

 2

 3

Congratulations on choosing zBASE. The Z88 Portable offers a wide range of built-in
facilities. With the addition of zBASE, the Z88 comes of age.

zBASE operates in two modes. Interactively, data may be manipulated with a minimum of
effort. For those who need specific input / output routines and screens, zBASE is also a
programming language.

Complete application systems can now be written for the Z88 by people other than
professional programmers.

Acknowledgement & Thanks
An essential part of the development of zBASE has been the participation of a large number
of users in the testing of the beta version.

These brave souls risked all their Z88 data with a new and untested product. The first beta test
version was subjected to some 400 hours of use and abuse with numerous undocumented
features discovered in the process. Without the help of these testers zBASE could not have
moved forward.

Their contribution assisted not only the production of the software, but also in many changes
to the original draft of the manual.

Clive, Derek and Tony at Wordmongers would like to acknowledge the work done by the beta
testers. Wordmongers accepts that the beta testers carry no responsibility for the final version
of zBASE as published.

The beta testers were:

R.Beddard, Ian Braby, Mike Case, Tony Cox, G.C.Denney, John Dobson, R.C.Dorrance,
Steve Drain, John Driver, Vic Gerhardi, C.M.Glover, S.P.Gray, F. W. Halliday, Gerald
Hughes, B. P. James, Robin Jarvis, Charles Jenkins, N. A. Joseph, Dr Warren Kovach, Chris
Lewis, Thomas Malinowski, M. Meijeraan, Francis Musgrave, M. Parker, Dr. L.
Ratnasabapathy, C. M. Robinson, S.Fraas, K.G.Woolf, Roy Woodward, Matthew Soar,
H.E.Shaw and John Hudson.

 4

Content

Acknowledgement & Thanks ... 3

zBASE Quick start guide ... 10

zBASE Manual .. 17

Introduction ... 18

Copyright & Trademark notices .. 18

Disclaimer .. 18

Handling, ROM's & installing the software ... 19

Important basic concepts .. 20

Database areas .. 20

Variables .. 20

Interactive versus Command file ... 23

An introduction to databases .. 24

Files .. 24

Records .. 25

Fields .. 25

Data types .. 26

Index key fields .. 27

How to create a data file ... 28

Creating the file within zBASE ... 29

Opening and closing database files ... 31

Checking structure... 32

Indexing and Index files ... 33

 5

To create the index file .. 34

Using FIND ... 36

Adding data to an indexed file .. 36

Tech note re INDEX file sizes ... 37

Retrieving data .. 38

Entering data ... 40

APPEND BLANK .. 40

Variables and Top Bit Characters .. 40

Alternative Method ... 41

Using command (do) file ... 41

Amending data (Changing values, deleting records) .. 48

At curly prompt ... 48

Using command files ... 50

Deleting data ... 51

Selection and control .. 53

LOCATE FOR .. CONTINUE.. 54

LIST [FOR <condition>] [FIELDS <fieldname,fieldname>] .. 55

In command files ... 56

Manipulating data files .. 58

COPY TO filename [PD] [FOR <cond>][DELIMITED] [FOR <cond>] .. 59

APPEND FROM filename [PD] [DELIMITED] [FOR <cond>] .. 61

COPY TO filename <[STRUCTURE] / [PD]> ... 62

n P and into PipeDream ... 62

COPY TO <filename> STRUCTURE ... 63

Moving around a file ... 64

 6

ENVIRONMENTAL COMMANDS .. 65

-ESC- ON/OFF (v1.3 only) ... 65

SET ECHO ... 65

Indirect variables ... 66

&memvar ... 66

"&numericvar"... 67

zBASE output to printer port ... 68

Z88 output facilities ... 69

n+ P .. 69

n+ S .. 69

System Limits ... 70

Precedence of Operators .. 70

Using multiple databases. ... 71

Importing files from PipeDream .. 78

Editing command files ... 79

Popdowns from zBASE. ... 80

zBASE Commands .. 81

KEYWORDS .. 82

* Comments .. 82

? [<exp>] .. 82

[<exp>] .. 82

AT <co-ordinates> SAY <exp> .. 83

AT <co-ordinates> GET <var> .. 83

APPEND [BLANK] / [FROM <filename> [PD]/[DELIMITED] [FOR <exp>]]> 84

APPEND FROM [filename] PD .. 85

 7

CLS ... 86

CONTINUE.. 86

COPY TO <filename> [PD] [DELIMITED] [FOR <cond>] .. 87

COPY TO <filename> DELIMITED ... 87

COPY TO <filename> [STRUCTURE] [DELIMITED] .. 87

CREATE <file1> FROM <file2> .. 88

DELETE <[RECORD] / [FILE <filename>] > .. 89

DISPLAY/LIST <[STRUCTURE]/[MEMORY]/[STATUS]>/ <[ALL]/[FOR <cond>]> <[FIELDS field list]>
 ... 89

DO <command file> ... 91

DO WHILE <cond> - ENDDO .. 91

FIND <exp> .. 92

GO [<exp>/<BOTTOM>/<TOP>] .. 93

IF <cond> - ELSE - ENDIF .. 94

INDEX ON <fvar> TO <filename> ... 95

LET <var>=<exp> .. 96

LOCATE FOR <cond> .. 96

QUIT ... 96

RECALL RECORD ... 96

RELEASE <mvar> .. 97

RENAME <file1> TO <file2> ... 97

RETURN.. 97

SELECT <[1 or 2]> ... 97

SKIP [<exp>] ... 98

USE [<file>] .. 98

WAIT .. 99

 8

zBASE Functions .. 100

CHR(<exp>) .. 100

CLI (<exp$) ... 100

DATE() .. 100

DELETED() .. 101

EOF() .. 101

FILE(<exp$>) .. 101

INT(<exp>) ... 102

LEN(<exp$>) .. 102

LOWER(<exp$>) ... 102

LTRIM(<exp$>) .. 102

RAM() ... 103

RECNO() ... 103

SET ECHO ... 103

STR ... 103

SUBSTR(<exp1$>,<exp2>,<exp3>) ... 104

TIME() .. 104

TRIM(<exp$>) .. 104

UPPER(<exp$>) .. 104

VAL(<exp$>) .. 105

WHERE(<exp1$>,<exp2$>) .. 105

zBASE Programs ... 106

Sample programs... 107

Wordmongers Stock Control System .. 121

Options .. 121

 9

Program listings ... 124

zBASE Pocket Ref. Guide ... 150

CONVENTIONS ... 150

KEYWORDS .. 151

zBASE commands .. 151

zBASE Functions .. 156

 10

zBASE Quick start guide
Getting familiar with a new piece of software is often tedious and sometimes daunting. To
provide a Quick demonstration to those who are new to zBASE, this Quick start guide is a
short tutorial aimed at providing a rapid introduction to te system.

For those familiar with the dBASE family of products, and for those experienced in writing
programs in any language, this guide is intended as a summary of the introduction section of
the manual. For such experienced programmers, the guide plus the reference section may be
all that is needed. The initial sections of the Introduction sections should still be read
especially concerning the warranty and disclaimer sections.

This guide is no substitute for reading the manual. Indeed, this guide will merely scratch the
surface of zBASE capabilities. However, since zBASE needs liveware to make use of those
capabilities, it is important to the authors that the liveware should feel some early reward for
the effort of getting familiar with zBASE. Those rewards are plentiful in this guide.

With the INDEX on display on the Z88, open the clear perspex cover labelled '1 2 3', and
insert the zBASE Application ROM in slot 2. Close the perspex cover.

The menu bar should be moved on the APPLICATIONS INDEX until it is highlighting the
zBASE application.

Press to run zBASE.

When the } symbol, known as the curly prompt appears, type the word QUIT followed
by . This action ends the use of zBASE. In version 1.2 you need to confirm the return
to the APPLICATIONS INDEX, by pressing any key.

This is the only proper way to exit from zBASE. If the key is used, and the zBASE
suspended application is KILLed, open database files will not be properly closed and
permanent damage will occur to the data files.

 11

The first real job is to create a data file. To do this, the file structure must be defined. This
definition is done in PipeDream. Highlight the PipeDream application and press ENTER. This
creates a new PipeDream suspended application.

Type in the following lines, exactly as shown.

COMP$,15
PHONE$,17
NAME$,20
KEYFIELD$,5

Now press FS, followed by the file name, PHBOOK.DEF. Then move the cursor down 4
lines using the ò, to the question, 'Save plain text'. Enter a Y for YES and hit .

That has created the definition file for a phone book database. Now return to zBASE by
pressing W.

At the curly prompt (}), type in the command line
}CREATE PH.DBF FROM PHBOOK.DEF

When the } returns, the database file has been created and is open. Check its structure by
typing

}DISPLAY STRUCTURE
The screen will appear as follows:

Database open in 1: is PH.DBF
COMP STRING 15
PHONE STRING 17
NAME STRING 20
KEYFIELD STRING 5
62 bytes/rec

Now create an INDEX file for easy searches.

At the curly prompt, enter the following
}INDEX ON KEYFIELD$ TO PH.NDX

That will establish an index file for use later.

 12

Data input

After creating the file, the next step is to enter data. To begin with, the method shown will be
the simple way of storing information. The below sets out two examples of how command
files can make such work easier.

You are still in zBASE with the PH.DBF open, as confirmed by DISP STRU and DISP
STAT. Type in the following..

}APPEND BLANK
}LET 1:COMP$="Wordmongers Ltd"
}LET 1:PHONE$="01296 - 43 78 78"
}LET 1:NAME$="Henry Webster"
}LET 1:KEYFIELD$="Wordm"

It is worth noting that the KEYFIELD is the field to be used for indexing purposes and rapid
search capabilities. Therefore it can contain the first five letters of whichever field is to be
used, e.g. when a company name is included, the first five letters from the company name
could be used. Equally, when it's a personal contact with no company name, the first five
letters of the name could be used, e.g.

}APPEND BLANK
}LET 1:COMP$=" "
}LET 1:PHONE$="020-7833-1212"
}LET 1:NAME$="Insp Bond"
}LET 1:KEYFIELD$="Bond"
}APPEND BLANK
}LET 1:COMP$="Short Brothers"
}LET 1:PHONE$="01494 885555"
}LET 1:NAME$="Morris Short"
}LET 1:KEYFIELD$="Short"

With at least a few records entered, a FIND process is required. This may be done directly at
the curly prompt, or as for appending, by means of a command file as described in “Indirect
variables”.

 13

The zBASE command to use on an index file is 'FIND'.

To find the entry for Wordmongers, at the curly prompt type

}FIND "Wordm"
With a small file, the next curly prompt will appear very quickly. As soon as it does, type

}DISPLAY

The record which has been found will be displayed. If a 0 is displayed it means that no match
has been found. Try entering a shorter version of the key field e.g. Wor. If this finds
say Wortmongers it reveals a typing error easily corrected by saying

}LET 1:COMP$="Wordmongers"
and do not forget the keyfield..

}LET 1:KEYFIELD$="Wordm"
If the next record is the one to be examined, type the command -

}SKIP
then at the next } type DISP to display the next record.

Note that only the first FOUR characters of any command need be used.

Looking for matches in an UNINDEXED file.

This can be done in a number of ways. 'LOCATE' finds the first occurrence of the required
match in a search from the beginning of the file, e.g.

}LOCATE FOR 1:PHONE$="01"

This command causes zBASE to start at the beginning of the file and search through the file,
sequentially, checking each phone$ field to see if it starts with "01". When a match is found,
the curly prompt returns. The DISP command will then display the record found.

As much of the field, or as little may be entered. The comparison always starts at the
beginning of the field. The above locate command would stop at the first record starting with
'01', whatever followed.

If 0 is displayed, no match has been found.

 14

The second way to find records that match a particular criterion is to use the
command DISPLAY ALL. This starts at the current record and then displays records that
match the criterion set, 7 at a time. The operator must press any key to get the next 7 records,
e.g.

}DISPLAY FOR 1:PHONE$="01"

While records are actually scrolling onto the screen, an will abandon the search and
return to the curly prompt. The record pointer will be at the record to which it was pointing
when the was pressed.

NB. will not work at all if =Off in v1.3 and when the 'Press to continue'
prompt is on screen. A nifty piece of finger work of a followed quickly by
an will return control to the curly prompt in v1.2.

The LIST command is the same at the DISPLAY command except it simply scrolls on
without stopping every seven lines. Holding down the and t keys together will pause
the scrolling when using the LIST command.

NB. The key used must be the one on the left of the keyboard. (No we don't know why
either.)

To close the file, enter
}USE

To re-open the file type
}USE PH.DBF INDEX PH.NDX

To check whether a file is open, type
}DISP STATUS

To check a file structure, enter
}DISP STRUCTURE

To return to the Z88 APPLICATIONS INDEX,
}QUIT.

 15

NB. IT IS IMPORTANT THAT THE QUIT COMMAND IS USED AS THE METHOD OF
CLOSING zBASE. If zBASE is KILLed as a suspended application, loss of data will occur
because the files will not be properly closed.

An alternative method of entering data is to write a command file that makes it all a bit easier.

From zBASE, press leaving zBASE as a suspended application. From the Z88
APPLICATIONS INDEX, go into PipeDream by positioning the cursor over the PipeDream
application and pressing .

Type or load the program labelled zBASE#PHENT.PRG. Do not use characters. The
lines that start with an ASTERISK (*) are comment lines that are ignored by zBASE. They do
not have to be typed in at all.

After typing in PHENT.PRG it should now be saved. Press FS, enter the

filename PHENT.PRG, 4 lines and enter Y to save the file as PLAIN TEXT.

Back in PipeDream, after the file save, enter W to return to zBASE. When back at the }
prompt, type the following

}DO PHENT.PRG

[If zBASE was QUIT rather than left suspended, the database file with its index must be re-
opened before running PHENT.PRG. If this is the case, see QSG9 above for guidance on re-
opening the file.]

Records may be added one by one as required using this command file. Note that the keyfield
is automatically picking up the company name as the key, if a company name is entered. If
not, the first five characters of the contact name are used. In either case, the offered key value
need not be accepted. It may be overtyped with whatever content is required. If it is to be
accepted, then press .

 16

Input Rakewell's details.

 At Company enter Rakewell

 At the Name prompt, enter Vic Gerhardi

 When asked for Phone, type 01296-632491

The Keyfield will display Rakew. Hit to accept it.

A few more records should be entered to give the database something to get its teeth into.

FINDing using a command file.

As before for PHENT.PRG, start a new PipeDream document and type or load in the program
labelled FPROG.

Save this file using FS. Use a filename of say FPROG. Remember it must be saved
as PLAIN TEXT.

Return to zBASE either through the Z88 APPLICATIONS INDEX, or by simply pressing
W.

With the phone book file in use, with its index file, at the curly prompt, type the following

}DO FPROG

Answer the prompt about the record to be found and the search will run. The cursor will
remain at the next curly prompt after the FPROG command file has finished executing.

This quick start guide has been designed to provide new users with an opportunity to get
something out of zBASE quickly. It does not reveal the flexibility available in zBASE nor
does it demonstrates the wide potential for this database management program. The rest of the
manual does go much further into the commands and functions contained in zBASE. Please
take some time to review the rest of the manual and so enjoy the further capabilities of your
Z88/zBASE combination.

 17

zBASE Manual
The Quick Start Guide is designed to be a brief exposure to the major facilities of zBASE.
Those new to database languages may find this a very useful starting point.

Section A of this manual, 'Introduction to zBASE', describes zBASE in descriptive terms with
some examples of how the system can be used. Commands are dealt with in an order that are
likely to appeal to a first time database user.

Section B - 'zBASE Reference', is an alphabetical list of the zBASE commands, with the
syntax for each one dealt with separately. Following that, the zBASE functions are dealt with
in similar fashion.

Section C - 'Sample Programs and Glossary', contains some sample programs that can be
written in the zBASE language with a brief Glossary that explains some of the terms used in
the manual. Also shown is a series of zBASE programs that together form a Stock Check
system,

 18

Introduction

The Wordmongers zBASE suite is designed to provide general database management
opportunities for the expanded Z88. The Z88 must have at least a 128K RAM expansion
cartridge in slot 1.

In the interactive mode, commands typed at the } prompt will be executed immediately.

Alternately, regularly used sets of commands may be put together into a command file to save
repeated entering of the same commands. Those familiar with the dBASE family of programs
from Ashton-Tate will find that there are some marked similarities between zBASE and
dBASE II. (See trademark notice)

Copyright & Trademark notices

See Copyright & Trademark notices

Disclaimer

See Disclaimer

 19

Handling, ROM's & installing the software

zBASE will only run on an expanded Z88. This means that the Z88 must have at least a 128K
RAM cartridge installed. If a single RAM is fitted, it must be in slot 1.

See “ Fitting & Using the ROM”.

After installing the ROM, zBASE will appear on the Z88 INDEX with a W code.

To run zBASE, move the cursor to the zBASE application option in the INDEX and
hit , or W.

 20

Important basic concepts

 zBASE is a command driven database language with over 40 commands and functions. This
provides a powerful facility for programming the Z88 for data manipulation. To those familiar
with dBASE II, the granddaddy database program, there should be a feeling of having seen it
all before. Given that imitation is the most sincere form of flattery, these similarities are
purely intentional. However, for a variety of reasons, not least of which is a 32K ROM space,
not all dBASE II facilities are emulated. Equally, some have been altered in an attempt to
improve and to provide a better fit with the Z88.

Certain elements of the zBASE system need to be explained early on. These elements relate to
the use of variables and files.

Database areas

Data files may be opened in either of two areas. These areas are called PRIMARY and
SECONDARY. These areas are labelled as 1: and 2: respectively.

The 1: and 2: symbols are referred to elsewhere in this manual as the usage area. Whenever a
field variable is addressed, it must be prefixed with this usage area symbol. The single
exception to this is in the use of a field's list in the LIST and DISPLAY commands.

Variables

Variables are either memory variables or field variables. A memory variable is a label for a
pigeon hole containing a number or a string of letters. Such memory variables or MVARS are
volatile. They exist only for as long as the zBASE program is in use. When zBASE is QUIT,
memory variables are lost. When zBASE is left as a suspended application, memory variables
remain preserved along with the rest of the program.

Field variables or FVARS, relate to data in a data file. Such variables always begin with the
usage area symbol. (See 1.1 above.) e.g. 1:fieldname

Field variables and memory variables are CASE INSENSITIVE. Upper and lower case names
using the same characters will be regarded as identical.

Variable names can have up to 8 characters.

 21

A variable that contains a string of letters must always end with the string symbol, namely a
dollar sign, $. A numeric memory variable needs no such suffix.

Accordingly, a memory variable used for temporary storage of a name might be
called, msurnam$. The equivalent field variable would be called 1:surnam$ or 2:surnam$.

Before a memory variable may be used, it must be initialised. This is done by storing a value
to that memory variable using the LET command.

The limit on total memory variables in use at any one time is 512 bytes. To control this use
the RELEASE command.

Memory variables example:

}LET user$="FRED"
}? user$
FRED
}LET number=42
}? number
42
}? number * 12
504
}LET NEWUSER$="Sheila"
}? user$+" and "+newuser$
FRED and Sheila
}

Allocating a value to a variable is called assigning. To assign a string to a variable, the value
assigned must be enclosed in quotation marks. See user$ above.

To assign a numeric variable, the variable name must not end in a $ symbol and the value
must not be enclosed in quotations.

 22

The result of a function may also be assigned to a variable, e.g. to set up a variable holding
the current system date:

}LET today$=date()
}? today$
08/08/88
}

}LET ramspace=ram()
}? ramspace
17408
}

In assigning function results to a variable, care must be exercised in ensuring that the variable
name used matches the result of the function. DATE() returns a string whereas RAM() returns
a number. The variable names used reflect that. A DATA TYPE MIS-MATCH error will
result from ignoring this rule.

Field variables are treated just like memory variables except they have a 1: or 2: in front of
their name to distinguish them.

 23

Interactive versus Command file

zBASE operates in two different modes. One is called the interactive mode and the other is
command file driven.

The interactive mode is the mode in which zBASE starts up when first invoked. After the
copyright message, a curly bracket will appear. This is referred to as the curly prompt and
represents the interactive mode. Commands and functions are entered at this prompt and
executed immediately.

In command file mode, a set of zBASE commands are put together in a PipeDream plain
text file. At the curly prompt, the command DO FRED will call the file called FRED and will
execute the commands found in that file.

When a series of commands are used often, in sequence, it is useful to avoid entering them at
the curly prompt every time they are needed. Instead they may be recorded to a command file
and executed as a set when required.

Some commands and functions will only operate in a command file. If they are used at the
curly prompt the error message

COMMAND FILE ONLY

will appear.

If it is present, the file ZBRUN will be run automatically when zBASE is started. It acts like a
BOOT.CLI file.

 24

An introduction to databases

The following sections describe the building of a database file and its interrogation. It should
be read through to the end. However, computer users are notorious for skipping manual pages.
In this case, all the available commands with their syntax are explained in Section B and those
wishing to learn by their mistakes are invited to use that section of the manual.

In this Introduction section, an example will be used to demonstrate techniques and
commands. The system is a video tape cataloguing system. It is designed to keep track of a
domestic video tape library in a fashion similar to that used for books. The specific command
programs used can be found in - zBASE Programs.

Files

A database file is a collection of records. Each record contains details of 1 item, e.g. a library
database file would contain separate records for each book in the library. A phone book might
have one record per person recorded. In a Video Library system, each record would represent
a single programme or film.

Only alpha-numeric characters should be used in file names. These are A-Z and 0-9. Other
characters are regarded by OZ, the Z88 operating system, as file name terminators. Therefore
OZ will not differentiate between files called MENU and MENU* or MENU#.

Many database systems assign file name extensions that show what type of file it is, i.e.
file.DBF shows that the file is a DATABASE File. file.NDX would be an INDEX file. This is
only a convention as far as zBASE is concerned and does not need to be regarded as a rule.
Having said that, some form of file name convention is useful and the sample system for
Stock Control, contained in Section Cof the manual does name all command file programs
with an extension of .PRG.

zBASE database files contain certain information at the top of the file that is not readable by
PipeDream. Therefore zBASE data files should not be opened under PipeDream. If this does
occur then the file should not, under any circumstances, be SAVED from PipeDream. It
should be KILLed. If it is saved from PipeDream, the header information will be destroyed.

 25

Records

The limit on the number of records in a database in zBASE is 65535 records.

Each record in a database consists of different fields of information.

Fields

In designing a database, much of the effort is in getting the field structure correct for the
required application. The classic consideration is whether to split a name into surname and
forename or to hold the whole name as a single field.

If the data are to be used only for addressing envelopes, then holding the name as a single
field will be acceptable. However, if the data are to be listed in alphabetical order of surname,
then the parts of the name must be split into separate fields within the record. It is still part of
the same record, but the design of the record is changed.

A field of information may be thought of a single box of information within an outer box. The
outer box is the record and each box it contains is a field. In a phone book example, the
SURNAME$ field is obviously different from the FORENAME$ field. The separation is
made because searches are likely to be required on the SURNAME$ field and because when
reports are obtained, the SURNAME$ field is to be easily identifiable. Also, there is a strong
possibility that the file will have to be sorted on this field to get an alphabetical listing.

If the name was in a single field into which both these bits of information were stored, then
sorting would be an interesting task, viz

File with name as two fields:

Forename$, Surname$
Bloggs Freda
Jones Hannibal
Assuah-Kwesi Rick
Kuczynski Irving
Alexandrou Francesca

 26

File with name as single field Name

Freda Bloggs
Hannibal Jones
Rick Assuah-Kwesi
Irving Kuczynski
Francesca Alexandrou

On sorting these two files the problem becomes apparent in that sorting on SURNAME$ is
the usual way of doing things, whereas sorting on the whole name, starting with forename is
much more unlikely. If the file is to be sorted on name, that usually means surname. If that is
the case, then SURNAME$ must be identifiable as a single field.

Although this appears elementary in the case of name fields, it is nevertheless an important
consideration whatever is being stored in the file.

Data types

There are two types of data, strings and numbers. Strings are simply collections of letters and
or numbers that are to be regarded as TEXT. Numbers are numeric values upon which some
form of calculation may be required.

Users familiar with dBASE will be aware of a further data type, namely logicals. In zBASE,
logicals may be simulated on the basis described here.

LOGICALS are really of type numeric. If the value is 0, the answer is taken to be FALSE.
Any non-zero number is regarded as TRUE. In zBASE, a field to be used as a logical must be
initialised as a NUMERIC field.

Very few items in a database are of type number. Again referring to a Video Library system,
the film reference number (REF_NUM$) may be numbers. However, they will not be used for
calculation purposes so they may be viewed as STRINGS. The rule is that when numbers are
used as labels for an item, such as part numbers or code numbers, even if they are made up of
numbers only, the field is still a string field.

Similarly, a phone number is made up solely of digits but because they are not involved in
calculations they are usually held as STRING fields.

 27

Index key fields

Strictly speaking this is not a different data type. However, it is a significant consideration
when designing databases so is noted here as a consideration to be included in such a design.

An index key in zBASE is the field in the record that is to be used for finding data records
quickly. It is also the field to be used for the sorting of files. Having said that, indexing a file
does not actually sort it. The file simply appears to be in the new order for all purposes.

An index key field can be any string field. If the file to be indexed is expected to be large, the
index field should be kept as small as possible. This then means that the index file created is
as small as possible and the time taken for a rapid search is also as small as possible.

 28

How to create a data file

Having worked out the fields required in the database, the process of creating that file under
zBASE starts with PipeDream.

The elements of creating a zBASE database file are as follows.

Firstly, a PipeDream document is created defining the fields and their widths. This document
is saved as PLAIN TEXT.

From within zBASE itself, the CREATE command is then invoked. Each step is described in
more detail below.

Defining fields, width, type

From the Z88 INDEX, use the cursor to access PipeDream by moving the cursor to the
PipeDream application and pressing ENTER. A new PipeDream document will be opened.

With the cell number A1 displayed at the top left hand corner of the screen, type the
following:

REF_NUM$,3
TITLE$,20
TYPE$,3
TAPE_NO$,3
DURATION$,5
RATING$,1

The pattern to note for defining file structures is explained in more detail in Section B -
zBASE Reference. In short, each line contains details of an individual field. If the field is a
string field the name must end with a $, it must be followed by a comma and must end with a
number defining the width of the field. A numeric field is simply described with its name and
no $ and no width.

 29

Having defined the file structure, it must be saved. Press FS, followed by a file name,
say VIDEO.DEF. Move the ò 4 lines to the Save plain text prompt and enter <Y>. The

 key will then save this structure file in a form to be accessed by zBASE in the next
stage.

Creating the file within zBASE

Returning to zBASE, the next stage occurs at the curly prompt.

The command to be used is CREATE FROM. The syntax is

CREATE <database filename> FROM <PipeDream define filename>

e.g. if the define file is called VIDEO.DEF, and the name wanted for the database file is
VIDEO, the command line would be:

}CREATE VIDEO FROM VIDEO.DEF

The file is then in an open state at record 0 in whichever usage area was active at the time the
command was entered.

If there was a file open, it will be closed automatically by the CREATE command.

If data is ready for input, the file should be left open. To store data to the file, the fields are
treated in a fashion very similar to memory variables. The only difference is that field
variables from files are preceded by a 1: or 2:. (See Section 1 above or Section B later.)

The choice of where a file is opened is managed by the SELECT command. (See INTRO part
17 and Section B of the manual.) For the moment, assuming the SELECT command has not
been used, the assumed area of operation is PRIMARY, labelled 1:.

To put in some data, each field is filled separately. To begin with, say the first video to be
entered is 'Flight of the Condor'. The reference number is to be "001". The type code is to be
'THR' for thriller, the tape number is "101", duration is 2.25 hrs. and the rating is B.

 30

In order to get a new record open, ready for this information, at the prompt enter:

}APPEND BLANK

This command creates a new record with all fields blank. Numeric fields are set to 0 (zero).

At the next } prompt, use the LET command, similar to the BASIC LET command, with the
database area as a prefix for the field name viz:

}LET 1:REF_NUM$="001"
}LET 1:TITLE$="Flight of the Condor"
}LET 1:TYPE$="THR"
}LET 1:TAPE_NO$="101"
}LET 1:DURATION$="2.25"
}LET 1:RATING$="B"

The DISPLAY command would now reveal the whole record and will look something like
this.

}DISPLAY
1 001 Flight of the Condor THR 101 2.25 B
}

Further APPEND BLANK commands may be used to add more records.

 31

Opening and closing database files

To open a database file, the command word is USE. e.g.

}USE VIDEO

If a file was open in that usage area at the time a USE command is executed, that previous
will be closed.

When entered on its own, without a file name, e.g.

}USE
the file currently open will be closed. No new file will be opened.

DISPLAY STAT will show that there is no file open.

}DISP STAT
1 is active

That means that the current database area is area 1. See using multiple databases for further
information about database areas.

When entered with a filename, the selected file will be opened and the first record in the file
will be available immediately.

}USE VIDEO
}DISPLAY STATUS
1: VIDEO
Recs/file 1 Current rec 1 Bytes/rec 42
1 is active

This tells you that the file open is VIDEO. Total records on the file is 1. The current record is
number 1 and that there are 42 bytes in each record. In v1.3 there is an additional line to show
if -ESC- is ON or OFF.

The full syntax of this command is shown below:

 32

USE [FILENAME]

The file will be opened in the currently selected area. If in doubt about the current area, enter
the command

}DISPLAY STATUS

When a file is initially opened, the current record will be the first one in the file. The record
number will be 1. If the file is an empty file, the record number will be 0 and the End of file
function, EOF() will be true, i.e. 1 or some other non-zero number.

To check the 'End of file' function type,

}? EOF()
0

Remember that ZERO means FALSE. Any other value, usually 1, means TRUE.

Apart from the USE command, the QUIT command will also close all files before going back
to the Z88 applications menu.

Checking structure

A command is available to display the structure of the currently open file. The command is

}DISPLAY STRUCTURE
Database open in 1: is VIDEO
REF_NUM STRING 3
TITLE STRING 20
TYPE STRING 3
TAPE_NO STRING 3
DURATION STRING 5
RATING STRING 1
42 bytes/rec

 33

Indexing and Index files

Most databases contain information which is entered in a random fashion. There is no pattern
to the way the data are organised. zBASE uses a system known as INDEXING as a means of
holding a file so that it appears to be in a specific sorted order.

This is done by the creation of a second file, used in parallel with the database itself. This
parallel file, or INDEX file as it is called here, holds only a small part of the database
information. Specifically it contains the data from the selected field to be used as the KEY,
plus the position in the database file where the full record is to be found.

e.g. if the VIDEO file were indexed on REF_NUM$, the index file record would hold the
code field, say "001", the record number "1", plus a few bytes more used for housekeeping.
Since the index file is much smaller than the main database file, searches can be carried much
more quickly. When the required record is found in the index, zBASE can go to the full
record in the main database very quickly too.

[On a database of 580 records from a phonebook, containing name, company, phone and a 5
character key field, the typical time for a search on that keyfield is 1 second.]

In the Stock control system contained in Section C, the usual method of finding a product is
by its code. Therefore, the file will be indexed on the CODE$ field.

 34

To create the index file

some space must be freed in order to minimise the total memory used by zBASE. In this
context, the space used is the database area 2.

Therefore, the start of the process is to ensure that any files open in area 2 are closed, as
follows

}SELECT 2
}USE
}SELECT 1
}USE
}DISPLAY STATUS
1 is active

This tells you that the currently selected database area is number 1 but that no files are open.

The ground is now set for creating an index file.

First the database file is opened. Then the index command is entered specifying the key field
name and the name to be used for the index file.

The following lines should be entered as shown.

}USE VIDEO
}INDEX ON REF_NUM$ TO VIDEO.NDX

That’s all.

When further data is entered, any product will be retrievable by the use of the FIND command
on entering the REF_NUM$ for the wanted item.

Entering USE will close the database file and the index file. To re-open the two files together
enter:

}USE VIDEO INDEX VIDEO.NDX

The general form of the command line is

 35

USE FILE
INDEX ON KEYFIELD TO INDEXFILE

With an INDEX file open, the database file will appear to be in the order of the keyfield,
irrespective of case. i.e. lower case letters will be treated as upper case letters. If this were not
the case, all items starting with lower case a's would follow those starting with upper case a's.

The LIST and DISPLAY commands will both access the INDEX file for the order in which
the display is to take place.

 36

Using FIND

Use of the FIND command with an INDEXed file is the fastest way to search for a specific
record. FINDing a record rapidly is achieved with an INDEX file as follows.

Say the item to be found was in VIDEO with a REF_NUM$ of '001'. It could be found by
either assigning the sought value to a memory variable, then doing a find on that, or directly at
the curly prompt by entering the sought value itself. e.g.

}FIND "001"
}DISPLAY
1 001 Flight of the Condor THR 101 2.25 B

Equally, if used in a command file, the sought value would be assigned to a memory variable
such as mseek$.

}LET mseek$="001"
}FIND mseek$
}DISPLAY
1 001 Flight of the Condor THR 101 2.25 B

If the display only shows a 0 (zero) character, that means that no match has been found.
EOF() will return a 1 (TRUE).

In command files, whenever a FIND is carried out, the next line should test for EOF()=0. If it
is 0 (FALSE), then a match has been found.

Adding data to an indexed file

The fact that a file is indexed makes no difference to the adding of data except that a time
allowance must be made for the updating of the index file.

As long as the INDEX file is open when the APPEND BLANK command is entered, the
INDEX file will be properly updated.

Equally, if an INDEX file is open and an APPEND FROM command is used, the INDEX file
be properly updated.

 37

Tech note re INDEX file sizes

Given the Z88 environment, it is imperative that the amount of memory grabbed by zBASE
should be kept to a minimum. This is to reflect the Z88 use of memory for all its functions
and the ability to leave zBASE as a suspended application. If this is to be possible, it must use
only a minimum of memory.

Given this constraint, it was decided that the indexing function would be allowed access to a
5K bytes buffer. In this context, a 5K buffer would allow the indexing of a keyfield of 5
characters on a file of about 700 records without resorting to paging and swapping of
memory.

It also means that a file of say 250 records could be indexed very quickly even with a keyfield
of say 20 characters.

 38

Retrieving data

Apart from the FIND method described above, there is another way of finding particular
pieces of information. This is by the use of a zBASE command called LOCATE which can
search on any field. This is compared with FIND which only operates on the designated key
field.

The LOCATE command examines the database for a given condition. In the VIDEO example,
the search might be for all those programmes which are on a specific tape. The command line
looks like this.

}LOCATE FOR 1:TAPE_NO$="101"

When the curly prompt returns, a DISPLAY will display the found record. If all that is
displayed is a 0, it means that a match has not been found.

If the search is to continue for the next hit, the command to be used is

}CONTINUE

This literally continues the search down the file from the point of the most recent hit.

Another retrieval method is to use the LIST FOR command. For the example above the
whole line would look like this..

}LIST FOR 1:TAPE_NO$="101"

This will list each record for which the condition evaluates to TRUE from the current record
to the end of the file. Note that if the file is indexed, the listing will appear in keyfield order.

A further option with this command involves specifying the fields to be displayed for each hit.
If the only fields wanted were say TITLE$ and REF_NUM$, the command line would be
entered as..

}LIST FOR 1:TAPE_NO$="101" FIELDS TITLE$, REF_NUM$

The LIST command will scroll the hits one after the other. To get the hits to stop
automatically after 7 records have been displayed, the DISPLAY command should be used.
The syntax is exactly the same as for LIST.

 39

}DISPLAY FOR 1:TAPE_NO$="101" FIELDS TITLE$, REF_NUM$

When used in conjunction with an indexed file, the DISP and LIST commands are very
powerful. The FIND command is used to arrive at the first occurrence of the required value,
then the DISP or LIST command, with its condition, can be used to show all the records
which match, from that point in the file to the end.

 40

Entering data

APPEND BLANK

This command literally means add a blank record to the database file. It creates an empty
record at the bottom of the database file in use in the currently selected area. Each field starts
empty. Numeric fields start with a 0 (zero).

In order to enter data to the record, each field must be dealt with independently. Values are
assigned to a field using the LET command. To record a new VIDEO, the entry routine
would be as follows:-

}USE VIDEO
}APPEND BLANK
}LET 1:REF_NUM$ = "100"
}LET 1:TITLE$ = "Bytes of Affection"
}LET 1:TYPE$ = "COM"
}LET 1:TAPE_NO$ = "012"
}LET 1:DURATION$ = "1.15"
}LET 1:RATING$ = "A"

Another APPEND BLANK would immediately open another blank record ready for the next
item.

Variables and Top Bit Characters

It is possible to have any name stored in a field of a zBASE record by using the decimal code
of a character: For example:

LET 1:LSTNAME="V"+CHR(228)+"is"
+CHR(228)+"nen"

The field LSTNAME will then contain the name Väisänen. On a British home market Z88
screen the foreign letters will be represented by black squares, but will print out on a printer
tuned to accept the ISO character set (standard on most).

 41

Alternative Method

An alternative method is to use a program called 'APPEND.PRG'. This routine emulates the
dBASE APPEND command. The database to which data are to be amended must be open in
area 1. TheAPPEND.PRG program must have been typed in under PipeDream and saved
as PLAIN TEXT. At the } prompt, enter

}DO APPEND.PRG

A series of prompts will appear asking for the data to be entered for each field. The field name
will appear next to each prompt.

After all the fields are filled, a further prompt will appear asking for a Y/N response as to
whether there are more records to be entered.

It is worth noting that as soon as this program is called, a blank record will be created on the
file open in area 1.

For those who have no wish to get involved with zBASE program writing, the structure
of APPEND.PRG is of no importance. It is offered as a short hand way of easily entering data
to any database. See the introduction to Section C for details of how to obtain this and the
other programs on a Z88 EPROM. download or on a floppy disk.

Using command (do) file

Within a command file, the APPEND BLANK command is still the only way to get a new
record added to a file. However, a complete input screen may be devised using the AT SAY
GET commands. This system provides the opportunity to have an input screen with proper
prompts which automatically puts the data into the file without the repeated use of LET.

For any repeated use of data, a command file is the answer. As with all programming, it takes
longer to get the initial instructions into the system, but the speed of subsequent operations is
greatly enhanced.

 42

The next section is a blow by blow analysis of the input routine called, VIDINP.PRG.

* VIDINP.PRG V1.00 By Derek Fountain
CLS
SELE 1
USE VIDEO

This first section clears the screen and sets up the PRIMARY USE AREA. This is part of the
command file just in case the currently selected area is secondary.

Having selected the appropriate area, the chosen file is opened.

GO BOTTOM
LET nref_num=VAL(1:REF_NUM$)

In order to establish the last reference number used, the bottom of the file is checked for the
last used reference number. This is stored, as a numeric memory variable, under the label
nref_num.

DO WHILE 1=1

This is the beginning of a DO WHILE loop. As long as the condition evaluates to TRUE, i.e.
as long as 1=1 evaluates to a non-zero value, the command lines between the DO WHILE and
the ENDDO will be executed repeatedly.

In this case the condition will always be true and is said to be an infinite loop.

As the processor hits the ENDDO, the condition for continuing is re-evaluated. If it is TRUE,
the process is repeated. If it is FALSE, the program will drop out of the bottom of the loop
and will resume running at the first command line after the ENDDO.

In the case of an infinite loop, the way is by using the RETURN command. See later.

AT 0,28 SAY "Home video library system"
AT 2,51 SAY "Tape :"
AT 4,16 SAY "Title :"
AT 4,51 SAY "Type :"
AT 5,16 SAY "Length:"
AT 5,51 SAY "Rating:"

 43

To encourage accuracy in computer input, messages to operators should be clear and simple.
Even if the programmer is herself to be the operator, later use of a program will always be
easier if the screen messages are clear.

The AT SAY GET commands are for screen formatting. It places the screen at the disposal of
the programmer.

The first number is the line number. Numbering starts at the top of the screen at line 0 and
goes down to line 7. The second number is the character number starting at 0 on the left of the
screen and going to 79 at the right.

These AT SAY commands display the field names to act as the prompts for the input.

LET nref_num=nref_num+1

LET mref_num$="&nref_num"

Having collected the last reference number used and stored it as nref_num, these two lines of
code add 1 to the value, then translate the new value into a string variable ready for putting
into the next new record.

LET mtape_no$=" "
LET mtitle$=" "
LET mtype$=" "
LET mduration$=" "
LET mrating$=" "

This section is about initialising memory variables. Any variables which are to be used must
be created first. The names selected are meaningful in that they are to match the fields in the
database file.

Additional variables are set up as they are needed. See confirm$ below.

AT 2,16 SAY "Ref number: "+mref_num$
AT 2,58 SAY mtape_no$
AT 4,23 SAY mtitle$
AT 4,58 SAY mtype$
AT 5,23 SAY mduration$

 44

AT 5,58 SAY mrating$
AT 7,23 SAY "Enter the information on the video"

This set of instructions is about setting up the screen with the new reference number, at line 2
column 16. This command line displays the prompt contained within quotation marks and
then follows that title with the newly assigned reference number.

The next series of AT SAY commands display the memory variables just set to spaces in the
section above. This serves the purpose of over-writing any previous data that was left in those
positions on the screen.

AT 2,58 GET mtape_no$
IF mtape_no$=" "
RELEASE nref_num,mref_num$,mtape_no$,mtitle$,mtype$,mduration$
RELEASE mrating$,confirm$
RETURN
ENDIF

The AT GET command is for operator input. The program stops with the cursor sitting in the
position defined by the AT GET and waits for input from the keyboard. The input must be
followed by . In this example, the input from the operator will be stored in the
memory variable called mtape_no$.

IF/ENDIF pairs test for particular conditions and act accordingly. In this case the operator
response is compared with a set of blanks. If the input was blank the IF statement evaluates to
TRUE and the contents of the IF/ENDIF are executed. When the IF statement evaluates to
FALSE, i.e. something other than blanks was entered to the mtape_no$ variable, the contents
of the IF/ENDIF are ignored and the program continues running at the first line after the
ENDIF statement.

By entering blanks, or rather by pressing with the variable blank, the program releases
the currently held memory variables and then RETURNS to the calling program. If the
program was called from the curly prompt, control reverts to the interactive mode.

The indentations are not part of the command file syntax. Indenting the contents of an
IF/ENDIF branch makes it easier to read and identify errors. With this pattern, each IF aligns
with its corresponding ENDIF. This provides an opportunity to check that for each IF there is
a corresponding ENDIF.

 45

AT 4,23 GET mtitle$
AT 4,58 GET mtype$
AT 5,23 GET mduration$
AT 5,58 GET mrating$

This small part of the program is what it all started with. This is the bit that actually gets the
data from the operator and stores it in memory variables ready for putting into the data file
later.

LET confirm$=" "
DO WHILE confirm$=" "
AT 7,23 SAY "Please confirm this information: "
AT 7,56 GET confirm$
IF WHERE(confirm$,"YNyn")=0
LET confirm$=" "
ENDIF
ENDDO

This routine is a very common section of any database input program. It provides the
opportunity for the operator to check the input before actually appending the data to the file.

This section starts by assigning a single blank space to the variable called confirm$.

The DO WHILE loop will execute as long as confirm$ is a blank space. If it contains
anything other than a blank space it will not execute. Therefore it can be seen that this DO
WHILE loop will always run at least once because the confirm$ variable is set to a blank
space immediately before the DO WHILE is invoked.

On the first time into the loop, the prompt is displayed asking for confirmation that the
information is correct. The operator is then expected to enter a Y or an N.

Immediately after the operator has responded, the program tests the input to see if the
character input is one of "YNyn".

The use of the WHERE command should be noted as a very useful routine for checking data
upon entry. If confirm$ is NOT one of the four characters listed, the IF statement will be
TRUE and confirm$ will be reset to a blank. If confirm$ is one of "YNyn", then confirm$ will
be left as it was input.

 46

In the end, the program reaches the ENDDO with a value for confirm$. The value will be one
of "YNyn" or it will be a blank space.

Having hit the ENDDO, the DO WHILE line is re-evaluated. If confirm$ is a blank space, the
DO WHILE line will still evaluate to TRUE, therefore the contents of the DO WHILE loop
will be executed once more.

Alternatively, if the operator has input an acceptable character, the DO WHILE is finished
and confirm$ contains a valid letter.

Execution of the program, continues with confirm$ being one of "YNyn" and nothing else.

IF UPPER(confirm$)="Y"
APPEND BLANK
LET 1:REF_NUM$=mref_num$
LET 1:TAPE_NO$=mtape_no$
LET 1:TITLE$=mtitle$
LET 1:TYPE$=mtype$
LET 1:DURATION$=mduration$
LET 1:RATING$=mrating$
* FLAG A
ELSE
LET nref_num=nref_num-1
ENDIF

confirm$ is first checked to see if it is a Y or a y. The upper() function means that if it was
entered as a lower case y it will be converted to upper case before evaluating the If condition.

If upper(confirm$) was entered as 'Y', then the contents of the IF/ENDIF are run i.e. a new
record is added to the database file and the contents of the new record replaced with the
required values as collected in the memory variables above.

If the answer to the confirm question was N or n, the IF is not satisfied and the program drops
through to the ELSE alternative. In this case the ELSE option reduces the reference number
by 1 because it has not been used. When the program loops around again the 1 will be added
back for the next record. If it were not reduced here, it would have clocked up 2 before
actually going on a record.

 47

The '* FLAG A' command line may be safely ignored at this stage. In the section below
dealing with the use of multiple databases, this line is changed to something else to provide
for additional related input.

ENDDO
RETURN

The final part of the program is the test to see if DO WHILE loop is to be repeated. As the
program hits the ENDDO, the DO WHILE condition is re-evaluated. If the condition is met,
the DO WHILE loop operates. If the condition is not met, the program proceeds back down to
the ENDDO and on to the line after the ENDDO where the next command is executed.

In this case, the condition tested is whether 1=1. The test is that the DO WHILE loop will
operate when the condition following the DO WHILE command evaluates to TRUE, or non-
zero. Since 1=1 is always TRUE, the loop will continue. The only way out is to enter a blank
tape number at the first input opportunity.

The RETURN command confirms the step back to the interactive mode at the curly prompt.
When multiple command files are in use, the RETURN command will return the program to
the previous level of command file.

With this program there is no message to the operator saying how to exit from the routine. As
a first step in programming it might be a useful exercise to introduce a message saying 'Leave
tape number blank to exit'. Alternatively, a different DO WHILE loop might be used to that a
prompt could appear at the bottom of the program asking if there were more videos to be
entered. If the response were 'N', the DO WHILE could be made to fail and so return control
to the calling program or the curly prompt.

 48

Amending data (Changing values, deleting records)

 At curly prompt

Amending data is the same operation as entering data. The same LET command is used and
the new data overwrites the old.

Having found the record which is to be amended, each field in that record may be amended
simply by re-assigning a new value. It is as if the field were being re-defined, which of course
it is.

Say a FIELD variable were set up as

}LET 1:TYPE$="COM"

This can be amended to 'THR' by simply repeating the line

}LET 1:TYPE$="THR"

It is often safer to check the value of a field before it is replaced with another value so a
possible scenario might be:

}? 1:TYPE$
COM
}LET 1:TYPE$="THR"
}? 1:TYPE$
THR

If the new value is shorter than the previous value, spaces must be used to over-type the
remaining bits of the field contents if a GET is used. e.g.

}? 1:TITLE$
}Bytes of Affection
}LET 1:TITLE$="Dracula in Love"
}? 1:TITLE$
Dracula in Love

If this same exercise were carried out using the AT GET system it would appear as follows

 49

First change the field back to "Bytes of Affection"

}LET 1:TITLE$="Bytes of Affection"

Then clear the screen ready for the new exercise.

}CLS
}AT 2,50 GET 1:TITLE$
Bytes of Affection

Now overtype the new title wanted..

and it will appear as follows
Dracula in Loveion
with the cursor flashing on the 'i' after Love.

If is pressed at this point, the field will contain the characters as on the screen.
Press ENTER and then

}? 1:TITLE$
Dracula in Loveion

This time type:

}AT 6,50 GET 1:TITLE$

Use the ð cursor key to move the cursor to the 'i' of 'ion'. Then overtype the unwanted
characters with spaces and the field will contain only the required words.

Equally, with the cursor on the 'i', tG pressed 3 times will remove the 3 offending letters.

When is pressed, the contents of the field will be written back to the record.

Tech note: The field variables from the current record are held in a temporary buffer while
being manipulated. When the record pointer is moved, with a SKIP, GO, FIND, LOCATE or
any other command which moves the pointer, that buffer is written back to the file. The file is
not closed until a USE is issued or a QUIT. Therefore, if a fault happens when a file is open,
some loss of data may occur.

 50

Using command files

Within a command file, the GET command will be the more common method of changing
variable values. If a variable contains non-blank data, that data will be displayed when the
GET command is issued. That data may then be over-typed and replaced with the required
new data. e.g.

LET confirm$="Y"
AT 4,13 SAY "Confirm this record to be added to database. Y/N"
AT 4,64 GET confirm$

At position 4,64 on the screen, the letter 'Y' will be displayed with the flashing cursor on it. If
the key is hit, or the letter 'Y', the value of confirm$ will remain as 'Y'. If any other
letter or number is hit, that will be the new value of confirm$.

Similarly for a field variable,

AT 4, 1 SAY "Enter type code"
AT 4,18 GET 1:TYPECODE$

The current value of TYPECODE$ in the current record will be displayed ready for
overtyping. Any data left in the field and not overtyped, i.e. to the right of wherever the new
data ends will have to be overtyped with spaces otherwise it remains in the field.

When used in conjunction with a 'G', the character under the cursor will be deleted. Note that
the t key must be held down while pressing the 'G' in order for this to work. It is similar to the
CONTROL function on a PC.

Other useful editing commands are tT (delete word), tD (delete to end of line) and t Y or t -
DEL- (delete line).

A good example of an amending routine is SCSTOCK.PRG. It is part of the Stock Check
system.

 51

Deleting data

As with many database programs, deletion of data is done in a two part step. In the first stage,
any records to be deleted are marked as such using the DELETE RECORD command. At a
later time, when convenient, the file is copied across to a second file, leaving out the records
marked for deletion.

The series of command lines would look like this.

 First, select the records for deletion and mark them with a delete flag.

}USE VIDEO
[Select record using LOCATE, FIND, GO etc]
}DELETE RECORD
}? DELETED()
1
[Select others and repeat]

When the deleted records are to be removed, the data file is renamed to a temporary name and
then all the undeleted records are copied to a new file with the old name. viz.

 Close any open file

}USE

 Rename the file involved to a temporary name

}RENAME VIDEO TO TEMP

 Open the file with the temporary name

}USE TEMP

 Copy all records not marked for deletion

}COPY TO VIDEO FOR DELETED()=0

 52

 Close the temp file

}USE

 Delete the temp file

}DELETE FILE TEMP

The newly created file VIDEO will only contain those records which were not marked for
deletion.

See also the PACK.PRG file.

 53

Selection and control

One of the prime functions of a database language is not only to facilitate easy input and
amending of data, but also easy retrieval of selected bits of the data.

The following commands show how such retrieval works.

At curly prompt

FIND <"field value">
FIND <memory variable>
LOCATE FOR <condition>
CONTINUE
LIST [FOR <condition>] [FIELDS <fieldname,fieldname>]
DISPLAY [FOR <condition>] [FIELDS <fieldname,fieldname>]

When using an indexed file, the fastest way of locating a specific match on the key field is to
use FIND. Although it has not been done on the Video file, it could have been indexed on the
TYPE$ field.

For the sake of this demonstration, index the file on TYPE$.

}USE VIDEO
}INDEX ON TYPE$ TO TEMP.NDX
}FIND "COM"
}DISPLAY
10 005 The Woman in Red COM 005 102 5
}

Having found the first occurrence of this match, it is a relatively simple task to now list all the
hits. Both the DISPLAY and LIST commands may be used.

}DISP FOR 1:TYPE$="COM"
10 005 The Woman in Red COM 005 102 5
11 006 Who's that girl COM 006 98 4

 54

The curly prompt will not return immediately because the DISPLAY command is not
intelligent enough to realise that an indexed file is in use. It continues searching the rest of the
file for more hits. The --ESC- key stop the searching at any point.

LOCATE FOR .. CONTINUE

This command searches the file sequentially from the first record to the bottom of the file.

In the VIDEO system, the search might be for all the VIDEOS which are comedies i.e. with a
TYPE$ of "COM". It would appear as

}LOCATE FOR 1:TYPE$="COM"

The next thing that will appear will be a new curly prompt with no message.
A DISPLAY command will display the current record. If an apparently blank record is
displayed, that means that the end of the file has been found and there were no hits. Otherwise
the first match will be displayed.

If the end of the file is found, the 'record number' enquiry will give a response of 0. viz

}? RECNO()
0

And the 'end of file' function will return a 1 for TRUE.

}? EOF()
1

If a hit has been found, the record number displayed will be the number of the hit. The EOF()
function will return 0 for FALSE.

Having found a hit, the CONTINUE command will continue the search on the same basis.
The search will continue from the current record to the bottom of the file.

 55

LIST [FOR <condition>] [FIELDS <fieldname,fieldname>]

DISPLAY [FOR <condition>] [FIELDS <fieldname,fieldname>]

These two commands are very similar except that the DISPLAY command will only display
records 7 at a time whereas the LIST command will scroll through all the hits without
stopping.

To pause the scrolling data when using LIST, hold down the -SHIFT- and t keys at the same
time.

On their own, each of these commands will display the current record.

The second part of the command line [FOR <condition>] will determine which records are
displayed, i.e. only those which meet the condition will be shown.

}LIST FOR 1:TYPE$="COM"
will list all the records from the current record down the file for which the field 1:TYPE$
contains "COM".

Having said that, it may be that only the type, title and tape number are wanted. In this case
the third part of the command is available which enables selection of the fields to be shown.
e.g.

}LIST FOR 1:TYPE$="COM" FIELDS TYPE$,TITLE$,TAPE_NO$

 56

In command files

The DISPLAY, LIST and ? may be used within a command file in order to provide structured
output to the screen. The operator may be prompted to input the piece of data to be matched
and the command file could then display that data in a structured fashion.

Similarly, the programmer may take complete control of how the data is displayed and which
fields are displayed by using a command file as shown below.

The whole of the DO WHILE loop could be substituted with a single line, namely

DISPLAY FOR &fld$=fldval fields REF_NUM$, TITLE$, TYPE$, TAPE_NO$,
DURATION$

Because the DISPLAY ALL command displays 7 lines at a time, it removes the need for the
program to control the display lines and screen itself. Having said that, the flexibility of
zBASE is demonstrated.

* zBASE Program to simulate display command
CLS
LET choice$="Y"
LET fld$=" "
LET fldval$=" "
LET onward$=" "
AT 0,10 SAY "Is the search to start at the top? Y/N."
AT 0,51 GET choice$
LET choice$=UPPER(choice$)
IF choice$="Y"
GO TOP
ENDIF
AT 1,10 say "Which field is to be searched ?"
AT 1,43 GET fld$
AT 2,10 say "What value for "+fld$+" is wanted."
AT 2,46 GET fldval$
CLS
AT 0, 2 SAY "Searching for " + fld$ + " = " + fldval$
LET line=1

 57

LOCATE FOR &fld$=fldval$
DO WHILE EOF()=0
IF line>6
AT 7,1 say "Paused. Press any key to continue."
WAIT
cls
let line=0
endif

AT line, 2 say 1:REF_NUM$
AT line,10 say 1:TITLE$
AT line,32 say 1:TYPE$
AT line,37 say 1:TAPE_NO$
AT line,42 say 1:DURATION$
LET line=line+1
CONTINUE
ENDDO
AT line,1 say "End of file found."
RETURN

See also SCSIFIND.PRG.

 58

Manipulating data files

Data is collected for a variety of reasons. Sometimes it’s like an antique collection with bits of
information collected so long ago that there is no relevance to that data. However, assuming the data is
to be used, it must be available in different forms. This is especially true on the Z88 when it will often
be used as a temporary home for data to be transferred to another micro.

Hence, the COPY and APPEND commands are available to produce files of different formats. These
formats are zBASE, PipeDream columns, and comma delimited.

The zBASE format is a straightforward database file which can be directly accessed by zBASE. The
COPY TO <filename> command would create an exact copy of the currently selected file. e.g.

}USE VIDEO
}COPY TO VIDBACK
}

PipeDream format, with the PD option at the end of the line, would create a file with each record on a
line with characters between fields. To load the file in PipeDream it must be loaded as Plain Text.
Any fields of width greater than 12 will appear to be condensed. They are still there but the individual
column widths will have to be reset to the required width in order to get all the data to appear.

To do this, load the newly created PD file under PipeDream. Enter Y to the Load as plain
text prompt. Alter the width of each column in turn using W. For the VIDEO file, the first
column should be 3 characters wide, plus a couple for neatness. To set a width of say 5,
position the cursor in column A and enter W. Set new width to 5 and press This will
set column A to 5 characters wide.

Press and position the cursor in column B. W then 22 then will set the title
column width to 22. Each column can then be set to its required width for use under
PipeDream.

Delimited means that the file is created for access by PipeDream with each record separated
by a carriage return and each field is separated by a comma (,). This format is of particular
interest to those wishing to export data to other database systems outside the Z88. Programs
like dBASE II, III, IV and WordStar can use comma delimited files as raw data.

 59

COPY TO filename [PD] [FOR <cond>][DELIMITED] [FOR <cond>]

COPY TO <filename> This version creates a straight copy of the file in zBASE format. e.g.

USE VIDEO
COPY TO VIDBACK

COPY TO <filename> PD

The whole file is copied to a PipeDream column format to be loaded as Plain text and the
column widths adjusted as explained in the introduction to this section.

COPY TO <filename> DELIMITED

The whole file is copied but with commas indicating the start and end of each field and
carriage returns indicating the end of each record. e.g.

USE VIDEO INDEX VID.NDX
COPY TO VIDCOM DELIMITED

The resulting VIDCOM file, when loaded as PLAIN TEXT under PipeDream, would look
like this:

003,Bytes of Affection, BLU, 003, 0.45,C
004,Newest one on the bl, THR, 004, 1.00, B
005,Return of Zorro, OLD ,004, 1.50, F
002, Rubber dub dub, COM ,002 ,2. 75,B
001,Swedish Blu,BLU,001,3.5,A

In each of the cases described above, selected records may be copied by inserting the FOR
phrase with a condition,

e.g. FOR 1:TYPE$="COM"

This becomes an extension to the retrieval routines available and constitutes another way of
retrieving selected data while transferring it into another form.

 60

Note that all uses of field variables must have the usage area prefix. If this prefix is left out,
zBASE will only search for a memory variable to satisfy the condition. The only exception to
this rule is when field names are given in a field list for DISPLAY FIELDS, or LIST
FIELDS.

Report generation via PipeDream could be handled on a selective basis by using the COPY
TO FOR line with the PD qualifier. e.g.

}COPY TO VIDTHR PD FOR 1:TYPE$="THR"

If the file to be copied to has been created previously, the COPY TO command will overwrite
it WITHOUT WARNING.

 61

APPEND FROM filename [PD] [DELIMITED] [FOR <cond>]

The file in use must be open in the PRIMARY database area and the SECONDARY area
must be empty i.e. it must be CLOSED. (See DISPLAY STAT for how to check whether an
area is in use.) The file from which data are to be appended must not be open.

This option is a reversal of the copy to command. To use APPEND, the file to receive the data
must be open in the PRIMARY area. Data may then be obtained from another file and read
into the current file, adding the new data to the bottom of the file.

The PD qualifier means that if a PipeDream columnated file has been saved as Plain text, each
line will be treated as a database record and read into the file.

If the DELIMITED option is used, there can be no selection. The whole file will be appended
at the bottom of the existing data.

The FOR <cond> option is only available when appending from another zBASE file. In this
case each record in the source file is checked against the condition. If the condition evaluates
to TRUE, or to a NON-ZERO value, the record will be added to the open target file.

 62

COPY TO filename <[STRUCTURE] / [PD]>

This form of the copy command provides the opportunity to re-create the structure of the
current file in another database file, or as a skeleton in PipeDream for the creation of a new
file.

Such commands will be useful if a file structure has to be amended. Say the structure of the
VIDEO file were to be amended in order to have an additional field called 'COST'.

}USE VIDEO
}DISPLAY STRUCTURE
REF_NUM STRING 3
TITLE STRING 20
TYPE$ STRING 3
TAPE_NO STRING 38
DURATION STRING 5
RATING STRING 1
}COPY TO TEMP STRUCTURE PD
}

n P and into PipeDream

Load TEMP as plain text. Go to the bottom of the file and add a line

COST

Save it as TEMP answering Y to the Plain Text question.

Then a nW will return to zBASE.

}USE (To close the current VIDEO file.)
}RENAME VIDEO TO VIDEO.OLD
}CREATE VIDEO FROM TEMP
}APPEND FROM VIDEO.OLD
}USE

The new file VIDEO now contains all the records from the previous VIDEO file with an
additional field called COST of type NUMERIC.

 63

COPY TO <filename> STRUCTURE

This version of the command will create a new database file with the same structure as the
current file. The new file will have no records.

 64

Moving around a file

These commands position the record pointer to the selected record. If the record number is
known, the 'GO record number' command is the fastest method of reaching a record.

SKIP

The SKIP command moves the record pointer in the direction given in the command. SKIP 3
will move the pointer on three records. SKIP -3 will move the pointer back three records.

If the end of file is reached, the EOF() function will return a non-zero value, i.e. TRUE, and
the record number, RECNO() will return a 0. SKIPping past the end of file will return
RECNO()=0 and EOF()=1.

GO (TO RECORD NUMBER ..) <expression>

The GO number command places the record pointer at that record number. The number must
be a numeric variable or numeric expression, except when it is BOTTOM or TOP.

GO TOP, GO BOTTOM

These commands position the pointer to the respective position at the top or bottom of the
file. The record to which it is pointed is a live record and is not in front of the beginning of the
file nor is it after the end. i.e. GO BOTTOM will go to the last record not to the end of file so
EOF() will return FALSE.

 65

ENVIRONMENTAL COMMANDS

-ESC- ON/OFF (v1.3 only)

The switch allows programs to ignore attempts to -ESC- and is activated by typing Set
Esc=Off (deactivated by Set Esc=On) in interactive mode or by inserting it to a command
line.

SET ECHO

This is a toggle command in that the first call will switch it on and the second will switch it
off.

It is a programmers tool to show what command line is being executed. It is most use when
debugging command files. It makes a mess of the screen but displays each command line as it
is executed.

 66

Indirect variables

&memvar

In dBASE II, these are referred to as MACROS. These & characters mean that the variable
which follows the & is evaluated before being executed. In any command line from the
keyboard or a command file, in which an indirect variable is found, the &variable is first
replaced by the value it represents. e.g.

LET BETA=21
LET ALPHA$="BETA"
? ALPHA$
BETA
? &ALPHA$
21

If a command line was as follows, it would be evaluated in two steps viz:
GO &ALPHA$

would first be evaluated to
GO BETA

which would be executed as
GO 21

In any real program, the above would be written as GO BETA and the above is given as an
example only. For a more extensive example of the use of indirect variables, see
the APPEND.PRG program.

 67

"&numericvar"

This is a particular use of the indirect variable and converts a numeric to a string.

LET numvar=42
? "&numvar"
42
? len("&numvar")
2

 68

zBASE output to printer port

The command for this is
"text"
or

memvar$
or

memvar$+" "+memvar2$ etc.

The line is sent to the printer exactly as organised on the command line.

See section C for a program for printing address labels.

 69

Z88 output facilities

The copy commands explained above provide an opportunity to output to PipeDream. The
method described below permits all the screen output to also go to a file or the printer.

n+ P

This sequence echoes all screen output to an attached printer. Keyboard input is double
spaced at the printer.

n- P turns off this echo.

n+ S

In a similar fashion to the above printer echo system, this sequence echoes the screen output
to a file. The file may be accessed via PipeDream by loading the file ram.-/s.sgn.

The switch to turn off the file echo is n - S.

 70

System Limits

 The maximum number of records permitted in a zBASE file is 65535.

 The maximum command line length is 255.

 The maximum string variable length is 255. (Memory or field).

 Maximum number of fields per record is 32.

 Max number of nesting of IF/ENDIF loops is 255.

 Max number of nested DO WHILE's is 32

 Max number of nested DO files is 16

 Max area for memory variables is 512 bytes

 Max length of variable name is 8 characters

 Numbers are significant to 9 digits.

 Max number of decimal places is 8.

Precedence of Operators

zBASE does not consider one type of operator any more important than another. All
mathematical expressions are evaluated from left to right. The only exception to this rule is
that the contents of brackets are evaluated first. Programmers will quickly notice that
expressions with brackets are evaluated relatively slowly, and that sorting out the expression
will make the program run faster.

 71

Using multiple databases.

There are many instances in data manipulation when data from two or more databases has to
be combined to achieve the desired output. zBASE supports this requirement by allowing two
databases, with indices, to be open at the same time. They can then cross reference each other
and find the required information without opening and closing the files.

Continuing the home video library system, we decide to hold the names of the stars of each
film, so if a film starring, say, Clint Eastwood, is wanted, a list of all Clint Eastwood films
can be found quickly.

The most obvious way to do this is to add another field to the database: STAR$,20. However,
a lot of films have more than one star. Many have three or four big names, so our database
must have at least four STAR fields. This is going to be a waste of storage space for the films
which only have one star, so another solution is needed. The best way to do it is to have a
separate file holding the stars names.

This separate file will be linked to the VIDEO file via a reference number. Each video has a
unique number, created when the video is first entered into the database. This number will be
stored in each related record in the VIDSTAR file.

The format of the VIDSTAR file is very simple:

REF_NUM$,3
STAR$,20

Create the file and its index from zBASE using the file VIDSTAR.DEF as above and the
following commands:

CREATE VIDSTAR FROM VIDSTAR.DEF
INDEX ON REF_NUM$ TO VIDSTAR.NDX

There will be one record in the VIDSTAR file for each star in the film. So if the film has three
stars, the VIDSTAR file will have three records, where the REF_NUM is the same as the
REF_NUM of the films record in the VIDEO file, and the STAR field holds the name of one
of the three stars. An example will help:

 72

VIDEO FILE RECORD STARS FILE RECORDS

REF_NUM$ 12 REF_NUM$ STAR$

TITLE$ Trading Places 12 Eddie Murphy

TYPE$ COM 12 Dan Aykroyd

TAPE_NO$ 3 12 Jamie Lee Curtis

DURATION$ 112

RATING$ 5

The data for the VIDSTAR file must be entered when the other details of the video are being
entered. To alter the program VIDINP.PRG to do this, find the line in the program:

* FLAG A

and replace it with:

DO STARINP.PRG

The simple subroutine below, STARINP.PRG, should then be entered using PipeDream and
saved as plain text.

* STARINP.PRG V1.00 By Derek Fountain
CLS
USE VIDSTAR INDEX VIDSTAR.NDX
AT 0,28 SAY "Home video library system"
LET header$="Enter the stars who appear in "+TRIM(mtitle$)
AT 2,(80-LEN(header$))/2 SAY header$
AT 6,25 SAY "Leave the field blank to exit"

 73

The screen is cleared and the stars database VIDSTAR, with its index is selected. The
program title is printed, then the string header$ is created with the TRIM of the video title.
This string is then printed centrally on screen.

DO WHILE 1=1
LET mstar$=" "
AT 4,30 GET mstar$
IF mstar$=" "
USE VIDEO
CLS
RELEASE mstar$,header$
RETURN
ENDIF
AT 4,25 SAY "Creating record - Please wait"
APPEND BLANK
LET 1:REF_NUM$=mref_num$
LET 1:STAR$=mstar$
AT 4,25 SAY " "
ENDDO

The rest of the program is contained within an infinite loop, which goes round and round
accepting as many star names as the user wants to enter. The stars name is entered into the
variable mstar$, and is checked for a blank entry. If it is blank, the VIDEO file is reselected,
the local variables RELEASEd and control passed back to VIDINP.

If the entry is not blank a new record is created in VIDSTAR. That record is filled with the
unique reference number of the video, as created by VIDINP.PRG, and the stars name, as
input by the user.

Run the program (DO VIDINP.PRG) and enter the details of a few films, along with the
names of any stars. As many stars as required may be entered, including none.

Now, by using the REF_NUM from the VIDEO file as a key, it is a simple matter to find the
associated records, i.e. the stars, in the VIDSTAR file.

 74

This can be done interactively:

}SELECT 2
}USE VIDSTAR INDEX VIDSTAR.NDX
}SELECT 1
}USE VIDEO
}LOCATE FOR 1:TITLE$="Trading Places"
}DISPLAY
3 12 Trading Places 3 112 5
}SELECT 2
}LIST FOR 2:REF_NUM$=1:REF_NUM$
5 12 Eddie Murphy
6 12 Dan Aykroyd
7 12 Jamie Lee Curtis

or a program can use the same technique. The report program VIDREP.PRG demonstrates
this. This program creates a report file for use with PipeDream. The routine uses another
database called REP. The REP database only has one field:

LINE$,100

Each record of this database will contain one line of the report, which will be loading into,
and printed from, PipeDream. This means three databases have to be manipulated:

VIDEO The main database containing details of the video.

VIDSTAR + VIDSTAR.NDX. Holds details of the stars, indexed on reference number so
they can be found quickly.

REP Contains the lines of the report and is built up by the program.

The REP file is open from start to finish in area 1, and the other two are opened and closed as
necessary in area 2.

 75

* VIDREP.PRG V1.00 By Derek Fountain
CLS
SELECT 1
CREATE REP FROM REP.DEF
APPEND BLANK
LET 1:LINE$="TAPE TITLE/STARRING TYPE DURATION RATING"

The REP database is created in area 1. Its first record is a title line.

SELECT 2
USE VIDEO

Initially, the VIDEO database is opened in area 2.

AT 0,28 SAY "Home video library system"
AT 2,20 SAY "Please enter the name for the report file"
AT 6,25 SAY "Leave the name blank to abandon"
LET filename$=" "
AT 4,35 GET filename$

Get the required output file name into the mvar filename$.

IF filename$=" "
USE
SELECT 1
USE
DELETE FILE REP
RELEASE filename$
RETURN
ENDIF

If the filename was left blank, tidy up and exit.

CLS
AT 0,28 SAY "Home video library system"
AT 3,25 SAY "Creating workfile - Please wait"

Print a friendly message saying what's going on.

 76

DO WHILE EOF()=0
This means DO WHILE the VIDEOs database in area 2 is not at EOF.
SELECT 1
APPEND BLANK
SELECT 2
LET 1:LINE$="
"+2:TAPE_NO$+" "+2:TITLE$+" "+2:TYPE$+" "+2:DURATION$+" "+2:RATING$

Make a new record in area 1 (the REP database) and fill it with the basic information on the
video. The VIDEO database is reselected.

LET key$=2:REF_NUM$
LET loc=RECNO()

Note the unique reference number of this video, and its record number in the file.

USE VIDSTAR INDEX VIDSTAR.NDX
FIND key$

Still in area 2, close the VIDEO database and open up the VIDSTAR database with its index.
Locate the first occurrence of the reference number.

DO WHILE 2:REF_NUM$=key$
SELECT 1
APPEND BLANK
SELECT 2
LET 1:LINE$=" "+2:STAR$
SKIP
ENDDO

Because of the index, all the reference numbers will be grouped together, i.e.
12,12,12,13,13,15,16,16 etc. So go round a loop while the records key field matches the key
field of the video. If the video has no entries in the stars database, the FIND will have left the
pointer at EOF and this loop will not be entered.

The loop selects the REP database, adds a record to it, reselects the stars database, and fills
the report line with the stars name. The next star is skipped to, and if it is the same video, the
process starts again.

 77

SELECT 1
APPEND BLANK

Reselect the REP file and add a blank line between this and the next video.

SELECT 2
USE VIDEO
GO loc

Reopen the VIDEO database in area 2 and return to the record which has just been dealt with.

SKIP
ENDDO

Move on to the next record, and repeat the process for each video on file. When the end of the
file has been reached, move on.

AT 3,23 SAY "Creating report file - Please wait"
USE
SELECT 1
GO TOP

Close the VIDEO database in area 2, select area 1 and move to the top of the REP database.

COPY TO &filename$ PD
USE
AT 3,23 SAY "Report file created - Press any key"
WAIT
DELETE FILE REP
RETURN

Copy out the file to a PipeDream file, close the database, and wait for acknowledgement that
the process has finished. Then delete the work file and return.

 78

Importing files from PipeDream

When data has been entered previously under PipeDream, it can be imported directly into
zBASE using the APPEND FROM command. Assuming the PipeDream data are arranged in
columns, separated by TAB characters, each line of data can be read in as a record. Each
column is then a field.

The phone book from the Quick Start Guide might look like this in PipeDream. It is called
PH.DAT and is stored as PLAIN TEXT.

................ABC

1 Cambridge 312216 Sir Clive

2 Rakewell 630617 Vic Gerhardi

3 UserClub 68 Well St Roy

4 Scotland Yd 877 1212 Insp Bond

The section has a structure of

COMP$,15; PHONE$,17; NAME$,20; KEYFIELD$,5

The keyfield is explained in the QSG. For these purposes it may be ignored.

With the above file definition in a PipeDream file, the required database file may be created in
zBASE. Once created, the above data may be imported direct from PipeDream into the new
zBASE file.

 79

The command line is:

}APPEND FROM PH.DAT PD

All the data from the above file will then be read into the zBASE file setup above.

Fields which are too big for the database field sizes specified will be trimmed to size by
lopping off the last characters.

Editing command files

Editing command files and instantly testing them is extremely simple. It can be done by
using P to go into PipeDream, and W to return to zBASE.

 80

Popdowns from zBASE.

Z88 popdowns may be used while in zBASE. However, the
following points should be noted.

If a popdown is called when editing a command line,
that command line will return a SYNTAX ERROR when zBASE is
re-entered.

If the -INDEX- key is used to leave a popdown, zBASE
will appear as a suspended application. It should not be
KILLed.

Editing command files and instantly testing them is
extremely simple. It can be done by using nP to go into
Pipedream, and nW to return to zBASE.

 81

zBASE Commands

Most of the zBASE commands may be used both in the interactive mode at the curly prompt,
or in program files or command files. The main exceptions to this rule are that related pairs of
commands such as IF/ENDIF and DO WHILE/ENDDO may not be used in the interactive
mode.

This section of the manual lists each command and its syntax and defines those commands
which are restricted.

The symbols <...> bracket items that are to be specified by the user. Square brackets [...]
enclose optional items.

exp... An expression which can result in either a number or a string. e.g.

5+5,
"FRED "+"BLOGGS",
a$+"MUMMY".

var ... A variable, can mean either mvar or fvar.

mvar ... A memory variable, not stored in a database, but in a large buffer in RAM. A mvar is
defined as a string if its name ends with a '$', otherwise, it is defined as a number.

fvar ... A field variable, permanently stored in a database. Fields must start with either 1: or 2:
label, depending on the database they are to be taken from. If the label is missing the field will
be taken as a mvar.

cond ... A condition which returns the result either TRUE or FALSE. e.g.

10=10 is TRUE,
10=6 is FALSE,
"FRED"="BLOGGS" is FALSE.

A single number 0 is evaluated as FALSE, any other number is TRUE.

At present only a single condition is allowed. i.e. there are no AND, OR or NOT clauses.

 82

KEYWORDS

Only the first 4 characters of a keyword are significant.

* Comments

Any line beginning with an * will be ignored. This can be used as a method of putting
comments in command files. e.g.

}* This is a comment line and will be ignored
}

? [<exp>]

This command shows the value of an expression. The result is printed at the current cursor
position, with no CR or LF following.

If [<exp>] is not supplied a CR LF sequence is sent to the screen. e.g.

}? "Hello world"
Hello world
}? 10+10
20
}? 1:phone$
01296 43 78 78

[<exp>]

This command works just like the ? command, only the expression is sent out of the serial
port, instead of to the screen.

 83

AT <co-ordinates> SAY <exp>

This command prints the value of the expression at the specified co-ordinates. The co-
ordinates are taken as 'down' (0-7) then 'across' (0-79). A string will be printed in full,
including trailing spaces and a number will be printed to 9 significant digits and up to 8
decimal places. e.g.

}AT 3,40 SAY "Merry Christmas"

Merry Christmas

AT <co-ordinates> GET <var>

This command allows the input of a variable, either field or memory variable. The co-
ordinates are taken as for AT SAY with the variable then being offered up at the specified co-
ordinates for editing. The variable must exist prior to the issuing of the GET command.

If the variable is a string the number of characters in the string will determine the number of
characters to be edited. e.g. if a$ is "<10 spaces>", then GETting a$ will allow editing of 10
characters.

If the variable is a number then 9 characters can be edited, with any one being a decimal
point. e.g. if a is 0, the GETting a will allow editing of 9 characters, all of which must be
numerics, except one which can be a decimal point in any position. This way the user can
decide the number of decimal places. If anything other than a numeric is entered the number
will not be accepted. The GET will remain active and the number will have to be re-entered.

LET mvar$="0101 212 800 5555"
AT 3,30 GET mvar$

 84

APPEND [BLANK] / [FROM <filename> [PD]/[DELIMITED] [FOR <exp>]
]>

This command is used to add new records to the currently selected database.

If the BLANK clause is specified a single blank record is added to the end of the currently
selected database. All the fields will be empty and the record pointer will be left pointing to
the new record. e.g.

}GO BOTTOM
}? RECNO()
24
}APPEND BLANK
}? RECNO()
25

The FROM clause causes records in the file 'filename' to be added to the bottom of the
currently selected file. e.g.

}USE PHBOOK
}APPEND FROM PHBOOK.NEW

will add all the records in PHBOOK.NEW to the bottom of the PHBOOK file.

The PD clause means the fields are separated by TAB (09h) characters and the records are
separated by CR (0Dh) characters.

The command line is

 85

APPEND FROM [filename] PD

The file shown below, having been saved as PLAIN TEXT, will then be appended onto the
end of the database.

................ABC

1 Cambridge 312216 Sir Clive

2 Rakewell 630617 Vic Gerhardi

3 UserClub 68 Well St Roy

4 Scotland Yd 877 1212 Insp Bond

The DELIMITED clause means the fields are separated by commas and the records by CR
(0Dh) LF (0Ah). This is a common format output by dBase and many spreadsheets.

The command line would look like:

APPEND FROM [filename] DELIMITED

The following file would be appended to the database in use.

................ABC

1 Cambridge,312216,Sir Clive

2 Rakewell,630617,Vic Gerhardi

3 UserClub,68 Well St,Roy

4 Scotland Yd,877 1212,Insp Bond

 86

If the PD and DELIMITED instructions are omitted the file is assumed to be a zBASE file.

CLS

This command clears the screen.

CONTINUE

This command locates the next record which matches the condition specified in the last
LOCATE command.

The search resumes at the current record, and continues until a match is found or EOF. e.g.

} LOCATE FOR 1:NAME$="Fred"
} ? RECNO()
14
} DISPLAY
Fred Bloggs
} CONTINUE
} ? RECNO()
24
} DISPLAY
Fred Smith

The CONTINUE command is not designed for use with the FIND command. If CONTINUE
is used after a FIND it is only coincidence if matching records are found.

 87

COPY TO <filename> [PD] [DELIMITED] [FOR <cond>]

The copy command is the method of outputting data to another format. If none of the options
are specified the output file will be another zBASE file.

If PD is specified the data will be written out in a format which PipeDream can read in plain
text mode.

e.g. COPY TO <filename> PD

If DELIMITED is specified the data will be written out in a comma delimited format which
can be read in by dBase or a Spreadsheet package. e.g.

COPY TO <filename> DELIMITED

If the FOR clause is specified only those records which meet <cond> will be copied to the
output file. e.g.

COPY TO <fileother> FOR 1:PHONE$="01"

will only copy records with a phone$ field starting with "01".

COPY TO <fileother> PD FOR 1:PHONE$="01"

copies the same set of records but this time the output is in PipeDream format. Similarly, the
use of DELIMITED would out to a comma delimited file.

COPY TO <filename> [STRUCTURE] [DELIMITED]

This second version of the COPY command provides two alternative outputs.

COPY TO <filename> STRUCTURE, creates a zBASE file with no records but with the
same structure as the current file.

COPY TO <filename> STRUCTURE DELI, creates a PipeDream file of the form required to
create a new zBASE file. The new file created from such a file would have the same structure
as the original database from which the structure was taken.

 88

CREATE <file1> FROM <file2>

This version of the CREATE command creates a database file called 'file1' from an input file,
'file2' which is created under PipeDream. The format for file2 must follow these rules:

1. One line per field in database.

2. No blank lines, and no extra CR at the end of the last field.

3. All string field names end in $, followed by a comma and a number indicating the length of
the field (1-255).

4. Numeric fields have just the name on the line, nothing else.

e.g.

NAME$,25 NAME is a string field, length 25

AGE AGE is a numeric field

SCORE$,10<END> SCORE is a string field, length 10

Any stray CRs, or text in the wrong place may cause strange results.

The database file created will be left open in the selected database area. If the CREATE fails
for any reason, the selected area is left empty.

 89

DELETE <[RECORD] / [FILE <filename>] >

The DELETE RECORD command marks the current record for deletion. The record is not
actually removed from the file. When the record is “DISPLAYed” a '*' will appear next to the
first field indicating the record is marked for deletion.

To actually remove deleted records from the database, see the program PACK.PRG.

DELETE FILE filename will erase the file from the Z88's Ramdisk. If it doesn't exist, an
error message will appear.

DISPLAY/LIST <[STRUCTURE]/[MEMORY]/[STATUS]>/
<[ALL]/[FOR <cond>]> <[FIELDS field list]>

The display commands can be called using the LIST keyword. The only difference in their
operation is that DISPLAY pauses for each screenfull of data, and LIST doesn't.

If the STRUCTURE clause is used the structure of the file open in the selected database area
is displayed on screen. It takes the format:

NAME$ STRING
AGE NUMERIC

If the MEMORY clause if used, the memory variables and their values are listed on screen.
e.g.

address1$ STRING "54 Moor Road"

address2$ STRING "Linstanton"

If the STATUS clause is used the machines current status is displayed on screen.

 90

The information provided by DISPLAY STATUS shows the name of the file(s) currently
open pus information about record sizes and the current record number. It also shows which
user area is active selected.

If none of the above options are specified then the current data is displayed.

DISPLAY on its own will print the contents of the current record to screen. e.g.

}DISPLAY
Fred Bloggs 49.0000 Painter

DISPLAY ALL will print the contents of all records on file, seven records at a time, starting
at the current record. Press -ESC- to stop. e.g.

}DISPLAY ALL
Fred Bloggs 49.0000 Painter
Joe Clump 32.0000Electrician...

DISPLAY FOR <cond> will print the contents of all records which meet the condition e.g.

}DISPLAY FOR 1:FORENAME$="Fred"
Fred Bloggs 49.0000 Painter

A FIELDS clause can be added to either the DISPLAY ALL or DISPLAY FOR command so
only the required data is printed. e.g.

} DISPLAY ALL FIELDS FORENAME$
Fred
Joe
Andrew

Note that the 1: is not required for the list of field names.

 91

DO <command file>

This command executes the specified command file. All commands in the file are in standard
zBASE syntax. Control is passed back to the keyboard when the last instruction has been
executed, or a RETURN is encountered.

DO WHILE <cond> - ENDDO

The DO WHILE command can only be executed from within a command file. The condition
is evaluated, and, if it is TRUE the statements following the DO are executed until an
ENDDO is found. At that point control is passed back up to the DO and the condition is re-
evaluated.

When the condition is FALSE control passes to the command after the ENDDO. Example:

LET x=1
DO WHILE x<>10
? "Hello world"
LET x=x+1
ENDDO
? "Goodbye"

will print out 'Hello world' 10 times followed by 'Goodbye'. Note the indentation of the
commands within the loop. This makes the program much easier to understand, and while not
mandatory, is very necessary in nested DO WHILE loops.

Also note the expression 'DO WHILE 1' would put the machine into an infinite loop.

 92

FIND <exp>

Find searches the current index file for the value <exp>. It is zBASE's quickest method of
finding data, searching some 4000 bytes per second. The only field it scans is the index key
field. e.g.

}USE TEST
}INDEX ON NAME$ TO TESTNAME.NDX
}FIND "Derek Fountain"
}DISPLAY
465 Derek Fountain Aylesbury
}FIND "Aylesbury"
}DISPLAY
0
}INDEX ON TOWN$ TO TEST.NDX
}FIND "Aylesbury"
}DISPLAY
465 Derek Fountain Aylesbury

 93

GO [<exp>/<BOTTOM>/<TOP>]

The GO command positions the current record pointer at an absolute record number, specified
by exp. Trying to move to a number less than 1 will place the record pointer at 1, and trying to
move to a record number which doesn't exist will place the record pointer at the last record in
the file (not EOF).

If the BOTTOM clause is specified the record pointer will move to the last record in the file.

If the TOP clause is specified the record pointer will move to the first record in the file. e.g.

} ? RECNO()
24
} GO 10
} ? RECNO()
10
} LET a=30
} GO a
} ? RECNO()
30
} GO BOTTOM
} ? RECNO()
98
} GO TOP
} ? RECNO()
1

 94

IF <cond> - ELSE - ENDIF

The IF command allows conditional execution of statements from within a command file, but
without the looping system the DO WHILE statement uses.

The condition is evaluated, and if it is TRUE, the statements following the IF are executed. If
the condition is FALSE, control passes to the statement following the next ENDIF, or the
ELSE if there is one. E.g.

IF a$=b$
? "Hello world"
ENDIF
? "Goodbye"

Also:

IF a$=b$
? "It’s equal"
ELSE
? "It’s not equal"
ENDIF
? "Goodbye"

In the first example, if a$ is the same as b$ then 'Hello world' will be printed, followed by
'Goodbye'. If a$ is not the same as b$, then just 'Goodbye' will be printed.

In the second example, if a$ is the same as b$ then 'Its equal' will be printed, followed by
'Goodbye'. If a$ is not the same as b$, then 'It’s not equal' will be printed, followed by
'Goodbye'.

 95

INDEX ON <fvar> TO <filename>

Index is zBASEs method of sorting a database, and keeping it sorted. When a database is
indexed on a field, any records that are appended to it automatically take up their correct place
in the file. If the file is USEd without the index file, the records go back to chronological
order. E.g.

}USE TEST
}LIST ALL
1 Fred
2 Bob
3 Peter
}INDEX ON NAME$ TO TEST.NDX
}GO TOP
}LIST ALL
1 Bob
2 Fred
3 Peter
}APPEND BLANK
}LET 1:NAME$="Derek"
}GO TOP
}LIST ALL
1 Bob
2 Derek
3 Fred
4 Peter
}USE TEST
}LIST ALL
1 Fred
2 Bob
3 Peter
4 Derek

 96

LET <var>=<exp>

The LET command assigns a value to a specified variable. In the generic case, the value to be
allocated to the variable is the value of the expression <exp>. The label to be given to the
variable is the name contained in the space <var>. e.g.

LET today$=date()
LET spaces$=" "
LET codename$="Fred"

LOCATE FOR <cond>

The locate command is used for finding a record which meets a specified condition. The
record pointer will be moved to the top of the file and each record checked to see if <cond> is
true. If it isn't the next record is checked and so on until the EOF is found or a record meets
the condition. The record pointer will be left pointing to the correct record, or EOF if there
wasn't one. e.g.

} ? RECNO()
24
} LOCATE FOR 1:NAME$="Fred"
} ? RECNO()
14
} LOCATE FOR 1:NAME$="Gertrude"
} ? EOF()
1

QUIT

This command closes all open files, and returns the Z88 back to its main applications menu.

RECALL RECORD

This command performs the opposite of the delete command. A record marked for deletion
will be 'unmarked'. If the record wasn't deleted, the command is ignored.

 97

RELEASE <mvar>

When a memory variable has served its purpose and is no longer needed, it can be removed
from RAM to free space. e.g.

} RELEASE name$
} ? name$
Variable not found

RENAME <file1> TO <file2>

This command renames file1 to file2 in the same way the option from the Filer does. If file2
exists or file1 doesn't an error message will appear. Note you can't rename a file which is
open.

RETURN

Return halts the execution of the current command file and returns control back to the curly
prompt or the calling file.

All files are left open and memory variables are maintained.

SELECT <[1 or 2]>

zBASE can have two databases open at the same time, for cross referencing purposes. This
command selects between the two database areas and defines which database will be used for
DISPLAY commands, and which area a new database will be opened in when a USE
command is issued.

The two areas are called PRIMARY and SECONDARY or simply 1 and 2. Only the 1 or 2
may be used in the actual command.

 98

SKIP [<exp>]

The skip command moves the current record pointer. If <exp> is specified it must be a
number. The record pointer will move that number of records through the file, from its current
position. A negative number will make it move backwards. Trying to move past the beginning
of the file will leave the record pointer at record 1, and trying to move past the end of the file
will set EOF true.

If no <exp> is given the record pointer will move one record forwards. e.g.

} ? RECNO()
24
} SKIP
} ? RECNO()
25
} SKIP 10
} ? RECNO()
35
} SKIP -4
} ? RECNO()
31

USE [<file>]

This command opens a new database in the currently selected area. If the filename is not
specified the database currently open is closed and the area left empty. Only files created with
the CREATE command can be opened using USE. i.e. only zBASE files.

The alternative form opens an associated INDEX file viz:

USE file INDEX file

 99

WAIT

This command simply pauses the system until a key is pressed. When used in a command file
it is useful to display a 'WAITING' message so that the operator knows that a key is awaited.

If this is done, the 'WAITING' message should be erased after a key press.

 100

zBASE Functions

zBASE supports all the standard functions found in other languages plus some specialised
database handling ones of its own.

Experienced programmers will notice there is no STR function to convert a number to a
string. This is because the Indirect Variable system can be used to emulate this function. To
emulate a STR function:

} LET A=2.03
} LET A$="&A"
} ? "-"+a$+"-"
-2.03-

CHR(<exp>)

The CHR function returns a single character string containing the character whose ASCII
code is <exp>. e.g.

} ? CHR(65)
A
} ? CHR(124)
|

CLI (<exp$)

The CLI function sends <exp$> to the OZ CLI function for immediate execution.

DATE()

The date function returns the current date as an eight bit string. The date is taken from OZ,
and is returned in the system default format i.e. European or American as set by the panel. e.g.

} ? DATE()

18/08/88

 101

DELETED()

The DELETED function returns a 1 (TRUE) or a 0 (FALSE) depending on whether the
current record is marked for deletion or not. e.g.

} DELETE RECORD
} ? DELETED() 1
} RECALL RECORD
} ? DELETED()
0

EOF()

The EOF (End of file) function returns a 1 (TRUE) or a 0 (FALSE) depending on whether the
current file record pointer is at end of file or not. e.g.

} GO BOTTOM
} ? EOF()
0
} SKIP
} ? EOF()
1

FILE(<exp$>)

The FILE function returns a 1 (TRUE) or a 0 (FALSE) depending on whether the file <exp$>
exists or not. Note that <exp$> is an expression and not a literal. e.g.

} ? FILE("NAMES.DBF")
1
} USE NAMES.DBF

 102

INT(<exp>)

The INT (Integer) function removes all digits from the number <exp> which follow the
decimal point. e.g.

} ? INT(3.142)
3
} ? INT(200.000)
200
} ? INT(22/7)
3

LEN(<exp$>)

The LEN function returns the length of string expression <exp>. e.g.

} ? LEN("HELLO WORLD")
11
} LET A$="FOO BAR ZOK POW"
} ? LEN(A$)
15

LOWER(<exp$>)

The LOWER function turns all the characters in the string <exp> into lower case. Any
characters that were already in lower case will be left alone. e.g.

} ? LOWER("Fred Bloggs")
fred bloggs

LTRIM(<exp$>)

The LTRIM function removes all leading spaces from the string expression <exp>. e.g.

} ? "1"+LTRIM(" 2345")+"6"
123456

 103

RAM()

reveals RAM space available on currently selected device.

RECNO()

The RECNO function returns the current file current record number. e.g.

} GO 10
} ? RECNO()
10
} GO BOTTOM
} ? RECNO()
98
} SKIP
} ? RECNO()
0

SET ECHO

toggles echoing of all commands to screen.

STR

To emulate a STR function use &.
} LET A=2.03
} LET A$="&A"
} ? "-"+a$+"-"
-2.03-

 104

SUBSTR(<exp1$>,<exp2>,<exp3>)

The SUBSTR (Substring) function returns that part of <exp1$> that starts at <exp2> and is
<exp3> characters long. Examples make this clearer:

} ? SUBSTR("1234567890",3,4)
3456
} ? SUBSTR("1234567890",8,2)
89

Note that if <exp2>+<exp3> > LEN(<exp1$>) no error occurs.

TIME()

The time function returns an eight character string holding the current time in the format
HH:MM:SS. The time is fetched from OZ and can be altered using nT. e.g.

}? TIME()
16:28:37

To obtain time differences, sub strings of the time string will have to be extracted and
converted to numbers using the VAL() function.

TRIM(<exp$>)

The TRIM function removes the trailing spaces from the end of string <exp>. e.g.

} ? "1"+TRIM("2345 ")+"6"
123456

UPPER(<exp$>)

The UPPER function turns all the characters in the string <exp> into upper case. Any
characters that were already in upper case will be left alone. e.g.

} ? UPPER("Fred Bloggs")
FRED BLOGGS

 105

VAL(<exp$>)

The VAL function turns an ASCII string into its numeric equivalent. Conversion stops at the
first non ASCII digit character. e.g.

} ? VAL("123")
123
} ? VAL("10")+10
20

WHERE(<exp1$>,<exp2$>)

The where function returns the position of <exp1$> in <exp2$>. If it is not present, 0 is
returned. e.g.

} ? WHERE("23","1234")
2
} ? WHERE("HELLO",UPPER("hello world"))
1
} ? WHERE("78","1234")
0

 106

zBASE Programs

The programs listed in this manual are designed to be indications only of the potential of
zBASE. They are for users to amend to suit their own purposes and are not intended as
complete solutions. They have not been exhaustively tested.

Owners of a license to use zBASE may make free use of all the programs listed herein under
the one condition that original authorship is acknowledged.

Those who wish to type in the programs by hand, be warned that some code lines have spaces
in them which are not normally seen in these listings. The space character has been replaced
by unless the spaces are in a comment line. Take care that you count the number of spaces
correctly.

These programs are in programs.doc which you can now download from this site.

Alternatively you can obtain these programs from Rakewell for the price of a blank Z88
EPROM. If preferred, a blank EPROM and £10 plus VAT handling fee may be sent to
Rakewell for the programs to be put onto the EPROM and returned.

They may also be obtained on a PC disk for £5, plus VAT, direct from Rakewell.

 107

Sample programs

These files may be copied and adapted by owners of a zBASE licence at no charge.

Wordmongers retains all copyright in them.

MAIN.PRG A menu program for database management

NEWUN.PRG Called by MAIN to enter new records.

APPEND.PRG A command file to make data entry easier.

APPEND.DEF A database structure file for use by the APPEND program.

PACK.PRG To remove deleted records from a file

PHENT.PRG Phone book entry program

FPROG Find program for phone book

VIDINP.PRG Input routine for VIDEO file

STARINP.PRG Input for stars in Videos

VIDREP.PRG Report generator for video system

VIDREP.DEF USE REP.DEF FROM STOCK CONTROL SYSTEM

Stock Check suite. See introduction page for this suite.

 108

MAIN.PRG

* MAIN.PRG - A menu program for database file * management.
* TITLE.PRG
do while 1=1
 cls
 at 2,10 say "The Wordmongers zBASE Address book. By C Salvidge."
 at 3,15 say "(c) Wordmongers Ltd 1988."
 at 5,10 say "(S)earch for an entry. (E)nter new person. (Q)uit."
 at 7,10 say "Your choice please"
 let choice$=" "
 do while where(choice$,"SEQ")=0
 at 7,30 get choice$
 let choice$=upper(choice$)
 enddo
 if choice$="Q"
 return
 endif
 if choice$="S"
 do findum.prg
 endif
 if choice$="E"
 do newun.prg
 endif
enddo

NEWUN.PRG

* NEWUN.PRG - Called by MAIN to enter new records.
cls
at1,0say"Title: Forename: Surname:"
at 3,0say "Enter the name of the person to add " at 4,0 say "Leave all the fields blank to
cancel"
let title$=" "
let forname$=" "

 109

let surname$=" "
at 1,5 get title$
at 1,20 get forname$
at 1,52 get surname$
if len(surname$)=0
 if len(forname$)=0
 if len(title$)=0
 cls
 ? "Cancelled Hit any key"
 wait
 return
 endif
 endif
endif
let usurnam$=upper(surname$)
let ufornam$=upper(forname$)
let looking$="Y"
locate for upper(1:surname$)=usurnam$
if eof()=1
 let looking$="N"
endif
go top
do while looking$="Y"
 continue
 if eof() <> 1
 if upper(1:forname$) = ufornam$
 cls
 ? "That person is already on the database-Try again"
 ? "Press any key to cancel"
 wait
 return
 endif
 if upper(1:forname$) <> ufornam$
 looking$="N"
 endif

 110

 endif
 if eof() = 1
 let looking$="N"
 endif
enddo
append blank
let 1:surname$=surname$
let 1:forname$=forname$
let 1:title$=title$
at 2,0 say "Address "
at 4,0 say " "
at 3,0 say " "
at 5,0 say "Note"
at 2,10 get 1:add1$
at 3,10 get 1:add2$
at 4,10 get 1:add3$
at 5,10 get 1:note$
return

 111

APPEND.PRG

* APPEND.PRG - A command file to make data entry easier.
* ************************************
* APPEND.PRG Will append new records *
* to the database that is open in 1: *
* ************************************
*
* The database to be appended to is open in 1
* First copy its structure out to a PD file
select 1
copy to temp.def structure PD
select 2
* Now, in 2, Create a database for the structure to be read in to
create st.dbf from append.def
* Read in the structure
append from temp.def PD
use st.dbf
let doing=1
do while doing=1
 select 1
 append blank
 cls
 at 0,0 say "Record number - "
 at 0,16 say recno()
 select 2
 go top
 do while eof()=0
 select 2
 at 7,0 say 2:field$
 let f$="1:"+2:field$
 at 7,10 get &f$
 skip
 ?

 112

 enddo
 let choice$=" "
 do while where(choice$,"YN")=0
 at 7,0 say "Add another record ? Y/N"
 at 7,25 get choice$
 let choice$=upper(choice$)
 enddo
 if choice$="N"
 let doing=0
 endif
enddo
* Now clean up
select 2
use
delete file st.dbf
select 1
* Thats it folks

APPEND.DEF

* APPEND.DEF - A database structure file for use by the
* APPEND program.
* Do not enter the * lines to the append.def file in Pipedream.
field$,10
type$,3

 113

PACK.PRG

* PACK.PRG Removes deleted records from file.
CLS
IF FILE(TEMP)
 AT 2,15 SAY "File called TEMP currently exists."
 AT 3,15 SAY "Please remove it. PACK needs that "
 AT 4,15 SAY "file name as a temporary work file."
 AT 7,15 SAY "Press any key to return to }."
 WAIT
 RETURN
ENDIF
USE
LET SPACE40$=" "
LET NEWFILE$=SUBSTR(SPACE40$,1,12)
AT 2,15 SAY "Enter name of file to be packed.."
AT 2,50 GET NEWFILE$
AT 4,15 SAY "Renaming "+NEWFILE$+" to TEMP."
RENAME &NEWFILE$ TO TEMP
USE TEMP
COPY TO &NEWFILE$ FOR DELETED()=0
USE
DELETE FILE TEMP
RELEASE NEWFILE$, SPACE40$
RETURN
* EOF

PHENT.PRG

* PHENT.PRG
LET doing=1
* following line sets up variable of 20 spaces
LET SPACE20$=" "
DO WHILE doing=1

 114

 LET COMP$=SUBSTR(SPACE20$,1,15)
 LET PHONE$=SUBSTR(SPACE20$,1,17)
 LET NAME$=SPACE20$
 LET KEYFIELD$=SUBSTR(SPACE20$,1,5)
 CLS
 AT 0,10 SAY "ENTER Company name..."
 AT 1,10 SAY "ENTER contact name..."
 AT 2,10 SAY "ENTER phone number..."
 AT 3,10 SAY "ENTER KEYFIELD VALUE."
 AT 0,33 GET COMP$
 AT 1,33 GET NAME$
 AT 2,33 GET PHONE$
 IF COMP$=" "
 LET KEYFIELD$=SUBSTR(NAME$,1,5)
 ELSE
 LET KEYFIELD$=SUBSTR(COMP$,1,5)
 ENDIF
 AT 3,33 GET KEYFIELD$
 LET confirm$="N"
 AT 5,10 SAY "Confirm this record to be added to file. Y/N."
 AT 5,57 GET confirm$
 IF confirm$="Y"
 APPEND BLANK
 LET 1:COMP$=COMP$
 LET 1:NAME$=NAME$
 LET 1:PHONE$=PHONE$
 LET 1:KEYFIELD$=KEYFIELD$
 ELSE
 AT 5,57 SAY "NOT APPENDED"
 ENDIF
 LET choice$=" "
 DO WHILE WHERE(choice$,"YN")=0
 AT 7,10 SAY "Add another record? Y/N"
 AT 7,35 GET choice$
 LET choice$=UPPER(choice$)

 115

 ENDDO
 IF choice$="N"
 LET doing=0
 ENDIF
ENDDO
RELEASE doing, SPACE20$, COMP$, NAME$, PHONE$,KEYFIELD$
RELEASE choice$, confirm$
RETURN
* END OF COMMAND FILE

FPROG

* FPROG - Programmed FIND routine for phone book
let SPACE20$=" "
LET mseek$=SUBSTR(SPACE20$,1,5)
LET looping=1
DO WHILE looping
 cls
 AT 1,10 SAY "Find what??"
 AT 1,38 GET mseek$
 LET mseek$=TRIM(mseek$)
 IF LEN(mseek$)=0
 LET mseek$=" "
 ENDIF
 AT 2, 0 SAY " "
 IF mseek$=" "
 LET looping=0
 ELSE
 FIND mseek$
 IF EOF()=1
 AT 2,10 SAY "No find"
 ELSE
 DISP
 ENDIF
 AT 7,10 SAY "WAITING"

 116

 WAIT
 AT 7,10 SAY " "
 ENDIF
ENDDO
DISP
RELEASE SPACE20$, MSEEK$
RETURN
* EOF

VIDINP.PRG

* VIDINP.PRG V1.00 By Derek Fountain
CLS
USE VIDEO
GO BOTTOM
LET nref_num=VAL(1:REF_NUM$)
AT 0,28 SAY "Home video library system"
AT 2,51 SAY "Tape :"
AT 4,16 SAY "Title :"
AT 4,51 SAY "Type :"
AT 5,16 SAY "Length:"
AT 5,51 SAY "Rating:"
DO WHILE 1=1
 LET nref_num=nref_num+1
 LET mref_num$="&nref_num"
 LET mtape_no$=" "
 LET mtitle$=" "
 LET mtype$=" "
 LET mduration$=" "
 LET mrating$=" "
 AT 2,16 SAY "Ref number: "+mref_num$
 AT 2,58 SAY mtape_no$
 AT 4,23 SAY mtitle$
 AT 4,58 SAY mtype$
 AT 5,23 SAY mduration$

 117

 AT 5,58 SAY mrating$
 AT 7,23 SAY "Enter the information on the video"
 AT 2,58 GET mtape_no$
 IF mtape_no$=" "
 RELEASE nref_num,mref_num$,mtape_no$,mtitle$,mtype$,mduration$
 RELEASE mrating$,confirm$
 RETURN
 ENDIF
 AT 4,23 GET mtitle$
 AT 4,58 GET mtype$
 AT 5,23 GET mduration$
 AT 5,58 GET mrating$
 LET confirm$=" "
 DO WHILE confirm$=" "
 AT 7,23 SAY "Please confirm this information: "
 AT 7,56 GET confirm$
 IF WHERE(confirm$,"YNyn")=0
 LET confirm$=" "
 ENDIF
 ENDDO
 IF UPPER(confirm$)="Y"
 APPEND BLANK
 LET 1:REF_NUM$=mref_num$
 LET 1:TAPE_NO$=mtape_no$
 LET 1:TITLE$=mtitle$
 LET 1:TYPE$=mtype$
 LET 1:DURATION$=mduration$
 LET 1:RATING$=mrating$
 * FLAG A
 ELSE
 LET nref_num=nref_num-1
 ENDIF
ENDDO

 118

STARINP.PRG

* STARINP.PRG V1.00 By Derek Fountain
CLS
USE VIDSTAR INDEX VIDSTAR.NDX
AT 0,28 SAY "Home video library system"
LET header$="Enter the stars who appear in "+TRIM(mtitle$)
AT 2,(80-LEN(header$))/2 SAY header$
AT 6,25 SAY "Leave the field blank to exit"
DO WHILE 1=1
 LET mstar$=" "
 AT 4,30 GET mstar$
 IF mstar$=" " USE VIDEO
 CLS
 RELEASE mstar$,header$
 RETURN
 ENDIF
 AT 4,25 SAY "Creating record - Please wait"
 APPEND BLANK
 LET 1:REF_NUM$=mref_num$
 LET 1:STAR$=mstar$
 AT 4,25 SAY " "
ENDDO
* EOF

VIDREP.DEF

* VIDREP.DEF
LINE$,100

 119

VIDREP.PRG

* VIDREP.PRG V1.00 By Derek Fountain
CLS
SELECT 1
CREATE REP FROM REP.DEF
APPEND BLANK
LET 1:LINE$="TAPE TITLE/STARRING TYPE DURATION RATING"
SELECT 2
USE VIDEO
AT 0,28 SAY "Home video library system"
LET filename$=" "
AT 2,20 SAY "Please enter the name for the report file"
AT 6,25 SAY "Leave the name blank to abandon"
AT 4,35 GET filename$
IF filename$=" "
 USE
 SELECT 1
 USE
 DELETE FILE REP
 RELEASE filename$
 RETURN
ENDIF
CLS
AT 0,28 SAY "Home video library system"
AT 3,25 SAY "Creating workfile - Please wait"
DO WHILE EOF()=0
 SELECT 1
 APPEND BLANK
 SELECT 2
* following must be typed on one line
 LET 1:LINE$=" "+2:TAPE_NO$+" "+2:TITLE$+" "+2:TYPE$" "+2:DURATION$+"
"+2:RATING$
 LET key$=2:REF_NUM$
 LET loc=RECNO()
 USE VIDSTAR INDEX VIDSTAR.NDX

 120

 FIND key$
 DO WHILE 2:REF_NUM$=key$
 SELECT 1
 APPEND BLANK
 SELECT 2
 LET 1:LINE$=" "+2:STAR$
 SKIP
 ENDDO
 SELECT 1
 APPEND BLANK
 SELECT 2
 USE VIDEO
 GO loc
 SKIP
ENDDO
AT 3,23 SAY "Creating report file - Please wait"
USE
SELECT 1
GO TOP
COPY TO &filename$ PD
USE
AT 3,23 SAY "Report file created - Press any key"
WAIT
DELETE FILE REP
RETURN
* EOF

 121

Wordmongers Stock Control System

This suite was written to demonstrate zBASE' ability to run fully menu driven suites. It was
designed with a small shop in mind, where the manager would go round his warehouse, with
his Z88 and take a check of all the items he has in stock. The system would then produce a
report giving details of how many of product X was in stock and how much it was all worth.

A full manual is not necessary, but a brief description is called for.

Options

Option 1 would be entered, and the journey round the stock room would start. As each
product is encountered it's unique code is entered at the prompt. If the code is not to hand,
entering a code of a single question mark will allow input of a description of the product.
Searching by code is much faster as it uses zBASE's indexing system. Assuming the product
is successfully found in the database, the relevant details will be displayed and the number of
cases in stock will be requested, followed by the number of individual units. These numbers
are used to calculate the total number in stock, and their value. The program then loops round
for another code number.

Option 2 is fairly straight forward. It allows the examination and amendment of the products
details file.

Option 3 is almost the same as option 2, except it allows for maintenance of the suppliers file.

Option 4 produces a Pipedream plain text file, including all details held in the products file.

Option 5 produces a Pipedream plain text file, including all details held in the suppliers file.

Option 6 produces a detailed 'report' using an intermediate file called REP. It is a mixture of
both the products file and the suppliers file. This routine demonstrates zBASE's ability to
merge databases and produce the exact output required by the user.

Option 7 cleans the files of all deleted record (note the technique for simulating the dBase
PACK command), and recreates both indicies.

Option 8 quits from zBASE.

 122

Wordmongers do not claim this suite is a full program, or that it will perform a task in the
most effective manner possible. Its primary function is to demonstrate zBASE's ability to
drive large systems.

The code is copyrighted by Wordmongers Ltd, but may be copied and used freely by zBASE
users, so long as this copyright is publicly acknowledged, where the code is used.

Here is a list of the files required to run the system. The files can be obtained by sending a
blank 32k eprom to us or downloading the zip file.

File Name Bytes Description

REP.DEF 128 Definition of file used in stock report

SCFETCH.EXE 512 CLI File to extract these files from EPROM

SCOUTPRO.PRG 1280 Outputs the Product file in PD format

SCOUTSUP.PRG 1280 Outputs the Supplier file in PD format

SCPACK.PRG 768 Cleans, Packs & Reindexs the Databases

SCPROD 384 The Product database

SCPROD.DEF 128 The Definition of the Product database

SCPROD.NDX 128 The index for the Product database

SCSIAM.PRG 1408 Amend Product

SCSIBACK.PRG 640 Skip back one product

SCSIDELE.PRG 512 Delete a product

SCSIFIND.PRG 640 Find a product

SCSIINP.PRG 1920 Input a product

 123

SCSIMAIN.PRG 2176 Products file maintenance menu

SCSINEXT.PRG 384 Skip forward a product

SCSIRECA.PRG 512 Recall a deleted product

SCSTART.PRG 1152 The main menu

SCSTKREP.PRG 2944 The stock report

SCSTOCK.PRG 1920 Amend stock numbers

SCSUAM.PRG 1408 Amend suppliers

SCSUFIND.PRG 768 Find a supplier

SCSUINP.PRG 2048 Input a supplier

SCSUMAIN.PRG 2432 Suppliers file maintenance menu

SCSUPP 384 The Suppliers Database

SCSUPP.NDX 128 The index file for the supplier file

SCSUPP.DEF 128 The definition of the supplier file

ZBDEMO.DOC 4400 This file

ZBRUN 256 The Autoexec file

 124

Program listings

REP.DEF

* REP.DEF
LINES,115

SCOUTSUP.PRG

* SCOUTSUP.PRG V1.01 BY DEREK FOUNTAIN
* OUTPUT SUPPLIERS FILE TO A PD FILE
DO WHILE 1=1
 CLS
 AT 0,30 SAY "OUTPUT SUPPLIER FILE"
 AT 2,20 SAY "Please enter the name of the output file"
 LET filenam$=" "
 AT 6,25 SAY "Leave the name blank to abandon"
 AT 4,30 GET filenam$
 IF filenam$=" "
 RELEASE filenam$,over$
 RETURN
 ENDIF
 AT 2,20 SAY " "
 AT 4,30 SAY " "
 AT 6,25 SAY " "
 LET over$="Y"
 IF FILE(filenam$)=1
 AT 3,20 SAY "File exists - Overwrite it? (Y/N) >>>"
 LET over$=" "
 DO WHILE over$=" "
 AT 3,59 GET over$
 IF WHERE(over$,"YyNn")=0
 LET over$=" "
 ENDIF
 ENDDO

 125

 ENDIF
 IF UPPER(over$)="Y"
 AT 3,20 SAY "Copying data to Pipedream file "+filenam$
 USE SCSUPP
 COPY TO &filenam$ PD
 AT 3,20 SAY " "
 AT 3,11 SAY "Process completed - The file MUST be loaded as plain text"
 AT 5,27 SAY "Press any key to continue"
 WAIT
 RELEASE filenam$,over$
 RETURN
 ENDIF
ENDDO

SCPACK.PRG

* SCPACK.PRG V1.02 BY DEREK FOUNTAIN
* Same as a dBase pack - it removes the deleted record
CLS
AT 0,30 SAY "CLEAN FILES ROUTINE"
AT 3,19 SAY "Removing deleted records may take some time"
AT 5,20 SAY "Confirm you want to proceed (Y/N) >>>"
LET confirm$=" "
AT 5,58 GET confirm$
IF WHERE(confirm$,"Nn")<>0
 RELEASE confirm$
 RETURN
ENDIF
CLS
AT 3,26 SAY "Cleaning files - Please wait"
USE SCPROD
COPY TO TEMP FOR DELETED()=0
USE
DELETE FILE SCPROD
RENAME TEMP TO SCPROD

 126

USE SCSUPP
COPY TO TEMP FOR DELETED()=0
USE
DELETE FILE SCSUPP
RENAME TEMP TO SCSUPP
USE SCPROD
RELEASE confirm$
RETURN

SCPROD.DEF

* SCPROD.DEF
CODE$,6
DESC$,20
SUPP$,3
SELL_AT
BUY_AT
CASE
VALUE
MINIMUM
STOCK
LUPDATE$,10
BUGFIX$,10

SCSIAM.PRG

* SCSIAM.PRG V1.03 BY DEREK FOUNTAIN
* Amend a products details - Called from SCSIMAIN.PRG
* Following at say must be typed on one line - it is 80 spaces.
AT 7,0 SAY " "
 +" "
* The initial data goes into mvars
LET mcode$=1:CODE$
LET mdesc$=1:DESC$
LET msupp$=1:SUPP$

 127

LET msell_at=1:SELL_AT
LET mbuy_at=1:BUY_AT
LET mcase=1:CASE
LET mminimum=1:MINIMUM
* Loop while data is not confirmed
LET confirm$="N"
DO WHILE UPPER(confirm$)="N"
 AT 7,25 SAY "Amend each field, one at a time"
 * Get each field
 AT 2, 5 GET mcode$
 AT 2,35 GET mdesc$
 AT 2,74 GET msupp$
 AT 4, 8 GET msell_at
 AT 4,26 GET mbuy_at
 AT 4,45 GET mcase
 AT 4,71 GET mminimum
* Get confirmation of data
 AT 7,22 SAY "Please confirm this data (Y/N) >>>"
 LET confirm$=" "
 DO WHILE confirm$=" "
 AT 7,57 GET confirm$
 IF WHERE(confirm$,"YNyn")=0
 LET confirm$=" "
 ENDIF
 ENDDO
 AT 7,22 SAY " "
ENDDO * Loop back if not confirmed
* Got confirmed data in mvars, put them over the old data
LET 1:CODE$=mcode$
LET 1:DESC$=mdesc$
LET 1:SUPP$=msupp$
LET 1:SELL_AT=msell_at
LET 1:BUY_AT=mbuy_at
LET 1:CASE=mcase
LET 1:MINIMUM=mminimum

 128

LET 1:LUPDATE$=today$
RELEASE mcode$,mdesc$,msupp$,msell_at,mbuy_at,mcase,mminimum,confirm$
RETURN

SCSIBACK.PRG

* SCSIBACK.PRG V1.00 BY DEREK FOUNTAIN
* Moves back a record in the database
* There is a slight problem with skipping backwards. If the
* user tries to skip back past the first record, the record
* pointer sticks at 1. A check is put in the code to detect this
* Beginning Of File flag is set to 0
LET bof=0
IF RECNO()=1
* We are at the beginning of file, so flag it
 LET bof=1
ENDIF
SKIP -1
* If we were at the begining of file, move the other end
IF bof=1
 AT 7,18 SAY "Top of file - Moving to bottom. Press any key"
 WAIT
 GO BOTTOM * Go to bottom of file if we have
ENDIF
RELEASE bof
RETURN

SCSIDELE.PRG

* SCSIDELE.PRG V1.01 BY DEREK FOUNTAIN
* Deletes the current record in the database
IF DELETED()=0 * Not already deleted
 AT 7,12 SAY "Please confirm this record is to be deleted (Y/N) >>>"
 LET confirm$=" "
 DO WHILE confirm$=" "

 129

 AT 7,67 GET confirm$
 IF WHERE(confirm$,"YNyn")=0
 LET confirm$=" "
 ENDIF
 ENDDO
 IF UPPER(confirm$)="Y"
 IF calling$="SCSI"
 LET 1:LUPDATE$=today$
 ENDIF
 DELETE RECORD
 ENDIF
ENDIF
RELEASE confirm$
RETURN

SCSIFIND.PRG

* SCSIFIND.PRG V1.00 BY DEREK FOUNTAIN
* Finds a specified record
AT 2, 5 SAY " "
AT 2,35 SAY " "
AT 2,74 SAY " "
AT 4, 8 SAY " "
AT 4,26 SAY " "
AT 4,45 SAY " "
AT 4,71 SAY " "
LET mcode$=" "
AT 2,5 GET mcode$
IF mcode$<>" "
 AT 2,5 SAY "SEARCHING"
 LET loc=RECNO()
 LOCATE FOR 1:CODE$=mcode$
 AT 2,5 SAY " "
 IF EOF()=1
 AT 2,5 SAY "NO FIND "

 130

 LET count=10
 DO WHILE count>0
 LET count=count-1
 ENDDO
 AT 2,5 SAY " "
 GO loc
 ENDIF
ENDIF
RELEASE mcode$,loc,count
RETURN

SCSIINP.PRG

* SCSIINP.PRG V1.03 BY DEREK FOUNTAIN
* Input of new products details - Called from SCSIMAIN.PRG
AT 7,0 SAY " "
* The initial data goes into mvars
LET mcode$=" "
LET mdesc$=" "
LET msupp$=" "
LET msell_at=0.00
LET mbuy_at=0.00
LET mcase=0.00
LET mminimum=0.00
* Loop while data is not confirmed
LET confirm$="N"
DO WHILE UPPER(confirm$)="N"
 AT 0,0 SAY " "
 AT 0,56 SAY " "
 AT 2, 5 SAY " "
 AT 2,35 SAY " "
 AT 2,74 SAY " "
 AT 4, 8 SAY " "
 AT 4,26 SAY " "
 AT 4,45 SAY " "

 131

 AT 4,71 SAY " "
 AT 7,25 SAY "Enter each field, one at a time"
* Get each field
 AT 2, 5 GET mcode$
 IF mcode$=" "
 RELEASE mcode$,mdesc$,msupp$,msell_at,mbuy_at,mcase,mminimum,confirm$
 RETURN
 ENDIF
 AT 2,35 GET mdesc$
 AT 2,74 GET msupp$
 AT 4, 8 GET msell_at
 AT 4,26 GET mbuy_at
 AT 4,45 GET mcase
 AT 4,71 GET mminimum
* Get confirmation of data
 AT 7,21 SAY "Please confirm this data (Y/N/Q) >>>"
 LET confirm$=" "
 DO WHILE confirm$=" "
 AT 7,58 GET confirm$
 IF WHERE(confirm$,"YNQynq")=0
 LET confirm$=" "
 ENDIF
 ENDDO
 IF UPPER(confirm$)="Q"
 RELEASE mcode$,mdesc$,msupp$,msell_at,mbuy_at,mcase,mminimum,confirm$
 RETURN
 ENDIF
 AT 7,21 SAY " "
ENDDO * Loop back if not confirmed
* Got confirmed data in mvars, put them into a new record
APPEND BLANK
LET 1:CODE$=mcode$
LET 1:DESC$=mdesc$
LET 1:SUPP$=msupp$
LET 1:SELL_AT=msell_at

 132

LET 1:BUY_AT=mbuy_at
LET 1:CASE=mcase
LET 1:MINIMUM=mminimum
LET 1:LUPDATE$=today$
RELEASE mcode$,mdesc$,msupp$,msell_at,mbuy_at,mcase,mminimum,confirm$
RETURN

SCSIMAIN.PRG

* SCSIMAIN.PRG V1.09 BY DEREK FOUNTAIN
* Maintenance of products file - Called by SCSTART.PRG
CLS
USE SCPROD
* Set up screen
AT 0,26 SAY "PRODUCT DATA FILE MAINTENANCE"
AT 2,0 SAY "CODE:"
AT 2,30 SAY "ITEM:"
AT 2,60 SAY "SUPPLIER CODE:"
AT 4,0 SAY "SELL AT:"
AT 4,19 SAY "BUY AT:"
AT 4,40 SAY "CASE:"
AT 4,57 SAY "MINIMUM STOCK:"
* For the benefit of the delete routines...
LET calling$="SCSI"
* Infinite loop, keep getting choices
DO WHILE 1=1
* Print up the current record
 AT 0,65 SAY "DATED:"
 AT 2, 5 SAY " "
 AT 2,35 SAY " "
 AT 2,74 SAY " "
 AT 4, 8 SAY " "
 AT 4,26 SAY " "
 AT 4,45 SAY " "
 AT 4,71 SAY " "

 133

 AT 0,71 SAY 1:LUPDATE$
 AT 2,5 SAY 1:CODE$
 AT 2,35 SAY 1:DESC$
 AT 2,74 SAY 1:SUPP$
 AT 4,8 SAY 1:SELL_AT
 AT 4,26 SAY 1:BUY_AT
 AT 4,45 SAY 1:CASE
 AT 4,71 SAY 1:MINIMUM
 IF DELETED()=1
 AT 0,0 SAY "DELETED RECORD"
 AT 7,10 SAY "(N)ext,(B)ack,(F)ind,(R)ecall,(I)nput,(A)mend or (Q)uit >>>"
 ELSE
 AT 0,0 SAY " "
 AT 7,10 SAY "(N)ext,(B)ack,(F)ind,(D)elete,(I)nput,(A)mend or (Q)uit >>>"
 ENDIF
* Get a valid choice
 LET choice$=" "
 DO WHILE choice$=" "
 AT 7,70 GET choice$
 IF WHERE(UPPER(choice$),"NBFDRIAQ")=0
 LET choice$=" "
 ENDIF
 ENDDO
* Clear prompt form bottom line
 AT 7,10 SAY " "
 IF UPPER(choice$)="Q" * Option was to quit
 RELEASE calling$
 RETURN
 ENDIF
 IF UPPER(choice$)="N" * Option was Next record
 DO SCSINEXT.PRG
 ENDIF
 IF UPPER(choice$)="B" * Choice was to move Back a record
 DO SCSIBACK.PRG
 ENDIF

 134

 IF UPPER(choice$)="I" * Choice was to input a new record
 DO SCSIINP.PRG
 ENDIF
 IF UPPER(choice$)="A" * Choice was to amend current record
 DO SCSIAM.PRG
 ENDIF
 IF UPPER(choice$)="F" * Choice was Find
 DO SCSIFIND.PRG
 ENDIF
 IF UPPER(choice$)="D" * Choice was delete
 DO SCSIDELE.PRG
 ENDIF
 IF UPPER(choice$)="R" * Choice was recall
 DO SCSIRECA.PRG
 ENDIF
ENDDO

SCSINEXT.PRG

* SCSINEXT.PRG V1.00 BY DEREK FOUNTAIN
* Skips to next record in database
SKIP
IF EOF()=1 * Check we haven't skipped to far
 AT 7,19 SAY "End of file - Moving to top. Press any key"
 WAIT
 GO TOP * Back to the top if we have
ENDIF
RETURN

 135

SCSIRECA.PRG

* SCSIRECA.PRG V1.01 BY DEREK FOUNTAIN
* Recalls the current record in the database
IF DELETED()=1 * Must be deleted already
 AT 7,12 SAY "Please confirm this record is to be recalled (Y/N) >>>"
 LET confirm$=" "
 DO WHILE confirm$=" "
 AT 7,68 GET confirm$
 IF WHERE(confirm$,"YNyn")=0
 LET confirm$=" "
 ENDIF
 ENDDO
 IF UPPER(confirm$)="Y"
 IF calling$="SCSI"
 LET 1:LUPDATE$=today$
 ENDIF
 RECALL RECORD
 ENDIF
ENDIF
RELEASE confirm$
RETURN

SCSTART.PRG

* SCSTART.PRG V1.04 BY DEREK FOUNTAIN
CLS
AT 0,24 SAY "WORDMONGERS STOCK CONTROL SYSTEM"
LET today$=" "
AT 3,21 SAY "Please enter todays date >>>"
AT 3,50 GET today$
DO WHILE 1=1
 CLS
 AT 0,24 SAY "WORDMONGERS STOCK CONTROL SYSTEM"
 AT 2,16 SAY "1) STOCK CHECK 5) SUPPLIERS FILE REPORT"

 136

 AT 3,16 SAY "2) PRODUCTS - ENTER/AMEND 6) STOCK VALUATION"
 AT 4,16 SAY "3) SUPPLIERS - ENTER/AMEND 7) CLEAN FILES"
 AT 5,16 SAY "4) PRODUCTS FILE REPORT 8) EXIT SYSTEM"
 AT 7,30 SAY "PLEASE SELECT >>>"
 LET choice$=" "
 DO WHILE choice$=" "
 AT 7,48 GET choice$
 IF WHERE(choice$,"12345678")=0
 LET choice$=" "
 ENDIF
 ENDDO
 IF choice$="1"
 DO SCSTOCK.PRG
 ENDIF
 IF choice$="2"
 DO SCSIMAIN.PRG
 ENDIF
 IF choice$="3"
 DO SCSUMAIN.PRG
 ENDIF
 IF choice$="4"
 DO SCOUTPRO.PRG
 ENDIF
 IF choice$="5"
 DO SCOUTSUP.PRG
 ENDIF
 IF choice$="6"
 DO SCSTKREP.PRG
 ENDIF
 IF choice$="7"
 DO SCPACK.PRG
 ENDIF
 IF choice$="8"
 AT 5,0 SAY " 4) PR"
 QUIT

 137

 ENDIF
ENDDO

SCSTKREP.PRG

* SCSTKREP.PRG V1.01 BY DEREK FOUNTAIN
* Outputs a stock report to the specified file
* Uses a new file with one very large field to dump the data
CLS
AT 0,34 SAY "STOCK REPORT"
AT 2,19 SAY "This report involves generating a work file"
AT 3,25 SAY "This process may take some time"
AT 5,8 SAY "Please confirm you wish to generate the report file (Y/N) >>>"
LET confirm$=" "
AT 5,70 GET confirm$
IF UPPER(confirm$)="N"
 RELEASE confirm$
 RETURN
ENDIF
CLS
AT 0,34 SAY "STOCK REPORT"
AT 3,24 SAY "Creating work file - Please wait"
SELECT 2
CREATE REP FROM REP.DEF
SELECT 1
USE SCPROD
GO TOP
DO WHILE EOF()=0
 SELECT 2
 APPEND BLANK
 SELECT 1
 LET mline$=1:CODE$+" "+1:DESC$+" "
 LET msupp$=1:SUPP$
 LET loc=RECNO()
 USE SCSUPP

 138

 LOCATE FOR 1:SUPP$=msupp$
 LET msupp$=1:NAME$
 IF EOF()=1
 LET msupp$="Supplier not on file "
 ENDIF
 USE SCPROD
 GO loc
 LET var1=1:BUY_AT
 LET lvar1=LEN("&var1")
 LET var2=1:SELL_AT
 LET lvar2=LEN("&var2")
 LET var3=1:VALUE
 LET lvar3=LEN("&var3")
 LET var4=1:STOCK
 LET lvar4=LEN("&var4")
 LET lmsupp=LEN(TRIM(msupp$))
 LET 2:LINE$=mline$+" "+msupp$
 LET 2:LINE$=TRIM(2:LINE$)+
 SUBSTR(" ",1,25-lmsupp)+" &var1"
 LET 2:LINE$=TRIM(2:LINE$)+SUBSTR(" ",1,10-lvar1)+" &var2"
 LET 2:LINE$=TRIM(2:LINE$)+SUBSTR(" ",1,10-lvar2)+" &var3"
 LET 2:LINE$=TRIM(2:LINE$)+SUBSTR(" ",1,10-lvar3)+" &var4"
 LET 2:LINE$=TRIM(2:LINE$)+SUBSTR(" ",1,10-lvar4)+" "+1:LUPDATE$
 SKIP
ENDDO
SELECT 2
GO TOP
AT 3,24 SAY " "
DO WHILE 1=1
 AT 2,20 SAY "Please enter the name of the output file"
 LET filenam$=" "
 AT 6,25 SAY "Leave the name blank to abandon"
 AT 4,30 GET filenam$
 IF filenam$=" "
 USE

 139

 DELETE FILE REP
 SELECT 1
 RELEASE confirm$,msupp$,filenam$,over$,mline$,loc
 RELEASE var1,var2,var3,var4,lvar1,lvar2,lvar3,lvar4
 RETURN
 ENDIF
 AT 2,20 SAY " "
 AT 4,30 SAY " "
 AT 6,25 SAY " "
 LET over$="Y"
 IF FILE(filenam$)=1
 AT 3,20 SAY "File exists - Overwrite it? (Y/N) >>>"
 LET over$=" "
 DO WHILE over$=" "
 AT 3,59 GET over$
 IF WHERE(over$,"YyNn")=0
 LET over$=" "
 ENDIF
 ENDDO
 ENDIF
 AT 3,20 SAY " "
 IF UPPER(over$)="Y"
 AT 3,20 SAY "Copying data to Pipedream file "+filenam$
 COPY TO &filenam$ PD
 AT 3,20 SAY " "
 AT 3,11 SAY "Process completed - The file MUST be loaded as plain text"
 AT 5,27 SAY "Press any key to continue"
 WAIT
 USE
 DELETE FILE REP
 SELECT 1
 RELEASE confirm$,msupp$,filenam$,over$,mline$,loc
 RELEASE var1,var2,var3,var4,lvar1,lvar2,lvar3,lvar4
 RETURN

 140

 ENDIF
ENDDO

SCSTOCK.PRG

* SCSTOCK.PRG V1.05 BY DEREK FOUNTAIN
* THIS ROUTINE ALLOWS UPDATE OF THE NUMBER OF A SELECTED ITEM
* IN STOCK
CLS
AT 0,30 SAY "STOCK UPDATE ROUTINE"
USE SCPROD * Products database
DO WHILE 1=1 * Infinite loop
 LET mcode$=" "
 LET mdesc$=" "
 AT 2,0 SAY "CODE: "
 AT 2,30 SAY "ITEM: "
 AT 2,60 SAY "SUPPLIER CODE: "
 AT 4,0 SAY "SELLING PRICE: "
 AT 4,30 SAY "BUYING PRICE: "
 AT 4,60 SAY "NO PER CASE: "
 AT 6,0 SAY "CURRENT STOCK: "
 AT 6,30 SAY "MINIMUM STOCK: "
 AT 6,60 SAY " "
 AT 2,5 GET mcode$
 IF mcode$=" "
 RELEASE mcode$,p,mcases,msingles
 RETURN
 ENDIF
 IF mcode$="?"
 AT 2,5 SAY " "
 AT 2,35 GET mdesc$
 IF mdesc$=" "
 RETURN
 ENDIF
 LOCATE FOR UPPER(1:DESC$)=UPPER(TRIM(mdesc$))

 141

 ELSE
 LOCATE FOR 1:CODE$=mcode$
 ENDIF
 IF EOF()=1
 AT 2,5 SAY "NO FIND"
 LET p=30
 DO WHILE p>0
 LET p=p-1
 ENDDO
 AT 2,35 SAY " "
 AT 2,5 SAY " "
 LET mcode$=" "
 ENDIF
 IF mcode$<>" "
 AT 2,5 SAY 1:CODE$
 AT 2,35 SAY 1:DESC$
 AT 2,74 SAY 1:SUPP$
 AT 4,15 SAY 1:SELL_AT
 AT 4,43 SAY 1:BUY_AT
 AT 4,72 SAY 1:CASE
 AT 6,14 SAY 1:STOCK
 AT 6,44 SAY 1:MINIMUM
 IF mcode$="?"
 LET confirm$="Y"
 AT 7,13 SAY "Please confirm this is the correct product (Y/N) >>>"
 AT 7,66 GET confirm$
 AT 7,13 SAY " "
 IF UPPER(confirm$)="N"
 ENDDO
 ENDIF
 ENDIF
 LET mcases=0
 LET msingles=0
 AT 6,62 SAY "CASES?:"
 AT 6,69 GET mcases

 142

 AT 6,60 SAY "SINGLES?:"
 AT 6,69 SAY " "
 AT 6,69 GET msingles
 LET 1:STOCK=mcases*1:CASE+msingles
 LET 1:VALUE=1:STOCK*1:SELL_AT
 LET 1:LUPDATE$=today$
 ENDIF
ENDDO

SCSUAM.PRG

* SCSUAM.PRG V1.01 BY DEREK FOUNTAIN
* Amend of suppliers details - Called from SCSUMAIN.PRG
AT 7,0 SAY " "
* The initial data goes into mvars
LET msupp$=1:SUPP$
LET mname$=1:NAME$
LET mcontact$=1:CONTACT$
LET mphone$=1:PHONE$
LET madd1$=1:ADD1$
LET madd2$=1:ADD2$
LET madd3$=1:ADD3$
LET madd4$=1:ADD4$
* Loop while data is not confirmed
LET confirm$="N"
DO WHILE UPPER(confirm$)="N"
 AT 7,25 SAY "Amend each field, one at a time"
 * Get each field
 AT 2,12 GET mname$
 AT 3,12 GET msupp$
 AT 4,12 GET mcontact$
 AT 5,12 GET mphone$
 AT 2,48 GET madd1$
 AT 3,48 GET madd2$
 AT 4,48 GET madd3$

 143

 AT 5,48 GET madd4$
* Get confirmation of data
 AT 7,22 SAY "Please confirm this data (Y/N) >>>"
 LET confirm$=" "
 DO WHILE confirm$=" "
 AT 7,57 GET confirm$
 IF WHERE(confirm$,"YNyn")=0
 LET confirm$=" "
 ENDIF
 ENDDO
 AT 7,21 SAY " "
ENDDO * Loop back if not confirmed
* Got confirmed data in mvars, put them over the old data
LET 1:SUPP$=msupp$
LET 1:NAME$=mname$
LET 1:CONTACT$=mcontact$
LET 1:PHONE$=mphone$
LET 1:ADD1$=madd1$
LET 1:ADD2$=madd2$
LET 1:ADD3$=madd3$
LET 1:ADD4$=madd4$
RELEASE msupp$,mname$,mcontact$,mphone$,madd1$,madd2$,madd3$,madd4$,confirm$
RETURN

SCSUFIND.PRG

* SCSUFIND.PRG V1.01 BY DEREK FOUNTAIN
* Finds a specified record
AT 2,11 SAY " "
AT 3,11 SAY " "
AT 4,11 SAY " "
AT 5,11 SAY " "
AT 2,48 SAY " "
AT 3,48 SAY " "
AT 4,48 SAY " "

 144

AT 5,48 SAY " "
LET msupp$=" "
AT 3,12 GET msupp$
IF msupp$<>" "
 AT 3,12 SAY "SEARCHING"
 LET loc=RECNO()
 LOCATE FOR 1:SUPP$=msupp$
 AT 3,12 SAY " "
 IF EOF()=1
 AT 3,12 SAY "NO FIND "
 LET count=10
 DO WHILE count>0
 LET count=count-1
 ENDDO
 AT 3,12 SAY " "
 GO loc
 ENDIF
ENDIF
RELEASE msupp$,loc,count
RETURN

SCSUINP.PRG

* SCSUINP.PRG V1.01 BY DEREK FOUNTAIN
* Input of new suppliers details - Called from SCSUMAIN.PRG
AT 7,0 SAY " "
* The initial data goes into mvars
LET msupp$=" "
LET mname$=" "
LET mcontact$=" "
LET mphone$=" "
LET madd1$=" "
LET madd2$=" "
LET madd3$=" "
LET madd4$=" "

 145

* Loop while data is not confirmed
LET confirm$="N"
DO WHILE UPPER(confirm$)="N"
 AT 2,11 SAY " "
 AT 3,11 SAY " "
 AT 4,11 SAY " "
 AT 5,11 SAY " "
 AT 2,48 SAY " "
 AT 3,48 SAY " "
 AT 4,48 SAY " "
 AT 5,48 SAY " "
 AT 7,25 SAY "Enter each field, one at a time"
 * Get each field
 AT 2,12 GET mname$
 IF mname$=" "
 RELEASE msupp$,mname$,mcontact$,mphone$
 RELEASE madd1$,madd2$,madd3$,madd4$,confirm$
 RETURN
 ENDIF
 AT 3,12 GET msupp$
 AT 4,12 GET mcontact$
 AT 5,12 GET mphone$
 AT 2,48 GET madd1$
 AT 3,48 GET madd2$
 AT 4,48 GET madd3$
 AT 5,48 GET madd4$
* Get confirmation of data
 AT 7,21 SAY "Please confirm this data (Y/N/Q) >>>"
 LET confirm$=" "
 DO WHILE confirm$=" "
 AT 7,58 GET confirm$
 IF WHERE(confirm$,"YNQynq")=0
 LET confirm$=" "
 ENDIF
 ENDDO

 146

 IF UPPER(confirm$)="Q"
 RELEASE msupp$,mname$,mcontact$,mphone$
 RELEASE madd1$,madd2$,madd3$,madd4$,confirm$
 RETURN
 ENDIF
 AT 7,21 SAY " "
ENDDO * Loop back if not confirmed
* Got confirmed data in mvars, put them into a new record
APPEND BLANK
LET 1:SUPP$=msupp$
LET 1:NAME$=mname$
LET 1:CONTACT$=mcontact$
LET 1:PHONE$=mphone$
LET 1:ADD1$=madd1$
LET 1:ADD2$=madd2$
LET 1:ADD3$=madd3$
LET 1:ADD4$=madd4$
RELEASE msupp$,mname$,mcontact$,mphone$,madd1$,madd2$,madd3$,madd4$,confirm$
RETURN

SCSUMAIN.PRG

* SCSUMAIN.PRG V1.02 BY DEREK FOUNTAIN
* Maintenance of suppliers file - Called by SCSTART.PRG
CLS
USE SCSUPP
* Set up screen
AT 0,25 SAY "SUPPLIERS DATA FILE MAINTENANCE"
AT 2,2 SAY "SUPPLIER:"
AT 3,2 SAY "CODE :"
AT 4,2 SAY "CONTACT :"
AT 5,2 SAY "PHONE :"
AT 2,40 SAY "ADDRESS:"
* Infinite loop, keep getting choices
LET calling$="SCSU"

 147

DO WHILE 1=1
 * Print up the current record
 AT 2,11 SAY " "
 AT 3,11 SAY " "
 AT 4,11 SAY " "
 AT 5,11 SAY " "
 AT 2,48 SAY " "
 AT 3,48 SAY " "
 AT 4,48 SAY " "
 AT 5,48 SAY " "
 AT 2,12 SAY 1:NAME$
 AT 3,12 SAY 1:SUPP$
 AT 4,12 SAY 1:CONTACT$
 AT 5,12 SAY 1:PHONE$
 AT 2,48 SAY 1:ADD1$
 AT 3,48 SAY 1:ADD2$
 AT 4,48 SAY 1:ADD3$
 AT 5,48 SAY 1:ADD4$
 IF DELETED()=1
 AT 0,0 SAY "DELETED RECORD"
 AT 7,10 SAY "(N)ext,(B)ack,(F)ind,(R)ecall,(I)nput,(A)mend or (Q)uit >>>"
 ELSE
 AT 0,0 SAY " "
 AT 7,10 SAY "(N)ext,(B)ack,(F)ind,(D)elete,(I)nput,(A)mend or (Q)uit >>>"
 ENDIF
* Get a valid choice
 LET choice$=" "
 DO WHILE choice$=" "
 AT 7,70 GET choice$
 IF WHERE(UPPER(choice$),"NBFDRIAQ")=0
 LET choice$=" "
 ENDIF
 ENDDO
* Clear prompt form bottom line
 AT 7,10 SAY " "

 148

 IF UPPER(choice$)="Q" * Option was to quit
 RELEASE calling$
 RETURN
 ENDIF
 IF UPPER(choice$)="N" * Option was Next record
 DO SCSINEXT.PRG * This is the same routine as in
 ENDIF * the stock file maintenance
 IF UPPER(choice$)="B" * Choice was to move Back a record
 DO SCSIBACK.PRG * Ditto
 ENDIF
 IF UPPER(choice$)="I" * Choice was to input a new record
 DO SCSUINP.PRG
 ENDIF
 IF UPPER(choice$)="A" * Choice was to amend current record
 DO SCSUAM.PRG
 ENDIF
 IF UPPER(choice$)="F" * Choice was Find
 DO SCSUFIND.PRG
 ENDIF
 IF UPPER(choice$)="D" * Choice was delete
 DO SCSIDELE.PRG * Same routine as used in the stock
 ENDIF * item maintenance
 IF UPPER(choice$)="R" * Choice was recall
 DO SCSIRECA.PRG * Ditto
 ENDIF
ENDDO

 149

SCSUPP.DEF

* SCSUPP.DEF
SUPP$,3
NAME$,25
ADD1$,25
ADD2$,25
ADD3$,25
ADD4$,25
PHONE$,15
CONTACT$,25

 150

zBASE Pocket Ref. Guide

CONVENTIONS

Lowercase operator input, usually enclosed in < > brackets.

UPPERCASE specific zBASE commands or command words.

[....] Optional parts of commands.

<...> Operator specified input.

<exp>... An expression which can result in either a number or a string. e.g. 5+5,
"FRED"+"BLOGGS", a$+"MUMMY".

<var> ... A variable, can mean either mvar or fvar.

<mvar>... A memory variable, not stored in a database, but in a large buffer in RAM.
An mvar is defined as a string if its name ends with a '$', otherwise, it is
defined as a number.

<fvar>... A field variable, permanently stored in a database. Fields must start with
either a 1: or 2: label, depending on the database they are to be taken from.
If the label is missing the field will be taken as a mvar.

<cond>... A condition which returns the result either TRUE or FALSE. e.g. 10=10 is
TRUE,

10=6 is FALSE,

"FRED"="BLOGGS" is FALSE.

A single number 0 is evaluated as FALSE, any other number is TRUE.

 151

KEYWORDS

Only the first 4 characters of a keyword are significant.

zBASE commands

*

adds comments to a command file

? [<exp>]

displays the value of an expression.

[<exp>]

sends the value of <exp> expression through the serial port to the printer.

AT <co-ordinates> SAY <exp>

displays the value of the <exp> expression at the specified co-ordinates.

AT <co-ordinates> GET <var>

formats fields on screen for operator input.

APPEND BLANK

adds a blank record to the database in use

APPEND FROM <filename> [PD]/[DELIMITED] [FOR <exp>]]

adds new records to the current database from another database or Pipedream file.

CLS

 152

clears the screen.

CONTINUE

extension to LOCATE command to move to next match.

COPY TO <filename> [FOR <cond>]

creates new database from current one with optional conditional selection.

COPY TO <filename> [PD] {DELIMITED] [FOR<cond>]

copies data from current file to new format with optional conditional pull.

COPY TO <filename> STRUCTURE [DELIMITED]

creates a database file with same structure as current file, or a Pipedream file of the structure.

CREATE <file1> FROM <file2>

creates zBASE file called 'file1' from Pipedream file 'file2' of format FIELD_NAME, with $
if a string field COMMA, WIDTH if its string field.

DELETE RECORD

marks current record for deletion.

DELETE FILE

removes selected file from directory.

DISPLAY<[STRUCTURE]/[MEMORY]/[STATUS]>

shows on screen the selected option related to current use of database, memory variables and
files respectively.

DISPLAY <[ALL] / [FOR <cond>]> <[FIELDS field,field,field]>

 153

shows data from current file in use
[ALL] - shows seven records before pausing.

DO <command file>

runs a command file.

DO WHILE <cond> - ENDDO

 runs the commands enlosed in loop as long as <cond> is TRUE.

FIND <exp>

searches fo key field match in indexed file.

GO [<exp> / <BOTTOM> / <TOP>]

moves record pointer to <exp>th record or top/bottom.

IF <cond> - ELSE - ENDIF

runs the commands after IF if <cond> is TRUE, otherwise runs commands after ELSE.

INDEX ON <fvar> TO <filename>

creates an index file in order of fvar.

LET <var>=<exp>

establishes a value for a variable.

LIST [ALL]

works as DISPLAY without the pause every 8 lines.
[ALL] - shows all records without pausing.

LOCATE FOR <cond>

 154

moves record pointer to first record in file for which <cond> is TRUE.

QUIT

closes all files and zBASE application.

RECALL RECORD

removes DELETE mark on a record

RELEASE <mvar>

removes specified memory variables.

RENAME <file1> TO <file2>

changes name of file.

RETURN

stops running current command file and returns control to previous command file or curly
prompt.

SELECT <[1 or 2]>

opens selected database area.

SKIP [<exp>]

moves record pointer <exp> records along.

USE [<file>]

closes current file and opens <file> if specified.

USE file INDEX file

opens database in current area with index file.

 155

WAIT

pauses operation until a key is pressed.

 156

zBASE Functions

CHR(<exp>) returns charater with ASCIIcode exp.

CLI (<exp$) sends <exp$> to the OZ CLI function for immediate execution.

DATE() provides current system date.

DELETED() returns 1 or 0 (TRUE / FALSE) to reflect status of current record.

EOF() returns 1 or 0 if end of file has been reached or not respectively.

FILE(<exp$>) responds with TRUE if file defined by exp does exist.

INT(<exp>) returns integer from exp.

LEN(<exp$>) shows length of string variable specified.

LOWER(<exp$>) turns string into lower case.

LTRIM(<exp$>) removes left hand blanks in string exp.

RAM() reveals RAM space available on currently selected device.

RECNO() returns current record number.

SET ECHO toggles echoing of all commands to screen.

STR To emulate a STR function use &.
} LET A=2.03
} LET A$="&A"
} ? "-"+a$+"-"
-2.03-

SUBSTR(<exp1$>,
<exp2>,<exp3>)

extracts the sub-string from exp1$ defined as starting at position exp2,
of length exp3.

 157

TIME() displays system time.

TRIM(<exp$>) removes trailing blanks.

UPPER(<exp$>) converts string exp$ to upper case.

VAL(<exp$>) converts ASCII string to its numeric equivalnet.

WHERE(<exp1$>,
<exp2$>)

shows the starting character position for where exp1$ occurs in
exp2$.

 158

 159

