MPF-IP

Manual

MPF-IP

Manual

COPYRIGHT

Copyright©1990 by Acer Incorporated. All rights reserved. No
part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into any
language or computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual or
otherwise, without the prior written permission of Acer
Incorporated.

DISCLAIMER

Acer Incorporated makes no representations or warranties,
either expressed or implied, with respect to the contents hereof
and specifically disclaims any warranties or merchantability or
fitness for any particular purpose. Acer Incorporated software
described in this manual is sold or licensed "as is". Should the
programs prove defective following their purchase, the buyer
(and not Acer Incorporated, its distributor, or its dealer)
assumes the entire cost of all necessary servicing, repair, and
any incidental or consequential damages resulting from any
defect in the software. Further, Acer Incorporated reserves the
right to revise this publication and to make changes from time
to time in the contents hereof without obligation of Acer
Incorporated to notify any person of such revision or changes.

Preface

MPF-IP FORTH Manual is writkten for those whe wish to
learn FORTH with MPF-IP, a production of Multitech
Industrial Corporation. Readers may better understand
this fourth generation cohputer language by [following
instructions stated in the manual. For those who do not
have MPF-1P, the manual offers an opportunity to know

FORTH.

You can start to practice by inserting a FORTH EPROM on
socket U03. Options such as printer and 1/0 M may be
connected to enhance its capability. In additien, an
independent and complete system may be set up by adding
EPROM VRITER to FORTH.

FORTH combines merits of both high level language and
low level language, It is a highly structured language.
You may define your own WORD (instructions are called
words in FORTH) if necessary. The system provides basic
words for arithmetic and logic operaticons and stack
manipulation. However, users themselves may define
stronger and more adecquate words for specific situation
without any restriction.

FORTH uses postfix notation to write programs.
Therefore, expressions S5 + 3, 5 * 3 in BASIC are
changed to 5 3 + , 5 3 * in FORTH. It is possible for
you to encounter a few difficulties inm wusing this
notation at the very beginming. But, you can make the
best use of its function once you get used to it.

This manual is a helpful guide for FORTH beginners. We
hope you enjoy reading it,

TABLE of CONTENTS

CHAPTER 1 Introduction 1

1.1 The Source of FORTH-MPF-IP 3
1.2 Essentials and Options 3
1.3 ASCH Codes in FORTH 3
1.4 Entering FORTH and Exiting FORTH-MPFIP 4
1.5 An Overview of the FORTH Language 5
1.5.1 "Word"™ and "Dictionary" in FORTH 5

1.5.2 Stacks in FORTH 13
1.5.3 postfix Notakion 15

CHAPTER 2 Stack Manipulation and Arithmetic
Operations 17

2.1 Number Input/Output 19
2.2 Words for Arithmelic Operations 21

2.3 Stack Manipulation 25

CHAPTER 3 Constants, Yariables and Arrays 29

3.1 Constanis 31
3.2 variables 31

3.3 The Usage of Constants and Variables 32
3.4 Arrays 33

Il

CHAPTER 4 Dictionary, Vocabulary and Memory

Map

35

41 Memory Map 37

4.2 Pseudo Disk in FORTH-MPF-IP 38
4.3 Print the Message 41

4.4 Define a New Word 41

4.5 Structure of FORTH Words 42
4.6 The Dictionary 44

CHAPTER 5 Structural Conditional Control

47

5.1 Conditional Branch 49
5.2 Compare Words 51
5.3 Loop 53

5.3.1 Finite Loop 53

5.3.2 Indefinite Loop 55
5.3.3 Infinite Loop 56

CHAPTER 6 Printing Strings and Numbers

59

6.1 Strings Manipulating Words 61
6.2 Single Character Input/Output 62
6.3 String Input/Output 63

6.4 Printing Format for Numbers 65

CHAPTER 7 Editor

69

7.1 Editing a Program 71
7.2 Line Editing Words 72
7.3 Editing a String 74

7.4 Compiling FORTH Words 77

CHAPTER 8 Interrupt Signal

79

8.1 Low level Words in FORTH 81
8.2 Low Level Interrupt Handler B4

8.3 Interpretive Interrupt Handling Process

85

CHAPTER 9 Application Programs

87

91 Using P@ and P! 89
4.2 Developing Application Programs 96

Appendices

95

A MPFIP ASCIl Codes 97

B MPF-IP FORTH Glossary 99

C MPF-IP FORTH Error Message 141
D User Area RAM Map 143

Introduction

1.1 The Source of FORTH-MPF-IP

Trhe MPT-IP 1is a zonvenient instrument to learn the
FCRTH languade., It contains an 8Kk-bytes EPROM. The
EFROM records the FORTH lasnguage and can be loserted
inte the sockel U3. The FORTH begins to werk by both
turning on the machine and pressing CTRL-G. Press the
REGET key and zurn or the machine again also help
initialize,

The programs for FORTA-MPF-IP are based on 20680
programs of FIG-FORTH. The FORTH has functions as
an interpreter, a compiler and an editor. It also
contains the internatiorial FORTH-79 standard commands
foct. 19836). In addition, we provide other words
especially for MPF-IP which will be discussed later,

1.2 Essentlals and Options

The essentials tor FORTH-MPF-IP are as follows:
fL} a system unit (4K RAM)
(2) a FORUIH-MPF-1F EPRUOM

In additivn, some obher opl-ons way be used.

{1) printer: It'prints data cutput for permanent
recard.

{2) I/0 M: The expansion memory strengthens the
edit fumction. ITts I/0 port makes
FORTH show a strong control

capakility.

{3y FPROM WRTTER: A full set of irdependent
applied system is used in accordance
with FORTH system.

fd) SGB & S§SB: They are used to produce sounds.

1.3 ASCII Codes in FORTH

The conmands in FORTH are composed of a series of
characters, separated by spaces. The characters include
a full set of ASCII codes, gxcluding Ttackspace,
carriage return, null, end space; &nd control codes,
excluding CTRL-P {(used td control printer) and CTRL-G
{used to contrcl speaker). The followiny strinygs are
some examples:

-FIHD - BEGIM T2 (BMIT

on MPF-IP's keyboard, [=7] stands for carriage return,
< stands for backspace, [E3] stands for space. Null
is a self-produced code in the FORTH, 'which can not be
seen at the keyboard. Refer to Appendix A for the codes
generated by the other keys.

Three basic commands in FORTH [,], and [COMPILE] are
replaced by (*, *) and <COMPILFE> respectively, as [and
] can not be generated by the MPF-IP keyhoard.

1.4 Entering FORTH and
Exiting FORTH-MPF-IP

(A) Entering FORTH-MPF-IP

There are two ways to enter the system, if the screen
displays *****MPF-I-PLUS***** or) after you turn on
the machine.

1 Press and [B] simultaneously. The FIP
(Fluorescent Indicator Panel) will black out for a few
seconds, and the screen displays ****FORTH-MPF-Ip***#*
It enters the system and waits for commands. It is the
cold start which clears the commands outside the
system, and makes an initialization. Memory in the
pseudo-disk track becomes @.

2. Press [CONTROL] and [] simultaneously, The screen
displays ****PORTH-MPF-IP****, and waits for you to
input commands. 1t is the warm start that is generally
used in reentering the system and keeping the
established dictionary commands before exiting FORTH.
Initialization is only made for few variables. No
clearing is implemented on the dictionary and the
pseudo disk memory.

(B) Exiting FORTH-MPF-IP
There are also two ways to exit the system.

1. Press the RESET key.
Wnenever you press{EEEE%, MPF-1P returns to the initial
status. The screen displays *****MPF-1-PLUS*****

2. Input [MOR [=7].

The MPF-IP is now under the control of the monitor. The
screen displays the monitor's prompt > .

1.5 An Overview of the FORTH Language

You may follow the steps listed below to enter intoc the
FORTH-MPF-1P syslLem.

a. Be sure to turn ¢ff the power, and then insert
FORTH-MPF—-IP TPROM into bthe socket U3.

b. Connect all options.

. Turn on the power, and the screen displays
Kk F A EMPR_T-PTIG*F&KF

d. Press and [B] simultaneously, and the
screen displays ****FORTH-MPF-IP##*w#,

e, Press , and the screen displays OKa, indicating
it is in the FORTH systen.

16,1 “Word’ and “Dictionary” in FORTH

Every kind of conputer language has its own ncktation to
indicate what will be executed, such as instructions LI}
A.B and ADD A,C in the Assemnbly Language; and
slalements For I=3 TO 255 «ud PREINT A+B 1n BASTC.
In FORTH, we use "word"™ to execute a comnmand.

A "Word" is compocsed of one or mores than one
characters. It is tho code for an event or a procedurz.
In FORTHZMPF-IP, each "word" is related to an event.
For example, the ward * multiplies two numhers in the
memery and savesthe result back +to the memory. The word
EMIT takes the number in the memory as an ASCII code,
and prints cr displays its corresponding ASCII
character, Primitive "WCRD"s supplied in FORTE-MPF-1IP
can Lte illustrated by pressing VLIST . Consult
the fc¢llowing printout:

VLIST
F@@9
3AF4
3AES
3ADD
3aD1
3AC4
3AB7
3AAlL
3a8s8
3A73
3A60
3A2E
39D4
39C7
3926
398F
394D
393A
3934
391D
3969
38DA
38CF
38C1
38A9
386D
3818
37D9
37C9
37BC
3780
3742
3791
376E
3756
372B
3715
36FC
36ED
36D0
36BF
369D
3686
366D
3656
3648
3634

TASK
MON

EI

DI

IMe

IM1

M2
NEXT
END-CODE
CODE
TREAD
TWRITE
«S

@>

DL
DEPTH
ROLL

J

EXIT
20VER
25WAP
.CPU
INTVECT
INTFLAG
jINT
INDEX
LIST
VLIST

U.
2

D.

«R

D.R

s

#

SIGN
#>

<#
SPACES
WHILE
ELSE
IF
REPEAT
AGAIN
END
UNTIL

361E
3608
35F5
35EA
35CF
35BD
35AB
356E
3555
3535
3563
34C2
34B7
349B
347D
346F
3456
1446

343B -

3439
3425
3416
33FE
3303
33AF
338p
336E
335C
334B
3338
332B
331B
338C
32E&
12CB
3286
i2a0
3292
3283
3271
325F
324B
1220
il1DD
3loC
316F
315C
314¢C

+LOOP
LOOP
Do
THEN
ENDIF
BEGIN
EACK
FORGET
1

-

LOAD
CUNP
FLUSH
B/
BLOCK
HBUFFER
EMPTY -BUFFERS
UPDATE
+BUF
PREV
USE

Pl

pg
MESSAGE
.LINE
<LINE>
M/ MOD
*/

* /MOD
MoD

/

/MCD

*

M/

Mt
MAX
MIN
DADEG
ABS
D+-
+-
5->D
COLD
WA RM
ABORT
OJIT
<
DEFINI®IONC

3134
&1kl
39E7
3ECE
3680
30508
3915
3518
2FFC
2F76
2741

2F33
2809
2EB1
2E66
2E14
2EQL
2DES
20DA
2DCH
ZDAB
2D6C
2054
2CDA
2CAB
2092
205F
2031
201E
2BF7
2BE7
2BDE
2BBA
2BA4
2BSE
2B7C
2B67

2B58
2B41
2B27
2BBA
22F7
2AE4
2AC8
2AAE
2A9B
2A8A
2478

EDITOR
FORTH
VOCABULARY
IMMEDIATE
INTERPRET
?STACK
DLITERAL
LITERAL
¢COMPILE>
ID.

EREOR
<ABORT>
-FIND
NUMBER
CONVERT
WORD

PAD

HOLD
BLANES
ERASE
FILL

QUERY
EXPECT

"

2 >
—TEAILING
TYPE
COONT
DOES>
CREATE
;CODE
<;CODE>
DECINAL
HEX
SMUDGE
=
(*
COMPILE
?LCADING
2CSP
?PAIRS
2EXEC
2COMP
?EEROR
1CsP

PFA

NERA

-B-

2A62
2452
2h42
271D
2AE6
29F7
29E1
29L2
29C4
29284
2982
2976
2968
2951
2948
29334
2924
2915
2388
2BFB
Z23EE
28A4
2399
28494
2887
287E
2875
286C
2863
2853
2851
2846
2833
2838
2825
281B
2811
2897
27FD
27F3
27E9
27pC
27Dl
27C7
27BB
27B0
279F
27992

CFA

LEA
LATEST
TRAVERSE
2DUP
S5PACE
PICK

ROT

o<

3959

UaBORT
UR/W

[ICR

OEMIT

UKEY
U?TERMINAL
UB/SCR
UB/BUF

2785
2778
2768
27610
2756
274D
2743
2739
272F
2724
2718
2784
26FC
26EF
26E5
26DB
26D1
26C7
26B4
26AF
26A3
2695
2a89
2E7F
2676
2669
2655
2649
2639
2629
261F
2616
2G60E
2606
25FE
25E8
25D4
25B6
259D
2575
2562
2555
2546
252¢
251E
25@F
2581
24ER

ULIMIT
UFIRST
uc,/L
HLD

Ril

Cs5P

FLD

DPL
BASE
STATE
CURRENT
CONTHERT
OFFSET
SCE

QuUT

»IN

BLK
VOC-LINK
Dp
FENCE
WARNING
WICTH
TIBE

RG

s

B/ SCR
B/BUF
LIMIT
FIRET
C/L

BL

3

2

1

a

USER
VARIARBLE
CONSTANT

r

21

cl

!

2@

cae

@
TIGGLE
+1

-1@~-

24DB
24C9
24BB
24RE
249F
2491
2482
2464
244D
2429
241C
24¢B
24094
23FQ
23E%
23D4
23EE
232A
2393
2378
236D
2356
2347
2334
2321
238F
22C2
228C
22786
2264
2255
223F
2229
21DE
2154
PR
2152
2136
2124
26F1
2dpc
2C4
20B5
2000
OK

BOUNDS
2DUP
DUP
SWAP
2CROP
DEOP
OVER
DNEGATE
NEGATE
D+

+

a<

NOT

a=

R@

R>

>R
LEAVE
1S

RE!

RE@

SpP1l

SP@

XAOR

OR

AND
U/MOD
[J*
CHMOVE
CR
Z?TERMINAL
KEY
EMIT
ENCLOSE
KFINDZ>
DIGIT

I

<CO>
<HLOCP>
<LOQP>
ARRLANCH
BEANCH
EXECUTE
LIT

=11~

Sometimes, one word alone is not enough to complete an
execution. Several words are then composed ko form a
program. The program is regarded as a new word, which
may be used as a unit to form a more complex execution.
This 1is exactly the process to write a program in
FORTH: to put several words together to complete the

purpose.
Examples:

The unit price for a fountain pen is 0585,00. The total
price for n feountain pens is :

TOTAL PRICE = n * UNIT PRICE
We can define a word 5* which combines 5 and *.

54 § * ; [
5* 5 * : OKna

Input
Display

s wa

The word . (DOT) is used to print the result.

The following table 1lists words related to number
output:

Words Stack Manipulation and Action

D.R (d n ===}
Print double number d in an n~-character
field, right justified.

D. Q=]
Print docuble number d and leave a
space to its right.

0. {un =--)
Print unsigned integer number un and
leave a space to its right.

+R {nl n2 —--=)
Print signed integer number nl in an
n-character field, right justified.

(N ===)
Print signed integer number n and
leave a space to its right.

=]12=-

“J

{addr ——-) '
Print sicned integer numbesr in address
addr and leave a spzce to its righk.

We can define a2 new word FOUNTAIN-PEN both to print the
result and to count the total price.

Input
Disgplay

FOUNTAIN-PEN 5% , ; |=
FOUNTAIN-PEN 5% : OKa

Example: the total price for 7 fountain pens

Input 7 FOUNTAIN-PEN
aispley 7 FOUNTAIN-PEN 35 OKn

Example; th= tctal price for ¢ fountain pens

- Input 9 FOUNTAIN-DPEN
pisplay 9 FCUNTAIN-PEN 45 OK~

All words in the system are storad in the dictienary.
It is a one-directional serial table. Every word is
different in 1length, Howeverx, they are defined
completely or contain all necessary data for execution.
The dictionary may be expanded toward the higher end of
the memory. The dictionary may also be divided inteo
several vocabularies. Each vocabulary centzins related
words.

1,52 Stacks in FORTH

The system uses two stacks to save temporarily data and
addresses. One 1is the Data Stack, the other 1is the
Return Stack. The stack generally refers to the Data
Stack urlecss otherwise specified.

The stack is a certain area in memory used to save and
retrieve the data. We may call it a last-in first-ocut
memory. If you input 1 3 5 7 [=, the display of
= 3 K 7 OKa means all words have besen ayecuted,
Four nurbers have been stored in the stack. The first-
in number 1 is placed at the bottom of the stack, &and
the last-in number 7 is at the top of the stack.

The following 1is a conceptual diagram of stack in
memory. The first-in number 1 is at the highest end in

-13=

memory and numbers input later are lined up through the
lower end.

top in memory top in memory top in memory
& 1
3 3
5
7
bottom in bottem in bottom in
memory memnory memory
'polnter’ |pointer' [pofnter,

The following is a conceptual illustration of the
stack. That the stack extends upward is the same as
that plates are piled in a restaurant. The first-set
plate 1is at the bottom, sc that the last-set ones are
taken first, When you add a new number on the stack,
it is pushed on the top of the stack. When you take one
off the stack, you pop the number away.

- 7

3

3 3

1 1 1
bottom of bottom of bottom of
the stack the stack the stack

'pointerJ]pointe?[lpcInterl

- There are four numbers on the stack. Use the word
{Dot) to print the numbers,

Input « 4 4. (Do not forget to leave a
space between the dots.)
Display “ w % #7585 3% 08

Data used in FORTH words are mestly taken from the data
stack, Data are placed onto the stack in any of the

-14-

three ways listed below:
1) words keyed in from the keyboard;
2) words in the source program;
3) values resulted from execution of words.

The return stack stores the address for the word to be
executed next. Its function is like that of the stack
in a general computer system, that is, to save the
address of the next instruction in the main program
when it calls subroutine. The return stack is mainly
used to control calls among words and return action.
However, under specific condition, the return stack
does additional work, such as:

a. the index and the limit used in the DO...LOOP;

b, some numbers which are not easy to manipulate on the
temporary data stack.

The return stack is closely connected to the system's
operation. Be sure to use it carefully . Any misuse
may cause an irrevocable result to the entire system.

1.6.3 Postfix Notation

Arithmetic operations for most computer languages are
as follows: 5+3 which is familiar to most people. FORTH
uses postfix notation, and the expression in the above
will be: 5 3 +, The reason for the adoptien of this
peculiar notation in FORTH is that all words take
necessary data from stack and put result onto stack.
Interactions among words are greatly reduced in this
way. Words of different levels may exchange data
provided by the stack in a rather complex operation. In
the operation 5 3 + , 5 is placed on the stack
first, followed by 3. Addition operator + takes out and
adds 5 and 3, and saves the result 8 on the stack.
After the operation, 5 and 3 are removed from the

stack.

-15-

and

2.1 Number Input/Output

We mentioned in the previous chapker thakt many FORTH
words need data on the stack, and the npumber ol data
it=ms needed iz different from oje word Lg auncther.
Before you execute a word, vyou have to know the data cn
zhe stack and in what order, FORTIl data may have
different types, you have tc choose the right onc
according to the words. The following table lists the
main types of data, togather with their codes and
ranges .

TYPE CODE RANGE

Flag £ # or non-@

Character c - from @ tc 127

Byte b from B te 255

Number n from -3276%8 to 32767

Unsigned Nunber un from & to 65535

Double HNumber d from -2147483648 to
2147433647

Unsigned Oouble ud from 8 to 4294967295

Nunber

Address a from B to €5535

Primarily arithmetic operations deal with integers.
Most of <them are presented as 16-bit runmbers. When
FORTH receives a numocer {(either from the keyboard, or
from the source program}, It transfers the number into
@ Dbinary one, and pushes it on the stack. The input
nunber may be a 16-bit single number or a 32=-bit_ doublz
number. Humbers with a decimal point will be regarded
@53 a double nuamber by the decoder, otherwise they are
regarded as sioygle numbers, The word,|dotjremoves the
single number at the topmost of Lhe stack and change it
into a striang and display it. Single numkter is
Presented by 2's complement. If it is larger than 32767.
We regard it as s ncgative number. For example:

=19.

4

Inpukt 5 .

nisplay 5 . 5 OK.

Input -5 . {press the shift key and "I
lettexr simultaneously to
¢et a minus sign.)

Display ~-388 . -30@ OKa

Input 32769 , =]

Display 32769 . =32767 OFa

In the lazt example, 32769 exceeds 32767, thus the
system regdrds it as a negative one, You may aveoid this
as shawn nelow:

Input 32769 6 D,
Display 32769 @ D. 32769 OFa

That is, you may push a § above 32769 on the stack and
megke it a double number, T, is used to print the
double number stored on the top of the stack.

1f there 1s a cecimal point, FORTH regards it as a
dcuble number, For example, 32769 is regarded as a 32-
bit double number. FORTH unly recognizes the decimal
point and its place, but the decimal puvint dves not
affect the conversion. Try the following sxample:

Input 32769. D,
Display 32769. D. 32769 OKa
Input 327.69 n. =+
Displey 327.69 D, 32769 Ok
Input 3.2769 D,
Disgplay 3.2769 D. 32769 OKa
Input 3.27.69 D.
Display 3.27.69 D. 32769 OKa

The number of digits following the decimal wpcint are
recorced in the system variable DPL. It you want to
identify it fur related numeric operations, You may use
DPL.

As described carlier, wvyou may place a § absve a single
number to get a double number. Similarly, a double
pumber may be divided into kwe single numbers, If a

[S 1/

double number is divided into a higher 16-bit and a
lower 16-bit, the higher one will be on the top of the
stack.

such as:

Input 6553.6 . .

pisplay 6553.6 . . 1 @ OKa

Input 399. . .

Display 306 . . @ 383 OKa

2.2 Words for Arithmetic Operations

The following table lists the arithmetic words used in

FORTH, including single number words, double number
words, and mixed operation words.
Words Stack Manipulation and Action
+ (nl n2 - n3)
nl + n2. Leave the sum n3 ¢on the stack.
- (nl n2 - n3)
nl - n2. Leave the difference n3 on the
stack.
T + (n — n + 1)
1l - (n = n - 1)
2 + (n - n + 2}
2 - (n - n - 2)
Fe (nl n2 - n3)
/ (nl n2 - n3)
nl is divided by n2. Leave the gquotient n3
on the stack.
/MOD {(nl n2 - n3 né4)
nl is divided by n2. Leave the remainder
n3 and the quotient n4 on the stack.

-2l

*7 fnl n2 n3 — nd)
nl multiplies n? and then the praduct is
divided by ni. Leave khe guotient nd on
thz stack.

* /MOL {fnl n2 n3 ~ n4 nS)
It i5 the same as */. Leave the remainder
n4 and the quotient ns on the stack,

o* (unl unZ - ud}
multiply two unsigned numnbers unl and unz.
Leave the product (double number} ud cn
the stack.

(/MDD fud unl - un2 un3)
The double number ud is divided by unl.
Leave the remainder un2 and the guotient
un3 on the stack.

MAX inl n2 - r3i)
Leave the _arger one of nl and n2 on the’
stack,

MIN inl n2 - n3)
Leave the smaller one of nl and n2 en the
stack.

ABS (nl - n2)
Leave nl's absolute value 2n the stack.

WEGATE (nl - n2}
Change the sign of the toomost value <n
the stack.

LND (n_ n2 - n3}
Leawk the resultant value from leogical
AND.

OR {nl n2 - n3)
Leave the resultant value from logical OR,

XOR {nl n2 - n3i)
Leave the resultant value from logical
Exclusive-0R.

—22-

5

{dl d2 — d3)
Add double numbers dl and d2. Leave the
gum d3 on the stark.

DNEGATE| (dl - d2}
Change the sign of topmost double number
on the stack.
DABS (dl1 - 42)
Leave the absolute value of the topmost
double number on the stack.
M= {nl n2 - d)
Maltiply two single rumbers nl and nz.
Leave the product (dotble number; 4 on
the stack.
M/ {d nl - n2 n3}
The double number 4 nl is divided by a
singiec number nl, Leave the remainder n2
and the guotient 73 on the stack. The sign
of the guotient 1s the same as that of the
dividend 4.
M/MOD {udl un2 - un3 ud4)
The unsigned double number udl is divided
by the unsigned number wu2. Leave the
remainder a3 and the unsigned double
number dquotient ud4.
MCD {(nl n2 - n3)
nl is divided by n2. Leave the remaindet
n3 on the stack. The sign ¢fr n3 1is tha
same as that cf nl.
Exawrple: Find the produclt of 35+7
Input s 7 ¢ .
Display 35 7 * . 245 OQFa..
Example: Find the quotient of 31/4
Input 31 4 / .
Display 31 4 /.7 OKn

-23-

You nay use the word MOD to display the remainder.

Input 31 4 MOD .
Display 11 4 MOD . 3 OKs

The word */ 1is orovided in FORTE tor calculation of
ratioc. The following example car be used to calcutate

percentage.

Input i % 188 */
Display % lBa T/ OFa
Input 675 15 %
Display 675 15 % ., 181 OK.

So far, we have used the number base of 18 {decimal} in
the examples. However, the system variable BASE may
convert the base number,

We have defined the following words in the FQRTH-MPF-
IP.

: HEX 16 BASE 1! ;

: DECIMAL 18 Baszs ! ;
lnput 15 .
Display ¢ . 16 OKa

In the following example Lhe base number is changed.

Input 16 HEX .
Display 16 HEX . 10 Oka

Once you have cenverted a hase number, the system will
kaep it as changed until you set a new base number or
turn on the power again.

Input 3¢ CECIMAL .
Display 30 DECIMAL . 48 OKa
Input 255 HEX . [=
Display 255 HEX . FF OKa

If you wish to use the base 8, you may define a word as
follows:
H QCTRL & BASE ! H

—24_

2.3 Stack Manipulation

FORTH is & well-designed, wversatile and effective
language. 1t always input/output numbers in last-in
[irst-out order. FORTH also provides a sct of aseful
words for stack manipulation, so that you may search a
spccifie number from a certain placge in stack, See the
following tazble.

T weords Stack Manipulation and Acticn
CUP Copy the tcpmost value on the
fn - n n) stack.

CROP Remove the topmost value on

fn -) the stacxk.

SWaP Change top two values on the
{nl n2 - nZ nl) stack.

CVER Copy the second value of the
{nl nz2 - nl n2 nl) stack.

RGOT Rotate top three valucs on the
(nl n2 n3 - n2 n3 nl)|stack. Bring the third one te

top-

?DUP Copy the topmost value if it
n - n(n}) is nan-zero.

PICK Copy the nlth value of <the
(nl - n2) stack,

ROLL Brino the nth value of the

n -) stack to the top.

DEPTH Place the numbers ©f current

{ - n) value on the stacX.

25WAP ‘Change two double numbers on
{dl d2 - dz dl) the stack.

2DUP Copy the topmost double number
(d - 4 4 on the stack.

2DROP Remove the topmost double

fd -) number on the stack.

-25-

Copy tne second double number

Z20VER

idl d2 - 41 42 dl) on the stack.

S print the cuntenls of the

(- stack without altering or
remcving the numbers from the
stack.

pefore you set out to learn how to use the words
copcerning the stack manipulation, vyou must understand

how the word .8 workxs. Ino short, the word .5 will let
you observe changes in the stack, Try the following
example:

Input 1 2 3 [=

Display 1 2 3 OKa

Input .5 =

pisplay 1 2 31 OKs

Execute .S does not chanue Lhe data in the stack at
all. In contrast, try the following:

Input . . .

Display s a2 s« 3 2 1 OFK4

The first . takes the topmost numher 3. The second and
the =hird take 2 and 1 respectively. No data remained
in the stack after sxecutbion of the word . idot).

You may practice the stack manipulation with relatec
words and uge .5 to examine its current status.

Input 1 2 3 DUP
Display 1 2 3 DUP OKa
Input .S

bisplay 1 2 3 3 OUKa
nput DROP .3 [
pisplay 1 2 3 OKa
input SWAP .5
Display 1 3 2 OKa

-26=

Taput OVER .S

pisplay 1 3 2 3 OKa
Input roT o U8
nisplay 1 2 3 3 QK

n PIC¥ 'allcws you to copy_nth rumber and place it on
the top of the stack. Continue the last example again:

Input 3 PICK .8 [
pisplay 1 2 3 3 2

=]

Ka

1 PICK has the same result as DUP. 2 PICK has khe same
rezult as OVLR.

n ROLL alluws voo tu rove the nth number cn top of thre
stack, 3 ROLL has Lhe same result as ROT. Z ROLL has
the same re=sult as SWAP.

Input 4 roviu .s [=
Cisplay 1 2 3 2 2 OK

=27=

Wwe use ‘the data stack to save the information to
transfer and manipulate in FORTI, It is necgssary to
set constants and wvariables if some data is used
frequently.

3.1 Constants

If a value is used frequently and related to a special
function, we may define a word with a name for the
value. The word is called a constant.

It is casy to set a constant. All you have to do is to
input a value First, and then key in the word CONSTANT.
tinally, give kthe word a nanme.

Tnput 7 CONSTANT D/% [==]
Display 7 CONSTANT D/Y OXa

oW, wa have added a constant word DB/¥ ko thoe
dictiopary. 1Its value is 7. whenever you necd the
value, give its name and the valus will ba placed on
the stack.

Input DY ATI.

Lisplay DAY . 7 OQKa

3.2 Variables

W& call a value that is changed frequently in a program
a variable. Key in the word VARIABLE, and then 1its
na.sne,

nput VARIABLE Scorn [=5
Disvlay VARIARLE SCORE OHa

The value of a variable is undefinite. You should give
1t a value before using 1t.

Input 66 SCORE t [=—]
Bisplay 68 SCORE ! OKa

-3

3.3 The Usage of Constants and Variables

The following table lists words for memory read/write.

wWords Stack Manipulatiocn and Action |

é (a - n)
tusii the wvalue n at address a on the

stack.

(na =)
Save the value n in address a.

ce {a - b)
Push the byte b at address a on the
stack.,

cl (ba =)
Save the byte b in address a.

2d (a = 4d)
Push the double number d at address
a on the stack,

21 (d a =)
Save the double number d in address
a.

+! {na -)

Add n to the number at address a.

)

{a -)
Fetcen the value at address a and
print it.

Wnen you point out the name of a variable, its address
is pushed on the stack. You should use @ to take its
value out,.

Input SCORE @ . [=
Display SCORE @ . 6@ OKa

The word ? is composed of two words @ and . (dot).

~12-

Input SCORE ?
nisplay SCORE 7?7 ad OKa

The wor¢ +! 1is derived from the word |

Input 28 SCORE +!
pisplay 20 SCORE +! DX

we nave added 29 to the vriginal number in the SCIRE
and save the resulbt back. The number is changed [rom 6@

Lo 84.

Input score 7 =
pisplay SCORE 7 20 OX
The word I makes things easy for you to chance the

value of 2 varilable. Tt also nhelps you ahznge the value
of a vconstant once you know its address. The word !
{tick) wmay f{ind out the address of a word.

Input roD/W .
Cisplay 'oD/W . -4B7T7 0K

Te change the value of a constant :

lnput 5 oD Sw
Display 5 ' DY ! CHa
Input oD/ .
Display D/W . 5 OKa

3.4 Arrays

The parameter Field addresss is saved on the skack upon
the execution of a variable defined with VARIABLE. We
may enlarge the varameter field for more numbzrs and
bytes, which become arrays. The main purpose is to save
the memory space.

Suppose we would like to build an array with 20 bytes;:

VARIABLE DATA 18 ALLOT
RNV 239 LRASE

18 ALLOT weens that we add 18 bytes, sturaye to the
reserved 2 byles in Lhe pacemester field, As illuslLratled
below:

33—

VARLANLE 2 18 {ALLOT)
DATA BYTE THE RBREST BYURS .
[) |
direction for rlictionary extonsion - next word
DATE 28 TRERASE is5 to clear the 20 oykss in the

paramcEzr Field into zerces.

the [ollewing words hel

Lo arrav.

CATA d

[3ATHA 2+

[

Thiy follawing wards heln

array.
143 DATA
28 DATA

!

24+

P you to retkrieve ths data 1in
Feteh the vatue of bhe flrst
nunber,

Foeloeh L value of Lhe scoond
nunber,

and 50 OGN ..a.an-

Yyou to save thoe valuge i this
Save the value of the firs:
number.

Save the value of tha sccond
nuaber,

—34-

Dieti nary,
Vocabulary and
Memory Map

4.1

The
méap-

FFFT

Tpad
FD3#
TogB

PG

IYETF[

2630
1rFr

Memory Map

fcllowing chact Is the MPF-IP's 64 K nemory
5YS5TLM (ISE
woRTH USER VARILABLE L_
Jp
F—Rﬁ LEEE
FCHTH ROSTUERN STATK LPE RAM
' DR
TERMINAL INPUT DUFFRR[L7EE
PN 1/C M RAM
{'53 Cany
FORTH DANTA STACK RBIFF
1/C M ROM
TORTH USLCR MICTIONARY nagy
2P
TASH
73FF
OPTION
EATENSICON PRT
MEMORY GEAA
S57EF
ESER
S92
FORTE-MPI-IF
4049

HMPE-1P
HMOMTTOR

-37-

FORTIH-MPF-IP uscs a memery space of 8k bytes, {ron
520£@ to S3FFF. Tha system will insert the word TASK at
FEEE af-cr Lhe machine is turned ar or the execution of
the cold start _(using the word COLDY. The aser's
dictipnary drows npward from FOOBR. TFor more destails
about TASK, please sce Chapter 9. SERGY through SFERE
ig a@llocrated for user variables, ccnsult appendix).

The extension memory ranges from S40@@ to SEFFF. You
can insert different kinds of additional option boards
when necessary. The grinter enables you to Detter
anderstand the functions of sore words. 'The 170 /M
gxtension board increasces the memory, facilitating the
FURTH to accomplish its editing features, ard control
the 1/¢ ports directly., FEPB makes a full set of
applicalion syslem possible, in addiblon Lo increasing
mMemor y .

4.2 Psoudo Disk in FORTH-MPF-IP

In & standard FORTH system, in crier vo store programs
and data the disk is used as a virtual memory. Tn this
way, Fhe system uses the disk memory to simulate the
nain memory. The user may use the read/write words
available in the main memory to manade information on
the disk. The disk is divided into blocks in FORTH.
Fach block has a sequential eozdinal number. The system
ase the ordinzl number to input and output the entire
block of information. When you input, the informatiocn
is read inte a disk buffer :n the main memory. The user
can then fetch the infcrmation or change the contents,
When this disk buffer is required to store other
intormation, the updated block will be cutput to its
sriginal location in the disk. Therefore, ycu can get
the data required from anywhere ©on Lhe disk, and need
aol worry about the details aof the read/write

-3 =

operations. The following tabhle lists the words for
disk mMENOLY-

Twords Stack Maripulation and Action

BLOCK fn - a)

Load the nth block data to a disk
buffer, and place the start address on
the stack.

DBIFFER {n - a)
Allocate a bulfer rto store the new
data of the nth block. Place :the bufler
address on the stack,

UPDATE -
Mark the updated daza in ~he lzst
used buffer.

SRVE [-)

GUFFERS3 Save the updated buffer data back to the
' disk.

EMDTY { - -

BUFFERS Clear all the dakta in baffer, thus aveoid

[heing saved back in the disk.

LIET fr - 1
Lecad -hz2 nth block character to a huffer
ard print it.

LOAD r - |
Lead the nth block character and compile
or execite.

5CR [- a; : -
The system-variable containing current
olock number.

FORTII-MEF-IP does not have a real disk, The:sofore, a
part of memory [2Bk bytes) is used as a pascudo cisk.
The 1length for cach pscudo digk is limited ko 512
bytes. 1Ip practice, many disk commands can not he used
Rithout proper mad:fication.

Hemory S6A66G ko STFPFF is divided into 56 blocks. The
ordinal number is from @ to 55. Usually, an extension

-39

memury is required (EPD or I/0 Mi for the use of pseudo
disk memory.

"he word BLOCK is defined as follows:
BLOCK HE MOD OFFSET @ 0+ 512 * FIRST + :

56 MOD limits the block numbers to thz range @ through
55. OFFSET is a user variable, 7ts initial value is @.
FIRST is a constant used to szve the starting address
of the pseudc disk. Its initial value is $8¢¢90. FIRST +
enab’es you to obtain the address of the first by:ze - of
the block.

The user may change the values ¢f .OFFSET and FIRST to
adjust the location of psewde disk buffer in
ceerdination wilh the real meinory address of the
system.

1f you nave only the system unmit of MPF-IP ezvailable,
then the RAM covere $FH38 to SEFFF, vwvhich does not fall
within the range of the pseudo disk. In this case, you
ray change the value of FIRST, =0 tha:t the pseudo diszk
start wizh address you nead.

Input HEX

Display HEX OXa

Input @ BLOCK U,
Display BLOCK U. B200 OKa
input F20¢ (FIRST ! [=
Display F20% CFIRST ! OKa

UFIRST 1% the user variablz for FIRST. Save the value
into UFIR3T and you can fetch the value from UFIRST
upon execution of TIRST.

Input g BLocK vu. (=]

Display g BLOCK U. F238 OK

The dictionary grows upward from SE@EF. The data ztack
qoes down from SFDE@. The pseudo disk is between the
two. avoid any overlap, otherwise the system's
cperation may be affected.

IF I/0 M board ig implemented and its RAM address is
from $C@¢E te SDT7FF, then the ordinal numder of pseudo

-40-

disk blocks will range from $28 (hex, to 52C , you may
use these crdinal numbers cdirectly, or charge OFFSET so
that S0@BE becomes a pseudo disk bleock with an ordinal
numher of E. You may do it with FIRST a3 well,.

1nput coLd =

pisplay *% %% PORTH-MPF—-TpP****
input HEX

pisplay HEX ORa

Input 20 BLOCK U,
pDisplay 20 BLOCK U, C@@0 OXe
Input 26 OFFSET ! =
pisplay 26 OrpsiET ! OKs

Tnput p BLOCK U.
Display g PRBLOCKE U. CfH3 OK.

amond the disk commands of FORTH-KPF-IP, the word BLOCK
place the start address of the corresponding block ointa
the stack. BUFFER works the same way BLOCK does, while
EMETY-BIFFERS clears the pseudo disk memory (ranging
from $8HPEE througk SREFFF). The reraining werds, such as
UPDATE, +BUF, FLUSH and R/W has nc effect.

4.3 Print the Message

The word . {dot) is used to print a number on the
stack. 7Tt is necessary to use ancother word to print a
messadqe,

Input ¢cR ." I AN MPP-1P "

display I &AM MEF-IP OKa

Separated from ~he fellowing messages by a space, .Y

{dot—quote) is used to print the message, until
{delimiter) is encountered,

4.4 Define a New Word

The poRTH system allows ycu te deline your own words.
These words work the same way as those primitive words
supplied by the languwage. The names of the user defined
word can contain up to 31 characters. All ASCIIT
charactsrs can be used, except space, dack-space, Hull
and CR.

-d] -

A new word is defined as follows: start with a colon
(:), which is followed by a space, and then the name of

a new word,

followed again by another space, after

that is the events to be executed, finally a semicolon
indicates the end of the new word.

(;), which

Input
Display

Input
Display

Input
Display

+ TEST
: TEST
8 TEST
8 TEST
9 TEST
5 TEST

4.5 Structure

high-level

of a high-level word.

word,

.
r
-
’

OKa

of FORTH Words

A1l FORTH words has the same structure, whether it is a
a low-level word, a constant, or a
variable. The following table illustrates the structure

B4

1. ’ [| 1] | @ ’] l 1 r @ 1 @
T

=W m

NAME FIELD

LINK FIELD

CODE FIELD

ADDRESS

ADDRESS

PARAMETER FIELD

AE
37

ADDRESS

91

~

ADDRESS

-2

gach word has fouar ficlds: name field, link Field, code
field, and parameter field,

Thke first one is the name fisld, Itz 1length varies
according t¢ the length of words name. The first byte
specifies the number of characters of tha word's name.
Bit 7 (MSB) of the first as well zs the last bytes of
the name field are set to 1 to mark the rarge of the
name field. We call bit 6 of the first byte the
precedence bit, which is used to control compiling. The
precedence bit 1is sek to 1 if compiler directives
should be executed immediztely to carry out a specific
compiling. However, precedencz2 btit is usually set to
. In this case, its address is compiled into
dictionary and becomes a part of high level words
during compilicg.

Bit 5 of the firsk byts is the smudgs bil. Before the
word is well defined, +the smudge bit can prolect the
compiler from compiling the unfinished word., The
smudge bit is cleared to ke § when 2 high lovel word is
defined, o that it can be coempiled or interpreted for

gx2rikion,

Tha 1link fileld saves an acdress, whirh {8 Etre name
field address of the previcus word in the dicticnary.
Name field and link field combines all words in the
dictionary. Wher you wish to find out a specific word,
FORTH follows the sequential stream, and compares the
input name with the nams field of sach word. If they
are different, jump to the neme fi=ld of the previous
wozrd from the link field and make comparison with the
next word,

The code field saves an address, which pointed to a
machine code rovutlne, The machine-code are executed
before executing this word, Different code fields
corregspond te different machine-code ruoulinwes., These
machine-code routines are called inlLerpreter or inner
interpreter for the FORTH words.,

Tie last one is the parameter field., 1Its length varies
With different words. When exectting inner interpreter,
the inner interpreter makes uce of the data in the
Barameter {field to acconplish the task defined by the
word. The wvalues of constants and variables are saved
In this field. The high level parameter fie.d saves a
series of code field addresses of other words. The high

-43-

level word interpreter finds out the addresses in order
and executes the words. That is why we call high level
word interpreter the address interpreter.

The parameter field of low level words contains a
series of machine codes. The code field address
contains the parameter field address. Therefore, when
executing a low level word, vyou execute the machine
code program in the parameter field directly. The
program 1is the code interpreter of the low level word
itself.

4.6 The Dictionary

As described in the previous section, all the words in
FORTH are connected one after another by name field and
link field. Its structure is illustrated as follows:

the previous wordﬁ—]

name field|é——
Iink field __,

name field|é———

in 1e

the last défined word

&——— HERE
(the next usable address
for words)

-84~

WERE i1s a FORTH word. It places the next usable address
on the stack. Its value will change with the increasing
number of the words,

sfter you have defined new words in FORTH, there are
rimes that you would like to erase them, In this case,
use the word FORGET. FORGET erases the word and the
watds definad later than that.

vyou may define a dumty word before the words for the
rast.

Lnput : DUMMY ;
pisplay : DUMMY ; OKa

then, oxocuting FORCET DIUMMY will erase everything
defined later than the word DUMMY.

[nput = TEST1 S5 + . ;
Display + TEST1I £ + . ; OKa
Input : TEST2 5 * .
Display : TEST2 5 * . ; OX%
Input FORGET DUMMY ——|
Display FORGET DUMMY OKa

TE5T1 and TESTZ are also erased after execuatirg FORGET
DUMMY .

Structural
Conditional Control

<l

rThe structural proyram means tha: in the program the
logical E_ow suould fellow one of the three ways listed
halow:

.) Consecutive Process: operating step by step., Thig is
reqularly used in high level worcs.

2} Conditienal Branch: If the condition is true, da
event A, olhzrwise du event B; event Z Ffecllows 2 or B,
as 1llustrated below:

T

condition
falge true

1) Lood: Repeat event A until a ceondition is true, and
then do event B, as _llustrzted below:

false

Ccondition

FORTF provides the use with words of all these Lthree
types, waich enable yau o write structural programs.,

5.1 Conditional Branch

The condi tional branch gives the camputer the
Capability to make decisions. In FORTH, it is used to
test the value en the top of the stack and decide if it
is necessary to change the order of execution.

-39-

Eelow we will show vou how it works.
1 DJEFINITION Define a new word.

CONDTTTON Produce a logical flag
{zero or non-zere) and
prlace it on the stack.

IF Fetch the flag and test
T+IS it, if ik is non-zero,
execuse THIS.

ELSE Execute THAT, if the flag
TRAT is ©.

THEN Countinue willh Lhe following
CCHNTIHUE words.

H The ond,

Condiciorn = @ Condiziosn = €

[this]

IF} ELSE and 'THEN are wused :1n high level word
definitions., &All words between IF and THEN combins to
make a "structure", IF tests the wvalue on the top of

the stack. If it 1s not zero, the words cetween IF and
THEN will bw execvuted., IL It is zero, execulion will
juap Lo Lhe words belwsszn ELSE and TIEN, ard <coatinue
with words that follow.

IF includes a test valua B=, which will use wuo the
topmost value (logical flag). 1IZ this flag is to be
used again betueen IF and THEN, vou have tao duplizake
an¢ save it before exescoting TF.

The “pllowing 1s another conceptual diagram for
conditional branch. ELSE may ‘be omitted in the
structure IF.,.ELST.,.THEN, if the test result 1isg
false, program fiew skips the werds between IF,..THEN
to execute the words after TEEN.

-5@-

FALGE

()

TR0

5.2 Compare Words

Compare words are usually divided inte thresz kinds.

.} Words ased to test the topmost value on the
stack, ocuch as @=, B>, cnd 2<.

2) wWords used to test the two topmost velues on the
stack, snch as =, >, and <.

3) Words used to test 3Z bits double number on the
stack, such as D<.

Al1] compare words remove the value they reguire from
the stack and return a flag. If the result is true, 1
[stands for true) is returned to the stack. If the
result 1s false, @ (stands fecr false) 1s returned to
the stack, ''he word NOT reverses the flag, that is,
change ¢ to 1, and 1 to @,

Suppose you wish to test a condilLion which is not
Smaller than 6 (largsr than 0 or eguals to @), you may
define it as fcllows:

>= @< NOT

—_

Results from compariscn may be processed wilh logical
operators such as AND, OR and XOR. Flags as the results
of compariscn can be treated as regular numbers and
processed with arithmetic operators suchk as +, -, * and

s
The = {subtracktinon) aperatory may be used A8 CcomMpare
wovd as well. Tae result of suntracticn between two

equal numbers ig definitely zero. Jtherwise, the result
will be non-zers (which implies a true £flag}. The
result is not necessarily "1", though.

The follcwing zazle lists compare words in FORTH-MPF-
IP. These words are usuvally used beafore IF and UNTIL
and give them a flag, which is used to select the
execution sequence thereafter.

Words Stack Maripulation and rction

< {nl n2 - f}
1f nl<nz, £-1. Ctherwlisc, f=¢.

= (nL n2 - f)
If nl=n2, f=1,

p (nl n2 -)
Tf nli»n2, f=1,

7< m - 1)
1f n<g, £=1.

B= (o - f)
If n=@, t=1.

U> (n - 1)
If n>@, £=1.

D< (dL a2z - f)
If dl<d2, f=1.

U< (un]l unZ -}
If the double number unld<un2, £=1.

NCT (f1 = £2)
Reverse the va_ue 5f the flag on the
stack.

-R—

5.3 Loop

-oop he&s two basic types: tinitsz and indefinite, The
finite loop is set to repeat a certain numder of times.
the incelinite lovp continue to circulate cntil a

condition is met vr a specific event develops. Among
+nz indefinite 1loops, you will find one that will
reoeat endlessly until an exlernal force is

applied. Thiz is generally called an inliuite loop.

scme FCRTH words can contain different kinds of loops
in the word definitiong, in order to hard.c a seguence
of commands ko be executed repeatedly. These structurcs
can only be defined in the nev words. Tkey must not be
input from the keyboard, and execnted immediately,
otherwise an error wil. develcp.

5.3.1 Finite Loop

The finite 1lcop can be classified into two kinds
according to thz way the loop index increments:

1} limit index DO words LQOP

Eevhi time the words between DU and LOOP are exscuted,
the index incremenis by ovne, and then exscution
continues urtil the index eguals tev the limit.

The loop index and the limit are saved in the return
stack temperarily to aveid problems arising from using
the data stack when executing wordes betwcen DO and
LOoP,

2) limit index DO words incr +1.0O0OP

The index increments by incr for ezch loop until the
index equals to is equal than the limi=:.

[f the INCZR is negative, the limit should be smaller
than the index. The index decrements by INCR for each
loop until the index is smaller than or equal to the
limic,

DO, LOOP, and +LOOP should be used in the definition.

They must not be executed immediately. Otherwice, the
System will send back an error messéye.

=h3-

Define the following word in your system:
TESTL 5 ©® DO I . LOGP ;

The two numbers before DO are used to ccntrol the loop.
¢ is the initial walue of the jindex. 5 is thz limik., 3
and 5 will be saved in the return stack upon execution
of DD. The word I will copy the index on the data
stack, anc the word prints it. When execution cones
to LOOP, the current value ot the index incrzsmerts and
compares it wilth the limic., 1f 1t exceeds or equals to
the Yimit, the loop stops, the limlt and the index au
the return slack will bLe Tenoved, and execution
continues with the words after LoOoOP., If the index dees
nokt exceec the limit, execution will jump to the word
D¢ and, executesthe words petween DO and LOOP again,

Input TEST1

Display TESTY €& 1 2 3 4 0O
IThe loop stops immediztely when the limit egquals 5.
Try the following wcrd:
TESTZ 14¢ oo I . 3 +L00P
When wusing the wore +LOOP, 1f the INCR 15 not a

negztive number (in this d=firition, the INCR is 3},
the index should be smaller than the limit.

-

Input TEST2
Display TEST2 B 2 6 9 OFKa

When the index equals 9, another increment at the +LOOP
will make the amount 12, which exceeds the 1limit and
ends the loop.

Define the following word:

TEST3 -4 @ DO I . -1 +L3OP ;

If the INCR is negative, the index should be larcer
than the limit.

Input TEST3 [
Display TEST3 B -L -2 =3 OKe

The loop stops when the index is smaller than or eguals

=54~

the limit.

The return stack saves the limit and the index’ betwcen
the words DO-LOOP. They will be removed automatically
upon completion of the lpop. The systen will lese
centrol 1f there are operdaticns affecting the refturn
gtack during execution of the DO-LOCP. The words ER@,

>3, and Ry may access the returp stack for data
reguired, Be careful when you use these words. R>
should follow >R, co that the contents of the return

stack will not change.

The fellowing are two imperkant rules to remember when
you use DO-LOOCP.

13p0 should be followed by LIOP or +LOOF imn a
definition.

2y The words between DO and LOOP can not changs the
conptents of the stack, that is , the stacks should
remain intact against the executior. There might be
exceptions in specific occasions, but they should b
aveided if there are other ways.

5.3.2 Indefinite Loop .

1ne indefinite loop has also twc typec: one is
HEGIN... .UNTIL, anether is DRGIN.,..WHILE.,.REPEAT.

1) BEGIN words condition OUNTIL

Exectte the words continuously until condition produces
a true flag on the stack,

7) RREGTN wordsl condition WHILE wordsZ REZEAT
Execute wordsl at least once, then if the condition is
true, execute words? and jump back to execute wordsl at
REPEAT. If the condition is false, the loop ends and
jumps to the words after REPEAT.
Try to define the following words:

TEST4 BEGIN KEY DUP EMIT ©3 = UNTIL
KEY reads +the ASCII code of a character from the

keyboard, and EMIT prints the character. The loop ends
when Lhe character is A {(ASCII code of A is 65).

~55-

Input rEsT1 == BKCFA
Display T5Td BKCFA OK

5,3.3 Infinite Loop

BEGIN...UNTIL mnay be used to ser uap an infinite loco.
Conzider the following structure:

e BEGIN O ONTIL ;

The £flag (G) that UNTIL examines is always false,
therafore, the loop will never come to an end. We heve
an infinite loop structure unigue to FORTH-HPF-IP.

H wee.. BEGIN AGAIN ;

The words between BECIN and AGRIN will be executed over
and over again.

The infinite loop is usually used in a complete set of
oparatiry systsm as a maip program. The inpuat device
reads the data firsk. The system then processes it, and
outputs the data. Finally, execution starts from the
peginning anew.

ag decerihed in the cection of the indefinite locp, the
stack must not be changed, or the system will run out
of order,

In the following list, you will finé the words used to
set up the loosp and control the return stack.

Viords Stack Manipulaticn and Action

IF XXX IF = E =)

ELSE ¥YYY | 1f f dues nol equal @, execute
THEN ZZZ XXX, otherwise execute Y¥Y and then

2%%., ELSZ YY¥Y may not bc uased.

DO XXX O : (nl n2 -)

LOOP LOOP : [=)

Set up a loeop structure. The index 1is
incremented from nZ2 to nl-1.

DO XXX DO = (nl n2 = 3}

+LOOP +LOOP © (n3 -)
is DO...LOOP, n3 is the INCR of the
index.

56—

LEAVE

(-

Set the limit equal to index.
The loor ends at the next LOOP or
+LOOP =ncountered,

BEGIN XXX UNTIL : (f -)

UNTIL Set wup an indefinite 1loop. If the
flag is ¥, start the loup all uver
again at UNTIL.

DEG:N XXX WHILE : (f -)

WHILE YYY Set up an indefinite locp. If the

REPEAT flag i= a when executing WHILE,
Junp to the words after REDEAT and
enc the loop, otherwise exerute
YYY.

BEGIN XXX Zet up an Infinite loop.

AGAIN

END Same as UNTIL. o

ENDIF Same as THEN.

>R (n -}
Remove the topmest valae on the
stack, and save it on the return
stack.

R> { - n)
Remove the wvalue from the return
stack, and save it to the data stack.

R@ { - n)
Copy the topmost value on the return
stack to the data stack.

I { = 1)
As RE, used in DO-LOOP and put the
index on the data stack.

J { - 1}

Used in DO-LOOP, and copy the index
of the outside loop to the data
stack.

-57-

HEX OK

396 20 DUMP
jgge FC 25 AC 2A
3984 BF 24 68 2A
jege 3B 29 91 3
368C C7 4C 49 54
391¢ 45 52 41 CC
3¢l14 EE 2F 87 25
egls 22 27 D 25
idlc pa 2@ 8)

OK

We wusually use a string buffer to handle strings. The
word PAD can get the address of the string buffer.

: PAD HERE, 68 + ;

PAD is a memory range in the dictionmary. It moves as
the dictionary changes. The data in PAD should be used
before defining a new word, otherwise we can not be
sure if the original data still exists.

6.2 Single Character Input/Output

KEY 1is a basic input gommand in FORTH. When KEY is
executed, the system will wait for you to input a
character, and then push its ASCII code on the stack.
You may use the ASCII1 code when necessary later.

Input KEY
Display KEY |

The cursor is displayed on the screen while you can not
find 0OK. This is Dbecause the word KEY 1is not yet
Finished. The syslem waits for vyou to input a
character,

Input A
Display KEY OKa

The character A is not displayed, but the ASCII code
for the character A is placed on the stack.

Input . =3

Display . 65 OKa

The word EMIT removes the ASCIT code from the stack and
prints its corresponding character.

-62=

.....
.....

Printing Strings
and Numbers

a string is a set of characters and symbels, saved in
memory as ABCII codes. The string is the onlv way that
the computer input/output the message to communicate
with the operators. Words and data are input as
strings. The computer interprets them as instructicn
codes. It also transcribes the data into strings when
outputting the results.

Users are reguested to contrel the printing formats and
locations for the numbers. In FORTH, we may use the
string combination to control the conversion of numbers
and printing format.

6.1 Strings Manipulating Words

1he following table lists some basic string commands.
They are used to set or move the string data.

Words Stack Manipulation and Actien

CMOVE {al a2 n -)
Move n bytes from address al to address a2.

FILL {a nb =)
Fill memory beginning at address a with a
sequence n copies of b.

ERASE (a n =)
Erase n bytes starting from address a.

BLANKS |(a n -)
Fill an area of memory beginning at address

a with n blanks (ASCII code = 32}).

DUMP {an =)

Print n bytes starting from address a.

The following example shows the result obtained by
using DUMP,

-6l~

HEX OK

30086 20 DUMP
36e6¢ FC 25 AC 2A
3084 B8F 24 6@ 2
3668 3E 29 91 23
366C C7 4C 49 54
3618 45 52 41 cCC
3614 EE 2F 87 25
3@18 22 27 D 25
3¢1C DA 20 8 @

OK

We usually use a string buffer to handle strings. The
word PAD can get the address of the string buffer.

¢ PAD HERE, 68 + ;

PAD is a memory range in the dictionary. It moves as
the dictionary changes. The data in PAD should be used
before defining a new word, otherwise we can not be |
sure if the original data still exists,]

6.2 Single Character Input/Output

KEY is a basic input command in FORTH. When KEY is
executed, the system will wait for you to input a
character, and then push its ASCII code on the stack,
You may use the ASCII code when necessary later.

Input KEY
Display KEY

The cursor is displayed on the screen while you can not
find OK. This is because the word KEY is not yet
finished, The system waits for you to input a
character.

Input A
Display KEY OKa

The character A is not displayed, but the ASCII code
for the character A is placed on the stack.

Input . EEB

Display . 65 OKa

The word EMIT removes the ASCII code from the stack and
prints its corresponding character.

-62=

Input
Display

et [==)

EMIT & OHs

6.3 String Input/QOutput

the word ¥ YPE may output a whole string,

It needs two

parameters: one 1s the address of the string in memory,
the other is the string langth (number of characters).

Example:

PAD 16 TYPC

prints 16 characters stored in the PAD buffex.

The following tanle contains words for string output.

Words

Stack Manipulation and Acktion

LUxxx®

(=)
Print the string XXX,
used as a delimiter.

the last " is

TYPE

an -)
Print the n bytes starting from
address a.

=TRAILZING

ra nl = a n2)

Remove Ltrailing DLlanks io the
stzing ¢f nl character sterling from
address a, Reduce nl to n? for prianting
by using TYPE,

MESSAGE

(n -}

bPrinkt the cnaracters on the nth line
in the 4th hloek. n may ha negative ar
larger than 15, s0 as to print
characters cut of the 4th block., If
WARNING contains ¢, this commané only
prints n, If WARNINSZ contalins 1,
prints characters stored in the disk.

PAD

- a)

Push the starting addresss of string
buffer a cn tne stack. The string
buffer moves with top of the dictionary.
Input andé output strings are saved in
the strinc buffer for future use.

—-63-

TcounT (a - a+ 1 n)
Place the string length n stecred in

the address a on the stack, and add
one to a. The results may be used by
word TYPE for printing.

EMIT (e =)

Send a character to terminal whose

ASCII code 1is on the stack to
terminal,

CR { =)
Position the cursor to the beginning|
of the next line,

The basic word for inputting a string is EXPECT. It is
used in the form below:

addr n EXPECT

As thHis word is executed, FORTH will wait For the user
to 1input n characters and save the string in memory
starting frem addr. We may use tht word to store the
input string anywhere we want in the memory.

Input HEX
Display HEX OFa
Input F4@G 2 EXPECT

Display F468 2 EXPECT

Same as KEY, OK does not display on the screen. This
indicates the execution of EXPECT is not finished yet.

Inpukt -
Display F4u0B 2 BEXPECT A
Inpuk B

Display F498 2 EXPECT ABOKa
We can use DUMP to examine the content in the memory.
F400 & DUMP

F408 41 42 @ @
CK

—-54 =

rhe FORTH aas a special memory range for saving input
~haracters for text interpreter.It is called a terminal
input buffer (TIB). The starting address 15 gaved in
the systen variable TIB., The word that inputs string by
1sing the buffer is QUERY.

GUERY TIE @ 38 LCXPECT @ >IN . ;

QUERY receives 8¢ characters or all the chsracters
comning before Ck, and input then tu TIB., It sets Lhe
character pointer »IN to @ for interzrebting., The
follewing table contains some basic words for inpuk in
thz system.

Twords Stack Manipulation and Action
KEY (- <)
Read the data &nd push its ASCIT code to
the stack.
?TERMINAL | {- ©)

1 is put on the stack if a key is
pressed; @ is put on the stack if no key
is pressed.

EXFLCT ({an =)
Input n characters Irom keyboard and save
it in the wmemory starting from address a.

OUERY [-3
Pead a line of characters (88 at wmost),
and save it in the TIDB.

6.4 Printing Format for Numbers

The fundamental word feor printing npunk2rs 15 D.R.
Farlier in thkis book, we have introduced some words
such as D.R, D., U., .R, ., and ?. Hcwever, these WoIrds
can priot numbers in the form of integer, they can not
insert special symbols such as decimal point or couua.

Scmetimes w2 have to insert a specific symbol, such as,

the dush (-),the dollar sign (5), the slash {(/y, and
the colon (:}. 5

=55—

FORTH orovides words for printing numbers as
illustrated in the following table.

Woxds Stack Manipulation and Action

< <#
Begin conversion of a value to a numeric

string.

¥ (udl = ud2)

Evaluate the number feollowing udl, the
result ud2 is placed on the stack. The
number is added to the output numeric
string.

#5 (ud - 0 @)
Convert all the ud until the remalnder is
a zero, The number evaluated is added to

the output string.

HOLD (c =)
Add the character c to the output string.

S5IGHN n = i}
1f n<@, add a minus sign to the

output string.

#> (d === a n)
Drop the double number 4. Place the

address of output number string a and
number of characters n on the stack.

FORTH converts the saved values to the number string
according to the following procedure.

1} The numbers are converted in the order from the
right to the left.

2) The wvalue For conversion on the stack must be a
double number.

Consult the following table which describes a numper of
ways to arrange data in printable format,

~§6=

Tvalue Steps to takoe baforco <{

to print ’

16 bit Add ¢ to make a 32-bit double number.
numbﬁf

15 bit DUP ABS 0§

single Save the signs [plus or minusy on the
nurber 3-d position of the stack, to be used

later by SIGN.

32 bit None. o T
double

number

31 bit SWAE OVEERE DAES

double Save the signs.

number

nefine the following word:

r 8D, SWAP OQVER DARS <f 4§ # 46 HOLD
35 16 HOLD SIGH $D
TYPE SPACE ;

Save & 3) bit double number on th2 stack before uasirg
5D.. SWAP OQVER DADS convert the value on the stack to a
double number, and reserve the sign. <# sets a buffer
to save the bytes converted from tne number vyou want to
print,

uses the curzent base +to convert a digit to a
character, and saves it in the buffer. 1hs digit will
be removed froum the original number. ¥or example,
suopose 782 is in the stack. Alter executing i, the
character 9 will be put in the buffer, and 78 is sLill
on the stazk. .

46 HOLD inserts a decimal peint in the buffer (46 is
the ASC1I ecade for . (dot}l.

15 converts the numbers remaired on the stack to the
bytes in the buffer and remains a double number A on
he stack.

16 HCLD adds a "$" (dellar sign) in the buffer (36 is

=67 =

the ASCII code for "&").

If the 3rd value on the stack is negative, the word
SIGN puts the character "-" {minus) in the bulfer and
removes the sign of the value.

#> ends the conversion, the double number 8 is removed,
but the starl address in the buffer and the length
aller conversion rewmaln on stack,

TYPE uses the address and length left 2y #> to output
the result of conversion in the huffer,

Try the following examples:

Input 3456, 8D,

Display 3456, §95. 534,56 OKa

Input . =123. $D.
Display -123. $>. -§1.23 CKa

—-h—-

7.1 Editing a Program

uynder the interpreter, we can key in a program to
define new words,., However, the completed definition can
not be called back for modification, Editing words
allow us te save the program's contents in a magnetic
tape for later compiling and modification.

we discussed the psceudo disk memory in Chapter 4. The
program's contents is saved in the pseudo disk memory
as blocks. Each block contains 512 characters in 16
lines with 32 characters in each line. We allocate 28K
bytes in system as pegeudo disk memory, which is divided
into 56 blocks. Its serial number is from @ teo 55.

pefore editing a program, you have to know the RAM
range in the system. The initial value for pseudo disk
memory starts from $8006@. You can set the wvalue of
OFFSET and UFIRST tc assure that the program is edited
in the effective RAM range.

You have to call EDITOR before editing. EDITCR 1is a
vocabulary word. It sets the context vocabulary as
editing vocabulary, so that we may use the editing
words in the system.

I1f an 1/0 M board is installed to the system. Its RAM
range 1is from $C@P@P to SD7FF. Use the word LIST to
select a pseudo disk memory for editing.

Input 32 rp1st[=d]

Now, the 32nd block is selected for editing (starting
from the address $C@@@), and prints the characters on
32nd bloek on the screen., (It will print the data on
the printer,if there is any}. 22 is saved in the system
variable SCR, that is, it is set as the current block,
All editing words change the data only in this block.

The word L fetches the serial number of the block from

SCR and uses the word LIST to print it. Key in the word
L to display the characters in the current block.

-71l=

7.2 Line Editing Words

The editing words input strings to the current block or
modify its characters. Mest words are used ke handle
strings. Editing words wusually save strings in a
special string buffer. You obtain the starting address
of the buffer from the word PAD.

The characters saved in PAD can be used repeatedly so
that you do not have to key in each time you use them.
PAD saves temporarily the strings for input, insertion,
deletion, and search.

The editing cursor is used to point out the current
editing byte symbolized with a on the screen, and 4 on
the printer., 1Its value is from @ to 511, saved in
system variable R#, which records the line number and
character number under editing. Many editing words use
the cursor for subseguent editing.

We call words T, P, U, X line editing words, which are
used to manage an entire line of data (32 bytes).

The word to set the nth line as the current line is :
n T EHH'

n is from @ to 15, which indicates the 1line number
currently under editing and prints the 1line. &t the
same time, the entire line of characters are saved in
PAD. Editing cursor ({value in R#) is also placed before
the first character of the nth line.

The word T is usually used to move the cursor to a
specific location for subseguent editing.

The word to iﬁput a line of characters on a specific
line is:

P XXXX

(XXXX represents a string, with a length of up to 32
bytes). The string XXXX is input in the line that the
cursor is located and replace (overwrites) the
original characters. XXXX is also saved in PAD buffer.
If you input the carriage return ([=J]) immediately
after P, the characters in PAD are moved without
changes to the line currently under editing. If you

=72~

insert two spaces bobween p and . charagters in
pap and Lhe curient line will all be vlesred tu spaces.

as the word P 13 an independent command, it has to ba
delimited from tha strings with a spacc, while the
second space will be recarded as part of Ehe string.
The word P has the following three usages:

1y B ¥YNEX Puk X¥¥Y inm the current line.

2y p = Move characters in 2a0 to <he
(NO space in current line.
betweean)

3} P Zlear PAD and current lige.

{Two Qor more
spaces in between)

The word U 1is wused to input a 1lire of characters
immediately wunder the current line, and push the
subscguent lines down one line.

U XXEX
Characters on thoe 15¢7 line will be erased.

The word 1T has also btarae vsages:

1) 0 KKXX Inpuk X¥XXX immediately under the
current linz. Lines move the
subseguent down one line and
clear the 15th line.

2y U Move string in PAD immediately
under the current line. Move the
sabseguenkt lines down one line.

L owu Clear PAD and the current line.
Move the suvsegquent lines down

ane line.

To delete the current line, type

x
Tbe werd X deletes the current line. The subsecuent
lines "scroll" up one line. The last {15th) line is

filled with spaces. The characters on the deleated line
are saved 1n PAD huffer.

-73=

7.3 Editing a String

String editing words include F, D, TILL, I. To modify a
small section in a line, they can effectively search,
add, or delete a section of characters or strings.,

F XXXX

The word F searches for the string XXXX starting from
the cursor's current position. If it finds the taxget,
it prints the entire line containing the string, and
moves the cursor positioned after the string. If it
does not, it prints an error message, and moves the
cursor to the beginning of the block.

n xxxx [=4]

The word D searches for the string XXXX from the
characters aftexr the cursor and deletes it. The cursor
is placed after the deleted string., If the target
string is not in the block, it prints an error message,
and moves the cursor to the beginning of the block.

TILL XXXX

The word TILL deletes data in the range from the cursor
to the XXXX (inclusive).

I XXXX

The word T inserts the string xXXX after khe current
position of the cursor, and moves the cursor positioned
after the string.

The following table lists editing words in the FORTH-
MPF-1P.

Words Stack Manipulation and Action

T (n =)

Print the nth line and move the
cursor to the beginning of the
line. 2

—74-

P XXX (-
Place the string XXX eon the current
line.

O XXX (=)
Insert XXXX under the current line.
Move Lthe subsequent lines down one
line.

X (=)
Delete the current line. Move the
subsequent lines up one 1line. The
deleted characters are saved in
PAD.

F XXXX { % 3
Search for the string ¥xX¥ from the
cursor position. The curser is
placed after the target string. 1If
the string is not found, the cursor
moves to the beginning of the line
g.

D XXXX (=)
Delete ~ the string XXX found
somewhere after the curser pesition.

I XXXX | =}
Place the string XxXX after the
Cursor.

TILL XXX (=)
Delete characters in the range from
the cursor and the string
({inclusive).

COPY - {nl n2 - }
Copy data in block nl to n2.

CLEAR (n =)
Clear the nth block.

TOP (-)
Move the cursor toc the beginning
of line Q.

-7

L (-
Reprint the current block.

LIST {n -)
Print the nth block and set it as

current bleck.

INDEX (nl n2 -}

Print characters on line ¢ of each
block starting fron block nl
through block n2.

CONTROL 1I|(n =)
Move the cursor n bytes. CONTROL I

is the TAB key.

Execution of a cold start on the FORTH=-MPF=-IF will
clear the memory from $806G0 through SEFFF to zeros
(ASCII NULL). You have to edit data lipne by line
starting from line @. FORTH steps compiling when it
encounters an ASCII NULL, and no compiling will be
executed after a null line i1s encountered.

IE the block you are editing is not cleared (e.g. move |
the editing block outside of $8@0¢ - SEFFF by the use
of OFFSET or UFIRST), the last line should include the
word ;S or EXIT to stop editing. ;S and EXIT have the
same effect that ASCII NULL does,

|
After editing, you may use the word TWRITE to save the
data in pseudo disk to the magnetic tape, The procedure
is as follows:

Suppcse you want to save the data in block 1 through
block 5 to the tape with a filename of TEST.

[nput 1 5 TWRITE [=9
Display < NAME ">=.

Input TEST
Display < NAME >=TESTa

Set the recorder ready and press the RECORD key, and
finally press EEEH; the MPF-IP sends out a sound and
begins to transmit the data to the tape until the
screen displays:

76~

¢ WAME >=TREST O
which indicates the end of transmission.

The word TREAD reads the data on the tape to the pseudo
Adisk. Remember that the value of OFFSET and JFIRST nust
be the same as belorce to avoid loading the data to
incorrect locations,

Input TREAD
Display < NAML >=a
Input TEST

Display < NARME »=TESTa
Input

Display R T

which means the system is waiting {or inpul of data.
Please refer to MPF-IP operation manual on saving =to
ard reading from the tape, and the format Far the
stored datz.

7.4 Compiling FORTH Words

If the program is written in tiac memory block of the
pseudo disk, be sure to compile the words in the block
to the dictienary before you perform the test.

Suppese you want to compile the wards in the first
bleck.

Input 1 LOAD

Words 1n the first block will be executed in sequence,
any newly defined words will be added to tre
dictionary after compilation. :

Very few application programg can be written and fit in
ne mewory block, FORTH-MPF-IP has a word =+ |, which
Ctarries the coapilation ahead into the next consecitive
olock until it meets 78, EXIT, or ASCII NULL.

Printing the original program on the printer helps the
iSer examine its contexts to facilitate modification
and test during compilation., The werd LIST prints a
olock's data on the printer in ap area of 15 lines with
32 characrers on each line.

-7 =

For example: 3 LIST

The word nl n2 INDEX prints the characters in line ¢ of
each block from blocks nl through n2. Therefore, line
@ is usually used as a remark to explaln the content of
the block.

=78~

8.1 Low Level Words in FORTH

FORTH allows the user to define new words in high level
as well as low level languages. Tt provides a primitive
Assemblzr: words , and C,. They ean move a 16-bit
number or an B-bit number or the stack to =:he upper
pert of the dictionary. These two words enable us to
establish every low-level word, .

Lew Zevel werds in FORTH start with CoODE and end with
EKND-COD=. Bolow are- their definitiens:

CODE ?EXEC CREATE ICGE ;

: END-CODE CUREENT 2 CONTEXT ! PLAEC TCEP
SMODCE

The last word in a low-leve. word must jump to the word
NEXT s0 as to execute the next word. Take a Taak on
this word;

HEX
i NEXT @Cc3 C, 2978 ,

AC3 is & JP instruction code of %-89¢ CPU, {refer to 2-
39 Assembly Language Progranming Manual) 2878 is an
enlry acdress of FORTH-MPF-IP inner interpreter (NEXT) .

The word MEXT puts the instruction JP 2878 on the
dictionary.

MP?-IP-FEORTH provides the preceding three words, «nd
¥ou may use them as you start the sysktem.

In the following example, we will define a wvarisble
COUNTS and a low-level word COUNT-DOWN. COUNT-DOWN
decrements COUNTS by one corsecutively until COUNTS
becomes g. The word can be used as a delay subroutire.

Enclosed in the parentheses are the Assenbly
“Quivalents of the FORTd definizion. For details,
bPlease consult 2Z-8¢ Assembly Language Programming
Manual,

-gl-

HEX
VARIABLE COUNTS

CODE COUNT-DOWN

24 C, COUNTS { LD HL,{(COUNTS))
2B C, { DEC HL)

ic C, { LD &,H)

85 C, (OR L)

26 ¢, FB C, (JR NZ,FB)

NEXT END-CODE

Set the value of COUNTS first, and then execute COUNT-
DOWN. |

Input 7EFF COUNTS ! [=]

Display TEFFF COUNTS ! OKa

Input count-pown (=]
The FIP will black out for a few seconds
and then

Disvlay COUNT-DOWN OKa

The user should find out all machine codes before using
, and ¢,, and compile them one by one into the
dictionary. The procedure to find all machine codes by
the Assembler is as follows: '

1) Execute the word MON to enter into the MPE-IP
monitor program. j
2) Execute the Assembler under the monitor program a“y
write down the machine codes (refer to MPF-IP
Operation Manual).

3) 1Input CTRL-C to execute a warm start, and®use , and
G to compile the machine codes into the
dictionary.

FORTH-MPF-IP supports a word CALL, which allows the
user to call machine language subroutines in high leve!
words, and system variables to save registers, such as
RA, RB, RC, RD, RE, RF, RH, RL, RAF, RBC, RDE, RHEI

rix, RIY¥, RAFT', RBC', RDE', and RIL'. The word CALL <an
use Lhese variables to transmit paramcberd and results
of executior. C@ and C! are used to Fetch and store E=
bit registers, @ and | are used to fetch and store 16-
bit register pairs,

the system first fetchs numbers from RAF, RBC, RDE,
pHT., RIX, RIY and stores numbers in registers AF, BC,
bF, BHL, IX, 1Y, before the word CALL is executed to
enter machire language subroutire. In osther weords, Iif
the called sub-routine needs scme parameters saved in
registers, the user can save the parameters in the
register wvariablz first, and then execute CALL. 'The
system saves the values in rzglsters aF, BC; DE, HL,
1X; IY¥ to the variables RalF, RIC, RDE, RHL, RIX, RIY
bhefore the sub-routine returns to the FORTH, so as to
transmit the results ol execution,

Thie monitor prodgram hiés a sound cencration subroutine.
1ka addreoss is $874. Two parameters are related ko this
subroutine.

1) Register C pariod = 2% (44+13*C) clock states

2) Reglster HL number of periods ({(times of
execution)

The larger the value in C is , the lowsr the ‘raquency
it has; the smaller value, the higher freguency. The
larger the wvalus in Reglist=r HL is, the longer tre
sound continues.

HZX

: TONElL 1¢0 ERHL ! JF RC ¢} 874 CALL

; TONEZ2 6¢¢ FRHL | 18 RC <! 874 CALL

-

You will get two different kinds of sound when
eXecuting TOMEl and TONEZ.

—-F3=

8.2 Low Level Interrupt Handler

The following

words are provided in FORTH-MPF-IP

handle interrupt signals,

to

lioxds Stack Manipulation and Action
BI (=)
Enable interrupt
DI =)
Disable interrupt
Mo (=)
Set interrupt mode B
IM1 B
Set interrupt mode 1
IM2 [=)
Set interrupt mode 2
INTVECT |(- addr)
System variable, which saves
interpretive interrupt vector.
INTFLAC |(- addr)
Svstem variable, which saves
interpretive interrupt flag.
;INT Ends an interpretive interrupt word.

For interrupt

EI, DI to control IFF (internal interrupt flip-flop in

handling in low-level words, we can use

Z-8¥), and use IM@, IM1, IM2 to select interrupt mode.
The other steps are Lhe same as the Assewbly. Please
refer to Z-80 CPU manual.

MPF-IP sets a vector address, which can save the entry
address o¢f the interrupt handling subroutine

interrupt mode
Examples:

PI

1M1

1=

(Disable interrupt}

(Set interrupt mode 1)

-84-

to handle

HEX HERE (Reserve entry address of
the pragram)

ES C, {Push HL)

21 C, INTFLAG , (LD HL, INTFLAG)

FECB , (Set 7, (HL})

EI C, {Po> HL)

4DED , (RELT)

FFOL ! (save entxy address of the

program inke wvector address)

EI {Enable interrupt!

8.3 Interpretive Interrupt Handling
Process

The so-called interpretive interrupt handling is the
definition of the interrupt handling process 1in hign
leve. words. FORTH-MPF-IP has set two system variables
INTVECT and INTFLAG. kEvery word must relurn to the
inner interpreter after executicon and proceesd to the
next word. The inner interpreter examines the INTFLAG
to handle intecrupkt signal properly.The INTFLAG uses 2
bits in one byte. [ts fcrmat and significance are as
Tollows:

T
I—— bit 6

: 1 —- inhibited interpretive interrupt
g —- not inhibited interpretive
interruct
biz 7 : 1 -- interpr=tive interrupt request
—- ilnterpretive interrupt not
request

Yhen the inner interpreter examlues INTFLAG and handles
lnterrupt silgnal, it fetches CFA {(code field addross)
in INTVECT and begins to execute the interrupt handling
Progran,

55

The interpretive interrupt handling takes the following
steps:

1) Set intercupkt mode 1;

2) ,Save CFA of the interrupt handling word im INTVECT;

3) Set INTFLAG ©it 7 to 1 when oproducing interrupt
signal develops.

Be surce the interrupt handling word in (2) snould end
with ;INT. Step in (3) should be executed in low-level
words.,

suppose we have saved the previous examples in the
dictionary. The folleowing example explains the usage of
interpretive interrupt handling.

D1 (Disable interrupt)

: INHANDLER ."™ INTERRUPT [ANDLER" ;INT
(The word ;INT ends the
definition of interrupt
handling words).

' INHANDLER CFA INTVECT ! !
(Save CFA of the interruption
handling word in the
INTVLCT) .

EI {Enable interrupot).

: TEST DBREGIN " X" 2TERMINAL UNTIL ;
(Define a test word).

When cxecuting TEST, you will see X's displayed on the
screen continuously. WwWhen interrupt signal develops,
the machine outputs INTERRUPT HANDLER and tihen goes on
to output X continuously until you press any key. '

Application
o Programs

TEhEa s
3 g

9.1 Using P8 and P!

The words Pl and pl in PORYH-MPF-IP are similar ko IN
and OJT in Ass=wbly languacge., Connect the I/0 M board
te the machine 1{ you wantb To use them, you will find
these two words make ik casy to conbtrel the I/0 narbs.

please refer Lo JOH-MPF-IP Opsration Mavpuwzl on hew o
cannect the JOM-MPP-12 bto thoe MPP-I1P. There is a FIO on
I0M=-M2F-IP, tne addresses are from GG Eo 60H. Cennoot
scckets TR1, TRZ, TR3 of J3 ko the sookets PAG, TFal,
pA2 o. J6 rospactively. Type

HEX
gr 62 p! (st PIC port A as outputl)

and you will see the red, vyellow, and green lizhls on
IOM-MDPP-IPF arc on. A2 fred), Pl {yellow), raa
{yrean} of pork A controls tho threo LEDs. 1{ the
cutput ig 1, the LED turng eoff. If it is ¢, thzs LLD
turcs an. .

Input FE &8 p! the green light en
Innut EFD 58 D! the yellow light o2
Input FF 68 P! all lights off

Inpukt Fa 68 P! [= the red and the grea-r

_ights on

The following table shows the stack maninulations for
P2 and F!.

Words Stack Manipulalion and Actian

jage) {addr -—n)
Input data o from I1/0 port a:ddr.

Pl fn addr--)
Output data n to I/0 port addr.

-BO-—

9.2 Developing Application Programs

This wswcLion discusses the process for developing
application pregrams. Daglizally, we necd EPRB-MPE-ID, If
it is wused togetner with IOM-MPF-IP, we can write

proyrams on EPB-MPF-IP and preduce EPROM and then move
the EPROM to the socket with the same address on ICH-
MPF-IP. Refer to the EPI-MPF-IP operation manual to
connect the EPB-MPF-IP t¢ the MPF-IP. The addresses
where the application programs 15 to be located must
have a RAM available. Suppose the starting address for
application program is SDE8BO, the general process is as
follows:

1} 3e sure the addresses for applicaticn program have a
RAaM avallable and does rot intermix with cther units.

21 furn on the machine, and enter irto FORTH-MPF-IP
{CTRL-B) .

3} belete the word TASK.

TORGET TASK
4} Move the system variable DP {dictionary pointer) to
the location seven bytes above the starting address of
the anplicztion program,. The added 7 bhytes will be used

to stare mizchine codes later.

HEX
pg@gg 7 o+ DpDp o

If the starting address is different from the exaumple
above, vou need only change DBBY.

5} Compile the application program to the dicticnery;,
and use the word VLIST to verlfy.

6) Move the DP to Lts original address and resture the
word TAHASK.

E@gEE DP !
t TACSK H

7) 1Input the machine codes (boot program for thé

application program) to the 7 bytes zbeove the starting
address of the applicetieon program.

- T,

21 D8oe CJ (. HL, LAST)
Fa#s @ Dagl |

22 Dpee3 <! (LD (¥@95), UHL)
FO@s DBO4 |
€9 DBEe ClI (RET)

g) Save the application program onto the recorder,

9) Use EPB-MPP=-IP to input the application program to
the EPROM.

1) Turn off the machine. Replace the RAM of the same
address with the TEROM.

11) Turn on the machine, and enter into the FORTH-MPF-
1P (CTRL-B).

12) Rxecute the bhoot program of the application
program.

HEX DB#Y CALL DRCIMAL

13) Use the word VLIST to examine if the application
program is in the dictionary.

In step 5), be sure tc compile the application program
within tbe range of the RAM. All variables in the
application program must be user variables.

-91-

Example:

KRKAKMPF-[=PLUS*****
< -

Ak XK PORTI-MPF-prxx#

FORGET TASK OK
HEX OK
D8Bg 7 + oP ! OX

TESTL 5 * . ; OK
: TEST2 5 + . ; OK
VLIST

D825 TEST 2

D811 TEST 1

3AF4 MOM
3AL8 EI

Or

F6y DR I OK
1 TASK ; OK
VLIST

g9 TASK

D825 TEST2
D8ll TESTL
3AF4 MON

3AES BI

0¥

21 D8¥Y C! O
Fogs @ p8sl ! OK
22 D3E3 Ct OK
rags pigd ! CK
T8 peuE (C! OK
MOl

<D>=080G0

<

D3G9 21 LD HL,D8LB
0893 22 LD
D846 C9 RET

Save the application program onto the recorder

(FA85) ,HL

Turn on the machine.
(CTRL-B to
enter into FORTH-MPF-1P)

Compile the application
program.

Make sure the application
program has been compiled into
the dictionary

Load the boot program
of the application program

Enter into the monitor program.
Use the disassembler in the
monitor program to examine

if . the boot program 1is
right (be sure to connect the
printer).

(refer

to MPF=IP operation manual).

Input

the application program to EZPROM (refer to EPB-
MPF=IP users' manual).

Turn off the machine and replace the RAM with the

EPROM,

-92-

Wk EMPL=T -PLJG Y > *

-

wx ¥ FFORTH-MPE-IR¥FEX
YyLIST

r@F9 TASK

3AF4 MON

3AE8 EBI

oK
HEX D8EF CALL OK

YLIST

FP@9 TASK
D825 TESTZ
pBLlL TESTL
4F4 MON

3AES BI

3ADD DI

OK

NECIMAL 0K

3 TESTL 15 OK
5 TESTZ 1# OK

Turn on the machire,
{(CTRL-B to

anter into FORTIU-MP¥=IFR)

Tespeck the condibkion
cold start,

after a

Execute the boot program of
the applicat.on program.

Verify the application
linked to

program 1is
Jictionary,

the

Test the applicatior program.

-0

A MPF-IP ASCIH Codes

MED 0 1 2 3 1 g 6 7
L5 gogl ool B1g | 911) 1&e] 19| 11el 111
(I space 0 i P T
13661 I 1 A G
2 dB1E " 2 I R
3 aery) | 4 3 C S
$5iae = g] T
5 plol % g i U
¢ U110 & 3 ig v
7 @111 1 7 G W
8 1600 { 8 H X -

9 1g71) 5 1 ¥ ¥
L1010 2 N] Z

B IOI1 + ; 5

C L1o0 : < L

T 112L| CR - = M

L 11l@) iy 3

F 1111 7 3 0 -

-9%=

B MPF-IP FORTH Glossary

B.1 Stack Notation

Trke <irst line for each entry describes khe execution
of the definition. .
{Stack parameters before executicn --- Stack parameters

after execution)
In this notation, the tvp ol the stack 1s Lo Lhe right.

B.2 Attributes
L o

The word can only he used in the colon definition.

It is an immediate word and will be executed
during compilation unless special action is takan,

User variable
In the FORTH standard definitions, eéch word ls
assigned & serial nuuber in the rarge 1@F through 922.
B.3 EStack Pararmcter Definition
* addr, addrl,.... {@....65535)

Represent the value for one character's aédress,
* byte (7....255)

Represent the value of an g-bit byte,

=90

ch

d

£l

n

ud

un

ar (8...-1273
rRepresent the value of a 7-bit ASCII code.
(—2147483648....2147483647)

32-bit signec double number.
ag

Boolean flag has two logical states: zero = false,
non-zero = true.

(-32768....32767)
16-bit signed number.
{Fusas d2%24967295)
32-bit unsigned nuwber.
(B....65535)

1G-bit unsigned number.

B4 Words

E]

]

E

ic

#>

n addr --- 112
cave n in an address; proncunced "store".
sp

Save the stack positien in CsPy pronocunced
"store CSP".

udl --- adz 18
Unsigned double number udl generates the next—

output ASCII code. ud2 is the gquotient from
division of udl by BASE and reserved for further

pProccss. Used between <# and #>. Proncunced
"sharp".
d —=- addr n 194@

Terminate numeric ouktput conversion. It drops d
ané leaves the string address and character count
n reguired by TYPE. Pronounced "Sharp-greater”.

-le@-

-

+

*

#3 ud ~=- @ @ 269

Converse all digits of an unsigned double rumber,
add it to the numerie output string until the
remainder ecuals @. If the number ig originally ¢,
a € will add to the output string. The word is only
used between <# and #>. Prénonnced "Sharp-8".

-~~~ addr
Used in the fcrm:
' {namepy

Leave the parameter field address of the next word
accepted from the input string when executing. In
compilation, the address is regarded as a literal;
the wvalue will be placed on the stack 1in later
execution. An error will occur if the word can rot
bz found in CONTEXT and FORTH vovabularies, 1In =z

colon definiticn, ' <name> is identical to (*
<namec> *) LITERAL. Fronounced "tick".
{ 1,212

Use in the form:

{ ccen)

Accept and ignore the input string until the next
right wparentheasis. As wusual, left parenthesis
must ke followed by a blank. It can be used in
either execution or compilation. An error message
is displayed if the input string terminates before
the right parentkesis. Left parerthesis is
pronounced "paren™; right parenthesis is proncunced
"close~paren”.

(* 1, 125
Terminate compilation mocde, and execule .nput
string centcxt. DPronocunced "left-bracket!". Refer
to ¥},

(+L002) n --- =

A run-time procedure, compiled by -T.00P.

-1g1-

* (") c
A run-time procedure, compiled by ."

* (;CODE) &
A run-time procedure, compiled by ;CODE.

* (Do) c

A run-rime procedure, compiled by DO; it moves
loop control parameters to the return stack.

* (ABORT)
Execute when error occurs and the WARNING is -1.

Usually, the word executes ABORT. The user may
change it by a procedure. Refer to ABORT.

(FIND)

addrl addr2 --- addr3 byte flag (found)
addr]l addr2 --- flag {not found)

Search the text at addrl in the dictionary from |
name field address addr2. If a match is found,
return the parameter field address addr3, name
field byte length and a Boolean true. If notl
found, leaves a Boolean false. |

* (LINE)

nl n2 --- addr n3

Convert line number nl and block number n2 tq
pseudo disk buffer address. n3 must egual 32
indicating length of the entire line.

* (LOOP) c
A run-time procedure, compiled by LOOP.

* nl n2 =-- n3 138

Leave the product of nl times n2; pronounced
"times".

-102-

*) 126

Set a compilation mode. The input string text is
executed immediately. Pronounceé "right-bracket".
Refer to (*,

*/ nl 02 o3 —--- n4 294a

Multiply nl by n2 and divide the result by ni.
Leave quotient nd. n4 is the rounded number., I-s
precision 1s higher than that of nl n2 * n3 £ The
product of nl times n2 is an intermediate 32-bit
aumber. Proncimeed Ytimes-divide™,

¥/MOD nl n2 n3 —-- nd ns 132
Multiply nl by n2 and divide the result by ni,
Leave remainder n4 and gquotient n5. As */, the
intermediats result is a 32-bit numker. The sign
Zor the remaincer s the same as nl. Pronounced
"tlues-divide-modr,

+ nl 12 —--- n3 1z1

Plus nl by n2 and leave the sum n3 on the stack,
Pronounced "plus™,

+1 n addr -—- 157
¥

Rdd n to 1l6-bit number at addr. Pronocunced "plus—
ctore'.

- nl n2 --- n3

Assign the sign of n2 to nl to procuce n3,
Pronounced "plius-minus”™.

+BUF

Execute nothing. Proncunced "plus-Luf™.

-183-

* $LOOP N === I,C,141

Add 1loop index to the signed n, and compare the
result with the limit. Return to DO tc execute
until the new index is egual to or larger than
the limit (n>@), or until the new index is equal
to or smaller than the limit (n<@). When existing
loop, drop loop control parameter and continue to
execute. Index and limit are singed numbers in
the range -32,768 through 32,767, Pronounced
"plus-loop"™. (As conventiconally, a negative upper
limit is not used.)

£ 8 s 143

Reserve 2 bytes in the dictionary and save n.
Pronounced "“comma®.

LA nl n2 --- n3 134

Subtract n2 from nl and leave the difference n3.
Pronounced "minus".

QP € I

Centinue to interpret next screen. Pronounced
"mext screen”.

* _FIND

——- pfa b tf (found)
-——— ff (not found)

Accept a next text word transferred to HERE from
the input stream. Search the same input charxacter
in CURRENT from CONTEXT. 1f found, pfa, 1length b
and true flag are left on the stack; otherwise, a
false flag is left.

+ -TRAILING 148
addr nl =--- addr n2
Adjust the character count of a text (starting from
addr), and remove the trailing blanks, that is,
blanks from addr 4+ nZ to addr + nl -~ 1. 1If nl 1is

negative, an error message is displayed. Pronounced
"dash-trailing".

-194-

. n —-—- 133

Display n converted £from BASE as a zingle
number, follcwed by a blank. Print a minus sign
if 1t 182 a negative number. Pronounced "dot".

" 7,133

Interpreted or used in a colon-defipition in the
form:

.II cccc"

Accept following text from the input string,
terminated by ASCII " (double - queote). In
executing, move the text to a selected output
device. 1n compiling, compile it so that the later
executivn may move the text to a selected output
device. At least 127 bytes are allowed for the
text. &n error message is displayed if inpul slrean
stops befoerce the kerminating " . Pronounced "Ydot-
gquote™.

-CPOD
Print the name of CPU (Z88G).
.LINE nl n2 -—

Display the text of line numker nl and block number
nz.

.R nl n2 -——-—

Print number nl in a field of width n2 right
justified. No following blank is printed,

A non-destructive stack printing word usad tc
print curraent conternts of the paramster stacx.

/ nl n? -—- n3 178

Divide nl by n2 and remain gquotient ni. n3 is
rounded toward zero. Pronounced "divide".

-165-

/MOD 1l n2 --- 03 n4
nivide nl
guotient n4. 7The

sy n2 ard leave the

198

sign for n3 is as same

proncunced "divide-mod".

g 12 32 -— T

These small

numbers are used

necessary to deflre them as constants.

B< an —;Zwklag

If n < B, return

less".
o -—— flag

If n = return

equals".

3,

a> --- flag

1f n » ¥, return

greater".

GRRANCH flag -—-

Execute procedure
fleg 1is not trues,

1+ n ——— n+l

hdd
"one-plus™.

1- n -— n-1

Subtract 1 from

Pronounced

1 to n according to +

a true flag.

a true -flag.

a true flag.

branches conditionally.

the parameter will be added
the interpretive polinter,
bvackwards. Compiled by IF, UNTIL,

n acccrding , to -
"one-minas".

-106~

and branches

operation.

remainder n3 and
as nl,
frequently. 1t Iis
144
Pronounced "zero-
188
pronounced "zero-
I
118 .
Pronounced "zero-—
C
1f the
to
towards or
and WHILE.
187
Pronounced

cperation.

r

L3

[

-

116
A definition word, used in the form:
I snamar» ...

Select CQQNTEXT vocabulary ¢ be idenlical to
CURRENT. Duild a word <rame?> in CURRENT and set a
conpile mode. We call it a colon-definitioen. The
compiling address of suksequent words {excluding
immediate words) is saved in the dictionary. When
<name> 1is executed , the words in the cefinition
will be executed. The immediate word is executed
immedistely. If a word can neot be found in CONTEXT
and FORTH vocabularies, it is ragarded as a litaral
for conversion and compllation (using the current
base). An error message is disgplayed if failed
again. pronounced "coloen".

I,C,196

Terminate a colon-definition and stop the
compilation. an error message is displayed if inpat
stream terminates before encourntering ; -
Pronounced "semi-colon”,.)

; CODE C,I,206

N¢e i the form:
: <name>» ... ;CODE

Stop conpilation and terminate the definition of
the word <nmame>, It is used to define the new word
{namex> when <name> is later executed in the form:
<{name>», <namex>. The executing address for <namex>
is included the address after ;CODE in <name>. Cf
etecuting any <namex>, +these gequance of machine
code is executed. Proncunced "semi-colon-code",

HEN CE I

Used in lhe Lorw:
$ <name> ...,. ;INT

Step compilation and tcrminate definition of an
interrupt handling word <mamed,

=187-

* .8 I
merminate interpretation of a screen. ;8 is a run-
time word compiled after the colon definition
which returns execution to the calling procedurs.
LI nl o2z --- flag 139
It is true if nl < n2, Pronounced "less—than".

* < 169

Beyin to converk numbers to output format. The
following werd

<4 % #E& HOLD SIGN #>
points out canversion of a double number ASCII code
string and save it frcm right to left. Proncunced
"] ags-sharp".

* {COMPILE> I,C,17
Used in colon-definition in the following form:
<COMPILE> <name>
Enforce compilation of the lollewing words. It can
compile an immediate word -e prevent it from being
executed. Pronounced "bracket-compilation".

& = nl n2 —— £lag 173

If nl is egual to n2, it is true. Proncurncad
Teguals",

LIS nl n2 --- flag 182

If nl is larger than n2, it is true, Pronounced
"greater-than'.

* >IN ~—- addr U,2l
Leave a variable's address. The variable vontains
the current character coEfset of input sStream in the

range J through 1823, Pronounced "to-in', Refer &0
WORD (" FIND

=-l¢g-

>R N ~== C,200

Move n to return stack. In a colon definition, each
*E must be accompanied with ananther R>,

? addr --- 194

pisplay numbers at the address, using the same
format as . (dot). Pronounced "gquesticn-mark".

?COMP

An error message is displayed if not in compile
mode .

?2C8p

An error message is displayed if stack location is
different from value in CSP.

?DOP n --- 1 (n) i84

Copy n if n does not egual @. Pronounced "query-
dup".

ZERROR flag n ---

1f Boolean flag 1is true, print the nth erro:
message.

?EXEC

An error message 1s sent out 1f not in execution
mede.

?LOADING
An error message is sent out if not leoading.
?PAIRS nl n2 ~--—-
Error message §19 is sent out if nl does not equal

n2, whiech means that some conditional contreol is
illegal in compiling,

~169~

?TERMINAL ---flag

Testing any key on the keyboard. A true flag means
it is operated. This definition is related to the
devices.

78TACK ~---

An error message is sent out if the data stack
exceeds the limit.

@ addr ---n 159

Leave number at the addr on the stack, Pronounced
#fatch!.

ABORT 181

Clear the data and return stack, set eXecution
mode. Return contrel to the terminal,

ABS nl === n2 les

Leave the absolute value of a number on the stack.
Pronounced "absolute”.

ALLOT n =——- 154

Add n bytes of spaces to parameter field of words
most recently defined.

AND n]l n2 =--- n3 183

Leave the result of the logical AND of nl and n2 on
the stack.

AGAIN
Used in colon definition:
BEGIN....AGAIN

Execinte words between BEGIN and AGAIN infinitely.

-118~-

B/BUF -——n

A constant, which leaves number of bytes in each
buffer on the stack. That is, the bytes count read
from mass storage by BLOCK.

B/SCR -—— n
A constant used to leave the number of blocks in
each screen on the stack.

BACK addr --—-

In run-time procedure, count the branching offset
from HERE to addr. Move the offset to the next
effective address in the dictionary.

BASE --—= addr U,115
Leave the address of a variable on the stack, in
which the conversion base for numeriec input/output
is stored. The range of the variable is 2 to 74.
BEGIN 1,C,147
Used in colon-definition:
BEGIN AGAIN or
BEGIN...FLAG UNTIL or
BEGIN. ..FLAG WHILE...REPEAT
BEGIN indicates the start cof a series of repeatedly
executed words, EBEGIN ... UNTIL repeats until the
flag is true. BEGIN ... WHILE ...REPEAT repeats
until the flag is false, When loop finishes, words
after ONTIL and REPEAT are executed. The flag 1is
dropped after testing. BEGIN ... AGAIN constitutes
an infinite loop.
BIL, --~ gchar 176

A constant which leaves the ASCII code for “"blank"”
on the stack.

=111~

BLANKS addr n =e—

Fill the n coneccutive memory locations starting
from addr with ASCII ceodes for "blank",

BLE === addr U,132
Leave the address of a variable on the stack. The
address saves blocks count in the mass storage and
regarded as input stream. If the content is @,

input stream is taken from the terminal. Pronounced
Il'o_l__k 1l -

BLOCK n —== addr

Leave the address of the first byte of the nth
block cn the stack.

BRANCH C
The run-time procedure for unceonditional branch. An
in-line offset is added to IP (interpreter pointer)
for branching Fforward or backwarc. BRANCH is
compiled by ELSF, AGATN, REPEAT.

BOUNDS addr n --- addr+n addr

Convert addr and n to start and end addresses to be
nsed by loop.

BUFFER n ——— addr
Samg as BLOCK.
Cl n addr --- 219

Save low order byte cf n at the addr. Pronounced
"c-store'.

C, byte —---
fave the 8-kit character <to the next usable

diectionary character. The dictionary pointer
inerements by 1.

~1ll2~-

C/L === n

A constant which leaves the number of characters in
each line of the source text 32 on the stack.

ce addr --- byte 156
Leave the contents of the character at the addr on
the stack. (In l6-bit field, MSC is @) Pronounced
"e-feteh".

CALL addr ---
Transmit control to the machine c¢ode subroutine
(The address is on the stack). The registers are
input from a reserved memory and saved.

CFA addrl --- addr2

Convert addrl (parameter field address) to addr2
(code field address).

CMOVE 153
addrl addr2 n ---
Move n bytes starting from addrl to addr2. The
contents of addrl is first moved toward high memory
address. If n is equal to or less thanm @, nothing
is moved. Prongunced "c-move"”,

CODE 111
Used in the form;

CODE <name>... END~-CODE

Build a dictionary word <name», which is defined by
following assembly language words.

CoLD
Cold start procedure used to adjust dictionary

pointer to the minimum standard and reinitiated by
ARBORT.

-113-

* COMPILE C,148

When a word containing COMPILE is executed, 16 bits
after COMPILE's compilation address is copiad or
compiled into the dictionary, that is, COMPILE DUP
cepies DLP's compilation address.

E CONSTANT n ——-— 185
Used in the form:
n CONSTANT <name>

Build a wcrd <name> and leave n in its parameter
field. n 1is 1left on the stack when <name> 1is
executed later.

¥ CONTEXT --—-addr u,151

Leave on the stadk the address of +the variable
peinting cut the voeabulary in which diezicnary
searcna 1s to be made during interpretation of input
stream.

* CONVERT dl addrl -—-- d2 addrz 185
Converk text starting from addrl+l to l1ts
corresponding stack nunber with regard to BASE. The

new value ic added intos 41 and khe result is left
as d2, addr2 is the first nen-convertible byte.

* {COUONT addr —-- addr+l1 n 159
Teave the address (addr+1) for the text starting
from addr, and number of charac-ers on the stack.
The first byte opn the addr must contain the number
of characters n. The range for n is @ through 253,
* CR 168

Czuse a carriage-return and line-feed to the
current ocutput device. Pronocurced "c-r'.

-11d-

* CRIATE 239
Used in the form:
CREATE <{namre>
Build a word <pame>, MNo parameter field memory is
raserved. When <name> is executed later,the address
of the first charzacter of <name)'s parameter field
will be left on the stacx.

* C8p ~—— addr u

& user variable, saving stack poirnter lccation
temporarily for checking compilation error,

* CURRENT —~~— addr U,L37
Leave on the stack address of the variable which
points cut into what wocabulary a new word
definition is to be compiled into.

* D+ dl d2 —=- a3 241

Leave the sum of dl and 42, d3i on the stack.
Eronounced "d-plus",

* D.R dn-——
Display d which is converted according to BASE, in
a n-character fleld, right-justified. 1If it 1is
negative, thsn the minus sign will be printed.
Pronounced “d-dot-r",.

* paBs dl --- 4z

Leave dl's absolute value d2 on the stack. The
range is @ through 2,147,483,047. Pronounced "d-
absh,

* DRECIMAL 197

Set base for numeric input/output te 16.

=115~

*

*

DEFINITIONS 155

Set CURRENT as the CONTEXT vecabulary so that later
definition will be built in the vocabulary
previously selected by CCNTEXT.

DEPTH -==n 238

Leave number of 16~-bit numbers on the data stack
on the stack (n is not counted in).

Disable interrupt.

DIGIT

char nl --- n2 true-flag (transferable)
char nl --- false-flag {non-transferable)
Use base nl, convert char into its binary

equivalent and followed by a true flag. If not,
leave a false flag.

DLITERAL 1

d -—— a (executing)
§ === (compiling)

If compiling, interpret a stack double number to
literal; later execution including the 1literal
will push 1t to the stack. If executing, the number
will remain on the stack.

* DNEGATE 245

dl --- ~dl

Leave a double number's twe's complement on the
stack.

-116~

= DO nl nz —--- I,c,1492
UDsed in the form:
DG.. .LOOP oY
D¢...+tLOCP

Start a loop which terminates according to control
parameter. The loop index starts from n2 and
terminates at mnl. The index will incremenz by a
signed value at LOOP or +LOOP. DO...LOOP's range 1is
determined by terminating words. DO...LCOP can Le
nested. A standard system contains at least three
levels of nestlnyg.

* DOES> I,C,168

Define the ryun-timec action of a word built by a
high level definition word.

Used in the form:

1 <name> ... CREATE...DOES>...:
and then <name> <namex>

Point out termination of a word <name> and begin
the definition of the run-time action for words
that will be defined by <name> later. If executing
<namex>, words between DOES» and ; are executed,
The address of <namex>'s parameter field remains on
the stack. Pronsunced "does",

* pp ——— adcr a
& user vwvariable, the dicticonary peinter, which
contains the address of the nexrt usable memory
location 1in tne dictionary. The vzlue can be read
from HERE and changed by ALLOT. Pronounced "d-p".

* DPT. --- adér
& user variable that saves number of digits to the
right of +the decimal peint when doublz number is
input,

* DROP n ——- 233

Drop the top nuamber on the stack.

~-117-

pUMEP addr n -—-

Print n bytes startirg from addr, 4 bytes on each
line.

DUF n -——— nn

Leave a coﬁied stack top number.
ZDITOR

Select editer vocabulary as ceonteoxt vocabualary.
ELSE . I,2,167

Jeed in colon definitions

[F...ELSE...THEN
1f the -F result is true, execute the vart between
IF and ELSE, otherwise that Between ELSE ard THEN
is executed,

EMIT char—--—- 20

Transmit the c¢character to the current output
device.

EMPTY-BUFFERS
Clear memory between FIRST and LIMIT - 1.

CNCLOSE
addxl char -—- addrl nl n2 n3
ise char as a delimiter. Scan text startine from
addxl. Thres offsets are returned on thes stack. nl,
the byte offset to th= first non-delimiter
character; n2, the offset to the first delimiter
after the text, and n3, the offset to the charactel
not incliaded. The procedure regards NULL's AS5CII
code as unconditional delimiting character. ENCLOSE
is the primitive for scanning text used by WORD.

END tlag —-—-

Same as UNTIL.

=118-

EiID-CODE
Terminate a word definicicon. Set the CONTEXT
vocabulary as CURRENT again. This word delinition
can be used 1f no error message is disglaved,
ENDIFE
Same asg THEM.
EI
Enable interrupt.
ERASE addr n ---
Clear the n bytes startirg from addr.
ERROR n--- »n2 r3
Send out an £rXror message te enter 1nte FORTH

system again. Leave >IN and BLEK on the stack as n2
and n3 respectively to specify the origin of error.

EXECUTE addr --- 163

Execute a dicticnary word. Its compilation address
is on the stack,

EXIT <117
Terminate a definition's execution if compiled
in eolen defirition. It can not be used in

no...LOOP.
EXPECT addr n -—- 189

Receive characters from keyboard and transmit them
to the memory range starting from addr until a
"return" or the count of n is received. If n < @ Or
equals to @, no action occurred. &add one or two
nulls after the text.

FENCE ———addrcr u
A user variable contains an address, The content
below the addrcss allows no FORGET, The user must

change the contents of FENCE to feorgebt the cnntents
beleow.,

-119-

* FipL addr n byte —--- 234

Fill n bytes in the memory starting from addr with
byte. Tf n < or = &, no action occurred.

* FIRST ---addr

2 constent that leaves the first (lewest) ©olock.
buffer' zddress on the stack.

* FLD -——addr

A user variable that saves a field width of output
format for numbers. .

* FLUSH

No =xccution,

* FORGEL 184
Used in the form:
FORCET <nameb>

Delete frem the dictionary <name> (in CURRENT
vocabulary) and the fecllowing words, I1f <name> can
not be found in CURRENT or FORTH, an erzor will
occur,

* FORTH 1,187

The name of the primary vocabulary. FORTH becomes
CONTEXT vocabulary upon execution. A new definition
will be a patt 5t FORTH until a dlfferent COURRENT
vocabulary is built. A user wocabulary is chained
to FURIH vocabualary upon cunclusion and so FORTH is

considered to be contained in each user
vocabulary.
* HERE --—- addr 188

Peturn the addresg of the nevt usable dictionary
location.

* HEX 162

Set input/output numbers conversion base to 16
fthexadecimal) .

-lz2@-

HLD ———addr

A user wariable that cortains the last hyte's
address of text 1in number output conversion

procedure,
dOLD char--—- 175

Ingert char to number output stream. It can only
be used betwesen <} and $>.

L ——— n c,136

Copy 1lowp index to the data stack., It can only be
used in DO-LOOQP.

10, addr ---

Print a definizion name from the name field
address,

IF flag——- I,C,219
Us2d in colon definitions:

flag IF.. ELSE... THEN
flag IF...THFEN

If the flag is true, execute the words after IF,
and the words following ELSZ are skivped. The ELSE
part 15 optiomal., 1If flag is false, words between
IF and ELSE, or between IF and THEN (when no ELSE
is used), are skipped IF-ELSE-THEN can ke nested.

* IMMEDIATE 183

Indicate the most recently built dictionary entry
&5 a word which will be execuated when encountered
in compiling and not compiled.

* IME

Select interrupt mode 9,

* M)

Select interrupt mode 1.

-121-

* IM2

Se_ect interrupt mode 2.

* JHNDEX nl n2 —---

Print the first line 5f each screan over the range
nl to n2. This is uased to inspact comment lines of

a numbzr of text screans,
* INTERPRET

The outer text interpreter which sequentially
executes or compiles text from the input stream
(terminal or mass st-orage) depending on ETATE. If
the word name cannot be found after a search of
CONTEXT and then FORTH, it is converted tc a number
according to the current base. That search also
failing, an error message echeing the name with a
ne® will be given: Text inpuL will ©®e aken
acrording tu the convention L[or WORD. If a decimal
peint is found as part of a rumbker, a double-number
value will be left. Ths decimzl point has no other
purposc than to foree this action. Sce NUMBER.

INTFLAG ==~ addr

| user varieble LEthat saves an interpretive
interruapt flag. :

* INTVECT -—— addr

B user variable that saves CFA of an interpretive
interrupt handling word.

* g -——n c,225

Return the outer loep index to the stack., used only
in the Locm: :

DC...0DO0...J...LOCOP,..L00P
* KEY —-——chax 18¢

Leave the ASCII scode of the next usable character
from current inpnt device on the stack.

* LATEST ---addr

Leave the top-moss word's name field address in
CURRENT vocabulary on the stack.

-122-

LEAVE C,213

S5et cthe lcop _imik ta be the game as the current
index to terminate CO - T.OOP at the next LOOP or
+LOOP. The index itself does not chande and
execution will continue normally until the
terminating word is enccuntered.

LFa addrl---addrz

Convert addrl { parameter field address of a
definition} to addr2 (link field address).

LIMIT —=-—= @

A constant that Ieaves the highest memory location
address of a block buffer on the stack,

CLIST n ——-— 169

Print the ASCIT contenta of screen n on the surrent
output device. Set 5CR to n, a unsigned numbar.

LIT -——n C

n colon definition, LIT is automatically compiled
before each 16-bit literal encountered :n input
text is compiled, Later execution of LIT will push
the 'contents of the following two bytes on the
stack.

LITERAL D —-—- 1,215
In compilation, regard stack value n as. 16-bit
literal; n will remainm on the slack If later
executad,

LOAD n === 202

Fegard screen n as input scream for interpretation;
reservea current input strear (>TN and RL¥)

locators, If interpreter is not terminated
explicitly, it will be terminated when input stream
exhausts, Control returns tc ~nput stream

containing LOAD, determined by >IN and BLK.

=123~

LOOP 1,C,124
Incremant the DO-LOOP index by 1, The loop is
terminated if new index value equals or is larger
than limit, Limit and index are s:gned numbers. The
range 1s -32,768 through 32,767. -

M* nl n2 —— d

& mixed arithmetic operaticon word, which leaves 4,
the product of nl times n2 on the szack,

M/ d nl ——— n2 n3

A mired arithmetic operation word which leaves on
the stack remainder n2 and quotienk n32 of the
division of d by nl. The sign ¢f the remainder 1is
the same as the dividend.

M/MCD udl un2z --—- un3 ud4
An unsigned mixed arithmetic operation word, which
leaves quotient un4 and remainder un3 that un’
divides un2 on the stack.

MAX nl n2 ——— ni 218

Leave the larger number of nl, n2 on the stack,.
Pronounced "max".

MESSAGE 11 ~—-—
If WARNING = &, send out MSG# n. ITf WARNING = 1,
send out the raxt of the nth line in the 4kh klock
of pmeudo disk.

MIN nl n2 ==~ n3 127

Leave the smaller number on the stack. Pronounced
Il'min“ .
oD n. n2 --=- n3 184

Divide nl by n2. The sign of the remainder n3 1is
the same as nl. Pronocunced "mod".

~124-

MON
Jump to MPF-ID moniter pregram.
NECATRE " ——— —n 177

Leave &twec's complement of & number on the stack,
that is, the difference of ¢ and n.

Used in low level definition:
CODE <{NAME> srannas NEXT END-CODE

Compile directly the word that jumps to FORTH inner
interpreter (JP 2678) in the dictionary,

NEA addrl --- addr?2

Convert parameter field address of a definitien
addrl teo the nane field address addrd.

NOT . flagl ——— flag2 165
Convert flagl's boolean vaine. Same as @-.
NUMBER addr --- d

Convert +the string at addr with a Prececing czount
to a double number,

OFFEET —--- addr
A user varliable that saves pseuds disk memory's
offset. Adding the offset to get the desired
address when BLOCK is executed.

OR nl n2 -=~ n3 223

l.eave the result n3 from GCR operation of nl and n2
on the stack.

ouT ——-- addr
A user variable that saves output buffer's offset.

The wvalue of OUT increments each time EMIT is
executed.

=135~

OVER nl n2 =-- nl n2 nl 172
Copy the second number on the top of stack.

P! n addr ---
Transmit data n to I/0 port addr,

Pg addr --- n
Input data n from I/0 port addr.

PAD -~-— gddr | 2286
Save the scratch area's address of the intermedizte
sharacter string. 1I1tg minimum capacity is 64 hytes
{from addr =o addr + A3).

PFA addrl --- addrz

Cconvert name field acddress of 2 definition addrl to
its parameter field zddress addri.

PICK nl --- n2 2432

Return the value ot nlth number nZ on the stack. An
prror will occur if nl 1s smaller thanm 1. 2 PICK is
the same as OVER. (1 +.. T},

PREV —--— addc
A user variable.

QUERY 235
Accept input (8¢ bytes at most) from the keyboesrd
or when a "return" is encountered, store inte the
termiral input buffer. Using WORD to set >IN and
BLK to @. So that the buffer may accept text as
input string.

QUIT 211

Qlear return stack, set execution mode, and return
- control to terminal. No message is given.

-126-

Rit -—-— addr

A user wvariable that saves the posit.on of cursor
in the screen during compiling.

R/W addr n flag ———

Delete three items on the stack. No othor action
is taken.

B> -_—— T C,11d

Transfer n from the return stack to the data stack.
Pronounced "r=from",

RE ——— addr

& user wvariabla that saves the initial va_ue of
the relurn stack peinter.

RE ___ A C,228

Cepy the teop value of the return slack to the data
gtack. DPronounced "r_fetch",

RA —--- addr
A user variable, temporary address for register A,
RAF -~-— addr

A user variable, ‘temporary address for register
pair aAF,

RAF' - —-—- addr

A user variable, temporary address for register
pair AF'.

RB -—— addr
2 user wvariable, temporary address for register B.
EBC ——= addr

A user variable, temporary adéress for register
pair BC,

=127~

+ DRC! -——= addr

A user wvarizble, temporary address for register
pair BC'.

* RC " === addr

A user variable, temporary address for register C,
* RD -—— addrx

A user variable, temporary addcess [ol zeylster D,
* RDE -== addr

A usger variable, temporary address for register
pair DE.

* RDE! —-—- addr

A user variable, temporary address for register
pair DE’'.

* RE -—- addr
B user variliable, tenperary address for register E.
* REPEAT 1,C,1z28
Used in colon definition in the following form:
B=GIN... WHILE... REPEAT

REPEAT returns contrel to just after its
corresponding BEGIN in execution.

* RF ——- addr

A user variable, temporary address for register F.
* RH ——- addr

A user variable, temporary address for register H.

* RHL -~-- addr

A user varlable, tempurary address for register
pair HL.

=123-

* RHL' ——= addr

A user variable, temporary addrecs for rogister
pair HL'.

* RL ——= addr

4 user varlable, temporary address for register L.

* RIX --- addr
& wuser variable, temporary address for registexr
pair IX.

* RIY --- addr
& user varlable, temporacry address for register
palic 1Y,

* ROLL n —--- 236

Extract the nth numker to the top of the stack and
meve the remaining values to the vacated locatlons.

{l1...63).
1 ROLL : NOC QOPERATION
2 ROLL = SWaP
3 EOLL = ROT
* ROT nl nZ n3 --- n2 n3 nl 212
Rotate the top three numbers on the stack.
Flace the third to the topmost, Pronounced
"rote"m.,
* RP@ -—— addr

Return the address of return-stock location to the
top of parameter stack .as it ,was before execution
of RPE. Pronocunced "r-p-fetch",

* RP!

Set initial wvalue of the return stack pointer. This
is a computer-dependent procedure.

-129-

S->D n —- 4
change a singlc number to a double number.
s ——— addr

A user variable that saves initial wvalue of daza
stack pointer.

SCR ——— addr U,217

Leave the address of a variable which contains the
number of the screen most recently listed on the
stack, Pronocunced "s-c-r",

SIGN n —==- C,148

Insert ASCII "-" Into pumber cutput string if n is
negative.

SMUDGE

Change smudge bit of the name fiald address when
defining a new word to validate the definition,

sp!

Set initial value of the stack pointer. Pronounced
"s_p-gtora",

sp@ ~—— addr 214

Return address of the stack leocatiovn o the Lop of
the stack, as 1t was before execution of spd.
pronounced "s-p-fetch".

SPACE 232

Send ASCTI "blznk™ to¢ the current cutput device.

EPACEE n —-- 231

Sené n spaces to the current outpét device if n 2
i, otherwise no actien is taken,

i

=130~

STATE --— addr U,164
Leave the address of a variable which contains
compilation condition on the stack. The compilation
begins if the content does not equal 4.

SWAP nl n2 --- n2 nl 234
Exchange the top two numbers on the stack.

TASK
A dummy word.

THEN i,C,161
Used in ceolon definition in the following form:
IF.,.ELSE,..THEN or IF...THEN
THEN must follow ELSE or IF.

TIB --- addr

A user variable containing address of terminal
input buffer.

TOGGLE addr byte ---

Use bit pattern byte te complement the contents of
addr.

TRAVERSE addrl n --—- addr2

Move across name field address of a variable., addrl
is either address of length byte or the address of
the last byte, The motion is toward high memory
address if n = 1; ‘toward low memory address if n =
-1. addr2 is address of the other end of the name
field address.

TREAD

Read data of a file from the tape.

=131~

TWRITE nl n2 —=--

tave data between blocks nl and n2 in a file on the
wava.

“YPFE addr n --- 222

send n bytes starting from addr to the current
output device 1if a2 » 8.

U* unl un2 --- un3 242

Multiply unl by un2 and leave tae product un3d. All
numbers are unsigned, Pronounced"u-times".

U. un -—- 1d6
Convert un according to BASE as an unsigned number
and print it in a frec-ficld format, with one
trailing klank. Dronounced "u—-dot".

U/HMOoD udl un2 --- un3 und 243
Divide wudl by un2. The remainder is wun3; the
quotient is un4, All wvslues are unsigned.
Pronounced "u-divide-mod"™,

U< anl ur2 --- flag 15¢
Leave flag after comparison of unl and unZ. Unl and
un2 are l6-bit unsignad nurbers. Pronounce "u-less-
than”".

LTTEEMINAL —--- addr
A usexr varialble that saves 2TERMINAL's CFA.

CABORT --- addr
A user variable that saves REORT's CFa,

IB/SCR --- addr

2 user variable that saves bklock number cf blocks
in each screen.

-132-

UC/L ——- addr

A uszr variable that saves number of bytes in a
line.
UCE ——- addr

A user veriable that saves the word CR's CF,
JEMIT ——- addr
A user variable that saves EMIT's CFA.
UFIRST -—-— addr
A user variable that saves FIR5T's value,
UKEY —-—— gddr
A user variable that saves KEY'S Cra.
OLIMIT ——— addr
L user wvariable that saves LIMIT's value.
UNTIL flag ——- I,2,237
Used in a colon defirition that indicates the end
of BEGIN-UNTIL loop. The locp ends if tha flag is
true. The execution returns to the first word after
BEGIN. BEGIN ... UNTIL may be nested.
UPDATE
Executing nothing,
UR/W ——- addr
A user variable that saves K/W's CKA.
CSE —-— addr
A user variable.
USER n ———

4 defining word, used in the form:

=133-

n USER <name>

Build a user varialbe <name>. n in parameter
field 1is the offset relative to the wuser area
pointer., The real address can be obtained from n,
{offset + starting address of user atrea.)

* YOC-LINK ~~=- addr

A user variable théet contains a field address of
newly built vocabulary. All wvocabulary
names are llinked to these f[lelds.

* VARIABLE 227
A defining word, used in the form:
VARIRBLE <named

Build dictinnary word (nama2> and reserve two bhytes
of memory locaticens in parameter field. The
inikial values must be set in use. It will put the
memory address on the stack when <name> is executed
later.

* VLIST

Print names of definitions in CONTEXT vocabulary.
Pressirg any key will terminate printing.

* VOCARUTARY 208
A defining word, used in the form:
VOCABULARY <name>

Build (in current vocabulary} a dicticnary word
<name>, which points ocut a table of order for new
words definitions. It will become a CUONTEXT
vocabtulary when <name? is later executed. A new
definition will be listed in word table when <name>
becomes CURRENT vocabulary. the new vocabulary Iis
chained Lo FORTH; that is, seacrching FORTH
vocabulary after searching a vocabulary.

* WARM
Regset 1initial values af wvariabhles sd, rd&, TIR,
WIDTH, WARNING, FENCE, and then enter intoc ABORT.

The word does not inf_uence the created words in
the dictionary.

-134-

* WARNING -—-- addr

A unser variable that saves value for controlligg
error message output and execution procedure in
gcecurrence of error,

* WHILE fLag -— I,C,149
Used in colon definition:
BEGIN...flag WHILE...REPEAT

Select conditional executicn according to [lag. If
the flag 1is true, exscute until REFEAT (it will
return to Lhe words after BEGIN}). If the flag is
false, exit the construction and execute words
after REPEAT.

* WIDTH --- addr

A user variable that centains the maximum number of
characters rceczgerved ZIn compiling names of dofini-
tions, The range ig from 1 <o 31. Number of
characters for nrames and the ¢riginal characters
are reserved according to WIDTH's wvalue. The walue
can be freelv changed between 1 and 31.

* WORD char --- addr 181

ABccept characters from input string until aen-
zero delimiter is ercountered or the whcle strin is
inpat. These characters are saved as packed string.
The totzl nunber is at the address of the first
byte, The delimiting character encountered is saved
at the end of the text. Its length is 4 if input
string terminates. 'he starting address of the
packed string remained on the stack.

* XOR nl n2 —-- 013 174

Leave results of bitwise XOR operatisn of nl and
n2, Pronounced "g-or".

-135-

B.5 Double Number Words

&

21 d addr --==-

Save d in & <congecubtive bytes starting from addr.
Pronuaced “two-storel. '

2d addr --= d

Place 4 consecative bytes starting from addr on
the stack. Pronoanced "two~-fetch".

2DROP d —w=

Drop double numbers on the top of +the stack.
Proncunced "two-drop".

2DUF d ——— d d

Cuplicate the top doub_e number on the stack
pronounced "two-dup'.

20VER dl d2 —-- dl 42 dl

Cepy the second double number of the stack Lo the
top. Pronounced "two-cver™.

Z5WaP dl d2 --= dz dl

Exchangz the top two double numbers of the stack.
Proncunced “two-swap",

D+ 41 42 ~-- 43 241

Aadd 41 tc d2 and leave the sum 43 on thke stack.
Pronounced "d-plus”".

D+~ dl n -—- 42

add sign of n to dl; dl1 becomes d2 and 42 is left
or the stack. Pronounced "d-plus-minus”.

D. d ——= 244

‘Print 4 converted according to BASE in free-field,
followed by a sSpace. Proncunced "d-dot".

-136-

n

*

B.6

*

D, R dan -—-——-

Prinl d cconverLed avcording to BASE 1o n-byte
field, right -ustified. Pronounced "d-doL-r",

dl d2 --- flag 244
Thre rlag 1s true 1if d1 < d2, Pronounced "d-
laege™,
DABS dl --- d2

Leave ¢1's absolute value on the stack.

DHEGATE d === =d 245

Leave two's complement of a double numbet ,
that is, tae ditference of g and -d on the stack.
Pronounced "“d-negate',

Editing Words

Ccentrol-I n —

Move cursor n bytes. Control-I means that pressirg
conzrol and I immediately.

—-TEXT addrl n adcr? --- f

Return a true flag 1f the first n bytes in the two
Strinys starting from addrl and addr’ are the same.
Otherwiss, a false [lay is returned.

CLEAR n —-—-—

Clear the n-:th bhlaock.

COPY nl n? --—— .

Copy data in block nl to n2.

Used in the Zorm:
D ¥xx

Delete string xxx after the cursor.

~137-

Used in the form:
F XK

search strinc xxx Zrom behird the cursvr, and pluace
the cursor after the found string. The cursor
returns to the beginning ¢f line 8 if the target
string is not found,

I ¥
Used in the form:
I x%X
Insert the string to the cursor's current location.
* T
Reprint text in the cur-zent block.
* LINE A —--- addr
Place the address of the tirast byke of the nth line
in the current block on the stack,
* MATCH addrl nl addr2 n2 -—- f n3
The text tu be searchad begins az sddrl and is nl
bytes long. ‘The sazring tc¢ be matched begins at
addr2 and is n2 bytes long. The boolean flag is
true 1f a match 18 found, n3 is then the cursor
advancemont to the ond of tre Eound string. If no
matech is fourd, f will be false and n2 be nl.
N
Search text saved in PAD.
* p

Used in the form:
P xxX
P_ace the stkring xxx at the line the c¢ursor

is.

-138-

T n ——-

Print tne nth line and move th
. . ! e
beginning of the line. FursSErh S

TEXT c ———

the

Use the character c as the delimiter to move a text
strlng te Pan from input buffer. 1f the string
contains less than 64 characters, it will be padded

with blanks to make a total of &4 charactexs.

TILL
Used in the form:

TILL Xxx

Delete text between the cursor and xxx.

‘TOP

rove the cursaer to the 2eginning of line 4.

Used in the form:

U xxx

Tnsert ¥x¥ under the current line, the subsequent

lines are moved below one line.

Delete the current line, Deleted text is saved
PAD. Pad the last line with blank.

=139

in

C WMPF-IP FORTH
Error Messages

M5GH REASOHS

o Mot existing.

1 Deta stack eapty.

2 Tictionary space is full,

4 Words name defined more than once,

7 Data stack 1s full,

17 The word <an not o2e uzed oukside the
definikion,

18 The word can only he ayxecuted immadiately, can
nok be used in the Adefinirion.

19 Orpaived condifional.

29 The definition is not finished.

27 The word 1s 1o the dictionary protected range,
can not bhe deleted,.

22 Thne word can only be usec 1n LOAD.

24 Vacabulary error.

=141-

D User Area RAM Map

Address |[Number Name Description
(Hex) of
Bytes

FEQ@-FE@5 6 - Available for user

FREB6=FEGY 2 S0 Initial! value of the data
stack pointer

FEB8-FE#9 2 RO Initial value of the
return stack pointer

FEEGA-FEQB 2 TIE Address of the terminal
input buffer

FEBC-FEED 2 WIDTH |Number of letters saved
in names

FE@E-FEEF 2 WARNING Error message control
number

FEl€¢-FE11l 2 FENCE Dictionary FORGET
protection point

FEL2-FEI3] DP The dietianary pointer

FE14-FE15 2 VOC-LINK |Most recently created
vocabulary

FE16-FE17 2 BLE Current block number
under interpretation

FE18-FE19 2 >IN Byte offset within the
current input text buffer

FE1A-FE1B 2 ouT Offset in the text output

buffer

~143~-

FEIC-FELD SCR Screen number most
recently referenced by
LIST

FEIGB-FELF OFFSET |Block offset for disk
drives

FE20-FE21 CONTEXT Pointer to the vocabulary
within which dictionary
search will first begin

FE22-FE23 CURRENT |Pointer to the vocabulary
within which new
definitions are to be
added

FE24-FE25 STATE Contains the state of
compilation

FE26-FE27 BASE Current 1/0 base

FE28-FE29 DPL Mumber of digits to the
right of the decimal
point on daeuble integer
input

FE2A-FE2B FLD Field width for formatted
number output

FE2C-FE2D CSP Check stack pointer

FE2E-FE2F R Location of editor cursor
in a text block

FE30-FE3L| ~ HLD Address of current output

FE32-FE37 FLAST FORTH vocabulary data
initialized to FORTH
vocabulary

FE38-FE3D ELAST Editor wvocabulary data
initialized to EDITOR
vocabulary

FEJE CRELAG Carriage return flag

FE3F ~ - Available for user

-144-

FEG4-FLGS 2 |~ UB/SCR |Nomber of buffcrs per
block

FE66-FLE67 2 - Available fer usex

FE68-FEBY 2 RAF Register AF

FEGA—FEGD 2z RBC Register BC

FEGC-FR6D 2 RDE Register OF

FEOE-FE6F 2 RHEL Register HL

FE70=FE71 2 RIX Register IX

FE72-FE73 2 RIY Register 1Y

FR74-FET7S 2 RAF' Register AF’

FE76<FL77 2 RBC? Register RC'

FE78-FE79 2 RDE' Register DE'

F:7A4-FE7B 2 RHL' Register HL'

FE7C 1 - Available for user

FE7D 1 JPCODTI JMP code (C3) for word
CALL

FETE-FETF 2 JPVECT JMP vector for word CALL

FEBO-FEOF| 32 = Available for user

-146-

