute a program instruction by
instruction.)
[} Used to set the register pairs
t whose contents are to be examined

Display/Alter
Registers

Bl (o

Display the contents of registers
Display the contents of the next
pairs of registers

Display the contents of the
register pairs that precedes the
registers currently displayed
Change the contents of registers

Display/Alter
Memory

5 = -

Display the contents of
specified memory locations
Display the contents of the next|
four bytes

Display the contents of the four
bytes that precede the current
displayed location

Alter the contents of specified
memory

Move the contents of a memory)
block to another location

Manipulate
Breakpoint

Set or clear breakpoint

Load/Dump

Memory

L
W

Load data from tape to memory

Write data from memory to tape

* Note: Any

of

the major functions are entered by

typing the related control character while holding down
the CONTROL key.

4.2 Major Function Entry and Exit

Sseven commands are provided to enter major functions.
Four of these commands allow initial entry and re-entry
into the editor and BASIC. All the seven major
functions are entered by pressing the related control
characters while holding down the key.

4.2.1 E Command—Enter and Initialize the Editor

The editor is initialized by pressing the [E key while
holding down the [CONTROL| key. For details, refer to
Chapter 6 The Text Editor.

4.2.2 B Command—Enter and Initialize the BASIC

Pressing the key while holding down the key
will enter and initialize BASIC, 1if the board location
U3 is installed with a BASIC Interpreter. However, if
the board 1location U3 is not installed with a BASIC
Interpreter, pressing the key while holding down the
key will return to the monitor.

4.2.3 R Command—Re-enter the Text Editor

Pressing the (Rl key while holding down the [CONTROL] key
will re—-enter the text editor.

4.2.4 C Command—Re-enter BASIC

Pressing the key while holding down the [CONTROL] key
will re-enter BASIC without changing the data in

memory.

4.25 L Command—Enter the One Pass Line Assembler

Pressing the key while holding down the key
will enter the one pass line assembler, which will
convert the mnemonic opcode (entered from the keyboard)
to object code and store the resultant object code in
memory. When a line assembler is in use, the user can
specify the RAM area for storing the mnemonic opcode
and resultant object code, respectively.

4.2.6 A Command—Enter and Initialize the Two Pase Assembler

Pressing the [A| key while holding down the key
will enter the two pass line assembler, which can
ronvert the source program into executable machine
code. It can also process pseudo instructions.

4-5

4.2.7 D Command—Enter and Initialize the Disassembler

Pressing the [0 key while holding down the key
will enter the disassembler, which convert machine code
into Z-80 mnemonic code. It disassembles the contents
of memory from a specified memory location until an
opcode is found. Then it will disassemble the contents
of the bytes that follow the 1locations where the
disassembled opcode is stored. In case an 1incorrect
opcode appears, the display will show a question mark.

For details of the L, A, and D commands, please refer
to Chapter 7 the Assembler.

4.3 Basic Operations
4.3.1 System Initialization-The RESET Key

When the key is pressed, a RESET signal will be
generated and the MPF-IP will start a reset cycle.
Normally the reset signal is automatically generated
after power-up. The MPF-IP is to be initialized to its
reset state by the reset signal. The monitor control
variables are set and the CPU is ready to accept
monitor commands. Finally, the display will show

kkkXMPF—I~PLUS***

Note when a "cold reset" (the reset initialized by
power—up) is initialized, the 20 characters which are
to be displayed--*****MPF-I-PLUS*****—_appear one by
one on the display. In the case of a "warm reset" (the
reset initialized by the pressing of the RESET key),
the 20 characters are displayed simultaneously.

When the RESET key is pressed, the operation of the CPU
is 1interrupted and control is returned to the monitor
which will initialize the CPU. The monitor will
examine whether a cold reset or a warm reset is to be
performed. The cold reset or power-on initialization
will be performed if the monitor determines that power
has been interrupted. A cold reset causes the monitor
control parameters and user alterable parameters to be
initialized. A warm reset only initializes the monitor
control parameters and leaves the user alterable
parameters unchanged.

The warm reset should be performed any time the CPU has
performed unknown operations or the CPU appears lost

while executing a command or an instruction. The
monitor control parameters can be easily changed when
an unvalidated user program is executed. This will

cause the MPF-IP function improperly. Performing a
warm reset allows the control to be returned to the
monitor.

4.3.2 Printer Control—CONTROL P

The printer control command is entered by pressing the
[Pl key while holding down the key. The default
state of the printer is on, e.g., after the power to
the MPF-IP is turned on, the printer is automatically
turned on. Pressing [B will turn off the
printer. Sometimes a user may not want all the dis~
p}ayed data to be printed. Instead, a user may only
wish to print the necessary data. CONTROL P allows the

4-7

user to use the printer at will. CONTROL P is an
off/on (toggle) switch which selects only two states—-—
either on or off.

4.3.3 Software Escape—CONTROL Q

This command is entered by pressing the key while
holding down the [CONTROL key. Whenever the monitor
loses control of a program or the MPF-IP, pressing
will return control to the monitor without
changing the preset parameters. Though pressing the
RESET key will also return control to the monitor, some
variables preset by the program might be damaged.

4.3.4 Bell Control—Control G

This command 1is entered by pressing the [G key while
holding down the key. is also a
toggle switch. The default state of this switch is on,
e.g., after power is applied to the MPF-IP, [CONTROL (G
is on. When this switch is on, the MPF-IP will sound a
beep each time a key is pressed. When this switch is
off, the beep sound will be suppressed each time a key
is pressed.

4.4 Support Functions
4.41 Display/Alter the Contents of Memory

The M command displays the hexadecimal Contents?of four
consecutive memory locations. The use of the M command
is listed as follows:

1. Display the contents of four memory locations
starting from the specified address. The format of
the command is

M <starting address> [«

The command line is entered following the following
steps:

a. Type M, the MPF-IP will respond with
(My= N

b. Enter the starting address of a memory range
whose contents are to be displayed.

c. Press the carriage return key [<]. The MPF-IP
will display the contents of four consecutive
memory locations immediately after the key
is pressed.

{Mr=0010 FE FF D3 92

2. The and Key:

These two keys are used in conjunction with the M
command. While the MPF-IP is displaying the con-
tents of four consecutive memory locations after a
user typed in M, <starting address>, and [,
pressing the V key causes the MPF-IP display the
contents of the next four memory locations.

w

sME=00LS DI S0 DI 1

Pressing the key causes the MPF-IP display the
contents of the four consecutive memory locations
that precede the currently displayed locations.

If no starting address is given after the M command,
e.g., the [&T)is pressed immediately after the M
command, the MPF-IP will display contents from
location 0000.

3. The fJ Key
--The Key Used to Perform a Memory Dump

The (] key when wused in conjunction with the M
command allows a memory dump to be performed. The
format of the memory dump command line is:

M <starting address> [] <ending address>

A printer must be used to perform a memory dump. If
the MPF-IP is not connected with a printer or the
printer 1is off, the MPF-IP will return control to
the monitor after the command line is entered.

SMI=0.10

oUoD ©1 00 03 ED
000« B3 EA 03 00
0003 3E S5 D3 83
000C 2E &1 D3 33
NUL0 3E

A user may use the memory dump function to set
linking address. The format of command is:

M <starting address> [;] <ending address> space bar

CME=0 .10 S000

SO0 gl 00 93 ZID
F Er 0

o

Note:
If the system does not respond after a memory

command has been entered, please check if your
printer is " on ".

4. The [:] Key
--The Key to Alter the Contents of Memory

The command format is:

M <starting address> [f] <datal data2 dataN> [

w

sMr=ESO0I0 1 22 F

i the M command
fter executing the above command, use
:gain to examine the contents the four bytes
starting from location F800

RET-- A 01 22 I3

Note: The MPF-IP accepts 1input line ot 49 gnatacters or
less. Any input line should conform to this rule.

5. The [/] Key
—~The Key to Move the Contents of a Memory Range

The command format is:

M <starting address> [/] <ending address> space bar
<destination address>

SR D]

a0 0y 00
cood B ER
anao £ =

nooc
noLn

F200 FF FF FF
F30a FF FF FF FF
Fa0z FF €F F7 FF
F30C FF FF FF FF
Fz10 FF

AME=0S10 FSOD

AMF=F200.F310

FS00 01 00 03 ED

F304 A% EA 03 00

F30s 3E 35 D3 83

FSOC 3E S1 D3 93

F810 3E
Note: When moving the contents of a memory range to
another 1location, be careful not to damage the data
stored in system RAM. If the data in system RAM is
damaged, the monitor will function improperly.

If the input parameters are incorrect, the error
message "ERRORS" will appear on the display. Pressing
Q will return control to the monitor.

44.2 The F Command

The command 1is applied to fill data into a memory
range. The format of the command is:

F <starting address> space bar <ending address>
space bar <data>

=010 FE00
=FSO0.FS10

FZ00 a1 90 03 ED
FS09 A% ER 03 00
F&03 3E 38 D3 82
F8OC ZE &1 D3 93
F310 ZE

0 F3i0 =9
D.FE10n

Fson

4 33 34 34
4 34 34 34
4 39 4 34
4 24 24 324

2
FEus 3
F303 3
F30C 3
FR10 34

The above example shows that the contents in the bytes
from F800 to F818 are scrambled. After the F command
that £fills 34 into the same memory range, all the
locations from F800 to F810 are stored with 34, Note
if the starting address of the command line is not in
RAM, the display will show "ERRORS", which will
disappear after pressing [Q] or [CONTROL [@.

4.4.3 Display/Alter the Contents of Registers

The R command 1is provided to display or alter the
contents of registers. The format of the command is:

R <register> [&=]

If a 16-bit register is entered in an R command }ine,
the MPF-IP will display the contents of that register
only.

If a 8-bit register is entered in an R command line,
the MPF-IP will display the contents of that register
and the contents of the register which 1is normally
paired with the specified register.

<R>= AF FF13
<R»>= HL FF3S
<R>= mF AHOFD
<R>= IX FFOO
<R>= SP FEAO

1. To display the contents of regis?er A, type R A [,

2. To display the contents of register palrs'sucy as
BC, DE, HL, B'C', D'E', H'L', just type in e1§her
one of the register that is contained in a regiser
pair. For example, to display the'contents of the
register pair HL, a user can type either R H
or R L [&H.

3. To display the contents of all registers, press

B &=

The display will show the contents of two register
pairs--AF and BC. To examine the contents of the
successive register pairs, press the [{] key. Using
the procedure described here, the contents of the
registers are to be displayed following the order--

AF, BC, DE, HL, A'F', B'C', D'E', H'L', IX, 1Y, SP,
PC, IF

4, To display the contents of the A', press

BB O

The registers A*', F', B', C', D', E', H', L' are
printed by the printer as follows:

AF ROFD ec FOFe
ce DOFA WL T4Fa

5. The Use of the {]Key:
The use of the MMl key is quite the contrary to that
of the II] key when used in conjunction with the [R
key.

6. The [t] Key

~-The Key to Alter the Contents of Registers
The format of the command is:

R <register> [i] <data>

To . alter the contents of 16-bit registers or
register pairs, such as IX, Iy, Sp, PC or BC, DE,

four hexadecimal letters should be entered after : .
If more than four hexadecimal letters are input,
the MPF-IP only accepts the four hexadecimal

letters last entered. To alter the contents of 8-

bit registers, only two hexadecimal letters should
be entered. If more than two hexadecimal letters
are entered, the MPF-IP only accepts the two
hexadecimal letters last entered.

To alter the contents of A', F', B', C', D', E', H',
L', type either

R B C"'" :1234 or

R B ' :12

g

R C ' : 34

After the R command has been entered, if a key,
which is not related with registers, is pressed, the
display will show the contents beginning from the
first register pair--AF.

4.44 The W Command—The Command Used for Storing Data on Tape

With its audio tape interface, the MPF-IP can write
data from its RAM to tape. The W command is provided
for achieving that purpose. The command format is:

W <starting address> space bar <ending address>
space bar <filename>

The above command stores the data of a memory range
specified by starting and ending addresses under a
given filename. The filename consists of four
alphanumeric characters or less. If more than four
alphanumeric characters are entered as a filename, only
the first four are accepted as legal filename.

Because more than one files can be stored on a tape,
various program or data files are identified by
different filenames.

Before pressing the key, make sure

1) Both ends of the recorder line are plugged into the
MIC jacks of the MPF-~IP and the recorder.

4-14

2) Rewind the tape properly--

Rewind a new tape to the beginning of the tape. For a
tape on which files already exist, rewind the tape so
that the newly created file will not overlap with files

created previously.

3) The PLAY and REC buttons of the tape recorder are
already depressed.

During the data transmission from the MPF-IP to tape,
the TONE-OUT 1lamp lights up and the speaker sounds a
noise. But the display shows nothing during the data
transmission process.

4.4.5 The L Command—The Command to Read Data from Tape
back to Memory

The format of the command is:
L <filename> [&—]

To read the file whose filename is PACE from tape to
the MPF-1P, press the following:

<L>=PACE
Before pressing the key on the MPF-IP, make sure

1) Both ends of the recorder line are plugged into the
EAR jacks of the MPF-IP and the recorder.

2) The voice volume of the recorder is set higher than
middle level.

After the key was pressed, press the PLAY button
on the recorder.

Because the filename, starting and ending addresses are
recorded on tape, a user only has to type in the
filename--in this case, PACE. The MPF-IP will search
the .filename on tape. When the MPF-IP found the
specified file on tape, it will read data contained in
the memory range, which is specified by the starting

;Rd ending addresses, to the SAME memory location in
M.

When the MPF-IP writes from memory to tape, a checksum
will be produced and written at the end of a file. When
the MPF-IP reads from tape to memory, it will produce a
checksum according to the values (data) being read. At
the end of the reading operation, the MPF-IP will
compare the checksum so generated with the checksum
that 1is written on tape when data is first recorded
from memory to tape. If the two checksums are
identical, the reading operation is performed
successfully. Otherwise, the error message "ERRORS"
will appear on the display.

During the reading process, four dots will illuminate
on the display. If a tape contains several files, the
filenames will be displayed one after another until the
specified file is located. When the MPF-IP locates the
specified file, four -'s will be displayed. After the
reading operation 1is performed successfully, the
display will appear in basic form:

<L>=<filename>

When reading data from tape to memory, make sure that
data cannot be read to the area used as system RAM. If
data from tape is read into system RAM area, program
will not execute properly.

Because the L command generates noises while reading
data from tape to memory, entering a filename that does
not exist on the tape enables a programmer to locate
the blank area on a tape. When a user intends to write
data from memory to tape, this skill is very helpful
for a programmer to locate usable space on a tape.

4.4.6 The J Command—The Command Used to Calculate Relative
Address

Relative address is used in such instructions as JR and
DJINZ. The J command enables a programmer to calculate
relative address easily. The format of the command is:

J <starting address> space bar <destination address>

The starting address is where the opcode of a JR or
DJINZ instruction is located, or from where a JR or DJINZ
is to Jjump. The destination is where a JR or DJNZ
instruction will Jjump to. Because a JR or DJNZ
instruction can jump +127 or -128 locations, if the
result of a J command is greater than +127 or less than
-128, the display will show "ERRORS".

4-16

The following example demonstrates how to use the J
command.

The JR instruction at address F86@ is to jump. to
location F8C4. The relative address should be put into
location F861. First use the M command to put 18--the
opcode for JR--into F860. Then type

<J>=F868 space bar F8C4

to calculate the relative address and Fhen put the
resulant relative address to the location F86}--the
location for storing the oprand. Because the display
does not echo what the MPF-IP has achieved, a user can
examine the locations F868 and F861 by using the M
command. If a printer is connected to the MPF-IP, the
printer will print the above as follows:

<M>=F860:18
<J>=F860 F8C4
<M>=F860 F867

F860 18 62 00 00
F864 00 00 00 00

The J command is very useful when the one pass line
assembler is in use. When a user intends to use the JR
or DJNZ instruction but cannot make certain where will
be the destination address, the programmer can first
type in JR xxxx (which stands for a decimal number
between =128 and +127). The programmer can use the J
command to calculate the relative address for the JR or
DJNZ instruction when the line assembler proceeds to
the destination of the JR or DJNZ instrucion.

44.7 The | Command—The Command for Inserting Data into
Memory

The use of the I command is demonstrated in the
following example.

Here is a memory range started from F8@@ to F813. The
contents of this memory range are listed as follows:

LMX>=FEO0I10 11 12 13
14 1S 1e 7 18 19

\Me=FS0ARIZ0 21 22 23
24 25 g6 &7 28 29
IM>=F300.F813
FeO0n 10 11 12 13
7804 14 15 18 7
Fsng 18 19 20 21
F8oc 2& 23 s &5
Fai0 26 27 238 29

& 3 4 S

Now the contents of five bytes--1, 2, 3, 4, S--are to
be inserted into this memory range. The contents of
the first byte "1" is to be placed into F8#5; that of
the second byte "2" is to be placed into F8@6; "3" into
F807; "4" into F808; and "5" into F809. Type J F804
space bar 1 space 2 space 3 space 4 space 5 .
The printer should print

<J>=F804 1 2 3 4 5
Use the M command to examine if the data is inserted

properly. Type M F800 [F813 [&=. The display
should show:

Toke
DU (O oYY
P

[CROC
OO O
LY B SRR

D

Note when inserting data into memory, the insertion is
made beginning from the address following the address
specified in the command line.

Because five bytes of data were inserted to the memory
range, the five bytes of data--15, 16, 17, 18, 19--
which previously occupied the 1locations from F865
through F809 were shifted five locations.

Since the insertion causes shifting of data, a limit
address (or default value) is set as soon as the I
command is entered, so that the shifting of data will
be 1limited by the default value--data will never be
shifted beyond the limit address (default value) FE@@.
Note that after pressing I, the display always shows

<I>=FE@08/

i tained in
The default value is set to prevent data con
system and user RAM from being destroyed by the
shifting of data. Before using the I command, a user
may examine the default value by typing

o &=

After typing I and (&), the display (or the prrinter--
if the printer is on) will print

<I>=FE00/
The default value can be changed by the user. Type
IEEE L]
The display or the printer will print

<I1>=FE@0/FBOO

After changing the default value, a programmer can
reset the default value by typing

0 dE=]
The display or the printer will print
<1I>=FB@@/C

Each time a byte of data is inserted, the byte that
precedes the limit address (default value) before the
insertion is shifted out. Thus, if five bytes of data
are to be inserted, the five bytes that precede the
limit address will be shifted out. The following
example shows how data of some bytes is lost after an
insertion of data.

)

The above example shows that after a data insertion,
the four bytes that precede the limit address before
the data insertion was shifted out. It should be noted
that the I and D commands are very useful when using
the line assembler. However, after using the I and D
commands, the relative address following the JR or DJNZ
commands should be verified using the J command.

4-19

Note data can not be inserted into ROM area. Because
the MPF-IP only accepts input lines of 48 or less
characters, the command line for an insertion should
not exceed 40 characters. For more details of the I
command, refer to the MPF-IP Monitor Program Source
Listing.

4.4.8 The D Command—The Command for Deleting Data from
Memory

The functions of the D command is contrary to that of
the I command. The D command also causes the shifting
of data in memory. Therefore, a default value is set
as soon as the D command is entered to prevent data in

system and user stack from being changed. The default
value is also FE@Q.

A. Before using the D command, a user may want examine
the default value by typing

After typing D and , the display (or the printer--
if the printer is on) will print

<D>=FE@08/
B. The default value can be changed by the user. Type
b HE @l =]
The display or the printer will print

<D>=FE0@/FB0O@

C. After changing the default value, a programmer can
reset the default value by typing

The display or the printer will print
<D>=FB@@/C

After entering the D command following step A, or B, or
C, the display will prompt the user to enter a starting
address by printing <D>= . The user may enter the
starting address to perform a data deletion. The
example below shows a data deletion process.

The following example deletes the data in two

<M>=F800:1 2 3 4 5

7 2 9 10
<M>=F8ON.FEL10

F200 01 N2 03
Fg804 0S 06 07
Fgug 09 10 FF
F80C FF FF FF
F810 FF

<D>=FE0OD/
<D>=Fg80s8
<M>=F800.F810

Fgoo 01 02 03
F804 05 Ue 07
F308 10 FF FF
FgoC FF FF FF
F810 FF

04
08
FF
FF

bytes--

F804 and F806. The limit address is set to F808 in the

beginning.

Each time a byte is deleted from the memory,

<Dr=FEDO/F208
<D>=F304
<Dr=F30S/
<D>=F35085
AME=FI00.FE10

F300 01 02 03
cgo4 06 07 00
F3as 09 10 FF
F30C FF FF FF
F210 FF

MR
RIS

04
0o
FF
FE

the byte

which precedes the limit address is filled with a zero

and the contents in the bytes that follow the

byte are shifted.

deleted

4.5 Program Debugging

4.5.1 The B Command—The Command to Set and Clear
Breakpoint

The default value of breakpoint is 1FFF after power is
applied to the MPF-IP or a warm reset.

A. To examine the breakpoint, type B [€=]. The
display or printer should print

=1FFF

“BEF=1FFF~

B. To change the breakpoint, type F860 [<——. The
printer or display should print

=1FFF/F860

<E»=1FFF/Fa50

C. To reset the breakpoint after changing the

breakpoint, type [B [CJ][E=—J]. The display or printer
should print

=F860/C

{B»=F8&0/C

Note only one breakpoint can be set with the B command.
If an instruction has more than one byte, the
breakpoint should be set at the first byte of the
instruction. Otherwise, it will cause error when
executing the program.

When processing breakpoint, the MPF-IP will use user's
stack. When the execution of a program is interrupted,
the state of the CPU remains unchanged, including Fhe
interrupt mode and the state of the interrupt flip-
flop.

4.5.2 The S Command—The Command to Single-step a Program

The format of the command is:

Bl <starting address> [«<—]

The command allows a program to be executed instruction
by instruction. This command allows a programmer to
examine the state of registers and memory after an
instruction is executed.

After the €] key is pressed, the CPU will execute a
instruction specified by the starting address then
stop. When the CPU stops, the display of the MPF-IP:
will display the address of the next instruction to be
executed, e.g., the contents of the program counter.

To execute the next instruction, press the [§ key.
After an instuction 1is executed, will be

returned to the monitor.
[¥) and [#] Key:

The up-down arrow keys can be used to set the
register (register pairs) whose contents are to be
examined each time you press the [S] key. Once the
up-down arrow key 1is wused to set the register (
register pairs), the contents of the selected
register (register pairs) are displayed each time
an instruction is single-stepped.

To execute the next instruction, press the [S] key.
and the display of MPF-IP will display, besides the
address of the next instruction, a pair of register
which you had set to be displayed every time you press
the (5] key. If you intend to change the register
on the display, just press the m or [&] key. At
the moment you press one of these two keys, the CPU
will not execute any program instruction, i.e., the CPU
is broken off for a moment until you press the (s]
key again. After an instruction is executed, control
will be returned to the monitor.

If the starting address is not entered in the command
line, the CPU will execute from address 00@¢.

The following example program starts from F8@d.

F800 LD A,l
F8¢2 LD D,2
F804 ADD A,2
F866 LD A,D
F8¢7 LD A,S
F809 LD A,6

Single-step the program from F860, and keep single-
stepping the program. The printer should print:

<S>F80@ (S)

F802 DE 02F0 HL OFOF
F802 AF 0100 BC 0216
F804 AF 0100 BC 0216
F806 AF 0400 BC 0216
F806 DE @2F0 HL OFOF
F806 AF 0400 BC 0216
F807 AF 0200 BC 0216
F809 AF 0500 BC 0216
F80B AF 0600 BC 0216

)
)
)
)
)
)
)
;
F80B DE 02F@ HL UFOF R
<

PRSI
N+ e

TRL_Q)

The monitor uses the user's stack when a program is
single-stepped. Thus, the stack pointer should point
to the user's stack in RAM--location FEAG@. Otherwise,
the MPF-IP will detect immediately and display ERR-SP.
If the stack pointer points to the system stack used by
the monitor, SYS-SP will be displayed, because stack
overlapping causes mistake when the instruction of RET
is executed. When stack overlapping occurs, the stack
pointer should be reset to its default value. or RESET
be pressed.

Once the MPF-~IP is reset, the monitor will set the
user's stack pointer to its default value--FEAO. I1f a
user's program does not affect the SP register, then
the stack overlapping will not occur.

The purpose of single-stepping a program is to enable a
programmer to trace the running process of a program.
However, if a program is too long, single-stepping a
program is too time consuming. In this case, ghe
tracing of a running program can be achieved by setting
breakpoint in the program.

4.5.3 The G Command—The Command for Executing a program

The format of the command is:
<G>=<starting address>
If no starting address is specified in the command

line, the CPU will execute according to the value of
the program counter.

The following example calls for a programmer to

1) Type in a short assembly program;
2) Set a breakpoint in the program;
3) Use the G command to execute the program;

4) Use the R command together with the v key to examine

the registers;

5) Use the S command to single-step the remaining

instructions of the program after egecution of
program was interrupted by a breakpoint.

The program to be entered is listed below:

F800 LD A,l
F802 LD A,2
F803 LD A,3
F804 LD A,4
F805 LD A,5

The program may be entered by using the M command:

<M>=FS00:3E 1 3€ 2 =
E 3 3E 4 3 5

Use the disassembler by typing CONTROL D to examine
the program is entered correctly:

<D>=F800 F80%

F800 3E LD @,01
F302 3E LT Aa,02
F&04 3IE LD a,03

F806 2E LD As04
F808 3E LD As0S

Set the breakpoint:
=1FFF/Fanq

Use the G command to execute the program:

<G>=F800

the

if

Use the R command and E]key to examine the contents of

registers,

F806 AF 0300 BC FFOD
F806 DE FFUDU HL FFDO
F80&e Ar 95FF ec 90FF
F806 e 41FB WL O0SFF
F806 IX FFDO 1Y FFoO
F30& SP FEaD PC FS0e

4-25

Use the S command to single-step the remaining
instructions of the program.

Note: After the execution of a program was interrupted
by a breakpoint, the display will show the current
value of the program counter—--the next instruction to
be executed--and the contents of register pairs AF and
BC. The user may press the v key to examine the con-
tents of other registers. After the user has examined
the registers, he can press the [G or the [§ key to
execute the remaining instructions.

EXERCISES

4.1 Print the contents of the memory range from @000
to 0010.

4.2 Move the contents of the memory range from @606 to
9010 to the memory range starting from F908 to
F910@.

4.3 Print the contents of the memory range from F9¢0
to F91l0. '

4.4 Change the contents of memory location F900 to 44
and that of F901 to 22.

4.5 Examine the contents of the memory locations F900
and F901 to see whether their contents have been
altered to 44 and 22,

4.6 Fill 44 to the memory range from F982 to F910.

4.7 Dump the contents of the memory range F906 through
F910 to see if the contents have been changed.

{M>=F3200.F310

FO00 44 22 44 44
F304 44 44 44 44
Fo0a 44 44 44 44
FYOC 44 44 ad 44
F910 44

Chapter 5

Useful
Subroutines

5.1 MPF-IP System Parameters

ADDRESS | LABEL BYTES FUNCTION
OFEDOH | STEPBF 4 Tape File Name
OFED4H | STEPBF+4 2 Tape Starting Address
OFEDEH | STEPBF+6 2 Tape Ending Address
OFED7H | STEPBF+8 1 Tape Check Sum

FDIT-START-ADDR 2 Editor Bottom
OFED9H Assembler Text Buffer From
OFEDBH | END-DATA-ADDR 2 Editor Top

Assembler Text Buffer To

OFEDDH | END-LN-NO 2 Editor Last Line Number
OFEDFH | RAM-START-ADDR 2 Editor Low Limit
CFEE1H | EDIT-END-ADDR 2 Editor High Limit
OFEE3H | ST-F 2 Assembler Symbol Table From
OFFESH | ST-T 2 Assembler Symbol Table To
OFEE7H | OBJ-F 2 Assembler Object Code From
OFEE9H | OBJ-T 2 Assembler Object Code To
OFFEBH | END-ADDR 2 Limit of Insert and Delete
OFEEDH | BRAD 2 Break Point Address
OFEFFH | BRDA 1 Data Of Break Point Address
OFFFOH | POWERUP 1 Power Up Initialization

ADDRESS| LABEL BYTES | FUNCTION :‘
OFEF1H TEST 1 Test Flag

—
OFEF2H | STEPFG 1 Step Test Flag
OFEF3H | PRTFLG 1 STEP mode test flag -
OFEF4H | BEEPSET 1 BEEP toggle switch -
OFEF5H | FBEEP 1 Beep Frequency
OFEF6H | TBEEP 2 Time Duration Of Beep -
OFFF8H | MADDR 2 Temporary Storage
OFFFAH | TEMP1 4 Temporary Storage
OFEFFH | ATEMP 1 Temporary Storage
OFEFFH | HLTEMP 2 Temporary Storage

IMIAD 2 Contains the address of
OFFO1H Opcode FF' Service Routine
(RST38H)

OFFO03H | RCOUNT 1 Register Counter
OFF04H | INPBF 40 Input Buffer
OFF2CH | DISPBF 82 Display Buffer
OFF7EH | GETPT 2 Check Hex pointer
OFF80H | TYPEFG 1 Memory and Register Test Flaj
OFF81H | CRSFT 1 Display delay time
OFF82H | OUTPTR 2 Input buffer pointer
OFF84H | DISP 2 Display buffer pointer
OFF8€H | INPTR 2 Limit of input buffer pointer
OFF88H | REGBF 26 Register Buffer
OFFA2H | EDITOR 14 RAM Buffer For Editor
OFFBOH | ASSEMBLER 79 RAM Buffer For Assembler

5.2 Input/Output Parameters and Summary

1.

of Subroutines

Input buffer: INPBF - INPBF+39

The input buffer consists of 40 bytes starting from
INPBF to INPBF+39. Data is stored in the input
buffer in ASCII format. Thus, up to 4@ ASCII
characters can be stored in the input buffer.

When a wuser intends to print the contents in the
input buffer, set IX = INPBF and then call MTPPRT,
then the data in the input buffer will be printed
out.

Input buffer pointer: (OUTPTR)
The input buffer pointer is expressed by (OUTPTR).

Input buffer lower limit: (INPTR)

Display buffer: DISPBF - DISPBF + 81

Display buffer pointer: (DISP)

The address of (DISP) is the address in the display
buffer from where the display pattern for the next
character to be displayed is stored.

5.2.1 BEEP

[Address]: ©9803H

[Function]: Call TONE to generate sound.
[Input]: None

[Output]: None

[Register]): AF, BC, DE, HL

[Call]: None

5.2.2 CHK 40

[Address]: 0912H

[Function]: Check the number of contents in the display
buffer. If the number is greater than 49,
change the IX pointer.

[Input]: (DISP)

[Output]: IX &— IX (If the number of contents is
less than 40.)
IX ¢&— (DISP)-38
Carry flag = 1 if (DISP) < (DISPBF+38)

[Register]: AF, DE, HL, IX
[Call]: None
5.2.3 CHRWR

[Address]: ©0924H

[Function]: Convert a byte (ASCII code) in A register
to display patterns and store them into
display buffer and input buffer
respectively. Then call CURSOR.

[Input]J: A, (DISP), (OUTPTR)

[Output]: Store the ASCII code contained in A
register in (OUTPTR). The display pattern
is made up of two bytes. The first byte is
stored in (DISP), and the second byte is
stored in (DISP)+1.

(OUTPTR) &— (OUTPTR)+1
(DISP) &— (DISP)+2
[Register]: AF
[call]: CONVER, CURSOR

5.2.4 CLEAR

[

[Address]: @9B9H

[function]: Clear the display buffer, and set the
contents of DISP and OUTPTR to the starting
address of display buffer and input buffer

respectively.
[Input]: None
[Output]: (OUTPTR) <— INPBF

(DISP) ¢— DISPBF

5-6

[Registe]: None
[call]: CLRDSP

5.2.5 CLRBF

[Address]: @7F6H)

[Function]: Call CLEAR, set IX to be the starting
address of the display buffer, and call
CHRWR to generate

[Input]: None

[Output]: (OUTPTR) <—— INPBF+1
(DISP) &— DISPBF+2
IX «— DISPBF

[Register]: AF, IX

[call]: CLEAR, CHRWR

5.2.6 CLRDSP

[Address]: ©840H

[Function]: Clear the display buffer.
[Input]: None

[Output]: None

[Register]: None

[Call]: None

5.2.7 CONVER

[Address]: @821H

[Function]: Convert a byte (ASCII code) in A register
to display pattern and store them in
display buffer.

[Input 1: A, (DISP)

[Output]: The display pattern consists of two bytes.
The first byte is stored in (DISP), and the
second byte in (DISP)+1.

(DISP) <¢— (DISP)+2
[Register]: AF
[Call]: None

5.28 CR

[Address]1: ©93BH

[Function]: Print out all the contents in input buffer.
Check the TV interface. If TV interface
boarq exists, then jump to TV interface
service routine.

[Input]: (OUTPTR)

[Output] (OUTPTR) <— INPBF
. (DISP) <&— DISPEF
[Register]: AF
[Call 1: CR@®, PTEST, PRINTT, CLEAR, CURSOR

5-7

5.29 CR 1

[Address]: B97AH
[Function]): The same as CR but the display timing is
about 1 sec.

(Input]: (OUTPTR)
[output]: (OUTPTR) <— INPBF
(DISP) <«— DISPBF
[Register): AF, B, A'F', B'C', D'E', H'L', HL.
[call]: CR@, PTEST, SCAN1, PRINTT, CLEAR, CURSOR
5.210 CR 2

[Address]: 0981H
[Function]: The same as CR but CR2 do not call CLEAR
and CURSOR. The display time is about 320 msec.

[Input]: (OUTPTR)

[Output]: None

[Register}: AF,B,A'F',B'C',D'E',H'L'.
[Call]: CR@O, PTEST, PRINTT
5211 CR 3

[Address]: @985H

[Function]: The same as CR but CR3 call routine CLRBF
instead of CLEAR. The display time is about
480 msec.

(OUTPTR)

(OUTPTR) <— INPBF+1

(DISP) <«— DISPBF+2

[Register]: AF, IX

[Call]: CR@#, PTEST, CLRBF

5.2.12 CURSOR

[Input]
[Output]

[Address]: @A79H
[Function]: Get cursor message
[Input]: (DISP)
{Output]: The first byte of cursor in (DISP) and the
second byte of cursor in (DISP)+l.
(DISP) <&— (DISP)
The contents of (DISP) remains the same.
[Register]: AF
[Call] : CONVER

5.2.13 DECBIN

[Address]: 0B28H

[Function]: Convert decimal numbers (in ASCII codes) to
hexadecimal numbers until a non-decimal
number (the numbers not in the range from 0
to 9) is encountered.

.5-8

[Input }: DE. The value of DE is a pointer that
points to the first ASCII code to be
converted.

[Output]: HL. The hex values returned by the
subroutine are stored in HL.

[Register]: AF, BC, DE, HL

[Call]: None

5.2.14 DECIMAL

{Address]: OABS8H

[Function]: Convert hexadecimal values in HL to
corresponding decimal values (in ASCII code
format). Store decimal value into input
buffer and its corresponding display
pattern to display buffer.

[Input]: HL 1is used to store the *hex values to be
converted. .
(OUTPTR) points to the starting address of
the input buffer.
(DISP) points to the starting address of
the display buffer.

[Output]: (OUTPTR) <— (OUTPTR)+?
(DISP) &— (DISP)+2*?
? is the number of characters to be
printed.

[Register]: AF, BC, DE, HL, IY

[call]: CHRWR

[Example]: Given the value of HL is @20@H, its decimal
equivalent--512-~will be returned after
calling DECIMAL. 512 will be stored in
ASCII form (35 31 32) in the input buffer
and its display pattern is stored in
display buffer.

5.2.15 DEC-SP

[Address]: 8399H

[Function]: Put FF in (DISP) and (DISP)+1l
[Input]: (DISP)

[Output]: (DISP) remains unchanged.
[Register]: AF, HL

[Call]: None

5.2.16 ERROR

[Address]: @06C4H
[Function]: Print ERROR message and call PRTMES
[Input 1: None
[Output]: (OUTPTR) <«— INPBF+8

(DISP) <«— DISPBF+16
[Register]: AF, HL
[Call 1: PRTMES

5-9

5.2.17 GETCHR

[Address }:
[Function]:

[Input
[Output

[Register])

[Call

]

§.2.18 GETHL

[Address]:
[Function]:

[Input
[Output

[Register]:

[Call

5.2.19 HEXBIN

]

[Address]:
[Function]:

[Input

[Output

]

1

[Register]:

[Call
[Note

]
]

@8AEH

Use (GETPT) as a pointer. Load (GETPT) to
HL and increment HL until (HL-1) is one of
the following delimiters: SPACE, TAB,
=, / and (HL+l) is not SPACE or TAB.
(GETPT)

)

HL &= HL+?

(GETPT) < (GETPT)+?

AF, HL

None

P8ESH

Call GETCHR. Using HL as a pointer,

convert ASCII codes to hex values and store
them into HL.

(GETPT)

(GETPT) <— (GETPT)+?

HL is stored with hex value. If there is
only one hex digit, H = @ and the digit is
stored in L. If the data Iis not

hexadecimal digits, carry flag = 1. 1If the
last ASCII code is <CR>, zero flag = 1.

AF, DE, HL

GETCHR, ONE

@AF4H

Convert ASCII codes to hex wvalues until

non-hex digit is encountered. DE is used

as a pointer.

The value of DE 1is the pointer, which

points to the first location of ASCII code

to be converted.

The wvalue of HL is the hex numbers after

being converted. (HEXFLAG) is set if there

exists a digit within (A, B, C, ...F) or

the last none hexadecimal character is 'H'.

AF, BC, DE, HL

ONE

1) The execution of this subroutine stops
when the value of (DE) is not within the
range from 38 to 39 and the range from
41 to 46. Refer to the MPF-IP ASCII
code table.

2) If the data to be converted 1is, stored
from the location F8@@, then the value
of DE should be set to F800. After

5-1¢

5.2.20 HEX 1

(Address]:
[Function]:

[Register]:

5.2.21 HEX 2

[Address]:
[Function]:

[Register]:

5.2.22 HEX 4

[Address]:
[Function]:

calling HEXBIN, the value of HL will be
1234 and (HEXFLAG) = 0.

@AADH
Convert the least significant four bits in

register A (binary data) to ASCII code and
display pattern, and call CHRWR.

A, (DISP), (OUTPTR)

The ASCII code is stored in (OUTPTR). The
display pattern consists of two bytes—--the
first byte is stored in (DISP), and the
second is stored in (DISP)+l.

(OUTPTR) <= (OUTPTR)+1

(DISP) <~ (DISP)+2

AF

CHRWR

PA9AH

Convert the contents in A register (two hex
numbers - one byte) to two ASCII codes and

display patterns. Call HEX1l twice.

A, (DISP), (OUTPTR)

The ASCII code converted from the most
significant four bits is stored in (OUTPTR)
while the first byte of its display pattern
is placed into (DISP) and the second byte
of its display pattern into (DISP)+l.

The ASCII code converted from the least
significant four bits is stored in
(OUTPTR)+1 while the first byte of its
display pattern is placed into (DISP)+2 and
the second byte of its display pattern into
(DISP)+3.

(OUTPTR) €= (OUTPTR)+2

(DISP) < (DISP)+4

AF

HEX1

BA92H

Call HEXX and SPACEl.

HL, (DISP), (OUTPTR)

In addition to the output generated by
HEXX, the ASCII code of 'SPACE' is stored
in (OUTPTR)+5 while the first byte of its
display pattern is placed in (DISP)+8 and

5-11

[Register
[Call

5.2.23 HEXX
[Address

[Function

[Input
[Output

[Register
[Call

5.2.24 LDA

[Address
[Function

[Input
[Output
[Register
[Call

):
):

]:
):

]:
]:

]:
]:

]:
]:

the second byte in (DISP)+9.
(OUTPTR) <= (OUTPTR)+5
(DISP) < (DISP)+19

A

HEXX, SPACEl

PAB9H

Convert the two bytes of hex values in HL
to ASCII codes and display patterns. Call
HEX2 twice.

HL, (DISP), (OUTPTR)

The ASCII code converted from the most
significant four bits in H is stored in
(OUTPTR) while the first byte of its
display pattern is placed in (DISP) and the
second byte is placed in (DISP)+1.

The ASCII code converted from the least
significant four bits in H is stored in
(OUTPTR)+1 while the first byte of its
display pattern is placed in (PISP)+2 and
the second byte is placed in (DISP)+3.

The ASCII code converted from the most
significant four bits in L is stored in
(OUTPTR)+2 while the first byte of its
display pattern is placed in (DISP)+4 and
the second byte is placed in (DISP)+5.

The ASCII code converted from the least
significant four bits in L is stored in
(OUTPTR)+3 while the first byte of its
display pattern is placed in (DISP)+6 and
the second byte is placed in (DISP)+7.
(OUTPTR) < (OUTPTR)+4

(DISP) & (DISP)+8

AF

HEX2

@8B1H

The same as that of GETCHR. But LDA sets HL
directly.

HL

The same as that of GETCHR.

AF, HL

None

5.2.25 MSG

[Address]:
[Function]:

[Input
[Output

1:
1:

[Register]:

(call

]:
5.2.26 MTPPRT

.

[Address]:
[Function]:

[Input
[Output
[Register
[Note

5.2.27 ONE

]
]
]
]

o oo e oo

[Address]:
[Function]:

]:

[Input
[Output

*

].

.

[Register]:

[Call

1

#9CAH

Convert ASCII code stored in input buffer
to display patterns and put the resultant
display patterns to display buffer until a
<CR> 1is encountered. HL is used as the
pointer for the input buffer.

HL, (DISP), (OUTPTR)

HL <= HL+?

(OUTPTR) ¢~ (OUTPTR)+?

(DISP) <~ (DISP)+2*?

AF, HL

CHRWR

6A40H :

Print the. contents of the memory range

pointed by IX until a <CR> is encountered.

IX

None

A'F', B'C'

The use of MTPPRT is listed below:

1) Set the value of IX,-which points to the
starting address of a memory range to be
printed;

2) MTPPRT regards @A as a line feed signal,
9 as a TAB, and 0D as the end of the
memory range;

3) The data to be printed 1is stored in
memory in the form of ASCII codes and
should be ended with @DH;

4) When the data to be printed exceed 20
characters, MTPPRT will generate a line
feed signal automatically.

#B14H

Convert a byte (ASCII code) in A register
to hex digit.

A (ASCII code)

A (hex number)

If the data is not a hex number,

carry flag = 1.

If the value of A falls within A to F,
(HEXFLAG) # @.

AF

None

5.2.28 PLINE

[Address]: 6A30H

[Function]: Call PLINEFD twice and perform 1line feed
twice.

[Input]: None

[Output]: None

[Register]): AF, B

5.2.29 PLINEFD

[Address]: 6A10QH

[Function]: Perform a line feed action.
[Input]: None

[Output]: None

[Register]): AF, B

5.2.30 PRINTT

[Address]: @893H

[Function]: Call PTEST. If MPF-IP is connected with
PRT-MPF and the printer is on, print out
all contents ir the display buffer.

[Input]: None

[Output]: None
[Register]: AF

[Call 1]: PTEST, MTPPRT

5.2.31 PRTMES

[Address]: @886H
[Function]: Call MSG. Display the contents of a memory
range on display and print the same with

PRT-MPF.

[Input]: HL: The starting address of the memory
range.

[Output 1: (OUTPTR)+?
(DISP)+2%*?

[Register]: AF, HL

[Call]: CLEAR, MSG, DECDSP, CR2

5.2.32 PTEST

[Address]: 08A3H .
[Function]: Check the condition of the toggle switch of
the printer. 1If it is on, call PTESTT.

None)
1) Zero flag = 1 if a printer exists and

the toggle switch is on.

2) Zero flag = @ when the printer does not exist
the toggle switch is on. .

3) Zero flag = @ when the printer is off.

5-14

[Input]
[Output]

[Register]: AF
[call]: PTESTT

5.2.33 PTESTT

[Address]: @8A8H) .
[Function]: Check if the MPF-IP 1s connected with the

PRT-MPF.

[Input]: None]
(output 1: Zero flag = 1 if the MPF-IP is connected

with the PRT-MPF.
[Register]: AF
[Call]: None

5.2.34 RAMCHK
[Address]: ©819H

[Function]: Check if a memory address is in RAM.
[Input]: HL is stored with the address to be

checked.
[output 1: Zero flag = 1 if the address is in RAM.
Zero flag = @ if the address is not in RAM.
[Register]: None
[Call]: None

5.2.35 READLN

{Address]: @9D4H
[Function]: Read a string of characters ended with <CR>
[Input l]: (DISP), (OUTPTR)
[Output]: (INPTR) &~ (OUTPTR)

(OUTPTR) <~ (OUTPTR)+?

(DISP) ¢ (DISP)+2*?
[Register]: AF, BC, DE, HL, A'F', B'C', D'E', H'L'
[Call]: CHK40, CURSOR, CR#, SCAN, CHRWR

5.2.36 SCAN

[Address]: ©246H

[Function]: Call SCAN2 and BEEP.

[Input]: IX points to the buffer containing display
patterns.

[Output]1: Internal code for the key pressed.

[Register]: AF, BC, DE, HL, A'F', B'C', D'E', H'L®

[Call]: SCAN2, BEEP

5.2.37 SCAN 1

[Address]: @29BH

[Function]: Scan the keyboard and display one cycle.
Total execution time is about 16 ms
(exactly 15.7 ms, 28040 clock states @ 1.79

5-15

[Input
[OQutput

[Register]

[Call

]

.

5.2.38 SCAN 2

[Address]:
[Function]:

[Input
[Output

[Register]:

[Call

]

5.2.39 SHIFT

[Address]:
[Function]:

[Input
[Output

]
]

[Register]:

5.2.40 SKIP

[Address]:
[Function]:

[Input
[Output

]
]

MHz) .
The same as SCAN.
1) If no key is pressed,
then carry flag = 1.
2) If a key press is detected during one

scan, then carry flag = @ and the
position code of the key pressed is
stored 1in A. (The position code is

determined by its position in the 20 by
3 keyboard matrix. Refer to Chapter 8)
AF, A'F', B'C', D'E', H'L®
None

#24DH

Similar to that of SCAN1l, but differ with

SCAN1l in two respects:

1) SCAN1l only scans once, while SCAN2 keeps
scanning until a key is pressed.

2) SCAN1l gets a position code, while SCAN2
returns an ASCII code.

The same as SCAN1.

Internal code (ASCII <code) of the key

pressed.

AF, BC, HL, A'F', B'C', D'E', H'L'

SCAN1

6AQDH

For controlling the PRT-MPF. Move the
thermal head to the right. The greater the
value in B, the farther the thermal head
will be shifted to the right.

B

None

AF, B

@B40H]

Skip TABs and BLANKs. Use HL as a pointer,

increment HL wuntil (HL) is not SPACE or

TAB.

HL

HL <= HL+?

? is the number of TABs or BLANKs and (HL)

is not TAB or BLANK.

A <« (HL) . .

carry flag =1 if (HL) is not within the

range from A to Z. .

carry flag = @ if (HL) is within A to Z.
5-16

[Register]: AF, HL
[Call]: None

5.2.41 SPACE 1
(Address]: OA95H

{Function]: Load 20H (SPACE) to A and then call CHRWR.

[Input]: (DISP), (OUTPTR)

[Output]: The same as that of CHRWR.
[Register]: AF

[Call]: CHRWR

5.2.42 TONE
[Address]1: ©874H

[Function]: Generate a square wave to the
speaker on MPF-IP.

[Input J: 1) The register C is used to control

frequency of the tone to be

generated.

Its cycle is 2*(44+413*C)*@.56 micro-sec,
which equals to 200/ (10+3*C)KHz.

2) HL is wused to store the

periods, which should be less than

equal to 32768.

[Output]: None
[Register]: AF, B(C), DE, HL
[Call]: None

5.2.43 TONE 1K

[Address]: 086FH
[Function]: Generate a sound of 1KHz.

[Input]: HL 1is used to store the number of periods,

which should be 1less than or

32768.
[Output]: None
[Register]: AF, BC, DE, HL
[Call]: None

5.2.44 TONE 2K

[Address]: @872H

[Function]: Generate a tone of 2KHz.
[Input]: The same as that of TONE1K.
[Output]: None

[Register]: AF, BC, DE, HL

[Call]: None

Chapfter 6
The Text Editor

The text editor of the MPF-IP is used to create text
file--which normally consists of assembly language
source programs, Source program or data is first
entered from input devices such as the keyboard to the
text buffer, which is an area in the RAM. Then, source
program or data will be output to memory devices or

executed.

The MPF=IP keyboard 1is normally used as the input
device, and 1its 2@-character display and printer are
used as output devices. Cassette tape is used as perma-
nent storage for data and programs.

6.1 Text Buffer

on MPF-IP, text is stored in the text buffer, wbich may
be specified by the user. When the text editor |is
initialized, a user may specify the starting address
and the ending address of the text buffer. If the user
does not specify the starting and ending addresses, the
MPF-IP will set them automatically. In this case, two
default values are set automatically by the MPF-IP.

When a 4K RAM is installed on board location U4, the
default values are F@@@ and FAFF. That means the text
buffer is the RAM area starting from F@@@ through FAFF,
when the board location U4 is installed with a 2K RAM,
the default values are F800 through FCFF.

Text is stored in the text buffer in ASCII form. Each
ASCII character is stored in a byte. A text line may
consist of different number of characters and is always
ended with a carriage return character "@D" (Refer to
the MPF-IP ASCII Code table). The ASCII code for
carriage return "@D" also requires one byte to store.

Thus, a user can easily calculate the RAM space neces-
sary for the text buffer which can meet his specific
programming need. When a user allocates a memory space
in the RAM of the MPF-IP to be used as the text buffer,
it is desirable that the text buffer be set larger than
what is actually needed for the text buffer, enabling
easier editing and modification of the source file 1in
the future.

6.1.1 Line Pointer

A logic current line pointer is used to point to the
location at which data (such as a character) will be
stored. By logic, it means that the line pointer is
actually wused internally by the computer but does not
has a physical form. Because the MPF-1P's editor is
a line-oriented editor, a line pointer is neseccary to
point to the location upon which an editor operation is
to take place.

The current line pointer is always positioned in front
of the first character of the current opened (accessed)
ling. The current opened line is also known as an
active line. All editing operations begin from an
active 1line. After an editor operation is completed,
tpe line pointer either points to the beginning of the
line 1last accessed or a newly opened line (the line
that is one line down from the line last accessed.)

6-5

6.1.2 Length of a Line

In order to keep data stored in the memory accurately,
the maximum number of characters you can key into each
line 1is limited to 39 characters. If you enter more
than 39 characters, the editor will not accept the
characters following the 39th character and respond
with a " Beep " sound.

6.2 Enter and Re-enter the Editor

There are two ways for you to enter from the monitor to
the editor:

6.2.1 The “E” Command-Using the Editor in Input Mode

The E command 1is entered by typing the E key while
holding down the CONTROL key.

After the E command is entered, the display will prompt
a user to specify the starting address (lower limit) of
the text buffer by displaying

F:
When being prompted by the editor, you can

1) Enter the starting address followed by a carriage
return [€&=]. After you typed in the starting
address and (&) the MPF-IP will prompt you again to
enter the ending address (upper limit) for the text
buffer by displaying a "T". After typing in the
ending address for the text buffer and the carriage
return key the MPF-IP will display INPUT then
the cursor of the editor. At this time, the user
can enter the instructions of a mnemonic source
program.

2) Press the key to enter the input mode of the
editor and type in your program. Note that after
the key is pressed, the MPF-IP will display the
default values for the text buffer for a few seconds
and then prompt you to enter your program,

3) The address range for text buffer:

Default User Define

e e e e e e — e e e ———————-—— -—— - - - - - - -

F:FBOO T:FAFF F:xxxxT:yyyy

6-6

When the MPF-IP is under the control of the monitor,
the E command allows a user to enter the editor in
input mode. once the E command is entered, all editor
parameters (default values) will be reset.

when the MPF-IP is in input mode, the display will
print the editor prompt character ,» . After an
jnstruction line, a carriage return is entered to sepe-
rate it from the next instruction line. Pressing the
carriage return key twice allows a user to re-enter the
editor in edit mode.

6.2.2 The “R” Command-Using the Editor in Edit Mode

The R command is entered by typing the R key while
holding down the CONTROL key.

wWhen the MPF-IP is under the control of the monitor,
pressing "R" allows a user to re-enter the editor in
edit mode without changing the parameters and the data
that is already stored in the text buffer.

Note that the difference of the editor's E and R com-~
mands is that the E command resets the parameters
(default values), while the R command enters the editor
without changing the default values and the text en-
tered with the text editor. After typing in the R
command to re-enter the editor, the line pointer is
always positioned in the beginning of the top line of
the text buffer.

6.2.3 The-(TAB) Key

When the editor is in input mode, the key is used
the same way as the TAB key. The Kkey can be used
efficiently to save memory space, For example, if the
following instructions are to be entered, memory space
can be used most efficiently by typing the keys in
accordance with the following sequence:

=

M FOR INC HL
N
©

a =

O (SPACE)

H

19

£ (CARRIAGE RETURN)

9] FOR LOOP CALL SCAN1

=

0
®
B
(9]
LY
L)

=R

@
(]
8
<
LY
LY

@
3 (CARRIAGE RETURN)

6-8

6.3 Summary of the Editor Commands

Category

Editor Entry

Commands

Enter (CONTROL)

Function

Enter the editor from monitor
Enter the editor from monitor

and Exit Re-enter (CONTROL)
Quit Quit the editor and enter the
monitor
Text Delete Delete a line
Manipulating Insert Insert a line
Commands Print n Print n lines
Read/filename/ Read data from tape
Write/filename/ Write data to tape
z Print all the data in text buffer
Line Pointer Bottom Move the line pointer to the
Manipulating bottom of the file
Commands Gn Move the line pointer to the nth
line in the text buffer
Line number Print the line number of the line
pointed to by the line pointer
Next n Move the line pointer to the next
n line
Top Move the line pointer to the top
of the file
Up n Move the line pointer up n lines
String Change/old string/
Handling new string Change a string in the current line
Commands
Find/string/ Find the line with the
specified string
Other Commands | Space rint text buffer default values
and the memory space used to store
the current text file
X Control the prnter (a toggle switch)

Carriage Return

isplay the next line

6.4 Editor Entry and Exit Commands

6.4.1 The E Command-Enter and initialize the editor

The E command has been discussed in detail in

6.2.1

6.4.2 The R Command-Re-enter the editor

The

R comm§nd has been discussed in 6.2.2.
after entering the editor while the MPF-IP is
control of the monitor,

the edit mode prompt

Note that
under the
character

"$" will prompt you to enter your program.

6.5 Text Manipulating Commands-The commands for

data input/output/ update
6.5.1 The | Command-Insert Lines

The I command is used to insert program lines beginning
from the active line. The following procedure

examplifies the use of the I commad:

1) Find the current line with the following commands

T, B, U, N, G or F.
2) Press I, and the MPF~IP will respond with

SI
INPUT
"

3) When the editor prompt character "n" appears on the
display, input your instruction lines. A carriage

return should follow each instruction 1line

to

identify the end of a program line. After all the
program lines have been entered, type the carriage

return key twice to return to the edit mode.
Example :

Use the T and 2 commands to print the text
currently in the text buffer.

EDIT

$Z

TOP LINE OF TEXT
LINE 2

LIME 3

LINE ¢

EQTTOM LINE

If two lines are to be input after the third line,
the T, G, and I commands.

3G 2
LINE 3
£1
INPUT
LINE 3R
LINE 3B

file

use

After the two lines have been inserted, print the file
currently in the text buffer with the T and Z commands.

32

TAOFP LINE OF TEXT
LINE 2

LINE 3

LIME 3R

LINE 3B

LINE 4

BEOTTOM LINE

6.5.2 The D Command-Delete a line

The D command allows a user to delete a line from the
text file. The use of the command is examplified as
follows:

1) Locate the line to be deleted using the T, B, U, N,
G and F commands.
2) Enter the D command, the MPF-IP will respond with

$D

3) Press the carriage return key, and the editor will
delete the current line and move the line pointer up
one line.

Example :

Print the data in the text buffer with the T and 2
commands:

s

TOP LINE OF TEXT
LINE
LIME
LINE 2ZA
LINE ZER
LINE
EQTTOM LINE

W W

)

4

Locate the line to be deleted with the T and F
commands, and delete the line with the D command

Print the data now in the text buffer using the 2
command.

=i

oF o
LIng
CINME
LINE
LINE
EOTTOM LINE

ME GF TEx

-
"
~

T b WLy
I

6.5.3 The P Command-Print a specified number of lines.

The P command allows a user to print n lines beginning
from the current 1line, If the P command 1is not
followed by a number, the editor will only print one
line. The use of the command 1is examplified as
follows:

1) Locate the line to be printed using the T, B, U, N,
G and F command.

2) Enter the P command which may or may not be followed
by a number to specify the number of lines to be
printed. The MPF-IP will respond as follows:

SP n

3) Press the carriage return key. The PRT-MPF-IP will
print the data as specified.

4) After the MPF-IP executed the P command, the line
points to the last line printed.

5) If the command line does not include the number of
lines to be printed, the MPF-IP will print only one
line.

Example :

Given the data in the text buffer is as follows:

sZ

TCF LINE OF TEXT
LINE 2

LINE 3

LINE 3A

LINE 4

EOTTOM LINE

If line 3, 4, and 5 are to be printed, you can use the
G command to locate line 3.

r~
[
m
w

Then enter the command line "P 3" to print the three
desired line.

SF 3

LINE 3

LINE 3A

LINE 4
on MPF-IP version 1,1, after a 5source program
instruction is displayed, the Editor waits for the user
to press the carriage return key. If the currently

accessed instruction line has more than 20 characters,
pressing the backspace [<--] key continuously will
allow you to shift left the displayed line.

After you have finished examining the currently
accessed line, pressing the carriage return key enables
you to enter into the Edit Mode, and the Edit Mode
prompt character " $§ " will appear and wait for you to
enter the next Editor command. If you want to examine

the next line, you can simply press the carriage return
key.

You can follow the above mentioned steps to watch
several consecutive lines., However, it is inconvenient
to press the carriage return key repeatedly to proceed
to the next line. Thus, the new version of the Editor

also provides a simpler way to examine several consecu-
tive line.

When you want to examine several lines in a row, you
can first enter the " P n " command. (You can refer to
section 6.3 Summary of the Editor Commands in the MPF-
IP User's Manual on the " P n " command.) After the
command " P n " is entered, you only have to press the
carriage return key once to proceed to the next line.

For example, if you intend to examine 10 lines in a
row from the current line, you can enter " P 160 " and

then press the carriage return key to proceed to the
next line.,

6.5.4 The Z Command-Print all The lines In the text butfer

The use of the Z command is as follows:

1)
2)
$z
3)

Use the R command to enter the edit mode. (Skip this
step, if the MPF-IP is already in the edit mode.)
Enter the Z command. The MPF-IP should respond with

Press the carriage return key. The MPF-IP will
pPrint all the data currently in the text buffer.

6.6 Line pointer Manipulating Commands

Five of the line pointer manipulating commands allow a
user to move the line pointer to a desired position and
one enables a user to display the line number currently
pointed to by the line pointer.

6.6.1 The B command-Move the cursor to the bottom of a file

The use of the command is as folows:

1) Type in B. The MPF-IP responds with

$B

2) Press the carriage return key. The MPF-IP will
print the 1last line of the file currently in the
text buffer and move the line pointer to that line.

Example :

The data now in the text buffer is as follows:

sz
TOF LIME OF TEXT
LINE 2

LINE 3

LINE 3R

LINE 4

EDTTOM LIME

Type the B command, the MPF-IP will print

$B
BEOTTOM LINE

6.6.2 The G n command-Move the line pointer to the nth line of
the file currently in the text buffer
The use of the "G n" command is depicted as follows:

1) 5?§§r the G n command. The MPF-IP will responed

$G n

2) Press the carriage return key. The PRT-MPF will

print the nth line of the file currently in the text
buffer and move the line pointer to that line.

Example :

The following data is stored in the text buffer.

If

2

TOP LINE OJF TEXT
“INE 2
LIMNE 3
LINE 3R
LINE 9
BOTTOM LINE

a user intends to move the line pointer to the 4th

line of the file, he can use the G 4 commad.

55
M

4
m g

©0

&

After the command has been executed by the MPF-IP, the
line pointer points to the start of the 4th line.

6.6.3 The U command-The command to move the line pointer of

line up.

the use of the command is as follows:

1) Enter the U n command. The MPF-IP will respond with
SU n
2) Press the carriage return key. The MPF-IP will

3)

print the line that is n lines up from the current
line pointer to that line.
If the command line of the U command does not
include the number of lines, the line pointer will
only be moved up one line.

Example :

The data now in the text buffer is as follows.

2

TAOP LINE OF TEXT
LINE 2

LINE 3

LINE 3R

LINE 4

BOTTOM LINE

In the example in 6.6.2, the line pointer has been
positioned in the 4th line. If a user intends to move
the 1line pointer to the second line, he can use the
"y 2" command.

s 2

LIME 2
6.6.4 The N n Command-The command that moves the line pointer

n line down

The use of the command is listed as follows:
1) Enter the N n command. The MPF-IP will respond with

SN n

2) Press the carriage return key. The display and
printer of the MPF-IP will print the line that is n
lines down and move the line pointer to that line.

3) If the command line does not specify a number, then
the command line will have a default value of @,
e.g., the command line assumes that the numer "1" is
specified.

Example :

The data in the text buffer is the same as that in the
example in 6.6.3. In the above example, the line
pointer was moved to the second 1line. If a user
intends to move the line pointer to the fifth line, the
command "N 3" should be used.

N 3
LINE 4

6.6.5 The T Command-The command that moves the line pointer
to the top of the file.

The use of the command is as follows:
1) Enter the T command. The MPF-IP will respond with
ST

2) Press the carriage return key. The MPF~IP will

Print the top of the file and move the line pointer
there.

Example :

The data in the text buffer is the same as that in the
previous example. In the above example, the line
pointer has been moved to the fifth line. To move the
line pointer to the top of the file, enter the T com-
mand by pressing T. The MPF-IP will respond.

$T

6.6.6 The L command-The command that prints the line number
whish is now pointed to by the line pointer.

The use of the command is as follows:

1) Type in the L command. The MPF-II will respond

SL

2) Press the [&] key. The printer and display of the
MPF-IP will print the value of the line pointer,

Example :

The data in the text buffer is as follows:

STOF LIV
LInME
LIME
LINE
Ling
LINE
L INE
LINE
EQTTCM LIME

I 2
m

9]

=

=

m

M

W g f e
T

Suppose that the user has applied the F command to move
the line pointer to the line "LINE 3A"

To find out the line number of the line "LINE 3A",

enter the L command.

6.7 String Handling Commands

Two editor commands are used for string handling.

The

Find command allows a user to locate a specific string
in the text buffer. The Change command enables a user

to change the contents (characters) of a string.

6.7.1 The F Command-To locate a string

The use of the command is as follows:

1) Enter the F command. The MPF-IP will respond with

$F

2) Specify the string to be located by typing /string/,

then type in the carriage return key. After

the

carriage return key is pressed, the MPF-IP will

start searching for the specified string.

If the string is located by the MPF-IP, the MPF-IP

will print the line containing the string and

the 1line pointer to that line. If the MPF-IP

not find the string, it will print

23

move

can

3) The specified string should be enclosed in certain

delimiters such as /, ., *, -, =.

Example :

The data in the text buffer is as follows:

Eogey

TAF _IME OF TEXT
_INE &
CIME 2R
~Ing Z&E
LIirnE =
LInE Th
LIME <
LImE S
DOTTCOM L InME

If @ user intends to locate the line containing
string "3A", enter the F command as follows:

-4

[
- 4
|
L
T

6-19

the

[f a user intends to locate the line containing the
string “4A", type as follows:

oSk

w

Because these is no such a string containing "4A", the
MPF-IP couldn't locate the string 4A. It will print

23

If you first move the line pointer to the 7th line in
the buffer, and then type in the F command to 1locate
the string containing "3A", the MPF-IP still can not
find the string containing 3A. That is because there
is no such a string containing 3A after the 7th line of
the file.

G 7
LINE &

6.7.2 Thc C Command-To change a string

The C command is used to change a string in the active
line. The use of the command is as follows:

1) Use the F, G, N, and U commands to move the line
pointer to the line where a string is to be changed.
2) Enter the C command. The MPF-IP will respond with

$C

3) Enter the string (which should be enclosed in de-
limiters), and then press the [key. If the user
intends to change "INC A" to "DEC A", he should type
/INC/DEC or *INC*DEC.

4) The PRT-MPF will print the corrected line.

Example :

The data in the text buffer is as follows:

If the user intends to change the third line to

"LINE

3", the fourth line to "LINE 4", and the fifth line to
"LINE 5", and the sixth line to "LINE 6", and
seventh line to "LINE 7",

8", use the G, N, and C commands as follows:

$C /3,57
LINE S
SN
LINE
SC S3RSES
LIME &

ME

[

ME

-
4

W oW T
2
m>~m

o

-
—
z

.
B

«

IH

4

-
o

el

Son
)
S

(o]

After all the corrections
the text buffer will be as follows:

FI

TOP L

LINE
LINE
LIMNE
LINE
LINE
CINE
LINE

EO0TTOM

1M4E

DO LIRSV ()

the

and the eighth line to "LINE

have been made, the data

OF TE®T

in

6.8 Other Commands

6.8.1 The S Command-Display the Default Values and the Current
Text File

The data in the text buffer is as follows:

1
_IngE &
_INnE =
LimE 9
LIME 9

ZOT7T0M Ling GF TExT

Enter the S command causes the MPF-IP to print the
default values of the text buffer and the upper and
lower 1limits (starting and ending addresses) of the
current file.

The above print—-out shows that the lower limit of the
text buffer is F8008 and the upper limit is FCFF, and
the memory now being used to store the <current file
begins from F889 to F848.

6.8.2 The X Command-Printer Control Command

When the MPF-IP is in edit mode, the X command
functions as a toggle switch. It toggles on or off the
printer.

6.8.3 The W Command-Write data from memory to tape

The file (whose filename is POIU) in the text buffer is
as follows:

T3dF LIME OF TERT
LIME
LIME
LIME
LINE
LIMe

ECTVOM LIME OF TEXT

.

W& fu

6-22

To write data from memory to tape, first plug one end
of the recorder line to the the MIC jack of the MPF-IP
and the other end to the MIC jack of the cassette tape
recorder. Put the tape recorder in record mode, and set
the voice volume control switch properly. Then enter
the W command following the command format below:

W POIU

After the carriage return is pressed, the MPF-IP will
write data from its RAM to cassette tape. The file is
stored on the tape with the filename POIU. Note that
while typing in the command line, a space should be
entered between the W command and the filename.

6.8.4 The R Command-Read data from tape to memory

The R command is abplied to read data from cassette
tape to the RAM of the MPF-IP.

Plug the recorder line to the EAR jacks of the MPF-IP
and the tape recorder properly before reading data from
tape to the RAM of the MPF-IP. Rewind the cassette
tape to the beginning. Enter the R command following
the command format below.

R POIU

Before pressing the carriage return key, put the
recorder in play mode. After you have entered the R
command and the filename and set the tape recorder to
play mode, you can type the carriage return key. After
the carriage return key is pressed, the MPF-IP begins
reading data from tape to its RAM.

6.8.5 Error messages

1) When the MPF-IP is in edit mode, the ?$ represents
that an incorrect command has been entered (For
example, the MPF-IP will not accept such commands as
Y or V.) and the MPF-IP is ready to accept a correct
command.

2) When the MPF-IP is in input mode, if the input data
has overflown the memory space specified, the MPF-IP

wiél print *$, exit from input mode and enter edit
mode.

Example :

When the text buffer is allocated the
starting from F800 through F803, entering the
instrugtion "INC HL" will cause the MPF-IP display the
f91low1ng error mesage because that instruction
l}ne requ?res seven bytes to store —- The "INC HL"
line requires one byte to store the code for TAB,
apother one byte to store the code for a SPACE, and
five bytes to store the characters.

memory space

6.9 The[<—] Key ---- shift data on the display of
MPF-1IP

When you use Editor commands such as " P ", " N ", or
"U "... to examine the source program, the number of
characters the display of MPF-IP can display at a time
is 20 characters. However, there may be a number of
lines 1in a file which contain more than 20 characters,
you can see those characters following the 20th
character by using the [=] key.

Chapter 7

The Assembler
and Disassembler

The resident assembler and disassembler of the MPF-IP,
together with the editor, makes the MPF-IP a very
powerful and unique microcomputer.

The major application of the assembler is to convert
source program written in mnemonic form to binary code
which can be understood by the computer. For example,
the instruction "LD A,3" will be converted to "3E@3" in
hexadecimal or "@611 1119 6009 6011" in binary. The
binary code generated after the convertion process is
also known as machine code or object code. The
conversion process carried out by the assember program
is called assembly.

The disassembler 1is a program that converts binary
machine code into mnemonic form assembly source program
that is more readable than machine code. Strictly
speaking, a disassembler disassembles machine code.
Another useful application of disassembler is that it
can be used to read the contents of an EPROM -- the
program contained in an EPROM together with the PRT-
MPF.

The MPF-IP assembler resides in an 8K EPROM that houses
the monitor and editor programs, while the disassembler
shares a 4K EPROM with the printer control program that
controls the operations of the PRT-MPF.

The functions of both a two-pass assembler and a one-
pass assembler (line assembler) are provided by the
MPF-IP. Both the two-pass and one-pass assembler use a
routine whose function is to convert mnemonic source
program instructions to machine code.

When an assembly language source program is assembled
by the MPF-IP two-pass assembler. Duromg pass one, the
two-pass assembler will first fetch the labels in a
source program to create a symbol table which contains
the labels and their corresponding values. During pass
two, the assembler will use the values provided by
symbol table to generate the actual object code.

The one-pass assembler, however, does not accept sym-
bols and labels. When a user applies the one-pass
assembler to assembler source code to object code, he
can only give absolute values as addresses and dis-
placement. The greatest advantage of the line
assembler is that it saves memory space. When a one-
pass assembler is in use, source program is directly
assembled to object code and stored in the memory. No

memory space 1is required to store mnemonic source
program.

7-3

The MPF-IP assembly language conventions are similar to
Z8@ assembly language conventions. Note the differences
of MPF-IP assembly language conventions and that of
280's:

1) A comma "," should be inserted to separate operands.

2) A semicolon ";" should precede each comment.

3) The MPF-IP only accepts values in base 10 and base
16 number systems.

7.1 Two-Pass Assembler

7.1.1 The use of MPF-IP Two-Pass Assembler

ae

To enter the two-pass assembler --

When the MPF-IP is in monitor mode, pressing A while
holding down the CONTROL key allows a user to enter
and initialize the two=pass assembler. The MPF-IP
will respond with:

orG @ A

To enter the starting address of the source program-
what the MPF-IP prints on the display prompts the
user to enter the starting address of the source
program. The starting address should be specified
with a hexadecimal number. After the starting
address 1is entered, you have to press the carriage
return key. If the starting address of the source
program is FA@@, the MPF-IP will print

OrRG : FROU

If no starting address is entered before you press
the carriage return key, the MPF-IP will select a
default value as the starting address of the source
program. The default value for model with 2K RAM is
FD@P®, and that for the model with 4K RAM is FB@O. If
the MPF-IP (with 4K RAM) assigns a default value to
the source program, it will print:

CRS & FEOD

Enter the starting address for the symbol table:
After the starting address of the source program has
been decided, the MPF-IP will request the user to
input the starting address for the symbol table by
printing the following:

IYM SF A

A hexadecimal address is to be entered, followed by
a carriage return. If the user enters F800, the
MPF-IP will respond with

IYM :F:iFsO0 T:

Enter yhe ending address of the symbol table:
Type in the ending address of the symbl table and

tp:h carriage return key, the MPF-IP will respond
wi

WM FIFS00 TIFRFF

If no starting address is assigned to the symbol
table in step c., then default values will be
assigned automatically as the starting and ending
address by the MPF-IP. In model with 4K RAM, the
default values are FD@@® and FEAQ. In model with 2K
RAM, the default values are FE@® and FEA@. The PRT-
MPF will print

IVM GFIFDO0 TIFERD

Enter the starting address for the object code:
After the PRT-MPF has printed the starting and
ending addresses for the symbol table, the MPF-IP
will prompt a user to enter the starting address for
the object code:

CEJ ~F: A

When being prompted, the user may type 1in the
starting address of the memory which 1is to be
assigned to store the object code. Usually, the
address 1is the same as the starting address of the
source program. Then type in the carriage return
key. If the address FA@@ is entered, the MPF-IP
will respond with

G

L

JOFFIFAQD T

Enter the ending address for the object code, then
press the <--' key. If FBFF is entered by the user
as the ending address, the PRT-MPF will respond with

CEJ >F:FADD T:FEBFF

If no starting address is entered in step e. before
entering the carriage return, the MPF-IP will assign
two default values as the starting and ending
addresses for the memory where the object code
generated from the assembly process will be stored.
The default values for MPF-IP model with 2K RAM are
FD@® and FDFF, and that for model with 4K RAM are
FB@®# and FCFF. When operating on 4K RAM model, the
PRT-MPF will print

CBJ >F:FBOO T:FCFF

After the carriage return is pressed in step f:, Fhe
MPF-IP will start fetching data from the beginning
of the text buffer and assembling the data into
machine code. I1f error occurs during the assembly

7-6

process, the MPF-IP will stop the assembly process
and print the error messages. Refer Section 7.3 for

error messages.

7.1.2 Assembly Language Pseudo-Ops

In addition to the executable instructions, assembly
language uses pseudo opcodes in a source program to
facilitate the generation of object code during the
assembly process. The pseudo-ops are applied in a
program the same way as an opcode is used in a program.
The only difference between the pseudo-op and opcode is
that the opcode performs a specific operation when
executed, while the pseudo~op does not. The use of
pseudo-=ops are descriped as follows:

1) Data Defination
1. DEFB -- Define Byte

The function of this pseudo-op is to store an 8-bit
operand into the memory location pointed to by the
current value of the reference counter. The
reference counter 1is wused as a pointer to the
location 1in memory and corresponds to the program
counter, The format of a pseudo-op line is as

follows:
Label Opcode Operand Comment
XXXz DEFB expression ;YYY

If a label is used in a pseudo-op instruction, then
the value of the label is assigned with the value
of the reference counter and is the address of the
data. You can refer to the MPF-IP Monitor Program
Source Listing for the use of the DEFB pseudo-op.

2. DEFW -~ Define Word

The function of this pseudo-op is to store a 16-bit
operand into the two consecutive memory locations
pointed to by the current value of the reference
counter. The reference counter is used as a
pointer to the location in memory and corresponds
to the program counter. The format of a DEFW
pseudo-op line is as follows:

Label Opcode Operand Comment

XXXz DEFW expression ;YYY

The low order byte of the operand is to be stored
in the memory location pointed to by the current
value of the reference counter, while the high
order byte of the operand is to be placed into the
next higher memory location.

3. DEFM -~ Define Message

The operand of this pseudo-op is a string of
characters enclosed in two single quotation marks.
The function of the DEFS pseudo-op is to store the
ASCII code for each character

2) DEFS -- Define Storage

During the execution of a program, a certain number of
bytes may be reserved to store the results of the
executed instructions. The pseuds-op DEFS reserves a
memory space which starts from the location pointed to
by the current value of the reference counter. The
length of the memory space is specified by the operand
of the pseudo=op. The format of a DEFS pseudo-op line
is as follows:

Label Opcode Operand Comment
BUFFER DEFS 128 ; Define a storage of
128 bytes

The example above defines a memory space of 128 bytes.
3) Program Termination =- END

Any source program should be ended with the END pseudo-
op. Thus, any subsequent instructions following the
END pseudo-op 1is ignored. If an assembly language
program is not ended with the END pseudo-op, errors may
occur,

4) The pseudo-op to assign a value:
EQU -- Equate

The EQU pseudo-op assigns the valué of the operand to a
label. The vaue is a 16-bit hexadecimal number. .Only
one value can be assigned to a symbol (label) 1in a
program. If two values are assigned to the same §ymbol,
errors will occur. The EQU pseudo-op is used in the
followng way:

Label Opcode Operand Comment

PWCODE EQU @ASH ; Power up code.
P82551 EQU 83H ;8255 I control port
5) Reference Counter Control -- ORG

The assembler uses a reference counter to count the
memory locations which will be stored with the
assembled machine code of the program being assembled.
After an instruction has been assembled by the
assembler, the number of bytes it takes to store the
machine code of the instruction is added to the value
of the reference counter. Thus, the current value of
the reference counter always corresponds to the memory
location into which the object code of the next
instruction 1is to be stored. When a program is to be
stored 1into the memory, starting from a specific
address, the ORG pseudo-op is used to set the value of
the reference counter to that specific address.

6) LABEL --

A label may consist of up to six alphanumeric
characters, The first character of a label must be a
letter of the alphabet.

7) The Summary of Pseudo-ops.

1 DEFB (@F8H ; Define byte. (low byte value)
2 DEFW QF786H ; Define word. (value)

3 DEFM 'AAAA' : Define message.

4 DEFS n ; Define storage. (CONST)

5 ORG @F850H ; Origin. (CONST)

6 EQU @QF850H ; EQU. (CONST)

7 END ; end of assembler.

8 ; ; Comments.

7.1.3 Examples of the Use of the Pseudo-op

The following examples may help the reader to further
understand the use of the pseudo-ops. The following
monitor subroutines will be used in the examples:

CLEAR: The function of the subroutine is to clear the
contents of the display buffer, 1i.e., to store
FF into the display buffer.

MSG : The MSG subroutine converts the ASCII code
pointed to by the HL register pair to display
pattern and then store the display pattern into
display buffer until the "g@gD" code is
encountered.

7-9

SCAN : The subroutine displays a sequence of characters
(The starting address is (IX), and the display
pattern is stored from that address through the
next 49 bytes) until a key is pressed.

DISP3BF:The subroutine displays the starting address of
the display buffer,

Example 1:

The following program, when executed, displays the six
characters -- A, B, C, D, E, F, =-- until a key is
pressed.

CHLL CLERF

LD HLPRT

CARLL M3G

ChlL DECDSP \

LD IXsDIZPEF

CALL SCH
FAT DEFL

DEFW

DEFUW

DEFE
DISFEF EQU OFFSCH
DECIS® EQU 0395H
MSG EQU 09CHH
SCAN EQU pg2asH
CLERR EQU 09B9H

END

Because this 1is a simple program, it only takes a
limited memory space to store the source program and
the object code. When a two-pass assembler is in use,
there is no need to change the default values. If the
user only wants to see the results of the progranm,
he/she may turns off the PRT-MPF-IP, uses the assembler
to convert the source program into object code, and
then press FBO® (4K RAM) or FDOG (2K RAM) to
execute the program.

Example 2:

The following example program, when being executed,
displays the characters "ABCDEFWELCOME" until a key 1is
pressed.

CALL CLEAR
LD HLsFPAT
CALL MSOG
CALL DECDSP
LD IXsDISPEF
CHL. SCAN
DEFiv 4291H $RB
DEFW 43283H SCD
DEFW 45a5H SEF
DESM *WELCOME®
DEFE 0DA
DISFBF EQU OFFZCH
DECDSP EQU 0395M
MSG EQU U09CRH
SCAN EQU 0246H
CLERR EQU 09E9H

END

au
I
-

Example 3:

The example program has the same function as the
program in Example 2. However, this program does not
simply display the display patterns stored 1in the
display buffer. Instead, the program moves the
contents of the display buffer to a working storage
area, and then displays the contents of the working
storage.

CALL CLEAR
LD HLsFAY
CHLL MSG
ChAlLL DECISP
LD HLsDISPBF
LD DESBUFFER
LD BC»40
LDIR
LD IXsEBUFFER
CHLL SCAN
FART VEFWN 4241iH RAE
DEFW 44434 CD
DEFW 464SH FEF
DEFM ‘*HELCOME®
DEFB ODH
BUFFER EQU OF9EODH
DISPEF EQU 0DFF2CH
DECDSP EQU 039SH
MsSG EQU 02CAH
SCAN EQU 0D246H
CLEAR EQU 0989H
END

7.2 Line Assembler (one-prass Assenmbler)

The use of the line assemlber is inconvenient to a
user. However, the advantage of the line assembler is
that when a line assembler is in use, no memory space
is required to store source program. When a user's
source program is very long, the use of line assembler
saves user's RAM space.

After an instruction line is entered from the keyboard,
the 1line assembler immediately assembles the source
code 1into object code. Because no symbol table is
created when a line assembler is in wuse, absolute
values should be given to labels or symbols.

7.2.1 The Use of the Line Assembler

1. Enter the 1line assembler by pressing [0 while
holding down the ONTROL] key. The MPF-IP should
show:

[SETr A
)

2. Enter a value for the reference counter, and then
press the key. For example, if the user types
in F8008, the PRT-MPF-IP would respond with -

C&5 o FEon

while the display should show
IEd T A

3. Enter the starting address of the memory space to be
used to store the object code, then press the [&.
For example, if the user types in FC@@, the PRT-MPF-
IP will print

RO

while the display of the MPF-IP shows
FEOn

4. If the user does not enter the starting address of
the object code, then default values will be set
automatically by the MPF-IP. Model with 4K RAM sets
the default vaue to F@@@ (the object code will then
be stored beginning from F@@@.), while model with 2K
RAM sets the default value to F800.

5. As soon as the starting address (or the value of the

7-12

6.

reference counter) is shown on the display, you can
begin entering the instructions. An instruction
line is separated with another instruction line by
the carriage return. As soon as the carriage reutrn
is pressed, the 1line assembler asse@bles one
instruction 1line from source code to object code

immediately.

pressing the carriage return key twice returns the
control to the monitor.

7. When error occurs, the MPF-IP prints "?" and returns

8.

the control to the monitor.

An absolute value should be entered as the operand
for a relative jump instruction.

7.2.2 The Method For Calculating Displacement for Relative

Jumps
Use the JR $+N instruction.

Use the J monitor command.

When the programmer uses a relative jump instruction
without knowing the exact displacement, he can use a
random number or zero as the operand for the
relative Jjump instruction and enter the exact
displacement as the operand until the exact
displacement is calculated correctly. The following
examples shows the use of the line assembler.

Example 1:

The following example program displays the alphabetical
letters from A to T. FPPO® is assigned as the starting
address for the program, while the object code of the
program is also stored beginning from Fg@gd.

CrRG @ Fooo

CEd]

Trery

SO0 LD IHsREEAH
IDC1ERDE

Fana CuLl aZ2agH
CDaguz

Foor

Examples 2:

The example program also performs the same task as the
program in Example 1. However, 7000 is assgned as the
starting address of the program, while the object code
is stored beginning from F800.

Though the address 7008 is not in the RAM of the MPF-
IP, the assigning of 7000 as th starting address for a
program is significant considering the fact that the IC
memory to be inserted on the board location U6 (of PRT-
MPF-IP) 1is assigned the addresses from 70808 to 7FFF.
If a programmer intends to write data to an EPROM to be
inserted to U4 of the MPFIP, he should use the skills
examplified in this example to set the starting address
of the program to 7000, store the assembled object code
in the RAM, and then write the data (assembled object
code) from RAM of the MPF-IP to EPROM.

7.3 Error Messages

7.3.

1.

1 ErrorsResulted from the tJse of Assembler

'OBJECT OVER':

When the object code resulted from an assembly
process requires more memory space than originally
set upon entering into the assembler, the MPF-IP
will print 'OBJECT OVER' after pass one. Press the
"Q" key returns the control to the monitor.

'SYMBOL OVER':

When the symbol table takes more memory space than
originally set upon entering into the assembler, the
MPF-IP will print 'SYMBOL OVER'. Pressing the "Q"
key allows the monitor to regain control.

7.3.2 Errors Resulted from Mistakes in the Assembly Language

*T%
**
E
D
[
* Ok

C

Exa

Instructions

ILLEGAL INSTRUCTION
UNDEFINED SYMBOL
EXPRESSION OUT OF RANGE
DUPLICATED SYMBOL
ILLEGAL LABEL

QUOT EXPECTED

CONSTANT EXPECTED

(In this case, the operand of ORG or EQU sould be
preceded with a leading zero.)

mple

Given the program below is to flash the 2@ alphabetical
letters from A to T:

L
*C

T

. EQL EFDOR
FOEDRD OBERAY
1

EQ 0Z2ER

LD HL»ELANE

LCCFZ CHLL ZCAM!
DJIMZ Locre
JROL3OCP

E~D 7-15

SCAN 1: The subroutine to scan the keyboard and display
characters for one cycle.

POTER : The starting address of the buffer in which the
display pattern is stored.

BLANK : The starting address of the buffer in which the
display pattern for "blank®™ is stored.

1. Enter the input mode of the text editor, and type in
the program with default values unchanged:

SRT ON

FiFooo TIFRFF
INPUT

ELANE EQU eFDOR
PCTER EQl O0EEAR

TCANL EQU D29BH

LD hLsELANK
FLUIh HL
L0 IXsPCVER

LD =

LIOFE CALL ZCANI
IJ4ME LCCF2
ds LOCet
EMD

2. After the program has been entered,
assembler to assemble the source program
code with the default values unchanged:

e BT IFERD
=F sFEOOT CFCFF

enu

&FDOH

m.

i
-

T
=
TH
&

HL s ELANK
S1D06F
HL
£9
IX.POTER

Lo
7. FE0s

EX 4
FR03
1]
FEOA
CAaLL
FEOC
nuang
F30F

Lscre
1OFE
JR LOCP1L
FE11l
END
FELS

L)

7=

1 ERRCS

[]
N2EA
DFER=) 3
F303
FEROC

The assembled
stored
you

object
in the memory starting from FB@#@.
press <G> FB@9 [,
will flash on the display.

code of the above

As
the 20 alphabetical

3. If the wuser adds the pseudo-op ORG F900H

beginning of the source program, the new
will be as follows:

program

use the

to machine

is
soon as
letters

in the
program

Example:

Example:

4, After

like:

ELHNR EQU &FDOM
PCTER EQU OEERH
CCHNLI ZQU 023BKR
H
CRG 0OF900H
LD HL s BLRNK
PUSH Ho
LI IXFCTER
LOCP:I EX CSPY,IX

LI Ba20
CALL SCHN1
IJNZ LO0PZ
JE LOCSPL
ErD

The carriage eturn key may be used
shift the display to the left.
[key is pressed,

Lacez

to
Each time the
the display is shifted
left one character. For example, when the
following error (error D) occurs, the
characte "D" is not displayed on the display.

Any afte the [&] key is pessed, "D" will be
displayed.
FeFoun T:iFATF C=G FOGOH
INPUT 2000 e
OFG FUJOH Loc= LI M D
LcCc= LI HsE . nann FE
LO0CF JP LGGCF LOCF JF LTaP
EDIT 2. 9001 c30000 =
sn L=
CR5 @ TEOD & ERRIRS
v FeTD0G TIFERD FASS ¢
CEJ FICE0O0 TIFCFF SYMEBEOL
PRIT 1 LGCF anoo
When using line assembler, the effect of JR

XXXX is the same as JR + - n.
CRG : 000 RS O To0g
CEY xFoan Szd Taan
INPUT InFiT
JR OF03ar FOunn JR =+ 2.
1822
JF goFosa FO0E JR S-UMR
a 1EF 2
the source program is assembled, it 1looks

FH
N E (3]
= e DEE#
- = WE3IE
T L Fa0s
L Faoc

Though the starting address of the source program and
the memory space to store object code have been set
upon entry into the assembler, the ORG pseudo-op in the
program changed the starting address to F908 while the
object machine code is stored into the memory space
starting from FB@@.

5. If the user sets the RAM area for object code and
symbol table improperly, the following errors will
happen:

a. The RAM area for symbol table is too small:

7.4 Disassembler

The major function of the disassembler is to convert
object code to mnemonic source program for debugging
purpose. The disassembler of the MPF-IP resides in the
same IC that holds the monitor program for the PRT-MPF-
IP. Thus, if an MPF-IP is not connected with the PRT-
MPF-IP, it 1is impossible to enter the disassembler.
The use of the disassembler is as follows:

l. Use the monitor command D to enter disassembler by

typing O] . The display should show
<D> =

2. Enter the starting address of the object code. To
use line disassembler, press the carriage return
key directly. Each time the key is pressed,
the 1line disassembler converts one line of object
code to source code. If an instruction line has more
than 20 characters, you can press the = key to
shift left the display. Each time the = is
pressed, the display is shifted one character left.

3. Press the space key [—=], then enter the ending
address of the object code.

4. Then follow step (1) or (2):

(1) Press the key:
This will directly converts the object code
specified by the starting and ending addresses
into mnemonic source code.

(2) Press the space key, enter the linking address,
then press the [&] key.
This will convert the object code between the
starting address and the ending address into
source code and assign the linking address as
the starting address of the source code.

5. Press the €= key, then PRT-MPF-~IP will print out
the disassembled source code.

The following examples disassemble machine code con=
tained in the first 16 bytes of ROM to source code.

Example 1:

<Dr=0o10

gooo 01 LD EC,0300
0aD3 ED CFD

oS Ex JR PESDDD3
Dons SE LD AES
DooA D3 DUT (832
DUac JE LD ReE
OO0E D3 OUT <2

Example 2:

£DF=0 10 &000

000 D)2 LD EC,0Z00
5003 ED CPD

5005 ER JP PESDOOZ
5008 3E LD m.E88
600A D2 OUT (832sA
500C 3E LD A-81
S00E D3 OUT (23>2,n

Example 3:

91 oD EBC.0300
0003 ED CFD

0o0S ER JUR PESDDO3
0ns 3E LD mHES
00Ol D3 QUT {38320
JOOC 3E LD AsE1
DOOE D3 OUT <22 ,h

The linking address allows a programmer to disassemble
the object code from an EPROM correctly. For example,
if a programmer intends to disassemble the machine code
of an EPROM in which a program is stored with the
starting address of 20060H, the programmer can insert
the EPROM into the socket at board location U6 on the
PRT-MPF-IP, 1initialize the disassembler and enter 7000
and 7FFF as the starting and ending addresses and 2000
as the linking address, then the object code in the

EPEOM will be disassembled correctly to the source
code.,

7.5 Summary of Text Editor and Assembler Parameters

The monitor program of the MPF-IP antomatically sets
the default values concerning memory usage if a user
does not specify the starting and ending addresses of
the memory space used for storing text buffer, source
code, or object. The default values are as follows:

(1) For use with line assembler

ORG : F@00 (4K RAM)
F800 (2K RAM)

OBJECT: F@00@ (4K RAM)
F800 (2K RAM)

For use with two-pass assembler

ORG FBOO (4K RAM)
FDOO (2K RAM)

SYMBOL : FDOO-FEAO (4K RAM)
FEOO-FEAO (2K RAM)

OBJECT : FBOO-FCFF (4K RAM)

FDOO-FDFF (2K RAM)

For use with text editor

ORG FOOO (4K RAM)
F800 (2K RAM)

(2) The default values for text editor, two-pass
assembler, and 1line assembler are so assigned
because the MPF-IP (the model with 4K RAM) assigns
the memory space from F@@@ to FAFF for storing
program or data when the MPF-IP is in. the text
editor input mode, FB@@ to FCFF for storing the
object code of the source program, and FD@@ to FEAQ
for storing the symbol table.

For the model with 2K RAM, the RAM area from F§ﬁ0
to FCFF is used as the text buffer for storing
program or data entered in the text editor's input
mode, FD@P to FDFF for storing the object code, and
FE@O to FEAQ for storing the symbol table.

7-22

(3) Because the default values were assigned with

(4)

proper usage of RAM space in mind, it may not be
necessary to change the default values when a
programmer has no special requirements for memory

space allocation.

If entering a simple, short program, the user may
use the F or M monitor commands to enter the
object code of a source program directly into the

memory.

7-23

Chapter 8

System
Hardware
Configuration

8.1 System Memory Organization
The memory map of the MPF-IP is as follows:

1.

0000 EPROM
U2
K
LFFF 2764(8K)
2000 EPROM
U3
2764 (8K)
SFFF 2732(4K)
4000 EPROM
U4
2732,
AFFF 2532(4K)
FOOO RAM
U4
2016,5516
6116
F7FF
RAM
F800 s
2016,5516
FFFF 6116

u2:

On board 1location U2, as 8K EPROM (@600 through
1FFF) is inserted -- the monitor.

u3:

Either an 8K EPROM or a 4K EPROM may be inserted
into U3. If an 8K EPROM (2764) is installed, the
memory on the 8K EPROM ranges from 20008 to 3FFF. If
a 4k EPROM (2732) is installed, the memory on the 4K
EPROM ranges from 2000 to 2FFF. Because the socket
at U3 accepts 28 pins, while the 2732 has 24 pins,
the top four pin holes of the socket at U3 are left
empty when a 2732 is to be installed.

8-3

3.

u4q:

Either RAM or EPROM may be inserted into U4. If a
RAM is inserted, the addresses of the RAM range from
F@Pd to F7FF. Either 2016, 5516 or 6116 may be used
as the RAM inserted in U4. When your MPF-IP has
battery back-up, 6116 or 5516 is suggested because
they consume less electricity than 2016. Your MPF-
IP may be installed with either a 2016 or 6116. If
a wuser intends to use 5516 on U4, then he should
jump and cut several wires at board location J2.
(The J2 area is located near the top edge of the
u4.)

If an EPROM is 1nstailed on U4, the addresses of the
EPROM range from 4080 to 47FF. Either 2732 or 2532
may be installed on U4. However, several wires
should be re-routed at J2.

US:

A RAM (F800 to FFFF) is installed here. The system
RAM used by the monitor resides in this RAM. Either
2016, 5516 or 6116 may be installed on U5.

After J2 has been re-routed to allow a 2732 to be
installed on U4, a 2716 may also be used on U4
without changing the routing at J2.

After J2 has been re-routed to allow a 2532 to be
installed on U4, either 2716 or 2516 may also be
used on U4 without modification at J2.

When different RAMs or EPROM are to be installed on
U4 or U5, several wires should be re-routed at the
J2 area. The re-routing at the J2 area is shown as
follows (<-X-> represents that the wire should be
cut, while <--> represents that wires should be

jumped.)
(1) When 5516 is to be used on U4 and US:

Wire Cutting Wire Jumping
3605 15
106011 34
1604 510
4609 911

(2) When 2732 is to be used on U4:

Wire Cutting Wire Jumping
3665 2e5
6608 78

(3) When 2532 is to be used on u4d:

Note:

Wire Cutting Wire Jumping
1604 57
4609 264
3665 8 —Vee
6008 19

When an EPROM is inserted on U4 and the RAM on
U5 1is to be connected to battery back-up, the
user must first disconnect the VCC line between
u4 and U5 and then connect the VCC line for U4
to the VCC line of any other IC on the circuit
board. (Refer to sheet 6 of the schematic.)

8.2 Input/Output Addresses

The input/output adresses of the MPF-IP are as follows:

1.

80 A

81 B 8255-1
82 C U14

83 CONTROL

90 A

91 B 8255--2
92 C U13

93 CONTROL

The 8255 1is a programmable 4@-pin large scale
integrated circuit with three 8-bit ports -- A, B,
C. The three ports have 24 parallel input/output
lines. The functions of the 8255 are programmable.

The functions of the I/O 1lines of the two 8255s on
the MPF-IP are defined by the MPF-IP monitor and
hardware configuration as follows:

8255-I

(1) Port A: PA@ through PA7 are output lines used to
select digit 1 through digit 8.

(2) Port B: PB@ through PB7, output lines, selects
digit 9 through digit 16.

(3) Port C: PC@ through PC3, output lines, selects
digit 17 through digit 2@. PC4 is the input line
for the [EHIFT] key, PCS5 is the input line for
the [CONTROL) key, while PC6 and PC7 are not
used.

8255-11

(1) Port A: PA@ through PA7, output lines, select
segment A through H of the l4-segment display.
(2) Port B: PB@ through PB6, output lines, select
segment I through dp, while PB7 is not used.
(3) Port C: PC@ and PC2 are the input lines from
the keyboard. pPC3 is the input line from audio
8-6

tape recorder. PC4 is used by the monitor to
handle single-step and break-point functions.
The bit is usually one. The user must not send
zero to this bit at will. PC5 is the output
line to tape, and is also connected to the
speaker and the TONE-OUT green LED lamp. This
bit 1is used when the MPF-IP beeps or writes to
tape. This bit is active low. PC6 and PC7 are

not used.

8.3 Interrupt

Non-maskable interrupt can only be enabled by the
monitor prgram, and cannot be enabled or disabled by
the programmer.

PC6 is normally high. When a high (or one) is sent to
the counter at U9, the counter, 74LS98, is reset and
will remain inactive. When the MPF-IP single-steps a
program or the CPU reaches a break point, a zero or low
is sent out from PC4 to U9, causing the counter start
counting. During the first four machine cycles gene-
rated by the counter, the CPU saves all user's
registers and status and checks the validity of usr's
stack. Then during the fifth machine cycle, QA becomes
high, and the program counter points to the instruction
to which the break point is set. The high signal is
inverted at Ul@, and activates the WMI (NMI is active
low.) This will interrupt program execution and jump
back to monitor program.

The following is the logic state of U9 (74LS98).

RyIRy|Qa|Qp|Qc|Qs|NMI Remark

Normal :
State 0 10|00 O0 1 U9 is reset to 8.

BREAK — Break — o Starts .
becomes| 0 | 0| 0] O O0] O 1 R, = Break = 0 counting

—low is Mod 5
1stM1fofojofofo|1]| 1 [Q-Qc-Qs% 000,

2nd M1 | 0[O0 0] O0]1]|O 1 when Qp, from 150 & Qi

3rdM1 {000 O0(|1]1 1 from p—1°

4thM1 |0 (OO0 1 0} 0O 1

SthM1joO0o|JO0O]1|O0]O]O 0

8.4 Stack

Fig. 8-1 shows the stack configuration. The default
value of the system stack pointer is FED@, while that
of the user's stack pointer is FEAf@. The monitor
keeps checking the value of the stack pointer. Once
the monitor discovers that the user's stack pointer
points to a location in the system stack, the error
message SYS-SP will pe displayed. 1If there is a stack-
related instruction (e.g. RET) in the user's program,
an error may occur when user's stack and system stack

overlap.

User's stack

FEAO

System stack

FEDO

Monitor

Used-Area

Fig. 8-1 Stack Configuration

8.5 Reset

The MPF--IP performs two types of RESET -- "cold" reset
(power-on reset) and “"warm" reset.

8.5.1 Power-on RESET

The reset cycle performed immediately after powering on
the MPF-IP is referred to as a cold reset. The MPF-IP
will perform the following 1in a power-on reset cycle.

(1) Disable interrupt (IFF set to 8);

(2) I register set to 0;

(3) Interrupt mode set to 8;

(4) User's SP is set to FEAQ

(5) Reset 1FFF as default break-point;

(6) Reset the default values for the text editor and
assembler;

(7) Reset the upper limit to FE@@ for the DELETE and
INSERT editor command;

(8) Turn- on the PRT-MPF-IP and reset the value of RST

38H.
(9) Display ***** MPF~I-PULS #***** character by
character.

8.5.2 Warm RESET

When the RESET key is pressed, the MPF-IP performs the
same first four functions as in 8.5.1 The display
kxk*k* MPF-I-PLUS ***** shows up on the display at the
same time. However, the parameters, which are reset in
a cold reset in steps 5 through 7, are not changed in a
warm reset.

8.6 Tape Data Format
8.6.1 Bit Format

8.6.2 Byte Format

Start Stop

] (o] F)itolbit]}[)it*it4bit4i}it#}it4bit7{ 1 I—
fe 60 msg ————————|

Fig. 8-3

8.6.3 File Format
[qd
- 2 A .

Lead| File | Start | Eng | Chk | Editor& | Mid Dat Tail
Syne | name | addr | addr | SYM | Assembler | S¥NC (o e
1TKHZ & 2 2 1 18 2KHz \ariable 2KHz
4sec Byte Byte Byte Byte Byte 2sec Length 2sec

Fig. 8-4

8.6.4 Audio Cassette Tape

1. Labeling your cassettes: Make it a good habit to
record the filenames, comments and remarks, and the
starting and the ending positions of the tape
counter,

2. When writing data to tape, make sure that the tape
onto which data is to be stored is blank.

3. After data has been stored on tape, you should load
the data or program which has just been stored on
tape to the MPF-IP to examine if the program or
data is stored correctly. If it is, you can turn
off the power to the MPF-IP.

8.7 System Clock

A crystal oscillator, which generates square wave at
3.579 MHz, is wused to generate clock pulse for
controlling transfer of data in the CPU. The output of
the crystal oscillator is connected to pin 3 of 74LS74,
the D-type flip-flop, which divides the output of the
crystal oscillator by two. The output of the 74LS74,
clock pulse at 1.79MHz, is used as the system clock
pulse.

8.8 Reset

When the RESET key is pressed, the flip-flop (74LS74)
at Ull generates two shaping wave -- RST and RST (Refer
to the schematic sheet 1 and 2). The RST is sent to
the CPU and the RST is sent to the 8255 to start a warm
reset cycle. Because of the functioning of RAl and Cl7
which are connected to 74LS74, the MPF-IP will pgrform
a cold (power on) reset cycle when power is supplied to
the MPF-IP,

8.9 Audio Tape Inteface

The audio output is output from the PC5 of 8255-II. It
is output after being filtered and attenuated through
C5, R6, R7, R8. The audio output is also sent to the
built-in speaker and green LED through Q2. Thus, the
PC5 of 8255-I1 not only provides audio tape interface
but also controls sound output.

Data stored on tape is read into the MPF-IP through C7,
R9, R1l@, D1, D2, U8 and Ul@ to the PC3 of 8255-I1 under
the control of the software.

8.10 The Display and Keyboard

i [P i t indicator
display of the MPF-IP is a fluorescen i
g:ﬁel (EIP¥, featuring low power consumption, low
voltage operation, clear, bright light output, and
compatibility with MOS LSI.

8.10.1 Principle of Operation

FIPs Utilize the principle of directly heated Friodes,
composed of hot cathode (Filament), control Grid, and
Anode. Electrons emitted by the hoF cathode are
accelerated through the electrical' field by the
application of positive signal poFentlal to the control
Grid and Anode. The electrons impact tpe fluorescent
material on the Anode, exciting it to luminesce.

o [——
- /muiul !
Electron ;A_ 717

Fig. 8-5

In Fig. 8-5, the filament is the cathode, and the
segment is the anode.

8.10.2 The Driving Modes

As to driving method of FIP, both dynamic and static
modes are available, and they are related to the con-
struction of FIP. Electrode connections of Anode seg-
ments are shown in Fig. 8-7 Features of both dynamic
and static mode are summarized as follows.

(1) static Driving Mode

i) Only one common Grid covers all digits and
always supplied with positive voltage.

ii) sSelection of display position, display pattern
(Numerals, Characters, Symbols) are decided by

8-13

segment signal. (Electrode terminals of each
segment are independently drawn out,)
iii) Segment selection time is arbitrary.

iv) This driving method is suitable for FIPs which

display comparatively few digits. (Number of
electrode terminals increase repidly in
accordance with the increase of display
digits.)
(DYNAMICS) (STATICS)
K520 | o
e UL~
oo LT T T LTI
7 N
Gn Gn
F1 F1 F2
Fig. 8-6 Fig. 8-7

(2) Dynamic Driving Mode

i) Grids are divided in each digit, and electrode
terminals of individual Grids are drawn out.

ii) Segments of each digit (Grid) are parellel
connected, so that total number of segment
electrodes per one panel 1is equivalent to
those of one digit.

iii) Segment selection signal must be supplied
in timing with digit (Grid) singal to be
lighted.

iv) This driving method is suitable for FIPs which
must display comparatively many digits. (Total
driving circuit cost is cheaper.)

8.10.3 FID Buffer Driver

The Fluorescent Indicator Panel (FIP) is an excellent
display device, easy to use, low operating voltage, low
power consumption and provides good matching with MOS
LSIs and u-COMs. However some FIPs require high
voltage and current due to increase in size of the
panel and number of digits. In order to drive these
FIPs, the interface circuits between FIPs and logic are
indispensable. The description covers the fundamental
ideas of interface circuits for FIPs.

8-14

At present, engineering studies with the object of
making FIPs operate at still lower voltages and lower
power consumption are being continued. The demands of
increse in size of the panel and the number of digits
tend to require an increase in the driving voltage or
current. To drive these FIPs, the voltage and current
capacity of the driving circuit become problem. Maxi-
mum operating voltage of LSIs is in most cases up to 49
V and it is impossible to drive directly the large FIPs
with these LSIs. In case of the circuits are assembled
with discrete components, buffer drivers are required
as interface. The driving voltage of FIPs, including
the cutoff voltage, ranges from 12 V to 68 V. Direct
drive 1is possible up to about 40 V by using LSIs or
microcomputers. However, above this voltage buffer
drivers are always required.

Buffer-drives of the FIP interfaces are considered as
follows:

The determination of necessity of buffer~driver is
shown in Fig. 8-8.

T T
, Discrete | No Butfer
' |
1 (CMOS H . Driver
:(TTL : Driver P
Driving:)I..____
T ’
A INPUT Circuit! / :
{7 | PmOS
' .
' ’)y with YES
! ,"COM : Driver
R4]
il !

Fig. 8-8 Determination of Necessity of Buffer-Driver

As shown in Fig. 8-8, some driving circuit contains
driver in it, but in case of output of the driving
circuit 1is not enough to drive the FIP directly, a
buffer~driver is necessary.

The buffer-driver must be chosen in accordance with
output voltage, current from and output mode required.

on MPF-IP, NEC's UPAB8OC is used as the buffer driver
for FIP. Fig. 8-9 shows connection of the buffer
driver to the system and the FIP.

vee

Active Low —

v

|
T T
T T

T T

.. 1. ... __..
‘”———’ 77 |ew
cT.
G
|n:3}?.gxm Driver Zener Diode for g

7\ﬁ
7

Data Input

Logic
Circuit

b

Cut-oft Voltage

—Viey. ec)

Fig. 8-9

In Fig. 8-9, the system sends an active low to the FIP
and provides a voltage of 39V to the driver. The
conception driving circuit and wave form of the
filament voltage are shown in Fig. 8-10.

Anode “On"* voltage level
J J for anode, grid
Grid
Filament
L Ep Ep. E voltage
Ec _

GND.
“Otf* voltage level
/. for anode, grid

8.10.4 The Structure of FIP

The dynamic FIP is a display panel that can display up
to 20 characters. Each display on the FIP consists of
16 segments, including the decimal point and single
quote mark. The 16 segments are identified as a, b, c,
d, e, £, g, h, i, j, k, 1, m, n, dp, and COM. Each
segment is wired to a control line, while each digit on
the FIP 1is also controlled by a wire, identified as
dgl, d92, dg2@0. A segment is illuminated only
when the digit selection signal and segment-selection
signal are supplied simultaneously to the FIP. But it
requires a scanning circuit to display each digit.

(1) Scanning method of the FIP:

The principle of scanning the seven-segment display is
as follows:

Each time a digit-selection signal is output, it is
coupled with the segment-selection signal to display an
alphanumeric character, a symbol, or a punctuation
mark. For example, if the digit-selection signal
selects dgl, while the segment-selection signals choose
segments a, d, i, j, then the digit to which the dql is
connected will be lighted, displaying the letter "I".

The scanning method is: Apply a signal voltage to the
digit-selection 1lines 1in the sequence of dgl, dg2,
dg3,...dg2@. When a digit-selection line is activated,
voltage signals are applied to the segment-control
lines a, b, ¢,...COM to display a desired character.

After all the digits in the FIP have been scanned once,
the scanning 1is repeated from the beginning. Each
digit must be scanned at least 20 times per second.
Because of the persistence of vision of human eyes, all
digits in the display appear to be lit simultaneously.
The scanning speed can not be too fast, since the
residual 1light of the neighboring digit may cause
confusion.

(2) Scanning period and keybounce:

The keypad is usually depressed by hand. In general,
the microcomputer's reaction is much faster than a
human's response. To key in data or a command from the
keyboard, the microcomputer must scan the keyboard
repeatedly until a key is found depressed.

A key bounces for a short time when being depressed o¥
released. Fig. 8-11 1is a time response diagram of
typical key-depressing or key-releasing operation.

depressing releasing

bouncing bouncing

—— —— s
122

key rel. er dep.

key rel. ikey dep. . }“ y p
)T 2T

' l I [l TIME

Tn Tn+1[a Tn+2 Tn+3 Tn+4 Tn+5 Tn+6

Fig. 8-11 The Time Response of Keyboard Scanning

Thus, a key-depression might be identified as two or
more key-depressions if the key-board scanning rate is
too fast. To avoid this problem, the period of
scanning must be longer than the bouncing time (usually
bouncing time is no longer than 18m sec). Since it
takes more than 50m second for a human to release a key
after he pressed a key, the period of scanning is
between 1fm sec and 50m sec.

In Fig. 8-11, an upward arrow indicates when a key is
examined. At Tn+2, microcomputer program found that
the key was depressed and returned the keycode. At
Tn+3, the key was also found depressed. Since the key
was found depressed in a previous scan, the micro-
computer program would determine that this was not a
new key-depression (i.e. the key had not been released
during this time interval). Only if the key is found
depressed at Tn+4 or Tn+5, a key-depression found at
Tn+6 is really a new key-depression.

A program for getting input data from a keyboard
designed 1in accordance with this rule will be error-
free, no matter how long the duration of key-depression
is and whatever is found at Tn+l and Tn+4 (@ or 1).

(3) Keyboard and Display Scanning Program

Usually the microcomputer scans the keyboard to fetch
input of data from the keyboard. However, the keyboard
scanning can not to be too fast because of key
bouncing. Therefore, the CPU has sufficient time to
scan the display while scanning the keyboard. Thus,the
keyboard and display scanning is performed by a single
Subroutine =--= SCANl. The execution cycle of SCANl is

15.7 m second, e.g., it scans the keyboard and display
100 times per second.

(4) Construction of MPF-IP display:
8-19

The display of the MPF-IP is an FIP consisting of 20
digits. A total of 35 control lines are used to control
the display. Twenty lines are used for digit selection,
and the remaining 15 control lines are used for segment
selection.

The MPF-IP has two 8255s -- designated as 8255-1 and
8255-11 for input/output control. The Port A's eight
output lines PA@ through PA7 of 8255-I control eight
digit selection lines dgl through dg8, the Port B's
eight output lines PB@ through PB7 control digit
selection lines dg9 thiough dglé6, and PC@ through PC3
control dgl7 through dg2@. The 8255-II's PA@ through
PA7 control segments a through h, and its PB@ through
PB6 control segments i through DP.

All the segments are controlled by logic "¢" signals.
If a segment is at logic "@", then it is 1lit. If a
segment is at logic "1", then it is extinguished.

The digits of the FIP are also controlled by the logic
"g" signals. If a digit is at logic "@", then it |is
selected, If a digit is at logic "1", then it is not
selected.

(5) The structure of matrix-from keyboard:

A matrix-form keyboard is an important yet inexpensive
input device for the micromputer. The structure of the
keyboard 1is a number of wires in a matrix form. At
each node of the matrix, a keypad 1is positioned.
Please refer to the schematic of the MPF-IP.

The keyboard consists of 20 vertical lines and 3 hori-
zontal lines. As a result, there are 60 (20 x 3) nodes
-- contact -- points for keyboaxds. Oof the 60 contact
points, 45 are connected with signal lines.

Each key on the MPF-IP keyboard has a unique position
code. When a key is pressed, the position code of the
key pressed is fetched by the monitor program.

The three horizontal lines are connected to PC@# through
PC2 of 8255-I1. Refer to the schematic of MPF-IP sheet
2 and sheet 4. Oon sheet 4, you can see that three
resistors are cnnected to the +5V power. Thergfore,
when no key is pressed, the input to the three pins --
PCP through PC2 -- must be high or 1.

The 20 horizontal lines —~- PA# through PA7, PB@ through
PB7, and PCP@ through PC3 -- are wired to the keyboard
and display. Refer to the schematic sheet 2, 3, and 4.

8-20

Each key on the keyboard is assigned a key position
code. In the beginning of keyboard scanning, a counter
is set to zero. Once a key being examined is found to
be undepressed, the counter's value is increased until

(6) Keyboard scanning program

At the beginning of keyboard scanning, the Port A of
8255-I outputs "11111119" for 18 m sec, illuminating
the rightmost digit on the FIP and scanning the first
horizontal 1line to detect whether a "@" signal is
entered. If a key 1is pressed (a "9" signal |is
detected), the key pressed can be identified by the
port address (which is resulted from examing the state
of the pin PC@ through PC2 of 8255-II.)

If no key in the first column is depressed, then the
Port A of 8255-I will output "11111101", 1illuminating
the second digit from right on the FIP and scanning the
second row lines to detect whether a "@" signal is
entered.

In general the keyboard scanning proceeds 1in the
sequence, from top to bottom, from right to left of the
key matrix, to examine if any key is depressed.

a key is found depressed. Thus, when a key is found
depressed, the counter's value is the position code of
that key.

(7) Conversion table

After the monitor program has fetched the position
code, it will convert the position code to internal
code, Then, it will check whether the SHIFT (8255-1
PC4) and CONTROL (8255-1 PC5) keys are pressed. If both
keys were not depressed, then the internal code of the
key pressed 1is the ASCII code of this key. If the
monitor found that either SHIFT or CONTROL key is
pressed, then the internal code should be processed
further by the subroutines KCTRL and KSHIFT in order to
get the ASCII code of this key.

Fig., 8-12 Segment Pattern

Appendix A

Z-80 Pin Configuration

The Z-80 CPU is packaged in an industry standard 40 pin Dual In-Line Package. The 1/O pins are shown
in figure 3.0-1 and the function of each is described below.

SYSTEM
CONTROL
v
CONTROL
cPu {
aus
CONTROL

AgAys

(Address Bus)

Dy-D,

(Data Bus)

M,

(Machine Cycle one)

MREQ

(Memory Request)

30
- N N
L =~ = Ay
19 32
- 3 "2
‘L‘ T> Az
n 2 - A,
22 - Ag
' 36
37 e
-8 A
- —.: 7 ADDRESS
" —;;_. Ag BUS
- 0™ Ag
—‘b Ao
= " An
——— A
16 2-80 CPU 3 12
™ 4 hia
4. —s—b Ava
2% F—— A5
—
25
23
-
14 o
15 o,
6 12
" s
_“-‘ je—— D,
29 7 DATA
— = - b—>’ D, BUS
w o s
5> O
—— D7

2-80 PIN CONFIGURATION
FIGURE 3.0-1

Tri-state output, active high. AO'AIS constitute a 16-bit address bus. The
address bus provides the address for memory (up to 64K bytes) data
exchanges and for 1/0 device data exchanges. 1/O addressing uses the 8 lower
address bits to allow the user to directly select up to 256 input or 256 output
ports. Ag is the least significant address bit. During refresh time, the lower

7 bits contain a valid refresh 4ddress.

Tri-state input/output, active high. Dg-D7 constitute an 8-bit bidirectional
data bus. The data bus is used for data exchanges with memory and /O
devices.

Output, active low.ﬁ] indicates that the current machine cycle is the OP
code fetch cycle of an instruction execution. Note that during execution
of 2-byte op-codes, M1 is generated as each op code byte is fetched. These
two byte op-codes always begin with CBH, DDH, EDH or FDH. M1 also
occurs with IORQ to indicate an interrupt acknowledge cycle.

Tri-state output, active low. The memory request signal indicates that the
address bus holds a valid address for a memory read or memory write
operation.

Appendix B

Z80-CPU Instruction Set

INTRODUCTION:

PRS2 A AR AN

The assembly language provides a means for writing a
program without having to be concerned with actual
memory addresses or machine instruction formats. It
allows the use of symbolic addresses to identify memory
locations and mnemonic codes (opcodes and operands) to
represent the instructions themselves. Labels (symbols)
can be assigned to a particular instruction step in a
source program to identify that step as an entry point
for use in subsequent instructions. Operands following
each instruction represent storage locations, registers,
or constant values. The assembly language also includes
assembler directives that supplement the machine
instruction. A pseudo-op, for example, is a statement
which is not translated into a machine instruction, but
rather is interpreted as a directive that controls the
assembly process.

A program written in assembly language is called a
source program. It consists of symbolic commands called
statements. Each statement is written on a single }Jine
and may consist of from one to four entries: A label
field, an operation field, an operand field and a
comment field. The source program is processed by the
assembler to obtain a machine language program (object
program) that can be executed directly by the Z80-CPU.

Zilog provides several different assemblers which differ
in the features offered. Both absolute and relocatable
assemblers are available with the Development and
Microcomputer Systems. The absolute assembler is
contained in base level software operating in a 16K
memory space while the relocating assembler is part of
the RIO environment operating in a 32K memory space.

SSE Y GUAG

The assembly language of the 280 is designed to
minimize the number of different opcodes
corresponding to the set of basic machine
operations and to provide for a consistent
description of instruction operands. The
nomenclature has been defined with special emphasis
on mnemonic value and readability.

The movement of data is indicated primarily by a
single opcode, LD for example, regardless of
wvhether the movement is between different registers
or between registers and memory locations.

The first operand of an LD instruction is the
destination of the operation, and the second
operand is the source of the operation. For
example:

LD A,B

indicates that the contents of the second operand,
register B, are to be transferred to the first
operand, register A. Similarly,

LD C,3FH

indicates that the constant 3FH is to be loaded
into the register C. In addition, enclosing an
operand wholly in parentheses indicates a memory
location addressed by the contents of the
parentheses. For example,

LD HL, (1200)

indicates the contents of memory locations 1200 and
1201 are to be loaded into the 16-bit register pair
HL. Similarly,

LD (IX+6),C

indicates the contents of the register C are to be
stored in the memory location addressed by the
current value of the 16-bit index register IX plus
6.

The regular formation of assembly instructions
minimizes the number of mnemonics and format rules
that the user must learn and 'manipulate.
Additionally, the resulting programs are easier to
interpret which in turn reduces programming errors
and improves the maintainability of the software.

OPERANDS
Operands
informati
designate

Certain s
the assenm

1)

2)

3)

4)

FLAG
COND

modify the opcodes and provide the
on needed by the assembler to perform the
d operation.

ymbolic names are reserved as key words in
bly language operand fields. They are:

The contents of 8-bit registers are
specified by the character corresponding
to the register names. The register names
are A,B,C,D,E,H,L,I,R.

The contents of 16-bit double registers
and register pairs consisting of two 8-bit
registers are specified by the two
characters corresponding to the register
name or register pajr. The names of
double registers are IX,1Y and SP. The
names of registers pairs are AF,BC,DE and
HL.

The contents of the auxiliary register
pairs consisting of two 8-bit registers
are specified by the two characters
corresponding to the register pair names
followed by an apostrophe. The auxiliary
register pair names are AF",BC’°,DE’ and
HL’. Only the pair AF’ istactually allowed
as an operand, and then only in the EX

AF ,AF’ instruction.

The state of the four testable flags 1is
specified as follows:

ITION

Carr
Zero
Sign
Pari

ON CONDITION OFF
y c NC

z NZ

M (minus) P (plus)
ty PE (even) PO (odd)

OPERAND NOTATION

The following notation is used in the description
of the assembly language:

1)
2)

3)

4)

5)

6)
7)
8)

9)
10)
11)
12)

13)
14)

15)

r specifies any one of the following
registers: A,B,C,D,E,H,L.

(HL) specifies the contents of memory at
the location addressed by the contents of
the register pair HL.

n specifies a one-byte expression in the
range (0 to 255) nn specifies a two-byte
expression in the range (0 to 65535).

d specifies a one-byte expression in the
range (-128,127).

(nn) specifies the contents of memory at
the location addressed by the two-byte
expression nn.

b specifies an expression in the range
(0,7).

e specifies a one-byte expression in the
range (-126,129).

cc specifies the state of the Flags for
conditional JR, JP, CALL and RET
instructions.

qq specifies any one of the register pairs
BC, DE, HL or AF.

88 specifies any one of the following
register pairs: BC,DE,HL,SP.

pp specifies any one of the following
register pairs: BC,DE,IX,SP.

rr specifies any one of the following
register pairs: BC,DE,IY,SP.

s specifies any of r,n,(HL), (IX+d),(IY+d).
dd specifies any one of the following
register pairs: BC,DE,HL,SP.

m specifies any of r,(HL), (IX+4d),(IY+d).

C. RULES FOR WRITING ASSEMBLY STATEMENTS (SYNTAX)

An assembly language program (source program)
consists of labels, opcodes, operands, comments and
pseudo-ops in a sequence which defines the user’s
program.

There are 74 generic opcodes (such as LD), 25
operand key words (such as A), and 694 legitimate
combinations of opcodes and operands in the 280
instruction set.

ASSEMBLER STATEMENT FORMAT:

Statements are always written in a particular
format. A typical Assembler statement is shown

below:
LABEL OPCODE OPERANDS COMMENT
LOOP: LD HL,VALUE 3GET VALUE

In this example, the label, LOOP, provides a means
for assigning a specific name to the instruction
LOAD (LD), and is used to address the statement in
other statements. The operand field contains one
or two entries separated by one or more commas,
tabs or spaces. The comment field is used by the
programmer to quickly identify the action defined
by the statement. Comments must begin with a
semicolon and labels must be terminated by a colon,
unless the label starts in column No. 1.

280-CPU INSTRUCTION SET

ALPHABETICAL

ASSEMBLY MNEMONIC OPERATION

ADC HL,ss Add with Carry Reg. pair ss to HL
ADC A,s Add with carry operand s to Acc.
ADD A,n Add value n to Acc.

ADD A,r Add Reg. r to Acc.

ADD A, (HL) Add location (HL) to Acc.

ADD A, (IX+d)
ADD A, (IY+d)
ADD HL,ss
ADD IX,pp
ADD IY,rr
AND s

BIT b, (HL)
BIT b, (IX+d)
BIT b, (IY+d)
BIT b,r

CALL cc,nn

CALL nn

CCF
CP s
CPD

CPDR

CPI

CPIR

CPL
DAA
DEC m
DEC IX
DEC 1Y
DEC ss
DI
DJNZ e

EI
EX (SP),HL

Add location (IX+d) to Acc.
Add location (IY+d) to Acc.
Add Reg. pair ss to HL
Add Reg. pair pp to IX
Add Reg. pair rr to IY

Logical AND’ of operand s and Acc.

Test BIT b of location (HL).
Test BIT b of location (IX+d)
Test BIT b of location (IY+d)
Test BIT b of Reg. r

Call subroutine at location nn 1f

condition cc 1is true
Unconditional call subroutine
at location an

Complement carry flag

Compare operand s with Acc.
Compare location (HL) and Acc.
decrement HL and BC

Compare location (HL) and Acc.
decrement HL and BC,

repeat until BC=0

Compare location (HL) and Acc.
increment HL and decrement BC
Compare location (HL) and Acc.
increment HL, decrement BC
repeat until BC=0

Complement Acc. (1°s comp)
Decimal adjust Acc.

Decrement operand am

Decrement IX

Decrement 1Y

Decrement Reg. pair ss

Disable interrupts

Decrement B and Jump

relative if B#£0

Enable interrupts

Exchange the location (SP)

and HL

EX

EX

EX
EX

EXX

HAL
IM
IM
IM
IN

IN

INC
INC
INC
INC
INC
INC
INC
IND

IND

INI

INI

JP
JP
JP
JP

JP
JR

JR

JR

(SP),IX
(SP),1Y

AF,AF’
DE,HL

T

(IY+d)
r
ss

R

R

(HL)
(IX)
(1Y)
cc,nn

an
C,e

NC,e

Exchange the location

and IX

Exchange the location

and 1Y

Exchange the contents
Exchange the contents
Exchange the contents
BC,DE,HL with contents of
BC’,DE’,HL’ respectively
HALT (wait for interrupt or reset)

Set interrupt mode
Set interrupt mode
Set interrupt mode
Load the Acc. with

0
1
2

input from device n
Load the Reg. r with
input from device (C)
Increment location (HL)

Increment IX

(SP)
(sP)
of AF and AF’

of DE and HL
of

Increment location (IX+d)

Increment IY

Increment location (IY+d)

Increment Reg. r

Increment Reg. pair ss
Load locatiom (HL) with
input from port (C),

decrement HL and B

Load location (HL) with

input from port (C

)

decrement HL and decrement B,

repeat until B=0

Load location (HL) with

input from port (C

)i

and increment HL and decrement B
Load location (HL) with

input from port (C

)

increment HL and decrement B,

repeat until B=0

Unconditional Jump to (HL)
Unconditional Jump to (IX)
Unconditional Jump to (IY)
Jump to location nn

1f condition cc 18 true
Unconditional jump to location nn

Jump relative to
PC+e 1f carry=l
Unconditional Jump
relative to PC+e
Jump relative to
PC+e 1f carry=0

JR NZ,e Jump relative. to
PC+e 1if non zero (2=0)

JR Z,e Jump relative to
PC+e if zero (Z=1)

LD A, (BC) Load Acc. with location (BC)

LD A, (DE) Load Acc. with location (DE)

LD A,l1 Load Acc. with I

LD a,(nn) Load Acc. with location nn

LD A,R Load Acc. with Reg. R

LD (BC),A Load location (BC) with Acc.

LD (DE),A Load location (DE) with Acc.

LD (HL),n Load location (HL) with value n

LD dd,nn Load Reg. pair dd with value nn

LD dd,(nn) Load Reg. pair dd with location (nn)

LD HL, (nn) Load HL with location (nn)

LD (HL),r ' Load location (HL) with Reg. r

LD I,A Load I with Acc.

LF IX,nn Lcad IX with value nn

LD IX,(nn) Load IX with location (nn)

LD (IX+d),n Load location (IX+d) with value n

LD (IX+d),r Load location (IX+d) with Reg. r

LD IY,nn Load IY with value .nn

LD 1Y, (nn) Load 1Y with location (nn)

LD (IY+d),n Load location (IY+d) with value n

LD (IY+d),r Load location (IY+d) with Reg. r

LD (nn),A Load location (nn) with Acc.

LD (nn),dd Load location (nn) with Reg. pair dd

LD (nn),HL Load location (nn) with HL

LD (nn),IX Load location (nn) with IX

LD (nn),1Y Load location (nn) with IY

LD R,A Load R with Acc.

LD r, (HL) Load Reg. r with location (HL)

LD r,(IX+d) Load Reg. r with location (IX+d)

LD r,(IY+d) Load Reg. r with location (IY+d)

LD r,n Load Reg. r with value n

LD r,r”’ Load Reg. r with Reg. r’

LD SP,HL Load SP with HL

LD SP,IX Load SP with IX

LD spP,1Y Lcad SP with 1Y

LDD Load location (DE) with location (HL),
decrement DE,HL and BC

LDDR Load location (DE) with location (HL)

decrement DE,HL and BC;
repeat until BC=0

LDI

LDIR

NEG
NOP
OR s
OTDR

OTIR

ouT (C),r
OUT (n),A
OUTD

OUTI

POP IX

POP 1Y

POP qq

PUSH IX
PUSH 1Y
PUSH qq
RES b,m
RET

RET cc

RETI

RETN

RL m

RLA

RLC (HL)
RLC (IX+d)
RLC (I1Y+d)
RLC r

RLCA

RLD

RR m
RRA
RRC m

Load location (DE) with locatiom (HL),

increment DE,HL,

decrement BC

Load location (DE) with location (HL),

increment DE,HL,

decrement

BC and repeat until BC=0

Negate Acc. (2°s
No operation

complement)

Logical ‘OR’ of operand s and Acc.

Load output port
decrement HL and
repeat until B=0
Load output port

(C) with location
B,

(C) with location

increment HL, decrement B,

repeat until B=0
Load output port
Load output port
Load output port
decrement HL and
Load output port
increment HL and

(C) with Reg. ¢
(n) with Acc.

(C) with location
B

(C) with location
decrement B

(HL)

(HL),

(HL),

(HL),

Load IX with top of stack

Load 1Y with top of stack

Load Reg. pair qq with top of stack
Load IX onto stack

Load IY onto stack

Load Reg. pair qq onto stack

Reset Bit b of operand m

Return from subroutine

Return from subroutine if condition
cc is true

Return from interrupt

Return from non maskable interrupt
Rotate left through carry operand m
Rotate left Acc. through carry
Rotate location (HL) left circular
Rotate location (IX+d) left circclar
Rotate location (IY+d) left circular
Rotate Reg. r left circular

Rotate left circular Acc. .

Rotate digit left and right

between Acc. and location (HL)
Rotate right through carry operand m
Rotate right Acc. through carry
Rotate operand m right circular

RRCA
RRD

RST
SBC

SBC

SCF
SET
SET
SET
SET
SLA
SRA
SRL
SUB
XOR

P
A,s

HL,ss

b, (HL)
b, (IX+d)
b, (IY+d)
b,r

®»wpg BB

Rotate right circular Acc.
Rotate digit right and left
between Acc. and location (HL)
Restart to location p

Subtract operand s

from Acc. with carry

Subtract Reg. pair ss from

HL with carry

Set carry flag (C=1)

Set Bit b of location (HL)

Set Bit b of location (IX+d)

Set Bit b of location (IY+d)

Set Bit b of Reg. r

Shift operand m left arithmetic
Shift operand m right arithmetic
Shift operand m right logical
Subtract operand s from Acc.
Exclusive °‘OR’ operand s and Acc.

B-11

Appendix €

Z80-CPU Programming Reference

Z80-CPU

NS
lNSTRUCT|O . 58 LDEB
SORTED BY 29 ADD HL HL 59 LDEC
OP CODE 248405 LD HL,(NN) SA LDED
- 28 DEC HL 58 LOEE
2c m% L sC LDEH
20 DEC L 5D LDE.L
osJ SOURCE 2620 LOLN SE LD E.(HL)
CODE STATEMENT 2F cPL SF LDEA
U NOP 302€E JR NC,DIS 60 LDHB
018405 LD BC NN 318405 LD SP.NN 61 LDHC
02 LD (BC)LA 328405 LD (NN).A 62 LOH.D
03 INC BC 33 INC SP 63 LOHE
04 INC B 34 INC (HL) 64 LDHH
05 DEC B 35 DEC (HL) 65 LD H.L
0620 LD BN 3620 LD (HL)N 66 LD H,(HL)
07 RLCA 37 SCF 67 LDHA
08 EX AF AF’ 382€E JR C.DIS 68 LDL8B
09 ADD HL.BC 39 ADD HL SP 69 toL.c
0A LD A (8C) 3A8405 LD A,(NN) 6A LoLD
08 DEC BC 38 DEC SP 68 LD L.E
oc INCC 3C INC A 6C LDLH
oc DECC 3D DEC A 60D oL
0E20 LDOCN 3€E20 LD AN 6E LD L.(HL)
OF RRCA 3F CCF 6F LDL.A
102€ DJNZ DIS a0 Loss 70 LD (HL).B
118405 LD DE.NN 41 Lo 8.C n LD {HL),C
12 LD (DE).A a2 LD B.D 72 LD (HL),D
13 INC DE 43 LD BE 73 LD (HL)LE
14 INC D a4 LD B.HNN 74 LD (HL).H
15 DECD 45 LD B,L 75 LD (HL) L
1620 LDD.N 46 LD B.(HL) 76 HALT
17 RLA 47 LD'B.A 77 LD (HL)A
182€ JR DIS 48 Lbce 78 LDAB
19 ADD HL DE 49 LbCcC 79 LDAC
1A LD A (DE) 4aA LD CD 1A LDAD
18 DEC DE 48 LD CE] LDAE
1C INC E 4ac LOCH 7C LDAH
10 DECE a0 LbC.L 70 LDAL
1€20 LDEN 14 LD C.(HL) 7€ LD A.(HL)
1F RRA 4F LDCA ¥ LDAA
202€ JRNZ.DIS 50 LDD8 80 ADD A B
218405 LD HL.NN 51 LD D,C 81 ADD AC
228405 LD (NN) HL 52 L0D,D 82 ADD A.D
23 INC HL 53 LODE 83 ADD A E
24 INCH 54 LDD.H 84 ADD A H
25 DECH 55 LD D.L 85 ADD A L
2620 LOHN 56 LD D,(HL) 86 ADD A, (HL)
27 DAA 57 LDD.A 87 ADD A A

88 ADCAB 88 CcPB EABAOS JP PE NN
89 ADCAC 89 CPC €8 EX DE HL
8A ADC AD BA cpPD €C8405 CALL PE NN
88 ADC A E 88 CPE EE20 XOR N
8C ADC AH 8C CPH EF RST 28H
8D ADCAL BD CPL fFO RETP

8E ADC A (HL) BE CP (HL) F1 POP AF
8F ADCA A BF cPA F28405 JPPNN
90 suB 8 co RET N2 F3 DI

91 suB C c1 POP BC F48405 CALL P.NN
92 SuB D C28405 JP NZNN FS PUSH AF
93 SUB E C38405 JP NN F620 ORN

94 SUB H C48405 CALL NZ.NN F7 RST 30H
95 SuB L cs PUSH BC F8 RETM
96 SUB (HL) €620 ADD AN F9 LD SP.HL
97 suB A c? RST O FAB40S JP MNN
98 SBC AB cs RET 2 FB El

99 SBCA.C c9 RET FC8405 CALL MNN
9A SBC A.D CAB405 JP ZNN FE20 CPN

98 SBC A E cC84avs GALL ZNN FF RST 38H
9C SBC A H CD8405 CALL NN €800 RLC 8
9 SBCA.L CE20 ADC AN €BOY RLCC

9€ SBC A, (HL) CF RST 8 €802 RLCD
of SBC A A Do RET NC cB03 RLCE
A0 AND B D1 POP DE CcBO4 RLCH
Al AND C D28405 JP NC.NN €B0S RLCL
A2 AND D D320 OUT (N).A CB06 RLC (HL)
A3 AND E D48405 CALL NC.NN cBo?7 RLC A
A4 AND H DS PUSH DE cBo08 RRC B
AS AND L D620 SUB N €809 RRC C
A6 AND (HL) Y} RST 10H CBOA RRC D
A7 AND A D8 RETC ceos RRC E
A8 XOR B D9 EXX cBoC RRC H
A9 XOR C DAB405 JPCNN c80D RRC L
AA XOR D 0820 IN A.(N) CBOE RRC (HL)
AB XOR E DC8405 CALL CNN CBOF RRC A
AC XOR H DE20 SBC AN cB10 RLSB

AD XOR L DF RST 18H cB11 RLC

AE XOR (HL) EO RET PO cB12 RLD

AF XOR A £ POP HL ce13 RLE

80 OR B £28405 P PO.NN ce1a RLH

81 ORC €3 EX (SP) HL CB15 RL L

82 OR D £48405 CALL PO.NN cB16 RL (HL)
83 ORE €S PUSH HL cB1? RL A

Ba ORH €620 AND N ce1s RR B

BS OR L €7 RST 20H ce19 RR C

B6 OR (HL) €8 RET PE CB1A RRD

B? OR A €9 JP (HL) csis RR £

cs1C RR H cBS4 BIT2H cBs4 RESO.H T
c81D RR L cBS5 BIT 2L c88s RESO.L
CBI1E RR (HL) CBS6 BIT 2,(HL) cB86 RES 0.(HL)
CB1F RR A cBS7 BIT 2.A cB87 RES 0,A
c820 SLAB cess BIT 3.8 ce88 RES 1.8
cB21 SLAC CcB59 BIT3.C CB89 RES 1.C
cB22 SLAD CBSA BIT 3.0 CB8A RES 1.0
cB823 SLAE cB58 BIT 1E cB88 RES 1,E
CcB24 SLAH c8sC BIT3H cB8sC RES L.H
c825 SLA L cBSD BIT 3.L cB8D RES 1,L
CcB26 SLA (HL) CBSE BIT 3.(HL) CB8E RES 1,(HL)
cB27 SLAA CBSF BIT 3.A CB8F RES 1.A
cB28 SRA B CcB60 BIT4B €890 RES 2.8
cB29 SRA C CB61 BIT4.C €891 RES 2.C
CB2A SRA D cB62 BIT4D c892 RES 2.0
ce28 SRAE CcB63 BIT4E CcB93 RES 2.E
cB2C SRA H cB64 BIT4H cB9a RES 2. H
cB2D SRA L CB65 BITAL CcB95 RES2.L
CB2E SRA (HL) CB66 BIT 4,(HL) CB96 RES 2,(HL)
CB2F SRA A cB67 BIT4.A CcB97 RES 2.A
cB38 SRL B cB68 BITS.B cB98 RES 3B
cB39 SRLC cB69 BITS.C c899 RES 3.C
CB3A SRLD CB6A BIT 5D CcB9A RES 3.0
CcB38 SRLE cB68 BITS.E cB98 RES 3.E
c83C SRL H CB6C BITSH (o:1:1 RES 3 H
CB3D SRL L cB6D BITS,L cesp RES 3.L
CB3E SRL (HL) CB6E BIT 5.(HL) CB9E, RES 3.(HL)
CB3F SRL-A CB6F BITS5.A CB9F RES 3.A
CB40 BIT 0.8 c870 BIT68 CBAOD RES 4.8
CBa1 BITO.C CR71 BIT6.C CcBA1 RES4.C
cBa2 BITO0.D cB72 BIT 6.0 CBA2 RES4.D
cBal BITO0.E cB73 BIT6.E cBA3 RES 4.E
cB44 BITOH c874 BIT6H CBA4 RES4.H
cB45 BITO.L cB7S BIT6.L Cc8AS RES 4L
cBa6 BIT 0.(HL) cB76 BIT 6,(HL) CBAG6 RES 4,(HL)
cB47 BIT0.A cB77 BIT6.A CBA7 RES4.A
cBa8 BIT1.8 cBe78 BIT78 CBAS8 RES 5.8
cB49 BIT1C cB79 BIT7.C CBAS RES 5,C
cB4A BIT1D cB7a EIT70 CBAA RES 5.0
cBaB BIT1E cB878 BIT 7.E CBAB RESS.E
cB4C BIT1H cB7C BIT7H CBAC RESS.H
cB4D BIT1L c870 BIT7.L CBAD RESS5,L
CBAE BIT 1 (HL) CB7E BIT 7.(HL) CBAE RES 5.(HL)
CB4F BIT1A CB7F BIT7.A CBAF RESS.A
CB50 BIT28 cB80 RES 08 CBBO RES 6.8
CcB51 BIT2C cB81 RES 0.C c8B1 RES 6.C
€Bs52 817 2.0 CB82 RES 0D CcBB2 RES 6.0
CB53 BIT 2.E CB83 RES 0.E cBB3 RES 6.E

———

CcBB84 RES 6.H CBE4 SETAH 0D7205 LD (1X+d}.D
cBss RES 6.L CBES SET AL DD7305 LD IX+d) E
CcB86 RES 6.(HL) CBE6 SET 4 (HL) DD7405 LD tiX+d) H
cB8? RES 6. A CBE? SET A4 A DD7505 LD (IX+d) L
cs8s RES 78 CBES SETS8B DD7705 LD (IX+d) A
cB89 RES7C CBE9 SETSC DD7€0S LD A (I1X+d)
cBBA RES 7.0 CBEA SETSD DD8605 ADD A (I1X+d)
csss RES 7.€ cBes SETSE DDBEOS ADC A (1X+d)
cB8C RES 7 H CBEC SETSH DD9I605S SUB (IX+d)
cesD RES7.L CBED SETS.L DD9E0S SBC A (I1X+d)
CBBE HES 7.(HL) CBEE SET S.(HL) DDA605 AND (I1X+d)
CBBF RES 7.A CBEF SETS.A DDAEO0S XOR (I1X+d)
cBsco SET 0.8 CBFO SET 6.8 0D8605 OR (I1X +d)
cscC1 SETO0C CBF1 SET 6.C DDBEOS CP lIX+d)
CBC2 SET 0,0 CBF2 SET 6.0 DDEY POP I1X

[of -Tok} SETO.E CBF3 SET 6.E DOE3 EX 1SP)IX
c8c4 SETOH CBF4 SET6.H DODES PUSH I1X
cB8Cs SETO.L CBFS SET6.L DDEI JP (1)

c8Cé SET 0.(HL) CBF6 SET 6.(HL) DOF9 LD SPIX
c8c7 SETO0.A C8F7 SET 6.A DDCBO0S06 RLC (iX+d)
cecs SET18 CBF8 SET 78 DDCBOS0E RRC (1X+d)
cBec9 SETI1.C GBF9 SET?7.C DDCBO516 RL (I1X+d)
CBCA SET 1D CBFA SET 7.0 DDCBOS1E RR (IX+d}
cace SET 1 E [o1:14:} SET 7.E DDCB0526 SLA (1X+d)
cBCC SET 1 H CBFC SETTH DDCB0S2E SRA (I1X+d!
CcBCD SET 1L CBFD SET7.L DDCBOS3€ SRL (1X+d)
C8cCE SET 1,(HL) CBFE SET 7.(HL) DDCB0546 BIT 0 (IX+d!
CBCF SET 1A CBFF SET7.A DOCBOS4E BIT 1 (1Xrd)
C800 SET 28 DODO09 ADD I1X BC DDCB0556 BIT 2 (I1X+d)
CB8D1 SET2C 0D19 ADD I1X,DE DDCBOSSE BIT 3.(1X+d)
CcBD2 SET 2D DDB218405 LD IX.NN DDCB0566 BIT 4 (IX+d!
cBD3 SET 2.E DD228405 LD INN)IX DDCBOS6E BIT 5. (I1Xd)
CcBD4 SET2.H DD23 INC IX DDCB0576 BIT6.11X d)
CBDS SET 2L DD29 ADD IX IX DDCBO57E BIT 7 (IX+d)
CBD6 SET 2,(HL) DD2AB405 LD IX, (NN) DDCB0586 RES 0.(1X+d)
CcBD? SET 2,A 0028 DEC IX DDCBOS8E RES 1.11X+d)
CBD8 SET 38 DD3405 INC (1X+d) DDCB0596 RES 2.(1X+d)
CBD9 SET3C DD3505 DEC (I1X+d) DOCBOS9E RES 3. (IX+d)
CBDA SET 3.D DD360520 LD (IX+d).N DDCBO5A6 RES 4 (1X+d)
cao8 SET 3E DD39 ADD I1X,SP DDCBOSAE RESS (IX+d)
cBDC SET 3 H DD4605 LD B.(IX+d) DDCB0O5B6 RES 6.(1X-d!
C8DD SET 3L DDA4EQS LD C.(1X+d) DDCBOSBE RES 7.(iX+d)
CBDE SET 3.(HL) DD5605 LD D.(1X+d) DDCBO5C6 SET 0.{IX+d)
CBDF SET 3.A DDSEO0S LD E (I1X+d) DDCBOSCE SET-1.(IX}d)
CBEO SET 48 DD6605 LD H (IX+d) DDCBO5D6 SET 2.(1X+*d)
CBE1 SET4.C DD6EO0S LO. L (I1X+d) DDCBOSDE SET 3 (1X+d!
CBE2 SETAD DD7005 LD (IX+d).B DDCBOSE6 SET 4.(1X+d)
CBE3 SET4.E 0D7105 LD (1X+d).C DOCBOSEE SET5.(1X+d)

DDCBUSF6 SET 6.(1X+d) EDBO LDIR FDCBOSOE RRC (1Y +d)
DDCBOSFE SET 7.(1X+d) £EDB1 CPIR FDCBO516 RL (1Y+d)
EDA0 IN B.(C) EDB2 INIR FDCBOS1E RR (1Y +d)
EDA1 ouT (C).8 EDB3 OTIR FDCB0526 SLA (1Y+d)
ED42 SBC HL BC EDB8 LDDR FDCBO52E SRA (1Y+d)
£EDA438405 LD (NN).BC EDB9 CPDR FDCBOS3E SRL (1Y+d)
ED44 NEG EDBA INDR FDCBOS46 BIT 0,(1Y +d)
ED4S RETN EDBB OTDR FDCBOS4E BIT 1,(1Y+d)
EDA6 IMO FDO9 ADD 1Y BC FOCBO556 BIT 2,(1Y +d)
€Da4? LD I.A FD19 ADD.IY DE FDCBOS5€E BIT 3.(1Y+d)
EDA48 IN C.(C) FD218405 LD IY NN FDCBO566 BIT 4,(1Y +d)
€ED49 ouT (C).C FD228405 LD (NN)IY FDCBOS6E BIT 5 (1Y +d)
ED4A ADC HL.BC FD23 INCIY FDCBO576 BIT 6.(1Y +d)
£D4B8405 LD BC.(NN) FD29 ADO IY 1Y FDCBOS7E BIT 7.(1Y+d)
EDAD RETI FD2AB405 LD IY (NN) FDCBOS86 RES 0.(1Y+d)
£D50 IN D.(C) FD28 DECIY FODCBOSBE RES 1,(1Y+d)
€DS1 OouT (C).0 FD3405 INC (1Y +d) FDCBO596 RES 2.(1Y+d)
EDS52 SBC HL,DE FD3505 DEC (1Y +d) FDCBOS9E RES 3.(1Y+d)
ED538405 tO (NN).DE FD360520 LD (1Y+d).N FOCBOSA6 RES4.(1Y+d)
EDS6 M1 FD39 ADD 1Y SP FDCBOSAE RESS.(1Y+d)
EDS7 LD AL FD4605 LD B.01Y+d) FDCBO586 RES 6.(1Y+d)
EDS58 INE.IC) FD4EOS LD C.(1Y +d) FDCBOSBE RES 7 (1Y+d)
EDS9 OUT (C)E FD5605 LD D.(1Y+d) FDCBOSC6 SET 0.(1Y+d)
EDSA ADC H| .DE FDSEODS LD E.(1Y+d) FDCBOSCE SET 1,(1Y+d)
£0588405 LD DE.(NN) FD6605 LD H.(1Y+d) FDCBOSD6 SET 2.(1Y+d)
EDSE M2 FD6EQS LD L,(1Y+d) FDCBOSDE SET 3.(1Y+d)
ED60 IN H.(C) FD7005 LD (1Y+d) B FDCBOSE6 SET 4 (1Y +d)
ED61 OUT (C).H FD7105 LD (1Y+d),C FDCBOSEE SET 5. (1Y+d)
ED62 SBC HL HL FD7205 LD (1Y+d),D FOCBO5F6 SET 6.(1Y+d)
ED67 RRD FD7305 LD (1IY+d).E FDCBOSFE SET 7.(1Y+d)
ED68 INL.(C) FD7405 LD (1Y+d) H

FDS9 OUT (C).L FD7505 LD (1Y+d) L

EDGA ADC HL HL FD7705 LD (1Y+d) A

ED6F RLD FD7€05 LD A.(1Y +d) —

ED72 SBC HL,SP FD8505 ADD A (1Y+d) 280 CPU
€D738406 LD (NN).SP FDBEOS ADC A (1Y +d) INSTRUCTIONS
ED78 IN A,(C) FD9605 SUB (1Y+d)

£079 ouT'(C).A FD9EOS SBC A{1Y+d) SORTED BY
ED7A ADC HL SP FDA605 AND (1Y +d)

ED7B840S LD SP (NN) FDAEOS XOR (1Y+d) MN EMON'C
EDAO LO! FDB605S OR8 (1Y +d)

€EDA1 cPI FDBEOS CP (1V+d)

EDA2 INI FOE POP IY T osJ SOURCE
€DA3 out FOE3 ex {sPriv CODE STATEMENT
EDAB LOD FDES PUSH IY 8E ADC A, (HL)
£DA9 cPD FDE9 JP (1Y) DDBEOS ADC A (I1X+d)
EDAA IND FDF9 LD SPIY FOBEODS ADC A_(1Y+d)
EDAB QuTD FDCBOS06 RLC (1Y+d} 8F ADC A.A

DDB8605
FD8605
87

80

81

82

83

84

85

C620

09

19

29

39

DDO09
DD19
DD29
DD39
FDO9
FD19
FD29
FD39
A6
DDAG605
FDA60S
A7

A0

Al

A2

A3

A4

AS

€620
CB46
0DCB0546
FDCBO0546

ADC A B
ADCAC
ADCAD
ADC A E
ADC A H
ADCA L
ADC AN
ADC HL.BC
ADC HL.DE
ADC HL HL
ADC HL SP
ADD A (HL)
ADD A,(1X+d)
ADD A (1Y+d)
ADD A A
ADD A B
ADD AC
ADD AD
ADD AE
ADD A H
ADD AL
ADD AN
ADD HL BC
ADD HL DE
ADD HL HL
ADD HL SP
ADD I1X.BC
ADD I1X,DE
ADD IX 1X
ADD I1X,SP
ADD 1Y BC
ADD 1Y DE
ADD IY IY
ADD 1Y SP
AND (HL)
AND (1X+d)
AND (1Y +d)
AND A
AND B
AND C
AND D
AND E
AND H
AND L
AND N

BiT 0,(HL)
BIT 0.i1X+d)
817 0.(1Y+d)

cea4? BITO0A
Cc8a0 BITOB
cBa1 sIToC
CcB42 BIT0D
ce43 BITOE
CBaa BITOH
CcB4as BITOL
CBaE BIT 1.(HL)
ODCBOS4E BIT 1 (iX+d)
FDCBOS4E BIT 1,(1Y+d)
CB4F BIT 1A
BCa8 BIT18
CcB49 BIT1C
CBaA BIT1D
cBaB BIT1E
ceac BIT1H
CBaD BT 1L
CBS6 BIT 2,(HL)
DDCBOSS6 BIT 2,(1X+d)
FDCBO556 BIT 2.(1Y+d)
cBs? B8IT2A
cB50 B8IT28
CBSY BIT2C
cB52 BIT2D
CcB53 BIT.2E
CcBS54 BIT2H
CBSS BIT2L
CBSE BIT 3.(HL)
DDCBOSSE BIT 3.(I1X+d)
FDCBOSSE BIT 3.(1Y+d)
CB5F BIT3 A
cBs8 BIT 38
CcBS59 BIT3.C
CcBSA B8IT3D
cess BIT 3E
CcB5C BIT3H
C85D BIT3L
CB66 8IT 4,(HL)
DDCB0566 BIT 4,(1X+d)
FDCB0S66 BIT 4 (1Y+d]
CcBé67 BIT4 A
CB€O BIT4B
CcB61 BIT4.C
CB62 81T 4D
CcB63 BITAE
cB64 BIT4A
CB65S BITA L
CB6E BIT 5.(HL)

ODCBOS6E BIT 5.(1X+d)
FDCBOS6E BIT 5(1Y+d)
CBa6F BITS A
CcB868 8ITS8
CB869 8ITs5C
CB6A B8ITSD
cB68 BITSE
csecC BITS H
c860 BITS L
c876 8'T 6,(HL)
DDCB0576 BIT 6,(1X+d)
FOCBO0S76 BIT 6.(1Y+di
cer? B8iT6.A
CB70 B8IT &6
csn BIT6,C
c872 BIT6D
cB73 BIT6E
cB74 BIT6.H
c875 BIT6.L
CB7¢ BIT 7.(HL)
DDCBOS7E BIT 7.(1X+d)
FDCBOS7E BIT 7,(1Y+d)
CBIF BIT7,A
ca7s BIT?8
cer9 B8IT7.C
CB7A 8IT70
cers BIT7E
c8rCc BIT7H
c870 BIT7L
DC8405 CALL CNN
FC8405 CALL M\NN
D48405 CALL NC NN
CD8405 CALL NN
C48405 CALL NZ NN
F48405 CALL P NN
EC8405 CALL PENN
£48405 CALL PO.NN
CC8405 CALL ZNN
3F CCF

BE CP (HL)
DDBEOS CP (1X+d)
FDBEOS CP(IY+d)
BFf cPA

88 ces

89 cpC

BA cPD

88 CPE

8C CPH

[:1o]
FE20
ENA9
[ol-1)
€0Aa
£oB1
2f

27

35
D0D3505
FD3505
30
05
08
00

15

18
10
25

28
0028
FD28
20
38
F3
102€
(-]
€3
DDE3
FDE3
08
€8
09
76
ED46
EDY6
EDSE
ED?8
DB20
€040
€043
£0S0
EDS8
€060
€068
34
D0 34805
FD3405

cPL

CPN

cPD
CPOR

CPi

CPIR

CPL

DAA

DEC (HL)
DEC (1X+d)
DEC (1Y ¢d)
DEC A
DECB
DEC 8C
DECC
DEC D
DEC DE
DECE
DECH
DEC ML
DEC IX
DECY
DEC L
DEC sP

[o]]

DJNZ DIS
(3]

EX (SP) HL
EX (SP)IX
EX (SP)IY
EX AF AF’
EX DE ML
EXX
HALT
MO

(LY}

™2

IN A (C)
IN A (N)
INB.(C)
INCAC)
IND,(C)
IN E.(C)
INH.IC)
INL(C)
INC (HL)
INC (1X+a)
INC (1Y+d)

3C

04

03

oC

14

13

1c

24

23
0023
FD23
2C

33
EDAA
€DBA
EDA2
€082
€9
DDE9
FOE9
DAB8405
FAB405
028405
C38405
C284GS
F28405
EAB40S
£28405
CAB405
382¢
182E
302€
202€
282€
02

12

”

70

n

72

73

74

75
3620
CD7705
DD?7005
DD7105

INC A
INC B
INC BC
INCC
INCD
INC DE
INC E
INCH
INC HL
INC IX
INC Y
INC L

INC SP
IND

INDR

INI

INIR

JP (HL)
JP (1X)

JP Q1Y)
JP C NN
P M NN
JP NC NN
JP NN

JP NZ NN
JPP.NN
JP PE NN
JP PO.NN
JP Z.NN
JR C,DIS
JR DIS

JR NC.DIS
JR N2 DIS
JR 2.DIS
LOC (BC).A
LD (DF).A
LD (HL).A
LD (HL) B
LD (HL).C
LD (HL).D
LD (HL)E
LD (HL) H
LD (HL) L
LD {HL).N
LD (1X+d) A
LD (1X+d) B
LD {IX+a).C

DD7205 LD (1X+d).D

D07305
DD7405
DD7505
00360520
FD7705
FD7005
FD7105
FD7205
FD7305
FD7405
FD7505
FD360520
328405
E£D438405
ED538405
228405
00228405
FD228405
€D738405
0A

1A

7€
DO7€0S
FD7E0S
3A8405

7F

78

79

7A

FD4605
47

40

41

L ¥4

43

44

45

0620
ED4BB4A0S

LD (IX+d) E
LD (1X+d) H
LD (1x+d) L
LD (tX+d} N
LD (1Y+d) A
LD t1Y+d) B
LD iY+a' C
LD t1y+d) O
LD (1Y d) ¢
LD (IY+dLH
LD (1Y+d),L
LD (1Y+d) N
LD (NN) A
LD INN) BC
LD (NN).OE
LD (NN} HL
LD (NN)IX
LD (NN)IY
LD (NN) SP
LD A (BC)
LU A (DE)
LD A (HL)
LD A (1X+d)
LD A (1Y +d)
LD A.(NN)
LDAA

LD AB
LDAC
LDAD
LOAE

LD AH

LD AL
LOAL

LD AN

LD B.(HL)
LD B.(1X+d)
LD B.(1Y+d)
LDB.A
Loss
Los.cC
LoB8D
LDBE

LD B M NN
LtosB.L
LDB.N

LD BC.INN)

018405 LD BCNN
4f LD C LML)

DD4EOS LD C.(1X+d) DD2A8405 LD IX.(NN) EDA3 ouTH
FDAEOS LD C.(1¥+d) DD218405 LD IX NN F1 POP AF
aF LDCA FD2AB405 LD IV (NN) 1 POP BC
a8 LoC8 FD218405 LD IY.NN o1 POP DE
49 Loc.c 6€ LD L.(HL) T POP HL
aA LDC.D DD6E0S LD L, (1X+d) DDE1 POP IX
48 LDCE FDEEOS LD L.(1Y+d) FDEY POP 1Y
ac LDCH 6F LO LA (13 PUSH AF
40 LtbDCL 68 LoLs cs PUSH BC
0E20 LDCN 69 Lo L.C 0% PUSH DE
56 LD D, (HL) 6A Lo LD ES PUSH HL
DD5605 LD D.(I1X+d) 68 LOLE DDES PUSH 1X
FD5605 LD D.(1Y+d) 6C LD LH FDES PUSH 1Y
57 LDOD.A 6D LtoL.L CB86 RES 0.(HL)
50 LoD8 2€20 LDLN DOCBO586 RES 0.(1X+d)
51 Looc ED788405 LD SP.(NN) FDCBOS86 RES 0.(1Y+d)
52 LDD.D F9 LD SP HL cs8? RES0.A
53 LD Dk DOF9 LD SP.IX c880 RES OB
54 LDDH FDF9 LD SP.IY ces1 RES0.C
55 LDO.L 318405 LD SP.NN cB882 RES 0.0
1620 LDDN EDAS LDD ces3 RESO.F
€ED5B8405 LD DE.(NN) €088 LDDR c8s84 RESOH
118405 LD ¢ NN EDAO Lot [of:1:1) RESO.L
SE LD E.(HL) €0DBO LDIR CB8E RES 1.(HL)
DOSEOS LD E (1X+d) ED44 NEG DDCBOS8E RES 1.(1X+d)
FDSE05 LD E.(1Y+d) 00 NOP FDCBOS8E RES 1.(1Y+d)
SF LDEA 86 OR (HL) [o:1:12 RES 1.A
58 LDEB DDB60S OR (1X+d) cBs8s RES1.B
59 LDEC FDB605 OR (1Y+d) cB89 RES1.C
SA LDED 87 OR A c88A RES1.D
58 LDEE 80 OR B cass RES 1.E
5C LDEH 81 ORC cBscC RES 1 H
1) LDEL B2 ORD cesop RES 1.L
1€20 LDEN 83 ORE CcB96 RES 2.(HL)
66 LD H.(HL) B4 ORH DDCB0596 RES 2.(1X+d)
DD6605 LD H.(1X+d) BS OR L FDCB0596 RES 2.(1Y+d)
FD6605 LD H,(1Y+d) F620 ORN c89? RES 2.A
67 LDHA EDBB OTDR 890 RES 2.8
60 LDHB EDB3 OTIR [o:L]] RES 2.C
61 LDHC ED79 OUT{C)LA cB92 RES 2.0
62 LD HD EDA1 ouT (C).8 CcR93 RES 2.E
63 LDHE ED49 ouT (C).C [o-1:7} RES 2N
64 LOHH [{o.3] OuT (C).0 cB9%S RES 2,L
65 LOH.L EDS9 OuUT (C).E CB9E RES 3.(ML)
2620 LDHN ED61 DUT (CLH DDCBO59E RES 3.(1X+d)
2A8405 LD HL.INN) ED69 OouT (C).L FOCBOS9E RES 3.11Y+d)
218405 LD HL.NN D320 OUT (N)A CB9F RES 3.A

LD I,A EDAB ouUTD ce9s RES 38

R

CB99 RES 3.C 0 RET NC CcBOA RRC D
CB9A RES 3.0 co RET NZ CBOB RRC E
cB9B RES 3.E FO RETP c8ocC RRC H
cB9C RES 3.H €8 RET PE CBOD RRC L
CcB9D RES 3L €0 RET PO OF RRCA
CBA6 RES 4,(HL) cs RET 2 ED67 RRD
DDCBOSA6 RES 4.(1X+d) ED4D RETI c? RST O
FDCBO5A6 RES 4.(1Y+d) EDA4S RETN D7 RST 10H
CBA? RES4.A cB16 RL (HL) DF RST 18H
CBAO RES 4.8 DDCB0516 RL (i1X+d) €7 RST 20H
CBA1 RES4.C FDCBO516 RL (1Y+d) EF RST 28H
CBA2 RES 4D cB17 RL A F7 RST 30H
CBA3 RES 4.E cB10 RL B FF RST 38H
CBA4 RES4.H [o:1]] RLC CF RST 8
CBAS RES4.L cB12 AL D 9E SBC A,(HL)
CBAE RES 5.(HL) ce13 RLE DD9YEOS $BC A (1X+d]
DDCBOSAE RES 5 (1X+d) cB14 RLH FDYIEO0S SBC A.(1Y+d)
FDCBOSAE RESS. (1Y+d) CB15 RL L 9F SBC A.A
CBAF RES$ A 17 RLA 98 SBC A B
CBAS RES 5.8 CB06 RLC (HL) 99 SBC A.C
CBA9 RESS.C DDCBO0506 RLC (1X+d) 9A SBC A.D
CBAA RESS5.D FDCB0S06 RLC (1Y+d) 98 SBC A€
CBAB RES S.E C807 RLC A aC $BC A M
CBAC RESS.H CB00 RLC B 90 SBC A,L
CBAD RESS,L €801 RLC C DE20 SBC AN
CBB6 RES 6.(HL) CB02 RLCD ED42 SBC HL BC
DDCBOSB6 RES 6.(1X+d) CBO3 RLCE EDS2 SBC HL.DE
FOCBOS5B6 PES 6.(1Y +d) cBo4 ALCH ED62 SBC HL HL
cBB? RES 6,A €B0S RLC L ED72 SBC HL,SP
ceso RES 6.8 07 RLCA 37 SCF
cBeB1 RES 6.C ED6F RLD CBC6 SET 0.(HL)
cBB2 RES 6.0 CB1E RR (HL) DDCBO5C6 SET 0,(1X+d)
€883 RES 6.E DODCBOS1E RR (I1X+d) FDCBO5C6 SET 0.(1Y+d)
cBB4 RES 6,4 FDCBOS1E RR (1Y +d) cBec? SET0.A
cBBS RES 6L CB1F RR A CBCO SET 0.8
CBBE RES 7.(HL) cB18 RR B csC1 SETO.C
DOCBOSBE RES 7.{1X+d) cB19 RR C CBC2 SET 0.0
FOCBOSBE RES 7.(1Y+d) CB1A RR D CBC3 SET0.,E
CBBF RES 7,A cs1B RR E cBc4 SETOH
ceBs RES. 7.8 csic RR H CcBCS SETOL
CB89 RES 7.C CB1D RR L CBCE SET 1.(HL)
CeBA RES 7.0 1F RRA DOCBOSCE SET 1,(I1X+d)
cses RES 7.E CBOF RRC (HL) FDCBOSCE SET 1.(1Y+d)
ceBC RES 7 H DDCBOS0E RRC (1X+d) CBCF SET 1A
CBBD RES 7L FDCBOS0E RRC (1Y+d) cecs SET 18
c9 RET CBOF RRC A CBC9 SET 1'c
D8 RETC CBo08 RRCB T
F8 RET M €809 RRC C caca SeT1O
CBCB SET 1E

fcecc SET 1.H CBF2 SET6D 90 SUB B
CBCD SET 1L CBF3 SETG6E 91 SUB C
CcBD6 SET 2.(HL) CBFa SET6M 92 SUB D
DDCBOSD6 SET 2.(1X+d) CBFS SET 6.L 93 SUB E
FOCBO506 SET 2.(1Y+d) CBFE SET 7.(HL) 9 SUB H
CcBD? SET2.A ODCBOSFE SET 7.(1X+d) 95 SUB L
c8DO0 SET 28 FDCBOSFE SET 7 (1Y+d) 0620 SUB N
cBD1 SET 2.C CBFF SET7.A AE XOR (HL)
cBD2 SET 2,0 CBF8 SET 78 ODAEOS XOR (I1X+d)
csD3 SET 2E CBF9 SETI1.C FDAEOS XOR (1Y +d)
CBD4 SET2H CBFA SEY 70D AF XOR A
cBDS SET 2L cefB SET7E A8 XOR B
csos SET 38 CBFC SET 7.H A9 XOR C
CBDE SET 3.(HL) CBFD SET 7L AA XOR D
DDCBOSOE SET 3.(1X+d) c826 SLA (HL) AB XOR E
FDCBOSDE SET 3,(1Y+d) DDCB0526 SLA (1X+d) AC XOR H
CBOF SET3A FDCB0526 SLA (1Y+d) AD XOR L
€809 SET 3.C ce27 SLA A €E20 XOR N
C8DA SET 30 820 SLA B
ceos8 SET3E cB21 SLAC
cBOC SET3H cB822 SLAD
CBDD SET 3L €823 SLAE
CBEG SET 4,(HL) cB2a SLAH
DDCBOSE6 SET 4.(1X+d) c82s SLA L
FDCBOSE6 SET 4.(1Y+d) cB2E SRA (HL)

CBE? SET4.A DDCBO52E SRA (1X+d)

CBEO SEY4B FDCBOS2E SRA (1Y+d)

CBE1 SETA,C CB2F SRA A

CBE2 SET 4D cez2s SRA B

CBE3 SETAE c829 SRAC

CBE4 SETAH CB2A SRA D Example Values
CBES SET4.L ce28 SRAE

CBEE SET 5, (ML) cB2C SRA H

DDCBOSEE SET 5.(1X+d) cB20 SRA L

FDCBOSEE SET 5,(1Y+d) CB3E SRL (HL)

CBEF SET5.A DDCBOS3€ SRL (I1X+d) nn EQu 584H
CBES SETS58 FDCBOS3E SAL (1Y+d)

CcBE9 SETS.C CB3F SRL A d EQU 5
CBEA SET S50 cB838 SRL B

cees SETSE ce39 SRL C n EQU 20H
CBEC SETSH CB3A SRLD

CBED SETS5.L ca3s SRLE

CBF6 SET 6,(HL) cB3C SAL M e 30H
DDCBO5F6 SET 6.(1X+d) CcB30 SAL L

FOCBOS5F6 SET 6.(1Y+d) 96 SUB (ML)

CBF7 SET6.A DD960S SUB (1X+d)

CBFO SET 68 FD9605 SUB (1Y +d)

CBF1 SET6.C 97 SUB A

280 CPU Register Configuration ¢ ASCII Character Set

280 CPU Register Configuration

MAIN REG SET

ALTERNATE REG SET

Y TTTTTT
ACCUMULATOR
A

FLAGS
F

ACCUMULATOR
A

FLAGS
F

[+

[

o

3

o

E

x

L

H

v

INTERRUPT
VECTOR
|

MEMORY
REFRESH
R

INDEX REGISTER IX

INDEX REGISTER IY

STACK POINTER SP

PROGRAM COUNTER PC

SPECIAL
PURPOSE

REGISTERS

PURPOSE
REGISTERS

ASCII Character Set (7-Bit Code)

Lso

MSD [O

001 010 | 011

3 -

m

nawmn=o

0000 | NUL
0001 | SOH
0010 | STX
0011 | ETX
0100 | EOT
0101 | ENG

DLE | SP

nawn=o

NAK| %

mooo»f

C-“uD®0v
sanowe -

€~n-0v

Pom~o

0110 | ACK
0111 | BEL

1001 | HT
1010 | LF

o

»

2
e~

«~-I0™T

N<xE<
-0 -

N E <

"moo®

1011 | VT
1100 | FF
1101 | CR
1110 | SO
11| sl

[2]

»
-
SV A

ozZTrx

|
033 —»

DEL

Summary of Flag Operations

22 Do
Instruction s Z H PIV N C Comments
ADDA s ADCA s 1 X X vV 0 801t 300 0r 9d0 wilh Catry
SuBs SBCA.s.CPs NEG 1 [S S 2) 1 B DIl SUDItACt SubItaC! with Carty COMipare and negale accumulalor
AND s 1 i X 1 x P 0 O
ORs XOR's 11 X 0 X P O o} Logrcal operanons
INCs T X 1 X V0 e 8bit increment
DEC s [N S R O 8:bit gecrement
ADD DD. ss e e X X X e 0 1 16 b1 aco
ADC HL. ss I X X X v 0 1 16-Dit 30d wilh carry
SBC HL. ss [S S S S A | 16-bit sublract wilh carry
RLA. RLCA. RRA. RRC/. e ¢ X 0 X e 0 Rotate accumuialor
AL m RLC m RRm, 1o X 0 X P 0 Rotate and shilt locations
RARC m. SLA m,
SRA m, SRL m
RLD. RRD 11 X 0 X P 0 e Rotate digit left and right
DAA ' X 1t X P e Decimal adjust accumulator
CPL e ¢ X 1 X e 1 e Complemeni accumulalor
SCF e e X 0 X e 0 Sel carry
CCF e« e X X X e 0 1 Complement carry
IN ¢ (C) 1 I X 0 X P 0 Inpul register indirect
:x:h”:gbgugng}‘gfon : : : : ;(: : : } Block input and output Z = 0 B # O otherwsse 2 = 0
A oo S S :, Block transter instructions PV = 11 BC # 0. olherwise PV = 0
CPI CPIR. CPD. CPDR X 1 X X X 1 1 . Block search instructions Z = 1 i A = (HL). otherwise 2 = 0
PIV = 11 BC # 0. otherwise PV = 0
LDA ILLDAR 1 1 X 0 X IFF Q0 » The content of the interrupt enable 1hip-liop (IFF) 1s copied into the PIV
tlag
BiTo s X 1 x 1 X X 0 The state of bil b ol location s 1s copied into the Z llag
Symbol ion Symbol Operation
S Signtiag S = 14 the MSB of Ihe result 1s 1 1 The tiag 1s atfected accoraing 10 the resull of the
Z Zerollag 2 = 111 the result of the operation 1s operation
0 . The flag is unchanged by the operation
PIV Parity or overliow liag Parity (P) ang overflow (V) 0 The liag 1s resel by Ihe operation
share the same flag Logical operations atfect 1 The fiag 1s set by the operation
1his flag with the panty of the result while X The tiag 1s & “'don’t care
anthmelic operations altect this fiag with the v PIV llag aftecied according 1o the overflow resull
overllow of the result Il P/V hoids panty. PIV = of the operation
11t the result of the operation 1s even. PV = 0 P PIV tiag allected according 10 the parity resull of
i result 1s 0dd It PIV holds overflow. PIV = 1f the operation
the result of the operation produced an overflow r Any one of the CPU registers A.B.C.D.E H. L
H Hall-carry flag H = 1.1 the add or subtracl s Any 8-Dit location tor all the addressing modes

operation produced a cairy inlo or borrow lrom
bit 4 of the accumulator
N Add/Subtract flag N = 1 the previous opera
lion was a subtract
H and N tlags are used in conjunction with the
decimal adjust instruction (DAA) 1o properly cor
rect the result into packed BCD tormat following
addimon or sublraction using operands with
packed BCD tormat
Cc Carry/Link ftag C = 111 the operanon produced
a carry trom the MSB of ihe operand or result

allowed for the particular instruction
ss Any 16-bit location for ali the addressing modes
altowed for that instruction
Any one of the Iwo index registers IX or IY

Retresh counte’
n 8-Di1 value in range < 0. 255 >
nn 16:Dit value in range < 0. 65535 >

8-Bit Load Group

OESTINATION

SOURCE
REGISTER EXT
IMPLIED REGISTER INDIRECT INDEXED | AppR | IMME
] R A 8 c o € H L |(HL) [(BC) |(DE) |(1X + d)|(1Y + d)| (nn) n
oD FO 3A 3E
A ED |ED | 7F 78 9 7A | 78 | 7C | 7D | 7E 0A | 1A | 7E TE n n
s7 SF d d n
oo FD
] a7 40 49 42 4 “ 1) 46 L) 46 06
- d d n
[o]:] FO
[+ 4F |48 | 49 | 4A | 4B | 4C | 4D | 4E 4E 4E 0E
d d n
oD FD
REGISTER] 57 | 50 | §1 52 | 53 | 54 | S5 56 :6 36 16
n
[o]:] FD
E SF (58 |59 | 5A | 5B [5C | SD | SE SE SE 1E
d d n
[+ 1] FD
H 67 |60 | 61 62 | 63 | 64 | 65 | 66 66 66 26
d d n
[o]o] FD
L 6F |68 |69 | 6A | 6B | 6C | 6D | 6E 6E 6E 2€
d d n
(HL) milen 72 73 | 74 75 36
n
REGISTER
INDIRECT | (BC) 02
(DE) 12
oD |OD | DD | DD | DD | DO | DD [*]o]
ax+d) |70 |7 j72 |73 78|75 36
d
INDEXED d d d d d d d n
FD | FD | FD | FD | FD | FD | FD FO
7 70 7 72 73 74 75 36
(1Y +d) M
d d d d d d d n
32
EXTERNAL
ApDoORess | (™ "
| ED
a
IMPLIED
ED
R 4F

8-Bit Load Group

Symboix Flage Qucode No.ol Neol M Neol T
Mnemon Operation s 2 L] PV N C 76 543 210 Mer Bytes Cycles Sistes Commonts
= e 3 e 0 . e e o 1 v e
oo - L T T S TR R F v ﬁ
- 0 C
- BN L S T Te) 2 r 00 0
o R R o e x e 2 e e e Mooy DD s 1y o €
0 00 MW
-0- 0L
O Yeor f - veq e o X e X e e ARRRRRRRTFI X's) 3 s 19 " A
21 g
-0-
O o (HL) =1 e e X s x e e . [ARRRIN A 2 7
0Xea ¢ (Xe@ =1 e e X e X o o ARIAR IR (VAN o7o] 3 5 19
0Y 10 1
-a-
oY ear t Y+ - ¢ e e X e X e o v FD 3 5 "
01 110
-0-
LD HL A (HL) = n e & X e X e o 00 110 110 36 H 3 10
-n-
LDaxsan (X+a - n e e X e X o e o 101 10 DD e 5 "
00 110 110 36
-a-
-n-
WWars+an (Y+d - n e e X e X e o o o0 FD 4 s 19
00 110 110 36
-a-
-n-
LD A (BC) A - (BC) e e X & X o o o 00 00V 010 0A 1 2 7
LD A (DE} A - (DE} e e+ X e X o o o 00 0V1 010 1A 1 2 7
LD A (nn) A~ (nn) e o X e X e e @ 00 1 010 3A 3 4 13
-—n-
-n-
LD (BC) A (8C) - A e o X e X e s s 0000000 02 1 2 7
LD (DE) A (DE) - A ¢ s X o X o o o 00 010 00 12 1 2 7
LD (nn) A {(nn) - A * e X e X e o @ 00 110 010 32 3 4 17
-n-
-n-
LDA | A 1 1 X 0 X IFF 0 =« 11101 100 ED 2 H 9
01 010 111 57
LDA R A-R t 1 X 0 X IFF 0 e 1101 100 ED 2 H 9
01 011 111 SF
DI A I- A e e X e X o o o 1100100 ED 2 2 9
01 000 111 47
LDR A R~ A e e X o X e o o 110V 100 ED 2 2 9

01 001 111 4F

NOTES ' ¢ 1 means any of Ihe registers A B.C D.E M L
IFF the conlent of tne interrupt enable 1hD 100 (IFF) 15 copred inlo the PV hiag

Flag Nolaon « = flag not atlected 0 = fiag teset 1 = Mag sel X = hag is unknown
1 = 11ag is allected accorong 10 Ine resull o the operalior

C-14

16-Bit Load Group

SOURCE
MM, | EXT. | REG.
REGISTER EXT. | ADDR|INDIR.
aF [B8C | 0 | HL| s | ix | v | an | () | (sP)
AF 3]
€0
1] o1 ® |
n n
n n
€0
OE 1 s8 | 01
n n
n n
2 24
DESTINATION | REGISTER | HL n n €1
n n
ED
sp F9 oo | Fo | 3 78
F9 F9 n n
n n
oo | oo | oD
X 21 2 | B
n n
n n
FO FO | FD
4 21 A | B
n n
n n
€D | €0 ED | DO | FO
EXTERNAL | (. 43 |53 |22 |73 |22 | 22
ADDRESS n n n n n n
n n n n n n
PUSH | REGISTER o0 | FO
INSTRUCTIONS | IND. (SP)| FS | C5 | D5 | ES €5 | ES

NOTE: The Push & Pop Instructions adjust the SP alter every execution.

16-Bit Load Group

Symbolic Flags Opcody No.o! Nool M No.ot T
Mnemonic Operation s 2 H PIV N C 76 543 210 Hex Byles Cycles States Comments
b3y ag -~ on L A A 00 @aL v 3 3 w
- -
-n-
LD X an IX ~ nan e o X e X e o o 101 10y [} a4 4 1a 10 HL
00 100 OV 2 " SP
-n-
-n-
L0y n 1Y - nn e e X e X o e s 1 NTIY FD 4 4 12
00 160 001 2
-—n-
-n
LD HL (nn) H = (nn+1) ¢ o X e X e e ¢ 00101010 2A 3 B 16
L = (nn) -n-
-n-
LD aa (nn) ddy ~ (nn+ 1) e e X & X o o o 1101 101 ED 4 6 20
ag — (nn) 01 dor 011
-n-
-n-
LD 1x (nn) IXH — (hn4 1) * e X e X o o @ 11 011 100 DD 4 6 20
IXg = (nny 00 101 010 2A
-—n-
-n-
LD IY (nn) IYH — (hn+ 1) e e X e X s o o 11 111 10V FD 4 6 20
1Yy - (nn) 00 101 010 2A
-n-
-n-
LD (nn) HL (n+1) = H e e X e X o & o 00 100 00 22 3 5 16
(nn) = L -n-
-n-
LD (nn). ad (nn+ 1) — ddy e o X e X & o o 11101 100 ED 4 6 220
(nn) = dap. 01 6d0 011
-n-
-n-
LD (nn). 1X (N +1) — IXy e e X e X e s e 11011101 DD 4 6 20
(nn) = IX 00 100 010 22
—-n- .
-n-
LD (hn). 1Y (nn4+1) = 1Yy e e X v X o o o 1M1 111100 FD 4 6 20
(nn) = 1Y 00 100 010 22
-n-
-n-
LD SP. HL SP - HL e o X o X e s e 11111001 F3 1 1 6
LD SP.IX SP — IX e o X o X o o o 11 011 101 [0} 2 2 10
1111 000 F9
Lo SP.IY SP — 1Y ¢« o X e X e e o MANMIY FD 2 2 10
1111001 F9 Qa_Pau
PUSH aqa (SP-2) — qaL e o X o X e o o 11 Qa0 101 1 3 n 00
(SP-1) - aaH 0 DE
SP - SP -2 10 HL
PUSH IX (SP-2) - X, e o X o X o s e 1onit DO 2 4 15 "o AF
(SP=1) — IXy 11 100 101 ES
SP - SP -2
PUSH 1Y (SP-2) - 1Y, e o X e X e ¢ o N0V FD 2 a 15
(SP=-1) — 1YW 11100 107 ES
SP ~ SP -2
POP aq QqaH - (SP+1) e e X o X e o o 11 qq0 001 1 3 10
aq - (SP) ’
SP - SP 42
POP IX Xy = (SP+ 1) e e X e X e o o 11011101 DD 2 4 AL
X = (SP) 11 100 001 (3]
SP - SP +2
POP 1Y Yy = (SP+1) e o X e X e o o 1 111101 FD 2 4 1
Y - (SP) 11 100 001 (3]
SP — SP +2
NOTES 305 any Of Ine regisier pans BC DE HL SP
Qa s any of ine reaister paus AF BC DE HL
(PAIR)y (PAIR)_reter 10 igh Or0er ang low Order eight DIls 0! Ihe eQisier DA 1espeCinen
eg BCL = C AFy = A .
Fu1a Notation lag not aflecled O = fiag reset 1 = NMag Sel X = 1.4g s umaioa’

1 = 1l4g s alleclen accoraing 10 Ine resull of the operat-ar

Exchange, Block Transfer. and Search Groups

Exchange Group

IMPLIED ADDRESSING
AF]| BC.OE&HL | WL X | I¥
aF | o8
sC.
weueo | D€ 09
HL
o€ 1)
REGISTER |(SP) € | 00| FD
INDIRECT €] &

Block Transfer Group

SOURCE

REG.
INDIR.

(HL)

ED ‘LOI'—Load (DE) — (HL)
A0 Inc HL & DE, Dec BC

ED ‘LDIR’'—Load (DE) — (HL)

REG. 80 Inc HL & DE, Dec BC, Repeat until BC=0
DESTINATION - | (0E)
INDIA €D 'LDD"—Load (DE) ~ (HL)
A8 Dec HL & DE, Dec BC
ED ‘LODR’'—Load (DE) - (HL)
[-1] Dec HL & DE, Dac BC, Repeat until BC =0
HL points to source
DE points to destination
BC is byte counter
Block Search Group
SEARCH
LOCATION
REG.
INDIR.
(HL)
ED ‘cPI’
Al Inc HL, Dec BC
€D ‘CPIR’—Inc HL, Dec BC
81 repeat until BC =0 or find match
ED ‘CPD'—Dec HL & BC
A9
€D ‘CPDR'—Dec HL & BC
[-1] Repeat until BC =0 or find match

HL points to location in memory
o be compared with accumulator
contents

BC is byte counter

Exchange, Block Transfer. and Search Groups

Symbolic Flags Opcode
Mnemonic Operation s 2 L] PV N C 76 543 210 Commaents
Dt ML Ot~ ny e« o X e X e o o 1101 O
Ex Al Ab Al - Al e e X e X o o o 00 00" (V0
Y 8C - BC e o X e X o o o Mon v Dy Y 1 . Register Lan ang
Ot - Ot aunilary 1egister
HL - ML bank eschange
EX (SP) HL H - (SP+ 1) e e X e X e e o 11100 01 E3 1 5 19
L= (5P
EX (SP) IX Xy ~ (SP+ 1) e & X e X o o o n on 0 oD 2 6 23
Xy = (SP) 11 100 O €3
Ex (SP) 1Y 1Yy = (SP+ 1) e e X e X e o o 11 1100 FD Fl 6 23
Iy - (SP) 11 100 011 €3
0]
[} (DE) = (HL) e ¢ X 0 X 1 0 1101 10t ED 2 4 16 1020 (HL) im0
DE — DE +1 10 100 000 A0 (DE) increment
HL = HL+) the pointers ang
BC - BC-1 decrement the
byte counter (BC)
LDIR (DE) — (HL) e e X 0 X 0 0 - 11101 100 ED 2 5 2 WBC = 0
DE - DE+1 10 110 000 B0 2 a 16 nBec =0
HL = HL+1
BC - BC-1
Repeat unlil .
0]
LDD (DE) — (HL) ¢ + X 0 X I 0 e M101100 ED 2 4 6
DE — DE -1 10 100 000 A8
HL — HL -1
BC - BC-1
LDDR (DE) — (HL) e o X 0 X 0 0 o 1101 101 ED 2 H) 21 18C = 0
DE - DE-1 10 111 000 88 2 4 16 nec = 0
HL = HL-1
BC - BC-1
Repeat until
BC =0
@ 0]
cpt A - (HL) 11X 1 X 1t 1 e 11101101 ED 2 4 16
HL — HL+1 10 100 001 Al
8C - BC-1
[} O]
CPIR A - (HL) X o1 X o1 1 e 11101 101 ED 2 5 2 1 BC # 0ang
A2 (HU)
HL — HL+1 10 110 001 B1 2 a 16 1BC = 0or
BC - BC-1 A = (HL
Repeat until
A = (HL) or
BC =0 ® ®
cPD A - (HL) X 1 X 1 e 1101 101 ED 2) 6
HL = HL-1 10 101 001 A9
BC - BC-1
@ O
CPDR A - (HL) X o1 X 1. 11 101 101 ED 2 5 2 1t BC = 0and
A = (HU)
HL = HL-1 10 11000 B9 2 4 16 "ec =0or
BC - BC-1 A = (HL)
Repeat unhi
A = (HL) or
BC =0
NOTES (1JPIV tiac 15 0l the resull of BC - ¢ = O olnerwise PV = 1
@2z mac s 1 A = HL othervise 2 = €

Fiao Notanon o = fiag not aflecled O = llag reset 1 = flag set X = 1iag 1S unknown
= haag is atlected accorging to 1he resull of the operation

C-18

8-Bit Arithmetic and Logical Group

SOURCE
REG.
REGISTER ADDRESSING INDIR,| NDEXED |IMMED.
A [} c [(3 H L | ¢ty jaxea|aved) o
o0 | FD
*‘ADD' [24 80 L] 82 83 7] 8s [86 [ce
d d n
oo | FD
ADD w CARRY "ADC' | 6F (1) [oA | 8B sc 80 oE 8E 8E | CE
d d n
o0 | FO
SUBTRACT 'SUB" 124 [” 92 [(2 [96 [[[
d d n
oD | FD
SUB w CARRY 'SBC’ | 9F [) 9A | 9B 9C | 90 | SE 9E %€ | DE
d d n
oo | FD
‘AND’ A7 A0 [a1 A2 | A3 | A« AS | a6 | A6 | A6 E6
d d n
'l oo | fD
*XOR AF | A8 | A9 | AA | AB [AC | AD | AE | AE | AE | EE
d d n
oo | FD
‘OR" 87 B0 | 81 82 83 B4 Bs | B¢ 86 86 F6
d d n
oo | FD
COMPARE ‘CP’ 8F L] B9 | BA (BB | BC | BD | BE [BE | BE FE
d d n
. oo FD
INCREMENT ‘INC’ 3c 04 oc 14 1c E2) 2c u M| 3
d a9
oo FD
DECREMENT ‘DEC’ 30 05 1] 15 10 25 20 £ 3 35
d]
Symbolic Flags Opcode No.of No.ot M No.ot T
Mnemonic Operation s 2z H PV N C 76 543 210 Hex Bytes Cycles States Comments
ADDA. 1 A-A+1 1 X 1t X V. 0 1 10[000 1 1 4 ' Reg
ADD A. n A-A+n X 1 X Vo0 1 11 [000] 110 2 2 7 000 B
- n - 001 C
010 D
ADDA.(HL) A=A+ (HU v 1 x 1 x v o 1 0oogro 1 2 7 o E
ADDA. (IX+d) A~ A + (IX+0) X 1o X Vo0 o 1monir DD 3 5 19 100 H
10 [000] 110 100 L
- ¢ - m A
ADDA.(IY+d) A=A + (IY+0) LroX 1 X Vo0 11111100 FD 3 5 19
- a -
ADCA.s A-A+s+CY" X 1 X Vo0 1 [001] sisanyol i n
SuB's A-A-s [R S ST S [o10] (HL). (X + 0.
SBCA. s A-A-s-CY roX o ox Vo1 o1 (1Y 4 d) as shown
for ADD instruction
AND s A—-A s t 1 X 1. X P 0 O m The indicated bits
ORs A-A s P 1 X 0 X P OO [110] replace the [000] n
XORs A-Aes I 1 X 0 X P O O [101] the ADD sel above
cPs A-s X o X Vo g [111]
INC r—r 41 1 X 1 x v o e 00 r [100] 1 1 4
INC (HL) (HL) —(HL) +1 11X 1 X Voo 00 110 1 3 "
INC (IX + d) (X+d) - 1 X 1 X V 0 e 11 011 101 oo 3 6 23
(X+d)+ 1 00 110109
- 4 =
INC(IY4+d) (IY+d) - 1t X 1 X V. 0 s 111101 FD 3 6 2 m(-:(an;)o:l;. (H:))
(0% +0). (Y +
(Vedr+r 00 110 [109] as shown for INC
- 4 = DEC same format
DECm m-—m-1 X 1 X Vo1 . and siates as INC
Replace [100] with
n opcode
NOTES The V symbol in the PIV tlay o Ittt e PIV 1L : vert ' MW ates pant
e o 3 e B o e e S, St STty o ol i
Flag Notaton : fiag not allect U = Nagresel 1 = flag sel X = 1ag s unknown

= Nlag 15 allecied accordng 10 the resull of the operation

C-19

General-Purpose Arithmetic and CPU Control Groups

Genera!-Purpose Arithmetic

Decimal Adjust Acc. ‘DAA’ 27
Complement Acc. 'CPL' 2F

. EO
(2's comglement) a“
Compiement Carry Flag, "CCF’ 3F
Set Carry Flag, "SCF* 7

Miscellaneous CPU Control

‘NOP* 00

"HALT' 76

DISABLE INT (O | F3

ENABLE INT ‘El’ 8

T INT M
SET INT MODE 0 o 8080A MODE
< SET INT MODE 1 €D RESTART TO LOCATION 0038y
‘IM 1 56

INDIRECT CALL USING REGISTER

SET IN? MOOE 2 ° 1 AND 8 BITS FROM INTERRUPTING
DEVICE AS A POINTER.

Symbolic Flags Opcode No.of No.ol M No.of T
Mnemonic Operation s Z H PIV N C 76 543 210 Hex Bytes Cycles States Comments
DAA Converts acc content 1 1 X 1 X P e 1 00100111 27 1 1 4 Decimat adjus!
nto packed BCD accumulator
loliowing add or
subtract with
packed
BCD operands ,
cPL A-R e e X 1 X e 1 e 0010111 2F 1 1 a Complement
accumulator
one <
compiement)
NEG A-0-A roroX o1 X v 1100 WY ED 2 2 8 Negale 8cc (Iw0's
01 000 100 44 complement)
CCF cy - Cv e e X X X e 0 1 0011111 3F 1 a Compiement carry
nag
SCF CYy - e e X 0 x e 0 Vv 001011 37 : < Set ca:y tag
NOP No operatior e e X e X & e e 00000000 OO 1 <
HALT CPU haited e o X e X e e o 01110110 76 i K
Ol » IFF - 0 e e X e X e e e 11 M00N 3 * <
Ele IFF — 1 e e X e X e e o 1AM ON FB 1 <
M0 Sel interrupt e e X e X e e e 11100101 ED O 2 g
mode 0 01 000 110 46
M1 Se1 nterrupt e e X e X e e e 11101100 ED 2 2 8
mode 1 01 010 110 56
™2 Set interrupt e e X e X e e e 11100100 ED 2 2 8
mode 2 01 01 110 SE

NOTLS 1 indicates e inlenudl enae 1o 190,
he (i tup hop
S INIRTIUDE 41e 10T 841D Al Ihe €10 Of £1 o DI

an
« no,

Flag Notation * = ltag not afteclec O = hag reset 1 = N1ag sel X = hag ‘< unanown
1 = lag is aMected accoiaing 10 Ihe result of the Operation

16-Bit Arithmetic Group

SOURCE
.14 13 HL sP X [\
HL [} 19 2 39
x oo oo oo oo
‘ADD" 09 19 39 2
[\ 4 FD FO FD FD
o9 19 39 2
DESTINATION | ADD WITH CARRY AND HL ED ED €D ED
SET FLAGS ‘ADC’ 4A SA 6A 7A
SUB WITH CARRY AND HL ED ED ED ED
SET FLAGS 'SBC’ a2 52 62 72
21} FO
INCREMENT ‘INC’ 03 | 13 | 23 [33 | 23 | 23
DEC' oD FD
DECREMENT ‘DEC o8 |18 |28 |3 | 28 | 28
Symbolic Flags Opcode No.o! No.of M No.of T
Mnemonic Operation s Z H PV N C 76 543 210 Hex Bytes Cycles States Comments
ADD HL. ss HL = HL+ss e ¢ X X X e 0 1 00 ss1 001 1 3 n ss__Reg
00
ADC HL, ss HL — HL+ss+CY 1 X X X VvV 0 1 11101 101 ED 2 a4 15 01 DE
01 ss1 010 10 HL
11 SP
SBC HL. ss HL - HL-ss-CY 1 1 X X X V 1 11101 101 ED 2 4 L5
01 ss0 010
ADD IX, pp IX = IX + pp e e X X X e 0 1 1011 100 o0 2 4 15 pp _Reg
01 pp1 001 00 B
01 DE
101X
1 SP
ADD Y, rr Y =0y 4 0r e & X X X ¢ 0 1 LARRRRERI)) FD 2 4 15 " ﬁe?
00 rr1 001 00
01 DE
10 1y
11 SP
INC ss $S — 8§ + 1 e e X o X o o o 00 ssO 011 1 1 6
INC IX IX = 1X + 1 e e X e X e o o 11011 101 DD 2 2 10
00 100 011 23
INC 1Y Y —1y +1 * e X e X e o o 1Mo FD 2 .2 10
00 100 011 23
DEC ss $s — ss -1 e e X o X e s 00 ss1 011 1 1 6
DEC IX X = 1X=1 e ¢ X e X e o o 11011 101 oD 2 2 10
00 101 011 2B
DEC IY 1Y —Iy-1 e & X o X o o o LARRARERIe}) FO 2 2 10
00 101 o111 28
NOTES ss s any of the register pars BC DE HL. SP
P 15 any ol the register pars BC. DE I1X SP
1115 any of Ine regisier paws BC DE IY SP
Flag Notation * = Nag not allected 0 = fiag resel 1 = flag sel X = fiag s unknown

1 = hag s altecled accoraing 10 the result of the operation

C-21

Jump Group

= flag 11 ANECICO aCCO1ONG 10 the 1esull of Ine operation

C-22

CONDITION
UN NON NON [PARITY [PARITY| SIGN | SIGN REG
COND ICARRY| ZERO | ZERO | EVEN | ODD | NEG | POS | 8,0
DA D2 CA EA €2 FA
ap IMMEDIATE F2
JUMP “JP EXTENSION nn n n n n n n n
n n n n n n n
Opr 30 28
JUMP "JP RELATIVE PC + o 0-2 -2 -2
JUMP JP wu | es
JR REGISTER
JUMP “JR INDIRECT xy gg
UMP 3P v [FD
J P £9
DECREMENT B.

JUMP IF NON RELATIVE PCe 10
ZERO ‘DINZ e-2
Symbolic Flags Opcode No.of No.of M No.of T

Mnemonic Operation s z H 76 543 210 Hex Bytes Cycles States Comments

JP nn PC — nn . . X o e 1000011 C3 3 3 10

- n -
- n -

JP cc. nn It condiion cc 15 e o X o . 1 cc 010 3 3 10 cc Condition
true PC — nn. - n - 000 NZ nonzeio
otherwise - n - 001 Z zero
continue 010 NC non-carry

01 C cary

105 PO panty odd
101 PE party even
110 P sign posive
1M1 M sign
negative

JRe PC - PC+e o e X o . 00 011 000 18 2 3 12

- =2 -

JRC. e #nc=0 e o X o . 0p 111 200 38 2 K 7 It conaition not met
continue - e-2 -

He =1, 2 3 12 It condimon 15 met
PC - PC+e

JRNC. e we =1, o o X . 00 110 000 30 2 2 7 It condition not met
continue —e-2 -
ne =0. 2 3 12 i condition 1s met
PC - PC+e

Wpie Hz=0 o e X o . 00 101 000 28 2 2 7 11 condition not met
continue —e-2 -

Hz =1 2 3 12 1 conottion 1s met
PC ~ PC+e

JRNZ. e "z = « o X o . 00 100 000 20 2 2 7 1t congiion not met

continue —-e-2 —
"Wz =0 2 3 12 It conaition 1s met
PC —~ PC+e
JP (HL) PC — HL e o X o . 11 101 001 E9 1 1 a
JP (1X) PC — IX e o X . 1 01 101 oD 2 2 8
11 101 001 €9
JP (1Y) PC — 1Y e s X . 1M 01 FD 2 2 8
11 101 001 £9

DINZ. e B-8-1 o o X o . 00 010 000 10 2 2 8 g =0
e = 0. - e-2 —
continue
"B =20, 2 3 13 "B =0
PC - PC+e

NOTES e represents Ihe exlension in the relalive aodressing mooe
€15 2 51gned Iwo s complement numbe: in Ihe range < - 126 129 >
- 2 1n Ihe opcode provides an elleclive address Of pc + e as PC 15 incremented
by 2 puior 10 the agdition of €
Flag Notakon ® = fiag not atlecied © = 1iq resel 1 = ag sel X = hag i unknowe

Rotate and Shift Group

SOURCE AND DESTINATION

A [c o € H L MY [ox+a|avsa A
o0 FD
‘ALC' | cB c8 ce c8 cs) ce cs c8 c8 ‘RLCA' [o7
o7 00 o1 02 03 04 05 06 d d
06 06
oo FD
‘RRC’ | cB cs c8 c8 cs cs ce c8 c8 cs ‘RRCA' | OF
oF 08 09 0A 08 oc 00 oF d]
[13
00 D
‘AL | cs cs c8 c8 c8 c8 cs cB c8 cs ‘LA [a7
17 10 " 12 I " 15 16 d]
16 16
oo FD
‘AR | cB ce c8 c8 cs cs c8 c8 ce c8 ‘RRA" | 1F
TYPE ¥ 18 19 1A 18 1c 10 1E] o
oF 3 1E
ROTATE o0 o
OR | 'sia' | c8 c8 c8 cs cs cs cB c8 cs c8
SHIFT 27 20 21 22 23 24 25 26] d
26 26
Do FD
'SRA" | B cB [c8 c8 c8 c8 cs c8 c8
2F 28 2 2A 28 2c 20 2€ d d
2€ 2€
oo FO
‘SAL' | cB cB c8 c8 c8 cs cs cB cB ce
3F 38 3 3A 3B c 30 3E d d
3E 3E
‘RLD’ €0
6F
‘RRD’ €D
67
ROTATE
LEFT CIRCULAR
ROTATE
RIGHT CIRCULAR
ROTATE
LEFT

ROTATE RIGHT

SHIFT
LEFT ARITHMETIC

IFT
RIGHT ARITHMETIC

SHIFT
RIGHT LOGICAL

[Jpa-bd br-babs-bg) (ML) ROTATE DIGIT
LEFT
AcC
[:]‘_—.E] (Hy ROTATE DIGIT
RIGHT
Acc

Rotate and Shift Group

Symbolic Flags Opcode No.of No.ol M No.ot ¥
Mnemonic Operation s 2 H PV N C 76 543 210 Hex Bytes Cycles St Comment
e ¢ X 0 X e 0 1 QU OV N o7 1 1 a4 RomuemcuT
accumuiaion
e o X 0 X * 0 1 000V M A\ 1 1 L Rotate ien
sccumulator
e o X 0 X e 0 1 0000 M OF 1 1 a4 Rotate nghi circular
accumulaior
e o X 0 X * 0 1 0001 1M F)l 1 4 Rotaie right
accumuiator
ALC ¢ 1 X 0 X P 0O 1 1mnoeoyon CB 2 2 8 Rotate iet circular
oo[0og) ¢ register ¢
ALC (HL) 11 X 0 x P 0 1 1100tON CB 2] % 1 Reg
00[000] 110 000 B
001 [
Ao @-LFT—=203 1+ x 0 x P 0o 1 monim 00 4 6 23 00 o
CHLLUX + 0L(1Y + d) 11 00% Oy ce on E
- d - 100 H
" oL
oo 110 mooa
RLC (IY + 0) 1 1 X 0 X P 0 1 My FD & 6 2
11 001 011 CB
- d -
oo [ooo] 110
AL m @—:@ I 1 X 0 X P O 1 [010] Instruction tormat

and states are as
shown for RLC s
To torm new
opcode replace
o ALCs

will: shown code

ma ¢ (HLL(IX +0).(1Y + d)

B EE

mar (HLL(IX + 0).(1Y + d)

ram CO—=o}—[&H + + x o x ¢ 01

(HL).(X + 0).(1Y + a)

—{7—o}o 1+ 1 x 0 X P O 1

AHLLOX + 9LAY +0)

SRAm =+ + 1+ x 0 x e 0 01
mer (HL)(IX +d).(Y +d)

SALm o{T—o}—[c] 1 1 X 0 x P 0O 1
ma e (HLLOX + ALY +0)

ALD m I 1 X 0 X P 0O e 11101101 ED 2 s iK Ralale igit eft ang
— 01 101 111 6F 1ghT Detween
(HL)

SLAm

B

A he accumuiator
ang 1ocanon (HLY
RRD 1 1 X 0 X P 0 e« 11101101 ED B Tne content of the
01 100 111 67 upper hatl of
A tHu he accumulator 1§
unattecied

NOTES e represents the exiension in the relalive addressng mode
€15 2 signed Iwo s complement number In the range < -126 129>
€2 1n Ine opcode provides an effeclive address of pc + € as PC is incremented by 2 prior 10 the acaHion o1 +

fiag not aftected. 0 = fiag reset. 1 = flag set. X = fiag is unknown

Flag Nolaton o =
1 = Hag 15 atlected according [0 the result of the operation

Bit Manipulation Group

REG.
REGISTER ADDRESSING EG INDEXED
INDIR.
BIT A 8 [o € H L (HL) (1X +d) Y +a
DD

° cB ce [« } c8 ce ce ce ce cB Eg
a7 © “ 2 a “ s . & &

oD

y ce ce ce [+.] cB ce ce ce cB (F:g
4F 48 49 4A 48 4C 4D 4E “E “E

DD

2 c8 cs ce ce cs cB cB ce cB (F:g

57 S0 51 52 53 54 55 56 5‘. 5“
]}

N cB cB cs c8 cB cB ce cB C‘. (F:g

SF 58 59 SA B 1
resT BT 5| 5C sD SE SE SE
0D

. ce cB c8 cB ce cB ce cB cB (F:g
67 60 61 62 63 64 65 66 & “6

[}

s cB ce cB cBe cB cB8 ce ce ce (;:2

6F 68 69 6A 6B 6C 60 6E ﬁdf GCE
[+12]

s [+] cB cB ce cs ce cB N cB cB (‘:g
7 70 n 72 73 T4 75 76 7‘6 7‘6

| 0D

, cB cB cB cBe ce cB cB8 ce c8 22
7F 78 79 TA 78 7C 70 TE 7‘5 7‘5

00

° ce cB ce ce cB cB ce cB cB 22

87 80. 81 82 83 84 85 86 .d5 'd‘
[+]+]

' cB cs ce ce ce ce cB CcB cs Eg
8F 88 89 8A 8B 8c 80 8E .GE .dE
o [+]°]

2 cB cB [+:] cB cB cB cB cB Eg
97 90 91 92 93 94 95 96 "5 9“
¢]

N s: (:: ce ce ce cBe ce cB C‘l Eg

d
aeser 99 9A 98 9C 9D 9E 9E 9E
BIT ‘RES' ce 00 F

. - :: ce cB cBs cs cB ce (i’. Cdg

Al A2 A3 A4 AS A6 A6 A6
cB

s ce c8 cB cB c8 cBe [+:] gg Eg
AF AB A9 AA AB AC AD AE Adt AdE

6 ce cB cs CB c8 cB cB cB gg (F:g
87 80 B1 B2 83 B4 [: 1 B6 "G .d‘
cB cse 2

, ce [+1:} cB [+:] CcB cB 8. Eg
BF 88 89 BA 8B BC BD BE "E .‘E

° 2: cB cB ce ce cB cBe ce 82 (F:g

co &
c c2 (o] (1] cs (<} C6 c"
cB ce 20
' - . ce cB cB cB [+:] ce C‘. Eg
c9 CA cB cc cD CE CE c‘E
cB cB8 20 £

2 ce cB cB cB ce cB ce cg
o7 [+]1] 3] D2 03 D4 DS 06 D“ D“

3 C: ce cs c8 cB cB ce cB 82 Eg
D os 09 g

.SSEE'T..‘Y DA DB oc [:1+] DE DE D‘E
ce ce c 2

A 8 c8 ce ce cB cB cB 1‘:2

€7 €0 E1 €2 [x] €4 ES €6 Edi E‘

6
ce ce ce 2

s o)t v ce cB8 ce ce cB Ca. Eg

EA €B EC €0 EE EE E‘E

ce ce ce ce 8 144

© o o o cs ce cB ce C‘. cB

F2 F3 F4 FS F6 F6 F“

(4] ce ce ce 20 34

7 o ce c8 ce cBe cB8 cB

F8 F9 FA FB FC 5 ‘

| SR FO FE FE FE

C-25

Bit Manipulation Group

Symbolic Flags Opcode No.of No.o! M No.of T
Mnemonic Operation s 2z H PV N C 76 543 210 Hex Bytes Cycles States Comments
BilD ¢ Z - X 1 X 17 X X 0 e 11001 0Ny cB 2 2 ' ke
° 01 b . 6 UU(J—EL_
Bil b (MY Z - (Hup X 1 X 1 X X 0 e 11001 011 CB 2 3 12 001 c
01 b Mo 010 [*]
BITD (IX+dly 2 - (iX+3p X 1 X 1 X X 0 M0N0y DD 4 5 20 o €
11001 01 CB 100 H
- d - 101 L
01 b 110 m A
S b B1 Testeg
BITD (IY+dipy Z - (IY+3p X 1 X 1 X X 0 e NI FD 4 s 20 000 o
11 001 Oy cs 001 1
- 4 - 010 2
0 b 110 on 3
100 4
101 5
1o 6
" 7
SETD r n=- e e X e X o o o 11 001 O cB 2 2 8
b ¢
SET b (HL) (Hup = 1 e e X e X o o s 11000 01 CB 2 a 15
b 110
SETD (IX+d) (IX+dp — 1 e e X e X o o o 11011 101 DD 4 6 x)
11000 01 CB
- d4 -
[o o
SETD (IY+0d) (IY+dp — 1 s e X e X & s ARIRRR IR [0}] FO a4 6 23
11 000 011 CB
- 0 -
1] o 10
RESD m mp — 0 e o X e x e o o [0 To form new
m e (HL), opcode replace
(X +). [Jorseros
Y +d) with [10) Fiags
and time states for
SET instruction
KOTES The nolation Mg in0icates b © (0 10 7) or location m
Fiag Notation . y not allecied U = llag reset 1 = fiag set X = fag is unknown.

g 'S aflecied according 10 ine 1esull of the operation

Input and Output Groups

Input Group

PORT ADDRESS

REG
IMMED.| INDIR.
n (©)
o8 | ED
A n 78
€D
8 40
€0
c a8
N REGISTER €D
INPUT "IN ADDRESSING | © 50
€D
E s8
INPUT H €D
DESTINATION 0
ED
L 8
‘IN-INPUT & Inc HL, €0
Dec B a2
‘INIR'-INP, Inc HL, ED BLOCK
Dec B, REPEAT IF B0 B2
*9| REGISTER HU INPUT
‘IND'-INPUT & INDIRECT ED COMMANDS
Dec HL, Dec B AA
“INDR'-INPUT, Dec HL €0
Dec B, REPEAT IF B0 BA
Output Group
SOURCE
REG.
REGISTER o,
A [c) 3 H L | ko
N S
‘ouT
rec. | [€0 [eo [eo | eo | eo | Eo | €0
np. | ¢ 79 “ 49 51 59 61 69
“OUTI-OUTPUT Inc HL REG. €D
Dec b Np. | © A3
“OTIR-OUTPUT, inc HL, REG. €0
Dec B, REPEAT IF B+ 0 o, | © 83
‘OUTD'-OUTPUT Dec HL | REG. 8LoCK
Dec B -l @ fg ouTPUT
COMMANDS
‘OTOR'-OUTPUT, Dec HL | REG. €D
Dec b, REPEAT IF B0 o, | © 88
[—
PORT
DESTINATION
ADDRESS

Input and Output Groups

Symbolic Flags Opcode No.o! No.o! M No.ot T
Mnemonic Operation s 2z H PV N C 76 543 210 Hex Bytes Cycl States Comments
INA (n) A - (n) e e X & X s e 11 0M 0N 0B F) 3 " ,,,vo_‘E
- n - Acc 10 Ag - Ay
IN't (C) = (C) 11 X 1 X P 0 e 11101 10y ED 2 3 12 CloAg ~ A
it e = 110 only the 0V + 000 BloAa-A|5
liags will be altected
o
NI (HL) - (C) X 1 ox X X X 1 e 1101 101 €D 2 4 16 CloAg - Ay
B-8B-1 10 100 010 A2 BloAg ~ Ag
HL - HL + 1
INIR (HL) - (©) X 1 X X X X 1 . 11101 100 ED 2 5 21 CloAg ~ A7
B-8-1 10 110 010 B2 (1 B20) BloAg ~ Ayg
HL - HL + 1 2 a 16
Repeat unti MB=0)
B=0
@
IND (HL) - (C) X 1 X X X X 1 e 1101 0 ED 2 4 16 C1oAg ~ Ay
8-8-1 10 101 010 AA BioAg - Arg
HL = HL-1
INDR (HL) = (C) X 1 X X X X 1 e 11101101 ED 2 5 2 CloAg ~ A7
B-B-1 10 111 010 BA W B=0) B1oAg ~ Ayg
HL = HL=-1 2 a 16
Repeat untit s =0
OuT (n). A (M- A e« X s X e s ¢ 110001 D3 2 3 " nioAg - A7
- n - Acc 10 Ag - Arg
OuUT (C). r (o] e e X e X e o o 11101 100 ED 2 3 12 CloAg ~ A7
01 r 001 BloAg - A
[0} 8 15
ouTi (C) = (HL) X 1 x X X X 1 e 1101 100 ED 2 4 16 CloAg ~ A7
B-B-1 10 100 011 A3 B10oAg -~ Ag
HL - HL + 1
OTIR (C) = (HL) X 1 X X X X 1 e 1110100 ED 2 s 21 CloAg ~ A7
B-8B-1 10 110 011 83 (1B=20) BloAg -~ A5
HL = HL + 1 2 4 16
Repeat unti 8=0
B=0
@
ouTD (C) = (HL) X 1 X X X X 1 e 11101 101 ED 2 a4 16 CloAg ~ A7
B-B-1 10 101 011 AB BloAg - Ayg
HL = HL-1
OTDR (C) — (HL) X 1 X X X X 1 e 11101 101 ED 2 5 Pl CiloAg ~ A7
B-8-1 10 111 011 (11 B=0) BloAg ~ Ayg
HL — HL-1 2 4 16
Repeat unti 1n8=0

NOTE (DM the sesull of B~ 1 15 zero the Z liag 15 set otherwise il 1S rese:

Fiag Notation e = liag not atlecied. O = liag reset | = flag sel. X = liag 1s unkncwn
1 = ilag s allected according 10 1he resull of Ine operation

Call and Return Groups and Restart

Call and Return Group

CONDITION
UN NON NON | PARITY|PARITY | SIGN | SIGN | REG.
COND.| CARRY|CARRY | ZERO | ZERO| EVEN| ODD | NEG. | POS. 820
oc 04 cc (2] EC E4 FC Fa
CALL IMMEDIATE o ﬁo n n " " " o A .
EXTENSION n n n n n n n n n
RETURN REGISTER (sP) €8
‘RET" INDIRECT (SP +1) (=) L] oo ce co €0 F8 Fo
RETURN FROM REGISTER (sP) | ED
INT ‘RETI® INDIRECT (SP+1)(4D
AETURN FAOM REGISTER s | €0
NON MASKABLE AN
ity INDIRECT (SP+1)| 45
Note: Certain flags have more than one purpo:
Refer to the 280 CPU Technical Manual lo. details.
Restart Group
oP
CODE
0000 C? | 'RSTO'
0008y | CF | ‘RST S
0010y D7 |'RST 16"
0018y OF [‘RST 24’
CALL
0020y | E7 |'RST 32
0028y EF |‘'RST 40"
0030y | F?7 ['RST 48
0038y FF |'RST 56"
Symbolic Flags Opcode No.o! No.of M No.of T
Mnemonic Operation S H PN N C 76 543 210 Hex Bytes Cycles States Comments
CALL nn (SP~1) — PCy . X o X o o o 11001101 CO 3 S 17
(SP-2) - : - n -
PC — nn - n -
CALL cc. nn It condition . X o X o o o 11 cc 100 3 3 10 1t cc s talse
cc is false - n -
continue, - n - 3 S 17 It ccis rue
otherwise.same as
CALL nn
RET PC_ — (SP) . X o X o o o 11 001 001 C9 1 3 0
PCH — (SP+1)
RET cc it condttion . X o X e o o 11 cc 000 1 1 S It cc s taise
cc s false
continue, 1 3 n It cc s true
otherwise cc Condion
same as 000 NZ non-zero
RET 001 Z zero
010 NC non-carry
RETI Return from . X & X o o o 11101 101 ED 2 4 14 011 C carry
\ nterrupt 01 001 101 4D 100 PO parity odd
RETN Return from . X o X o o o 1100 100 ED 2 4 14 101 PE parity even
non-maskable 01 000 101 45 110 P sign positive
interrupt 111 M sign negative
RST p (SP—1) — PCyy . X © X o o o 1oy omn 1 3 IR —
(SP-2) — PC_ 000 00H
e o) o
- 010 10H
PCL - p 011 18H
100 20H
101 28H
110 30H
11 38H
NOTE 'RETN 10ads IFE — IFF,
Fleg Nowton « = flag not atfecied 0 = flag reset 1 = Nag set X = flag is unanown

1 = llag s altecied according 10 tne resul of the operation

C-29

280 CPU Interrupt Structure

MASKABLE (INT)
MODE 0

PLACE INSTRUCTION ONTO DATA BUS DURING iNTA = Mi » IORO LIKE 8080A

MODE 1
RESTART TO 38,, OR 56,, (RST 56')
MODE 2

USED BY 280 PERIPHERALS

INTERRUPT
:§3¥:ﬁ§ LOW ORDER | REGISTER 8-BIT VECTOR
STARTING < B — CONTENTS FROM PERIPHERAL
ADDRESS HIGH ORDER
TABLE
\
NON MASKABLE (NMI)
RESTART TO 66,, OR 102,
INTERRUPT ENABLE / DISABLE FLIP-FLOPS
ACTION IFF, IFF,
CPU RESET []
ol []
E 1
oA L IFF; - PARITY FLAG
LDAR < IFF; - PARITY FLAG
ACCEPT NMI 0 .
RETN IFF, -« IFF, - IFF,
ACCEPT iNT o o
RET! . .

“e" INDICATES NO CHANGE

Appendix D

MPF-IP Schematic

Al
smz{ﬁ
3].53|an sv SV sy
)
o 0 L ||y " A
2 4 o D1 AP WE Y g‘OWE v o
i 010 U0 238 o 2 oz
1OOPFI K RIS 1KR16 D4l TH03 83
v W 0S| D5]
5
= DG% D6 3 gg
07 7 Lo 06
A0 10l i gl (HMene) L
Ul Al 0 u2 0 3 0 s ko ys
2
wo 3 0900 Z 2000 Foo0 ! Faoo
cPY ﬁé ¢ IFFF IFEF o FIFF A3 FFFF
s
2 Al 6 (HNZ764) b6 (HN2764) e “000 Tl (HM6116)
RST v 7 [
RS Al 7 A7 4LFFF
L A9l ang S 8 HN2732) c
r Al 10 | A10 %‘
= AR 2301 23011
2 12
Al =z A12 & 3
e < 5 :
WAIT
HBusto ataf 4
sv TNT |
BREAK 7ut590Ys 741504 UET Veyolts | ezx
smz——E’mn oz 13>l 12wt Al 28 e e
=1 uto 3| ue | S -
us [
Sipas oo & RCA 3
k %
l s
E)A,nZ] S 28, 7H CD4556 vl \
= 10 %L1 sk V' g
= L 2 9 —
SHT2 RST
L,
= | n
- MULTITECH |
SHT2{ €57 TITLE
MPF-I Plus
SHEET 1 OF 5 DATE | REVISIONS
DRAWING NO. 102182 A

8
f 7 I 3 T s] 2 T 3 T 2 T 1

sv
RA2
> >
kX8 T :E $3$333%:2 =
00 N34 Sb
%
o K =
02 A3z sT
03 il s SH3
30 5
D4 37
o5 29 £
28 77 S
06 R o
swr {07 2 o ——
-) BREAR SH1
RST 3 ! sV
5 10
RO /36 RAIX7
W WR PCSH |-sHiFr
20 o, PC8
Al 8 RAIX6
CcTRL
&2 . 6 -l—l-
“’""f]-cs
5v RIS3%
& 3o 02 3 4K €7 =
K I8 —O©EAR (audio i)
s RI4408 G R az2uf
Tm31 WK
i 1 2

5V

B4 (@ MULTITEGH

L
RI9Z 47K
3

4 “TITLE:
MPF-1 Plus

SHEET 2 OF 5 | DATE | REVISIONS

DRAWING NO. 0747.%] A

8 T 7 T 6 I B I 4 | 3 T 2 I [

>

8 | 7
| 2 | '
. 1 _'Ils
b 2} u1s 3;
P H [
5d- 4] uPagoclL;
o iz M VF1
57 ! VF2
D SV 9
- (K]
)
@) = &
5 2] U6 15 NEC
s] 3 5], —
Sk 4| UPABOC [13 [
B 5 P
[T 19
sh 70N05V Q z,o\,mam«oumg
INEEEABEEAE
<35 16
3_%—'_’% w7
3 URBOC (T3
%_ B vz:56v
SHT?)
W d (GND 5V
995 H os |
Fin %
gg—_l uPAROC (13
295
8910~ I
aoni sV
1
39—‘_9? v g 7805 | TOP VIEW
agTe 0
aq7s UPABOC [13 Al
qﬂigv 2
4917 3 i 2e8
gt 27 onp sv % o=
TITLE:
MPF-1 Plus
SHEET 3 OF 5 | DATE | REVISIONS
. ' DRAWING NO. 0/2'/82 A
_J
7 I 2 T '

D-3

dg1 dg2 o3 dgh dg5 dgb dg7 dg8 dg9 dglO dgll dgl2 dgi3 dgl dgl5 dgl6 dgl7 dgi8 dgl9 dg20 o
sv B
K112345678900WERTYU10P Ratx10 10K Y
5V
st k2 A4 SADAFAGAHAIAKAL ZA XA CA VA BANAMA ? ﬂﬁzgloksyv c
w3 SPacEA=A—=A4 b4 P]cR ri7 1KY
! - b4 s g . () ¥
] IR 1] (o]
- = +
(o] (] L o] [*] °
_ BEL A @ i
[a] (o]]] <3 I [
<_ > /
] I 4 0J 0 & -
SHIFT CTRL SPACE M ——CR
MULTITECH |
TITLE.
| MPF-IPlus
| SHFET_4 OF 5 | DATE | REVISIONS
DRAWING NO 1m2 A

IS

2 T [

“

N

~
S
N
=3

100000000000000000000 |
|00000000000000000000
S

T Ty

T1 PIN FUNCTION J2 PN FUNCTION [e AL N L R
PIN NO [SIGNAL | PIN No | STGNAL PIN NO | SIGNAL 0o 000000000 0f
1 AN 21 | ao 1 05-C L |
2 A2 22 A9 2 ur-4
U4.US Default connection is destined for 6116
3 A13 23 A8 3 u12-10 T2: PIN 14.9 Short
4 Al 2% A7 4 U4-20 PIN 3,5 Short
5 als 25 A6 5 U4-18 PIN 6.8 Short
6 £ % i 5 WR PIN10.11 Short
Y D4 27 Al 7 an
If user's want to change 6116 into 5516 connection
8 03 28 A3 8 us-21 for o
wer power battery back up
9 05 29 A2 9 U5-20 149
first 1.4. QHOHO
10 06 30 Al 0 | us8 reL Cut 32 PINY4-9
1 5V 3 20 1 u12-9 PIN 10.11 3%
12 D2 32 GND Second :Connect PIN1,5 10
— PIN 3.4
13 07 33 RFSH PING. 11
14 00 34 M
15 ot 35 RESET vee vee vee vee sw Description
16 W | 3 | Busmo BSYTEM s us iz ON | Auto battery back up
17 NMT 37 WATT OFF | No battery back up
18 HALT 38 BUSAR ac
19 MREQ 39 WR Adaplor
20 TORG 40 RD

D-5

(D MULTITECH

>

T MPF-T Plus

SHEET 5 OF § DATE | REVISIONS

DRAWING NO. m A

7 I 6 T 5 I a I 3 I 2 I [

Appendix E

MPF-IP Monitor Command Summary

Category Command Function
* Major RESET Enter and initialize the monitor
Function
Entry .
Q Re—enter the monitor
E Enter and initialize
the text editor
R Re-enter the text editor
A Enter two pass assembler
L Enter one pass assembler
D Enter disassembler
B Enter the BASIC language
C Re-enter BASIC
Fill in Data | F Store data in the RAM buffer
Jump Relativel J Calculate the relative address
Insert Data I Insert the contents of a memory
block into the RAM
Delete Data D Dalete one byte of data from
the memory
Execution G Execute a program which starts
from a specified address
Step S Single-step a program
(Execute a program instruction by,
instruction.)
Display/Alter R D@splay the contents of registers
Registers Dl§play the contents of the next
pairs of registers
Dls[?lay the contencs of the,
reglster pairs that precedes the

registers currently displayed

Change the contents of registers

Display/Alter| M Display the contents of
Memory specified memory locations
Display the contents of the next|
four bytes
Display the contents of the four
bytes that precede the current]
displayed location
: Alter the contents of specified
memory
/ Move the contents of a memory)
block to another location
Manipulate B Set or clear breakpoint
Breakpoint
Load/Dump L Load data from tape to memory
Memory W Write data from memory to tape
* Note: Any of the major functions are entered by

typing the related control character while holding down
the CONTROL key.

Appendix F

Editor Command Summary

Appendix F: Editor Command Summary

A. Editor Operation Sequence

I. Enter into the input mode of the text editor

1. CONTROL E

2. F: [nnnn] T: [nnnn]

3. INPUT (Flash for a few seconds.)

4, Type in a source program.

5. After typing in the soure program, type the
carriage return key twice and the "Quit"
command to exit to the monitor.

"n" represents a hexadecimal digit. The value enclosed
in the square parentheses is optional. If a programmer
does not want to set the starting and ending addresses
for the text buffer, he may type the carriage return
key when prompted by F: and T:. This will set two
default values for the text buffer.

II. Enter into the edit mode of the text editor

1. CONTROL R

2. F: [nnnn] T: [nnnn]

3. Edit (Flash for a few seconds on the display.)

4. $ (Display the prompt of the text editor in
edit mode. The line pointer is pointing to
the top of the file in the text buffer.)

5. Use editor commands to vrevise the source
program. After finishing editing the source
code, type carriage return key twice and the
"Q" command to exit to the monitor.

B. Summary of the Editor Commands

Category

Editor Entry

Commands

Enter (CONTROL)

Function

Enter the editor from monitor

and Exit Re-enter (CONTROL)[Enter the editor from monitor
Quit Quit the editor and enter the
monitor
Text Delete Delete a line
Manipulating Insert Insert a line
Commands Print n Print n lines
Read/filename/ Read data from tape
Write/filename/ Write data to tape
z Print all thée data in text buffer
Line Pointer Bottom Move the line pointer to the
Manipulating bottom of the file
Commands Gn Move the line pointer to the nth
line in the text buffer
Line number Print the line number of the line
pointed to by the line pointer
Next n Move the line pointer to the next
h line
Top Move the line pointer to the top
pf the file
Up n Move the line pointer up n lines
String Change/old string
Handling new string Change a string in the current line
Commands
Find/string/ Find the line with the
specified string
er Commands | space rint text buffer default values
and the memory space used to store
the current text file
X ontrol the prnter (a toggle switch)

Carriage Return

isplay the next line

Appendix G

Assembler Operation Sequence

appendix G: Assembler Operation Sequence
I. Two-Pass Assembler Operation Sequence

1. CONTROL A

2. ORG:

3. ORG:([nnnn]

4., SYM>F:

5. SYM>F:[nnnn]

6. SYM>F:[nnnn] T:[nnnn]
7. OBJI>F:

8. OBJ>F: [nnnn]

9, OBJ>F:[nnnn] T:[nnnn]

"n" represents a hexadecimal digit. The value enclosed
in the square parentheses is optional. If a programmer
does not want to set the starting and ending addresses
for the text buffer, he may type the:carriage return
key when prompted by F: and T:. This will set default
values for the memory space for storing source code,
symbol table, and object code.

II. One-Pass Assembler Operation Sequence

1. CONTROL L

2. ORG:

3. ORG:[nnnn]

4. OBJ>F:

S. OBJ>[nnnn]

6. INPUT

7. The display of the MPF-IP will show the value of the
reference counter, The user may begin typing in a
source program.

Appendix H

MPF-IP ASCII Code

MPF-IP ASCII CODE (CALL SCAN)

LSD

MSD

000

001

010

011

100

-
o
furt

110

111

o

0000

space

0001

0010

0011

0100

0101

0110

N|olou]lwlw|No]| =

0111

H | | R ||

o]

1000

~

T|lo | miE|lo|lalw|=]|e

1001

O |0 | N |lvo|bd|lw]|N

-

1010

N|<[I[X|=|<|lalR|ln|lm|lo |0

1011

1100

1101

CR

1110

HlE|lOl ol w| | ©

1111

olz|l=2|r|x |«

Appendix I

MPF-IP Keyboard Position Code

Position-code (CALL SCAN1):

00 it 01 A’ 02 'space'’
03 2+ 04 'S’ 05 e
06 '3 E! 07 'D’ 08 oo
09 4" '8’ OA 'F! 0)2] vl
oC '5' %! oD 'G! OE LA B
OF '6' '&' 10 'H' 11 'CR !
12 rvyr 13 'J! 14
15 '8' (! 16 'K' A |17
18 9t y! 19 ‘L' ‘e’ 1A
1B | 'or '*' | 1c | ':* ;' | 1D
1E 'Q’ 1F 'z 20
21 'w! 22 'X! 23
24 'E' 25 'c’ 26
27 'R 28 A 29
2A 'T! 2B 'B' 2C
2D 'y’ 2E 'N' 2F
30 ‘U’ 31 'M' 32
33 T -t 34 Y 35
36 '‘or =t 37 .t 38
39 '‘PY 4! 3A A A 3B

Appendix J

The Display Pattems for Alphanumeric
Letters and Special Symbols

Lharacter Segment name dpnmlkji | hgfedcba 2nd 1st
byte |byte

A a,b,c,e,f,g,h [11111111 | 00001000 | FF 08
B a,b,c,d,k,i,j,| 11111100 | 01110000 | FC 70
C a,d,e,f 11111111 | 11000110 | FF cé
D a,b,c,d,i,j 11111100 | 11110000 | FC FO
E a,d,e,f,g,h 11111111 | 00000110 | FF 06
F a,e,f,g,h 11111111 | 00001110 | FF OE
G a,c,d,e,f,h 11111111 | 01000010 | FF 42
H b,c,e,f,g,h 11111111 | 00001001 | FF 09
I a,d,i,j 11111100 | 11110110 | FC F6
J b,c,d,e 11111111 | 11100001 | FF E1l
K e,f,g,k,m 11101011 | 10001111 | EB 8F
L d,e,f 11111111 | 11000111 | FF c7
h,m 11101111 [01111111 | EF 7F

& a,b,d,e,g,h,e,m 11100111 | 00100100 | E7 24
M b,c,e,f,k,1 11110011 | 11001001 | F3 (o]

cs |

b,c,e,f,1,m |11100111 | 11001001 | E7

a,b,c,d,e,f |[11111111 | 11000000 | FF | co
a,b,e,f,g,h | 11111111 | 00001100 | FF | oC
a,b,c,d,e,f,m{ 11101111 | 11000000 | EF | CO
a,b,e,f,g,h,m 11101111 | 00001100 | EF | oC
a,c,d,f,g,h |[11111111 | 00010010 | FF | 12
a,i,j 11111100 | 11111110 | FC | FE
b,c,d,e,f 11111111 | 11000001 | FF | C1
e,f,k,n 11011011 | 11001111 | DB | CF
b,c,e,f,m,n |[11001111 | 11001001 | CF | C9
k,1,m,n 11000011 | 11111111 | C3 | FF
Jj,k,1 11110001 | 11111111 | F1 | FF
m,n 11001113 | 11111111 | CF |FF
n 11011111 | 11111111 | DF |FF
a,d,k,n 11611011 | '1110110 | DB |Fé
dp 10111111 | 11111111 | BF |FF

i, 11111100 | 11111111 | FC | FF
a,b,d,e,g,h |11111111 | 00100100 | FF | 24
a,b,c,d,g,h [11111111 | 00110000 | FF | 30
f,g,h,i,j 11111100 | 00011111 | FC | 1F
&,c,d,f,g,h |11110111 | 01110010 | F7 | 72
a,c,d,e,f,g,h{11111111 00000010 FF 02
a,b,c,f 11111111 | 11011000 | FF | D8
a,b,c,d,e,f,g,h [11111111 | 00000000 | FF | 00
a,b,c,d,f,g,h{11111111 | 00010000 | FF | 10
a,b,c,d,e,f,k,n[11011011 | 11000000 | DB | CO
g,h,i,j 11111100 | 00111111 | FC | 3F
b,c,d,g,h,i,3j|11111100 | 00110001 | FC | 31
a,b,c,d,e,g,j|11111101 | 10100000 | FD | A0
g,h 11111111 | 00111111 | FF | 3F
k,m 11101011 | 11111111 | EB | FF
e,n 11010111 | 11111111 | D7 | FF
k,n 11011011 11111111 | DB | FF

* g,h,i,j,k,1,m,n|10000000 | 00111111 | 80 | 3F
” £,1 11110111 | 11011111 | F7 | DF
! k 11111011 | 11111111 | FB | FF
= d,g,h 11111111 | 00110111 | FF | 37
? a,b,h,j 11111101 | 01111110 | FD | 7C
% c,f,g,h,k,1,m,n|11000011 | 00011011 | C3 | 1B
< d,k,n 11011011 | 11110111 | DB | F7
> d,1,m 11100111 | 11110111 | E7 |F7
$ a,c,d,f,g,h,li,j 11111100 | 00010010 | FC |12
! a,j,k,1 11110001 | 11111110 | F1 |FE

Appendix K

Memory Mapping & 1/0 Ports

MPF-1P

Memory
ITEM 1/0
RAM ROM
(1) FOOO-FFFF (1) @OQ0-1FFF (1) 8@-8F
MAIN (2) 2000-3FFF 8255 U1l4
BOARD (BASIC) (2) 9@-9F
(3) 4000-4FFF 8255 U1l3
(option)
(1) 6000-6FFF (1) cA, CB
PRT NONE (2) 7000-7FFF
(Option)
EPB (1) D8OGO-EFFF (1) 9000-9FFF (1) 78-7F
(1) S@00-S5FFF (1) FE
SSB NONE (2) 6000-7FFF
(Option)
(1) CO0@-CFFF (1) Cce-C3
SGB NONE (2) DOOGO-DFFF
(Option)
TVB (1) A8Q00-AFFF (1) AQGOO-ATFF (1) 40-4F
(1) D8@GO-EFFF (1) B@OG-BFFF (1) 60-6F
IOM (2) CO@G-D7FF
(Option)
STB (1) 700@-7FFF

odonlewolro] -

SHT24

_.
@ MULTITEGH |

TITLE:
MPF -1 Plus

ET MIC—.,\M

~O

sa- j6 »
f — us
5C A Z 3 C—s—
¢ UPROCy
il i
: N & °
3
3 [
5h 1 16 k._, i
o ute 5 3
B UPABOCT n
E i P g] B
H i 19
& 0 (g 10 O 0 OT O
TONRZAR 5 671eNa
= 1 16
7 e)
o umsoc(i3
e i
SHT2
i N
-
TH—) 16
o us
)7-
g umsoc |7 i
916 il
a9 sy °
mjmju 1 16
T U1
g I3
fare uPagoc 13
dait 12 B
da1 il
b SV
5 b
B D MULTITECH |-
TITLE: S
MPF-1 Plus
Sorer v 5 [pare | REVISONS
BRAWING w0 1)]

7' 8201310-9

!

Appendix L

Fluorescent Indicator Panel
Specifications

CHARACTER FORMAT

FEATURES
APPLICATIONS
OPERATION MODE
MECHANICAL DATA

Compatible with MOS LSI.

Possible to i

Numeric or Alpl

‘N 'NA ‘WA .
fﬂ g . (sctual size)

Electronic computer and other digital display.

The FIP20B6R is designed for a multiplexed drive mode.

External Dimensions, Terminal, Shape and Size of Digit

See attached drawing

Operating Temperature Range ~10 to +60 °C
Storage Temperature Range -40 to +70 °C
Weight 29 g approx.
Mounting Position oo Any
OPTICAL DATA Color ... O N Green
BrIGINESS v oottt 860 cd/m? (TYP.)
(250 ft.L)
ELECTRICAL DATA . .
E¢ ey ec Du® % f Ecco Ebeo L
UNIT Vac Vp,p Voo - s ps Hz Vde Vdc cd/m? (ftL)
Maximum Ratings MAX. 6.16 36 36 120 - - - - - -
MIN. 504 — - - 40 10 200 - - -
Typical Operation TYP. 56 30 30 1/24 100 20 417 -6 -6 860 (250)
* effective value
** without branking duration
ELECTRICAL CHARACTERISTICS (Test circuit is specified by FEB—1001)
TOLERANCE
1ITEM SYMBOL CONDITION UNIT
. MIN. NOM. MAX.
Filament Current It E¢=5.6 Vac, ep=ec=0 33 37 a1 mAac
Anode Current ip/digit E¢=5.6 Vac, - 35 7.0 mApp
y . =30 Vg,
Grid Current ic/digit ::_30 V::, - 35 70 mAp.‘:
Brightness L Du=1/24, 340 860 _ od/m
1 =100 us, (100) (250) (fr.L)
Brightness Ratio Between Digit - All segments are lit. 50 - - %
E¢=5.6 Vac, ec=30 Vp.p,
Anode Cut-off Voltage Ebco Du=1/24, t5=100 ps, -4 - - Vde
All segments are lit.
. Ef=5.6 Vac, Ep =30 Vdc,
Grid Cutoff Voltage Ecco All s nts are lit, -6 - - Vdc

Note : These values are specified when ep, and e, are supplied from the center tap of the filament transformer, and

also specified at 25 °C.

Fig. 1 OUTLINE DRAWING (Unit mm)

. 134-10
It — 1045 15
55 S MAX :
N 3
206 % -
' |
= =< (]
<) < -
& B L Sl
z Shx !
.
z @ ﬂ 1411
— nY
—
I I HEEH
o alals
1 B 10 15 254pitch 2 54pitch 2% 30 05 |38 ole
45.72 ! 45.72 .
085 1143 The digit numbers (1G through 20G)
are omitted on an actual panel.
TERMINAL CONNECTION
Terminal No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Electrode F P(f) P(e) P(e) P() P(n) P(p) P(OP) P(d) 206 19G 18G 176 166 156 14G 136 126 116
Terminal No. 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
Electrode 106 9G 8G 7G 6G 5G 4G 3G 2G 1G P(c) P(m) P(b) P(h) P() PG P(AP)P@a) F

Fig. 2 SEGMENT PATTERN (Unit : mm)

NOTE FOR USAGE

. The panel display “FIP* is composed mainly of high quality glass, and so careful handling should be taken.

2. The connecting section between the panel and the lead wires must be free from extreme tensile and bending
stresses.

When mounting the panel display and equipment, the surface should be utilized except for the exhaust tube and
connecting section.

The panel display “FIP* should be utilized with green color filter to obtain a good display appearance, and also
filterable to red, orange and yellow.

Subject to change without any notice.

-

[

>

o

Appendix M

uPA80c Specificatications

TRANSISTOR ARRAY

«PA80C

FLUORESCENT INDICATOR PANEL DRIVER
PNP-NPN SILICON EPITAXIAL TRANSISTOR ARRAY

DESCRIPTION
The uPABOC is a monolithic array of seven PNP-NPN structured transistors. This device is especially suited
for driving FIP (Fluorescent Indicator Panel).

PACKAGE DIMENSIONS FEATURES
n millimeters @ High voltage rating Vsg: —60 V
® Pyl down resistors incorporated
161514131211109 ® Base current limiting resistors incorporated
A j ® Package is 16 pin plastic DIP (Dua! In-Line Package).
S ©|
123 45_6_73_ ABSOLUTE MAXIMUM RATINGS
19.4 MAX. 33 Maximum Voltages and Currents (Ta=25 °C)
ey Supply Voltage vss -60 v
|_ Tz f 762 Input Voltage Vi -20 v
—IL 2 015 Output Current Io 50 mA Junit
05101 254 "0.2550.4 Maximum Power Dissipation
Total Powar Dissipation Py 550 o
Maximum Temperature
Storage Temperature Tsig —4010 4125 °C
Operating Temperature Topt -5+ 75 °C

ELECTRICAL CHARACTERISTICS (Ta=25 °C)

CHARACTERISTIC SYMBOL | MIN. | TYP. | MAX. [UNIT | TEST CONDITIONS
Output Leakage Current I 1.0 uA VCe=50 vV
10 VCE=20V, 1= A
0C Current Gain hFE] o_| 280 CE"20V, l0*20m
| hFg2 250 450 VCE=2.0V, Ig=40 mA
Collector Saturation Voltage| VCE(sat) 0.95 1.5 v 10=20 mA, 11=0.3 mA
Input Current I 1.0 mA | V|=-50V
EQUIVALENT CIRCUIT CONNECTION DIAGRAM (Top View)
3 15 " 13 12 " mn 0, 03 O o, Og O 07 GND
1 O2 03 Osa O5 Op Oy G
1 i 1 . :
Rgy
Ry
fB2n
2 i i
8 o2 13 ta ‘s lg 17 Vss
! telnput (Base
Rg) 20xn 0-Outout
Ry 20en
Ray 2.1l
Ay 100«n

Appendix N

DC DC Converter

Test Circuit:

+ B GD
O— O
) » C.r T
+ -
1§ $ 151 vF
T T2.7K
33p % |
6)) O
D
Tr. 220 :
—O =Vi1
470PF .
7-17- 70P 9
- 7z S 4.29K
' 1, ~+
4760PF 100 (D ‘32PF
&
3 ,L O GND
D : INA4148
lf' Tr : 25C1384 (S)
VZ =32V
Electrical Characteristic:
+ B Iin Fosc VE -v1 n
(V) (mA) (KHZ) (Vrms) (-v) (%)
6 105 148.3 6.3 31.48 78.2
5 113 136.3 5.7 31.24 78.0
4 124 122.2 5.0 30.86 77.5

N-1

Appendix O

MPF-IP Model 1 & Model 2

MPF-IP Main Board

1) Model 1: PB82061316-9
(a) DC DC Converter Oscillation Circuit has no

current limit resistor, so it may fail wunder
abnormal operation.

(b) Circuit

Y,SV R =0.2
sc1s SRIZ 2 Xtor 2N2222A will fail
27K if the oscillation
:33J5é5 IN2227A 1 circuit is not active.
3 <220
R21
G2 = 470P
Ve—anls C11
'Z\Qr co =100
4700P RI3
3

(2) Model 2: PB8201310-10

(a)

DC DC Converter Oscillation Circuit has current
limit resistor R26. And we have enhanced the
Oscillation Circuit by changing Cl@ 470@p to
6800p, and R13 100 to 33, Therefore, the

fail rate of 2N2222A is decreased to @.1% under
mass production.

7865 oOUT
sqv
R26
33
VY, 5
cio b SRIZ
Al
LM Loures ™ v
Q3 <$220
R21
G2 = luop
cn
Vz=azyg a0, =3,
6800P R13
3

Current Limit Resister

(3) Xtor 2N2222A

vendor Approved: (1) Sieg (Siemens)

(2) KEC (Korea)
(3) TS 2N2222A (Tiff)

Multitech

| INDUSTRIAL CORP.

OFFICE /

9FL 266 SUNG CHIANG ROAD TAIPEI 104
TAIWAN ROC

TEL 102)551 1101

TELEX 19162 MULTIC FAX {021542 280%

FACTCRY/

1 INDUSTRYE ROAD Iti

MSINCHU SCIENCE BASED INDUSTRIAL PARK
HSINCHU TAIWAN 300. ROC

DOC.NO.:MIP04-84128B

	00_0000
	00_0001
	00_0002
	00_0003
	00_0004
	00_0005
	00_0006
	00_0007
	00_0008
	00_0009
	00_0010
	00_0011
	00_0012
	00_0013
	00_0014
	00_0015
	01_0001
	01_0002
	01_0003
	01_0004
	01_0005
	01_0006
	02_0001
	02_0002
	02_0003
	02_0004
	02_0005
	02_0006
	03_0001
	03_0002
	03_0003
	03_0004
	03_0005
	03_0006
	03_0007
	03_0008
	03_0009
	03_0010
	03_0011
	03_0012
	04_0001
	04_0002
	04_0003
	04_0004
	04_0005
	04_0006
	04_0007
	04_0008
	04_0009
	04_0010
	04_0011
	04_0012
	04_0013
	04_0014
	04_0015
	04_0016
	04_0017
	04_0018
	04_0019
	04_0020
	04_0021
	04_0022
	04_0023
	04_0024
	04_0025
	04_0026
	05_0001
	05_0002
	05_0003
	05_0004
	05_0005
	05_0006
	05_0007
	05_0008
	05_0009
	05_0010
	05_0011
	05_0012
	05_0013
	05_0014
	05_0015
	05_0016
	05_0017
	05_0018
	06_0001
	06_0002
	06_0003
	06_0004
	06_0005
	06_0006
	06_0007
	06_0008
	06_0009
	06_0010
	06_0011
	06_0012
	06_0013
	06_0014
	06_0015
	06_0016
	06_0017
	06_0018
	06_0019
	06_0020
	06_0021
	06_0022
	06_0023
	06_0024
	07_0001
	07_0002
	07_0003
	07_0004
	07_0005
	07_0006
	07_0007
	07_0008
	07_0009
	07_0010
	07_0011
	07_0012
	07_0013
	07_0014
	07_0015
	07_0016
	07_0017
	07_0018
	07_0019
	07_0020
	07_0021
	07_0022
	07_0023
	07_0024
	08_0001
	08_0002
	08_0003
	08_0004
	08_0005
	08_0006
	08_0007
	08_0008
	08_0009
	08_0010
	08_0011
	08_0012
	08_0013
	08_0014
	08_0015
	08_0016
	08_0017
	08_0018
	08_0019
	08_0020
	08_0021
	08_0022
	08_0023
	08_0024
	0A_0001
	0A_0002
	0A_0003
	0A_0004
	0B_0001
	0B_0002
	0B_0003
	0B_0004
	0B_0005
	0B_0006
	0B_0007
	0B_0008
	0B_0009
	0B_0010
	0B_0011
	0B_0012
	0B_0013
	0B_0014
	0C_0001
	0C_0002
	0C_0003
	0C_0004
	0C_0005
	0C_0006
	0C_0007
	0C_0008
	0C_0009
	0C_0010
	0C_0011
	0C_0012
	0C_0013
	0C_0014
	0C_0015
	0C_0016
	0C_0017
	0C_0018
	0C_0019
	0C_0020
	0C_0021
	0C_0022
	0C_0023
	0C_0024
	0C_0025
	0C_0026
	0C_0027
	0C_0028
	0C_0029
	0C_0030
	0C_0031
	0C_0032
	0D_0001
	0D_0002
	0D_0003
	0D_0004
	0D_0005
	0D_0006
	0D_0007
	0D_0008
	0E_0001
	0E_0002
	0E_0003
	0E_0004
	0F_0001
	0F_0002
	0F_0003
	0F_0004
	0G_0001
	0G_0002
	0G_0003
	0G_0004
	0H_0001
	0H_0002
	0H_0003
	0H_0004
	0I_0001
	0I_0002
	0I_0003
	0I_0004
	0J_0001
	0J_0002
	0J_0003
	0J_0004
	0J_0005
	0J_0006
	0K_0001
	0K_0002
	0K_0003
	0K_0004
	0K_0005
	0K_0006
	0L_0001
	0L_0002
	0L_0003
	0L_0004
	0M_0001
	0M_0002
	0M_0003
	0M_0004
	0N_0001
	0N_0002
	0N_0003
	0N_0004
	0O_0001
	0O_0002
	0O_0003
	99_0000
	Seite 1.png

