MPE-IP

FORTH

Manual

Acer ¢

COPYRIGHT

Copyright©1990 by Acer Incorporated. All rights reserved. No
part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into any
language or computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual or
otherwise, without the prior written permission of Acer
Incorporated.

DISCLAIMER

Acer Incorporated makes no representations or warranties,
either expressed or implied, with respect to the contents hereof
and specifically disclaims any warranties or merchantability or
fitness for any particular purpose. Acer Incorporated software
described in this manual is sold or licensed "as is". Should the
programs prove defective following their purchase, the buyer
(and not Acer Incorporated, its distributor, or its dealer)
assumes the entire cost of all necessary servicing, repair, and
any incidental or consequential damages resulting from any
defect in the software. Further, Acer Incorporated reserves the
right to revise this publication and to make changes from time
to time in the contents hereof without obligation of Acer
Incorporated to notify any person of such revision or changes.

S S B e

Preface

MPF-IP FORTH Manual is written for those who wish to
learn FORTH with MPF-IP, a production of Multitech
Industrial Corporation. Readers may better understand
this fourth generation cofmputer language by following
instructions stated in the manual. For those who do not
have MPF-IP, the manual offers an opportunity to know
FORTH.

You can start to practice by inserting a FORTH EPROM on
socket U03. Options such as printer and I/0 M may be
connected to enhance its capability. In additien, an
independent and complete system may be set up by adding
EPROM WRITER to FORTH.

FORTH combines merits of both high level language and
low level language. It is a highly structured lanquage.
You may define your own WORD (instructions are called
words in FORTH) if necessary. The system provides basic
words for atrithmetic and logic operations and stack
manipulation. However, users themselves may define
stronger and more adequate words for specific situation
without any restriction.

FORTH uses postfix notation to write programs.
Therefore, expressions 5 + 3, 5 * 3 in BASIC are
changed to 5 3 + , 5 3 * in FORTH. It is possible for
you to encounter a few difficulties in wusing this
notation at the very beginning. But, you can make the
best use of its function once you get used to it,

This manual is a helpful guide for FORTH beginners. We
hope you enjoy reading it.

e e

pom——a———— =

TABLE of CONTENTS

CHAPTER 1 Introduction 1

1.1 The Source of FORTH-MPF-IP 3

1.2 Essentials and Options 3
1.3 ASCII Codes in FORTH 3
1.4 Entering FORTH and Exiting FORTH-MPF-IP 4
1.5 An Overview of the FORTH Language 5
.5.1 "Word"™ and "Dictionary" .in FORTH 5

1
1.5.2 Stacks in FORTH 13
1.5.3 Postfix Notation 15

CHAPTER 2 Stack Manipulation and Arithmetic
Operations _ 17

2.1 Number Input/Output 19
2.2 Words for Arithmetic Operations 21
2.3 Stack Manipulation 25

CHAPTER 3 Constants, Variables and Arrays 29

3.1 Constants 31
3.2 Variables 31

3.3 The Usage of Constants and Variables 32
3.4 Arrays 33

11

|

CHAPTER 4 Dictionary, Vocabulary and Memory

Map

35

4.1 Memory Map 37

4.2 Pseudo Disk in FORTH-MPF-IP 38
4.3 Print the Message 41

4.4 Define a New Word 41

4.5 Structure of FORTH Words 42
4.6 The Dictionary 44

CHAPTER 5 Structural Conditional Control

47

5.1 Conditional Branch 4%

5.2 Compare Words 51

5.3 Loop 53 _
5.3.,]1 Finite Lcop © 53
5.3.2 Indefinite Loop 55
5.3.3 Infinite Loop 56

CHAPTER 6 Printing Strings and Numbers

59

6.1 Strings Manipulating Words 61
6.2 Single Character Input/Output 62
6.3 String Input/Output 63

6.4 Printing Format for Numbers 65

CHAPTER 7 Editor

69

7.1 Editing a Program 71
7.2 Line Editing Words 72
7.3 Editing a String 74

7.4 Compiling FORTH Words 77

CHAPTER 8 Interrupt Signal 79
8.1 Low Level Words in FORTH 81
8.2 Low Level Interrupt Handler 84
8.3 Interpretive Interrupt Handling Process 85

CHAPTER 9 Application Programs 87
9.1 Using P@ and P! 89

-~ 9.2 Developing Application Programs 90

Appendices 95
A MPF-IP ASCll Codes 97
B MPF-IP FORTH Glossary 99
C MPF-IP FORTH Error Message 141
D User Area RAM Map 143

Introduction

1.1 The Source of FORTH-MPF-IP

The MPF-IP 1is a convenient instrument to learn the
FORTH language. It contains an 8K-bytes EPROM. The
EPROM records the FORTH language and can be inserted
into the socket U3. The FORTH begins to work by both
turning on the machine and pressing CTRL-B. Press the
RESET key and turn on the machine again also help
initialize.

The programs for FORTH-MPF-IP are based on B#8@
programs of FIG-FORTH. The FORTH has functions as
an interpreter, a compliler and an editor. It also
contains the internatiorial FORTH-79 standard commands
(Ooct., 1986). In addition, we provide other words
especially for MPF-IP which will be discussed later.

1.2 Essentials and Options

The essentials for FORTH-MPF-IP are as follows:

(1) a system unit (4K RAM)

(2) a FORTH-MPF-IP EPROM

In addition, some other options may be used.

(1) printer: It prints data output for permanent

) record.

(2) I/0 M: The expansion memory strengthens the
edit function. 1Its I/0 port makes
FORTH show a strong control
capability.

(3). EPROM WRITER: A full set of independent
applied system is used in accordance
with FORTH system.

{4) SGB & SSB: They are used to produce sounds.

1.3 ASCII Codes in FORTH

The commands 1in FORTH are composed of a series of
characters, separated by spaces. The characters include
a full set of ASCII codes, excluding Dbackspace,
carriage return, null, and space; and control codes,
excluding CTRL-P {used td control printer) and CTRL-G
{used to control speaker). The following strings are
some examples:

=1
=
=4
&

-FIND M BEGIN "7 ({

On MPF-1IP's keyboard, stands for carriage return,
= stands for backspace, [E3] stands for space. HNull
is a self-produced code in the FORTH, ‘'which can not be
seen at the keyboard. Refer to Appendix A for the codes
generated by the other keys.

Three basic commands in FORTH [, 1, and [COMPILE] are
replaced by (*, *) and <COMPILE> respectively, as [and
] can not be generated by the MPF-IP keyhoard,

1.4 Emntering FORTH and
Exiting FORTH-MPF-IP

(A) Entering FORTH-MPF-IP

There are two ways to enter the system, if the screen
displays *****MPF-I-PLUS***** or 3 after you turn on
the machine,

1., Press and [B] simultaneously. The FIP
(Fluorescent Indicator Panel) will black out for a few
seconds, and the screen displays ****FORTH-MPF-Ip&*#%%
It enters the system and waits for commands. It is the
cold start which clears the commands outside the
system, and makes an initialization. Memory in the
pseudo-disk track becomes g.

2. Press and [] simultaneously, The screen
displays ****FQRTH-MPF~IP****, and waits for you to
input commands. It is the warm start that is generally
used in reentering thHe system angd keeping the
established dictionary commands before exiting FORTH.
Initialization is only made for few variables. No
clearing 1is implemented on the dictionary and the
pseudo disk memory.

(B) Exiting FORTH-MPF-IP
There are also two ways to exit the system.
l. Press the RESET key.

Whenever you preds [RESET), MPF-IP returns to the initial
status. The screen displays *****MPF—T-PLJS**x%*%%

2. Input [MOR] [=7].
The MPF-IP is now under the control of the monitor. The
screen displays the monitor's prompt > .

1.5 An Overview of the FORTH Language

You may follow the steps listed below to enter into the
FORTH-MPF-I1P system.

a. Be sure to turn off the power, and then insert
FORTH-MPF-IP FPROM into the socket U3.

b. Connect all options.

c. Turn on the powver, and the screen displays
*EkXXEMPEF T -PLUS**%%% .

d. Press [CONTROL] and [B] simultaneously, and the
screen displays ****FORTH-MPF-IP**#*%

e. Press , and the screen displays OKa, indicating
it is in the FORTH system.

16,1 “Word” and “Dictionary” in FORTH

Every kind of computer language has its own notation to
indicate what will be executed, such as instructions LD
A,B and ADD A,C in the Assembly Language; and
statements For I=¢ TO 255 and PRINT A+B 1in BASIC.
In FORTH, we use "word" to execute a command.

A "Word" is composed of one or more than one
characters. It is the code for an event or a procedure.
In FORTH-MPF-IE, each “word"” is related to an event.
For example, the word * multiplies two numbers in the
memory and savesthe result back to the memory. The word

EMIT takes the number in the memory as an ASCII code,
and prints or displays its corresponding ASCIT
character. Primitive "WORD"s supplied in FORTH-MPF-1P
can be illustrated by pressing VLIST . Consult
the following printout:

VLIST
F@@9 TASK
3AF4 MON
3AES EI
3ADD DI
3aD1 iMe
3AC4 IMl
3AB7 M2
3aAl NEXT
3a88 END-CODE
3A73 CODE
3A6@ TREAD
3A2E TWRITE
39D4 -5
39C7 @>
3946 D<
398F DEPTH
394D ROLL
393Aa J

3934 EXIT
391D 20VER
3909 25WAP
38DA -.CPU
38CF INTVECT
38C1 INTFLAG
38A9 s INT
386D I'NDEX
3818 LIST
37D9 VLIST
37C9 U.
37BC ?

37B@ .

3742 D.
3791 .R
376E D.R
3756 5
372B #

3715 SIGN
36FC #>
36ED <#
36D8 SPACES
36BF WHILE
369D ELSE
3686 IF
366D REPEAT
3656 AGAIN
3648 END
3634 UNTIL

361E
3608
35F5
35EA
35CF
35BD
35AB
356E
3555
3535
3583
34¢2
34B7
349B
347D
346F
3458
3446

3438 -

3430
3425
34149
33FB
33C3
33AF
338D
336E
335C
334B
333B
332B
331B
336C
32E6
32CB
32B6
32n0
3292
3283
3271
325F
324B
3220
31DD
31ecC
316F

315C

314c¢C

+LOOP
LOOP
DO
THEN
ENDIF
BEGIN
BACK
FORGET
|

-

LOAD
DUMP
FLUSH
R/W
BLOCK
BUFFER
EMPTY-BUFFERS
UPDATE
+BUF
PREV
USE

P!

P@
MESSAGE
.LINE
<LINE>
M/MOD
4

* /MOD
MOD

/

/MOD

*

M/

M*
MAX
MIN
DABS
ABS
D+~
+=
5->D
COLD
WARM
ABORT
QUIT
<
DEFINITICN®

3134

3121

36E7
3@CE
36840
3054
3835

3¢18

2FFC
2F76

2F41
ZE33
2F@9

2EB1
2E66

2E14

2EQ1
2DE9
2DDA
2DC9
2DAB
2D6C
2D54

2CDA
2CAB
2C92
2C5F
2C31
2C1E
2BF7
2BE7
2BDO
2BBA
2BA4
2B8E
2B7C
2B67
2B58
2B41
2B27
2BOA
2AF7
2AE(
2ACS8
2AAE
2A9B
2A86
2A74@

EDITOR
FORTH
VOCABULARY
IMMEDIATE
INTERPRET
?8TACK
DLITERAL
LITERAL
<COMPILE>
ID.

ERROR
<ABORT>

=FIND

NUMBER
CONVERT
WORD
PAD
HOLD
BLANKS
ERASE
FILL

QUERY
EXPECT

11}

<>
—~TRAILING
TYPE
COUNT
DOES>
CREATE

; CODE
<;CODE>
DECIMAL
HEX
SMUDGE

*

(*
COMPILE
?LOADING
?CSP
2PAIRS
?EXEC
2COMP
?ERROR
1CSP

PFA

NFA

-8.-

2462
2A52
2342
2A1D
2406
29F7
29E1
29D2
29C4
2924
2982
2976
2968
2951
2940
2934
2924
2915
2968
28FB
28EE
2824
2899
2890
2887
287E
2875
286C
2863
285A
2851
2846
283B
2830
2825
281B
2811
2867
27FD
27F3
27E9
27DC
27D1
27C7
27BB
27B6
279F
2792

CFA
LFA
LATEST
TRAVERSE
?DUP
SPACE
PICK
ROT

>

U<

<

C,

r
ALLOT
HERE
2—-
1=
2+
1+
CALL
RL
RH
RE
RD
RC
EB
RF
RA
RHL'
RDE'
RBC'
RAF'
RIY
RIX
RHL
RDE
RBC
RAF
UABORT
UR/W
UCR
UEMIT

UKEY
U?TERMINAL
UB/SCR
UB/BUF

2785
2778
276B
2760
2756
274D
2743
2739
272F
2724
2718
270A
26FC
26EF
26E5
26DB
26D1
26C7
26B8
26AF
2623
2695
2689
267F
2676
2669
2659
2649
2639
2629
261F
2616
260E
2606
25FE
25E8
25D4
25B6
259D
2575
2562
2555
2546
252C
251E
250F
2501
24EA

ULIMIT
UFIRST
uc/L
HLD

R#

csP

FLD

DPL
BASE
STATE
CURRENT
CONTEXT
OFFSET
SCR

ouT

>IN

BLK
VOC-LINK
DP
FENCE
WARNING
WIDTH
TIB

RO

S@
B/SCR
B/BUF
LIMIT
FIRST
Cc/L

BL

3

2

1

7}

USER
VARIABLE
CONSTANT

-

B s) B oes =

w

TOGGLE
+1

-1@-

24DB
24C9
24BB
24AE
249F
2491
2482
2464
244D
2429
241C
24¢B
2404
23F0
23E9
23D4
23BE
23AA
2393
237B
236D
2356
2347
2334
2321
230F
22C2
228C
2276
2264
2255
223F
2229
21DE
2194
2166
2152
2136
2122
20F1
20DC
20C4
2@B5
20A0
OK

BOUNDS
2DUP
DuUP
SWAP
2DROP
DROP
OVER
DNEGATE
NEGATE
D+

g<

>R
LEAVE
HE

RP!

RP@

SP!

sp@

XOR

OR

AND
u/MOD
u*
CMOVE
CR
?TERMINAL
KEY
EMIT
ENCLOSE
<FIND>
DIGIT

I

<DO>
{+LOCP>
<LOOP>
GBRANCH
BRANCH
EXECUTE
LIT

= R

Sometimes, one W
execution. Several

progranm.
may be us
This is exactly the

FORTH: to
purpose.

Examples:

The unit pr

price for n fountain pens 18 :

TOTAL PRICE =

ord alone is not enough to complete an
words are then composed to form a
The program is regarded as a new word, :
ed as a unit to form a more gomplex execution,
process to write a program 1n
put several words together to complete the

which

ice for a fountain pen is US$5,04d. The total

n ® UNIT PRICE

We can define a word 5* which combines 5 and *.

Input
Display

ws ae
un
*
L
*
- e

The word . (DOT) is used

The following table lists words

OKa
to print the result.

related to number

=
1
(

output:
| Words Stack Manipulation and Action
D.R {(d n -==) .
Print double number d in an n-character
field, right justified.)
D. (d -—=)
print double number d and Ileave a
space to its right. !
u. {un ---) -] |
Print unsigned integer number un and
leave a space to its right.
.R (nl n2 ---) .
Print signed integer number nl in an
n-character field, right justified.
(n°-—=) _ g
print signed integer number n an
leave a space to its right.

=12-

“

(addr ---) E
Print signed integer number in address
addr and leave a space to its right.

We can define a new word FOUNTAIN-PEN both to print the
result and to count the total price.

FOUNTAIN-PEN 5% . ; [=
FOUNTAIN-PEN 5* . : OKa

Input
Display

[TEETY

Example: the total price for 7 fountain pens

Input 7 FOUNTAIN-PEN
Display 7 FOUNTAIN-PEN 35 OKa

" Example: the total price for 9 fountain pens

Input 9 FOUNTAIN-PEN
Display 9 FOUNTAIN-PEN 45 OKa

All words in the system are stored in the dictionary.
It is a one-directional serial table. Every word 1is
different in 1length. However, they are defined
completely or contain all necessary data for execution.
The dictionary may be expanded toward the higher end of
the memory. The dictionary may also be divided into
several vocabularies. Each vocabulary centains related
words.

1,5.2 Stacks in FORTH

The system uses two stacks to save temporarily data and
addresses. One 1is the Data Stack, the other is the
Return Stack. The stack generally refers to the Data
Stack unless otherwise specified.

The stack is a certain area in memory used to save and
retrieve the data. We may call it a last-in first-out
memory. If you. input 1 3 5 7 [=d], the display of
1 3 5 7 OKa means all words have been executed.
Four numbers have been stored in the stack. The first-
in number 1 is placed at the bottom of the stack. &and
the last-in number 7 is at the top of the stack.

The following 1is a conceéptual diagram of stack in
memory. The first-in number 1 is at the highest end in

=]l3=

input later are lined up through the

memory and numbers
lower end.

top in memory top in memory top in memory
~ 1 1 1
3 3
5
7
bottom in botton in bottom 1in
memory memory memory
polnter pointer pointer

The following is a conceptual illust;atlon of the
stack. That the stack extends upward is the same ai
that plates are piled in a restaurant. The first-se

plate is at the bottom, SO that the last-set onei aie
taken first. When you add a new number on the stack,
it is pushed on the top of the stack. When you take one

off the stack, you pop the number away.

— 7

3

3 3

1 1 , 1:
bottom of bottom of bottom of
the stack the stack the stack

pointer| pointer |901nter|

. There are four numbers on the stack.
(Dot) to print the numbers.

Use the word

t .+« o+ « [=1 (Do not forget to leave a
Al space between the dots.):
Display e o« =« o« 153 1 OKa

ed in FORTH words are mostly taken from the data

Data us g
placed onto the stack in any of the

stack., Data are

=14

three ways listed below:

1) words keyed in from the keyboard;
2) words in the source program;
3) values resulted from execution of words.

The return stack stores the address for the word to be
executed next. 1Its function is like that of the stack
in a general computer system, that is, to save the
address of the next instruction in the main program
when it calls subroutine. The return stack is mainly
used to control calls among words and return action.
However, under specific condition, the return stack
does additional work, such as:

a. the index and the limit used in the DO...LOOP;

b, some numbers which are not easy to manipulate on the
temporary data stack.

The return stack is closely connected to the system's
operation. Be sure to use it carefully . Any misuse
may cause an irrevocable result to the entire system.

1.5.3 Postfix Notation

Arithmetic operations for most computer languages are
as follows: 5+3 which is familiar to most people. FORTH
uses postfix notation, and the expression in the above
will be: 5 3 +., The reason for the adoption of this
peculiar notation 1in FORTH is that all words take
necessary data from stack and put result onto stack.
Interactions among words are greatly reduced in this
way. Words of different levels may exchange data
provided by the stack in a rather complex operation. In
the operation 5 3 + , 5 is placed on the stack
first, followed by 3., Addition operator + takes out and
adds 5 and 3, and saves the result 8 on the stack.
After the operation, 5 and 3 are removed from the
stack.

15

i e e R R

e

2.1 Number Input/Output

We mentioned in the previous chapter that many FORTH
words need data on the stack, and the number of data
items needed 1is different from one word to another.
Before you execute a word, you have to know the data on
the stack and in what order. FORTH data may have
different types, you have to choose the right one
according to the words. The following table lists the
main types of data, together with their codes and
ranges.

TYPE CODE. RANGE

Flag f ¥ or non-@

Character c : from ¢ to 127

Byte b from ¢ to 255

Number n from -32768 tﬁ 32767

Unsigned Number un from & to 65535

Double Number d from -2147483648 to
2147483647

Unsigned Double ud from @ to 4294967295

Number

Address a from § to 65535

Primarily arithmetic operations deal with integers.
Most of them are presented as 16-bit numbers. When
FORTH receives a number (either from the keyboard, or
from the source program), it transfers the number into
a binary one, and pushes it on the stack. The input
number may be a 16-bit single number or a 32-bit_double
humber. Numbers with a decimal point will be regarded
as a double number by the decoder, otherwise they are
regarded as single numbers. The word.(dot)removes the
single number at the topmost of the stack and change it
into a string and display it. Single number |is
bresented by 2'scomplement. If it is larger than 32767.
We regard it as a negative number, For example:

=19=

Input 5 .

pisplay 5 . 5 OKa

Input -390 . [=4 (Press the shift key and "1"
letter simultaneously to
get a minus sign.)

Display -3¢8 . =-306 OKa

Input 32769 .

pisplay 32769 . -32767 OKa

In the last example, 32769 exceeds 32767, thus the
system regdrds it as a negative one. You may avoid this
as shown below:

Input 32769 @6 D,
@ D. 32769 OKa

Display 32769

That is, vyou may push a @ above 32769 on the stack and
make it a double number. 'D. is used to print the
double number stored on the top of the stack.

If there 1is a decimal point, FORTH regards it as a
double number. For example, 32769 is regarded as a 32-
bit double number. FORTH only recognizes the decimal
point and its place, but the decimal point does not
affect the conversion. Try the following example:

Input 32769, D.
Display 32769. D. 32769 OKa
Input 327.69 D.
Display 327.69 D. 32769 OKa
Input 3.2763 D.
Display 3.2769 D. 32769 OKa
Input 3.27.69 D.
Display 3.27.69 D. 32769 OKa

The number of digits following the decimal point are
recorded in the system variable DPL. If you want to
identify it for related numeric operations, you may use
DPL.

As described earlier, you may place a # above a single

number to get a double number. Similarly, a double
number may be divided into two single numbers., If a

20 =

e e e

s e -

double number is divided into a higher 16-bit and a
lower l6-bit, the higher one will be on the top of the

stack.

such as:

Input 6553.6 . . [=
pisplay 6553.6 . . 1 @ OKa
Input 3¢, . .

Display 398 . . @ 303 OKa

2.2 Words for Arithmetic Operations

The following table lists the arithmetic words used in
FORTH, including single number words, double number
words, and mixed operation words.

Words Stack Manipulation and Action

+ (nl n2 - n3)
nl + n2. Leave the sum n3 on the stack.

- (nl n2 - n3)
nl - n2. Leave the difference n3 on the

stack.
1+ o - n + 1)
1 - {n - n - 1)
2 + (n - n + 2)
2 = (n = n - 2)
x {nl n2 - n3)
/ {nl n2'— n3)

nl is divided by n2. Leave the guotient n3
on the stack.

/MOD {nl n2 - n3 n4) _
nl is divided by n2. Leave the remainder
n3 and the gquotient n4 on the stack.

-21=

&

(nl n2 n3 - n4)
nl multiplies n2 and then the product is

divided by n3. Leave the quotient n4 on
the stack.

* /MOD

(nl n2 n3 - n4 n5)
It is the same as */., Leave the remainder
n4 and the quotient n5 on the stack.

U*

{unl un2 - ud)

Multiply two unsigned numbers unl and unZ.
Leave the product (double number) ud on
the stack.

U/MOD

(ud unl - un2 un3)
The double number ud is divided by unl.
Leave the remainder un2 and the quotient
un3 on the stack.

MAX

(nl n2 - n3)
Leave the larger one of nl and n2 on the
stack.

MIN

(nl n2 - n3)
Leave the smaller one of nl and n2 on the

stack.

ABS

(nl - n2)
Leave nl's absclute value on the stack.

NEGATE

(nl - n2)
Change the sign of the topmost value on
the stack.

AND

(nl n2 -~ n3)
Leave the resultant value from logical

AND.

OR

(nl n2 - n3)
Leave the resultant value from logical OR.

XOR

(nl n2 - n3) .
Leave the resultant value from logical
Exclusive-0R.

=22=

5%

(dl d2 - d3)
Add double numbers dl and d2. Leave the
sum d3 on the stack.

DNEGATE

(dl - d2)
Change the sign of topmost double number
on the stack.

DABS

(dl - d2)
Leave the absolute value of the topmost
double number on the stack.

M*

(nl n2 - d)

Multiply +two single numbers nl and n2.
Leave the product (double number) d on
the stack.

M/

{d nl1 - n2 n3)

The double number d nl is divided by a
single number nl, Leave the remainder n2
and the guotient n3 on the stack. The sign
of the guotient is the same as that of the
dividend d.

M/MOD

(udl un2 - un3 ud4)

The unsigned double number udl is divided
by the unsigned number u2. Leave the
remainder u3 and the unsigned double
number quotient ud4.

MOD

(nl n2 - n3)

nl 1is divided by n2. Leave the remainder
n3 on the stack, The sign of n3 is the
same as that of nl.

Example:

Input
Display

Example:

Input
Display

Find the product of 35*7

35 7 * , [=d]
35 7 * ., 245 OKa.

Find the quotient of 31/4

31 4 . =
7

/
31 4 / . OKa

-23-

You may use the word MOD to display the remainder.

Input 31 4 MoD .
Display 31 4 MOD . 3 OKa

The word */ 1is provided in FORTH tor calculation of
ratio. The following example can be used to calculate
percentage.

Input : % 188 */ .3
Display : % 146¢ */ i OKa
Input 675 15 % .

Display 675 15 % . 181 OKa

5o far, we have used the number base of 14 (decimal) in
the examples. However, the system variable BASE may
convert the base number,.

We have defined the following words in the FORTH-MPF-
IP.

: HEX 16 BASE ! ;
: DECIMAL 1¢ BASE ! ;
Input 16 .
Display 16 . 16 OKa

In the following example the base number is changed.

Input 16 HEX .
Display 16 HEX . 10 OKa

Once you have converted a base number, the system will
keep it as changed until you set a new base number or
turn on the power again,

Input 3¢ DECIMAL .

Display 30 DECIMAL . 48 OKa
Input 255 HEX .
Display 255 HEX . FF OQKa

If you wish to use the base 8, ydu may define a word as
follows:
H OCTAL 8 BASE ! 3

-24-

2.3 Stack Manipulation

FORTH is a well-designed, versatile and effective
language. It always input/output numbers in last-in
first-out order. FORTH also provides a set of useful
words for stack manipulation, so that you may search a
specific number from a certain plage in stack. See the

following table.

(nl nZ2 - n2 nl)

Words Stack Manipulation and Action
DUP Copy the topmost value on the
(n - n n) stack.

DROP Remove the topmost vailue on

(n -) the stack.

SWAP Change top two values on the

stack.

OVER
{nl n2 - nl1 n2 nl)

Copy the second value of the
stack.

ROT ,
(nl n2 n3 - n2 n3 nl)

Rotate top three values on the
stack, Bring the third one to
top.

(d1 d2 - 42 di)

?DUP Copy the topmost value 1if 1t
(n = n(n)) is non-gzero.

PICK Copy the nlth value of the
(nl - n2) stack.

ROLL Bring the nth value of the

(n -) stack to the top.

DEPTH Place the numbers of current

{ - n) value on the stack.

2SWAP Change two double numbers on

the stack.

Copy the topmost double number

2DUP

(d - 4 4) on the stack.

2DROP Remove the topmost double
(d =) number on the stack.

=25-

Copy tne second double number

Z0VER
(d1 d2 - 41 dz2 dil) on the stack.
=g print the contents of the

o] stack without altering or
removing the numbers from the
stack.

pefore you set out to learn how to use the words
concerning the stack manipulation, you must understand
how the word .S works. In short, the word .S will let

you observe changes in the stack. Try the following
example:

Input 1 2 3

Display 1 2 3 OKa

Input ih

Display 1 2 3 OKa

Execute .8 does not change the data in the stack at
all. In contrast, try the following:

Input S e
Display e w w3 20 R OKs

The first . takes the topmost number 3. The second and
the third take 2 and 1 respectively. No data remained
in the stack after execution of the word . (dot) .

You may practice the stack manipulation with related
words and use .S to examine its current status.

Input 1 2 3 DUP
Display L 25 03 DUPeORA
Input 5

Display B R < O 014
Input DROP .5 =]
Display 1 2 3 OKa
Input SWAP .S
Display 1 3 2 OKa

-26=

Input OVER .S

pisplay 1 3 2 3 OKa
Input ROT .S
Display 1 2 3 3 OKa

n PICK allows you to caopy nth number and place it on
the top of the stack. Continue the last example again:

Input 3 PICK .S
pisplay 1 2 3 3 2 O0Ka

1 PICK has the same result as DUP 2 PICK ha
- 5 h = i
result as OVER. the same

n ROLL allows you to move the nth number on top of the
stack. 3 ROLL has the same result as ROT. 2 ROLL has
the same result as SWAP.

Input 4 ROLL .S
Display 1 3 3 2 2 OK
-27~-

We use ‘the data stack to save the information to
transfer and manipulate in FORTH, It is necessary to
set constants and variables if some data is used
frequently.

3.1 Constants

If a value is used frequently and related to a special
function, we may define a word with a name for the
value. The word is called a constant.

It is easy to set a constant. All you have to do is to
input a value first, and then key in the word CONSTANT.
tinally, give the word a name.

Input 7 CONSTANT D/§i
Display 7 CONSTANT D/W OKa
How, we have added a «constant word /W to the

dictionary. 1Its wvalue 1is 7. Whenever you need the
value, give 1its name and the value will ba placed on
he stack.

Input D/W . (=1
Display D/W . 7 OKa

3.2 Variables

W2 call a value that is changed freguently in a program
a4 wvariable. Key in the word VARIABLFE, and then 1its
fame ,

Input VARIABLE SCORE [=—)
Nisplay VARIABLE SCORE OKa

The value of a variable is undefinite. vYou should give
1t a value before using it.

Input 66 SCORE 1t [=]
Display 60 SCORE ! OKa

-31-

3.3 The Usage of Constants and Variables

The following table lists words for memory read/write.

Words Etack Manipulation and Action

@ (a - n)
push the wvalue n at address a on the

stack.

! (n a -}
gave the value n in address a.

ce (a - b)
push the byte b at address a on the

stack.

Cl! (ba -)
Save the byte b in address a.

2@ (a - d)
push the double number d at address

a on the stack.

2] (d a -)
gave the double number d in address
a.

+1 . (na -)

Add n to the number at address a.

? “{a =)
Fetch the value at address a and
print it.

When you point out the name of a variable, 1its address
is pushed on the stack. You should use @ to take its

value out.

Input score @ . (=2
Display SCORE @ . 60 OKa

The word ? is composed of two words @ and . (dot).

-32-

Input SCORLE ? -"'—'
nisplay SCORE 7?7 60 OKa

The word +! is derived from the word !

Input 20 SCORE +!
Display 2@ SCORE +! OK

iie have added 2¢ to the original number i

r in the SCORE
and8§ave the result back. The number is changed from 64¢
to .

Input SCORE 7
Display SCORE 7?7 B8O OK

The word ! makes things easy for you to change the
value of a variable. It also helps you change the value
of a constant once you know its address. The word
(tick) may find out the address of a word.

Ir_}put L 5 174 2
Display ' D/W . -46G77 OKa

To change the value of a constant :

Input 5 ' D/W !
Display 5 ' D/W ! OKa
Input D/ .
Display D/W . 5 OKa
3.4 Arrays

The paramgter field addrzsss is saved on the stack upon

the execution of a variable defined with VARIABLE. We

E;{ enlirgﬁ the parameter field for more numbers and
es, which become arrays. The main pur i

the memory space. F Pése te fo save

Suppose we would like to build an array with 20 bytes:

VARIABLE DATA 18 ALLOT
DATA 28 ERASE

18 ALLOT means that we add 18 bytes, storage to the

reser i i i
belewYEd 2 bytes in the parameter field. As illustrated

-33-

VARTABLE 2 18 (ALLOT)
DATA BYTE THE REST BYTRS ...
[I
=y
direction for dictionary extension ‘4- next word

DATA 28 ERASE 1is to clear the 20 bytes 1in the
parameter field into zeroes.

the following words help you to reotrieve ths data in
the array.

DOATA @ Feten the value of the first
number,

DATA 2+ 4 Feteh the value of the second
number,

i AT and S0 0D .4aaaa..

The following words help you to save the value in this
aArray.

14 DATA ! Save the value of the first
number.

29 DATA 2+ ! Save the wvalue of the second
number .,

=34-

The
map -

. FFETP

FEBG

FREG

FD8y

FDO#

FO@R

FoEd

3FFF

2638
1FFF

Memory Map

following chart 1is the MPF-IP's 64 K memory
SYSTEM USE
FORTH USER VARIABLE [
up
r—Rﬁ EFFF
FORTH RETURN STACK LPB RAM
Ay DBAE
TERMINAL INPUT BUFFER[D7FF
TIB 1/0 M RAM
l—Sﬁ caga
FORTH DATA STACK BFFF
I1/0 M ROM
FORTH USER DICTIONARY REGY
[—DP
TASK
7FFF
OPTION
EXTENSION PRT
MEMORY 6B
5FEF
S58
50306
FORTH-MPF-1IP
4G99

MPE-IP
MORITOR

37

FORTIH-MPF-IP uses a memory space of 8k bytes, from
82000 to $3FFF. The system will insert the word TASK at
FEGE after the machine is turned on or the execution of
the c¢old start (using the word COLD). The user's
dictipgnary grows upward from F@@B. For more details
about TASK, please see Chapter 9. SFEGF through SFEBE
is allocated for user variables, consult appendiz .

The extension memory ranges from $436@# to SEFFF. You
can insert different kinds of additional option boards
when necessary. The printer enables you to better
understand the functions of some words. The 1/0 i
extension board increases the memory, facilitating the
FORTH to accomplish its editing features, and control
the 1/C ports directly. EPB makes a full set of
application system possible, 1in addition to increasing
mMemory .

4.2 Pseudo Disk in FORTH-MPF-IP

In & standard FORTH system, in order to store programs
and data the disk is used as a virtual memory. In this
way, the system uses the disk memory to simulate the
main memory. The user may use the read/write words
available in the main memory to manage information on
the disk. The disk is divided into blocks in FORTH.
Each block has a sequential ordinal number. The system
use the ordinal number to input and output the entire
block of information. When you input, the informaticn
is read into a disk buffer in the main memory. The user
can then fetch the information or change the contents.
When this disk buffer is regqguired to store other
information, the updated block will be output to its
original location in the disk. Therefore, you can get
the data reguired from anywhere on the disk, and need
not worry about the details of the read/write

-38=

operations. The following table lists the words for
disk memory.-

Twords Stack Manipulation and Action

BLOCK (n - a)
Load the nth bleck data to a disk

buffer, and place the start address on
the stack.

BUFFER (n - a)
Allocate & buffer to store the new
data of the nth block. Place the buffer
address on the stack.

UPDATE { -)
Mark the updated data in the last

used buffer.

S5AVE { =)

RUFFERS Save the updated buffer data back to the
disk.

EMPTY { -)

BUFFERS Clear all the data in buffer, thus avoid

being saved back in the disk.

LIST (n -)
Load the nth block character to a buffer
and print it.

LOAD (n -)
Load the nth block character and compile
or execute.

SCR (- a)
The system-.varlable containing current
block number,

FORTH-MPF-IP does not have a real disk. Thercfore, a
part of memory (28k bytes) is used as a pseudo disk.
The length for each pseudo disk is limited to 512
bytes, 1In practice, many disk commands can not be used
without proper modification.

Memnry $8¢@¢ to SLFFF is divided intec 56 blocks. The
ordinal number is from ¢ to 55. Usually, an extension

-39-

memory is required (EPB or I/0 M) for the use of pseudo
disk memory.

The word BLOCK is defined as follows:
BLOCK 56 MOD OFFSET @ + 512 * FIRST + =

56 MOD limits the block numbers to the range @ through
55. OFFSET is a user variable. Its initial value is #.
FIRST 1is a constant used to save the starting address
of the pseudo disk. Its initial value is $8¢g@. FIRST +
enables you to obtain the address of the first byte . of
the block.

The wuser may change the values of OFFSET and FIRST to
adjust the location of pseudo disk buffer in
coordination with the real memory address of the
system. :

If you have only the system unit of MPF-IP available,
then the RAM covers S$SFO8F to SFFFF, which does not fall
within the range of the pseudo disk. 1In this case, you
may change the value of FIRST, so that the pseudo disk
start with address you need.

Input HEX

Display HEX OKa

Input @ BLOCK U.
Display ¢ BLOCK U. 8000 OKa
Input F20% UFIRST ! [=]
Display F200 UFIRST ! OKa

UFIRST is the user variable for FIRST. Save the value
into UFIRST and you can fetch the value from UFIRST
upon execution of FIRST.

Input ¢ BLOCK U.
Display # BLOCK U. F2068 OK

-

The dictionary grows upward from SF@@@. The data stack
goes down from S$FD8@. The pseudo disk is between the
two. avoid any overlap, otherwise the system's
operation may be affected.

IF I/0 M board is implemented and its RAM address is
from $CBEE to SD7FF, then the ordinal number of pseudo

4=

disk blocks will range from $2¢ (hex) to §£2C , you may
use these ordinal numbers directly, or chgnge OFFSET sO
that SC@E6 becomes a pseudo disk block with an ordinal
pumber of 0. You may do it with FIRST as well,

Input COLD

pisplay *% %% FORTH-MPF-TP** **
Input HEX

pisplay HEX OKa

Input 26 BLOCK U.
Display 28 BLOCK U. C@gg OKs
Input 20 OFFSET !
Display 26 OFFSET | OKa

Input @ BLOCK U.
Display g BLOCK U. C@#8 OKa

among the disk commands of FORTH-MPF-IP, ?he word BLOCK
place the start address of the corresponding block O@to
the stack. BUFFER works the same way BLOCK does, wh;le
EMPTY-RUFFERS clears the pseudo disk memory (ranging
from $880¢ through SEFFF). The remaining words, such as
UPDATE, +BUF, FLUSH and R/W has no effect.

4.3 Print the Message

is used to print a number on the

The word . (dot) :
stack. It is necessary to use another word to print a
message.

Input CR ." I AM MpPF-IP "

Display I aM MPF-IP OKa

A

Separated from the following messages by a space, .
(dot-guote) is used to print the message, until
{(delimiter) is encountered,

4.4 Define a New Word

The FORTH system allows you to define your own words.
These words work the same way as those primitive wgrds
supplied by the language. The names of the user-defined
word can contain up to 31 characters. All ASCII
characters can be used, except space, back-space, Null

and CR.

—41-

new word is defined as follows: start with a colon

A
(:), which is followed by a space, and then the name of

followed again by another space, ‘after
that is the events to be executed, finally a semicolon
(;), which indicates the end of the new word.

g s (=

a new word,

Input $ TEST 3

Display : TEST 3 * . ; OKa
Input 8 TEST

Display 8 TEST 24 0K

Input 5 TEST

Display 5 TEST 15 OKa

4.5 Structure of FORTH Words

All FORTH words has the same structure, whether it is a
high-level word, a low-level word, a constant, or a
variable. The following table illustrates the structure
of a high-level word.

84 1 7] ‘ %} ‘ @ [} J 1: ’] I @

T

45 E NAME FIELD
5
T

] LINK FIELD

87 CODE FIELD

26 3 ADDRESS

33 * ADDRESS PARAMETER FIELD

AE
37 . ADDRESS

91
23 ; ADDRESS

s

gach word has four fields: name field, link field, code
field, and parameter field,

The first one is the name field. 1Its length varies
according to the length of words name. The first byte
specifies the number of characters of the word's name.
Bit 7 (MSB) of the first as well as the last bytes of
the name field are set to 1 to mark the range of the
name field. We call bit 6 of the first byte the
precedence bit, which is used to control compiling. The
precedence bit is set to 1 if compiler directives
should be executed immediately to carry out a specific
compiling. However, precedence bit is usually set to
@ In this case, its address is compiled into
dictionary and becomes a part of high level words
during compiling.

Bit 5 of the first byte is the smudge bit. Before the
word is well defined, the smudge bit can protect the
compiler from compiling the unfinished word., The
smudge bit is cleared to be @ when a high level word is
defined, so that it can be compiled or interpreted for
execution.

The 1ink field saves an address, which is the name
field address of the previous word in the dictionary.
Name field and link field combines all words in the
dictionary. When you wish to find out a specific word,
FORTH follows the sequential stream, and compares the
input npame with the name field of each word. If they
are different, Jjump to the name field of the previous
word from the link field and make comparison with the
next word.

The code field saves an address, which pointed to a
machine code routine. The machine-code are executed
before executing this word. Different code fields
correspond to different machine-code routines. These
machine-code routines are called interpreter or inner
interpreter for the FORTH words.

Thie last one is the parameter field. 1Its length varies
Wwith different words. When executing inner interpreter,
the 1inner interpreter makes use of the data in the
Parameter field to accomplish the task defined by the
word. The values of constants and variables are saved
i1n this field. The high level parameter field saves a
Series of code field addresses of other words. The high

-4 3~

level word interpreter finds out the addresses in order
and executes the words. That is why we call high level
word interpreter the address interpreter.

The parameter field of low level words contains a
series of machine codes. The code field address
contains the parameter field address. Therefore, when
executing a low level word, vyou execute the machine
code program in the parameter field directly. The
program 1is the code interpreter of the low level word

itself.

4.6 The Dictionary
As described in the previous section, all the words 1in

FORTH are connected ocne after another by name field and
link field, Its structure is illustrated as follows:

the previous word%—w

name field|<e—

===
1ink field __l

—

e ——

Same field|¢—

-
iink field

P ———

e ——

name rield

————T T T

Tink field

the last d&fined word

-

é———— HERE
(the next usable address
for words)

—44-

SEREh;SsiaggRT?twordi It places the next usable address
. s value will ch :) :
number of the words. ange with the increasing

Agter you have defined new words in FORTH, there are
tlmestﬁhat yog would like to erase them. 1In this case
use e word FORGET. FORGET erases th :
words defined later than that. % mepsygns e

you may define a du
fou mmy word before the words for the

OKa

Input : DUMMY ;
Display : DUMMY
Then, executing FORGET DUMMY will

i i eras i
defined later than the word DUMMY. e everything

Input : TESTL 5 + . ;
Display s TEST1 5 + . ; OKa
Input : TEST2 5 * . ;
Display : TEST2 5 * . ; OKa
Input FORGET DUMMY [=
Display FORGET DUMMY OKa

TEST1 and TEST2 :
it are also erased after executing FORGET

The structural program means that in the program the
logical flow should follow one of the three ways listed
helow:

1) Consecutive Process: operating step by step, This is
regqularly used in high level words.

2) Conditional Branch: If the condition is true, do

event A, otherwise do event B; event C follows A or B,
as i1llustrated below:

.
false true
l B | | iy I

3) Loop: Repeat event A until a condition is true, and
then do event B, as illustrated below:

FORTH provides the use with words of all these tharee
types, which enable you to write structural programs.

5.1 Conditional Branch

The conditional branch gives the computer the
Capability to make decisions. 1In FORTH, it is used to
test the value on the top of the stack and decide if it
1S necessary to change the order of execution.

Below we will show you how it works.
: DEFINITION Define a new word.

CONDITION Produce a logical flag
(zero or non-zereo) and
place it on the stack.

IF Fetch the flag and test
THIS it, if it is non-zero,
execute THIS.

ELSE Execute THAT, if the flag
THAT is 4.
THEN Continue with the following
CONTINUE words.
= The end.
Condition = @ Condition = ©

[this]

IF, ELSE and 'THEN are used in high level word
definitions. All words between IF and THEN combine to
make a "structure"., IF tests the value on the top of
the stack. 1If it is not zero, the words between IF and
THEN will be executed. If it is zero, execution will
jump to the words between ELSE and THEN, and continue
with words that follow.

IF includes a test value g=, which will use up the
topmost value (logical flag). 1I1f this flag is to be
used again between IF and THEN, vou have to duplicate
and save it before executing IF.

The following 1s another «conceptual diagram for
conditional ©branch. ELSE may ‘be omitted in the
structure IF,...ELSE...THEN, if the test result 1is
false, program flow skips the words between IF...THEN
to execute the words after THEN.

-50~

FALSE

TROE

5.2 Compare Words
Compare words are usually divided into thres kinds.

l}) Words wused to test the topmost value on the
stack, such as @=, 6>, and g«.

2) Words used to test the two topmost values on the
stack, such as =, >, and <.

3) wWords used to test 32 bits double number on the
stack, such as D<.

All compare words remove the value they regquire from
the stack and return a flag. If the result is true, 1
(stands for true) is returned to the stack. If the
result 1is false, ¢ (stands for false) is returned to
the stack. The word NOT reverses the flag, that is,
change ¢ to 1, and 1 to @.

Suppose vyou wish to test a condition which is not
Sma;ler than @ (larger than @ or equals to @), you may
define it as follows:

- >= @< NOT ;

Results from comparison may be processed with logical
operators such as AND, CR and XOR. Flags as the results
of comparison can be treated as regular numbers and
processed with arithmetic operators such as +, -, * and

/o

The - (subtraction) operator may be used as compare
word as well. The result of subtraction between two
equal numbers is definitely zero. Otherwise, the result
will be non-zero (which implies a true flag). The
result is not necessarily "1", though.

The following table lists compare words in FORTH-MPF-
IP. These words are usually used before IF and UNTIL
and give them a flag, which is used to select the
execution sequence thereafter.

Words Stack Manipulation and Action
< (ni n2 - f)
I1f nl<n2, f£=1. Otherwise, f£=¢.
= {nl n2 - £)
I1f nl=n2, f=1.
> {(nl n2 - f)
If nl>n2, f=1.
G< (n - f)
If n<@, f=1.
G= (n - £)
1f n=6, f=1.
> {n - f)
1f n>@, f£=1.
D< (dl d2 - f)
If dl<d2, f=1.
U< (unl un2 =)
If the double number unl<un2, f=1.
NOT (f1 - £2)
Reverse the value of the flag on the
stack.

=-52-

5.3 Loop

Loop has two basic types: finite and indefinite. The
finite loop is set to repeat a certain number of times.
The indefinite loop continue to circulate until a
condition is met or a specific event develops. BAmong
the indefinite 1loops, you will find one that will
repeat endlessly until an external force is
applied. This 1is generally called an infinite loop.

Some FORTH words can contain different kinds of 1loops
in the word definitions, in order to handle a sequence
of commands to be executed repeatedly. These structures
can only be defined in the new words., They must not be
input from the keyboard, and executed immediately,
otherwise an error will develop.

5.3.1 Finite Loop

The finite 1loop can be classified into two kinds
according to the way the loop index increments:

1) limit index DO words LOOP

Each time the words between DO and LOOP are executed,
the index increments by one, and then execution
continues until the index equals to the limit.

The loop index and the limit are saved in the return
stack temporarily te avoid problems arising from using
the data stack when executing words between DO and
LOOP,

23 limit index DO words incr +LOOP

The index increments by incr for each loop until the
index equals to is equal than the limit,.

If the INCR is negative, the limit should be smaller
than the index. The index decrements by INCR for each
loop until the index is smaller than or equal to the
limit, .

DO, ©LooP, and +LOOP should be used in the definition.
They must not be executed immediately. Otherwise, the
System will send back an error message,

-53-

Define the following word in your system:
: TEST1 5 @ DO I . LOOP ;

The two numbers before DO are used to control the loop.
f is the initial value of the index. 5 is the limit.,
and 5 will be saved in the return stack upon execution
of DO. The word I will copy the index on the data
stack, and the word prints it. When execution comes
to LOOP, the current value of the index increments and
compares it with the limit. If it exceeds or eguals to
the limit, the loop stops, the limit and the index on
the return stack will be removed, and execution
continues with the words after LOOP. If the index does
not exceed the limit, execution will jump to the word
DO and. executesthe words between DO and LOOP again,

Input TEST1
Dispilay TESTL @ 1 2 3 4 OKa

The loop stops immediately when the limit equals 5.
Try the following word:
: TEST2 1@ ¢ DO I . 3 +LOCP ;
When using the word +LOOP, if the INCR 1is not a

negative number (in this definition, the INCR is 3),
the index should be smaller than the limit.

Input resT2 (=
Display TEST2 B 3 6 9 OKa

When the index equals 9, another increment at the +LOOP
will make the amount 12, which exceeds the limit and
ends the loop.

Define the following word:

: TEST3 -4 §¢ DO I . -1 +LOOP ;

1f the INCR is negative, the index should be larger
than the limit,.

Input TEST3
Display TEST3 @ -1 -2 -3 OKa

The loop stops when the index is smaller than or eguals

~54-

the lirnit.

rhe return stack saves the limit and the index’' between
the words DO-LOOP., They will be removed automatical]y
upon completion of the loop. The system will lose
control 1f there are operations affecting the return
stack during execution of the DO-LOOP. The words R@E,
>R, and R> may access the return stack for data
reguired. Be careful when you use these words. R>
Shéuld follow >R, so that the contents of the return

stack will not change.

The following are two lmportant rules to remember when
you use DO-LOOP.

1)p0 should be followed by LOOP or +LOOP in a
definition.

2) The words between DO and LOOP can not change the
contents of the stack, that is , the stacks should
remain intact against the execution. There might be
exceptions in specific occasions, but they should be
avoided if there are other ways.

5.3.2 Indefinite Loop .

The indefinite loop has also two types: one is
BEGIN...UNTIL, another is BEGIN...WHILE...REPEAT.

1) BEGIN words ceondition UNTIL

Execute the words continuously until condition produces
a true flag on the stack.

2) BEGIN wordsl condition WHILE words2 REPEAT
Execute wordsl at least once, then if the condition is
true, execute words2 and jump back to execute wordsl at
REPEAT. If the condition is false, the loop ends and
jumps to the words after REPEAT.
Try to define the following words:

: TEST4 BEGIN KEY DUP EMIT 65 = UNTIL ;
KEY reads the ASCII code of a character from the

keyboard, and EMIT prints the character..The loop ends
when the character is A (ASCII code of A is 65).

~55-

pEsta =] BKCFA

TEST4 BKCFA OK

Input
Display

5.3.3 Infinite Loop

BEGIN...UNTIL may be used to set up an infinite loop.
Consider the following structure:
: BEGIN woewrmawa B UNTIL

The flag (8) that UNTIL examines is always false,

therefore, the loop will never come to an end. We have
an infinite loop structure unique to FORTH-MPF-IP.

s BEGIN AGAIN i

H s = e s 8

The words between BECIN and AGAIN will be executed over
and over again.

The infinite loop is usually used in a complete set of
operating system as a maip program. The input device
reads the data first. The system then processes it, and
outputs the data. Finally, execution starts from the

beginning anew.

L

As described in the section of the indefinite loop, th
stack must not be changed, or the system will run out
of order.

In the following list, you will find the words used to
set up the loop and control the return stack.

Words Stack Manipulation and Action

IF XXX IR = (E =)

ELSE YYY | 1f f does not equal @, execute

THEN ZZZ XXX, otherwise execute YYY and then
z7Z%Z. ELSE YYY may not be used.

DO XXX DG ¢ (nl n2 -)

LOOP LOCP : (-)

Set up a loop structure. The index is
incremented from n2 to nl-1.

DO XXX Do : (nl n2 - }

+LO0OP +LO0OP : (n3 -)
As DO...LOOP, n3 is the INCR of the
index.

o

LEAVE (=1
Set the limit equal to index.
The loop ends at the next LOOP or
+LOOP encountered.

BEGIN XXX UNTIL : (£ -)

UNTIL Set up an indefinite loop. If the
flag is @, start the loop all over
agalin at UNTIL.

BEGIN XXX WHILE : (f -)

WHILE YYY Set up an 1indefinite 1loop, If the

REPEAT flag is @ when executing WHILE,
jump to the words after REPEAT and
end the 1loop, otherwise execute
Y¥¥

BEGIN XXX Set up an infinite loop.

AGAIN

END Same as UNTIL.

ENDIF Same as THEN.

>R “(n -)

Remove the topmost value on the
stack, and save it on the return
stack.

RS- { -)

Remove the wvalue from the return
stack, and save it to the data stack.

R@ { - n)

Copy the topmost value on the return
stack to the data stack.

1 (= n)

As R@, used in DO-LOOP and put the
index on the data stack.

3 U= m

Used in DO-LOOP, and copy the index
of the outside loop to the data
stack.

=57-

Printing Strings |
and Numbers

A string is a set of characters and symbols, saved in
memory as ASCII codes. The string is the only way that
the computer input/output the message to communicate
with the operators, words and data are input as
strings. The computer interprets them as instruction
codes. It also transcribes the data into- strings when
outputting the results.

Users are reguested to control the printing formats and
locations for the numbers. 1In FORTH, we may use the
string combination to control the conversion of numbers
and printing format.

6.1 Strings Manipulating Words

The following table lists some basic string commands,
They are used to set or move the string data.

Words Stack Manipulation and Action

CMOVE (al a2 n -)
Move n bytes from address al to address a2.

FILL {a n b =)
Fill memory beginning at address a with a
sequence n copies of b,

ERASE (a n -)
Erase n bytes starting from address a.

BLANKS (a n =)
Fill an area of memory beginning at address
a with n blanks (ASCII code = 32).

DUMP (a n =)
Print n bytes starting from address a.

—_—

The following example shows the result obtained by
using DUMP,

HEX OK

3668 2§ DUMP
366 FC 25 AC 2A
3gp4 8F 24 60 2A
3gg8 3E 29 91 23
3ggc C7 AC 49 54
3619 45 52 41 CC
3§14 EE 2F 87 25
3g18 22 27 D 25
3g1C DA 20 8 O

OK

We wusually use a string buffer to handle strings. The
word PAD can get the address of the string buffer.

: PAD HERE. 68 + ;

"PAD is a memory range in the dictionary. It moves as
the dictionary changes. The data in PAD should be used
before defining a new word, otherwise we can not be
sure if the original data still exists.

6.2 Single Character Iinput/Output

KEY is a basic input command in FORTH. When KEY is
executed, the system will wait for you to input a
character, and then push its ASCII code on the stack.
you may use the ASCII code when necessary later.

j[n_put KEY
Display KEY

The cursor is displayed on the screen while you can not
find OK. This 1is Dbecause the word KEY 1is not yet
finished. The. system waits for you to input a

character.

Input A
Display KEY OKa

The character A is not displayed, but the ASCII code
for the character A is placed on the stack.

Input - E‘]

Display . 65 OKa

The word EMIT remo
prints its corresponding character.

-62-

Input
pisplay

1T (==

EMIT A OKa

6.3 String Input/Output

The word TYPE may output a wheole string. It needs two
parameters: one is the address of the string in memory
bkt r

the other is the string length (number of characters).

Example:

PAD 16 TYPE

prints 16 characters stored in the PAD buffer.

The following table contains words for string output

ves the ASCII code from the stack and

Words

Stack Manipulation and Action

5 (Ixxx“

(-
Print the string XXX, the last " is
used as a delimiter.

TYPE

(a n -)
Print the n bytes starting from
address a.

-TRAILING

{a nl - a n2)

Remove trailing blanks in the
string of nl character starting from
address a. Reduce nl to n2 for printing
by using TYPE,

MESSAGE

(h: =)

Print the characters on the nth line
in the 4th block. n may be negative or
larger than 15, so as to ‘print
characters out of the 4th block. 1If
WARNING contains ¢, this command only
prints n. If WARNING contains 1,
prints «characters stored in the disk.

PAD

(- a)

Pusn the starting address of string
buffer a on the stack. The string
buffer moves with top of the dictionary
Input and output strings are saved iﬂ
the string buffer for future use.

TcounT (a —a+ 1 n)
place the string length n stored in

the address a on the stack, and add
one to a. The results may be used by
word TYPE for printing.

EMIT e =)
gsend a character to terminal whose
ASCII code 1is on the stack to

terminal,

CR (-)
position the cursor to the beginningj

of the next line.

The basic word for inputting a string is EXPECT. It is
used in the form below:

addr n EXPECT

As this word is executed, FORTH will wait for the user
to input n characters and save the string in memory
starting from addr. We may use the word to store the
input string anywhere we want in the memory.

Input HEX

Display HEX OKa
Input F4608 2 EXPECT

Display F4G® 2 EXPECT

Same as KEY, OK does not display on the screen. This
indicates the execution of EXPECT is not finished yet.

Input A

pisplay F4¢@ 2 EXPECT A
Input B

pisplay F49@d 2 EXPECT ABOKa

We can use DUMP to examine the content in the memory.
FAG® 4 DUMP

F4G8 41 42 6 @
OK

—-64-

The FORTH has a special memory range for saving input
characters for text interpreter.It is called a terminal
input buffer (TIB). The starting address 1s saved in
the system variable TIB. The word that inputs string by
using the buffer is QUERY.

: QUERY TIB @ 88 EXPECT @ >IN ! ;

QUERY receives 8@ characters or all the characters
coming before CR, and input them to TIB. It sets the
character pointer >IN to @ for interpreting. The
following table contains some basic words for input in
the system.

Twords Stack Manipulation and Action
KEY (- <)
Read the data and push its ASCII code to
the stack.
?TERMINAL (- £)

1 is put on the stack if a key is
pressed; B is put on the stack if no key
is pressed.

EXPECT {(an =)
;npgt n characters from keyboard and save
it in the memory starting from address a.

OQUERY -1
Read a line of characters (86 at most),
and save it in the TIB.

6.4 Printing Format for Numbers

The fundamental word for printing numbers is D.R.
Earlier in this book, we have introduced some words
such as D.R, D., U., .R, ., and ?. However, these words
can print numbers in the form of integer, they can not
insert special symbols such as decimal point or comma.

Sometimes we have to insert a specific symbel, such as,
the dash (-),the dollar sign (8), the slash (/y, and
the colon (:). : '

FORTH provides words for printing numbers as
illustrated in the following table.
Words Stack Manipulation and Action
< |<E
Begin conversion of a value to a numeric
string.
¥ {udl - ud2)
Evaluate the number following udl, the
result ud2 is placed on the stack. The
pumber is added to the output numeric
string.
#S . (ud - @ @)

Convert all the ud until the remainder is
a zero. The number evaluated is added to

the output string.

HOLD (c =)
add the character ¢ to the output string.

SIGH (n -
1f n<e, add a minus sign to the

output string.

> {(d ——— an)

prop the double number d. Place the
address of output number string a and
number of characters n on the stack.

FORTH converts the saved values to the number string
according to the following procedure.

1) The numbers are converted in the order- from the
right te the left.

2) The value for conversion on the stack must be a
double number.

Consult the following table which describes a numper of
ways to arrange data in prlntable format.

-66=

Tvalue Steps to take before <#

to print

16 bit Add @ to make a 32-bit double number.
numnber

15 bit DUP ABS @

single Save the signs (plus or minus) on the
number 3rd position of the stack to be used

later by SIGN.

32 bit None.

double

number

31 bit SWAP OVER DABRS

double Save the signs.

number

Define the following word:

& 5D. SWAP OVER DABS <% # 46 HOLD
#5 36 HOLD SIGN #>
TYPE SPACE ;

4t

Save a 31 bit double number on the stack before using

$D.. SWAP OVER DABS convert the value on the stack to a
double number, and reserve the sign. <# sets a buffer
toisive the bytes converted from the number you want to
print.

wuses the current base to convert a digit to a
character, and saves it in the buffer. The digit will
be removed from the original number., For example,
suppose 789 is in the stack. After executing #, the
characteér 9 will be put in the buffer, and 78 is still
on the stack. ’

46 HOLD inserts a decimal point in the buffer (46 is
the ASCII code for . (dot)).

#s con?erts the numbers remained on the.stack to the
bytes in the buffer and remains a double number # on
the stack.

36 HOLD adds a "$" (dollar sign) in the buffer (36 is

the ASCII code for "$").

1f the 3rd value on the stack is negative, the word
SIGN puts the character "-" (minus) in the buffer and
removes the sign of the value.

#> ends the conversion, The double number @ is removed,
but the start address in the buffer and the '"length
after conversion remain on stack.

TYPE wuses the address and length left by #> to output
the result of conversion in the buffer.

Try the following examples:

Input 3456. $D.
Display 3456. SD. $34.56 OKa
Input _ =-123. -$D.
pisplay -123. $D. -$1.23 OFKa

-68=

7.1 Editing a Program

under the interpreter, we can key in a program to
define new words. However, the completed definition can
not be called back for modification, Editing words
allow us to save the program's contents in a magnetic
tape for later compiling and modification.

We discussed the pseudo disk memory in Chapter 4. The
program's contents is saved in the pseudo digk memory
as blocks. Each block contains 512 characters in 16
lines with 32 characters in each line. We allocate 28K
bytes in system as pseudo disk memory, which is divided
into 56 blocks. Its serial number is from @ to 55.

Before editing a program, vyou have to know the RAM
range in the system, The initial value for pseudo disk
memory starts from $806@. You can set the value of
OFFSET and UFIRST tc assure that the program is edited
in the effective RAM range.

You have to call EDITOR before editing. EDITOR is a
vocabulary word. It sets the context vocabulary as
editing vocabulary, so that we may use. the editing
words in the system.

If an I/0 M board is installed teo the system. 1Its RAM
range is from $CGGP to SDTJFF. Use the word LIST to
select a pseudo disk memory for editing.

Input 32 List[=T]

Now, the 32nd block is selected for editing (starting
from the address $C@OQ), and prints the characters on
32nd block on the screen. (It will print the data on
the printer,if there is any). 32 is saved in the system
variable SCR, that is, it is set as the current block.
All editing words change the data oenly in this block.

The word L fetches the serial number of the block from
SCR and uses the word LIST to print it. Key in the word
L to display the characters in the current block.

7.2 Line Editing Words

The editing words input strings to the current block or
modify its characters, Most words are used to handle
strings. Editing words wusually save strings in a
special string buffer. You obtain the starting address
of the buffer from the word PAD.

The characters saved in PAD can be used repeatedly so
that you deo not have to key in each time you use them.
pAD saves temporarily the strings for input, insertion,
deletion, and search,

The editing cursor is used to point out the current
editing byte symbolized with ~ on the screen, and 4 on

the printer, Its value is from ¢ to 511, saved in’

system variable R#, which records the line number and
character number under editing. Many editing words use
the cursor for subseguent editing.

We call words T, P, U, X line editing words, which are
used to manage an entire line of data (32 bytes).

The word to set the nth line as the current line is :

n T

n is from @ to 15, which indicates the 1line number
currently under editing and prints the line. At the
same time, the entire line of characters are saved in
pPAD. Editing cursor (value in R#) is also placed before
the first character of the nth line.

The word T is usually used to move the cursor to a
specific location for subseqguent editing.

The word to input a line of characters on a specific
line is:

P XXXX

(XXXX represents a string, with a length of up to 32
bytes). The string XXXX is input in the line that the
cursor is located and replace (overwrites) the
original characters. XXXX is also saved in PAD buffer.
If you input the carriage return ([=7]) immediately
after P, the characters in PAD are moved without
changes to the line currently under editing. If you

-72=

insert two spaces between P and , characters in
paD and the current line will all be cleared to spaces.

as the word P 1s an independent command, i1t has to be
delimited from the strings with a space, while the
second space will be regarded as part of the string.
The word P has the following three usages:

1) P XXXX

23 B Move characters in PAD to the
(No space in current line.
between)

Put XX¥¥ in the current line,

3y P Clear PAD and current line.
(Two or more
spaces in between)

The Word U 1is used to input a line of characters
immediately wunder the «current 1line, and push the
subseguent lines down one line.

U XXXX
Characters on the 15th line will be erased.

The word U has also three usages:
1) U XXXX Input XXXX immediately under the
current line. Lines move the
subseguent down one line and
clear the 15th line.

2) u Move string in PAD immediately
under the current line. Move the
subsequent lines down one line,

3) U Clear PAD and the current line,
Move the subsequent lines down
one line.

To delete the current line, type

x ==
?he word X deletes the current 1line. The subsequent
lnes ‘'scroll" up one line. The last (15th) line is

filled with spaces. The characters on the deleted line
are saved in PAD buffer.

i

\ i
\\/
I
. |
|
_ P XXX o) ‘ ’.
Place the string XXX o
= = z n th 1l
2.3 Editing a String line. € ‘current
string editing words include F, D, TILL, I. TO modify a U XXX (=) }‘
small section in a line, they can effectively search, Insert XXXX under the current lin |
add, or delete a section of characters or strings. Move the subsequent lines d o i
Tiie, own one It
F XXXX — il
. L) I
The word F searches for the string XXXX starting from Delete the current line. Move th §
the cursor's current position. If it finds the target, subsequent lines up one .lin@ The :‘
it prints the entire line containing the string, and deleted characters are Sav'd he
woves the cursor positioned after the string. If it PAD. ed 1n |
does not, it prints an erxror message, and moves the . |
cursor to the beginning of the block. F XXXX (=) Il
: Search for the strin
§ 30 g XXX from -
LA . cursor position. The cursor trll: i
- | placed after the target string if |
The word D searches for the string XXxx from the the string is not found, the . A
characters after the cursor and deletes it. The cursor - Hovas to Bha begiﬂning’of thcuigor i
is placed after the deleted string. 1f the target . S smihe |
string is not in the block, it prints an error message, Il
and moves the cursor to the beginning of the block. D XXXX =9
Delete * the string XXX found il

somawhere after the cursor position.

TILL XXXX

The word TILL deletes data in the range from the cursor . T XxEs L=
The word TILL deletes da Place the string XXXX after the
CUursor.
I XXXX d
) TILL XXX {(-)
Delete characters in the range from

T inserts the string XXXX after the current

The word
pesition of the cursor, and moves the cursor positioned the CUrsor and the o beaes
after the string. (inclusive). kL
The following table lists editing words in the FORTH- COPY - (nl n2 -)
MPF-IP. Copy data in block nl to n2.
Words Stack Manipulation and Action [CLEAR (n -)
. Clear the nth block.
T (n -)]
print the nth line and move the ToP (=) |
cursor to the beginning of the] Move the cursor to the inni !
line. ’ of line 4. beginning) 41

-74- ' 75 |

(-
rReprint the current block.

Tn -)
print the nth block and set it as
current block.
INDEX {nl n2 - }
each

print characters on line ¢ of
block starting from block nl
through block n2.

CONTROL I|{(n -)
Move the cursor n bytes.

is the TAB key.

CONTROL

I

a cold start on the FORTH-MPF-IP
from SB8EUH through SEFFF to
to edit data line By

Execution of
clear the memory
(ASCII NULL). You have
starting from 1line @.
encounters an ASCII NULL, and no compiling
executed after a null line is encountered.

If the block you are editing is not cleared (e.d.
“the editing block outside of $8¢9G - SEFFF by the
‘of OFFSET or UFIRST),

word ;S or EXIT to stop editing.

same effect that ASCII NULL does.

:$ and EXIT have

After editing,

is as follows:

Suppose you want to save the data in block 1 through

block 5 to the tape with a filename of TEST.

Input 1 5 TWRITE

Display < NAME >=a

Input TEST

Display < NAME >=TESTa

set the recorder ready and press the RECORD key, and

finally press , the MPF-IP sends out a sound and
begins to transmit the data to the tape until the

screen displays:

ST B

FORTH stops compiling when
will

will

ZEeros
line
it
be

move
use

the last line should include the
the

you may use the word TWRITE to save the
data in pseudo disk to the magnetic tape. The procedure

% NAME >=TEST QK
which indicates the end of transmission.

Tpe word TRFAD reads the data on the tape to the pseudo
disk. Remember that the value of OFFSET and UFIRST must

pe the same as before to aveoid loading the data to
incorrect locations,

Input TREAD [=]

Display < NAME >=a

Input TEST

Display < NAME >=TESTa

Input

Display S

which means the system is waiting for input of data
Please refer to MPF-IP operation manual on saving to

and reading from

stored data.

the tape, and the format for the

7.4 Compiling FORTH Words

If the program is written in th

y e memory block of the
pseudo d?skf be sure to compile the words in the block
to the dictionary before you perform the test.

Suppose ou wan i 3 i i
Sivgs Y ant to compile the words in the first
Input 1 LOAD

Words in the first block will be executed in sequence

Any newly defined words i
Yy will be added
dictionary after compilation. : © e kae
Very few application i
programs can be written and fit in

gne memory blockf FORTH-MPF-IP has a word =+ , which
b?rrles the compilation ahead into the next consecutive

ock until it meets ;5, EXIT, or ASCII NULL.

Printing the origi
ginal program on the print
. : : er helps the
aigr texamlne its contexts to facilitate modifigation
blocklzsg tdurlnghcompllation. The word LIST prints a
ata on e printer in an area of i i
32 characters on each line. to dines with

=79=

The

For example:

each block £

g is usually used as a r

the block.

3 LIST

word nl n2 INDEX prints the characte

rom blocks nl through n2
emark to exp

-78-

~

rs in line § of
4 Therefore, line
lain the content of

8.1 Low Level Words in FORTH

FORTH allows the user to define new words in high level
as well as low level languages. It provides a primitive
assembler: words , and C,. They can move a 16-bit
number or an 8-bit number or the stack to the upper
part of the dictionary. These two words enable us to
establish every low-level word. .

Low level words in FORTH start with CODE and end with
END-CODE. Below are- their definitions:

! CODE ?EXEC CREATE ICSP ;

: END-CODE CURRENT @ CONTEXT ! 2EXEC 2CSP
SMUDGE ;

. The last word in a low-level word must jump to the word
| NEXT so0 as to execute the next word. Take a 1loeok on
this word:

- HEX
: NEXT @C3 ¢, 278 , ;

BC3 is a JP instruction code of %-8¢ CPU. (refer to %-
83 Assembly Language Programming Manual) 2078 is an
entry address of FORTH-MPF-IP inner interpreter (NEXT).

The word NEXT puts the instruction JP 2078 on the
dictionary.

' MPF-IP-FORTH provides the preceding three words, and
! You may use them as you start the system.

In the following example, we will define a wvariable
COUNTS and a low-level word COUNT-DOWN. COUNT-DOWN
decrements COUNTS by one consecutively until -~ COUNTS
becomes ¢g. The word can be used as a delay subroutine.

Encloseq in the parentheses are the Assembly
| @guivalents of the FORTH definition. For details,
Please consult Z-8¢ Assembly Language Programming
Manual.

RIX, RIY, RAF'r RBC', RDE', and RHL'. The word CALL can

use these variables to transmit parameters'and results

ggtezec?t;on. Cg and C! are used to fetch and store 8-
i egisters. @ and ! are used to fetch

bit register pairs. whpES hars b

HEX
VARIABLE COUNTS

CODE COUNT-DOWN

»a C, COUNTS (LD HL,(COUNTS)) rhe system first fetchs numbers from RAF, RBC, RDE
e £ gHL, RIX, RIY and stores numbers in regi;ters RF Bé’
55 1, (D) pE, HL, IX, IY, before the word CALL is executéd té
enter machine language subroutine., 1In other words if
W G (LD AH) the zalled sub-routine needs some parameters saveé in
registers, the user can save the param i
1 : . et
G @, (OR L) register wvariable first, and then gxechteergAL§n ;Ez
system saves the values in registers AF, BC Dé. HL
20 ©, FB C, (JR NZ,FB) 1%, 1Y to the variables RATF, RRBC, RDE, RH£ RI% RI§
r r

before the sub-routine returns to the FORTH, so as to

NEXT END-CODE transmit the results of execution

set the value of COUNTS first, and then execute COUNT- The monitor program has a sound generation subrouti
DOWN. I1ts address is $874. Two paramet ; Sl
. £ neter :
: subroutine, s are related to this
Input 7rrr counts ! (==
Display 7FFF COUNTS ! OKa i 1) Register C sarbol, 5 BiI+1%%E clock etakes
Input COUNT-DOWN 2) Register HL - , _
The FIP will black out for a few seconds execiziogf periogs times of
and then
The larger the value in C i
: . 1s the
Display COUNT-DOWN OKa 1t has; the smaller value, éhe higiggegrggﬁeiéiquegg
A arger the wvalue in Regist i 5
The user should find out all machine codes before using sound continues. 4 er HL is, the longer the
, and C,, and compile them one by one into thgf
dictionary. The procedure to find all machine codes by HEX

the Assembler is as follows:
; y ! : TONEl 166¢ RHL ! 3y
1) Execute the word MON to enter into the MPF-IF 7F 874 CALL

monitor program. A
2) Execute the Assembler under the monitor program and

write down the machine codes (refer to MPF-

: TONEZ 808 RHL | 1@ 874 CALL

. o different .
executing TONEl and TONEZ. of sound when

Operation Manual) . \
3) Input CTRL-C to execute a warm start, and®use , an@
c, to compile the machine codes into th?

dictionary.

FORTH-MPF-1P supports a word CALL, which allows
user to call machine language subroutines in high leve
words, and system variables to save registers, such &
RA, RB, RC, RD, RE, RF, RH, RL, RAF, RBC, RDE, RHL/

-0 2=

I\/ :

8.2 Low Level Interrupt Handler

The following words are provided in FORTH-MPF-IP to
nandle interrupt signals.

viords Stack Manipulation and Action

EI (=
Enable interrupt

DI (), =)
Disable interrupt

My (=t)
Set interrupt mode 8

M1 ¢ =13
Set interrupt mode 1

M2 (-
Set interrupt mode 2

INTVECT (- addr))
System variable, which saves
interpretive interrupt vector.

INTFLAG | (= addr)
System variable, which saves
interpretive interrupt flag,

;INT Tnds an lnterpretive lnterrupt word.

vor interrupt handling in low-level words, we can use
B1, DI to control IFF (internal interrupt flip-flop in
7-8¢), and use IM@, IM1l, IM2 to select interrupt mode.
The other steps are the same as the Assembly. Please
refer to Z-8¢ CPU manual.

MPF-IP sets a vector address, which can save the entry
address of the interrupt handling subroutine to handle
interrupt mode 1.

Examples:

DI (Disable interrupt)

Iﬁl {Set interrupt mode 1)

-84~

HEX HERE (Reserve entry address of
the program)

E5 C, (Push HL)

21 C, INTFLAG ., (LD HL, INTFLAG)

FECB , (Set 7, (HL))

EI C, (Pop HL)

4DED ., (RETI)

FF@ElL ! (Save entry address of the

program into vector address)

EI (Enable interrupt)

8.3 Interpretive Interrupt Handling
Process

The so-called interpretive interrupt handling is the
definition of the interrupt handling process in high
level words. FORTH-MPF-IP has set two system variables
INTVECT and INTFLAG. Every word must return to the
inner interpreter after execution and proceed to the
next word. The inner interpreter examines the INTFLAG
to handle interrupt signal properly.The INTFLAG uses 2
bits in one byte. 1Its format and significance are as
follows:

L PR

I—— bit 6 : 1 -— inhibited interpretive interrupt
g -- not inhibited interpretive
interrupt
bit 7 : 1 -- interpretive interrupt request
§ -- interpretive interrupt not
request

When the inner interpreter examines INTFLAG and handles
interrupt signal, it fetches CFa (code field address)
in INTVECT and begins to execute the interrupt handling
Program.

The internretive interrupt handling takes the following

steps:
1} Set interrupt mode 1;

2) Save CFA of the interrupt handling word in INTVECT;
3) 8et INTFLAG bit 7 to 1 when producing interrupt

signal develops.

Be surc the interrupt handling word in (2) snould end
with ;INT. Step in (3) should be executed in low-level

words.

suppose we have saved the previous examples in the
dictionary. The following example explains the usage of
interpretive interrupt handling.

DI (Disable interrupt)

: INHANDLER ." INTERRUPT HANDLER" ;INT
(The word INT ends _the
definition of interrupt

handling words).

' [NHANDLER CFA INTVECT !
(save CFA of the interruption

handling word in the
INTVECT) .

EI (Enable interrupt).

X TEST DBEGIN A X" 2TERMINAL UNTIL ;
(Define a test word) .

when executing TEST, Yyou will see X's displayed on the
screen continuously. Wnen interrupt signal develops;,
the machine outputs INTERRUPT HANDLER and then goes 0D
to output X continuously until you press any kevy.

-86-

Application
Programs

9.1 Using P@ and P!

The words PE and P! in FORTH-MPF-IP are similar to IN
and OUT in Assambly language., Connect the I1/0 M board
to the machine if you want to use them, you will find
these two words make 1t ecasy to control the I1/0 ports.

please refer to JOM-MPF-IP Operation Manual on how to
connect the IOM-MPF-IP to the MPF-IP. There is a PIO on
I10M-MPF-IP, the addresses are from 68H to 601. Connocot
sockets TR1, TR2Z, TR3 of J3 to the sockets PAZ, EAL,
pr2 of J6 respectively. Type

HEX
gy 6a P! (set FIO port A as output)

and vou will see the red, vyellow, and green lights on
IOM-MPF-IFP are on. PA2 (red), PAl (yellow), PaAB
{yreen}) of port A controls the thres LEDs. o ~he
output is 1, the LED turns off. If it is ¢, tho LIG
turns on.

Input FE 68 P! the green light on
Input FD 68 P! the yellow light on
Input FE 68 P! all lights off

Input FA 68 P! the red and the greon

lights on

The following table shows the stack manipulatinns for
P8 and Pp!. '

Words Stack Manipulation and Actiaon

= {addr--n) :
' Input data n from I/0 port addr.

Pl (n addr--=)
Qutput data n to I/0 port addr.

-=89-—

9.2 Developing Application Programs

This section discusses the process for developing
application programs. Basically, we need EPB-MPE-IP. If
it is wused together with IOM-MPF-IP, we can write
programs on EPB-MPF-IP and produce EPROM and then move
the EPROM to the socket with the same address on I10M-
MPF-1P. Refer to the EPB-MPF-IP operation manual to
conhect the EPB-MPF=IP to the MPF-IP. The addresses
where the application programs is to be located must
have a RAM available. Suppose the starting address for
application program is S$D88@, the general process is as
follows:

1} Be sure the addresses for application program have a
RAM available and does not intermix with other units.

2) Turn on the machine, and enter into FORTH-MPF-IP
{CTRL-B) .

3} Delete the word TASK.

FORGET TASK

4) Move the system variable DP (dictionary pointer) to
the location seven bytes above the starting address of
the application program. The added 7 bytes will be used
to store machine codes later.

HEX
Dgge 7 + DPp !

1f the starting address is different from the example
above, you need only change D88%.

5) Compile the application program to the dictionary,
and use the word VLIST to verify.

6) Move the DP to its original address and restore the
word TASK.

Fgoe DP !
t TASK ;

7) Input the machine codes (boot program for the

application program) to the 7 bytes above the starting
address of the application program.

-9f-

21 D8gdg Cl (. HL, LAST)
FEE5 & D3l !

22 Dpga3 C! (LD (FE85), HL)
rags Dao4 !
C% D86 C! {RET)

8) Save the application program onto the recorder.

9) Use EPB-MPF-IP ko input the application nrogram to
the EPROM. N s

1¢) Turn off the machine. Replace the RAM of the same
address. with the FBPROM.

11) Turn on the machine and enter into the [=MPF -
IP (CTRL-B) .. 4 ORTH-MPE

12) ©Exrecute the ©oot program of the application
program. i

HEX DB&Y CALL DECIMAL

13) Use_thg word VLIST to examine if the application
program 1s in the dictionary. i

In step 5}, be sure to compile the application program

with%n Fhe range of the RAM. All variables in the
application program must be user variables.

-91-

Example:

*****?‘113F—T—PTJUS*****
= oh

#x kX PORTI-MPF-IP***¥*
FORGET TASK OK

IHEX OK

pEgy 7 + DB ! OKX

: PESTL 5 % . ; OK
: TESTZ 5 + . ; OK
VLIST

ng2s5 TEST 2

p8ll TEST

et

JAF4 MOM

3AES EI

oK

FO6GY DP ! OR
TASK ; OK

VILIST

PHGY TASK

0825 TESTZ
D81l TESTL
JAF4 MON

ARG BEI

OK

21 D3YY €t OK
FHE5 @ D3YL ! OK
22 D343 Cl! OK
rags5 pggd ! CK
79 D8YE C! OK
MO

<D>=DJG0

<
0809 21 LD HL,D31B

D833 22 L (Fa@5) ,HL

D346 C9 RET

save the application program onto the recorder ({refer

Turn on the machine.
(CTRL-B to
enter into FORTH-MPEF-1P)

Compile the application
program.

Make sure the appnlication
program has been compiled into
the dictionary

Load the boot program
of the application program

Enter into the monitor program.
Use the disassembler in the
monitor program to examine

if . the boot program is
right (be sure to connect the
printer).

to MPF-IP operation manual).

Input the application program to EPROM (refer to EPB-

MPF-IP users' manual).

Turn off the machine and replace the RaM with the

EPROM,

-92-

* k& *MPF-T-PLUS*** %
<

*%x % *FORTH-MPF=-1Pp****

VLIST
FBG9 TASK

3AF4 MON

3AE8 EI

0K

HEX D8@E CALL OK

VLIST

F#G9 TASK
D825 TEST2
D81l TESTL
3AF4 MON

3AE8 BI

3ADD DI

QK

DECIMAL OK

3 TESTL 15 OK
5 TEST2 14 OK

Turn on the machine,.

(CTRL-B to

enter into FORTH-MPF-IP)
Inspect the condition after a
cold start.

Execute the boot program of
the application program.
verify the application
program is linked to the
dictionarv.

Test the application program.

| A MPF-IP ASCII Codes

MSD @ I 2 3] 5 G 7
LSD gyl 60l @6l | 811l 1ee| 1p1| 1lel 111
B Grag space| 0 @ P T
{ 1 #9661] 1 A ¢
| 2 3516 7 2 B R
: 3 ge1l|” |7 | % 3 C S
4Giag s 4 D T
5 #5161 3 5 E 0
: 6 U110 & 3 F v
| 7 G111 I 7 G |Tw
1 8 1000 { 8 H X -
9 1901) 5 I ¥ ¥
A 1019 * J Z
B 1011 ¥ ; K
C 1100 ; < L
. D 1101| CR - = M
: E 1116 E > N)
! F 1111 7 ? 0 -

-97-

e

B WNMPF-IP FORTH Glossary

B.1 Stack Notation

The first line for each entry describes the execution
of the definition. :

(Stack parameters before execution --- Stack parameters
after execution)

In this notation, the top of the stack is to the right.
B.2 Attributes

*

The word can only be used in the colon definition.

It is an immediate word and will be executed
during compilation unless special action is taken.

User variable
In the FORTH standard definitions, e%ch word 1is
assigned a serial number in the range 186¢ through 8599,
B.3 Stack Parameter Definition
* addr, addrl,.... (#....65535)

Represent the value for one character's address.

* byte (#....255)

Represent the value of an 8-bit byte.

*

* @ (-2147483648....2147483647)
32-bit signed double number.

* flag
Boolean flag has two logical states: =zero = false,
non-zero = true.

* n (-32768....32767)
16-bit signed number.

* ud (0....4294967295)
32-bit unsigned number.

* un (#....65535)
16-bit unsigned number.

B4 Words

%, 1 n addr --- FiZ
Save n in an address; pronounced "store".

* I1CSP
Save the stack position in CSP; pronounced
"store CSP".

* udl --- ud2 158
Unsigned double number udl generates Fhe next-
output ASCII code. ud2 1is the guotient from
division of udl by BASE and reserved for further
process. Used between <# and #>. pronounced
"sharp".

* #> d --- addr n 190
Terminate numeric output conversion. It drops d

char (@....127)

Represent the value of a 7-bit ASCII ccde.

and leaves the string address and character
n required by TYPE. Pronounced "Sharp-greater".

-1l06-

count

*

*

*

#5 ud --- @ @ 2089

Converse all digits of an unsigned double
add it to the numeric output string

used between <# and #>. Pronounced "Sharp-s".
! ~-- addr

Used in the form:

! <namep

Leave
accepted from the input string when
compilation, the address is
the wvalue will be placed on the stack in later
execution. An error will occur if the word can not
be found in CONTEXT and FORTH vocabularies. 1In a
coclon definition, ' <name> is identical to (*
<name> *) LITERAL. Pronounced "tick".

regarded as a literal;

(I,112
Use in the form:
{ cccc)

Accept and ignore the input string until the next
right parenthesis. As usual, left parenthesis
must be followed by a blank. It can be wused in
either execution or compilation. An error message
is displayed if the input string terminates before
the right parenthesis. Left parenthesis is
pronounced "paren"; right parenthesis is proncunced
"close-paren®.

{* Iy 125
Terminate compilation mode, and execute .input
string context. Pronounced "left-bracket". Refer
{ oo TH Y

(+LOOP) n——= c

A run-time procedure, compiled by +LOOP.

-161-~

number ,
until the
remainder equals @. If the number is originally @,
a # will add to the output string. The word is only

the parameter field address of the next word
executing. 1In

*

*

(="}
A run-time procedure, compiled by .

(; CODE)

A run-time procedure, complled by ;CODE.

(DO)

A run-rime procedure, compiled by DO; it moves
loop control parameters to the return stack.

(ABORT)
Execute when error occurs and the WARNING is -1,
Usually, the word executes ABORT. The user may
change it by a procedure. Refer to ABORT.

(FIND)
addrl addr2 --- addr3 byte flag (found)
addrl addr2 --- flag (not found)

Search the text at addrl in the dictionary from

name field address addr2, If a match 1is found,
return the parameter field address addr3, name
field byte length and a Boolean true. If not

found, leaves a Boolean false.

(LINE)
nl n2 --- addr n3
Convert 1line number nl and block number n2 to
pseudo disk buffer address. n3 must egual 32

indicating length of the entire line.

{LOOP) c

A run-time procedure, compiled by LOOP.

* nl n2 --— n3 138

Leave the product of nl times n2; pronounced

“"times".

-192-

* k)
126

Set i dcgmpilation mode. The input string text is

executed immediately. Pronounced "ri - ;

sheem & right-bracket".
* */ nl n2 n3 --- n4 200

Multiply nl by n2 and divide the result by n3

Leave _guotient n4. n4 is the rounded number. Ité
precision 1is higher than that of nl n2 * n3 / The
product of nl times n2 is an intermediate é2—bit
number. Pronocunced "times-divide",.

* *¥/MOD nl n2 n3 --- n4 nS 192

Multiply nl by n2 and divide the result by n3

Leave remainder n4 and quotient n5

[: . . Ag * th

;nterﬁﬁdlate result is a 32-bit number. Thé' sigi

or e remainder is the same as o]

"times-divide-mod". S ST
* 4 nl n2 --- n3 121

Plus nl by n2 and leave the sum .

Pronounced "plus". Ll R
¥ it n addr ---

- 157

Add n to -bi 3

i l6-bit number at addr. Pronounced "plus-
i nl n2 --- n3

Assign the sign of n2 to nl to
Pronounced "plus-minus".

produce n3.

* +BUF

Execute nothing. Pronounced "plus-buf",

-143-

* +LOOP n —-—-— I,C,141

add loop index to the signed n, and compare the
result with the limit. Return to DO to execute
until the new index is equal to or larger than
the 1limit (n>@), or until the new index is equal
to or smaller than the limit (n<®). When existing
loop, drop loop control parameter and continue to
execute. Index and 1limit are singed numbers in
the range -32,768 through 32,767. Pronounced
"plus-loop". (As conventionally, a negative upper
limit is not used.)

x 1 n ——— 143

Reserve 2 bytes in the dictionary and save n.
Pronounced "“comma".

* . nl n2 --- n3 134

subtract n2 from nl and leave the difference n3.
pPronounced "minus".

x® __> I
Pronounced

Continue to interpret next screen.
"next screen".

* _FIND

—-- pfa b tf (found)
s B f (not found)

Accept a next text word transferred to HERE from
the input stream. Search the same input character
in CURRENT from CONTEXT. 1If found, pfa, length b
and true flag are left on the stack; otherwise, a
false flag is left,

x* —-TRAILING 148
addr nl --- addr n2
Adjust the character count of a text (starting f;om
addr), and remove the trailing blanks, that is,
blanks from addr + n2 to addr + nl - 1. If nl 18

negative, an error message is displayed. Pronounced
"dash-trailing".

-104-

.

x LC

*.L

*.R

* .S

*

n —-—- 1:93

Display n converted from BASE as a single
number, followed by a blank. Print a minus sign
if it is a negative number. Pronounced "dot".

1,133

Interpreted or wused in a colon-definition in the
form:

.Il cccc"

Accept following text from the input string,
terminated by ASCII " (double - quote). Iin
executing, move the text to a selected output
device. 1In compiling, compile it so that the later
execution may move the text to a selected output
device. At least 127 bytes are allowed for the
text. An error message is displayed if input stream
stops before the terminating " . Pronounced "dot-
guote".

PU
Print the name of CPU (289);
INE nl n2 ---

Display the text of line number nl and block number
n2.

nl n2 ---

Print number nl in a field of width n2 right
justified. No following blank is printed.

A non-destructive stack printing word used to
print current contents of the parameter stack.

nl n2 --- n3 178

Divide nl by n2 and remain quotient n3. n3 is
rounded toward zero. Pronounced "divide".

=185~

* /MOD nl n2 —--- n3 n4 198 . ol

pivide nl by n2 and leave the remainder n3 and
quotient n4. The sign for n3 is as same as nl. ‘
Pronounced "divide-mod".

A definition word, used in the form:

‘ : <name> ... ;
*¢ 123 -——n Select CONTEXT vocabulary to be identical to
CURRENT. Build a word <name> in CURRENT and set a
compile mode. We call it a colon-definition. The
compiling address of subsequent words (excluding
immediate words) is saved in the dictionary. When
<name> 1is.executed , the words in the definition
will be executed. The immediate word is executed
immediately. If a word can not be found in CONTEXT
and FORTH vocabularies, it is regarded as a literal
180 for conversion and compilation (using the current

. base). An error message is displayed if failed
again. Pronounced "colon".

These small numbers are used frequently. It is
necessary to define them as constants.

* g< n --- flag 144

If n < B, return a true flag. Pronounced "zero-
less".

* g= n -—- flag

If n = §, return a true flag. Pronounced "zero-

equals". * o e

-~

* i s Terminate a colon-definition and stop the

compilation. An error message is displayed if input
stream terminates before encountering - .
Pronounced "semi-colon". ’

If n > @, return a true flag. Pronounced "zero-
greater".

* @PBRANCH flag ——- (e * ;CODE e
Execute procedure branches conditionally. If the
flag is not true, the parameter will be added to
the interpretive pointer, and branches towards or 5 . "
backwards. Compiled by IF, UNTIL, and WHILE. ; <name> ... ;COD

Use in the form:

Stop compilation and terminate the definition of
the word <name>. It is used to define the new word
<namex> when <name> is later executed in the form:
<name>, <namex>. The executing address for <namex>
is 1included the address after ;CODE in <name>. If
executing any <namex>, these sequence of machine
code is executed. Pronocunced "semi-colon-code".

* 1+ n --- n+l 167

Add 1 to n according to + operation. Pronounced
"one-plus".

* 1- e Tk

Subtract 1 from n according, to - operation. 4

: s INT C. 1
Pronounced "one-minus". ’ '

Used in the form:
‘ ¢ <name> ; INT

‘ Stop compilation and terminate definition of an
interrupt handling word <name>.

~166~

=167~ |

iS5 I

Terminate interpretation of a screen. ;S is a run-
time word compiled after the colon definition
which returns execution to the calling procedure.

< nl n2 --- flag 139

It is true if nl < n2. Pronounced "less-than".

<# 169

Begin to convert numbers to output format. The
following word

<# # #S HOLD SIGN #>

of a double number ASCII code

points out conversion
left. Pronounced

string and save it from right to
"less-sharp".

* {COMPILE> 1,C,17

Used in colon-definition in the following form:

<COMPILE> <name>

Enforce compilation of the following words. It can
an immediate word to prevent it from being

compile
executed. Pronounced “bracket-compilation”.
* = nl n2 --- flag 173
If nl is equal to n2, it is true. pronounced
"equals".]
* > nl n2 --- flag 102

Tf nl is larger than n2, it is true. pronounced

"greater-than".

* >IN —-—— addr U,201

The variable contains
h

to

Leave a variable's address.
the current character offset of input stream in t
range @ through 1823, Pronounced "to-in". Refer

WORD (." FIND

-168-]

>R i
. C,200

Move n to return stack. In ini
A a colon definiti
>R must be accompanied with another R>. Ry, each

2 4 S
Ande 194

Display numbers at the addres i
= usin th
format as . (dot). Pronounced “qéestion?markﬁ same

?COMP

An error messa i i i i
R ge 1s displayed if not in compile

2Cs8p

An error message is dis i
: played if st i i
different from value. in ng. B oy

2DUP o
n o () . 184

Co i '
dugx_ n if n does not equal g#. Pronounced ‘'“guery-

?ERROR flag n ——-

If Boolean fla is ' :
message. 9 true, print the nth error

?EXEC

An error message i 3
is se : :
mode. g nt out if not in execution

?LOADING
An error message is sent out if not loading
?PAIRS nl n2 ~---

E;ror message #19 is sent out if nl does not equal
n2, whlgh means that some conditional control i
illegal in compiling. e

-109~

2TERMINAL ~~-flag

i flag means
ting any key on the keybogrq. A true
?is ;sgopezated. This definition is related to the

devices.
?8STACK —-—--

An error message is sent out if the data stack
exceeds the limit.

@ addr --- n 199
Leave number at the addr on the stack. Pronounced
"fetch". :

ABORT 181

Clear the data and return stagk, set execution
mode. Return control to the terminal.

ABS nl --- n2 1¢8

Leave the absolute value of a number on the stack.
pronounced "absolute".

ALLOT n --—- 154

Add n bytes of spaces to parameter field of words
most recently defined.

AND nl n2 --- n3 183

Leave the result of the logical AND of nl and n2 on
the stack.

AGAIN

Used in colon definition:

BEGIN....AGAIN

Execute words between BEGIN and AGAIN infinitely.

-118-

* B/BUF ---n

A constant, which leaves number of bytes in each
buffer on the stack. That is, the bytes count read
from mass storage by BLOCK.

* B/SCR =--- n

A constant used to leave the number of blocks in
each screen on the stack.

* BACK addr ---

In run-time procedure, count the branching offset
from HERE to addr. Move the offset to the next
effective address in the dictionary.

* BASE --- addr u,115

Leave the address of a variable on the stack, in
which the conversion base for numeric input/output
is stored. The range of the variable is 2 to 78.

* BEGIN 1,C,147

Used in colon-definition:

BEGIN AGAIN or
BEGIN...FLAG UNTIL or
BEGIN, ..FLAG WHILE...REPEAT

BEGIN indicates the start of a series of repeatedly
executed words. BEGIN ... UNTIL repeats until the
flag is true. BEGIN ... WHILE ...REPEAT repeats
until the flag is false. When loop finishes, words
after UNTIL and REPEAT are executed. The flag 1is
dropped after testing. BEGIN ... AGAIN constitutes
an infinite loop.

* BL -—= char : 176

A constant which leaves the ASCII code for "blank"
on the stack.

=111~

\

* BLANKS

* BLK

addr n —---

Fill the n consecutive memory locations starting
from addr with ASCII codes for "blank".

-—- addr U,132

Leave the address of a variable on the stack. The
address saves blocks count in the mass storage and
regarded as 1input stream. If-the‘content is @,
input stream is taken from the terminal. Pronounced

"b_l-_k" .

* BLOCK n —--- addr

Leave the address of the first byte of the nth
block on the stack.

* BRANCH cC

The run-time procedure for unconditional,brangh. An
in-line offset is added to IP (interpreter pointer)
for branching forward or backward. BRANCH is
compiled by ELSE, AGAIN, REPEAT.

* BOUNDS addr n --- addr+n addr

* BUFFER

*®

*

Convert addr and n to start and end addresses to be
used by loop.

n —--- addr

Same as BLOCK.

Ccl n addr --- 219
Save 1low order byte of n at the addr. Pronounced
"c-store".

s byte —--- .
Save the 8-bit character to the next usable

dictionary character. The dictionary pointer

increments by 1.

* /L, =—=- n

A constant which leaves the number of characters in
each line of the source text 32 on the stack.

* Cd addr --- byte 156
Leave the contents of the character at the addr on
the stack. (In 16-bit field, MSC is @) Pronounced
"e-fetch",

* CALL addr ---

Transmit control to the machine code subroutine
(The address is on the stack). The registers are
input from a reserved memory and saved,

* CFA addrl --- addr2

Convert addrl (parameter field address) to addr2
(code field address),

* CMOVE 153
addrl addr?2 n ---—

Move n bytes starting from addrl to addr2. The
contents of addrl is first moved toward high memory
address. If n is equal to or less than @, nothing
is moved. Pronounced "c-move".

* CODE 111
Used in the form:
CODE <name>... END-CODE

Build a dictionary word <name>, which is defined by
following assembly language words.

* COLD

Co%d start procedure used to adjust dictionary
pointer to the minimum standard and reinitiated by
ABORT.

-113-

* COMPILE C,146 *# CREATE 239 :

When a word containing COMPILE is executed, 16 bits Used in the form: |
after COMPILE's compilation address is copied or ‘
compiled into the dictionary, that is, COMPILE DUP CREATE <name> |

copies DUP's compilation address.
Build a word <name>. No parameter field memory is

kE CONSTANT n —m—- 185 reserved. When <name> is executed later,the address Il
of the first character of <name>'s parameter field “h

Used in the form: | will be left on the stack. i

x {4

n CONSTANT <name> ‘ * CSP ~—~ addr u |

I

3 0 ([

Build a word <name> and leave n in 1its parameter ‘ 4 user variable, saving stack pointer 1location M

field. n is 1left on the stack when <name> |is temporarily for checking compilation error.

executed later.

* CURRENT —-=— addr U,137 |
* CONTEXT ---addr U,151 il
Leave on the stack address of the variable which Lw
Leave on the staék the address of the variable points out into what vocabulary a new word EH
pointing out the vocabulary in which dictionary ! definition is to be compiled into. P
search is to be made during interpretation of input | |
stream. ‘ * D+ dl d2 --- d3 241 il
* CONVERT dl addrl --- d2 addr2 195
|

Pronounced "d-plus",
Convert text starting from addrl+l to its _ (i
corresponding stack number with regard to BASE. The * D.R gy s |
new value is added into dl and the result is left ‘

Leave the sum of dl1 and d2, d3 on the stack. Jr

as d2. addr2 is the first non-convertible byte. Display d which is converted according to BASE, in

| a n-character field, right-justified. 1If it is i
* COUNT addr --- addr+l n 159 negative, then the minus sign will be printed. I
Pronounced "d-dot-r". 1
Leave the address (addr+l) for the text starting ‘ (I
from addr, and number of characters on the stack. * DABS d1 --- d2 I
The first byte on the addr must contain the number ‘
of characters n. The range for n is § through 255. | Leave dl's absolute value d2 on the stack. The) I
range 1is @ through 2,147,483,647. Pronounced "d- il
* CR 169 ‘ abs". I|'

Cause a carriage-return and line-feed to the * DECIMAL 197 [i
current output device, Pronounced "c-r". ‘ '
Set base for numerie input/output tec 14, i

~114~ -115- It

155

*# DEFINITIONS

that later
Set CURRENT as the CONTEXT vocgbulary so t
definition will be built 1in the vocabulary
previously selected by CONTEXT.

* DEPTH -=-n 238

Leave number of 16-bit numbers on the data stack
on the stack (n is not counted in).

* DI
Disable interrupt.

* DIGIT
char nl --~- n2 true-flag {transferable)
char nl --— false-flag (non-transferable)

Use base nl, convert char into its binary
equivalent and followed by a true flag. 1f not,
leave a false flag.

* DLITERAL I
qd ——= d (executing)
d ——- (compiling)

I1f compiling, interpret a stack §ouble numbgr to
literal; later execution including the literal
will push it to the stack. I1f executing, the number

will remain on the stack.

* DNEGATE 245

&L we wdl

Leave a double number's two's complement on the
stack.

* DO nl n2 —--- 1,C,142
Used in the form:
DO...LOOP or
DO...+LOOP

Start a loop which terminates according to control
parameter. The loop index starts from n2 and
terminates at nl. The index will increment by a
signed value at LOOP or +LOOP, DO...LOOP's range is
determined by terminating words. DO...LOOP can be
nested. A standard system contains at least three
levels of nesting.

* DUEE> 1,C,168

Define the run-time action of a word built by a
high level definition word.

Used in the form:

: <name> ... CREATE,..DOES>...}
and then <name> <namex>

Point out termination of a word <name> and begin
the definition of the run-time action for words
that will be defined by <name> later. If executing
<namex>, words between DOES> and ; are executed.
The address of <namex>'s parameter field remains on
the stack. Pronounced "does",

* DP —-—- addr _ U
A user variable, the dictionary pointer, which
contains the address of the next usable memory
location in the dictionary. The value can be read
from HERE and changed by ALLOT. Pronounced "d-p".

* DPL —-—— addr
A user variable that saves number of digits to the
right of the decimal point when double number is

input.

* DROP n -—- 233

Drop the top number on the stack,

puMp addr n ---

DUP n ——— nn

Print n bytes starting from addr, 4 bytes on each
line.

Leave a copied stack top number.

EDITOR

Select editor vocabulary as context vocabulary.

ELSE . 1,C,167

Used in colon definition:

IF...ELSE,..THEN

If the IF result is true, execute the part between
IF and ELSE, otherwise that Between ELSE and THEN
is executed.

EMIT char--- 287

Transmit the character to the current output

device.

EMPTY-BUFFERS

Clear memory between FIRST and LIMIT - 1.

ENCLOSE

addrl char --- addrl nl n2 n3

Use char as a delimiter. §Scan text starting from
addrl. Three offsets are returned on the stack. nl,
the byte offset to the first non-delimit
character; n2, the offset to the first delimiter
after the text, and n3, the offset to the character
not included. The procedure regards NULL's ASCII
code as unconditional delimiting character. ENCLOSE
is the primitive for scanning text used by WORD.

* END flag ——-

Same as UNTIL.

{

EMD-CODE
Terminate a word definition. Set the CONTEXT

vocabulary as CURRENT again. This word definition
can be used if no error message is displayed.

ENDIF
Same as THEN.
EI
Enable interrupt.
ERASE addr n ——-
Clear the n bytes starting from addr.
ERROR n--- >n2 n3
Ssend out an error message to enter into FORTH

system again. Leave >IN and BLK on the stack as n2
and n3 respectively to specify the origin of error.

EXECUTE addr —--- 163

Execute a dictionary word. Its compilation address
is on the stack.

EXIT c,117

Terminate a definition's execution if compiled
in colon definition, It can not be used in
DO...LOOP.

EXPECT addr n --- - .189

Receive characters from keyboard and transmit them
to the memory range starting from addr until a
"return" or the count of n is received. If n < @ or
equals to @, no action occurred, Add one or two
nulls after the text.

FENCE ———addr u

A user variable contains an address. The content
below the address allows no FORGET., The user must
change the contents of FENCE to forget the contents
below. .

% PILL addr n byte --- 234 * HLD ~——addr |
[

Fill n bytes in the memory starting from addr with A user variable that contains the last byte's I
byte. If n < or = @, no action occurred. address of text in number cutput <conversion +
procedure.
* FIRST ---addr _ i
' * HOLD char—--- 175 I

A constant that leaves the first

(lowest) block-
: Insert char to number output stream. It can only r

pbuffer' address on the stack.
be used between <# and #>.
* FLD —--—addr : : |
* T y
. . . R ¢,136 i
A user variable that saves a field width of output _ [
format for numbers. : . Copy loop index to the data stack. It can only be
| used in DO-LQOP. ‘
* FLUSH '
: * TD., addr ---
No execution, |
Print a definition name from the name field
* FORGET 186 address.
Used in the form: , * AE flag--- 1,C,210 iw
FORGET <name> . Used in colon definition: ‘
i1
Delete from the dictionary <name> (in CURRENT flag IF.. ELSE... THEN Il
vocabulary) and the following words. If <name> can flag IF...THEN
not be found in CURRENT or FORTH, an error will :
ocour. If the flag is true, execute the words after IF,
and the words following ELSE are skipped. The ELSE |
1,187 part 1s optional. If flag is false, words between i
|

FORTH becomes is used), are skipped IF-ELSE-THEN can be nested.

* FORTH
‘ IF and ELSE, or between IF and THEN (when no' ELSE .
The name of the primary vocabulary. ‘

to FORTH vocabulary upon conclusion and so FORTH is
a word which will be executed when encountered

CONTEXT vocabulary upon execution. A new definition

will be a part of FORTH until a different CURRENT ' * IMMEDIATE 163 |
vocabulary is built. A user vocabulary is chained (I

Indicate the most recently built dictionary entry i

considered to be contained in each user as

vocabulary. in compiling and not compiled.

* HERE --- addr 188 * IM@ It

|

the address of the next usable dictionary Select interrupt mode @.

Return
location, % :
IM1
* HEX 162
Select interrupt mode 1.

Set input/output numbers conversion base to 163
{hexadecimal) . _

|
r
-12@- ~-121-~
|

*: M2

Select interrupt mode 2.

* INDEX nl n2 —---

print the first line of each screen over the range
nl to n2. This is used to inspect comment lines of
a number of text screens. :

* INTERPRET

The outer text interpreter which sequentially
executes or compiles text from the input stream
(terminal or mass storage) depending on STATE. If
the word name cannot be found after a search of
CONTEXT and then FORTH, it is converted to a number
according to the current base, That search also
failing, an error message echoing the name with a
"' will be given: Text input will be aken
according to the convention for WORD. If a decimal
point is found as part of a number, a double-number
value will be left. The decimal point has no other
purpose than to force this action. See NUMBER.

* INTFLAG -—— addr

A user variable that saves an interpretive

interrupt flag.
* INTVECT -—— addr

A user variable that saves CFA of an interpretive
interrupt handling word.

* g -— n C,225

Return the outer loop index to the stack. Used only
in the form: .

D0...DO...J...LOOP,..LOOP
* KEY —-—-char 16@

Leave the ASCII code of the nex; usable character
from current input device on the stack.

* LATEST ---addr

Leave the top-most word's name field address in
CURRENT vocabulary on the stack.

-122-

* LEAVE c,213

Set the loop limit to be the same as the current
index to terminate DO - LOOP at the next LOOP or
+LOOP. The index itself does not change and
execution will continue normally until the
terminating word is encountered.

* LFA addrl---addr2

Convert addrl (parameter field address of a
definition) to addr2 (link field address).

* LIMIT ——= n

A constant that leaves the highest memory location
address of a block buffer on the stack,

* LIST n ——- 199

Print the ASCII contents of screen n on the current
output device. Set SCR to n, a unsigned number.

*: LIT —-—=n c

In colon definition, LIT is automatically compiled
before each 16-bit literal encountered in input
text is compiled. Later execution of LIT will push
the 'contents of the following two bytes on the
stack.

* LITERAL n ——-— 1,215

In compilation, regard stack value n as 16-bit
literal; n will remain on the stack if later
executed.

* LOAD n -—- 202

Regard screen n as input stream for interpretation;
reserve current input stream (>IN and BLK)
locators. If interpreter is not terminated
explicitly, it will be terminated when input stream
exhausts. Control returns to input stream
containing LOAD, determined by >IN and BLK.

-123-

LOOP I,C,124

Increment the DO-LOOP index by 1. The loop is
terminated if new index value equals or is larger
than limit. Limit and index are signed numbers. The
range is -32,768 through 32,767. -

M* nl n2 -—- d

A mixed arithmetic operation word, which leaves 4,
the product of nl times n2 on the stack.

M/ d nl --- n2 n3
A mixed arithmetic operation word which leaves on
the stack remainder n2 and gquotient n3 of the
division of 4 by nl. The sign of the remainder is
the same as the dividend.

M/MOD udl un2 --- un3 ud4
An unsigned mixed arithmetic operation word, which
leaves gquotient wun4 and remainder un3 that unl
divides un2 on the stack.

MAX nl n2 -—— n3 218

Leave the larger number of nl, n2 on the stack.
Pronounced "max"

MESSAGE 11 -=-
If WARNING = @, send out MSG# n. If WARNING = 1,

send out the text of the nth line in the 4th block
of pseudo disk,

MIN " nl n2 -~- n3 127
Leave the smaller number on the stack. Pronounced
Ilmi 1.!.“

MOD nl n2 --- n3 104

Divide nl by n2. The sign of the remainder n3 is
the same as nl. Pronounced "mod".

-124-

* MON

Jump to MPF-IP monitor program,

* NEGATE n --- -n 177

Leave two's complement of a number on the stack,

that is, the difference of ¢ and n.

* NEXT

Used in low level definition:
CODE <NAME>» ssssa2.. NEXT END-CODE

Compile directly the word that jumps to FORTH inner
interpreter (JP 2878) in the dictionary.

* NFA addrl --- addr?2

Convert parameter field address of a definition
addrl to the name field address addr2.

* NOT , flagl --- flag2 ' 165

*

*

Convert flagl's boolean value. Same as §=.

NUMBER addr --- d

Convert the string at addr with a preceding count
to a double number.

OFFSET --- addr
A user variable that saves pseudo disk memory's
offset. Adding the offset to get the desgired
address when BLOCK is executed.

OR nl n2 --- n3 223

Leave the result n3 from OR operation of nl and n2
on the stack.

ouT --- addr
A user variable that saves output buffer's offset.

The wvalue of OUT increments each time EMIT is
executed.

-125~

OVER nl n2 --- nl n2 nl 179
Copy the second number on the top of stack,.

=3 n addr ---
Transmit data n to I/0 port addr.

p@ addr --- n
Input data n from I/0 port addr.

PAD --— addr : 226
Save the scratch area's address of the intermediate
character string. 1Its minimum capacity is 64 bytes
(from addr to addr + 63).

PFA addrl --- addr2

Convert name field address of a definitilion addrl to
its parameter field address addr2.

PICK nl --- n2 2409

Return the value of nlth number n2 on the stack. gn
error will ocecur if nl is smaller than 1. 2 PICK 1s
the same as OVER. (1 ... D).

PREV -—— addr
A user variable.

QUERY 235

Accept input (8¢ bytes at most) from the geyboard
or when a "return" is encountered, store into the
terminal input buffer. Using WORD to set >IN and
BLK to @. So that the buffer may accept text as
input string.

QUIT 211

Clear return stack, set execution mode, and return
« control to terminal. No message is given.

=-126-

* R -—-— addr

A user variable that saves the position of cursor
in the screen during compiling.

* R/W addr n flag ---

Delete three items on the stack. No other action
is taken.

* B> -_——n C,llg

Transfer n from the return stack to the data stack.
Pronounced "r-from".

* R@ -—— addr

A user variable that saves the initial value of
the return stack pointer.

* R@ ———n C,228

Copy the top value of the return stack to the data
stack. Pronounced "r-fetch".

* RA -—-— addr

A user variable, temporary address for register A,

* RAF --— addr
A user variable, temporary address for register
pair AF.

* RAF' - -—-- addr
A user variable, temporary address for register
pair AF',

* RB -—-~ addr

A user variable, temporary address for register B.

* RBC —-—= addr

A user variable, temporary address for register
pair RBC.

=127-

RBC' -—-- addr

A user variable, temporary address for register
pair BC'. ;

RC " ——- addr

A user variable, temporary address for register C,.
RD -—-— addr

A user variable, temporary address for register D.
RDE —-—- addr

4 user variable, temporary address for register
pair DE.

RDE' -—- addr

A user variable, temporary address for register
pair DE'.

RE --- addr
A user variable, temporary address for register E.
REPEAT 1,C,120¢
Used in colon definition in the following form:
BEGIN... WHILE... REPEAT

REPEAT returns control to just after its
corresponding BEGIN in execution.

RF --- addr

A user Vériable, temporary address for register F.
RH -—-- addr

A user variable, temporary address for register H.
RHL -=-- addr .

A wuser variable, temporary address for register
pair HL. ’

~128-

* RHL' --- addr

A user variable, temporary address for register
pair HL'.

* RL —-—— addr
A user variable, temporary address for register L.
* RIX -—— addr

A user variable, temporary address for register
pair IX.

* RIY --- addr

A user variable, temporary address for register
pair. IY.

* ROLL n ——- 236

Extract the nth number to the top of the stack and
move the remaining values to the vacated locations.

(l...63).
1 ROLL : NOC OPERATION
2 ROLL = SWAP
3 ROLL = ROT
* ROT nl n2 n3 --- n2 n3 nl 212
Rotate the top three numbers on the stack.
Place the third +to the topmost. Pronounced
"rote".
* RP@ --- addr

Return the address of return-stack location to the
top of parameter stack as it ,was before execution
of RP@. Pronounced "r-p-fetch”,

* Rp! '

Set initial wvalue of the return stack pointer. This
is a computer-dependent procedure.

-129-

* §->D n --- 4

Change a single number to a double number.

* g@ -—— addr

A user variable that saves initial value of data
stack pointer.

* SCR -—- addr u,217

Leave the address of a variable which contains the
number of the screen most recently listed on the
stack, Pronounced "s-c-r".

* SIGN n —=- C,1l44

Insert ASCII "-" into number output string if n is
negative.

* SMUDGE

Change smudge bit of the name field a@d;egs when
defining a new word to validate the definition.

& spl

Set initial value of the stack pointer. Pronounced
"s-p-store".

* SP@ -—- addr 214

Return address of the stack location.to the top of
the stack, as it was before execution of SP@.

Pronounced "s-p-fetch".

* SPACE 232

Send ASCII "blank" to the current output device.

* SPACES n --- 231

Send n spaces to the current outpdét device if n >
¢, otherwise no action is taken.

.

-130-

* STATE -—-— addr U,l64
Leave the address of a variable which contains
compilation condition on the stack. The compilation
begins if the content does not equal @.

* SWAP nl n2 --- n2 nl 230
Exchange the top two numbers on the stack.

* TASK
A dummy word.

* THEN I,C,161
Used in colon definition in the following form:
IF...ELSE...THEN or 1IF...THEN
THEN must follow ELSE or IF.

* TIB --- addr

A user variable containing address of terminal
input buffer.

* TOGGLE addr byte —--

Use bit pattern byte to complement the contents of
addr.

* TRAVERSE addrl n --- addr2
Move across name field address of a variable. addrl
is either address of length byte or the address of
the last byte. The motion is toward high memory
address if n = 1; toward low memory address if n =
-l. addr2 is address of the other end of the name
field address., :

* TREAD

Read data of a file from the tape.

-131-

TWRITE nl n2 ---

Save data between blocks nl and n2 in a file on the
tape.

TYPE addr n --- 222

Send n bytes starting from addr to the current
output device if n > 0.

u* unl un2 --- un3 242

Multiply unl by wun2 and leave the product un3. All
numbers are unsigned., Proncunced"u-times".

uU. un --- 166
Convert un according to BASE as an unsigned number
and print it in a free-field format, with one
trailing blank. Pronounced "u-dot".

U/MOD udl un2 --- un3 un4 243
Divide wudl by wun2, The remainder is un3; the
quotient is und4., All wvalues are unsigned.
Pronounced "u-divide-mod",

U< unl un2 --- flag 158
Leave flag after comparison of unl and un2. Unl and
un2 are 1l6-bit unsigned numbers. Pronounce "u-less-
than".

U?TERMINAL --- addr
A user variable that saves ZTERMINAL's CFAa.

UABORT --- addr
A user variable that saves ABORT's CFA,.

UB/SCR --- addr

A user variable that saves block number of blocks
in each screen.

=-132-

uc/L ——- addr

A user variable that saves number of bytes in a

line.
UCR -—-— addr
A user variable that saves the word CR's CFA.
UEMIT —-—— addr
A user variable that saves EMIT's CFA.
UFIRST --—— addr
A user variable that saves FIRST's value.
UKEY --- addr
A user variable that saves KEY's CFA.
ULIMIT --- addr
A user variable that saves LIMIT's value.
UNTIL flag ——- I,C,237
Used 1in a colon definition that indicates the end
of BEGIN-UNTIL loop. The loop ends if the flag is
true. The execution returns to the first word after
BEGIN. BEGIN ... UNTIL may be nested.
UPDATE
Executing nothing.
UR/W ——-— addr
A user variable that saves R/W's CFA.
USE -—-- addr
A user variable.

USER n ——-—

A defining word, used in the form:

-133-

—

n USER <name> * WARNING --- addr ‘
Build a wuser varialbe <name>. n in parameter A user variable that saves value_ for controllipg
field 1is the offset relative to the user area error message output and execution procedure 1n
pointer, The real address can be obtained from n. occurrence of error. ‘

(offset + starting address of user area.)
* WHILE flag —-- I,C,149

* VOC-LINK ~~= addr) o
Used in colon definition:
A user variable that contains a field address of
newly built wvocabulary. All vocabulary : BEGIN...flag WHILE...REPEAT

names are linked toc these fields. . }
Select conditional execution according to flag. If

* VARIABLE 227 the flag 1is true, execute until REPEAT (it will
: return to the words after BEGIN). I1f the flag 1s
A defining word, used in the form: false, exit the construction and execute words

after REPEAT.

VARIABLE <name>

* WIDTH -—— addr
Build dictionary word <name> and reserve two bytes :
of memory locations 1in parameter field, The A user variable that contains the maximum number of
initial value must be set in use. It will put the characters reserved in compiling names of defini- i
memory address on the stack when <name> is executed ' tions. The range is from 1 to 31. Number of |
later. characters for names and the original characters

¥ VTLIST are reserved according to WIDTH's value. The value
. can be freely changed between 1 and 31.

Print names of definitions in CONTEXT vocabulary.

i
Pressing any key will terminate printing. * WORD char --- addr 181 !
|

208 Accept <characters from input string until _non-

4 zero delimiter is encountered or the whole strin is
input. These characters are saved as packed string.
The total number is at the address of the first
byte. The delimiting character encountered is saved
at the end of the text. 1Its length is ¢ if input
string terminates. The starting address of the
packed string remained on the stack.

* VOCABULARY
A defining word, used in the form:
VOCABULARY <name>

Build (in current vocabulary) a dictionary word
<name>, which points out a table of order for new
words definitions. It will become a CONTEXT
vocabulary when <name> is later executed. A new
definition will be listed in word table when <name>
becomes CURRENT vocabulary. the new veocabulary is
chained to FORTH, that is, searching FORTH
vocabulary after searching a vocabulary. ' ,

* XOR nl n2 ~~-- n3 174

| Leave results of bitwise XOR coperation of nl and
n2., Pronounced "x-or".

* WARM

Reset initial wvalues of variables 8¢, R®, TIB,
WIDTH, WARNING, FENCE, and then enter into ABORT.
The word does not influence the created words in
the dictionary. : |

-134- ~135~

B.5 Double Number Words

*

21 d addr ---

Save d in 4 consecutive bytes starting from addr.

Pronunced "two-store".
2@ addr -=-- d

Place 4 consecutive bytes starting from addr on
the stack. Pronounced "two-fetch".

2DROP d ---

Drep double numbers on the top of the stack.
Pronounced "two-drop".

2DUP d -——d d

Duplicate the top double number on the stack
Pronounced "two-dup". ' :

20VER dl d2 --- d1 d2 dil

Copy the second double number of the stack to the
top. Pronounced "two-over".

25WAP dl 42 --- d2 dl

Exchange +the top two double numbers of the stack.
Pronounced “two-swap".

D+ dl d2 --- d3 241

Add dl1 to d2 and leave the sum d3 on the stack.
Pronounced "d-plus". .

D+- dl n -—- 4z

Add sign of n to dl; d1 becomes d2 and d2 is left
on the stack. Pronounced "d-plus-minus".

D. d —-- 246

‘Print d converted according to BASE in free-field,
followed by a space. Pronounced "d-dot".

=136-

* D.R dn ——-

Print d converted according to BASE in n-byte
field, right justified. Pronounced "d-dot-r",.

* DZ dl d2 --- flag 244
The =rlag is true 1if d1 < d2. Pronounced "d-
less".

* DABS dl --- d2

Leave dl's absolute value on the stack,

* DNEGATE d --- -d 245

double number,
-d on the stack.

Leave two's complement of a
that is, the difference of @ and
Pronounced "d-negate".

B.6 Editing Words
* Control-I o T

Move cursor n bytes. Control-I means that pressing
control and I immediately.

* —TEXT addrl n addr2 ---~ f
Return a true flag if the first n bytes in the two
strings starting from addrl and addr2 are the same.
Otherwise, a false flag is returned.

* CLEAR n —-—-—
Clear the n-th block.

* COPY nl n2 —-—-,

Copy data in block nl to n2.

Used in the form:
D XXX

Delete string xxx after the cursor.

-137-

*F *T T e

Used in the form: . :
Print the nth 1line and move
:] th
beginning of the line, il =T

F XXX
* —_—
Search string xxx from behind the cursor, and place TERT €
the cursor after the found string. The cursor
o ; : - s = it
returns to the beginning of line @ if the target gtiizge Egarghgeirgma?ngzi giéégéterlgo mgve a text
string is not foupd. contains less than 64 Characters,-it wili se g;éégg

with blanks to make a total of G4 characters [

* 1
* TILL

Used in the form: :
Used in the form:

I XXX i
TILL XxX

Insert the string to the cursor's current location.
i Delete text between the cursor and xxx.

* B ' * TOP

Reprint text in the curcent block. - Move the cursor to the beginning of line ¢.
* LINE n --- addr 1 § 3 | . . |
I Place the address of the first byte of the nth line . . .

in the current block on the stack. Dokl Lu the Foim:

U xxx [
* MATCH addrl nl addr2 n2 --- f n3 %
: o Insert xxx und i

The text to be searched begins at addrl and is nl lines are movedeée§2§ gg;rﬁgzellne, the subsequent

bytes long. The string to be matched begins at *

addr2 and is n2 bytes long. The boolean flag is * x

true 1f a match is found, n3 is then the cursor :

advancgment to the ?nd of the found string. If no petebs the worrent lins. Delored tast 15 BAVER in

match is found, £ will be false and n3 be nl. PAD. Pad the last line with blank
* N

Search text saved in PAD.

Used in the form:
P xxx

Place the string =xxx at the 1line the cursor
is. ; |

-138- -139-

C MPF-IP FORTH
Error Messages

MSG# REASOHNS

[} Not existing.

1 Data stack empty.

2 Dictionary space is full,

4 Words name defined more than once.

7 Data stack is full.

17 The word can not be used outside the

definition,

18 The word can only be executed immedlately, can
not be used in the definition.

19 Unpaired conditional.
20 The definition 1s not finished.
21 The word i1s in the dictionary protected range,

can not be deleted, |

22 The word can only be used in LOAD.

24 Vocabulary error.

-141-

ﬂaqr

D User Area RAM Map

Address |[Number Name Description
(Hex) of
Bytes

FEGO-FEES 6 - Available for user

FEG6-FEG7 2 S0 Initial value of the data
stack pointer

FEGE~-FE@S 2 R Initial value of the
return stack pointer

FEGA-FEQR 2 TIB Address of the terminal
input buffer

FEGC-FE@ED 2 WIDTH Number of letters saved
in names

FEGE-FEGF 2 WARNING Error message control
number

FE1¢~-FE11l 2 FENCE Dictionary FORGET
protection point

FE12-FE13 2 DP The dictionary pointer

FE14-FE15 2 VOC-LINK |{Most recently created
vocabulary

FE16-FE17 2 BLK Current block number
under interpreétation

FE18~FE19 2 >IN Byte offset within the
current input text buffer

FE1A-FE1B 2 ouT Offset in the text output

buffer

-143-

FE1IC-FEL1D SCR Screen number most
recently referenced by
LIST

FE1E-FE1F OFFSET Block offset for disk
drives

FE20-FE21 CONTEXT Pointer to the vocabulary
vithin which dictionary
|search will first begin

FE22~-FE23 CURRENT Pointer to the vocabulary
within which new
definitions are to be
added

FE24-FE25 STATE Contains the state of
compilation

FE26-FE27 BASE Current I1/0 base

FE28-FE29 DPL Number of digits to the
right of the decimal
point on double integer
input

FE2A-FE2R FLD Field width for formatted
number output

FE2C-FE2D Cse Check stack pointer

FE2E-FE2F R Location of editor cursor
in a text block

FE3¢-FE31 HLD Address of current output

FE32-FE37 FLAST FORTH vocabulary data
initialized to FORTH
vocabulary

FE38-FE3D ELAST Editor vocabulary data
initialized to EDITOR
vocabulary

FE3E CRFLAG Carriage return flag

EEIE = - Avalilable for user

-144-

FE4@-FE42 PAT I/0 port fetch routine
(input)

FE43-FE45 PST I1/0 port store routine
(output)

TFE46-FE47 RPP Return stack pointer

FE48-~FE49 USE Mass storage buffer
address to use

FE4A-FE4DB PREV Mass storage buffer
address just used

FE4C INTFLAG Interrupt flag

FE4D - Available for user

FEAL-FEAF INTVECT |Interrupt vector

FES5U-FE51 U?TERMINAL|Code field address of
word Z2TERMINAL

FR52-FE53 UKEY Code field address of
input word KEY

FES4-FES5 UEMIT Code field address of
output word EMIT

FES56-FES7 UCR Code field address of
word CR

FES58-FES9 UR/W Code field address of
word R/W

FESA-FESH UABORT Code field address of
word ABORT

FES5C-FESD uc/L Number of characters per
input line

FES5E-FESF UFIRST Start of pseudc disk
buffer

FE6G-FE61 ULIMIT End of pseudo disk buffer

FE62-FE&3 UB/RBRUF Number of bytes per block

=145~

FE64-FEGS 2 UB/SCR Number of buffers per
block

FEG6-FLE67 2 - Available fer user

FE6B8-FE69 2 RATF Register AF

FEGA-FEGB 2 REC Register RBC

FEGC-FF6D 2 RDE Register DE

FEGE-FL6F 2 RHL Register HL

FE76-FE71 2 RIX Register IX

FE72-FE73 2 RIY Register 1Y

FE74-FE75 2 RAF' Register AF'

FE76-FET77 2 RBC' Register BC'

FE78-FE79 2 RDE' Register DE'

FE7A-FE7TB 2 RHL' Register HL'

FETC 1 - Available for user

FE7D 1 JPCODI JMP code (C3) for word
CALL

FETE-FETF 2 JPVECT JMP vector for word CALL

FEB@-FE9SF 32 - Available for user

-146-

