

PROGRAMMING GUIDE
T T T T e e D S T el
R T T o e e e e e e e e

Scan: Zozosoft, 2005
PDF: gafz, 2005

Version 2

CONTENTS

GETTING ACQUAINTED

I

INTRODUCTION

o

FIRST PROGRAMS 3
ABOUT PROGRAMMING 15
DOING THINGS IN ORDER &)
IMMEDIATE MODE AND KEYWORDS 18
VARIABLES 20
OPERATORS AND EXPRESSIONS 26
SETTING OUT TEXT 30
EDITING PROGRAMS 33
WORD PROCESSING 38
THE FUNCTION KEYS 43
FUNCTION KEY OPERATIONS 43
HANDLING PROCGRAMS ON CASSETTE 46
THE TUTORIAL 51

STRINGS 52
LOOPS 59
DECISIONS, DECISIONS! 64
STORING LARGER AMOUNTS OF INFORMATION 12
DEFINING FUNCTIONS 15
GRAPHICS | 89
THE CHARACTER SET 104
SOUND 'N' RHYTHM 108
MAKING PROGRAMS OUT OF PROBLEMS 116
MINIMAL BASIC FEATURES 126
CHANNELS l3e
EXCEPTION HANDLING 134
THE NET 137
USING MACHINE CODE 147
REFERENCE SECTION 147

B R T A T N e A o R Y O AR T PN
RULES OF BASIC 148
COMMANDS AND STATEMENTS 151
MACHINE OPTIONS (GENERAL) 183
VIDEO OPTIONS 188
SOUND OPTIONS 193
BUILT-IN FUNCTIONS AND VARIABLES 195
EXOS 201
ERROR MESSAGES 204
GLOSSARY 208

INDEX 248

& 1
]
.
.
i
¥
i
i
1
i
'
§ '
I
1
P
'
4 ¥
v
i
i
I
2T r : o
: .
1 -I .
i 3
L} L} -
" I =
1 L '
i
- g
4 - | | + -
- £ . .
]
e ;| '
- . :
' i
i - > * d
- 0}
£ o
- [i 2 I \

- ; : i '

X 1
| . 1 i
- it a) i

Y . '

i Vi 1 = ” = =

’ e i g B " B
RO TR # ~ . g i

i -l -— 1 1 5 I.r
% i =L 3

- - . - L L} -
ey "
L .

-r'l_l._' -II'\-I ~ i X ; 5
. N] 1 L . LA L -
oy - 5

. - | l = " !
T gl P " 1 I 3

g W = - T " I

Ti 14 e - £ - Hisd

i W - . : i 1 hge™
cal TRy V | i 1 :

il ot LAy R [t =i e i e

Faluh e =0 . it 4 {aa : Y |
B =2 " =) i
R ..'I 1" gl . | L) et i . 3
1 -~ - [
a : 3 b | = Pl ¥ L i S S 5 i = }
! il o B . 4 1 v
i 1 T - % i { -
. .,I . -L- Al et = s r oy
S % L P L e, e - . i i o=
G b =T o = L =1 el 0= B

INTRODUCTION

“
“

o

Let's begin by using the machine. That way you can
get used to it and see demonstrations of its abilities.
Technicalities will be explained later.

It 1s best if you follow this part of the manual in
sequential order, because it is designed to help you to
get acquainted with your new computer. Wherever
there 1s scope for you to follow up one subject before
you go on to look at others, cross references are
provided, so you can learn about the machine in

- whatever order and at whatever speed you feel

comfortable. The second part covers each 'section’ of
programming (they all link up in reality as you will see)
in detail and on a slightly higher level than in the first
part. The Reference Section at the end will help you to

~ discover more about the Enterprise once you have

learned the fundamentals of controlling the computer.

Before you look at some programs, experiment
with the keyboard a bit. You can type whatever you
like and it won't hurt the computer at all. If the

- computer stops producing letters in response to your

typing, just press the ‘reset’ button at the back. The
joystick 1s really good to mess about with—and you'll
see how handy it 1s later on. In the meantime let
yourself get to know the computer. It's got a lot to offer
YOU.

Note: When you are just using the computer for word
processing (see pages 38-42 and the tables on pages
36 and 37), you don't need to insert the IS-BASIC
cartridge. In order to write BASIC programs, however,
you need to have this cartridge plugged into the ROM
BAY on the left-hand side of the machine.

FIRST PROGRAMS

h
__h

CORRECTING
MISTAKES

MAKING THE

PROGRAM WORK

Try typing in the contents of the box below. Computers
are a bit funny about little mistakes, so check your
typing before you finish. Remember that you must
press the key marked ‘enter’ at the end of each line.
Don't forget the numbers which begin the lines. they're
important too. However, you needn't worry about the
blank spaces which appear after the numbers. The
Enterprise can put spaces in automatically, to make
programs look neater. Notice that computers use a
special symbol for nought (), to distinguish it from the
capital letter O.

i ————

100 GRAPHICS
110 PLOT 640, 360,
120 |
130 DO
140 FOR RADIUS=250 TO 1 STEP- 16
150 SET INK RND (3)+ 1
160 PLOT ELLIPSE RADIUS, RADIUS,
170 PLOT PAINT
180 NEXT RADIUS
19¢ PING
200 LOQOP
210 |
220 END
T T e T T ey
If you make a typing error, it is easy enough to correct
it. If you're still on the same line as the mistake,
pressing the key marked 'erase’ will move the red
flashing 'cursor’ to the left, removing letters ete. as it
goes. If you have to go back to a previous line, use the
Joystick to place the cursor at the end of that line, then
erase back as far as your error. You can now type the
correction, finish off the line by pressing ‘enter’, and
move the cursor (using the joystick) to the bottom of the
sCreen again, or wherever else you want it. Remember
that whenever you press a key, the place where YOur
letter or number will appear is the place where the
cursor 1s located at that particular moment,

Later, in the chapter on 'Editing Programs'’ (page

~ 33), we shall discuss some more versatile ways of

making changes.

When you've typed in the program, type the word
RUN and press ‘enter' again. Alternatively, you can
press the key marked 'function 1', above the number

TYPING COMMANDS

WHAT'S A PROGRAM?

FIRST PROGRAMS

keys. If you use this key, you will not need to press
‘enter’, and it's quicker than typing RUN. (For more
about 'function’ keys, see page 43.) Then watch for a
while. If you've made a mistake, the computer will
print ‘Not understood’ (or a similar message) on the TV
screen. Don't worry at all if that happens. Press
function key 5 and then function 2, to take another look
at the program—then correct the problem, and try
again.

Commands which this manual suggests you type into
the computer will always appear on the page in capital
letters. This 1s mainly for emphasis, but partly because
the computer itself often displays BASIC commands in
capitals. However, you can type words like RUN (and
other BASIC commands) in small letters as well; the
computer will understand you perfectly. You don't
need to go to the trouble of pressing the ‘shift’ key to
get from small letters into capitals all the time.

Any words you don't understand can be found In
the Glossary, pages 209-221.

To stop the program, press 'stop’. You will see the

response

R T R Tt L
STOP AT LINE - - - (- — = 1s a number)

ok

T T T T T R T T e e
A program is a set of instructions which tells the
computer what to do. There's nothing special or magic
about that, but a computer can't do anything at all
without a program. Programs are very exact and very
detailed, but then so is embroidery. And, just like any
other skilled pastime, programming can be done
seriously, or just for fun.

If you want to, you can re-start the program by
typing in CONTINUE and pressing 'enter’. Even
better, press the key marked ‘shift' and at the same
time press the function key numbered 1 (you used this
to RUN the program). The program will then resume
from the point at which you stopped it.

On the other hand, if you're bored with this you can

add to it. T'ype 1n the line below.
e T e e T o T A R S e T

135 SET PALETTE RND (256),
RND (256), RND (256), RND (256)

CLEARING THE
SCREEN

LIST

GETTING RID OF
A PROGRAM

PRACTICE PROGRAMS

Having run this program and stopped it, you will now
be left with a picture filling the screen. This doesn't
make it very easy for you to read what you're typing in.
To tidy up the screen, type TEXT, press ‘enter' and the
screen will be returned to the full text display. Again, if
you want to save time (and effort), press function key 3.

This time, when you have finished typing in the new
line, type LIST. Function key 2 will also do this.

By now you should be able to remember to press
‘enter’ whenever you have finished typing in an
instruction or a program line. 'Enter’ is the key which
tells the computer to do what you have typed. Usually,
until you press it, nothing will happen; however, you
don't normally need to press ‘enter’ with the function
keys—as you have probably found out.

LIST is a word which will show you the whole of a
program on the screen (or as much of it as you can fit
on the TV screen at one time). You can see now that
your new line has fitted in with the old ones. The whole
program is now in numerical order. This is the order in
which the computer will carry out your instructions
when the program 1s RUN.

When you get fed up with a program, simply type
NEW, press ‘enter’, and the program will be gone.
Using this computer you can produce all kinds of
sounds and many colours very easily. But it 13 not just
there to make noises and display rainbows. Your
computer can draw very fine pictures, make decisions,
do big calculations very rapidly, sort things into any
order you like and repeat things as often as you want,

The programs on the following pages are simple
examples of the Enterprise’s talents.

Try them all! They are just a few things you can do
with this machine. In this book you will find out how to
do all of them for vourself — plus a lot more, Don't
forget to use TEXT to get a full screen to type onto
when you want it, You can also use CLEAR SCREEN to
ermpty the TV screen when it gels full. These
commands don't actually remove any program lines
from the computer's memory,; you can view the whole
program again any time you like, by typing LIST.

FIRST PROGRAMS

“
“

19

20

30

49

50

60
109
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
1000
1019
1920
1030
1040
1050

1060
1070
1980
1090

PROGRAM ‘'Fire-tunnel"

multi-coloured tunnel with

!

I. This program draws a
'.

! exploding fireballs.

|

GRAPHICS HIRES 256
LET X =640: LET Y = 360
FOR R=1 TO 255
SET INK R
LET A=X-R-220: LET Al=Y-R-50
LETC=X+R+220: LETCl=Y+R +50
PLOT A, Al; A, Cl; C;Cl: C| Al:srnny
PRINT R
NEXT
FOR BALL=1TQO 108
CALL FIREBALL (256, X, Y)
NEXT
|
END
|
|
DEF FIREBALL (COLOURS, A, B)
SET LINE MODE 3
SET INK RND (COLOURS)
FORGO=1TO 2
FOR AROUND=1 TO 650 STEP 30
PLOT A, B, ELLIPSE AROUND,
AROQUND
NEXT
NEXT

SET LINE MODE @
END DEF

FIRST PROGRAMS

190 '. This program will draw boxes.
110 |

120 E 10@-14 are comment lines.
130 ! You don't have to type them.

140 !

150 CLEAR SCREEN

160 PRINT AT 5,11: "THIS PROGRAM WILL"

170 PRINT AT 6,10: "DRAW BOXES FOR YOU."

180 PRINT AT 8,1: ""The program will ask you to
type in’'

190 PRINT AT 9,1: "some numbers, In pairs. The
first"

200 PRINT AT 18,1: ""number of each pair should
not be more"

210 PRINT AT 11,1: "than 1279, and the second

should not’’
el PRINT AT 12,1: "be more than 719, Press
‘enter’ "’

230 PRINT AT 13,1: "after typing each number."
240 FOR A=1TO 5000
250 NEXT A

260 I_

270 |: Lines 240-250 make the computer

280 l. wait for about 10 seconds.

290 !

300 DO

310 CLEAR SCREEN

320 INPUT AT 5,5, PROMPT ""Numbers for
one corner; "X

330 INPUT AT 6,29, PROMPT " 'Y

) 340 INPUT AT 8,5 PROMPT ""Numbers for

opposite corner: 'V

350 INPUT AT 9,34, PROMPT "' "W

360 PRINT AT 11,5; "For how long should the
box"

370 PRINT AT 12,5: "be displayed?"”

380 INPUT AT 14,5, PROMPT ""Seconds; "
TIME

390 !

400 | Lines 45@-480 are the

410 | instructions for drawing the

420 '. box and holding it on the

430 E screen for the time you want.

440 |

480 GRAPHICS

FIRST PROGRAMS

L e e —

460

470

480
490
500
510
529

530
540

550
560

PLOT X, Y; X, W,V WV Y:X Y
FOR B=1TO 500xTIME
NEXT B
TEXT
PRINT AT 15,18; “"More?"
DO
INPUT AT 17,17, PROMPT "'y or n:"'
ANSSE |
LOOP WHILE ANS$< >"y"AND
ANS$< >"n"

LOOP WHILE ANS§="y"'
|

END ! This 1s the end of the program.
T T e e R S

FIRST PROGRAMS

100
196
108
110
120
130
150
160

- 170

180
190
20a
210
200
240
250
255
260
210

280

290
300
310
320
340
350
335
360
3170
380
390

! . This program sorts 18 numbers
| Into numerical order,
|
NUMERIC ARRAY(1 TO 12)
NUMERIC VAR ,NUM,BIG
CLEAR SCREEN
PRINT AT 1@,18:"NUMBER SORT"
FORN=1TO 10
PRINT AT 14,18:""TYPE NUMBER'":N:
INPUT PROMPT ": ":ARRAY(N)
PRINT AT 14,25:" N
NEXTN
CLEAR SCREEN
PRINT AT 20,20:"SORTING..."
LET FIN=180
FORX=1TO 19
LET BIG=0
FOR Y=1TOFIN
[F ARRAY(Y)>BIG THEN LET
BIG=ARRAY(Y)
IF ARRAY(Y)=BIG THEN LET
NUM=Y
NEXTY
LET VAR=ARRAY(FIN)
LET ARRAY(FIN)=BIG
LET ARRAY (NUM)=VAR
LET FIN=FIN -1
NEXT X
CLEAR SCREEN
FORX=1TO 19
PRINT ARRAY(X)
NEXT X
END

11

FIRST PROGRAMS

100 | This program gives the
1160 | area/circumference of circles.
120 |

130 LET Af="' of the circle is:"

149 LET B ="Type the radius of the circle: "
150 NUMERIC RADIUS,AREA CIRCUM

160 DO
. 170 CLEAR SCREEN
180 PRINT AT 10,12:"'1) AREA"
190 PRINT AT 11,18:"'2) CIRCUMFERENCE"
S 200 PRINT AT 12,18:"'3) QUIT"
21 DO
220 PRINT AT 15,18: "Type the
number"’
e o 230 INFUT AT 16,18,PROMPT "'of your
choice: "":NUM
240 LOOP WHILE NUM< 1 OR NUM=>3 OR
o NUM< > INT(NUM)
250 CLEAR SCREEN
. 260 IF NUM=1THEN
270 INPUT AT 14,1 PROMPT
WS B3:RADIUS
280 LET AREA = PIxRADIUS 2
290 PRINT AT 15,5: "The area'":A$:
300 PRINT AT 16,4:AREA
310 FOR X=1TO 5000
320 NEXT X
330 ELSE IF NUM =2 THEN
340 INPUT AT 18,1 PROMPT
B$:RADIUS
350 LET CIRCUM = 2+PI+xRADIUS
360 PRINT AT 15,1: "The
circumference' ;A%
I 370 PRINT AT 16,1:STR$ (CIRCUM)
R 380 FOR X=1TO 5000
390 NEXT X
400 END IF
410 LOOP WHILE NUM< >3
420 END

FIRST PROGRAMS

A T N e T e o N e S R Y P W A Y [o T
T e e T S S o P e L P P

ALTERING PROGRAMS Try altering the programs if you want to. It's not a good

STOPPING AND

STARTING

idea to change the spelling of program instructions,
because the computer won't understand if you do. But
where words appear between inverted commas you

~ may change them without messing up the program

itself. Numbers can also be changed. By doing this you
may be able to work out what the program is
doing—changing a number will often affect the
number of times something is done, or the position of
characters on the screen. Some numbers within
programs are codes—that is, they stand for something
else: a colour for instance. You will learn all you need

~ to about these further on in the manual (fry page 35 for

colour and 184 for other codes if you like).

Remember always that whatever you type will
do the computer no harm at all. The worst that can
happen is that you will type in something the computer
fails to understand. For example, in the number-sorting
program (page 11), you might have typed:

250 FOR X=1TOO 18

In that case, after running the first part of the
program, the computer would stop and the screen
would show:

L T o P B W e S RPN
*x+% Not understood. |
250 FOR X=1TQO 18

O T N P T el = T X SO
Error messages are explained in detail on pages 204-

- 208

If you get completely stuck and want to start again,
press the 'reset’ button at the back of the machine. This
will put you back where you were when you switched
the machine on, except that the computer will
remember any program you have just typed in. This 18
best kept for emergencies, though. Normally you will
use the 'stop' or ‘hold’ key for stopping a program that
is running., When you use ‘reset’, you will have to type
RUN again to make the program restart.

The 'hold’ key is simply used to hold up the
program and freeze the action at whatever point you
have reached. This is handy if you want to look at a
moving picture in a graphics display —or even if you
just need a tea break in the middle of a difficult game

13

FIRST PROGRAMS
e ST e PR e e e ST = —
P e

of Space Invaders. To carry on with the program.
simply press the same key again. Notice that ‘hold’ is
very useful if you are LISTing a long program which
disappears off the screen, and you want to halt the
motlon 8o as to examine some particular line,

The 'stop' key 1s used if a program is running and
you want to halt it so as to modify (or erase) it, or to
LIST and examine it before typing CONTINUE to make
the program resume.

14

ABOUT PROGRAMMING

#
#

You've now had some fun with the machine and,
hopefully, introduced yourself. You probably didn't
see how some of the-programs worked, so this 13 where
we begin adding knowledge to enjoyment.

You've already learned in brief what a program 15,
but there is a little more to writing it than just giving
instructions. You can think of a program as a way to
solve a problem using a computer. A computer 1S
either a tool which can expand and speed up your
brain power, or it is a pleasurable thing to own on
which you can play games or invent some for yourself.

All computers understand instructions, usually in
the form of words or lists of numbers. We will be using
words to communicate with the Enterprise. Each word
is a small instruction; you can put them together like a
puzzle or a story to make up bigger instructions and,
eventually, complete tasks. That is what programming
is essentially about. Civing the computer instructions—
in the order in which you want them to happen.

The diagram below shows (using an everyday
example) how one task must be broken up into several
small ones to make up a program.

15

ABOUT PROGRAMMING

e B e e e
e e e e ———
COMPUTER - Now you know what a program is, let's move on a
LANGUAGES stage further. Just as there are many different ways to
talk to another person, so there are many ways to
program a computer. And in the same way that there
are human languages, there are computer languages.
Languages are made up with definite limits and
types of task in mind. Some are especially for
programs mnvolving long lists of things, others are
particularly good at making pictures with a computer,
Others still are there to teach people how to program.

BASIC The language you are learning through this manual is
- known as BASIC. It uses words with similar spelling
and meaning to English words. It is therefore very easy
to learn and understand, even if you are
Inexperienced with computers. All the programs in this
manual are in BASIC, and it is the language the
computer understands as long as the IS-BASIC
cartridge is plugged in. Remember that, from now on,
all the instructions and all the information in this manual
relate to BASIC. Some other languages are totally
different in both philosophy and approach, and they
usually look completely different from BASIC.
Look at this:
e T T AR
- 1@ PRINT "Hello!"
T R R S B T B S S
You will know by now that it's a program line —it's one
small task which could make up part of a bigger one.
Just as, in a story, each sentence tells you some-
thing, so each line in a program tells the computer to
do something. If you want to tell the computer to carry
out a task, you will need several lines to do it.

16

DOING THINGS IN ORDER

e s e T
e e U e e e e S e i S S A A

The number at the beginning of a BASIC program line
makes an important difference.

Type in PRINT "“Hello!". The display you get when
you have pressed ‘enter’ will tell you what happens.
The computer does what it is told straight away —1t puts
‘Hello!” on the screen, right under the words you have
just typed. When you entered programs before, the
computer waited until it was told before running the
program. It is the line number which makes this
difference. Without a line number, the computer
carries out your instructions as soon as you press
‘enter'. If you add a line number, you must type RUN
(or press function key 1) to make the computer work.

So you now know that all BASIC programs are
broken up into lines, and that each line needs to have a
line number.

If you enter a program line that has the same
number as one which you entered earlier, the previous
line will automatically be erased from the computer’s
memory. If you ever want to get rid of a line, simply
type in its number followed by ‘enter'. The line will
disappear, because effectively you have entered an
empty line! You can also remove a whole group of
lines: the command DELETE 10 TO 108 would remove
all lines from 10 to 18@ inclusive.

The order in which lines are put into the compuler
does not matter. You have already seen how the
machine sorts them into numerical order. I's the
numerical order which is important.

The line numbers are how the computer decides
which instruction to do next. It starts with the lowest
number and works its way upwards— unless told by
the program to do otherwise —until it reaches the end.

The ‘unless told by the program to do otherwise’ 1s,
as you will see later on, very important. There are
several ways in which you can put a program together.
Some of these mean that the computer will not {ollow
line numbers in order, because some BASIC words tell
It to use other lines instead.

This means that you have to know exactly which
things you want the computer to do in what order—
which is no more than being sure you know what you
want to do before you begin to write a program.

7

IMMEDIATE MODE AND KEYWORDS

IMMEDIATE MODE If you type in commands without giving them a line
number, it 1s called immediate mode. You can use the
computer as a calculator in this way. Here's how.

On the keyboard you will notice these symbols; +.
*, =, — and /. Of these, * and / may be unfamiliar to
you. They stand for ‘multiply’ (* instead of x) and
'divide’ (/ instead of +). If you type

PRINT 2 +2

you will get the answer, 4, as soon as you press 'enter’.
With all the mathematical operators, as they are
known, you can do sums on the computer in this way.
You can also work out square roots. Try

PRINT SQR(188)

and the answer will be the square root of 1800. The
word SQR 1s a special one which the computer under-
stands to mean ‘the square root of the number in
brackets’. There are several words like this in BASIC,
You can find a list of them in the Reference Section,
under the heading 'Built-in Functions and Variables'.
More of them will be explained as they're used in the
text.

Immediate mode will come in useful when you
need to work out the results of calculations for use in
programs. Using immediate mode does not affect any
program lines you may already have typed, and you
do not have to do anything special to begin using it. Just
miss off the line number.

Many BASIC commands will work under
immediate mode as well as within a program. You will
see what this means by experimenting. Look through
the manual and find BASIC words. Then, using the
examples included in each part, try the words in
immediate mode. The keyword reference list (page
151) will also tell you which commands can be used in
- immediate mode.

KEYWORDS Now you know about programming in BASIC and about
immediate mode, let's explain more about keywords.
PRINT is one of these, and has a special meaning in
BASIC. Keywords are the instructions to which the
manual has referred before. There are many of them,
and each one tells the computer to do one (or possibly

IMMEDIATE MODE AND KEYWORDS

STRINGS

CHARACTERS

more than one) small thing. PRINT, for example, tells
the computer to put a display on the screen.

To make the computer do complicated jobs, you
use many keywords and other pieces of information
put together as a program. Perhaps you can think of it
as telling the computer a story or teaching a child his
alphabet —it has to be detailed, exact and i the
proper order.

As you have already seen, 1t 1s possible to make the
computer print a message (Hello!) on the screen by
typing the message within inverted commas ('). This
is regarded as a string by the computer (see page 32
for more detailed information about strings). This may
seem very confusing now, so here are two points which
may help you to understand it.

First, 'string’ 1s just a word for a particular type of
information which the computer will handle. Secondly,
because strings appear in a program in inverted
commas, you can think of them as being like quoted
speech. In the PRINT "Hello!" statement, the computer
literally quoted what you had put between inverted
comimas.

The word ‘characters' has appeared from time to time.
A character is a letter, number or any other shape
provided by the computer for display/communication
purposes. All the characters the computer provides
are together called the character set.

VARIABLES

“
“

COMMENTS
IN PROGRAMS

Now that you know all about program lines, immediate
mode and keywords, let's bring something else into
the picture.

Imagine two boxes, labelled X and Y. Into each

_ box we can put a number. Later, this number may be

taken out and replaced with a new one.
We are now going to tell the computer that each

~ time we RUN the following program and put a pair of

numbpers into the two boxes, we want it to add together
the contents of X and those of Y.

e Y

10 |

20 | 60 and 7@ ask you to type in

25 | numbers. They wait for your

30 ! answer. Press 'enter’ when you
40} ! have typed each number,

50 !

60 INPUT PROMPT "Type in number X; ':X

14 INPUT PROMPT "Type in number Y: ';Y

8@ |

9@ '. Line 120 adds up numbers X and

95 | Y and puts the sum
|
|

100 into a variable called Z.
118 |
120 LETZ=X+Y
130 !
140 ! Line 160 displays the answer.
150 !
160 PRINT X “+' Y. "="" 2
170 END
180 |
- 190 | Line 170 tells you and the
200 | computer where the end of the
210 | prograrm is.
220 J

i i S e e e]

You may not even need to RUN this to see what 1t 18
doing. It's something you might have come across at
school (or, if you're a parent, in your children's maths
books). Do you see how you have to tell the computer
everything it must do?

The program lines which begin with exclamation
marks are there for your benefit —the computer
remembers them but doesn’t act on them. They are
comments which can be used to tell you what each part

VARIABLES

INPUT PROMPT

of a program is doing. An exclamation mark may also
be used to set aside the rest of a program line for

- comments after one or two instructions on the same

line. Alternatively, instead of an exclamation mark, the
word REM (for 'remark') may be used — but this must
always come immediately after the line number. The
comments are best set out as in the example above, g0
that you can pick them out quickly.

Note how the use of comments makes the program
easler to understand. They are not essential, but they
help to make a program understood by humans as well
as computers,

- INPUT PROMPT (see the program on page 20) is the

set of keywords which tells the computer to ask you a
question and then wait for you to enter an answer.
If you use INPUT by itself, without adding PROMPT

followed by a few words in inverted commas (which

~are there for your benefit), the computer will ask its

question merely by displaying a question mark and the
red cursor. The words after PROMPT can be anything
you like; and are just there to remind you of what you
are supposed to type in. They must always be entered
between inverted commas (although these don't
appear on the screen). Another way of giving an 'input
prompt’ 1s this:

18 PRINT "Type in number X '

20 INPUT X

3¢ PRINT "Type in number Y '":

40 INPUT Y

R T S o 2 T) T B i T GRS AT T WA BT NS 015 T
This method, as you can see, is a little more long-
winded than INPUT PROMPT, but the result is stil] the
same, That short program does exactly the same thing
as lines 6@ and 70 of the program above, except that
the program here will allow the computer to print its
own little 'input prompt’, which is a question mark. An
INPUT PROMPT statement stops the computer from
printing its question mark.

Varables are names for numbers whose values (i.c.
their sizes) may change. For X and Y you might type in
any number you like—be it 0.00004 or 400000, If X
stood for the number 400000, we would say that four
hundred thousand was the value of X.

21

VARIABLES

I NAME THIS
VARIABLE...

a0

Often you will need to use variables because you
will not know in advance what a number will be.

Look back on the first pages of the manual, All the
programs you tried out then had variables in them,
sometimes because the computer was making its own
numbers out of other numbers and sometimes because
you decided them while the program was running, by
typing them in.

At other times 1t 1s convenient to use variable
names for very long numbers which will be used
several times. This means you don't have to keep on
typing them again each time you want them to be used
1N a prograrr.

Here's another use for variables.

19 LET A=0! A begins as @.

20 DO | DO/LOQP begins.

30 LETA=A+1! Add 1to A,

40 PRINT A, ! Display A's value.

50 LOOPUNTILA=28! Go back, repeat loop.
6@ ! Loop ends when A =20,
70 END

It's a counter, using something called a DO/LOQOP.
Each time the Enterprise goes round the loop, it :
Increases the number in box A, by 1. Then, at the end
of the loop, it checks to make sure that the value of A 1s
not 20, When A is 20, the program ends. The comma -
next to ‘A’ in line 40 makes the screen look tidier — you
can find out what it does by missing it out and running
the program a second time. :

DO/LOQOPs are not the only way of asking the
computer to repeat itself. Page 59 and the Reterence
Section will tell you about some more.

X, Y and Z are just three of the many names you can
give a variable. They don’t have to be just one letter—
you can use more than thirty if you want.

So you can give all your variables appropriate
names — NAMES$ for someone's name (this is a string
variable and is explained on page 53), SUM for the
result of adding two numbers.

Note that it makes no difference whether you call a
variable PRICE, Price, price or pRicE. The computer
doesn't distinguish between capital and small letters in
variable names or keywords.

VARIABLES

When you write programs of your own you will
quickly see how the variable names can help you to
read through the program later. This is very important
if you need to find errors, make changes or take out
part of a program for use in another program—all of
which you will want to do eventually.

Incidentally, you could use two variables with very
similar names—e.g..

e e e B S e Y [e T e L I T
VAT_SUBTOTAL_JUNE_ACCOUNT_NOI

and

VAT_SUBTOTAL_JUNE_ACCOUNT_NO?2

72 UM T ST 0 7 4 OB e S b i e WL T S o A AN L
and the Enterprise would still be able to tell the
difference at a glance. The problem 1s—would you?
It's not very clever to use huge variable names like
these all the time. Occasionally, you may feel it's
appropriate. But eight or ten characters are usually
enough to help you tell the difference and know
quickly which variables stand for what numbers,

So variables are a way of calculating with numbers
whose actual value is unknown to you. The name you
give to each one tells you what that number is related
to. The computer will tell the difference between
variable names of up to 31 characters.

A 'character' here means: a letter or a number (or
digit to be absolutely correct). The computer will not
understand you if you put spaces in variable names,
nor will it understand operators (+, = etc.) or
punctuation marks (with the exception of the full stop
and the underline marker, '’ which 1s a good
substitute for a space). You must also always begin
variable names with a letter, not a number or
punctuation mark. Here are some 'legal’

variables—1i.e. those the computer will accept:
51 b SET VAL i G £ S P) N~ i 8D R0 PTG 0 8 o 5 - Sl =

- number A2% TOTALS Hellol
SUB_TOTAL_3 Name Al1234
013 0, 33 A LA 1 AV S M 5 A AT D P) S o e T
Notice that you can use a dollar sign. This has a
special meaning as it sets aside that variable for use as
a string variable. Strings are explained briefly on page
19 and are explained in more detail on pages 52-58.

VARIABLES

DECLARING
VARIABLES

USING VARIABLES

24

Here are some the computer does not understand:

my variable 2A HAS
< >3NOW 3xTHIS NUMBER

In the counter program, the first line read LET A=0.
Try the program again without it. It doesn't work, does
it? | |
However, if you are using an INPUT statement to
tell the computer to let you type in the value of a
varlable (as in the program which added two numbers

of your choice), you don't need to declare this variable
by using LET.

Try typing LET A =3 instead of LET A =@ at the
beginning of that program. It will tell you a little more
about how variables work.

The computer expects the variable which is
changing or being declared to follow immediately after
LET. So if variable S=@ and variable G =16, you could
type LET 5=C to make S into 18. G would still contain
1@ but the computer would assume it was as big as
variable S.

LET introduces the computer to a variable —you're
saylng ‘computer, here's a variable called FIRSTNUM:;
at the moment, 1t equals #' or whatever number you
want that variable to be. It is not always necessary to
use LET, but it is generally better if you do. It makes
your variables easier to spot right from the start.

If you want to, you can use a BASIC word as a
variable name. But if you do, you must use LET to tell
the computer to look out for a variable with the same
name as one of the words it understands. There are
some BASIC words which cannot be used as variable
names—a bit of experimentation will soon tell you
which ones these are. (A more versatile way of
declaring variables i1s explained on page 73, in the
chapter on storing information)

Overpage i1s another program illustrating all the
principles you've just read about. This time each line 1s
explained in the light of your new knowledge about
these variables.

VARIABLES

20
30
40
S@
6@
10
75
80
90
100

118

120
130
135
140
150
160
170
180
190
195
208
219
gel
230
240
245
250
260
299
309

LET Af="" The sum of the two numbers
iE: 1k
!

|, 19 declares string variable A,
|

LET SUM =0

|

! SUM 1s the variable which will
| contain the result of the

! addition below. It begins as 8.
l
INPUT PROMPT ''Please type In your
first number: '': FIRSTNUM

INPUT PROMPT "'Type in your second
number: '": SECNUM

|

| 180 and 118 ask you to type In

| numbers to be added. You do not
l need to use LET, because the two
! new variables are being 'Input’.

|

LET SUM =FIRSTNUM +SECNUM

SUM (which was) now becomes

the result of the addition of
FIRSTNUM and SECNUM.

— Sam N s W

PRINT A$,SUM

|

| Line 228 tells the computer to
| display the sentence from line
| 19 and the value of SUM all on
| the same screen line,

|

END

29

OPERATORS AND EXPRESSIONS

“

This 1s an expression: 4+ 2x3-5

These are operators:”, +, -, %, /, =, <, >, <D
and > =

_ All of the above operators can be used on the
Enterprise. Some of them will be obvious to you, but
others may not. The symbols +, —, %, / and = should
already be clear to you; the computer uses * instead of
x and / instead of +.

Here are the rest, just to make sure:

" means 'to the power of’ or 'involution’. 2°3 is 2 cubed.
< means 'lessthan’, e.g. 2< 3

> means 'greater than', e.q. 3> 2

< > means 'greater or less than’, or 'not equal to'.

< = means 'less than or equal to'.

> = means 'greater than or equal to'.

The last five operators are known as 'relational
operators’. Their main use on a computer is in handling
variables—for instance:
s S e SO AL A 1 3 e 3

10 INPUT PROMPT "Please type in a
number:; '': A

20 !
- 30 | Line 10 asks for a number which is

35 | to be evaluated.

- o 40 |

B 5@ [F' A <@ THEN PRINT '"This number is
- - negative,"
o B 55 I[F A=@ THEN PRINT '""This is zero!"
60 | .
0 ol makes a simple decision. If
. 75 A Is a negative number (e.g. = 9),
. 8p say so. IF is the crucial point.

90 If number A does not fit

110 for a line which A does fit.

|
1
!
g
100 | that line, the computer looks
|
!
!
|

- 120 A < @in line 50 literally
130 means 'A is less than @',
140

108 IFA>8 AND A < 50 THEN PRINT *"'This

number is more than @ and less than 58."
160 |
165 ! 150 15 another 'IF/THEN'. It's

26

OPERATORS AND EXPRESSIONS
T T T T S T P PO e M R U B K 71
e e P 232 L T M L L P Y Py S o DO T

OPERATOR PRIORITY

170 ! like English —IF you don't want
180 1 to come THEN go home. Now the
190 ! computer looks to see if A 1s more

!

|

|

195 than @ but less than 50. If not, it
200 looks at the line below.
210

220 IFA>50 AND A < 100 THEN PRINT ""This
number 18 more than 5@ and less than 10@."

230 |

240 | Line 30 1s the last decision line.
245 | It looks to see if A is more

250 | than 100.

290 |

300 iF A > 180 THEN PRINT ""This number is

bigger than 198."
310 END

The program will decide what category your number
comes into, according to the instructions it receives.
'That 1s one of the ways 1n which the computer makes
decisions. There are several other ways in which this
can be done. They're explained on page 64.

Relational operators are a way of comparing
numbers. They do not change numbers at all. The
operators referred to below all change numbers in
sSOImne way.

Look again at the expression; 4 +243-5

What do you think the result should be? Thirteen,
because you work out each part from left to right?
Well, it's five, and here's why.

Powers are solved first. If the expression had had
4”3 1n 1t, this would have been calculated first. Then
come multiplication and division. 2+3 or 6/2 would be
calculated before any addition or subtraction was done
by the computer.

Multiplication and division have the same priority,
and if, for instance, an expression contained two

- divisions and one multiplication, the machine would

work them out 1n order from left to right.

This done, the computer drops down to the next
level of priority and starts on the addition and
subtraction. These are also worked out from left to
right and, by this time, you should have a result —in
this case 5.

Let's look at a longer one now, and take it to bits in

21

OPERATORS AND EXPRESSIONS

28

the way the computer would.

2+ 3x1T-8+21/3+4%3"2 is our expression.
First work out the powers.

3 2=8

Now 1t looks like this:

A+3*%1—-5+21/3+4+9

Then do the multiplications and divisions—the second
level,

3¥7T=21 21/3=7 4%x9=36

Now you have:

2+21-5+T7+36

And this 1s worked out from left to right, so:
2+21=23 23-5=18 18+7=25 25+36=6l
S0 the result 1s 61.

This, as you can now see, will affect the way your
calculations might work out. You might expect one
result where the computer gives another. If you want,
you can change the priority and have different sections
of an expression given ‘express treatment’ by the
computer. All you do is stick brackets round the part
you want evaluated first. Look at the difference this
makes to the expression above:

(2+3)*7T-5+21/3+4+372
The computer treats (2+ 3) as a unit on its own and so

works 1t out first. Thus:
Bx7T=5+21/3+4%3"2

OPERATORS AND EXPRESSIONS

h
“

Then it works as normal, and does the powers
3°2=9

SO!

Sx7T-5+21/3+4%*9

Then multiplication and division — from left to right:
o*%7=35 21/3=7 4%9=36

leaving

35-5+T7+36

to figure out:

35-8=30 30+7=37 37+36=72

The result is now 73 and not 61 as before. So, as
you can see, numbers can be juggled about in all sorts
of ways using a computer. Don't forget that, inside
each pair of brackets, the computer will deal with
expressions by using the same priority system. So if
you have (2 + 3*4) the multiplication will come before
the addition.

Try any of the examples above. The simplest way
1s to use PRINT in immediate mode: e.g. type PRINT
S5%7-5+21/3+4%9.

Lastly, before we go on, you can use numbers with
decimal points (e.g. #.23345 or .0098) and negative
numbers (e.g. —2) as and when you want to.

You may be finding all these numbers a bit stuffy.
Once you've got used to using numbers the way a
computer does, though, you won't notice. Don't forget
that, although you will never need to be a
mathematician to program a computer expertly, you
will always need to use arithmetic. Even graphics
commands need numbers which have to be worked
out—though often this is very easy.

29

30

SETTING OUT TEXT

A semicolon will tell the computer that the things on
elther side of il are to be printed next to each other on
the screen. A program with four separate PRINT
statements but no semicolons would appear like this:

Hello, I'm your computer.

There are other ways of putting things onto the
screen to make them look nice.

Try using a comma, as below (this modifies the
counter program used on page 22):

10 LETA=@! Declare A as 0.
20 DO! Begin DO/LOOQOP.
33 LETA=A+1! Add 1to A.

40 PRINT A,

50 | —

60 ! Print A. The comma tells the

65 ! computer to put A eight character
0 '. positions along from the last A.

80 '

99 LOOP UNTIL A=20 | Loop again if A < 20,
106 END

See how the comma arranges things into columns?

- The screen is normally divided by the computer into 40

‘character positions' widthways and 24 from top to
bottom. The comma will normally separate items by
eight character positions.

Using a comma to format text is a little like using
the semicolon, but it adds space between one string or
number and the next. The semicolon just prints things
next to each other across a line. |

Try this short program:

1@ PRINT “'There was an old man from St. Bees"
20 PRINT

3% PRINT “"Who was stung on the head by
a wasp.”

SETTING OUT TEXT

#
T e e B T e T P e S e e P s U

PRINT AT

4 PRINT

50 PRINT ""When asked, ‘Does it hurt?" "

60 PRINT

78 PRINT "He replied,"” ""No, it doesn't "

80 PRINT

9% PRINT " 'It can do it again if it likes!” "
1868 END

) U1 G Rt T T e TN AP Ry M A e e L T s A R R s

Lines 2@, 40, 6@ and 8@ all print an empty line on the
screen—like a carriage return on a typewriter. The
word PRINT on its own on a line means 'print an empty
line' or 'jump down a line and use the next one

~ instead’.

[t is not possible to print double inverted commas
on the screen in the same way as other characters (e.g.
PRINT ' ' '), because this confuses the computer.
Instead, type the double inverted commas twice in
order to get it printed once. Try line 70 above as
follows:

70 PRINT "He replied,” ""No, it doesn't”

The next way to set out text is with PRINT AT. You

 already know what PRINT does. You also know the

meaning of the word AT —it tells the computer where
on the screen to put some characters.
Try this:

PRINT AT 26, 20: "'T'M OVER HERE"

Imagine the screen is divided up into positions; 40
across and 24 down. Any of these positions can be

 referred to with two numbers. The string above 1s
~ printed 20 lines down, and 2@ positions (or columns)

across.

PRINT AT 10, 20 repeats the string higher on the
sSCreell.

The diagram opposite shows you how the screen is

 normally made up of 960 (24 x4@) character positions; It

should help you to work out where any position 1s on
the screen. You select your PRINT AT position by
telling the computer how far down the screen (row

- number) and how far across (column number) you want

to place your string. A character position 1s an
‘imaginary’ square on the screen, into which a single

31

SETTING OUT TEXT

[

Lo N o N S

5
g . L] - - o E ey L

L0

lJ e e W e

|2
L.} ,

14
5 _ |
|6 i | '

g i A
8 ,

15{ |
201 ¢ .
2 H - i L
22 i B |
23
2 |

I 2 14 L 6T 8 8

10 1112 13 14 15 16 17 18 19 20 21 22 23 24 256 26 27 28 29 30 31 32 33 34 35 36 37 38 3940

character will fit. A comparable but differing system is

used with graphics. See pages 90-81.
Some more advanced ways to format text are

explained on page 89.

80-COLUMN SCREEN The command TEXT 82 enables you to type up to 80
o characters on each line, instead of only 48: the
characters will now be narrower, of course, and may
- not be clear on your TV screen. (The command
~ simultaneously clears the screen.)
TEXT 40 returns you to 4@-column typing.

EDITING PROGRAMS

You already know how to correct typing errors by
using the joystick and the 'erase’ key., We shall now
look at some more elaborate ways of altering
programs— inserting new lines, changing the line
numbers, altering parts of lines, and so on. Sometimes
this 1s quite a complicated matter. To make 1t easier,
the computer provides ‘word processing' facilities,
which will be partly introduced in this chapter and
discussed more fully in the next.

Let's go through the program-editing commands
one by one.

RENUMBER When you typed 1n programs earlier in the manual,
you may have noticed that the line numbers often
began at 100 and went on: 118, 128, 130... We could
have used |1, &, 3, 4... instead.

The reason why you don't normally use 1, 2, 3, 4...
for line numbers is simply that you may warnt to put in
more lines later —just as if you were writing a story and
you got halfway through before realizing you'd left
something out at the beginning. You can’t have line
number 2.5, but you can (if you get stuck this way) type
RENUMBER, and the computer will change all the line
numbers. If you type RENUMBER STEP 108, the lines
will increase by 188 at a time. Just typing RENUMBRER,
with no number following it, will make the computer
increase the line numbers by 14 (starting from 180).
This version of the command 18 also obtained by
pressing 'shift’ with function key 3.

STEP STEP is a keyword which appears from time to time in
BASIC, in conjunction with some other keyword (such
as RENUMBER in the case above), STEP means 'In
steps of...". STEP 100 means in steps of 100 —1.e. 1808,
200, 304...

AUTO Another handy little word will make the computer put

in the program lines for you automatically. This word is
AUTO. Type it In, and the number 100 will appear, on a
new line.

You can then type in your program line and press
‘enter'. Then 118 will appear, and so on. To stop this
automatic numbering, just press the 'stop’ key.

You can specify the point in a program where you
want your auto numbering to begin, AUTO AT 20@ will
begin auto numbering from line 200. AUTO AT 20¢

33

EDITING PROGRAMS

“
_

DELETE AND LIST

OVERWRITE
OR INSERT

34

STEP 100 will begin from 200 and increase each line
after that by 10@. You can use any number from
1 to 9999, which 1s the largest line number allowed.

(Typing AUTO AT 9598 STEP 10, or something similar,

_ will confuse the machine.) Don't forget that if (say) line

250 is entered by auto numbering, it will replace any

~ line numbered 250 which you had typed in before.

You have already used the word NEW —it removes the
program you are using from the computer's memory.
The word DELETE (followed by 'enter") will also do
this.

Typing DELETE 108 will remove line 100 from the
program. DELETE 19@ TO 148 will remove lines 100 to
149 inclusive.

If you only want to delete one line, it is quicker to
type 1n its number alone and press 'enter’.

In conjunction with DELETE you can use the words

- FIRST and LAST. Thus, DELETE FIRST TO LAST would

erase an entire program— of course, NEW (or DELETE
just by itself) is better! But DELETE FIRST TO 188 1s
quite sensible if you want to delete the lines up to and
including 190 of a big program.

You can also delete smaller pieces of a program,
1.e, particular words or characters within a program
line. Table 1 at the end of the chapter explains how this
is done. To find a line so as to alter it, type LIST. This
word by itself (as you know) will display the whole
program. LIST followed by a particular line number
will make that line appear on its own just above the
cursor. Typing LIST... TO... will display a group of lines
from the first to the second number, inclusive. FIRST
and LAST can be used with LIST in the same way as
they can with DELETE.

Then you need to position the cursor at the
beginning or end of the portion of the line that you want
to remove. You do this, of course, by using the joystick.
Once the changes to the line have been made, press
‘enter’ while the cursor is still on this same line. This
will re-enter the modified line in place of the original
one. (Note that until you have done this, the computer
still ‘remembers’ the line in its original form.)

If you want to alter something in the middle of a
program line, you don't necessarily have to use the1
‘erase’ or ‘del’ key. As long as the machine is working

EDITING PROGRAMS

INSERTING LINES

MOVING THE CURSOR

in what is known as overwrite mode, any character that
1s under the cursor is automatically deleted when you
type In a new one—you ‘'write over', and replace, the
old material. So to change the number 234 into 567,
simply place the cursor over the 2 and type in the
three new characters.

If you want to put in new characters without at the
same time deleting any old ones, you can put the
computer into insert mode. To switch from ‘overwrite’
to ‘insert' mode or vice versa, hold down the 'ctrl’ key
and press 'ing’. To show when you are in 'Insert mode’,
the cursor changes its appearance (it takes the form of
an arrow pointing left).

In insert mode, anything that you type in the middle
of a line 1s {itted In between the characters that were
there before —the ones on the right are moved across
to make room for it. This will sometimes mean that
words will disappear off the right-hand edge of the
display. The computer has not forgotten about these

~ words—you can make them reappear by holding

down ‘ctr]’ and pressing function key 1, as described
in the next chapter. As long as there are characters 'off
the edge’ of the screen, the symbol ' >" will be seen at
the end of the line.

So another way of changing 234 into 567 is to delete
the old number and then select 'insert mode’ in order
to put in the new one.

To insert a complete new program line, simply find out
the place in the sequence where you want it to come,
and type it in with an appropriate number. The number
will tell the computer where the line has to fit in—as
you saw very early in the manual.

You know that holding the joystick in one position will
make it move the cursor repeatedly in that direction
until you release it. And you will have found that when
the cursor reaches the top or bottom of the screen, the
text will ‘'scroll' downwards or upwards, to show lines
that were previously undisplayed.

[f the cursor is moving up or down, pressing ‘shift’
will make it move a page (or screenful) at a time. This
15 useful for moving quickly from one part of a long
program to another. (Using 'ctrl’ in place of ‘shift' will
move the cursor by paragraphs—you will see that this

 1s useful for word processing.) Pressing ‘ctrl’ while you

39

EDITING PROGRAMS

“
“

TABLE | —DELETION

are moving the cursor sideways moves it in units of
words instead of letters. Pressing 'shift' and moving the
Joystick sideways will move the cursor straight to the
end of the line in the direction vou want.

The following two tables show you all the different
ways ol deleting and inserting characters. Positioning
the cursor 1s always done with the joystick.

Experiment with these functions on a program —
perhaps you've already got one in the computer. They
may appear a little confusing at first, but once you
know which keys perform what functions, you will find
that word processing (see next chapter) is very easy.

FUNCTION

KEY (COMBINATION) EXCEPTIONS/CONDITIONS

Erase character left: Erase
character to the left of the
cursor and close up line.

ERASE Moves cursor | space left. If
It's already in the lefimost
position, the line 1s jolned to

the previous one.,

Erase line left: Erase from
start of line up to cursor.
Move right part of the
line to the left to close up.

SHIFT + ERASE Leaves cursor in lefimost

character position.

Delete character right: DEL Leaves cursor in same

Delete character under position. It's the characters
cursor. Moves right part which move! If cursor is at end
of the line to the lefl 1o of the line, moves next line up
close up. lo join it

Delete line right: Delete SHIFT + DEL Leaves cursor in same

from cursor to end of line.

position.,

Erase word left: Erases
leftwards unti] it has
erased the left-most
character of a word.

CTRL + ERASE Starts with character

position to the left of the
cursor. Only letters or
numbers are considered part
of the word. Intermediate

special characters are erased.

Delete word right: Deletes
rightwards until it has
deleted the right-mosl
character of a word.

CTRL + DEL Starts with character position
under the cursor, otherwise

as above.

36

EDITING PROGRAMS
Y e A i a1 B N e L I e Tl A A i A S e e]
T e L e S TG
TABLE 2 —INSERTION

FUNCTION KEY (COMBINATION) EXCEPTIONS/CONDITIONS
Insert character: Move NS When in insert mode this
characters, from cursor 15 equivalent to pressing

to end of line, one space bar, except that the
position right. Pul space cursor doesn't move.
under cursor.

Insert line: Move characters SHIFT + INS If cursor is at the beginning
from cursor to end of of the line, this creates a
line down by one line of blank line.

thelr own.

Toggle insert: Swop CTEL + INS A different cursor is
between insert mode and displayed, depending on
overwrite mode, whether the computer is in

insert or overwrite mode,

INSERT MODE:

Allows you to move the
CUrsor to any position in
program or text and type 1n
characters which are fitted in
by moving those after them
lo the nght.

OVERWRITE MODE:

New characters typed
replace those already there.
No space is made by moving
characters to the right. You
Iiterally 'type over'
characters which have been
typed belore,

37

WORD PROCESSING

“
_

THE WORD
PROCESSOR

One very valuable thing yvou can do with your
computer is use it as a sophisticated typewriter. You
can type In a passage of text—a letter, essay, or
whatever —and then print it on a line printer if vou
have one. The advantage of the computer over an
ordinary typewriter is that any mistakes can be
corrected much more simply, and that various special
functions are provided to help you format your
paragraphs and move them around.

The Enterprise's built-in word processor can be used
whether or not the BASIC cartridge is inserted. If the
cartridge is plugged in and you want to switch over
from programming to word processing, type the word
TYPE and press 'enter’. The display on the screen will
then change; you will see special wording across the
top and bottom, indicating the uses of the function keys
for word processing purposes.

This 15 the same display that will appear if you
switch on the computer without the cartridge inserted.

Note that the command TYPE will erase any BASIC
program from the computer's memory. Another way of
giving this command is by pressing ‘shift’ with function
key 8,

If you have redefined part or all of the character set
(see page 105), these definitions will be retained when
you enter the word processor. To revert to the original
characters type CLEAR FONT and press ‘enter’ before
leaving BASIC.

Now type a few nonsense letters, pressing 'enter’
when you think you've typed enough. You will then
simply see the cursor move to the next line down; there
will be no ‘error’' message to say that you've entered
something the computer doesn't understand, When
used for word processing, the computer merely
behaves like a typewriter with extra facilities — it
displays what you have typed, but doesn't try to
understand it.

The 'enter’ key is treated by the word processor as
a 'carriage return’ —but you only need to press it at the
end of a paragraph, not at the end of every line.
Remember that the computer uses something called
word wrap, which automatically keeps the lines within
the required length.

Note that all the text between two carriage returns
(the ‘enter' key) counts as a paragraph. Functions that

WORD PROCESSING

SPECIAL FUNCTIONS |

apply to whole paragraphs (see below) all work on the
paragraph which currently contains the cursor.

Alterations to the text on the screen can be made in
exactly the same ways that you would alter a
program— see the two tables at the end of the last
chapter. The special functions that we are now going to
examine are designed mainly for use when typing a
document, though they will also work if you are
entering lines of BASIC.

To use any of these functions, press the appropriate
function key while holding down the ‘ctrl’ or ‘alt' key.

- 'CTRL' + FUNCTION 1—RE-FORM

This function will adjust the line lengths of the
paragraph that contains the cursor. This 1s useful if you
have inserted or removed several words, and the lines
are uneven,

'ALT' + FUNCTION 1—JUSTIFY AND RE-FORM

‘Justification' means straightening out the edges of
a paragraph so that the beginnings and ends of the
lines form a neat vertical column. This is like the text in
mMost newspapers.

'CTRL' + FUNCTION 2—CENTRE
This puts a line or paragraph in the horizontal
middle of the ‘page’. Useful for titles and headings.

'ALT' + FUNCTION 2—CLEAR ALL TABS

Just like a typewriter, the computer allows you to
set tab stops and then press the 'tab’ key to skip across
the line to the pre-set point. Before re-setting a number
of tabs, you will probably want to remove all the
previous ones with a single key-press.

'CTRL' + FUNCTION 3—TAB SET/CLEAR

Tab 1s short for 'tabulation’. This means dividing
the screen up into several 'columns’ across, for
formatting purposes. If you wanted to type in a table of
information (like the function key table on page 45, for
instance), you could set as many tabs across the screen
as there were columns in your table. The 'tab’ key can
then be used to jump straight from one to the next. This
ensures both speed and accuracy in levelling the
columns.

39

WORD PROCESSING

_
“

Setting a tab is done simply by moving the cursor
(using the joystick) to the place where you want the tab
to be, and then pressing ‘ctrl’ with function key 3. If
there 1s already a tab in the cursor position, this same
command will remove it.

‘ALT" + FUNCTION 3—RULER LINE

The 'ruler line' across the top of the screen shows
you where the current left and right margins are, and
where any tabs have been set (indicated by vertical
strokes). This command switches the ruler line on or

off.

'CTRL’ + FUNCTION 4 —LEFT MARGIN

Of course, sometimes you will want to change the
positions of your margins. To set the left margin (the
position where the lines will begin), move the cursor
across the screen to where you want the margin to be,
then press this function key with ‘ctrl’.

‘ALT' + FUNCTION 4 —RIGHT MARGIN
As above, but for the right margin.

'CTRL" + FUNCTION 5—RELEASE MARGINS

This command allows you to insert words or
characters outside the current margin settings. The
symbol () on the status line shows that the command
has been given; repeat the same key-press to cancel it.

~'ALT + FUNCTION 5—RESET MARGINS

This sets the margins to the furthermost positions on
the left and right of the ‘page’. It also re-sets the tabs. If
you've been typing a narrow column of text in the
middle of the screen and then want to move the
margins outwards for your next paragraph, press 'alt’.
with function key 5, then 'enter’. You can then set the
margins wherever you want them.

'CTRL' + FUNCTION 6—MOVE UP

With this command, the paragraph containing the
cursor 1s moved up by one line; the line that was above
it reappears beneath it. The key-press can be
repeated until the paragraph is in the desired position.

‘ALT' + FUNCTION 6 —MOVE DOWN
This opposite of the above.

WORD PROCESSING
T S T e R e e R Rl e B S S e
T T LD T4 T o 0 a0y oo o T TR B b AL S i a3 S
'‘CTRL' + FUNCTION T—CHANGE LINE COLOUR
This selects a new pair of colours for the text and
background on the line where the cursor is placed. On
an 8@-column screen, there 1s a choice of four colour-
pairs; repeated pressing of the key will show all of

them in turn. On a 4@-column screen, there are two
"colour-pairs only.

‘ALT" + FUNCTION 7—CHANCE PARAGRAPH
COLOUR !
As above, but applied to a whole paragraph.

The uses of the function keys on their own (without
‘ctrl’ or 'alt') vary according to whether you are
programming or word processing. Note that in some
cases there are 'failsafe’ devices—e.g. to change over
to 8@-column text while using the word processor, you
press function key 5 and then asked to confirm your
command by pressing 'enter’ (or to cancel 1t with 'esc’).
This stops you from erasing a document by pressing
the function key by accident.

For complete tables of the function key operations,
see page 45,

PRINTING OUT TEXT Now that you've typed your document, you will
probably want to print it on paper (if you have a
printer) or save it on cassette for later use.

If you want to use the printer, it should, of course,
be connected to the computer through the socket at the
back of the machine (labelled ‘printer’), It must be
switched on, and ‘on line'. Now press function key 3. A
message on the screen will remind you to make sure
the printer is set up correctly. Press ‘enter', and your
document will be printed.

SAVING TEXT Saving text on cassette is very similar to saving a

ON CASSETTE program—see pages 46-47 for how to connect the
computer to the cassette recorder. Like a program, a
document that you want to save must be given a name
conforming to the rules given on page 46. The only
difference i1s that the document name —the
'filename’' —isn't typed between inverted commas.

Press function key 2. The computer will then ask

you to enter the filename. After typing (for example)
LETTER, press the 'record' and ‘play’ buttons on the
cassette recorder, then press ‘enter’. Your text will be

41

WORD PROCESSING

AL L B e S P L IS Wi S AT A N WIS LB LS e
e T T

EXITING FROM THE
WORD PROCESSOR

42

saved under remote control if the appropriate
connections have been made.

Similarly, the word processor allows you to load a
document much as you would load a program (but you
will need to take the plug out of the REM socket while
rewinding the tape). Simply press function key 1, type
LETTER — or whatever name the document has been
given —and press ‘enter’.

When you've finished using the word processor and
want to return to BASIC programming, press function
key 8. The computer will then ask you what program
you want to switch to; type BASIC, and press ‘enter’. Of
course, if a cartridge other than IS-BASIC is plugged
in, you will have to type the appropriate name (e.g.
LISP) instead, in order to use it. Typing WP returns you
to the word processor while erasing your previous text.
If you have pressed function key 8 by mistake,
pressing 'esc’ puts you back where you were before.,

THE FUNCTION KEYS

#
#

You have already tried pressing some or all of these
keys. They are located above the number keys and
are themselves numbered 1-&.

These keys can be redefined by you to perform
whatever function you may wish them to do. Until you
redefine them, however, the computer provides
functions for each key which you will probably find
useful at some stage.

Redefining the function keys is done by typing (for
example):

e e A T TR e e T e Y
SET FKEY 1 "PRINT"

e T T e T A o o S S e
The function you wish the key to perform should come
in inverted commas. The number after FKEY 1s the
number of the key being redefined.

Try typing in the command above and then press
the first function key. The word PRINT will appear on
the screen. This means the keys can be used to put
frequently-used keywords on the screen just by
pressing one key instead of typing the whole word.
Words like RUN, LIST and RENUMBER are possibly
more useful because you do not always need to add
anything after them. Pressing a function key tolist a
program is far quicker than typing the word LIST and
pressing ‘enter’.

A carriage ‘return' —the equivalent of pressing
‘enter’ —can be added to a function key definition, by
appending

&CHR$(13)

to the end of that definition, e.g..

SET FKEY 1 "PRINT" &CHR$(13)

The large table on page 45 shows the uses of each
function key as they stand when you switch on the
computer with the BASIC cartridge inserted. Notice
that you can use ‘shift', 'ctrl’ and 'alt’ with the function
keys, which means each function key actually carries
four different functions. When you want to reset the
keys to these functions after redefining them, type
CLEAR FKEYS.

When pressed by themselves, as you know, the
function keys have different uses when you are

THE FUNCTION KEYS
B e e Y O
T T
operating the word processor. These uses are set out
in the smaller table.

44

FUNCTION KEY OPERATIONS

#
#

Permits loading of text
from cassette or disk.

Permits saving of text
on cassette or disk.

Sends text to printer.

BASIC only BASIC or word processor

Key NORMAL + SHIFT + CTRL + ALT

1 START CONTINUE RE-FORM JUSTIFY AND
Runs program. If no Carries on program Adjusts line lengths to - RE-FORM Evens out
program, boots (1.e. after "stop’ command. keep them within the spaces in lines,
loads into memaory) maraqins (tidies up a straightens marguns.
program [rom disk, paragraph after
and runs it. If no disk, editing).
loads from casselle,

2 LIST LLIST CENTRE CLEAR ALL TABS
Lists whole program Lists whole program Puts text in centre of
on sCreen, onto printer, screern,

3 AUTO RENUMBER TAB SET/CLEAR RULER LINE
Automatic numbering Renumbers whole Sels or removes lab Line showing margins
in steps of 10. To program in steps of stop at current cursor and tabs is switched
‘awitch off', press 10. position. an or off.

‘'stop’.

4 REMOTE 1 REMOTE 2 LEFT MARGIN RIGHT MARGIN
Turns on or off As lelt but for Rem & Sets left margin 1o Same as for left
('toggles') Rem | socket. current cursor margin, but sets the
control swilch. POosIton, right one.

5 TEXT DISPLAY TEXT RELEASE MARGING RESET MARGING
Sets up full screen in Switches from Allows text to be Sels margins to
texl mode, and clears graphics to texl page, entered outside the peTmit tYping across
text and graphics without erasing margin settings. full width of screen.
pages. elther,

6 GRAPHICS DISPLAY GRAPHICS MOVEUP MQVE DOWN
Sets up first 20 lines Switches [rom text to Positions paragraph Moves paragraph
as graphics, last 4 graphics display, above the line that below the line that
lines as text; clears without erasing was preceding it was following 1.
both text and either.
graphics pages.

T CLICK SPEAKER CHANGE LINE CHANGE
Turns keyboard click Turns all sound COLOUR FPARAGRAPH
(heard each time you capabhility off (or on COLOUR
press a key) on or off. again).

8 INFO TYPE
Gives information Puts you into word
about programs In processing mode.
memaory.

‘NORMAL’ FUNCTIONS FOR WORD PROCESSOR ONLY
1. LOAD 2. SAVE 3. PRINT 4. HELP

Displays information
on various word
processing functons.

5 TEXT 89

Clears text and sets up
screen in 80-column
mode.

6, TEXT 40

Clears text and sets up
screen 1n 4@-column
mode.

1. CLICK
Turns keyboard click
an or off.

8. EXIT

Exils word processor,
permits return 1o
BASIC elc.

45

HANDLING PROGRAMS ON CASSETTE

“
“

In the Setting-Up Guide, you learnt how to control a
cassette recorder simply to load a program into the
computer's memory. However, you can also use a
cassette recorder to store your own programs,

Perhaps you want to save a program which was
copled from an earlier part of this section of the manual
— possibly you will have made some of your own
additions to it, so we'll assume you already have a
program in the computer's memory when you begin
reading this,

First, make sure the computer and cassette
recorder are connected up correctly. The socket at the
back of the machine, marked OUT. is the one through
which programs are put onto cassette. Plug one of the
larger cassette lead plugs into this socket

Then plug the opposite end of the lead into the
socket marked MIC (or something similar) on the tape
recorder.

Now plug one of the small plugs into the socket
marked REM2, and the opposite end of this plug into
the small remote socket on the recorder (probably
marked REM)—if your recorder has one.

It does not matter whether the computer is on or off
when you do this!

Next, you have to give your program a name. For
the purposes of clarity we'll assume you're calling it
‘myprog’. The name can be up to twenty-eight
Characters long, and may contain letters, numbers and
the following punctuation marks: *." = AT
You could call the program 'My-program-number-1" if
you wanted to,

Type:

SAVE "myprog"

Press the record’ and ‘play’ buttons, then press
enter’. You should see the message

SAVING myprog

—and then:

OK_

when it's finished saving it. Because the remote socket
1s connected, the Enterprise will automatically stop and

46

HANDLING PROGRAMS ON CASSETTE

#
#

start the tape at the right moments, as long as your
recorder has a remote control facility.

While the program is being saved on to tape, the
sound of this operation will be quietly echoed on the
computer's built-in speaker; you will probably find this
is a useful indication that the saving 1s working
properly.

Of course, you may want to check that your program
has been saved onto the tape properly. This is done
using the command VERIFY,

First wind the tape back to where it was when you
began saving the program. (If the remote control
facility is being used, the computer will probably be

~ disabling the rewind on the recorder. If this is so, type

TOGGLE REM2 or press the ‘shift’ key in conjunction
with function key 4.) Then type:

VERIFY "myprog”

 and start the tape and press 'enter’. Again, the

MIXING PROGRAMS
TOGETHER

Enterprise will control the tape recorder.
If the program has been saved without error, the
computer will respond with the message:!

will appear. Otherwise, you will see an error message.
In this event, you should make sure you have made the
right connections, check that the volume control is set
at the correct recording level —and go through the
saving process again.

If you already have a program in the computer and
you want to add another one to it from tape, you can do
this with the command MERGE.

MERGE could come in handy if you were in the
middle of writing a long program and had saved it as a
series of subprograms (or smaller programs which
make up part of a bigger one). If you wanted to put the
whole program together from all the separate parts

~ you'd saved on tape, you could do this using MERGEL.

If vou want to fit all the lines from both programs
into the computer, you will have to make sure all the
line numbers are different. This is why:

Imagine you have one small program in memory.

47

HANDLING PROGRAMS ON CASSETTE

Its line numbers are 103, 110, 140 and 160,

Now imagine you want to merge in another small
program from tape. Its line numbers are 140, 160 18
and 200.

If you tried to MERGE these two programs without
RENUMBERIng the one in memory, lines 140 and 160 of
the tape program would replace 140 and 160 in
memory. So you would effectively lose two lines from
your original program.

30 when you merge two programs together, the
lines from each program are 'dovetailed’ together to
make a bigger program.

Here's how to merge in a program from tape.

The method with the tape recorder is exactly the
same as {or loading (MERGEIng is the same as loading,
except that loading a program replaces anything else
- In memory at the time—it 'throws away’ the current
) program and substitutes the new one). If you are
unsure of how to load a program, look at page 11 of the
Setting-Up Guide.

S0 make sure your tape is at the beginning of the
program you wish to MERGE, and that you are sure all
the line numbers are right. Then type

MERGE "'newprog"

(‘newprog' is the program's name —the name under
which it was originally SAVEQ).

Start the tape and press ‘enter’. The programs will
then be joined together. Try it!

FILES Programs stored on tape can also be known as files.
This also applies to the other program storage medium,
disks. A 'file’ can also be a collection of information for
use by a computer. This is called a data file.

DISKS If disks are attached to the computer, all the tape
commands can be used, but the disks will
automatically be used instead. All the operations of
saving, loading etc. will then take place much faster,

49

STRINGS

52

The earlier part of the manual dealt with strings in very

~ little detail. Now that you have learnt the fundamental

concepts, a word about strings will put your
knowledge into perspective.

Strings are one of the two main types of
information —numbers being the other —that the
computer can handle. In fact, handling information is
what a computer is all about. It has probably become
obvious to you by now that a computer does not have
the ability to think as a person does. It does exactly
what you tell 1t to, with information you give it. So, at
root, programming 1s just a way of sorting, collecting
and manipulating information.

Earlier, strings were likened to quoted speech.,
Quotes are used when repeating exactly what was
sald, but there 1s no necessity to understand the words
cuoted —they could be nonsense.

This is the principle behind the idea of strings. The
computer doesn't understand what they are or what
they mean. It just treats them as meaningless symbols.

Anything in a program which is placed between
pairs of double inverted commas will be regarded as a
string by the computer. Here is a string:

"How old are you?"

‘Those same characters could appear in a book as
reported speech:

"How old are you?"', said Jim.

Notice also that you can put numbers into quoted
speech:

“I'm 22", said Sally.

Try these examples:

PRINT 2*2

This example tells the computer to do a small sum: put

_ the value of 2 multiplied by the value of 2 on the

screen—1.e. do the sum and display the result.

PRINT "'2*2"

STRINGS

L S e e
#

SPACES

This example looks almost exactly the same as that
above it. But the inverted commas make 2*2 into a
string. We are now telling the computer to put 2, then
* then & onto the screen.

The computer can tell you how long a string 18, if

~ you ask it to. Try this program:

100 LET A$="COMPUTER"
110 LET B$="MICROCOMPUTER"
I = —

120 .

130 | Lines 10@ and 118 declare two string

140 | variables, A$ and B$. String variables

150 | are just like numeric ones, except that
160 ! they are names for groups of symbols,
170 '. not for the values of numbers. The name
180 l given to a string variable must always

150 ! have a dollar sign ($) at the end of it.

210 l - -

203 LET A=LEN(AS)
23y LET B=LEN(BS$)

240 |
250 A and B are numeric variables which
260 contain the lengths of the two strings.

|
!
210 '. LEN tells you the number of characters
!
|

280 in a string (i.e. its length).
300 | - —
310 PRINT '‘The string called A$ 1s A,

" characters long."
320 PRINT '"The string called Bf is "B,
' characters long.”

339 END

T R e T e T e T e e e L
Try changing the contents of A$ and Bd—the computer

~ will always be able to tell you how many symbols each

one contans.

A space may be nothing to you, and it's
understandable if you think it doesn't count. But the
computer treats it as though it were a symbol. Try
changing A$ and BS (in the program above) to:

1 [

and

 You will see then that the computer tells you how many

spaces they contain, although it looks as if both are

53

STRINGS

STRINGS INSIDE
STRINGS

54

empty. A truly empty string would look like this:

[

As you can see, it doesn't even contain spaces. This is
called a null string,

The Enterprise can do some interesting things with
strings. For instance, you can make one string out of
another one. Here's a program which does this:

190 LET BIGSTRINGS$ = "'quite a few words"'
110 !

120 | Line 108 declares a string variable,
138 |
140 LET SMALLSTRINGS$ = BIGSTRINGS (9:17)
150 -
160 Line 140 declares another string

'.
|
176 ! variable —with a difference. It starts at
!
!
|

180 the Sth character of BIGSTRING$ and
19¢ ends at the 17th character,
210 '

220 PRINT BIGSTRINGS
230 PRINT SMALLSTRINGS
249 END

T e

- The computer literally copies some characters from

one variable into another separate variable. This
separate varlable is called a substring. To make one
string out of another, we have given the substring a
name —SMALLSTRING$—and then specified, in
brackets after the name of the larger string, the
character where we wanted the substring to start and
the character where it would end,

So a statement such as LET INITIAL$ =NAMES$(1:1)
says ‘call the substring INITIAL$ and let it contain the
first letter of NAMES$'.

In each of these examples we have declared our

substring as a variable in its own right, by giving it a

name (an 'identifier’) of its own. This isn't strictly
necessary, though. In the above program, we could
delete line 140 and change line 230 to: |
A8 € T S AN RS D AR IS G i]

230 PRINT BIGSTRING$ (9:17)

—meaning 'print the ninth to seventeenth characters of
the string called BIGSTRINGS$'. The method vou

STRINGS

choose will depend on the reason why you're using
substrings. If you want to use the same substring
several times, 1t's often more convenient to declare it
as a separate variable. If not, then the second method
above will suffice.

INKEY?Y is a very useful and important string function.
(Any BASIC word which does something to a string is
called a string function: most of them end with the $
sign, to indicate that the result they produce is also a
string.)

INKEY$ allows you to press a key while the

- program 1s running, so as to affect the way that the

program will continue. In some ways it's like an INPUT,
but the differences will soon become clear. Try this:
5 it A et e e 2T RIS b B T S b S i e Y
100 PRINT ""Have you understood this chapter?"
110 PRINT

120 PRINT ""Answer with y or n"’

130 DO

140 LET A$=INKEY$

150 LOOP UNTIL A< >"" "

160 ! g

170 ! Line 140 puts the result of a key-

180 ! press into a string variable. You'll

150 ! see why this is important.

200 ! .

210 [F AS="y" THEN

220 PRINT "Let's hope you're right.”

230 ELSE [F A$="n" THEN

240 PRINT "Well, read it again.”

250 ELSE

260 PRINT '""That was a wrong key."
270 END IF |

280 .)

290 You have seen IF/THEN statements

300 before, The purpose of ELSE in lines 239

310 and 250 1s fairly obvious from the

!
!
!
!
320 ! ordinary meaning of the word. 'Con-
n
|
|
|

330 ditional’ statements like these are dealt
340 with at length in the chapter on decisions.
350

360 END

e e A A T M AP T P Y o e
When the program asks its question, your next

keystroke gives the answer and makes the computer
55

STRINGS

m
“

proceed to line 210 and onwards.

Unlike an INPUT statement, the INKEY$ function
only asks for cne key to be pressed, and doesn't
require you to use 'enter’. (So it's very useful for
games —for one-letter answers, or for continuing an
action that has been stopped in the middle by a loop.)
Note that 'shift’ plus another key counts as just one
keystroke,

Another difference between INKEY$ and INPUT is
that INKEY$ doesn't automatically make the computer
walit untll your answer has been given. That's why lines
130 and 150 in the above program are necessary. Try
deleting them. You will then see that the program runs
right through to the end in a fraction of a second, giving
you no time to type your answer. When the computer
comes to line 148, it decides that since none of the keys
has just been pressed, INKEY$ is equivalent to a null
string ("' ''); so it makes AS into a null string too.

Lines 139 and 158, on the other hand, say 'keep
looping until A$ becomes something different from a
null string—then go on to the rest of the program’.

Bear in mind that INKEY$ is like a variable of
which the value changes very quickly. The point 1s that
the computer 'looks' at the keyboard approximately
once every fiftieth of a second, to register any key-
press made in that interval; if you press (say) the 'a’
key, then INKEY$ becomes equivalent to “'a" —but
only for a very short time. Normally, one-fiftieth of a
second later, INKEY$ will revert to a 'null’' string, and
will remain with this value until your next keystroke.

This explains why line 148 is needed 1n the
program. It immediately puts the result of your
keystroke into a separate string variable which will not
change while the computer is examining it (testing it to
see if it meets certain conditions —see lines 210 to 270).

You could try deleting line 140 and altering lines
15@, 219 and 230 to:

T T I T L L e T T T e S
150 LOOP UNTIL INKEY$<>" "

210 IF INKEY$="y" THEN

230 ELSE IF INKEY$="n" THEN

R B s e
The reason why the program doesn't work properly
any more is that the value of INKEY$ changes (it

revertsto " ") in between lines 150 and 218.

STRINGS

UCASE$ AND LCASE$

There is, of course, no need to put the value of
INKEY#$ into a separate variable if it is not going to be
used in subsequent program lines. For example, if you
merely want to hold up the action of a program until the
user tells it to continue, you can type something like:

TR s S T 0 T A A T P KO YO e T AT WAL
100 PRINT ‘'Press any key to continue."”

110 DO

120 LOQOP UNTIL INKEY$< >"" "

e e Y W AT A YO L0 T A R oo A PP Y R SOV
Another interesting thing you can do with strings 1s to
change them into capital or small letters.

The two words which will do this are UCASES and
LCASES. This program will show you how 1t's done:

!

'. This program will convert a string that
120 ! you have typed, first into capitals and

!

130 then into small letters.
140 |)
150 INPUT PROMPT '"'Please type 1n some letters:

" AS
160 PRINT A%
170 PRINT UCASES$ (AS$)
180 PRINT LCASES$ (A§)

199 END

VAL

Something else which you can do 1s to convert a string

which contains number-symbols into the number that it

would be if it were not a string. The BASIC word which
does this 1s VAL (short for 'value’). Try this:

100 INPUT PROMPT "Please type in some
characters: ":A$

110 PRINT A%
120 PRINT VAL(AS)
130 END
B e A e e i s T Fao S T
To determine VAL(AS), the computer will only count
the numbers in A$ which come before the first letter.
So VAL("'123AB45") equals 123, while VAL ("AB12345")
equals 0,

You can also do the opposite —convert a number
into a string— by using the word STRS.

57

STRINGS

L R L L L e T S e
B e e e e e ey

ADDING STRINGS
TOGETHER

You have already seen how you can turn part of a

~ string into a substring. Another wavy to form a new

string 1s by linking up strings (or portions of strings) to
one another. The act of joining strings together is
called concatenation; all you do is put an ampersand
(‘&) between the strings—as if to say, ‘one string and

~ another string’.

The following example makes use of concatenation
in addition to substrings and the LEN function.
T LR L S e M ATy —
100 INPUT PROMPT "Please type a word:

" STRINGS

128 CLEAR SCREEN
130 LET ABBREV$=STRINGS$ (1:1) & STRINGS
(LEN(STRING$): LEN (STRING$)&'."
: :

140

150 In line 13@, STRING#$(1:1) makes the first
160 character of STRINGS into a substring.
170 LEN(STRINGS$) gives the number of

180 characters that STRINGS contains, so
196 STRINGS (LEN(STRINGS$): LEN

200 STRINGS$)) makes another substring out

|
1
!
|
|
!
210 ! of the final character. Then, using the '&’
!
!
!
!
|

220 symbol, the two substrings are linked to
230 each other and to a full stop, thus

240 defining a new string variable,

245 ABBREVE.

250 ! z

260 PRINT STRINGS:"' abbreviated is ''; ABBREV$
210 END

You would do it this way if you wanted to use the
abbreviation repeatedly. If you were only using it
once, you could of course delete line 130 and change
line 268 to:

260 PRINT STRINGF (1:1) &STRINGS
(LEN(STRINGS$): LEN(STRINGH)&"'."

In this case the ampersands could be replaced by
semicolons,

LOOPS

#
#

You have already seen some short programs which
use loops to make the computer repeat itself. Should
you wish the machine to perform one operation several
times in succession, a loop represents a much easler
way of doing this than typing in the same piece of
BASIC over and over again.

A loop is also an easy way to control an enfire
program, as you will see.

With one exception (COTO, which can be treated
as a loop), every loop contains a special statement to
mark its beginning, and ends with a line that tells the
computer to jump back to the start again.

Let's deal with the easiest kind first, DO/LOOPs. You
have already come across these. They look like this:
T R R T e R K N e T A N TR
80 INPUT PROMPT "'Please type in a number
and I'll print the 'times table' forit. ' A
9@ LET B=A

100 DO ! Beginning of DO/LOOP

120 LET B=B+A

130 PRINT B,

140

150 Line 90 puts your number into
- 155 another variable, B. Then, In

164 lines 12@ and 138, the value of

170 A (which has not changed) 13

|
!
l.
!
!
175 l added to B, and the new value
|_
!
|
'.
|

180 for B is put on the screen. This
185 happens each time round the
190 loop, so B increases by the value
200 of A each time.

210

o3 LOOP UNTIL B> 150 ! End of DO/LOOP
230

240 UNTIL B > 154 stops the program
245 going on forever without any
250 interference from you (e.g. 'stop’ or

|
!
!
!
260 | ‘hold' keys). UNTIL means exactly
;
!
|

- 265 what you might think it does—1.e.
270 ‘until B is bigger than 158'.
280
290 END

T R RN e S Y, S P el e s T

A DO/LOQP, as you can see, makes the computer
‘go around in a circle' until some condition 1s met

59

GETTING OUT

60

which tells it to stop. This condition may be specified
by using the word UNTIL or WHILE.

Whichever of these words is used, you have a
choice between DO WHILE (or DO UNTIL) and LOOP
WHILE (or LOOP UNTIL). Usually, either alternative
will be possible, particularly in a program like the
previous one, which is not dependent on an especially
delicate arrangement of conditions.

The essential difference between putting a
condition at the beginning and putting it at the end of a
loop 1s that it affects, by a difference of 1, the number
of times a loop may happen. If the condition is at the
beginning, it will be tested before the loop is done,
which means that if it is met immediately the loop will
never be done. If it is put at the end, the condition
cannot actually be read by the computer until then,
which means the loop will always be carried out at
least once. WHILE and UNTIL are opposite types of
conditions. UNTIL B= 15@ and WHILE B= 150 mean
totally different things (UNTIL means 'as long as it is
not' and WHILE means 'as long as it is").

Try changing the loop above by using a WHILE
condition in place of UNTIL, by using bigger and
smaller numbers in response to the INPUT PROMPT at
the beginning, and by putting the condition after the
DO instead of after the LOOP. Experimentation will
soon show you what you can do with a DO/LOQOP.

At any time, if you want to, you can make the machine
get out of a loop by using the word EXIT. Now, EXIT
applies to FOR/NEXT loops as well (these are
described opposite). So you need to specify which

type of loop you are exiting—EXIT FOR or EXIT DO is
the way to do this. You should exit using some sort of
condition—e.qg.:

e e e e R
18066 IF X > 25 THEN EXIT DO

A e S R NI S AL i i]
A quick look at the chapter about decisions will tell you
how to do this using SELECT CASE as well.

Remember that the word EXIT is the only proper
way to leave a loop before it should end. Things like
GOTO should not be used for this purpose —they can
be confusing both for you and for the computer.

(GOTO and its associated command GOSUB are dealt
with on pages 127-128). EXIT will simply make the

LOOPS
T T e R e e T e e e e e
A PO O A Y e PR L s e P e e S

computer jump to the first line after the end of the loop.

FOR/NEXT LOOPS FOR/NEXT loops are rather different from
DO/LOOPs. They are possibly a little less straight-
forward, but they have definite uses.

Here is a short FOR/NEXT loop:
T T e R N Y R T e e e T Ve
100 [NPUT PROMPT ""How many times would you
like me to loop? "X

B 118 |
B 120 Notice that in this and other INPUT
125 PROMPTs, a space is put at the end

|
!
130 | of the prompt itself. This makes the
!
|

.) 140 screen look tidier.
B 180
- 160 FORP=1TOX
- 170 PRINT "LOOP THE LOOP!"
o 180 NEXTP
190 END

o 1 A S AT N T AN A D AU T PR e RSP Bt

Do you see how the number you type is the
number of times the computer will perform the loop?
This is the essential purpose of a FOR/NEXT —you can
specify quickly and concisely how many times the loop
should be done. There is no need to use conditions
except in special circumstances.

FOR/NEXT can also count in successions of three,
twenty, 3.2, 1000, 466.666 or even backwards. STEP 1s
the key to this little ability. Here's a program which
counts backwards by twos.

e S T S e B R S e OO S e S P e

10 FOR P=40TO @ STEP -2

- 20 PRINT P,
- o 39 NEXTP
49 ~ END

| e e T
You cannot simply ask the machine to count from

40 to @ without giving it a STEP command. It has to
know to subtract (counting in minus numbers) from the
number given in the FOR line before it will do this.
Unless you specify by using STEP, a FOR/ NEXT loop
will always count upward in steps of 1. Note also the
PRINT P statement. The first line of the loop creates a
variable, in this case P, of which the value changes
each time the loop is performed. The 'times table’
program, used as an example of the DO/LOOP, will be

61

LOOPS

NESTED LOOPS

62

~ shorter if we use FOR/NEXT:

190 INPUT PROMPT *'Please type in a number

and [will give you a ‘times table' for it. '":A
110 FORP=QTO 150 STEP A

120 PRINT P,
130 NEXTP
140 END

That program does almost the same thing as the
DO/LOQP (page 59) but in a different way. DO/LOOPs

- are just a little easier to read and understand when

you're unfamiliar with computer programs.

Notice that the FOR/NEXT loop is always tested at
the beginning, and will not run if it has gone past the
end limit specified in the FOR statement. Try entering
numbers bigger than 158 for the ‘times table' program
above,

You might like to try different ways of presenting
this program using PRINT AT (page 31). You could, by
combining PRINT and GRAPHICS commands (page
89), design a table made up of boxes for your ‘times
table’ to go in. And this time, the manual isn't going to
tell you any more! Programming is all about being
adventurous and finding things out for yourself. You
may have some better ideas, as well. If you're a parent
with young children or you have a little brother or
sister, this is the kind of program which could be used
to teach them and to have a bit of fun as well.

These words might sound rather strange. Nested
loops, though, are just loops placed inside loops. The
important thing to remember is never to end the
second loop outside the first one. Here is an example:

100 FORP=1TO 20 | First loop begins.
110 PRINT P,

120 FORA=1TO4 ! Second loop begins.
130 PRINT P+ 10; P-10;

140 NEXT A ! Second loop ends.
145 PRINT

150 NEXTP ! First loop ends.

T ey R e YL N R A A S
You can nest another loop inside the second one as

well, and another inside that, and so on. If you look at a

series of nested loops, the end lines should come 1n

LOOPS
T S A eV T o i R I S OB S
e T g R o e e

descending order as you look down the program. The
beginnings should be in ascending order. Look at the
dilagrarm.

As you can see from the diagram, if you really felt
that loops were the answer to all your problems, you
~ould also sandwich loops in between two beginnings
or two endings of other loops.

However, complex arrangements of loops like this
need presence of mind if you are to keep track of
them. The Enterprise helps by indenting loops as
shown in the last program, which makes them easler to
read. Comment lines also help to make things more
easily understood. Normally, if you have several layers

~ of nested loops, it is easier to define the iner ‘layers’
as functions (see page 79). This keeps the purpose and
flow of the program clear.

63

DECISIONS, DECISIONS!

“

'COMPARISONS USING

IF/THEN

Fiction often refers to computers with the reasoning of
human beings. Perhaps, like most people, you
believed before you understood computers that they
are more ‘clever' than they really are.

But while they can't think like people carn,
computers can make very simple decisions and
CoImparisons.

Perhaps we can start with comparisons. Do you
remember the relational operators mentioned in part 1
of the manual? These are the key to the way in which

~ computers make comparisons and, sometimes,

decisions based on those comparisons.

Try out this program. It will show you how to use
these relational operators to decide whether two
strings are different or not.

100 LET THATS ="kettle"
118 INPUT PROMPT ''Please type in some letters:

" THISS$
120 |
130 10@ and 110 should be familiar.
140 The two strings are compared in
150 220 and 230, using < > which
155 means 'different from'. If the two

|
!
|
[

160 | are the same, both will be printed.
!
|
l

170 If they are different, ''kettle’ is

180 printed once.

190 .

200 PRINT

210 PRINT

22l IF THIS$}=THAT$ THEN PRINT THIS$:" = '"

THATS

230 IF THIS$ < >THATS$ THEN PRINT THATS

240 !

250 ! 220 and 230 use IF/THEN to make a
260 |. decision. [F THISY is the same as

265 | THAT$ THEN put both of them on

270 ! the screen. If it is not the same,

290 1 print THATS.

295 |
- 300 END

IF/THEN is one of the two main ways in which the
Enterprise can make a decision. It is one of the more
English-like statements in BASIC. It is used with logical

DECISIONS, DECISIONS

P o S a3 P2 S U P S S O N A TS AP0 L M T T Tl
”

IF BLOCKS

operators to look at variables and numbers to see if
they fulfil certain conditions. I[F/THEN is not used to
perform calculations on variables, but it is there to
redirect a program IF something about a number or
string 1s true.

For instance, you may write a program to play a
game in which each player only has a certain number
of turns per round of the game. So you set aside a
variable which goes up by 1 every time a player has
completed a turn.

Then, when the variable is equal to the number of
turns the player should be allowed, an IF/THEN

~ statement can be used to tell the program to set the

variable back to @ for the next player, inform the

 current player that his round is over, record his score

and go on to the next player, etc.

An IF/THEN statement does not have to be just one
line long. You can also use what is called an IF block.
This is simply several lines which allow the computer

 to make several comparisons or decisions. It also

means you can use several lines to deal with each
condition, That gives you great scope for making
decisions.

Lines 220 and 230 of the program opposite could

 have been written in a different way. The lines below

could be used to replace 220 and 23@ in the original
program. They would have the same effect,
el A e N AT A2 G I T R =TI i 5

200 IF THIS$=THATS$ THEN

224 PRINT THISS$;" =", THATS
230 ELSE
232 PRINT THATS

236 END IF

R A WA L T AL 1 4 TR RS €. -3 AT S A P e TR AT S i T

The reason is that the computer had just two
alternatives. Either the two strings were the same or
they were not. So the lines above say: ‘If THIS§ and
THATS are the same, print them both. If anything else

istrue, print THATS only.’ This is an example of a small

IF block —it contains one IF statement, one THEN
statement, one ELSE statement (you can only put one

 ELSE statement in an IF block, for obvious reasons),

and the words END IF, which let the computer know 1t
doesn't have to make any more comparisons.
ELSE means exactly what it says. Anything else. It

65

DECISIONS, DECISIONS

o T T e L T T T O —

means you can use [F/THEN to tell the computer to do
particular things if so-and-so is 'true’ and then use

ELSE to cater for any other possibilities. It must always
be on a line of its own—never on the same line as an
[F/THEN statement.

The example below is an IF block. It also uses a
numeric function that you have seen once before
(pages 5-6).

T A T A S L M RS R T A R e e s, -
100 RANDOMIZE
110 LET A=RND (5)

120 |
130 186 and 110 make numbers out of the
140 bluel These can be used to make
154 patterns on the screen, to play games
- 166 like roulette or Simon (the flashing
170 sequences game) or many other things.
180 Here we’ll use the random numbers to

!
!
!
|.
!
|
190 ! draw shapes on the screen. The
|
g
!
|
|
!
|

200 commands are explained in the chapter
210 on graphics. The word RND is the one
22 which makes the computer produce a
230 random number. RANDOMIZE makes
- 240 sure the number is different each time
- 250 the program 1s rumn.
260

219 GRAPHICS
- 280 PLOT 608, 300,
290 OPTION ANGLE DEGREES
300 PLOT ANGLE &,
310 [F A=1THEN

- - 320 PLOT FORWARD 108;
330 PLOT LEFT 90,
- - 340 PLOT FORWARD 108;
350 PLOT LEFT 99;
360 PLOT FORWARD 108,
- 370 PLOT LEFT 9¢;
380 PLOT FORWARD 160
390 |
- 400 270 to 300 prepare the computer for line
410 drawing. In this example, some very
B 420 simple graphics commands are used.

|_
!
!
430 | LEFT gives turns; FORWARD is followed
i
!
!

- 440 by a number of screen positions
S 450 (measured according to the graphics
460 conventions). Lines 320 to 380 draw a

66

DECISIONS, DECISIONS

465 | square.
470 |
480 ELSE IF A=2 THEN
490 PLOT FORWARD 5@;
500 PLOT LEFT 98;
- 510 PLOT FORWARD 1020;
520 PLOT LEFT 94;
530 PLOT FORWARD 5@;
544 PLOT LEFT 98;
550 PLOT FORWARD 124
564 '.
o1 | 490-550 draw a rectangle.
580 |
590 ELSE IF A=3 THEN
640 PLOT FORWARD 10@;
610 PLOT LEFT 120;
620 PLOT FORWARD 104,
630 PLOT LEFT 128:
640 PLOT FORWARD 100
650 !
660 ! 600-640 draw a triangle.
6870 !
680 ELSE
690 TEXTY
700 PRINT "I have no instructions for number’’; A
710 END IF
720 END

e e e BT i
Now you've had a chance to play with the Enterprise’s
graphics, let's return to IF/THEN. As you can now see,
you can use all these numbers and BASIC words to
help you draw pictures—and also to make music and
sound effects. All you need to do is combine ‘ordinary’

- BASIC with the graphics commands.

The program above makes its own random number
by using a formula (you'll never need to worry about
how, unless you get really interested in the inner
workings of the computer) to produce numbers 'out of
thin air'. Incidentally, if you wanted to, you could print
a sequence of these random numbers by using a
DO/LOQOP, and you would not be able to see any
pattern in the sequence.

Then, depending on the number produced by
RND, the computer will go off and draw one of three
possible shapes. If the number is not one which is
mentioned in an IF line, it will instead run the solitary

67

DECISIONS, DECISIONS

S S L P NP NP M MR M PP R+ -, .
- s S o T N TR

SELECT CASE

68

ELSE statement (line 68@) and display the message in
line 70@ —which is really a bit miserable compared
with all the rest of the program. This is what was meant
by using I[F/THEN/ELSE to put together more complex
conditions by making them into several lines—a
block —rather than one or two.

The previous program shows exactly how you
should use an IF block. IF and ELSE IF separate each

possible course of action.

An IF block must always finish with END IF —

 otherwise the computer will not run the rest of the

program if the last IF test failed.

ELSEIF |

ELSE IF

D‘DN T DRAW
B ANYTTHING

[F/THEN is, therefore, good as one line to pick out
exceptions or deal with decisions when only something

~ simple needs to be done as a result. As a block it can
~ be used to run an entire complex program, depending

on a decision which is made through the IF block at the
beginning.

With SELECT CASE, you can make very similar
comparisons and decisions to those offered by
IF/THEN. Think of CASE as meaning 'in case of...’
rather than 'if.. .then...or else...”.

In the example which follows, notice the lack of the
variable name in the CASE statements, CASE 1,2,3 1s
right, CASE X =1,2,3 is wrong —the variable to be
tested has already been given by the SELECT line.
Using CASE to make one decision out of several
alternatives is, as you can see, shorter and clearer than

using [F/THEN.

DECISIONS, DECISIONS

Just as with END IF, you must mark the end of the
SELECT block —in this case by typing END SELECT!

100
105
110
111
115
118
120
122
125
127
130
133
135
136
137
138
140
150
200
250
300
360
400

410
450
460
465
466
467
468
470
472
473
474
475
476
4711
4719
480
500
550
600

CLEAR SCREEN

! Line 100 clears the screen. Then

! a menu is printed in the middle

" of the screen, using PRINT AT to

| position the letters. After that,

| you are asked to type in your

! choice, and the number you choose
' is put into a variable called A.

| [f you type in a number bigger

| than 3 or less than 1, the program

'. just asks you to do it again.

' 410 deals with that using IF/THEN.,

'. It also refuses to allow numbers

|. with a decimal point. A <> INT(A)
! makes this possible.

|
PRINT AT 9,18 "MENU"

PRINT AT 11,1¢:"'1) Print my name"

PRINT AT 12,1@:"2) Print your name'’
PRINT AT 13,18:"'3) Print both of our names”’
DO

INPUT AT 16, 18, PROMPT "'Please enter
your choice: " A
LOOP WHILEA< 1 ORA>3 OR A < > INT(A)

CLEAR SCREEN
|

! The program from Lines 509 to

! 1000 makes the decision about

! what to do with your choice, and
! does it. The numbers after the

|. word CASE each time are the

1 numbers which A can be ecual to.
! For instance, 550 and 600 say,

! 1n the case of ‘A' being 1,

|. print "ENTERPRISE!!" in the

! middle of the screen.’ 1000 is

! assential to tell the machine no

! more cases can be expected.

I

SELECT CASE A
CASE 1
BRINT AT 9,18 “ENTERPRISE!!"

69

DECISIONS, DECISIONS
T T T R
o e T T T S —

650
100

750
— 801
850

900

950
1008
1018
1015
1916
1020
1922
1025
1027
1030
1035
1837
1940
1941
1043
1045
1046
1047
1048
1050
1100
1150
1200
1250

1300

1350
R 1400
1450
1500
1350

CASE 2
INPUT PROMPT "Then please tell me your
name. '"NAMES$
PRINT AT 9,18 NAMES
CASE 3
INPUT PROMPT "'Then please tell me your
name. '""NAME$
PRINT AT 9, 18:NAMES
PRINT AT 11,18: "Enterprise"
END SELECT

I

! Lines 1200 to 1350 are very similar
! to the check on 'A’" at the

| beginning of the program. They

| make sure that the program will

| only end or go back to the

| beginning if the first letter of

! A% converted to a capital, is

! either "Y" or "N". GOTO 100 tells
| the computer to jump back to the

| beginning of the program only if

| the first letter of A¥ (converted

' to a capital) is "'Y". Otherwise

' the program ends—which, as you
' can see, it can only do if the

! first letter of A$1s "N

|

INPUT PROMPT ""Would y:::u like to
do that again? '":A3
LOOP UNTIL UCASES$(A$(1:1)="Y" OR
UCASES(AS(1:1)="N"
IF UCASES$(A$(1:1)="Y" THEN GOTO 100
PRINT
PRINT
PRINT
END

O P A DU R U s M3 2 i

10

DECISIONS, DECISIONS

T T e e T T T T TR AT
0y 5 POt .o SOP il 0 S e S P 20 S AP S

Try writing a program to simulate a dice. You can
do this using either IF/THEN or SELECT CASE. Use a
random number as in the program on page 66. This, of
course, would have to be between 1 and 6. So
B L W L OV T U M S L Pt st
RND (6)+ 1
I S A TP U ST e P

would take care of that, Knowing you have six possible
results, you shouldn't find it hard to do. Perhaps you
could use graphics to put a picture of the dice on the
screen.

Remember that using IF/THEN as an IF block does
not mean you have to use ELSE. ELSE lines are
optional, just like the number of possibilities mentioned
within the block or the number of CASE selections.

CASE can also have an 'ELSE clause'. This is CASE
ELSE —just like CASE 1 or CASE "HELLO". Notice that
you can use CASE with strings as well, and that an
advantage over IF/THEN is the ability to lump several
‘truths' together with the same result—like this:

(CASE .85
PRINT "'These are odd numbers."

Lastly, experiment with ASCII codes (see 'The
Character Set’, page 104). It is possible to use these to
get a computer to put strings into alphabetical order.
ASCII codes are just numbers which stand for
characters. The use of arrays (which come next) is also
helpful in this sort of programming task.

=]

1

STORING LARGER AMOUNTS OF INFORMATION

- e LR
U PP A P S . .]

- As you've discovered, programming is chiefly a way to

handle information. Until now, you have only used
small amounts of information in programs, either
sentences and numbers that you have typed in

~ response to INPUT statements, or sentences the

computer has displayed for you to read.

You've probably wondered how you would go
about dealing with larger amounts of information—a
long list of words or numbers, maybe, or several
paragraphs of instructions for a game or for a program
which helps you work out your finances. The
Enterprise provides some very efficient ways to
manipulate lists of numbers or large groups of words.

The way in which you would keep a list of names,
for instance, in a program would be to use an array. An
array is like a big variable which can contain several
smaller variables. We began by comparing variables
to boxes, the contents of which may change. An array
can be thought of as a large box in which a certain
number of small boxes are stored. Alternatively, you

~ can visualize it as a page from a notepad on which you

NUMERIC ARRAYS

12

can put a list,

~ As with variables, you have string arrays and numeric

ones. So to declare a numeric array you would use

i
o
=
—

NUMERIC STORE (1 TO 10)

Type this into the computer as line 10@. It tells the
computer to set aside a ‘container' called STORE with
space for 10 smaller variables in it. These variables
are known as the elements of the array, and you can
record whatever numbers you like in these little
spaces. The seventh variable (or element) inside
STORE would be called STORE(Y).

Now type in the following lines:

118 FORS=1TO 18
120 INPUT PROMPT "'Enter a number '*: STORE(S)
1380 NEXT 5

This enables you to put numbers into your array. Run

" this, and when it has finished, type in PRINT STORE(S)

or (8) or any other number from 1 to 14. As you can see,
you can call up numbers from the array. You've put a

TWO-DIMENSIONAL

ARRAYS

STORING LARGER AMOUNTS OF INFORMATION

i e o S P PSP s oo o S AL S ——
—— T T T

list of numbers into the computer. If you wanted to
record the temperatures each day for the month of
December, you could do this in an array called
DECEMBER with elements numbered 1 to 31. The
temperature for each day would form the contents of
an element, and the element numbers would signify
the dates.

An array could also consist of elements numbered
56 to 76, or 12310 171, or even 12345 to 12445, If you
like, a negative number can be used for the upper or
lower end of the element range —e.g. NUMERIC
TABLE (-1 TO 1), or NUMERIC TABLE (-20 TO -14).
Element numbers are just for reference.

An array can be more complex than just a list. The
diagrams below and on the next page show you the
difference between one-dimensional and two-

- dimensional arrays.

r:_n-::-mmp—-‘

l--1|ﬂ'}

3 ‘

—
= O

et
=

[—
e

—
]

I—
o

pa—
(2]

[a—
Ly

L—I
]

L—I
oo

p—d
w

[
=

73

STORING LARGER AMOUNTS OF INFORMATION
e AT e e oy T e e e S s —
T T o g o P e e

STRING ARRAYS

14

A two-dimensional array can be pictured as a grid.
Or (if you like), you can imagine that this time you are
storing your boxes in a cupboard where each shelf is
given a number and there 1s room for the same number
of boxes on each shelf. A (1 TO 4, 1 TO 4) would
produce an array which can be visualized like this:-

1.1 1.2 1.3 1.4
2.1 2.2 2.3 2.4
3.1 3.2 153 3.4
4.1 4.2 4.3 4.4

An example of the use of this kind of array is as the
board for a game like draughts or Othello. The array
could be used to store information as to which pieces
are on which squares of the board. You could also use
an array like this as a table of numbers or words—a
more versatile sort of list.

String arrays are declared in the same way as numeric
ones, except that the word STRING is used. With string
arrays it is also possible to alter the length of each
element — this cannot happen in a numeric one.

Altering the length of elements in an array just
means altering the largest amount those elements can
hold. Just as you aren’t forced to fill a bucket to the
brim every time you put water in it, so you don't have
to fill the elements in an array completely.

As you already know, the Enterprise has a certain

STORING LARGER AMOUNTS OF INFORMATION

amount of space 1nside it, in which it can store
programs and information to be used with programs.

When you declare a string array the computer will
set aside a certain amount of space for each element.
This is called MAXLEN. MAXLEN is, unless you
specify otherwise, 132 characters. This does not affect
numbers; it only relates to strings.

Should you wish to conserve space n your
computer's memory —or to allow for longer elements
than 132 characters—you must tell the computer so.
This is how:

T A S T & . P T P i S SR SR ¥ S NS

STRING ARRAY$H(30 TO 58)* 10
T e R e T T T T T
That BASIC stat>ment would set aside an array with 20
elements in it (r imbered 30 to 58), each element being
1@ characters long. MAXLEN(ARRAY$(45)) would then
be 18. The longer your elements are, the more you can
put into them, but they will take up more memory and
leave less space for other things. So you should only
make them longer than normal if it 1s really necessary,
or if you are certain you will have enough space for
them. If you expand your Enterprise's memory, you
will naturally be able to store much bigger programs
and put much more in your arrays.

DECLARING Simple variables can also be declared using STRING

VARIABLES or NUMERIC. NUMERIC A declares a numeric
variable. NUMERIC A ,M,N,H,D or something similar
could be used to declare all your numeric variables at
once —at the beginning of a program, STRING
A% BEHELLOJF«%8... would do the same with string
variables. The only difference between declaring
variables like this and declaring an array is that, in the
case of an array, elements are specified.

READ/DATA Many BASIC words go hand in hand with other BASIC
words. READ and DATA (and the word RESTORE as
well) are such words.

These are mentioned 1n this part of the manual
because they represent yet another way to keep large
amounts of information inside a program. They also
represent another way to put numbers or strings into
an array. READ is the word which does all the hard
work. Here 1s a short example.

15

STORING LARGER AMOUNTS OF INFORMATION

16

80 LETP=

90 DO UNTIL P=#
100 READ P
118 PRINT P,
120 LOOP

130 DATA 1,2,3,4,5,6,7,8,9,18

150 DATA 11,12,13,14,15,16,17,18
160 DATA 19,20,21,22,23,24,25,0
170 END

The DATA statements simply hold the information.
Each item of information must be separated from the
next with a comma —this indicates that one piece of
information is over and the next one follows. READ tells
the computer to look at one DATA item and do with it
whatever you want. In this case, the item is placed in
the variable P, and then the contents of P are printed
on the screen.

Notice that the same variable name 1s used for all
the DATA items. This does not matter —the same one 18
being re-used. So the program READs one DATA item,
puts it into the variable called P, prints it on the screen,
READs the next, puts that into P instead of the last
DATA item, and so on. The # at the end of the last
DATA statement is used to tell the computer no more
DATA follows.

The computer will only read each DATA item
once. Once an item has been read, the machine
‘remembers' its position and goes on to the next one
(reading from left to right and top to bottom as you
would read a book). When it's read them all, it
considers there are no more there—and will be
confused if you try to tell it to go on looking! -

The program below demonstrates the use of
READ/DATA with strings.

s R R ST R BT T
150 CLEAR SCREEN
200 PRINT "I'm going to tell you a story."
250 PRINT
300 PRINT "Here goes!”
350 PRINT
490 PRINT
410 FOR X=1TO 5000

415 NEXT X
420 !
430 | Lines 410 and 415 merely specify an

STORING LARGER AMOUNTS OF INFORMATION
e e e e G e b i
e T e

449
450
460
470
480
450
500
515
520
525
530
535
540
550
600
650
100
150
160
g1d
820
830
840
850
855
870
873
875
880
890
900
950
1000
1050
1160
1125
1150

1200
1250

1308

1350

| interval. The DO/LOOP (558-814 1s the

' important part, Let's go round it and see
' what happens. First it READs A —which
' means it looks for a DATA statement

1 (which can be anywhere in the program),
| reads it and checks to see if

| it's "END"'. If it is, the computer

| stops looping and goes to

| the rest of the program. If not, 784

| tells the computer to print the

* string from the DATA statement

! on the screen (and put a space after it).

|

DO
READ A%
[F A§="END" THEN EXIT DO
PRINT A%;" '
FORY=1TO 588
NEXT Y
LOOP

|

| The rest of this program may look

| confusing. If you remember that the
| DATA statements are read by an

'. earlier part of the program, and that
! S0B-1100 are actually performed

| after the DATA has been read and

F put on the screen, the logic of

' the program will fall into place.

|

PRINT " THE END"
PRINT

PRINT

END

DATA Once,upon,a,time there was a,
little,computer,

DATA called, the Enterprise. It,was,
a,very,

DATA happy,computer., All the best,
programmers,in,

DATA a,land,called,England, had,worked,
all day,

DATA and, all night,for, months,to, make,
the, Enterprise,

77

STORING LARGER AMOUNTS OF INFORMATION

1490 DATA the best,computer,ever. Today,
you 're,learning,

1450 DATA to,write, BASIC,on,the Enterprise,,
Aren't,you,

1508 DATA lucky? END

There is a possible modification you could make to
this program. Try adding 18¢ DO 1128 LOOP to this
program. Then RUN it again. As you will now see, it
works fine once and then comes up with a message to
say there is no more DATA. So add line 1114
RESTORE. This will tell the computer to go back and
use the DATA again. If you want to, you can put
RESTORE 149§, which tells the computer to use the

R DATA which comes in line 140¢ and afterwards. This
makes it possible for you to choose one part of the
DATA and use it several imes over if you want to.

- Don't be confused by the fact that string DATA
does not need inverted commas. The fact that you must
tell the computer to READ AS$ or X$ tells it to look for
strings—the dollar sign is the key here. It would be
very tedious indeed if you had a long list of words to
include as DATA and you had to put inverted commas
around them all —think of it as a lucky break.

o The same applies to INPUT statements — you can
type 'yes' or ‘'no’ in response to a question put by an
o INPUT PROMPT, but yvou do not need to type inverted
commas. The computer is told by the '$’ at the end of
the variable name to accept a string.

- However, you do have to put inverted commas
around a DATA or INPUT item if you want to include a
comma in the string— otherwise the computer thinks
that the comma marks the end of the string. _

DEFINING FUNCTIONS

R e Y R i Ll e e i L e BB N
R N RN S TG e MU= e] Tt L el e IS a5 2 R oA TP s i b R I B

CALLING FUNCTIONS

A function is a kind of "‘program within a program’,
designed to carry out some specific task —a sequence
of instructions which is set aside for use whenever you

 need it, and can be utilized again and again.

As a simple example, suppose that you want a
particular message to be displayed on the screen at
various different stages of a program. You could define
this action as a function, by typing something like:

100 DEF WARNING

110 CLEAR SCREEN

120 PRINT AT 18,7: "NOW PAY CLOSE
ATTENTION..."

130 '.

140 SOUND ! Line 140 adds a

150 ! sound signal.

160 |

170 END DEF

g S 53 SO - e S S S
You always have to give the function a name (in this
case WARNING), and introduce 1t by the keyword
DEF. The definition which then follows may be one line
long or 1808 lines long, but whatever its length it must
have the words END DEF as the last line of all.

The function cannot work on its own. Type in the above
lines, and try to run them; for the moment, nothing will
happen. The function needs to be activated by the
statement CALL WARNING. Type this as line 188, and
run the program; then type the same instruction in
immediate mode. Note that the definition of the function
may come after the CALL statement —or indeed after
the END statement of the program, If, instead of line
180, you typed:

TSP i s e e S LS TN A R e PSR M S A

8¢ CALL WARNING

9@ END
S R i A ST
—the function would still work.

Whenever the computer reaches a CALL
statement, it stops whatever it is doing, finds the
function being CALLed, goes and carries 1t out, then
returns to the point in the program immediately after

DEFINING FUNCTIONS

the CALL. The diagram should make this clear.

Remember that a function is inactive as long as you
don't actually tell the computer to perform it. If the
computer 1s simply following through the sequence of
line-numbers and it comes to the part of a program
where a function is placed, it jumps over it and does
whatever comes afterwards. You cannot make a
function work without using its name elsewhere in the
program. ~

LOCAL AND GLOBAL Usually, functions will handle variables. To make them
VARIABLES do this correctly, some important rules must be
followed.
Try typing this:
T S T e P e P e S
100 DEF CUBE

118 INPUT PROMPT “Number to be
cubed: "4
120 PRINT Z: " cubed is " Z%4%4

130 END DEF
14(7 CALL CUBE
e e e e

80

DEFINING FUNCTIONS

—and after running it, add:

150 PRINT Z

_and run it again. You will then find that although the
CUBE function still works, the computer gives an error
message when it comes to line 150, Why 1s this?

The answer is that, in the present case, Z 1s what 1s
- known as a local variable. It belongs exclusively to the
CUBE function, and the part of the program outside
~ that function knows nothing about it. Since a function 1s
treated by the computer as a separate little program, it
may use its own private variables to help it perform its
task. But these private variables mean nothing to the
rest of the program; once the task has been completed,
their values are thrown away. So, at line 150 above, the
computer doesn't know what to print.

Next, renumber line 110 as 90 —to place it outside
the function. You will now find that the program allows
vou to type in a number for Z, tells you the cube of this
number, and then re-prints the number itself. That 1s,
line 150 no longer confuses it.

The reason is that by introducing Z before the
~ function is called, you have made Z into a global
variable. A 'global’ variable is one that is available to
the general 'world’ of the program.

Now add:

125 LET Z=20

- —and run the program again. What now happens is
that the function takes the number out of the 'box’
(labelled Z) in the ‘'main’ part of the program, performs
3 calculation with it and prints the result, then alters the
number itself and puts it back in the same box as
before. The '‘main program’ then prints out this new
number.

| The point to remember is that if a function contains

a line which mentions a variable, and this variable
hasn't been introduced before the function is called,
the function will treat it as a local, or private, variable.

~ If, on the other hand, the variable has been declared

already, the function will regard it as ‘global’; any new

value which the function gives to it will be passed on to
the rest of the program.
You will have read about declaring variables in

81

DEFINING FUNCTIONS

o A o T AL A AN e T LT oL BT e AR PETINE WOP A P i P A A AL e
T

82

earlier parts of the manual. (If you need a recap on
this, look at pages 24 and 75.) It was stated that,
although this is not always essential, it is best to
declare every variable you use. Obviously, declaring
variables is especially important if you are making
much use of functions.

A variable, as you know, can be declared by a
NUMERIC or STRING statement, or by the word LET
(e.g. LET A=0). In previous examples, it didn't much
matter which of these forms of declaration was used;
but their effects must be precisely understood when
you are working with functions. Inside a function, a
NUMERIC (or STRING) statement always has the effect
of creating a local variable. In the program above

(after renumbering the original line 110), try adding:
T O P S A T

110 NUMERIC Z
115 LET Z=3

You will then find that the program operates with two
quite separate Z's, one Inside the function (a 'local’ Z)
and one outside it (a 'global' one). On the other hand, if
you now delete line 110, there will only be one Z. The
LET statement in line 115 will not create a new (local)
variable, but will alter the global variable that was
introduced by line 94.

The program below contains some rather more
complex examples of functions. It's a restructured
version of an earlier program which appeared in the
chapter about decisions. Apart from showing you what
functions look like within a program, it will also

~ demonstrate that there are always several ways of

putting a program together. Some look nice, some look
horrible, some are incomprehensible, some are very
efficient and others are quite the opposite. If you look
at the program as a whole, you will probably agree
that this version of it 1s much tidier.

As long as you want the computer to print more
names on the screen, the program will not end. You

will have to type 'N' when asked, to finish it.
R T A A A R e S

100 DO

114 LET A =0

120 LET A$="""

138 |

140 '. Lines 118 and 1208 declare two

DEFINING FUNCTIONS
e e o T e T e e e e
R S e D e R o L

| 150 l ‘global’ variables, which the func-
160 ! tions will use (and alter) and then
!

170 hand back to the main program.
180 !

190 CALL MENU

200 FOR X=1TO 1508

210 NEXT X

220

230 Then comes the main program,
240 which beaqins by calling the menu,
250 and, after the menu has finished,
260 delays for 3 seconds to give you
210 time to read the screen. After you

!
!
!
1
I.
!
280 ! have made your choice from the
1
|
|
!
!
|
|

290 menu, the main program goes
300 through the CASE block, does what
310 you have chosen, and then calls the
320 ANSWER function which decides
324 whether or not the program will run
327 again.
330 .
- 340 CLEAR SCREEN
- 350 SELECT CASE A
- 360 CASE 1
370 PRINT AT 9,18:"ENTERPRISE!"
- 380 CASE 2 -
3 390 INPUT PROMPT ""Then please tell
] me your name. " :NAME$
- 400 PRINT AT 9,18:NAME$
410 CASE 3
- - 420 INPUT PROMPT “'Then please tell
o me your name. 'NAMES
- 430 PRINT AT 9,18:NAMES$
o 44§ PRINT AT 11,18: "ENTERPRISE!"
450 END SELECT
460 FOR X =1 TO 3000
. 470 NEXT X
480 CLEAR SCREEN
- 490 CALL ANSWER
o 500 LOOP WHILE A$="Y"
510 END
520 l
530 5008 concludes the main loop. If A$

550 the beginning. In effect, the
560 program does not end until you

83

!

540 ! is "'Y" the program goes back to
I
|

DEFINING FUNCTIONS

“
N g P

84

570 ! reply with ""N"' (or no, or nope, etc.)

575 | in the ANSWER function,

580 |

8590 DEF MENU

600 CLEAR SCREEN

610 PRINT AT §,18:"Menu"

626 PRINT AT 11,9:"1) Print my name."

636 PRINT AT 12,9: "'2) Print your name."

640 PRINT AT 13,9:"3) Print both of our
names."'

650 PRINT AT 16,1: '"Please enter the
number of your choice; "

660 DO

670 INPUT A

680 LOOP WHILE A<1 OR A>3 0R
A< >INT(A)

S1elY END DEF

108 DEF ANSWER

710 PRINT

720 PRINT

730 DO

740 INPUT PROMPT ""Would you like
to do that again? '":A$

750 LET A$=UCASE$(A$(1:1)

760 LOOP UNTIL A$="Y" OR AF="N"

770 END DEF

D T T
If you remove lines 110 and 120, the program won't

work any more —because the two variables whose

declarations you've missed out have become local to

the functions which contain them.

S0 far we have been using functions that are activated
with CALL statements and may produce a variety of
effects, such as inviting us to type in more data or
printing messages on the screen. We shall now look at
a rather different class of function —one which simply
has the purpose of handing back a single number to
the main part of the program,

Several functions of this kind are supplied ‘ready-
made’ by the computer. Take SQR for instance. A
program line can contain the statement PRINT
SQR(121), or PRINT SQR(P), or LET M=2*SQR (N) + L.
The function SQR calculates the square root of the
bracketed number or variable, then lets you use this
square root as part of an 'expression’ or do whatever -

DEFINING FUNCTIONS

else you want with it. You are also familiar with the
function INT. Such BASIC words give you the means to
perform, quickly and easily, calculations that you may

- need often.

Suppose you were writing a program that made
use of several 'factorial' numbers (factorial 4 means
4%3%2% 1. factorial 6 is 6%5*%4*3%2*]; etc.). There 1s no
ready-made function to calculate factorials. But if you
wanted, you could devise one by the methods you
have so far learned. You could type:

Y e L D7V T S S Y Y P PV P

100 DEF FACT

l.

! This function will take a
130 ! global vanable, F, from

I

!

!

140 the 'main’ program, alter
150 it and hand it back again.
160

170 FORY=F-1TO 1S8TEP -1

180 LET F=F*Y

190 NEXTY

1895 IFF=THENLETF=1
200 END DEF

And then, in order to print (say) factorial 13, or use

~ factorial 7 in an 'expression’, you could add:

210 LET F=13

220 CALL FACT

230 PRINT F

240 LETF=7

250 CALL FACT

260 LET NUMBER=F*1.5+3
210 PRINT NUMBER

But this, as you can see, 1s a good deal more
cumbersome than using a BASIC word like SOR,
because every time the function FACT 1s called, the
number on which you want it to operate has first to be
placed in the variable F. However, the computer offers
you ways of overcoming this limitation. Delete all of the
above, and type instead:

100 DEF FACT(X)

118 FORY=X-1TO 1 STEP -1
120 LET X =X*Y

DEFINING FUNCTIONS

DUMMY VARIABLES

86

130 NEXTY

140 LET FACT=X

150 END DEF

160 PRINT FACT (13)

170 LET NUMBER=FACT(T)*1.5+3

180 PRINT NUMBER

N 7 e Y Yt R Ty it A im T A Y P TP 51 5o b+ o =]
By doing it like this, you are making FACT into a kind
of new BASIC word of your own —which can be used
in the same ways (and just as conveniently) as you
would use INT or SQER.

The two things about the above program which are
new to you are lines 188 and 140. The bracketed X in
the DEF line tells the function to look for a bracketed
number following the word FACT in a main program
line, and automatically put that number into its own
local variable X. Line 140, in effect, assigns a value to a
variable that has the same name as the function itself,
and so allows this value to be handed straight back to
the line in the 'main’' program where the function is
mentioned (see lines 16@ and 17@). In this way, you do
without a CALL statement.

In technical terms, the bracketed X in line 108 above 1s
known as a dummy variable. It tells the function to
expect one number to be handed to it for processing.
(The final example in this chapter will show you a
function with two dummy variables, telling it to expect
two numbers.) That number may, however, be
supplied by a global variable in the main program.
Delete lines 168-180, and substitute:

160 LET A=11
170 PRINT FACT (A)

What happens now is that the function looks into box A
and makes a note (takes a copy) of the number it sees
there. It then puts an identical number into its own box
X, which it uses for its calculations —during which the
number in box X changes, but the one in box A stays
the same.

The particular way that the dummy variable works
1s seen if you alter lines 168 and 17@ to:

160 LET X=11

DEFINING FUNCTIONS

PARAMETER
REFERENCING

179 PRINT FACT (X)

You have now defined a global variable with the same
name as the function's dummy variable. But you will
find that the program still treats these two 'boxes’ as
separate, even though at the beginning of the function
a number 1s 'copied’ from one box to the other. You
could add an extra line to the function:

- 145 LET X =100

—and an extra line to the 'main’ program:

180 PRINT X

—but you would find that line 180 printed 11, not 10@.
Line 145 alters the ‘local’ X only.

You have just seen a function, using a dummy varlable,
perform a calculation with a number 'copied’ from a
global variable. But although the function handed back
a number to the main program, the actual variable
from which the copy was taken remained unchanged.

It is a different matter if you put REF (for
'reference') in front of the dummy variable —as the
following simple example will show.

This program allows you to type in two numbers —

- for A and B—and then it changes them by raising A to

the power of B, and B to the power of A:

100 INPUT PROMPT "First Number":A
110 INPUT PROMPT "Second Number":B
120 CALL POWERS (A ,B)

130 PRINT A,B

140 END

150 DEF POWERS (REF X, REF Y)
160 LET Z=X

170 LETX=X"Y

180 LETY=Y Z

190 END DEF

Line 15@ introduces two dummy variables. When the

function 1s CALLed, the value of the first bracketed
variable in line 120 is transferred to variable X, and the

- value of the second one i1s transferred to Y. This is the

same kind of thing that you have seen before, except
87

DEFINING FUNCTIONS
VISS, S5 T 1o 45 o o M e KR £ B 0 SO T e A e 2 R —
ot s S e o e el s]
that in earlier examples there was only one dummy
variable; also, since this function will hand back two
numbers (not just one) to the main program, it has to be
activated with a CALL statement.

The difference made by introducing REF in line
150 15 simply that when the function has finished its
calculations, the new value it has given to X is
transferred back into the global variable A (and Y is
transferred back to B).

The to-ing and fro-ing of values between functions
and other parts of a program is called parameter
passing. If the function has the effect of altering those
global variables (or arrays, etc.) from which it took its
numbers for processing, we call it parameter

referencing. In the last example, A and B are
reference parameters.

GRAPHICS

The Enterprise's powerful graphics can be used to
provide some impressive pictures and visual effects,
You may already have realized this from using the
demonstration cassette, and some of the programs
provided in the earlier parts of the manual show a

glimpse of the possibilities of high-resolution graphics.

In the first part of the manual, PRINT AT was
explained to you. This command made use of a system
which divided the screen up into a number of
'positions’, or iImaginary squares, so that you could
specify where you wanted something to be printed.
PRINT AT 1,1 would put a string (or a number) in the
top left-hand corner of the display.

The graphics commands use a similar system to put

~ lines and dots on the screen and enable you to make

diagrams and pictures. In this case, though, the 'screen
positions’ are much smaller. Here's a short program
which will draw a line.

S e e L 1 vy o ey B P X Ly
100 GRAPHICS

110 PLOT 649, 360; 1980, 700

120 END

27 L R A A el o S A e B SRR T D e T A 7 A

You will have come across the first statement 1n
earlier examples. The word GRAPHICS is a quick and
simple way of selecting a blank 'page’ on which you
can make pictures.

The command PLOT is used for making dots or
drawing lines. The four numbers that follow PLOT in
line 110 correspond to two positions on the graphic
page: this program draws a line from the centre of the
screen (648, 360) to a position (1008, 708) in the
direction of the top right-hand corner.

Notice how much larger these ‘co-ordinate’
numbers are than the row and column numbers used
with PRINT AT. This doesn't mean that they are
referring to a bigger area; the point is simply that the
‘graphic page' is divided into a much larger number of
very small positions, allowing you to place things far
more precisely than you could on a 'text’ page. That 1s,
the resolution when you are dealing with graphics is
much higher.

A further difference between 'graphics’ and ‘text’
1s that, on the graphic page, the 'origin’ (the position
#.,0) is in the bottom left-hand corner, and the first
number given in a co-ordinate pair is the horizontal

89

GRAPHICS

90

~ position. This follows the (x,y) conventions normally

used for graph drawing.

You will have noticed, when you ran the program,
that four lines from the normal text page were left at
the bottom of the display. This allows you to continue
typing into the computer while keeping the drawing

- visible,

This split between a standard graphics page and
four lines from the text page is provided to keep
operation easy, and always results when you give the

~ simple command GRAPHICS. It leaves you with an

area of screen for plotting that measures 1280 positions
horizontally by 72@ vertically, so that the co-ordinates of
the top right-hand corner position are (1279,719).

The two parts of the display can be cleared
separately by the commands CLEAR GRAPHICS and
CLEAR TEXT, or both together by CLEAR SCREEN.

If you type DISPLAY TEXT, the screen will revert
to a full-size text ‘page’. Similarly, DISPLAY
GRAPHICS switches back to the graphics page without

- altering anything that was on it before. Notice the

difference between these commands and the simple
words TEXT and GRAPHICS —which have the effect of
clearing the text and graphics pages.

When you learn about 'channels’ and the more
sophisticated features of the graphics, you will be free
to specify the size of your ‘pages’ and display them in
any part of the screen you choose.

Try changing the PLOT statement in the program so
that it simply reads:

110 PLOT 100, 100

—and run the program again. A dot appears on the

screern.)
Now add a semicolon after 100,18@. Then add:

115 PLOT 1000,700

— and run the program once more. it draws a line

again. Then remove the semicolon from line 118. Run
the program. Two dots appear. Why?
The answer is that the semicolon controls whether

~ the video ‘beam' is left on. When the beam 1s ‘on’, it

leaves a visible line as it plots between two points, To

GRAPHICS
P T T 4 A I S PP T 7 MR ERET ol
e T T T T e e e e e T

keep it on, the semicolon 1s necessary after a PLOT
statement.

You can think of the beam as a drawing pen. A
PLOT command, with co-ordinates, will put the pen on
the paper and plot a dot at least. To draw a line
between two screen positions, type the two pairs of co-
ordinate numbers and separate them with a semicolon.
This changes the command to read: 'PLOT a dot at
position (108, 18@) and then keep the pen on the paper,
moving in a straight line to (10@0,70@)'. If you left out the
semicolon, our imaginary pen would still move, but it
wouldn't touch the paper.

You can also use the commands SET BEAM ON
and SET BEAM OFF to put the 'pen’ on the paper or lift
it up.

Here's a measles program:

100 RANDOMIZE

118 INPUT PROMPT "How many measles? '". B
120 GRAPHICS

130 LET Z2=0

140 DO

150 LET X=RND (12789)
160 LET Y =RND (719)
170 PLOT XY

180 LETZ=2+1

190 LOOP UNTIL Z=B

200 END

That program will plot dots in random positions on the
- screen. By changing 170 to:

178 PLOT X, Y,

—vyou could change the measles to lines.

Any of the graphics commands can, of course, be
included in the definition of a function. The following
example shows, incidentally, that you can put several
screen positions in one PLOT command and draw lines
between them all:

100 DEF DIAGRAM

110 GRAPHICS
120 PLOT 504,544:564,464;516,448;504,544;
460,464;516,448

GRAPHICS

92

130 END DEF

Run this, then type CALL DIAGRAM in immediate
mode.

If you put a comma after a pair of co-ordinates, no
dot will be inserted in that position; the computer will
merely move the beam there, and turn it off. You will

see that this is necessary if you want to give the
instruction PLOT PAINT.

We shall now look at another set of commands which
enable you to draw lines. They are called 'turtle’
commands, because they were first used for
controlling a slow-moving robot animal. This time, we
don't need to work out the co-ordinates of a whole
series of screen positions.

e e e B Y S Y
100 OPTION ANGLE DEGREES

110 GRAPHICS

120 PLOT 30@,15@;

130 PLOT ANGLE 8@;

140 PLOT FORWARD 508,

150 PLOT BACK 320,

160 PLOT RIGHT 35;

170 PLOT FORWARD 420,

180 PLOT BACK 285,

190 PLOT RIGHT 146,

200 PLOT FORWARD 340

210 END
T e S e S S
You can see, sure enough, that this is rather like
guiding an animal around the screen. But some of the
program lines need a little explanation.

Line 100 tells the computer that we want to
measure angles in degrees, not radians. (A radian 1s
approximately 57 degrees, there are some
mathematical operations for which radians would be
more convenient.)

The GRAPHICS statement (line 118) has the effect
of setting the beam to (8,d) and turning it off,. (CLEAR
GRAPHICS would also do this.) So line 124 is needed,
to give the starting position from which we want the
beam (our 'animal’) to move. _

Next, we have to point the animal in the right
direction. PLOT ANGLE @ would leave it facing
horizontally towards the right of the screen. PLOT

GRAPHICS

ELLIPSES AND CIRCLES

ANGLE 90 would point it straight upwards. The PLOT
ANGLE command says: 'first consider the beam to be
facing due right, then turn it anticlockwise through the
number of degrees specified’.

A command to PLOT FORWARD or PLOT BACK 1s
followed by the required number of graphic screen
positions. PLOT RIGHT or PLOT LEFT makes the
animal change course, and is followed by the number
of degrees through which we want the beam to be
turned, relative to 1ts previous direction. You have
seen this before, in the program on page 66.

Notice that with 'turtle’ commands you still have to
use semicolons to keep the beam switched on. (Try
removing some of the semicolons from the program or
replacing them with commas, to see what happens.)

The following program plots an ellipse:

100 GRAPHICS
110 PLOT 648,250,

120 PLOT ELLIPSE 100,200,
130 END

- Line 118 gives the centre of the ellipse. The first

number after PLOT ELLIPSE is the horizontal distance
(in screen positions) between the centre and the
circumference, and the next number is the vertical
distance. If these two numbers were the same, the

- program would draw a circle, Notice the commas at

the ends of lines 110 and 120. If you missed out either
of these, the centre of the ellipse would be marked on
the screen by a dot. As it is, the program leaves the
beam In this centre position but turns it off.

" You are probably well aware that the Enterprise can

display 256 colours. Up until now, you have not had
many chances to use them. This is where you learn to
master the many hues the Enterprise can put on its
sScreer.

The following program will display all 256 colours
at once;

10@ !
110 GRAPHICS 256 | Note the number which this
120 J time has to follow

93

GRAPHICS

COLOUR MODES

94

125 ! GRAPHICS.
130 '.

140 LET Z=0
158 FOR Y =0 TO 560 STEP 8@

160 FOR X =32 TO 1052 STEP 32
170 SET INK 7

180 PLOTX, Y; X, Y+ 70

190 LETZ=2+1

200 NEXT X

210 NEXTY

220 END

TS 2 SO S S SR e -]
The Enterprise identifies each colour by a code-
number in the range @-255. For simplicity, a special
function ‘RGB’ 1s supplied to allow you to select colours
by mixing amounts of red, green and blue. This is
explained later in the chapter.

In the above program, you had to type the number 256
after the word GRAPHICS, to tell the computer to make
all its colours available to you at once. That is, you had
to select the appropriate ¢colour-mode.

Notice that in this program, the lines drawn on the
screen are thicker than those you have seen in
previous graphics programs. The point is that the more
colours you have at your disposal, the less fine your
drawings can be, This 1s necessary to conserve
memory space in the computer.

We have said that the ‘graphics’ page gives a
higher ‘resolution’ (degree of precision) than a 'text’
page. But we must now consider the further
differences of resolution that depend on which colour-
mode is being used. There are four such high-
resolution (HIRES) modes, and each gives a particular
trade-off between the number of colours you can
display and the number of ‘dots’ per horizontal row that
are made available for plotting. Here they are:

GRAPHICS HIRES 2— When this command has
been given, only 2 colours can be displayed at a time,
but you have 644 separate dots across the width of the
screen.

GRAPHICS HIRES 4— With four available colours,
you have 320 dots per horizontal line.

GRAPHICS HIRES 16— This time, there are 160
dots per line.

GRAPHICS HIRES 256— With the possibility of

GRAPHICS
e e e T T e T T T e T
e e ey e e e T e e T e T

displaying as many as 256 colours at once, you are
given 80 separate dots per line.

If you type simply GRAPHICS, the computer will
use the same mode as it did last time you gave the
command. When typed for the first time after the
computer is switched on or reset, GRAPHICS is
equivalent to GRAPHICS HIRES 4.

The number of dots vertically is not affected by the
colour mode: on the standard graphics page (with the 4
lines of text at the bottom), it is always 180.

Despite the difference in resolution, all the colour
modes use the same system of co-ordinates. In other
words, PLOT 0,0:640,360 will always draw a line from
the bottom left-hand corner to the middle of the '‘page’,
although the fineness of the drawing will vary with the
mode. (The same co-ordinate scheme could actually
be used for a resolution twice as high as is possible
even on the Enterprise.)

The Reference Section explains how the resolution
can be halved (and memory saved) by giving the
command GRAPHICS LORES. It also gives details of
the so-called 'attribute’ mode of graphics.

GRAPHICS MODES In addition to HIRES, there are two other graphics
modes.

LORES is identical to HIRES, but uses less
computer memory and provides half the horizontal
resolution. Colour modes are specified in the same
manner as HIRES, eq:

GRAPHICS LORES 16
would give a 16-colour low resolution graphics page.

ATTRIBUTE mode is a special form of video
display, which is a cross between text and graphics
modes. It can be used for character printing, or for
plotting commands, and provides 16 colours, but needs
careful handling of the ATTRIBUTES 'flag’ for most
effective use. See the reference section, page 188,

No colour mode should be specified, the command
1S

GRAPHICS ATTRIBUTE

SELECTING COLOURS Let's turn again to the 256-colour mode. In this mode
vou can draw shapes in whatever colour you like, by
preceding the plotting commands with the statement
SET INK and the code-number of the colour. Also,
before using CLEAR GRAPHICS, you can type SET

95

GRAPHICS

THE PALETTE

96

PAPER..., so as to choose the colour of the
'background’.

Expernence could teach you which colour
corresponds to which number: 18 is a light green, 91 is
bright yellow, etc. But if you want to use a particular
colour and don’'t happen to know what code-number
goes with it, there 1s an alternative way to specify it,

Every possible colour can be created by a
combination of red, green and blue. For example,
white comes from mixing all three of these colours.
Yellow is produced by mixing just red and green. (This
may surprise you, but bear in mind that mixing the
actual sources of light gives rather different results
from mixing paint.) Black 1s no colour at all. Complex

~ colours are created by mixing red, green and blue in

varying amounts.

This 1s the principle by which the colours on the
Enterprise work; you can define any colour as a
mixture, by typing the word RGBE, followed (in
brackets) by three numbers with commas separating
them. These numbers, which must be 1n the range @-1,
define the proportions of red, green and blue
(respectively) that you want to be mixed.

So SET INK RGE (1,.5,.5) would give you pink as a
plotting colour. RGB (.4,.4,0) is a dull yellow; RGB
(.6,.6,.4) 1s a shade of grey, and so on.

The 8 colours below can be selected very simply,
by just typing their names (e.g. SET INK GREEN). Here
are the 'mixtures’' to which they correspond: —

BLACK = RCB (0,0,0)
RED = RGB(1,0,8)
GREEN = RGB (9,1,8)
YELLOW = RGB(1,1,0)
BLUE = RGB(®,9,1)
MAGENTA = RGB(1,4,1)
CYAN = RGB@®,1,1)
WHITE = RGB(l,1,1)

If you give the command GRAPHICS HIRES 16,
restricting yourself to 16 colours on the display at any
one time, you still have considerable freedom to
choose which ones they will be. You do this by
specifying a ‘palette’ —a list of selected colours which
are to be made available for drawing.

First, type SET PALETTE, then list eight of the

GRAPHICS

#
#

colours that you want to use. These can be freely
chosen from the full range of 256, and you can specify
them by their standard code-numbers, by their names
(if they are in the above list), or by defining them as a
‘mixture', For example, you could type:
T Y Y L N P ek
100 SET PALETTE 67,31, WHITE,

4 RGB(®@. 3,8 RCB(.7,.7,.1),

187,150
[ey e T T Y
_ and these colours would then be numbered §-7 in
your '‘palette’.

For your remaining eight colours, you have less
freedom of choice. The colours numbered 8-15 In your
palette all have to belongto a single group of related
colours. You select them with the command SET BIAS,
followed by any number belonging to the group that
you want. For example, if you typed SET BIAS 67 (or
any other number in the range 64-71), then the colour
with the standard code-number 64 (the first in this
group) would become number 8 in your palette;
standard number 65 would become palette-number g
and so on. You can imagine that, with SET BIAS, you
are specifying the 'filter’ or the ‘wash’ to be laid over
the 'Telextext primary’ colours,

You can now select any colour in the palette to
make the ‘ink’ for plotting the next line or shape. An
important point is that, if you are not using the 256-

~ colour mode, any command such as SET INK 6 or SET

PAPER 6 will refer to the colour listed as number 6
within the palette, not the one with 6 as its standard
code-number. Also, don't forget that the numbers in
the palette count upwards from @, not from 1.

In the 4-colour mode, only the colours numbered
-3 in the palette can be used, so there is no point in
listing more than four coloursin a SET PALETTE

~ command. Similarly, in the 92-colour mode, you will only

want to specify palette colours @ and 1.

Sometimes you may want to alter just one colour in
the palette, while leaving the rest as they are. This
example alters palette colour 3:

SET COLOUR 3, 110

You can also, of course, use any of the modes
without actually bothering to select your palette. If

971

GRAPHICS

nothing is specified by you, the computer wil] always
use certain pre-programmed ‘default’ colours.

USING THE PALETTE Remember that if you alter the set of colours in your
palette, this will affect not only the lines and shapes
that are to be drawn afterwards, but also those already
on the screen. This ability to change all colours on a
display with only a single command forms the basis of
some of the most dramatic and fast-mcving graphic
effects,

In the following program, which creates ellipses of
random sizes and colours, we shall start by making all
the palette colours the same; so a line drawn in 'ink’ of
colour number 2 will look no different from one drawn
in colour 3, and both will be distinguishable from the
‘paper —the drawing will, in fact, be invisible. Then,
when a key 1s pressed, the drawing will stop, and by
repeatedly varying the contents of the palette, the
program will make the different 'inks' change colour
and stand out against each other and the background.

‘The program ends with an infinite loop —it will
never finish unless interrupted. To halt execution,
press the 'stop’ key.

T T T T S
100 RANDOMIZE

140 GRAPHICS HIRES 4

150 SET PALETTE BLUE,BLUE,BLUE,BLUE

160 !
170 E Invisible display.
180 |
190 DO
200 SET INK RND*3+1
210 PLOT 625,338,
220 PLOT ELLIPSE RND*50@, RND*300,
- 230 LOOP WHILE INKEY$="""
o 240 ! .
250 ! When key is pressed, show display.
- 260 !

a10 DO

) 280 SET PALETTE BLUE,BLUE,RED,GREEN
290 |
300 FOR X=1TO 508 ! Delay for
319 NEXT X | nearly 1 second..
320 1.
330 SET PALETTE BLUE,RED ,GREEN,BLUE

340 FOR X=1TO 580

98

GRAPHICS

PLOT PAINT

350 NEXT X

360 SET PALETTE BLUE,GREEN,BLUE,RED
370 FOR X=1TO 500

380 NEXT X

390 LOOP

400 |

410 ! Use 'stop’ key to halt program.
420 !

S S T e S
Note, by the way, that the PALETTE, INK and

PAPER commands can also be used if you are working

with a ‘text’' page. The 'Video Options' chapter in the

Reference Section gives details of this. Try the

following expenments:

SET £102: COLOUR 1, MAGENTA

SET £102: INK 3

This instruction fills a solid shape with the current ‘ink’
colour. Here 1s a program which will draw one circle
imside another and then paint in two different colours:

e o PTIAP F h BF 7 AT 5 LTt T L N A T Dol L L A Mo

100 GRAPHICS HIRES 4

118 SET PALETTE WHITE, YELLOW, BLUE
120 PLOT 400,400,

130 PLOT ELLIPSE 208,200,

140 PLOT ELLIPSE 80,80,

150 SET INK 3

160 PLOT PAINT

170 PLOT 418,258,

180 SET INK 2

190 PLOT PAINT

- 200 END

So the area filled in by PLOT PAINT is one which

 currently contains the 'beam’ and is enclosed by a

continuous line of a different colour from the beam
position. Any gaps In the line will mean that the

~ painting will go outside the shape and try to fill the

whole screen. Notice the commas at the ends of
program lines 130, 140 and 170; we had to prevent a
dot from appearing in the beam position, since
otherwise PLOT PAINT would have painted this dot
only.

~ LINE STYLE allows you to plot with various kinds of

broken line. For example, if you type SET LINE STYLE
99

GRAPHICS

“
“

PAGES AND CHANNELS

10, all the lines drawn (until the style is re-set) will be
made up of long, closely-spaced dashes. SET LINE
STYLE § gives you lines of alternate dashes and dots.
There are 14 line-styles (numbered upwards from 1) for
you to experiment with.

With the command SET LINE MODE, you can
determine how lines plotted on the screen will interact
with shapes that are there already. In line mode @ (the

~ 'default’), any new line will simply 'overwrite’ lines or

shapes previously drawn. In other modes (numbered

~ 1-3), the old and new 'inks’ on the page will combine in

various ways to determine the plotting colour; the
Reference Section gives further details.

So far, you have been using the command GRAPHICS
(or TEXT) to create a blank '‘page’' onto which you can
draw (or write). Most of the time you will probably find
this arrangement adequate, but as you become more
experienced you may wish to make use of the greater
flexibility that comes from specifying ‘channel’
numbers (normally in the range 1-10@) for your various
text and graphics ‘pages’. The following should be
read in conjunction with the chapter on 'Channels’ and
the relevant parts of the Reference Section (see e.qg.
‘Video Options' and the keyword OPEN).

There are two main advantages in opening new

- ‘channels' for your pages:

100

(1) several different pages, containing complex
drawings or text, can be kept in the computer’s
memory at once; any of them can then be displayed by
a single command.
(2) You can specify the size of a page. So you can make
a graphics drawing fill (almost) the whole screen (but
note that you cannot use the 'status line' at the top); or
you can save memory by making the page small. You
can choose the vertical position on the screen for
displaying the page or a part of it.
The following example creates a small text page

and shows it in the middle of the screen:
R T T S T P

50 oET BORDER CYAN
100 SET VIDEO MODE #
110 SET VIDEO COLOUR @
120 sET VIDEO X 20
130 SET VIDEO Y 10
14 OPEN £1: "VIDEQO:"

GRAPHICS

150 DISPLAY £1:AT7FROM 1 TO 18
160 PRINT £1: " A small text page...”
170 END

Line 140 assigns channel number 1 to our new video
" page. But the 'video mode’, ‘colour mode’, and page
dimensions have to be specified before this 1s done.
Video mode @ is a 48-column text page; mode 1 is a
graphics page; mode 2 1s 8@-column text.
VIDEO COLOUR selects the colour-mode,
according to the following convention:

VIDEOQ COLOUR @ — 2-colour mode
VIDEO COLOUR 1 — 4-colour mode
VIDEQ COLOUR 2 — 16-colour mode
VIDEQ COLOUR 3 — 256-colour mode

A text page should always be in colour mode @; this
still allows you some choice of colours.
Lines 120 and 130 give the width and height of the
page, in ‘character positions’.
Line 150 is an instruction to put the top part of the
page (measured as 10 character-rows) onto the
" display, starting from screen row 7. In this case, of
" course, it displays the page as a whole.
Notice that the PRINT command in line 168 has to
include the channel number.
The height specified for the page can, if you like,
be greater than the height of the screen. (The
. maximum is 255 character-rows.) The following
program defines a page measuring 8 columns across
" by 30 rows down, and plots an ellipse on it; then two
segments, containing the bottom and top portions of the
drawing, are displayed in turn.
T T R e Ty e e e
100 SET VIDEO MODE 1
110 SET VIDEQ COLOUR 2
120 SET VIDEO X 8
130 SET VIDEQO Y 3¢
1409 OPEN £1; "VIDEO:"
150 PLOT £1:128,5448,
160 PLOT £1:ELLIPSE 115,509,
170 DISPLAY £1:AT 18 FROM 21 TO 30
180 FOR X=1TO 1500
190 NEXT X
200 DISPLAY £1:AT 18 FROM 1 TO 10

101

GRAPHICS

102

A END

The next example defines 3 ‘pages’ and displays
them simultaneously in different parts of the screen:

100 SET VIDEO MODE @

110 SET VIDEQO COLOUR #

120 SET VIDEO X 42

130 SET VIDEO Y 8

140 |

150 CPENE£L: "VIDED:] Text page.

160 !

170 SET VIDEO MODE |

180 SET VIDEO COLOUR 3

190 !

ALY QPEN £2; "VIDEQ:" | 256-colour graphics.
|

a2 SET VIDEO COLOUR 1
230 |

249 OPEN £3: "VIDEQ:" ! 4-colour graphics.
250 |
260 DISPLAY £1: AT9FROM 1 TO 8
270 DISPLAY £2: AT 1 FROM 1 TO 8
280 DISPLAY £3: AT I[7TFROM 1 TO 8
290 PRINT £1: "'"Text..."

300 SET £2: BEAM ON

310 PLOT £2: 100,100

320 SET £3: BEAM ON

330 PLOT £3: 100,100,

340 END

After running this, you won't be able to see what
your are typing. Type TEXT or press function key 5 to
return to normal.

Note that every '‘page’ has its own 'palette’,
although a SET BIAS command will be applied to all
pages.

The use of channel numbers enables you to draw
or write on a page even if it isn't currently displayed. It
also allows characters to be printed on a grahics page,
at the current 'beam’' position. For example, if channel
3 has been opened as a graphics page, you can type
something like:

GRAPHICS

SET BORDER

PLOT £3: 648, 50 /
PRINT £3: '"Hello" :

— and the string will be added to the page, whether ﬂx:rr
not it is at present on view.,
|
As used in the first example of this section, you can
select a colour for the border round the whole visible
display —the 'desk' onto which the various text or
graphics 'pages' are placed, The SET BORDER
command is independent of all 'palette’ commands
(which only apply to particular pages), so this colour
must be set by specifying a standard code-number, a
colour name, or a 'mixture’. For example, SET
BORDER 255, SET BORDER WHITE or SET BORDER
RGEB (1,1,1) will give a white border to the whole
display.

If channel 181 (the channel of the standard
graphics page) is not open when the border colour is
set, the command must be given with a suitable
channel number (usually £102, the number for the
standard 'text’ page)—e.qg. SET £182: BORDER 116,

103

THE CHARACTER SET

e T e e e T T I
L L T R

~ The Enterprise is provided with a pre-defined group of

characters which make up the standard character set.
This follows the International Standards Organisation

~ (ISO) character definitions, but is commonly referred to

as ASCII—which stands for American Standard Code
for Information Interchange.

Each character in the character set has a code-
number in the range between 32 and 158. You can
refer to a standard character by its appearance, as in
PRINT “N", or you can refer to it by its code. PRINT
CHR$(78) is the same as PRINT "N''—try them both.

The computer uses these codes to refer to
characters inside itself, but you won't need to see how
it does this until you become really advanced. As a
simple explanation: if, for example, you press a key on
the keyboard —say it was ‘a' —the computer will
receive a signal to tell it that this key has been
pressed, register instantly the code for the character
(not the shape), send that code to the part of the
computer which controls the screen and translates the

~ code into the detalils for displaying the character —
~ which will then appear on the display.

As far as you are concerned, all that happens is
that you press a key and the character appears at the
same time, This is an example of how fast a computer
works, especially when you consider that the operation
described above is actually far more complex; each
phase of that task is broken down into far smaller
operations.

Here is a program which will print out the whole
character set and then allow you to type in a character
for which the ASCII code will be printed:

I T T i S
100 FOR N=33TO 159
110 '.
145 ! There are 128 pre-set characters.
130 | This FOR/NEXT loop allows you to
|
!
|

140 miss out the 'control’ characters,
158 which are @ to 32 (32 is 'space’).

160 '

170 PRINT CHR$(N),

180 NEXT N

190 DO

195 DO

200 INPUT PROMPT '"Type a character

104

and its code will appear: ":.C}

THE CHARACTER SET

e e T Y N O e W e P R o PO B s R W P Y 3 ARV
R T e g PR i L Ty O e P Y e P PO P g v DR

DESIGNING YOUR
OWN CHARACTERS

- 224

210 [F LEN(C$) > 1 THEN
220 PRINT "'Only one character at a
time, please!"”
2o 1 |
220 The small IF block (218-235)
223 makes sure you do not type in
more than one character. Notice

i
|
|

225 | that throughout this program, DO
'.
'.
|

226 LOQOPS control it. LEN gives the

227 length of a string (line 218).

228 . -

235 END IF

240 LOOP WHILE LEN(CE) > 1

250 PRINT''The ASCII code for "";C$

260 PRINT "is:"";ORD(CS)

261 L

262 | ORD gives the ASCII code for a

263 | character.

264 ! ™

265 DO

210 INPUT PROMPT '""More characters,

v/n? A

280 LOOP WHILE A$ <> "y" AND Af <>
! -

290 LOOP WHILE A$="y"

300 END

B V' s BB PTG MR Y L0 ol A O T AT P
As yvou can see, ORD and CHRY are opposites. ORD
gives an ASCII code for a character and CHR$ will
print a character for an ASCII code.

Now you've read about ASCII codes, a few words on
making up your own character shapes are appro-
priate, For each ASCII code, the computer recalls a
shape from its memory — but you can re-define this
shape.

Imagine a character is made up of nine rows of
eight little lanterns. To form a character shape, some
lanterns will be lit and others will not. This forms a
pattern of tiny dots which are so small and so close
together they appear to join up. So to design or
redesign a character, it's helpful to draw a square grid
of 8x 9 spaces. Then you can form a character by
putting dots in the appropriate squares.

Now, to program this information into your
computer you need to imagine all the dots are ls and

105

THE CHARACTER SET

106

all the blanks are @s. By looking at each row you can
put together a sequence of @s and 1s. The program
below designs a little character and then prints it.

100 NUMERIC N (1 TO 9)
110 '
120 A standard character is 8 dots wide and

J
!
130 ! 9 rows deep. So each row is defined by
140 ! an elght-digit number. A series of nine
!
!
!
|

150 such numbers makes up the definition of
160 the character. Lines 28(-30@ store these
170 numbers in the array N.

180

190 DATA 90111119

200 DATA 019000001

210 DATA 01910161

a2 DATA 01900081

230 DATA 00100019

240 DATA 00010100

250 DATA 00001000

260 DATA 000000GE

279 DATA 00000000

280 FORROW=1TO 8

290 READ N (ROW)

300 NEXT ROW

319 SET CHARACTER 63,BIN (N(1)), BIN(N(2)),
BIN(N(3)), BIN (N(4)), BIN(N(5)), BIN(N(6)),
BIN(N(T)), BIN(N(8)), BIN(N(S))

|

320 J
330 ! BIN tells the computer to treat the 1's
340 ! and @'s as binary digits.

350 ' i

360 PRINT "?"

379 PRINT CHRS$ (63)
380 END

Line 310 is the statement which stores the information
for your character. What you have done is re-defined
the question mark! The number 63 is the ASCII code,
and all those @'s and 1's are the lights and blanks (or
dots and spaces) from which the character is formed.
The character is then printed by the command PRINT
"?'" or PRINT CHR$(63). Also, try typing the question
mark in immediate mode.

Once you have run a program which redefines
characters, you can still print those characters until you

THE CHARACTER 5ET

R T e T et PO ey L e T LT Tyt T e IR L A0 LTS
O T et T TR L0 FPAE i e © WA S b b S A AU £ e T TR W B b i T R i

type CLEAR FONT, press the 'reset’ button twice in
quick succession, or switch off the computer.

It's easy to see how much fun you can have with
these user-defined characters, as they are known. You
could redesign the entire alphabet, for instance,
Programming in gothic or italic script could introduce a
whole new dimension to your computing activities!
Space games will be all the more vivid for a few
custom-made aliens (you could make one creature out
of several characters, by printing them all together).
The demonstration cassette contains a program which
gives you several characters ready-made and another
one which allows you to do your own and save them on
the cassette.

107

SOUND ‘N’ RHYTHM

Sound effects are a valuable asset to most programs,
especially games. '‘Serious' programs can use noises
as signals. Games are much more absorbing for the
addition of a few timely and appropriate sounds.

The Enterprise offers you the possibility of listening
to the sounds in stereo—on headphones or through
your hi-fi. If you want to do this, and you don't like the
built-in mono loudspeaker to be heard at the same
time, you can silence it by typing SET SPEAKER OFF
or pressing ‘shift’ with function key 7.

Control of the sounds is provided by two BASIC
keywords. These are SOUND and ENVELOPE. A
SOUND statement gives the computer general
information about how long a sound 1s to last, what
pitch it will begin from, what its maximum volume will
be, and certain other points. An ENVELOPE statement
1s a set of instructions specifying in detail the variations
of pitch and volume that the sound will undergo during

~ the time 1t is being played.

THE SOUND The following 1s an example of a SOUND statement:
STATEMENT A UV U PN S THL A AC P i =~ =0 %]
180 SOUND PITCH 40, LEFT 127, RIGHT 191,
DURATION 208, ENVELOPE 108
o T T T T T T T e T
Let's consider one by one the various items (divided
from each other by commas) that the program line
specifies.

First, the number after PITCH states how high the
note will be when it begins to be played. This number
can, in theory, be anything from @ (which actually
would make the sound almost inaudibly low) to 127.
The range in which good results are normally obtained
goes up as far as about 83. Within this range, each
increase of 1 will raise the sound by one semitone,
Pitch value 37 is equivalent to 'middle C'. If no pitch
value is stated, 37 is used as the ‘default’,

The next item in the series determines the volume
of sound that will be sent to the left speaker. The
number after LEFT must be in the range 0-255. If LEFT
@ is specified, the speaker is silenced. LEFT 255 (which
~ is the ‘default’ value) permits the sound to rise to the

loudest volume that the machine can produce —subject
to the further instructions contained in an 'envelope’. In
the above example, LEFT 127 means that the sound
sent to the left speaker will never rise above half-

108

SOUND ‘N' RHYTHM

R LA v NG 3 T AT AR 0 s i PO S U AR YR S
IR T T P DT U T < S ESES T P THMA RS R I ST R0k ST L . OE PSSy R PP Rp, £ Py W PR ey

ENVELOPES

volume, whatever the envelope may stipulate.

RIGHT similarly gives the maximum volume for the
right speaker. In our example, this speaker 1s set at
three-quarters volume.

The number after DURATION measures the length
of the sound, in 'ticks' —one tick i1s one-fiftieth of a
second, so in this case the sound will last for 4 seconds.
(The default is 5@ ticks.)

ENVELOPE refers to the number of the

- ENVELOPE statement which is to be used in

conjunction with this SOUND statement. There 1s one
built-in envelope, numbered 255, which is used by
default; valid numbers for your own envelopes are in
the range 8-254,

Note that all these items following the keyword
may be arranged in any order. There are some more
things that can be added to the list; we'll come to them
later. Since in all cases there are 'default’ values, the
word SOUND will, of course, produce an effect if used
just by itself.

This is an example of an envelope:
T s N CR N Y T S D B T
9@ ENVELOPE NUMBER 18,2, 8, 63, 58; 8, 24,
- 16, 19@; -5, 417, -39, 50
R e A T T e e T
Once again, the keyword is followed by a fairly long
list of data.

To begin with, NUMBER 10 identifies the envelope
so that SOUND statements can refer to it (see above).

Then comes a semicolon, followed by a batch of
four numbers (separated from each other by commas).
These numbers define the changes that the volume
and pitch will undergo during the first ‘phase’ —the
first portion of the time which has been allotted for the
sound (in this case, the phase lasts one second),

The first number in the batch signifies that during
this period the pitch will rise by 2 semitones from its
starting value as given by the SOUND statement.
Instead, — 1.5 would lower the pitch by three quarter-
tones; @ would give a constant pitch; etc.

The next number (8) specifies the change in
volume, for the left speaker. In an ENVELOPE
statement, a unit of volume is equal to one sixty-fourth

 of the maximum permitted for the speaker—1.e. one

sixty-fourth of the volume laid down in the SOUND
108

SOUND 'N' RHYTHM
Y AP P A A NS OS R S e T3 eS ECO SMEs £0o- y
e T e ———

statement. The number 63 will always raise the volume
to the maximum, while —63 will reduce it to silence
(any overshoot 1s 1gnored).

At the very beginning of its duration, the sound has
of course no volume at all. So, in our example, the
volume of sound sent to the left speaker will rise,
during the first phase of the envelope, from zero to one-
elghth of the maximum.

The third number in the batch (47) has a similar
purpose to the second, only it applies to the right
speaker.

The SOUND and ENVELOPE statements work
together, then, to produce two values for the volume-
level at any particular moment —one value for the left
and one for the right speaker. Note that if you aren't
using stereo equipment, the volume at any time will be
decided simply by adding together the two separate
values,

The fourth number in the batch (50) specifies how
much time this first phase of the envelope will take.
Here again, time is measured in 'ticks’; fifty ticks are
equal to one second.

Then we come to another set of four numbers,
following another semicolon,; these work in the same
way as the first batch, except that they define what will
happen in the second phase of the envelope.

Then four further numbers (again with a semicolon
in front of them) define the third phase.

If you type in and run the two program lines we've
been looking at, they will combine to produce a sound

that can be represented by this pair of graphs:-
PHAGBE | FHAGE 2 PHASES

| L |8 i

MAX VOLUME

FOR MACHINE

YO LU —

i I) 3 4
TIME (SECONDS) s

110

SOUND 'N' RHYTHM
e e e e e e e e e e T e e e
“
PHASE] PHASEZ PHASE 3

1 1T 10 1

3

PITCH VALV S m—t
Lk
L]

— o i | 2 1 4
TIME (SECUNDS) s

Sounds can be much more complex than this, of
course. We shall later see how an envelope can be
defined with any number of phases up to 255.

Remember that all instructions contained n an
envelope are relative —their results depend on the
volume range and initial pitch that the SOUND
statement specifies. The same envelope may therefore
be used with a number of different SOUND statements.

Remember also that the envelope must be defined
~ on a program line that is executed before any sound
statement referring to it.

SOUND QUEUES Playing a sound doesn’t hold up any other activity that
the computer has been told to perform. In the following
program, print and graphics commands are carried

out with sounds as an accompaniment:

A I A A DS A PSR
109 ENVELOPE NUMBER 28; -2, 63, 63, 188, -3,

@ @ 102 3, -36, —36, 100; 2, - 12, 12, 100, ,
g, 06, 108

110 SOUND PITCH 61, LEFT 285, RIGHT &,
DURATION 500, ENVELOPE 2@

120 CLEAR SCREEN

130 PRINT AT 18,5: "' A graph will presently be

drawn''

ol 140 PRINT AT 11,5: "'to represent the envelope
that"

- - 150 PRINT AT 12,5: "'these sounds are using.
Volume"

160 PRINT AT 13,5: “will be indicated by the blue"
111

SOUND 'N" RHYTHM

L N R —
Py AR AT Y T T 71 5P TP AT I e M ST Y A Ty 2B 0 DU DA MR TURY SRRk 2 T

RELEASE

112

170 PRINT AT 14,5; "area, pitch by the yellow
line."

180 SOUND PITCH 43, LEFT 127, RIGHT 127,

DURATION 200, ENVELOPE 20

|

190 .
200 | The sound in line 184 will stop after
210 ! the first two phases of the envelope.,
220 |

233 FOR X=1TO 2000

- 240 NEXT X

250 SOUND PITCH 25, LEFT @, RIGHT 285,
DURATION 589, ENVELOPE 26

264 GRAPHICS

270 PLOT @, @; 258, 540; 508, 549; 750, 270; 1049,
18@; 1250, 180; 1250, 8, 8, @

280 PLOT 100, 20,

290 PLOT PAINT

300 SET INK 3

310 PLOT B, 450; 250, 350: 500, 10@; 756, 350: 1000,
45@; 1250, 450

3200 END

e T T T T T T e e S e A N

Atline 110, the computer registers your instructions

and starts to play the sound; but it doesn't wait for this

sound to finish before going on to the next program

line. The sound from line 11@ carries on while the

computer i1s printing its message on the screen (lines

130-17@). At line 188, a further SOUND statement

occurs. What happens now is that the computer will
register this statement and will aim to play the new

- sound as soon as the old one finishes—in other words,

the sound specified in line 120 is placed in a 'queue’
behind the sound from line 11@. Similarly, at line 258,
the third sound is put at the back of the queue behind
the second one. The graph (lines 2608-310) is now drawn
while one sound follows on after another.

The Enterprise allows one or more phases at the end of
a sound envelope to be treated a little differently from
the rest. These phases are preceded by the word
RELEASE. Conventionally, the 'release’ stage of an
envelope means a period when the sound is allowed to
tail off —when it has effectively finished and only its
residual effects are wanted.

SQOUND ‘N' RHYTHM

INTERRUPT

Take this example:

o T e e ey
108 ENVELOPE NUMBER 4;. 1, 63, 48, 5; —. 3,

—-32, =20, 28: 2, 0, 8, 25: RELEASE; 8, - 16,

- 10, 13; @, — 15, - 18, 15;
T e
Here, the three phases before the RELEASE stage take
a total of one second, while the two RELEASE phases
take half a second.

The difference between the non-RELEASE and
RELEASE phases is this: if the ‘duration’ specified in
the SOUND statement runs out before the non-
RELEASE phases have finished, they are cut short; but
the RELEASE phases are carried out even when the
‘duration’ i1s over, provided that no other sound is
walting in the queue.

So if DURATION 25 is specified in a SOUND
statement that uses the above envelope, the third
phase will not be carried out; the computer will jump
straight from the second phase to the RELEASE
phases—or to the next sound 1n the queue, if there 1s
one.

In the case of DURATION 6@, on the other hand,
the computer will execute the three non-RELEASE
phases and the first RELEASE phase —and will then go
on to the next sound if there 1s one waiting.

In the case of DURATION 188, all phases will be
carried out, and there will be a pause of half a second
before the next sound begins.

You have now learnt the essentials of controlling the
sounds, but you still have several interesting features
to explore. For example, you can make one sound

 interrupt another. Go back to the program that drew a

graph with sound effects in the background. Remove
lines 138-170, 230-240 and 260-31¢, and insert instead:

. 260 ENVELOPE NUMBER 30; 8, 63,63, 1,0, 0, @, 24

270 PRINT "'Press i when you want to interrupt this

sound."
280 DO
290 LOOP UNTIL INKEY$=""1"

- 300 SOUND PITCH 37, LEFT 255, RIGHT 285,

DURATION 25, ENVELOPE 30, INTERRUPT

The inclusion of INTERRUPT in line 388 means that
113

SOUND 'N' RHYTHM

“
“

SOUND SOURCES

114

when this line is reached, the sound that is being
played will be cut short by the new one—and anything
walting in the queue will be disregarded.

It is possible to play more than one sound at once. The
Enterprise incorporates four sound sources, each of
which can have its own independent ‘queue’ of sounds.
To put a sound into the queue for (say) tone
generator 2, all you do is include SOURCE 2 in your
SOUND statement. The tone generators are numbered

~ B-3. Number 3 is the so-called 'noise generator’ (which

ignores pitch values). So far, you have only been using
tone generator @, which is the 'default’ source.

When playing various sounds together, you will
naturally want to ensure accurate synchronization
between the different sound sources. By putting the
instruction SYNC into a SOUND statement, you can
make one sound begin at precisely the same moment
as another —or two or three others, depending on the
number inserted after SYNC.

Type in a number of SOUND statements, sharing
them between SOURCE #, SOURCE 1 and SOURCE
2—1.e. make three separate ‘queues’. To the first
program line in each queue, add the instruction SYNC
2, so that it will look something like this:

e T T e —

120 SOUND PITCH 48, LEFT 255, RIGHT 127,
DURATION 208, ENVELOPE 8, SOURCE 1,
SYNC 2

T T SR

When the lines are run (assuming that you have
entered suitable envelopes too), all three sound
queues will start up at the same moment.

To be precise, the instruction SYNC 2 says: 'When
this sound comes to the head of its queue, hold it up
until two more new sounds in other queues are ready
to begin.' This means that when one other sound is
ready, it too will automatically be held up—until a new
sound comes to the front of the third queue, when all
three queues will start moving together.

The command CLEAR QUEUE, followed by the
number of a tone generator, will silence any sound
currently coming from this source and clear away
anything waiting in the queue, Note that a SOUND

- statement with an INTERRUPT instruction will not

break off any sounds that are coming from other

SOUND ‘N' RHYTHM

T Ty e T T T B M A T Vs e L o W Ll R T PR Ll L
P T T e e T P e Y G e e e S U Y LR NP LY,

MORE COMPLEX
SOUNDS

‘sources’.

Unless instructed otherwise, the computer assumes
that all your sound envelopes will contain between |
and 20 'phases’. However, if (for example) you want to
define envelopes with up to 25 phases, you can type:
T L ST P ST v e P I T P IO .
100 CLOSE £183

110 SET SOUND BUFFER 25

120 QPEN £183: "SOUND:"

o I S S N T WP S R PSP
—and the computer will make available the extra
memory space for the purpose. The above lines close
and re-open a ‘channel’; for an explanation of how
channels work, see the separate chapter on the topic,
and also the Reference Section (under the keyword
OPEN). Channel 103 is the normal 'default’ channel for
sound output.

The number of phases specified by the SET
SQUND BUFFER command can be anything from 1 to
255, although in practice the complexity of an envelope
is limited by the maximum length of a BASIC program
line (250 characters). SET SOUND BUFT'ER only affects
a channel which is opened subsequently, not one that
is open already —which is the reason for lines 100 and

- 120 above.

Lastly, a SOUND statement may contain the word
STYLE followed by a number in the range @-255.
Experimenting with the effects of different sound styles
is particularly interesting when you are using the
'noise’ generator (sound source 3). For this, see the
Reference Section under the heading ‘Sound Options'.

115

MAKING PROGRAMS OUT OF PROBLEMS
e
e T

THE PROBLEM

We've spent a lot of time dividing programming into
different sections and dealing with these one at a time.

We haven't yet concentrated on how a task should
be looked at in terms of the way a computer works, or
how to put tasks into a program in such a way that you
will find it easy to understand long after you have
written it. We'll deal with that now.

The problem used here is easy to understand
because it’s a simple one. Once you have grasped the
principle of planning programs, more and more
complex problems will seem easier to solve,

We'll deal with the problem of working out how much
less it would cost you to buy goods with a percentage
reduction on them,

To solve this problem, you need to know only two
things: the original price and the percentage by which
the shop is offering to reduce it. From these two figures
you can easily work out the amount by which the price
1s being cut and the price you will actually have to pay.

The first thing to do when you are writing a
program 1s to decide exactly what you want it to do, In
this case the program will:

(1) take two numbers which you type in, old price and
percentage;

(2) determine what sum (in pounds) is equivalent to the
percentage of the price;

(3) subtract the discount from the old price to work out
the real price, and

(4) tell you what the results are, and ask you if you want
to do the same with any other prices.

That's simple enough. The next stage is to decide
how the program should do the job. There are always
various ways of putting a program together, but there
are some useful general principles.

MODULAR PROGRAMS A tidy, well-written program should be modular—with

116

clearly structured and interconnected parts. The
reason for this is that you will definitely need to
understand the program once you've written it. There's
no point in writing line after line of BASIC if you want to
change something later and can't understand the
program.

The best way to look at it is that your main aims In
writing a program are to make it work correctly with as
little effort as possible and to be able to understand it

MAKING PROGRAMS OUT OF PROBLEMS
e L T S S|
R N e R Y L T S A SR ST

| quickly once you've finished. The more clearly you

write the program, the easier it will be to sort out both
the 1nitial problems and the shortcomings of the
program which become evident once it has been in
use for some time.

The order of a modular program looks essentially
like this:
(1) global variable declarations;
(2) the main (controller) program;
(3) an END statement (which marks the point where the
computer will stop running the program, it need not be
the final line in numerical order)
(4) functions which handle parts of the main task;
(5) DATA statements if used (these can also come
towards the beginning).

Following a structure like this will make it much
easier for you to write a complex and efficient
program. It will make it less time consuming (and at

times frustrating) if, for instance, you know exactly
where to put, and later look for, a function.
THE PROGRAM Global variables (i.e. those used throughout the
ELEMENTS program) should come first; this is because, if the
R computer reaches a line containing a variable which
you haven't declared, it may stop working through
failure to understand the program. So if you declare
them all together at once and right at the start, you
won't have to worry about them any more. You also
have all the important variables together at once, so
you know which one 1s which.

The other type of variable 1s local, which 1s one
used in a function and only within that function. Those
do not need declaring until the function 1s written —and
then they should be at the beginning of 1it.

The main program should then come second, for
two reasons. In the first place, a program 1s easier to
write if the part which controls all the other parts
appears towards the beginning. Secondly, you can
look near the top of the program, even some time after
you've written it, and just read the main program to
remind yourself of what it all does. The main program
will also use some, if not all, of the global variables,
which should be declared before they are used.

The main part of the program calls sub-programs
and values from functions. A function can be thought of
as a black box. The main program puts numbers or

117

MAKING PROGRAMS OUT OF PROBLEMS
10 40 U Mo TR 5 T Yt AL AR M S Y LR AIAL L S OGN 8 5 . 3
A A M VA W WO+ R SO0 M TR TR O F DS R VPN SF 1= 21t]
strings into the black box, which then feeds new ones
back.

Each function can also be dealt with as a separate
program. It can contain its own functions at a lower
level. This allows programs to be designed with a
clearly understood hierarchy.

DATA statements don’t necessarily need to come
at the end of a program, but they all ought to be in the
same, fairly obvious, place. It can be fiddly to search
through a lot of them or count how many there are.
Putting them all together saves time spent searching
for them if one 1s wrong.

DATA statements can also be used within a
function, as long as they are local to that function.

The END statement, of course, marks the end of the
main controller program. As mentioned earlier in this
chapter, 1t i1s not always the last line of a program.
Where functions or subroutines are used, the computer
Jumps out of' the main program to use them, rather
than working through in sequential order. The END
statement should therefore be in the place where the
controller program would actually finish.

Lastly, remember lo include plenty of comment
lines 1n all your programs, broken up so they are
prominent. Some of the programs in this manual
contain far more comments than lines of BASIC. The
comments are there to make sure you know exactly
what the program is doing. They allow you to explain In
English anvthing which might be obscure when you
look back at the program at a later date.

Please don't think that programming is all about
obsessive neatness. It isn't. But just as in learning to
read and write you had to get used to certain
disciplines, so you need to in programming as well. It
will help you a great deal in the long run if you
remember to apply this chapter whenever you put a
program— however small —to paper and then to
keyboard.

THE EXAMPLE Let's return to that price problem now.

First, you need to decide what the main prograll
will do. In this case it simply asks you to type in the
price of the goods and the percentage reduction,
passes those values to the function part of the program,
and tells you the result, finishing off by asking you if
you want to do any more,

118

MAKING PROGRAMS OUT OF PROBLEMS
A P OSSP e S A O B M P
T T T T T e e e e T T s S T e T

Next, work out how many functions you will need.
In this case you only need one, to handle both the "how
much is the discount’ and the 'how much will it cost’ —
they are both very simple calculations. Let's call the
function DISCOUNT,

The next step is to work out how the computer
would perform the calculations.

In this program, yvou will give the computer a
number — 100 for instance, and a percentage —let's say
20%.

First, the computer has to work out what 20% of 180
1S.

It begins by finding out 1% —which is one
hundredth —and then it multiplies that by the

percentage. So the calculation involved would simply
be:

(price/ 10@)* percentage

Then the machine needs to work out what the
goods would cost you. It does this simply by
subtracting the discount from the original price.

Now you should have some idea of what vanables
vou will need. They are (complete with some names).

M The original price—PRICE

B The discount percentage —DISC

B The discount in pounds —TOTDISC (total discount)
B The discount price —NEWPRICE

The first two variables will be entered in response
to an INPUT statement. So you don't need to declare
them. Now you know that you only need to declare two
global variables at the beginning.

The function can be written immediately. You don't
have to tell the computer you're working with

~ percentages—it wouldn't understand you. A

percentage is only a certain number of hundredths.
e v s o A T3 o A i A e bt 13 i 5

DEF DISCOUNT

LET TOTDISC =(PRICE/ 10@)xDISC

LET NEWPRICE =PRICE—-TQOTDISC
END DEF
Ao = T VAT T NS5 v o DO Kl A AP ST AT AN A 451
Now you know roughly which parts come in which
order —and exactly what you're trying to achieve, you
can begin to put the program into BASIC. With a more
complex program you would have far more working

119

MAKING PROGRAMS OUT OF PROBLEMS

out to do, and you would probably write a lot of BASIC
on notepaper before you began.

Before you type anything into the computer, take a
- look at this diagram;

The diagram shows the order in which the actual
BASIC will appear, while the arrows show the order in
which the program will operate if you follow them from
the YOU INPUT box.

First type in the variable declarations:

100 NUMERIC TOTDISC, NEWPRICE

110 1. Then the main program:

120 Do .

130 CLEAR SCREEN

140 INPUT PROMPT ''Please type in the

- - price '"'PRICE

150 INPUT PROMPT ''Please type in the
percentage discount offered ':DISC

160 CALL DISCOUNT

- 11 CLEAR SCREEN
- 180 PRINT " A discount of ";DISC;" percent

on goods priced at £'";PRICE

190 PRINT "Would be £'":TOTDISC;"+"

120

MAKING PROGRAMS QUT OF PROBLEMS

200 PRINT

210 PRINT "The new price would be £'":
NEWERICE; "-"

al5 PRINT

218 PRINT

228 INPUT PROMPT "Would you like to

know more discounts? '': ANSS$
2o LOOP WHILE UCASESANSHL:1N=""Y"
240 END

That's the main program. Now all you need to do 1s add
the function:

250 DEF DISCOUNT

260 LET TOTDISC =(PRICE/ 10@) % DISC
210 LET NEWPRICE=PRICE-TOTDISC
280 END DEF

If you RUN this program now, you'll find 1t works,
but it 1s really only the bones of a program which need
some padding. The program below is essentially the
same, but far tidier than what you have just typed in.
Anything you don't understand should appear in the !
lines (there are plenty of those!).

100 NUMERIC TOTDISC, NEWPRICE
120 CLEAR SCREEN
160 PRINT AT 9,8:" A PROGRAM TO WORK OUT

DISCOUNTS"

170 PRINT AT 11,5:"ON MARKED RETAIL
PRICES"

180 E -

150 ! 16@ and 170 print a title in the centre

200 ! of the screen, which 1s neater

205 ! than the top. 220 and 230 ensure that the

207 ! title remains displayed for about 8

208 | seconds.

210 | e

220 FOR X=1TO 2500

230 NEXT X

240 CLEAR SCREEN

310 | -

320 ' 360 to 440 are the main program.

329 ! They control the function called

330 1 DISCOUNT. It is through this part

335 | that you exit the program when

12

o d

MAKING PROGRAMS OUT OF PROBLEMS

340 | you need to.

350 !

360 DO

365 CLEAR SCREEN

370 INFUT PROMPT '‘Please type in the
price of the goods "":PRICE

3715 PRINT

380 INPUT PROMPT ''Please type in the
percentage discount offered ":DISC

390 CALL DISCOUNT

400 PRINT "A';DISC;" " percent discount on
goods priced at £'";PRICE

405 PRINT

410 PRINT “'would be £, TOTDISC;"."

415 PRINT

420 PRINT "'The new price would be
£ "NEWPRICE; ""+"

425 PRINT

430 INPUT PROMPT ""Would you like to

know any other discounts? '': ANS$
440 LOOP WHILE UCASES(ANS$(1:1)="Y"

445 END

450 DEF DISCOUNT

460 LET TOTDISC =(PRICE/ 10@)* DISC
479 LET NEWPRICE=PRICE-TOTDISC

430 END DEF
T M e e e T

The program above has one small defect. When it
asks you if you want to work out any more discounts, it
1s unable to cope with a mistaken input. It would be
quite easy for you to type 't' instead of 'y’, which would
have the result of ending the program. A good
program should make allowance for mistakes by
users,

This may not make a crucial amount of difference
to your programs now, but it will when they get longer
and more complicated. It's very frustrating to make a
typing error which either makes the program finish
before you want it to, or just crashes it altogether.
Crash is a very expressive word. Crashing a program
means making something go so wrong that the computer
stops running It and jumps into immediate mode, so that
you have to run the program again. This can be caused
by all sorts of things, but normally happens because you
write a program which tries to do something that Is
illegal in BASIC. This is known as a fatal error.

122

MAKING PROGRAMS OUT OF PROBLEMS

100
110
120
125
130
140
145
- 150
160
165
170
175
180

190
200
2B5
210
220
225
230
235
240
248
250
260
270
280
290

300
310
320
330
340
350
360
310
380
390
400

DO

The program below doesn't provide all the
answers, but it does show you how you can make sure
a program won't end or fail to work because you type
in the wrong input.

|
| The whole program is a large DO/
! LOQOP. In 484 to 504 you will
! notice another DO/LOQOP inside
| the large one. This is fine —as long
| as the one loop is inside the
' other. A loop inside a loop 18
! a nested loop. 175 to 290 are
| also a nested loop.
|

INPUT PROMPT "Type in a whole
number from 1 to 5 ': NUM

E 180 asks you to give Input as

| shown. 290 makes sure it 1s an
| acceptable number by check-
! ing first that it is not bigger

! than 5 or less than 1, and

l_ secondly that it 1s a whole

'. number —this 1s done by

| making sure the variable

! NUM is not bigger or smaller
E than its integer part. If NUM is
! acceptable, the LOOP is not

i repeated.

|

LOOP WHILE NUM > 5 OR NUM < 1
OR NUM < > INT(NUM)
SELECT CASE NUM
CASE 1

PRINT “"Number 1"
CASE 2

PRINT '""Number 2"
CASE 3

PRINT ""Number 3"
CASE 4

PRINT "'Number 4"
CASE 5

PRINT '"Number 5"

123

MAKING PROGRAMS OUT OF PROBLEMS

410 END SELECT
420 -
430 Lines 300 to 410 select the

!
!
435 ! right response to your number.
440 | If the number is not 1 the computer

I.

!

|

|

445 drops down to the next line and

450 checks that, and so on. SELECT

4600 CASE is dealt with on page 64,

470 -

480 DO

450 INPUT PROMPT "'Do you want to

try another? ' ANSH

500 LOOP UNTIL UCASES(ANSH(L:1)=""Y"
OR UCASE$(ANS$(1:1))=""N"

510 |

520 480 to 500 are the nested loop.

530 It will keep looping until the

540 first letter of your respaonse,

545 converted to a capital letter, 1s

550 "Y' pr "N'. This is the same 1n

.1
1.
!
!
|
555 | principle as the check used on the
'.
!
!
|
!
!
|

560 variable NUM above, but the

565 method is different. 640 tells the
590 computer to go back to the

600 beginning as long as the first

610 letter of ANS$ is "Y' That means
615 that when it is “'IN"' the machine
620 leaves the loop.

630 '. -

640 LOOP WHILE UCASE$(ANS$(1:1))=""Y"

650 END

R e e Pl

Remember, the method used here is just one way
of checking input. Many of the functions provided by
the computer can be used to do this in one way oOr
another. The secret of writing efficient programs lies
partly in inventing little devices like those above —
among several other things—and so does much of the
fun of it too.

Lastly, your programs will be far more pleasant to
use if you make them look tidy to the person using
them. Making a program 'look tidy' includes clearing
the screen whenever it gets full or whenever the
program moves from one stage 10 another —e.g. from
input to the output of results.

124

MAKING PROGRAMS OUT OF PROBLEMS

You can also print words tidily on the screen by
using PRINT AT to give margins, and UCASES or
LCASEY to tidy up strings which are typed in by the
person using the program. Sound effects and colours
can be used as signals.

When you've written some really well structured,
useful and attractive programs, yvou'll not only feel
satisfied with what you've done, but also extremely
accomplished and knowledgeable as well!

125

MINIMAL BASIC FEATURES
T e T A L e S e Ty
e T e e B T et
As you know, BASIC comes in many dialects, just as
spoken languages have dialects. In the past, computer
companies have invented their own BASICs with their
own words and ideas. But the core of the language,
and its approach, have remained the same.

The Enterprise follows the dialect of Standard
BASIC as proposed by the European Computer
Manufacturers' Assoclation and the American National
Standards Institute.

Standard BASIC is designed to overcome the
problems associated with the use of a non-standard
language. It therefore makes it possible to transfer
programs between the Enterprise and other machines
that use Standard BASIC. This BASIC also provides
some very powerful features not available in non-
standard BASICs.

You may wish to run programs written in non-
standard BASICs without having to go through them
and change them in detalled and complicated ways.
Fortunately, most BASICs follow something called
‘Minimal BASIC', which was devised some years ago
and adopted by several manufacturers. You will
probably hear about Microsoft BASIC, which 1s one of
those which use the Minimal BASIC features.

To help with compatibility between BASICs, the
Enterprise provides the major features of Minimal
BASIC as well as those of Standard BASIC. This
chapter details these features.

BRANCHES No, this isn't a lesson on how to prune your prize apple
trees. But it is quite helpful if you try for a while to think
of a program structure as being in some ways like a
tree —with main stems and smaller branches.

Some trees have a lot of branches and others have
only a few. Similarly, you can either structure your
programs so that they move from one task to another
sequentially, or (better) you can organise them so you
have a 'trunk’ and several 'branches’ which spring
directly from the trunk. Above all, it's best to avold
leaping from branch to branch. These things have to
be treated with care.

Two ways of branching within a program are
GOTO and GOSUB. The other main method of
branching provided on this computer is that of
functions, which are dealt with on page 79.

GOTO and GOSUB both make the computer jump

126

MINIMAL BASIC FEATURES

GOTO

to another part of the program from the part it has
reached when it comes to either of these words.

GOTO uses a line number to tell the computer where
to move to next. Like this:

100 CLEAR SCREEN
110 INPUT PROMPT "'Do you like computers?

"SAYS
120 IF UCASESAY(L:1)="Y" THEN
130 GOTO 220
135 ! GOTQO 220 directs the
136 | program to line 220.
144 ELSE [F UCASERSAYH1:1))="N"THEN
150 GOTO 240
155 '. GOTO 240 directs the
156 | program to respond to
157 ! a 'NO’ answer.
190 ELSE
200 GOTO 118
205 1 This makes the program
206 | begin again if you do
207 | not answer yes or no.
210 END IF
220 PRINT “Oh good I'm okay here!”
230 END

240 PRINT "But I'm different. You'll see!”
250 END

So GOTOQ directs the computer to a line number.

- You can also use it as a loop. If you changed line 250 to:

250 INPUT PROMPT""Would you like to do that
again? 'A%

And added line 268;

260 IF UCASES (A$(1:1)="Y" THEN GOTO 100

(and line 27@0-END), then the program would loop back
to the beginning if you responded with ‘'yves’. This is the
same as making a DO/LOQOP out of this program,
ending in:

I
-

260 LOOP WHILE UCASES(A$(1:1))

12

|..‘]

MINIMAL BASIC FEATURES
A A5 o e e W9 R A e U MM e T S—
T T

Although the computer would not be working out what
to do in exactly the same way for both methods, the
result would be the same.

GOTO 1s a far more awkward way to split large

programs up Into separate components than the use of
functions, described on page 78.

The clumsiness of GOTO is mostly because it
breaks up the normal order of program flow without
providing an alternative structure. This is why
programs get lost!

GOSUB GOSUB 1s similar to GOTO in that it directs the
computer to a line number in a different bit of the
program, but with GOSUB you expect to return.

Using GOSUB you need to set part of a program
aside as a 'unit' —a bit which is meant to do one thing
only. Then, at the end of that bit of program, you must
add the word RETURN, to tell the computer to go back
to the line immediately following the one that contains
the word GOSUB.

The bit of the program between the line indicated
by a GOSUB command and the RETURN command 1s
called a subroutine. A function can also be a
subroutine, using the word CALL.

HOW TO AVOID If you don't want to go wrong and become confused,
MISTAKES please remember two points whenever you use
GOSUB/RETURN:

First, a GOSUB must never be used without a
RETURN. If this happens, the result is a message from
the computer to tell you you've made a mistake.

Secondly, even though you have set the subroutine
aside as a separate unit, the computer has not. There is
no special command to mark the beginningofa
subroutine. Because of this the computer may run into
the subroutine by mistake.

If this happens, and the computer reads the word
RETURN without having been told to GOSUB first, it
will stop the program because it will not understand.

The best way to avoid this problem with GOSUB 1s
to put all your subroutines at the physical end of your
programs. Then, immediately before they start, put the
END statement or a STOP command. This tells the
computer to end the program before it has a chance to
read the subroutines again.

The following program shows an example of this

128

MINIMAL BASIC FEATURES

T e T e e L S T e e e]
g e B s S v e

technicque:
B A T P PR A S . T Al LI i P A
8¢ CLEAR SCREEN
1868 PRINT AT 1,5:"POPULATION TO LIVING
SPACE"
11 PRINT AT 2,9:"RATIO PROGRAM"
120 PRINT AT 4,5:'""This program works out the"
125 PRINT AT 5,5:""average ground space’’
130 PRINT AT 6,5:"availlable to each person in”
149 PRINT AT 7,5:"a city, in square yards."
1589 PRINT AT 8,5."'Remember—it's only an”
168 PRINT AT 9,5:"average, but if you compare”
1786 PRINT AT 18,5:"1ots of cities you can soon”
180 PRINT AT 11,5:"see which are overcrowded!"
183 FOR X=1TO 5000
184 NEXT X
187 CLEAR SCREEN
199 PRINT AT 14,5:"'Please type in the following
information:”
200 PRINT AT 16,5:""A) Name of city,”
210 PRINT AT 17,5:"B) Population,”
220 PRINT AT 18,5:"'C) Size of city in square
miles."
230 FOR X=1TO 2528
232 NEXT X
235 CLEAR SCREEN
24p INPUT PROMPT “'CITY? ".CITY$
250 INPUT PROMPT "POPULATION? '":POP
260 INPUT PROMPT "'SIZE? '".SIZE
270 GOSUB 1000
35 CLEAR SCREEN
360 PRINT AT 16,5:CITY$;", at a size of'';
370 PRINT AT 11,5:SIZE:" square miles,"
380 PRINT AT 12,5:"and a population of "";POP
398 PRINT
48 PRINT AT 13,5:"would give everyone living
there”
410 PRINT AT 15,12: SPA
420 PRINT AT 16,5:" " square yards of ground space
tolivein ="
44 PRINT AT 17,12:"on average!”
450 PRINT
455 PRINT
460 INPUT PROMPT '""Do you want to try any
more? " ANSS
470 IF UCASERANSH(1:1)="Y" THEN GOTO 187

128

MINIMAL BASIC FEATURES
e T U e o o WA R AT S G Ao s —
L 2 e R

480 |

490 ! 470 uses GOTO to send you back to
540 ! type more info if you answer yes.
518 |

520 END

83 !

540 [The END is line 520 so that the
550 | subroutine is not run into again.
560 '. This prevents errors.

1414 ! Line 10820 begins the subroutine.
6l |

1008 LET SQY =SIZE= 1760 "2
1010 LET SPA =SQY/POP
1080 RETURN
A A S bt A0 I 70 T b =1 o+
So the program above shows you how to use
GOSUB. But as you can see, it is far less tidy than a
program using a function with CALL —notice for
instance that apart from the GOSUER line there is no
indication where the subroutine begins.
Programs which use GOTO or GOSUB are more
likely to go wrong than programs which use structured
loops and functions.

THE ‘DIM’' STATEMENT A look back on the chapter about storing larger
amounts of information will remind you how you should
set aside areas of memory for use as arrays. There iIs
another, less versatile, way to do this.

DIM A(10) will set aside a one-dimensional array
with elements numbered #-10. DIM A(4,4) will set
aside a two-dimensional array using the same element-
numbering system. You can use (X TO Y) to specify a
range of numbers to be given to your array's elements,
as you would using STRING or NUMERIC. What is
missing, though, is the ability to decide how long each
string element may be. When you write very long
programs which use several string arrays, you will
perhaps realize how useful this can be, because you
can use it to conserve memory space.

DIM is only provided for compatibility with other
BASICs. Here is a short program to demonstrate it.
Note that DIM ARRAY$(9) is the same as STRING
ARRAY$(9)— the bottom element is always @ unless
you specify a different number.,

130

MIMIMAL BASIC FEATURES

190 DIM ARRAY$(S) ! a 10 element array
118 FORN=0TOS

120 READ ARRAY $(IN)
130 NEXTN
140 FORN=@TOS
- 150 PRINT ARRAYSN);" "
160 NEXTN

170 DATA This,is,an,array,declared,
180 DATA using,the,DIM statement,
- 190 DATA"—simple, eh?"

131

CHANNELS

132

In order to give more flexibility in the use of the
computer and the 'devices' attached to it, the
Enterprise makes use of a concept called channels,

A channel is a special pathway which is opened
between two parts of the computer. Once the pathway
1s open, communication can take place between the
two parts of the computer simply by specifying the
channel number — preceded in instructions by the
symbol '€’ (or '#' in some character sets).

The BASIC in the Enterprise tries not to make too
many assumptions about how you will use the
computer. After all, the power of the computer comes
from its flexibility in acting according to your wishes,
For this reason, all 'input-output’ instructions allow you
to specify channels if you wish.

However, because you do not want to be bothered
with unnecessary commands, the Enterprise uses
‘default' channels whenever it can. Normally when you
PRINT, for example, you want the words or numbers to
appear on the TV screen. So PRINT ‘'Hello" puts the
message on the display.

If, on the other hand, you wished to make the
message appear on the printer instead (and you had
one attached), you could give the command PRINT
£104; "Hello".

When the computer is turned on, it automatically
connects channel 194 to the printer socket. So any
message sent to channel 184 goes on to the printer.

You can also refer to channel numbers by using
variable names, so the program itself can choose

where to send a message.
T T e L R R R

120 INPUT PROMPT ''Please enter a message: A

138 PRINT

149 PRINT '"Where would you like the message
repeated?"”

15¢ DO

160 INPUT PROMPT ‘'Please enter @ for screen

or 104 for printer: '"CHANNEL

176 LOOP UNTIL CHANNEL =@ OR CHANNEL= 104

189 PRINT £CHANNEL: ! Blank line to screen or
printer

200 PRINT £CHANNEL:A$ | Message sent to screen
or printer

22 END
e e A O O T Ve

CHANNELS

This program will, of course, only work if you have
a printer connected and turned on. But you can try out
the same experiment with channel 101 instead of
channel 104 —this will connect you with the usual
graphics screen instead. Include the command
GRAPHICS in the program to see what is happening.
_ A point to remember when using channels is that

all input-output works this way —including such things

as the sound generator and connection with the tape
recorders. If you are careless in your use of channel
numbers then strange things could happen to your
computer! These are not likely to cause any permanent
harm, but you might have to start your program again
or reset the computer.

For more details on channels, refer to the chapter
on commands in the Reference Section, particularly
under the heading OPEN (page 168).

133

EXCEPTION HANDLING
T .70 % e A A S ATt A S LR T AT AT WG A s~ o
T T e e N
To deal with errors, to handle the network or certain
other devices, and also to deal with some special
conditions which are independent of the normal
program flow, Enterprise BASIC provides something
called exception handlers.

Exception handling operations are a little like
functions. But unlike functions, exception handlers are
not normally activated by a specific reference in a
program such as a CALL.

First, a little word of explanation. An exception is
something which happens independently of a program
running at the time, but which may affect the program
or be made to affect it in some way, The ‘stop’ key Is
an exception, because the program does not need to
check whether you have pressed 'stop’ but it 1s
affected by it. Program errors are also exceptions,

If you run a program with some sort of mistake in it,
the computer will, if the error is of a type which will
stop the program, respond to it with a short message
and a number. In this case the number i1s what may be
used as an ‘exception type' to give the computer a key
to what it should do.

BASIC also allows for you to make up your own
exceptions. These must be numbered from 1 to 999
and they can be used to deal with wrongly typed input
(e.g. a number which is too big or small) or another
unusual condition recognized by a program.

Let's begin looking at exception handling by
causing one within a program and then dealing with it

using exception handler statements.
T T T T e e S

50 WHEN EXCEPTION USE INPUT_ERROR
60 |
65 ! 5@ tells the computer to use the
70 | handler (see below) if an exception
|
'.

15 occurs. It is valid until the computer
80 reaches END WHEN in 145.
9@ |

100 INPUT PROMPT '‘Please type a word: "

STRINGS

110 [F VAL (STRING3)< >0 THEN

115 CAUSE EXCEPTION 10

120 ELSE

130 PRINT "'Your word has been

accepted."”

140 END IF
134

EXCEPTION HANDLING
TP e S P i e A P A i . SO A BT T R
e e A SN e S0 M S T WA .5 P atah
145 END WHEN

150 END

160

170 260 to 310 is the part of the

180 program which copes with an
190 exception; in this case exception

!
|
|_
!
200 1 number 1@, This is caused if you
|
|
|
!
|

210 type in a number, not a word.
220 You may notice some parallels
230 between the exception handler and
240 calling functions.

250 |

260 HANDLER INPUT_ ERROR

210 [FEXTYPE=10 THEN

280 PRINT ‘'That was not a word."
285 ELSE IF EXTYPE < > 10 THEN
290 EXIT HANDLER

300 END IF

310 END HANDLER

You can probably see that this could be done using
other methods. Line 110 actually makes the computer
register a ‘'mistake’ according to your instructions.

CAUSE EXCEPTION is there to send the program
to a handler in the event of a mistake which the
computer would not normally recognize —for instance,
a word beginning with a number, as above. Normally
the computer would accept numbers as a string as you
know, but the use of VAL makes a string which starts
with a number into a mistake in conjunction with the
statement CAUSE EXCEPTION.

The VAL of a string will be @ if there is no valid
number in a string (except @) preceding the first letter

or other non-numeric character.,
EXIT HANDLER is the same as EXIT DO or EXIT

FOR but it only relates to the handler block.

EXTYPE is the type number of the exception—in
the program it is number 1@. The EXTYPE varies
according to what has gone wrong and, in the case of a
CAUSE EXCEPTION statement, to what number you
give the exception to be caused. See page 180, which
deals with error messages. Another word, EXLINE,
gives the line number where the exception happened.

The previous program illustrated one type of
exception handling. In principle this is rather like
CALLing a function (using it as a subroutine or

135

EXCEPTION HANDLING
e e e e s —
N T Sy
' module). Notice that this method used the words
WHEN EXCEPTION USE, which you can think of as
meaning 'in the event of a mistake anywhere, use these

handlers'. This command has to be matched with an
END WHEN statement.

136

TRANSFERING
PROGRAMS

THE NET

The Enterprise is able to communicate with other
computers using a simple wire connection, The other
computers, of course, have to have the same facility
(known as the Intelligent Net) if they are going to
manage their end of the conversation, but linking up
with other Enterprises is no problem.

The advantage of a net is that many computers can
be joined up together, but when one computer wants to
talk to another the remaining computers stay out of the
conversation —just like a telephone system.

Your computer does not have a pre-set number in
the same way as a telephone does; when you connect

up to the net you must select a number for it, by typing
for example:

SET NET NUMBER &

The net number can be anything from 1 to 32. You can
use ASK NET NUMBER to remind yourself of the

- number you have selected.

Once your computer has been given a net 'address’
number, it is a simple matter to transfer programs
between machines.

On the computer which will be receiving the
program, type LOAD "NET-@:"". This will allow you to
accept a program sent from any other computer on the
net,

Alternatively, if you only want to receive a
program sent from one specific computer, type LOAD
"NET-n:", where 'n' is the net number of the other
computer. For example:

LOAD "NET-17:")

will attempt to load a program from the computer with
net number 17.

Of course, instructions will have to be given on the

' other computer to send the program. Computer

number 17 would have to be given the instruction

SAVE ""NET-5:"

This would send the current program on computer 17
to computer 5,

137

THE NET

“
“

BROADCASTING

OPEN TO ALL
MESSAGES

138

Net number £ is a special case. This number cannot be
given to any computer, but is used for general net
operations.

For transmitting onto the net, number @ is used to
signify 'broadcast’ messages. These are messages
which are not directed at any particular computer, but
which are broadcast (like a radio signal) to any
computer which is turned on and listening.

This facility is very useful if you have a short
message for all other computers, or if you do not know
the numbers of other computers on the net,

One problem with broadcast transmissions is that
they are not a very reliable means of communication.
With a directed signal, sent to a particular computer,
the message is re-transmitted until the receiving
computer acknowledges that the message has arrived
safely. With broadcast signals, this is not possible, It is
also not possible to automatically slow down the speed
of transmission to a rate which matches the ability of
the receiving computer to deal with the information.

S0, the instruction

R e e
SAVE "NET-g."

A B T T B e T e e s U
will send a program for all computers to hear, but
there is a strong possibility that the program will not be
received correctly. Also the sending computer will not
know whether or not the transfer has been successful.

Net number @ can also be used for indiscriminate
receipt of messages on the net, When a computer
channel (see page 132, and OPEN command in
Reference section, page 168) is opened to '"NET-2:",
this then becomes a 'general’ channel for net
operations.

Messages which are broadcast from any other
computer on the net will be received if a general
channel is open. Also a message which has been
directed specifically at your computer will be received

- by you, even if you had not prepared yourself for this

message by opening a special channel for
communicating with the other machine.

This does not mean that you will receive messages
which are private between two other machines on the
net. In a directed message between two computers, no
other computer can listen in.

THE NET

COMMUNICATION
CHANNELS

Note that if you have a special channel open to
another machine, you will receive messages via this
channel (not via the general channel) even if they are
broadcast.

For detailed use of the net, a channel is opened
specifically for communication with one machine. This
is done using the normal conventions for opening
channels.

OPEN £118:"NET-17."

~ will open channel number 110 for two-way

communication with computer number 17.
This channel can thereafter be used with normal
input/output instructions, eg

PRINT £11@: "This is message for computer 17"
LINE INPUT £110:A$ | A$ will receive line from
computer 17

Because the messages sent between computers on the
net are buffered (held in memory before transmission,
or after receipt) it is often necessary to make use of a
couple of special instructions.

FLUSH £chan will force the transmission of any
data waiting in a buffer to be sent. Messages will not
normally be sent until they are 286 characters long, or
the channel is closed, so the FLUSH command should
be used whenever a short message is to be transmitted
immediately.

CLEAR £chan:NET will clear the input and output
buffers. The computer will not accept any message
from another computer on one particular channel until
its receiving buffer is clear. This is to prevent
corruption of data before it has been used by the
receiving computer.

If there is data not yet removed from the receiving
buffer (by INPUT instruction, for example), and this
data can be discarded, then the CLEAR instruction
should be used. If there is data not yet sent, use FLUSH
before CLEAR.

PRINT £118:""Message for computer 17"
FLUSH £110
CLEAR £113:NET

139

THE NET

e T T e e ——
T T Ty ——

BACKGROUND
NET HANDLING

140

LINE INPUT £110:A$

D e
In selection of channel numbers for the net operations,
1t 1s advisable to use a channel number over 180 (but
avolding default channels, see OPEN page 168). This

is because BASIC will close all channels 1-89 when it
clears variables, which is likely to occur often when in
immediate mode.

The most interesting use of the net occurs when a
program is written so that net communication can
effectively work as a background task during the main
operation of a program.

The operating system of the Enterprise uses a
method known as 'interrupts’ when controlling the net.
This means that computers can be talking to each other
1n their own time, in a way which is invisible to the
users of the computers.

BASIC provides a method of dealing with this
operation, through exception handlers. Exceptions are
errors, or other events, which interrupt the normal
course of a program (see Exception Handling chapter,
page [34).

When a BASIC program is running, and interrupts
from the net have been enabled with the instruction
SET INTERRUPT NET ON, then the receipt of a
message on a net channel will cause an exception.

An exception handler designed to deal with net
operations should always give the instruction SET
INTERRUPT NET OFF as the first line in the handler
block. This will prevent the computer from becoming
confused by receiving a new interrupt while it is within

~ the exception handler.

Once in the exception handler, the net input
buffers are ‘polled’ (checked in turn) by the ASK NET
CHANNEL instruction. At any one time, several
channels may be holding messages (inore messages
may come in during the time the handler is in
progress). Following the transfer of data from a
channel, the ASK NET CHANNEL instruction should be
used again until it returns the value 255 —signifying that
there are no more messages awaiting collection.

SET INTERRUPT NET ON should be the last
instruction line before exiting the handler.

Note that exception handlers are triggered by
'software interrupts'. These do not occur in the

THE NET
A A ol P A A T T s A L T P LI O AP e 5 Sl
o T e T e e T e
immediate mode of BASIC, and so a foreground

program must be running in BASIC in order to use the
exception handler technique for net operations.

141

USING MACHINE CODE
e ——
e ———

The 'brain’ of the Enterprise is a Z80 microprocessor.
The Z80 can perform around 500 specific operations,
each one denoted by a code number —a 'machine
code’. If you program a processor in machine code,
you are addressing it directly, in its own language, not
through the BASIC interpreter.

There are two main reasons why you might want to
include machine code routines in your BASIC
programs. Either you might need a little extra speed
(especially when handling graphics and sound), or you
might want to use a feature of the Enterprise’s
hardware which isn't supported by BASIC,

Machine code programming is a large subject, and
cannot be covered in a single chapter of this manual. If
you are Interested, there are many Z80 programming
manuals available.

Enterprise BASIC has several commands which
allow you to build up machine code routines (in hex
codes) and execute them from within a BASIC

program—though these commands are not part of the
ANSI standard. >

ALLOCATE First, you need to set aside some memory for storing
your code; decide how many bytes long your code will
be, then use:

ALLOCATE number-of-bytes

But note that ALLOCATE destroys all stored variable
values, so it's best to use it only at the beginning of a
program.

CODE AND HEX$ The machine-code routine is stored — with a given
name — by using the CODE command:

CODE name = routine in hex codes

The name has the same format as a variable name.
CODE can only store a string— your hex codes
must be converted into the right format by using HEXS,

as follows:

HEX$(''hex hex,...")
(don't forget the inverted commas, or the commas
separating the hex values!): or

142

USING MACHINE CODL

EXECUTING THE
ROUTINE

HEXS$ (any string expression)

For example, a routine which doubles a specified
number —

TEST: 29 ADD HL, HL - add number to itself
C9 RET

—can be inserted into the BASIC program lhike this;

100 ALLOCATE 2
118 CODE TEST=HEX%(''29,C9")

Once you have run this part of the program, the
routine 1s stored in the memory you set aside.

Broadly speaking, your code will create a new
‘function’. In the chapter on defining functions, we
divided these into two types. One type 1s designed to
calculate a result—the ‘built-in' functions come 1nto this
category. A good example is SIN, which calculates the
sine of a specific angle when you type something like:

PRINT SIN (53)

The value to be processed (which you put between
brackets) is called the argument of the function. some
built-in functions don't take an argument—RND, for
example —but all return a value, an 'answer’

The other type of function is more like a
‘command’. A command is a set of operations which do
something, like clearing the screen or perhaps setting
up a graphics mode. A command does not return a
value.)

The way your routine 1s executed depends on
which of these two types it 1s, If it returns a value, like
our double-the-number example, use

USR (name argument)

For example.

PRINT USR (TEST, 2)

will print 4 on the screen; while

143

USING MACHINE CODE

LET A =3*USR(TEST, 2)

~ will assign the value of 12 to variable A.

Note that the argument of USR is passed into HL at
the beginning of the routine; and the value returned by
USR is the contents of the HL register at the end of the

- routine,

If your routine is a command-type operation, you

must use

CALL USR

—which does not return a value. For example:

CALL USR(NAME, @)

You must still give USR an argument, but the value
doesn't matter.

‘Commands' can be amalgamated as in the
following example:

CALL USR(CLEAR,2)+ USR (GRAPH, 9)
+USR(PICTURE,?)

WORDS$ converts its argument into a two-byte string—
LSB MSB —so it's useful for forming backward jumps
from labels. For example

~ WORD$(TEST)

will return the start address of the TEST routine in the
correct format for machine-code jumps and calls.

145

‘.'l I'I:F" Ir|I)
Faliriel L e

]

Qr;}#e.fi-h:ﬁﬁj

L
v -I"'_;'I I:
L} .Ii,_l

e e L
T Bl
A T e

'

RULES OF BASIC

“
m

GENERAL RULES

148

The Reference Section provides a guide to all the
BASIC words available on the Enterprise, along with
their purposes and methods of use. Some of them are
mentioned only briefly in the Tutorial section, others
are not mentioned at all.

It is to be hoped you will experiment with all these
words and discover for yourself the full extent of the
Enterprise’s potential. If you know BASIC already, you
will find, in the main, that this section is your best quide

~ to the Intelligent Standard BASIC (copyright Intelligent

Software Litd, 1984) provided on the Enterprise.

Upper and lower case letters are interchangeable in
BASIC keywords and identifiers, e.g. FOR, For, for and
fOr are all the same word.

A program line may be up to 258 characters long,
with a line-number | to 9999. It may include several
statements, separated by colons; anything permitted
after THEN in an IF/THEN statement may be
Incorporated on a multi-statement line.

An identifier can be up to 31 characters long, and
all characters are significant. The identifier can contain
letters, numbers, full stops and 'underline’ characters:
the first character must be a letter.

| 1s used to mark off the rest of the line as a
comment. In immediate mode, a colon at the beginning
of a line signifies that the rest of the line is passed
through to the operating system without interpretation.

The interpreter deletes spaces before and after the
line-number and first keyword, and at the end of the
line. It then indents the program for every new block.
FOR, DEF, DO, HANDLER, SELECT and WHEN will
indent the next line by 2 spaces. ELSE and CASE
inside an indented block are placed 2 characters to
the right. LOOP, END and NEXT terminate the
indentation. Line-numbers are printed with leading
spaces to maintain a straight edge.
e S A T A MO 4 3> -]

) LETA=0

10 DO WHILE A<]@
100 LETA=A+1]
110 SELECT CASE A
120 CASE']
130 PRINT "first time"
140 CASE ELSE
150 PRINT ""not first time”

RULES OF BASIC

#
#

MULTIPLE PROGRAMS

EXTENSIONS

DATA TYPES

168 END SELECT
170 PRINT A
180 LOOP
190 GOTO |
1000 END

#

For further reference on the syntax and
conventions of the BASIC, see the Draft Proposal for
Standard BASIC from ANSI committee X3]2/82-11.

Keywords are given in BOLD CAPITALS in the left-

~ hand margin of the page. The formats of the commands

using the keyword are given in normal print, and
examples are given in italics.

IS-BASIC on the Enterprise gives the facility for several
programs to be in the computer at one time. Each
program has its own line numbers and its own
variables.

A program can be referred to either by number, or
by a name given on a PROGRAM line. See in
particular the commands CHAIN, EDIT and
PROGRAM.

At any particular time, one of the programs (by
default, program @) is the 'current' one, on which
commands such as LIST and RENUMBER will operate.
The number of this program is shown on the 'status
line' at the top of the screen.

Program @ can use approximately 42 k of memory.
Other programs are limited to 32 k each.

The facility exists to provide extensions to BASIC,
which may be either loaded from cassette or disk or
included in an add-on stack unit for the computer.
Explanation of the extra commands or functions will be
provided in the instructions accompanying such
products.

Two explicit data types are provided: numeric and
string. Numeric variables have names which follow the
rules for identifiers (see General Rules). Identifiers for
string variables must end in a § symbol.

Numeric values are calculated in binary-coded
decimal arithmetic, and printed to 10 digits. Numbers
are handled in the range le ~* to 9.999999399¢%

Strings have a maximum length of 254 characters, if
declared to this lenath (see STRING). Sub-strings may

145

RULES OF BASIC
be referenced in the form string-id (x:v), which
specifies a string beginning with character number e

and ending with character number v. If either x ory
are omitted, they default to the start or end of the string

respectively.
OPERATORS Arithmetic operators:
¥ — multiply
/ — divide
— to the power of
- — plus
- — minus

otring operators:
& — concatenate

Relational operators:

> — greater than

< — less than

= — equals

> = — greater than or equals
<= — lessthan or equals

<> — notequals

AND — logical AND (true/false)
OR — logical OR (true/false)

BAND— binary logical AND
BOR — binary logical OR

ABBREVIATIONS The following abbreviations are used in this reference:
chan — channel-number
id — ldentifier (e.g. variable name)
str — string
var — variable
exXpr — expression
relop — relational operator (i.e. >, > =, etc.)
para — parameter

150

COMMANDS AND STATEMENTS

line-number line-number text
line-number space
line-number

Adds or replaces a program line. If the line-number 1s
followed by only a space, then a line containing an '!" 1s
inserted, If the line-number is followed by nothing, then
the line is deleted. Only executed in immediate mode.
Clears variables.

Note that all commands or statements which clear
variables also close any open channels in the range
1-99 inclusive (see OPEN).

ALLOCATE ALLOCATE expr

Used in connection with machine code subroutines.
Moves up the program source to create a gap of the
specified number of bytes, where the user's machine
code will go. Sets the location counter to the first free
byte in the gap. Note that this destroys all variables, so
it should only be used at the start of the program,

ASK ASK machine-option var

Enquires about some option (e.g. KEY RATL), see
‘Machine Options', 'Video Options' and 'Sound
Options' sections. Compare also SET and TOGGLE.
The variable will take on the current value of the
machine-option.

eg ASKKEYRATE A

assigns the current keyboard repeat rate to the
variable A.

AUTO Special editing command which prints line-numbers
automatically. Only works in immediate mode.

AUTO

AUTO AT 100 STEP 10
AUTO STEP 109

Default starting line-number is 188. The default step

size ig 10. New lines replace old ones with the same
line-numhbers.
AUTO can be cancelled by pressing 'stop’.

151

COMMANDS AND STATEMENTS
e s O S 5 4 T i et
P e o S
CALL CALL function

CALL function (para-list)

Used to call a function (either built-in, or defined by
DEF), when no result is required from the function.
Any expression following CALL will be evaluated,
and the result ignored. CALL USR (A,B)+ USR(C,D) will
therefore call two machine code USR programs.
Can be executed in immediate mode.

CAPTURE CAPTURE FROM £ chan TO £ chan

Captures input from first channel and substitutes it for
Input expected {from second channel. Input from
second channel i1s locked out until ‘stop’ is pressed, an
~ end-of-file condition arises on the first channel, or an
error occurs. CAPTURE FROM a particular channel
can also be terminated by giving £255 (normally
invalid) as the TO channel, in a later statement,

CASE See SELECT block.
CAUSE EXCEPTION CAUSE EXCEPTION expr

Causes an error and assigns it to the category denoted
by the expression; user values should be between |
and 999, since these will never be used by BASIC,

The word EXCEPTION is optional.

CHAIN ' CHAIN program-number
CHAIN ‘“'name’’ (para-list)

Used for executing BASIC programs from the current
program.

Parameters may be passed by value from one
program to the other, e.qg..

CHAIN “My_Program'' (1, "Fred"’)

See also PROGRAM.

CLEAR CLEAR £ chan:
CLEAR ENVELOPE
CLEAR FKEYS
CLEAR FFONT
CLEAR GRAPHICS

152

COMMANDS AND STATEMENTS
T R T e P AT il i ¥ W S M A,
T T e T T T e Tl P e T P et e e e
CLEAR £chan:NET
CLEAR QUEUE sound-source-number
CLEAR SCEEEN

CLEAR SOUND
CLEAR TEXT

Clears various options. Can be executed in immediate
mode.

CLOSE - CLOSE £ chan

Flushes any data in output buffers, closes the channel
and frees buffers.

CODE _ CODE =string
CQDE variable-name =string

Used in connection with machine code subroutines.
Copies a string to the position indicated by the current
location counter. If a variable is given, this takes the
value of the location counter. The location counter 1s
left pointing to the byte following the string, which is
assumed to contain the machine code. The variable-
name can later be used to call the routine, or to form
the destination address of jumps etc.

CONTINUE ~ As a command in immediate mode, it restarts the
program at the next line after a STOP command or
press of the 'stop’ key,

Used in a program as an exit from an exception
handler, it resumes at the statement following the one
~ which caused the exception.

COPY COPY FROM £ chan TO £ chan

Copies the contents of one channel to a second
channel (both channels must be open). The copy
terminates on end-of-file, an error, or the ‘stop’ key.
Default input is channel 8. Default output is channel
194,

COPY
copies from £ to £184.

COPY FROM £5
153

COMMANDS AND STATEMENTS
e e ey
w 3 ' R ——

coples from £5 to £104. Requires channel 5 to have
been opened.

DATA DATA data-list

~ Allows the inclusion of a list of constants, numbers
and/or strings, for subsequent READing. See READ.

DATE DATE date-string

Specifies the current date held by the computer.

The date is automatically incremented when the

current time held by the computer reaches midnight.
The date is specified in the International Standard

format YYYYMMDD,

DATE "19850727"
~ is equivalent to 27th July 1985.
Can be used in immediate mode. See DATES$ function,

DEF DEF numeric-id = expression
' DEF numeric-id(parameter-list) = expression
DEF string-id = string-expression
DEF string-id(parameter-list) = string-expression

One-line function definition:
- DEF AVERAGE (X,Y)=(X+Y)/2

DEF block: this is a group of statements that can be
called as a function returning a value in the expression,
or as a procedure statement. There are several small
changes from the ANSI definition. See also CALL, EXIT
DEF, NUMERIC and STRING.

def-line
any number of statements of blocks
end-def-line

def-line:

DEF numeric-id

DEF numeric-id (parameter-list)
DEF string-id

DEF string-id(parameter-list)

154

COMMANDS AND STATEMENTS
ittt e P B Y N A TV 1SR
e e o e e A E S A T S P e e

end-def-line:
END DEF

If the function is intended to return a value, this value
should be assigned to the function name within the DEF
block.

DEF ANSWER (A%)
IF UCASE$(AS$(1:1)="Y" THEN
ANSWER = |
ELSE IF UCASE$(A$(1:1))="N" THEN
ANSWER =¢
ELSE
ANSWER= -1
END IF
END DEF

The scope of variables at any point in a program 1s
dynamic—that 1s, it depends upon the history of which
lines have been executed, and not upon the static

- layout of the program.

1900 NUMERIC FRED
110 LETFRED=1

120 CALL Q
130 PRINT FRED
140 END
200 DEF P
210 LET FRED = 123! This FRED is a global.
220 END DEF
o 300 DEF Q
210 NUMERIC FRED! A local FRED.
- 320 LET FRED =0
325 CALL P
330 FRINT FRED

350 END DEF

In this example, FRED is used both as a global and as a
local. When line 210 is executed, the FRED at 316 gets
changed to 123 and not the one at 10¢. The program
will print 123 and 1. In a static scope language, the
program would print @ and 123; this may happen if the
same program is run under a compiler BASIC.
Everything declared within a DEF block is local to
that block, and allocated at each first execution of the
declaration after the call. Anything not declared may

155

COMMANDS AND STATEMENTS

156

be local or global depending on the history.

It is best to declare all variables at the start of each
program or function in order to avold unexpected
results.

100 CALL P ! This call of P has I as local to P.
118 LETI=9

120 CALL P ! This call of P changes the global I,
130 END

200 DEF P

210 LETI=6

220 END DEF

In order o give consistent results, a line
30 NUMERIC I

should be added to the program,; this will make I
global in both calls of P.

The memory used for the storage of local variables
is released when a function i1s exited. This
characteristic can be exploited for the efficient use of
computer memory —for example, a temporary data
array can be within a function.

Almost anything can be passed as a reference
parameter. Normally parameters are passed by value,
which means that copies are passed to the function and
any operation inside the function does not change the
external variables. Reference parameters take their
type from the actual parameter, and any changes
inside the function change the external variables also.

100 DEF SWAP (REF A,REF B)

110 NUMERIC T
120 LETT=A
130 LETA=E
140 LETB=T

150 END DEF

200 LET X=99

210 LET Y=23

220 CALL SWAP(X,Y)
230 PRINT X, Y

| prints 23 99

Arrays and func:tmn_s must always be passed by

COMMANDS AND STATEMENTS
et et e S P i e
e e e e e e e R R s et

reference.

100 NUMERIC A(10)

110 OPTION ANGLE DEGREES
120 DEFP(REFFN, X)

130 PRINT EN(X),

149 END DEF

159 LET A(2)=66

160 CALL P(A.2)

178 CALL P (SIN,30)

prints 66 5

Passing built-in and user functions can be very useful
for library software. A graph-drawing function can
have the function to be plotted passed as a parameiler,
a sort function can have the exchange and compare
routines passed as functions.

Functions can call themselves recursively.

DELETE DELETE line-description TO line-description, ...
DELETE line-description — line-description, ...
DELETE block-name

Deletes lines from the program. Only executed i
immediate mode. Clears variables.

DELETE LAST
DELETE FIRST TO 100
DELETE 1 TO 189, 300, 508 TO 9939

Acceptable syntax is to use '-' instead of TO. If the first
(or last) number in a range is omitted, it defaults to the
first (or last) line of the program.

e.g. DELETE FIRST-100, 500-LAST
or DELETE TO 18@, 500-
for DELETE FIRST TO 108, 500 TO LAST

Lines defining a function P can be deleted with
DELETE P. DELETE on its own will remove all program
lines: can be halted with 'stop’ key.

DIM DIM array-list

Declares numeric or string arrays; lower bound
157

COMMANDS AND STATEMENTS
N i A A W T OEP DA G T 7% v T T P W ST 5 T BN DRIl SR oo B o
et 5 S T k7 U 4 M i AP <A o o s 9 Tl L T AT P kb 2 5 e]
defaults to @ if not specified. One or two dimensions
are allowed. Maximum length cannot be specified for a

string by using DIM, so the default of 132 characters is
used. (Compare STRING.)

DIM A(l TO 18), FRED¥(9), B(-7899 TO-7890)

Note: all the above have 10 elements.

DISPLAY DISPLAY £ chan: ATa FROM b TO ¢

Defines a window to display a segment of a text or
graphics video page. Screen-row ‘a’ is the position
where the top line of the segment will be placed.
Parameters 'b' and ‘¢’ are character-rows on the page
which 1s to be displayed, and define the top and
bhottom lines of the segment. The numbering of
character-rows follows the conventions for text,
whether the page displayed 1s text or graphics. See
PRINT.

DISPLAY GRAPHICS

~ets up 20 lines as graphics, and displays previous
graphics page if one was open (£101). Does not clear
text page,

DISPLAY TEXT

Sets up full screen in text mode and displays full page
of text if it was previously open (£182). Does not clear
graphics screen.

If only a small text page was previously open, then
this is cleared, and a new full-size text page 1s cpened.

DO do-line
any number of statements or blocks

~ loop-line

do-line:

DO

DO WHILE relational-expression
DO UNTIL relational-expression

loop-line:
LOQP

158

COMMANDS AND STATEMENTS

EDIT

ELSE

END

ENVELOPE

LOOP WHILE relational-expression
LOOP UNTIL relational-expression

The structure of a loop i1s defined as a block, with a DO

line, the loop body, and a LOOP line. DO or LOQOP
cannot be placed on a conditional line.

DO WHILE A>3 AND A< 10
LETA=A+]
PRINT A

LOOP

Control cannot be transferred from outside to inside of
a loop. See also EXIT DO.

EDIT program-number
EDIT "name"

Makes the specified program into the current one, so
that LIST, RENUMBER, RUN etc. will operate on it.

Only works in immediate mode. See CHAIN, INFO and
PROGRAM.

See [F.
Halts execution, marks the end of the program. Also

END DEF, END HANDLER, END IF, END SELECT and
END WHEN mark the end of their relevant blocks.

- ENVELOPE £chan: NUMBER

ab,cdefghl.. RELEASE;]).k,LID;...

Defines a sound envelope to be used in conjunction
with a controlling SOUND statement. The number ‘a’
which identifies the envelope must be 1n the range @-
254,

Parameters 'b’, 'c’, 'd' and ‘e’ define the first phase
of the envelope; 'b' gives the change of pitch in
semitones (decimal places allowed), '¢' and 'd’ specify
the change in volume for the left and right speakers
respectively, and ‘e’ gives the duration of the phase, in
‘ticks' (one tick 1s 1/50 second).

The values for 'c' and 'd’ are in the range 0-63; they
specify the change in volume as a proportion of the
overall maximum volume allowed by the SOUND
statement. A value of -63 will turn the sound off (any

159

COMMANDS AND STATEMENTS

EXIT DO
EXIT FOR
EXIT DEF

EXIT HANDLER

EXT

160

overshoot is ignored); the sound is assumed to be 'off’
at the beginning of the envelope. If stereo equipment is
not in use, the volume at any moment will be
determined by the sum of the values (dependent on
SOUND and ENVELQPE statements) for the left and
right speakers.

The next phase 1s defined by 'f', 'g’, ‘h' and '1'... For
the number of possible phases, see SOUND BUFFER,
under '‘Sound Options'.

RELEASE is optional; it may be followed by any
number of phases with their separate parameters. The

~ ‘release' phases are performed after the conclusion of

the previous phases, or at the expiry of the SOUND
duration if there is no following sound on the same
channel,

Breaks out of FOR, DO or DEF block. Not valid unless
inside the right sort of block.

Breaks out of an exception handler, which propagates
the exception to the surrounding environment. This will
cause another exception handler to be activated,
either a user handler or the default handler.

- EXT parameter-string

Passes a string through to the operating system,
which is then passed to valid external programs in
memory (either ROM or RAM). The string is then
interpreted by these programs as appropriate.
Usually the first word of the parameter string

- gpecifies a command to be operated, or a new

program to be jumped to.
For example:

EXT "WP"

jumps to the built-in word processor of the computer.

The word ""HELP" has a special significance as 1t
requires all external prcgrams to reply with thelr
names. Replies from the external programs are sent to
the default system channel. See the DEFAULT

- CHANNEL machine option.

Additional application and service programs will
define their own command names and parameter

COMMANDS AND STATEMENTS

e T T
T W S U T R -) ¥ i i oS, DO 1 V. SO D e R R R R e S S|

FLUSH

FOR

requirements. Often these programs will respond to
the instruction

EXT "HELP NAME"'

(where "NAME" 1s the main name of the program) by
giving a list of available string commands.
The same effect as EXT can be obtained in

~ immediate mode by starting a line with a colon. In this

case, no quotes are required around the parameter
string.

‘HELP NAME

FLUSH £chan

Forces data remaining in a channel buffer to be sent,
without closing the channel or signalling end-of-file.
This operation is only appropriate to certain devices
(eg NET:). Can be used in immediate mode.

for-line
any number of statements or blocks
next-line

for-line:
FOR simple-variable =expression TO expression STEP
expression

STEP can be omitted —the default STEP value1s 1.
next-line:

NEXT
NEXT variable

" The structure of a FOR loop is defined as a block, with

a FOR line, the loop body, and a NEXT line. FOR and
NEXT cannot be placed on a conditional line, Allowed
in Minimal BASIC.

FORY=0TO 10 STEP 2
PRINT ¥ -

- NEXTY

The value of the control variable after the loop has
ended is the terminating value plus the STEP

161

COMMANDS AND STATEMENTS

T T e e ——

T e e o e T T e e e
expression, 1.e. Y will have the value 12 in the example
above.

Nested FOR loops cannot use the same control
variable. The limit and increment expressions are
copled to hidden local memory on execution of the
FOR line; these values cannot be changed by the body
of the loop. Control cannot be transferred from outside
to inside of a loop. See also EXIT FOR,

GE."T_ _' GET £chan: string-id

Gets a single character from a channel, and

returns a null string ("' ') if no character is available.
Defaults to channel 105 (KEYBOARD:), and in

simple usage is similar to the function INKEY$.

GOSUR GOSUB line-number
Calls subroutine beginning at the line-number
specified.

GOTO GOTO line-numker

Program execution 1s continued at the line-number
specified. Can be used to exit FOR, DO, HANDLER or
DEF blocks, but this is not recommended.

GRAPHICS GRAPHICS
GRAPHICS HIRES/LORES colour-quantity-number

GRAPHICS ATTRIBUTE

The command GRAPHICS has the effect of closing and
re-opening the default graphics and text pages (£101
and £102): it displays the default graphics page over
most of the screen, but with four lines of text at the
bottom.

CRAPHICS also establishes the default channel
(181) for video machine options such as PALETTE.

Valid colour-quantity numbers are 2,4,16 and 256.
If nothing is specified for the colour quantity or the
HIRES/LORES option, the values that were used for the
previous GRAPHICS command will be re-used. For the
significance of these values, see 'Video Mode’, in the
"Video Options' section. Initially, GRAPHICS selects a
high-resolution graphics page with 4 colours.

GRAPHICS ATTRIBUTE selects an 'attribute’ mode

COMMANDS AND STATEMENTS

~ of graphics in which each colour-cell (8 dots wide by 1
dot deep) can contain one 'ink’ colour and one ‘paper’
colour. This mode combines a 16-colour palette with
the same resolution as 4-colour HIRES graphics
(resolution and colour-quantity cannot be specified by
the user). Both printing and plotting commands may be
given, although there can be interactive effects
between the colours. For flexible use of this mode see
the ATTRIBUTES video option. See DISPLAY
GRAPHICS.

HANDLER HANDLER handler-name
exception handler statements
END HANDLER

The HANDLER block is used for dealing with program
exceptions caused by errors, the CAUSE EXCEPTION
command, or machine interruptions.

The handler to be used is specified by the handler-
name given in the current WHEN block.

See CONTINUE, RETRY, EXIT HANDLER, and the
functions EXLINE and EXTYPE.

Control can be transferred into an exception
handler only as the result of an exception (not by a
GOTO or GOSUB).

[f an exception occurs inside the exception handler
the effect is similar to EXIT HANDLER, since control
passes to the next outer level of handler (as specified
by the next outer level of WHEN block). However, the
former values of EXTYPE and EXLINE will have been
replaced by new ones.

IF IF relational-expression THEN line-number
IF relational-expression THEN simple-statement

Statements not allowed on an IF line are DATA, DEF,
END, DIM, NUMERIC, STRING, a further IF, or any
statement which introduces a block.

IFA>=3AND A< =9 THEN 100
IFA>=3THEN GOTO 100

if-line

any number of statements or blocks
else-if-lines option

any number of statements or blocks

163

COMMANDS AND STATEMENTS

m

IMAGE

164

else-line option
any number of statements or blocks
end-if-line

if-line:
IF relational-expression THEN

else-if-line:

- ELSE IF relational-expression THEN

There can be any number of ELSE IF lines.

else-line:
ELSE

end-if-line:
END IF

[F blocks can contain any statement which is not
restricted to immediate mode.

IF A< 1@ THEN
PRINT A

ELSEIFA>30 AND A< =40 OR A>50 THEN
PRINT A + 100

ELSE
PRINT B

END [F

The ELSE and ELSE IF lines can be used to break the
block into sub-blocks with the usual meanings. ELSE
may only be used once, but ELSE IF can be used as
often as needed. Control cannot be transferred from
outside to inside of an IF block.

IMAGE: format-specification

Used in conjunction with PRINT commands, to control
the format of the output. The format-specification is a
number of characters which, in this context, have the
following meaning.

Numeric format characters: —

— prints a comma in the number. |
$ — prints a floating dollar-sign preceding the siagn.

COMMANDS AND STATEMENTS

INFO

INPUT

— — prints a floating space or ' ="' sign.

+ — prints a floating '+ ' or ' - ' sign.

% — prints a digit, including leading zeros.

£ — prints a digit or space, trailing zeros after a
decimal point.

% — prnts a digit or leading ‘+'.

— prints a decimal point.
— prints exponent part; minimum 4 characters.

- If the number does not fit in the format space, an error

18 generated.

String format characters: —

< — leftjustification of the string, in the fleld defined
by ‘€' characters.

£ — prints a character.

> — rightqustification of the string.

The 'justify' format character must start the field; if no
‘1ustify' character is used, the string 1s centred.

The format in the IMAGE line starts immediately
after the ' and ends with the last printed character on
the line,

Prints out the amount of memory in the system and the
number of unused bytes. A table of information about
the programs in memory is also printed, in the
following form:

program-number number of first line
bytes in of program
program

INFO clears all variables. Only executed in
immediate mode.

INPUT E£chan, IF MISSING action, AT row-expr,
column-expr, PROMPT string: variable-list.

Reads data from channel into a list of variables. Default
channel is the editor (channel #). Items of data read in
to match with variables in the variable-list must be
separated by commas.

165

COMMANDS AND STATEMENTS

e TNy e D

e T e e e ey
INPUT PROMPT K$&"'Enter next number please? *':N
INPUT A(D), BS

The [F MISSING and PROMPT parts can be in either
order, or absent. The default input prompt is “'? "
PROMPT replaces the default prompt with the string.

The AT option (with row-expr, column-expr) is
independent of the PROMPT option.

IF MISSING 1s used if an end-of-file condition
occurs on the channel, or if there is null input when a
numeric input is expected. The action then taken

follows the same rules as with READ,
See also LINE INPUT.

LET LET variable-list = expression

Simple assignment; LET is optional unless the variable
name is the same as a keyword. Listing or saving the
program causes the LET to be inserted so that the
program conforms to the standard. Can be executed in
immediate mode.

One value can be assigned to several variables:

LET A, B4), C=

A_VAR=A_VAR+]

A$,FREDY = "He said"&"Don't"'&". "&FRED${)
LET INPUT =3

LINE INPUT similar to INPUT, but reads a whole line (including
commas, etc.) for each item in the variable-list—which
may only contain string variables.

LIST LIST £chan:line-description TO line-description
LIST £chan:line-description — line-description
LIST block-name

Lists all or part of the program. Can be stopped by
‘stop’ key or paused by ‘hold' key. Only executed in
immediate mode. The default channel is £8.

LIST 300

LIST 30¢ TO 400

LIST FIRST TO 900, 1000, 2009 TO LAST
LIST TO 500, 700 TO

LIST MY_FUNCTION

LIST LAST

166

LLIST

LOAD

LOOK

COMMANDS AND STATEMENTS

TO may be replaced with -

'. Compare DELETE.
e.qg. LIST FIRST-100,500-LAST
for LIST FIRST TO 180, 509 TO LAST

LLIST list-expression

I[dentical to LIST, but defaults to £104, the printer listing
channel.

LOAD £chan:filename
LOAD device-name

Loads a file from the given channel, or, if no channel is
specified, from channel 106 (cassette, or disks if
attached). If LOAD is typed without parameters it
defaults to the 'boot' file (on tape, this is the first file
found).

LOAD
LOAD "My_Program”
LOAD "NET-0:"

If the file contains a BASIC program then this replaces
the current program in memory. If multiple BASIC
programs have been saved as one file, these will
replace all programs in memory and return to program
@.

The file can contain other data and program types
(such as extensions or other applications programs)
which will be handled automatically by the operating
system.

See OPEN for a definition of a device-name and a
filename.

Clears variables. Only executed in immediate mode,
but see RUN which can be used in a program statement.

LOOK &£chan AT x,yv

Assigns to variable ‘v’ the palette colour at point (x,v)
on the standard graphics page or other page specified
by the channel expression. Both the channel
expression and the AT part are optional. If the AT part
is omitted, the current beam (cursor) position will be
used. Note that the use of AT will turn off the beam and

167

COMMANDS AND STATEMENTS
B S U I ST T TR S e S R s S SRR —
T e BT ——
move 1t to (X,v).
LOOP See DO.
LPRINT LPRINT print-expression

Identical to PRINT, but defaults to £184, the printer
~ listing channel.

MERGE ' ~ MERGE £chanfilename

Merges the file from disk, tape or other channel with
the current file. Lines from the new program will
replace lines of the same number in the current file.

- Only executed in immediate mode. Clears variables,

NEW Deletes all the current program. Only executed 1n

B immediate mode. Clears variables. '

NEW ALL ~ Deletes all programs from computer memory, and
returns to program @,

NEXT See FOR.

NUMERIC

NUMERIC variable/array-list

" Declares numeric variables or arrays (which are local
if declared within a DEF function). The default lower
bound will be 8. Compare DIM,

NUMERIC 1,A(18),B(-10 TO 20, 2 TO 4)

ON ON expr GOTO line-number-list
~ ON expr GOSUB line-number-list

Evaluates expression, converts result to an mteger,
~ and uses integer result N to choose Nth line-number
from the list (the count starts from 1). Program
execution then resumes from that line. If there is no Nth
line-number, no action is taken. Use SELECT or IF
block for a more readable program.

ON A +2 GOTO 100,200,300,408,33, 700

OPEN QOPEN £chan:NAME device/filename ACCESS mode
OPEN £chan:device/filename

168

COMMANDS AND STATEMENTS
T R T B B e e oy P e,
R T S e B P g e ey e T Frrevos
The access mode is either INPUT or OUTPUT.
ACCESS OUTPUT attempts to create a new file (if on
tape or disk); ACCESS INPUT attempts to use an

existing file. For devices such as VIDEQ:, either can
be used. The default is INPUT.

Connects a device, or a file in the case of tape and
disk, to a channel. Commands may then read, write or
otherwise manipulate data from and to the device (or
file) by referring to the channel number.

OPEN £8."DISK-1:TEST_PROGRAM" ACCESS OUTPUT

Only one device (or file) may be connected to a given
channel at any one time, although a single channel may
be used to access several devices (files) one after the
other.

To disconnect the channel from a device (or file),
use the CLOSE command.

Channel numbers range from 0 to 254. (255 is an
invalid channel number which is used for special
purposes.)

The BASIC system uses several channels as
defaults when channels are not specified in statements,
These channels are: —

@ —used for command input and normal text
B output (e.g. for LIST and PRINT). This channel
1s connected at reset (or power on) to the
device "EDITOR:".
The device "EDITOR:" itself uses the
devices "KEYBOARD:" and ""VIDEQ:", set up
in video-mode @ with page-size 24, 44,
- This channel is the default assumed for
COPY FROM and REDIRECT FROM.
_ Channel @ 1s automatically opened at reset,
aea and remains opened until explicitly closed.
- Note that channel 9 is specified as the
L3 default command channel for ANSI
s compatibility. Other default channels are
numbered over 180 to leave simple channel
numbers available for user definition.

i 101 —used for graphics input and output statements.
This channel is connected at first use of

o GRAPHICS command to device "VIDEQ:",
169

COMMANDS AND STATEMENTS

170

which is set up in video-mode 1, video-colour
1, with page-size 20,40. Channel 181 remains
open untll explicitly closed, e.g. by a TEXT
command.

102 —the standard ‘text' page. Automatically opened
at reset, with page size 24,40.

183 —used for standard sound output, The channel is
connected at reset to device "SOQUND:"' .
Channel 183 is automatically opened at
reset, and remains opened until explicitly
closed.

184 —used for assumed 'hard-copy’' operations. This
channel is connected at reset to device
"PRINTER:". It is the default channel assumed
for COPY TO and REDIRECT TO.

Channel 184 is automatically opened at
reset, and remains open until explicitly closed.

195 —used for keyboard operations (connected at
reset to device "KEYBOARD:"). Remains open
until explicitly closed.

186 —used for file-based input and output
operations. Whenever required, the channel 1s
connected to ""DISK-1:"" if attached: If disks are
not attached, it is connected to "TAPE:".

Standard file operations include LOAD,
MERGE and VERIFY.

Channel 106 1s only opened when
necessary, and is closed following the
completion of every operation —unless an
OPEN command has been explicitly given.

107 — used for network operatiorns.

Channel 197 is only opened automatically
by a command which assumes this channel for
the default, and is closed following completion
of the operation.

Channels 109-254 remain open unless specifically
closed, but channels 1-99 are always closed when RUN

is typed, or if any other operation takes place which
clears all variables. If BASIC discovers a default

COMMANDS AND STATEMENTS

channel closed, then it will close all channels (8-254)
and attempt to re-open its default channels. If it cannot
do this, BASIC assumes that an unrecoverable error
has occurred and flashes the screen border until the
computer 1s reset.

Device names passed through to the operating

~ system are terminated by a colon so that they can be

recognized. Where more than one device 1s known by
the same name, a number is appended to the name,
e.qg. "DISK2;" or "DISK-2:"".

The valid names are: —

“DISK-n:" Disk drives.
e “"EDITOR:" Screen editor. This in turn uses
devices ""VIDEQO:;" and
"KEYBOARD:".

“KEYBOARD:" Transparent keyboard. Includes
external joysticks.

"“"NET-n:" Built-in local net. The number ‘'n' 1s the
network address (in the range 1-32) of
the machine with which communi-
cations are being established. If 'n' is
@, this defines a 'general’
channel—used for broadcasting to all
machines, and for receiving data
without specifying the source

o machine.
—_ "PRINTER:" ‘Centronics-style’ printer port.
~ “SERIAL" Serial RS4231/0.
—_ o ~ “SOUND:" Sound generator.
T “TAPEm Tape drives.
__ _ : | “VIDEO:" Video pages.

. | ~ As other devices are attached to the computer, they
o are likely to define additional names within the
S . operating system.

LI | In most cases, only a device name 1s required for an
[Tt

COMMANDS AND STATEMENTS
T T e e T T T e e ——
e e T T T T e —

OPEN operation. When file-based input/output is used,
a filename must be givern.
The full specification of a filename is:

"device-n:name"

—"device" 1s optional; if it 1s omitted, the system mass-
storage default device will be used —for an
unexpanded system, this is "TAPE:"".

''n"' 1s the device number, and defaults to 1 if
omitted; e.g. "DISK:" would go to "DISK-1:"".

“name’’ is the description of the file within a
device, It follows the same rules of format as a BASIC
identifier, except that only the first 28 characters are

~ significant.

If no colon 1s included in the filename, it 1s assumed
that the device name has been omitted. So, for
example, "SOUND" is a file on "TAPE:", but
"SOUND:" is the sound generator device.

eqg, 'DISK1:DATAFILE" "DISK-1:.DATAFILE"
“LDATAFILEY "DATAFILE"Y will all reference the
same file (assuming disks are attached).

The "'name’ part of a filename is ignored by all
currently-defined devices except "TAPE:" and
“"DISK:". So, for instance, "PRINTER:PRETTY-
LISTING" 1s equivalent to “"PRINTER:".

There are some commands which allow you to
specify both channels and filenames within the one
statement; e.g. LOAD and SAVE.

The full specification in these cases takes the form:

Ychan:filename
If £chan is missing, then a default channel i1s used.

OPTION C}PTION ANGLE DEGREES/RADIANS

Selects the base unit for subsequent operations using
angles, The default i1s radians.

OUT - OUTn,a
Writes byte ‘a’ to the I/0O port 'n'.

PING ~ Produces 'ping' sound.

172

COMMANDS AND STATEMENTS

.y i o L A B SR A AL LR AT = 75 1 ERTUDR I ol A e DN L e A T T b
o e i S 57 A R T it B o R 30083 0L A AP0y P 5 ST B S ML= K

PLOT

PLOT £chan:point-list

PLOT £chan:ANGLE expr

PLOT £chan:FORWARD/BACK expr
PLOT £chan:LEFT/RIGHT expr
PLOT £chan:ELLIPSE expr, expr
PLOT Lchan:PAINT

PLOT followed by a point-list plots points and/or lines.
When a PLOT command ends in a semicolon, the
beam will be left ‘on' after the command has been
executed, otherwise it will be turned "off".

Thus: —

PLOT x, y

will move the beam —drawing a line, if the beam was
'‘on’ —to position (X,v), and then turn the beam off.

PLOT x,y,

will leave the beam ‘on’.

The last two statements both plot a point at (x,y). If
the co-ordinate pair is followed by a comma, the beam
i1s moved to the specified position without plotting a
point there (and is left ‘off").

PLOT x1,yl;x2,y2,...

will draw lines with the bearm ‘on’ between the
specified points, and leave it on if the command ends
in a semicolon. If the beam was 'on' before the
command is executed, a line will also be drawn from
the previous beam-position to the point (x1,y1).

Plotting is done in the current ink colour and
according to the current line style and line mode (see
the Video Options section),

The co-ordinates used in PLOT statements follow
the conventions for GRAPHICS plotting. The bottom
left-hand corner of the video page is (£,@). In the co-
ordinate specification (x,y), x is the horizontal position
counting from the left, and v 1s the vertical position
counting from the bottom.

ELLIPSE plots an ellipse with its centre at the
current beam position. The two parameters that follow
give the horizontal and vertical distances from centre
to circumference, in graphic screen positions. The

173

COMMANDS AND STATEMENTS
D e e e ST
R 3 o e S e P et g o o ey

ellipse must be plotted with the beam 'off’ if a dot ig not
to appear in the centre.

PLOT 300,350, ELLIPSE 200,300,

will avoid plotting the dot.

PAINT fills an enclosed area (that contains the
current beam position) with the current ink colour. The
area painted is bounded by a continuous line differing
in colour from the original colour of the beam position.

If the beam is in a position where a point, of the
current ink colour, has been plotted, then PAINT will
have no effect, as it will detect a boundary condition
immediately. As with ELLIPSE, precautions should be
taken to avoid plotting a point.

PLOT 490, 300, PAINT

A PLOT command will by default go to channel
101.

POKE | POKE address, value

~ets the value of the specified Z80 memory location.

PRINT PRINT £chan, AT row-expr, column-expr:output-list
PRINT £chan, USING line-number:output-list
PRINT E£chan, USING string:output-list

An item in the output-list can be either an expression or
the word TAB followed by a column-number in
brackets. Items may be separated by commas or
semicolons. A semicolon generates a null string; a
comma inserts spaces up to the start of the next print
zone. TAB inserts spaces up to the specified column,
An output list ending with a comma or semicolon does
not generate an end-of-line sequence. Can be
executed in immediate mode.

The AT option positions the cursor at the specified
row and columm before printing the list. The optional
channel number redirects the output (default channel
1s the standard text page).

The row and column co-ordinates for the AT
specification follow the conventions for text positioning.
The top left-hand corner of the video page has text co-
ordinates (1,1). The fifteenth column in the second line

174

COMMANDS AND STATEMENTS

DT T e e L e e e e e O S el
[T e e T T e

RANDOMIZE

READ

REDIRECT

has text co-ordinates (2,15).

PRINT “VALUE =";A
PRINT AT x,y:"0";

The USING option controls the format of the output. The
line-number must be the number of an IMAGLE
statement. See IMAGE for the details of the format
specification.

PROGRAM name (variable-list)

Defines the name of the current program, for use in
CHAIN statements and as default name for SAVE.

PROGRAM "“My_Program’' (A,B$)

The variable-list (if included) allows the specified
parameters to be passed by value from another
program. See CHAIN and EDIT.

Normally each run of a program starts with the same
random number sequence. RANDOMIZE changes the
random numbers to a fresh sequence.

READ variable-list
READ IF MISSING line-number;variable-list
READ IF MISSING EXIT DQO: variable-list

Reads data from the DATA statements; the IF MISSING

action is executed on an attempt to read past the end of
the data.

READ A,B3(i)
REDIRECT FROM £chan TO £chan

Reads input from the first channel and directs it to the
second, until the end of a file is reached, the 'stop’ key
is pressed, or there is an error from one of the
channels. The redirection can also be halted by use of
the invalid channel number £255 as the TO channel in a

~ later REDIRECT statement.

REM comment-line

173

COMMANDS AND STATEMENTS
e e
e P i T L A e L SN A TP A e e T

Remark line.
REM must be at beginning of line and be followed

by at least one space. For greater flexibility, '!" is
recommended.

RENUMBER RENUMBER line-description TO line-description AT
expr STEP expr

RENUMBER block-name AT expr STEP expr

Renumbers all or a part of the program. Only executed
In Immediate mode.

RENUMBER FIRST TO 10@
RENUMBER 10 TO 100 AT 300 STEP 10
RENUMBER STEP 180

RENUMBER MY_FUNCTION AT 5600

STEP and AT can be in either order or omitted. If STEP
is unspecified, the default is 10. If AT is omitted, then
the first line-number in the segment to be renumbered
is used. If no line-number range is givern, then the
whole program is renumbered and the default for AT
is 100.

The name of a DEF or HANDLER block can be
given instead of a line-number range. For the syntax of
the line-descriptions, compare DELETE.

All references in the program to renumbered lines
are changed.

RENUMBER cannot change the order of lines in a
program. So if the renumbered lines would overlay or
surround lines not renumbered, or would be put into a
new place in the sequence, or would create too high a
line-number —then the RENUMBER command 1S not
executed, and the text of the program is left
unchanged.

RESTORE RESTORE
RESTORE line-number

Resets the start of DATA (for READ statements) to the
start of the program or the given line-number.

RETRY Used as an exit from an exception handler, this returns
control to the line or statement which caused the
exception. Compare CONTINUE.

176

COMMANDS AND STATEMENTS
T T I e e
T T e e e T

SELECT

If an exception handler 1s used to trap the 'stop’
key, or any software interrupt, then RETRY should be
used to continue the prograrm.

Returns from a subroutine called by GOSUB.

RUN (para-list)

RUN line-number

RUN £chan:file-name (para-list)
RUN device-name (para-list)

RUN on its own runs the current program from the first
line. If a line-number 18 given, then execution starts
from that line-number. If a filename is given (with
optional channel), the program is loaded and then run.

Parameters can be passed to programs with RUN,
but these must correspond with declared parameters
for the program. See PROGRAM. Clears variables.

SAVE f£chan:filename
SAVE device-name
SAVE ALL £chan:filename

" Saves the current program. By default it is saved via

channel 106. If no filename is given, then the
PROGRAM name will be used, if one exists.

SAVE ALL will save all the programs currently in
MeImory.

Programs are saved in a coded format. To save a
program in character (ASCII) format, use LIST

- fchan:filename —such programs can later be loaded if

required. Only works in immediate mode. See LOAD.

select-line
case-line

any number of statements or blocks
case-line option

any number of statements or blocks
end-select-line

select-line:
SELECT CASE expression

case-line:
CASE expression
CASE expression TO expression

i

COMMANDS AND STATEMENTS

m
“

SET

178

CASE IS relop expression
CASE ELSE

end-select-line:
END SELECT

The SELECT block is a group of statements to test the
varlable or expression against a number of alternative
conditions.

The word CASE in the SELECT line is optional
unless the expression begins with an identifier CASE.

e.g. SELECT CASE CASE +23

There can be any number of CASE lines. The cases
are tested in order of line-numbers. There is no point in
having additional case-lines after a CASE ELSE, since
they cannot normally be reached. Several cases can
be combined on one line by separating them with
commas.

e.g. CASE 1,2,3TO 8, 99

SELECT CASE N
CASE 1

PRINT “first case”
CASEZ2TOG9 1121

PRINT “some more cases"
CASE IS<=A+20

PRINT "even more cases"
CASE ELSE

PRINT "rest of cases’’
END SELECT

The CASE ELSE line can only be used once, and must
follow all the other CASE lines. The other CASE lines
can be used in any order as necessary, the lines in
between two CASE lines forming a block. Control

cannot be transferred from outside to inside of a
SELECT block.

String SELECTs are also available.

Sets current machine-option values. See 'Machine
Options', 'Video Options' and 'Sound Options'.
Compare ASK and TOGGLE,

COMMANDS AND STATEMENTS

W
M

SOUND

SPOKE

START

SOUND £chan:PITCH expr, DURATION expr, LEFT
expr, RIGHT expr, SOURCE expr, STYLE expr,
ENVELOPE expr, SYNC expr, INTERRUPT

Provides overall contral of a sound. The parameters
may be listed in any order.

The number specified by PITCH may be anything
from @ to 127, although good results are normally
obtained only in the range @-83. Within that range, an
increase of 1 will raise the pitch by one semitone; pitch
value 37 (the default) is equivalent to middle C.

DURATION gives the duration of the sound
(allocated to the non-release phases of the envelope),
in ‘ticks’ (one tick is 1/50 second). The default is 50
ticks.

The LEFT and RIGHT parameters specify the
overall volume of the sound for the two stereo output
channels. The values range from @ (no sound) to 235
(maximum volume of the machine —the default). If
stereo equipment is not being used, the volume will be
determined by the sum of the values given for the left
and right channels.

SOURCE specifies the tone generator used; the
values are 0-3 (default:@). Tone generator 3 is the ‘noise
generator' (which ignores pitch values).

The STYLE parameter is in the range 8-255 (default:
@): for its effects, see the 'Sound Options’ section.

ENVELOPE specifies the number of the envelope
to be applied to the sound. See the ENVELOPE
statement. 255 (the default) is a built-in envelope.

SYNC allows the start of the sound to be precisely
synchronized with 1, 2 or 3 other sounds from different
'sources'. If, for example, three sounds are to start
together, each one can be given the instruction SYNC
7, causing it to be synchronized with the two others.
(Default value 1s 9).

INTERRUPT, if included, causes the new sound to
replace any sound (from the same source) which may
currently be going.

SPOKE segment, address, value

As POKE, but writes the value to the system address
within the specified segment.

[f no program is currently loaded, this command loads
179

COMMANDS AND STATEMENTS
e e A e T A

and runs the first file on channel 106. If any program is
in memory, then START acts as RUN on the current
program.

STOP Halts execution (prints STOP message).
Note that CONTINUE is allowed after a STOP
instruction.

STRING STRING vanable/array-list«n

Declares string variables or arrays with maximum
length. Default length is 132. Adding «n after the word
STRING or the variable declaration sets the length to n.
The default lower bound for an array 1s .

STRING*8 LAST_NAMEZ}*20,FIRST_NAMES,
MIDDLE _NAMEY

In this example, LAST_NAMES is given a maximum
length of 2¢: FIRST_NAME$ and MIDDLE_NAMES are
up to 8 characters long.

STRING NAMES$

Here, NAMES has a maximum length of 132.

STRING NAMES (4 TO 99)*10

This array has 96 elements, each of 1@ characters.
Note: a DIM statement cannot be used to define the
length of a string variable,

TEXT TEXT
TEXT 49
TEXT 80

Opens a text page covering the entire display except
for the area of the status line. Closes the standard
graphics page 1f it was open.

40) or 80 specifies the number of columns on the
screen. If this is not specified, then the previous value
will be used.

See DISPLAY TEXT.

THEN See IF.
180

COMMANDS AND STATEMENTS
. I T I TR 1 ST AGHAN EET e o r to Bar REsi Li H oTn B i T
e BT T T e e L s e e T o A e e
TIME TIME time-string

Specifies the current time held by the computer. This is
automatically incremented once a second.
The time is specified in the format HH:MM.55.

TIME ''15:35:00"

1s equivalent to 3.35 pm.

Can be used in immediate mode. See TIME$
function: see also the command WAIT DELAY and the
machine option TIMER.

TOGGLE Acts on machine options that have only two possible

~ values (e.g. 'on’ and ‘off'), by switching from the
current value to the alternative. See 'Machine Options’,
‘Video Options’ and 'Sound Options' sections; compare
SET and ASK.

TRACE TRACE ON TO Zchan
TRACE OFF

After TRACE ON, the number of the line currently
being executed is reported. The output 1s directed to
channel @ unless directed to a specific channel
number.

TYPE TYPE,

Special instruction to exit BASIC, and enter the built-in
word processor. All BASIC programs and variables
will be destroyed by this action, and so the user 1s
prompted to press ‘enter' to confirm the instruction.

VERIFY VERIFY &£chan:filename

Verifies that a program has been saved correctly;
compares the current program file with the specified
file, and gives an error message if the two files are not
identical. Channel 106 is used by default. Only
executed in immediate mode.

WALIT DELAY WAIT DELAY expr

Causes the program execution to wait for a delay
period specified in seconds.

181

COMMANDS AND STATEMENTS
T T e T e T T T e e e T e T A e
T T e e e T T e
WAIT DELAY 60

will suspend program execution for one minute.
Maximum delay is 32,767 seconds. See TIMER
machine option for automatic time-out operation while
continuing program execution.
The word DELAY is optional.

WHEN WHEN EXCEPTION USE handler-name
statements
END WHEN

specifies the exception handler to be used when an
exception caused by program execution occurs inside
the WHEN block.

The program statements can include additional
nested WHEN blocks.

See HANDLER.

182

MACHINE OPTIONS (GENERAL)

T A T O SO 3 Y St 5 S o LA LS
#

EDITOR BUFFER

EDITOR KEY

EDITOR VIDEO

FAST SAVE

Certain system variables and machine functions can
be controlled directly from BASIC; these are called
machine options. To assign a value to an option, the
command SET is used. Where stated, the options listed

below may also be handled in conjunction with ASK or
TOGGLE.

SET DEFAULT CHANNEL expr

Specifies the default system channel. This channel
value can then be used by service programs which
wish to communicate with the user, but which do not
know the purpose of currently-used channels.

In particular this channel will be used by programs
responding to the HELP command sent via the
operating system.

Before having been SET, this channel will be
number 9.

SET EDITOR BUFFER expr

Defines the size of the editor's buffer, in 256-byte
chunks, for use with editor channels subsequently
opened. Can be used with ASK.

SET EDITOR KEY channel-number

Allows the specified channel to be used as the editor's
keyboard input, for use with editor channels
subsequently opened. Can be used with ASK,

SET EDITOR VIDEO channel-number

Allows the specified channel to be used as the text
page for the editor, for use with editor channels
subsequerntly opened. Can be used with ASK.

SET FAST SAVE ON/OFF

Sets the fast saving speed for tape operations. This
speed is approximately 2400 baud, and is the default
rate. If fast save is off, the speed i1s halved.

Loading from tape automatically copes with
varlations in saving speed.

Can be used with TOGGLE.

183

MACHINE OPTIONS (GENERAL)

T e £ N I .7 WA M AR = 11 3
T e T ——

FKEY

INTERRUPT

KEY CLICK

KEY DELAY

KEY RATE

184

SET £chan.FKEY key-number string

Sets the function key to produce the specified string
each time it is pressed (a null string will cause an
exception). The default channel is 145,

The function keys are numbered 1-16. Numbers 1-8
are the unshifted function keys; numbers 9-16 are the
shifted equivalents of keys 1-8.

The function keys are set up with default strings by
the system, and re-definition of the keys will remove
the default settings. To return all function keys
to their default settings, use CLEAR FKEYS.

To create automatic 'enter’, use &CHR$(13).

ASK INTERRUPT CCDE
Asks the software interrupt code for the last interrupt.

SET INTERRUPT KEY ON/OFF

When ‘on’, causes a software interrupt from any key-
press. Can be used with TOGGLE.

SET INTERRUPT NET ON/OFF

Turns on or off the software interrupt caused by
recelving data from the network.

SET INTERRUPT STOP ON/QFF

Turns on or off the software interrupt from the ‘stop’
key. Can be used with TOGGLE.

SET KEY CLICK ON/OFF

Determines whether a click 1s heard with each key-
press. Can be used with TOGGLE.

SET KEY DELAY expr

Sets the mitial keyboard delay before auto-repeat
starts, in units of 1/50 second. Can be used with ASK.

o>ET KEY RATE expr

Specifies the keyboard auto-repeat rate, in units of

MACHINE OPTIONS (GENERAL)

1/50 second. Can be used with ASK.
NET CHANNEL ASK NET CHANNEL var

Returns the channel number from which there 1s data
in a network buffer waiting to be read.

When the first byte is read from this channel, NET
CHANNEL moves on to pointing at the next channel
which needs to be serviced. The value 258 is returned
if no more channels have data.

NET MACHINE ASK NET MACHINE var

This is updated at the same time as NET CHANNEL,
and returns the network number of the remote
machine. This is particularly important if the data is
received on the 'general’ channel (NET-3:).

NET NUMBER SET NET NUMBER expr

Sets up the computer's network address number. This
must be in the range 1 to 32, This starts up as @, which
is not valid as a network address.

A net number must be specified before using the
network, and should not be the same value as set by
any other computer on the network.

REMI1 SET REM1 ON/OFF

Controls remote control switch 1. (Also controlled by
tape operations.)

REM2 SET REM2 ON/OFF
As above, but for remote control switch 2.
SERIAL BAUD SET SERIAL BAUD expr
The parameter (in the range #-15) determines the baud

rate for the RS232 port and the network, according to
the code given below. Can be used with ASK.

== 50 baud 6=>> 300 baud
l=> 15 " 7= > 600 it
2=>110 " 8 = > 1200 "
3=> 1345 ” 9= > 1800 :

185

MACHINE OPTIONS (GENERAL)

150 " 10 = > 2400 .

11 => 36080 baud
12 = > 4800 ¥
13 = > 7200 £
14 = > 9609 ¥
15 = > 9600 "

Default baud rate is 960@ (value 15).

SERIAL FORMAT SET SERIAL FOEMAT expr
Defines the word format for the serial device driver,
The format 1s controlled by the binary bits in the

number, as follows:

BIT VALUE EFFECT

0 f 8 bits
1 7 bits
1 d no parity
9) even parity lgnored if
] odd parity bit 1is @
- 3 7 two stop bits
1 one stop bit

Bits 4 and upwards must be #.
Default format is 8 bits, no parity, 2 stop bits. Use of
the network will always re-initialise this default.

STATUS SET STATUS ON/OFF

Turns the 'status line' (at the top of the display) on or
off. Can be used with TOGGLE.

TAPE LEVEL SET TAPE LEVEL expr

Controls the volume level used when saving to tape.
Acceptable tape levels are in the range 1-6, with
volume doubling for each level. Level 1 is equivalent to
about 40 mV peak-to-peak. Default level is 2.

186

MACHINE OPTIONS (CENERAL)

AT T A WSRO - e AR T 0 S o A OSSR S ie
e e e e . e e =

TAPE SOUND

VARIABLE

SET TAPE SOUND ON/OFF

Controls transmission of sound from tape input to sound
output. Allows direct throughput of music or speech
from the tape onto the internal speaker or hi-fi cutput.
Can be used with TOGGLE.

SET TIMER expr

Starts a timer which will cause a software interrupt
when it counts down to zero. The value is specified in
seconds, maximum 255. Setting the value to § will stop
the timer without causing an interrupt.

The timer always stops when it reaches f, and must
be explicitly re-started.

The software interrupt exception (EXTYPE 9229)
will have to be dealt with by an exception handler, or
the program will stop operation. After the exception,
ASK INTERRUPT CODE A will assign to A the value 64
if the interrupt came from the timer.

SET variable-number, expr
ASK variable-number var
TOGGLE variable-number

Sets, asks or toggles the specified operating system
variable. For further details see the Enterprise
Technical Manual.

187

VIDEO OPTIONS

These work on the built-in video device, which can
contain many video pages each with different
parameters. The commands which work on individual
pages can be given a channel specification, but if this
1s left out, some of them default to the standard text
page (£102), others to the standard graphics page
(£121)—as detailed below.

Note that COLOR is always acceptable in place of
COLQOUR.

ATTRIBUTES SET ATTRIBUTES expr

sets a special flag to control operations in attribute
video mode (number 15). Values of this flag have the
following significance:

1 —plotting in @s (paper colour)
2 —plotting without affecting bit map (pixel) data
4 —plotting without affecting ink attributes
& —plotting without affecting paper attributes

16 —printing in @s

32 —printing without affecting bit map

64 —printing without affecting ink attributes

128 —printing without affecting paper attributes

To achieve combination effects, the numbers should be
added together, The default value is 9.

BEAM SET £chan:BEAM ON/OFF

The current graphics plotting position is called the
‘beam’ position. Whenever the beam is moved, it may
or may not leave a line behind it, depending on
whether it 15 'on’' or ‘off’. Channel number defaults to
£181.

BIAS B SET £chan:BIAS colour-code

Establishes which group of colours will figure as
numbers 8-15 within the palette. The number specified
in the command is the standard code-number of any
colour within the desired group; there are 32 effective
values. The bias may also be specified using the RGB
function.

188

VIDEO OPTIONS
e
e B A —— TS S S LLLLLLLLLLLLLLLL

SET BIAS RGB (9,.6,.4)

The channel number defaults to £181. The bias is,
however, applied to every palette used on the display.

BORDER SET £chan:BORDER colour-code
Changes the border to the colour corresponding to the
specified standard code-number. Channel number
defaults to £101.

CHARACTER SET £chan:CHARACTER n,a,b.c.d.efghi
- Defines the pattern of the character with ASCII code
'n'. Each of the parameters a-i defines one row of the
pattern, starting from the top.
To assist in creating characters, the BIN function
can be used to specify each pixelinarowasa@dor 1,
Although a channel number is specified, the
command will affect all video pages. The channel
number defaults to £182.

To return all characters to their default settings,
use CLEAR FONT.

COLOUR SET £chan:COLOUR palette-number, colour-code

Sets the value of one colour in the palette (see
PALETTE below). Palette numbers are in the range 0 to
7. The colour code is from the standard range @ to 255
(or specified with the RGB function).

CURSOR SET £chan: CURSOR CHARACTER code
SET L£chan:CURSOR COLOUR palette-number

Specifies the ASCII code of the character, and/or the
palette-number of the colour, to be used for the cursor.
Channel number defaults to £142.

INK - SET £chan:INK colour-number

Sets the current plotting colour. The colour number is a
palette-number except in colour mode 3 (256 colours),
when it is a standard colour-code number. Channel
number defaults to £191.

189

VIDEO OPTIONS

“
“

LINE MODE

LINE STYLE

PALETTE

PAPER

190

oET Lchan:LINE MODE parameter

Determines the interaction between the colours on the
existing display and the new lines which are plotted. In

- mode @ (the default mode), a new line overwrites

anything plotted before. In modes 1-3, the colour used
for any part of the new line will be determined by
combining the palette numbers of the old and new ink-
colours, in the following ways:

mode 1 —'or'
mode Z2—'and’
mode 3—'exclusive or'

Channel number defaults to £181.

SET £chan:LINE STYLE parameter

The current line-style may be set to any value in the

range 1-14, enabling various types of broken line to be
plotted. Channel number defaults to £101.

SET £chan:PALETTE a,b,c,d,e,f.g,h

sets the values of the first 8 colours in the palette,
which are then used by video options such as SET
PAPER and SET INK. Channel number defaults to £101.
Only the first four colours can be used in colour-
mode 1, and a graphics page in colour-mode @ can
only use the first two. If only the first 2 or 4 colours are

specified, the remainder default to colour 2.
The colours to be placed in the palette are

specified by standard colour-code in the range #-255,
or by the RGB function (see 'Built-in Functions and
Variables’). The 'Teletext primary’ colours can be
specified by name (e.g. MAGENTA).

The palette contains 16 colours in all, although only
the first 8 can be chosen entirely freely. See the BIAS
option for details on the remaining 8 colours.

SET £chan:PAPER:colour-number

Selects the colour which will be used as a background
for printing or plotting. In colour-mode 3, the paper
colour is defined by a standard code-number; in other
modes, by a palette-number. The channel number

VIDEO OPTIONS

#
#

SCROLL

VIDEO COLOUR

defaults to £181.

For a graphics video page (modes | and 5—see
VIDEO MODE option), the PAPER command will only
take effect when the page is cleared —when a new
background is selected for the graphics display.

For an 8@-column text page (video mode 2), the
valid paper colours are palette numbers @, 2, 4 and 6.
These are paired with ink colours 1, 3, 5 and 7
respectively; a character printed in a specific ink
colour will automatically be given the associated paper
colour for its own individual background. A colour-pair
for ink and paper is selected by typing SET PAPER or
SET INK, followed by either of the two relevant palette-
numbers.

A 4f-column text page (video mode @) 1s similar
except that there are only 2 available colour-pairs.

SET £chan:SCROLL ON/OFT

Turns automatic scroll on or off. Channel number
defaults to £102.

SET £chan:SCROLL UP/DOWN n,m

Seorolls the screen up or down from line (n-32) to (m-32).
Channel number defaults to £1872.

SET VIDEO COLOUR expr

Sets the colour-mode for video pages that are
subsequently to be opened. (Channel number is
ignored.)

When defining a text video page, colour mode)
must always be selected. For high-resolution graphics
pages, the colour modes have the following
significance: —

" mode @ — 2 colours: horizontal resolution 644

mode 1 — 4 colours: horizontal resolution 320
made 2 — 16 colours: horizontal resolution 164
mode 3 — 256 colours: horizontal resolution 80

On a LORES graphics page (using half as much
memory as HIRES), the colour quantity for each mode
is as above, but the horizontal resolution is halved,

191

VIDEO OPTIONS

h
“

VIDEO MODE

VIDEO X

192

SET VIDEQ MODE expr

Sets the video mode for pages that are subsequently to
be opened. (Channel number is ignored.)
Parameter values are as follows: —

mode @ — 4@-column text page (2 colour-pairs)
mode 1 — high resolution graphics page
mode 2 — 8f-column text page (4 colour-pairs)
mode 5 — low resolution graphics page

mode 15 — ‘attribute’ graphics screen

SET VIDEO X expr

Defines the horizontal size of video pages subsequently
to be opened. (Channel number ignored.) The size is
specified as a number of character positions in the
range 2-42, using the co-ordinate conventions for text

pages.

SET VIDEO Y expr

As above, only defines the vertical size of the page as
a number of character-rows in the range 1-255.

SOUND OPTIONS

T S S
T e Y S

SOUND BUFFER

SOUND STYLE

These work on the built-in sound generator.

SET SOUND BUFFER expr

~ Sets the size of the sound envelope storage area, for a

subsequent open to the "SOUND:" device. The
expression is the number of phases. Possible values
are 1-255; the default is 20, Can be used with ASK.

The values for the STYLE parameter in a SOUND
statement (see ‘Commands and Statements' section)
have the following effects.

On tone channel @: —

16 — Low distortion,

32 — Medium distortion,

48 — High distortion.

64 — Use high pass filter. Tone channel 1 1s clock.
128 — Ring modulation with channel 2.

On tone channel 1 —

As channel 0, but high pass filter uses tone channel 2;
ring modulator uses noise channel (channel 3).

On tone channel 2; —

As channel @, but high pass filter uses noise channel
(channel 3); ring modulator uses tone channel .

On channel 3 (noise channel): —

1,2,3 — Usetone channel @, 1 or 2 as clock
frequency, instead of the standard 31.25 KHz
frequency,

48,12 — Select noise frequency from 15, 11 or 9-bit

polynomial counters, instead of standard 17-
bit counter.

16— BSubstitute a 7-bit polynomial counter for the
17-bit counter.

32 — Use low pass filter on noise channel, using

tone channel 2 as the clock.
193

SOUND OPTIONS

“
“

64 — Use high pass filter on noise channel, using
- tone channel @ as the clock.

128 — Use ring modulator with tone channel 1.
To select a combination of sound style options, add
together the values for the individual options and

specify the resulting number as the STYLE parameter.

SPEAKER SET SPEAKER ON/QOFF

Controls sound output from the internal speaker; SET
SPEAKER OFF is used for silencing the machine
quickly.

194

BUILT-IN FUNCTIONS AND VARIABLES
e
e —

ABS(X)

ACOSX)

ANGLE(X,Y)

ASINX)
ATNX)

BINX)

BLACK

ELUE

CEILX)

CHR$X)

COSX)
COSH(X)

COTX)
CsCxX)
CYAN

DATE$

Trigonometric functions work in degrees or radians
(see OPTION statement). Minimal BASIC functions are
ABS, ATN, COS, EXP, INT, LOG, RND, SGN, SIN, SQR,
TAB and TAN

The absolute value of a number. This just means
removing the sign from it. So ABS(—9) would be §.

The angle associated with cosine X, 1.e. the opposite of

~ COS. Thus, ACOS(COS(X)) is X.

The angle between the positive x-axis and the line
joining point (8,9) to point (X,Y). '

The angle of which X is the sine,
The angle of which X is the tangent,

Returns the number corresponding to the given binary
representation, e.q. BIN(11081) 1s 25.

The colour black, equivalent to RGB (3,8,0).

" The colour blue, equivalent to RGB (8,8,1).

Gives the smallest whole number not less than X. In
other words, X is 'rounded up' to the nearest whole

number. CEIL(3.45) would be 4, and CEIL(-3.45) would
be -3.

Returns the character of which X 1s the ASCII code-

- number.

The cosine of X.

The hyperbolic cosine of X.

The cotangent of X,

The cosecant of X.

The colour cyan, equivalent to RGB (8,1,1).

Returns the current date in the standard format
(YYYYMMDD). See DATE command.

195

BUILT-IN FUNCTIONS AND VARIABLES

DEG(X) Converts X from radians to degrees.
- DEG(X)=X«180/PI,

EPS(X) The smallest quantity that can be added to or
subtracted from X to make the computer register a
change in the value of X,

EXLINE Returns the number of the last statement that caused an
exception.

EXPX) Returns the value of e raised to the power of X. The
number known as ‘e’ (2.71828...) is the base for natural
logarithms.

EXSTRINGS(IN) Returns the message string associated with exception
number N. Note that the string starts with a space.

EXTYPE Returns the category-number of the last exception.

FP(X) PP stands for fractional part. FP(1.23) would be 2.23.

and FP(-1.23) would be -0.23. FP is the opposite of IP,

FREE The amount of memory free and available to the
current program. This i1s not the same as the amount of
memory free and usable by BASIC (see INFCJ

command).
GREEN The colour green, equivalent to RGB (4,1,0).
HEX$(X$) Returns a string of bytes given the hex values of the

bytes in X$. The hex bytes are in upper or lower case
and separated by commas, e.g. HEX$("'21,E3,ff")

IN(N) Reads a byte from 1/0 port N.
INF The largest positive number the Enterprise can
handle —its idea of infinity. This number is

9.899998599* 13" 62.

INKEYS Returns the character from the keyboard if a key is
pressed; otherwise returns a null string (‘'"").

INT() The largest whole number not bigger than X. So
INT(3.4) would be 3, and INT(-3.4) would be —4.

IP(X) The integer part of X. This means that all figures
196

BUILT-IN FUNCTIONS AND VARIABLES

ﬁ
m

LBOUND(A)

LBOUND(A,N)

LCASE$(AS)

LEN(AS)

LOGX)

LOGIB(X)

LOG2(X)

LTRIMS$(AS)

MAGENTA

MAXLEN(AS)

following the decimal point are chopped off. IF(9.9)
would be 9, and IP(-9.9) would be -8.

Gives a value depending on the state of the switches of
the specified joystick:

— right

— left

down

— fire button

Oy 0O o= DI +—
1

1

Note that the values might be added together if the
joystick is pointed diagonally, or if the fire button is
also pressed.

The joysticks (value N) are numbered @ to 2, with
being the built-in joystick. For the built-in joystick, the
space bar is the fire button.

Lower bound of the dimension of a one-dimensional
array A.

Lower bound of dimension N of an array A.

Converts all upper case alphabetic characters
(capitals) to lower case (small letters).

The number of characters (length) of A$.

The natural logarithm (logarithm to base e) of number
X,

The logarithm of X to base 18.
Logarithm of X to base 2.

Removes all spaces which are at the beginning of the
string A$. So LTRIMS(* Hello") would be ""Hello".

The colour magenta, equivalent to RGB (1,8,1).

Returns the bigger number of X and Y. So MAX(6,99) is
99,

Gives the maximum length that was specified for a
string variable or array.

197

BUILT-IN FUNCTIONS AND VARIABLES

MINX,Y) As MAX(X,Y), but returns the smaller number.

MODEX.Y) X modulo Y. Or, In simpler terms, the integer
remainder of X divided by Y. Note MOD(-1,3)=2. See
REM(X,Y).

ORD(A$) Gives the ASCII code for the character in quotes, or

the ASCII code of the first character of a string
variable. ORD stands for ordinal, and means the
number associated with the character, in the character-
set used by the computer. Since the Enterprise uses
ASCII, the ASCII value is returned.

PEEKN) Returns the byte at Z80 address N.

PI The number known as pl. On the Enterprise this is
rounded to 3.141592654. Returns the value.

POS(X$,Y$) Gives the position in X$ (counting the characters from
left to right) where Y$ first occurs. If Y3 cannot be
found in X§, the resultis 8. By adding a number after
the second string (1.e. POS(X3,Y$,X)), you can tell the
machine to begin looking for Y§ from a specific place
in X3. If X$ is "LONDON" and Y% is "ON", then
POS(XS$,YS) is 2. But POS(X$,Y$,4) would tell the
computer to start from the “D" in "LONDON" when
looking for "ON", and would give the result 5.

POS(AS,B$,M) Alternative version of POS. See above,

RAD(X) Converts X from degrees to radians,.
RAD(X)=X+P1/180.

RED The colour red, equivalent to RGB (1,8,8).

REMX,Y) The remainder of X divided by Y. Note REM

(-1.3)=-1. See MOD(X,Y).

RGB Returns the machine-dependent colour number
equivalent to the specified mixture of red, green and
blue colours. R specifies the proportion of red (@ to 1),
G specifies green (@ to 1), and B specifies blue (@ to 1).

e.g. SETINK RGB (1/2,1/3,1/4)

RND '~ QCenerates a random number between @ and 1. For
198

BUILT-IN FUNCTIONS AND VARIABLES
et L O e s O L P e
e e T T T e e e T e e e

RNDX)

ROUND(X,N)
RTRIMS$(AS)

SEC()

SGNX)

SIN(X)
SINH(X)
SIZE(A)

SIZE(A,N)

SPEEKX(S,N)

SORC)
STR$X)

TABX)

TAN)
TANHX)

TIMES$

practical use, random numbers are multiplied and
made into bigger numbers. INT(RND*10@) would give a
whole (integer) random number between @ and 98
inclusive. (RND is never 1.)

Generates an integer random number less than X. The
largest allowable value for X is 32767.

Rounds X to N decimal places. ROUND(1.7668,2) would
be 1.77. ROUND(— 1.7668,2) would be - 1.76.

Cuts off spaces from the end of the string. As LTRIMS,
but removes spaces from the right.

The secant of X.

Returns the sign of X. Returns — 1 if X is negative, #1f X
is @, and 1if X is bigger than 2.

The sine of X.
The hyperbolic sine of X.
The number of elements in the array A.

The number of elements allowed in dimension N of the
array.

As PEEK, but returns the byte at system address N
within the segment S.

The square root of X, X must be positive.

Converts value X into a string of digits without leading
or trailing spaces, but with a ' —' sign If X is negative.

Only allowed in PRINT statements. Moves the cursor
position to column X of the current row.

 Tangent of X.

Hyperbolic tangent of X.

Returns the current time in the standard format
(HH:MM:SS). See TIME command.

199

BUILT-IN FUNCTIONS AND VARIABLES

%
m

TRUNCATE (X,N) Cuts N decimal places from X.
UBOUND(A) Upper bound of the dimension of a one-dimensional
_array A.
UBOUND(A,N) Upper bound of dimension N of an array A.
UCASES$(AS) Converts all letters in string A$ to upper case
(capitals).
USR(N,X) Calls an address N (which will probably have been

defined using CODE), and passes the integer X in HL

to the machine code routine. The value left in HL will
- be the value returned by USR.
VAL(AS) Converts a string to a number (i.e. the opposite of
STRS). VAL starts converting at the first digit in the
string, and stops when it gets to the first non-digit

character.
WHITE The colour white, equivalent to RGB (1,1,1).
WORDS(N) Returns a two-byte string containing the upper and

lower bytes of N, which is assumed to be an address.
N will usually be an address defined by a CODE
_ statement, and allows backward jumps etc. to be

formed using labels. The first byte of the string will be
the LSB.

YELLOW The colour yellow, equivalent to RGB (1,1,2).

200

EXOS

EXOS is short for Enterprise eXpandable Operating
System. An operating system is a program that
attempts to enable the best and easiest possible use to
be made of a computer and its facilities. It forms an
interface between high-level programs (such as the

BASIC language) and the computer.
The main facilities of a computer are its devices

and peripherals. These are such things as the screen,

~ the tape interface, a printer and so on. Thus the main

INPUT/OUTPUT
SYSTEM

part of an operating system handles the devices and
peripherals: the input/output system. Other facilities
handled by the operating system include the sharing of
Memory.

The Enterprise microcomputer i1s extremely complex;
to perform even simple functions like printing a string
on the screen requires thousands of machine-level
instructions, and to print the same string on a printer
requires hundreds more instructions. The Enterprise
operating system rationalizes the interface between a
program and the microcomputer, making it as easy to
print a string on a printer as it 1s to print a string on the
screen. This is achieved by allowing programs to treat
all input and output devices in an identical fashion. All

- Input and output 1s performed through 'channels’ (a

channel simply connects the program to a device). The
channels are numbered from @ to 254, The operating
system provides the following functions on channels:

Code Function
number

System reset

Open a channel (connect a device)
Create and open a channel

Close a channel (disconnect)

Close and delete a channel

Read a character from a channel
Read a block

Write a character to a channel

Write a block

Return the status of the channel

Set and read the channel status
Perform a special function

Read, write or toggle a system variable
Capture input from channel to channel

&= WO o000 WD — =

—_
] O3 —

201

EXOS

T e e e e P T T o N o P e A L LA L I L St ST
T e e T e A e o e e oy S N T ey (R S

MEMORY USAGE

202

18 Re-direct channel

19 Set default device name
20 Return system status

2l Link device

22 Read system boundary
23 Set user boundary

a4 Allocate a segment

25 Free a segment

26 Scan extensions

271 Allocate channel buffer
28 Return error message
29 Load module

30 Load relocatable module
31 Set time

32 Read time
33 Set date
34 Read date

These functions are used by BASIC to provide

~ input/output facilities. They are available for all

languages to use, and thus provide a uniform method
of communicating with devices. They are also
available to the machine code programmer, making it
very simple to write programs in machine code.

To call the operating system from a machine code
program, a single instruction is required, followed by
the code for the function. For example, to open a
channel, the following code is needed:

Machine code Assembler code
F7 RST 30H
Al DB 1

The Enterprise operating system provides many

" more functions than those listed above. A full list of

functions and the calling conventions can be found in
the Enterprise Technical Manual.

The operating system is based in Read Only Memory.
This means that the program is stored in ROM but still
reciuires RAM space to store its data. The Enterprise 1s
capable of managing a vast amount of RAM and ROM
storage.

This storage is manipulated by dividing it up into
‘Dages’ (not to be confused with video pages); each

EXOS

L L S ST e T S e I N R LTI
3 a1 = S S e S e e S e
page is 16K bytes long, and there are 256 pages
altogether, giving a maximum store capacity of 4M
bytes. The Z80 in the Enterprise can only use four of
these pages at any one time (rather like reading a
book, where you can only see and use two pages at
once).

203

ERROR MESSAGES

Every so often, you are bound to make the odd mistake
in a program. [t may be difficult to find where the
mistake 1s—or even what it is.

The computer helps you here by providing
messages to tell you as much as possible about what's
wrong. If you run a program which contains a BASIC
error, the computer will stop when it reaches the point
at which it can no longer understand the program, and
will display a short statement indicating the cause of
the problem.

Remember —the computer can't tell you about
other kinds of mistake in the same way. If, for instance,

~ you forget about 'operator priority’, or think the result

204

of a calculation would be different from what it really
13, this may not stop the program from running all the
way through —the program will then simply be doing
something other than what you thought it should. The
computer can only detect errors in the syntax or
organization of your BASIC, or problems caused

- because an action requested by the program is

impossible.

4%+ Not understood.

If the program is already running when a problem
arises which makes it impossible to continue, the error
message will contain the relevant line-number; for

(D
b
L
5
T,
@

ww%% [nvalid argument to SQR
30@ PRINT SQR(Y)

 You can now move the cursor up and edit line 300.

The functions EXLINE, EXTYPE, and EXSTRINGS are
supplied to help in the handling of errors and other
exceptions, Each error has its own number, which can
be referenced with EXTYPE, and for most of these
errors a special message will be printed if it is not
suppressed,

[f an exception occurs that is not covered by one of
the built-in messages, then the general number type 1S
printed, together with the exception number e.g.

* Overflow error type 1234

ERROR MESSAGES

~ The 'general error types are:

@— 999 User
1008 — 1999 Overflow
2000 — 2999 Subscript
3000 — 3999 Mathematical
4000 — 4999 Parameter
5000 — 5999 Storage exhausted
6000 — 6999 Matrix
TR — 7999 File use
8000 — 8999 Input-output
S@00 — 8999 Exos

10009 — 109393 Control
11000 — 11999 Graphical
120080 — 12938 Real-time
20008 — 20999 Syntax
30000 — System

The specific messages are:!

1003 — Unexpected value given

1001 — Overflow In numeric constant

1002 — Overflow in numeric expression

1051 — Overflow In string expression

1186 — Overflow In string assignment (ie. string too
long)

2001 — Array subscript out of bounds

3031 — Division by zero

30@4 — Invalid argument to LOG

3005 —Invalid argument to SQR

3007 —Invalid argument to ASIN or ACQOS

4900 —Error in DEF parameters

4002 —Argument to CHRS out of range
4003 —Invalid argument to ORD

4004 —Index to SIZE out of range

4005 —Argument to TAB out of range
4008 —Index to LBOUND out of range
4009 —Index to UBOUND out of range
4301 —Error in CHAIN parameters

5000 —Insufficient memory

6100 —Insufficient stack space

5110 —Insufficient extension space
5120 —Insufficient ALLOCATE space

205

ERROR MESSAGES
T e e T e e e e ————
e T T e e e e —
- 7901 —Invalid channel no.
7003 —Channel already open

994 —Channel not open
7401 —TRACE channel not open

8081 —Out of data in READ/INPUT
8181 —Numeric data expected

8201 —Invalid USING string

8202 —No format item in USING string
8203 —USING format item too short

9208 —Cassette CRC error

9209 —Editor —load file too big

9218 —Editor —keyboard channel error
9211 —Editor — keybhoard channel error
9212 —Editor —video channel error
9213 —Network link already exists

9214 —Network address not set

3215 —Cannot use both serial and network
9216 —Invalid beam position

9217 —Invalid cursor coordinates

9218 —Invalid row number to scroll
9219 —Invalid video page file

9220 —Invalid display parameters

9221 —Invalid video mode

9222 —Invalid video page size

9223 —Sound queue full

9224 —Envelope storage full

9225 —Envelope too big
9226 —Function key string too long

9227 —Protection violation

9228 —Unexpected end of file

9229 —STOP key pressed

9230 —Invalid escape sequence

9231 —Call not supported by this device
9232 —Invalid unit number

9233 —Device already in use

9234 —Invalid special function call

9235 —Invalid date or time value

9236 —End of file module

9237 —Invalid relocatable module

9238 —Unknown module type

9239 —Invalid Enterprise file header
9240 —Unrecognised command string
9241 —Invalid device descriptor

9242 —Unknown EXQOS variable number

206

ERROR MESSAGES

w
m

9243 —Invalid user boundary

9244 —Cannot free segment

8245 —No free segment

9246 —Insufficient video memaory
9247 —Insufficient memory

9248 —Channel open error

9249 —Channel already exists
9250 —Device does not exist

9251 —Channel does not exist
9252 —EXOS stack overflow

9253 —Invalid EXOS string

9254 —EXOS function call not allowed
9255 —Invalid EXQOS function code

10002 —Return without GOSUB
10004 —No CASE selected
10005 —Program does not exist

20333 —Not understood

20001 —Invalid line number

20002 —Invalid line number range
20094 —Line number does not exist
20010 —Cannot do specified RENUMBER
20020 —Continue not possible
20030 —Identifier expected

20031 —String identifier expected
20032 —Array identifier expected
20034 —Type mismatch

20049 —Variable not initialised
20p41 —Identifier declared twice
20042 —Identifier too long

20043 —Missing closing quotes
20050 —Missing end of block

- 20851 —Invalid end of block

20052 —Too many nested blocks

20060 —Invalid machine option use

20071 —Statement in immediate mode
20072 —Command in program

20073 —Statement not allowed after THEN

20874 —Invalid multi-statement line

20375 —Line too long

- 20080 —Invalid file format

20081 —Programs do not VERIFY

30000 —BASIC data has been corrupted

207

ERROR MESSAGES

Error messages can be trapped, if desired, by using
WHEN EXCEPTION and a handler block (page 134).
An exception handler can be used to trap any error,
even those such as a memory overflow or a syntax
error (a keyword mis-spelled, for example). This must
be handled with care, as a RETRY to a permanent
error will cause the program to loop indefinitely.

Errors like a division by zero, or a negative SOR
argument, can be caught without crashing the
program.

208

GLOSSARY

“
#

ALGORITHM

ALPHANUMERIC

ANSI

ARGUMENT

ARRAY

This Glossary i1s here to help you become familiar with
all the computer jargon you will meet as your interest
grows. Most of the words within it appear in the manual
somewhere, but others do not—the manual has tried
wherever possible to avoid jargon and give
explanations instead. You will find this Glossary useful
if you read computer books or magazines which do not
contain a glossary but are full of words you do not
understand.

As a verb: retrieving information from an outside
storage device —printer or cassette, for instance. Also
retrieving information from a program such as
database.

A 'place' inside the computer's memory. Specified
using a number, either in decimal (the normal counting

- system), hexadecimal (counting to a base of 16) or

binary (counting to a base of 2). An address inside a
computer can contain one of several numbers,

- depending on what the computer, or the program 1t is

using, 1s doing. For instance, addresses which control

 the screen display contain different numbers

depending on what is to appear there. 'Address’ 1s also
used as a verb when examining the contents of a

memory location.

The series of ideas and tasks behind a program. First

- work out your algorithm, then write your program. An

algorithm is the system by which a problem is solved.

Letters or numbers The name given to the character
set excluding special or graphics characters

American National Standards Institute. The American
counterpart of the British Standards Institute. A joint
committee of ANSI and the European Computer

Manufacturers’ Assoclation created the specification
for Standard BASIC.

See OPERAND and PARAMETER.

A variable which itself contains several more
varlables. Can be thought of as a list (one-dimensional)
or as a grid (two-dimensional).

208

ASSEMBLER
LANGUAGE

BASIC

BAUD

BINARY

BIT

BRANCH

210

American Standard Code for Information Interchange.
A system of coding characters for use within the
computer and for transmission from computer to other
machines and back. Each character is given a number,

A programming language which talks to the computer
on its own terms. Assembler has simpler instructions
than BASIC and, although tedious rather than difficult
to use, offers you the capability to program your
computer in far more detail than you would using
BASIC. Programming in Assembler language is called
programming on a low-level. Using it, vou would be
communicating with the computer in small, very simple
keywords, and using codes like ASCII more than you
would in BASIC.

The programming language supplied with the
Enterprise (and most other small computers), There
are several different types or dialects of BASIC. The
name Is an acronym which stands for Beginners’' All-
purpose Symboalic Instruction Code. Originally
deslgned on huge computers as an aid to learning
programming.

The rate at which data can be sent out of or into the
computer. It roughly equals 'bits per second'. The
Enterprise normally loads in a program from cassette
at an equivalent of 2490 baud.

Counting with 2 as a base instead of 10. Binary
numbers, therefore, are composed entirely of ones
and noughts. Thus 9 would be 1801. Binary numbers
can be viewed as columns, just as ordinary numbers
can. Instead of units, tens and hundreds, you have
units, twos, fours, eights, sixteens, thirty-twos and so on.
The computer thinks in binary.

A binary digit (@ or 1). The smallest unit of information
recognizable to the computer. Can also be
represented as high/low voltage (as inside the
computer) or positive/negative magnetic pulses, as
O cassette.

A point in a program where consecutive line-number
execution 1s halted and the computer runs another part
of the program—a function or subroutine, for instance.

GLOSSARY

BREAK

BUG

BYTE

CALL

CARTRIDGE

CHANNEL

CHARACTER

CHIP

COAXIAL CABLE

To stop a program in the middle, usually with the result
that RUN has to be typed in to start the program again,
or CONTINUE to get it to resume where it left off.

A mistake in a program. Sometimes easy to spot—
particularly if it is something like a misspelled Basic
word. At other times bugs are not so easy to spot—or
atl least the results are easy to spot but the causes In
the program are difficult to find.

Eight bits. Considered as a unit inside the computer.
Memory 1s measured in bytes or kilobytes (1824 bytes,
also called k) or megabytes (1024k bytes). It normally
takes one byte to store one character.

A branch within a program to a subprogram or
subroutine. User-defined functions can be used within
BASIC programs on the Enterprise using the keyword
CALL.

A plastic box holding one or two chips which contain a
program. It can be plugged into the slot at the side of
the Enterprise, providing a program which will run
instantly without any loading or typing. Video consoles
use cartridges to play games. You just swap the
cartridge when you want a different game,

A 'route' through which information can enter or leave
the computer, or pass between different parts of the
computer. Normally the use of a channel can be re-
defined by a program.

A symbol used to represent information — letters,
numbers, operator signs and punctuation marks are all
characters.

A little box of microscopic circuits inside the computer.
A chip itself is about 2mm square (though it can vary in
size), made of silicon which is known as a semi-
conductor or metalloid. It 1s packaged 1n a celluloid
case to protect the delicate circuits, and has metal pins
to make connection with other chips inside the

computer. Silicon chips are also known as Integrated
Circuits,

The cable which connects the computer to the TV.
211

R L L A 3 S I TR A N e S L

CODE

CODING

COMMAND

COMPILER

CONCATENATION

CONCURRENT

CONDITIONAL

CONSTANT

CONTROL CODE

2l2

Technically, a cable where the central core is
completely surrounded by another conducting layer,
to prevent interference.

See CONTROL CODE. 'Code' also describes the text
of a program (source code) and the program as run by
the computer (object code). See also MACHINE
CODE.

A description for the technical process of writing
program lines, as opposed to the design of programs.

A program keyword, eg GOTO, CALL, etc, which
gives the computer direct instructions. The first
keyword in a program line is usually a command.

A special program which translates from one computer
language to another — normally taking source code in a
high-level and producing machine object code. Unlike
an INTERPRETER, you cannot make instant changes to
d program which uses a compiler, but generally the
program runs faster when it has been compiled.

Jolning two strings together using the & sign. A$ & B$
would be one long string consisting of the contents of
Af followed by the contents of B$.

Something occurring at the same time as something
else. Your breathing is concurrent to your heartbeat,

Describes part of a program which uses conditions to
make decisions. IF/THEN is a conditional statement: it
could loosely be translated as: 'On the condition

A > 10 THEN..'

A number or string which does not change. For
example, the word PI signifies a constant (3.14...), used
In calculations on circles. 2 is a constant: A" is a
constant. There are cases when what is known as a
‘variable’ is in fact used as a constant throughout a
prograrn.

A character which is not visible on the screen, but
which instead causes some action on the part of the
computer. Examples of these are CHR$(8), which is
‘backspace,' and CHR$(13) which is 'carriage return’.

GLOSSAR

B Tr =t T b RS

[P—

L T T e ey

o ..l_.\,..'fv,-___nl‘FI_ .-i-':-ll"'l'!'l_ o i _J-r_l.l_l.'r I L

CO-ORDINATE

CPU

CRASH

CTRL

DATA

DATABASE

DEBUG

DECIMAL

A number which specifies the position of something,
especlally on the screen. PRINT AT uses two co-
ordinates, vertical and horizontal, to specify where to
print a character, PLOT also uses co-ordinates to
specify the positions of dots or the beginning or end of
a graphic line,

Central Processing Unit, A big chip inside the
computer which controls all the other chips. Assembler
Language 1s written to 'talk’ directly to the CPU and
varies according to the type of CPU. CPUs are also
called processors. The Enterprise uses a 280 CPU.

Dramatic failure (either of a program or of the
computer, to work) — for a variety of reasons.

An abbrewviation for ‘control’. Used as a key to
generate control codes directly from the keyboard.

(1) A statement in BASIC to tell the computer you are
including constant words or numbers for use in a
program,; these are brought into use with the READ
command.

(2) Letters or numbers which are used by a program to
make up useful information or to perform a task. The
numbers used in defining your own characters are data,

A store of data. Often also used as a shorthand
description of a program designed purely to store and
manipulate data—postal addresses, for instance.
Databases range in complexity from the kind which
allows you to do no more than type in information and
get it back as you typed it, to very complex programs
which allow you to design a whole filing system on
computer and/or perform sorting or extraction
operations.

To search for and then correct mistakes in a program.
This is a crucial stage in the development of big or
complex programs. Mistakes are not always obvious,
and any program should be carefully tested for all
manner of possibilities.

The counting system to which we are all accustomed,
using a base of 10.

213

GLOSSARY

DECLARATION Telling the computer you are going to use a particular
varlable or array.

DEFINE To specify, especially for later use, the details of
something. Usually applies either to a character
designed by you, or to a function.

DEVICE A machine, for instance the TV or a cassette recorder,
connected with the computer and run by it in some
way. The sound generator and graphics are both
thought of as devices by the Enterprise, Any
peripherals attached to the Enterprise are treated as
additional devices which are controlled by BASIC via
the operating system.

DIMENSIONS Used when describing arrays. ARRAY(X) is a one-
dimensional array, ARRAY(X,Y) is two-dimensional.

DISK A round slip of magnetic recording material (similar to
tape), used in conjunction with a disk drive to store
programs and data which can later be read back
again. Much faster method of storage and return than
cassette. Disks come in a permanent plastic sleeve, but
if removed from the sleeve (only to be done to disks
which are 1irreparably damaged in some way!) they
look rather like a flexible record. The normal disks for
attachment to the Enterprise are 34 inch

‘microfloppies’.
DISPLAY Anything which appears on the TV screen.
ELEMENT One part of an array. The number of these in an array

1s specified by you when vou declare it.

ESC short for 'escape’. Used either to move to an outer
program level or to indicate that following codes have
a special meaning.

EXECUTE To carry out, either a command or a program.

EXPONENT The power to which a base is raised. 10~ 3 would be
1818+ 10, that 1s 10 cubed. 3 is the exponent. See
INVOLUTION.,

EXPRESSION A group of numbers or words which will have a value

when it has been calculated. A numeric expression 1

al4

FIELD

FILE

FIRMWARE

FUNCTION

GRAPHICS

HARDWARE

HEXADECIMAL

IDENTIFIER

GLOSSARY

Pl - TR - g e T LT L TR T e T T YT AR TR e R TR e

BASIC could be something like: X 6. BASIC also has
string expressions.

Part of a record in a file. For instance, a postal address
might be a record. The person’s name would be one
field, the street name another and so on. Fields allow
for more detailed manipulation of information by
making parts of it easier to find.

An organized collection of data. Can be a program file
or a file of data to be used by a program. Stored on
disk or cassette (or listed onto a printer). A file is
divided into records.

A program that is always in the computer. The EXOS
operating system in the Enterprise is firmware. The
BASIC on the Enterprise is on a removable cartnidge.
On other home computers this program, called an
INTERPRETER, could also be firmware.

A part of a program which does one specific task or
calculation. It is regarded as a 'program within a
program'. The computer only uses it as and when
instructed. A function can be either

predefined —provided as part of BASIC (eg INT,
CHRE, LOG)- or it can be put together by you. The
eight special programmable keys on the Enterprise
are known as function keys because you can redefine
the function they perform.

The capability of a computer to make pictures or use
lines and special symbols to set out information.

The physical part of a computer system. The
machinery, whether it be part of the computer itself
or a separate, but connected, device.

A counting system using a base of 16 instead of 10. Hex
(for short) uses the digits -9 and A-F (F 15 15). Hex

- numbers are sometimes prefixed with & or ended in H

to show they are Hex (26H is 38 decimal). Hex 1s used
as a convenient way to represent binary numbers.

Name given to identify a variable, function, device or
any other component of the computer or program. Use
of meaningful identifiers makes programs easier to

215

GLOSSARY

m

understand.

INFORMATION This 15 sometimes thought of as the result of processing
data. This means the results of sorting or searching
through files and/or fields. Information is data
assembled into a meaningful form. Information is also
anything handled by a program, ie numbers, strings,

B ~ varnables.
INPUT .) Any data or program which goes into the computer.
elther from a storage device (disk etc) or through the
B ~ keyboard.
1/0 | Input/Output. Used to refer to any part of the computer

which deals with the flow of data to and from it.
INTEGRATED CIRCUIT Another word for silicon chip.

INTELLIGENT __ Software which performs intelligently. Intelligent
SOFTWARE Software Ltd are the creators of the Enterprise, among
other things.

INTERFACE A piece of hardware which forms a link between the
computer and something outside it. The cassette and
TV connectors are linked to interfaces inside the

~ Enterprise.

INTERPRETER A special computer program which interprets from one
' computer language to another. The BASIC on the
Enterprise is an interpreter. Interpreters are different
from programs which make a once-and-for-all
translation between two computer languages. These
are known as COMPILERS.

INVOLUTION __ Raising a number to a power, eg 2°3: see EXPONENT.
JUMP ~ The same as BRANCH.
KEYWORD ~ Any BASIC word. Each one has a significance of its

~ own.
KILOBYTE 1824 bytes (the nearest round binary number to 1000).
LANGUAGE A means of programming a computer (a system of

communication with it). BASIC is a language. Other
programming languages include Pascal, Fortran,

216

GLOSSARY
i e W) AT LT 5 P el PPN L8 Ot Bt i K T O
e e e S T P R T i (o T

Forth, Lisp and Logo. Each one is designed for a
specific type of programming.

LOAD To bring something out of storage and nto the
computer's mermory.

LOGIC The science of reasoning. Computers are designed to
- : follow the rules of logical decision-making. The
keywords AND and OR are logical ones.

LOOP Repetition within a program by redirection back to a
____ line which is the beginning of the loop. A part of a
program the end of which leads back to the beginning
unless an exit condition is fulfilled. An infinite loop 1s a
loop with no exit condition, and is the normal cause for

a computer to 'hang up’ and do nothing usetful.

MACHINE CODE Real machine code 1s all in Binary. It's how the

- computer really works, and what you use —BASIC —is
a program run by the machine code instructions in the
computer, Assembler language describes machine
code directly, using letters and symbols to represent
the binary numbers.

MAINFRAME A really big computer. Some of them are big enough to
fill several rooms.

MEGABYTE Approximately a million bytes. Equal to 1824 kilobytes.

MICROSOFT BASIC A generic description for BASIC interpreters designed
AR by Microsoft, Inc. in the USA. Most of the features of
_ _ Microsoft BASIC can be used as a sub-set of the
features provided on the Enterprise's BASIC.

I@iG_DULﬁR Made up of smaller, interconnected parts.

NETWORK A group of computers, all linked together and able to
Pl communicate among themselves. The Enterprise uses
a scheme known as the Intelligent Net.

NULL ~ Empty or with a value of zero. A null string has no

~ charactersinit. & null character has a code value of
- ZeTO.

NUMEER__@UI\I_C_H_ING A slang expression which means very fast and very
My complex calculations on numbers, Some computers

217

GLOSSARY

m
m

OPERAND

OPERATING SYSTEM

OPERATOR

OUTPUT

PARAMETER

PASS

PERIPHERAL

PIXEL

PORT

PORTABILITY

PROCEDURE

218

are specially designed as number crunchers—they
are fast and adept at performing large sequences of
calculations quickly.

A number or variable which is the subject of an
operation. In the expression 62, 6 and 2 would be
operands. Also sometimes known as ARGUMENTS.

A program which controls all input and output. Mostly
used with disk systems to control the running of the
disk and the organization of data on the disk. CP/M is
an operating system. The Enterprise contains a very
extensive operating system to control all the hardware
features of the machine and devices which may be
attached.

A mathematical word used to refer to the characters
which signify operations, for example %,/ , + and =,
which signify multiplication, division, addition and
equality, all of which are mathematical operations.

Anything leaving the computer; displays, sounds,
printed listings, results.

A variable which is given to a function or assigned a
value. In TAN(X), X is the parameter (or ARGUMENT).

A single execution of a loop. Also used as a verb to
describe the transfer of variables or values between
two programs, or two parts of the same program.

A word used to describe any machine which works
under the control of a computer — TV, cassette, printer,
for instance. A device used by a computer but not part
of it.

A single dot on the TV display.

A connecting socket which links the computer (through
an interface) to a peripheral device.

The quality (quite rare) in a program of being usable
on more than one system.

Another name for sub-program. With the BASIC on the
Enterprise, functions provide all the normal features of

GLOSSARY

#
N

PROCESSING

PROGRAM

READ

REAL TIME

REFERENCE

RESERVED WORD

RESOLUTION

procedures.

Carrying out operations on data. This includes
calculating with numbers, graphics (using co-ordinates
etc) and, in fact, everything a computer does.

A series of ordered instructions which set out a task for

~ the computer to do.

An acronym for Programmable Sound Generator. A
chip inside the Enterprise which sends signals to a
loudspeaker, thus producing sound.

Random Access Memory. Memory which 1s used for
the temporary storage of programs or data. It empties
itself when the word NEW is typed or when the
computer is switched off.

To take something out of store and bring it into current
use. Can be synonymous with LOAD, although it has

a slightly different meaning when used as a BASIC
command.

Time which bears a relationship to the real world,
instead of being related to the inner workings of the
computer. Often used when describing the processing
of data simultaneously as it is input. INKEY$ is almost a
real-time operation. Arcade games work 1n real time,
to give the impression of real things happening very
fast. Real time is only provided on certain computers or
In certain programs.

Normally used when describing a parameter which 1s
given to a function and actually contains a variable
rather than simply the current value of the variable,

A BASIC word which cannot be used in BASIC for any
other purpose. Most BASIC words can be used as
variable names. Those which cannot are reserved
words.

The number of dots available for plotting on a screen.

~ This is governed by the quality of the graphics

available on the computer. Resolution can be high or
very low. The higher it i3, the better the definition of

~ lines and shapes when they appear on the screen. The

219

GLOSSARY

“

highest resolution on the Enterprise allows 672 dots
horizontally and 512 dots vertically on the display.

ROBUST | A description applied to a program or plece of
software which has very few bugsin it. and which
works well whatever users do with it

ROM Read Only Memory. Memory which contains firmware,
It cannot be changed by you, although it can be used
or looked into. Remains the same when the computer is
switched off.

SEARCH | To look through a file or list for something in particular.

SOFTWARE A program is software. Instructions to the computer
_ which can be changed.

SORT To reshuffle a file or list into a particular order, eqg

alphabetical,

SPIKE A rapid surge or dip in mains voltage, Can cause very
occaslonal problems with disk systems and can
temporarily switch off a computer, losing any program
which is currently working (this does not happen often).

STATEMENT A self-contained, meaningful part of a program.
IF/THEN lines form statements. IF A =2 on its own
would not have much meaning. IF A =2 THEN PRINT
"A=2"" would,

STORE As a verb, to put information or data away for later use,
either temporarily in RAM or permanently on cassette
or disk. Memory or peripherals on which you can save
information are sometimes called storage or mass-
storage devices. Store is also used as a noun, to
describe memory which can be written to (RAM or
disks, for example).

STRING A sequence of characters which are not understood
but can still be processed by the computer. In BASIC,
within a program listing, a string appears either as a
variable with § on the end or as a series of characters
In inverted commas.

STRUCTURE : The organization of parts of a program; as distinct from
~ an algorithm, which is a plan of how a program will

220

GLOSSARY
et o e e e o e e
e B e e

e ——

solve its problem.

SUBROUTINE Very similar to a function. A part of a program which

T does one specific task under the control of the rest of
the program. A function has a specific beginning and
end. A subroutine is controlled with the words GOSUB
and RETURN, on the basis of line numbers. A function
1S glven a name.

SUBSCRIPT A reference number given when accessing an array.
=5] For example, with ARRAY(X), X is the subscript.

TEST | A tryout of a program to see if it works, Or, In
programming terms, 'taking a look’ at something to see
if it fulfils a condition. The computer tests variables in
IF or CASE statements to see If they fit in with any of

- the statements.

UNIT Can either mean one of something—a character 1s a
unit of data—or a device. The computer i1s a unit. A
disk drive 1s a unit,

USER e | The person using a computer or program. User-
friendliness refers to the ease with which some
programs may be used.

VARIABLE @ A number or string which may change, and is
therefore given a name by which you and the
computer will recognise it.

WIPE | To empty, either a storage medium (disk or cassette,
for instance), or the computer’'s memeory.

WRITE T'o put data or information 1into. You can write data into
~ a file, for instance,

221

INDEX
e e e S S S —
T e

ABS 195
ACOS 195
ALLOCATE 142, 151
ANGLE 195
arrays, numeric 72
arrays, one-dimensional 70
arrays, string 74
arrays, two dimensional 73
ASCII 104
ASK 151
ASIN 195
ATN 195
ATTRIBUTES 188
AUTO 33,151
Basic 16
BEAM 91, 188
BIAS 188
BIN 195
BLACK 195
BLUE 195
BORDER 103, 189
branches 126
broadcasting 138
CALL 152
calling functions 79
CAPTURE 152
CASE 152
cassette handling 46
CAUSE EXCEPTION | 135, 152
CEIL 195
CHAIN 195
channel numbers 169
channels, introduction to 132-33
CHARACTER 189
character matrix 105
character set 18, 104
characters, what are 19
CHES$ 104, 185
circles, ellipses 93
CLEAR 152
clearing screen 7
CLOSE 153, 169
CODE 142, 153
co-ordinates 89
COLOUR 93, 189
colour modes 94-5

222

INDEX

#
#

colour options
colour selection
comment lines
computer languages

concatenation
CONTINUE

- COPY

correcting mistakes
GOS8
COSH

- COT

crash

CSC

‘ctr]l’ key

cursor

CYAN

DATA
DATE/DATE$
decisions
declaring variables
DEF

DEFAULT CHANNEL
DEG

DELETE

device names

DIM

disks

DISPLAY
DO/LOQPS

- dummy variables

EDIT
editing
EDITOR BUFFER

~ EDITOR KEY

EDITOR VIDEO
eighty columns
ELSE

END

‘enter’ key
ENVELOPE
EPS

‘erase’ key
error messages
‘esc’ key
exception handling

 EXIT DEF

188-92
95-6

20, 118
16

58

6, 153
153

5

195

195

195

122

195

43

5, 35, 189
195

154

154, 185
64-71

24, 75
154

183

196

17, 34, 157
171-72
130, 187
48
100-01, 158
22, 59, 158
86

159

38-41

183

183

183

180

65, 159
118, 159
5,7

109, 159
196

§
204-208
41
134-36, 181
160

243

INDEX

“
“

224

EXIT DO
EXIT FOR
EXIT HANDLER

e:-c_it:}ng from word processing
exiting loops and blocks

EXLINE

EXOS

EXP

eXpressions
EXSTRING$

35 A

EXTYPE

FAST SAVE

files

FKEY

FLUSH

FOR

FOR/NEXT loops

FP

FREE

function key operations
function keys, setting
functions and variables
functions, calling
GET

global variables
GOSUB

~ GOTO

graphic origin
GRAPHICS
graphics page
GREEN
HANDLER
HEXS

'hold’ key

IF

IF blocks

[F MISSING
IF/THEN
IMAGE
immediate mode
IN

INF

INFO

INK

INKEY$

160

160

160

42

160

196
201-03
186
26-9
186

160

196

183

48

184

161

161

61

196

196

45

43-4

80

19

162

80, 156
128, 162
127, 162
89
839-103, 162
89, 100
196
135, 163
142, 196
13

163

65

18

64, 163
164, 175
18

196

196

165
95-99, 189
56, 196

INDEX

e I P T e T e LA bbb i e L
#

INPUT (and its trimmings)

input and output
input checking
INPUT PROMPT
insert mode

INT
INTERRUPT

P

Jjoy
joystick
justification
key click
key delay
key rate
keywords, what are
LBOUND
LCASE$
LEN

LET

~ LINE INPUT

LINE MODE
line numbers
LINE STYLE
LIST

LLIST

LOAD

local variables
LOG

LOG 2

LOG 18

LOOK

LOOP

LPRINT
LTRIM$
machine code
machine options
MAGENTA
MAX
MAXLEN
MEmOory usage
MERGE

MIN

minimal Basic
MOD

modular programming

nested loops

113,

87,
83,
24,

99,
I,
93,

. 34,

80,

39,

15,

47,

165

132, 201-02

INDEX

226

net

NET CHANNEL
NET MACHINE
NET NUMBER
network channels
NEW

NEW ALL

NEXT

NUMERIC

ON

OPEN

operator priority
OPTION ANGLE or BASE
ORD

QuUT

overwrite mode
pages and channels
PALETTE

PAPER

parameter passing
parameter referencing
PEEK

PI

PING

PLOT

PLOT PAINT

POKE

POS

PRINT

PRINT AT

printing text
PROGRAM
program elements
program lines
program, modular
program, multiple
prograrm title
program, what 1s
RAD

random numbers
RANDOMIZE
READ/DATA

RED

REDIRECT
reference parameters
reference section quidelines

137-41
185
185
185
139

1, 168
168
168
168
168

168-72

21-8
172
105, 198
172

31

100
96-3, 190
190

88

87

198

198

172
89-92, 173
99, 173
174

198

174

31, 174
41

175

117

17

116

149

20, 175
6

198
66-67
175

75, 117-18, 154, 175
198

175

156

148

RELEASE

relational operators

REM

REMark

REM 1

REM 2

remote control
RENUMBER
‘reset’ button
RESET
resolution
RESTOREL
RETRY

return

RGE

END

ROUND

RTRIMS

RUN

SAVE

saving to cassette
SCROLL

SEC

SELECT
SELECT CASE
SERIAL BAUD
SERIAL FORMAT
SET

SGN

‘shift’ key

SIN

SINH

SIZE

SOUND

SOUND BUFTFER
SOUND QPTIONS
sound queues
sound sources
sound statements
SOUND STYLE
sSpaces
SPEAKER
SPEEK

SPOKE

SQR

START

33,
43,

18,

63,

108-15,

112

26
196
176
185
185
185
176

13
107

89
176
176
117
198
198
199
199
L
131

41
191
193
177
177
185
186
178
199

189
199
199
179
193

193-4

18,
45,

G|

193
108
193

53
194
199
179
199
179

247

INDEX

228

STATUS
STEP

- STOP

‘stop’' key

STRE

STRING

strings, adding together
strings, introduction to
substrings

TAB

tabulation

TAN

TANH

TAPE LEVEL

TAPE SOUND

teletext primary colours

~ TEXT

text formatting
THEN
TIME/TIMES
TIMER
TOGGLE

" TRACE ON/OFF

trig functions
TRUNCATE
turtle graphics
TYPE

UBOUND
UCASES$

UNTIL

user defined characters
using varlables
USEK

VAL

varlable

varlable names
VERIFY

VIDEO COLOUR
VIDEO MODE
video options
VIDEQ X

VIDEO Y

WAIT DELAY
WHEN
WHILE

 WHITE

186

33, 61
180

6, 14
189
180

58

19, 52-58
54

199

39

199
199
186
187

97

90, 180
30-2
180
181, 199
187

181
181
195, 197, 199
200

92

181
200
57, 200
60
105, 189
24

200
57, 200
20, 187
22

47, 181
191
192
188-92
182
192
181
182

60

200

INDEX

WORD$
word processing mode

word processing functions
YELLOW

144, 200
38-42
39-41

200

229

© 1984 Enterprise Computers Lid,
Design by David Pearce/Liz James
Typesetting by Accent Design and Print

Note that this document does not constitute
a description of goods, and that delalls of the machine
and its performance are subject to change.

	Contents
	Getting Acquainted
	Introduction
	First Programs
	About Programming
	Doing Things in Order
	Immediate Mode and Keywords
	Variables
	Operators and Expressions
	Setting out Text
	Editing Programs
	Word Processing
	The Function Keys
	Function Key Operations
	Handling Programs on Casette

	The Tutorial
	Strings
	Loops
	Decisions, Decisions!
	Storing Larger Amounts of Information
	Definig Functions
	Graphics
	The Character Set
	Sound 'n' Rhythm
	Making Programs out of Problems
	Minimal Basic Features
	Channels
	Exception Handling
	The Net
	Using Machine Code

	Reference Section
	Rules of Basic
	Commands and Statements
	Machine Options (General)
	Video Options
	Sound Options
	Built-in Functions and Variables
	EXOS
	Error Messages
	Glossary
	Index

