

Sam Coupe MasterDOS Page - 1 -

***************** MasterDOS FOR THE SAM COUPE *******************

- CONTENTS -

Starting to use MasterDOS

RAM Disks - Why you have at least six drives 3
DIR - Explaining the Directory 4
Simple Saving and Loading 6
Shortcuts to Loading 7
AUTO files and BOOT 7
Other forms of SAVE and LOAD 7
VERIFY and MERGE 8
Using the Network 8
BACKUP 8
COPY 9
Wild Cards 11
File-name extensions 11
"ASK ME" Option 12
More about DIR 12
ERASE 13
PROTECT 13
HIDE 14
RENAME 14
FORMAT 15

RAM Disks and the FPAGES function 16

SUBDIRECTORIES - Organising your files 18
 OPEN DIR 18
 DIR= 18
 DIR 19
 ERASE 20
 COPY, PROTECT and HIDE 20
 RENAME 20
 The PATH$ Function 21

Using the Clock/Calendar: 21
 DATE and DATE$ 21
 TIME and TIME$ 22

Directory and File Functions: 22
 DIR$ - Directory string 22
 DSTAT - Disk Status 23
 FSTAT - File Status 23

SERIAL FILES: 24
 Creating a Serial File 24
 Reading a Serial File 25
 INKEY$ Function 26
 INPUT LINE 27

CLOSE * 27

Sam Coupe MasterDOS Page - 2 -

MOVE 27

RANDOM ACCESS FILES: 28
 Creating a Simple Random-Access file 28
 Reading a Simple Random-Access File 29
 POINT 29
 Altering a Random-Access File 30

OPENTYPE File Functions: 31
 PTR - File Pointer 31
 LENGTH - File Length 31
 EOF - End-of-File detection 32
 INP$ - Multi-INKEY$ from a file 32

Data Packing in Random-Access Files 33
 Storing Numbers 34
 Variable-Length Records 34
 POINT# stream 34
 POINT with OVER option 35
 Opening Multiple Files 36
 MOVE and Random-Access Files 36

Reading and Writing Sectors: 36
 READ AT and WRITE AT 36

DOS Variables and the DVAR function 37
Directory Entry Format 39
Error Messages 40
MasterDos HOOK (command) Codes 40

First Edition, December 1990. All Rights Reserved.
Copyright Andrew Wright and SAM Computers Ltd. Written by Andrew
Wright, with some material contributed by Alan Miles.

If you have any suggestions, or problems with this program, you can
contact SAMCO, or alternatively, write to:

Dr. Andrew Wright, 24 Wyche Ave, Kings Heath, BIRMINGHAM B14 6LQ

This program took me a lot of time and effort to write, and the
price is very reasonable. Please let your friends buy their own
copy, so that I (and SAMCO) can continue to work on new products!

Sam Coupe MasterDOS Page - 3 -

STARTING TO USE MasterDOS

To be on the safe side, ensure your MasterDOS disk is write-
protected so you do not accidentally erase it. You should be able
to see through the little hole in one corner; if you can't, move
the small plastic slider over.

To load MasterDOS, turn on the computer and place the MasterDOS
disk in drive 1, which is the left-hand slot. The label should be
uppermost and the metal part should be on the side away from you.
Then press the F9 key and the light on the disk drive will go on
and the Disk Operating System should load. The computer will now
understand a range of new commands that deal with disk operations.

You may be aware that the Coupe normally LOADS and SAVES to tape if
DOS has not been loaded. Pressing the F9 key loads the DOS using
the BOOT keyword, and this selects DEVICE dl, which means that
SAVE, LOAD, MERGE and VERIFY now automatically use disk drive 1
rather than a tape recorder. This means that Basic programs that
worked with tape usually do not need to be altered at all when
transferred to a disk. To go back to using tape, you can include
"t:" in the file name. For example, SAVE "t:test" or SAVE
"t45:faster" or LOAD "t:test". There is a special case when you do
not have to do this: LOAD "" ALWAYS uses tape, because loading a
file with no name makes no sense to a disk system. Keys F7 and F8
are programmed to be LOAD "" and LOAD ""CODE and they will always
work with tape. You can also type: DEVICE t to go back to using
tape for all SAVES and LOADS.

Copying your MasterDOS disk

The first thing you should do is make a copy of your Master DOS
disk. To do this, press the button on the disk drive and remove the
MasterDOS disk, and replace it with a blank disk. Then type: FORMAT
"d1" and press the <RETURN> key. (From now on whenever you have a
command to type in I will assume that you will press <RETURN>
afterwards.) The computer will format all the tracks, and then
verify that they are O.K. If this does not happen, try again,
perhaps with a different disk. When the FORMAT is complete, take
out the disk and put the MasterDOS disk back in. Type: BACKUP "d1"
TO "d1". All the files will be read from the disk. When "Insert
target disk press a key" appears, insert the disk you formatted
earlier and press a key. If the "0 OK, 0:1" message appears, the
copy is complete.

(This will be what happens, unless many extra files have been
placed on the disk. Otherwise, you will be prompted to "Insert
source disk" again. Follow the prompts until the copy is finished.)

Now put the original MasterDOS disk away in a safe place and use
only the copy.

Sam Coupe MasterDOS Page - 4 -

You must FORMAT any new disks before you use them. It is not
necessary for each disk to have a copy of MasterDOS on it, but it
is convenient. The DOS must be the first file on the disk, or it
will not be found, so it is convenient to copy it on just after
doing a FORMAT. You can use COPY "mdosl" TO "*" to copy just the
DOS from a disk with it on, to another disk - just follow the
prompts.

RAM DISKS - Why you have at least six disk drives.

A RAM Disk is a section of computer memory that acts like a disk
drive. RAM Disks are explained in detail in a later section, but I
mention them here so that you know that you have at least six
"drives" on your Coupe, even if you thought you only had one! You
can usually use two-drive forms of commands explained later on in
this manual - just note that a RAM disk loses its contents when you
switch the computer off!

EXPLAINING THE DIRECTORY

Put your new MasterDOS disk into drive 1 and type: DIR. DIR
displays on the screen the DIRectory of the disk drive which is
your current DEVICE. You'll see a screen similar to this:

MasterDOS 1:

MDOS1 memuse progl
 prog2 prog3 rafprog

Number of Free K-Bytes = 758
 6 Files, 74 Free Slots

This is a simple directory which gives only the names of files on
the disk and some information about the disk itself. The file names
are sorted into alphabetical order. (More exactly, sorted according
to the CODE of each character. "1" comes before "A" which comes
before "a".) For more detailed information, type: DIR 1 (or DIR 2
for drive 2). You will see something like this:

MasterDOS 1:

1 MDOS1 31 C 65536,15700
 2 progl 2 BASIC
 3 prog2 3 BASIC
 4 prog3 3 BASIC
 5 rafprog 2 BASIC
 6 memuse 3 BASIC 1

Number of Free K-Bytes = 758
6 Files, 74 Free Slots

Don't worry if the screen doesn't look exactly like this.

Sam Coupe MasterDOS Page - 5 -

The disk name is printed at the top left of the directory. Here it
is "MasterDOS". To the right of the disk name is "1:" which tells
us that the directory is for drive 1. After this follows a long
list of names. Each named item is a file. Files can be BASIC
programs, machine code programs, screen pictures or array files. At
the end of the list some information about the disk is given: the
space still available, the number of files present and the number
of "Free Slots" for extra file names in the directory. In the
example the disk can hold as many as 80 files, provided there's
still space left on the disk. Later you'll find out how to prepare
disks able to hold hundreds of files. (See FORMAT.)

In the list of files, each entry starts with a file number.
Whenever you SAVE a file, the Coupe will give it the first
available file number. So if you have the DIRectory shown in the
example, the next file you SAVE will automatically become program
number 7. This program number will stay the same until the file is
ERASEd. But if you ERASE, say, program 9, then the next file you
SAVE to disk will become the new file number 9.

The second column shows the file name, which can be up to 10
characters long. Names can contain almost any characters, although
it is probably best to start the name with a letter and continue
with letters, numbers and perhaps spaces. Names to AVOID are "dl",
"d2", "d3" etc. and names starting with numbers - these can be
ambiguous.

Full stops have a special role in separating the main part of the
name from an "extension", and the characters "?", "*", "/" and "\"
also have a special purpose. Avoid using these characters in file
names for now - their use will be discussed in detail later on.

The third column in a DIRectory listing shows the number of disk
sectors used. Each sector holds 512 bytes (= 0.5 Kilobyte) so to
find out the number of Kilobytes of disk space used for any file,
divide the number in the third column by 2.

The fourth column is for the file type. These are the different
types of file you are most likely to use:

BASIC = BASIC program
 C = Code file
 SCREEN$ = Screen file
 D.ARRAY = Numeric data array
 $.ARRAY = Character array
 SNP 48K = Snapshot file (a Spectrum memory copy)
 OPENTYPE = Serial or random access file
 DIR = Subdirectory

You probably will not understand the significance of all these
types of file yet, but don't worry, they will be explained later.

Files that are of CODE type will be followed by the start address
and length of the code; advanced programmers will find this

Sam Coupe MasterDOS Page - 6 -

handy. If a number follows the type BASIC, this is the line number
that the program will auto-run from on LOADing.

If your directory is longer than the screen, you will be prompted
to "Scroll?". When you have read the directory, press <RETURN> to
see the next screen of directory entries. That's enough about
directories for now - details of other forms will be given later.

Simple SAVING and LOADing

Place a formatted disk in your disk drive, then enter this short
program which we'll use to illustrate the various disk operations:

10 REM circles
 20 FOR r=1 TO 255 STEP 2
 30 CIRCLE 128,77,r
 40 NEXT r

To SAVE the program to drive 1 with the name "circles", type: SAVE
"circles".

The maximum number of characters in a file name is 10. Capitals are
equivalent to lower-case letters, so "circles" is the same as
"CIRcles". Spaces within the name matter, so "file 1" is different
from "file1".

Now check that the file has been correctly SAVEd by typing: VERIFY
"circles" and you should get an OK message. (VERIFY compares the
program in the computer with the program on the disk - so if you
edit the program and then VERIFY again you will get "Verify
failed".)

Now, clear the program in the computer by typing NEW, then LOAD the
program back from the disk with: LOAD "circles". When the OK
message appears, the program has been loaded. Press <RETURN> to
list it and confirm this.

It is also possible to make the program automatically run when it
is LOADed. Let's do that now with: SAVE "circles" LINE 10

But of course there's already a program called "circles" on the
disk. The Coupe tells you this and asks you whether you wish to
overwrite the existing file. Press the Y key for Yes or the N key
for No. There is no need to press <RETURN> afterwards. Any key
apart from Y is accepted as No by the computer, to minimise
accidents.

Type DIR 1 to see "circles" in the directory. Notice the auto-
running line number after "BASIC". (Actually, it is an auto-GO TO
line number, but everyone calls it "auto-run"!)

To SAVE and LOAD from drive 2, you can type: DEVICE d2 and then
type exactly what you did for drive 1, or you can use file names
preceded by the drive number, for example: "d2:circles". The

Sam Coupe MasterDOS Page - 7 -

"d2:" is lopped off the file name before it is used to SAVE or LOAD
the file, so it is not counted as part of the 10 characters you are
allowed for the file name proper.

SHORT-CUTS TO LOADING

After getting a detailed directory, you can LOAD a program simply
by using its number from the left-hand column - e.g. LOAD 3. You do
not even need a space after LOAD. This works with all file types
except array files. The drive the file loads from will be the last
one used, so: DIR 2: LOAD 12 will load the twelfth file in drive
2's directory.

This form of LOAD is particularly convenient if you want to load
SCREEN$ or CODE files - you still use just a number.

AUTO Files and BOOT

When you press the F9 key, a special keyword, BOOT, is entered and
this causes the DOS to load. BOOT also looks for any file starting
with "auto" and loads it, if found. If you SAVE a Basic program
using: SAVE "auto" LINE 1 the program will be automatically loaded
and run, immediately after DOS has loaded.

If you press F9 again, or use the BOOT keyword, AFTER the DOS has
loaded, the "auto" file will be loaded again, but the DOS-loading
step is omitted. If you type: BOOT 1, the DOS will be loaded
without the "auto" file being loaded.

Other forms of SAVE and LOAD

You will find quite a lot of information about other forms of SAVE
and LOAD in the Coupe's manual, but I will give a brief summary of
them here.

SAVE "name" LINE N - SAVE BASIC file "name" and GOTO line N
 SAVE "name" SCREEN$ - SAVE the current screen image including
 its PALETTE colours.
 SAVE "name" CODE a,b - SAVE CODE file "name" from address A,
 with length B.
 SAVE "name" CODE a,b,c - As above, but run the machine code
 from address C on reLOADing.
 SAVE "name" DATA xyz$ - SAVE string or string array xyz$ as
 "name".
 SAVE "name" DATA xyz() - SAVE number array xyz() as "name".

All forms of SAVE can be of the form SAVE OVER "name". In that
case, any existing file with the same name will be overwritten
without asking. This applies even if the file is PROTECTed.

LOAD "name" LINE N - LOAD BASIC file "name" and GOTO line N
 Ignore any auto-running line.

Sam Coupe MasterDOS Page - 8 -

LOAD "name" SCREEN$ - LOAD a screen image file, or LOAD a
 CODE file to the screen. A SCREEN$
 file will automatically set the
 correct screen MODE.
 LOAD "name" CODE - LOAD CODE file "name" to the address
 it was SAVEd from (see the directory).
 Also works with SCREEN$ type files.
 LOAD "name" CODE a - As above, but LOAD to address A.

LOAD "name" DATA xyz$ - LOAD string or string array file "name"
 and call it xyz$.
 LOAD "name" DATA xyz() - LOAD number array "name" and call it
 xyz().

VERIFY and MERGE

Disks are quite reliable and VERIFY should almost always work.

VERIFY "name" - Compare BASIC file with program in the
 computer.
 VERIFY "name" CODE - Compare CODE file with the same area in
 memory.
 VERIFY "name" CODE a - Compare CODE file with the memory area
 at address A.

VERIFY also works with array files and SCREEN$ files, although
for the latter you will have to use the command within a program,
because your typing will alter the screen!

MERGE "name" - MERGE BASIC file "name" and its
 variables with the current program. It
 may take some time if either program is
 large.
 MERGE "name" CODE - Like LOAD "name" CODE but stops any
 auto-running.

You cannot use MERGE with other file types.

Using the NETWORK

You can SAVE or LOAD over the Network by including "n:" before the
file name, for example: LOAD "n:" on the receiving computer and
then type SAVE "n:testing" on the sending computer. The file name
"testing" will appear on the screen as with a tape LOAD, but
transfer is much quicker. You can easily pass messages to another
computer by saving and loading string array files.

BACKUP

The BACKUP command allows you to copy an entire disk at once. The
disk you copy to (the "target" disk) must be already formatted. Any
files on that disk will be lost. You can copy from drive 1 to drive
2, drive 2 to drive 1, drive 1 to 3 etc. or you can use a single
drive. For example:

Sam Coupe MasterDOS Page - 9 -

BACKUP "dl" TO "d2" - copy from drive 1 to drive 2
 BACKUP "dl" TO "dl" - single-drive copy

Reading from the source disk starts at once. Used areas of the disk
are read into the computer's free memory until it is full, or
everything on the disk has been read. Then you are prompted to
insert the target disk, if you are using a single drive, and the
information is written to the target disk. Often BACKUP will finish
at this point, especially if you have a 512K computer, but if
necessary you will be prompted to insert the source disk again and
reading and writing will continue until all the information has
been copied. If anything goes wrong before BACKUP finishes, do not
use the copied disk even if DIR seems to show all the files are
present.

You can minimise the number of disk swaps required for a single-
drive BACKUP by freeing as much memory as possible in the computer.
You could try: CLEAR 32767: OPEN TO 1 (this frees 48K normally used
by BASIC) or, if you have used more than one screen: SCREEN 1: FOR
s=2 TO 16: CLOSE SCREEN s: NEXT s. This will free 32K for each
screen that was open. RAM disks can be deleted by using the FORMAT
command - e.g. FORMAT "d3",0

Naming the target disk

The names used in BACKUP can be longer than "dl". For example:

BACKUP "dl:ignored" TO "d1:FILES 5"

Apart from determining the source drive, the first name is ignored,
but the second name is used to name the target disk. In the
example, the disk would be called "FILES 5". The name would appear
at the top of a directory listing. If you use just "dl" or "d2",
the default name of "MasterDOS" is used. RENAME can also be used to
name a disk.

BACKUP marks each target disk with a different random number, so
that MASTER DOS can tell when you change a disk - even if you
change to a BACKUP of the disk you are using.

COPY

The COPY command can be used to copy one or many files. To make a
copy of a file called "Test", which will be called "Testcopy", for
example, you would type:

COPY "Test" TO "Testcopy"

The file "Test" will be loaded into a temporary storage area in the
computer, and you will briefly see the message "LOADING Test". Then
the message "Insert target disk press a key" will appear. To make a
new copy of the file on the same disk, simply press a key now. Or,
if you want your copy on a different disk, insert that now and
press a key. (Don't forget that your disk must be formatted.)

Sam Coupe MasterDOS Page - 10 -

If by any chance there is already a file called "Testcopy" on the
target disk, you'll be asked whether you wish to overwrite it.
Press Y for Yes or N to cancel the copy.

As the copy is saved, you will see: "SAVING Testcopy", and then
you'll see: "Insert source disk press a key". The Coupe is checking
whether there are more files to be copied. (You'll see why when you
come to "Wild Cards" in a moment.) So re-insert your original disk
and press a key. If there are no other files to copy, you'll see an
OK message.

Computer abuse is a growing social problem. A common cause of
violence is when the computer deliberately corrupts or loses a
vital file. Don't believe that it can't happen to you. It will!
Even the SAM Coupe can be temperamental. So make it a habit to
back-up key files. Use a different disk but keep the same filename
to make life simpler.

Large files may need to be copied in several sections, since only
free memory pages can be used. Follow the prompts, if required. If
you are using two drives, you can also copy a file from one drive
to the other. Here are some examples:

COPY "Test" TO "d2:Test"
 COPY "dl:name" TO "dl:name"
 COPY "dl:xyz" TO "d3:arghhhh"
 COPY "name" TO "d2"

The last example used "d2" to mean "copy to drive 2 and use the
original name" which is certainly convenient, and explains why you
shouldn't try to call a file "dl" or "d2"!

With disk commands in general, if you use "di" or "di:" or "di:*"
after the TO keyword, the meaning is "drive 1, use the original
name", and similarly for the other drives.

If your machine has just a single real disk drive you may find COPY
"dl" TO "d1" entails an irritating number of disk swaps, and the
BACKUP command may be easier to use. (You can always selectively
ERASE after a BACKUP.) However, you can also set up a RAM disk as a
temporary store:

10 FORMAT "d3",1,24: REM enough for 20 files, 115K
 20 COPY "dl" TO "d3"
 30 PRINT "Insert target disk and press any key"
 40 PAUSE
 50 COPY "d3" TO "dl"
 60 FORMAT "d3",0

If you have a 512K machine or an extension RAM you will be able to
set up a larger RAM disk. Also, if you don't mind doing a little
programming, the routine above could be extended to cope with large
numbers of files in several "swaps". The new functions DIR$, FSTAT
and DSTAT may be useful here.

Sam Coupe MasterDOS Page - 11 -

At this point we need to explain a number of features that apply to
many of the disk commands - these are Wild Cards, file-name
extensions, and the "ASK ME" option.

WILD CARDS

These are special symbols in file names that can be equivalent to
any character or series of characters. (They are called after
special cards in some games that can be anything you want them to
be.) They apply not just to COPY but also to DIR, ERASE, RENAME,
HIDE, etc. The asterisk (*) will match any series of characters,
so: COPY "*" TO "d2" will accept any and all files on the current
drive for copying (with the same name) to drive 2. "dl:*" or "d4:*"
mean "everything on this drive" For convenience, "dl" or "d4" could
have been used instead, but the asterisk is more flexible; if you
want to copy all files starting with "n", use: COPY "n*" TO "d2".

Whereas "*" stands for any character or sequence of characters, "?"
stands for any individual character, so: COPY "a??cs" TO "d3" will
copy all files called a--cs. The second and third characters are
irrelevant. You can also use wild cards in the name after TO. An
asterisk means "take all following characters from the source
name", a question mark means "take this character from the source
name" and anything else means "use mel ignore the source name". So:
COPY "m*" TO "X???two" will copy "mrt" to "Xrt two" and "mrt2" to
"Xrt2two". All this is a bit mind-boggling until you are used to it
- and even afterwards) But it can be very useful on occasion.

FILE-NAME EXTENSIONS

You already know that file names can be up to 10 characters long,
including spaces, but excluding any device specifier like "d2:" or
"t50:". But to help you organise your files, the Coupe allows you
to use file-name extensions, in much the same way as a business
computer.

For example, you might tag all your letter files with the extension
".let", all your database files with ".dat", and all your graphics
files with ".gra". Your directory might show:

bank .dat bank .gra bank .let
 bank2 .dat invite .let lettrl .let
 lettr2 .let stamps .dat stamps .gra

File names must still be less than 10 characters, including the
decimal point. Notice the way the computer lines up all the
extensions neatly. This is neat, but it does mean that a file
called "x.12345678" will appear as "x .123", although its name is
still "x.12345678" and you need to LOAD it as such. Remember, the
name is what you entered, not what is displayed. It is possible to
turn off the extension-alignment feature if you want - see DOS
Variables.

Sam Coupe MasterDOS Page - 12 -

The wild card "*" will work separately for the first part of an
extended name, and the extension itself, so that you can use for
example: COPY "dl:*.dat" TO "d2" to copy all data files, or ERASE
"bank.*" to erase "bank.dat", "bank.let" and "bank.gra". DIR
"*.let" will show just letter files.

The "ASK ME" Option

Another way to select some but not all files is to get the computer
to ask you before each operation. This option works with ERASE,
RENAME, PROTECT and HIDE, as well as COPY. You just follow the
command with a question mark to tell DOS that you want it to ask
you about each file. (This is distinct from the use of the
question. mark WITHIN file names as a wild card character.) For
example:

COPY "dl" TO "d1"?

will ask:

COPY "file name " (y/n/a/e)

for each file. You can reply by pressing "y" if you want to COPY
the file or "n" to skip it and proceed to the next one. Pressing
"a" will COPY the file and All the rest, without asking further.
Pressing "e" will Exit from the COPY command. Any other keypress is
equivalent to "n".

MORE ABOUT DIR

The DIR command has many different forms. So far you have
encountered DIR, which gives a simple, sorted directory of the
current drive, and DIR 1, DIR 2 etc. which give a detailed
directory of a specific drive. Only the latter form does a CLS
first. Here are examples of some other forms:

DIR * - detailed directory of the current drive.
 DIR 11 - simple directory of a specific drive.
 DIR "*.let" - detailed directory using wild cards.
 DIR "asd??"! - simple directory using wild cards.
 DIR "d2:*.dat" - detailed directory of a specific drive, using
 wild cards.
 DIR 2)"*.dat" - another form of the above.
 DIR DATE - detailed directory with date of SAVE, if
 applicable. Perhaps best viewed in MODE 3. See
 CLOCK commands.
 DIR DATE "k*" - as above but selecting drive and/or files.

DIR "subl/*" - directory of a named subdirectory. See SUB
 DIRECTORIES.
 DIR ? - simple directory showing files whatever their
 subdirectory. DIR 1?, DIR "name"? and DIR
 "name"!? are also allowed.

Sam Coupe MasterDOS Page - 13 -

You can control whether simple directories are alphabetically
sorted or not, and how many columns are used across the screen.
(Normally the number of columns is the maximum that will fit into
the current screen WINDOW in the current MODE.) See DOS VARIABLES.

ERASE

To ERASE a file, type: ERASE "file name". As usual, you can include
a drive number if you want to specify the drive, for example: ERASE
"d2:fred". Also as usual, "d1" on its own means "everything on
drive 1" and "*" means "everything on the current drive" so be VERY
careful you mean ERASE "dl" if you type it!

ERASE with the "ASK ME" Option

suppose you have a disk with 30 files on it, 25 of which you want
to erase. It would be rather a chore to type in the 25 names, but
ERASE "*" or ERASE "dl" will delete ALL the files, so what can you
do? The answer is to use:

ERASE "*"?

The queston mark tells DOS to ask you what to do before each ERASE.
If the first file is called "letter2" you will see:

ERASE "letter2 " (y/n/a/e)

at the bottom of the screen. You can reply by pressing "y" if you
want to ERASE the file or "n" to keep the file and proceed to the
next one. Pressing "a" will ERASE the file and All the rest,
without asking further. Pressing "e" will Exit from the ERASE
command. Any other keypress is equivalent to "n".

You can also use wild Cards, as in: ERASE "*.bas"?
A special form of ERASE is available that works only on
subdirectories - see SUBDIRECTORIES.

PROTECT

You can protect an individual file from being ERASEd by typing:

PROTECT "file name"

A PROTECTed file will appear in a detailed catalogue with an
asterisk in the left-hand column, instead of a file number.

Protection can be removed by:

PROTECT OFF "file name"

You can also use PROTECT and PROTECT OFF with wild cards and the
"ASK ME" option, e.g.: PROTECT "d2:gr*"?

Sam Coupe MasterDOS Page - 14 -

If you use the normal ERASE command on a protected file, or answer
"y" to the "Overwrite?" prompt during SAVE, you will get a BEEP and
a "PROTECTed File" message. If you are erasing multiple files using
wild cards, you will get a BEEP for each protected file, and ERASE
will go on to the next file. The final message will be "OK" if at
least one unprotected file was found and erased - otherwise it will
be "PROTECTed file" again.

When a file is protected, it is still possible to SAVE or ERASE
over it using:

SAVE OVER "file name"
 ERASE OVER "file name"

Also you can COPY the contents of a file (say "new file") OVER the
contents of another file (say "old file") even if "old file" is
protected, using:

COPY OVER "new file" TO "old file"

This will copy the contents of "new file" to "old file"; "old file"
will keep its original name.

HIDE

You can hide files too. Simply type:

HIDE "file name"

and it will no longer appear in the directory. HIDE OFF "file name"
does just what you'd expect. You can use wild cards and the "ASK
ME" option, as usual. When you HIDE a file, it becomes both hidden
and protected. Watch out! It can still be overwritten using SAVE
OVER, ERASE OVER or COPY OVER. HIDE OFF will then leave the file
still protected, but visible.

RENAME

The RENAME command can be used to change the name of a file or the
name of a disk. Files can also be moved from one subdirectory to
another by including a directory name as part of the file name.
(See SUBDIRECTORIES.)

To RENAME a file, we use the form:

RENAME "old name" TO "new name"

Let's RENAME the "Circles" file as "Example 1":

RENAME "Circles" TO "Example 1"

Look at the DIRectory again, to confirm that the change has been
made. If you had already had a file called Example 1, you would
have seen a "File name used" report and the RENAME would not have
been allowed.

Sam Coupe MasterDOS Page - 15 -

To RENAME the disk in the current drive, we use the form:

RENAME TO "name"

Try this and then do a DIR. You will see that "name" appears at the
top of the DIRectory, in the space reserved for the disk name.
Naming disks is useful for reminding you of the sort of files you
have put on the disk, and for matching DIRectory listings sent to a
printer with the disks they came from. It is a good idea to write
the disk name on the label, too.

RENAME with multiple files

You can use wild cards to RENAME many files at once. We can use,
say, "*" as the first name to RENAME all files, or "SNAP*" to just
RENAME Snapshot files. The second name needs a little thought,
because obviously we cannot use e.g. "testing" or the DOS will try
to name all the files with the same name! (Don't worry - it will
tell you "File name used" if you do this by accident.) A more
sensible example would be:

RENAME "SNAP*" TO "GAME???"

This would RENAME all Snapshot files, but the fifth, sixth and
seventh characters (represented by the question marks in the second
name) would be kept as they were.

You can also use the "ASK ME" option so you can choose which files
are RENAMEd - just follow the second name with a question mark.

RENAME can be very useful when used with subdirectories - see
SUBDIRECTORIES.

FORMAT

The FORMAT command prepares a disk by writing blank sectors to it
and verifying that they can be read back. (If FORMAT fails
repeatedly, the disk surface is probably damaged.) The simplest
form of FORMAT is: FORMAT "d". This formats the disk in the default
drive. FORMAT "dl" or "d2" format the disk in drive 1 or drive 2.
You can specify how many tracks are to be used to store the disk
directory, and thus how many files the disk will be able to hold.
If you do not specify a value, a 4-track directory holding up to 80
files will be assumed. Here are some examples:

FORMAT "d1"
 FORMAT "d1",4 Both allow up to 80 files and give 780K of disk
 space free for files on an 800K disk.

FORMAT "d1",5 Allows up to 98 files and gives 775K free.
 FORMAT "dl",10 Allows up to 198 files and gives 750K free.
 FORMAT "d1",39 Allows up to 778 files and gives 605K free.

Sam Coupe MasterDOS Page - 16 -

Each directory track hold 20 file entries, except for the fifth
track which holds only 18 because part of it is reserved by the
DOS. Thirty-nine tracks is the maximum you can allocate to the
directory, and four tracks is the minimum, except for RAM disks,
which allow you to use as little as 1 track. The disk format used
by MasterDOS is slightly different from SAM DOS format; it allows
data to be transferred to and from the disk 10% faster. (Discs
formatted by MasterDOS can still be used by SAM DOS, provided the
directory takes up 4 tracks.)

As well as writing blank sectors to the disk, MasterDOS writes some
information about the disk into the first sector. This includes a
2-byte random number which allows disks to be told apart, and a
disk name which will appear at the top of directory listings. If
you do not specify a name, "MASTER DOS" will be used. To use
another name, use for example:

FORMAT "NUMBER 6" or FORMAT "d2:ALAN`S".

RAM DISKS

Introduction

A RAM disk is a section of computer memory (RAM) that acts like a
disk drive. (If it was up to me, I'd call it a RAM drive, but never
mind.) Its main advantage is that it is much faster than a real
disk drive. This compensates for the disadvantage that all files
are lost when you turn the computer off! The usual method of
working is to copy the files you are going to use most frequently
from a real disk to the RAM disk. There they can be used just as
though they were on a very fast real disk. At the end of a
programming session, any files that have been altered are
transferred back to a real disk before you turn the power off.

Another advantage of a RAM disk is that you magically have an extra
disk drive when you need one! If your machine only has a single
disk drive many file-copying operations can involve tedious disk
swapping, which can often be greatly reduced by setting up a RAM
disk as a temporary store. In fact, you can have up to 5 RAM disks,
each of which holds from 5K to 780K. The only limit is available
memory; if you have an external memory add-on, this will be
automatically used for RAM disks before any of the main memory is
used.

RAM disks are numbered from 3 to 7, and in general they are used
just like real drives, for example: DIR 3 or SAVE "d3:test" or:
DEVICE d5: LOAD "xyz" or OPEN #4;"d3:serial". However, before use
they have to be FORMATed, and this command does differ slightly
when used for RAM disks.

Sam Coupe MasterDOS Page - 17 -

Setting Up a RAM Disk

To FORMAT a RAM disk, use the form:
 FORMAT "d3",D,T

D is the number of tracks you want to be dedicated to the
DIRectory, and T is the total number of tracks you want on the
disk. As with a real disk, each DIRectory track can store 20 file
entries. The other tracks can store 5K of data per track. You must
have at least 1 directory track and 1 additional track, so the
smallest RAM disk is obtained by: FORMAT "d3",1,2. Actually the DOS
allocates whole 16K pages to a RAM disk as required, so you might
as well use FORMAT "d3",1,3 because both require just one page.
Each page can hold 3.1 tracks.

The FPAGES Function

Often, you will want a RAM disk to be as big as possible. How big
is that? A 256K Coupe normally has 9 free 16K pages, while a 512K
machine has 25. Each external memory module adds 64 more pages. (Of
the reserved pages, the normal allocation is 4 for Basic, 2 for the
screen, and 1 for DOS.) However, the number of free pages will
change as SCREENS or RAM disks are set up, or utilities are loaded.
Available pages will increase if Basic's allocation is reduced by
e.g. CLEAR 32767: OPEN TO 1. The easiest way to check is to use the
function FPAGES. Try PRINT FPAGES now. It is not a good idea to use
every page for RAM disks, because COPY and BACKUP need at least 1
page temporarily when working. To use all except 1 page for RAM
disk 3, you could use:

10 LET tks=INT((FPAGES-1)*3.1)
 20 FORMAT "d3",1,tks

This will usually give a 24-track RAM disk on a 256K machine, or 74
tracks on a 512K. This will hold 115K or 365K of data respectively.
By reducing Basic's memory use you can stretch this to 34 tracks
(165K) or 83 tracks (410k). With an external memory unit you will
need to ensure the number of tracks is 160 or less, because the
capacity of each RAM disk can be no greater than that of a real 80
track double-sided disk. Also, the number of data tracks must be
156 or less. It is convenient to use FORMAT "d3",4,160 because that
is the usual real disk format.

You can change the size of a RAM disk by using FORMAT again. Any
files on the RAM disk will be lost. To release all the memory used,
use FORMAT "d3",0.

Files can be transferred to a RAM disk simply by LOADing them from
a real disk and then using SAVE "d3:name", but COPY is probably
easier: COPY "dl" TO "d3" will copy all files to RAM disk 3, if
there is room. Wild cards can be used so that only a selection of
files is transferred. Another method is to use BACKUP "dl" TO "d3",
which will work provided all used sectors in the source disk are
available on the RAM disk; otherwise, you will get an error
message.

Sam Coupe MasterDOS Page - 18 -

Once you have a set of files on your RAM disk, you can try to use
them as though they were on drive 1. You could DIR 3 and then LOAD
a file by number, or use LOAD "d3:name", or DEVICE d3: LOAD "name".
A problem may well occur, though) the program you load may include
a line like DIR 1 or LOAD "dl:udgs" CODE which goes back to using
slow old drive 11 What we would really like is to tell the DOS that
it should use disk 3 whenever disk 1 is mentioned - and we can do
just that.

Master DOS keeps a table of which drive it should actually use when
a drive called for. Normally this holds the numbers 1 to 7, so that
e.g. DIR 1 looks at table position 1, reads 1 and uses drive 1. But
if the table is altered to hold 3 at that position, drive 3 will be
used instead. (Or you can "swap" drives 1 and 2 by making the table
hold 2,1,3,4,5,6,71) The table is stored at DVAR 111 to 117, so
transfer your files to disk 3, then POKE DVAR 111,3. Now drive 3
acts as though it is drive 1. Even the F9 key loads AUTO files from
drive 3. To return to normal, POKE DVAR 111,1.

SUBDIRECTORIES

Once you have been using a disk-based computer for a while, you
will probably find that you tend to accumulate disks with a large
number of fairly short programs on them. Even the 80 files allowed
in the smallest directory size take some looking through, and if
there are hundreds of files in one directory you have a problem. of
course you can use lots of disks, but this is wasteful and means
you are always looking for the right disk. The solution is to
separate the files into subdirectories. Creating a subdirectory is
almost like creating a new disk within a disk. To see what I mean,
take a new disk and save some files onto it. Then create a
subdirectory like this:

OPEN DIR "subl"

Of course the name can be anything you like, as with a file name.
If you do a DIR 1 now you will see "subs" in the list of files,
with the type DIR showing that it is the name of a subdirectory. We
can make "subl" the current directory by typing:

DIR="subi"

Now do a DIR and you will see something like this at the top of the
screen: MasterDOS 1:\subl. The "subl" shows the subdirectory name.
You will see that there are no files in the directory yet, so save
a few, in the normal way. The free slots and free disk space will
decrease, but note that this subdirectory can expand to fill all
the free slots and space on the disk, if need be. Now make a sub-
subdirectory by, say, OPEN DIR "games". Then use DIR="games" to
make it the current directory. DIR now shows the subdirectory name
as 1:\subl\games, meaning that "games" is a subdirectory of "subl",
which is itself a subdirectory of the main, normal directory. We
can go on creating directories inside directories until all the
free slots are used up, or until 254

Sam Coupe MasterDOS Page - 19 -

subdirectories have been created - quite a while! Any directory can
have multiple subdirectories in it.

The main directory is usually called the "root", because one can
think of the arrangement of subdirectories as like a tree, with the
root directory branching into subdirectories which branch further
until you end up with "twigs" with no further branches - just
"leaves" or files. (One problem with the analogy is that we tend to
talk about "going deeper" as one goes into subdirectories further
from the root - so the tree must be growing upside down!)

Let's go back to the root now. There are several ways to do this.
We can go back up the way we came, using DIR=""" (SYMBOL SHIFTH),
which will take us up one level to "subl", and then the same again
to get back to the root. Or, we could do it in one go using
DIR="\", which means "make the root the current directory" and
which will take us back from wherever we are in the "tree". These
two forms are used quite often, and to make typing easy, you can
omit the quotes: DIR=/ will work. You might have noticed that the
direction of the slash altered; MasterDOS is happy to accept either
form.

Once back in the root, we can experiment with some different forms
of SAVE and LOAD. Try: SAVE "subl/testfilel". If you go back to
directory "subl" (DIR="subl") and do a DIR, you will find that the
file has been saved here. We could also have SAVEd to a sub-
subdirectory using e.g.: SAVE "subs/games/file-name". The string
that tells SAVE where to put the file and what to call it has a
special name - it is called a "path". Only the last part of the
string is the actual file name: the rest determines the path along
the directory "tree", and does not contribute to the 10character
file name length limit.

Normally, a path starts from the current directory, but you can
force it to start at the root directory if you like by making the
first character of the path name a slash. For example: SAVE
"\subdr2\fred" will save a file called "fred" in subdirectory
"subdr2" which is a subdirectory of the root directory, whatever
directory is our current directory. Without the first slash,
"subdr2" would have to be a subdirectory of our current directory.

You can also use "" as the first character, which will go back up
to the previous directory level before using the rest of the path
name. This allows you to access a subdirectory which is a branch of
the same directory that your current directory branches from, if
you are so minded. (Usually, I'm not.)

DIR and Subdirectories

You can use e.g.: DIR "subs/*" to display all the files in a
subdirectory. DIR ? will list all files in any subdirectory, as
will DIR 1? The file numbers in the left hand column can always be
used to LOAD the files, whatever directory you are in.

Sam Coupe MasterDOS Page - 20 -

ERASE and Subdirectories

You can use ERASE as you might expect. For example: ERASE "subs/*"
will erase all files in the subdirectory "subl", and ERASE
"games\bad game" will erase "bad game" in the "games" subdirectory.

The normal form of ERASE ignores DIR-type files, but you can erase
such a file using e.g.: ERASE DIR "subl". This will only work if
the subdirectory is completely empty; if not, you will get a
"Directory not empty" message.

COPY, PROTECT, HIDE and Subdirectories

By now you should have got the general idea, but here are some
examples:

COPY "games/lotto" TO "d2:games/*"
 PROTECT "/subl/imp.let"
 HIDE "subl/st*"

RENAME and Subdirectories

RENAME is a quick way of moving files from one subdirectory to
another. If you have a disk with lots of files on it, and you want
to place some of them in a subdirectory, try this:

OPEN DIR "some name"
 RENAME "*" TO "some name*"?

If you press "y" when prompted, the file will be RENAMEd to the
SAME name - but it will be in subdirectory "some name", and will
vanish from the main directory. Try: DIR "some name*". You can use
more complex path names, such as:

RENAME "\sub2\games\frogger" TO "\junk\hop"

The normal form of RENAME automatically avoids RENAMEing any
subdirectory names it finds. Should you want to RENAME a
subdirectory, there is a special form of the command which only
deals with subdirectories. This is:

RENAME DIR "old name" TO "new name"

You can also use RENAME DIR with a path name. RENAME DIR "old name"
TO "subdl/*" is equivalent, in our directory "tree" analogy, to
cutting off a branch, complete with sub-branches and leaves, and
grafting it back on somewhere else on the tree. The DIR file "old
name" and all its own files will now be accessible only via
subdirectory "subdl". Avoid using e.g. RENAME "fred" TO "fred/xyz"
- this makes DIR file "fred" only available via subdirectory
"fred".... This is like grafting a branch into an endless loop, not
connected to the tree!

Sam Coupe MasterDOS Page - 21 -

The PATH$ Function

This function returns the name of the current subdirectory, as
given after the disk name in a directory. For example, if you are
in the root directory: PRINT PATH$ will give "1:" or perhaps "2:"
or "3:". If you type: DIR="subl" PATH$ will become "1:\subl", and
complex examples like "2:\subl\games\chess\chdata" are possible.
The maximum length attainable is 38 characters; anything more is
chopped off (and not printed by DIR) although you can be at a
directory level deeper than this might suggest.

USING THE CLOCK/CALENDAR

A Clock/Calendar with battery-backup is provided on SAMCO's multi-
slot motherboard. The commands DATE and TIME and the functions
DATE$ and TIME$ allow you to set and read it. Files are "date and
time stamped" as they are saved.

DATE and DATE$

The DATE command has two purposes: it allows you to set the date on
the Coupe's add-on clock, and it prints it for you. Even if you do
not own an add-on clock the command can be useful. To set the date,
follow the PATE command with a string containing six digits, for
example: DATE "010391" will set the date to 1st. March 1991. You
can include non-digit characters in the date string to make it more
readable if you want - so "01/03/91" would be allowed. The day of
the month must be 1-31, the month must be 1-12, and the year must
be 0-99, or you will get an "Integer out of range" error report.

Typing DATE by itself will print the current date in the form
dd/mm/yy, followed by a carriage return. For a more flexible method
of using the current date in a program, you can use the DATE$
function, which returns an 8-character string containing the date.
For example:

PRINT DATE$
 PRINT "Month=";DATE$(4 TO 5)

You might enjoy writing a program to generate something like "3rd.
July 1991" from a DATE$ of "03/07/91".

If you own the clock add-on, all the files that you create will be
"date-stamped" and "time-stamped" with the current date and time,
as held by the clock. This information can be displayed using the
DIR DATE command (see DIR for more details). If you do not own the
clock add-on, the date will start at "00/00/00" unless you set it.
This odd value tells the DOS not to bother date-stamping or time-
stamping files it creates. However, if you want you can set the
date yourself every time you turn the computer on, in order to
date-stamp your files. First, POKE DVAR 150,0 to tell DOS not to
try to use the non-existent hardware. (The normal value of this
DVAR is 239, the clock "port" address.)

Sam Coupe MasterDOS Page - 22 -

TIME and TIME$

The TIME command has two purposes: it allows you to set the time on
the Coupe's add-on clock, and it prints it for you. To set the
time, follow the TIME command with a string containing up to six
digits, for example: TIME "11:30". If you supply less than six
digits, then zeros are assumed. As with DATE, separators can be
used in the string, but they are not required. The hour must be 0-
23 and minutes and seconds must be 0-59, or you will get an
"Integer out of range" error report. A 24-hour clock is used, so
e.g. 2:00 p.m. is entered as "14:00".

Typing TIME by itself will print the current time in the form
hh:mm:ss, followed by a carriage return. For a more flexible method
of using the current time in a program, you can use the TIME$
function, which returns an 8-character string containing the time.
For example:

DO: PRINT AT 10,10)TIME$: LOOP

(It won't change unless you buy the motherboard and clock!)

DIRECTORY AND FILE FUNCTIONS

The DIR$ Function

This function returns all the file names in the current directory
as a string. Each name takes up 10 characters in the string - short
names are "padded" with spaces. The names occur in the order you
would see in a detailed directory listing. PRINT DIR$ will give you
a directory, but it is not as neat as typing DIR, so what is it
for? The function is designed to be used within a program to aid
file handling. Each file name can be obtained in turn by some thing
like this:

10 LET list$=DIR$
 20 FOR p=1 TO LEN list$ STEP 10
 30 LET nm$=list$(p TO p+9)
 40 REM...now do something with nm$
 50 NEXT p

Making the screen window 10 characters wide can be handy:

10 WINDOW 0,9,0,18: CLS 1
 20 PRINT DIR$: WINDOW

You can also use wild cards with DIR$. For example:

PRINT DIR$("let*")

Sam Coupe MasterDOS Page - 23 -

The DSTAT(drive,N) Function

DSTAT is short for Disk STATus. This function can be used to tell
you lots of useful things about the disk in any drive. For example:

PRINT DSTAT(1,1) gives the free space on the disk in drive 1.

You can specify a drive number between 1 and 7, because the
function works with RAM disks as well as ordinary disks. You can
also use an asterisk to mean the current drive, so that:

PRINT DSTAT(*,1) gives the free space on the current drive.

Here is a complete list of the information provided for different
values of the second number (the N parameter):

1. Returns the amount of USABLE space on the disk in bytes. (
 Specifically, 510 times the number. of free sectors, less 9
 byte; that might be required for a header when saving a file.)
 If there if: no space in the directory (i.e. if Free Slots--0)
 or the disk is write-protected you will get a value of zero,
 even if the disk has free space on it. Returns -1 if there is
 no disk in the drive, or a RAM disk has not been FORMATed, or
 the drive is not fitted. This is true of all the options.

2. Returns 1 if the disk is write-protected, and zero if the disk
 is present and not write-protected. Note: RAM disks are never
 write-protected.

3. Returns the amount of free space on the disk in bytes, like
 option 1, but without worrying about whether the disk is
 write-protected or has free space in the directory.

4. Returns the number of free slots for file names in the
 directory. 5. Returns the total number of files on the disk.

6. Returns the number of files in the current directory. This

will be the same as option 5 unless you have created a sub
 directory (see SUBDIRECTORIES).

7. Returns the number of tracks used by the directory.

8. Returns the current drive number.

The FSTAT("file name",N) Function

FSTAT is short for File STATus. This function provides useful
information on specified files. For example:

PRINT FSTAT("test",2) returns the length of the file "test".

Sam Coupe MasterDOS Page - 24 -

Here is a complete list of the information provided for different
values of the number N:

1. Returns the number of the specified file in the directory.

This is the number you would see alongside the file in a
 detailed directory. If the file does not exist, zero is
 returned. This is useful for checking if a file exists before
 SAVEing or LOADing. All options return -1 if there is no disk
 in the drive.

2. Returns the file length in bytes. Some files have a 9-byte

"header" which is not included in this length.

3. Returns the file type using the following codes:
 1=ZX BASIC
 2=ZX Numeric Array
 3=ZX String Array
 4=ZX CODE
 5=2X SNP 128K
 6=ZX Microdrive File
 7=2X SCREEN$ 8=SPECIAL
 9=ZX SNP 128K
 10=OPENTYPE
 11=2X EXECUTE
 16=SAM BASIC
 17=SAM Numeric Array
 18=SAM String Array
 19=SAM CODE
 20=SAM SCREEN$
 21=SAM SUHDIRECTORY

4. Returns the file type as above, but also adds 64 if the file
 is protected, and 128 if the file is hidden.

SERIAL FILES

Creating a Serial File

To create a serial file, you must first of all OPEN the file for
output, specifing a stream number and a file name, for example:

10 OPEN #4;"testfile"OUT

The disk operating system will check to see if "testfile" already
exists on the current drive, and ask you whether you want to
overwrite the old copy if it finds one. You can specify a
different drive as usual by using a name starting with "dl:",
"d2:", "d3:" etc. Stream 4 will be assigned to the file, unless
stream 4 is already in use. (You can use any stream number from 4
to 15.) From now on, PRINT commands qualified by "#4" will PRINT to
the disk file, rather than the screen. For example:

Sam Coupe MasterDOS Page - 25 -

20 FOR n=1 TO 50

 30 PRINT n;" abcdefghi"
 40 PRINT #4;n;" abcdefghi"
 50 NEXT n

You can see what is being sent to the disk file because line 30
prints a copy to the screen. The file will contain 50 strings, from
"1 abcdefghi" to "50 abcdefghi". In many applications these strings
may be referred to as RECORDS.

If every single character had to be placed immediately onto the
disk, writing to a file would be very slow. Instead, characters
are accumulated in a special buffer in memory until there are
enough of them to fill a whole disk sector. Then the disk drive
is started up, if need be, and the whole sector is written in one
go. Similar buffers are used when files are read. The Coupe stores
510 data characters in each sector. Two more bytes are used by the
DOS, giving a total of 512 bytes per sector. The use of a buffer
means that the program above is incomplete; when the FOR-NEXT loop
finishes, the buffer will be only part-full, and if nothing is done
the information in it will be lost forever. Therefore we need to
CLOSE the file:

60 CLOSE #4
 70 STOP

This writes the last buffer to the disk, and also creates an entry
in the disk catalogue. The type is shown as "OPENTYPE".

READING A SERIAL FILE

Having created a serial file as described above, we will now read
it. Again the file must be OPENed, but this time with the IN
keyword. The stream number you specify in the OPEN statement can
later be used to read data from the file using either INPUT # or
INKEY$ # or INP$

100 OPEN #41"testfile"IN
 110 INPUT #4;a$
 120 PRINT a$
 130 GO TO 110

The example above will show the file contents and then stop with an
"End of file" report. To close the file, you should type:

CLOSE #4

Although closing an input file is not as vital as closing an output
file, input files use memory for a buffer just as output files do,
and this cannot be reused without a CLOSE. Besides, the stream
needs to be closed if it is to be used again.

If you have opened a file with one disk in the drive, it is usually
not a good idea to change to a new disk. INPUT from the file will
be rubbish, and PRINTing to it is likely to corrupt

Sam Coupe MasterDOS Page - 26 -

files on the new disk. It is possible to insert a different disk
temporarily and use DIR or LOAD. Provided you use disks FORMATed
using Master DOS, the Coupe will know that the disk has been
changed and will keep reminding you by a BEEP and an "OPEN file"
message at the bottom of the screen, every time you DIR, LOAD or
SAVE with a different disk than the original. If you SAVE to a
different disk, the use of available disk space will not be very
efficient for either the SAVEd file or (after you have put the
original disk in again!) later PRINTS to the OPENTYPE file.

You can abandon any OPENTYPE files (with possible data loss if you
are writing to the files) using CLEAR #. MOVE (see later) uses
temporary OPENTYPE files and you may need to use CLEAR # if a MOVE
is interrupted part-way through. PRINT PEEK DVAR 20 will show you
the number of open files if you are interested.

Each INPUT reads one of the strings originally PRINTed to the
file, and you may wonder how this is done - in other words, how
does the DOS know where a string ends? The answer is that each
string is "terminated" by a special character, CHR$ 13, which is
called "carriage return", a name dating from the days of teletypes.
When you enter something like:

PRINT "one": PRINT "two"

the Coupe actually sends "o", "n", "e", CHR$ 13, "t","o", CHR$ 13
to a ROM routine that puts the normal letters on the screen but
RESPONDS TO the CHR$ 13s by printing on the next line. Printing to
a disk file is similar, but the CHR$ 13S are actually stored on the
disk, instead of being responded to. When you come to INPUT from
the file, the DOS reads characters from whatever point it has got
to in the file until it finds a CHR$ 13. It then assigns these
characters to the variable specified in the INPUT command. (The CHR$
13 itself is thrown away.)

The INKEY$ Function

INKEY$ can be used to read a disk file one character at a time.
Unlike INKEY$ from the keyboard, INKEY$ from disk always gets a
character. Try changing line 110 above to:

110 LET a$=INKEY$#4

I suggest you also add a new line:

90 CLOSE #4

This prevents "Stream used" errors and is often convenient. Now
RUN 90 to try the program with the existing line 120, then with
these variants:

120 PRINT a$;
or 120 PRINT a$;" ";CODE a$

Sam Coupe MasterDOS Page - 27 -

The last version will show up the CHR$ 13s explicitly. You can
create other files that contain "control codes" (which cause
actions) other than CHR$ 13. For example, the print comma which
tabulates screen output sends CHR$ 6s to a disk file, and PEN,
PAPER, TAB etc. send special character sequences.

INPUT LINE

If some of the strings being INPUTed contain quotes - for example,
"Bide-a-Wee" as a quoted house name in an address (ugh!) you will
need to use INPUT LINE, just as you would if the INPUT was from
the keyboard. For example:

INPUT #47 LINE a$

More About Opening and Closing Files

It is possible to OPEN a file without specifying IN or OUT; in that
case, the DOS assumes you mean OUT if the file does not already
exist in the catalogue, and assumes you mean IN if it does. If a
file is PROTECTed, the DOS will prevent you writing to the file by
using IN, whatever you actually specify.

Although it is usual to use OPEN and IN or RND on OPENTYPE files,
you can in fact OPEN any file type in this way, although the things
you can use this for are fairly exotic. (Altering snapshots without
loading them?) Some file types (Basic, CODE, array and SCREEN$)
have a 9-byte header before the main part of the file.

As well as its use for closing a particular stream, CLOSE lets you
to close ALL open files using the form:

CLOSE *

CLEAR # clears all open files, but without doing a CLOSE. This
makes no difference to IN files, but OUT files will be lost. RND
files will be lost if they are new files, or may be part-written
otherwise.

MOVE

The MOVE command reads a file, a character at a time, and writes it
to another file or a stream. It actually uses something very like
successive INKEY$ #s and PRINT #s to do this, but the process is
invisible to the user, and the streams and buffers associated with
the disk files are OPENed and CLOSEd automatically by the DOS. For
example:

MOVE "testfile" TO "copyfile"

"Testfile" must exist and "copyfile" should not, unless you want to
overwrite it. This is a fairly slow method of copying a file and
COPY "file" TO "file" is much faster for long files. However, MOVE
is more flexible. For example, if you had two files called

Sam Coupe MasterDOS Page - 28 -

"first" and "second" you could create a single longer file that
contained copies of them both like this:

10 OPEN f5;"combined"OUT
 20 MOVE "first" TO #5
 30 MOVE "second" TO #5
 40 CLOSE #5

You can also MOVE files to stream 2, which is the main part of the
screen. As well as being an easy way of looking at an OPENTYPE
file, this allows you to look at Basic programs without loading
them, although they will not be quite as neatly listed as usual. It
is also a good way of looking for text or data included in a CODE
program. See DOS Variable 24 for details. You can also MOVE files
to stream 3, which is the printer, and random access files (see
later).

RANDOM ACCESS FILES

Although serial files can be very useful they have the major dis-
advantage that to look at a particular item in a file you need to
read all the previous items. To alter an item you have to read and
rewrite the entire file. For some applications, this can be very
inconvenient, and the problem gets worse as the file gets bigger.
Master DOS provides RANDOM ACCESS filing. This means you can
examine or change any part of a file without having to load the
whole thing. The normal OPENTYPE files are used, but they are
OPENed with the RND extension; e.g.:

OPEN #5;dl"testx"RND
 OPEN #strm;d2"file name"RND

This allows you to write to the file, using PRINT #. as you could
if you had used OUT, and read it using INPUT # or INKEY$ # or INP$,
as you could if you had used IN. In fact you can change all the INS
and OUTS in the examples for serial files to RNDS and the programs
will work as before.

Creating a Simple Random-Access File

Although you can OPEN any existing OPENTYPE file using RND,
explanations will be more straightforward if we create a simple
test file, as shown below. Those who hate typing will be pleased to
learn that the examples are included on their Master DOS disk. LOAD
"progl" now.

10 CLOSE #4
 20 OPEN #4;"test"RND
 30 LET a$="abcdefghi"
 40 FOR n=1 to 200
 50 LET a$(TO 3)=STR$ n
 60 PRINT AT 10,10;a$
 70 PRINT #4;a$
 80 NEXT n
 90 CLOSE #4
 100 STOP

Sam Coupe MasterDOS Page - 29 -

Just RUN to create the file. I have used the first 3 characters
of each string to store a record number so that we can easily check
which one we are looking at in our experiments. The file will
consist of 200 strings or records, from "1 defghi" to "200defghi".
Although the text of each string is 9 characters long, each one
will take up 10 characters of disk space because they are
terminated by carriage return characters (CHR$ 13s). These strings
are an example of FIXED-LENGTH records, and the advantages of using
this system will become apparent later.

In our example, it was easy to count the characters in a$ and
know how long the records would be, but when you use longer strings
a better way is to use DIM. For example:

25 DIM a$(99)

would ensure each string was 99 characters long and took 100
bytes of disk space. All this should be plain sailing if you
followed the discussion of serial files; if line 20 had ended in
OUT everything would have worked exactly the same way. The disk
file you have created is a normal OPENTYPE file.

Reading a Simple Random-Access File

Assuming you have an existing OPENTYPE file, you can OPEN it
with the RND qualifier and handle the file just as if you had
used IN, reading one record after another. As you do this, an
internal FILE POINTER advances through the file as INPUT or INKEY$
are used. This points to the next character to be read. For
example, if you INPUT a 10-character string, the pointer
advances by 11, because of the CHR$ 13 terminator. (OUT files
have a similar pointer which points to the next position to write
to, which is always at the end of the file.)

The file pointer used by MasterDOS starts with a value of zero
before the first character is read, so we can say that the first
character is at position zero in the file. Just before we read the
last character in the file, the pointer will have a value 1 less
than the file length. The file can be thought of as a sequence of
characters numbered from zero to (file length 1). When the last
character has been read, the pointer value will equal the file
length. Any further reads will give an end-of-file error.

POINT

Use the form:

POINT #stream,position

The file pointer for the file associated with the specified stream
is immediately moved to the specified position. (This will often
cause a new sector to be loaded from disk.) Now try this, by using
RUN 200:

Sam Coupe MasterDOS Page - 30 -

200 CLOSE #4

 210 OPEN #4;°test"RND
 220 DO
 230 INPUT "Record? ";rec
 240 EXIT IF rec=0
 250 POINT #4,(rec-1)*10
 260 INPUT #4;a$
 270 PRINT a$
 280 LOOP
 290 CLOSE #4

You should be able to see the advantages of having fixed-length
records - the pointer value for any record can be easily obtained
from the record number, allowing you to INPUT from any record in
the file very quickly. If the record you want is in the current
sector, it will be obtained particularly quickly, but even if it is
at the other end of a 700K file, and the disk is stationary, the
record can be obtained in 1 or 2 seconds. RAM disks will be almost
instantaneous.

Note: POINT with a value less than zero will give an "integer
out of range" error, and POINT with a value greater than the file
length will give an "End of file" error.

Altering a Random-Access File

An OPENTYPE file OPENed in random-access mode can be written to
as flexibly as it can be read. The file pointer indicates the
position that data will be written to, as well as read from, so
POINT allows any record to be altered. The program below
demonstrates random reading and writing of our trusty "test" file.
It leaves the record number intact to provide reassurance, although
we always know which record we are dealing with simply from the file
pointer value we set using POINT: record=file pointer/record
length+1. (Later you will see how to read the value of the file
pointer directly.) Now LOAD "prog2".

10 CLOSE #4
 20 OPEN #4;"test"RND
 30 DIM a$(9)
 40 PRINT "Read, Write or Exit? (R/W/E)"
 50 LET c$=INKEY$
 60 IF c$="W" OR c$="w" THEN GO SUB 100
 70 IF c$="R" OR c$="r" THEN GO SUB 300
 80 IF c$<>"E" AND c$-"e" THEN GO TO 50
 90 CLOSE #4: STOP
 100 INPUT "Record to write? ";r 110 IF r=0 THE14 RETURN
 120 POINT #4,(r-I)*10 130 INPUT #4;a$
 140 PRINT "Old text:";a$ 150 PRINT "New text?"
 160 INPUT n$
 170 IF n$="" THEN GO TO 100

Sam Coupe MasterDOS Page - 31 -

180 LET a$(4 TO)=n$
 190 POINT #4,(r-1)*10
 200 PRINT #4;a$
 210 GO TO 100
 300 INPUT "Record to read? ";r
 310 IF r=0 THEN RETURN
 320 POINT #4,(r-1)*10
 330 INPUT #4;a$
 340 PRINT a$ 350 GO TO 300

I suggest you play with the program, reading and writing records
all over the file. (You might want to add a check to prevent the
use of record numbers greater than the number of records in the
file. And you might like to rewrite it completely, since I wrote it
first in nasty Spectrum Basics) Enter a "record number" of 0 to
stop writing or reading. (In fact the write subroutine at line 100
can serve for reading as well, since if you press RETURN when
prompted for "New text?" the record will not be altered.) Notice
that POINT is used at line 120 to set the file pointer for an
INPUT, and then again at line 190 for a PRINT to the same record,
because the INPUT will have moved the pointer. When you are
finished press "E" to exit and CLOSE the file. The disk may or may
not run, depending on whether you have altered the current sector
or not.

OPENTYPE FILE FUNCTIONS

PTR - Reading the File Pointer

As well as being able to move the file pointer using POINT, Master
DOS is able to read the current pointer position using the PTR
function. (LOAD "rafprog" now.) PTR (stream) will tell
you the pointer position for an OPENTYPE file associated with the
specified stream. For example:

10 OPEN #4;"test"RND
 20 PRINT PTR 4;" ";
 30 INPUT #4;a$: PRINT a$
 40 GO TO 20

This function is most useful when a file contains variable
length strings and the file pointer moves by different amounts
with each INPUT. You can find out the position of a particular
string and get back to it later using POINT.

The LENGTH Function - Finding out a file's length
Extending a file

Knowing a file's exact length is often useful. For example, you can
extend an OPENTYPE file easily by setting the file pointer to the
end of the file using POINT before you use PRINT # to add new data.
To do this you need to know the length of the file, and MasterDOS
lets you do this using the LENGTH function.
For example:

Sam Coupe MasterDOS Page - 32 -

100 CLOSE #4

 110 OPEN #4;"test"RND
 120 POINT #4;LENGTH#4
 130 FOR n=l TO 10
 140 PRINT #4;"extended "
 150 PRINT LENGTH#4
 160 NEXT n
 170 CLOSE #4: STOP

This will add some data to the end of our much-used "test" file,
printing the current file length as each string is added. If line
120 had been omitted, the first part of the file would have been
overwritten by 10 "extended "s, because the file pointer would
have started at zero. The file length would have stayed the same.

The file length is the maximum value you can use with POINT, so if
you want to extend a file, even with blank records, you must POINT
to the end and use PRINT # to increase the file size.

Now let's read the entire file to check that all is as we expect:

200 CLOSE #4
 210 OPEN #4;"test"
 220 DO
 230 INPUT #4;a$
 240 PRINT a$
 250 LOOP

This finishes with an "End of file" report, which can be a problem
when you are writing a real program. It is possible to end the
file with a "rogue value" like "zzz" and use a line like: 250 LOOP
UNTIL a$="zzz" but this is not very convenient. MasterDOS provides
the function EOF to tell you when the End Of the File has been
reached so that you can avoid further INPUTs - see below.

The EOF Function - End-Of-File detection

The function returns 0 if the last character in the specified
stream has not been read yet, or 1 if it has. The example above
could make use of a modified line 250:

250 LOOP UNTIL EOF 4

The INP$ Function - Reading a fixed number of characters

The INP$ function reads a specified number of characters from a
stream. For example:

LET a$=INP$(#4,10)

Sam Coupe MasterDOS Page - 33 -

Rather like INKEY$, INP$ does not care what characters it reads,
and it will include any carriage returns it finds. The number of
characters can be up to 16384, so you can often read a whole file
at once, using e.g.:

LET a$=INP$(#4,LENGTH#4): PRINT a$

This is much faster than repeated use of INPUT or INKEY$.

DATA PACKING IN RANDOM-ACCESS FILES

Our "test" file is fairly small and simple. A real example would
probably use longer records, with different parts of the records
dedicated to particular purposes. (These areas are called
"fields".) For example, if each record is created by PRINTing a
100-character string to the file, you might place data in a record
as shown below. (This partial program is not on your disk.)

100 DIM d$(100)
 110 INPUT "Author? ";a$
 120 LET d$(TO 40)=a$
 130 INPUT "Title? ";t$
 140 LET d$(41 TO 96)=t$
 150 INPUT "Year of publication? ";y$
 160 LET d$(97 TO 100)=y$
 170 PRINT #something;d$

Having read such a record from a file, you could display the
information like this:

500 PRINT "Author:";d$(TO 40)
 510 PRINT "Title:";d$(41 TO 96)
 520 PRINT "Year:";d$(97 TO 100)

Some data can have an annoying number of fields - an address, for
example, can include street, district, town, county and postcode.
If you reserve enough space for the maximum field length assumed
possible, you waste LOTS of disk space. An alternative approach is
to stay with a fixed-length for each complete record, but handle
the contents a bit more flexibly. For example, we could store a
number of variable-length items per record as shown in the
incomplete program section below:

600 DIM d$(100)
 610 LET t$=""
 615 DO
 620 INPUT a$
 630 EXIT IF a$=""
 640 LET t$=t$+a$+CHR$ 13
 650 LOOP
 660 LET d$=t$
 670 PRINT #4;d$
 680 REM rest of program

Sam Coupe MasterDOS Page - 34 -

The items are separated by carriage returns, which means that we
need multiple INPUTS to read each complete record, as shown by the
incomplete input routine below:

900 LET poi=PTR 4
 910 DO
 920 INPUT #4;a$
 930 PRINT a$
 940 LOOP WHILE PTR 4<ptr+100

The use of PTR as shown allows a variable number of substrings to
be stored in each record. An alternative to INPUT is the INP$
function, which will read a fixed number of characters from a
stream. All the lines above could be replaced by:

900 LET a$=INP$(#4,100) 910 PRINT a$

This requires you to search for the carriage returns in a$ if you
want to chop it up into individual items - INSTR will be useful
here (see Coupe manual).

STORING NUMBERS

Let's assume you want to store numeric data in a file. Sometimes
you can simply PRINT the number, as in: PRINT #5;x. However you
will have more control over exactly what part of the file is used
if you do something like: LET d$(10 TO 12)=STR$ x. The details of
the best method to use will depend very much on the range and
precision of numerical values you want to store, and on how keen
you are to save space. For example, if x is a whole number between
0 and 255 you can use e.g.: LET d$(65)=CHR$ x. (LET x=CODE d$(65)
is the reverse.) You can limit a value to a fixed number of
decimal places using e.g. LET x=INT(x*100)/100 before storage
(this limits to two decimal places).

VARIABLE-LENGTH RECORDS

Sometimes fixed-length records are unsuitable because the data you
are dealing with is so variable in size that too much disk space
would be wasted. Sometimes variable-length records may be just
simpler to program, particularly if you rarely or never want to
update a record (which is tricky, expecially if the new data is
longer). Also, you may want to read data from existing serial
files made up of variable-length records. Once you are used to
random-access you may find the delay associated with reading a
record part-way through such a file (using multiple INPUTs) rather
irritating. Unfortunately, the variable record length means that it
is not possible to use the normal form of POINT to access a given
record; e.g.:

POINT #stream,(record number-1)*record length

There are devious ways round this, like keeping a file of
fixed-length data giving pointer values to each variable-length

Sam Coupe MasterDOS Page - 35 -

record in another file, or a later part of the same file. But
let's keep things simple, and exploit another feature of POINT
instead. Something like:

POINT #5, OVER 10

will start from wherever the current file pointer is, and pass
over 10 carriage returns before setting a new pointer position. So
to point to the 2000th. record in a file, we could use:

POINT #5,0: POINT #5, OVER 1999

This will point to the start of the file, and then pass OVER 1999
carriage returns. Although POINT will have to read the first 1999
records in order to do this, it reads at about 22.5K per second,
(or over 50K per second from RAM disk) so that for many files the
time required is insignificant. Besides, if you know what record
you have just INPUT, you often do not have to start at the
beginning of the file again. For example, if you have INPUTed
record number 2000, and want to INPUT record 2100 next, POINT #5,
OVER 99 will work. It is even possible to re-define the character
POINT OVER "passes over" as the program runs, using POKE DVAR 10,
(character code), so you can separate records by one character
(say, CHR$ 128) and fields by another, and use POINT OVER to find
both the record and the field you want, very quickly. To illustrate
this, the listing below creates a file of 1000 records, each
terminated by CHR$ 128 and containing 6 random-length fields ending
in CHR$ 13. The semi-colons at the end of lines 60 and 80 prevent
carriage returns being sent to the file. You can load the program
from the MasterDOS disk using LOAD "prog3". RUN to create the file.
This will take some time, as the file will be about 150K long. Go
for a tea or coffee break!

10 CLOSE #4
 20 OPEN #4;"varifile"RND
 30 FOR r=1 TO 1000
 40 PRINT AT 10,10;r
 50 FOR f=1 TO 6
 60 PRINT #4;"Record:";r;" Field:";f;
 70 PRINT #4;" abcdefghijklmn"(TO RND*14)
 80 NEXT f: PRINT #4;CHR$ 128;
 90 NEXT r
 100 CLOSE #4
 110 STOP

When you get back, the program below will let you read any desired
field and record from the file:

200 CLOSE #4
 210 OPEN #4;"varifile"RND
 220 POINT #4,0
 230 INPUT "Record? ";r
 240 IF r=0 THEN CLOSE #4: STOP
 250 INPUT "Field? ";f

Sam Coupe MasterDOS Page - 36 -

 260 POKE DVAR 10,128
 270 IF r<>1 THEN POINT #4; OVER r-1
 280 POKE DVAR 10,13
 290 IF f<>1 THEN POINT #4; OVER f-1
 300 INPUT #4;r$: PRINT r$
 310 GO TO 220

OPENING MULTIPLE FILES

Our examples have only dealt with one file being open at a time,
but it is quite possible to have many files open at once in random-
access mode. However, if the files you are using involve writing
to a new file, or extending an old one, then all those files must
be on the same disk and disk drive, or disk space will be used very
inefficiently. (Other files can use the second drive.)

MOVE and Random-Access Files

It is possible to MOVE a file to a stream OPENed to a random-access
file. Since MOVE uses the equivalent of PRINT # to transfer data,
the results are easy to predict. If you have just OPENed the
random-access file, the file pointer will be at zero and the MOVEd
data will overwrite the existing file until it has all been
overwritten and the file begins to extend. If you use POINT and the
file length function to set the file pointer to the file end, the
data will extend the file without overwriting any of the existing
data.

READING AND WRITING SECTORS

Technically-inclined users can use the READ AT and WRITE AT
commands to access disk sectors directly. Both commands have a
similar syntax:

READ or WRITE AT drive, track, sector, address, count.

For example:

WRITE AT 1,10,1,100000,20

This SAVES memory to drive 1, starting at track 10, sector 1,
taking the data from address 100000 onwards. Twenty sectors are
SAVEd (10K) so all of track 10 and 11 will be used. If the final
number is omitted, 1 sector is assumed. The transfer speed for
large numbers of sectors is about 22K/second with real disks.
WARNING: WRITE AT takes absolutely no notice of what may be already
in the sectors it writes to!

READ AT 3,0,1,65536,42

This example reads from disk 3 (a RAM disk), starting at track 0,
sector 1, and LOADS 42 sectors to memory at 65536.

Sam Coupe MasterDOS Page - 37 -

The drive must be 1-7, or you can use an asterisk to mean "current
drive". The track should normally be 0-79 or 128-207 (side 1 and
side 2 of a disk) and the sector must be 1-10. The address must be
16384-540671. The sector count must be 1-1024. This allows up to
512K to be handled at a time, in theory.

RAM disks will often have odd numbers of tracks, but they always
start at 0, increase towards 79, and then skip to 128 and upwards,
just like real disks.

When either command reaches the highest-numbered track on one side
of a disk, and has to step to the next track, it will move to the
first track on side two of the disk.

DOS VARIABLES and DVAR

You can change a DOS variable by typing: POKE DVAR n,x where n is
the DOS variable number and X is the new value. You can also POKE
with a string, or PEEK the DVAR using e.g. PRINT PEEK DVAR 2.

If you want to change a DOS variable so that you do not have to
POKE it on every session (and remember, you can do this
effortlessly with an AUTO file) the procedure is a little more
complicated. You cannot SAVE the DOS directly from memory, so LOAD
a mint copy from disk to some address - say, 65536. Then, where you
would have used: POKE DVAR n,d use instead: POKE 65536+535,d. (The
+535 is the offset that the DVARs are stored at inside the DOS
file.) Then SAVE the modified DOS using: SAVE "name" CODE
65536,15700. Type: CALL 0 to reset the computer, and when you press
F9 to re-HOOT you will find the new value is ready-set in the DOS
variable.

Note: Some of the variables are likely to only be of interest to
the very technically-inclined user. The DOS variables are:

0 Controls BORDER flashing when a file is being read from the
 disk. POKE DVAR 0,0 for no flash, or POKE DVAR 0,7 for the
 normal setting.
1 Drive 1 tracks and sides data. Contains the number of tracks
 on one side of a disk (usually 80) plus 128 if the disk is
 double- sided. The usual value is 208, but it can be POKEd if
 you have an different disk drive, or if you want, say, to
 partially FORMAT a disk.
2 Drive 2 data, as above. The DOS automatically sets this
 variable to 208 when it loads, if you have a second drive,
 unless you have POKEd the variable with a different value.
 Normally the value will be zero if you have just 1 drive.
3 Drive 1 step-rate. The default value of 0 lets the drive step
 as quickly as possible. Other values introduce a delay (in
 milliseconds) after each step command. E.g. POKE DVAR 3,3
 would add a delay of about 3 milliseconds. Delays may be
 needed for reliable operation of older designs of disk drive.
4 Drive 2 step-rate, as above.
5 The character used as a blank in directory listings. Normally
 this is a space, but e.g. POKE DVAR 5 ,"-" will fill the

Sam Coupe MasterDOS Page - 38 -

 blanks in the directory with hyphens. Experiment!
6 Reserved
7 Version number of the DOS, times 10, plus 201 (Times 10 so

that version 1.0 will give 10, and plus 20 to distinguish
 MasterDOS from SAM DOS, which used numbers up to 20.) PRINT
 PEEK DVAR 7 will give 30 or more.
8 Setting for number of columns in a simple directory. Normally
 it is zero, which means "use as many columns as will fit".
 This will vary according to the current screen MODE and
 WINDOW settings. You can POKE other values e.g. 1 for a
 single-column listing or 7 if you want to get a wide listing
 on an e0-character-wide printer.
9 Alphabetic sorting control for simple directories. Normally it
 is 1, meaning "sorting on". POKE DVAR 9,0 to turn off sorting.
10 Character used by POINT #(stream), OVER x as a record

delimiter. Normally CHR$ 13. See the section on handling
 variable-length records for details of its use.
11 Character treated as an extension separator when printing file
 names, as in a directory. Normally ". . Can be POKEd with
 other characters, or POKE it with zero to disable alignment of
 extension names.
12 Main symbol recognized as a separator in path names. Used in
 PATH$ and directories. Normally "\"
13 Alternate symbol recognised as a separator in path names.
 Normally "/".
14 Skew between tracks in a disk FORMAT. Normally 255, (which

acts as minus 1 here) which means that for each track, the
last sector on the track (10) is opposite sector 9 on the next

 track. This means that the drive head has about 20
 milliseconds to step to a new track and settle down before

sector 1 arrives, because the first sector it will reach on a
 new track will be sector 10, which will be ignored and will
 take 20 msec. to pass by. SAM DOS used a skew of 254, which
 allowed 40 msec. and might be better with old drives, although
 LOAD and SAVE will be about 10% slower. You could experiment
 with a skew of 0, allowing only a few msec. for drive

stepping. This just about works - but if it corrupts your
 files, don't blame me!
15 Default drive number used internally.
16 Number of directory tracks on last-used disk. 17 Code number
 for current subdirectory.
18 Code number for alternate current subdirectory in file TO file
 operations.
19 DIR's "show DATES" flag. 20 Count of OPEN files.
21 Highest subdirectory code number so far.
22 (2 bytes) Address of hook code address table when DOS is paged
 in at 16384.
24 MOVE TO #2 flag. Determines what happens to characters with
 codes above 127 when they are MOVEd from a file to the screen.
 Normally 0, meaning that such characters are reduced
 by 128 and then printed in INVERSE 1. POKE with 1 to print

them instead as UDGs or block graphics.
25 MOVE TO #2 control code replacement character. Used instead

Sam Coupe MasterDOS Page - 39 -

 of CHR$ 0-31 and CHR$ 255, which might cause errors. Normally
 ".".
26 Page switched in at 32768 when the BREAK button is pressed

with SAMCO's Spectrum emulator loaded, and then the keys 1 or
 5 are pressed. Normally 4.
27 (2 bytes) Address CALLed in circumstances above. Normally 4,
 which has no effect, but allows for e.g. Screen dumps in
 future.
29 Number of 0.25 second delays before a SAVE, minus 1.
30 (3 bytes) Reserved.
33 (2 bytes) ON ERROR address when a command fails syntax.
35 Reserved.
36 ON ERROR page used if ON ERROR address >32767
37 (2 bytes) Increment used between sectors during multi-sector
 READ AT and WRITE AT. Normally 512. Other values can be used
 when working with non-Coupe disks, and 510 can be useful for
 looking at SCREEN$ files.
39 (5 bytes) Tracks per drive for each RAM disk, or zero.
44 (5 bytes) First 16K page for each RAM disk.
49 (7 bytes) Current subdirectory number for each drive.
56 (7 bytes) Path length for each drive.
63 (14 bytes) Random double-byte for each drive.
77 (2 bytes) Random double-byte when first file OPENed.
79 (2 bytes) Temporary clock variable.
81 (9 bytes) DATE as dd/mm/yy, return, after clock read.
90 (8 bytes) DATE max/min values for d/m/y inputs.
98 (9 bytes) TIME as hh:mm:ss, return, after clock read.
105 (8 bytes) TIME max/min values for h:m:s inputs.
111 (7 bytes) Drive each drive pretends to be. Normally 1-7.
118 (32 bytes) External RAM table. One bit denotes each possible
 16K external memory page, being zero if it is available, or 1
 if it does not exist or is in use. Bit 7 of the first byte

represents the first 16K page.
150 Port value used by add-on clock/calendar.

DIRECTORY ENTRY FORMAT

This information is intended for those interested in using READ AT
and WRITE at to deal directly with the disk directory when writing
utility programs.

The first tracks on side 1 of a disk are used for the directory,
starting at track 0, sector 1. Each sector holds two 256-byte
directory entries. The format of each entry is as follows:

BYTE

0 Status/File type, as returned by the FSTAT function with a

parameter of 4. Zero if entry unused or ERASEd.
1 (10 bytes) File name. If the first byte is zero, the entry is
 assumed to have never been used and directory reading will not
 proceed further.
11 MSB of number of sectors used in the file.
12 LSB of number of sectors used in the file.
13 Track number of start of file.

Sam Coupe MasterDOS Page - 40 -

14 Sector number of start of file.
15 (195 bytes) Sector usage map for the file. Bit 0 of the first
 byte represents track 4, sector 1, bit 1 represents sector 2,
 etc. If a bit is set the sector is used by the file.
210 (10 bytes) In all entries except the first one on the disk,
 these bytes hold Plus D/Disciple-form information. In the
 first entry, the disk name is stored here. Bit 7 of byte 210
 can be set or reset without altering the disk name.
220 Flags
221 (10 bytes) File-type specific information. If the file type is
 SCREEN$ then byte 221 is the screen MODE, minus 1.
232 (4 bytes) Reserved.
236 Start page number in bits 4-0, bits 7-5 are undefined.
237 (2 bytes) Start offset in the range 32768-49151.
239 Number of pages in length.
240 (2 bytes) Length MOD 16384. Bits 15 and 14 are undefined.
242 Execution page for CODE files, or 255
243 (2 bytes) Execution offset (32768-49151) for CODE files, or
 auto-run line for a Basic program.
245 Day of SAVE, or 255
246 Month of SAVE
247 Year of SAVE 248 Hour of SAVE
249 Minute of SAVE
250 For a DIR file, code number tagging files in that sub-
directory.
251 Reserved.
252 (2 bytes) In the first directory entry only, Random word

identifying the disk.
254 Subdirectory code number of this file.
255 In first entry only, number of directory tracks, minus 4.

ERROR MESSAGES

Master DOS uses the following error messages, in addition to using
the non-DOS messages available on the basic Coupe.

84 Escape requested
 <ESC> key pressed.
85 TRK- ,SCT- Error The sector at the specified track and sector
 could not be loaded.
86 Format TRK- lost
 The specified track has been corrupted.
87 Check disk in drive
91 Invalid device 93 Verify failed
 Data on disk does not match that in the computer.
94 Wrong file type
 e.g. LOAD "name" when "name" is a CODE file.
99 Reading a write file
 Reading a file OPENed with OUT, or default of OUT (new file).
100 Writing a read file

Sam Coupe MasterDOS Page - 41 -

writing a file OPENed with IN, or a PROTECTEd file.

101 No AUTO* file
 Second use of BOOT looked for "auto*" and didn't find it.
103 No such drive
 Drive not fitted or RAM disk not FORMATed.
104 Disk is write protected
 Move the write-protect tab!
105 Disk full
 Disk data area is full.
106 Directory full
 Free slots in the directory have run out.
107 File not found
109 File name used
 OPEN DIR "name" when "name" exists, or OPEN.
111 Stream used
 You'll have to CLOSE the stream, or use CLEAR #.
112 Channel used
113 Directory not found
114 Directory not empty
 ERASE DIR when the directory contains files.
115 No pages free
 COPY and BACKUP require at least one free page.
116 PROTECTED file
 SAVE, COPY or ERASE when file is protected.

[The MasterDos Hook Codes were supplied as 4 Photo copied pages, separate from the manual]

MasterDOS Hook (command) Codes

MasterDOS provides hook (command) codes which enable the machine
code programmer to use the DOS's facilities without having to
return to or call SAM BASIC.

If an error occurs, MasterDOS puts an error number into the A
register; otherwise the A register will be zero.

The Hook Codes currently available are:

• INIT 128 (80H)

Look for an AUTO file on the current disk. No action
(or error) occurs if there is no AUTO file, otherwise
it is loaded (and executed if it is an auto-running
Basic or CODE file). This Hook can only be used in
sections B and C of the memory map.

• HGTHD 129 (81H)

Get file header. This routine should be called with IX
pointing to the UIFA, which should hold the file type
required (at IX+0) and the file name (at IX+1 to
IX+10). The routine looks for the file in the current

Sam Coupe MasterDOS Page - 42 -

directory on the current drive and either returns with
an error code, or transfers the data from the file
directory entry to IX+80 dec, in UIFA form. The calling
code and the UIFA can be in sections B, C or D of the
memory map. (Note: this hook works correctly in SAMDOS,
provided IX=4BOOH.)

• HLOAD 130 (82H)

Load data from the file you have just got the header of
using HGTHD above. HL must point to the destination
address, paged in between 8000H and BFFFH, i.e. in
section C of the memory map. The C register should hold
the number of 16K pages in the file, and DE should hold
the length MOD 16K. These values can be read from the
header loaded by HGTHD. See also Hook 143.

• HVERY 131 (83H)

Like HLOAD, but verify the data on the disk against the
data in memory. Error code 93 dec if verify failed.

• HSAVE 132 (84H)

Save the file whose UIFA is pointed to by IX. All
relevant data in the UIFA must be complete - for a CODE
file, type, name, start, length and execute address. If
in doubt, try a SAVE from BASIC and then look at 4500H-
4B47H to find the required values.

• HSKSF 133 (85H)

Seek Safe. On some machines, pressing the Reset button
can corrupt the disk sector under the drive head. This
is often on the track containing the last sector of the
last file loaded. MasterDOS tries to minimise the
problem by parking the drive head on the last track in
the directory, after a LOAD or a SAVE. This track will
be unused unless the directory is fairly full. Using
the HSKSF hook will move the head of the current drive
to the last track in the directory, unless this would
be track 4 (which contains the first sector of DOS) in
which case track 3 is used instead.

• HAUTO 136 (88H)

Like Hook 128, but an error code of 101 dec is returned
if there is no AUTO file.

• HSKTD 137 (89H)

Seek Track D. Move the drive head of the current drive
to the track specified in the D register.

• HFMTK 138 (8AH)

Sam Coupe MasterDOS Page - 43 -

Format Track. Format the track under the drive head,
using the D register to supply the track number and the
E register as the number of the first sector (1-10).
Later sectors will be numbered 1 higher till 10 is
reached and numbering goes back to 1. [Does not exist?]

• HVAR 139 (8BH)

Supply the address of a DVAR by putting it on the
floating point calculator stack. On entry, the FPCS
should hold the desired DVAR number. Note: it is
probably easier to page in DOS (the DOS page is held at
5BC2H) and read the disk variables directly. DVAR 0 is
at an offset of 0220H within the page - this will not
change.

• HEOF 140 (8CH)

Supply the End-Of-File status (1 or 0) of a specified
stream. The stream number should be on the FPCS. It
will be replaced by the EOF status.

• HPTR 141 (8DHl)

Supply the PTR value for a specified stream. The stream
number on the FPCS is replaced by the PTR value.

• HPATH 142 (8EH)

Supply the current PATH$ on the FPCS Use CALL 0124H
(JSTKFETCH) to get page (A) offset (DE) and length (BC)
of the string.

• HLUPG 143 (8FH)

As Hook 130, but on entry the A register should hold
the page number of the destination address. This need
not be paged in.

• HVEPG 144 (90H)

As Hook 131, but on entry the A register holds the page
to verify against.

• HSDIR 145 (9lH)

Select Directory. Similar to DIR="name" in Basic. On
entry, the registers hold details of the location and
length of the desired subdirectory name. DE is the
offset, A is the page of the name start, and BC is the
name length.

• HOFSM 146 (92H)

Sam Coupe MasterDOS Page - 44 -

Open a File Sector Map for an OPENTYPE file. IX must
point to the UIFA. The routine will create the map and
clear the disk buffer.

• HOFLE 147 (93H)

Open a file on the disk. IX must point to the UIFA. The
routine will create a sector address map, and save a 9-
byte header to the disk buffer.

• HSBYT 148 (94H)

Save the byte in the A register to the disk file (If
the buffer is full it will be written to the disk and
the byte will go into the start of the next buffer.)

• HWSAD 149 (95H)

Write Single Sector. On entry, the A register is the
drive number (1-7) which is used to access the table at
DVAR 111 to get the actual drive to use. D holds the
destination track, and E the sector. HL points to the
source in memory, which must be in sections B, C or D
of the memory map. 512 bytes will be written to disk.

• HKSB 150 (96H)

Save a block of data to the disk file. The A register
holds the length to save in pages, and DE holds the
length MOD 16K. HL points to the start of the data to
save, paged into section C of the memory map.

• HDBOP 151 (97H)

Save BC bytes to the disk file. DE points to the start
of the data to save, paged into section C of the memory
map. Used by DOS to write strings to OPENTYPE files.

• HCFSM 152 (98H)

Close a file. This routine writes the last buffer to a
disk file and creates a directory entry for it. IX
should point to the UIFA.

• HORDER 153 (99H)

Sort list into ASCII order. HL should point to the
start of the list in sections B, C or D of the memory
map. The BC register should hold the length of each
item in the list, and the DE register the number of
items. The A register specifies the number of
characters to sort on. No paging is performed so the
entire list must be paged in by the user before this
hook is called.

Sam Coupe MasterDOS Page - 45 -

• HGFLE 158 (9EH)

Get a file from the disk. The IX register must point to
the UIFA. The return is made with the first sector of
the file loaded into the disk buffer and RPT pointing
to the first byte.

• HRSAD 160 (A0H)

Read Single Sector. On entry, the A register is the
drive number (1-7) which is used to access the table at
DVAR 111 to get the actual drive to use. D holds the
source track, and E the sector. HL points to the
destination in memory, which must be in sections B, C
or D of the memory map. 512 bytes will be read from the
disk.

• HLDBK 161 (A1H)

Load a block of data from the current disk file. HL
points to the destination of the data in memory, paged
into section C of the memory map. The A register is the
length to load, in pages, and DE holds the length MOD
16K.

• HMRSAD 162 (A2H)

Read Multiple Sectors. Equivalent to READ AT in Basic.
The A register is the drive to use (1-7, using DVAR 111
table), D holds the track, E the sector, C the page and
HL the offset (8000H-BFFFH) of the destination. IX
holds the number of sectors to load.

• HMWSAD 163 (A3H)

Write Multiple Sectors. Equivalent to WRITE AT in
Basic. As above, but C and HL hold the source address,
rather than the destination.

• HREST 164 (A4H)

Restore. Move drive head to track 0. The disk need not
be formatted.

• HP2IR 165 (A5H)

Print directory. If the A register holds 2, print a
simple directory. If it holds 4, print a detailed
directory. Neither option does a CLS first. The current
stream is used to output.

• HERAZ 166 (A6H)

Sam Coupe MasterDOS Page - 46 -

ERASE a file from disk. The file name should be at IX+1
to IX+10.

• HCHRD 168 (A8H)

Read character from the disk file whose UIFA is pointed
to by IX. The character and flags are passed out in the
alternate BC register: EXX, PUSH BC, EXX, POP AF gives
the character in A, and the carry flag set if the read
was OK, else we hit end of file.

This MasterDos Manual was OCRed with Textbridge Pro 11
& MS Word 2003. The PDF document was compiled with

JAWs Creator pdf version 6.3
by Steve Parry-Thomas 15 December 2004

For SAM Coupé uses everywhere.

www.samcoupe.org

SAM MasterDos Manual PDF version 2 – 15 December 2004

[Version number may change as errors and text
formatting are corrected There is bound to an error or
two, I’ve over looked or some text formatting that’s

been left for another day]

http://www.samcoupe.org/

Sam Coupe MasterDOS Page - 47 -

