GAMES MASTER

' F 4
The Complete Games Designer .
For The SAM Coupé]

EE}%’OF T

FERAKAKAXRRKRARRRRXAA AR AR A A S CONTENTS *A®and s s hktdhhhhherthudnss

INTRODUCTION 1
COPYRIGHT RESTRICTIONS 1
MAKING A WORKING COPY 2
LATE NEWS 2
STARTING TO USE THE PROGRAM 3
PICK SPRITE Option 7
EDIT SPRITE DETAILS Option 7

EDIT GRAPHICS Option 12
SELECT MASKING Option 14
EDIT PALETTES Option 16
GRAB FRAME Option 16
ANIMATE SPRITE Option 17

SPRITE vs. SPRITE COLLISIONS Option 18
SPRITE vs. BLOCK COLLISIONS Option 19

RUN GAME Option 19
OTHER WAYS TO RUN A GAME 19
GAME PAUSE KEY 20
EDIT MODULES Option 20
EDIT GAME DETAILS Option 21
EDIT PATHS Option 23
EDIT SOUNDS Option 24
EDIT KEYS Option 25
EDIT ANIMATION SEQUENCE Option 25
EDIT BLOCKS Option 26
EDITOR EXTRAS Option 28
LOAD SPRITE Option 28
SAVE SPRITE Option 28
LOAD GAME Option 29
SAVE GAME Option 29
Stand-alone CODE Games 29
Game Protection 30
LOAD SCREEN Option 31
SAVE SCREEN Option 31
EXIT TO BASIC Option 31
MEMORY MANAGER Option 31
WHEN YOU ARE SHORT OF MEMORY 32
CLEAR SUBMENU Option 32

THE GAMES MASTER CONTROL LANGUAGE 33

Introduction 33
The Coordinate System 34
Sprite Planes 34
Sprite Numbers 35
GMCL Expressions 36
GMCL COMMANDS 37
GMCL FUNCTIONS 54
EXAMPLE PROGRAMS 56
UTILITY PROGRAMS 56
MODIFYING THE EDITOR 57
SPRITE FILE FORMAT 57

INTRODUCTION

Games Master is a complete games development package for the SAM
Coupe. It allows you to create and modify sprite graphics, and
tell the computer how to move and animate them. Other parts of
the program allow you to edit sound effects, control keys, load
and save games and sprites, set up collision actions, etc.
Because the computer does most of the work, you need to do very
little programming and can produce results gquickly. No delving
into machine code is required. What programming you do will
probably be using the Games Master Control Language (GMCL for
short). You can use Basic or machine code subroutines if you
like, but you probably won’t need to.

I am always glad to hear from users. If you have any comments,
suggestions for improvements or problems, please write to:

BETASOFT, 24 WYCHE AVE., KINGS HEATH, BIRMINGHAM, B14 6LQ.

I would like to put together a compilation disk of programs
written using the Games Master system, including contributions
from users. This would be sent to users for a small fee. Prizes
(and fame!) would be given for the best contributions. Please
send in anything you feel might be suitable.

COPYRIGHT RESTRICTIONS

Most of the game development and editing is done using a large
Basic program called (logically enough) the EDITOR. This program
is copyright and you MUST NOT give copies to anyone else. The
games you produce with the Editor will be self-contained machine
code (unless you have used Basic subroutines) and you are free to
copy these games and give them away or sell them, provided that
you mention that the program was produced using Games Master in
your documentation or packaging. However, the sprite driver and
other routines which are part of the machine code saved with each
game must only be used as part of a game produced by Games Master
= You cannot use them in any other product.

(C) 1992 Andrew J.A. Wright
Second Edition, June 1992. All Rights Reserved.

This program took me a lot of time and effort to write, and I
hope it reflects that. The price is very reasonable. Please do
not give away my work - let your friends buy their own copy, so
that I can make a living and continue to develop new products for
this excellent machine! I could have protected this program, but
I thought it would inconvenience you, and it shouldn’t be
necessary. Don’t let me down! The disks and their contents are
individually marked and copies can be traced to their source.

I’d like to thank Dave Tonks, David Ledbury and Stephen Wilson
for providing some of the graphics, and Glen Cook for
entertaining phone calls. I’m also grateful to my wife Celia,
whose patience lasted for most of this project.

MAKING A WORKING COPY OF GAMES MASTER

You should use a working copy or copies of the supplied disk for
day-to-day use, rather than the original disk. To make a working
copy, turn on the computer and load your DOS. Have ready a
formatted disk. Place the Games Master disk in drive 1. If you
are using MasterDOS on a 2-drive system, place the blank
formatted disk in drive 2 and then use BACKUP "di" TO "d2" to
copy the disk. On a l1-drive system use BACKUP "d1" TO "d1" and
swap the disks when you are prompted to. You nlgpt want to erase
SAMDOS from the completed copy and replace it with MasterDOS or
the MasterDOS/MasterBasic combination. This will improve ;he
speed and reliability of disk operations and, with MasterBasic,
the speed of the Editor program will be increased.

If you are using SAMDOS, I strongly recommend thgt you order a
copy of MasterDOS from Betasoft (only £15.99) but in the meantime
on a 2-drive system put the blank disk in drive 2 and use FORMAT
"d2" TO "dl1" or on a l-drive system use COPY "dl:*" TO "dl:#" and
swap the disks in response to the prompts.

Ensure that you keep the original Games Master disk in_a safe
place - though naturally I will replace it if anything bad
happens to it. Just return the disk and enclose a stamped
addressed envelope. If you live abroad forget the stamp but
enclose an International Postal Reply Coupon instead.

If you bought this product directly from Betasoft,_ypu are
already recorded as a customer with possible upgrade privileges.
If you bought it elsewhere, it would be a good idea to send me
your name and address and tell me where you got the product. This
information may be used to tell you about future products.

LATE NEWS

If there IS any Late News, for example, additions to the program
or manual, they will be described in the file called "readme" on
the Games Master disk - just LOAD "readme". You might be
interested in the Justify procedure that the program uses, too!

STARTING TO USE THE PROGRAM

To load the program, place the working disk in drive 1 and press
F9. The Editor and supporting machine code will load and run. You
will be presented with a superficially somewhat formidable main
menu which provides all the major editor features in an easily-
accessible way. In general, you move the cursor bar to the option
you want using the cursor arrow keys and press RETURN. Most
options can be abandoned by pressing F9, or by pressing just
RETURN when you are prompted to input a value or file name.

Most possible errors are trapped within the program, but if the
program returns to Basic with an error message, or because you
have pressed ESC or used the EXIT TO BASIC option, you can
restart it by GO TO main or RUN. RUN resets some variables such
as cursor positions, masking method, outline option, etc. but
leaves your game intact. You will probably have to type r-u-n,
rather than just pressing F4, since the Editor re-defines keys.

LOADING A SPRITE

As a simple exercise to get something moving on the screen, we
will load a sprite from the ready-defined selection on the disk.
A sprite is a computer thingy that combines graphic data with
other information that controls how it moves and acts on the
sCreen. Select the LOAD SPRITE option on the upper right-hand
side of the menu. You will be pPresented with a list of numbered
entries, each of which can hold a sprite. You are asked to select
a free entry, using the cursor keys, and then press RETURN. In
this case you can just press return, since the cursor bar will
point to entry 1 already, and all the entries are free (there are
no sprite names listed in them.)

You will now see a directory of files that end in ".s" - these
are all sprite files, and contain the data that defines a single
sprite. Now type in "egship" or "egship.s" in response to the
request for a file name. The file will load, and you will be
returned to the main menu.

LOOKING AT GRAPHICS

From the main menu, you can have a look at the sprite you have
just loaded by selecting EDIT GRAPHICS. The left and right cursor
keys let you look through the different views of the same sprite;
these are called "frames". They can be placed on the screen in
various "animation sequences" to make a sprite flash, or appear
to walk, flap its wings, rotate, etc. For now, we will avoid
altering the graphics in any way - just press F9 and then "N" or
F9 again to return to the main menu.

LOOKING AT SPRITE PROPERTIES

You can examine the non-graphical properties of the selected
sprite by using the EDIT SPRITE PROPERTIES option. You will see
the first of two pages of data about the sprite, much of which we
will ignore for now. Notice, however, that ANIMATION SEQUENCE is
set to 0. This means that there is no animation sequence assigned
to the sprite, so the current frame will be displayed all the
time it is on-screen. The appearance of the sprite won’t change.

s you know from looking at the graphics, and from the current
gisglay, the sprite has seven frames, and we will use them latei
on. For the moment, we will leave the sprite non-animated. I
will, however, move around the screen. MOVEMENT TYPE is set to 1
(SIMPLE) which means that the X SPEED and Y SPEED valueg shown
will be used to move the sprite to successive new pnsitlunslon
the screen. BOUNCES is set to YES, which means that the spr}te
bounces off obstructions, and EDGE LIMITED is set to YES, meaning
"treat the screen edge as an obstruction®. Perhaps you can guess
that this combination should make the _sprite move around the
screen, bouncing off the edges when it hits them. Now press F9 to
return to the main menu, and select EDIT MODULES.

EDITING A MODULE

r ite is ready to go - but we still have to tell the
ggmpéﬂz; to start ii off. To do this we need to use a single
command in Games Master Control Language. Enter 1 as the module
to edit (this is the default so you can just press return) and
you will see a blank module, which is.an empty page into which
you can type GMCL commands. The cursor is the white square at }he
top left of the screen. You do not need and cEnnot use line
numbers, so just type PLACE 1,10,40,4. This means "place sprite 1
at x coordinate 10, y coordinate 40, sprite plane 4. The sprite
plane determines whether sprites can collide with other sprites
or blocks, or pass over or under them, but don‘t worry about it
for now. Press F7 to compile the module; the command will be
translated into machine code.

i i listing the
You now have various choices such as saving or 1
module, but just press a key such as RETURN and you will be
returned to the main menu.

SETTING THINGS GOING

ally we are ready to run the “qaqe". select RUN GAME. The
;iggrax will execute module 1, the sprite will be set going, and
you should see the sprite bouncing around the screen. Hodul& 1 is
no longer being executed - you have told the computer "Place
sprite one at these coordinates and then keep handling it,
according to its pruperties“..After that, no further commands are
needed to keep the sprite moving.

ANTMATION

eave the game b ressing F9, and let’s modify things to be
gogiétlee-ore ELtereggfzg. Select EDIT SPRITE PROPERTIES and move
the cursor bar down to ANIM. SEQUENCE using the up and down
cursors, then press the right cursor until thg value increases
to 7. Use the left cursor to decrease the value if you ovgrshoot.
Now press F7 to use the new values and return to the main menu.
(F9 would have thrown away any changes before returning to the
main menu.)

ave de the sprite animated, using animation sequence 7, but
::a: doe:athat me;;? There is nothing in tpe sprlte data to say
what animation sequence 7 is; instead, animation sequences are
part of the overall game, and can pe edited in 1§olation from the
sprites. In a way this is a pity, because it means that a

sprite’s behaviour is not determined solely by the sprite data,
but also by more general game data. However, there are advantages
in doing things this way. Animation sequences can be complex
without expanding the size of the sprite data, since only a
single value determines which complex sequence from the games’s
list of sequences is used. Sequences can be shared by many
sprites, some of which can be at a different position in the
sequence, and a single change to a sprite’s data can select
another sequence and change its behaviour completely.

Many of the most common anihation sequences are ready-programmed,
S0 you need to do very litfle. Sequence 7 is one of these. If you
select EDIT ANIM SEQ and enter 7, you will see that this sequence
is defined to use frames 1 to & in sequence, then 5 to 2, with a
"time"™ of 1. The "time" is the number of times to use each frame
before going on to the next one. In this case the computer will
use frame 1 just once, move the sprite, use frame 2 just once,
move the sprite, etc. If the "time" was 10, the animation (i.e.
alterations of the sprite’s appearance, as distinct from its
position) would be much slower, because the same frame would be
used during 10 sprite moves. Different frames can have different
times, allowing, say, a giant eye to be unchanging for 20 moves,
and then blink quickly by using 2 or 3 "blinking" frames for just
1 move each. (You might like to load the "eye" sprite from disk,
and set it going.) When the end of the animation sequence is
reached, it will repeat automatically.

A list of the ready-programmed animation sequences is given in
the section on the EDIT ANIM SEQ option, which also explains how
to use the MODULE column to cause actions at particular points in
the animation. This is just a quick run-through, though, so back
to the main menu now!

ALTERING SPRITE PROPERTIES

Run the game again using the RUN GAME option. The sprite should
be animated, as well as moving. Go back to the SPRITE PROPERTIES
option and test the effect of altering X SPEED and Y SPEED - if
you make the values negative, the initial direction of motion
will be reversed. Try setting EDGE LIMITED to NO. Next you can
switch to manual control by increasing MOVEMENT to 2 (PLAYER). As
supplied, the program will control the sprite using the cursor
keys, or a joystick.

ADDING MORE SPRITES

Perhaps by now you would 1like some company for your single
sprite, so use the LOAD SPRITE option to load "egstar®". This
sprite will become the "selected sprite™ which EDIT GRAPHICS,
EDIT SPRITE PROPERTIES, et:. refer to. (To return to editing
"egship" you would have to use the F5 and F2 keys, or the PICK
SPRITE option on the main menu, to make it the "selected sprite"
once more.) If you look you will see that "egstar" has only a
single frame, and is not animated, although it is moving. It is
not edge-limited so it will wrap round if it goes off-screen. Use
EDIT MODULES to edit module 1. On the 1line after the PLACE
command you entered before, type: PLACE 2,50,60,4 and on the line
below that type: PLACE 2,66,110,4. (These particular coordinates
are not important.)

that we are telling the same sprite, number 25 to be
i: gggegf?ferent places at the same time! Press F7 to compile the
module, then run the game, and you will see that this is exactly
what happens! Games Master can handle uultlple copies of the iame
basic sprite - you just have to use multiple PLACE (or ot e:é
commands. These commands make active copies from the unchang
master copies of the sprites that you load. Now try adding -gre
copies of sprite 2 to module 1, perhaps using a final value
(plane number) of 1 or 2, which will let the new copies pas:
under any sprite with a higher plane number, or a plane nun?eiio
8, 16 or 32, which will let the new copies pass over the ex :h ng
sprites. You will learn more about the significance of ese
numbers later on.

COLLISIONS

ete this trivial demonstration, let’s make the "egstar"
:;r;::Ellake a noise when they hit the "egship". Select the SPR
ve., SPR COLLISIONS option from the main menu. You will see a
table of possible collision pairs. Hovg the cursor doww;bytonﬁ
row, so that it is on the row dealing with collisions of egsiage
with other sprites. We are already in the right column, sin
column 1 relates to sprite 1 ("egship"). Any module numbei yo;
type now will be the module that will be executed when sprite
hits sprite 1. I usually use module numbers over 30 for COéél?lO?
handling, but you can use any number between 2 and 128. (Module
is already in use, of course.)

typing the module number, place the cursor over the number,
?it?Z ﬁgé imved, and press F8. The modulg will be readyuig;
editing. (This is another way into the main menu EDIT“HODt s
option - you could use that instead if you pFeferred.) ?? gﬁe
SOUND 1, press F7 to compile, and you w¥11 return =] e
collision table, from which you can exit using F9, unless y
want to specify more collision actions.

i ame now will produce a sound on any egstar/egship
gg??igfoﬁfeuéﬁng pre-programmed sound 1. You can use a difggg:g;
pre-programmed sound, or edit sound 1 using the EDIT v
option if you 1like. If you have your sound outpu corregveg
connected to a system able to produce stereo sound, the p::cee o
stereo position of the sound should vary according to er
the screen the collision occurs.

SAVING A GAME

f tour of Games Master, save the game_using the
g:vgngaﬁgigpégéi You can either use the SAVE DATA option, which
saves just the game data, or the FULL GAME or AUTO GAME optlogi,
which save the machine code needed to handle the sprites as well,
and allow the game to run without the Editor being loaded.

tions, in
rest of this manual deals with all the main menu op .
g?gater depth, followed by an explanation of the Games Hasi;r
Control Language. Example programs apd demos are included on e
disk, along with sprite files and utility programs.

PICK SPRITE Option

The number and name of the "selected sprite" that EDIT GRAPHICS,
EDIT SPR DETAILS, GRAB FRAME, ANIMATE SPRITE and SAVE SPRITE
works on are shown on the main menu under PICK SPR. You can alter
the selected sprite (no matter where the main menu cursor is)
using the F5 and F2 keys. However, to look at the complete list
of sprite numbers and names You must use the PICK SPR option.
Move the cursor over PICK SPR and pPress RETURN.

You will be shown a page of 32 numbered entries, each of which
can hold a sprite name up to eight characters long. Extra pages
can be examined by using the F1 and F3 keys to show the complete
set of 96 entries. The cursor bar can be moved left and right and
up and down with the cursor keys. RETURN selects an entry as the
"selected sprite" and returns you to the main menu. F8 can also
be used to enter a new name or alter an existing one. The display
also shows the amount of free memory available for holding more
sprites. The name and number of the new selected sprite are shown
on the main menu under PICK SPR.

EDIT SPRITE DETAILS Option

This option both displays details of the selected sprite, and
allows you to edit most of them, using the up and down cursors to
move the cursor bar, and left and right cursors to decrease or
increase numbers, or toggle YES to NO and vice versa. F7 confirms
all the changes you have made, and F9 abandons them. There are
two pages of details. You can swap between them by pressing
SPACE. It doesn’t matter what Page you are on when you press F7.

FRAMES cannot be altered. It shows the total number of frames.
WIDTH cannot be changed. It is the sprite’s width in pixels.
HEIGHT cannot be changed. It is the sprite’s height in pixels.

CURRENT FRAME can be changed, but this will be irrelevant unless
the sprite has an animation sequence of zero (i.e. it is not
animated) in which case it will determine what frame is seen when
the sprite is displayed.

ANIMATION SEQUENCE when zero means that the sprite is not
animated. Values between 1 and 32 denote an animation sequence
from those editable using the main menu EDIT ANIM SEQ option. The
Sequence should be defined, if needed, before a game is run, or
you will get an error message. If the sequence assigned to the
sprite uses higher-numbered frames than the sprite actually has,

the sprite will flicker and appear very odd, but no harm will be
done.

CONDITIONAL refers to animation being conditional on sprite
movement or not. NO means that the sprite will be constantly
animated, YES that animation will stop when the sprite stops
moving. For example, if the player controls a walking man,
CONDITIONAL should be YES or the man will walk on the spot.
Normally, when animation stops, frame 1 is selected, but this can
be modified using a STOP module - see below.

MOVEMENT TYPE can have values from 0 to 4.
0 (UNMOVING) means that the sprite does not move.

1 (SIMPLE) means that the sprite makes simple moves initiglly
determined by X SPEED and Y SPEED. Colliding with obstructions
may stop the sprite, or cause it to bounce, but the speed and
direction of movement will not change otherwise.

2 (PLAYER) means that the sprite is controlled by the player via
a keyboard or joystick. The keys that respond are editable using
the EDIT KEYS option on the main menu. The sprite speed when the
player makes a move is determined by the values of X SPEED and Y
SPEED. Both should normally be positive. (If X SPEED is positive,
the sprite moves left when the player tries to move it left, but
if it is negative, the sprite moves right!)

3 (PATH) means that the sprite follows a complex defined path
from those editable using the EDIT PATHS option on the main menu.
PATH should be set to 1-32, and the path should have been defined
before the game is run, or you will get an error message. A path
consists of a series of movement instructions; when all have been
executed, this option goes through the same set of ipstructions
again. If the sprite has moved back to its starting point by this
time, the sprite will move repeatedly in a loop; if not, it will
progress across the screen.

4 (ALT PATH) is like the previous option, but the sprite follows
the path alternately forwards and baukwards.l This results in no
overall movement, whatever the path. Both kinds of path can be
interfered with by collisions with other sprites or with blocks.

X SPEED is the number of horizontal units moved when MOVEMENT
TYPE is 1 or 2. If the value is negative, the initial direction
will be left for movement type 1, otherwise right. Zerolgives no
horizontal movement. The units moved are normally TWO pixels, or
1 byte. This may seem odd, but it corresponds to exactly 1 byte
on the screen, and means that the sprite can be placed onto the
screen without any complex manipulations of the data. Also, in
most cases movement by 2 pixels is quite acceptably smooth.

ver, if you like you can set PIXEL X SPEED to YES and the
2:;:;; uéad wiyll be single pixels. This has the disadvantage that
a second copy of the graphics and masks for this sprite _have to
be created, doubling its memory usage. The second copies are
rolled rightwards by 1 pixel ready to go on the screen, so this
option is just as fast as normal. You must ensure that the
graphics used for pixel x movement do not use the rightmost
column of pixels, or odd pixels rolled off at the right wi_.ll
appear on the left when the sprite is placed on-screen. Restoring
PIXEL X SPEED to NO will recover the space used for the second
graphics copies.

Y SPEED is similar to X SPEED, but the units. are always pixels. A
typical value might be 2, with X SPEED being set to 1 (byte),
giving diagonal movement.

Very large values of X and ¥ speeds (above about 10 pixels per
move) are not recommended due to the jerkiness involved. They
also make it possible for sprites to pass right through narrow
barriers without the collision detection being triggered!

PATH is the path number followed by a sprite when movement type 3
or 4 is selected. See the main menu EDIT PATHS option for
details.

COLLISION TYPE is initially the same as the sprite number, for
sprites 1-32. This value is used in the SPR vs, SPR and SPR vs.
BLOCK collision tables to control collision actions. However,
there are only 32 collision types, and you can have up to 96
sprites, so sprites 33-96 will have to be assigned a suitable
collision type in the range 1-32 if you want them to have
collision-triggered actions. This means that they may have to
have the same collision type as another sprite, but this is not
usually a problem, since one often wants several different
sprites to act similarly when collisions occur.

BOUNCES determines whether the sprite bounces when it hits an
obstruction. The extent of bouncing will be very small unless the
movement type is 1 (SIMPLE). (More complex effects than bouncing
are controlled via the main menu COLLISION options.) Set to NO
the sprite will not bounce Ooff other sprites, and it will be
blocked by BLOCK obstructions without bouncing, although it will
continue to move in unblocked directions if it has any part of
its motion towards them. If the block is removed, the motion will
normally restart. Set to YES the sprite will bounce off sprites
and obstructions but not slow down.

HALTS ON IMPACT set to YES will over-ride BOUNCES and stop the
sprite from "trying" to get anywhere after it hits something.
Suitable for custard pie sprites and so on! The sprite can still
be moved by external forces, such as pushing by another sprite,
or gravity.

FEELS GRAVITY set to YES means that the sprite will tend to fall
unless it is supported by something, or unless it does not
require support. The exact effects are determined by the force of
gravity and maximum falling velocity, which can be altered using
the main menu EDIT GM DETAILS option.

NEEDS SUPPORT means that a sprite cannot move upwards unless it
is supported by something, at least initially. It should be YES
for a sprite which is to leap. FEELS GRAVITY should also be YES.
Y SPEED should be quite high - perhaps 3 or 4 - since this
determines the initial upwards speed. The force of gravity and
the naximuy falling speed also affect the form of a leap. NEEDS

spaceship you want to be able to fly up and down, but to fall if
you stop pressing the uUp key. (See the "ships.d" demo on your
disk.) FEELS GRAVITY set to NO would give a spaceship that simply
stopped when you stopped pressing the UP key.

EDGE LIMITED should be set to YES if you want a sprite to be
unable to leave the "game frame", or other enclosing blocks. The
game frame is normally set to include the entire screen by use of
an enclosing BLOCK (see the EDIT BLOCKS option) so edge-limited
sprites will be stopped by the screen edge. When EDGE LIMITED is
set to NO, a sprite can wander off the screen. For more about how
this works, see EDIT GM DETAILS (Delayed Wrap) and the section on
the Coordinate System in the explanation of the GMC Language.

LEFT/RIGHT MIRROR can be set to YES if you want a sprite to be
mirrored left-to-right when its sideways motion reverses. Used by
itself, this physically mirrors all the frames for the sprite.
This has some advantages: it is simple, and there is no extra
memory usage. One disadvantage is that it is relatively slow,
which may give a perceptible pause in the game, especially with a
large sprite with lots of frames. Another is that ALL copies of
the sprite on the screen will be mirrored, even if they haven’t
reversed direction, because they all use the same graphic data.
This will be irrelevant if you only expect to use one copy of the
sprite, of course.

There is another way of dealing with motion reversal, in any
case. Leave MIRROR set to YES, but set non-zero values for LEFT
MODULE and RIGHT MODULE. The left module will be executed when
the sprite reverses and starts to go left, and it can select a
new animation sequence for the sprite, in which all the frames
are already mirror-reversed. The right module can re-select the
original animation sequence. This is much faster than the
original method, and can be used for multiple copies of a sprite
without problems, although it uses double the amount of memory,
and takes a little effort with the graphics editor, animation
sequence editor, and module editor. See ANIM in the Games Master
Control Language section for details of how to change an
animation sequence within a module. See "demol.d" on your disk
for a mouse and a witch that use this method.

UP/DOWN FLIP is very similar to MIRROR. YES alone will invert the
actual graphics data, whereas assigning UP and DOWN modules can
do the same thing using new animation sequences.

STOP MODULE, when non-zero, is the module executed when the
sprite’s normal animation comes to a stop because it has stopped
moving and CONDITIONAL is set to YES. A common application is to
change the sprite’s animation from walking to standing, or to
change frames, using the ANIM or SPOKE commands.

KEY 5-8 MODULES These are only relevant to player-controlled
sprites. The main menu EDIT KEYS option allows you to define up
to 8 keys or key combinations. The first four of these keys are
assigned to move a sprite left, right, up and down, but no
actions are assigned to the other four unless you set a non-zero
value for the relevant key module. For example, suppose you want
to fire a missile and make a sound when the space bar is pressed;
you could assign SPACE to be the fifth defined key using the EDIT
KEYS option (in fact this is already done), set the KEY 5 MODULE
to be, say, 20, and then make module 20 contain commands to EMIT
a missile and create a SOUND, using the EDIT MODULES option.
Different player-controlled sprites can have a different set of
key modules, corresponding to perhaps different level ships with
new weaponry. See "ships.u" on the disk.

10

MISSILE If this is set to YES, the sprite "dies" if it goes
completely off screen. This is usually what you want with a
mssilg - otherwise it may buzz around Your screen forever. It
may still do so, if it is edge-limited and bounces, even if
MISSILE is set to YES.

You can "fire" any sprite with the EMIT command, whether MISSILE
is set to YES or NO.

UNDER FIRER is usually set to NO, meaning that if this sprite is
"fired" using the EMIT command, from a position that overlaps
that of the "firer", it will be OVER the firer. If it is set to
YES, it will be UNDER the firer. Often you won’t care about this,
because the initial positions will not overlap, but it lets you
fire e.qg. missiles from behind something, or not. (cCollision
detection between missile and firer will not occur until AFTER
tl:xe two have been "not collided" i.e. the missile is clear of the
firer - but you could still be hit by a ricochet!)

ABSOLUTE SPEED when set to NO means that if this sprite is fired
using the EMIT command it will add the speed of the firing sprite
to i'ts own intrinsic speed (set by X SPEED and Y SPEED). This
setting is closest to reality for many sprites. A setting of YES
means that the sprite will use only its own speed, and might be
more appropriate in some cases - e.g. the bubbles emitted by the
fish in "f ish.d". Try altering the ABSOLUTE SPEED setting for the
"shot" sprite in the "meteor.d" game and study the effects.

MASKLESS is normally NO, meaning that the sprite has a mask and
can be used normally._ If set to YES, the "sprite" isn‘t really a
sprite at all, since it must be used as a rectangular background.

This property is specified when the sprite is created, and cannot
be altered.

MEMORY USED can only be changed from this option by altering the
state of PIXEL X SPEED. It is the number of bytes used by the
sprite, and includes the graphics and a 45-byte data area.

11

EDIT GRAPHICS Option

You can edit the graphics of any sprite by selecting it using the
PICK SPRITE option, followed by the EDIT GRAPHICS option. If the
sprite already exists, you will be able to display each frame and
edit the desired one by pressing F8. If the sprite is a new one
(i.e. you used PICK SPRITE to point to an empty entry in the
sprite list, and then typed in a name) you will be prompted for
the width and length of the new sprite, in pixels. Once you have
approved the settings, you will be ready to edit the first (and
so far only) frame of the new sprite.

You cannot change the sprite’s dimensions after this without
using the CLEAR SUBMENU option on the main menu to erase the
sprite and start from scratch. (Although you could PUT the sprite
in a safe place first and then GRAB the graphics back - see GRAB
FRAME option.) An edited frame can be:

: 4 Abandoned without the original being altered.

ii. Used as a replacement for the original frame. ;

iii. Used as a replacement for any other frame of the sprite. ;

iv. Used as a new additional frame for the sprite by adding it
to the end of the sequence of frames.

Assuming you are now ready to edit a new or existing frame, you
have quite a few options:

F7 - USE the frame as it is now. Before final approval, masking
operations (see later) will be carried out and the sprite will be
placed against both a colour 0 and a colour 15 background for you
to look at. If you press any key except "N" when prompted, the
edited frame will replace the original in the sprite’s data. If
you press "N" you will have the option to use the edited frame to
replace ANY frame for that sprite, or if you use the maximum
allowable frame number (which is displayed for you) the frame
will be added to the end of sprites frames, making the number of
frames increase by one. Using a frame number of 0 will switch to
a second screen, where a box cursor the same size as the sprite
can be moved around using the cursor keys (plus SHIFT for speed).
F7 will place the frame at the current position, F9 will abandon.

F9 - ABANDON any changes that have been made. Both F9 and F7 ask
if you want to edit another frame. Any key except "N" or F9 will
be taken as "YES".

SPACE - PLOT the pixel pointed to by the arrow cursor in the
current colour - this is pointed to by a separate "colour cursor"
below the palette display. This cursor can be moved left or right
using the F1 and F3 keys, which means that you can alter the
current colour without "losing your place" as you might if you
had to move the main arrow cursor. The pixel will be plotted on
the enlarged view of the sprite on the left, and provided there
is room, on a normal-sized view on the right. The enlarged view
uses magnifications of 2, 3 or 4 times, according to what will
fit on the screen. Very long sprites may partially obscure the
list of options at the bottom of the screen.

12

The other options are:

F4 - MIRROR sprite horizontally. This is useful for creating
frames of the sprite moving in the opposite horizontal direction.

F5 - FLIP sprite vertically. Use it for e€.g. making spaceships
look correct while flying down the screen instead of up.

FO - TURN sprite clockwise by 90 degrees. Only possible if the
sprite is square. The operation can be repeated to give frames
rotated by 180 or 270 degrees compared with the original.

SHIFT and CURSOR KEYS rolls the sprite left, right, up or down by
one pixel (or more, if you keep pressing the key). No information
is lost, so you can reverse the process. Useful for moving frames
that you GRABed a bit wrong, amongst other things.

F6 - SWAP colour pointed to by the arrow cursor with the colour
pointed to by the colour cursor, for the whole frame. The colour
cursor will automatically shift so that if you press F6 again,
the colours will swap back to the original state. This function
is very useful when editing sprites from different sources so
that they all look good with the same palette. You will often
find that you need to change the way that colours are used. For
example, a pinkish colour may be part of the palette you have
decided to use, but the sprite you are editing has a green face
and pink boots when you use that palette. If you cannot redesign
the palette without causing problems for other sprites, you need
to edit the selected sprite, so you point the arrow cursor at the
green face, and the colour cursor at the pink colour in the
palette, press F6 and the face (and anything else using the same
colour) will become pink and the boots (and anything else using
the same colour) will become green. However, working out the
swaps needed to get all the colours right can be tedious, and the
use of F6 is best avoided unless all 16 colours are in use in the
sprite you are editing - F2 below will be simpler.

F2 - SET colour pointed to by the arrow pointer to be the colour
pointed to by the colour cursor, for the whole frame. Note that
this option may reduce the colours used by a sprite by making
areas that were originally different colours indistinguishable.
Once you have told the program to USE the frame, you may be
unable to reverse any changes.

DECIMAL POINT - FLASH colour pointed to by the colour cursor.
Useful for checking which, if any, pixels in the sprite have a
particular colour. (This may not be obvious with some palettes!)

F8 - FILL area pointed to by the arrow cursor with the colour
pointed to by the colour cursor. Like the normal Basic FILL -
only connected areas will be FILLed.

ADDING A FRAME

There are two main methods of adding a frame to an existing
sprite. If you want the new frame to bear some resemblance to the
existing frames, the best method is to press F7 to Use an
existing frame, then reply "N" to "Use as frame X72%, Y8 to "PUT,
or use as another frame?" and then enter the frame number given
as Max. This will add the frame to the end of the existing frame

13

thing, one
ist. ou want to clear the frame before drawing any
i:;tislftoy edit it, move the colour cursor to the extreme left,
and use F2 to set each colour in use to zero.

Alternatively, you could use the Gnai.l;iimhgpthi:‘!:; 11::! egralhmzheg
from the second screen.

2::: :;f::? or had frames placed on it, or been left as it was at

the end of a game.

SELECT MASKING Option

than rectangular

ite handling program that uses other

::zitse‘;r n:eds two kinds of graphlc:is chini?;ntign: thlen w:;?: d:o t::

2. Wh s
graphic frames look 1like? ot o v 1Y
actually put on the screen? If the en o', gy oo
ite will have a border that will over
g:::gémthe :Ecrl other sprites. The infomtionbeahoun t; k:léit;l;f]:ar::
are to be used, and which are to ma 2

2:152: ir"?:ask'. This into'rnntion can be prepared in diffe;ent

ways according to the application. The var:il.ous tggttz:;:o:rzo s tg::
d can be chosen by moving

::dtl;e:;ﬁ:gﬂm? None of them have any immediate effectt —-U;gu

must use EDIT GRAPHICS to select a frame, and then selec entl'

for the new mask to be created using the method currm y

selected. The options are:

SURROUND

that the colour

the initial setting. The program assumes

Eisﬂ}: top left-hand corner oif ?hebon:lu::. ttf::t tit;e thb::kgroggzg

colour, and any part of the sprite’s rde: e o Wy e
ff. This is usually satisfactory. Any in

i: ‘tnhs;{ egpgibe will be left alone, even if they are the sm;:

colour as the background. The actual background colour

irrelevant. ;

BLACK

lly black) is

tion assumes anything in colour 0 (usua

Eeckarcind and Shoule" 5y wadked off. Thie works vien SR

will not - for example, e top e
sprite. It can also be used to create

::r‘;::? Ethth:olgs in it; for example the "trellis" spr;:ekon(’ﬁ::

disk has internal holes which we expect to see thig:: ckgr

through, and BLACK masking had to be used to create e

SURROUND+1
- 1 border of the
t is like SURROUND, but a 1-pixe
g:::gr?:ﬂnéogolnur is added to t'he ‘edge of the spfg.tet;la:; o:s:c;
frame size allows): This can help a sprite .
;;:i:;l: a similar-coloured background by giving it a contrasting
outline.
BLACK+1

Like BLACK, but adding a l1-pixel border as above.

14

MANUAL 1

There may be some occasions when the options above are not
exactly what you want. This option overlays graphics edited with
the EDIT GRAPHICS option with a chequered pattern that shows the
current mask. You can edit this manually by selecting the

colours. You will find it best to Create masks with one of the

other options, and then use:MANUAL 1 just to touch things
little. . 58

MANUAL 2

This option was added late-on, when I realised that masks that
were partially normal ‘and partially translucent could be used to
create interesting effects, such as shadows. It allows you to
edit, not the sprite’s graphics, but the actual mask data, just
as though it were graphic data. A normal mask will appear as
colour 15 (usually white) on colour 0 (usually black). Masking
works at the binary level - 15 is 1111 in binary, and means that
when the sprite is put on the screen, all four bits that make up
a pixel in the sprite frame will replace the bits on the screen.
On the other hand, 0 is 0000 in binary, and this means that none

of the bits in the sprite frame are used, and the screen data is
left alone.

Now, what happens if the mask is partly colour 8? This is 1000 in
binary, and means that a single bit ("worthw 8) from the sprite
frame will be used at that pixel, mixed with 3 bits from the
screen. Let’s assume the background screen uses mostly colours 8,
9 and 10 which look like grey (light black!) light blue and light
red. Assume also that part of the mask has been edited to colour
8, and the rest is colours 0 and 15. The part of the sprite’s
graphics equivalent to the colour 8 bit of the mask should be
some colour between 1 and 7, so that its binary number has a
leading zero - e.g. 0001. The colour 8 mask area will use this
zero, mixed with the rightmost 3 bits of the background colours
(which are 1000, 1001 and 1010 in binary) to give 0000, 0001 and
0010 at those pixels (colours 0, 1 and 2). These colours could be
black, dark blue and dark red, meaning that that area of
background is darker than before, but still visible. In other
words, shadowed! By appropriate use of mask and sprite colours it
is possible to get effects like stained-glass windows or

coloured, translucent bubbles. The demo programs on the disk show
the use of shadows.

The mask data is used in collision detection, and only areas in
colour 15 count - so a Sprite that is entirely shadow will not

collide with another sprite, and sprites will not bounce off each
others shadows.

When you use EDIT GRAPHICS in this mode, the pixels you plot on
the mask will also be plotted on the smaller view of the sprite
at the right-hand side. This helps show you where you are in
relation to graphic data, but has no other effects.

15

FROZEN

After you have laboriously hand-prepared masks with the MANUAL 2
option above, you may want to edit the graphics data again - and
to do this you have to leave MANUAL 2 mode. Beware! If you go
back to SURROUND, as soon as you edit a graphic and USE it, the
SURROUND mask will replace your manual mask. You may want to set
masking to FROZEN - this will prevent any alterations to the
current masks while you edit graphics.

EDIT PALETTE Option

Each game has sixteen pre-defined palettes that can be selected
within a module using the PAL command. The initial settings of
all but palette 0 are the standard ones for the Coupe. Palette 0
is entirely black, and is useful for blanking the screen while
graphics are set up. The EDIT PALETTE option allows you to edit
any of these palettes. The display shows the 128 possible colours
in the upper part of the screen, grouped roughly according to
colour. The lower part of the screen shows the 16 colours of the
selected palette - 0 to 7 in the first row, 8 to 15 in the row
below. The palette number follows a hash sign; next to this is a
rectangle which will display the current colour.

A box cursor can be moved with the cursor keys to point to one of
the 128 colours, and RETURN will make that colour the current
colour. The colour number of this colour may be of interest - it
is shown next to the current colour rectangle. If you move the
box cursor over one of the colours at the bottom of the screen
and press RETURN, the current colour will be assigned to that
part of the current palette.

You will often want to see what effect altering the palette has
on the appearance of your sprites. Holding down the decimal point
key will display the second screen using the current palette.
This screen will show the game screen in the state you left the
game in, or the last loaded screen, or the screen as you left it
after PUT with EDIT GRAPHICS, or after GRAB FRAME. If your box
cursor is over one of the 16 colours of the palette, that colour
will flash on the second screen, showing you where that colour is
used.

Pressing F7 confirms that you want to use the palette as it is
now, and EDIT GRAPHICS and other options will use this palette to
display graphics. The F9 key abandons any changes. Both keys
return you to the main menu.

GRAB FRAME Option

This option is used for capturing sprites or backgrounds from
(usually) a loaded screen. If there is currently an existing
selected sprite, GRAB FRAME assumes you want to add frames to it.
If you don’‘t, select a free entry in the sprite list with PICK
SPR and enter a name using F8. If you forget to do this, the GRAB
FRAME option will give you the opportunity to select another
sprite, or provide a name for the selected sprite using F8,
before the main GRAB option is offered.

16

If you want to add frames to an existin i

" g sprite ou ma
f.r:ue dimensions wrong at your first attempt, ‘bu);. t'.h.{gr ggts:l":
m: ter, because the box cursor will be automatically reset to the
right size to match existing frames, and you can try again.

The initial display tells you which keys to use t

0
:::n%zxthbey sii:: gin a“l;.c.;:éhcurso;.l Slllit]:.‘l"l’ pius the cursor k:;: ‘:no::‘s’

or height, which is o
picking up the next frame from the screen. You ci:eqngﬁgf:tewggz
§u::ti:iri<;§:y,U:f:gerrspiessingooss,i as well as by eye using
R s a g dea i

strip of screen the full width of the scre:n.y?r';uw::: :: t?i?;b i:
gztgo - but the frame will be too large to edit later, so it is
- er to deal with this in smaller chunks. You can input a width
of 64 pixels, and any old height, then grab 4 frames from the
screen by moving left as far as possible, setting the box height
h{ eire, grabbing the frame, using shift+right to move across 64
pixels, grabbing the frame, etc. Four times 64 comes to 256 so

the 4 frames make up a let
b 98 By o e bup‘:kgrgou:g.e e screen width that can be used

Input of the box size by pressin
g F8 also re-selects o
sheet" of what key does what, which you might want to ra'irrlceead?rib

Pressing F7 will grab the frame. If thi
¥ S is the first f
the selected sprite, you will be asked CREATE MASKS? rIsf yof:a;:'egg
;nﬁoxgle::e:;: "N';,f masks will be created and the graphic will be
prite. If you press "N", the graphic cannot be
a :i'eal moving sprite, only as a b;ckgrnund, although the ;:33:::
;n Editor will handle it as a sprite in most other ways
owever, the "sprite" will take up half the memory it woulc-i

otherwise. All subsequent frame
- g i fgame. s will use the CREATE MASKS

Next you will have the chance to accept

or reject the f
:se as any valid frame of the sprite you arej building r:pme 'f'::
efault frame will add the new frame after any existing ones..

ANIMATE SPRITE Option

This gives a quick, fairly crude way o

?re going to look when animated. Yoz c:n sgé;lg lt‘g:og;l:maffa:he:
diamesi from first to last, repeatedly, or alternately reversing
a rtel::t ?‘n. (_As !ou might want for e.g. a wing rising and falling
ag 11ei 1;151119 frames are just shown in reverse to depict
- a ng".) The animation speed can also be increased or
ecreased. However, for more flexible control use EDIT SPR
DETAILS to assign an animation sequence to the sprite, if needed

EDIT ANIM SEQ to set up a suitable sequence, and 'include the
sprite in the current game so you can see it animating for real.

12

SPRITE vs. SPRITE COLLISIONS Option

This option displays part of a 32 row by 32 co]iuh-lr; t:b:iet:ht:lj
determines what action is taken for eaecéh a[;os‘; g ‘:'1 i
i isi e nam umbere
the b ot S Chi. sl ?t£ hich can be examined using
the names come from the sprite list w i gk
the PICK SPRITE option on the main menu. ms' oliesi

but there wasn’t ro
been named in identical fash}on, Ao P 6 e
i llision type number is ame
naming assumes that the co Sic Shne TL330 b
i number, which is true initially for spr X
;giétgpn DETAiLS option.) However, the names are it?plgaiggnn:::
as an aid to memory, and should be ignored for sprites 3
type number is what matters.

i lace
Sat? Chobe Loh ai"”.?.;m?;’i:g’i’f" %éliﬁjli‘m“p}fﬁ“ilm
ge::te;ntuﬁni: 23?1::11:::; c::curss be:l:rv;‘eenrg:e_nm-en::ge:ﬁ i!';tper“i:g
comtaatad s s S Teouiding or ourantt wrlte 2 s o
the module is concerned, a I RE e
considered to be the "hit" or "other" sprite. This A
Gecaceas Geice, once s oot shot vE hip Sha chce s ohip v
:ztl;esﬁa:g;:dt;:et:o zf;s,aiy ‘;‘;siqnin% actions to eithe: 3:::. c:
the two collision entries in the table - e.g. 2 vs. 5 or

ition in the table; the
cursor bar can be moved to any posi e
z:.:ll.e'een will scroll as nee:ii:ed. A m:dtlli‘;? Ur;mumb:;e;ant l::;mr; ut;?:eiypis
- there is no need to pres
ign letz just press any non-numeric key. If you press F:rwésg
ghepcurébr over a module number, that module will app: e
editing or inspection. Exiting the module editor with F
returns you to the collision editor.

i i i ites 4 and 5 are
: If sprite 2 is a missile, and spr]
32f§2§!ﬁgetypes og ship which should explode when h1§;e2n:°ggiitf
10 is an explosion, you could enter the number of a g o
say, 30 - at row 2, column 4 and column 5. Module g
’

contain:

SOUND 5
TRANSFORM 255,10,0,0

mak "other" sprite (the
e a noise and transform the "o

T:is ;:;:isprite number 10 at the same coordinate§. Spri?ghi: can
:avgsan animation sequence that ends with the sprite vani g.

When you have finished defining collisions, press F9 to returp to
the main menu.

18

SPRITE vs. BLOCK COLLISIONS Option

This option is similar toe the previous one, but the 32 row by 32
column table deals with collisions between the 32 possible sprite
types and block types. The columns correspond to the block TYPES,
not block numbers, and they are not related to sprite type
numbers. You can have many blocks of the sanme type while
requiring only one table entry to handle collisions of a
particular sprite type with such blocks. For example, if you want
sprite type 10 to make a sound when it hits block type 2, enter a
module number on row 10, column 2, The module with that number
would contain a SOUND command. You could have many blocks of type
2. If you also wanted sprite types 11 and 15 to make the same
sound on hitting blocks of type 2, you would enter the same
module number in row 11, column 2 and row 15, column 2.

The sprite that collides with the bloc

k is the "current sprite"
(see Introduction to GMCL) and there is

no "other" sprite.
RUN GAME Option

The current game is run. First, in Basic, a CLS is done and the
current blocks are outlined if outlining is selected (see EDITOR
EXTRAS option). Then the game proper is run by LET e=USR start.
(The variable "start" holds the start address of the

error.) Any sprites or sounds that are in use are terminated, the
variables A to 2z are zeroed, and module 1 is executed. Module 1
may call or jump to other modules. When these modules finish, the
computer carries on handling any sprites that have been brought
into use. F9 can be used to return to the main menu, or ESC can
stop the game and simultaneously break into the Editor. Exit
using F9 is recommended. The game screen is preserved on SCREEN 2

and can be inspected using the GRAB FRAME, EDIT PALETTES or SAVE
SCREEN options.

When an error occurs in the game, the error message includes the
module number where the error occurred.

OTHER WAYS TO RUN A GAME

It is possible to

run a game direct from the Basic command line
by typing:

CALL start
The variable START will hold the required address. The normal CLS

done by the RUN GAME option will be omitted, and you can have

sprites moving about over a pProgram listing by e.q. LIST TO 100:
CALL start.

You could also type:

RUNG

This acts like the Editor’s RUN GAME option.

19

To restart the Editor, you can GO TO main. Alternatively, just
RUN; this will reset some variables such as cursor bar positions,
masking method, outline y/n etc. to their start-up wvalues, but
the game data will be intact. Unless you have Master Basic, there
will be a perceptible delay as the program re-initialises itself
after RUN.

GAME PAUSE KEY

Pressing TAB during a game halts the program and sets the border
flickering. Useful when someone rings the doorbell or the phone
rings, or you can’‘t think what to do next. Press the key again to
restart the game.

EDIT MODULES Option

First you are asked which module (a section of Games Master
Control Language) you want to edit. The default is the module you
edited last.

Modules can fill no more than one editing screen, but you can
have up to 128 of them. The EDIT MODULES option shows the current
module number after a hash sign. No line numbers are needed, or
allowed - simply type commands, each on a separate line. Spaces
are not significant, and upper and lower case letters are
equivalent. New text can be inserted within a line by moving the
cursor to the required location and typing the text. Text can be
deleted using the DELETE key. The line that the cursor is on can
be deleted by pressing FS. A new line is inserted at the line the
cursor is on by pressing F2. (Any text scrolled off the bottom of
the screen will be lost.)

See the section on the Games Master Control Language for details
of the commands and functions you can use. For now, you can
experiment with the editor by typing text preceded by REM.

You can Abandon any changes you have made by pressing F9, or
COMPILE the module by pressing F7. During a Compile operation,
the module text is converted into an internal format that can be
handled very quickly. If a syntax error is detected during this
process - for example, if a command is not recognised, or it has
the wrong number of parameters after it - then an inverse
question mark will appear after the error or errors, and a beep
will sound. Press any key to resumed editing. Your cursor will be
located after the last error automatically.

If you have used NEXT without a matching FOR, or a GOTO without
a matching LABEL, you will get a "Missing FOR or LABEL" error
message, and the module will not compile. ;

After Compile or Abandon, you can edit the previous module, edit
the next module or LLIST the current module. You can also save
the module to disk, or overwrite the existing module by loading
a module from disk. Module file names have ".m" automatically
added. Pressing anything other than the keys specified will
return you to the main menu.

20

The EDITOR EXTRAS Option allows umn;
) you to select 64 1
editing, instead of the usual 32. This may be needed f%or entzrfs;

commands with parameters that are i
= g Pekia ot pi une-conplex expressions, since each

EDIT GAME DETAILS Option

This option allows you to alter several important properties of

the overall game. You
B Wit o o can ?l]&t':er the same things from within a

MINIMUM GAME DELAY

This is a method of settin
i g a maximum speed for a game.
g:nzt;::u:;tragtzgur shﬂilp starting off with 10 largishqe‘;geniiz 32
on the screen, by the time you h di
all the enemies, the game ma ¥ . iy et e
Y have speeded up to an
extent, because the computer will have 1 b
to do. By inc i
the Minimum Game Delay the speed-up i Tin y o Ls
> De = limited. If the
slow enough as it 1s, the Game Delp; % it
1] Y has no effect.
:;11;@_' ;jcgr;dwl::t:chh:::f: trﬁtt Ehhe con;imter takes at 1eas§h2ng°§3§t11
a e sprites, even if it c
quicker. Values of 0-5 might be reasonable for a gamea.l.' H‘?i;hix.tf

values - e.qg. 15 sl
debugging a%ame. slow things down a lot, and can be useful in

FORCE OF GRAVITY

This variable controls how i
quickly falling sprites (with
gﬁﬁmt BY fRAVITY property - see EDIT SPR DETAILS(optigrr:)e
aosels :a €. Higher values make sprites attain the maximum falling
1ty sooner. If the value is negative, objects fall upwards !

MAXIMUM FALLING SPEED

This variable sets the i
redti ih BIE i mv:l?ximum Y speed that a falling sprite can

BORDER COLOUR

The initial border colour of the game. -Should be 0-15.
IMMEDIATE WRAP

Normally NO, which means that spri
» prites can exist in i
cs):i s::ezng S"ph:;:_qn; Zone" 1;0 tihe left and right of th:nstizgzézibife
= 1tes wandering off-screen t i i
immediately wrap round to th i thir. than it
e other side, rather than
the "phantom zone". See THE COORDINATE SYSTEM for more da::?l!:fng

EVERY CYCLE MODULE

Used to select a particular module whi

:] hich will be execut

Elmel t:ze entire set of sprites has been moved or t:hee:ke:'lvefz
cycle"). Any non-zero value is the module number. In order to

show different demos for a rti ngth i
module might look like this: PREW e o gt o

21

LET T=T+1

IF T=100: JPMOD 10
IF T=200: JPMOD 11
IF T<>300: RETURN
LET T=0

SCLEAR

JPMOD 1

i le.
You would have to avoid using the variable T in any other modu

ting new sprites
ule is very useful for genera R
:3:;—“:2 glr’:::lh::h‘::id- for example, the _metecfs in the "meteor
gameyon your disk, or the bubbles in "fish.d".

i i am
The current Every Cycle Module can be modified within a progr
using the VPOKE command.

See also the Introduction to GMCL.

ROM INTERRUPTS

rma its own system of

ing that Games Master uses 1 Y =
l.lo nytsuo'm.: Bil:-li.mgs per second, rather than tl-nei= 50 stol::g gnd
xnterrdupnoﬁ interrupts. This has implications cin:r. oo e
::ES;TE LINE colour changes. See the EDIT SOUNDS option

about the implications of this.

ALLOW EXIT FROM GAME

i rors such as

meaning that pressing ESC or F9, or er T

E:i::iig :;site' wi.llg terminate a game. You may wisIhn tl:: hsiest e F

e you have finished developing a game. i PhS, Jiate

T egrors may cause odd behaviour or a crash. b et s

proqrag so you cannot return to the Editor to c fn;; i it
lggorzr‘to ch};mge anything else about the game! So alway

’{Eaét one copy of the game which DOES allow EXIT.

TOP EDGE

ifi ve which sprites will trimmed.
'l‘hi.s_ spec1f1:|:1es f;lf c::rgg:zt:prﬁs normally vanish as tl;;ylzo:g
- Ls_no:'ma og the 'screen. If TOP EDGE is reduced, for ex h.'il)t £
gy 01; rites moving upwards will vanish before t.l:;); L e
e the:o 4 leaving the top 9 pixel rows of s puse
:ﬁ::::hed P'l'ou could place text grbbact::l;lgrc;l;;dsed !;:rq:,a Tty B ié

c) not limited by the 2
3::?3.{ tE‘!:gK z; ;::e '?;:ane" or score and lives display area.

BOTTOM EDGE

i ich sprites will be
the coordinate below l_i'h.\c Ko
Th'is spe:é:::lsly it is 0, but it can be increased to pgo;ic;zs.
tbzt-.:::diwrt of the screen from being crossed by moving sp

Wh you have edited the game variables, F7 accepts any changes
en
and F9 abandons them.

P

EDIT PATHS Option

This option lets you define up to 32 complex paths for sprites to
follow. To make a particular sprite :_Eollow one of these paths,

To use the EDIT PATHS option, enter a path number. yvou will then
be asked whether to use pixel x moves or not; the default is NO.
Sprites can move horizontally by bytes (2 pixels) or by pixels -
see the EDIT SPR DETAILS option. The amount of horizontal
movement seen on the screen during a game when a sprite follows a
particular path depends on this Property. You can design paths
with the X moves setting in either state, so that what you see
matches the action of sprites with the same setting. Sprites with
a different pixel x move setting will still be able to follow the

path, but their movement patterns will be squeezed or stretched
horizontally.

The current shape of the specified path will now be shown. If the
path is undefined, you will see just a dot in the middle of the
screen. If you press F8 You can re-design tl_:e path. At this point

smaller the step, the smoother and slower the motion of the
sprite. Step size can be changed at any time within the path, to
give varying speeds at different points - see the paths in the
"fish.d" demo on your disk. You can also press FB to enter a
module number at any point; this module will be executed at this
point in the path, and can cause e.g. a missile to be fired.

Move the arrow cursor to where you want the path to start from.
This isn’t critical, since Paths are relative to a sprite’s
starting position in the game, but you need to allow enough room
to draw the path on-screen. Now press RETURN and a dot will be
plotted. Move the cursor to a new position and press RETURN again
to draw a line of dots from the previous position. These show
potential sprite positions. Keep doing this until the path is
almost complete. You can finish in two ways. Pressing F7 will
close the path into a loop by drawing a line to the initial
position, and there will be no cumulative movement as a sprite
repeats the path. Alternatively, press F9 and the path will

terminate, but not close. Sprites following it will make some
overall movement.

When you have ended the path definition, the path will be redrawn
using colour cycling to show direction of movement. If it is not
a closed path you will have the chance to repeat the path to see
what the overall movement effects will be. The screen scrolls if

needed. You can then approve the path, enter a new one, or
abandon any changes.

23

EDIT SOUNDS Option

This option allows you to edit or define up to 32 sounds that can
be produced from within a module using a simple SOUND (number)
command. Sounds can be loaded from disk if they have been
previously saved. The display for each sound shows bar graphs for
volume and pitch, and status "buttons" for tone and noise
status. In the volume graph at the top of the screen, any bar can
have a height of 0 to 15 units, which determines the loudness of
the sound during that time interval. In the pitch graph in the
middle, the sound frequency can be set much more precisely. To
change the height of a bar, place the cursor at the desired new
height and press SPACE. There can be up to 60 bars in each graph.
The sound you hear after pressing F7 will follow the pattern of
the two graphs:; it will finish when the data in both graphs has
finished. You can have intervals of zero volume if you like.

The lower part of the display shows "buttons"™ for each bar.
The rows the buttons can occur in are marked T for Tone, N for
Noise, H for High, M for Medium, L for Low and V for Variable. A
button can be turned ON by placing the cursor in the right
position and pressing SPACE. When a cyan Tone button is ON
(visible) then tone is selected for that bar, and the sound will
be at the pitch showr in the pitch graph above. If a green Noise
button is ON then noise (hissy sound) is emitted. Its pitch
depends on the position of the magenta button that will appear
below. This can be in the High, Medium, Low or Variable position;
the first three settings are independent of the pitch graph, but
the Variable setting uses the pitch value in the bar above. Both
Tone and High, Medium or Low pitched Noise can be ON at the same
time - a mixture of pure and noisy sounds will be heard. Tone
will not be effective while Variable pitched Noise is in use.

Limitations within the sound chip mean that no more than two
sounds can use different-pitched noise simultaneously, but there
is no such limitation with tone. The Games Master software does
its best to allocate sounds to whatever sound chip channel is
appropriate, and available, so that up to six sounds can be
produced at the same time. If all six channels are in use, any
further SOUND commands will overwrite earlier ones before they
have finished.

The time interval denoted by a single bar is either a 50th of a
second or a 100th of a second, according to whether ROM
interrupts are set to YES or NO using the EDIT GAME DETAILS main
menu option. The slower 50th of a second rate with YES allows
less exact shaping of sounds, particularly short ones, but the
maximum sound duration is doubled. This mode also works with
PALETTE LINE to give more than 16 colours on the screen, and with
Sound Machine or Master Basic to give background music. (Load the
Basic program "musfish" for an example.) Both of the latter
interfere with the production of sound effects, however. It is up
to you which interrupt setting you want to use.

You can Abandon an edited sound, which will leave the original
version (if any) of the sound intact. Alternatively, you can
compile it - this will turn the graphs into an internal format
for storage. You can then hear the sound repeatedly by pressing a
non-function key, such as RETURN. If you do not like the sound,
pressing F8 will let you edit it again. Pressing F7 will accept

24

the sound for use, and i
it will replace the
gﬁ:::?:nt;{. You can also SAVE a complex sound as a 31121: ‘;ei.flij.g;
g - This allows you to re-use the sound in another game

Even at this stage ou ca
<ty gy s o int’:a gt- n also Abandon a sound, leaving the

Disk sound files have " _pn
automatically. You do not need
loading these files.

added to the end of the n
1 an
to include ".n" yhen saving m.?

EDIT KEYS Option

This option shows You a list of ei
« ght keys or key combi i
;ha;: willal bti recognised by_the game. The first fm’:r ien ét?:t]]::n:
- ;;a c{zr controlled sprites move left, right, up and dwz
TS permitting. They are initially set up to respond t:;

defined - enter th
SRt Shis e key number, or just press RETURN or F9 to

The keys are redefined b
Y pressing the key or maki j
movement you want to use, when prompted. You will :gv:h:hgog::igt

See the EDIT SPRITE PROPERTIES opti
on fo i
associate particular actions with kgy entriers ga::::l;.s il By

EDIT ANIMATION SEQUENCE Option

This option allows you to view
1 and alter animation
iiwﬁégh tix:n ::r.il::?dd:za F{ly sprite by entering the Bequencs: q:meencei
S using the main
?5':!1.::. iFrat?:s mx-.l:aei rs should be between n;numgnlghespﬁmnm;.&%?
n € sprite, TIME should be betwee
:odul§ :fu:o vl::.la(lly be null (just press RE'TT?RNIJ a;g'uﬁzsgé :;:
umbe or possible moves) the frame will
) will be us
What you might werh’be, Progras, 5elsial; tries toanticipaie
makes at the default
can just press RETURN much of th s ey
" e time, s
animation sequences are already programmed in. ‘;i?recr;‘:nf{st?se{i

;ranes 2-8, repeating

rame 1 for time 20, then - i
Three frames, nlterﬂating e giigy o
Four frames, repeating

Four frames, alternating

Six frames, repeating

s;x frames, alternating

Eight frames, repeating

Five frames, repeating

WENOOE W

é ﬁa I{:;l iogk . yguzwi.lla sse;ao :hai; ;:‘hree frames, alternating" jisn‘t
v2,3,3,2, mig guess, but 1,2,3.2
1,2,3,... Each sequence repeats autona'tically .' éeéuéncle'sz ! 13:1'1&211/;

25

start at frame 2 are often useful, because the default action
when animation stops is to select frame 1, which can be a view of
the sprite standing still, rather than e.g. poised with one foot
raised. Frame 2 onwards would provide the animation for normal

movement.

The TIME value can be different for different frames if vyou
like. The list of frames, times and actions can be very long.

By supplying a module number, you can make a sprite do something,
such as make a sound (footsteps, bird chirps, etc) or drop a
bomb, at a particular point in its animation seguence. See the
EDIT MODULES Option, and the example and demo programs on the

disk.

You might even want an animation sequence for a sprite with a
single frame. For example, to have a sprite that looks the same
all the time but fires a missile every 20 moves:

FRAME TIME MODULE
d 4 19 Cad
1 3 50

Module 50 would have to be set up to fire the missile.

When you have finished, you can abandon the new values (the old
ones will be used instead) or use them if they are what you want.

EDIT BLOCKS Option

BLOCKs are rectangular areas of the screen that can be used to
restrict sprite movement, support sprites, or trigger collision
actions. They can also be filled with complex patterns. Blocks
come in sets, and the first thing this option asks you is which
set you want to edit. There can be up to 255 blocks in a set, but
a set normally starts with just a single block defined. This
surrounds the screen and defines an outer limit for edge-limited
sprites. When you have chosen a set, the EDIT BLOCKS option shows
all existing blocks outlined in yellow, with the number of the
block in the top left hand corner. You can then select any
existing block to modify, or enter the next block number to

create a new block.

When you choose a block, you are given a box cursor that can be
moved with the cursor keys. The box height can be changed using
F2/F5 and its width using F1/F3. Using SHIFT plus the cursors
moves the box faster. (To be specific, by one box width or one
box height per move.) When you are happy with the block size and
position, press F7. You will then see a display of which planes
the block exists on, and other information. The plane settings
determine which sprites can collide with the block; if ON PLANE 4
is YES, and the rest are NO, then only sprites on plane 4 can
detect collisions with the block and bounce off it or respond to

it in other ways.

A block can exist on multiple planes. If it exists on none, the
block no longer exists - you can use this to delete a block. A
typical application of the plane settings might be an aerial view

26

of a city, with the buildin
gs defined as blocks
5:§12piji.:§s could wander the streets, bouncing ofcfmtgia;:iid?nly.
s g b raft. pPassed overhead unobstructed - unless h 5ot
er buildings exist on higher planes as well R S s

:2::?:; it:;:teml;:lc:ng::1 :.EIBNCLOSING Oor not is very important - if th
¥ e vinss 'spr';tesocgug'Etmact l.;t;llisions.with its inside, an:

; ¥ a moving bel
:Egp?)zitojé?cg ;:ta :on-suppoz_-tinq block. If ENCLO%ING its's:tm::oh:l! .
heot il 1.}(';‘5 collisions when sprites try to leave it: "
s et tes ; like the Screen-edge block. It cannot - g
- its bottom surface is always supporting. B

The TYPE i i

= ordernu::el;; 1s used in Sprite vs. Block collision detection

ok SHAgC. 5 Tlgger particular modules when blocks of

T Theyt?f «ia(re hit. See the SprR v BLK COLLIS Optiono £ .

— c.:m el oc tj!rpe can be‘ altered in the range 1-32. Bl o]z(-

i R gertanl properties, and these too can be aiteru:
affect the properties of ALL blocks with that t;pé

ot i = 5

clelaﬁgzlo:tc tgl;ching it might trigger a door to open, a score to

Blccks'can a.lsoa bea module. See the example programs on the disk

or left (negative ngff:’ s';h:::llsl;ove rit?l:lt ki speedsi
(i a

surface will be moved sideways - see neltg.lﬁgl::fuocx*zh:lg Fflee REE

B :

u;ioggst:a;n B;]iso be filleqd _by repeats of any sprite or back

i LL command within a module, and you mi e
ne one just for that purpose. : b il A

even set up a block which is partly off-screen. '(Sae';d ?ﬂ:

Coordinate System for an ex i
planation of the »
BTYPE can alter the properties of a given block gg;:?cmée: o:ﬁ;é;

The ED i
i soI‘Iﬁ?‘l;tEXmloptmn_ (see below) normally has OUTLINE set to
i toante ke ocks in the current set (the last edited set)
Ptk e it Screen before a game starts, provided it isg
oy gr. This is useful for debugging purposes - ru;?
e i se to NO, blocks are invisible until you rf :
i BAn + such as filling thenm using the BFILL comp:cl Yoe
9 BACK to place a section of background in the same pl:ac:r

from within a module Th
Feb- RISHE i use-e first module should avoid using the cLS

Th

wh: tglel;l:'m}tedge of the dra_wn outlines show the edge of each block

sesimag thls an enclosing block or not. Outlines cannot ocbé
€ game 1s run as stand-alone code without the Editor

resident. (You could cho t :
Oit1ine 1% You Matted oo)p out and adapt the Editor procedure

27

EDITOR EXTRAS Option

This option controls some Editor facilities. Move the cursor bar
to the desired position and press RETURN to reverse a setting or
execute the desired operation. Alternatively, press F9 to abandon
the option.

You can select YES or NO for block outlining. (See the EDIT
BLOCKS Option above.)

The EDIT MODULES option can use 32 or 64 columns.

LIST VARS will show the current values of the GMCL variables A to
Z, in two pages. The associated Limit and Step values are only
relevant for FOR-NEXT variables. Press any key for the next page,
or to return to the EXTRAS menu.

LIST MODS will list all modules with text in them. Press any key
when the listing finishes, to return to the EXTRAS menu.

LLIST MODS is similar to LIST MODS, but sends output to a printer
via stream 3.

Press F9 to return to the main menu.

LOAD SPRITE Option

This option allows you to load sprite files containing graphic
and other information from disk. You are first given the
opportunity to select a free sprite entry in the sprite list by
pointing to it with the bar cursor and pressing RETURN. A
directory of files ending in ".s" for Sprite is then shown and
you are prompted for a file name. Just press RETURN to abandon
the LOAD. Otherwise, the file name you supply automatically has
".s" added to it and the sprite file is loaded. (If the file does
not exist, you will be returned to the main menu after an error
message.) The file name is placed in the sprite list and can be
examined with the PICK SPRITE option. The loaded sprite is now
the "selected sprite" to which options such as EDIT GRAPHICS and
EDIT SPR DETAILS refer by default. The name and number of this
sprite is shown on the main menu on the PICK SPR option.

SAVE SPRITE Option

This option allows you to save a sprite to disk. You are prompted
for a file name to save the selected sprite under. If you simply
press RETURN, the default name (from the sprite list, with ".s"
added) will be used, but you can enter another name. The ".s"
suffix is added automatically. The sprite details and graphics
are saved in a CODE type file.

28

LOAD GAME Option

This option allows you to load either the data to let the Editor
run a game, or a full game including the sprite handling code.
Which one you choose makes little difference, since the sprite
handling code will already be in memory and will simply be over-
written by the saved version when it loads. However, if later
versions of the sprite handling code are ever released, loading a
GAME DATA version of the file might be preferable so that the
latest handling code was used. The GAME DATA option gives a DIR
of all files ending in ".d4" and automatically adds a ".d" to the
file name you supply, if you do not do it yourself. The FULL GAME
option acts similarly but uses ".g" instead.

SAVE GAME Option

This option allows you to save either just the data that make up
a game, or a full game including the sprite handling code, with
the option to auto-run on loading. Which you choose doesn’t
matter much if you plan to run games under the control of the
editor, but the DATA option will allow you to use the same game
data with any later versions of the sprite handling code. A FULL
GAME file can in any case be converted to a DATA file by loading
it and resaving it without the first 9984 bytes - SAVE "name.d"
CODE 116480, (length)-9984. The GAME DATA option gives a DIR of
all files ending in ".d" and automatically adds a ".d" to the
file name you supply, if you do not do it yourself. The FULL GAME
option acts similarly but uses ".g". AUTO GAME is identical to
FULL GAME apart from saving the game so that it auto-runs on
loading.

If you want a game to load and run on a machine with less memory,
you should have a look at its Total Game Size using the MEMORY
MANAGER option, and reduce the size of the Workspace area if
possible, before saving the game.

Stand-alone CODE Games

If you use the SAVE GAME option to save a Full Game, and the game
does not use Basic or machine code subroutines, then no other
program is needed to run the game; you can simply BOOT the
computer and then LOAD "game name" CODE: CALL 106496. This
address is the one the code was saved from and the address it
will normally load back to. It is &1A000 in hexadecimal, which
may be easier to remember. The code will also work correctly at
multiples of 16K above or below this address, provided it does
not go too low and hit Basic, or too high and hit DOS or the
screen memory. For example, you could use: LOAD "game name" CODE
40960: CALL 40960. Here are some possible addresses:

24576 (&6000), 40960 (&A000), 57344 (&E000), 73728 (&12000),
90112 (&16000), 106496 (&1A000), 122880 (&1E000).

The address 24576 will only allow a very small Basic program. Why
would you want to run the code at a different address? One reason
is to minimize memory use so that a game developed on a 512K SAM
works on a 256K machine. Running the code at a lower address
without the Editor loaded may allow the code to run. Even on a

29

512K machine, it mij
. ght be used i
use as extra screens or for R:H d!ic;kgj.:egog;gg:rn:l:;;;ytopages e
v use.

If memory is really tight on a 256k machine

Games Master to overwrite the DoS by includinq iyou o g nee

n a Basic loader:
IF PEEK SVAR 450=13 THEN POKE 55100+13,0

This : is i

i :ea:;s th-a];:f Daos 1s in the usual Page for a 256K machine {13)

e 3 Page 1n the page allocation map as f w i
Probably crash when You exit the game TV

If you save a ame

a:utomatically a:?d ca:sil?g f::de?lwgndcm s el
name" CODE or LOAD (file number)
running could be converted to an at;t
different address, by loading and the

3 the code runs
run tuth‘ a simple: LOAD
A game which is not auto-
o-—running one, perhaps at a
N re-saving it using e.qg.:

sl..:AD :gama.g" CODE &a000
VE "new name" CODE &a000, leng, &A000

'Leﬂg. could be read (=]
from a DIR 1 ti
3 » is ing or ohtained usinq

GAME PROTECTION

aAll

o gua;lmsec!:lr:!blcg:a files are automatically scrambled before savin
ropstagemi ton loading. This has been done to give “
s : protection to games You write with the fome
o 1oadY'o nyone else using the Games Master Editor will ;};s bl
s {oma;lggﬁeih?:d ;?; how you have written them. You ma:rhl];g

; y ever
::k eju?: ;ude your secrets, use' glfe yggm? e 0 oiita
mpossible to leave
BASIC suk::routines}. Then us e
auto-running game. Another
::ané;:e the game. Even if t|
e sk, it will not

the Editor. e

Th
mli(:ssfgt::r c;i::sfonro’{. cot?‘y-protect your game in any way, it
nother user to see how i it
:::::;t{)roduces standard CODE files, any tecli::n:o . s
ng such files may be applicable 1 e ey

30

LOAD SCREEN Option

This option gives a directory of all SCREEN$ files and of CODE
files of roughly the right length to be MODE 3 or 4 screen data.
Just press RETURN when prompted to input a file name if you want
to abandon the LOAD. After loading a file, any flashing colours
are turned off and you are returned to the main menu when you
press any key. You can then use GRAB FRAME to read sprite frames
from the screen, or you can use EDIT PALETTES to copy the loaded
palette into one of the internal game palettes.

SAVE SCREEN Option

This option allows you to save the second screen, which will show
the last state of a game, or the last loaded screen, or show
sprites that you have -PUT there with the EDIT GRAPHICS option,
whichever was most recent. The screen which will be saved is
shown until you press any key, then you are prompted for a file
name. Just press RETURN if you want to abandon the save. A normal
SCREENS file is saved to disk.

EXIT TO BASIC Option

This simply restores some key definitions to normal and goes to a
STOP statement. You can use GO TO main or RUN to restart the
Editor. RUN clears the second screen and resets some variables,
but the game data is left alone.

MEMORY MANAGER Option

This option allows you to change the size of the two main memory
areas in a game. The initial display shows you the current
status. The TOTAL GAME SIZE is the amount of computer memory used
by the game, and it is always a certain number of 16K pages, plus
half a page. This includes a WORKSPACE, which is used for storing
copies of sprites and areas of background. Initially this is made
as large as possible. As sprites are loaded or defined, the free
workspace decreases. If it is too small, you may get an error
message when you try to load a sprite or run the game. If it is
needlessly large, you may make it impossible to run a game
developed on a 512K machine on a 256K machine, and you will tie
up RAM that you could have used for e.g. RAM disks. However, this
may not be a worry for your application. Workspace size can be
increased or decreased by whole 16K pages using the Memory
Manager menu.

The other memory area that Games Master uses is called a HEAP.
This area holds movement paths, animation sequences, sound
definitions, and modules. Its initial size is 4096 bytes. You may
run out of space, and the Memory Manager menu allows you to
increase or decrease that size without loss of data.

The workspace is not saved with the program, so FILE SIZE will be

less than GAME SIZE. File size is the size the game will be when
saved on a disk.

kb

The LOAD GRAPHICS setti i
s ng that is show i i
;c;::;eri % czn;ptll:at:h with graphics, or n:t te}i‘ise yous;ftfzf; u;eai alr):
t e Memory Ma y
developed without using tz';o mr:;.gil;-::ynu (;:e Es?ai;w g)anes R e

Pre i

any:flirf:. I.;re);zspnonse to the menu if you do not want to alter
: o o E'I‘URNR tzrcl'll:;ose an option, and either input a
thumbee sl " ETURN to exit the option and return to

gzifdle:gsﬁalikzlyi:: occur if you are using a 256K SAM, but
o a;l,:y%et w a large_praject on a 512K mchine' Thi
but it is not n:ed:gxu;il?uthwehl;:l: T devel.opede

runs. In -
graphics are needed for a finished game, but mmsntgai:’st;;; ::5

You load a sprite, only the i
] sprite details
memo; i .
blobr]c:nlf:h zs:r:or graphics. The sprite will appezruzgd ; ;::nxflann:
enllg B en. Many aspects of the game can be tested usig
¥ practice, only some of your sprites (probablg

memory-hungry backgrounds) need
to i
GRAPHICS option set to NO; the n::nt:heri::e ci:m:;d n:;:al;l th(?ra;g‘;g

shapes are used in collisj
ion detecti
slightly differently to their normal emf§a'1e::s nﬁlgj;i:;oynsact

When you want to try out a
e 1 version with Ffull aph

":;g tl:f“gm:hih SAVE GAME option, then Exlgrtgei%?ﬁtgzvin;
Hmissinq Gx:a L € Games Master disk. This stands for Load
Dy b Phics. IMG is much shorter than the Editor, and th?
e Youa;ggr t;erslon of a game to be created. The pr'ogran wilT
i s e name of the game file, load it, and then load
the et Or any sprites that do not have any graphics in
can then s:::eih:n :«;‘: 3:::ifile's gt omen “-5'“:18;23
memory, you will have to short::-thlef g::!g s:;i;;?;t;s s g e R

The CLEAR SUBMENU o
ption on the ma
to be reduced by erasing unwanted diril::ir:;n]:y Ty Pty

CLEAR SUBMENU Option

This allows you to CLEAR
or erase
:;:;.: all the sprites, or just scm:eelcxefm:mi
e vs. sprite collisi tab.
and clear all the paths, o~y oo

dnta_types. You can
t.he'tSprltes, reset the
Sprite vs. block table
animation Sequences, sounds, or modules:

32

THE GAMES MASTER CONTROL LANGUAGE
Introduction

This is the special language used to control some of the Games
Master features, and it is known as GMCL for short. MODULES are
sections of program in GMCL, which are converted into fast
machine code when you press F7 to compile them. (See the EDIT
MODULES option.) WHAT? A free Compiler with every copy of Games
Master? Can this be true? Sort of. The GMC language is fairly
simple, so it isn’t nearly as hard to compile as, say, SAM Basic.
It uses integer (whole number) arithmetic and only variables A to
Z. There are no string variables, you can have only one command
per line, and control structures are very limited. However, it
does work much faster than Basic and it allows you to write a
game that is a stand-alone code file. If you need to, you can
call Basic or machine code subroutines from GMCL to provide
missing commands or functions.

A GMCL module can be executed when the program is run, or as part
of an animation, or in response to a collision, or a keypress, or
at other times. In fact, GMCL is what is called an "event-driven"
language, one of the latest things in computing, apparently. (I
discovered this after I wrote it!) The way it is controlled is
fundamentally different from normal languages; instead of being
executed in (more or less) sequential fashion, as with Basic, a
CMCL program is a collection of modules which may have no
connections with each other and which are often executed by
outside events.

Well, the outside events are not VERY outside, since they often
come from the computer noticing something like a sprite collision
while running a game, but they are external events in the sense
that they are not caused by the GMCL program itself. This can
take a bit of getting used to.

Module 1 is always run first when you run a game, and this is
fairly conventional. Other modules may be branched to from module
1. However, fairly soon the start-up modules will have finished,
and the computer will handle the sprites by itself, without any
GMCL programming. From time to time, collisions, key presses,
animation seguences or paths may make a specific module or
modules execute. Your player-controlled sprite might trigger a
"next level" module by reaching a particular point and a sprite
vs. block collision being recognised. The module would clear the
screen and sprites, set up new backgrounds, replace your sprite
and place some fresh hazards on-screen before finishing. No
further GMCL actions would be needed for a while. For example,
see the game "platform.d" on the disk - if you can grab the crown
and reach the door on the right, you will trigger the setup of
the next (rather boring) room. (Hint: turn off "feels gravity"
and "needs support" if you want to cheat!)

There is one rather different way a module can be executed: a
specific module can be executed after each game "cycle" in which
all the sprites are moved or checked. This module can keep a
count of how many cycles have gone by, which is useful for
demos, because it can let you display a screenful of sprites for
a time, and then switch to a new one, and finally back to the
start. Also it can introduce a hazzard into the game every now

33

and then, or keep the
game runnin
ggﬁig: ;‘f;:e; the player is "killm?'.f:Zeatt?:rgi;laGmr R U
etails, and the demos on your disk for exanplegmAILs

The Coordinate System

The GMC La i
i vertic:?u:gglgzes a8 coordinate system in which the horizontal
oot iace Lt mE:_(tand y axes_) both range from 0 to 255°n'1':
Gt on-screel s Of TWO pixels (1 byte). Only x valu:as g
rast. *gingie iy n. This system has the advantage of all i
g TR posu:iooperat‘:.ons on the coordinate while givi 7 tha
o T n sprites off-screen in an invisible "prll:g i
: e : H%evesr 1s:e. With the default game propertant‘:’?
inmtomthis szone pr::v‘?zzd €S can gradually emerge from, or vzﬂ-:ioh
S PRdPERTI ;s they do not collide with an::rthin 5!s
& pontatiets e option. You will have to mentally nu‘{i:i fe
Sl it o tr:.s system by two to estimate where it 1)
Rt it A € usual system. If the x coordinate of“n
e P i t?ie :igpnte increases beyond 255 it will “w:-ha
S Bl gty e of the sprite will appear on the left a?
bog Pl h'econergzsg art.':iu the 'phapto- zone". X coordinates o_o
e ARy Tt nd the sprite moves gradually 1ntog ;lr:g
e s i e left, and eventually, if it keeps £ o
v g iy g ::'mh the right-hand screen ed ‘ culligiong: ks
: e A ge:m'::ol zone", but missiles cannot be fired c;;:
immgedniately gy Y g 7 o YES, X coordinates below 0 or above-lz'?
"phantom zone" I:o lefte ot;tl;‘eirghilditﬂ:f oy B
coordinates of 128-255 will result ine::g;so:oufll.za;.‘.lzinss[;-:re::des sl

Y coordinates of 191 (at th

3 (at € Screen to t

252:&1;1)‘1:1‘];2: ;:rtgz invisible "phantom pz)one‘: 3he(:ty t.{‘se fgc:eten

T Vel el ught "of_ as both above and below the scr (o]

ol naftround if they move too high or too low esn,

v o, e 8y ack wave" of downwards~moving sprites ¥ tm-l
or so = they will gradually move ontoa tha};

visible screen. The met i
in this way. €teors in the "meteor.d" game are introduced

Sprite Planes

Gam
Thee?:a !f;:sgt:olx.m lases ats¥sten of a background and six sprite pl
b e v mconla I:s static graphics that the spritep e
Ay) backg‘zr'z u:.'g ;:le:;islon pPlanes" which exist as 1ayser::o::
b : . are numbered 1, 2, 4
beingptla:l;ehi I;e:.n;g the lowest, just above the'baék;{'a;g& g P
pe s spritgse:ci g;‘his numbering system may seem odd g l:::t? iz
e planen ocks to exist on several planes at‘ on "
bioare M j.snum‘.:ec‘n t;ss 'I;ng;thelr.) Sprites can only collide’c:ii?lz
oo Plane, and they move OVER i

r plane and UNDER anything on a higher plane. Ifa:m;:g

on the same plane are al
last will be on the top. . O TS each other, the one placed

Sprites ca

iE i st:;noilstcl‘mbe pfages:l on a "non-collision plane", 64, which

coliite with anyihing sige. dianSs” Nothing on this' plane can

c - ; en if it i

might consider using this' Plane if yo:;s waa];.sto :: ﬁi‘a’:e a“i e
arge

34

number of sprites that do not need collision detection - the
program will run faster if they are on plane 64 rather than one
of the other planes. (The time taken by collision detection
increases according to the number of sprites SQUARED, so it can

be significant with, say, 50 sprites.)

Sprite Numbers

GMCL commands generally refer to sprites using a sprite number -
this is the number you see next to the sprite’s name in the
sprite list presented by the PICK SPR option. The command
definitions below use the abbreviation "spr". Some commands work
on the master copy of a sprite, which is used to generate the
copy or copies that are actually used in a game. These commands
can use any sprite number that refers to a defined sprite in the
list. oOther values will give a "Number out of range" or a
w"Missing sprite" report. Other commands work on the active copies
of a sprite, and here the sprite numbers refer to the active
copies in the game. If the sprite is not in use you will get an
error message, even if the sprite exists in the game’s set - you
must have put it into use with PLACE, EMIT or TRANSFORM.

commands that work on active sprite copies can use two special
sprite number values, 0 and 255. A sprite number of zero means
mthe current sprite®. If a sprite has just collided with
something, it is the "current sprite" and its animation sequence,
for example, can be altered in a collision-triggered module using
e.g. ANIM 0,7,1 (see ANIM command below). This means that the
same module can handle sprites with different numbers, and
probably more importantly, many copies of the same sprite (which
all have the same number) can be handled by the system without
ambiguity, since zero refers to the sprite that has just
collided. If a sprite has just been PLACEd or EMITed, it will
also be the current sprite, and can be referred to using zero as
the sprite number. Using the actual sprite number will be
ambiguous unless there is only one copy of the sprite in use. If
there are many copies, only the first one created will be

affected.

A sprite number of 255 also has a special action - it means "the
other sprite" in a collision-triggered module. You can use this
to make the sprite that was collided with do something - e.g.
switch to a new animation sequence, or die. If you use the sprite
number 255 when there has been no collision, the command will

have no effect.

35

———————— e ———

GMCL. EXPRESSIONS

GM i umbe:
sug:tg::-il:lo:lye;lth whole n TS between 0 and 65535 This h
s e 4 r?ebe a;dvt:;taqes, because numbers can fit i;l only t:g
P o L :}T ted by very fast and simple machine cod
2, "wrap round" to Ggssﬁy?u'l‘:il:ghgsetpelfft tf'l:)e o ks Db lf
woun ¢ l :
hexa:l!ecli’::f ogaf;: 2ero to 99999, because 6;53'?13“;9';;;!‘?1?9
T e 11111111111111 in the binary that comput 5
534 (FFFEH). When a single byte value r.il:-.‘s :;;eg::&

by a command, n
FEH ‘ete.) ' | Oovive values wrap round to 255, 254, ete.. (FER

Only literal number
signs, so that e-g.f can be entered with "unary" (leading) minus

TEXT -1 is 0.K. but
TEXT -A is evaluated as just A. The minus is ignored.

However, you could use:

TEXT 0-A, which has the same effect.

n —z is converted into
b Stor
1, 2 and 255. When the line is re-listed it fg :;?g::e;allf:::

as SPEED 1,2,255. This has exactly the La:l:d ai:trgilaaspp::;

GMC i
uaeL f?f:a*??tgal(];mi a)llagg Baos;c's operators to be used. You can
$=,%>,<, " and XOR. Th ;
ope . 7
oge::tti%;s iis the same as usual, ‘Division, lpiz];ieorei:y othes
s i ::a ways gives a whole number result, so 10/3 7 3other
44 Baéicom&a;at&rs (=,<>,<,>) give 1 for 'i'rue, 0 f;:f F‘alm}t
g < . x>'z AN[; o angrx‘:l::oi:ln Ac)cm}l‘:c'i;e conditions, as in BASIge:
e . (cond B 2,
wor: ttm;:h Zor:)ci nBarl;utl ;:::1 bo:ll:" lclio something. AN)D,m eoln?and:[;o;i:.lllgg
b - ich may be useful i
whighryis F:r.;’ .example! TEXT 16 OR 8 gives 24 1£eg:$seundemrstand
i P r;:?:f}tf 1 (1;11 the first number oR the'second numla)gr i:ng
) e operation i i
binary.) The more "techie" of yo?l io.i.?;ohot 055e01:£g=1£1300 lrd1
rea

individual bits : b
andl Bes controlling sprite pProperties - see SPOKE, SET

Yo

ev::l l:::é‘l:;)tﬁl;ssi l:rackets to force parts of an expression to b

have to assign x+1s'ot§-ga. Eemm1£:+Y)*3 is not allowed. You wculg
vari

that by 3, or use: TEXT X*3+Y#3 (which ilsat;afliv:i‘gntt)hen multiply

36

THE GMCL COMMANDS - in Alphabetical Order
ANIM spr, sequence, position
e.g. ANIM 1,4,5 or ANIM 4,1,1

Sets the animation sequence for the specified sprite copy to a
particular sequence, and a particular position in that sequence.
For example, to make sprite 5 use sequence 7, and begin at the
start of that sequence, you would use: 4

ANIM 5,7,1

An undefined sequence will give an error message. The position
should be 1 or more, and refers to the row of the sequence
definition which is to be used as a start point. This allows you
to have many walking or flapping sprites which use the same
animation sequence but are not in step with each other, because
they started at different points in the sequence. For example:

PLACE 1,20,30,4
ANTM 0,7,1
PLACE 1,40,30,4
ANIM 0,7,5

If you use a position past the sequence end, the beginning will
be used instead.

The MANIM command is a related command that alters the master
copy of a sprite so that ALL copies of that sprite PLACEd or
EMITed after the command have the new animation sequence. For
example: MANIM 4,7,2. Sprite numbers of 0 and 255 cannot be used.

BACK spr, x, Yy, frame

Places an image of a sprite on the background at the specified x
and y coordinates, using the specified frame of the sprite’s
graphics. The graphics do not have to have a mask, which saves
memory if you do not need a clipped outline. This command is
mainly used to place sections of background scenery which will be

moved over by the game sprites.

BFILL block, spr, frame

FILLs a specified block (in the current set) with a specified
frame of a specified sprite, repeated or truncated as necessary
to cover the area. If the sprite has a mask, the pattern will be
masked and may contain holes or be translucent. Only the
background is modified - no sprites are made active. For example,
to £ill the entire game area (block 1) with copies of sprite 2’s

third frame, use:

BFILL 1,2,3

This is useful both for creating overall backgrounds using
suitable patterns (see e.g. "trellis.s" and "grass.s" sprite
files) and for making obstacles and static platforms visible.

37

BLOCK block, x, ¥, width, length, plane type

Defi ”
whiézeza‘; b;em];iﬂigh sT[;r:tes canblccllide with or bounce off and
g : > same ock can be 1 i

€sS. The main menu EDIT BLOCKS option i:ed::;:::rm:tzlpcl}:

Th be between and the number o blocks in
e block number should 1 f 1
the current set. (You can force a block set to contain a

coordinates of the top left ¢
ghor L orner of the block. i
cggrgii.naat’t:; :i:tt;roare in units of 3 pixels, 'I:::e);ns‘;?:;‘ilegat:
define a block Hhic: (i)st;all':;}; ‘l;:t ntively ‘in the Dol alves. to
i e
Sprites can still collide with sucr;:n;icligk;n t'IfI"lZ p;: anciétz’:d;cn:.
& nate

system and height
2 ihe bottom.q are in pixels, with 191 at the screen top and o

Imll_;ne isfho;;g l:;s:lil,zég,s,]is Or 32, or the sum of some of these
% e block to i i

e] :) exist on s i

bPlanes. Add 64 to this value if the block is toe;:ra“tnzgi;;:;:n

The type should be 1-32; ;i
i 1t determines
the SPR vs. BLK COLLIS option for an explgg:tf:: et

After a complex bit of bl
ock creation .
fs:kdlsk} it can be instructive to use(etl?e Ef:l?;:Ta cee e
at the block outlines. FRESES, opkicn 80

BLOCKSET n

Makes the game use block s
et N. N shou
:g:oxs‘eil:m :zgt havse ait;.: least one block lci!nbe;tbe:: e;gulwa;.ric; -
ge. Sprites can collide with
o
:ﬁ:c::t and they can also be filled. Block se::-s l;ounce < s e
in menu EDIT BLOCKS option. T A ke

BORDER n
€.9. BORDER 5 or BORDER b+1

Like Basic’s BORDER command. N must be between 0 and 15

BTYPE block type, value

This
-l cdn::r ib:g uaasnada to :‘et the properties of one of the 32 block
e g e shouldgb.ee' O calculate the value, start with 128 if
fhe s o . tsupporting/excluding, otherwise use zero; a;d
balt, and oag yis a2, J2) if the block should be & cigmeroics

" (32 minus belt Speed) if the belt should move le;:g

38

CALLBAS line number

Calls a specified Basic subroutine, which should end in a RETURN.
For example:

CALLBAS 100
and in the Basic program:

20000 FOR n=1 TO 20: BEEP .1,n
20010 NEXT n: RETURN ~ @ .

With graphics or print commands, you will need to repeat the
command for each of the twe screens used by the game, e.g.:

20100 SCREEN 1: CIRCLE 80,88,20
20110 SCREEN 2: CIRCLE 80,88,20: RETURN

Certain commands should not be used in a Basic subroutine,
because they corrupt the game code. These are FILL, GRAB, PUT,
ROLL and SAVE.

The GMCL variables A-Z can be examined or modified from Basic
using simple procedures and functions such as those in the
Utility program "BASint.u" on your disk.

CALLCD page, offset

For advanced users who happen to need it, calls a machine code
subroutine in a specified page at a specified offset. The offset
should be between 0 and 32767 (7FFFH). The page will be switched
in at address 0, and the page above at 16384 (4000H). The stack
is located near the end of memory, and interrupts are running in
mode 2, so 0038H does not handle interrupts as it does normally.
One of the two screens will be paged in at 32768 (8000H).
Important system variables can be read from the list detailed
under VPOKE. On entry to your code, the IX register will hold the
address of the table of GMCL variables A-Z in section C of the
memory map (32768-49151). The table will need paging in using the
value in the D register sent to port 251. For each variable, the
value is in LSB/MSB form, followed by 4 bytes that are reserved
for use during FOR-NEXTs, followed by the next variable.

CALLMOD module number

Calls the specified module. When this has finished, the program
continues at the next line. The module number should be 1-128.

CLs

Like Basic’s CLS command. Clears the entire screen to the current
PAPER colour.

39

KILL sprite

The - .
uillcm?‘:;lgoegl:sa:z :?ﬁvevai;;;;tef copies. The specified sprite
i rom the screen. This comman
o eﬁ;lgizgn as p&;rt of a path or animation sequence; for e:am led
g :p}r te with several frames could "kill itself" Eztﬁ
g ontaining KILL 0 activated when the last fr

- . example of this is shown in the "met b o
igk. The "explode" sprite,
uhu:h_ goes through 5 frame
contains KILL o.

is
eor.d" game on your
number 5, uses animation snaql.'uam::l)er 9
& before activating module 32 which

LABEL letter

name.
LABELs can only be GOTOed from within the same module.

Different modules ma i
o e g Y contain the same LABEL values without

LET variable=value

Assigns a value to numeric variable A
%
:et to zero when the game is run, but they
old values of 0-65535, (Some commands
to -1 like machine code does, and you
form of negative numbers.) For example:

CLS

LET X=2%4
TEXT X
LET X=-6
TEXT X

The variables are all
always exist. They can
treat 128 to 255 as =128
can enter values in the

LOCATE x,y

gs;t’:ntll:ea:(eixt outgut position used by TEXT, LTEXT and STEXT to a
top left-hand dorner of the firet mroreiiit,“ill Strt with the
0 st character at th iti

x-axis runs from 0 to 127 and the y-axis from 191a:tpz;;t11:g;-tgh§

at the bottom. For example:
LOCATE 0,191
TEXT "Top left"
LOCATE 64,95
TEXT "middle"

LTEXT - see STEXT

MANIM - see ANIM

42

——

MIRROR spr

This command mirrors a specified sprite’s graphics left to
right. The sprite number can be that of any sprite in the sprite
1ist, or you can use zero for the current sprite. This operation
can also be performed automatically when a sprite reverses
direction by using the EDIT SPR DETAILS option.

Repeated MIRROR commands will make a sprite’s orientation
alternate. SCLEAR, or re-running the game will restore the

initial orientation.

If the sprite EMITs any missiles after mirroring, the offsets
applied to them will be adjusted automatically so that they
appear at the same initial position relative to the launcher. In
other words, if the missile came from the left side of the
sprite, after a MIRROR it will come from the right side. The
x and y speeds of the missile will also be adjusted, so that it
moves in the desired direction.

The missile graphics themselves will not be mirrored, which is
fine for many missile types. However, for some missiles this
might look silly, and a more complex approach is required,
keeping track of the sprite’s orientation using a variable or
SPEEK of the sprite’s data. This allows a different missile
sprite, with reversed graphics, to be emitted when the
orientation of the launcher is reversed.

MOVE spr, x offset, y offset

This command moves the specified sprite copy by a specified
distance on the x and y axes. Positive x offsets are to the
right, positive y offsets are upwards. The x offsets are in
whatever units the sprite moves by - pixels or double pixels.

You could use this command for several purposes. For example, you
could implement a "teleport" - when a sprite touches a
particular block, have the collision activate a module that
generates a sound effect and moves the sprite 50 units away to a
fireceiver”. Or you could use a penetrable block triggering a MOVE
0,0,1 command to move the sprite upwards so long as it stayed in
contact with the block. If the sprite has the Feels Gravity
property, this MOVE command may only partly overcome gravity, but
a figure would be able to jump higher, as though on a trampoline.
If the sprite is not affected by gravity, the block will act like
a vertical belt. MOVE can also produce special user-controlled
movements via a sprite’s Key Modules (see the EDIT SPR DETAILS

Option).
MPATH - see PATH
MSPOKE - see SPOKE

NEXT variable

Terminates the loop of the matching FOR command. The variable
should be A to Z. See FOR.

43

PAL n

Changes the entire palette to one of the re-define

pnlettes.’ror example, PAL 3 selects palette 3? Paletg;;(zagag:
edited using the EDIT PALETTES option on the main menu. N should
be between 0 and 15. A1l the palettes except zero start off
defined to be the standard SAM colours. Palette zero starts as
;::ﬁifly blai;; and can be used to blank the screen while

Phics are ing set up. Selecti
instantly reveals the scenz. e B Laned T

PALETTE palette entry, colour number

This is a simplified form of Basic’s PALETTE c
ommand. The palett
entry should be 0-15 and the colour number 0-127. 3 S

PAPER n

Like Basic’s PAPER command, but must be used on i
n its own, not as
part of another command. N must be between 0 and 15.’sets the

colour used by CLS and the back ound colour
F g ot e gr for text produced by

PATH spr, path, position

Sets a path for the specified sprite copy, and makes its mow t
type 3 (PATH). A particular position‘h1¥me path can be se1:§:2d
= 1 is the start, and later positions are the number of moves
frag the start. For example, to make sprite 2 use path 7, and
begin at the start of that path, you would use: i

PATH 2,7,1

An undefined path will give an error message when the command i

is
executed. Many sprites can use the Same path, and they can each
start at different points if desired. For example:

PLACE 1,20,30,4
PATH 0,7,1
PLACE 1,40,30,4
PATH 0,7,50

If you use a

position past the path end
used instead. g ,

the beginning will be

zg;yHP?Tﬁ command is a related command that alters the master

pit : 2

EMITed after the command have the new path settin H
g g. For example:

MPATH 4,7,2. Sprite numbers of 0 and 255 cannot be used. "

44

PAUSE n

Makes the program wait for N 50ths of a second. For example,
PAUSE 50 would wait for 1 second. The pause will be cut short if
you press a key. Values between 1 and 255 give delays up to about
5 seconds. PAUSE 0 waits forever, unless a key is pressed.

For a delay that cannot be shortened by a key press, use an empty
FOR-NEXT loop. For a l-second delay, use something like:

FOR T=1,9000,1
NEXT T

Like Basic’s PEN command, but must be used on its own, not as
part of another command. N must be between 0 and 15. Sets the pen
colour for text produced by the TEXT command.

PLACE spr, ¥, y, plane

This command brings a specified sprite into use at a given
position on a particular collision plane, by making an active
copy from the master copy. The sprite number must be 1 to 96, and
the sprite must exist or you will get an error message when the
module is executed. The plane should be 1, 2, 4, 8, 16, 32 or 64,
or the sum of some of these numbers if the sprite is to exist on
several planes. The same sprite number can be PLACEd multiple
times, generating multiple copies of the sprite from the master
copy. Changes to the properties of these copies can be made using
ANIM, SPEED and SPOKE after a PLACE command, if desired.

PLOT x,y

This is similar to PLOT in BASIC, except that PEN, OVER etc.
cannot be included in the command. A pixel is plotted in the
current PEN colour. Unlike the case with all the other - commands,
the x scale used by PLOT runs from 0 on the left of the screen to
255 on the right. This allows the precision to plot any desired
pixel. Plotting is best done before any sprites are placed on the
Screen, because pixels cannot be successfully plotted "under" an
existing sprite - you may get flickering pixels.

RANDOM n

Similar to Basic’s RANDOMIZE. Sets the random number generator to
a specified value, if n is between 1 and 65535. If n is 0, a
random value is used. RANDOM 0 is useful in ensuring any random
actions in a game are different with each go, whereas other
values would be used to make a particular pseudo-random sequence
happen every time. See also: RND(n) function.

45

REM comment

REM is like REM in Basic - it Precedes comments. For example:

REM man has hit platform 2

RES spr, byte, bit

Resets (makes equal to zero) a particular bit i i

in a sprite’s data.
See.thg list aftgr.the SPOKE command. For exampléi to -akeaa
sprite non-edge-limited, You could use RES (sprite number),3s,2
The commannd works on active Sprite copies. See also: éEi
command, SPEEK function. g

RETURN

Makes a module end at once rather than wl run
out. Often it is used in the'forl: 268, Ehe gammnds

IF (condition): RETURN
(more commands)

SCLEAR

Stands for Sprite CLEAR. Clears the active sprite copi

none are in use. This is also done automatigllly wﬁz:e: ;:w:h?:
f1r§t run. SCLEAR also turns off any sounds, and resets all the
Sprites to their normal orientations, cancelling any MIRROR

FLIP, TURNL or TURNR operations. .

SET spr, byte, bit

Sets (makes equal to 1) a particular bit in

(a sprite’s data. See
Ehe list after the SPOKE command. For example, io make a sprite
navejrfg; GBO%gfzs prugerty, You could use SET (sprite
umbe L e command works i i
s s i S on active sprite copies. See

SOUND sound number

Causes a pre-defined sound to be made. The EDIT SOUNDS option is
used to define a sound: The sound may continue for long agter the
SOUND command has finished, since an interrupt-driven system is
used. The number should be between 1 and 32, and the sound should
be predefined, or you will get an error message. The apparent
locat§on of the sound in the stereo field is determined by the x
coordinate of the current sprite.

46

SOUNDX sound number, x coordinate

For use when you want to produce sounds without a sprite
"source". You specify the apparent source of the sound as part of
the command. For example, SOUNDX 1,63 would make pre-defined
sound 1 seem to come from near the middle of the screen. An x
coordinate of 0 would be near the left-hand edge, and 127 would
be at the right.

SPEED spr, x speed, y speed - -

This command alters the X and Y speeds of a given sprite copy. X
speed and Y speed can be positive or negative. For example, to
place 6 copies of a sprite at random positions with random
speeds, you could use this:

FOR N=1,6,1

PLACE 1,RND(100),RND(100)+30,4
SPEED O,RND(2)-1,RND(2)-1
NEXT N

The SPEED command here makes the current sprite (denoted by 0)
have an x speed and a y speed of -1, 0 or 1 unit. You could use
RND(4)-2 for values of -2, -1, 0, 1 or 2. Positive X speeds are
to the right, negative to the left. Positive Y speeds are
upwards, negative downwards. Speeds of zero produce no movement.

The units used for the x speed will give a speed of 2 pixels per
move unless the sprite has the Pixel X Speed property set to YES.
Y speeds are always pixels per move. The sprite’s Movement Type
should also be 1 (Simple) or possibly 2 (Player) in order for
SPEED to have any effect. (See the EDIT SPR DETAILS option.)

A similar command, MSPEED, alters the speeds in the master copy
of the sprite from which all other copies are derived. For
example, to make all later copies of sprite 1 have left and
upwards speed:

MSPEED 1,-1,2

SPOKE spr, offset, value

This command is nothing to do with bicycles! It stands for Sprite
POKE, and allows you to alter most of a sprite’s properties from
within a program. It can do everything that ANIM and SPEED can
do, amongst other things, and is more flexible. It is less easy
to use, however, and you may never need to use it.

The command alters one byte in the data that defines a particular
sprite, to the specified value. The command works on active
Sprite copies. The offset is the byte to alter within the sprite
data and should be 0 to 44, and the value used will depend on the
byte you are altering, but it must be between 0 and 255. :

A related command, MSPOKE, alters the master copy of the sprite
data from which all copies are made.

47

Below is a list of the bytes in the sprite data and what they do.

It
be

[0 TRy

@~

33

34
35

,Sprite is temporarily stop

looks rather intimidatin
g, but most of the e:
altered, and are given just for the sake ofhgzn:1:::§:s:?ed =

LEVL Sprite plane,
SSLO
SSHI
FSLO
FSHI Luy and high bytes of frame size.

ANTY Animation type. Bit 0=1 if sprite is animated, bit 2=1 if
» bit 4=1 if anim. is conditional.

Or 255 if sprite is out of use.

Low and high bytes of length to next sprite, minus 2.

FRAM Current frame number.

FRCT Frame counter for moves
CTTY Movement type. Bits 1
simple movement, 10

XSPD Current X Speed. Values of 1

are left (-128 to -1).

YSPD Current Yy speed. Values

are upwards (-128 to -1).

¥g§g Current X coordinate.
Current Y coordina

OXCD Previous X coordin::efn g ¥ oot b i

OYCD Previous Y coordinate in i

WDTH Sprite width in bytes.ln 3 oF meiTe

LNGT Sprite height in pixels.

g:gg Page of sprite‘s graphics as an offset.

GROH Lo ite’ i

FRHg NU:L::dogiggasngs of sprite’s graphics offset address.

SPNO sSprite number.

SAC1 Key 5 module.

SAC2 Key 6 module.

SAC3 Key 7 module.

SAC4 Key 8 module.

SAC5 Mirror Left module.

SAC6 Mirror Right module.

SAC7 Flip Up module.

SAC8 Flip Down module.

SOXS sprite‘s own X Speed.

S0YS sprite‘s own v speed.

COLF Collision flags.

Bit is 1 if supported.

Bit is 1 if bounces.

Bit is used internally.

Bit 3 is 1 if standing.

Bit 2 is 1 if hit block.

Bit 1 is 1 if hit sprite.

Bit 0 is used internally.

ORIE Orientation flags.

Bit 7 is 1 if left/right mirror on.

Bit 6 is 1 if up/down flip oN.

Bit 4 is 1 if mirrored.

Bit 3 is 1 if flipped.

Bits 2-0 give TURN direction.

STPM Stop module.

COLT Collision type.

of 1 to 127 are down, 128 to 255

OHFHNWaO

48

e

36 FLGS Flags.

Bit 7 is 1 if feels gravity.

Bit 5 is 1 if needs support.

Bit 4 is 1 if sprite to be killed.
Bit 3 is 1 if halts on impact.

Bit 2 is 1 if edge-limited.

Bit 1 is 1 if absolute speed.

Bit 0 is 1 if under firer.

37 FLG2 More flags.
1 if 1 pixel should be added to x coordinate.

Bit 6 is

Bit 5 is 1 if pixel x moves allowed.
Bit 4 is 1 if maskless.- Fise
Bit 3 is used internally.

Bit 2 is reserved.

Bit 1 is reserved.

Bit 0 is 1 if missile.

38 FVEL Current falling speed due to gravity.

39 PDCB Path.

40 PDPL

41 PDPH Low and high bytes of path position (0,3,6,9 etc.).
42 ADCB Animation sequence.

43 ADPL
44 ADPH Low and high bytes of sequence position (0,3,6,9 etc.).

STAND

Usually used after a collision between two sprites, when you want
the colliding sprite to be able to stand on the sprite it has
hit. As you would expect, standing is possible only if the
collision occurred on the bottom surface of the colliding sprite,
i.e. if the sprite is a man, he has to hit with his feet (unless
he is upside down, in which case his head will do...).

In other collision directions, STAND simply excludes the sprite
from the sprite it has hit. This uses the rectangular box shape
the sprite was designed in, and it may look odd unless the
graphic fills most of this rectangle.

When the command is effective, the standing sprite will be
prevented from falling through the sprite it is standing on, and
will be supported with a 1-pixel overlap of the bottom of the
colliding sprite and the top of the enclosing rectangle of the
sprite below it. For the best appearance, design any sprites
that another sprite will stand on to have a top row of unused
pixels.

The standing sprite will share the motion, if any, of the sprite
it stands on. A common use is in platform games where a player-
controlled sprite stands on moving platforms - see the example
Program "platform.d"™ on the disk. (If the platform does not have
to move, use a BLOCK, not a sprite - it will give a faster
program, and you will not need the STAND command at all.)

Note that just as in real life, jumping from a moving object can
give you added speed.

49

STEXT spr,text list

This stands for Special TEXT. It prints text in a similar way to
TEXT, but uses the frames of a specified sprite as a character
set. This means that letters can be any size, have 16 colours and
be masked or transparent, like any sprite, but need more memory .
Here is an example:

LOCATE 0,80
STEXT 5,"X=",x

The frames of the sprite must correspond to the ASCII character
set - the CODE of a character, minus 31, gives the required frame
number. The first frame should be blank, for a sSpace, the next
"I", the 34th. frame should be "A" and the S9th. "zZ», etc., A
complete set isn’‘t required, but even so the number of frames may
impose a formidable MEMOry requirement, since "space" to "@" need
to be included before we even reach the range of letters. A
sprite file in this format is on your disc as "csetl.s",

A closely related command, LTEXT, for Letter TEXT, assumes that
the letter "A" will be the first frame of the sprite, and thus
reduces the memory requirements for a character set which is just
used to print text. The CODE of a character, minus 64, gives the
required frame number. A suitable sprite file is included on the
disk as "letset.s",

An even more memory-sparing method is to have just the characters
You need as frames of the character-set sprite; if you want to
print "SCORE" for example, make frame 1 be "S", 2 be "C", etc.

and then LTEXT (sprite number),"ABCDE"™ which will print frames 1
to 5,

STEXT and LTEXT both space their sprite characters one character-
width apart. When a line is full, the extra characters just wrap
round to the start of the line again. No carriage returns occur
after printing, so normally each STEXT or LTEXT command is
preceded by a LOCATE command to set the start of the text.

SUPPORT

Usually used after a collision between two sprites, or a sprite
and a block, when you want the colliding sprite to be supported
by the sprite it has hit. Support is provided whatever the
collision direction, and however the two objects overlap. Unlike
the case with STAND, the SUPPORTed sprite is not excluded from

contreclled man can move freely up and down as long as it keeps in
touch with the supporting object. .,

A common application is to allow a sprite to ascend a ladder. an
example is included in "platform.d" on your disk. SUPPORT is used
in a module triggered by collision of the man with a non-
supporting, penetrable block, made long and narrow and
superimposed on the background ladder graphic. As 1long as
sprite/block contact is maintained, the man can move upwards,
despite having "needs sSupport™ and "affected by gravity"
properties set by the EDIT SPR PROPERTIES option.

50

Any motion of the support is not imparted to the supported sprite
when you use this command.

TEXT (print list)

i i mmand. It can handle ordinary text

TEXT is a very simple print co D Y

i numeric expressions, in
enclo:zgr;n %ﬁﬁs’agg like ";"™ in a Basic PRINT commanc:i. ;gg
cannot use AT, TAB, OVER, PAPER, etc. as part of the comnand. The
:ant is priﬁted in the current PEN and PAPER co Ouﬂnhnd
nz:;natic carriage return occur: azlyne eggigglzzc?.TExT coTz caﬁ

it suppressed with a trailing s i) LD?A
Eﬁlﬁzﬁaigo set gge print position. Here are some examples:

PEN 15

PAPER 0

TEXT "hello ";

TEXT "SCORE:",s*10
VIEW

PEN 4

PAPER 15

LOCATE 50,100

TEXT A," ",B," ends"

mma; iate printing before
nd must be used to force immed f
:2: gigzm§;a are altered for the next TEXT command. Otherwise,
the text will flash.
hed, you do not get
the bottom of the screen is reac "
:2§§E1iﬁg. Instead, the text will wrap round to the top of the
screen.
i haracters can be
i and vertical separation of c
T;lg :e?irlbzym:;aitq the VPOKE command - normally these are 8 andcz
;ixgls respectively. The characters are derﬁfed fﬁ:mb: :°§§x91
the no;mal SAM character set, and must fit in an

i You can
i ter set is held as part of a game.
g;?;cemi: g;m;a:y e'cbl:!:uer character set by leaving the Editor,

then:
LOAD "name"™ CODE DPEEK(va+4)+bs

bytes 1long, for 96 8-byte

*
The code file should be 96+*8 e vt Foan the Rornal

characters, and it could have
character set by e.g.:

SAVE "name" CODE UDG " ",696%8

See also: LOCATE, PEN, PAPER.

51

TRANSFORM sprl, spr2, x offset, y offset

Sprl vanishes and is replaced by spr2, offset from spri‘s
position as specified. For example, for a spaceship to become a
cloud of gas, if the ship is sprite 1 and the gas cloud sprite
12 and you want the gas at the same position, use:

TRANSFORM 1,12,0,0

If the gas cloud was smaller than the ship, you might want to
offset its position to keep it centred on the ship‘’s former
position, using e.g. TRANSFORM 1,12,2,-4. On the other hand, if
the gas cloud is bigger than the ship, you will need different
offsets, e.g. TRANSFORM 1,12,-2,4. The exact offsets will depend

on the relative sizes of the sprites, and the effect you want to
achieve.

TURNL spr

corruption, but are not harmful otherwise. The new top left-hand
corner of the sprite will be in the same place as the old one
was. This command is most often used to turn square sprites.

Since the graphics themselves are rotated, the command may not be
suitable when multiple copies of a sprite are in use, because the
changes will affect the appearance of all the copies. Multiple
TURNL commands will turn a sprite clockwise indefinitely. The

¢ Or zero for

If the sprite EMITs any missile after rotation, the offsets
applied to the missile will be adjusted automatically to make it
appear at the same initial position relative to the launcher. In
other words, if the missile came from the top of the sprite,
after a TURNL it will come from the left of the sprite (the old

top). The movement direction of the missile will also be
adjusted.

TURNR spr

Like TURNL, but turns the graphics right by 90 degrees.

VPOKE var number,value

This command provides a method of changing some important special
game variables from within a program. The variables include the
ones that can be set from the EDIT GM DETAILS option on the main
menu. The variable number should be between 0 and 20. The VPOKED
values that are sensible vary according to the variable involved.
A list of the variables and their functions follows. Not all
should be altered, and some are unlikely to be useful. Values can
be examined with the VPEEK function. The variables are accessible
from machine code at address FEO1H and above, and from Basic
using PEEK(start+7681+var number) .

52

OTH. i i has a different
ERP Page of other screen. Th}s yarlable
value accggdinq to which screen is in use; it holds the page
value to write to port 251 (HMPR) in order to select the
OTHER screen page, so that the screen can be addressed at
32768-57343 (8000H-DFFFH). Do no; :1te§6 T

BASEP Page of start of program data. n "

gRAXP Pagg of start of graphics, as an offset from DBASEP. Do
not alter. ;

GRAPHIX Offset of start of graphics from page start. Do not
alter. st

Reserved. Do not alter. g

WIDTH Character horizontal separa?ion with TEXT.

HEIGHT Character vertical separation with TEXT.

BORDER colour.

MINIMUM GAME DELAY.

FORCE OF GRAVITY.

MAXIMUM FALLING VELOCITY. ;

IMMEDIATE WRAP. Zero if YES, non-zero if NO.

SCREEN Screen number in use - 1 or 2. #

EVERYAC Module number to execute every "cycle", or zero.
INTMODE Zero for Games Master 100 ints./sec. or non-zero for
he ROM’s 50 ints./sec. version. ; e
17 :sgoPT Zero if it is impossible to exit a game, 1 if it is

possible. Normally 1.
18 Game pause key port, 1?Hnbyte.
9 Game use ke rt, high byte. A ;
;0 Game P;ause l{e}l;obi't mask with bit for active key high.
Normally the port is &f7f9 and the mask is &40, denoting the
TAB key. s] y
i i i H the sprite hit
1 collision direction in last collision: 0 means
. with its top, 1 with its left, 2 with its bottom and 3 with
its right.
22 Top edge. Normally 191.
23 Bottom edge. Normally O.

VIEW

i hidden screen,
rmall most graphics operations are done on a
:;ich iitonly made visible when the GMCL module or modules have
finished. For example, if the module contains:

FOR N=1,20,1
TEXT N," ";
PAUSE 20
NEXT N

been printed.
11 see nothing until all 20 numbers have

;g:e:gf if you add the line VIEW just before PAUSE 20, the
screen ;111 be displayed after every number is printed. Use of
VIEW will slow a program down, especially if there are lots of
sprites on the screen, but it can be useful.

2 i = TEXT or BACK
: For technical reasons, if you use enough
:g::ands in one module, VIEW'will happen automatically. Try th?
example above without VIEW but using: FOR N=1,400,1 instead of:
FOR N=1,20,1.

53

THE GMCL FUNCTIONS o
i s the key number being pressed, or zero if no keys are
&£ ::::sr:d. The krg; numbers are those shown on the keyboard map on
page 180 of The Sam Coupe User’s Guide, except that SYMBOL is 55,
CNTRL is 63 and SHIFT is 71. You could try this:

Functions are keywords that return a value, unlike commands. They
must always be used after a command, not on their own.

BPEEK (block, offset)

LABEL L

LOCATE 0,191

TEXT INKEY," "

IF INKEY<>64: GOTO L

This function allows Yyou to read stored information about a given
block. If the block number is zero, the last block collided with
will .be assumed. The format is as follows:

Offset Value Press the space bar (key number 64) to exit the loop.
Plane

Left margin (x coordinate)

Bottom margin

Right margin (x coordinate+width-1)
Top margin (191-y coordinate)

Type

RND(n)

Ret a random number between 0 and N, like BASIC’s RND(n). N
mﬂ: between 0 and 255. Here is an example that produces 12
numbers between 0 and 9:

The top and bottom margins are stored in an inverted y-scale with 2 FOR T=1,12,1
0 at the top and 191 at the bottom. (This works faster, for the P TEXT RND(9)

M wuNRFO

computer.)

For a working example, see the BREAKOUT game on your disk. This
uses BPEEK to read the x and y coordinates of the brick collided
with, enabling it to be removed from the screen.

FALLS

Gives the falling speed of the current sprite after a collision.
The value will always be positive or zero (if the sprite is
moving upwards). The "platform.d" game on the disk uses FALLS to
kill the man if he falls too far. The setting of the force of
gravity and maximum falling speed in the EDIT GAME DETAILS option
are relevant. The higher the force of gravity, the faster a
particular falling speed is reached, and the shorter the drop
that will be "lethal" if you trigger "death" on a particular
falling speed using €.g. IF FALLS >6: KILL 0.

NEXT T

ful
it with RND(99) or RND(255) or RND(2)+2. RND is very use
:‘g making games interestingly unpredictable. See also RANDOM.

SPEEK (spr ,offset)

of a particular byte in a sprite copy’s data.
5::“111.;22:"?2% SPEEK(5,0) would print the first (offset 0)
byte of sprite 5 (if it was in use) which is the plane number.
See SPOKE for more details of sprite data format. n:u can use a
sprite number of zero to mean "the current sprite" and 255 to
mean "the other sprite" in a collision.

'MSPEEK(spr,offset)

Like SPEEK but reads a byte from the master copy of a sprite. Any

Actually, FALLS gives an impact speed, rather than an absolute sprite examined with MSPEEK must exist.

speed. This makes no difference if the collision is with
something stationary, such as a block. However, just as in real
life, you will be more likely to live if you jump down onto a VPEEK(variable number)
lift that is moving downwards than one that i ing upwards. 4
i = b ol o, Returns the value of one of the internal game variables. For
example, VPOKE 11,VPEEK(11)+1l. See VPOKE and EDIT GM DETAILS for

details of these.

55

|
| 54
|‘:

|
I
|

|| On your disk are some simple example game data fil
I that show how to implement common e A
| sprite orientation, i 5
i lifts, and missile
be loaded

scrolling landscapes,
launching.
with the LOAD GAME

moving platf .iﬁ
. orms

1 'l'h‘e files ajit.l end in ".d" and can
| DATA option) and

‘:I modules are REMed. None of these prograls) is supposedexmnedéo Tg:
| :. complete game. Rather, they are examples that cry out for
i provement, modification and extension - so get going!

||

|

On your disk are a number of Utilit
Y programs that range from
gﬁvgru to reduce the size of sprite graphics in existigq sprit:
Il es, to specialised sprite and scenery drawing programs that
‘|“ ::zi::i: :;f:fftl sourcme rif igeas to those who, like me, have no
. all

e](ror juzt DIRt nish in ".u" and are REMed. You can

the file names.

K
| UTILITY PROGRAMS
I
|

"*.u" if you have MasterDOS) to list

‘ 1
H LMG.u g:ft I:)ifssuier;go 1’!wts:l):;aph:I.c::s utility (see: When You Are
reducer.u 2::tefin? sprite file and produces another file
| s a;:gi:es.;naller (by various percentages) version
“ BAsint.u Allows passing values back and forth to BASIC.

| alpine.u Produces random landscapes.

Il‘l eye.u Draws the "eye.s" sprite.

i.:?i scrnrot.u :g;;:e:e au sl::;figeeélo:guf::disection of screen - this

I o g ng a screen and grabbing

I 56

MODIFYING THE EDITOR

- The Editor is a BASIC program with a few machine code
- subroutines. It isn’t a particularly elegant program, because it
- was written to live as happily as possible with older ROMs. It
- could easily be improved, and you are free to do this. However,

you must NOT sell or give away even modified copies of the
i Editor.

.~ The Editor is a BIG Basic program, containing many procedures.
. This means that there is a delay after the program has been
- edited, before execution starts. This delay is MUCH shorter with
Master Basic loaded, and it will make the edit - RUN - re-edit
cycle much faster. Also, you will find the program search command
REF invaluable. (And oodles of other commands, all for just
£15.99 from Betasoft.... hint, hint. Send an SAE for info.)

You may want to modify the Editor by adding Basic subroutines for
use by your game. I suggest adding these at, say, line 20000 and
above. When you have finished a version of the game, save the

file - and don’t forget to save the subroutines too! You can
EXIT to Basic, and either save the entire Editor, plus
subroutines, or CLEAR: DELETE TO 19999 and then save the
subroutines alone for later loading or merging.

- Some of the first lines in the Editor program create variables

- that set Outline status (1 for yes, 2 for no), masking method and
- edit mode (4 for mode 4, 32 columns, 3 for mode 3, 64 columns).
- The next line defines file extensions for Sprite, Game, Data,
- Sound and Module files. These can be altered.

-:, SPRITE FILE FORMAT
‘These details may be of use to anyone converting from or to other

- formats. It may be easier to use LOAD SCREEN and GRAB FRAME, or
EDIT GRAPHICS (PUT option) and SAVE SCREEN instead, though.

Sprite files normally have names ending in ".s". They are CODE
iles. The first byte is 123 and is checked for on loading. The
‘bytes that follow are as described under SPOKE, from SSLO to
 ADPH. After these come the graphics data for frame 1, then the
mask for frame 1, then the graphics for frame 2, etc., until the
- last frame. If the sprite allows pixel x movement, a second set
of graphics and masks, shifted right by 1 pixel, follows the
irst set. The frame and mask data is like a GRAB string stripped
of its first 3 bytes; i.e the data for the top row of pixels
comes first, then the data for the second row, etc. Each byte of
the data codes for two pixels.

57

