MINISTRY OF AGRICULTURE AND FISHERIES

TE MANATU AHUWHENUA AHUMOANA

Infomate

Version 2.0

A data capture program for researchers.

Infomate

Version 2.0

By R.B. Jordan
of the

Engineering Development Group
RUAKURA

Contact Address: Engineering Development Group
MAF, Ruakura Agricultural Centre
Hamilton, New Zealand

Telephone: (0064) (07) 8385678
Facsimile: (0064) (07) 8385655

Copyright Notice

The Infomate program and this manual were written by R.B. Jordan of the Engineering Development
Group, MAFTechnology at Ruakura. The copyright for this is held by the Ruakura Agricultural Centre.

No copies of the program or of the other contents of Infomate may be made without obtaining permission
from the author or MAF Ruakura Engineering Group on the authors behalf.

No copies of this manual or parts thereof may be made without obtaining permission from the author or
MAFTechnology Ruakura.

All rights reserved. Copyright © 1989, 1991 Ruakura Agricultural Centre.

Disclaimer

This package and program is supplied on an 'as is' basis with no warranty, specific or implied, attaching.
No liability will be accepted for consequential loss, damage or errors, and you the user are assuming the
entire risk as to it's quality and performance.

Products and Trademarks mentioned

ADAM is a trademark of Actronic Systems Litd.

Ag500 is a trademark of Trutest International Ltd.

AND is a trademark of A&D Co. Ltd.

BBC BASIC (Z80) is copyright R.T. Russell

Data Desk is a trademark of Odesta Corporation.

Excel, MSDOS, Word 4.0 and Word 5.0 are trademarks of Microsoft Corporation.
HARDcase and Litecase are trademarks of the Ruakura Agricultural Centre.
IBM is a trademark of International Business Machines Corporation.
Kermit is a trademark of Columbia University. N.Y.

Lotus 123 is a trademark of Lotus Development Corporation.

MacDraw is a trademark of CLARIS Corporation.

Macintosh is a trademark of Apple Computer, Inc.

Mettler is a trademark of Mettler Instrumente AG.

MicroPower 2000 is a trademark of Allflex NZ Ltd.

Minitab is a trademark of Minitab Inc.

Paradox is a trademark of Borland.

PCWrite is a trademark of Quicksoft.

Pipedream is a trademark of Colton Software Ltd.

Quattro is a trademark of Borland.

RangerLink and Ranger Disk are trademarks of Ranger Computers Ltd.
Sartorius is a trademark of Sartorius GmbH.

Toledo is a trademark of the Toledo Scale Co.

UNIX is a trademark of AT&T Bell Laboratories.

VAX and VTS52 are trademarks of Digital Equipment Corporation.

VP Planner is a trademark of Paperback software.

788, PCLink, MacLink and Z88Link are trademarks of Cambridge Computer Ltd.

Infomate and Infomate Manual production
Infomate was written using Z88 BBC BASIC and it's Assembler, under the BAGZ Development system.

This manual was prepared on an Apple Macintosh computer using Word 4.0 and MacDraw II, and was
printed on an Apple Laserwriter II.

PrETACE: 1 sonws s sumwn o s s vamns + powisns s Ssins s 55508 & & S6855 5 = §6005s » e 3 EAHIR & EEHAE ¥ 3 siinm 1
Rationale and hiStOryovvevrniiitii i 1
ACKNOWIEdZemENES. ..ottt ittt et e 3
Other useful DOOKS ... vuuieteiee e 4
INErOdUCHON .. .cueten et e 4

THE TUTORIAL SECTION. . ciciiiiiiiiiiiiiiiiiiniiiiiiiiiieiiresnscoaees 5
The Infomate Environmentcoevieveiieineiiiiiiiiiieaeieenensennnn, 6
A note on dots and thingS.......ccccccceeiiiimiimiiiiiiiiiiiiieiiiiiiieeeeeiieeeeee 6
What youneedocouiiini i 7
And where to put the bits.ooeiuiiiiiiii i 9
An overview of Infomate ... 11
A quick example for those who can't wait.........cccevveiciieeiiciiennnenn, 12
HElp HELP.....ooiiiii e e e 14

The Schema File...oooiiiiiiiii e 15
Why have aSchema File?occoiiiiiiiiiii e 15
What is @ ReCOrd....cccoiiiieiiiiiiiiiiiiinii e 15
Giving the fieldS NAmES.........oovuiiniiiiiiiiiiiie e 17
What type of field is that?.........cccooiiviiii e, 17
Some further limitations on ID fields..........ccccoeeviiiiiiiiiiiininneen. 18
Putting the file definition together.ccooiiiiiiiiiiiiiii 18
Defining the SEQUENCEc.ooiiriiiiiiicee e 19
Putting Comments into a Schemafile.coo. 21
Using Pipedream to Create a Schema file.........cccovveivvvvnnieecennnnn.n. 22

USINg INfOMALevnet i e 25
Moving round the Z88 environment..........ccoccceeeveueieeenrereecnnnnnnnn. 25
Compiling aschema...........coooviiiiiiiniiiiii e 25
Which Schema file is this anyway?.........ccocovieiiiiiieneeicnennnene. 27
Creatingadatafile...........coooeeiiiiiiiiiiiii 27
Running aschema..........c.cooiiviiiiiiiiiii 28
Oops Imade a miStakeovvuininiiiiniii e 30
Modes Of OPeration............ouuiuiuiiiii i 31
Viewingadatafile.............oooiiiiiiiiiiii 33
Moving through the file.............oooiiiii e 33
Changing your files CONteNtS...........coooiiuiitiiiii e, 34

Pack and EXit.....oooiiiiiiiiiii e 35

EPROM and Printer USAZEoueunrnernrurrunenanereeeeieieriienasatastateeenees 36

EPROM Erasure and erasing poliCyccovuviiemmnienineninininnn. 36
File backup using the Filer............oooiiiiiiiiiiie 36
Installing an EPROMc.iiiiiiiiiiiiiiii e 37
Logging data to EPROM ..ottt 37
Data File backup using Infomateco.oeiiiiieneniiiini . 39
Cataloguing the EPROM and thingscooeveiiiiinii. 39
Recovering the I0g ... c.vuvuiniininiiniiiiie i 39
Logging t0 @ Printer......iiiiiiiiiiiii s 40
Updating an existing data filecoooiiiiiiii 41
Getting your data bit by bil.....ccoiiiiimiiiiiiiiniiis 41
Getting lazy with the ENTER Statementcoveumeenieiiniiiiininnnnn. 46
Checking fOr EITOIS .. ouuvueueieniinininiiiiie et 49
Infomate error PhiloSOphyccovuiniiiiiiiiiiiia 49
Checking thatallis wellooiiiiiiiii 51
Using the Serial POrt........ocooviiiiiiiiiiiii 53
The Driver Test Moduleoooviiiiiiiiiiiiiiiiiireie e 57
Designing A Schema File...........ocoviiiiiiii 58
Arithmetic and the MEMORYooutiitiiiiiiiiiiiiiii it nes 60
Using the LET Statemenl.......cccoooeiieiimiimmiiiieneriiemmeiinnniin. 60
Letter Field LETS. ittt crree e eneesaeeeeaes 61
When is a Number not a NUumber?.........cooeeeviiiiiiiiiiiiniiiniiniaaes 62
MEMORY and JeterS. . ouveintereineeieeietiiiieiinteae e 62
LET, TEST and the GOTOcuouiiiiiiiiiieie i eree e e aeae 62
LETs and Old values......coiiiiiiiiieiieiieeiiiiiniiiiiiiiieieieeieaenneeees 64
The SCRATCHPAD ..ot 65
Time and Date and the stop-watch..........ccooviiiiiiiiiiii 67
Recording time and date...........coviiiniiiiiiiiiiii 67
TIMING EVENUS..ccuuiiiiniiniitiiiiiiiiii ittt eerteeere s e e e eanens 68
The midnight problem and how to avoid it.......c.coeveiiiiniinininnenen. 70
SLEEP and other animal behaviour.............ccceevviiiiiiiiiniiiniiinnn. 70
The ALARMouiniiiiiiiiii et e et eereeaeseaeniaaeeraen e raanenanaaas 71
This is Where it all COUNLSoueineiniieiiiiiiiiiiiiiii i raaeeanes 72
COUNNZ ODJECLS .o.euvenitieinitiiitiit ittt eie e aaenetaneneneeeaens 72
8¢ 1T 1 73
ROII CallS i e e 73

HISLOGIAMS. . ..viuitieiumrersesrerorencrsressesmsnorieomusronssntaonasesnermensses 73

Some Miscellaneous TOPICS ...c.unveuiuruiietrieiet i ee e eeeeneaeaenenes 75

Showing off your fieldscccooiiiiiiiiiiii 75
Adding Bells and WhiStlesoooviveiiieiiiiie e 76
Decimals by impliCation..........cceceuuiveiiiiniiiiiiiiiiiieiiiiee e eeaiies 76
Taking notes on the fly.....ccooooiviiiiiiiiiiiiiii e, 71
Using Pipedream to Inspect Data...........c.ccoviiiiiiiiiiiiiiiiiiiniian . 78

File transfer to Other COMPULETSvvunuiiiieieie i e, 79
Maclink and the Macintoshcooeiviiiiiiiiiiiii e 81
PClinkand the PC....... ..o e, 81
RangerLink.......coooiiiiii e 82
11310103 €7/ 354 110 ¢ S PP 82
Linking Z88'S.....cuiuiniiniiiiiiiii 83
Printing to a Terminal Emulator...........cccoociiiiniiiiiiiiinniiinnnnnn, 84
KoMt i 84

File CONVErSIONc.iuiiiiii i e 85
The File Conversion Module...........cooviiiiiiiiiiiiiiieiieecieeen 86
Converting from Infomate form on the Target Computer...................... 89
When things S0 WIONE ..c.uiuiii i e aans 93
Things you did WIongccooviiiiiiiiiiiiieeee e 93
Things we did WIONEc.oiiiiiiiiiiiii e 93
Running out of MemOryccoooiiiiiiiiiiiii 94
Enhancements and fiXescooeviiiiiiiiiiiiiiiiiii 95
Infomate Size Limitations...........cccceeeeiiiiiiiiiiiiiiiiiiiciiniiieneeneeene, 95
Example Schema Files.......ccccciiiiiiiiiiiiiiiiiiiee e 96
THE REFERENCE SECTIONuuiiiiiiiiiiiiiiiiiiiiiiiieenneeeenennnns 104
DataFiles Referenceco.cooiiiiiiiiiiiiii e, 104
RECOTAS . oeiviiti 104
TheIDfieldsc.ooniiiiiiii e 105

The DATA fields......coiiiiiiiiiiiiiiiee e 105
Schema Files Referencecoooviiiiiiiiiiiiiiieic e 106
Comments in SChemMasccueviiiiiiiieiiiee e, 107
Organisation of the Reference Sectioncooviiiiiiiiiniinn.. 107
TITLE. ... e 109
FILE. . 109

LOG . 110

A Note on Baudrates €€oueviininiiiniiii e 111

ID TEZIOM...iiiiiiiiiiii e 112

SEQUENCE I€ZIONueitiiiieineieie i e 115

LET Statement RefereNCe «ouvvveeeiiiteteieiieeeteeenaretterineereeenarsaeseseannsnes 136

LET and TIMEcuviuiiniitiiteiteateaeenietintatsiseansaenaanenaeaneranns 136
Elapsed tMe ...c.uvuniinniiieiiriieei ettt 137
Q7Y [GNIE 0 1X0) 6 = ST PP PPPPPPP PP 138
Functions available....c.ccoeeeiieiiiiiieiiiiiiiiiiiiiieein e, 139
Data File FOIMIALS . .veuneeenenetieneeenneeaanseeeranseeansseansaeanaesaneerannesenanaeins 140
The Infomate File FOImMatcovveeiiiiiiieeiiiiiiiieeeie e, 140
The Pipedream and Excel File Format.............cooooiiinn. 141
LOtUS 123 FOMMIAL .t vvvnteeneinneeaneeaneeeaneeaeeineianenneaansannessseasesinees 142
Scales and Other EVICES .. .vuuvinnriineeaneeane ettt iintaaeeaerareaeeenniaaens 143
ACTRONIC 1 ittt ittt 144
ALLFLEX 1 oniiiiitiiiniiietieeiian ettt raiiieresanaseeeseeneaenes 148
AND Lottt e 150
10101\ 7-\ 5 0 1 USRS PRSPPI 152
J1:N 31 0! D P PP 153
METTLER 1 ..ottt i ettt e ae e 155
Y124 0 N 0 2 -3 PSP 158
1Y 120 3 U 0 21 S T PO OPPPPPR P 159
METTLER_I/MAFKCI_1.. ..ottt e 160
SARTORIUS ..ottt ettt et ettt as e sae e 162
SARTORIUS _1/MAFKCI 1. eee e 165
TRU-TES T L ettt it e ceeeee e et eeneaseeraanaanas 170
Wiring t0 Other COMPULETS......uvuuuinininininititeiereraeeteneeeeeeteeiierenaanes 171
Z8B O ZBBCADIE ..evtiiiit ittt aas 171
Z8BOPC AT CaDIE. .. uiieiiniineie et eee 171
Z88 to PC XT Cable..ccuuniiiiiiiiiiiiiin e e ciceeeeeen e 172
Z88 to Macintosh D connector and Mini-DIN cables................ccoeeens 172

Errors and their POSsible Causes. ..vvvuuniiiiiiiiieieeiiiiiaee e ereiiiieeaaans 173

Rationale 1

PREFACE

Rationgle and histor

Infomate has evolved from a series of programs that were developed at Ruakura during the 1980's
which owe their existence to the advent of the personal computer. The strongest influence on
Infomate was the Apple II computer for which a number of programs were developed to collect
research data particularly at the Ruakura Agricultural Centre. In the last decade these programs have
taught us a lot about data capture and the requirements that researchers place upon it. A number of
points are worth collecting together on the philosophies required of data collection. These may
appear as corollaries of Murphies Law, or as I prefer to call it "The Law of Cussedness"

1. If a program to perform a specific data capture task is perfect today, then by tomorrow the
task will be so different that the program will no longer be perfect.

2. It is easy to write a program to do exactly what a researcher says he wants it to do. The
difficulty is to write it to solve all of the "unimportant” problems that apparently never
occur, and which will render the program requested as useless unless they are solved.

3. If an error situation can occur, it will, and the probability of correcting it is inversely
proportional to the time before the error is detected.

4. The further that a person correcting errors is removed from the error creating situation, the
lower the probability of the error being correctly corrected. Similarly the probability of
correcting errors that are in fact not errors will increase when more people are involved.

5. People who say they collect data and people who actually collect data are often from
mutually exclusive groups. A corollary of this is that people who know about data
collection and its problems are those who actually do it, and not those who say they do.

6. It takes 95% of the effort to write a program to solve the problems that occur less than 5%
of the time during data collection. The other 5% is easy and can be learnt by going to a
4 week high school programming course.

One could go on in this vein, but to summarise, it has been more than adequately shown that there is
aneed for a data collection program that puts all of the required power and flexibility of a portable
computer system into the hands of the person who collects data. This is very different from putting
a powerful and flexible computer in the hands of that data collecting person, because without that
software the computer might as well not be there. The data collection system must be one that
allows him or her to change their minds about what is to be collected, what form it will take, and in
what order to collect it. In addition it has to be easy to use by people who are data literate but who
may not be particularly computer literate. By this I mean people who know exactly what their data
is to look like but, may never be able to write a program to collect it.

Preface

Probably the most significant data capture package to be used within MAF was the Apple II
Recording System developed by Willy Booth. This was used all over New Zealand for capturing
animal weights, produce weights and a variety of other miscellaneous pieces of data. Its strength
was that it offered a full solution to many of MAF's smaller research station computer needs in
terms of not only data capture, but data analysis as well. Unfortunately this program suite fell down
at the upper end of the demands that were made of it because it was just not designed for such large
tasks. Nevertheless it allowed a lot of groups to get into computer data capture and fault correction.

Other program suites developed, used the recording system as a basis for the data that they
collected, the lamb data recording programs used at Rotomahana and Hopuhopu being a good
example. Further programs were produced to capture data from kiwifruit graders, and from the
Ruakura research abattoir. These all used some degree of user "programmability”, a concept which
has proven itself time and again as essential in a research environment.

When the Z88 arrived on the scene, Kevin O'Donnell recognised the potential of this lightweight
computer with it's full sized keyboard and word processing software. It would be a good platform
for an all-embracing data capture program, which coupled with optional weather-proof cases would
handle within reason the full range of data capture tasks required by researchers, and handle it in the
environment that the researcher often has to work. With this aim in mind Infomate evolved, and
was released in July 1990 to about 40 researchers to evaluate and test. From this valuable phase
came a large number of user inspired improvements which have now been incorporated into this
version of the package.

The name Infomate is an amalgam of Information (knowledge communicated or gained through
research - data that can be coded by a computer - what is told), or perhaps inform (to fill - inspire -
communicate some knowledge) and mate (comrade - companion - workfellow - a second in
command - habitual associate). These all have the connotations that the Infomate designers had of
the package that has been developed.

It was anticipated that the Infomate package would find use in a wide range of data capture tasks,
including:
1. Collection of live animal weights from scales and perform all of the validity checks that

animal researchers expect during weight capture.

2. Recording produce weights and miscellaneous pieces of data of interest to horticulturists
and agronomists and the like. Their requirements change often with the development of
the research they perform.

3. Counting objects that are observed in random order such as is often performed with the
aid of a microscope.

Rationale 3

4. Recording the weight or size of objects such as fruit. The actual weights of a specific
fruit has no importance, but the distribution of these sizes provides an important
measure of overall fruit production.

5. Observing the timing of events and recording observations about the events such as is
used in animal behaviour studies.

6. Recording the intricate data of the birth of young animals to show the relationship
between mother and offspring as well as to start a new data set for the newly arrived
individual.

7. Logging or recording electrical signals unattended. This allows indirectly the
monitoring of such variables as temperatures, relative humidity and more, and is made
possible on the Z88 using the ADAM interface.

It goes without saying that in addition to handling the tasks above, the package must also allow the
operator to interact with the data that has been collected and correct or inspect that data as part of the
research process, or just as part of the data verification process.

Now, to develop a program that has such a broad aim in its usages, provides a maximum of user
friendliness to those who are perhaps not particularly computer literate, might appear an impossible
task. We believe that Infomate approaches this aim. It is up to the user to decide this for himself.
The reality of the matter is that Infomate version 1.0 did not reach that level, but showed the
potential of the approach. Version 2.0 of Infomate comes a little closer to achieving that aim by
adding many new features, tidying up and simplifying many old features, and further extending the
whole concept without going outside the original aims.

Acknowledgements.

Obviously the development of a program such as Infomate hangs heavily on a few people, but it is
the interest and enthusiasm of many others that make it all possible. In particular the unfailing
enthusiasm of Kevin O'Donnell cannot go unmentioned. He has pushed hard the concept of the
788, its HARDcase and Litecase housings and the all-purpose all-doing computer program
Infomate. Without his efforts Infomate would not have been born. Many others have, perhaps
unwittingly, supported this package. Willy Booth through his Apple Recording System provided a
bench-mark to which all concepts could be compared. His influence is therefore strong. Many
members of the Ruakura and other campuses, and of the Engineering Development Group in
particular have put up or knocked down ideas or requirements that have affected the way that
Infomate has evolved. Peter Schaare deserves special mention here. To all these people go my
thanks. To Paul Gaastra who has looked after software for TIME and all of the external devices that
connect to Infomate goes my special thanks. To the Ruakura artist Ken Young who created the
drawings that do not use straight lines, and which make the pages of text a little less tedious, I give

Preface

special thanks. Finally I thank all of the researchers who nursed Infomate through its early days and
patiently suffered the bugs and limitations of the early versions.

her ful k

Obviously this Infomate documentation will never provide all that the Infomate user will need.
Other books that should be used in addition to the manual provided with the computer are listed
below. The new user should not be without

"Z88 Magic" by Vic and Gill Gerhardi and Andy Berry. Published by Kuma Computers Ltd.

This is probably the best Z88 reference available for the normal user, and provides lots of easily
read examples of usage patterns.

If you are going to use the internal Z88 BASIC, the following book provides a full description of
Richard Russell's particularly good rendition of BASIC and is indispensable

"The BBCBASIC(Z80) Reference Manual for the Z88" by Douglas J. Mounter. Published by
M-TEC Computer Services (UK)

For details of the Z88 internals and machine code the book

"Z88 Developers' Notes" by John Harrison and Matthew Elton and Published by Cambridge
Computers Ltd

is the essential aid to the serious developer but offers little for the non technical reader.

Finally to all users of the Z88, membership of the Z88 Users Club is strongly recommended. This
provides access to regular newsletters, to an excellent program library, and in addition, to a large list
of names of experienced Z88 users who have offered their services as free help to other Z88 users.
Club membership forms are provided with this manual, or can be obtained directly from

788 Users Club ¢/, Roy Woodward
68 Wellington St Long Eaton,
Nottingham NG104NG United Kingdom.

r ion

The Infomate documentation is provided in two parts. The first part is a more readable step by step
introduction to Infomate and associated concepts that a person unfamiliar with both the Z88 and
Infomate may work through and hopefully gain sufficient information to actually prepare and use
Infomate with some proficiency. In the latter part of the manual is a reference section that lists all of
the parts of Infomate in an order where it can be found for those who have developed the necessary
skills and need to know the details of the structure or usage of a particular part.

THE TUTORIAL SECTION

In this section of the manual the user will be taken on a rather meandering journey through Infomate
and will learn, using hands on techniques, how to use the package to its fullest.

For those of you who cannot wait to give Infomate a trial run, move to the section below
called "the bits you need now" to make sure that you have all of the required components.
Then if necessary work through the list of instructions on how to install those bits. Finally work
through the section "a quick example for those who cannot wait". If you have difficulty with this
you may just have to work more fully through the manual.

For those who can wait, I recommend that you work through the manual step by step trying the
examples provided. Most of them rely on what you have typed before and therefore it should not
require a lot of typing to go from section to section. As indicated, this is a tutorial section and you
will gain most from it by reading it while working on the Z88.

6 The Tutorial Section
The Inf ir
Below is a schematic showing the Z88 and the Infomate ROM and all of the things that can sit
around it. This can be used when reading the next section as a sort of map.
0| ¢ %%
LOG 4
AX .._r"' | J
etc. DATAY 788 OBSERVATIONS O
poooooooooooo
nnnunnnnnunnuu LENGTHS
pooooooooooon CALIPERS
e
P (] | = WEIGHTS l/—
DATA | Scales)|
Macintosh
I_/ DATA ’/ ADAM
analog I/F
k DIS!
C/PC
PC % EPROM (128k)
A note on dots and things

There is a potential confusion when writing some parts of this manual and it is worth noting early.
Some of the expressions in Infomate contain a full stop, and sometimes these fall at the end of a
sentence. When this happens the full stop at the end of the sentence can often be mistaken for a part
of the language. To avoid this I often postpone the full stop a little like this/™>. So if I was talking
about the difference between "N2" and "N2." I might say something like - in an ID field never use
N2. always use N2 . Read that last dot as a part of English, not of Infomate.

What You Need 1

What vou need

Before you can use Infomate you must collect together a few essential components. These can be
divided into three groups; those that are essential immediately, those that you will probably need
sometime, and those that you may need at some other time. Lets look at

The bits you need now:

One Z88; Infomate currently runs only on the Z88. The Z88 must contain extra memory
in slot 1, and a 128k RAM is recommended. An Infomate ROM module is
needed in slot 2 or slot 3, but slot 2 is preferred. To complete this list you should
also have a Z88 manual and an Infomate manual. Your Z88 will also need
some batteries. The recommended types are the alkaline penlites (size AA) and you
should have a spare set of batteries as well.

It is strongly recommended that you use EPROMs to log important data while you
get familiar with the Z88 and build confidence with Infomate

Time is one other thing you will need. You must be prepared to invest a little time in learning
Infomate and the Z88. It is not difficult, but there are a lot of options and you will
need to sort out which ones are important to you. This will take a little time but you will
end up with a new tool in your personal data capture repertoire, one which you may
find to be surprisingly useful.

The bits you may need later:

A larger computer to send your data to. The Z88 should not be seen as a stand alone
computer, and is probably not the computer to do your data analysis on. It performs
best as a removable peripheral to a larger computer. In addition you will need a cable
to connect your Z88 to the larger computer, because computers cannot speak to
each other telepathically yet. The larger computer will probably need to have a
program to allow it to talk to the Z88. If your bigger computer is a Macintosh
then you will need Z88Link. If it is a PC or compatible, then you will need PCLink II
or preferably RangerLink. If you talk to a VAX then you may need Kermit, or a
version of Import/Export to be developed.

A mains adapter will allow you to run your Z88 from the mains power.

A few EPROM'’s will almost invariably be needed when you start to capture data so you
can store your files or log your data into a non-volatile form of storage. They can be
32k byte, 128k byte or larger units depending how much data you will be collecting. If
you use EPROMs you will need to erase them using an EPROM eraser.

The Tutorial Section

Some optional bits that might be nice to have

A HARDcase or Litecase computer
housing which will allow you to use
the Z88 in more extreme environmental
conditions. These are available in two
forms; a fully waterproof shock
resistant version complete with internal
long life batteries, or a lightweight
version designed for portable use in the
less harsh environment preferred by
rescarchers. The latter version comes
with shoulder straps and can be
operated with both arms free.

Electronic scales will allow you to collect
weights automatically. You will also
need an interconnecting cable for
this task. The scales will have to be
supported by Infomate. (See the list at
the end of the manual).

Electronic Calipers and an interface to
measure lengths, or an analogue
interface to measure temperatures or voltages or ... wow, almost anything!

If you link your Z88 to a PC you might want a more powerful data transfer programs such as
RangerLink, or perhaps the Ranger Disk drive unit which will allow you to create
PC and Macintosh readable 3.5 inch floppy disks.

A Printer will allow you to see your data as it is produced by logging data to a printer rather
than to an EPROM.

What You Need 9

And where to put the bits,
Assuming that you have all the bits listed in the bits-you-need-now list above, how do you fit them

all together? The instructions below assume that you have really started at first base and have a new
Z88 in its box. If this is not the case, pick up the sequence at the appropriate point.

1.
2.

Remove the Z88 from its box and assemble around it all of the other bits required.

Turn the Z88 on its back and open the battery compartment and if required insert the
four alkaline batteries, making sure that they are all inserted in the correct direction.

The picture below will help with this.

Use 4 XMN1500, LR6 Load batterics Replace battery cover

or cquivalent Alkaline cells
If the Infomate ROM or the 128k RAM card have not been installed, then with the Z88
switched on, and the display showing the INDEX, tilt the Z88 forward and open the
flap at the front edge of the Z88 and insert the RAM into slot 1 and Infomate into slot 2.
The picture below shows how to do this.

Open flap Press reset Close flap

Notes: If your Z88 already had cards in these slots then you may need to change them.
We recommend a RAM card should go into slot 1, if your Z88 differs then you should
change it. However if the RAM card installed already contains pending applications or
data files then you will need to © KILL the applications, and save the files onto
EPROM or to another computer before proceeding. Next, perform a soft reset as
described in the Z88 manual before restarting these instructions from the beginning.

If slot 2 holds another application ROM you can either remove it and put it in slot 3, or
alternatively run Infomate from slot 3. If the application in slot 2 is PCLink or MacLink
then it may be removed and stored because this is already installed in Infomate.

10

The Tutorial Section

Reverse the Z88 and turn it on by pressing the two [BHIET] keys. The computer should
come up showing the Index screen on the display. Note Index at the top left. Ifit does

not you may need to press the [HOER] key.

Check the time and date by entering the Z88 clock using the command OT . If either
needs changing, move to the SET command using & and press[ERTER] . You may then
type in the correct time and date using the numeric keys and the arrows. An [ERTER] at
the end will set these values into the Z88 clock. If you have difficulty setting the clock
refer to the Z88 manual.

Move into the control panel using the command OS and make sure that the following
are correctly set. Insert/Overtype is probably best set to Insert (move the cursor to this
item and press I . Default device should be set to :RAM.1 which can be achieved
using the arrows and [[ET] to delete the O and then press 1 . You may also wish to
set keyclick to Yes. When all options have been selected press to get back to the
main INDEX. Note that it is particularly important to have the default device set to
:RAM.1 so that all of the Z88 applications that you use will store your files there.

The Z88 and Infomate are now ready for operation.

An Overview of Infomate 11

An_overvi f Infom

Infomate consists of a number of specially written data capture modules which are collected together
on the Z88. When you add to these the word-processor program Pipedream and the Clock that
comes with the Z88, and a short list of commands that are provided by you the user you have a
working Infomate system. It is this mix of parts that gives Infomate its strength. All are essential to
the operation.

At first the need for you to write a set of instructions seems a bit like hard work, but that is probably
Infomate's strongest feature. This set of instructions from you describes your requirements now.
If in a weeks time your requirements change, then by just changing your set of instructions you can
update Infomate to your current requirements.

So, to run Infomate you must set up this set of instructions. We call this a schema file and it is
created using Pipedream. When the schema file is complete it is saved in RAMdisk and then
Infomate is called up to compile it. This compiling step performs two tasks. First it checks the
instructions you have provided for errors, and then it makes an abbreviated copy of the instructions
for later use by Infomate.

When your schema file has been compiled you are nearly ready to roll. First, you will need to either
open a data file if your data is to be placed in new file, or if you are updating an existing file,
perhaps from a different computer you will need to make sure that the data file is in :RAM.1. You
are now ready to run your Infomate schema file. This is the process that actually collects and checks
your data and places it into the data file.

For extra security of that valuable data it is possible to automatically log the data to a printer as each
record is captured, just in case something nasty happens to your data either by your hand or by
accident to the computer itself. As an alternative to this you can log the data to a plug-in EPROM
memory device which will "remember” your data even if the power is lost and the Z88 destroyed. It
is strongly recommended that you use one of the two log possibilities when capturing real
data, particularly if it is the sort of data that cannot be recaptured, or is difficult to recapture.

During your data collection you have immediate access to a number of other modules which allow
you to change the way that the Z88 appears. For example, they allow you to display all messages in
large characters, or set up a numeric keypad. These will be discussed in more detail later.

12

The Tutorial Section

A ick exampl r h n' i

In this section a quick example of the use of Infomate is provided for those with a burning desire to
get something, perhaps anything, going as quickly as possible. If you are game, follow the
instructions below very carefully and you should succeed. Make a mistake and disaster (well it
might appear that way) could strike. You may then have to slow down and start your journey into
Infomate in a more leisurely way. Good luck!

For those who are not in such a hurry perhaps you could sensibly skip this
section, and move on to the tutorials below, which will quite quickly get you operational, but by
taking that path you will probably understand what is happening rather better. Right here goes for
the game ones.

1.

Go into the Index by pressing the [TROER] key at the bottom left of the keyboard. Using
the arrows, position the cursor over the Pipedream command in the list on the left and
then press [EEIER] . This will start up a fresh copy of Pipedream for you to use.
Type in the following text taking care not to use the [[AB] key and not to create any
blank lines. Each line should be terminated by pressing the [ERTER] key, and you can
type in as many spaces as you like between words to separate them and make the text
easier to read. Use capital letters throughout by making sure the message caps is
shown at the bottom right of the screen. If it is not, press [CAPSLOCK] . Right here
goes:

TITLE DEMNO
FILE WEIGHTS.DAT
1D
FRUITND N3
DATA
WEIGHT N4.1
SEQUENCE
ENTER FRUITNO TYPE IN FRUIT NUMBER
MAKERECORD

ENTER WEIGHT TYPE IN FRUIT MWEIGHT
END

When you have finished typing, check each line carefully and correct any mistakes. To
delete characters move the cursor just past the character to be deleted and press [DEQ]

To insert characters move to the insertion point and type the new text. Lines may be
deleted by putting the cursor in the offending line and pressing < , and new lines
may be created using ON . When all looks OK, save the file by pressing OFS (File
Save) and then typing the name WEIGHTS.SCH followed by an [ERTER] . All of the
other questions in the OFS command don't need to changed.

An_Overview of Infomate 13

3. Now start up Infomate by pressing O ZI . After a brief graphics display you will be
presented with a menu of commands.

4. Select Compile Schema by pressing C and type in the name of your schema file
WEIGHTS.SCH . If the compiler detects an error you might have to return to
Pipedream using the command OP to correct the error line, resave the file, return to
Infomate and recompile. When compilation is finished you will be returned to the
Infomate menu.

5. Create anew data file by selecting the command New data file create with the N key.

6. Run the schema by selecting Run schema with the R key. If all goes well you will be
asked to TYPE IN FRUIT NUMBER as specified in the schema file above. Enter a
number of up to three digits and press [EFTER] . You will next be asked to TYPE IN
A WEIGHT which should be in the form 27.4 [ERTER] i.e. with one decimal place.
When completed you will be returned to the question TYPE IN FRUIT NUMBER.

This cycle may be repeated as often as desired.

7. To try some different things try entering the same fruit number twice. Press [[RE] to
see earlier entries on the screen. Press [ESC] and select Mode control with the M key.
Select Big characters by pressing B and then press I to install these changes. Running
the schema now using the R command will show all of the messages in enlarged
characters.

Well, that should be enough to wet your appetite to try Infomate further so proceed through the
tutorial chapters now and learn how to create your own schema files, and how they work.

14 The Tutorial Section

Help HELP

At all times while you are using Infomate there is a HELP facility sitting waiting to remind you of
the details of Infomate. This does not provide a full manual for the system, but rather is an
abbreviated set of reminders for you to help you remember what you read in the manuals.

HELY
5

7

Q

S - "
==\ "'
1 "

To access help, press the [FELF] key while you are in Infomate and you will be presented with a
menu of help topics to choose from. Move the cursor to the one that seems most appropriate to your
current needs and then press . A page of help text will appear on the screen. To move
around the help screens you can either use the 1 and U arrow keys on the keyboard, or press
to return to the help menu.

You can also move to Infomate help from the help for other applications by moving to the left using
the 4 key and then moving up and down through the application help list. However, it is probably
quicker to move to the application that you require help in and press [BELF] . For example if you
were in Pipedream and wanted to find out the format of one of the Infomate schema lines press BZI
then , move around in the Infomate help to locate the information you require then when you
are ready press OP to return to Pipedream.

The Help structure and the ease with which you can move around it, is one of the strong features of
the Z88 and it is unfortunate that more help is not provided by the people who developed the main
Z88 applications.

Infomate provides some 25 screen pages of help so learn to use it. In fact it is recommended that
you try the help out now by starting up Infomate using the BZI command and then pressing the
key. Explore the help pages to gain a bit of a feel for the information that they contain.

If you ever need to know which version of Infomate you are currently using just get into Infomate
and then press the [HELF] key twice. The screen will show the version number, serial number and
creation date. This information should be recorded if you ever need to request information on
problems from the Infomate authors.

What is a record 15

THE SCHEMA FILE

hv_hav hemg File?

At first it will appear to you that the need to have a schema file is rather an imposition on the
potential Infomate user. However you will learn that it is this single aspect of Infomate that
provides you with the flexibility that you really need. It contains all of the information about your
data files and the method that you plan to use when collecting your data. Rather than arranging
your data and its collection in a form that somebody else thinks is right for you, you can collect it
and arrange it in the form that you want it. However, to gain this flexibility you will have to invest a
little time learning how to use this powerful approach. Don't be daunted by this, it is possible to
get away with knowledge of very simple schema files, or to just modify slightly some of the
example schemas provided in this manual. For those who do feel daunted, please note that already
many people who would never have written a computer program in their lives are becoming
proficient in Infomate.

It is important to remember the difference between a schema file and a data file. The data file
contains your data, while the schema file describes the format of your data and the way to collect it.
In short the function of a schema file is to allow you to provide to Infomate an exact description of
your requirements; firstly it defines the way that your data is to be stored in data files, and secondly
the way that the data is to be collected. This latter part also allows you to define the checks that you
want to make on your data and the shortcuts you wish to take when collecting it. A typical schema
file appears in the Quick example section above. While far more elaborate schemas exist, this one
holds all of the basic elements and can be expanded to handle more complex tasks. Without
knowing anything about schemas you can probably already look at that schema and understand quite
alot of it. Right, lets learn about the bits that we don't know.

What is a Record,

While the word record can mean a lot of things, we do not mean here the type that are sometimes
broken at the Olympic games, nor the sort that used to get played at AM radio stations before CD's
were invented. For Infomate, a record is a single line of a computer file that holds all of the data
related to a single observation-set or measurement. It is complete in that it contains not only the data
itself, but sufficient information to uniquely identify that data. Examples of records are the tag
number, tag colour, previous weight and current state of an animal, or the row number, vine
number fruit count and incidence of scale insects on a kiwifruit vine. Each record contains a number
of fields some of which identify the record and some which contain the data itself. In some cases
fields in a record will be empty either waiting for data, or signalling that data is not available for that
observation.

16

The Schema File

Here is an example of a single record of data with some descriptive detail around it:

A single record

524 VYL 90 1699 1425 JER 37.4 40.3 ¢/
ID Tag VYear Dam Sire Breed Mar. Apr. MNay
born 1D 1D Ut . Ut . Mt .
ID fields Data fields

At times it is difficult to define a record. Should it be all observations on a single fruit, or on a tray
of fruit. This question deserves some thought because it affects how the schema file will be written.
Generally if there is enough space, a record should contain all data relating to a single unit of
observation. A tray of fruit being inspected for disease is probably a unit. So might be a cow and
two calves at calving time.

Two further considerations for the record designer are firstly, the way that the data is to be analysed
when it is eventually transferred to a larger computer. At that point you may require every fruit to be
in a different record. At the other extreme you should consider the extent that it is necessary to
identify each unit which may allow lots of similar measurements (e.g. the weights of 27 kiwifruit in
a tray) to be placed in a single record.

When the contents of a record have been defined you will need to define which of the fields will be
used to identify the data, and which are the data themselves. Often the demarcation between these
will at first be obscure, but there should be a minimal set of fields that will always uniquely
identify the data record being created. By uniquely we mean that no two records can have the same
identification or ID. Examples of unique ID's might be for an animal weighing trial, the animal tag
number plus the tag colour which is related to the animals year of birth. For a produce collection
trial it may be a combination of row, treatment, and plant number. For an animal behaviour study it
could be the date and the time that an observation is made. In some cases it may be just simply a
record number. However commonly an ID will be a combination of more than one field.

Because Infomate requires every record to have a unique ID you should take care in defining these
fields. There is a strong temptation to use too few ID fields and end up with records that try to have
the same ID, or to have too many and end up with data in the identification area. There is a strong
differentiation between DATA and ID in Infomate.

Infomate now becomes your tool to create and fill the data records in a file in the way that you want
to fill them. It will allow you to add records to an existing file or create a new file. You can also
modify just a few of the fields in each record of a file, and even have a number of schema files set
up to modify or add data to different parts of a single file on different occasions. All this is possible
without the need for computer programmers; you take over that role. You should note that Infomate
is not a data base package and does not allow you to move data from record to record, nor to collect
data in more than one record at a time. In practice this is not a limitation for most data capture tasks.

What is a Field 17

iving the fiel nam

It makes sense to give fields a name that describes their function. Thus an animal ID tag number
could be called "Tag_Number", an orchard row number could be called "Row_No". In both of
these examples the double quote (") characters are not part of the name. Note the convention of
using capital letters to start a word in a name, and how the two words are separated by an
underscore "_" character. From this you may infer that a field name like "Row Number" with a
space in the mlddle is not valid. However the use of upper and lower case is completely up to you.
ROWNO, rownumber, Row_no, and ROW_no are all perfectly valid names. But be careful,
because Row_No is a different name to Row_NO. While it is not essential to follow the above
convention, it is probably one of the tidiest.

You should also note that field names must be different from each other. If you have two fields
called weight only the first one will ever receive any data.

h f field is that?

Fields may come in two types. Number fields and letter fields. Examples of number field values
might be "12.7" for a weight number field, or "27" for a fruit count. Note again that the quotes (")
are not part of the field value. Letter fields examples are "RED" for a fruit colour, or "This is
comment number 7" for a letter field containing a comment. The way that we inform Infomate of
the type of field we are using is to use one of the letters N or L which is short for Number or Letter
respectively.

Further information is needed next to describe the size of the field. Thus, N3 is a number field that
contains 3 characters, and L12 is a 12 character letter field.

Number fields may be even more complicated. They may contain a decimal point in some
circumstances. We tell Infomate this by putting a decimal point after the field size character and
then add the number of decimal places we wish Infomate to record after the point. Thus numbers
like 12.7 or 99.1 are described as N4.1 fields. This means that the Number ficld has
4 characters, there js a decimal point , and there is 1 digit after the decimal point.
Whew! If a decimal point is not required and the numbers are to have 4 digits then just use a field
description like N4

Note: for obvious reasons number fields as specified above cannot contain more than 9 characters.
This is not unreasonable as the accuracy of the arithmetic on the Z88 is only about 9 digits anyway.

Letter fields must not be greater than 24 charactcrs in length for reasons that made the programming
of Infomate a little easier.

18 The Schema File

Some further limitations on ID fields

There are a few limitations on ID fields that do not apply to data fields. ID Number fields must
contain only the digits 0 to 9 and the space character, and cannot contain decimals. ID Letter fields
must contain only the letters of the alphabet plus the slash (/) and blank character, and no distinction
is made between upper and lower case letters; ab123 and AB 123 are considered to be the same.

In addition, the total number of characters in all ID fields is limited to 6 letters or 9 digits. Where
there is a mixture of letters and numbers, the following limits apply.

Numbers 0 1 2 3 4 5 6 7 8 9
Letters 6 5 5 4 3 2 2 1 0 0

Thus, if there were 3 letters in an ID then the maximum number-field-digits allowed would be 4, no
matter what the organisation of the fields was. The reason for this limitation is that Infomate
maintains an abbreviated copy in memory of all ID's used so that it can quickly find a particular ID.
If you have designed your data and ID fields correctly this should not be a limitation, as it allows
you to uniquely identify one billion records, and that is a lot of asparagus.

Putting the fil finition r

In the last few sections we have described what fields are and how they are described. Lets see how
they are put together in a way that Infomate can understand. This is most conveniently done using
the simplest possible example. Consider a data capture requirement that involves recording fruit
weights of a few hundred individual fruit which are typically 60 grams each. The ID and DATA
regions could look like this:

1D

Fruit_No N3
DATA

Height N4 .1

Which in English can be read as a single ID field called Fruit_No which is a 3 character number and
a single data field called Weight which isa 4 character number with 1 decimal place recorded. Now,
we must add to that two further lines to describe the purpose of the schema file (i.e. a TITLE line),
and the name of the data file into which we intend to place the data that we collect (a FILE Line).
The TITLE line should contain enough information to inform you what this schema file does, and in
particular how it differs from all other schemas like it. It should also contain author, date, and
details of any modifications.

What is a Field 19

Put this together and the schema file will look like this:

TITLE Fruit Wt Collector 30/7 RBJ
FILE WEIGHTS.DAT
1D
Fruit_No N3
DATA
Height N4 .1

If there were to be more ID or DATA fields then these would be added into the position required.
Now all of that above just says what the file is to look like and does not say how to collect the data.
That comes next!

Defining the SEQUENCE

While there is a lot of flexibility needed to allow you to create a file specification to suit your current
needs, even greater flexibility is needed to allow you to define how the data is to be collected. You
need to be able to control the order that data is collected, and the messages and checks that are to be
placed in the collection sequence. This is done using a SEQUENCE which in reality is a computer
program that tells Infomate what you want to do.

The sequence follows immediately after the DATA definitions and is started with the line
SEQUENCE

and strange as it may seem, ends with the line
END

Within these lines you place your sequence or program. Lets look first at a short sequence to go
with the ID and DATA definitions above. It has three tasks. First it must fetch from the keyboard
the number of the fruit that is to be weighed i.e. its ID. Secondly it must check the ID for validity
and make space for the record on the file using a MAKERECORD, and finally it must fetch the fruit
weight from the keyboard.

20

The Schema File

The sequence to perform that might look like this.

SEQUENCE
ENTER Fruit_No Key in the Fruit No.
MAKERECORD
ENTER Height Key in Fruit weight
END

The only part of the above that may not be completely obvious to you are the messages at the right
of the two lines starting with ENTER. These are the messages that will be displayed on the screen
to inform the person weighing the fruit what they are required to do. They would see on the screen
something like this:

(Infomate) {c)RBJ.89

Key in the Fruit No. W

So let's look now at the completed Schema file as we have created it so far. It contains some
general information about the file followed by a full definition of the file content format and winds
up with a description of the way the data is to be collected. So here it is:

TITLE Fruit Wt Collector 30/7 RBJ
FILE WEIGHTS.DAT

D
Fruit_No N3
DATA
Height N4.1
SEQUENCE
ENTER Fruit_No Key in the Fruit No.
MAKERECORD
ENTER Weight Key in Fruit weight
END

Note how space characters have been inserted to make the file more readable. Infomate in fact only
needs one space between each part of the line but is quite happy to accept as many as you like. Also
note that all of the special Infomate words like FILE, DATA and ENTER are typed using capital
letters only.

Sequence Region 21

Puttin mments in hemga fil

When you create a schema file it is often nice to be able to put some marginal comments into the file
to remind you about what you are doing or what might need checking in later versions. Infomate
allows you to do this by placing the text of the comment at the end of any schema line and preceding
it with a backslash (\) character. Thus you might like to comment the above file like this

TITLE Fruit Wt Collector 30/7 RBJ

FILE WEIGHTS.DAT \Change later to rowno.DAT
ID

Fruit_No N3 \ Only 500 fruit per file
DATA

Height N4 .1 \That allows wts to 99.9k
SEQUENCE

ENTER Fruit_No Key in the Fruit No.

MAKERECORD

ENTER Height Key in Fruit weight
END

Now when that is fed into the compiler later all those comments will be ignored, but they remain
there for your purposes at all times when you look at them with Pipedream. Note that although it is
possible to start a comment at the left hand margin of a line, and thus have no Infomate statement in
that line, this is not recommended as it will confuse Infomate whenever it needs to tell you the
number of a line that contains an error. If you must put in a block of comments, use dummy
LABEL statements at the left so that Infomate can keep track of your line numbers like this:

LABEL \a block of comments
LABEL \can go like this
LABEL \and Infomate won't mind.

Throughout this manual we have not used comments extensively because most of the schema files
examples are described in some detail in the text. We recommend that you make a habit of putting
comments in your schemas; it will help you understand them later when you modify them.

Well, the above is really only a paper schema; it doesn't yet exist in a computer - that transition is
very close now as you are now ready to enter it into the computer.

Using Infomate

ing Pi ream r hemg fil

Pipedream is a simple word processor and is ideal for handling schema files. The techniques you
learn in this section will be sufficient to allow you to create simple text documents such as letters,
and of course schema files.

One at first confusing aspect of the Z88 is that you can have many documents or applications "open"
or pending at one time. As you get used to this you will learn to use the power that the concept
provides. For example you can be typing a letter to Mum and by pressing two keys start typing a
schema file. At any stage you can move back to the letter by pressing the same two keys. Nothing
of the earlier work is lost, not even if you stop typing in the middle of a word. This could be useful
to let you tell your Mum about your cunning schema file.

If you want a new version of Pipedream to be set up for you, then select the Index by pressing the
key. Now move the cursor to the Pipedream line on the left and press . A new
version of Pipedream will be created for you. If on the other hand you wish to move to an existing
Pipedream module or application as it is called, just press BP . If more than one Pipedream
application is active it may be necessary to press OP more than once to get to the one that you want.
This technique for moving from one Z88 application to another can be used at any time.
Immediately after loading Pipedream press OF to get into the Filer and check that it is displaying the
device for the RAMdisk :RAM.1. Ifit is not then you have not set the control panel correctly so
first change the device to :RAM.1 using a SV command and finally change the panel's default
device to :RAM.1 using OS

So, you are in Pipedream and are ready to type. Type in the schema that is shown above. Use the
space key freely to layout your schema and make it easy to read, but do not create blank lines or
use the [[AE] key to space your text. In Pipedream the [fAE] key means something entirely different
and should be avoided like the plague. If you do accidentally hit [[AE] then clear all of the text you
have typed into the column that you have tabbed to and press < BB to move back to the start of the
column A. Knowledge of a few more keys to control Pipedream will be handy here. Some keys,
or key combinations are shown in the table on the next page. If you want to know more, read the
sections on Pipedream in one of the books recommended at the start of this manual.

23

Keys

EETET [OED
oD

O[CEl
ON

oS

OESL

OEJL

oa
o
ot
o0
=

EEE <
oT

Action perform

Deletes the character before the cursor.

Deletes the character under the cursor.

Deletes from the cursor to the end of the line.
Deletes entire line and moves following lines up.

Creates a new blank line at the cursor and moves the
current line down.

Changes the case of the character under the cursor. i.e.
capitals become small letters and vice versa.

Moves all of the text from the cursor onwards into a new
line below the current line. i.e. edit split line.

Merges the current line and the line below into a single
line. i.e. edit join lines.

Moves to the beginning of the line.
Moves to the end of the line.
Moves to the first line.

Moves to the last line.

Moves one word to the right.
Moves one word to the left.

Deletes one word.

With the cursor arrow keys, and the set of commands listed above you can perform any editing
required in Pipedream. There are other commands to allow you to move blocks of text around and
these are described in the Z88 manuals.

24

Using Infomate

When you have typed in the schema you will need to save it in RAMdisk. This can be done by
typing OFS (i.e. File Save), and then typing the name you wish to give the schema. It is
suggested that all schema files end with the file extension letters .SCH . For example the above
schema might be called WEIGHTS.SCH . Whether you use upper or lower case for your file
names is entirely up to you as the Z88 doesn't really know the difference in file names. However
you should probably be consistent so make a decision early.

Take care with this schema file name as it is very tempting to give it the same name as the file you
have named in the FILE line of the schema. This is wrong as that name refers to the DATA file and
not the SCHEMA file. The difference is significant! One holds your data (the .DAT file) and the
other your instructions (the .SCH file).

During the development and testing of your schema file, it may be necessary to make small changes
and resave your file a number of times. To make this process easier, it is suggested that you
perform a OFC command to specify the Current File name to Pipedream. By typing your schema
file name into this command, subsequent operations to save the file using ©FS will have the current
name displayed and you can "accept" that name by pressing the [ERTER] key.

If you want to send a schema file to another computer for printing etc. save it from Pipedream using
the 'plain text ' option. This will eliminate all of the Pipedream formatting characters from the start
and end. It is not necessary to save the file for Infomate in this way as Infomate has been ‘trained’
to ignore these characters.

And so ends a short lesson in Pipedream. Not a marvellous word processor or editor by any
means, but I think you will find it to be entirely adequate as your proficiency improves.

Compiling a Schema 2 5

USING INFOMATE

Moving roun he 7 nvironmen

Having just created a schema file using Pipedream you now need to pass that schema to Infomate
itself and use it to collect data. But first lets recap a little on the way of moving around the Z88
environment. You learnt in the last section to move to Pipedream using the OP command. Well
there are abbreviated commands to move to any of the Z88 applications or popdowns. One of the
popdowns that you will need quite often to check if is time for coffee is the Clock. This can be
accessed by pressing OT (for Time). When you have finished with the clock, just press [ESC] and
you will be returned to whatever you were doing. This clock function is called a popdown which
can be overlaid on top of your current task whenever you need it. It will disappear when you press
, and return you to your original state. An application like Pipedream will not disappear when
you press , it is a little more permanent. Infomate is an application too, but unlike Pipedream
you can only have one copy of Infomate in memory at a time. In later versions of Infomate it may
be possible to have more than one but that is another story. To start up Infomate, or to return to it
later you need only press the key sequence BZI which is an abbreviation for Z88 Infomate. If you
forget this you could also do the same thing by pressing and then selecting Infomate from
the right hand column if it has been started, or the left hand column if this is the first time.

The most common application switches that you will make when using Infomate to create and test a
schema file are those between Pipedream and Infomate. These are performed using OP and BOZI
respectively. While you could go to the Index each time, try using the abbreviated commands. Try
now - start up Infomate using OZI and swap to and from Pipedream with OP and BZI a few
times. If in fact you have more than one Pipedream application pending at the time you press the
OP command you may end up in the wrong one. To fix this just press OP again. The cycle will
then become OZI OP OP etc.

mpilin hem
So you have a schema file, you can use Pipedream, you can get into Infomate -what next.

Your schema file is an "almost-English-language" statement of your requirements, and it must be
compiled by Infomate before it can be used. Compilation can be thought of as a translation process
that is carried out by a computer to turn text that you can understand into numbers that the computer
can understand. For example Infomate does not really care whether you call your weight
Fruit_weight, Weight, orin fact just Wt . It just sees it as the first data field. However if
you called it Weight in the DATA definition region and WT in the SEQUENCE region then it would
become understandably confused. From this we can infer that the compiling step also checks for
some logical errors.

26

Using Infomate

When you go into Infomate you are presented with a menu of commands. This is the Infomate
Menu and will be referred to often from now on.

(Infomate) (c)RBJ.89
SELECT NMODULE REQUIRED
C Complle Schema Flle, N New Data Flle Create, | Install EPROH, H Hode Control,
R Run Schema Flle, U Ulew/EdIt Data Flle, B Backup to EPROM, P Pack and Exit,
S Show Schema Specs., F Flle Converslon, E EPRON Catalogue, D Driver Test.
Select? W

All of these are activated by pressing the first letter. Thus to View/Edit your data file press V . If
you have not compiled your schema you will probably get a message telling you that there is "No
Data File Specified".

Whenever you need to return to the menu above you can do so by just pressing the [E3T] key, but
be sure that Infomate has completed its current task. If for example you were capturing data and the
last value you typed in was still shown on the screen, then if you pressed the key at this point
you would lose the data before it was saved in the internal memory of the Z88 or was logged on the
printer or EPROM.

Right, select "Compile schema file" by pressing C and if all goes well you will see your file whiz
past and you will be returned to the Infomate menu again. If you want to stop it going so fast just
hold down both the and © keys simultaneously after you press the C . You could try that
if it compiled OK on the first pass by repeating the Compile step. You will note when you inspect
the compiling file in this way that all of the extra spaces and comments that you typed have been
eliminated by Infomate. Frankly My Dear, Infomate doesn't give a (hoot) about these.

If you were not so lucky to compile your schema first time (and most normal people aren't so
lucky), then note down the line number of the fault from the Infomate error message. Next look at
the error message and try to determine what you have done wrong. When the problem has been
located, switch back to Pipedream using OP and make any corrections required. Save the new file
from Pipedream using QFS (which will overwrite the original file with the corrected version), and
then switch back to Infomate using BZI. You may now need to press a key to terminate the error
message and you can try compiling again. It is not uncommon when compiling a new schema to
have to swap back and forth between Infomate and Pipedream a number of times. Eventually you
should get a compiled version of your schema and can proceed.

For those who did manage to compile first time, it is probably worth going back into Pipedream and
introducing a deliberate error to learn the method of swapping back and forth and using the

Compiling a Schema 2 7

applications in parallel. So change the spelling of one of the words in the schema file, save and
recompile. Note that Infomate does not check the spelling of the message part of the line!

Which hema file is this anywayv?

If you use the S command "Show Schema Specs" from the main menu you will be presented
with a brief summary of your schema file. This includes the name of the schema file and it's
associated data file, and details of the TITLE, and any PORTIS and LOG statements. This is a
useful way of checking that the current schema is the one you really want, and shows why you
should keep your TITLE line as meaningful and as up to date as possible. An example of the Show
Schema Specs. screen is shown below.

{(Infomate) (c)RBJ.89
Schema Speciflcatlions
Using Schema File :RAN.1/Mybirectory/Rambo.SCH
Schema Title is :Collecting Rambo's Hit List
Data File s :RAN.1/HyDirectory/Rambo.DAT
Now Loggling on Rambolog
Using Serial Port MACHINE_GUN [

Well you are getting very close to running the schema file now, but first one important step.
reatin fil

Even though your compiled schema has all of the information required to create the data file in
which your data will appear, it doesn't know when to create the file. You can create a file at any
stage using the N command "New Data File Create" from the Infomate menu. If there is not
already a file in :RAM.1 with the name specified in your schema file, then a file will be created, the
message

(Infomate) (c)RBJ.89

Data Flle :RAM.1/HEIGHT.DAT Created

will be displayed briefly and you will be returned to the menu once more.

If when you select "New Data File Create" there is already a file with that name on :RAM.1 then you
will be asked to rename the old file. This is part of the Infomate philosophy that at all times

28 Using Infomate

Infomate will attempt to protect any data that has been collected. Thus it would be
rude of Infomate to just assume that the old file is not wanted and overwrite it.

You can use this to advantage if you want to collect data into a number of different files, one file per
row of fruit trees for example. Create a file for the first row, and fill it with data from that row.
Next create a new file and rename the first row's file as ROW1.DAT. You can now start filling the
row 2 file. This has particular advantages when you are logging data to an EPROM which is
described in a later chapter.

So with a compiled schema and a data file in which to place your data there is nothing to stop us?

Running a schemg

The process of stepping through the sequence part of the
schema file is described as running the schema or
running the sequence. It is, in computer parlance, the
execution phase of the process. When you select R to
"Run Schema File" from the Infomate menu,
Infomate will first of all load in the ID fields of all of the
data that has been collected into the data file to date (if
any) and then start executing the sequence. So lets look
back on the sequence we have been working through above.

SEQUENCE
ENTER Fruit_No Key in the Fruit No.
MAKERECORD
ENTER Weight Key in Fruit weight
END

When you press the R to run the schema you will see

(Infomate) (c)RBJ.89

Key in the Fruit No. M

which is Infomate executing the first line of the sequence.

Running a Schema 29

Type in a number for the fruit number, say 12 and you will see

(Infomate) (c)RBJ.89

Key In Frult welght B

12

Note that the Fruit number has appeared at the bottom of the screen. As each ID or DATA field is
filled you will see their contents appear at the bottom of the screen.

Try typing a weight now such as 23.7 and the screen will briefly appear as

(Infomate) (c)RBJ.89

Key In Frult welght W

12 23.7

before it reverts to the first question again. In that short period the data has been stored in the file
WEIGHT.DAT in :RAM.1 . The sequence may now be repeated as often as required.

If you want to see previous records entered press the key and the screen will change to

{Infomate) (c)RBJ.89

12 23.7
Fru:Frui
12 23.7

Now that last display is showing at the bottom the current record, which in this case has just been
completed, the names of the fields (or at least as much of them as will fit), and the previously saved
record above that. If you had saved more than 4 records the screen would show only the most
recent four data records. You can revert to the data capture phase at any time by pressing
again.

30

Using Infomate

The vertical line between the two field names shows where the ID and DATA regions of the record
are separated. At any stage you can return to the main Infomate menu by pressing the [E3T] key.

So that the field names above are more readable you may wish to change Fruit_No. in the schema to
Num_Fruit , and Fruit_Weight to Weight. Try this as an exercise, taking care to change the names
both in the field definition areas as well as in the sequence. This will make the display of field
names appear as

Hum: Heig

which is far more readable. So the names of the fields take on a new importance here.

I m mistak

When you are working your way through a sequence you may find that you typed something
incorrectly on the previous ENTER statement. To go back to that statement and correct that error all
you need to do is press the ' key and you will be 'backstepped' to the previous question. The
value you typed will be presented to you as an option and you can edit that data using the @ and &
keys to get you to the right place, and the key to erase your mistakes. When you have edited
the line to the state that you want it to be, press the U key to move back through your sequence to
the place that you left. This T and U operation is available to you at all times and will step to any
ENTER, DISPLAY, REPEAT or GETPORT statement. Remember when you are designing your
schema though that it steps only back and forward, and will not follow a complicated chain of
GOTO statements.

Unfortunately once you have reached the END statement of your schema, it is not possible to step
back in the current record because the current record has just become the previous record. Sorry!

Play a little further with the sequence created in the last section now, by using this new backstepping
concept. Try to enter fruit IDs that already exist, try creating new files, and then you might like to
try changing your modus operandi.

Modes of Operation 31

M

f ration

Infomate has two sets of operation modes that the operator can select at any time. To change
modes, return to the Infomate menu using the [ESC] key and press M for the "Mode control"
command.

The screen will appear like this.

(Infomate) (c)RBJ.BY

Select Mode Required (Keys=S, Size=L)

S Standard Keyboard, L Little Characters, | Install Changes
C Capltallze Letters, B Blg Characters
N Numeric Keypad

Select 7 W

You will note that at the top of the screen the current settings of the two modes are displayed. In the
case shown the Keyboard is set to Standard and the character size is set to Little. To explore these
try pressing the letters of the different modes and note how they change in the line at the top. When
you have set the modes as you want them to be press the I key or the key to Install them. If
you have changed your mind (or chickened out) just press the [ESC] key and all of the changes you
made will be ignored and you will be returned to the main menu. The above menu is a standard
Infomate menu style which is also used in the file conversion menu described later. The modes that
you are setting here will now be described in more detail.

Big and small letters

The examples given above for running the schema files were shown in Little character mode. If
Big characters were selected then the screen would look like this (sort of).

(Infomate) (c)RBJ.89

Key in Fruit weight .

12

Obviously in this mode there is a limit to the length of the message, and the display is marginally
slower. In some circumstances these two deficiencies are well worth the added advantage for short
sighted people, or those who work in situations where light or position are less than optimum.

32

Using Infomate

Capitalize letters

This mode will return all letters as capitals, regardless of the state of the caps indicator at the lower
right of the screen. This prevents accidental bumping of the [CAPSLOCK] key causing changes to the
data collected. In this mode the numeric keypad is disabled.

The numeric keypad

One of the major criticisms placed on the Z88 keyboard by & B * |9 () -
experienced typists is the lack of a numeric keypad for data

T
7
entry. A partial solution to this problem has been provided by] P 5) - [

Infomate. The HARDcase and Litecase Z88 housings are
provided with a keyboard overlay that shows alternative —l

functions for the keys UIOJKLM and P. These are labelled

with the numbers 4561230 and - respectively and provide a -
key layout as shown to the right. This is fine as long as you _I . ¢ ? L_
can let the computer know which of the two possibilities that f : i

you intend when you press a particular key. This is achieved as follows, and it is suggested that
you try these techniques on the Z88 as you read.

Infomate is powered up in Reverse Caps mode which means that the BHITT) key always swaps the
function of the caps indicator on the screen. i.e.. with caps displayed pressing c gives a capital
"C” while BHIET c gives a little "c". When caps is off the reverse is true and the [BHTFT] key
performs a more normal function i.e. the key c gives little "c" and BHIET c gives capital "C".

Now if you select Numeric keypad mode, the caps indicator becomes a Number/Letter indicator. If
it is shown, you get letters (in fact you get capital letters). If it is off or not showing you get
numbers, all according to the key layout above. You now have two ways to operate the numeric
keypad. Either press to get the caps indicator showing for letters or not showing for
numbers, or for a quick and temporary change just hold down the shift key while pressing the
number on the numeric keypad..

A typical scenario is this: all data fields to be collected are numbers except a single character colour
code. Set the Z88 to Reverse Caps off mode by erasing the caps indicator using [CAPSLUCK] . This
enables the numeric mode. Select numeric keypad in the mode menu. Now all keys pressed in the
MIKLUIOP area will be numbers. If you need a letter just hold down the [BHIET] key and press the
number. In fact you only need to hold down SHIFT for MJKLUIOP.

Summary of the Numeric keypad Mode: if the word caps (in lower case) is showing then
UIO... are letters. If the word caps is not showing then UIO etc are numbers. In either mode, the
BHIET] key always alters the function of the UIO keys as indicated by the caps display. To get out
of ReverseCaps mode press < [CAFSLOCK] |, and to return to it press O [CAPSCOCK]

Viewing a data file

OK, so we collected some data and we saw a pretty display that matched the values we typed, but
how do we really know that the numbers have actually gone into the file and are not just being held
by a clever display program within Infomate? A valid question!

By returning to the main Infomate menu using the [ESC] key you will see in the second column a
command operated by the V key called "View/Edit File". This module is for viewing your data
file and should allay your fears a little.

Press the V key to select View/Edit. The display will turn into something like this.

(Infomate) (c)RBJ.89

Uiew/Edit File :RAM.1/UEIGHT.DAT
Enter ID, ®recordno or arrows, or use TRAB to EDIT

1: 2334.7<
2: 2443.9)

There is quite a lot to understand there. Lets start at the top line. This shows that you are in the
View/Edit module and that your data file is called WEIGHT.DAT . The second and third lines are
your instructions, and a place to type your requests; we will return to them shortly. The last three
lines are the contents of the front of your file. The word BEGIN is not actually in your file but
serves as a marker to show where the start is. The numbers at the left (1 and 2) are record numbers
and are also not in your file but serve as markers for your file viewing and editing. The actual data
in the file is from the colon (:) character to the < or | characters. This data shows a fruit numbered
23 with a weight of 34.7 and a fruit numbered 24 with a fruit weight of 43.9 . The fact that there
is no space between the fields seems a bit strange, but that is what the schema file specifies, so that
is what you get. The < character points to the line to be edited and we will return to that also.

Moving through the file

To move around your file use the arrow keys @ and & . If they are a bit slow to move to the
point that you want to go to, then hold down the key while using the arrows and you will
move through your records 3 at a time. By holding down © or B the arrow keys will work even
faster; in fact at 10 and 50 records for each press of the arrows. You might like to think of the
, ©,and O keys as accelerators or turbo-boosters? These are different usages of these keys
from other Z88 applications, so be warned that they behave differently in Pipedream.

34 Using Infomate

There are other ways of moving through your data that are even better if you know a little about
your data. For example if you want to find ID number 27 then just type 27 and you will be
there. This works for all ID's if you type them as they appear in the ID area, even if they are
composed of a number of fields. For example if you had an ID comprising a single digit year, a
three digit tag number and a single letter tag colour then typing 51234G would search through the
data for the year 5 green tag number 1234 animal. Note also that provided there is no ambiguity
then 62R will find year 6 tag 2 colour Red.

Sometimes you do not know the ID of the record you are looking for but know its position in the
file. To access that record precede its record number with the # key. Thus #54 will move to record
number 54 in the file and display its contents. #9999 will always find the last record.

Changing your files contents

What if there is a mistake in my data? Well that is the second function of the View/Edit module.
When you have located the record that is to be edited and have it positioned at the < mark on the

display, press the [TAE] key.

(Infomate) (c)RBJ.B9

Uliew/Edit File :RAM.1/UEIGHT.DRT
EdIt DATA Flelds then press ENTER, use TRAB to ARBORT

1= 233¢.7H
2: 2443.9)

You are now in the edit mode and can modify the data in the record. Note that I said data here. At
this stage it is not possible to modify the ID part of the file for a number of reasons which include
partly laziness on the part of the author. So move the cursor to the part of the record that you wish
to modify and you can then overtype the new information into the record. At this stage you are not
modifying the data file itself, but a copy of that particular line. Take care when editing as you
have the potential at your finger tips to stuff up real data. In fact if the data is that
useful you should only modify a copy of the data rather than the data itself. You can make a copy
using the Filer if you read the Z88 manuals.

Viewing and Editing your Data 335

When the record looks like you want it to look press the key and you will be asked to
"Press Y to Update file" like this:

{Infomate) {(c)RBJ.B9
View/Edit File :RAM.1/UEIGHT.DAT
Press Y to Update File N

1: 2334.7<
2: 2443.9!

If for any reason you are not happy with your editing do not press Y and the data in the file will
remain intact. Conversely pressing Y, will update and permanently modify the data file. Two
further keys will help you to move through your data fields when in the editing mode. Pressing
© @ will move to the start of the first data field of the record, and ¢ to the end of the last data

field.
Pack and Exit

While using Infomate you have seen the ease with which you can swap back and forth between
Infomate and Pipedream. If your Z88 is full you may get a 'No Room' error when you try this. If
this happens then each time you move from Infomate to another application you will have to use the
P command "Pack and Exit". This command will squeeze Infomate down as small as possible
before it transfers to the Z88 Index. Even though Infomate is squeezed, it will remember all of the
important things that you have told it, including the values of all of the fields in the last record, the
SCRATCHPAD field values, the details of your schema file and lots more

You should also use the Pack and Exit command if you are ever in the state of not needing Infomate
for a while but do not want to kill it just yet.

36 i Using Infomate

EPROM AND PRINTER USAGE

Let us deviate a little from all of this schema file stuff and discuss storage of data files and schema
files on EPROM, and using printers to print data as it is collected. EPROM's are a feature of the
7,88 that are found on few computers of its type. They are a robust, low cost and convenient unit in
which to store Z88 files in a form that is safe from battery failure and reasonably safe from serious
hardware failure as well. In computer jargon EPROM's are described as being non-volatile
which means their data does not evaporate when the power goes off as it does in RAM memory. All
important data should be backed up into EPROM.

There are a number of ways of using EPROM, each with their particular merit. These are described
in the following sections.

EPROM Erasure an rasin li

So if EPROM's are so darn tough do you just throw them away when you have finished? In fact
that is not the case. EPROM's may be erased by exposing them to ultraviolet light for about thirty
minutes using special EPROM erasing units. These units erase everything so you cannot just delete
a single file. This calls for a little organisation in your data handling methods. One technique is to
have sets of three EPROM's which you cycle through in a systematic way. This calls for good
bookkeeping. At any point in time you will have a current EPROM holding the latest copy of your
files. A second EPROM will hold the previous version in case anything goes wrong with the
current one. A third one which held an even older copy is erased ready for use next time. At each
stage of the process write on the EPROM label, the status of the data it contains and the date and
perhaps the time.

Now this technique really only works with schema files and other files that do not change very
much. Data files that may hold new data each time should be held until the data they contain has
been transferred to a larger computer, and has been backed up there as well. But it all really comes
down to how important your data is. It never ceases to amaze me how lackadaisical some people
can be with important data. In fact it often amazes me how lackadaisical I can be with my data! So
be warned and start a good backup system early.

Fil k ing _the Filer

The most obvious use of EPROM is for direct backup of data or schema files. At convenient points
in the data collection process, the Z88 Filer can be called and the data can be shuffled off to
EPROM. If there is an earlier version of this file on the EPROM there already, then that will be
marked as deleted, but will not in fact have any of its contents modified in any way at all. The new
version is stored at the end of the list of files already on the EPROM and life goes on. In an
emergency it is possible 1o recover earlier versions of EPROM files and procedures to do this are

EPROM's and Printers 37

provided on the disk accompanying Infomate. The BBC BASIC program RECOVER.BAS, and its
associated documentation RECOVER.DOC which can be inspected using Pipedream will allow the
EPROM to be catalogued, and all versions of files on it brought back to life.

To use the Filer to back up a file to EPROM, move to the Filer using OF . Mark the files that you
wish to move to EPROM by positioning the cursor on them and pressing the key. Next move
the cursor to the left hand column item "SAVE TO EPROM" and press . after lots of
flashing the files will be on EPROM and may be inspected there using the Filer's "CATALOGUE
EPROM" command. This is the normal technique to save a schema file on EPROM.

Installin n EPROM

If you are using Infomate and you sneak an EPROM into the front of the Z88 without telling
anybody, then the Z88 will not know it is there if it is a blank EPROM. To tell the Z88 what you
are doing it is easiest to insert the EPROM while you are in the Filer or Index modules.
Alternatively you can use Infomate's Install EPROM command to automatically move to the Filer
and register the EPROM

L ing EPROM

Somebody once said
"wouldn't it be nice if we
could save our data to
EPROM after capturing each
record. Wouldn't we feel so
secure!”. So after much
grunting and sweating by the
author, the possibility of
logging data to EPROM was
introduced. This has now become the recommended way of automatically providing a backup copy
of your data. By logging to EPROM each record is saved in a form that is immune from power
failure or computer malfunction, as and when it is created with little or no overhead on the data
capture process. It is also more efficient on EPROM space than taking a copy of the entire file and
placing it on EPROM at regular intervals, which requires the same data to be repeatedly placed on
EPROM.

The concept of a log file is a slight fiddle in terms of doing things the Z88 way, but seems to work
well. Normal files are stored on EPROM in a single operation which records first how long they are
and then stores the data itself. This allows the operating system to later climb through all of the files
on EPROM and locate each file, and the end of the files. Infomate EPROM log files work
differently.

38

Using Infomate

Firstly when you open an EPROM log file you do not know how big it will eventually be, so you
cannot store its length. This is solved by inserting a very large length into the length place in a way
that can later be modified, and then just writing the data into the file as it comes along. This has the
effect of creating (temporarily) a very large EPROM file, as long as the EPROM itself in fact, thus
reserving all of the remaining EPROM space for your log data. If at any time you wish to store
other files on the EPROM then you must ask Infomate to close the file. When this is done using the
Catalogue EPROM command, the file length is correctly recorded and the EPROM becomes
completely normal again. Because Filer does not know about log files, any attempt to save data to
EPROM when a log file is open will cause the Filer to say "Cannot satisfy request” which really
means "I'm so confused I just don't know what to say". Unfortunately Filer also uses this message
to mean "I've tried quite hard to write some data on a part of this EPROM and I've failed”. This
would happen if an EPROM were not erased correctly for example.

So if that is the theory of the matter, how do you actually log data on an EPROM. Its quite easy!
Add one line to your schema file (that holder of all your hopes and desires) and Bob's your aunty.
With the schema we have been playing with up until now, the change appears in the line 3 like this.

TITLE Fruit Ut Collector 30/7 RBJ
FILE WEIGHTS.DAT
LOG WE IGHTS \ ¢ Thereitis
1D
Fruit_No N3
DATA
Ueight N4.1
SEQUENCE
ENTER Fruit_No Key in the Fruit No.
MAKERECORD
ENTER Weight Key in Fruit weight
END

Now you might notice that the LOG statement does not have an extension on the LOG file name;
this is added on automatically by Infomate as the log file is opened and closed. The extensions
follow the pattern of adding ".LG0" to the first log file created, ".LG1" to the second and so on up
to ".LGZ". You can only use the schema file above if you have an EPROM in place. Try it.

EPROM's and Printers 39
D Fil k ing Infom

If you are not logging to EPROM, your data files may need to be copied onto EPROM more often
than schema files. So a special command is incorporated into Infomate to perform this task directly.
In fact the command just takes the Z88 through the same steps that you would use if you used the
Filer. This will be obvious when you run the "Backup to EPROM" module in Infomate. One
additional feature of the Infomate version of this command is that Infomate will first check if there is
enough space on EPROM before proceeding. If there is not then Infomate will give up in a tidy
way. Note that if you are using log files (see below) you will need to close that log file before you
can save your data to RAMdisk. See the notes in the EPROM cataloguing section below.

loguing the EPROM and thin

While the filer provides an EPROM Catalogue command, this does not provide much information.
Deleted files do not appear, it doesn't tell you the file lengths, it doesn't tell you how much space is
left, and it does not handle log files. So we wrote a new one called "EPROM Catalogue" in the
Infomate menu. It is not fast, but it tells you all you ever wanted to know about your EPROM files.
The Infomate EPROM catalogue has one additional feature, it allows you to close any log files that
are open. These files do not have to be created by that particular Infomate so you could in fact close
an (Info)mate's log files by putting their EPROM into your Z88!

Recovering the log

When the EPROM log file has been closed by the catalogue command in Infomate, it becomes a
fully compatible Z88 file and may be loaded back into RAMdisk using Filer commands. Its data
will be in chronological order of its construction and will usually be an exact replica of the data file.
Any difference will only be in the order of the data in the file. Because the log can be closed and
reopened a number of times your data may be fragmented over a number of log files which can be
merged together using Pipedream using the OFL command with the insert-at-cursor option. Note
that when loading your data files into Pipedream and resaving them, the size of every record must
match the schema file definition. If any single record has one more or one less character than this,
then Infomate will become horribly confused. Further data on this point will be described later in
the miscellaneous topics chapter.

40 Using Infomate

Logging to a Printer

Rather than logging data to EPROM, it is sometimes nice to log your data to a printer. This gives
you a nice piece of paper which even if it gets wet and muddy gives you that ring of confidence
feeling as you drive back from your day of data capture. Providing you have a suitable printer,
logging data to it is easy. Insert the statement

LOG PRINTER

after the FILE statement in your schema and the data will be logged to the printer in the same way
that it was logged to EPROM above. Note that as with all Infomate reserved words use PRINTER
(in capitals) not Printer. The latter will save data to a log file on EPROM called Printer.LGO which
is probably not what you intended.

If your printer needs special care in the baud rate or parity department, this can be handled by setting
the printer to the default settings for the Z88 (9600 baud, No Parity, No Xon/Xoff flow control), by
setting the appropriate panel settings using B S , or directly using Infomate. For example

LOG PRINTER[1200EN]

will run your printer at 1200 baud with Even Parity and No Xon/Xoff flow control. Note there is
no gap between the characters R and [. Details of the available options here are provided under
PORTIS in the Reference section.

Unfortunately as the Z88 has only one serial port, it is not possible to log to the printer, and capture
data directly from scales and other equipment connected to the serial port. If this conflict arises try
logging your data to EPROM which is much tidier.

Updating an existing file 4 1

UPDATING AN EXISTING DATA FILE

All of the discussion to date has been about creating new data files. In many situations new data is
to be added to an existing file rather than into completely new records each time. Two examples of
this situation are provided below.

in r i i

In some data collection tasks it is not possible to
collect all of the measurements relating to a
single record at the same time. A typical
example would be in the collection of herbage
drymatters which use the green weight of the
grass collected in the field, the weight of a
sample of that grass before it is oven dried, and
a post drying weight. All of these figures go
into the melting pot to produce a value for dry
matter per hectare for each plot. Can Infomate
handle such a task? It most certainly can. The following example assumes that all data is to be
entered into the Z88 by hand, and that a log is to be kept so that all stages of the data capture are
secure.

Task 1 is to collect green weights. It is performed by the following schema file. Note that space
has been provided for the pre and post oven data even though this schema does not collect that data.

42 Using Infomate

So here goes. This file should be saved as HERBGRN.SCH .

TITLE Drymatter Suite - Green Capture RBJ 31/7
FILE HERBIE.DRT
LOG HERBIE
ID
Plot_No N2
DATA
Gn_Ht NS. 1
Sm_Ht NS. 1
Dy_Ht NS.1
Vield N4.1
SEQUENCE
ENTER Plot_No Keyin Plot HNumber
MAKERECORD
ENTER Gn_Ut Keyin Green HWeight(kgs)
END

Well there isn't very much there that has not been done before. There are more data fields, and
some aren't mentioned again after the definition stage. But it will allow you to fetch green weights.

So having done that lets add some pre oven sample weights using the following schema that we will
call HERBSAM.SCH .

TITLE Drymatter Suite - Sample Capture RBJ 31/7
FILE HERBIE.DAT
LOG HERBIE
ID
Plot_No N2
DATA
Gn_Ht NS. 1
Sm_Ht NS. 1
Dy_MHt NS.1
Yield N4 .1
SEQUENCE
ENTER Plot_No Keyin Plot Number
F INDRECORD
ENTER Sm_Ht Keyin Sample Weight(gms)
END

And that is almost the same as the first schema except that it fetches the sample weight field rather
than that for green weight. Also there is a slight difference in the third to last line. That statement

Updating an existing file 4 3

FINDRECORD looks through the file that already exists and locates the record that has the same
Plot_No . The new data is added to the file and it is stored in RAMdisk again.

You can probably guess what the third schema looks like. Let us call this one HERBDRY.SCH .

TITLE Drymatter Suite - Post Oven Capture RBJ 31/7
FILE HERBIE.DAT
LOG HERBIE
1D
Plot_No N2
DATA
Gn_Ht NS .1
Sm_Ht NS.1
Dy—Ht NS .1
Yield N4 .1
SEQUENCE
ENTER Plot_No Keyin Plot HNumber
F INDRECORD
ENTER Dy_Ht Keyin Dried Weight(gms)
LET Yield = Gn_Wt * Dy_Ht / Sm_Wt * 10000
END

Well it is almost the same except for that line second from the end. This line calculates the drymatter
per hectare assuming that the plot that was cut was 1 square metre. It doesn't look too complicated.
More details on the LET statement can be found later in this manual. End of task. Each of the three
schema files above would be saved with the names indicated and the operator would compile and
run them as required by the task to be performed. Thus, if green weights were to be collected,
compile and run the HERBGRN.SCH etc.

Because these three schema files are so similar they would be created by typing the first schema,
saving it, making the required changes and saving again with a new name. This would be repeated
a third time to obtain the third schema.

During each stage of the data capture itself, the records would be logged onto EPROM so that at the
end we would have three copies of the data records, each copy becoming more and more complete.
You may see many possibilities for this sort of data capture.

44 Using Infomate

n_anim ighin xampl

In many animal weighing tasks the data describing the animals IDentification and perhaps its
previous weight already exist and a new field of data is to be added to the file at each weighing.
This previous information most likely comes from a larger computer and its presence allows quite a
few checks to be made on the data as it is collected. This improves the integrity of the new data. To
demonstrate this an example will be worked through that assumes the data for animal ID and
previous weight already exists in a file. If you want to try this you will have to create the earlier file
either on another computer, or if you are clever, by writing a little schema file to do the task for you.

The classic animal weighing task which performs full checks on ID, animal already weighed, and
comparing current weight against previous weight is as follows.

TITLE Animal Weighing Demo

FILE ANIMAL . DAT
LOG PRINTER
ID
Tag N3
Colour L1
DATA
Old_weight N4.1
New_weight N4 .1
SEQUENCE
ENTER Tag Enter Tag HNo
ENTER Colour Enter Tag Colour
FINDRECORD
IFFAILGOTO ENTER Tag
CHECKDONE New_weight
IFFRILGOTO ENTER Tag
LABEL 1
ENTER New_weight Enter WT(nn.n)
CHECK New_weight Old_weight -1.0 +3.0

IFFRILGOTO LABEL 1
END

There are a few things in this schema that look interesting. Most of it is pretty standard until we see
the IFFAILGOTO . This statement follows a FINDRECORD and if that fails to find the record
with the ID typed in, then it will take the operator back to the ENTER Tag statement so that they can
re enter the ID. The CHECKDONE statement is ensuring that the field New_Weight does not
already have a weight entered in it. If it does, then an animal purporting to be the one with the tag

Updating an existing file 4 5

just entered has alréady been weighed. Clearly one of them is an impostor. Once again an
IFFAILGOTO takes the operator back to the ID entry.

Once the operator gets through all of this ID checking stuff there is still a potential problem ahead.
After the weight has been entered it is checked against the earlier recorded weight. If it is more than
1kg below the previous weight, or more than 3kg above, then suspicions are raised and the animal
weight is asked for again. Finally the animal data is recorded, and this time it is logged on a printer
rather than on an EPROM.,

It is worth noting here that the CHECKDONE statement produces a more serious FAIL than does
the CHECK. This is because, intuitively, if you continue after a CHECKDONE has failed you will
be overwriting data that you had collected earlier. By contrast, a CHECK failure does not imply
destruction of data. Infomate handles this by allowing you to continue with a wamning after a
CHECK statement fails, but preventing you from continuing after failing a CHECKDONE.

An example of a short segment of the data in an animal weight file conforming to the above is
shown below.

504031.0
514022.824.2
514R33.935.1
522B34.0
531Y27.028.9

etc.

46 Using Infomate

ETTING LAZY WITH THE ENTER STATEMENT

A major problem that occurs
whenever anybody does
something a lot is that they
sometimes start thinking
"wouldn't be nice if this could be
done with a little less effort” . As
a result, somebody else (i.e. me)
who wasn't contributing any
effort towards the original task is
given a bigger task so that the
original person doesn't have to
have such a big task. If you catch my drift. Well that happened to the very earliest Infomate that
only had one ENTER statement. These are some of the hopes that were expressed. Try the
solutions offered in your own schema files.

PROBLEM "I get 2 records from each plot and don't want to type the plot number twice".

Solution: use ENTER?< rather than ENTER and you will be given the option of using the
previous value that you typed by just pressing the [ERTER] key. The value previously entered will be
displayed and if you wish you can edit that previous value. Think of this ENTER?< as ENTER-
Optional-Previous. i.e. the ? means optional and the < means previous.

PROBLEM "All my data comes from one plot and I only want to enter plot number once".

Solution: use ENTER=< rather than ENTER or ENTER?< . This will force the value for this
record to take on the value typed previously for this field. Call ENTER=< by the name ENTER-
Equal-Previous. Now if the value is forced to be that used previously, it implies that once you have
typed it once you cannot change it. Of course this cannot be so. To change it type an 1 key when
at the next ENTER statement in the sequence and you will be taken back to the previously executed
ENTER and will be allowed to edit the previous value. This scheme can be used throughout data
entry to change your mind about what you want to put in the current record. Once you have entered
the correct value use & or ERTER] to move forward again.

PROBLEM "Each plot number is the previous plot number plus 1, can't Infomate help"?

There are two options here and they are closely related to the previous ENTERs. They are
ENTER?<+ and ENTER=<+ which are called ENTER-Optional-Previous-Plus and ENTER-
Equal-Previous-Plus respectively. Each of them will add 1 to the previous value typed and will
either use this as an optional value (the ?<+ case) which you can edit or accept by pressing [EHIER] ,
or will force the incremented value into the field (the =<+ case).

Variations on the ENTER statement 47

These incrementing ENTERs are probably best demonstrated by a short segment of a sequence.
This sequence collects data from a number of rows (row number only changing occasionally) of
sequentially numbered trees.

ENTER=< Row_No Enter Row number
ENTER?<+ Tree_No Enter Tree number

On the first time through, the sequence will ask for row number (operator types 1), then tree number
(operator types 1) and further data is collected. Second time through, the row number for the
second record is set at 1 and the operator sees

{(Infomate) (c)RBJ.89

Enter Tree Number 20

1

46.9 12.4 2.1

By just pressing the tree number will be set at 2 and processing may continue. When the
end of row is reached, the Tree number offered will be one greater than the number in the row and
the operator knows that a new row number must be entered. This is achieved by pressing T to
move back to the Row number statement, entering a row number of 2, and then entering a tree
number of 1 again. Note that the T operation is the only way that you can change the value in an
ENTER=< or ENTER=<+ statement.

I suggest that you try one of these examples to get the hang of it. Take care when using two
ENTER=<+ statements in the same schema. Both will increment for each record which is most
likely not what you want.

PROBLEM "I work one row from tree 1 to 50 and the next from 50 to 1, what do I do"?

There are narks in all walks of life! There is a solution, although it is a bit of a fiddle. If your tree
number field in the above example is an N2 field then to create a negative counting sequence enter a
value of -150 (note the minus). Now -150 plus 1 equals -149. If you only look at the last two
digits then you have created the sequence 50, 49, 48, ... And what's more it works. When the
sequence gets to 00 its time to use the™ key to return to the row number question again and add one
to the row number.

48 Using Infomate

PROBLEM "My plots are numbered 1 to 8 and I'm sick of pressing [ERTER] "

Some people! But I suppose I'd better oblige. Use an ENTER| then you will not have to press
provided you type enough characters for the field. For the N1 field used for plot numbers
by the questioner, just press the plot digit. If there were 50 plots then you would need to press two
characters. e.g. for plot 52 press a 5 then 2, and for plot 6 press a 6 then ,or 0 then 6.

PROBLEM "I think of my animal IDs as a single unit even though it uses 3 fields”

There is a lot of this going around in animal circles. Anexample is a two field animal ID comprising
a three digit tag number and single letter tag colour i.e. N3 plusL1. The animal handler might call
out "128Yellow". This would be translated by the Infomate operator as 128 [EFTER] Y [ERTER]

which is a bit of a handful. Two options are possible here. Use an ENTERID which allows you
to type 128Y [ENTER] without the intervening . Alternatively use an ENTERID| which
allows you to type 128Y without any s at all. Both of the statements fetch an entire ID
region in a single line and dissect it down into its component parts.

Now these ENTERID:s are a bit clever when you have tag numbers that are shorter than the full quid
as it were. In the above example the old man of the flock, with tag number 1-Green can be handled
by pressing 1G[ERTER] or 001G or 01G whichever takes your fancy at the time. Remember
however that it must be possible to sort out which character comes from each field. If you had a
two digit row number and a two digit tree number, an operator pressing 123 to mean row 1 tree 23
should not be disappointed to see the data entered as row 12 tree 3. We cannot please everyone.

PROBLEM "I want to edit the data that was previously held in the file"

An example here is a status (not that held by yuppies). I believe that it is common for animals to be
proclaimed dead when they didn't turn up for last months weigh-in and then to turn up again live
and well. So if an L4 field were set up as State_of_Health this would normally show the characters
LIVE. If this field were processed by an ENTER? statement the screen might show

{(Infomate) {(c)RBJ.B9

Current Health? 0K? LIVEN

123 ¥

Press [ERTER] if the animal in the race is alive, and type DEAD [ERTER] if it has just died.

Error Checking 4 9

CHECKING FOR ERRORS

Errors are very easy to make in field situations and Infomate would not be very useful if these were
not easily located. Infomate can be programmed using the schema file of course to check data as it
appears. But first, let us look at the philosophy behind Infomate errors.

Infomate error Philosophy

In the Animal weight capture examples above, the concept of error checking was introduced, but
was not explained fully. In this section all of the CHECK statements available in Infomate will be
discussed, and the various GOTOs as well.

The philosophy of errors in Infomate is that if a non catastrophic error is detected during the running
of a sequence, it is not displayed immediately, but rather it is recorded for the operator to test.
Errors come in two types which we call FAIL or WARN. A FAIL error is one that will eventually
prevent you from proceeding. An example is if a FINDRECORD does not find the record you
specify. If a record is not found then there is no way that the data can be stored because Infomate
does not know where to store that record. That is a FAIL error. By contrast a WARN error is one
that is left for the operator to decide if it is of sufficient concern to stop further processing of this
record or not. An example of a WARN message is one where an animal weight is checked against a
weight range and is found to lie outside the typical range. This could be caused by a weighing
problem such as two animals on the scales, or by obesity. The operator can quickly determine the
problem and make a decision. That is a WARN error.

A typical error check might follow a MAKERECORD like this

ENTERID Enter ID of animal
MAKERECORD
IFFAILGOTO ENTERID

30

Using Infomate

Every time the ID entered is found to already exist in the file the operator is given the following
options

(Infomate) (c)RBJ.89

ID Already Exists in Line 27
Retry, or Abort This Data Point? W

123 ¥

To which you can type R to return to the Line suggested in the IFFAILGOTO line which probably
allows you to re-type the ID again, or type A and return to the main menu.

If the IFFAILGOTO statement were not in the file then the operator would not discover the error
until the END statement was reached. At that point Infomate would tell you what the error was, and
if requested to Retry, would go back to the first step in the sequence so that you could step through
and correct the error. Normally it is best to use an IFFAILGOTO statement so that the error is
detected and corrected as soon as possible. In terms of errors you can think of the END statement
as the following pair of lines

IFFAILGOTO SEQUENCE
END

which restarts the sequence from line 1 if an error is discovered in the sequence.

In addition to these two error states, Infomate can post a catastrophic error which requires immediate
attention. An example is when a RAMdisk file is full. Such errors are not able to be handled by a
schema file IFFAILGOTO statement.

Error Checking 51

hecking th 11 is well

In addition to the errors that are posted by the MAKERECORD and FINDRECORD, there are a
number of error states that can be checked by the schema file writer. These will check the condition
specified and if a problem occurs set either the FAIL or WARN error states as appropriate.

The simplest CHECK statement is the CHECKDONE which looks at a field in an existing file to see
if the field specified has a value in it or is in fact blank. You might use the CHECKDONE to see if
an animal had already been weighed like this

ENTERID Enter the |ID
IFFRILGOTO ENTERID
CHECKDONE New_Height
IFFAILGOTO ENTERID

Now the CHECKDONE statement is a FAIL type error checker. If the animal has been weighed
then the data in the field must be protected at all cost. It may well be that the data is in the wrong
place, but that does not change the fact that the data there is data. To solve this problem you might
have to go back to the View/Edit mode and move the data to its rightful place and put blanks in the
field space before proceeding. Alternatively open up a Notes file in Pipedream and type in sufficient
information to recover the problem at a later date.

Two further CHECK statements allow you to check numeric ranges or for specific letter patterns.
The numeric checker has a format like this

CHECK New_Ueight Old_Height -1.0 +3.0
which is a WARN error checker testing that the field New_Weight is in the range
Old_Weight - 1.0 <= New_Weight <= Old_Weight + 3.0

If it is not, it will post the WARNing message "Outside Range in Line xx" like this:

(Infomate) (c)RBJ.89

Outside Range in Line xx
Press C to Continue ignoring error, RtoRetry, or A to Abort data capture @

3 25.3

to which pressing a C will allow you to ignore the WARNing message, pressing R will take you
back to the line indicated in the IFFAILGOTO statement, and an A will return you to the main menu.

Using Infomate

This form of check can also be used to test if a field has a value inside a specific numeric range
using a # character in place of the second field name above. Thus to test if a value will fit inside an
N2 field named Blotch_Count use

CHECK Blotch_Count 8 0 99
which checks that Blotch_Count is in the range
0 <= Blotch_Count <= 99
Note that the # in this case should be read as “...is a number between...” .

To check a letter field requires a slightly different format. Normally it is necessary to make sure that
the letter field entered is one of a relatively small set of options. An example to check if the sex letter
typed was an M or an F you could use

CHECK Sex *MF
or if you didn't mind which case the letters were typed in use
CHECK Sex *MFmf
either of which will post a WARNing message "Check Failed in Line xx" .

The meaning of the asterisk (*) in the above lines is to inform Infomate how many characters are
involved in the check. Thus if you wanted to check two character sequences, use two asterisks like
in the next line

CHECK Colour **BKBRROORYLGNBUU I GYUH

which will only allow the character pairs BK, BR, RD, OR, YL, GN, BU, VI, GY, WH. Note that
** is not a valid character pair in this case, but rather, it just lets Infomate know the size of the
groups.

The Serial Port S 3

USING THE SERIAL PORT AND SCALES

Up to this point all operations placing data into Infomate files have involved the keyboard and
various types of ENTER statements. Much data capture in the field involves the use of weighing
equipment. The transcription of weights from the scales to Infomate by hand is obviously a step to
be circumvented if possible. The approach taken in Infomate is to provide "drivers" for the different
devices that might be connected to Infomate and to make these drivers handle the idiosyncrasies of
each device and make them all look if not the same then at least similar. Because the Z88 only has a
single connection point (or port as we call it) for such devices, then only one driver can be in vogue
at a time. This does not mean that Infomate is limited to a single device on the port, but that if more
than one device is connected, then a driver for that combination must be written. Initially the
number of devices that are supported by Infomate will be limited to a few of the more popular weigh
scales and a set of electronic calipers and an analogue to digital converter. This list will grow with
Infomate.

To define which driver Infomate is to use, a single PORTIS line is added to the schema file
immediately after the LOG line, or the FILE line if logging is not enabled. This line has one of the
following forms

PORTIS METTLER-1
PORTIS SARTORIUS_1
PORTIS TRUTEST_1

depending on which scale is to be connected. A full list is provided under the PORTIS statement in
the reference section of the manual, and in the HELP facility of Infomate.

54 _

Using Infomate

In some circumstances it is possible to insert into this line any special initialising sequences that are
required. For example to set the Mettler driver to measure in imperial ounces you would use a line
like

PORTIS METTLER-1 U oz

Additionally, the baud rate, parity and Xon/Xoff status can be controlled by appending this
information to the Driver name like this.

PORTIS SARTORIUS_1[1200NY]

which sets the baudrate to 1200 baud, the parity to None and enables (Yes) the Xon/Xoff control.
Full details of the baudrate options and the drivers are provided at the rear of the manual.

OK, so that tells Infomate where to find the driver, how does Infomate fetch a value from that
driver? Provided the scale being used is capable of delivering a weight when the scales are steady
then data capture from the scales is particularly simple. Connect the scales to the 788 and replace
the ENTER statement that would be used to collect the weight from the keyboard with a
GETPORTstatement. Thus

ENTER Weight Enter Nashi weight
becomes

GETPORT MHeight Nashi MWeight is

where the message at the right is now displayed briefly after weighing the nashi and processing
continues.

A slightly different approach is required when using the GETPORT statement compared to the
ENTER statement. The ENTER automatically stops and waits for you to do something, while the
GETPORT just motors on. You will also need to let the operator know what they are to weigh and
make the sequence pause until the operator is ready. This can often be achieved as part of the
IDentification process.

Thus to weigh a group of fruit using a purely sequential number series the following schema
fragment may work for you.

ENTER?<+ Fruit_Number Heighing Fruit HNumber
MAKERECORD
GETPORT Fruit_Height Fruit UWeight is

The Serial Port S S

This would produce the following screens

(Infomate) (c)RBJ.89

Welghing Frult Number 3 W

If the fruit number was correct then place the fruit on the scales and press [ERTER] . You will see the
brief display

(Infomate) (c)RBJ.89

Fruit Height is 25.3

3 25.3

and will be returned to the fruit number step. If the operator needed to see the weight for visual
checking purposes then add some ~ characters to the end of the GETPORT statement like this

GETPORT Fruit_Weight Fruit Weight is ~7~

This will cause the program to pause for about three seconds (1 second per ~) with the weight
displayed, before continuing automatically. Alternatively a DISPLAY statement could be used.
This is described in the reference section later in the manual.

Similarly if you wish to wake the operator up when the fruit is to be weighed, put some ! characters
in the message. These will beep the Z88 speaker once for each ! character.

Some pieces of equipment that you might connect to the serial port require no human intervention at
all. In factit is a pain in these cases to have to observe some meaningless voltage being displayed to
nobody in particular. In these cases leave the message area of the GETPORT statement blank and
the GETPORT will proceed quietly with no bells and whistles, and without displaying its presence.
Another place for this is where the number fetched needs some calculation performed on it before it
is displayed.

Using Infomate

The following sequence segment shows this in the case where an imperial scale is being used to
capture metric weights

DISPLAY Load scales!!
GETPORT Imp_Ht
LET Met_Ht = Imp_Ht/2.2

DISPLAY Met_Ut Wt MWas™"
Which is roughly equivalent to the following code for a metric scale
GETPORT HMet_Wt Load Scales!!™™

If at any stage you step backwards through your sequence to correct an earlier mistake, you are
given the option of re-weighing the fruit, editing the weight that was obtained, or skipping over the
GETPORT and using the value obtained like this

(Infomate) (c)RBJ.89

Fruit Ueight is 25.3
Press R to Repeat, E to Edit, A to RAccept MW

25 .3

The edit option may be useful in an animal weighing situation when the animal has left the weigh
scale and is running at full tilt towards the far blue yonder, and therefore cannot be re-weighed.

The Serial Port 57

The Driver Test Module

When you are setting up a link to an electronic scale or other equipment on the serial port it is
usually inconvenient to create a special schema to test that the two pieces of equipment are
communicating correctly. The Driver test module is the tool for this as it mimics all of the
commands that you might use in a normal schema.

Before you can use the driver test module you must compile a short schema that contains the
appropriate PORTIS statement, complete with any baud-rate and parity options if required. This
schema will need an ID and DATA field, and a dummy sequence region. Probably the easiest way
is to just grab any old schema and insert the appropriate PORTIS line and save it under a new name.
Compile the schema and then after connecting the serial port equipment to the Z88, press the D key
to execute the "Driver Test Module" from the main menu.

The Driver test will first initialise the serial port and driver selected, and then present you with a
small menu of commands. If you type a G command it will simulate a GETPORT, and display the
resulting values on the screen. An S command will mimic the SETPORT, but will first ask you to
enter the message that the SETPORT is to send to the device. You can Tare the serial port device if
Taring is appropriate and is allowed for by the driver using the T command. In some situations this
may be the only way that you can Tare a remote device.

The I command will reinitialise the serial port device and the driver and may be needed if you have
modified the parameters of the equipment connected. For example if the initial attempt at getting a
weight from some scales showed a string of garbage characters, you may have set the scales baud-
rate incorrectly. Change the baud-rate to the right value and issue an I command to get going again.

When all functions check out correctly you can return to the main menu using the Q key to access
the Quit command

Using Infomate

DESIGNING A SCHEMA FILE

In the previous chapter you have been presented with a number of schema files to perform various
tasks and you have probably gained an idea how to form them. In this section a strategy for
developing a schema file is introduced. If you follow this procedure for your schema design tasks
you should end up with workable schemas every time.

All schema designs start with the design of the data file and once that is complete, the schema more
or less creates itself. For this example we will use a horticultural task capturing two fruit diameters
and a maturity score on five fruit collected at random from each tree in two rows of 10 trees. The
fruit will be identified by row number, tree number and fruit number and the diameters will be
recorded to 0.5 mm. Maturity scores will use the letters I, F, P, R, M. Additionally a comment
field will be provided with about 10 to 12 characters.

Let's first create a data sheet that contains as many of the unusual values that can go into each field
as we can think of, as well as indicating the typical form of the results. This is the key step in the
process and is shown opposite. From the data sheet we can see that the data columns are the fields
and the data rows form the individual records for each tree. Each record has a unique ID formed
from the three fields containing Row, Tree and Fruit Numbers. The four DATA fields for each
record are respectively Largest Diameter, Smallest Diameter, Score, and Comment.

By inspecting the form of the numbers we can find the maximum width needed for each column,
and can specify the two diameter columns to have one decimal place. A format of N4.1is
appropriate here.

The TITLE and FILE lines are specified from the data sheet title, and because we are to use
Electronic calipers we need to define a driver (PORTIS MAFKCI_1) and use GETPORT statements

to capture these numbers.

Because Row No and tree Number don't change very often the ENTER=< form of the ENTER
statement is selected. This means these numbers will only be changed when we move to a new tree
or new row. Fruit is always handled in a 1 to 5 sequence so Infomate can be given the task of
incrementing that number.

When all ID's have been entered we must MAKE a RECORD to check that the ID is valid and that
there is enough space. Each of the data fields can then be fetched. Note that the Score field must by
definition be a single character so the ENTER]| style is used. The comments at the end will
normally remain empty but this gives us a chance to step back through the entry procedure if we
decide to change our minds.

Designing a Schema File 59

Prepick Frult Inspection Data Sheet
Date:
Row Tree Fruit Largest Smallest Score Comment
No. No. No. No. Diam
1 9 5 69.5 47.5 I WIND DAMAGE
1 10 1 68.5 24.5 P MITES
1 10 2 8.0 16.0 F SUNBURNT
1 10 3 f R
L 10 B { These two fields from el
- 10 ° electronic Calipers }7
2 1 1
\ A J
Y. Y
1D Fields DATA Fields FIELD
[T2 [v |« | 4 |+ | 12 WIDTHS
TITLE Pre Pick Fruit Inspection
FILE PPFIDAT
PORTIS MAFKCI-I
D
N oz Row_No NI
N . Tree_No N2
Ramm—— Fruft_No NI
DATA
Large_Diam N4. 1 S i
Small_Diam N4.1 U -
Score Ll 3 4
Comment L12 - <
SEQUENCE
% B~ ENTER=< Row_No Row?
~ B= ENTER=¢ Tree_No Tree?
“———»= ENTER?7<+ Fruit_No Fruft?
MAKERECORD
IFFAILGOTO ENTER=<
GETPORT Large_Diam Large? R
GETPORT Small_Diam Small? <
ENTERI Score Score? D
ENTER Comment All OK? "'—J
END

When a schema is seen in the form above, it looks very straight forward. We may wish to add
various CHECKS to ensure that the data fields, (and perhaps the ID fields too) have reasonable
values and that the Score is one of the letters I, P, F, R or M. These can easily be added if required.

60 The LET Statement

ARITHMETIC AND THE MEMORY

In an earlier section a technique for performing
arithmetic on field values was demonstrated briefly.
In this section this technique is elaborated. The LET
statement with its mathematical ability is probably
the most powerful of all of the Infomate statements
implemented. It allows the full power of the BBC
BASIC as used on the Z88 to be incorporated into
Infomate schema files to perform arithmetic
operations on number fields or to divide up letter
fields into pieces and then reassemble them in a
different from. As before the usage of the LET
statement will be demonstrated by examples.

It is not unusual to have pairs of fields that always take on the same values in certain circumstances,

or to have fields that are to be set to constant values. This can be achieved using LET statements of
the form

LET Fieldl = Field2
or

LET Field3 = 6.2

In these examples Fieldl and Field2 may be number fields or letter fields and Field3 must be a
number field (remember that the fields are defined in the ID or data region of your schema). Note
the spaces on either side of the = sign. The = sign should be read as "is replaced by" or "becomes”
rather than "is equal to". If scaling had to be performed on a field value you could use the following
form

LET TempC = (TempF - 32) * 9 / 5
which will change readings from Fahrenheit to Centigrade scales.

The arithmetic on the right hand side of the = sign must conform to certain rules such as evaluating
brackets first, multiply and divide next and plus and minus last. A full list of this calculation order
or "precedence” is provided in the reference chapters of this manual. In addition to the usual
algebraic components, Infomate supports a full range of trigonometrical and logical functions which
are also listed in the reference section.

Using the LET 61

Examples of these are

LET Area = Base ~ 2 * COT(RAD(Base_Angle))
LET Area = Pl * Radius ~ 2

In association with these statements is a pseudo field (i.e. it behaves like a normal field in a file but it
isn't in the file) called MEMORY. This may be used to store temporary results as part of the
calculation process. This field is a Number field and is large enough to hold any practical number.
An example of a calculation involving MEMORY is this monster which calculates humidity from
wet and dry bulb temperatures.

LET Uap = EXRP(?7.076-2.47*({1.46-(Dry/100))"2))
LET MEMORY = EXP(7.076-2.47*%((1.46-(Uet/100))72))
LET RH = (MEMORY-(.645+Dry*6.51E-4)*(Dry-Uet))/Vap

An alternative to this is to use SCRATCHPAD fields which are described later. One of the example
schemas shows the use of SCRATCHPAD fields in humidity calculation.

Letter Field LETSs

All of the above is fine for number fields, but what about letter fields? You can use LET statements
for these too, but a different set of rules applies when adding groups of letters to each other. Thus

LET State_Of_Health = "LIVE"

would set the field describing status to the four characters L, I, V and E. Note that the double
quotes must be placed around the characters in the LET statement, but that they will not be placed in
the file. You could achieve the same thing using

LET State_of_Health = LI o+ “UE"
which demonstrates how strings of letters may be added together

There are also techniques to extract parts from groups of strings of letters. All the following are also
equivalent to those above and produce a field with a "value" of "LIVE".

LET State_O0f_Health = LEFT$("LIVE SHAKES",4)
LET State_0f_Health = RIGHT$("SNAKES ALIVE",4)
LET State_0f_Health = MID$S("OLIVER TUWIST",2,4)

With LEFT$, MID$ and RIGHTS$ you can rip up and repair strings to your hearts content.

62 The LET Statement

hen i mber _n mber?

It is sometimes necessary to set a Number Field to the "missing value", which is a string of blank
characters in the Field. Now that poses two problems. The statement

LET NUNMBER = ! " \will not work

because there are characters (i.e. blanks) on the right and a number field on the left. Also, Infomate
in its wisdom would reduce all of those nice space characters on the right to a single space. To
solve both of these problem use

LET MNUMBERS = "

Note that the dollar at the end of the field name means "pretend this field is a letter field", and the
single space character will be expanded to enough space characters to fill the field. Now you must
be careful here because blanks are the only valid non numeric things that can occur in a number
field. Thus

LET NUMBERS = "From the Left" \does Not Hork

MEMORY and letter

Earlier in this chapter you were introduced to the concept of the MEMORY pseudo number field.
i.e.. MEMORY is like a field and stores numbers. You can also use MEMORY to store strings of
characters by calling it MEMORYS$. Now take care here becauss MEMORY and MEMORYS are
actually the same place in the Z88 memory and the $ just says whether to think of it as a number or
as a string. You can therefore use

LET HMEMORY$ = "Don't forget this"

or any of the other string constructs above.

LET. TEST and the GOTO

The LET statement has a useful side effect which allows you to branch to different parts of your
sequence file. Every time a Numeric LET is calculated, a flag is set to say whether the result was
equal to zero or not. Your schema file can then test that flag to decide what to do next. It is normal
to consider flags not as "zero/not zero" indicators, but rather as false/true indicators with zero being
false. The TEST statement allows you to perform the same tests without actually storing the result.

Using the LET 6 3

An example of the use of the GOTO feature is when a schema file must collect different information
depending on the value in a field. Consider this sequence

ENTER WERTHER Is it WET or FINE?
LET MEMORY = (WEATHER ="WET")
IFFGOTO LABEL FINE

ENTER RAITNFALL How MWET?

LABEL FINE

Now the second line asks whether the weather is wet, and will set MEMORY to FALSE (or 0) if it
is fine and to TRUE (not 0) if WET. The third line then asks IF the previous LET gave a False
answer (i.e. 0) and if so would GOTO LABEL FINE in the sequence. This neatly by-passes the
RAINFALL data entry when the weather is fine.

Now you do not have to use MEMORY in the LET statement, any field will do. In fact it is normal
not to store the result of the test anywhere. You could equally well replace the second line with

TEST (WERTHER = "HWET")

which reads better anyway. In addition to the IFFGOTO there is an IFTGOTO with the opposite
function of IF True GOTO .

The logic in these types of expressions can become quite complicated and the reader should record
in the back of their minds constructs like

TEST = (Sex = "NM") AND (Status = “LIUVE")
IFTGOTO LABEL Man_Alive

which will only go to LABEL Man_Alive if both the field Sex is "M", and the field Status is "live.
Similarly,

TEST = (Sex = "M") and (Age < 18)
IFTGOTO LABEL Boy

requires Sex to be "M" and age to be less than 18.

If you use the TEST statement to check the size of numeric fields, you should take care because the
Z88 can represent numbers to about 9 decimal places, and that means that numbers that you think of
as identical, Infomate may think are different. For example 6.0 and 5.99999999 are, as far as you
and I are concerned, both 6 when it comes to counting kiwifruit. Infomate 'knows' that these
numbers are different.

64 The LET Statement
To avoid this use
TEST Fruit_Count < 6.5
rather than the more logical
TEST Fruit_Count <= 6
Similarly, use
TEST ABS({Fruit_Count - 6) < 0.5
to test for Fruit_Count becoming equal to 6. While this may appear a little cumbersome, it is
guaranteed to work, where
TEST Fruit_Count = 6
may fail sometimes.
ET 1d val

You may recall in an earlier section the ENTER=< instruction was introduced. This allowed a value
entered into the previous record to be used for the current record. This was useful when a field such
as an orchard row number held the same value for a number of records. It is also possible to use
this type of construction in LET statements. Thus to set a field to the value held in the last entered
record use the term (<) immediately after the field name. For example

LET Field!l = Fieldl (<)

will move the value held in Field1 in the last record processed forward into this record. You can use
the (<) term on any field name in any LET or TEST expression.

This concept of the current record and the previous record needs a little elaboration. When you start
at the beginning of a Sequence region, all fields in the current record are set to blank so that you start
with a clean slate. At the END of a sequence, and after the values have all been saved on RAMdisk,
all of the “current record” values are stored in a special place called "previous record". Now you
can select which of these two values to use by referring to the field by name which uses the current
value in the field, or by using the field name followed by (<) which refers to the previous value. In
a similar way the ENTER? statement always refers to the current record, while ENTER=< and
ENTER< refer to the previous record the first time they are used, but refer to the current record if
they are backstepped to using the T key. The ENTER=<+ and ENTER?<+ instructions do the
same but increment the value from the previous field first.

Using the LET 6 S

h RATCHPAD

No this is not the corner of the dog kennel, but is another little trick for the more experienced
Infomate user. Often there is the need to have fields that are not to be stored in the file, but rather
are just to take on intermediate values as part of the calculation process. Also it is often nice to have
fields that carry values from record to record without the need to save them in the file. This is the
function of the SCRATCHPAD.

Lets demonstrate SCRATCHPAD using a trivial example. We are to collect temperatures at a
number of sites, but our thermometer measures in Fahrenheit and being a scientific trial the results
must be recorded in centigrade. We could take a pocket calculator with us but surely the Z88 could
do the task? Sure can! Consider this schema:

TITLE Getting the TEMP

FILE TENMP.DAT
D
Site_No N3
DATA
Temp_C N3.1
SCRATCHPAD
Temp_F N3.1
SEQUENCE
ENTER Site_No Site?
MAKERECORD
ENTER Temp_F Temp in Degrees F
LET Temp_C = (Temp_F-32)*5/9
END

The only part of that schema that is different is that Temp_F is declared in a SCRATCHPAD area
following the DATA area. The resulting record on RAMdisk would only contain the two fields
Site_No and Temp_C; the Temp_F field is ignored and only serves as a calculation intermediate.

It is worth noting that scratchpad fields are completely optional, and that all of the scratchpad field
values are maintained from record to record. Another way of thinking about these scratchpad
fields is to view them as MEMORY fields that you have given names to; they behave exactly the
same way, can be displayed, captured in a GETPORT or ENTER, and can even take part in the
more sophisticated counting operations described later. The only thing that they will not do is allow
you to have more than the maximum number of fields. i.e. they count as normal fields in terms of
their space requirements in memory. Those who have programmed in higher level languages may
like to think of scratchpad fields as global variables, or alternatively as temporaries depending on the
application they are being put to.

The LET Statement

When you refer to a scratchpad field using the (<) notation as for example Temp_F(<) , you are
referring to the value that the SCRATCHPAD field held at the point that the previous record was
saved to RAMdisk. This can be used to advantage if a field is to be changed to a value that depends
on its previous value. For example, if you were counting data records, the statement

Count = Count+1

would increment everytime you passed through it even if you were just backstepping using the T

key, whereas

Count = Count (<) +1

would behave predictably, and only increment once whatever path you took through the schema file.

Tim

n te 6 7

TIME AND DATE AND THE STOP-WATCH

Inside the Z88 is a real time clock that can be used to time
events or to record when they occurred. Provided that you
keep the clock correctly set or at least don't do anything to
upset it, you will be able to use a number of time keeping
functions with the aid of the LET statement.

rding tim n

The general form of the time function is TIME(argument),
and it can be slotted at any position on the right hand side of
a LET statement. The argument in the brackets is a way of
letting you tell Infomate which particular time function you
want. The following table lists the argument values along
with their functions and the size of field that they will produce for the last second of 1991.

Function Meaning Format _Example
TIME(HMS) Hours Mins Secs N6 235959
TIME(HM) Hours Minutes N4 2359
TIME(DOW) Day Of Week N1 3
TIME(DOM) Day Of Month N2 31
TIME(M) Month N2 12
TIME(Y) Year N4 1991
TIME(DMY) Day Month Year N6 311291
TIME(DM) Day Month N4 3112
TIME(DOY) Day Of Year N3 365

Thus to set a field to the month number use the expression
LET Month = TIHE(N)

Month should be an N2 field unless you close down particularly early for Christmas when an N1
field will suffice.

You can truncate the values above by using shorter field sizes. For a two character year use a field
called Year with an N2 type and use

LET Year = TIME(Y)

The 1900 part will be chopped off without further ado.

68 The LET Statement

Timing events

One important point about the times and dates above is that some are not true numbers and you
cannot do arithmetic on them. Thus, computation of elapsed time should not use this schema
segment.

LET Elapsed_Time = Start_Time - TINE(HNS)

It will give you an extra 40 seconds in every minute and an extra 40 minutes in every hour. The
reasons will be left to you to discover.

PROBLEM "But I actually want to measure elapsed time".

Do not fret dear friend, there is another function in Infomate that will allow you to measure elapsed
time. This is the function called TIME(TIC) which counts in 1/100 th of a second intervals. It is set
to zero every time you compile a new schema so you can use it as a time since I started this schema.
It will last for some months before it gets too big for Infomate and will then start to behave a little
strangely. It is not normal for an Infomate user to go for months without recompiling a schema so
should not present problems. Another minor difficulty occurs if you adjust the Z88 clock back to
the day before you last compiled a schema. Due to a bug in the Z88, negative time is not handled
correctly in this case and the TIME(TIC) function suddenly becomes immense. But seeing that time
travel is not possible even on a Z88 this should not present any difficulty either. If it does, just
recompile the schema.

Time and Date 6 9

To use TIME(TIC) as an elapsed timer look at the following schema which was used to monitor
service time through customs at Auckland International Airport. It records number of passengers in
each group, how many bags they have and the date and time that they arrive at the customs desk.
Also recorded is the elapsed time during their customs clearance.

TITLE Airport Custom Service Investigation.
FILE AIRPORTCS.DAT
ID
Pax_Grp N4
DATA
Flt_Num L7
Date N6
Start_T N4
No_Pax N2
Bags N2
Service_T N3
SEQUENCE
LABEL ©
ENTER=<+ Pax_Grp Pax Group HNum?
MAKERECORD
IFFAILGOTO LABEL O
ENTER=< Flt_Num Flight HNumber?
LET Date = TIMe(ony)
LET Start_T = TINME(-HM)
LET MEMORY = TINE(TIC)
ENTER No_Pax Enter No of Passengers?
ENTER Bags No of Bags?
DISPLAY Pax_Grp Hit ENTER to End
LET Service_T = INT((TINME(TIC)-MENORY)/100)
END

This is an interesting schema file to try out. Type it in as shown and imagine you are recording the
movement of FLT TE120 through customs. If there is a gap in the flow of people you will need to
press the T to take you back to the Pax_Grp question so that a realistic start time for the group after
the gap can be taken. Otherwise the start of one group is assumed to be the finish time of the
previous group.

70 The LET Statement

Th idnicht problem_and how void i

You may have noticed a strange minus sign in the LET statements above which fetches
TIME(-HM). This avoids the midnight problem! Read on. Even though Infomate is reasonably
fast at computing expressions, it does take time. In certain circumstances it is possible that in the
short space of time between when Infomate fetches a date, and when it fetches the time, that the date
may have changed. This only happens if the date was taken just before midnight, and the time a
very short time later but long enough to pass the magic hour. You end up with yesterdays date and
todays time which will look perfectly valid in a months time, but will nonetheless be wrong. To
avoid this, Infomate allows you to use a negative argument to the TIME() function. If you use this
it will not look at the clock again, but rather will use the time and date that was collected for the
previous TIME call. That is why in the example above the first call is to TIME(DMY) and the
second one to TIME(-HM) . The DMY call actually captures a complete record of the time and
date, and the -HM call just extracts the bits from it that it requires.

You can use this to advantage to allow you to record the time since the last record was taken by
placing a positive TIME() at the end of your sequence and using a negative one at the start like this

LET Last_Sample = TINE(-HN)
etc.
LET MEMORY = TINECHN)

The field Last_Sample will end up with the time taken at the previous cycle of the sequence, and
MEMORY will be forgotten.

LEEP an her_animal

Infomate has a special schema
statement which puts it to
sleep. This is one way of
automatically shutting down
Infomate between observations
if you wish to conserve power.
SLEEP might be useful in
behaviour type studies where
there is often long periods of
nothing between the active periods. By placing SLEEP at the start of a schema the Z88: will close
down right at the start and wait for you to press the two [EHIET] keys. Immediately you do this it
will continue the schema perhaps by first recording the time of the event.

Time and Date 71

Those further interested in SLEEP should study this night watchman schema. Every time that the
night watchman passes the Z88 he has to press the two shift keys to wake it up. It will record the
time and go back to sleep. That way it saves batteries and ensures that the night watchman has both
hands on the job.

TITLE Night-watchman watcher RBJ 18/7

FILE WHENHE.DID

1D
Event N2

DATA
The_Time N4

SEQUENCE

LABEL START

LET MENORY = TINE(TIC)
SLEEP
ENTER=<+ Event Event HNumber
LET The_Time = TIME(HN)
TEST TINE(TIC)-NEMORY) < 6000
IFFGOTO END
DISPLAY The_Time YerTooQuickMate

GOTOLABEL START
END

If the night watchman returns too quickly to the Z88 he will get a rude message and the clock will
restart. Perhaps that is a little unfair.

I'he ALARM

Most of us associate ALARMs with SLEEP. So does Infomate if you wish. Using the SLEEP
statement above you can put the Z88 to sleep. With the ALARM that is built into the Z88 you can
wake it up again at regular intervals to ask you a series of questions. This might be used to allow
you to record your current project number so that your time sheet could be filled out automatically.
Use of the RND function at this point poses some quite amazing possibilities. But take care here
because the Z88 has a built in feature to prevent accidental operation of the keyboard if the Z88 is
woken up by the alarm when it is in your suitcase at 10 000 metres above the Arctic. You must
switch the Z88 off and then on again after the alarm is raised to allow access to the keyboard. The
alarm should be set to execute Infomate when it goes off. The procedures for this are laid down in
the Z88 manual, and are also described later under the Actronic ADAM driver module. In this
example the alarm feature is used to operate Infomate and the ADAM as a data logger.

Counting

THIS IS WHERE IT ALL COUNTS
ntin

Counting objects that present themselves to the observer in a random order is an extremely common
research task that manifests itself over a broad range of scientific endeavour. The task presented
here is perhaps typical; to observe a specimen under a microscope and to count cells of four different
types. The observer works systematically through a grid pattern displayed onto the viewing area
and wishes to count each cell type as it is found and identified. The cell types are defined as Flat,
Dished, Elongate and Cuboid and it is expected that up to 20 cells of each type could be present in
each sample. The data field definitions for this part of the problem would appear as

DATA
Flat N2
Dished N2
Elongate N2
Cuboid N2
etc.

The grouping of these fields adjacém to each other is important, although they do not in fact have to
have the same size. In the sequence region the data collection statement could be:

COUNTTYPE Flat FDEC

COUNTTYPE means we are going to count the quantities in the 4 fields (because there are 4 letters
in the right hand string) starting with the field Flat. Each field will be incremented when the
operator presses one of the single keys of the set FDEC. Thus to increment Flats just press an F,
press it again and it will increment again. To decrement the field press the [0EL] key and then the
letter of the field to be decremented. When all counting has been completed press the [ERTER] key
and sequence processing will continue. There are a few limitations to the usage of this statement.
Obviously it is not possible to increment letter fields or in fact any of the ID fields, and the definition
should not attempt to increment fields that are past the last data or scratchpad field (whichever is
last).

The letters do not in fact have to be mnemonics for the fields (i.e. F for Flat etc.) but might be
labelled keys on the keyboard, or keys in particular positions on the keyboard. For counting while
observing under a microscope you might be best to use the keys QWER or the digits 1234 because
of their more easily located position on the keyboard. The operator would then just remember
which finger to tweak to bump each field.

Counting Objects 73

Transects

The COUNTTYPE statement can also be used for indicating the presence of objects rather than
counting them. Thus, if the data fields were species of plants you could indicate that a species was
present in the observation plot by pressing the appropriate letter. This has obvious application in the
collection of transect data, where there may be a number of commonly occurring species at each of a
number of sites located along a transect line. Less common species are probably best left to a
general comment type field at the end of the main species fields.

Roll 11

The transect idea in the last section is rather like a roll call. Each type of object present has its letter
pressed and gets marked in the roll of fields. This scheme may have application in animal behaviour
studies where the animals observed at a feeding trough at particular times are to be recorded. In this
case it will be necessary to assign a letter to each animal if there are more than 10. Some form of
keyboard overlay might be appropriate for this.

i ram

In a way it is possible to think of the COUNTTYPE statement above as a histogram forming
statement which works on various categories or types of objects. There is a closely related type of
histogram that operates on sizes of a group of objects. An example might be a fruit sizing
experiment where fruit weights are entered through the keyboard and a histogram of weights is
formed in a number of fields. For kiwifruit trials we might arrange for 6 weight ranges in the
following way.

DATA

UNDERS N3

H65-84 N3
W8s-104 N3
H105-124 N3
H125-144 N3
OUVERS N3

etc.

74

Counting

Because the data is collected on many fruit the sequence must use a REPEAT UNTIL KEYPRESS
loop in the following way.

REPERT Sizing
ENTER MEMORY Fruit weight
COUNTSIZ2E UNDERS 6 45.0 20.0
UNTIL KEYPRESS

This would loop continuously until the ERTER] key was pressed twice rapidly. Each time round the
loop, the weight entered into the MEMORY "field" would be divided down to see which category it
belonged to on the basis that the first category is 45.0 to 45.0+20.0 , the second would be
45.0+20.0 to 45.042%20.0 etc. Any weights below 45.0 will be counted in the first category, and
weights over 165 will be counted in the last category. Obviously this will build up a histogram of
the fruit weights in the group being collected. In practice the ENTER statement might be replaced
by a statement to fetch weights directly from electronic scales or lengths directly from an electronic
caliper.

A variation on this would be to add a counter to indicate how many fruit had been processed. The
following schema fragment would do this automatically from scales

REPERT Sizing

ENTER?<+ Count Fruit HNumber
GETPORT MEMORY Fruit weight
COUNTSIZE UNDERS 6 45.0 20.0

UNTIL KEYPRESS

On the first run the fruit count would have to be set to 1 and the sgquence would pause showing the
fruit number on each cycle. When the fruit was on the scales the operator would press [ERTER] and
weighing would proceed. This would allow a specific number of fruit to be sized.

Displayving Fields

75

SOME MISCELLANEOUS TOPICS

Showing off vour fields

Occasionally there is a need to display the value in a field. This could be the value that has been
placed in the file from a keyboard entry, a value from a device connected to the Z88, or a calculated
value. This can be performed using a DISPLAY statement. The DISPLAY statement might look

like this
DISPLRY Status Current status is

Whenever this statement was executed in a sequence the screen would show something like

(Infomate) (c)RBJ.89

123

Current Status is Dead W

Yy 23.4 Dead

Processing would continue as soon as a key was pressed. The DISPLAY statement is often useful
to wait for scales to be loaded. One of the following two forms may be tried.

DISPLAY 1D Hit Enter to weigh
OR
DISPLAY ® Hit Space when ready

Note that the last of these has a hash character (#) instead of a field name. This will just display the
message without a field value, and should be thought of as the word “...message...”.

16 Miscellaneous Topics

ing Bells an histl

The DISPLAY, GETPORT and ENTER statements all show messages on the screen. To these
messages you can add beeps and pauses using the characters "!" and "~" respectively. These should
be added at the end of the message like this.

DISPLAY COUNT That was HNumber!!™""

which would beep twice (two !s) and show the message

(Infomate) (c)RBJ.89

That was Number 17

17 v 23.4 Alive

Then it would pause for three seconds (three ~'s) and continue without the need for a key to be
pressed. If you did in fact press a key, the three second delay would be immediately terminated.

Now you might like to put beeps (!) in all of your ENTER statements so the operator is warned that
data entry is required, and put pauses (~) at the end of all of your GETPORT statements so that the
data captured from the scales stays on the screen for a while after capture for you to inspect.

Decimals by implication

And for those who like life in the fast lane try this. It seems silly to put decimal point in every
number in a file when we know exactly where they will be anyway. This might make a difference
to the size of a big file. For example if we recorded 500 animals with three digit ID's and an N4.1
weight (e.g. 23.2) then 12.5% of the file would be decimal points. We could put another 62
animals in that space. For those conservative people who like to save space there is an implied
decimal format that eliminates the decimal. An N4.1 field with the point removed is described as an
N31 field. i.e. 3 digits with one implied decimal point. N fields that do not have a point in their
format are implied decimal fields. When the data is typed into an implied field you must type in the
decimal, but it will not be stored. For users without space problems forget implied decimals.

Just an aside on implied decimals. If you are using an ENTER| statement you will need to type one
character more than the field width to enter the data without hitting a return. An N31 field
compresses numbers like 23.7 down to 237 . However as you must type 23.7 you need 4
character spaces and not 3 as inferred in the N31 specification. If you do not want to type the
decimal point then use N3 fields (no decimals) rather than an N31 , and type 237 to mean 23.7 .

Decimal Points and Taking Notes 77
Taking notes on the fly

The Apple II Recording System used a concept called an "Exceptions File". This was a catch all file
into which the operator could put miscellaneous comments and notes to themselves about problems
or observations made during the data collection. It was also possible in that package to push data
records into the exceptions file at the press of a key as it were. Infomate does not have an inbuilt
exceptions file but it is possible to implement all of the functions of that file if a few more key
strokes are acceptable. Of course the way to do this is to use Pipedream. Once the schema file has
been compiled there is no further need to have Pipedream and the schema file sitting waiting.
Pipedream might as well be performing a more useful role. So make it an exceptions file editor.

To do this either open a new Pipedream from the left hand column of the Index, or go into an
existing Pipedream whose contents you no longer need (i.e. have saved), and press the key
sequence ®BNEW . This will clear the existing contents.

For a name for this exceptions file I suggest using an extension of .XEP which means exceptions.
It makes sense for the first part of the file name to match that of the data file that it is commenting
on. This means for a data file collecting fruit weights you might have the file set

FRUITUT.DAT
FRUITUT.SCH
FRUITUT.XEP

for the data, schema, and exceptions files. Now specify the current filename to Pipedream using
©OFC so that your files name is ready for the next time that you save the file.

Whenever you want to add a comment into the file just press OP and type it. At frequent intervals
save the Pipedream file to RAMdisk using OFS [ENTER] , and you may wish to save that to
EPROM occasionally too. To return to Infomate use OZI as usual. This approach also allows you
to edit previous comments, or arrange comments in different orders, or even in different sections for
easing later interpretation, or for giving to different people. The options are endless.

One point to remember here is that by saving the files in Pipedream format, they will have a few
extra lines added to them when they are read into another computer. If this causes you concern then
each time you save the files, or failing this, on the final time that you save the file, move the cursor
down in the "save file" box and change the assignment for "Save plain text"toa Y .

As an alternative to this it might be possible for you to leave a few dummy ID's in the file
specifically for the odd animal that comes along later. This means that you can collect all of the data
for that animal using the normal sequence, and just put a brief note into the Pipedream file to say
which animal it is, or even place this information into a comment field in the file itself. The options
are endless.

78

ing Pi ream In D

Pipedream can be used to inspect data in the standard Infomate format but care should be taken. If
the data is edited in Pipedream then the operator must ensure that all data records end up with the
same record length as that specified in the corresponding Infomate schema file. This can be done by
moving to each line that could have been affected by an edit and pressing 9 to ensure that the last
character in the line is in the correct position relative to lines before and after it. Thus repeated
application of the sequence {0 0 and observation of the horizontal movement of the cursor will be
an adequate check.

Also ensure that there are no blank lines at the end of the file before saving it. The character
sequence &0 should move the cursor to the end of the last record in the file and not to the blank
line after that. Finally, save the file using the "save plain text" option at the end of the file save

page.

File Transfer 79

FILE TRANSFER TO OTHER COMPUTERS

The Infomate developers
do not see the Z88 as an
appropriate medium for
handling data analysis, and
to that extent have not
provided any assistance in
this area at all. We suggest
that all of this type of work
is handled on a PC, a
Macintosh, or on a VAX or
larger computer. These
machines all have
sophisticated data
processing packages that
must always exceed the possibilities offered by the Z88. Even a fairly ordinary spreadsheet on one
of these computers is capable of doing a lot of data manipulation, and more sophisticated packages
like DataDesk on the Macintosh can perform quite marvellous data analysis. To this end all copies
of Infomate are bundled under licence with a copy of a program called variously PCLink, or
MacLink. Both of these are in fact the same package on the Z88 but have different programs
supplied for the computer to which they are connected. In addition to this Link program there is a
more sophisticated PC linkage program called RangerLink. This can be bundled with Infomate
under licence as well for a small additional cost. We recommend this Link package for PC users as
it offers higher data transfer rate, and much tidier backup of groups of files.

On top of these the standard Z88 contains two low level communication packages that might be
useful. These are a VT52 terminal emulator to provide simple terminal facilities, and a basic file
transfer protocol called Import/Export which is extremely good for moving files between Z88s.
Provided a simple driver is obtained for another computer, Import/Export can be used to transfer to
and from any computer. In fact drivers exist now for many common computers.

Lets now look at the individual file transfer packages and how to use them. The following picture
provides a summary of these packages and indicates which ones can be used for each combination
of computers.

80

File Transfer

me Possible Links Between the 788 an her T
1 MacLink or MacLink
IPCLink ROM Program
Kermit |«—»{ Kermit |
IPipedream Print | g| Mac Terminal
Command Emulator
RangerDisk 7
Drive and ROM
3.5Inch
MacLink or PCLink
PCLink ROM Program
Kermit [+ Kermit |
Pipedream PC Terminal
Print Command Emulator l
RangerLink RangerLink
ROM Program
Pipedream Print | Terminal
Command | Emulator
Import/Export Import/Export
Application = Driver?
Kermit < Kermit
—
[EPROM|
Import/Export Import/Export
Application Application
RangerDisk RangerDisk
Drive and ROM Drive and ROM
720k PC
Disk

MacLink and PCLink 8 1

Maclink and the Macintosh

The MacLink program on the Macintosh was written after the MSDOS version PCLink and the
higher level of user friendliness that has resulted from this is quite striking. Once the cable has been
connected between the Z88 and the "Telephone" port of the Macintosh, and the Link program has
been started up on both, all operations are then performed on the Macintosh. The Link program is
started by double clicking the Macintosh Application and by typing O L on the Z88. The Z88
becomes a "disk drive" for the Macintosh and may be selected using the DRIVE button on the
Macintosh screen. All file transfers are performed from left to right so the first task is to open up the
various "Folders" on the Macintosh, and the Devices and directories on the Z88 so as to have the file
being moved in the left column and the place it is going to on the right. Next the operator should
select the file conversion to be performed. This will normally be "None" unless the document is a
spreadsheet document or a normal word processing document in which case the appropriate
conversion can be selected. Next select the files in the left hand box that are to be moved using the
mouse click and perhaps the command or SHIFT key to select more than one. When all are
selected click the transfer box and file transfer and conversion if required will proceed. In practice
its simpler than it appears here.

The Link package is not fast (about 100 bytes per second) so have your coffee ready for larger files.

The cables required to link the Z88 to a Macintosh are provided with MacLink or may be built up

using the circuit details at the end of the manual.

PClink and the P

PClink is a fairly intuitive package to operate on the PC. Apart from its speed, it has a few minor
difficulties. It will only handle one file at a time, conversions to other file formats must be handled
as separate operations, and the conversions must be performed in the directory that contains PCLink
and the conversion modules. If these points are adhered to there should be no problems.

To operate the link connect the Z88 to the PC's COM.1 serial part and run PCLink on the Z88
using O L. All further operations are now handled on the PC. Move to the directory on the PC
containing PCLink and enter the command PCLINK. Communications will be established and a
display will appear on the PC showing the two computers in diagrammatic form.

To prevent conversion difficulties it is suggested that files that need to be converted be moved to the
PCLINK directory before conversion takes place. It is often best to work all transfers to and from
this directory. If you perform conversions in another directory the resulting converted files will not
contain any data.

84 File Transfer

Printing to a Terminal Emulator

One quite tidy method of transferring files to another computer is to use Pipedreams Print command
(€ PO) to send the file out through the serial port, and to set up a terminal emulator on that other
computer to accept the file as though you had typed it. Some terminal emulators allow the stream of
characters to be captured directly to a file on the main computer making this task even easier.
Obviously both computers must be set up 10 use the same baud-rate and other serial port parameters.
The only difficulty with this approach is that Pipedream inserts extra characters at the end of each
physical page as though it were printing (which in fact itis). These characters may be eliminated by
setting all Pipedream margin settings in the ¢ O (options) page to zero.

Note that you can use the Z88's internal VT52 emulator to talk to the host computer and prepare it to
receive the characters you are to send.

One Emulator we have used extensively on the Macintosh is VersaTerm Pro.

Unfortunately a method to achieve transfer in the reverse direction has not been found, but does
seem possible. The Z88 VT52 emulator might be usable for this, but is probably too basic in it's
operation.

Kermit
The Z88 User Club Program Library holds a very tidy implementation of Kermit for the Z88 which
operates in the BBC BASIC environment and uses about 15k of memory. Kermit is available for
every important computer known (?) and thus provides a very tidy transfer tool for the more difficult

computers. Unfortunately the Z88 Kermit does not currently offer a Server ‘Bye’ command which
limits it's usefulness in the mainframe computer environment.

File Conversion 8 3

FILE CONVERSION

There are almost as many data file formats as there are data manipulation packages, and all have their
own subtle differences to confuse and to anger the data collector. All have their own particular
reasons for choosing their particular formats, and most are perfectly valid. This means that in
general you will have to convert the file collected by Infomate before you can use it on another
computer. Infomate provides some internal means of doing this for a selected formats, and
techniques are provided later in this chapter to describe techniques using the target computer as a file
converter.

In summary the picture below shows some of the possible paths from the Infomate format file to a
form suitable to the target package.

Target Computer

Infomate System >
- nsert or remove linefeeds, TABs or

miter characters from the

Infomate Format
Data File

1 Compute
Composite
Record

Infomate
File
Convert
Module

Package
on Target
Computer }

Use
Parsing to
split data

Can some-
times use

data

| directly

860 File Conversion

The Fil nversion M 1

The main Infomate menu provides a basic conversion module to convert Infomate data files to and
from three file formats that will be useful in a range of applications. This program is not particularly
fast but should handle all of the possible scenarios for file conversion if Lotus 123 (or its
lookalikes), Microsoft Excel (and most Macintosh spreadsheets) or Pipedream on the Z88 are the
targets. In many cases these formats will work on other computers and packages as well. Details of
these formats, including that for Infomate are provided in the reference section of the manual.

To use file conversions you must first compile the schema file which describes the format of the data
file to be converted. Then select "File Conversion" from the main Infomate Menu. The conversion
module shows a screen like this

(Infomate) (c)RBJ.89
Current CONUERSION setting is: |Infomate Excel-Hac text file
E Excel-Mac text flle
L= L Lotus-123 .PRN file S Start Conversion
=g P Pipedream text file 0 Quit
Select: directlon, converslion, oand them act ion

The aim of the exercise is to choose an arrow direction and a file type to make the top line of the
screen indicate the appropriate conversion. The one indicated above shows a conversion set-up to
take an Infomate file and convert it to (&) Excel for the Mac. When the appropriate selection
has been made, press S to Start conversion.

You will next be asked to enter the Infomate file name. The default for this will be the file named in
the schema file and users should note that if a different file is entered, it is assumed to have the same
field format as that described in the currently compiled schema.

When the Infomate file has been selected you will be asked to enter the file name of the alternative
format file. If you are converting to Infomate form this file must already exist in :RAM.1, but it will
be created if you are converting an Infomate file to a new format.

Operation will start once both files names have been specified. If you use alternative names to that
specified in the schema file you will receive a warning to say that formats are assumed to be the
same as that in the schema, or that files will need renaming before use.

To exit from the file conversion module use the Quit command.

File Conversion 8 7

Pipedream and Infomate

The Pipedream files created by the file conversion module should be loaded into Pipedream "as plain
text" and when saved from Pipedream for conversion to Infomate form should also use "plain text"

format.

Note that although data files must be saved in 'plain text' form when using Pipedream, this is not
necessary with schema files because Infomate has been 'trained’ to recognise all of the extraneous
characters in Pipedream files and ignore them.

Microsoft Excel and Infomate

An Excel text file from the conversion module can be loaded into Excel as though it were an Excel
file. Ensure that the TEXT column delimiter is set to TAB when you open the file. This is the
default for both PC and Macintosh versions. When saving from Excel for Infomate usage perform a
"Save As" using the "options" "text" form for the data.

PC Lotus 123, VP Planner, PC Quattro and Infomate

Files converted from Infomate into Lotus 123 form can be loaded into Lotus using the "/FILE
IMPORT Numbers" command. In Quattro use /TOOLS IMPORT COMMA&""'DELIMITED. They
can be created from Lotus 123 for conversion to Infomate format using the "/PRINT FILE" option.
In this form they appear as print files with the appropriate number of blanks inserted between fields
to make columns line up. Infomate's file conversion module scans these files to work out where the
field contents lie and then extracts the minimum field space from the data. Data is assumed to be
right justified in the field. Similar operations work correctly for VP Planner and Quattro as well.

Note that 'missing' values are created by Infomate as a single space character surrounded by double
quotes, and that this is not a true missing value flag for any of the above packages. If this creates a
problem you may need to convert these 'missing’ values to empty cells using a suitable macro.
Alternatively, you could import the Infomate file directly and perform the conversion on the target
computer using the technique discussed later in this chapter.

88

File _Conversion

PC Minitab and Infomate

The following may serve as an example of how to use the Infomate file conversion package to create
and use files for a package that is not directly supported by the Infomate Menu. Minitab is a popular
data analysis package that has appeal with researchers due to its simple operating concept but
powerful functionality. A workable system to create Infomate files using Minitab, transfer them to
the Z88 and use Infomate for collecting data, and finally returning the results to Minitab has been
worked out by an Infomate user. The ID numbers and replicate data were prepared on Minitab,
complete with a number of empty columns that were to receive data.

The procedure is as follows:

1.

7.

Use the Minitab 'Write' command with 'Format' sub-command to create the data file
with specified field widths for each data column. You can use 'X' format to put the
current number of spaces in the empty columns, or alternatively create data columns full
of zeros.

The 'Set' command using abbreviations for patterned data is useful for creating columns
with sequences of plot numbers etc.

Transfer file to Z88 with PCLink II or RangerLink.

Load the file into Pipedream as plain text and immediately save the file again (as plain
text too). This deletes all of the linefeed characters.

Collect the data using Infomate.

Convert the resulting file to Lotus.PRN form using the file conversion in Infomate and
transfer it to the PC.

Use the Minitab 'Read' command to load the .PRN file into Minitab.

PC Paradox and Infomate

Paradox can accept an Infomate file using the following procedure.

1.
2.

3.

Convert the file to Lotus 123 form using the file conversion module in Infomate.

Transfer it to the PC and use a word processor to replace all of the TABs with comma
characters.

In paradox, use the command sequence Tools/Exportimport/Import/Ascii/Delimited.

The above brings in the data perfectly, and unlike Lotus 123 handles 'missing' values correctly.

File Conversion 8§ 9

To transfer data from Paradox to Infomate the general procedure would be:

1. Create a paradox report on the table that you want to export data from. The report
should be a tabular report.

2. Alltext fields placed on the report should be calculated fields. (Use the Paradox FIELD
PLACE CALCULATED command from the report generator menu). This will allow
you to use the Paradox FORMAT function to force fields to be right alligned (the 'ar'
option). You also need to specify the field width when left alligning text.

For instance to place the text field called Tag which is a maximum of 8 characters long,
the expression for the calculated field would be FORMAT("w8,ar",[Tag]) .

3. Place the fields that you want to export right next to one another in the table band.
4. Remove all other blank lines and text from the report specification.

5. Set the page length to continuous with the SETTINGS PAGELAYOUT LENGTH
command from the report generator menu.

6. Print the report to a file.

Techniques exist to perform the required file conversions on the target computer as an alternative to
using the Infomate File conversion module. These work well in certain circumstances, but care
should be taken, particularly with Implied Decimals. There are generally two problems to solve
when using a PC, splitting up the fields and adding a linefeed character. Linefeeds tend not to be a
problem on the Macintosh.

The dreaded Linefeed Problem - PC's

The standard on a PC for an end of line mark is the combination Carriage return - Linefeed.
Infomate, Pipedream, and most Macintosh programs use a Carriage return alone. The effect of this
is that an Infomate or Pipedream file that has not been correctly converted when transferred to the
PC will appear as a single line disappearing off the right of the screen.

To fix this problem you will need to perform a global change of the carriage return character to the
combination carriage return - linefeed. Most Word processors will allow this to be performed
easily.

On PCWrite to make the change use the sequence F9 Alt-1-3 (i.e. press F9 then hold down Al,type
1 then 3 on the numeric key pad, then release Alt). Now press F10 Alt -1-3 then Alt-1-0. To repeat
this change for the entire document press Alt-F10 F9 and the text will appear as it should.

90

File _Conversion

In the reverse direction you can use Pipedream to remove linefeed characters from a file. It seems
that if linefeeds exist in a file that is read by Pipedream, they will be ignored. So read the file into
Pipedream, and then immediately save it again. For both the load, and the save operation use the
'plain text' option. The linefeeds will magically disappear. Do not change any of the data with
Pipedream during this load and save sequence.

Creating an Infomate file in Excel on the Macintosh

If you start with a file in Microsoft Excel that you wish to transfer to Infomate without going
through the conversion module then the following procedure can be used. This technique applies
equally well with subtle variations to other spread sheets.

The procedure is to create a new column of data that is a packed text version of the data from the
columns of interest. This involves creating a formula that converts numbers to text, and adds the
appropriate number of spaces or zeros to the left.

As an example consider the Infomate format

1D Stored in Columns
Row N2
Type L1 B
DATA
Wt N4 .1 C
Count N3 D
Colour L3 E

We will make all numbers contain leading zeros and all letter fields have leading blanks. In the case
above, all entries in the Type field are known to have exactly 1 letter. The Excel Formula to use to
create a new column F will be

=TEXT(R1,"00")&BI&TEXT(C1,"00.0")&TEXT(D1,"000")&RIGHT(" "&E1,3)

This shows all Fields linked together using the text form of the add operator which is &. Numbers
are converted to text using the function TEXT(reference, "format") where reference refers to the cell
of the spreadsheet to be converted, and format is a pattern for the storage made up of zeros and
decimal points.

Fields that are already text can be added directly as is the case for B1 above, provided they are
guaranteed to be the correct length. Alternately use the construct RIGHT(" "&E1,3) to ensure
that they are right justified and are of the length required.

The formula above should then be propagated down the column so that the packed form of the data
is created over the length of the column. Now select the column over the length of the data and copy

File Conversion 91

it using "Edit" "Copy". Open a new spreadsheet using "File" "New" and paste it into the top left
comner using "Edit" "Paste special”. This new spreadsheet can then be saved using "Save As"
"Options" "Text" and when transferred to the Z88 should be Infomate compatible if you did
everything correctly.

The above procedures could be automated using Excel Macros if desired.
Parsing - Microsoft Excel 2.2 on the Macintosh

Providing that your data file does not appear as a single column of multi-digit numbers, then when it
is read directly into Microsoft Excel it will all be placed as text into column 1 of the spreadsheet. If
Excel does not detect any non numeric data in the file it will convert it into a number using its own
internal number representation. So if your data looks just like a big number you may have to fool
Excel into thinking that it is not a number. More on this later. When you have it loaded into Excel
as text, it can easily be split up into columns using the Parsing Command. First Select the Column
to be split up by clicking the column letter at the top and then select "Data” "Parsing”. The menu
presented will show you the first set of fields in the column and will insert square brackets where it
thinks the columns are if you click "Guess". You should now edit the guesses to match up with
your data positions by moving or inserting the square brackets. e.g.. [12][12.34][ABC] will split
the data into columns containing 2, 5 and 3 characters respectively. Clicking "OK" will complete
the task.

Now, if Excel manages to read some of your data as pure numbers this operation will not work.
You can guarantee that it will work by (a) including alphabetic fields in your records, (b) by
guaranteeing at least one column of space characters by making a field wider than it needs to be, or
(c) by ensuring at least two fields have a decimal point recorded.

There are Parsing techniques in all recent versions of Excel, Lotus 123 and other spreadsheets on
both PC's and Macintosh's. PC Excel does not require LF's to be in the file, and will accept the
carriage return as a terminator character.

92

File _Conversion

Column Inserting - Microsoft Word 4.0 on the Macintosh

Recent versions of Microsoft Word on the Macintosh allow operations on columns of characters.
These are selecting using the mouse while the option key is pressed. This feature can be used to
insert columns of TAB characters or other delimiters into a file, and thus convert an Infomate file
into a normal TAB (or other character) delimited file that can be used by the target processor. The
technique described here is a manual one but could be automated using a macro once the details are
worked out.

If you load your file into Word 4.0 and change the entire file to Monaco 12 pt (or some similar fixed
character width font) all characters will be in vertical columns above each other.

Now change all of the paragraph marks (carriage returns) to TAB (or whichever delimiter you wish
to use) plus carriage return using the "Utility" "Change" command. Note that you should change Ap
(which is a paragraph mark) to At*p (a TAB followed by a paragraph mark). You may then need to
insert a TAB at the end of the last line of your file. Hold the option key down to set column mode
and drag the cursor to select all of the TAB keys. Cut these using Command X.

To insert a column of delimiters, just put the cursor in the first record of the data at the appropriate
position and perform a paste (Command V), which will insert a column of delimiter characters into
that position right down through your data. This should be repeated for each delimiter position.

Two important points with this. First, make sure that you insert the final delimiter before the last
paragraph mark before you cut the column of TABS, and secondly save the data using "Save As"
"file format" "text only".

Column Inserting - PCWrite 3.0 and Word 5.0 on the PC

The column inserting technique described in the last section is also possible on the PC and follows
exactly the same path as that used for the Macintosh. Read the above section first if you are to use
this technique. On the PC you will generally not need to change fonts as you do on the Macintosh
as the characters are fixed in width by definition. For Word 5.0, column selection is performed
using Shift F6. Move to the top of the delimiter column, press Shift F6, move to the bottom and
perform the cut. PC Write uses a similar construct but with Ctl SHIFT F6. Consult the manuals,
for more details.

93

WHEN THINGS GO WRONG

Things you did wrong

Obviously such a powerful package
as Infomate will offer you lots of
opportunities to do things wrong,
particularly when you are learning to
use its power. Misspelled field
names, letters in number fields, or
using lower-case letters rather than
capitals are but a few examples.

At the end of this manual is a list of
the error messages that you could
get while running Infomate, and their possible causes.

Things we did wrong

There may still be bugs in Infomate that we have not found so if you find one please let us know.
Some are horrible ones that say something like

(Infomate) (c)RBJ.B9

Infomate has Unexpectediy Quit. Please Record
these Numbers (26:UP1234) and advise RURKURA .M

If that happens please do advise us of the numbers, and what particular sequence of events caused
them.

94 When Things go Wrong

L lam m |

There are a few problems that are due to difficulties in the Z88 and its operating system. All of these
that we already know about that affect Infomate directly have been circumvented. However there are
some bugs in the Z88 that you must avoid.

1. Never leave a file in the device :RAM.- . If a RESET or © PURGE occurs when there
is a file in :RAM.- the operating system will "become confused" and loss of data isa
possibility.

2. There are difficulties with the PrinterEd popdown which will cause the Z88 to lock up.
Take care when using this that you have your files backed up to EPROM or to another
computer.

3. Sometimes EPROM modules do not make complete connections with all of the address
lines in the slot and their data will appear to be scrambled. Before and after saving data
to EPROM always check that your current files appear OK using the EPROM catalogue
command. If difficulty occurs, use another EPROM to save your data.

If you get the dreaded No Room message at any stage, then the Z88 has not got enough space to run
the task that you have requested, and you might have to try the following things to solve your
problem.

1. Remove any applications from the pending application list of the Index that you do not
need by putting the cursor onto the offenders and using the OKILL command. Further
details are provided in the Z88 manuals.

2. If the problem occurred when Infomate is a pending application then make sure that you
exit from Infomate using the Infomate "Pack and Exit" command. This command will
squeeze the Infomate package down as much as possible before moving to the Index.
You could save 30k of the available memory by doing this.

3. Move all unwanted files from the Z88 to another computer.

4. If you have files existing on the Z88 in more than one format (e.g. Infomate format and
Excel text format then you can probably delete one version safely.

5. Buy more memory. It is possible to get RAM memory modules up to 1 Megabyte in
size now and it comes in convenient hunks down to 128k bytes. If the problem you are
having is basically a storage requirement problem rather than a storage wastage problem
then this may be your only solution.

9 5

Enhancements and fixes

There were a number of enhancements proposed by users of Infomate during testing of version 1,
and many of these have been incorporated into version 2. We encourage users to send details of the
things that they would like to see in Infomate, however crazy or difficult they may seem to be. If
there is sufficient merit in the ideas, and, more importantly, if we can find time to make the changes,
we will do so. This is particularly true of bugs that you find. As problems are located we will fix
them, but will probably release "bugfix" versions of the software less often so don't expect to visit
us and walk away with a fixed up version of Infomate. So keep putting those ideas and problems

on paper.

Infom ize Limitation:

Currently the following limitations apply to Infomate
Maximum number of fields
Maximum number of schema lines
Maximum number of sequence steps
Maximum number of records in a file
Maximum characters in a record
Maximum constants in a schema
Maximum Record length + Number of fields

Maximum (ID letters*3) + (ID numbers *2)

40
150
100
2000
85
40
92
18

Note: The last two entries are limitations on combinations of parameters. i.e. the total number of
characters in your record, plus the number of fields must add to less than or equal to 92. Similarly,
the number of ID letter-type characters times 3, added to the number of number type characters

times 2 must not exceed 18.

96

Example Schemas

EXAMPLE SCHEMA FILES

In the following few pages there is a collection of schema files as created for real tasks by users
with specific problems. These are available on PC or Macintosh disks. If you have schema files
that you would like to place in our library, send them in on floppy disk complete with a description
of what they do and we will endeavour to maintain the library.

Flip Flop Schema

In the following schema file two people are weighing herbage samples collected by one mower but
using two grass catchers. While one catcher is being weighed, the other is being filled. Now that
would be easy if both catchers always had the same tare value. Alas that is not the case.

The following schema uses MEMORY to remember which catcher is to be weighed and uses the
corresponding tare value. It then sets MEMORY so that next time the other tare is used. You may
have to try this to see how it works, and make some paper models of the catchers to remind you of
the sequence that is occurring.

TITLE Flip and Flop Heigh Grass

FILE TOGGLE.DRT
LOG LOG
1D
Samp le_No N3
DATA
Height N4 .1
SCRATCHPAD
Raw_Height N4 .1
Tarel N4.1
Tare2 N4.1
SEQUENCE
ENTER Sample_No Sample HNumber ?
NAKERECORD
LABEL \First time sequence

ENTER=< Tarel Tarel is
ENTER=< Tare2 Tare2 is

TEST MEMORY > 1.5
IFTGOTO LABEL Flop

LABEL Flip \Catcher 1 sequence
ENTER Raw_Height Ueigh Sample(Cl)
LET Height = Raw_Height - Tarel

ENTER?< Tarel New Tarel is

Example Schemas 9 7

LET MEMORY = 2
GOTO END

LABEL Flop \Catcher 2 sequence
ENTER Raw_Weight Heigh Sample(C2)
LET Height = Raw_Height - Tare2
ENTER?< Tare2 New Tare2 is
LET MEMORY = 1

END
Mountain Bike Race System using Infomate and Pipedream.

The following set of schemas was set up by an Infomate user to collect the data for, and monitor the
proceedings of, a mountain bike race meeting. It has been used successfully on a reasonably large
meeting, but probably requires reasonably expert Infomate and Pipedream users to solve any
problems that might occur during the meeting.

The first schema MTBENTRY.SCH is used to enter rider numbers and class of registration.
Experts ride three laps and are issued with numbers from 1 to 99, while sports riders do two laps
and take numbers from 101.

TITLE Mountain Bike Race Entry Listings 1Sept1991

FILE MTBSEP1.DAT
ID
Rider N3
DATA
Class N1
Lap_No N1
Lapltime NS
Lap2time NS
Lap3time NS
Time NS
SEQUENCE
ENTER Rider Rider's HNumber?
MAKERECORD

ENTER Class Class?(1-7)
END

Example Schemas

MTBTIMER.SCH is used at the race run time as the stop-watch. The first 'Rider' (number 0) is
used to capture the race start time (this data would be best kept in a SCRATCHPAD variable), at the
start gun. As each rider completes a lap, their competition number is entered. At the end of the race

this data is saved to EPROM so that it can be retrieved if problems occur.

TITLE Mountain Bike Race Lap Timing 1 September
FILE MTBSEP1.DAT
1D
Rider N3
DATA
Class N1
Lap-No N1
Lapltime NS
Lap2time NS
Lap3time NS
Time NS
SEQUENCE
ENTERID 7
FINDRECORD
LET Lap_No = Lap_No + 1
TEST (Lap_No = 1)
IFFGOTO LARBEL 1
LET Laplitime = TINE/100
GOTO END
LABEL 1
TEST (Lap_No = 2)
IFFGOTO LABEL 2
LET Lap2time = TIME/100
GOTO END
LABEL 2
TEST (Lap_No = 3)
IFFGOTO END
LET Lap3time = TIME/100

END

1991

Example Schemas

99

MTBCALC.SCH is a race time calculator and checks that each rider completed the requisite number
of laps, and then calculates the overall race time for that rider in seconds. The lap times are
recalculated from the times at the end of each lap.

TITLE Mountain Bike Race Time Calculation 1
FILE MTBSEP1.DAT
1D
Rider N3
DATA
Class N1
Lap_No N1
Lapltime NS
Lap2time NS
Lap3time NS
Time NS
SEQUENCE
NEXTRECORD
IFFAILGOTO IFFAIL
TEST Rider<100
IFFGOTO LABEL R100+
TEST Lap_No=3
IFTGOTO LABEL SET3
TEST Rider=0
IFFGOTO LABEL SET9'S
LET MEMORY = Lapltime
GOTO END
LABEL SET3
LET Time = Lap3time-MENMORY
GOTO LABEL TIDY
LABEL R100+
TEST Lap_No=2
IFTGOTO LABEL SET2
LABEL SET9'S
LET Time = 99999
GOTO LABEL TIDY
LABEL SET2
LET Time = Lap2time-MENMORY
LABEL TIDY
LET Lap3time = Lap3time-Lap2time
LET Lap2time = Lap2t ime-Lapltime
LET Lapltime = Lapitime-MEMORY

100

TEST Lap3time<i

IFFGOTO LABEL LAP2

LET Lap3time$ = " "
LABEL LAP2

TEST Lap2time<]1

IFFGOTO LABEL LAP!

LET Lap2time$ = " "
LABEL LAP1

TEST Lapitime<1

IFFGOTO END

LET Lapltime$ = " "

END

The Infomate file is next converted to Pipedream form using the file conversion module and is
loaded into a prepared spreadsheet at an appropriate slot. Data is then changed to number form in
Pipedream and the data sorted and printed using specially prepared CLI files which are not shown
here. Details of these depend on the way that the scoring is handled. You could extend the earlier
schemas to include rider name with little difficulty, and might use LOG to EPROM as a more secure
backup. There is plenty of potential for the budding programmer to expand on these themes: convert
the times from seconds to hours, minutes and seconds; print place lists by class of rider etc. etc.

Example Schemas 101

Calculation of Relative Humidity

The following schema shows how a set of raw data can be transformed to the form required using a
model of a process. In this example a wet bulb and dry bulb temperature reading are converted into
air temperature and humidity for recording. This is a classic example of the use of SCRATCHPAD
fields as intermediates in the calculation. The model used to convert from the two temperature
readings to humidity is not described here. (Maybe because even we don't understand it?)

TITLE Infomate RH 9/12/91 Keyboard entry of temperature
FILE RHKEY .DRT
1D
Read_No N4
DATA
TDry N4 .1 \Dry bulb temperature
RH N3 \Relative humidity in percentage
SCRATCHPAD
Tlet N4 .1 \Het bulb temperature
UP_Dry N4 .1 \Aqueous wvapour pressure dry
UP_HUet N4 .1 \Aqueous wvapour pressure uwet
SEQUENCE
ENTER=<+ Read_No Type Reading No
MAKERECORD
IFFAILGOTO ENTER=<+

ENTER TDry Temp Drybulb?
ENTER TUet Temp Hetbulb?

LET UP_Dry = EXP(7.076-2.47*((1.46-(TDry/100))°2))
LET UP_Wet = EXP(7.076-2.47*((1.46-(TUet/100))"~2))
TEST UP_Dry=0
IFTGOTO LABEL BadUP
LET RH = ((UP_Met-(.645+TDry*6.51E-4)*(TDry-THet))/
UP_Dry)*100
DISPLAY RH RH=
GOTO END
LABEL BadUP
DISPLAY = Bad Uapour Pressure!!”™™

GOTO ENTER TDry
END

NOTE: Some of the lines above are too long for this page and have been extended on to the next
line of the listing. Do not type them this way, but rather put them all on a single line.

102

Example Schemas

Forestry Data collection.

The following schema could be used to assess a forest for tree volume. It records tree ID's, and
their diameter and height. Now diameter is easy with a tape measure, but holding the tape on the
highest point of a tree is fraught with difficulties beyond the most intrepid forester. Also it requires
a second person to read the bottom of the tape. To get around this difficulty, the angles to the top
and bottom of the tree from a suitable distance are measured, and height is then estimated using one
of four methods that take into account the slope of the land and the availability of trigonometry
functions. Now Infomate is good at trigonometry so the following schema will do the whole lot for
you as soon as you have selected the method, and typed in all of the angles. In this example, all
data is stored in the file so that the 'big' computer can check Infomate's working. There is little trust
in this world eh? We will leave drawing the geometrical constructs to the reader.

TITLE Stratum Height

FILE STRATUMHT . DAT

LOG STRATUN

ID
Plot_No N6
Tree_No N3

DATA
DBH N41
Method N1
SlopeD N31
UpperR N41
LowerR NS1
AddFact N21
Calc_Height N31

SEQUENCE

ENTER?< Plot_No Plot HNumber
ENTER Tree_No Tree Number
MAKERECORD

ENTER DBH DBH (cm)
ENTER?< Hethod Nethod

ENTER SlopeD Slope Distance
ENTER UpperR Upper Reading
CHECK UpperR L 0 50

IFFAILGOTO ENTER UpperR

ENTER LowerR Lower Reading (+/-)
CHECK LowerR 3 -10 +10
IFFRILGOTO ENTER LowerR

ENTER AddFact Additional factor
TEST MNethod=1

LABEL

LABEL

LABEL

LABEL

LABEL

END

103

IFFGOTO
LET

GOTO

TEST
IFFGOTO
LET

GOTO

TEST
IFFGOTO
LET

GOTO

TEST
IFFGOTO
LET

GOTO

DISPLAY

GOTO
END

DISPLAY

LARBEL 1

Calc_Height = SlopeD*COS(RAD(LowerR))*(TAN(RAD
{UpperR))-TAN(RAD(LowerR))) +AddFact

LABEL END

Hethod=2

LABEL 2

Calc_Height = SlopeD*(UpperR-LowerR)/ (SQR(
10000+LowerR~2))+AddFact

LABEL END

Method=5

LABEL 3

Calc_Height = SlopeD*(COS(RAD(LowerR))~2)*(TAN(RAD
(UpperR))-TAN(RAD(Lower)))+AddFact

LABEL END

Method=6

LABEL 4

Calc_Height = SlopeD*(UpperR-LowerR)*(100.+0.03%
LowerR)/(10000+LowerR~2)+AddFact

LABEL END

MHethod Invalid Hethod =
ENTER?< Method

~ o

Calc_Height Height Estimate is

NOTE: Some of the lines above are too long for this page and have been extended on to the next
line of the listing. Do not type them this way, but rather put them all on a single line.

104 The Reference Section

THE REFERENCE SECTION

DATA FILES REFERENCE

Data files are the files that Infomate will build up as you collect data. You need to think about how
they are constructed because your data files will be different from everybody else's. You will also
need to think carefully where your data is to go when it is sent on to a larger computer, because that
computer may place restrictions on the form that your data will take. Thus while it may be nice to
have M and F meaning male and female in your data file, this will be a nuisance if your data analysis
program requires numbers in these fields. Think about these sort of problems early, it is always
harder to change them later.

Your data analysis package may not accept data in the form that Infomate stores it internally, but
there are conversion programs available within Infomate that will convert to some more commonly
used forms. If your format is not handled directly ask an expert for help.

Records

Infomate Data files are divided into records which are each terminated by a carriage return character.
All records must be of the same length to be used by Infomate. Records are in turn divided into
fields which are the basic unit of data collection. A field might hold an identification number or a
weight for example. Fields may comprise from one to at most 24 characters and for Infomate are of
two basic types, numeric (or number) fields, and character (or letter) fields. Fields are also grouped
into two regions of a record, the ID or identification region which is first and holds the unique
identification of the record, and the DATA region which always follows the ID region. Both ID and
DATA regions may be composed of mixtures of numeric and character fields, although ID regions
place a few restrictions on character fields. Additionally, scratchpad fields may be added to your
schema. These are not part of the record and are not stored in the file.

Data Files reference 1035

The ID fields

Let us look at the function of an ID region. It's prime aim is to provide a unique identity to each and
every record in the file. Thus no two records can have the same ID. Examples of unique ID's
might be for an animal weighing trial the animal tag number plus the tag colour (which is related to
year born). For a produce collection trial it may be a combination of row, treatment, and plant
number. For an animal behaviour study it could be the date and the time that an observation is
made. Commonly an ID will be a combination of more than one field.

There are a few limitations on ID fields that do not apply to data fields. ID Number fields must
contain only the digits 0 to 9 and the space character. Decimal points are not allowed. ID Letter
fields must contain only the letters of the alphabet plus the slash (/) and blank character, and no
distinction is made between upper and lower case letters; ab123 and AB123 are considered to be the
same, although they will be stored in the form that they were typed.

In addition, the total number of characters in an ID region is limited to 6 for Letter fields and 9 for
Number fields. Where there is a mixture of letters and numbers, the following limits apply.

Numbers 0 1 2 3 4 5 6 7 8 9
Letters 6 5 5 4 3 2 2 1 0 0

Thus if there were 3 letters in an ID then the maximum number-field-digits allowed would be 4, no
matter what the organisation of the fields was. The reason for this limitation is that Infomate
maintains an abbreviated copy of all ID's used so that it can quickly find if a particular ID already
exists, and if so where in the file it exists. If you have designed your data and ID fields correctly
this should not be a limitation.

Because Infomate requires every record to have a unique ID you should take care in defining these
fields. There is a strong temptation to use too few ID fields and end up with records that try to have
the same ID, or to have too many and end up with data in the identification area. There is a strong
differentiation between DATA and ID in Infomate.

I'he DATA fields

Data fields enjoy far more freedom than those for ID fields. Letter fields can have up to 24
characters in them and may use any printable character on the keyboard. A distinction is made in
data letter fields between upper and lower case characters. Thus abc is different from ABC.

Number fields may contain decimal numbers and can each be up to 9 characters in length. If
required, number fields can automatically have the decimal point suppressed in the file to conserve
storage.

106 The Reference Section

SCHEMA FILES REFERENCE

A schema file must follow the strict format shown below from the first TITLE line to the final END.
This section of the manual describes the schema file in more detail, using the order that a schema is
normally laid out. At the end of the section is a chapter on the intricacies of the LET statement
which is probably the most complex of all the Infomate statements.

TITLE Your title
FILE Your data file name
LOG (optional PRINTER log or EPROM log filename)
PORTIS {optional device name)
1D

definitions of your ID fields
DATA

definitions of your data fields
SCRATCHPAD

optional definitions of your scratch fields
SEQUENCE

definitions of your data capture sequence
END

The two optional lines may be left out if not required, and the SCRATCHPAD line and field
definitions after it are also completely optional and may be left out. To make a schema file easier to
read you may put as many extra space characters into each line as you wish. These will be reduced
to single spaces when the schema file is compiled by Infomate. Note that it is not permissible to
place blank lines in your schema files, nor is it permissible to use [[RE] characters to space your
text. 's have a very different meaning to Pipedream from that usually defined for computers
and they should be avoided at all cost. Examples of well formatted schema files are shown in the
previous chapter, and you are advised to adhere to this format as much as possible. These
formatting points will help you understand your schema files when you look at them again in 6
months time and will make it easier for other people to understand them when you go to them for
help or to help them.

Schema Files reference 107

mments in_schem

You may add comments to the end of any of your schema lines by starting it with a backslash
character (\). All characters from the \ onwards will be completely ignored by Infomate during
compilation and are allowed for your own convenience. Obviously you cannot follow a comment
by an Infomate statement. It is preferable that you do not put comments at the start of a line in place
of the normal statements, as even though Infomate will tolerate these comments, it will get a little
confused when it tries to tell you which line your error has been located in. A way around this is to
use extra LABEL statements as dummy Infomate lines in which to place comments.

An example of a comment line is
MAKERECORD \Run the 100 metres fast

If you wish to insert a large area of comments you could do so after the schemas END statement. In
this case you would not need to start the comments with the backslash character. This is probably a
convenient place to add your hopes and aspirations for the schema, and to list problems or
limitations.

rganisation of the Referen ion

The following is a list of the possible lines that can occur in a schema, showing the parts of the lines
that are optional and the various formats that they can take on. They are listed in the order that they
are presented in in the following chapter.

TITLE {message}
FILE {filename.ext}
LOG {EPROMIogfilename}
LOG PRINTER[optbaudstring]l
PORTIS {drivername}[optbaudstring] {opt!INITstring}
1D
{IDfieldname} {IDfieldtype}{IDfieldwidth}
DATA

{DATRAfieldname} {DATAfieldtype} {DATAfieldformat}
SCRATCHPAD
{SCRfieldnanme} {SCRfieldtype} {SCRfieldformat}

SEQUENCE

ENTER {fid} {message}
ENTER| {fld} {message)
ENTER? {fi1d} {message}

ENTER?< {fid} {message}

108

The Reference Section

ENTER?<+
ENTER=<
ENTER=<+
ENTERID
ENTERID)
MAKERECORD
FINDRECORD
NEXTRECORD
CHECK
CHECK
CHECK
CHECKDONE
IFFRILGOTO
TEST
TESTRECORD
IFFGOTO
IFTGOTO
IFOGOTO
GOTO

LABEL
DISPLAY
DISPLAY
REPEAT
UNTIL
REPEAT
UNTIL
REPERT
UNTIL TEST
COUNTYPE
COUNTS I 2E
LET
GETPORT
SETPORT
SLEEP

END

{fld} {message}
{fld} {message}
{fid} {message}

{message)

{message)

{fi1d} {checkstring}
{fid1} {fid2} A{vall} {val2}
{fid1} s {vall} {val2}
{fid}
{line}
{BASICexpression}
{line}
{line}
{line}
{line}
{labelcharacters}
{fid} {message}
8 {message}
{message}
KEYPRESS
{message}
STERDY {fld} {ualue}
{message}
{fid} {typestring}
{fid} {noflds} {firstval}
{fid} = {BASICexpression}
{fld} {optmessage}

{message}

{valincr}

The above is not an executable schema so do not try to compile it. I assure you that it will fail.

Schema Files reference 109

'NTLE
Format: TITLE {message}

The TITLE statement must always be the first line of a schema file and performs no other purpose
other than to provide you with a description of the function of your schema file. The title can be
displayed at any time within Infomate using the Show Schema command so take care to put into the
title all relevant information such as function, date, name of author and anything else that makes this
schema different from any other schema that you are likely to write. An example of a Title line is:

TITLE Ag500 June wt capture RBJ 16/7/90. Mod 19/7

It is also essential that whenever you modify a schema file that you check that the title is still
appropriate to the function that it performs. There is nothing worse than a title displayed in an
Infomate Show Status screen that says that the schema does one thing when in fact it now performs
an entirely different function.

FILE

Format: FILE {filename.ext}

This describes the name of the data file that you will be placing your captured data into for this
schema file. Conventionally the file will have an extension containing the characters .DAT and
the filename will contain at most 12 characters before the full stop. The extension should be three
characters or less, and should avoid any of the special symbols blank or /+=-*&* etc. If your files
are to go to an MSDOS machine they should have no more than 8 characters before the full stop.
An example of a File line is

FILE HTS1807.DAT

The filename should not contain a device or directory name; that will be added automatically by
Infomate when you move to the appropriate place using Filer while running Infomate. For example
your real file name for Z88 purposes may be :RAM.1/WTSDirectory/MyBody. WTS , but for
purposes of the FILE statement use the name MyBody.WTS . You must then "move" Infomate to
the device/directory called :RAM.1/WTSDirectory/ when you start Infomate up.

110 The Reference Section

LOG
Format: LOG {EPROMlogfilename}
OR LOG PRINTER
OR LOG PRINTER [optionalbaudstring]

The LOG statement is completely optional in Infomate. If you wish to make an EPROM file or
printer log of the records that you collect you can do this by inserting a LOG statement at this point.
The EPROMilogfilename should have 12 or less characters, and should not contain an extension as
in a FILE statement. It will have an extension of the form .LGx added to it by Infomate, where the
x is a digit from O to 9 or a letter from A to Z. These extension names will be incremented as
required and need not concern the operator. If you are logging to a printer, you cannot be using any
other device on the Z88 serial port. If you are logging to EPROM, you must have an EPROM
inserted before you can run Infomate, and there must be space on it for your data. You cannot log
to both printer and EPROM because this indicates a level of mistrust that will not be tolerated. Note
that an EPROM log is completely independent of the data file that is maintained in RAM disk on the
Z88. Also note that the log file is extremely safe from corruption. For further information read the
chapter earlier about EPROM log files. Examples of Log lines are:

LOG PRINTER
LOG PRINTER[1200NY]
LOG WEIGHTS
PORTIS
Format: PORTIS {drivername }[optionalbaudstring] {optionalINITstring }

The PORTIS statement is also optional in Infomate. If you are collecting data from scales or a
similar device then the name of the driver which handles that device is defined by this statement.
Note that there is a finite list of drivers available and you must ensure that the device you are using is
included. If the device you are using requires a special set up when it is initialised, the set-up string
can be inserted after the driver name. An example of the usage of this would be to set a Mettler scale
to weigh in oz 's rather than gms. In that case the INIT string wouldbe Uoz .

Examples of PORTIS lines are:

PORTIS HMETTLER_1
PORTIS METTLER-! U oz
PORTIS METTLER_1[9600EN]

Schema Files reference 111

A Note on Baudrates etc

Both the LOG PRINTER and PORTIS command can have optional character strings added to them
to specify the baud rate, parity and flow control characters for the serial port. This string has the
form [bbbbpx] and is added immediately after (i.e. no spaces) the word PRINTER or the driver
name like this

LOG PRINTER[1200NY]
OR
PORTIS HMETTLER_1[9600EN]

If these are present, then the serial port will be set to those values whenever logging to the Printer,
or when initialising the device drivers. These values will overwrite the values in the Z88 control
panel, and will be used instead of the default values for the driver. If the LOG PRINTER does not
have a baud rate specification it will use the current version in the Z88 control panel. If the PORTIS
line does not have a baud rate specification, it will use the default baud rate that is specified in the
driver itself. The range of values for baud rate, parity and Xon/Xoff are

Baudrate 75, 300, 600, 1200, 2400, 9600, 19200, 38400
Parity None, Space, Mark, Odd, Even
Xon/Xoff Yes, No

Note that the first character only of the Parity and Xon/Xoff words should be used, and that there
must be no spaces from the driver name to the last] character.

112 The Reference Section

D regi
The ID region starts with the line
1D
and is followed by the definitions for each ID field. These have a

Format: {IDfieldname} {IDfieldtype} {IDfieldwidth}
etc. etc.

The ID region contains the names and descriptions of the fields that make up the unique
identification of each data record in your file.

The IDfieldnames should be strings of letters and numbers without spaces that describe the field.
e.g. Tag, Colour, Row etc. The field names should be different from every other field name in the
current schema regardless of whether they are ID, DATA, or SCRATCHPAD fields. Infomate is
case sensitive and Tag and tag are different field names although it is advisable not to use two such
similar names. It is suggested that a convention be used throughout a schema. For example start all
names with a capital and make all other letters lower case. If a space is required use the underscore
character _ . An example of this might be Tag_Number or Fruit_No.

IDfieldtypes may be of two forms, Letters or Numbers signified by the code letters L or N
respectively.

IDfield width is a single digit defining the number of characters in the field. You should check
the limitations on ID field widths discussed in the previous chapter.

An example of an ID field set definition is

1D
Tag N3
Colour L1

which defines an ID with a 3 character numeric animal tag number and a single character letter field
for tag colour.

ID and DATA regions 113

DATA region

The DATA region starts with the line
DATA

which also by default defines the end of the ID region. The DATA line is followed by the
definitions of each DATA field. These have a

Format: {DATAfieldname} {DATAfieldtype} { DATAfieldformat}
etc. etc.

The DATA region contains the names and descriptions of the all of the fields that make up the body
of a data record in your file. This will also define the length of your data record in the file.

The DATAfieldnames should be strings of letters and numbers without spaces that describe the
field. e.g. Weight, Length, or Colour etc. As with ID fields, Infomate is case sensitive and Weight
and WEIGHT are different field names although it is advisable not to use such similar names. The
field names should be different from every other field name in the current schema regardless of
whether they are ID, DATA, or SCRATCHPAD fields. It is suggested that all names start with a
capital letter and are followed by lower case letters. If a space is required use the underscore
character _ . An example of this is the field name Old_Weight .

DATAfieldtypes are of two forms, Letters or Numbers signified by the letters L or N
respectively.

DAT Afieldformat is a sequence of one to three characters describing the format of the data to be
placed in the record of the file.

For Letter fields the format will be one or two characters defining the number of characters in the
field. Thus an L3 field is a letter field with 3 characters. The maximum size of a letter field is 24 for
DATA fields.

For Number fields the first character is the total field width and the last is the number of decimal
places to be recorded. If a decimal point is to be stored in the file then the two digits should be
separated by a decimal point. For example if numbers like 23.6 are to be stored then use format
N4.1 . If you want the decimal point to be eliminated at storage time to save space, then use N31 to
store the numbers in the form 236 (i.e. 23.6 with an implied decimal point). The maximum size
for a numeric data field is 9 digits, which is about the accuracy of the arithmetic in the Z88.
Obviously the number of decimals cannot exceed this.

114 The Reference Section

An example of a data region definition is:

DATA
Height N3 .1
Wool_colour L2
Dag_score N2.0
Comment L10

SCRATCHPAD region
The SCRATCHPAD region is optional and may be left out if desired. It starts with the line

SCRATCHPAD

which also by default defines the end of the DATA region. The SCRATCHPAD line is followed by
the definitions of each SCRATCHPAD field. Scratchpad fields are fields that are not to be stored in
a file, but are either intermediate values that are used to simplify the calculation of other field values,
or are values that are to be "remembered" from record to record. Scratchpad field values will be
cleared whenever a new schema is compiled, and will not be affected by reading a record using the
FINDRECORD, nor by writing a record when an END is met in the schema file.

You can think of scratchpad fields as extra MEMORY locations with more meaningful names and
with complete format specifications. The format of a scratchpad field follows the identical
definitions as for the DATA fields above. As with DATA and ID fields, the field names should be
different from every other field name in the current schema .

Sequence region & ENTERs 115

EQUENCE region

The sequence region contains a description of the way that you want the data to be collected. It
starts with the line

SEQUENCE

which also has the function of terminating the data or scratchpad field definitions. The contents of
the sequence region will vary considerably depending on your requirements and should be thought
of as a computer program. The sequence is a definition of the steps you wish to go through to
collect each record of your data. In the following sections we provide a list of the different types of
statements that may be placed in your sequence region. Many of them will not be useful to you in
particular, and most applications will require only a few different types.

ENTER
Format: ENTER (fld} {message}

Normal, no frills, entry of a field value from the keyboard. The message {message} will be
displayed to the operator who may then type the new value for that field. The entry should be

terminated using the [EFTER] key. Examples:

ENTER T Type animal weight
ENTER ROU Key in Row Number

You may also append ! characters to the end of the message part of an ENTER statement to make
the Z88 beep to warn the operator that data entry is required. One ! produces one beep.

ENTER|

Format: ENTER; (fld} {message}

Modified entry of a field value from the keyboard which allows the operator to skip typing the
key. The entry will be terminated when sufficient keys have been typed to fill the field, or
if less than the full number are required, when an [EFTER] key is pressed. Thus, for a field of type
N3 the following entries will be accepted

123 which puts 123 in the file
1 2 [ENTER] which puts 12 in the file
1 [ERTER] which puts 1 in the file

116

The Reference Section

Note that if the field has an implied decimal point you will need to type an extra character (the
decimal point). Thus a field of type N31 would accept entries of the form

12.3 which puts 123 in the file
1 2 [EATER] which puts 120 in the file

An example of an ENTER| statement follows:
ENTER] Colour Press Colour letter (RGB)

You may also append ! characters to the end of the message part of an ENTER| statement to make
the Z88 beep to warn the operator that data entry is required. One ! produces one beep.

ENTER?
Format: ENTER? {fid} {message}

Entry of a field value giving the operator the option of editing and using the value that is currently
held in the file in that field position. If the key is pressed at any stage the value currently
displayed on the screen will be entered into the field. An example is:

ENTER? Fate Edit old Fate

This statement will normally be used if you wish to modify the data that is held in a file using the
the keyboard rather than adding new data to the field. An example is to allow addition to or
modification of comments held in the file.

You can use these at a number of points in one schema with the same comment field, enabling you
to edit the same comment at each point if required, and thus allow creation of a composite comment
from any point where comments could be generated.

You may also append ! characters to the end of the message part of an ENTER? statement to make
the Z88 beep to warn the operator that data entry is required. One ! produces one beep.

Sequence region & ENTERs 117

ENTER?<
Format: ENTER< {fid} {message}

Entry of a field value giving the operator the option of editing or using the value entered for this field
in the previous record. This would typically be used to enter field values that don't change for each
entry e.g. the row number when collected vegetable weights a row at a time. For example:

ENTER?< Row Row Number

You may also append ! characters to the end of the message part of an ENTER?< statement to make
the Z88 beep to warn the operator that data entry is required. One ! produces one beep.

ENTER?<+
Format: ENTER?<+ {fid} {message}

Entry of a field value giving the operator the option of editing or using the value entered for this field
in the previous record incremented by 1. Itis typically used to enter field values that follow a simple
numerical sequence for each entry e.g. the vine number when recording fruit data along a row. Itis
possible to make the sequence count backwards by using a large negative value for the initial value.
Thus for an N3 field entering -1999 will produce the sequence 999, 998, 997, etc. This
truncation effect occurs when Infomate tries to put a S character negative number into a 3 character
field.

An example of the ENTER?<+ statement is:
ENTER?<+ Uine Uine number

You may also append ! characters to the end of the message part of an ENTER?<+ statement to
make the Z88 beep to warn the operator that data entry is required. One ! produces one beep.

118

The Reference Section

ENTER=<
Format: ENTER=< {fid} {message}

Entry of a field value automatically (i.e. without the operator actually typing anything) using the
value entered for this field in the previous record. This would typically be used to enter field values
that don't change very often e.g. the row number when collecting vegetable weights in a long row.
If it is required to change the value entered into an automatic ENTER= type statement while running
the schema, the operator may back-step to it using the 1 key, providing there are statements
following the ENTER= that allow operator intervention. An ENTER=< statement might look like
this:

ENTER=< Row Enter Row HNumber

You may also append ! characters to the end of the message part of an ENTER=< statement to0 make
the Z88 beep to warn the operator that data entry is required. This beep will only occur when this
statement actually requires data to be entered. One ! produces one beep.

ENTER=<+
Format: ENTER=<+ {fild} {message}

Entry of a field value automatically using the previous value entered for this field with 1 added to it.
This would typically be used to enter field values that change in a systematic way e.g. the vine
number when collecting fruit data along a row.

An example of the ENTER=<+ statement is:
ENTER=<+ UineNo Enter vine number

You may also append ! characters to the end of the message part of an ENTER=<+ statement to
make the Z88 beep to warn the operator that data entry is required. This beep will only occur when
this statement actually requires data to be entered. One ! produces one beep.

Sequence region & ENTERS 119

ENTERID
Format: ENTERID {message}

Allows entry of an entire ID set in a single line. This is most often required in an animal weighing
situation where the full ID may consist of a number of parts which are thought of as a unit. Thus,
for the following ID definition

1D
Year_born N1
Tag N3
Colour L1

you might enter ID's as 8123Y meaning year born is 1988, tag is 123 and tag colour is Y for
yellow.

Infomate will use quite a bit of intelligence in interpreting ID's entered in this way, provided the
result is unambiguous. Thus for the above ID definition a 1 or 2 digit tag may be entered without
leading zeros e.g. 812R will be interpreted as year 88 tag 012 colour Red. Care should be taken
when there is any chance of ambiguity. Thus if Year born was an N2 field and was followed by an
N2 tag number , Infomate would interpret 812 as year born 81 tag 2 and not year born 8 tag 12. But
then again wouldn't you?

An example of this statement is:
ENTERID Type the ID (YTTTC)

You may also append ! characters to the end of the message part of an ENTERID statement to make
the Z88 beep to warn the operator that data entry is required. One ! produces one beep.

ENTERID|
Format: ENTERID! {message}

This is a combination of the ENTERID verb just described, and the ENTER| described above. If
the operator types in a full ID then the [ERTER] key need not be pressed. If the ID is to be shortened

by not typing any leading zeros, the [ERTER] key can be used. In all other respects it will follow the
rules of the ENTERID verb just described. For example:

ENTERID] Type the 1D (YTTTC)

You may also append ! characters to the end of the message part of an ENTERID| statement to
make the Z88 beep to warn the operator that data entry is required. One ! produces one beep.

120

The Reference Section

MAKERECORD

After the ID information has been entered, and before data can be placed in the file, it is necessary to
reserve some space in the file for that data. At the same time it {s necessary to check that the ID
typed conforms to the schema files ID definition, and that a corresponding ID does not already exist
in the file. When these checks have been completed satisfactorily, all data fields in the new record
are cleared. The MAKERECORD command handles all of these operations. If there is insufficient
space in the file, or if the ID typed already exists, an error message will be posted and may be
checked using the IFFAILGOTO statement below. Infomate will also clear any errors from
CHECKS etc. that were pending at the time the MAKERECORD statement was started. Obviously
the MAKERECORD statement should occur at the end of the entry of all ID fields, and before
collecting any data fields. An example of the use of MAKERECORD might be:

ENTERID Enter full 1D
MAKERECORD
IFFRAILGOTO ENTERID
FINDRECORD
Format: FINDRECORD

In the situation where the data file already exists and is having new data added into existing records,
a FINDRECORD statement is used in place of the MAKERECORD just described. This statement
will search the file for the record that has that ID, and when found, load it into memory. At that
point all previous values for the data fields will be shown and may be changed or added to by
further sequence statements. If the ID typed does not conform to the ID definition in the schema
file, or if the search fails to find the record in the file, then an appropriate error message will be
posted and may be checked using an IFFAILGOTO statement. Infomate will also clear any errors
from CHECKS etc. that were pending at the time the FINDRECORD statement was started. An
example of this procedure is:

ENTERID Enter full 1D
FINDRECORD
IFFARILGOTO ENTERID

MAKERECORD FINDRECORD etc, 121

NEXTRECORD
Format: NEXTRECORD

This is equivalent to the FINDRECORD statement, but will sequentially move through a file from
start to finish in the order that the data is stored. It is intended for automatic processing of an entire
file. For example, the following sequence will set all entries for field Fruit_Count to zero for the
whole file.

SEQUENCE

NEXTRECORD

LET Fruit_Count = 0
END

There is no way that a NEXTRECORD can be started part way through a file, and it will not find the
NEXTRECORD after one found by a FINDRECORD. Infomate will also clear any errors from
CHECKS etc. that were pending at the time the NEXTRECORD statement was started.

CHECK (character)
Format: CHECK {fild} {checkstring}

This allows checking of Letter fields to ensure that they conform to a specific set of possible values.
The checkstring is composed of the possible character sequences, preceded by a sequence of
asterisks (*) that has the same length as each of the sequences to be checked. Thus a checkstring of
the form *MF will make sure that the field typed is a single character (note one asterisk) which is
either the letter M or the letter F. The checkstring ***RYECLVCOXWED will check for one of
these three character sets: RYE, CLV, COX, or WED . The CHECK statement is case sensitive,
so if you want to allow both "m" and "M" as possible characters, they should both be inserted into
the character string. The above example would appear as:

CHECK Species ***RYECLUCOXWED

If the checks involve mixtures of single and double characters they can be checked using a single
check statement. Thus R, O, Y, GN, GY could be checked using

CHECK ** R 0 YGNGY

122

The Reference Section

Note that the single characters must be preceded by a single blank. Do not try this with groups that
contain two blanks because Infomate eliminates all multiple blanks from lines before it looks at
them. This might be achieved to check the patterns A, AB, ABC by adding $ characters in place of

the blanks. Thus

ENTER Pattern Patterns?
LET MEMORY$ = RIGHT$("$$3$" + Pattern,3)
CHECK MEMORY$ **x*x$SASABABC

CHECK (numeric)

Format: CHECK ({fld1} {f1d2} {vall} {val2}
OR: CHECK ({fld1} # {vall} {val2}

Two numeric checks are provided for here. In the first form the value held in {fld1} is compared to
the range defined by {fld2) and the lower and upper limits defined in {vall} and {val2}. i.e.

{(fld2} + {vall} < {fld1} < {fld2 + {val2} .

If the value lies outside this range a WARNing message will be posted which may be checked by a
following IFFAILGOTO statement.

The second form of the CHECK is an absolute check against the values of {vall} and {val2}. i..
(vall} < (fld1} < {val2}

You can think of the # symbol as meaning "number"”. Examples of a relative and an absolute
numeric check are:

CHECK Newwe ight Oldweight -1.0 +3.0
which checks Oldweight-1.0 £ Newweight < Oldweight +3.0
CHECK Size 8 0.0 99.9

which checks that size is between 0.0 and 99.9 units i.e whether it fits into an N4.1 numeric field.
Note that these checks do not suffer the numeric difficulties of the TEST statement.

The

CHECKSs, 123

CHECKDONE
Format: CHECKDONE {fid}

This checks if a field already has a value entered into it. If so, it will set a FAIL message which can
be checked by an IFFAILGOTO verb following it. This verb would normally be used in an animal
weighing situation to ensure that the new weight being recorded for an animal has not been placed in
the file already, signifying perhaps a misread tag on either the present animal or on an animal
previously weighed. It assumes that the pre-prepared file of animal ID's has blanks placed in the
fields that are to have a CHECKDONE performed on them. Note that a zero value (0.0) IS
considered to be an already-done field! An example of a check statement is:

CHECKDONE New_Height
IFFAILGOTO
Format: IFFAILGOTO {line}

This statement would usually follow one of the CHECK statements, the MAKERECORD,
FINDRECORD or the NEXTRECORD discussed above. The {line} definition is a sequence of
characters which Infomate will search for from the start of the sequence region of the schema file.
Only sufficient characters to uniquely define the line to be GOTOed need be inserted.

In the example below the operator will be repeatedly asked for the sex of the animal until they
respond with M or F. Note that because there is a line starting with ENTER prior to the line
required it is necessary to add further characters.

If any difficulty arises with this use a LABEL statement as defined below.

ENTER UT Ueight
ENTER] Sex Sex (NF)
CHECK Sex *MF
IFFAILGOTO ENTER]

Remember that Infomate deletes all spaces at the start of a line, and reduces all multiple spaces to a
single space, so that the last line of the previous example could equally well be either of these:

IFFRILGOTO ENTER! Sex

IFFRILGOTO ENTER] Sex

124

The Reference Section

TEST
Format: TEST {BASICexpression }

This is a rather more general statement to handle checks that cannot be performed using the CHECK
statement. The result of the TEST is stored in a special flag that can be tested using the IFFGOTO
(IF FALSE) and IFTGOTO (IF TRUE) statements below. It does not affect the FAIL flag set by
the CHECKS etc. The TEST flag is also set by the TESTRECORD and LET statements and
examples of its use are provided in the IFFGOTO and IFTGOTO statement descriptions below.
Typically you would use it to skip parts of your sequence. e.g..

TEST State = "DEAD"
IFFGOTO LABEL Alive

The TEST statement can also be used to set up a test for the end of a REPEAT UNTIL TEST loop.
For example to insert a pause in your schema try this

LET MEMORY = TIHE(TIC)
REPERT

TEST (TINE(TIC)-MENORY) > 500
UNTIL TEST

which will wait until the TIC TIME counter advances by 500 centiseconds (5 seconds) before
proceeding.

You should note the warning in the earlier chapter on ARITHMETIC and the MEMORY about
accuracy of representing numbers in TEST statements. If care is not taken with how you write
TEST statements, they can fail to operate as you intended.

TESTs and GOTOs 125

TESTRECORD
Format: TESTRECORD

This statement asks the question "is the ID data that has been entered valid, and if so does that
particular record exist”. If both are true, then the TEST flag is set and may be tested using
IFFGOTO or IFTGOTO below. It is important to note that TESTRECORD does not either load the
record into memory if it exists nor does it make a record if it doesn't exist. These functions must be
performed using FINDRECORD or MAKERECORD respectively. A typical application of
TESTRECORD is to allow branching to a MAKERECORD or a FINDRECORD depending on
whether the record exists or not. e.g..

ENTERID ID?
TESTRECORD
IFTGOTO FINDRECORD
MAKERECORD
IFFAILGOTO ENTERID
GOTO LABEL 1
FINDRECORD
LABEL 1

Note that if the ID is invalid, the TESTRECORD will set the TEST flag FALSE and it is left to the
MAKERECORD to pick up the "Invalid ID" problem.

IFFGOTO and IFTGOTO
Format: IFFGOTO {line}
OR: IFTGOTO {line}

These two statements are designed to be used after TEST, TESTRECORD or LET statements, and
will branch to the first line in the schema that matches the text after the GOTO if the Appropriate
condition is correct. An example might be:

TEST (Sex = "M") OR (Sex = "m")
IFTGOTO LABEL Nale
ENTER TERTSCORE Enter Teatscore

LABEL Male

126 - The Reference Section

Alternatively they can be used on numeric fields to look at ranges of values. For example

LET Obese = (Weight > 100.0)
IFFGOTO LABEL Not_Obese
ENTER ObRSH Enter reason for obesity

LABEL Not_Obese

This will set the single digit field to a 1 if weight is greater than 100, and to O otherwise. If the
animal is not obese, then the obesity question is skipped. Note that in fact the result of the test is set
to -1 if true, but the minus will be eliminated when it is squeezed into the single character field.

Comments in the IFFAILGOTO statement above regarding the handling of {line} apply equally to
this one. These statements allow the path taken through a sequence file to be altered according to the
value held in a field. Thus if different values were to be collected depending on the sex of an animal
use one of these GOTO's.

Considerable care should be taken with this form of flow control. Attempts should be made to
ensure that the entire sequence file is always processed from top to bottom, with short regions
skipped if necessary. Try to keep the path through a sequence as simple as possible. Never get
your sequence into an endless loop of the form:

LABEL 1

etc.

GOTO LABEL 1
IFOGOTO
Format: IFOGOTO {line}

Provides a way of checking that the result of a LET or TEST statement was zero. For example to
test if the number of lambs is zero use this code

TEST No_Lambs
IFOGOTO LABEL Skip_Lambs
statements to enter lamb data goes here
LABEL Skip-Lambs

The comments about {line} in IFFAILGOTO above apply here as well.

TESTs and GOTOs 127

GOTO
Format: GOTO {line}

Sometimes it will be necessary to unconditionally switch control to another part of the sequence.
This can be done using a GOTO statement. An example could be where different code is executed
for males and females by the following construct.

TEST (Sex = "n")
IFTGOTO LABEL Male
code for females goes here
GOTO LABEL End_of_sex_dependant_bit
LABEL Nale
code for males goes here
LABEL End_of_sex_dependant_bit

The comments about {line} in IFFAILGOTO above apply here as well.
LABEL
Format: LABEL ({labelcharacters}

Often when performing one of the GOTO's statements it is difficult to define a line to GOTO just
using the contents of the line itself. This may happen if an IFFAILGOTO has to GOTO a particular
ENTER statement in a sequence of ENTER's. To remove this ambiguity it is advisable to use a
GOTO LABEL statement. Obviously the characters following the LABEL must be unique and
must match in both the GOTO and the LABEL statements. An example is:

LABEL Get 1D
ENTERID Enter |ID

IFFRILGOTO LABEL Get 1D
DISPLAY
Format: DISPLAY ({fld} {message)
OR: DISPLAY # {message}

In some situations it may be necessary to show the operator the value of a particular field in the file.
This may occur when a value is computed, or if the value is to be extracted from a file that has been
created elsewhere. One classic example is a file containing cull status of animals that has been
down-loaded from another computer.

128

The Reference Section

The sequence to use here might be:
DISPLAY Cull_state Cull status is
which if Cull_state for that animal was "draft" would put the message
Cull status is draft
onto the screen and wait for the operator to press a key before continuing.

If you wish to display a message without also displaying a field value, then use the # form above.
e.g..

DISPLRAY 3 Silly Boy

Displayed messages may be terminated with ! characters to beep the Z88 speaker. Each ! will
produce a single beep. These could be useful if the DISPLAY message is issuing a warning to the
speaker.

DISPLAY 2 Silly, silly boy!!!

It is sometimes desirable to display a message or a field value for a short time and then continue.
This can be achieved using the ~ character which builds a one second delay into the display. As
soon as the delay is complete, the sequence continues. The delay or pause can be terminated before
time by hitting the space bar. You could use the following to display briefly the result of a
calculation.

LET Total_Eggs = UWhite_Eggs + Choc_Eggs
DISPLAY Total_Eggs The Egg Count was ~7

The above would show
Egg Count was 4
for two seconds and then continue.

You can have any combination of Beeps and Pauses at the end of a message, and the order they
occur in is not important. Unfortunately

DISPLAY s s e

will not sing "roll out the barrel".

DISPLAY and REPEATSs 129

REPEAT UNTIL KEYPRESS

Format: REPEAT {message}
more statements go here
UNTIL KEYPRESS

This is a very rudimentary looping structure which has been set up to allow certain weigh scales to
be used, and to allow multiple values to be entered into the COUNTSIZE statement. It is not
intended to be used to collect multiple fields as you might in higher level languages with data arrays.
The following example shows the use of a REPEAT UNTIL loop in the situation where scales do
not provide a steady reading and the operator must decide when to accept the value being displayed.

REPERT Weighing
GETPORT UT Height s
UNTIL KEYPRESS

Another example of its use is provided in the COUNTSIZE statement below.

The REPEAT UNTIL loop, and all statements between may be considered to be a single statement
for some purposes. If during the course of data entry the operator back-steps through his sequence
using the T key, then on re-entry to the REPEAT loop he/she will have the message {message}
displayed on the screen and be asked if it is desired to repeat the loop. If the choice Skip-the-loop is
chosen, control will pass to the statement immediately following the UNTIL statement.

REPEAT UNTIL STEADY
Format: REPEAT {message}
more statements go here
UNTIL STEADY (fld} {value}

This looping structure is intended to capture weights from scales etc. until the readings obtained for
field {fld} are steady to within a range of {value} units. Little work has been done on the steadying
algorithm at this stage and it may be necessary to build in some LET statements prior to the end of
the loop to smooth the data or perform other processing.

REPEAT UNTIL TEST

Refer to the TEST statement above for details of this statement.

130

The Reference Section

COUNTTYPE
Format: COUNTYPE {fld} {typestring}

COUNTTYPE is one of two Infomate statements that allows the collection of data into a number of
fields simultaneously. In effect it will form a Histogram over a number of fields, but in fact can be
used for a variety of functions. To describe COUNTTYPE it is best to first use an example
commonly found in research. The task is to observe a specimen under a microscope and to count
cells of four different types. The observer works systematically through a grid pattern displayed on
the viewing area and wishes to count each cell type as it is found and identified. The cell types are
defined as Flat, Dished, Elongate and Cuboid and it is expected that up to 20 cells of each type could
be present in each sample. The data field definitions for this part of the problem would appear as

DATA
Flat N2
Dished N2
Elongate N2
Cuboid N2

The grouping of these fields is important, and they must all be numeric fields. However, they do
not in fact have to be same width. In the sequence region the data collection statement could be:

COUNTTYPE Flat FDEC

This means we are going to count the quantities in the 4 fields (because there are 4 letters in the
typestring) starting with the field Flat. Each field will be incremented when the operator presses one
of the single keys in the sequence FDEC. Thus to increment Flats just press an F , press it again
and it will increment again. To decrement a field press the [EEL] key and then the letter of the field
to be decremented. When all counting has been completed press the [ENTER] key and sequence
processing will continue. There are a few limitations to the usage of this statement. Obviously it is
not possible to increment letter fields or in fact any of the ID fields, and obviously the definition
should not attempt to increment fields that are beyond the end of the last data or scratchpad field.

The statement can also be used for indicating presence of objects rather than counting them. Thus if
the fields were species of plants you could indicate that that species was present in the observation
plot by pressing the appropriate letter. Your data analysis may then need to account for the
possibility of pressing one key twice and getting a 2 in the field.

The letters do not in fact have to be mnemonics for the fields (i.e. F means Flat etc.) but might be
labelled keys on the keyboard, or keys in particular positions on the keyboard. For counting while
observing under a microscope you might be best to use the keys QWER because of their more easily
located position on the keyboard. The operator would just remember which finger to tweak.

COUNTTYPE and COUNTSIZE 131

COUNTSIZE
Format: COUNTSIZE {fid} {noflds} {firstval} {valincr}

The COUNTSIZE statement is closely related to the COUNTTYPE statement but rather than
counting types of things, it counts in a number of size categories. An example might be a fruit
sizing experiment where fruit weights are entered through the keyboard and a histogram of weights
is formed in a number of fields.. An example in Kiwifruit trials would be to arrange for 6 weight
ranges in the following way.

DATA

UNDERS N2
H65-84 N2
HUgsS-104 N2
H105-124 N2
H125-144 N2
OVERS N2
etc.

The sequence region would run a REPEAT UNTIL KEYPRESS loop in the following way.

REPERT Sizing
ENTER MEMORY Fruit weight
COUNTSIZE UNDERS 6 45.0 20.0
UNTIL KEYPRESS

This would loop continuously until the [ERTER] key was pressed twice rapidly. Each time round the
loop, the weight entered into the MEMORY "field" would be divided down to see which category it
belonged to on the basis that the first category is 45.0 to 45.0+20.0, the second would be
45.0+20.0 t045.0+2*20.0 etc. Any weights below 45.0 will be counted in the first category, and
weights over 165 will be counted in the last category. Obviously this will build up a histogram of
the fruit weights in the group being collected. In practice the ENTER statement might be replaced
by statement to fetch weights directly from electronic scales or lengths from a caliper.

132

The Reference Section

LET
Format: LET {fid} = {BASICexpression}

The LET statement without doubt is the most powerful statement available in Infomate. It will allow
you to perform very complex arithmetic, and gives access to a powerful set of Time and Date
functions. More details of the LET statement are provided in the next chapter. In its simplest form it
will allow you to copy numeric field values from one field to another. For example:

LET New_we ight = 0ld_weight

If your scales were imperial scales and you wished the results to be stored as metric values how
about:

LET Met_weight = Imp_weight ¥ 0.45

Note that you should read the = sign as the phrase "is replaced by". Another scale conversion might
be:

LET TempC = (TempF -32) * 5 / 9

You can see that the possibilities are unlimited here but there is more yet. The BASICexpression on
the right hand side of the = sign can also contain some of the standard BASIC language functions
like SIN for the Trigonometric sine of a number, SQR to take a square root or use LOG or LN to
take the base 10 or natural logs of numbers or fields. A full list of the functions available is given at
the end of this section. Some care must be taken with the fields that you use in the expressions. If
they are Number fields they can be used by just putting in their names. You should take care in
Infomate with statements like

LET Wt = Wt * 0.45

because each time that the statement is executed the field Wt will be made even smaller. This can
happen if you back-step through a file to correct an earlier field value.

To copy letter field values you can use similar constructs to those for numeric Fields. Thus

LET Son_Sirname = Dad_Sirname

LET and GETPORT 133

If you are assigning specific sequences of characters to a letter field they must be enclosed in quotes
like this

LET State = "Dead"

Further examples of letter LET statements are provided in the chapter on the LET statement that
follows this section.

If your LET statement must refer to a field value that was used in the previous record, then use the
characters (<) after the field name. Thus if the name of the field was Rat_Bag , then Rat_Bag(<)
would refer to the old Rat_Bag value placed in the previous record of the file. If you are referring to
a string value of a number field on the right hand side of the = sign in a LET expression, put the $
symbol first. Thus use Rat_Bag$(<) .

You should never use a (<) on the left hand side of the = sign in a LET statement. This would allow
you to change the past and that can never happen.

GETPORT
Format: GETPORT {fld} {message}

This statement is very similar to the ENTER statement except that it fetches a value from the device
defined in the PORTIS line at the start of the schema file. Obviously that device must be connected
to the Z88 when the statement is executed, and it must be weighing or measuring the appropriate
thing at the time. This may require other statements to be put into the sequence to control this. For
amettler scale the following may be appropriate.

PORTIS METTLER-1
etc.
DISPLRY 3 Press ENTER to weigh baked beans

GETPORT Been_Ht Beanzo

Some devices will not transmit a steady weight and it will be up to the operator to decide when the
weight is steady.

134

The Reference Section

This might be done using:

PORTIS OLDSCALES
etc.

REPERT
GETPORT Moose_Ut leigh da moose
UNTIL KEYPRESS

Or if you are careful use:

PORTIS OLDSCALES

etc.
REPERT

GETPORT Moose_MHt Heigh da moose
UNTIL STERDY Moose_Ut 0.2

which will wait until Moose_Wt is steady to 0.2 kg .

The Message part of the GETPORT statement may have beeps and pauses added to it in the same
way as the Display statement. These should be added at the end of the message using one ! per beep
and one ~ per second of pause. The beeps will be sounded before weighing begins, and the pauses
will occur after the result from the GETPORT has been displayed. The pauses will allow the
operator to see the weight or other measurement before it goes to the file, and can be terminated by
pressing the space bar.

If the message part of the GETPORT is eliminated entirely, there will be no message sent to the
operator at the start of the GETPORT, nor will the result of the GETPORT be displayed when it has
been received through the serial port. This is a convenient way of making the GETPORT
transparent when it is linking to analogue to digital converters etc. More details are provided in the
serial port chapter earlier.

SETPORT
Format: SETPORT {message}

This statement sends a command held in the message to either the device connected to the Z88 serial
port, or to the program that is driving that device. Which of these tasks is performed will be
dependent on the driver program selected by the current PORTIS line at the start of the schema.
Details of the operation of this statement can be found in the section describing the device drivers
later.

LET and GETPORT 135

A rather trivial example might be to capture weights from a Mettler scale first in 0z and then in
grams. This could be done using:

SETPORT U oz

GETPORT 0z_MUt Heigh yer ouncers
SETPORT U g

GETPORT Gm_Ut Heigh yer grammas

Note that the Mettler command U oz changes the scale units to 0z's. However you should take care
with the above constructions. If the code is backstepped to using the @ key, the GETPORTS will
be executed without intervening SETPORTSs. A solution to this is to enclose each pair of port
instructions in a loop like this:

REPERT
SETPORT U oz
GETPORT Oz.Ut Heigh yer ouwncers
TEST 1

UNTIL TEST

This will execute the loop once only but will backstep to the REPEAT.
SLEEP
Format: SLEEP

An appropriate statement to put near the end of a long list of statements. This statement literally puts
the Z88 to sleep. A trivial example of its use is the night watchman schema which was described
earlier. To awaken the Z88 again the operator should press the two BHIET] keys. There are other
ways of using the SLEEP statement. You may wish to record occasional animal behaviour
observations. In this case the Z88 can be put to SLEEP and will start the question and answer
session when you press the two BRETFY] keys. Time can be recorded automatically immediately
Infomate starts. A further example of this is provided with the ADAM data logger schema described
at the end of the manual.

END
Format: END

This is always the last statement in a schema file that is read by Infomate. Any statements following
this will be ignored and may be filled with notes or comments if desired. In effect the END
statement says to the program finish this cycle of the SEQUENCE , check if there are any errors that
have not been noted, if there are none, store the current values of all fields in the file and then go
back to the start of the SEQUENCE and start it all over again.

136 The LET statement Reference

LET STATEMENT REFERENCE

Because of the potential complexity of the LET statement all of its special features are collected here.

T TIM

There are a number of special functions written for use with the LET statement that give you access
to the real time clock that is incorporated into the Z88. This means that you can automatically record
the date or the time that events occur when you collect data. There are 10 built in functions that can
be used on the right hand side of a LET statement. These are shown below as they apply to the time
23:23.59 pm on date Wednesday the 31st of December 1991.

Function Meaning Format Example
TIME(HMS) Hours Mins Secs N6 235959
TIME(HM) Hours Minutes N4 2359
TIME(DOW) Day Of Week N1 3
TIME(DOM) Day Of Month N2 31
TIME(M) Month N2 12
TIME(Y) Year N4 1991
TIME(DMY) Day Month Year N6 311291
TIME(DM) Day Month N4 3112
TIME(DOY) Day Of Year N3 365

These functions produce numbers that look like those shown, but take care: you cannot subtract one
from the other and get an elapsed time. Elapsed time can be handled by a technique described
below. Some of the other functions not listed above can be obtained by one of two techniques,
either by chopping of the unwanted bits of the functions above, or by adding the appropriate bits
together. Thus to record minutes and seconds only, store hours minutes and seconds
(TIME(HMS)) in a 4 character number field. The hours digits will be cut off at storage time. To
store year and day of year in a 7 digit number use:

LET DATE = TIMNE(Y) * 1000 + TINME(DOY)

However this example will cause a problem at a certain time of the year. If new year occurred
between the calculation of the two Functions you would get either the right year and the wrong day,
or the right day and the wrong year, depending on your point of view. Now that might not happen
very often, but if you were adding an hour function to a2 minute function it might be a little more
likely to occur.

LET and TIME 137

To avoid the midnight trap make all functions other than the first a negative number. Thus use
LET DATE = TIME(Y) * 1000 + TINE(-DOY)

in which the negative value in the second function will make the second function use the time that
was obtained for the first. You can use this trick to advantage with care in that you could store the
time that the last data point was collected by using TIME(-HM) . You will then need to collect the
time that this point was collected using another TIME(HM) . An example of this is

LET Last_Sample = TIME(-HM)
etc.
LET MEMORY = TIME(HM)

Note that the last statement shown records the time of this sample for the next record. MEMORY
itself is not used for this function, but rather we are forcing the TIME module to record the date and
time internally. The MEMORY is just a dummy field name because every LET must have a field
name on the left. You could equally well use TEST TIME(HM) in place of the final LET.

Elapsed time

One further time function is available to allow the computation of elapsed time. This is the function
TIME(TIC) and is the time in 1/100's of a second since the most recent schema file compilation took
place. This number will become computationally very big quite quickly and will in fact overflow the
Z88 arithmetic after some 5 months. However, if differences are used it will give you a good
elapsed time counter. A simple example of its use follows.

This example times a particular operation and stores the result to the nearest second in a field called
Elapsed_time.

ENTER MEMORY Press ENTER to start and stop timer

LET MEMORY = TINE(TIC)
REPERT
UNTIL KEYPRESS
LET Elapsed_time = INT((TIMECTIC) - HMEMORY)/100)

There are a couple of points to note here. First, MEMORY is used as a storage for time at start, and
an empty REPEAT UNTIL KEYPRESS loop is used to stop the timer. Often you can probably
use a data entry to stop the timer, rather than the loop. Take care if you back step through your file
using the T key because all of the times will be retaken. Sometimes you will want this to happen
and sometimes not. Win-some, lose-some!

138

The LET statement Reference

lation order

When executing LET statements some operations have higher priority than others. Thus if you
perform 6+4*3 , the multiplication will be done before the plus. If there is ever any doubt which
way things will be performed, put brackets around the bits that you want to perform first. Thus in
the above expression you could use 6+(4*3) . Other priorities are less obvious and if you have
trouble writing them, put in brackets just in case. It will then be obvious to you later when you try
and work out what is going on. However, for the purist, here is the priority order used in LET

statements.

Highest priority i.e. Done first
Field values , TIME()
Brackets , unary+ , unary- , NOT
A
* /,MOD, DIV
$ -
=,<,>,<=,>=,<>
AND
OR,EOR

Lowest priority i.e. Done last

LET and TIME

139

Function vail

The following functions are supported by the Infomate LET statement:

The first set give number field results.

ABS()
ACS()
ASN()
ATN()
COS()
DEG()
DIV
EXP()
INT()
LN()
LOG()
MOD
PI
RAD()
RND
RND(1)
RND(no)
SGN()
SIN()
SQR()
TAN()
VAL()

This set give letter

Absolute value

Arc cosine

Arc sine

Arc tangent

Cosine

Converts radians to degrees

Integer divide. e.g. 7 DIV 2 gives 3
Exponential base e

Integer part of

Natural logarithm

Logarithm base 10

Integer remainder. e.g. 7 MOD 2 gives 1

Converts degrees to radians

Generates a random no from 1 to &FFFFFFFF (4,294,967,295)
Generates a random no from 0 to 1

Generates a random no from 1 to no

Gives +1 if +ve ,0if 0, or -1 if -ve

Sine

Square root

Tangent

Value of a string or a letter field.

field results.

LEFT$(f1d,N) Left most N characters of fld
RIGHT$(fl1d,N) Right most N characters of fld
MIDS$(fld,N) All characters from position N onward

MID$(fld,N,M) M characters from position N onward
STRINGS$(N,"chars") N copies of the characters chars

CHR$(f1d)

ASCII character whose code is held in fld

140

File Formats

DATA FILE FORMATS

In this section we describe details of the Infomate data file structures. This will be followed by
some of the alternative formats allowed for, including that for Lotus 123, Microsoft Excel, and of

course Pipedream.

The Infomate File Format

Because Infomate needs to Interface with many different data manipulation programs, and to allow it
to access any of its own data quickly and in any order, the Infomate authors chose a simple fixed
record format that has the simplest form to convert to other formats.

In the figure below we have shown a typical Infomate file. Note the presence of "missing" values in
all of the examples, and the use of implied decimals internally in the file

The schema file definition of the Infomate file might appear like this

1D
TAG
COLOUR
DATA
Breed
Condition
Old_weight
New_weight
Hool_Ht
Hool_Len

N3
L1

L2
N1
N31
N4 .1
N30
N3.0

An Infomate Data File created by the above could look like this.

4GRM624524.512080
14R R4352 9724

1240SF943243.2 12.

8546 7v12712.7134

899R R 34.910117.,
.C/r

998GRN6 99 9.9 23

.C/pr
LCrr

C/r
C/r,
C/r

Broadly, the Infomate File Format is defined by the schema file in terms of field widths and types.
In addition to this the following should be noted.

1. All characters in the file are the ASCII printable characters from ! to plus the space and

carriage return ($OD)

File Formats 141

2. All records are the same length and are terminated by a carriage return. No line feed is
included.

3. There are no TAB characters or other record separators, each field being in the strict
position indicated by the schema file.

4. All fields with less than a full field width are filled with spaces from the left.
5. Empty fields are filled with spaces.

6. There is no end-of-file mark, the carriage return on the final record being the last
character in the file.

7. Leading zeros are normally converted to blanks, but are acceptable to Infomate.

In many cases the Infomate File Format can be used directly by the data analysis packages, or once
simple editing tasks have been performed on them using the word processors on the target
computer. Techniques to do this were described earlier.

The Pipedream and Excel File Format

The Infomate file above can be converted to Excel and Pipedream plain text format using the file
conversion module described earlier. The format of these two files is shown below:

~ RMH =~ 6 ~ 24.5 ~ 24.5 ~ 120 ~ 80. /r

4 ~ 6

14 ~ R ~ R ~ 4 ~ 35.2 -~ - " 97 ~ 24. ©/r
124 ~ 0 ~ SF ~ 9 ~ 43,2 ~ 43.2 * - "~ 12, Sy
8¢ ~ 6 ~ _—_ ~ 1 ~ 12.7 A~ 12,7~ 134~ _ Eyr
99 ~ R ~ _R ~ _ ° — "~ 3%4.9 ~ 101 "~ 17. S/r
998 ~ 6 ~ RM ~ 6 * 9.9 ~ 9.9 ~ - "~ 23. /r

You should note that in the above format the space characters are shown as _ symbols and the »
symbol is used to show the TABs. Each line is terminated by a carriage return. A full description

of the formats follows.
1. All Fields are separated by a TAB character.
Each record is terminated by a carriage return.
Leading blanks and zeros in Numeric fields are eliminated.
Missing numeric fields contain a single space character.
Letter fields are transferred in their entirety. Blanks are not suppressed.

There is no end of file mark.

.\IO\LA«PU)N

Implied decimal points are re-inserted into the file.

142

File Formats

Lotus 123 Format

The Infomate file above can be converted to Lotus 123 /PRINT format using the file conversion
module described earlier. The format of these files is shown below:
~24.5
~35.2
~43.2

When Files are converted to Lotus /PRINT form they take on the following format.
1.

2
3.
4

W

4
14
124
854
899
998

~ag s
anps
angys
gy
anp e
angy s

AIIR"I!
All_Rn
AIISFII

A0 "

Au_ge
~AuRN"

~

~

~

~

AN

~

6
4
9
7

6

~

~

All fields are separated by a TAB character.

~12.7

9.9

~24.5

~

~43.2
~12.7
~34.9

~

9.9

“1

A0

20
a7

~134

1

AN

01

80

C/r
24.
12.

C/r
C/r

"C/n
7.
23.

C/I"
C/r\

Each record is terminated by a carriage return, followed by a linefeed character.

Leading blanks and zeros in numeric fields are eliminated.

Ve
2
Ve
"2
7
Lys

Letter fields are transferred in their entirety and are surrounded by double quote marks
(e.g. "DEAD")

Missing numeric fields contain a single space surrounded by double quote marks(" ").

There is no end of file mark.

Implied decimal points are re-inserted into the file.

Scales and Drivers 143

SCALES AND OTHER DEVICES

Infomate provides much flexibility in the area of interfacing to weighing equipment and other
electronic devices. These are provided by a wide range of manufacturers and all vary considerably
in the details of the way that they interface to different computers. To handle this problem Infomate
uses specific drivers for each piece of equipment. A driver will handle all of the peculiarities of the
device and make it look standard to the main part of the Infomate program. Drivers can be added to
the set included here with not too much difficulty, but must be developed by Infomate engineers. If
you have specific devices that are not in this set provide as much information about the interfacing
specifications as you can to us and we will consider if it can be incorporated, and the cost of doing
that. Specialty equipment that has limited market potential may have to be interfaced on a full cost
recovery basis, but more commonly used devices may be handled on a part cost recovery basis.

In the following pages the devices currently supported by Infomate are described, including the
details of their schema file usage and cabling and operation details. The current list is shown below
and it will grow with Infomate.

ACTRONIC_1
ALLFLEX_1

AND_1

DONALD_1

MAFKCI_1

METTLER_1
METTLER_1/MAFKCI _1
METTLER_2
METTLER_3
SARTORIUS_1
SARTORIUS_1/MAFKCI_1
TOLEDO_1
TRU-TEST_1

144

Description:

Driver for:

Tested with:

Manufacturer:

N.Z. agents:
Default Z88 Port:
Ecuipment Set-up:

Instructions:

Driver Name: ACTRONIC_1

Interfaces with the Actronic ADAM (Analogue Data Acquisition Module). This is
a portable multi-channel analogue to digital converter with an additional low speed
event counter. It has 7 user addressable channels each with input range of *2V
and resolution of */-20,000 counts.

With Infomate's time functions and the Z88 alarm function a simple data logger
can be implemented.

A customised version of the ADAM interface called InfoLogger that has been
optimised for data logging on the Z88 is available in a metal die-cast box. This
unit has circuitry to allow the Z88 and the ADAM interface to be powered by an
external 12 volt battery.

Actronic AS549, and InfoLogger.

Note: The AS549 is a special edition of the AS456 ADAM with a 9600 baud
option and modification to its output strings to include a carriage return as a
message terminator.

Actronic AS549.

Actronic Systems Ltd.
P.O.Box 9341
Auckland, N.Z.

As above.
9600 Baud, Space Parity, No Xon/Xoff.
See ADAM user manual.

The ADAM is a multi-channel device. Its channels need to be initialised. This is
done with the PORTIS statement. Channels are initialised using the letter "I"
followed by a list of digits for the channels to be used e.g.:

PORTIS ACTRONIC_1 11245

initialises channels 1,2,4 and 5.

Actronic _Driver

145

The event counter can also be reset to zero using | * in the PORTIS statement (the
| is the split vertical bar on the Z88 keyboard and inserts a <CR><LF> in the
string which is sent to the ADAM). e.g.:

PORTIS RCTRONIC_1 I23}
intialises channels 2 and 3 and resets the counter.

In the sequence part of the schema each channel needs to be specified before a
reading is taken. This is done using the SETPORT command e.g.:

SETPORT S
GETPORT Uoltage reading wvolts!

fetches a reading from channel 5. Using a "P" in the SETPORT allows the
counter value to be read e.g.:

SETPORT P
GETPORT Counter reading counts

Using the letters A to G with SETPORT fetches the averaged analogue data
(averaged over the last 4 conversions) for channels 1 to 7 respectively.

Using an "*" (asterisk) with SETPORT resets the counter.

Note the warning in the reference section about use of SETPORT / GETPORT
pairs when backstepping through a schema.

Data Logging
Set up the ADAM and connect to any sensors required.

To synchronise the readings with the Z88 clock, put the Z88 to sleep using a
SLEEP command in the schema file. The Z88 alarm application can then be
arranged to wake up the Z88 to take a reading at specified intervals. The ADAM
must remain powered up.

To set the alarm, press @ A, choose SET ALARM and use the arrows to set up
the options. They should be set as follows. Bell to Off (to avoid double
readings), Alarm Type to Alarm, Repeat Every to the value required, and No.
of Times to Forever. Use T and® to cycle through the options available.

146

Scales and Drivers

Schema Example:

The second schema in the examples following is one designed for data logging.
Note the options used with the ENTER line: ENTER=<+ ensures that each time
the Z88 wakes up it continues with the ID incremented automatically. When you
run it you should initially enter the starting ID and the Z88 will go to sleep
immediately. The first reading will be taken on the first alarm. To confirm that
everything will work correctly when the Z88 wakes up on the first alarm you can
wake the Z88 manually with the two BRTET] keys. The readings should flash on
the screen and the Z88 fall back to sleep. You may want to discard this reading
when processing your data since it will be out of step with all the alarm generated
readings.

To stop logging you need to wake the Z88 with the two [BHIFT keys and press
before the Z88 has finished taking the current set of readings.
Note: Pressing [EZC] when the Z88 has been woken up by the alarm will have no
effect because the alarm wakes the Z88 in the "locked out" state which means key-
presses are not registered until the Z88 has been switched off and on again.

TITLE ACTRONIC_1 TEST SCHENA
FILE UOLTS.DAT
PORTIS ACTRONIC_1 I23}
1D
Read_No N2
DATA
Uoltage_2 N7.2
Uoltage_3 N?.2
Count N6
SEQUENCE
ENTER?7<+ Read_No Type Read No.
MAKERECORD
SETPORT 2
GETPORT Uoltage_2 Reading chan.2
SETPORT 3
GETPORT Uoltage_3 Reading chan.3
SETPORT P
GETPORT Count Getting count

END

Actronic Driver

147

A schema for data logging.

Cable Diagram:

TITLE ACTRONIC-1
FILE UOLTS.DAT

TEST SCHENA

PORTIS ACTRONIC_1 123}
1D
Read_No N2
DATA
Rec_Time N6
Uoltage_2 N7.2
Uoltage_3 NT.2
Count N6
SEQUENCE
ENTER=<+ Read_No Type Read HNo.
SLEEP
MAKERECORD
LET Rec_Time = TINE(HNS)
SETPORT 2
GETPORT Uoltage_2 Reading chan_2
SETPORT 3
GETPORT Uoltage_3 Reading chan_3
SETPORT P
GETPORT Count Getting count
END
Z88 ADAM
DES9 plug (male) DB25 plug (male)
2 — 2
3 = 3
7 7 (signal ground)
5 —
8 —

Scales and Drivers

148
Driver Name: ALLFLEX 1
Description: Interfaces Infomate with Micropower 2000 series animal weighing scales. These
scales were formerly manufactured by Donald Presses but are now made by
Allflex.
Driver for: Micropower 2000 series scales.

Tested with:

Manufacturer:

N.Z. agents:
Default Z88 Port:

Equipment Set-up:

Instructions:

Schema Example:

Donalds Micropower 2000-XP.

Allflex New Zealand Ltd.
Private Bag
Palmerston North, N.Z.

As above.
1200 Baud, Space Parity, No Xon/Xoff.

Modify older models as per special note on next page.

Set up the Micropower so that weights are displayed. To achieve this press
"MODE" then "4" then "MODE".

Set up in "on line" mode. To achieve this press "*", then "MODE" as many times
as needed to get the "O-L 00" display and then press "*" to get back to the weigh
mode.

Connect up scales and Run your schema. Note: Unfortunately the scales will not
respond if the weight is zero or negative so make sure there is something on your
scales when you run you schema.

See the METTLER_1 driver example. Make sure the driver name is spelt
correctly.

Allflex Driver

149

Cable Diagram:

Special Note:

288 Allflex/Donald's Micropower 2000
DES plug (male) D 15 plug (male)
2 . 4
3 —= 5
7 12 (signal ground)

Older models (and possibly current ones) need a separate ground wired into the 15
way D socket. This wire was omitted by the manufacturer in spite of being
specified by the scale's designer. This modification should be done by someone
handy with a soldering iron or else by the manufacturer.

To gain access to the inside of the Micropower 2000 you need to lift the rubber at
the edges of the perspex front panel and undo the screws.
Pin 12 of the 15 way D communications connector must be connected to the digital
ground. This is pin 2 of the 14 way molex connector on the printed circuit board.
To ascertain numbering use the fact that the red and white wires on that same
molex connector are pins 3 and 4 respectively. Make sure you're not connecting
to mains ground, and do not under any circumstances perform this modification
yourself if you have any doubts about it at all.

150

Description:

Driver for:

Tested with:

Manufacturer:

N.Z. agents:

Default Z88 Port:

Equipment Set-up:

Instructions:

Schema Example:

Driver Name: AND_1

Interfaces Infomate with a series of scales manufactured by A&D Corporation. It
relies on these scales sending out a continuous stream of readings through their
serial port.

A&D models EW, FX, FY, ER, EP, EK (according to information from the data
sheets available).

AND EW-3000B.

A&D Company, Ltd

Shintaiso Building, No. 5-1052
10-7 Dogenzaka 2-Chome
Shibuya-ku

Tokyo 150 Japan.

E.C. Gough Ltd,
P.O. Box 22073,
Christchurch, NZ.

2400 Baud, Space Parity, No Xon/Xoff.

Older style scales do not have any means of altering the serial interface set up. If
the baud rate is different from the default rate of 2400 baud you will have to
change the baudrate using your PORTIS statement e.g.

PORTIS AND_1[1200SN]

More modern scales e.g. FX/FY series have "Software Parameters” which can be
set by the user (consult the scale instruction manual).

Connect up scales and Run your schema.

See METTLER_1 sample schema.

N
"

AND Driver 1

Cable Diagram:

288 AND
DE9 plug (male) DB25 plug (male)
2 = 2
3 — 3
7 7 (signal ground)
5 ——
—4
8 —
9 — 5

(according to the data sheets available this particular wiring scheme will work with
most AND scales)

152 Scales and Drivers
Driver Name: DONALD_1
Description: Identical to ALLFLEX_1 driver. Interfaces Infomate with Micropower 2000
series animal weighing scales. These scales were formerly manufactured by
Donald Presses but are now made by Allflex.
Driver for: Micropower 2000 series scales

Tested with:

Manufacturer:

N.Z. agents:

Default Z88 Port:

Equipment Set-up:

Instructions:

Schema Example:

Cable Diagram:

Special Note:

Donalds Micropower 2000-XP.

These scales are no longer manufactured by Donald Presses but by:

Allflex New Zealand Ltd.
Private Bag
Palmerston North, N.Z.

As above.
1200 Baud, Space Parity, No Xon/Xoff.

Modify older models as per special note below.

Set up the Micropower so that weights are displayed. To achieve this press
"MODE" then "4" then "MODE".

Set up in "on line" mode. To achieve this press "*", then "MODE" as many times
as needed to get the "O-L 00" display and then press "*" to get back to weigh
mode.

Connect up scales and Run your schema. Note: Unfortunately the scales will not
respond if the weight is zero or negative so make sure there is something on your
scales when you run you schema.

See the METTLER_1 driver example. Make sure the driver name is spelt

correctly.
See ALLFLEX_1 driver.

These scales need a separate ground wired into the 15 way D socket. This wire
was omitted by the manufacturer in spite of being specified by the scale's
designer. This modification should be done by someone handy with a soldering
iron or else by the manufacturer (see ALLFLEX_1 driver for details).

MAFKCI Driver

153

Description:

Driver for:

Tested with:

Manufacturer:

N.Z. agents:

Default Z88 Port:
Equipment Set-up:

Instructions:

Driver Name: MAFKCI_1

This driver enables length measurements to be captured using Mitutoyo or PAV
electronic calipers. The calipers are connected to the Z88 via the KCI interface
produced by MAF Kerikeri.

KCI caliper interface with Mitutoyo Digimatic Series 500, 550, 551 and some
PAV Electronic calipers.

KCI and Mitutoyo 500-322.

KCI: Environmental Physics
Kerikeri Horticultural Research Station,
P.O. Box 23, Kerikeri, New Zealand.

Calipers: Mitutoyo Corporation
Japan. (they only deal through the local agents).

PAV
Prazisions-Apparatebau Ag
Schaanerstrasse 40
FL-9490 Vaduz
Liechtenstein.

KCI: as above.

Calipers: Metrology Techniques
P.O. Box 10-024
Hamilton N.Z.

9600 Baud, Space Parity, No Xon/Xoff.
Plug in cables and turn on caliper interface (remember to turn it off after use).

Run your schema file. You are prompted to press the Data/Hold button to initialise
the interface. If something is not plugged in or the KCI has a flat battery the Z88
will wait indefinitely for an answer from the interface. If you can't rectify the fault
just press the ESC key.

Note: If you turn on the KCI after you've tried to Run the schema you may get a
"Could Not Initialise ?.." message. That's because turning on the KCI causes a
spurious character to be received by the Z88. Just Run the schema again and it
should work the second time.

154

Schema Example:

Cable Diagram:

During sequence operation press the Data/Hold button whenever a length
measurement is required from the calipers. A message prompting the user to press
the button should be included in the schema file as shown in the following sample
schema.

TITLE MAFKCI_1 TEST SCHENA
FILE LENGTHS.DRT
PORTIS MAFKC 11
ID
Piece_No N2
DATA
Length N7.2
SEQUENCE
ENTER=<+ Piece_No Type Piece HNo.
MAKERECORD
GETPORT Length Press Hold!
END

Z88 KCI
DE9 plug (male) DE9 socket (female)

3 - 3
7 7

Mettler Drivers

1535

Description:

Driver for:
Tested with:

Manufacturer:

N.Z. agents:

Default Z88 Port:

Equipment Set-up:

Driver Name: METTLER_1

Interfaces Infomate with Mettler scales. This driver is for the bulk of the modern
Mettler balances with RS232 interfaces. That is for those Mettler scales which
respond to the S <CR><LF> (Send steady weight) command. There are other
Mettler drivers for some of the older types.

PM, SM, AM, AT and BASBAL scales.
Mettler PM6000.

Mettler Instrumente AG
CH - 8606 Greifensee, Switzerland.

Watson Victor Ltd.
P.O. Box 1216, Auckland 1 NZ.

9600 Baud, Space Parity, No Xon/Xoff.

The Mettler needs to have its configuration file changed from the default factory
settings in order to work with this driver. Set the Interface parameters as follows:

S. Data transfer mode to Stb

b. Baudrate to 9600

P. Parity ton

PAUSEto 1

AU to oFF (if an option on your scales)

To achieve this you should follow your scale's instruction manual. A summary of
the process is provided in the diagram following (there are slight differences
between models but the principle is the same). With the scales off hold down the
control bar (sometimes called the tare or zero key/bar) until the word -Conf- is
displayed. Release the control bar and give it a few short presses. You are now
cycling through the main sections of the configuration file. Stop when you see the
word I-FACE-. Now hold down the control bar until s. appears. You are now
setting up the data transfer mode. Cycle round the options in the s mode with
short presses of the control bar until Stb shows. You are now ready to move on to
set the next parameter. To do this hold down the control bar for a long time until
b. appears. Cycle through the baudrate options with short key presses. Set the
other parameters likewise. When you get to the "End" display give the control bar
one last long press and you will be back in weigh mode.

156 Scales and Drivers

Setting Configuration file for Scales
for use with METTLER_1 Driver

Start here with
scales off

______ = Keep control Bar depressed until
required display appears.

-ConF- 3 Press Control Bar briefly.
FESEt | o) | SCALE | o) Unit) I-FACE
don't modify don't modify E‘ m o)
this section this section g 3
| Contﬂ PlAuto I
[b | [2400]e) | 4800
3
600 110
Settings for Infomate shown r I I J
in black e 3
300 | ¢ [150 |
4
[P] [E Jo[o |
T 3
BERIY - |

.I"L'T__I
o]

_orr ARCTH

«—|E~1§< |

End

1

00g

Mettler Drivers

157

Instructions:

Schema Example:

Special Notes:

Cable Diagram:

Connect your scales to the Z88 with the cable provided and Run your schema file.

TITLE METTLER_1 TEST SCHEMA
FILE WEIGHTS.DAT
PORTIS METTLER_1
1D
Piece_No N2
DATA
Ueight N7.2
SEQUENCE
ENTER?<+ Piece.No Type Piece HNo.
MAKERECORD
GETPORT Length Reading weight!
END

If you have documentation of the Mettler interface you will see that you can send
various commands to the scales. You could set up the units on the scale using the
U command within your PORTIS statement. e.g.. to set the units to ounces use:

PORTIS HETTLER-1 Uoz

Z88

DES9 plug (male) Mettler
/O MiniMETTLER (ME33930)

R

(view from solder side)

158

Description:

Driver for:
Tested with:
Manufacturer:
N.Z. agents:

Default Z88 Port:

Equipment Set-up:

Instructions:

Schema Example:

Cable Diagram:

Driver Name: METTLER_2

Interfaces with Mettler TE scales only. It has a special feature to allow unsteady
weights to be recorded.

Mettler TE series scales with Mettler 030 Data output option.
Mettler TE 60.

See METTLER_1 driver.

See METTLER_1 driver.

2400 Baud, Space Parity, No Xon/Xoff.

Set up the scale in the "Send Continuous Mode".

Connect your scales to the Z88 with the cable provided and Run your schema file.
The driver will only enable steady readings to be captured by Infomate unless you
set the dynamic reading flag as shown in the schema example following.

As for METTLER_1 example but with METTLER_2 in the PORTIS statement.
To allow unsteady (dynamic) readings to be recorded the PORTIS statement
should be:

PORTIS HMETTLER_-2 {D}

288 METTLER TE
DE9 plug (male) DB25 plug (male)
3 - 3
7 7
[J—
8 —

Mettler Drivers

159

Description:

Driver for:
Tested with:
Manufacturer:
N.Z. agents:
Default Z88 Port:

Equipment Set-up:

Instructions:
Schema Example:

Cable Diagram:

Driver Name: METTLER_3

Interfaces with many of the older style Mettler scales with limited RS232 interface
capabilities. This driver requires that the scales are in a "continuous print" output
mode.

Mettler AE, AC, PC & PE series with RS232 interface modules/options.
PE3600 and AE160.

See METTLER_1 driver.

See METTLER_1 driver.

2400 Baud, Space Parity, No Xon/Xoff.

Set your scale up in "continuous print mode" (see your scale manual). It is
probably in the correct mode already.

Connect your scales to the Z88 with the cable provided and Run your schema file.
As for METTLER_1 example but with METTLER_3 in the PORTIS statement.

These vary but if the socket on the Mettler is square the wiring should be the same
as in the METTLER_1 driver diagram. If it is a 25 pin D connector it will
probably be the same as in the METTLER_2 driver.

160

Scales and Drivers

Description:

Driver for:

Tested with:
Manufacturer:
N.Z. agents:
Default Z88 Port:

Equipment Set-up:

Instructions:

Driver Name: ~ METTLER_1/MAFKCI_1

A combination of the METTLER_1 and MAFKCI_1 drivers. It enables length and
weight measurements to be captured by Infomate using the single serial port. A
Mettler Balance and a pair of electronic calipers (via the KCI Caliper interface) are
connected to the Z88 with a "port splitter” cable.

MAF Kerikeri KCI caliper interface in conjunction with any of the Mettler scales
compatible with the METTLER_1 driver. i.e. Mettler PM, SM, AM, AT and
BASBAL.

KCI and Mettler PM6000.

See METTLER_1 and MAFKCI_1 drivers.
See METTLER_1 and MAFKCI_1 drivers.
9600 Baud, Space Parity, No Xon/Xoff.

Configure the Mettler scale as described in METTLER_1 driver. The KCI should
be set to 9600 baud (you shouldn't have to alter the KCI baudrate because it is
supplied set to 9600 baud).

Connect up the KCI and scales to the "Port Splitter" cable. The cable is
symmetrical so either socket will do.

Since there are two devices, the schema file has to identify the relevant device
before getting data. This is done with a SETPORT command before your
GETPORT. A single letter, K for calipers or M for Mettler is included after
SETPORT. For example if a reading is to be taken from the calipers the schema
file would have:

SETPORT K
GETPORT length press hold!

Remember to press the Data/Hold button for caliper readings.

Note the warning in the reference section about use of SETPORT / GETPORT
pairs when backstepping through a schema.

When running the schema, the port is initialised and both the Mettler and KCI
connections are tested. To test the KCI connection you are asked to press
Data/Hold to send a test reading.

Mettler/MAFKCI Driver 161

Schema Example:

TITLE METTLER_1/KCI_1 TEST SCHEMNA

FILE PODS.DAT
PORTIS METTLER_1/NMAFKCI_1
ID
Pod_No N2
DATA
Height N7?.2
Length N7.2
SEQUENCE
ENTER?<+ Pod_No Type Pod HNo.
MAKERECORD
SETPORT n
GETPORT Height Getting weight!
SETPORT K
GETPORT Length Press Hold
END

Cable Diagram:
Z88 "Port Splitter”

DE9 socket (female)

288
DE9 plug (male) 7
2
3
7
s DE9 socket (female)

9

Mettler cable as described in METTLER_1 driver.
KCI cable as described in MAFKCI_1 driver.

162

Description:

Driver for:
Tested with:

Manufacturer:

N.Z. agents:

Default Z88 Port:

Equipment Set-up:

Driver Name: SARTORIUS_1

Interfaces to Sartorius Scales with the MP8 series and the new MC 1 series
interfaces. N.B. It may be difficult to ascertain what type of Sartorius scale you
have. The MP8-X number doesn't refer to the model number but the
microprocessor. The label on the back with the serial number may help.

As above.
Sartorius 1702 and LC620P.

Sartorius AG
P.O.Box 3243
3400 Goettingen
Germany.

Wilton Instruments (a Salmond Smith Biolab Group)
P.O. Box 31044
Lower Hutt N.Z.

9600 Baud, Space Parity, No Xon/Xoff.

MPS series: Refer to the scale's manual for exact details.

The Balance Operating Program needs to be modified as follows:
Code: Data output:

C211 external print command without stability

Code: Baudrate:

C227 9600 Baud

Code: Parity Bit

C232 Space Parity

To access the balance operating program:

With the balance turned of (Standby state) hold down the tare control while
momentarily pressing the ON/OFF key. Upon completion of the automatic self-
test, release the tare control before "CHS5" is displayed. The status of the balance
operating program will be indicated in the weight display. "L" stands for the list
mode. In this mode, you can check the code settings, but you cannot program
new codes. To change a program code you must first unlock the menu access
switch to access the menu. Your scales manual will tell you how to do this. For
most models this involves finding the appropriate switch cover, removing it and
flicking the switch. Some models require a special plug which is inserted in the
serial port which unlocks the scale program. This plug is just a 25 pin D

Sartorius Driver

163

connector with pin 24 connected to pin 21 and pin 19 connected to pin 7. For
these models it would be a good idea to change the code to "Program lock OFF"
(411) using the method described below. Having unlocked the program the
display will now indicate "C" which stands for the change mode, meaning you can
now change codes.

[1_
Loy

Page Line word

After the balance operating program has been called, the display will show a
continuous numerical sequence from 0-5 representing the "page" selection. You
want page 2 "Data Output”. When the 2 appears press the tare control. You are
now cycling through the "lines" of the data output page. Press the tare key when
the line number you want to change is displayed. Having done this, the numbers
for the "word" will be displayed. A small triangle or circle indicates the current
setting. If you need to change it, press the tare key when the code you want is
displayed. Repeat the procedure for each line which needs to be changed. To
return to the weighing program press the tare control each time a O appears in the
numerical sequence (word, line, page)

MC1 Series

The Menu Code needs to be modified as follows:
Code: Data output:

C611 Print on request regardless of stability.
Code: Baudrate:

C517 9600 Baud

Code: Parity Bit:

C522 Space Parity

To change the Menu Code:

- Turn the balance or scale off and then back on again.

While all segments are displayed, briefly press the tare control.

- If "-L-" is displayed, change to the "-C-" mode using the menu access switch
Select the desired code number as follows:

- press [& to increase it or

- k& to decrease it.

164

Instructions:

Schema Example:

Cable Diagram:

Select the left, middle or right place as follows:

- press the Ed key to go toward the left

- press the [BYkey to go toward the right

To confirm your code selection press the control labelled (1]

Adjust the menu access switch back to the original setting - readout: - L-.

To leave the menu, press
Connect your scales to the Z88 with the cable provided and Run your schema file.
See the example for the METTLER_1 driver.

There is a facility to send single letter commands to the balance using either the
initialising PORTIS line or SETPORT in your schema e.g.. to initialise your
Sartorius to weigh in Carats you would use this statement: ’

PORTIS SARTORIUS_1 C

(see your Sartorius manual for other commands)

Different scales have different signal grounds make sure you have the correct
cable.

Sartorius
288 MP8,MP8-1 & MP8-2
DE9 plug (male) also MC 1
DB25 plug (male)
2 o 3
3 - 2
7 4 (external ground/
5 signal return)
5
- C
25
9 ——
288 Sartorius MP8-4series
DES plug (male) DB25 plug (male)
2 e 3
3 — 2
7 7 (signal ground)
s 5

e ——)
: [

Sartorius/MAFKCI Driver 165

Driver Name: SARTORIUS_1/MAFKCI_1

Description:

Driver for:

Tested with:

Manufacturer:

N.Z. agents:
Default Z88 Port:
Equipment Set-up:

Instructions:

Schema Example:

Cable Diagram:

A combination of the SARTORIUS_1 and MAFKCI_1 drivers. It enables length
and weight measurements to be captured by Infomate using the single serial port.
A Sartorius Balance and a pair of electronic calipers (via the KCI caliper interface)
are connected to the Z88 with a "port splitter” cable.

MAF Kerikeri KCI caliper interface in conjunction with any of the Sartorius scales
compatible with the SARTORIUS_1 driver.

Sartorius 1702 and Mitutoyo 500-322.

KCI see MAFKCI_1 driver.
Sartorius see SARTORIUS_1 driver.

As above.
9600 Baud, Space Parity, No Xon/Xoff.
See MAFKCI_1 and SARTORIUS_1 drivers.

Connect up the KCI and scales to the "Port Splitter” cable. The cable is
symmetrical so either socket will do. Since there are two devices, the schema file
has to identify the relevant device before getting data. This is done with a
SETPORT before your GETPORT. A single letter, K for calipers or S for
Sartorius is included after SETPORT. For example if a reading is to be taken from
the calipers the schema file would have:

SETPORT K
GETPORT length press hold!

Remember to press the Data/Hold button for caliper readings. When running the
schema, the port is initialised and both the Sartorius and KCI connections are
tested. To test the KCI connection you are required to press Data/Hold to send a
test reading.

Note the warning in the reference section about use of SETPORT / GETPORT
pairs when backstepping through a schema.

See METTLER_1/MAFKCI_1 driver example.

See METTLER_1/MAFKCI_1 driver for "port splitter" adapter.
For 788 to KCI see MAFKCI_1 driver
For Z88 to Sartorius see SARTORIUS_1 driver.

166
Driver Name: TOLEDO_1
Description: Interfaces Infomate to Toledo 1938 series weighing scales. These scales provide
quite sophisticated features for parts counting and net or gross weight capture.
Driver for: TOLEDO 1938.

Tested with:

Manufacturer:

N.Z. agents:

Default Z88 Port:

Equipment Set-up:

Toledo 1938 - 0001.

Toledo Scale, Industrial Products
350 W. Wilson Bridge Rd.
Worthington, Ohio 43085, USA.

Watson Victor Ltd.
P.O. Box 1216, Auckland 1 NZ.

9600 Baud, No Parity, No Xon/Xoff.

To set up your scales you will need to access Set-up mode. First remove the top
screw that secures the end cap on the right side of the display housing and loosen
the lower screw so the end cap can be rotated out of the way allowing access to the
inside of the enclosure. Then press the white "ON/OFF" key (located on the front
below the right side of the display screen) to turn the scale power ON. After the
power-up sequence is completed, press and release the white Set-up mode push-
button located on the PCB inside the end of the display.

When the Set-up mode is accessed, the first series of soft-switches will be
displayed as [10 0]. The "10" indicates the first series of switches (11 through
16). Pressing the "TARE" key will change the "0" (indicating OFF) to a "1"
(indicating ON). When the "1" is displayed, press the "PRINT" key to accept the
displayed setting and advance to the first soft-switch selection. If the "10" series
of soft-switches is to be by-passed, leave the display showing [10 0] . and just
press the " PRINT" key to advance to the "20" series of soft-switches. Pressing
the "PRINT" key without making changes will advance to the next selection, and
pressing the "ZERO" key will backup to the previous selection.

The five sections of soft-switches in the set-up mode have the following functions:

10 SCALE SETUP.

20 LEGAL FOR TRADE AND CALIBRATION SETUP.
30 COUNTING SETUP.

40 PRINTER OUTPUT SETUP.

50 PRINT FORMAT SETUP.

Toledo Driver

167

Presumably you have taken care of setting up soft-switch series 10, 20 and 30.
Consult your scale manual if you need to inspect or modify any of those.

Before setting up your scales, you need to decide what data you need to send to
Infomate from the scales. The Toledo 138 scales can give you Gross weight, Tare
weight, Net weight, Piece count or a combination of these. The most common of
these is the net weight. In this case you enable printing of the net weight and
Infomate will get the number correctly. However, if you are going to get more
than one number for each weighing, e.g.. Tare weight and Net weight you will
have to work out how to extract the relevant statistics from the string returned from
the scales using the BASIC string functions. A list of these formats is shown
later.

Below is the definition of the "40" and "50" series soft-switches. The normal
settings for INFOMATE are shown in bold

40 PRINTER QUTPUT SETUP SOFT-SWITCHES
0 = By-pass Section 40 soft-switches 41-43.
1 = Access Section 40 soft-switches 41-43.
41 PRINTER BAUD RATE
0 = 9600 Baud.
1 = 300 Baud.
42 CHECKSUM
0 = Do not send checksum.
1 = Send checksum.
43 REMOTE INPUT
0 = Remote Input is disabled.
1 = Remote Input is enabled.
30 PRINT FORMAT SETUP SOFT-SWITCHES
0 = By-pass Section 50 soft-switches 51-58.
1 = Access Section 50 soft-switches 51-58.
51 SINGLE OR MULTI-LINE PRINTING
0 = Print/send data on multiple lines.
1 = Print/send data on single lines. <- Must be set.
52 PRINT GROSS WEIGHT
0 = Do not print/send Gross Weight data.
1 = Print/send Gross Weight data. <- Optional setting.
53 PRINT TARE WEIGHT
0 = Do not print/send Tare Weight data.
1 = Print/send Tare Weight data. <- Optional setting.

168

Scales and Drivers

54 PRINT NET WEIGHT

0 = Do not print/send Net Weight data.

1 = Print/send Net Weight data. <- Normal setting.

WARNING: See notes below about taring zero weights.

55 PRINT DOUBLE WIDTH NET WEIGHT

0 = Print Normal Width Net Weights.

1 = Print Double Width Net Weights. ~ <- No point Setting.
56 PRINT APW (Average piece weight)

0 = Do not print/send APW data.

1 = Print/send APW data. <- Optional setting.
57 PRINT PIECES (To enable this, set soft-switches 31-34)

0 = Do not print/send Number of Pieces.

1 = Priny/send Number of Pieces <- Optional setting.
58 PRINT DOUBLE WIDTH PIECES

0 = Print Normal Width Number of Pieces

1 = Print Double Width Num. of Pieces <- No point Setting.

Note: You are limited to 30 characters for the string returned to Infomate from the
Toledo Scale so you cannot have all the options enabled. To help you work out
what is possible, the format for each type of output is given below:

GROSS Six digits (including decimal point), a space, and then the two
letters "Ib" or "kg"

TARE Six digits (including decimal point), a space, followed by the
two letters "Ib" or "kg"

NET Six digits (including decimal point), a space, followed by the
two letters "1b" or "kg", a space and then the letters "NET".

APW Eight digits (including decimal point), followed by two letters
"Ib" or "kg", space and then the three letters "APW".

COUNT A one to six digit count followed by a space and then the three
letters "PCS".

Also note that each double width selection (cf. switches 55 and 58), above adds
two characters to the stream of output characters.

To exit set-up mode press the PRINT key until you get to 99 END OF SETUP
MODE, and then press the Set-up push-button to return to normal run mode. If at
any stage through the setting of the scales you wish to terminate the operation and
keep the settings you have made so far, press the C key on the scales, and then
press the Set-up push-button to return to normal run mode.

Toledo Driver

169

Instructions:

Schema Example:

Cable Diagram:

NOTE: There is a minor difficulty with the Toledo scales if it is to be used with
an empty pan. i.e. without a container for the material being weighed. The scales
cannot be tared to the zero value that appears when the scales are first powered on,
and nor can weights be sent to the Z88 or any other computer unless a tare has
been completed. Reasons for this are unclear, but to avoid it try one of these
solutions. 1). Always use a container for your material to be weighed, 2). After
powering up the Toledo, clip a strip of magnetic material to the front of the scales
to raise the weight indication to a value greater than zero. Now tare the scales and
weighing can continue. Whenever the scales must be switched on again, remove
the magnetic strip before you turn on the scales. Alternatively, 3). turn the scales
on while lifting the scales pan lightly with your finger. This creates a slight
negative weight which will be zeroed out when it becomes steady. You must lift
with a steady force that is less than 2% of the scale capacity. Practice
makes this operation easier.

Connect your scales to the Z88 with the cable provided and Run your schema file.

See the METTLER_1 driver example. Make sure the driver name is spelt
correctly.

If you wish to extract a second weight e.g. APW from the string of characters
returned from the scales you can use a MID$() sequence like this

GETPORT MEMORY$ Reading Scales
LET Net_Weight = URAL(MEMORY$)
LET APU = UAL(NID$(MEMORYS$,14,8))
288 Toledo 1938
DE9 plug (male) DE9 plug (male)
2 e 3
3 - 2
7 5 (signal ground)
Sp—
8 —¢

170

Description:

Driver for:
Tested with:

Manufacturer:

Default Z88 Port:

Equipment Set-up:

Instructions:

Schema Example:

Cable Diagram:

Driver Name: TRU-TEST_1

Interfaces Infomate to AG500 series animal weighing scales. All data capture is
done on the Z88.

AGS500-02 and AG500-03 versions 1, 2 & 3.
AGS500-02 version 2, AG500-03 version 3.

TRU_TEST Distributors Ltd
P.O. Box 51-078

Pakuranga
Auckland, N.Z.

9600 Baud, Space Parity, No Xon/Xoff.

Press the "SET" and "Baud" keys and set to 9600 baud.
If your scales have AWR (automatic weight recording) set this to OFF.

Connect your scales to the Z88 with the cable provided and Run your schema.
The driver has a feature to allow you to transmit the code of any key on the AG500
console using the SETPORT instruction. Your scale's manual gives the codes for
the keys. For example by sending the code for the WGT key (RECORD key on
version 3 models) the AG500 can be made to store the weights as well as Infomate
(this has not been tried by the author). For example the RECORD key on an
AGS500-03 version 3 is at coordinates 3,9 (numbering starts at the top left hand
corner with 0). So to get infomate to press this key "remotely"” you would use:

SETPORT 39

See the METTLER_1 driver example. Make sure the driver name is spelt
correctly.

288 AG500
DE9 plug (male) DB25 plug (male)

2 = 3

3 - 2

7 7 (signal ground)
S — — 4

8 —e 9 5

9 — 6

Computers Cables 171

WIRING TO OTHER COMPUTERS

Below are descriptions of some of the cables required to link the Z88 to other computers.

Z Z]

The following cable can be used to connect two Z88s together to allow files to be transferred from
one to the other.

288 zZ88
DE9 plug (male) DES9 plug (male)
2 ——l=— 3
3 —t 2
7 7 (signal ground)
5 f— 5
8 —— 8
9 —_—009
Z PC AT]
zZ88 PC
DES9 plug (male) DE9 socket(female)
2 — 2
3 . 3
7 5
5 e—— 7
8 —d : 8
9 — 1
— 4

6

Computer Cables

172
PC XT]
Z88 PC
DES9 plug (male) DB25 socket(female)
2 e 3
3 g — 2
7 7
5 — 4
s —4 [
9 — 6
—— 8
— 20
Macin D conn r and Mini-DI 1
288 MAC MAC
DE9 plug (male) Mini-8 connector DE9 Connector
2 e 5 RxD- 9
3 — 3 TxD- 5
7 4GND 3
5 — L 6TxD+ 4
8§ — 1 Hsk Out
9 — : 2 Hskin
NG —— 8 RxD+ 8
NC —— 7 GPi

View from Solder Side

Errors

173

ERRORS AND THEIR POSSIBLE CAUSES.

The following is a list of errors that could occur at any stage of your interaction with Infomate. For
user convenience they are listed in alphabetical order. They may have other messages appended to
them such as " in line xxx", or in some cases may have other messages placed in front of them.

-ve root

... On Driver ...

Accuracy Lost

Already Done

Arguments

Array

Bad Call

Bad File Name

Bad Format

You have tried to take the square root of a negative number in a LET
or TEST statement.

A problem talking to the equipment on the port. Consult the driver
notes at the end of the manual.

Your LET or TEST statement has a trig function in it with a very large
angle as an argument. Try subtracting a few multiples of 2*PI from
the angles.

The field specified in a CHECKDONE statement has a value in it
other than a series of space characters implying that this record has
already been updated. In an animal weight capture schema this would
mean that the animal has already been weighed, or at least an animal
you thought had that ear tag had been weighed.

A function call (FN..) in a LET or TEST statement has too many or
too few arguments. This can also be caused by bad bracketing .

Your LET or TEST statement refers to a BASIC array of the form
NAME(...) . This is not normal LET statement usage.

A LET or TEST statement is accessing a function incorrectly, or has
the letters PROC imbedded when they are not a valid field name.

You have specified a file name that is not valid for the Z88. For
example FILE.DATA as a name contains to many characters after the
dot.

A field format definition is not valid. Check with the start of the
reference section for the allowed formats for each type of field (ID,
DATA, or SCRATCHPAD).

174

Errors

Bad Groups

Bad HEX

Bad Parameters

Bad Response

Can't Open Data File

Check Failed

The string of characters in a CHECK statement implies that there are
more fields than actually exist in your definition, or the number of *
characters is not followed by complete groups of that number of
characters. This could be a problem of the compiler reducing multiple
blanks to a single blanks. Check the CHECK statement definition.

A LET or TEST statement refers to an invalid hexadecimal number.
Hex numbers must start with an & and comprise only the letters A to
F and the digits 0 t0 9.

The parity, baudrate or xon/xoff specifications in a PORTIS or
LOG PRINTER statement does not conform to the accepted set of
options. Check the definitions in the corresponding statement.

The equipment connected to the serial port did not respond as it
should have. Is it connected correctly, and is it turned on. Perhaps
you have specified the wrong driver.

When Infomate has attempted to read a record from the data file, or
write a new record to the data file, it has failed. Perhaps the file has
been secretly deleted by the operator, or a move to a new device or
directory has been made.

A CHECK statement looking at character patterns has failed to find
the character string you entered in the list of allowed strings.

Could Not Write SCHEMA.CMP The internal file SCHEMA.CMP could not be written onto

Could not Initialise ...

the current device/ directory perhaps due to lack of space.

Infomate called a driver to initialise it and failed. Is the serial port
connected to the scales or device, and is it switched on and in a
correct operating mode. Consult the notes for the individual drivers at
the end of the manual.

Data Fields Don't Match Schema This probably means that the data file was not created by

Division by Zero

this schema, or for this schema. When the file is loaded it was found
not to conform to the field specifications for the current schema. A
common cause for this error is when fields are added or subtracted
from a schema, or their length modified. When this happens you will
need to create a new data file using the New Data File Create
command from the main menu.

Your LET or TEST statement has attempted to divide by zero.

Errors

175

Driver not Available

Driver not Specified

End of Data

EPROM Full

Exp Range

File > 2000 Records

File in Use

File Not Found

File Problem: Already Exists

File Problem: Bad Filename

File Problem: Channel

File Problem: End of File

The driver for the serial port of the Z88 specified in the PORTIS
statement does not exist in this version of Infomate. You may have
an earlier version, or perhaps misspelled, or did not use capital letters
in the driver name.

An attempt has been made to test a driver and either there is no schema
file compiled at present, or the currently compiled schema does not
contain a PORTIS statement.

Not really an error. You have been using a NEXTRECORD to
process the data in a file and the end of the file has been reached.

The file that you wish to put on EPROM will not fit.

Your LET or TEST statement has referred to an EXP function and the
value inside the brackets is greater than about 88. The result of this is
too big for the Z88.

Infomate can only handle up to 2000 records at this point in time.

You are trying to use a file that another application is currently using.
If there are no other applications pending, then an application has
been killed without closing a file. In this situation the only option
open to you is a soft reset. Sorry.

The data file specified does not exist. It may need to be loaded into
the current directory, or if you are to use an empty file it may need to
be created using the New File Create command from the main menu.

This is an internal error for Infomate and should not occur. An
attempt has been made to rename a file to a name used by another file.

You have specified a file name that is not valid for the Z88. For
example the filename FILE.DATA has too many characters after the
dot.

This is an internal error for Infomate and should not occur. An
attempt has been made to read from a non existent file.

This is an internal error for Infomate and should not occur. An
attempt has been made to read beyond the end of a file.

176

Errors

File Problem: File not Found Infomate has tried to do something to a file that is now missing. You

File Problem: In Use

perhaps erased it while Infomate was not looking. A common culprit
here is the internal file SCHEMA.CMP which is a compressed form
of the current schema file.

You are trying to use a file that another application is currently using.
If there are no other applications pending, then an application has
been killed without closing a file. In this situation the only option
open to you is a soft reset. Sorry.

File SCHEMA.CMP is missing The internal file that holds the compressed form of your

File Type Mismatch

ID Already Exists

ID has been Changed

ID Not Found

ID Not Valid

ID Too Large

Incorrect Log File Open

schema has been deleted, or you have changed the device or directory
that Infomate is currently running in. Check this by going into the
Filer and try to find the current schema and SCHEMA.CMP files.

You have probably specified a directory or device name rather than a
filename.

Infomate requires that every data record has a unique ID to distinguish
it from all other records. You have created a record with the same ID
as one that already exists in the file. This may mean that your ID
definition does not contain enough fields to provide truly unique ID's.

You have modified the data in an ID field after the record has been
initialised by a MAKERECORD, FINDRECORD or
NEXTRECORD. This means that the ID would have to go back into
a different place in the file. This is not allowed by Infomate.

Infomate has searched through the data file for the ID entered and
cannot find it. Check spelling, digit transposition, or that you are
using the right file.

You have entered an ID that does not conform to the schema file ID
region definition. You have either put letters where numbers are
expected or vice-versa.

There are too many characters in an ID definition. The number of
letters*2 plus the number of digits*3 must be less than 19.

The currently open log file on EPROM has a different name to that
specified in the current schema. You should first check that you have
the right schema, and if OK close the EPROM log file using the
EPROM Catalogue command from the main menu.

Errors

177

Infomate has unexpectedly Quit This is an internal error and should not happen. We ask

Invalid Filename

Invalid Increment

Invalid Statement

Invalid Weight

LET Syntax

LOG File still Open

Log File Remains Open

Log Range

that you record the numbers that are displayed and communicate them
too us as soon as possible so that we can correct the error and prevent
others from the same fate that now besets you. Sorry.

The filename in a FILE or LOG statement of a schema contains a
colon or slash character, or a LOG statement contains a dot. These
characters are not allowed as they imply devices, directories or
filename extensions are being used. Check with the specifications for
these filenames under the FILE or LOG statement definitions.

The Increment value in a COUNTSIZE cannot be zero.

Infomate is expecting an ID, FILE, PORTIS, LOG or FILE
statement. It may be misspelled, or use lower-case letters rather than
capitals.

The weight read back from the serial port equipment is invalid. Is the
baud-rate correct, and is the equipment configured in the right way.
Is it connected properly.

The LET statement must have a blank on either side of the = sign to
work correctly.

You cannot save data to EPROM if an EPROM LOGFile remains
open. You must first close the file by responding to the questions at
the end of an EPROM Catalogue command from the main menu.

You cannot save data to EPROM if an EPROM LOGFile remains
open. You must first close the file by responding to the questions at
the end of an EPROM Catalogue command from the main menu.

You cannot take logs of numbers less than or equal to zero.

178

Errors

Looping at ...

Message too Long

Missing "

Missing)

Missing ,

Missing End

Missing File Statement

Missing Message

Missing TITLE statement

Mistake

You have backstepped with the up arrow to a REPEAT statement, and
Infomate wants to know if you want to enter the REPEAT loop or
skip over it. REPEAT UNTIL loops may be thought of as a single
item, like an ENTER, and thus may be skipped over completely.

The response from the serial port equipment was longer than 30
characters, and this is not expected. It could be an error in the baud-
rate. or in the configuration of the connected equipment.

A string LET or TEST statement uses a string definition that is not
terminated by a " character.

A LET or TEST statement has a bracket missing.

A LET or TEST statement should have a comma, perhaps to separate
arguments of a function call.

The schema file currently being read does not have an END statement.

All infomate schemas must contain a FILE statement near the front so
that data collected can be filed somewhere.

The ENTER statement does not have a message to be displayed to the
operator. Note that the format is ENTER Field Message.

The schema file currently being read does not have a TITLE statement
which should be the first line of the schema.

A LET or TEST statement makes no sense to Infomate.

No Comms: Plug or Config? The equipment connected to the serial port did not answer the query

No Data Fields

No Data File Specified

No EPROM in Slot 3

from Infomate. Check the baudrate, the configuration, the
connection, and that power is applied.

All schemas must have at least one data field. If they don't have data
fields, then what is the point of collecting data?

You cannot run many of the Infomate modules until you have
compiled a schema file to "tell" Infomate the name of the data file, and
what to expect in the file.

If there is something in slot 3 then it is not a data EPROM, or it is
faulty, or it is not inserted correctly.

Errors

179

No ID Fields

All schemas must have at least one ID field to identify different
records.

No MAKE/FIND/NEXTRECORD All sequence areas must contain at least one of the

No Schema File Prepared

No SETPORT function

No Space for ID's

No Space on EPROM

No Such Field

No Such FN/PROC

No Such Line

No such variable

No Tare Function
Not a DATA Field

Number of Fields

Out of Range

statements MAKERECORD, FINDRECORD, or NEXTRECORD.

You cannot run many of the Infomate modules until you have
compiled a schema file to "tell" Infomate what to expect in the file.

The current driver does not support SETPORT commands.

This probably means that the file that exists on the RAMdisk is too big
for Infomate. i.e. it is larger than 2000 records.

The file that you wish to put on EPROM will not fit.

The field specified in the sequence line cannot be found in the field
definitions at the start of the schema. Check spelling and
capitalisation of letters.

A LET or TEST statement includes a reference to something starting
with FN that is not part of a field name. You have probably
misspelled the name of a variable.

One of the GOTO statements has specified a line that Infomate cannot
match in the schema. Check spelling and use of capitals etc.

A LET or TEST statement has referred to something that is not a field,
a standard function, nor a valid Infomate variable. Spelling mistake?

The current driver cannot be tared.
You cannot use COUNTYPE or COUNTSIZE on ID fields.

The COUNTYPE or COUNTSIZE lines imply use of fields beyond
the end of the record or if you are using SCRATCHPAD, beyond the
end of the scratchpad area.

The weight or other variable being measured by the equipment on the
serial port is outside the range catered for by that equipment.

180

Errors

Out of Workspace

Outside Range

PORT not defined

Port in Use

Record too Long

REPEAT Duplicated

REPEAT without UNTIL

Schema too Long

Sorry, not implemented

String too long

Syntax error

If this occurs then Infomate has run out of space to work on your task
and has had to give up. It is difficult to guess how to solve this
problem which will only occur during data collection. If you get it
immediately you start collecting data you must severely reduce the
size of your schema somehow. If it happens after a reasonably long
period of capture, try occasionally going into the View/Edit module so
that the data capture module is started afresh.

A CHECK statement has detected a field value that is outside the
range allowed for it by the CHECK. You can ignore the warning, or
g0 back to a point in your schema to correct the problem.

You have used a SETPORT or a GETPORT line without defining the
port using a PORTIS line at the start of the schema.

You cannot have a LOG PRINTER statement and a PORTIS
statement in the same schema as this implies use of one port for two
diverse functions. Try LOGging to EPROM instead.

The total number of characters in all fields exceeds Infomate's
capacity. This could be the actual total which to allow the editor line
to fit on the screen must be less than 86, or the total with blanks
inserted between adjacent field where the total characters plus the
number of fields must be less than 92.

Infomate only allows one REPEAT UNTIL loop at atime. You have
probably forgotten to insert the UNTIL part at the end of the loop,
and have started another REPEAT loop.

You started a REPEAT UNTIL loop but did not finish it.

There are too many lines in the schema file. Check the current
maximum in the Infomate Limitations section.

You have inadvertently referred to a BBC BASIC function that does
not exist on the Z88. This is probably a spelling mistake.

You have added some strings together in a TEST or LET statement
and the total length of the string is longer than 255 characters.

Infomate started to understand what you were trying to say in a LET
or TEST and then got a little confused. Is it a spelling mistake, or a
misplaced bracket or comma?

Errors

181

Tare Failed

TIME Syntax

Too big

Too Many Constants

Too Many Fields

Too Many Steps

Too Many Strings

Type mismatch

Unknown Reply

Unknown Verb

UNTIL Syntax

UNTIL without REPEAT

Waiting

The driver test failed to get a satisfactory tare from the weighing
equipment connected to the serial port.

In a LET statement you have used a TIME function that does not
exist, or there is no closing bracket in the function. Check spelling
and use of capital letters.

You have created a number that is too big for Infomate. The biggest
number it can handle is about +-1038

The compiler cannot handle that many constants. Constants are used
to hold the numbers in a CHECK, COUNTSIZE or
UNTIL STEADY line.

There are too many field definitions in your schema.
There are too many sequence lines in your schema file.

The compiler cannot handle that many strings. Strings are used to
hold messages, filenames etc.

The fields, function calls and constants in a LET or TEST are
mixtures of letters and numbers. You have something like "letters"”
+ 69 rather than "letters" + "69" .

The current driver received a response from the connected equipment
that does not make sense. Is it connected correctly? Is the baud-rate
set correctly?

When examining the SEQUENCE region of a schema, Infomate has
found a Verb (the first word of a sequence line) that it does not
understand. Check spelling, and that capital letters are being used.

There are only three types of UNTIL. They are UNTIL STEADY,
UNTIL KEYPRESS, and UNTIL TEST. Check spelling and
capital letters.

You cannot have an UNTIL in a schema until after a REPEAT
statement. Keep REPEAT and UNTIL statements in strict order.

Infomate is waiting for the equipment connected to the serial port to
respond to a GETPORT. This may mean you have to press a GO
button on the equipment.

182 Index
‘RAM.- 94 character
A&D display size 31
Weigh Driver 150 CHECK
Actronic character 121
ADAM A/D Converter Driver 144 numeric 51
ADAM 144 on letter fields 52
AG500 CHECKDONE 44, 51, 123
Tru-Test weigh Driver 170 Checking for Errors 49
ALARMs 71 clock 67
Allflex comments
weigh scale Driver 148 in schemas 21
Analogue Data Acquisition 144 compiling 25
animal weighing 44 control panel 10
Apple I Recording System 2 default device 22
applications converting
pending 22 from Infomate form 89
arithmetic Counting objects 72
on times 68 COUNTSIZE 131
rules to evaluate 60 COUNTTYPE 72, 130
using a LET 60 DATA
arrow keys field format 113
as accelerators 33 field names 113
backstepping field types 113
through a schema 30 region 113
baud rate 40, 54, 111 data analysis 79
BBCBASIC Data fields 105
Reference manual 4 data file
beeps creating 27
in DISPLAY and ENTER 76 designing 58
in DISPLAY etc. 128 format 140
branching 62 reference 104
bugs in Infomate 93 data filename
cables 171 on PC's 109
Calculation order 138 date 136
caliper Day Month 67, 136

/Mettler combo driver 160
/Sartorius combo driver 165
Mitutoyo/PAYV driver 153

Capitalizing 32

caps indicator 32

Changing your files contents 34

Day Month Year 67, 136
Day Of Month 67, 136
Day Of Week 67, 136
Day Of Year 67, 136
decimal points

implied 76

_Index _183
DISPLAY EPROM
of a field value 75 bad connections in 94
without a field value 75 cataloguing 39
DM 67, 136 erasure 36
DMY 67, 136 file backup 36
DOM 67, 136 installing 37
Donald labelling 36
weigh Driver 152 log file name 110
DOW 67, 136 log file recovery 39
DOY 67, 136 log files 37
Driver logging data to 38
ACTRONIC_1 144 what are they 36
ALLFLEX_1 148 Excel
AND_1 150 and Infomate 87
DONALD_1 152 formats 141
MAFKCI_1 153 Exceptions File 77
METTLER_1 155 FAIL 49
METTLER_1/MAFKCI_1 160 FALSE 63
METTLER_2 158 fields
METTLER_3 159 DATA 113
SARTORIUS_1 162 ID 18, 112
SARTORIUS_1/MAFKCI_1 165 ID limitations 18
TOLEDO_1 166 letter 17
TRU-TEST_1 170 names 17
Driver Test Module 57 number 17
drivers 53, 110, 143 SCRATCHPAD 114
edit mode 34 types 17
elapsed time 68, 137 FILE 18, 109
END 50, 135 File Conversion 85, 86
enhancements 95 file names
ENTER 115 upper and lower case 24
ENTER148, 115 FINDRECORD 43, 120
ENTER statement flow control 111
getting lazy with 46 GETPORT 54, 133

ENTER=<46, 118
ENTER=<+ 46, 118
ENTER? 48, 116
ENTER?< 46
ENTER?<+ 46, 117
ENTERID 48, 119

ENTERID! 48, 119

GOTO 63, 127
HARDcase 8
HELP 14
histogram
using COUNTTYPE 73
HM 67, 136
HMS 67, 136

184

Index

Hours Mins Secs 67, 136
Hours Minutes 67, 136
ID 16
as a single entity 48
field names 112
field types 112
field width 112
region 105, 112
identification 16
IFOGOTO 126
IFFAILGOTO 44, 123
IFFGOTO 63, 125
IFTGOTO 63, 125
implied decimal point 76, 113
Import/Export 79, 82
Import/Export between Z88's 83
Infomate
a quick example 12
and other computers 79
and the serial port 53
bugs in 93
compiling 25
error philosophy 49
file format 140
limitations 95
main menu 26
meaning 2
number of copies 25
overview 11
slot to use 9
uses 2
Insert/Overtype 10
inserting
delimiters into a file 92
interfacing 143
KCI
caliper interface 153
Kermit 84
Keyboard
modes of using 31
LEFTS$ 61

LET 60, 132, 136
letter field
checks on 52
in LETs 61
Linefeed Problem 89
Linking Z88's 83
Litecase 8
LOG 38, 110
logging data
to EPROM 37
to printer 40
looking for
a particular ID 34
Lotus 123 86, 87
Lotus 123 /PRINT format 142
M 67, 136
Macintosh 79, 81
MacLink 79, 81
MAKERECORD 19, 120
mathematics
priority 138
the LET statement 60
Maximum
characters in a record 95
constants in a schema 95
ID size 95
number of fields 95
number of records in a file 95
number of schema lines 95
number of sequence steps 95
Record length 95
MEMORY 61
for letter fields 62
MEMORY$ 62
menu
modes 31
Mettler
/Caliper combo Driver 160
weigh Driver 155
Micropower
Allflex Driver 152

_Index

185

Microsoft Excel 86, 90, 91
Microsoft Word 92
MIDS$ 61
midnight
time problems with 70
Minitab and Infomate 88
missing value 62
Mistake
correcting during data entry 30
Mitutoyo
caliper Driver 153
modes
menu 31
of operation 31
Month 67, 136
Murphies Law 1
negative counting sequence
in ENTERs 47
NEXTRECORD 121
No Room 35, 94
notes
taking during data capture 77
numeric accuracy
in TEST statements 63
numeric keypad 32
Pack and Exit 94
Paradox
and Infomate 88
parity 40, 54, 111
Parsing 91
pause
in DISPLAY etc. 76, 128
using REPEAT UNTIL TEST 124
while compiling 26
PAV
caliper Driver 153
PC computer 79
PCLink 79, 81
PCWrite 92

Pipedream 86
and Infomate 87
formats 141
keyboard commands 22
new copy of 22
to inspect data 78
popdowns 25
PORTIS 53, 110
previous records
displaying 29
using field value from 64
printer
Logging to 40, 110
PrinterEd 94
Quattro 87
range
checking 51
RangerLink 79, 82
real time clock 67
record 15, 104
Recording comments 77
REPEAT 74, 129
RESET 94
Reverse Caps 32
RIGHTS 61
roll call
using COUNTTYPE 73
Running out of memory 94
Sartorius
Caliper combo Driver 165
weigh Driver 162
scales 53
Setting up 57

186

Index

schema file 11
basic format 106
compiling 25
creating with pipedream 22
designing 58
examples 96
naming 24
need for 15
re-saving 24
running 28
showing specs. of 27
SCRATCHPAD
region 65, 114
SEQUENCE 115
definition 19
sequence region 115
Serial Port 53
setting up 57
SETPORT 134
Setting up
scales 57
Show Schema Specs 27
sleep 70, 135
soft reset 9
Taring
a serial port device 57
Terminal Emulator 84
TEST 62, 124
and numeric accuracy 63
with UNTIL 124
TESTRECORD 125
The File Conversion Module 86
TIME 67, 136
time keeping 67
TIME(TIC) 69
TITLE 18, 109
Toledo 1938
weigh Driver 166
Tru-Test
weigh Driver 170
TRUE 63

unique ID 105
UNTIL
KEYPRESS 74, 129
STEADY 129
TEST 124, 129
Updating an existing data file 41
VAX 79
VersaTerm Pro
terminal emulator 84
View/Edit 33
viewing your data file 33
VP Planner 87
VT52 terminal emulator 79
WARN 49
weighing equipment 143
When things go wrong 93
Wiring to other computers 171
Word 5.0 92
Xon/Xoff 40, 54
Y 67, 136
Year 67, 136
Z88
assembly 9
batteries 9
clock 10
Developers' Notes 4
inserting cards 9
known bugs in 94
Magic - a book 4
moving between applications 25
putting to sleep 70
Users Club 4

“TITLE {message}

FILE { filename.ext}
LOG {EPROMlogfilename}
LOG PRINTER [optbaudstring]
PORTIS = {drivername}[optbaudstring] {optINITstring}
D
{IDfieldname} {IDfieldtype } {IDfieldwidth}
DATA
{DATAfieldname} {DATAfieldtype} { DATAfieldformat}
SCRATCHPAD
‘ {SCRfieldname]} {SCRfieldtype}{SCRfieldformat}
SEQUENCE
ENTER {fld} {message}
ENTER| {fid} {message}
ENTER? {fld} {message}
ENTER?< {fid} {message}
ENTER?7<+ {f1d} {message}
ENTER=< {fid} {message}
ENTER=<+ {fid} {message}
ENTERID {message}
ENTERIDI {message}
MAKERECORD
FINDRECORD
NEXTRECORD
CHECK {fid} {checkstring}
CHECK {fld1} {fid2} {vall} {val2}
CHECK {fld1} # {vall} {val2}
CHECKDONE {fid}
[FFAILGOTO {line}
TEST {BASICexpression}
TESTRECORD
I[FFGOTO {line}
IFTGOTO {line}
IFOGOTO {line}
GOTO {line}
LABEL {labelcharacters}
DISPLAY {fid} {message}
DISPLAY # {message}
REPEAT {message}
UNTIL KEYPRESS
REPEAT {message}
UNTIL STEADY {fid} {value}
REPEAT {message}
UNTIL TEST
COUNTYPE {f1d} {typestring}
COUNTSIZE = {fld} {noflds} {firstval } {valincr}
LET {fid} = {BASICexpression}
GETPORT {fld} optmessage }
SETPORT {message}
SLEEP

END

THE INFOMATE LIBRARY.

This disk contains PCLink, RangerLink, a Z88 BASIC, EPROM file recovery program
‘called RECOVER.BAS, as well a8 numerous Infomale demonstration schema files.

The following schema files make up the Infomate Library:-

1. WEIGHKY.SCH
2, WEIGHMT.SCH

3. CALIPER.SCH

4, PROD.SCH

5. TOGGLE.SCH

6. HISTOQG.SCH

7. STRATUMHT.SCH

8. AIRPORT.SCH

9. AIRPORT-.SCH
10. ANIMAL.SCH

11, ANIMALV2.SCH
12, ANIMALTR.SCH

13. DMGREEN,SC

14. DMSAMPLE.SCH
15. DMDRY.SCH

16, MTBENTRY.SCH
17. MTBTIMER.SCH
18. MTBCALC.SCH
19. RHKEY.SCH

20. RH1.SCH

21.ED.SCH

This is. a simple keyboard entry weighing program.

This is an extension of 1, which uses the Meftiler scales o
collect the weights.

A short schema file showing how you can use Infomale Lo
capture measurements from Mitntoyo. or PAV elécironic
callipers.

Another short schema
feaure of Infomare.
A ‘schema file designed for two people weighing herbage
samples collecigd by one mower and two grass cawchers.

A short schema file which demonsirates Infomate's
countsize function.

A longer schema file which. was designed 1o assess a forest
for tee volume, and records the (rees diameter and
height.

This schema uses Infomate's timer to log airport passenger
traffic.

A modification to 8 which keeps betier time.

This schema works with a file called animal.dat to record
new weights, comparing them with the old weights

This schema is a modification 1o 10, te enable running min,
mean, and max to be compuled.

A demonstration of Infomate's automatic -processing
capabilities, this file moves all the new weights into old

_ weights ready for the next run.

This is a set of three schemas
that were used to analyse
grass samples.

Another set of three schemas which
were used in a
mountain bike race.

A program which prompts for wet and dry bulb temperature
and then calculates relative humidity.

A -quite large schema which records
humidity, wind angle, wind speed elc.

A short schema which allows you to edit pasi records.

which demonsirates the counting

temperature, relative

All the schema files are in PipeDream format, and so can be Lransfered to your Z88
and compiled with Infomate straight away. You should try to understand as many
of these schema files as possible even if you have no use for the particular
application which i1 was writen for, as they all include examples of many
common tasks which you may use in your own -schema files, and in many cases
you can probably modify one ol them to meet your needs.

Good Luck, and don't forget to read the Manual!

	Seite 193.png
	Seite 194.png
	Seite 2.png
	Seite 1_1.png

