```
; Disassembly of the file "C:\lab\if1-2.rom"
; CPU Type: Z80
; Created with dZ80 1.50
; on Sunday, 28 of April 2002 at 12:35 PM
; -----
; last updated 06-APR-2003
; -----
#define DEFB .BYTE
#define DEFW .WORD
#define DEFM .TEXT
#define EQU .EQU
#define ORG .ORG
       ORG
             $0000
; -----
; FLAGS3 System Variable - IY+$7C ($5CB6)
; -----
; Bit 0 - set when executing an extended command.
; Bit 1 - set during CRT-VARS and CLEAR #, CLOSE etc.
; Bit 2 - settable by User to force the ERR SP routine to handle errors.
; Bit 3 - set when networking.
; Bit 4 - set during LOAD and MOVE
; Bit 5 - set during SAVE
; Bit 6 - set during MERGE
; Bit 7 - set during VERIFY
; Note. before initialization of FLAGS 3, this is considered to be the first
; byte of channels and so PEEK 23734 gives 244 decimal (%11110100) the high
; order byte of the Main ROM address PRINT-OUT - $09F4.
; -----
; THE 'RETURN TO MAIN ROM' ROUTINE
   The system is initialized by the Main ROM so this address is accessed
   solely by a RST 00H instruction. It is used from five locations to return
   to the Main ROM.
;; MAIN-ROM
              HL ; discard the return address in this ROM. (IY+$7C),$00 ; reset all the bits of FLAGS_3.
L0000: POP
              _{
m HL}
       LD
              L0700
                             ; jump forward to UNPAGE address.
; -----
; THE 'START' ROUTINE
  An instruction fetch on address $0008 pages in this ROM.
   The three-byte instruction at this location must exist on both sides of
  the looking-glass. The value fetched is immediately discarded.
   It follows that this restart should never be invoked from this ROM.
;; ST-SHADOW
L0008: LD
             HL, ($5C5D) ; fetch character address from CH ADD.
       POP
             _{
m HL}
                             ; pop return address to HL register.
       PUSH HL
                             ; and save again on machine stack.
```

```
JΡ
          L009A
                            ; jump forward to continue at START-2.
; THE 'CALL A MAIN ROM' ROUTINE
   Call an address in the main ROM. The address follows the restart so this
   is as convenient and as brief as a CALL instruction.
   The SBRT routine within the system variables area reads
   L5CB9
               LD
                      HL, value
;
  L5C5C
               CALL
                     addr
  L5C5F
                       (L5CB9+1),HL
               LD
;
  L5CC2
               RET
;
   By immediately placing the current value of HL in the subroutine, then
;
  all registers before the call are as they were before the RST
  instruction. The value of HL after the call is stored immediately in
  this now redundant location so that, after this ROM is paged back in,
  the registers, after the RST instruction has executed, are as they were
  immediately after the CALL.
  see START-2.
;; CALBAS
L0010: LD
             ($5CBA),HL
                            ; insert the current value of HL in the
                             ; Z80 code to be picked up later.
       POP
                             ; drop the return address - the location
             _{
m HL}
                             ; of address to be called.
                             ; preserve the DE register contents.
       PUSH
              DE
             L0081
                             ; forward to continue at CALBAS-2.
       .TR
       DEFB
             $FF
                             ; unused.
; -----
; THE 'TEST IF SYNTAX IS BEING CHECKED' ROUTINE
; -----
  On the ZX80, testing the syntax flag was done with the 4-byte
   instruction that tests the System Variable FLAGS. On the ZX81 and
   ZX Spectrum, a call to SYNTAX-Z reduced the invocation to a three-byte
   CALL. Here it is reduced to a one-byte restart.
;; CHKSYNTAX
                            ; test most significant bit of FLAGS
L0018: BIT
             7, (IY+$01)
       RET
                             ; return the result.
                             ; (Z = Syntax, NZ = Run-time)
       DEFB
            $FF
                             ; unused.
       DEFB
              $FF
                            ; unused.
       DEFB
              $FF
                             ; unused.
; -----
; THE 'SHADOW-ERROR' ROUTINE
   This is similar to the Main ROM error handler and the following byte
  indicates the type of error and in runtime the message that should be
  printed. If checking syntax then the error pointer is set before a
; return is made to the Main ROM.
;; SH-ERR
L0020: RST 18H
                             ; checking syntax ?
       JR
             Z,L0068
                             ; forward, if so, to ST-ERROR
```

; forward, in run-time, to TEST-SP,

L003A

```
; and then REP-MSG
      DEFB $FF
DEFB $FF
                          ; unused.
                          ; unused.
      DEFB $FF
                          ; unused.
; THE 'MAIN ROM ERROR RESTART' ROUTINE
; -----
   This restart invokes the error handler of the Main 16K ROM. The required
  error number is usually first placed in the System Variable ERR NR. In
  some cases the error code is already present and this restart is used when
  the error situations handled by this ROM have been eliminated.
  Since the exit from this point is by manipulating the stack, the return
  address is of no importance as that route is never taken. There are also
  three conditional jumps back to this point.
;; ROMERR
           3,(IY+$02) ; update TV_FLAG - signal no change in mode.
L0028: RES
            L0040
                          ; forward to RMERR-2.
      JR
      DEFB $FF
                          ; unused.
                          ; unused.
      DEFB $FF
; -----
; THE 'CREATE NEW SYSTEM VARIABLES RESTART' ROUTINE
; -----
   This restart is used the first time that that the ROM is paged in to
   create the System Variables. This will be either by an instruction
   fetch on $0008 or $1708.
;; NEWVARS
L0030: JP
            L01F7
                          ; jump to CRT-VARS
      DEFB $FF
                          ; unused.
                          ; unused.
            $FF
      DEFB
      DEFB $FF
DEFB $FF
                          ; unused.
                          ; unused.
                          ; unused.
; THE 'MASKABLE INTERRUPT' ROUTINE
  There is no service routine but should the routine be called either
  directly or by straying into a RST $38 instruction, then interrupts are
   enabled.
;; INT-SERV
L0038: EI
                          ; Enable Interrupts
      RET
                           ; return.
; -----
; THE 'TEST SYSTEM' BRANCH
; -----
  This branch allows the user to trap errors before this ROM is used to print
; the error report.
;; TEST-SP
L003A: CALL L0077 ; routine CHECK-SP
                          ; usually returns.
     JP L0260
                          ; jump to REP-MSG
; -----
```

```
a continuation of RST 28H.
   This ROM has inserted a Main ROM error code into ERR NR and the routine in
   the Main ROM is now invoked.
  First a check is made to see if the user wishes to trap errors using a
  custom routine in ERR SP. This will be used in the syntax path anyway.
;; RMERR-2
L0040: RST
              18H
                              ; checking syntax ?
               Z,L0068
                              ; forward, if so, to ST-ERROR.
       JR
       CALL L0077
                              ; routine CHECK-SP allows the user to trap
                               ; run-time errors at this point but normally
                              ; returns here.
       CALL
             L17B7
                              ; routine RCL-T-CH reclaims any temporary
                              ; channels and stops all microdrive motors.
       BIT
              1, (IY+$7C)
                              ; test FLAGS 3.
               Z,L0068
                              ; forward, if executing CLOSE, to ST-ERROR.
       JR
                              ; test FLAGS 3 - loading filename 'run' ?
       BIT
               4, (IY+$7C)
                              ; forward, if not, to ST-ERROR.
               Z,L0068
  As a security measure, the file 'run' can not be hacked.
               A, (IY+$00)
                              ; fetch error number from the System Variable
       LD
                              ; ERR NR.
                              ; is \overline{i}t "CODE error" ?
       СP
               $14
               NZ,L0068
                              ; forward, if not, to ST-ERROR.
       ιTR
   The user has pressed BREAK while trying to load the program 'run'.
               HL,$0000
       LD
                             ; cause a system reset.
       PUSH
               HT.
                              ; place address zero on machine stack.
       RST
              00H
                              ; switch to MAIN-ROM.
;
       DEFB
              $FF
                             ; unused
       DEFB
               $FF
                              ; unused
       DEFB
               $FF
                              ; unused
       DEFB
               $FF
                              ; unused
       DEFB
               $FF
                              ; unused
; THE 'NON-MASKABLE INTERRUPT' ROUTINE
; ------
; There is no NMI functionality.
;; NMINT-SRV
L0066: RETN
                              ; return to previous interrupt state.
; -----
; THE 'SYNTAX ERROR' ROUTINE
; -----
  An error has occurred during syntax checking so the position must be
  highlighted when a return is made to the Editor in the Main ROM.
;; ST-ERROR
L0068: LD
              HL, ($5C5D) ; fetch character address from CH ADD.
```

; THE 'MAIN ROM ERROR' ROUTINE

```
LD
              SP, ($5C3D); set the Stack Pointer from ERR SP.
              HL,$16C5
       T.D
                            ; prepare address of main SET-STK.
                            ; push on the machine stack.
       PUSH
       RST 00H
                             ; switch to MAIN-ROM where SET-STK will clean up
                             ; the work areas before returning to the Error
                             ; Routine obtained from ERR SP.
; -----
; THE 'CHECK ERROR STACK POINTER' ROUTINE
; -----
   This allows the user's software to trap any errors at this point by setting
  the otherwise unused bit 2 of FLAGS 3 after inserting a custom error
  handler in the System Variable ERR SP.
  Both Shadow ROM situations and Main ROM situations can be trapped and the
  routine is called from BOTH RST 20H and RST 28H.
;; CHECK-SP
L0077: BIT
             2,(IY+$7C)
                            ; test FLAGS 3 has the user set up a custom
                             ; error handler in Main RAM ?
       RET
                             ; return if not.
   Otherwise the user, or the third party software, has set up a custom routine
  in the system variable ERR_SP and set bit 2 of FLAGS_3 so that it is invoked
  at this point.
            SP, ($5C3D) ; set stack pointer from ERR_SP.
       T.D
       RST
             00H
                             ; switch to MAIN-ROM.
; -----
; THE 'CALBAS-2' ROUTINE
 ______
   A continuation of the code at $0010.
  Continue by picking up the address to be called, located after the RST
   instruction and placing after the CALL instruction in the SBRT sequence.
;; CALBAS-2
                       ; fetch low byte of called address
              E, (HL)
L0081: LD
                            ; advance pointer.
       INC
              D, (HL)
                             ; fetch high byte.
              ($5CBD),DE ; place in the Z80 code SBRT
       INC
                             ; increment pointer.
              (SP),HL
                            ; transfer continuation address to machine
       EΧ
                             ; stack - and the stack value (was DE) to HL.
       EΧ
              DE, HL
                            ; original DE value now restored.
              HL,$0000
       T_1D
                            ; signal CALBAS routine in use.
       PUSH
                             ; place on stack.
             HL,$0008
       T.D
                            ; address of main ERROR restart
              _{
m HL}
       PUSH
                            ; place on stack
             HL,$5CB9
                            ; address of calling SBRT subroutine.
       T<sub>1</sub>D
       PUSH HL
                             ; place on stack.
       JP L0700
                            ; jump to UNPAGE
```

(\$5C5F), HL; set X PTR to same to position error cursor.

```
; THE 'CONTROL' ROUTINE
   A continuation of code at L0008. The return address has been dropped off
  the machine stack into HL.
  First see if this ROM was paged in as a result of the $0008 address
  stacked during the CALBAS routine. (see above)
;; START-2
L009A: PUSH AF
                             ; preserve accumulator and status flags.
       LD
             A,H
                             ; test HL for zero - the CALBAS
       OR
                             ; indicator value.
              NZ,L00A5
       JR
                             ; forward, if not, to START-3.
       POP
             AF
                             ; restore accumulator and flags.
       POP
             _{
m HL}
                             ; discard address stacked by RST 08.
              HL, ($5CBA)
                             ; pick up post-CALL HL value from SBRT.
       RET
                              ; return.
;-----
  Now consider that the address $0008 may have been an input or output
   routine that precedes the letter of one of the new channels. These
   paging addresses ensure that this ROM is paged in so that the real
   input/output addresses can be read from the locations after the
  channel's letter. In this case, the return address is towards the end
  of the CALL-SUB routine in the Main ROM, i.e.
  L15FB CALL $162C ; routine CALL-JUMP (a JP (HL) instr.)
L15FE POP HL ; return address
                       HL ; return address
;-----
;; START-3
LOOA5: PUSH DE ; preserve DE.

LD DE,$15FE ; test against possible return address 0x15FE

SBC HL,DE ; subtract (carry is clear)

POP DE ; restore DE.

JR NZ,LOOBC ; forward with no match to START-4.
   This ROM has been paged by an attempt to use a stream.
       POP
                              ; restore accumulator.
             HL,L0700
                             ; stack the address UNPAGE to switch to
       PUSH
                              ; the Main ROM afterwards.
             HL,$0004
                           ; the shadow routine is 4 bytes forward
                             ; adjust input/output address pointer.
              HL,DE
                             ; pick up low-order byte of I/O routine.
       LD
             E, (HL)
       INC
             _{
m HL}
                             ; bump pointer.
                           ; pick up high-order byte of routine.
             D, (HL)
       LD
       LD
EX
              DE,HL
                              ; transfer I/O address to HL.
       JP (HL)
                              ; jump to routine and then to UNPAGE
; ---
  By elimination, the address $0008 has been reached as a result of a
  RST 08 instruction in the Main ROM. This may be the very first time
   that this ROM has been paged in after startup or NEW.
;; START-4
LOOBC: RST 30H ; create new system variables if first time.
```

```
A,$01
                              ; %0000001
              ($F7),A
       OUT
             A,$EE
                              ; %11101110
       LD
       CIIT
              ($EF),A
       POP
             AF
                              ; temporarily drop the accumulator.
              ^{
m HL}
                              ; fetch address of error code/hook code to HL.
       POP
       PUSH AF
                              ; save accumulator again.
   Note. the address of the code could be anywhere in the 64K address space
   but it is not in this ROM. Luckily in the Main ROM at $007B is the
   sequence ld a,(hl); ret which will fetch the unknown error code from
   the known address.
       RST
              10H
                               ; CALBAS
       DEFW
               $007B
                               ; main TEMP-PTR3
               ($5C3A),A
                              ; place the error code in sysvar ERR NR
   The error code at this stage is one less than actual code.
               $FF
                               ; is it 'OK'
               NZ,L00E9
                              ; forward, if not, to TEST-CODE
       JR
                              ; test FLAGS 3 - first time ?
               1, (IY+$7C)
                               ; forward, if not, to NREPORT-2
       JR
               Z,L00E7
                               ; 'Program finished'
                              ; test PPC hi - a direct command ?
       BTT
               7, (IY+$0C)
                               ; forward, if not, to NREPORT-2
       JR
               Z,L00E7
                              ; use E LINE to address the first character of
               HL, ($5C59)
       T,D
                               ; the edit buffer.
                              ; searching for RUN without whitespace.
       LD
               A, (HL)
                              ; is character the token 'RUN' ?
       CP
               $F7
               Z,L0A99
                              ; jump forward, if so, to LOAD-RUN
       JΡ
;; NREPORT-2
                            ; Shadow Error Restart
L00E7: RST
               20H
       DEFB
               $FF
                               ; 'Program finished'
  Continue to consider the error code. This may have occurred after the
   Error RESTART in the Main ROM - range $00 (NEXT without FOR) to
   $1A (Tape Loading Error) or a RESTART in RAM which could also include
   the Hook Codes.
;; TEST-CODE
L00E9: SUB
                              ; subtract lowest Hook Code (PAUSE)
               $1B
               NC,L1E71
                              ; jump, if same or higher, to HOOK-CODE
               $F0
                              ; was it $0B 'Nonsense in basic'
       CP
               Z,L00FB
                              ; forward to COPYCHADD
       JR
       CP
               $F3
                              ; was it $0D 'Invalid file name'
               Z,LOOFB
                              ; forward to COPYCHADD
       JR
       CР
               $FC
                               ; was it $17 'Invalid stream'
               NZ,L0028
       JΡ
                               ; jump, if not, to ROMERR
```

; If one of the above three reports, then this is possibly an extended

LD

```
may apply. The error could have occurred -
;
   1) In INPUT - just pass control back to Main ROM. This is just a normal
      Nonsense in BASIC and will not be due to anything new.
   2) While already investigating an error. Too much - just use Main ROM.
;
    3) While entering a new or modified line and syntax failed.
;
   4) While running the program and an error was encountered.
   The character address CH ADD is not much use as that is the place
   after the command where the standard ROM encountered an error.
   It will be required by the Main ROM if control is passed back so, in
   order that the Main ROM parsing routines can be used, make a copy of the
   error character position. We will have to work forward from the
   beginning of the line if checking syntax or from the start of the
   program in run-time so that the errant command can be found. It may also
   be necessary to remove hidden characters from the BASIC line.
;; COPYCHADD
L00FB: LD
               HL, ($5C5D)
                               ; fetch character address from CH ADD and
               ($5CCB),HL
                               ; store in shadow system variable CHADD
       LD
       POP
                               ; restore accumulator.
               5, (IY+$37)
                               ; test FLAGX - in INPUT mode ?
       BIT
               NZ,L0028
                               ; jump back, if so, to ROMERR
        JΡ
  Continue if in Editing or Run-time Mode.
               0,(IY+$7C)
                               ; test FLAGS 3 - already extended command ?
       RTT
               NZ,L0028
                               ; jump, if so, to ROMERR
       JΡ
   else signal - handling an extended command - so that such a double error
   can be trapped.
                               ; update FLAGS 3 - signal executing an
        SET
                0, (IY+$7C)
                                ; extended command.
       RST
               18H
                               ; checking syntax ?
               NZ,L011B
                               ; skip forward, if not, to RUNTIME
                (IY+$0C),$FF
                               ; set bit 7 of PPC hi to indicate a line
                               ; entry situation.
    In both cases, load B with the statement number where the error was
    encountered. Previous validated statements are not to be disturbed.
;; RUNTIME
L011B: LD
               B, (IY+$0D)
                            ; load B with statement number from SUBPPC
       LD
               C,$00
                               ; and set C to zero for a quotes flag.
               7,(IY+$0C) ; test PPC_hi - line entry ?
       BTT
               Z,L0130
                              ; forward, if not, to PROG-LINE
       JR
   An edit line may have a line number at start and whitespace. We need to
   set CH ADD at the first command.
        PUSH
               ВC
                               ; save BC
       RST
              10H
                               ; CALBAS
        DEFW $19FB
                               ; main E-LINE-NO fetches any line number to
                               ; BC, setting CH ADD at the command token.
```

command and further investigation is required. A number of situations

;

```
; restore BC - discarding line number.
       POP BC
       RST
                             ; CALBAS
             10H
              $0018
       DEFW
                              ; main GET-CHAR gets first command of the
                              ; first statement of the errant line.
                             ; forward to statement loop - S-STAT to find
       JR L016F
                              ; the errant statement.
; ---
;; PROG-LINE
             HL, ($5C53); set pointer to start of program from PROG.
L0130: LD
;; SC-L-LOOP
                             ; fetch high byte of errant line from PPC hi
L0133: LD
             A,($5C46)
       CP
              (HL)
                             ; compare with tested high byte.
             NC, L013B
                             ; forward, if errant line higher or same,
                              ; to TEST-LOW
; else, unusually, the current line is not there so let Main ROM handle.
;; NREPORT-1
L0139: RST
             20H
                             ; Shadow Error Restart
       DEFB $00
                             ; Nonsense in BASIC
; ---
;; TEST-LOW
L013B: INC
                              ; increment program pointer to address low byte.
              HT.
              NZ,L0144
                              ; forward, if high bytes not same, to LINE-LEN
       JR
              A, ($5C45)
                             ; fetch low byte of current line from PPC lo
       LD
                             ; compare to addressed byte.
       CР
              (HL)
              C, L0139
                             ; back, if not in program area, to NREPORT-1
       JR
;; LINE-LEN
L0144: INC
                             ; increment program
              _{
m HL}
                             ; pointer and
       LD
              E, (HL)
                             ; pick up the
       INC
                            ; length of the BASIC line
       LD
              D, (HL)
       INC
                             ; resting at the first character.
                             ; forward, if line numbers matched, to S-STAT
       JR
              Z,L016F
                              ; the mid-entry point of the statement loop.
       ADD
              HL,DE
                            ; else add length to current address.
       JR
              L0133
                             ; loop back to SC-L-LOOP
; -----
; THE 'STATEMENT LOOP'
   Entered at mid-point S-STAT with statement counter in B and a quotes
   counter, C, set at an even zero.
;; SKIP-NUM
L014E: LD
             DE,$0006
                           ; a hidden floating point number has six bytes.
       ADD
             HL, DE
                             ; add to skip to next character.
; -> The Looping Point.
;; EACH-ST
```

```
A, (HL)
                         ; fetch addressed BASIC character.
L0152: LD
                              ; is it the hidden number indicator ?
               $0E
       CР
               Z,L014E
                            ; back to SKIP-NUM to ignore.
       JR
       INC
               _{\mathrm{HL}}
                              ; else increase pointer.
       CР
              $22
                              ; is it quotes character '"' ?
       JR
               NZ,L015D
                              ; skip forward, if not, to CHKEND
       DEC C
                              ; decrement quotes counter.
;; CHKEND
L015D: CP
               $3A
                              ; is character ':' ?
               Z,L0165
                              ; skip forward to CHKEVEN
       JR
                              ; is character 'THEN' ?
       CР
               $CB
               NZ,L0169
       JR
                              ; skip forward to CHKEND-L
;; CHKEVEN
L0165: BIT
               0,C
                               ; are quotes balanced ?
               Z,L016F
                               ; forward, if so, to S-STAT
       JR
                               ; for next statement.
; A carriage return must not appear within quotes.
;; CHKEND-L
L0169: CP
               $0D
                               ; carriage return ?
               NZ,L0152
                               ; back, if not, to EACH-ST
       JR
                               ; back to NREPORT-1
               L0139
       .TR
                               ; 'Nonsense in BASIC'
   The Statement Loop Entry Point -->
;; S-STAT
L016F: DJNZ
               L0152
                               ; decrement statement counter and loop back
                               ; to EACH-ST.
    The errant statement has been located and CH ADD is set to start.
       DEC
                               ; point to start or ':'
       LD
              ($5C5D),HL
                              ; set the Main ROM system variable CH ADD
                               ; checking syntax ?
       RST
               18H
       JR
               NZ,L01AA
                              ; forward, if not, to CL-WORK
                              ; test PPC hi - is it an Edit Line ?
       BIT
               7, (IY+$0C)
               Z,L01F0
                               ; jump forward, if not, to ERR-6.
       JΡ
       DEC
               HT.
                               ; prepare to enter loop below.
               C,$00
                               ; ??
       T.D
   It is well to reflect on what has been achieved up to this point. At
   each statement, the first attempt at validation is made by the Main ROM.
   Then if that should encounter something not to its liking, this ROM has
   a bash. There could be ten or more statements before this one and each
   will have been validated by the Main ROM or by this routine. As part of
   that validation process, when a number is parsed, then the integer or
   floating point form of the number is inserted after the digits, rendered
```

```
invisible by a CHR$(14).
;
   Once a statement has passed validation by either ROM, then it is not
;
   undone. If, say, the Main ROM has failed on the third statement of
   10 PRINT "Hi :" : LET vat = 15 : OPEN# 7, "T" : LET tax = cost * (vat/100)
;
   then it will have already inserted six bytes after the '7' before raising
;
   the error 'Invalid stream'. This ROM has located the separator before
   the command but needs to remove the hidden numbers before parsing the
   statement as the latter process will put them back in and we can't
   double up. The easiest way to do this is to search for hidden numbers
   right to the end of the line. There won't be any after this statement
   but stopping at a CHR$(13) is easier than considering end of statement
   markers in quotes. It seems that this neat solution was not arrived at
   immediately and the instruction, above, sets C to the quotes flag again
   and it is needlessly preserved on the stack.
   The end-user is oblivious to this elegant toing and froing between ROMS
   and the unseen error code generation and cancellation. All that is
   apparent is that when the RETURN key is pressed, the line simply enters
   the program.
;; RCLM-NUM
L0182: INC
                             ; increment character pointer
             A, (HL)
                             ; fetch the character.
       CP
              $0E
                              ; is it the number marker ?
              NZ,L01A5
                              ; forward, if not, to NEXTNUM
       PIISH
              RC
                              ; preserve BC (zero)
       LD
             BC,$0006
                             ; six bytes to reclaim.
       RST
              10H
                              ; CALBAS
       DEFW
              $19E8
                              ; main RECLAIM-2
       PUSH
             HT.
                              ; preserve character pointer.
              DE, ($5CCB)
                             ; fetch error pointer from CHADD
              HL, DE
       AND
SBC
                             ; prepare for true subtraction.
                             ; test if character position less than error.
              NC, L01A3
                              ; forward, if not, to NXT-1
             DE,HL
                             ; transfer CHADD value to HL.
             BC,$0006
       LD
       AND
              Α
             HL,BC
                             ; reduce by six.
       SBC
              ($5CCB),HL
                             ; store back in system variable CHADD
;; NXT-1
L01A3: POP
             _{
m HL}
                              ; restore character pointer.
       POP
             ВC
                              ; and restore BC (zero)
;; NEXTNUM
             A, (HL)
L01A5: LD
                             ; fetch character.
                             ; carriage return ?
       CP
              $0D
              NZ,L0182
                              ; loop back, if not, to RCLM-NUM
       JR
; The run-time path rejoins here
;; CL-WORK
L01AA: RST 10H
                             ; CALBAS
       DEFW $16BF
                             ; main SET-WORK
```

```
CALL L0255
                           ; routine RES-VARS sets new system variables
                            ; from that following {\tt CHADD\_} to that preceding
                            ; COPIES to the value $FF.
            10H
       RST
                           ; CALBAS
       DEFW $0020
                            ; main NEXT-CHAR advances CH ADD and fetches
                            ; the command character.
       SUB $CE
                           ; reduce tokens - why?
       CP
            $01
                           ; 'CAT' ?
            Z,L0486
                           ; jump to CAT-SYN
       CP
            $02
                           ; 'FORMAT' ?
            Z,L04B4
                           ; jump to FRMT-SYN
       JP
            $03
                           ; 'MOVE' ?
       CР
            Z,L053D
                           ; jump to MOVE-SYN
       CP
            $04
                           ; 'ERASE' ?
            Z,L0531
                           ; jump to ERASE-SYN
       CР
             $05
                           ; 'OPEN #' ?
            Z,L04ED
                           ; jump to OPEN-SYN
       JP
                           ; 'SAVE' ?
       CР
            $2A
            Z,L082F
                           ; jump to SAVE-SYN
       JΡ
       CP
             $21
                           ; 'LOAD' ?
            Z,L0898
                            ; jump to LOAD-SYN
       JP
       CР
             $08
                           ; 'VERIFY' ?
             Z,L08A2
                           ; jump to VERIF-SYN
       JΡ
       CP
             $07
                           ; 'MERGE' ?
             Z, L08AC
                           ; jump to MRG-SYN
       JΡ
                           ; 'CLS' ?
       CP
             $2D
             Z,L0559
                           ; jump to CLS#-SYN
       JΡ
       CP
             $2F
                           ; 'CLEAR' ?
             Z,L057F
                           ; jump to CLR#-SYN
   If none of the new extended commands then load HL from the VECTOR
   system variable which normally points to the error routine below.
   However the user, or a third party software publisher, may have
   altered the vector to point to their own extended BASIC routines.
;; ERR-V
LO1EC: LD HL, ($5CB7) ; fetch address from system variable VECTOR
      JP
             (HL)
                           ; jump to address.
;; ERR-6
L01F0: LD
            HL, ($5CCB)
                           ; fetch original character address from
                           ; CHADD
             ($5C5D),HL
       LD
                           ; and place in standard CH ADD
       RST
                            ; Error Main ROM.
              28H
; -----
; THE 'CREATE NEW SYSTEM VARIABLES' ROUTINE
```

; ---

```
the 58 variables already exist and the stack is set up to create the
   room using the main ROM routine. If there isn't 58 free bytes available
   then an 'Out of memory' report is generated by the Main ROM.
;; CRT-VARS
L01F7: LD
               HL, ($5C4F)
                               ; system variable CHANS normally
                                                                   $5CB6
                               ; add test value
       T.D
               DE,$A349
                                                                   $A349.
                               ; add - if uninitialized will give $FFFF.
       ADD
               HL,DE
       JR
               C, L023D
                               ; forward, if higher, to VAR-EXIST
                               ; prepare address of DEFAULT routine
       LD
               HL,L0224
       PUSH
               _{
m HL}
                               ; push on machine stack
       LD
               HL, ($5C63)
                               ; use system variable STKBOT
               ($5C65),HL
                               ; to set system variable STKEND
               HL,$5C92
                               ; use system variable MEMBOT
               ($5C68),HL
                               ; to set system variable MEM
               HL,$5CB5
                               ; the last standard system variable.
       LD
                                ; P-RAMT hi - the location before new area.
               BC,L003A
                                ; 58 bytes to allocate.
   Now call MAKE-ROOM in the Main ROM by placing a sequence of addresses
   on the machine stack as it is not possible to use the CALBAS routine yet.
                               ; indicator - signals Main ROM has been used.
               DE,$0000
       LD
       PUSH
                               ; stack word.
               E,$08
                               ; form address $0008 in Main ROM.
       T.D
       PIISH
                               ; stack word.
               DE, $1655
                              ; the Main ROM address MAKE-ROOM.
       LD
                               ; stack word.
        PUSH
   The machine stack now has the hierarchy DEFAULT; $0000; ERROR-1;
   MAKE-ROOM which will be handled in reverse order.
               L0700
                               ; jump to UNPAGE.
   After creating room and paging this ROM back in, 'return' to the next
   address which was the first in the sequence pushed on machine stack
   earlier.
;; DEFAULT
               HL,L0242
L0224: LD
                              ; default system variable values.
                              ; nineteen bytes to move.
       LD
               BC,$0013
       LD
               DE,$5CB6
                               ; old CHANS area, new sysvar FLAGS 3.
       LDIR
                               ; copy the bytes.
       T<sub>1</sub>D
               A,$01
                               ; set accumulator to 1.
       LD
               ($5CEF),A
                               ; set system variable COPIES.
               (IY+$77),$50 ; set NMI_ADD_hi to eighty.
       T.D
       LD
               (IY+$76),$00
                              ; set NMI ADD lo to zero.
       RET
                                ; return.
; ---
```

The extended System Variables already exist.

A continuation of the restart code at \$0030. A check is made to see if

```
;; VAR-EXIST
L023D: RES 1,(IY+$7C) ; reset indicator in FLAGS_3.
       RET
                            ; return.
; -----
; THE 'SYSTEM VARIABLES DEFAULT VALUES' TABLE
   These are the initial values of the first section of the extended System
   Variables that are copied, once only, to a newly opened area following
  the standard 48K Spectrum System Variables. The memory area that was at
  this location (CHANS) is moved upwards to make room.
   The first new location (which was the first byte of CHANS) is now
  FLAGS 3, accessible by the IY register, and normally zero when the Main
  ROM becomes active again. Bit 1 is set when a CLEAR# is active and also
  by the copy itself.
;; SV-DEFS
                            ; FLAGS3 (with bit 1 already set).
L0242: DEFB $02
       DEFW $01F0
                            ; VECTOR
            HL,$0000
                           ; SBRT located at $5CB9
       CALL $0000
             ($5CBA),HL
       T<sub>1</sub>D
       RET
       DEFW $000C
                           ; BAUD
                            ; NTSTAT
       DEFB
              $01
                            ; IOBORD - black.
       DEFB $00
       DEFW $0000
                          ; SER_FL
; -----
; THE 'RESET NEW SYSTEM VARIABLES' ROUTINE
; -----
  The central area is filled with $FF bytes.
  This occurs whenever a new extended command is invoked.
;; RES-VARS
           HL,$5CCD ; set pointer to NTRESP - start of area.
L0255: LD
             B,$22
                            ; thirty four bytes to fill.
;; EACH-VAR
                        ; insert a default $FF value.
L025A: LD
             (HL),$FF
                          ; bump the pointer.
       TNC
              HL
       DJNZ
              L025A
                            ; loop back to EACH-VAR.
       RET
                             ; return.
; THE 'SHADOW REPORT PRINTING' ROUTINE
   This routine prints the error reports of the Shadow ROM.
  These relate to the code that follows a RST 20H restart. The error code
   is not printed as it would conflict with Main ROM reports. The text of
   the message is printed and then the Main ROM routine is used to print a
   comma and then the line number and statement. For example,
   Program finished, 0:1
   The code is similar to that at MAIN-4 in the Main ROM. Some improvements
   have been made but at least one slight error has been replicated.
;; REP-MSG
L0260: LD (IY+$7C),$00 ; clear FLAGS 3 in preparation for leaving
                             ; this ROM.
```

```
ΕI
                              ; Enable Interrupts.
       HALT
                               ; wait for the first interrupt.
                               ; routine RCL-T-CH reclaims any temporary
       CALL L17B7
                               ; channels and stops any running drive motor.
                              ; update FLAGS - 'Ready for new key'.
       RES
               5, (IY+$01)
                              ; test FLAGS2 - is printer buffer empty ?
       BIT
               1, (IY+$30)
               Z,L0276
                              ; forward, if so, to FETCH-ERR
       JR
       RST
               10H
                              ; CALBAS - call a Base ROM routine.
               $0ECD
                               ; main routine - COPY-BUFF
       DEFW
                               ; Note. the programmer has neglected to
                               ; set bit 1 of FLAGS first.
;; FETCH-ERR
L0276: POP
                               ; drop the return address - after RST.
               A, (HL)
                               ; fetch the error code.
       LD
               (IY+$00),A
                              ; place in system variable ERR NR.
       LD
       INC
                              ; increment setting zero if was $FF.
                               ; save actual code and status flags.
       PUSH
              HL,$0000
                              ; prepare to blank some system variables.
                              ; clear all the bits of FLAGX.
               (IY + $37), H
                               ; blank X PTR hi to suppress error marker.
               (IY+$26), H
       LD
               ($5C0B),HL
                               ; blank DEFADD to signal that no defined
       LD
                               ; function is being evaluated.
                               ; select offset of 1 (explicit in main ROM ).
       TNC
                               ; update STRMS 00 - inputs from keyboard.
       LD
               ($5C16),HL
       RST
               10H
                               ; CALBAS
               $16B0
       DEFW
                               ; main SET-MIN clears workspace etc.
               5, (IY+$37)
                               ; update FLAGX - signal in EDIT mode
       RES
                               ; not INPUT mode.
                               ; Note. all the bits were reset earlier.
       RST
               10H
                               ; CALBAS
       DEFW
               $0D6E
                               ; main CLS-LOWER
       SET
               5, (IY+$02)
                               ; update TV_FLAG - signal lower screen
                               ; requires clearing.
       RES
               3, (IY + $02)
                               ; update TV FLAG - no change in mode.
       POP
                               ; restore the incremented error code.
                               ; start search at REP-MSGS table below.
       LD
               HL,L02BF
                               ; roughly ensure that BC does not limit
       LD
               B,$04
                               ; search area as code must be found.
       CPIR
                               ; search for code $00 - $17 skipping
                               ; all ASCII text.
   At this point HL addresses first character of message.
;; PR-REP-LP
L02A7: LD
               A, (HL)
                              ; fetch each character in turn.
       CР
               $20
                              ; compare to space.
                              ; forward if less to END-PR-MS
               C,L02B4
       ιJR
       PUSH HL
                              ; save the character pointer
       RST
              10H
                              ; CALBAS
       DEFW
               $0010
                              ; main PRINT-A
```

```
POP HL ; restore pointer
            _{
m HL}
       INC
                           ; and increment.
            L02A7
                           ; loop back to PR-REP-LP
; ---
;; END-PR-MS
LO2B4: LD SP,($5C3D); set machine stack pointer from ERR_SP
            SP
                           ; prepare to overwrite the MAIN-4
      TNC
            SP
      INC
                           ; address $1303.
            HL,$1349
                           ; substitute with the part that prints
      LD
                           ; the comma and line statement.
      PUSH HL
                           ; push address to base of stack.
      RST
            00H
                            ; return to MAIN-ROM.
   Note. at this stage we have, say, "Program finished" on the screen and
  the Main ROM routine at $1349 will complete the ", 0:1" part looping
  back to MAIN-2 to put $1303 on the stack again.
; -----
; THE 'SHADOW REPORT MESSAGES' ROUTINE
; -----
  These are the Shadow Error Reports. Note. that the never used
  "Header mismatch error" has been largely reclaimed. Each error code,
  which must be less than a space, serves to delimit the preceding text.
  The final delimiter might just as well be $18.
;; REP-MSGS
L02BF
     DEFB $00
      DEFM "Program finished"
      DEFB
            $01
             "Nonsense in BASIC" ; Duplicate of a Main ROM error
      DEFM
            $02
      DEFB
      DEFM
             "Invalid stream number"
            $03
      DEFB
             "Invalid device expression"
      DEFM
             $04
      DEFB
             "Invalid name"
      DEFM
            $05
      DEFB
      DEFM
             "Invalid drive number"
             $06
       DEFB
       DEFM
             "Invalid station number"
             $07
       DEFB
       DEFM
             "Missing name"
      DEFB
             $08
      DEFM
             "Missing station number"
      DEFB
             $09
      DEFM
             "Missing drive number"
             $0A
      DEFB
      DEFM
             "Missing baud rate"
      DEFB
             $0B
      DEFM
             "er mismatch e" ; Note. remnants of unused text.
      DEFB
             $0C
      DEFM "Stream already open"
      DEFB $0D
      DEFM "Writing to a 'read' file"
      DEFB $0E
      DEFM "Reading a 'write' file"
      DEFB
             $0F
      DEFM "Drive 'write' protected"
      DEFB $10
       DEFM "Microdrive full"
       DEFB $11
```

```
"Microdrive not present"
      DEFB $12
DEFM "File not found"
       DEFB
             $13
             "Hook code error"; not listed in manual.
       DEFM
      DEFB $14
DEFM "CODE error"
       DEFM
       DEFB $15
       DEFM
             "MERGE error"
      DEFB $16
      DEFM
             "Verification has failed"
      DEFB $17
             "Wrong file type"
       DEFM
       DEFB $18
                                  ; end-marker
, *************
; ** THE SYNTAX ROUTINES **
· **************
; -----
; THE 'CAT COMMAND SYNTAX' ROUTINE
; ------
  e.g. CAT 3
  Without the syntax tables of the Main ROM, checking syntax is quite
  laborious. Although the Main ROM allowed CAT without a parameter, a
  single expression in the range 1 - 8 is now required. By default, CAT
  outputs to the upper screen but output may be directed to any stream in
  the range 0 to 15 decimal. The subroutines used to evaluate the numeric
  expressions use the SCANNING routine, in Main ROM, which inserts the
  hidden five-byte numbers after any numeric arguments.
;; CAT-SYN
L0486: LD
            HL,$5CD8
                           ; address system variable S STR1.
      LD
             (HL),$02
                           ; default to stream 2 the screen.
      RST
             10H
                           ; CALBAS
      DEFW
             $0020
                           ; main NEXT-CHAR
                           ; carriage return ?
             $0D
      СP
             Z,L0494
                           ; forward, if so, to MISSING-D
       JR
      CР
             $3A
                           ; is character ':' ?
;; MISSING-D
L0494: JP
            Z,L0683
                           ; jump if no parameter to NREPORT-9
                           ; is character '#' ?
             NZ,L04A6
                           ; forward to CAT-SCRN
  Output is directed at a specific stream.
            L064E
      CALL
                           ; routine EXPT-STRM checks for number in range.
       CALL
             L05B1
                           ; routine SEPARATOR checks for ',' or ';'.
       JR
            NZ,L04B2
                           ; forward, if not present, to OREPORT-1
                           ; 'Nonsense in BASIC'
      RST
             10H
                           ; CALBAS
      DEFW
             $0020
                           ; main NEXT-CHAR
;; CAT-SCRN
L04A6: CALL L061E
                          ; routine EXPT-NUM
      CALL L05B7
                           ; routine ST-END
      CALL L066D
                           ; routine CHECK-M-2 checks that drive is in
                            ; range 1 - 8.
```

DEFM

```
JP L1AB5 ; jump forward to CAT-RUN
; ---
;; OREPORT-1
L04B2: RST
            20H
                           ; Shadow Error Restart
      DEFB $00
                           ; Nonsense in BASIC
; -----
; THE 'FORMAT COMMAND SYNTAX' ROUTINE
; -----
  e.g.
;; FRMT-SYN
L04B4: CALL L05F2 ; routine EXPT-SPEC CALL L05B1 ; routine SEPARATOR
            NZ,L04BF
                          ; forward to NO-FOR-M
       JR
       CALL L062F
                            ; routine EXPT-NAME
;; NO-FOR-M
L04BF: CALL L05B7
            L05B7
A,($5CD9)
                           ; routine ST-END
                           ; sv L_STR1 device letter.
      LD
                            ; is character "T" ?
      CP
             $54
             Z,L04CD
                            ; forward to FOR-B-T
       JR
                            ; is character "B" ?
       CP
             $42
            NZ,L04D3
       JR
                            ; forward to NOT-FOR-B
;; FOR-B-T
L04CD: CALL L06B0
JP L0ACD
                            ; routine TEST-BAUD
                            ; jump to SET-BAUD
;; NOT-FOR-B
                          ; is character "N" ?
L04D3: CP $4E
JR NZ,L04E7
                            ; forward to FOR-M
       CALL
             L068F
                            ; routine TEST-STAT
             A, ($5CD6)
                            ; sv D_STR1 drive number
       AND
            Z,L069F
                            ; jump to NREPORT-6
       JΡ
             Z,LU69F
($5CC5),A
                           ; sv NTSTAT
       LD
       JΡ
             L05C1
                            ; jump to END1
;; FOR-M
L04E7: CALL L0685
                    ; routine TEST-MNAM
      JP
             L1ABA
                           ; jump to FOR-RUN
; -----
; THE 'OPEN COMMAND SYNTAX' ROUTINE
;; OPEN-SYN
L04ED: CALL L064E ; routine EXPT-STRM CALL L05B1 ; routine SEPARATOR
                          ; back to OREPORT-1
             NZ,L04B2
       JR
                            ; 'Nonsense in BASIC'
            L05F2 ; routine EXPT-SPEC
L05B1 ; routine SEPARATOR
NZ,L0500 ; forward to NOT-OP-M
       CALL L05F2
CALL L05B1
```

```
CALL L062F ; routine EXPT-NAME
;; NOT-OP-M
                           ; routine ST-END
L0500: CALL L05B7
       LD
            A, ($5CD8)
                           ; sv D STR1
      RST 10H
DEFW $1727
                           ; CALBAS
                           ; main STR-DATA1
       LD HL, $0011
       AND
            A
       SBC
            HL,BC
            C,L052F
                           ; forward to NREPORT-C
       JR
       LD
            A, ($5CD9)
                           ; sv L STR1 device letter.
                           ; "T" ?
       CP
            $54
       JR
            Z,L051C
                           ; forward to OPEN-RS
       CP
            $42
                           ; "B" ?
            NZ,L051F
                           ; forward to NOT-OP-B
;; OPEN-RS
L051C: JP
            L0B4E
                           ; jump to OP-RSCHAN
; ---
;; NOT-OP-B
            $4E
NZ,L0529
L051F: CP JR
                           ; is character "N" ?
                           ; forward to OP-M-C
      CALL L068F
JP L0F40
                           ; routine TEST-STAT
                           ; jump to OPEN-N-ST
; ---
;; OP-M-C
L0529: CALL L0685 ; routine TEST-MNAM JP L1ABF ; jump to OP-RUN
; ---
;; NREPORT-C
            20H ; Shadow Error Restart
L052F: RST
      DEFB $0B
                           ; Stream already open
; THE 'ERASE COMMAND SYNTAX' ROUTINE
;; ERASE-SYN
L0531: CALL L06A3 ; routine EXPT-EXPR CALL L05B7 ; routine ST-END
      CALL L0685
                           ; routine TEST-MNAM
            L1AAB
      JP
                           ; jump to ERASE-RUN
; ------
; THE 'MOVE COMMAND SYNTAX' ROUTINE
; -----
;; MOVE-SYN
```

```
L053D: CALL L06B9 ; routine EXPT-EXP1 CALL L059F ; routine EX-D-STR RST 10H ; CALBAS DEFW $0018 ; main GET-CHAR
       ; 'TO' ?
       CALL L06B9
                              ; routine EXPT-EXP1
                              ; routine EX-D-STR
        CALL L059F
              10H
       RST
                              ; CALBAS
                            ; main GET-CHAR
        DEFW $0018
       CALL L05B7
                              ; routine ST-END
              L1AB0
                              ; jump to MOVE-RUN
; -----
; THE 'CLS# COMMAND' ROUTINE
; -----
;; CLS#-SYN
L0559: RST
       DEFW $0020
                              ; CALBAS
                             ; main NEXT-CHAR
              $23
                              ; is the character '#' ?
       CP
              NZ,L0584
                              ; forward, if not, to NONSENSE
        JR
       RST
              10H
                              ; CALBAS
        DEFW $0020
                               ; main NEXT-CHAR
       CALL
              L05B7
                               ; routine ST-END
               ; prepare a zero and black ink on white possible ($5C8D), HL ; set system variables ATTR_P and MASK_P. ($5C8F), HL ; set system variables ATTR_P.
                              ; prepare a zero and black ink on white paper.
              HL,L0038
       LD
        LD
       LD
                              ; Note. not really necessary as done by CLS.
               (IY+$0E),L ; set system variable BORDCR to colour scheme. (IY+$57),H ; set system variable P_FLAG to zero.
       LD
       LD
              A,$07
                              ; load A with white.
        OUT
               ($FE),A
                              ; directly change border colour.
                               ; CALBAS
        RST
               10H
        DEFW
               $0D6B
                               ; main CLS clears screen and sets colours.
                              ; jump forward to END1.
       JΡ
              L05C1
; -----
; THE 'CLEAR# COMMAND' ROUTINE
;; CLR#-SYN
       RST 10H ; CALBAS
DEFW $0020 ; main NEXT-CHAR
L057F: RST
       CP
              $23
                              ; '#' ?
;; NONSENSE
L0584: JP
              NZ,L04B2
                              ; jump to OREPORT-1
                               ; 'Nonsense in BASIC'
```

```
; CALBAS
             10H
       RST
       DEFW $0020
                            ; main NEXT-CHAR
       CALL L05B7
                            ; routine ST-END
       XOR A
                            ;
;; ALL-STRMS
L058E: PUSH AF
       SET 1,(IY+$7C); sv FLAGS_3
CALL L1718; routine CLC
                            ; routine CLOSE
       POP AF
       INC A ;
CP $10 ;
JR C,L058E ; back to ALL-STRMS
       JP L05C1
                            ; jump to END1
; -----
; THE 'EXCHANGE FILE SPECIFIERS DSTRI AND STR2' ROUTINE
; -----
  This routine is used by the MOVE routines to bring one of the two 8-byte
  file specifiers into context. There were two similar routines in the
  first Interface 1 ROM and this, the most efficient, has survived.
;; EX-D-STR
             HL,$5CD6
DE,$5CDE
L059F: LD
                            ; sv D STR1. drive number
                             ; sv D STR2.
       LD
                             ; eight bytes to swap.
             B,$08
       LD
;; ALL-BYTES
                         ; fetch byte 1.
; fetch byte 2.
; place byte 1.
; byte 2 to accumulator.
; place byte 2.
L05A7: LD A, (DE)
           C, (HL)
(HL), A
A, C
       LD
       _{
m LD}
       LD
              (DE),A
       LD
       INC HL
INC DE
DJNZ L05A7
                            ; increment the
                            ; two pointers.
                             ; loop back, for all eight, to ALL-BYTES.
       RET
                             ; return.
; THE 'SEPARATOR' ROUTINE
; This routine returns with zero flag set if the current character is
; either a comma or semi-colon.
;; SEPARATOR
L05B1: CP $2C RET Z
                          ; is character ',' ?
                            ; return with zero set if so.
       CP $3B ; is character ';' ?
       RET
                            ; return.
; -----
; THE 'END OF STATEMENT' ROUTINE
;
```

```
;; ST-END
L05B7: CP $0D
JR Z,L05BF
                          ; is character carriage return ?
; forward, if so, to TEST-RET
       CP $3A
JR NZ,L0584
                           ; is character a ':' ?
                           ; back, if not, to NONSENSE
;; TEST-RET
L05BF: RST 18H
                           ; checking syntax ?
      RET
             NZ
                           ; return if not.
; -----
; THE 'RETURN TO THE MAIN INTERPRETER' ROUTINE
;; END1
            L05C1: LD
       LD
            HL,$1BF4
                            ; Main ROM address STMT-NEXT
       RST
             18H
                            ; checking syntax ?
             Z,L05E0
                            ; forward, if so, to RETAD-SYN
       JR
             A,$7F
       LD
       IN
             A, ($FE)
       RRA
                            ; forward to RETAD-RUN
             C, L05DD
       JR
       LD
IN
             A,$FE
             A, ($FE)
       RRA
                           ; forward to BREAK-PGM
             NC,L05E2
       JR
;; RETAD-RUN
             HL,$1B7D
L05DD: LD
                           ; Main ROM address STMT-R-1
;; RETAD-SYN
L05E0: PUSH HL RST 00H
                           ; to MAIN-ROM
; ---
;; BREAK-PGM
L05E2: LD (IY+$00),$14 ; insert error code in system variable ERR_NR.

RST 28H ; Error Main ROM
                            ; Error Main ROM
                            ; 'BREAK into program'
; -----
; THE 'EVALUATE STRING EXPRESSION' ROUTINE
;; EXPT-STR
      DEFW $1C8C
RST 18H
RET Z
                         ; CALBAS
; main EXPT-EXP
; checking syntax ?
L05E7: RST
```

```
AF
       PUSH
                           ; CALBAS
; main STK-FETCH
               10H
       RST
              $2BF1
       DEFW
       POP
       RET
; THE 'EVALUATE CHANNEL EXPRESSION' ROUTINE
;; EXPT-SPEC
              10H
                             ; CALBAS
L05F2: RST
       DEFW $0020
                              ; main NEXT-CHAR
;; EXP-SPEC2
L05F5 CALL L05E7
                               ; routine EXPT-STR evaluates a string e.g. "m"
                               ; start in DE, length in BC.
; one of the main tenets of Sinclair BASIC is that a value can be replaced
; by an expression of the same type at any time, so this routine must allow
; something like "tomato"(3) as well as the more conventional "m" specifier.
; Only in runtime when the expression is evaluated can a single character be
; insisted upon.
               Z,L060C
                              ; forward, if checking syntax, to TEST-NEXT.
       JR
       PUSH
              ΑF
                              ; save following character.
                              ; in runtime check
       T.D
              A,C
                               ; immediately for
       DEC
              Α
       OR
                               ; a single character.
              NZ,L062D
                              ; forward, if not, to NREPORT-3
        JR
                               ; 'Invalid device expression'
       LD
               A, (DE)
                              ; fetch the addressed character.
       RST
               10H
                              ; CALBAS
        DEFW
               $2C8D
                               ; main ALPHA
              NC,L062D
                              ; forward, if not alphabetic, to NREPORT-3
       AND
               $DF
                               ; convert to uppercase with 'AND %11011111'
                               ; place in system variable L STR1 device letter.
       LD
              ($5CD9),A
       POP
               ΑF
                               ; restore the following character.
;; TEST-NEXT
               $0D
L060C: CP
                              ; test for carriage return.
       RET
               7.
                               ; return if so.
       CP
               $3A
                              ; is character ':' ?
       RET
                              ; return if so.
               Z
       CP
               $A5
                              ; RND
       RET
               NC
                               ; return with a token??
       CALL
              L05B1
                              ; routine SEPARATOR tests for both ';' and ','.
             NZ,L04B2
                              ; jump back, if not, to OREPORT-1
```

```
RST 10H
                           ; CALBAS
       DEFW $0020
                           ; main NEXT-CHAR
; THE 'EVALUATE NUMERIC DRIVE EXPRESSION' ROUTINE
   This routine is called once only to evaluate the numeric expression
  following a 'CAT' command token or is used from above to check a numeric
  expression following for example "M"; .
;; EXPT-NUM
L061E: RST
             10H
                           ; CALBAS
      DEFW $1C82
                           ; main EXPT-1NUM
      RST 18H
                           ; checking syntax ?
       RET
            Z
                           ; return if checking syntax.
       PUSH AF
                           ; save NZ not syntax flag
       RST
             10H
                           ; CALBAS
       DEFW $1E99
                            ; main FIND-INT2
             ($5CD6),BC
                           ; set system variable D STR1 drive number
       LD
       POP
                           ; restore NZ not syntax flag
            AF
       RET
                            ; return.
; ---
;; NREPORT-3
                          ; Shadow Error Restart
; 'Invalid device expression'
L062D: RST
            20H
      DEFB $02
; -----
; THE 'EVALUATE FILENAME' ROUTINE
; ------
;; EXPT-NAME
                         ; CALBAS
L062F: RST
             10H
             $0020
      DEFW
                           ; main NEXT-CHAR
       CALL L05E7
                           ; routine EXPT-STR
       RET
      PUSH AF
       LD A,C
           В
       OR
       JR
            Z,L064C
                        ; forward to NREPORT-4
       LD
            HL,$000A
       SBC HL, BC
            C,L064C
                           ; forward to NREPORT-4
       JR
      LD
             ($5CDA),BC ; sv N_STR1
($5CDC),DE ; sv D_STR1
       LD
       POP
             ΑF
      RET
```

; ---

; 'Nonsense in BASIC'

```
;; NREPORT-4
L064C: RST 20H ; Shadow Error Restart
DEFB $03 ; Invalid name
; THE 'EVALUATE STREAM NUMBER' ROUTINE
;; EXPT-STRM
L064E: RST 10H
DEFW $0020
                                   ; CALBAS
; main NEXT-CHAR
                                 ; CALBAS
; main EXPT-1NUM
; checkin
         RST 10H
         RST 10H
DEFW $1C82
RST 18H
                                    ; checking syntax ?
         RET
                 Z
         PUSH AF
RST 10H
DEFW $1E94
                                    ;
                                  ; CALBAS
; main FIND-INT1
         CP $10
JR NC, L0663
                                  ; forward to NREPORT-2
                 ($5CD8),A
                                  ; sv D_STR1
         LD
         POP
                AF
         RET
; ---
;; NREPORT-2
        RST 20H ; Shadow Error Restart DEFB $01 ; Invalid stream number
L0663: RST
; -----
; THE 'CHECK "M" PARAMETERS' ROUTINE
; -----
; called once from TEST-MNAM
;; CHECK-M
         LD A,($5CD9) ; fetch system variable L_STR1 device letter.
CP $4D ; is character "M" ?
JP NZ,L062D ; jump back, if not, to NREPORT-3
L0665: LD
         CР
                                  ; jump back, if not, to NREPORT-3
                                     ; Error: 'Invalid device expression'.
;; CHECK-M-2
LO66D: LD DE,($5CD6) ; fetch system variable D_STR1 drive number.

LD A,E ; test for

OR D ; zero.
         OR
JR
                 Z,L0681
                                 ; forward, if so, to NREPORT-5
                                     ; 'Invalid drive number'
         INC DE ; also test that

LD A,E ; location does not hold

OR D ; the default $FFFF value.

JR Z,L0683 ; forward, if so, to NREPORT-9
                                    ; 'Missing drive number'.
         ; restore to initial value
LD HL,L0008 ; and test that
SBC HL,DE ; drive is in range 1 - 8.
RET NC ; return if co
                                    ; restore to initial value.
```

```
;; NREPORT-5
L0681: RST 20H ; Shadow Error Restart
DEFB $04 ; Invalid drive number
;; NREPORT-9
L0683: RST 20H
                         ; Shadow Error Restart
      DEFB $08
                          ; Missing drive number
; -----
; THE 'CHECK "M" PARAMETERS AND FILENAME' ROUTINE
; -----
; This routine checks that the device expression is "M", that the drive is in
; the range 1 - 8 and that the filename is not null.
;; TEST-MNAM
L0685: CALL L0665
                          ; routine CHECK-M checks for "M" and valid
                          ; drive number.
            A, ($5CDB)
                          ; load A with D_STR1 the high byte of length
                          ; of filename.
      AND
            Α
                          ; test for zero.
      RET
                          ; return if so.
; else system default $FF.
      RST
            20H
                          ; Shadow Error Restart
      DEFB $06
                          ; Missing name
; -----
; THE 'CHECK STATION NUMBER' ROUTINE
; -----
      LD DE,($5CD6) ; sv D_STR1 drive number INC DE
;; TEST-STAT
L068F: LD
            A,E
      LD
      OR
            Z,L06A1
      JR
                      ; forward to NREPORT-8
      DEC
            DE
            HL,L0040
      LD
          HL, DE
      SBC
      RET
             NC
;; NREPORT-6
L069F: RST 20H ; Shadow Error Restart DEFB $05 ; Invalid station number
                          ; Invalid station number
;; NREPORT-8
L06A1: RST 20H ; Shadow Error Restart DEFB $07 ; Missing station number
                          ; Missing station number
; -----
; THE 'EVALUATE "X"; N; "NAME" ' ROUTINE
; -----
;; EXPT-EXPR
```

```
L06A3: CALL L05F2 ; routine EXPT-SPEC CALL L05B1 ; routine SEPARATOR JP NZ,L04B2 ; jump to OREPORT-1
                          ; jump to OREPORT-1
                            ; 'Nonsense in BASIC'
       CALL L062F ; routine EXPT-NAME
       RET
                            ; return...
; -----
; THE 'CHECK BAUD RATE' ROUTINE
; -----
;; TEST-BAUD
L06B0: LD HL,($5CD6) ; sv D_STR1 drive number
      INC
             _{
m HL}
       LD
             A,L
       OR
       RET
             NΖ
       RST 20H
                            ; Shadow Error Restart
       DEFB $09
                            ; Missing baud rate
; -----
; THE 'EVALUATE STREAM OR EXPRESSION' ROUTINE
;; EXPT-EXP1
L06B9: RST
      10H
DEFW $0020
                          ; CALBAS
; main NEXT-CHAR
                            ; is character '#' ?
       CP
             $23
             Z, L064E
                            ; jump to EXPT-STRM
       JP
             105E75
L05B1
       CALL
             L05F5
                            ; routine EXP-SPEC2
       CALL L05B1
JR NZ,L06CC
                            ; routine SEPARATOR
                            ; forward to ENDHERE
       CALL L062F
                            ; routine EXPT-NAME
;; ENDHERE
L06CC: RST 18H
RET Z
                            ; checking syntax ?
       RET
       LD A,($5CD9) ; sv L_STR1 device letter.
CP $54 ; is character "T" ?
RET Z
       CP $42
RET Z
                            ; is character "B" ?
          $4E
       CР
                            ; is character "N" ?
             Z,L068F
                            ; jump, if so, to TEST-STAT
       JΡ
             L0685
       JΡ
                            ; jump to TEST-MNAM
; ---
       DEFB $FF
       DEFB $FF
       DEFB $FF
```

```
DEFB $FF
DEFB $FF
DEFB $FF
      DEFB $FF
      DEFB $FF
      DEFB $FF
      DEFB $FF
      DEFB $FF
      DEFB $FF
      DEFB $FF
      DEFB $FF
      DEFB $FF
      DEFB $FF
      DEFB $FF
      DEFB $FF
      DEFB $FF
      DEFB $FF
      DEFB $FF
      DEFB $FF
      DEFB $FF
      DEFB $FF
      DEFB $FF
      DEFB $FF
      DEFB $FF
      DEFB $FF
      DEFB $FF
      DEFB $FF
      DEFB $FF
      DEFB $FF
; -----
; THE 'UNPAGE' ROUTINE
; -----
;; UNPAGE
L0700: RET
; THE 'EVALUATE PARAMETERS' ROUTINE
;; EXPT-PRMS
                       ; CALBAS
L0701: RST 10H
DEFW $0020
                          ; main NEXT-CHAR
                        ; is character '*'
      CP $2A
            NZ,L073C
      JR
                          ; forward, if not, to OREP-1-2
            10H
      RST
                          ; CALBAS
      DEFW $0020
                          ; main NEXT-CHAR
      CALL L05F5
CALL L05B1
                         ; routine EXP-SPEC2
                         ; routine SEPARATOR
                          ; forward to NO-NAME
            NZ,L0716
      JR
                         ; routine EXPT-NAME
      CALL L062F
```

;; NO-NAME

```
L0716: PUSH AF
       LD A, ($5CD9) ; sv L STR1 device letter.
       CP
             $4E
                            ; is character "N" ?
       JR
            NZ,L0722
                           ; forward, if not, to NOT-NET
       SET 3, (IY+$7C)
                           ; update FLAGS 3 signal networking.
;; NOT-NET
L0722: POP
            AF
             $0D
       CР
                            ; is character carriage return ?
       JR
             Z,L0750
                           ; forward to END-EXPT
       CР
             $3A
                           ; is character ':' ?
             Z,L0750
                           ; forward to END-EXPT
       JR
                           ; is character the token 'SCREEN$' ?
       CР
             $AA
             Z,L0771
                           ; forward to SCREEN$
       JR
       CP
             $AF
                           ; is character the token 'CODE' ?
             Z,L0789
                           ; forward to CODE
       JR
       CР
             $CA
                           ; is character the token 'LINE' ?
             Z,L073E
                           ; forward to LINE
       JR
       CР
             $E4
                           ; is character the token 'DATA' ?
             Z,L07D2
                           ; jump to DATA
       JP
;; OREP-1-2
L073C: RST
            20H
                           ; Shadow Error Restart
      DEFB $00
                            ; Nonsense in BASIC
; ---
;; LINE
             $0020
             10H
L073E: RST
                           ; CALBAS
      DEFW
                            ; main NEXT-CHAR
                           ; CALBAS
       RST
             10H
       DEFW
             $1C82
                            ; main EXPT-1NUM
       CALL
             L05B7
                           ; routine ST-END
       RST
             10H
                           ; CALBAS
       DEFW
             $1E99
                            ; main FIND-INT2
             ($5CED),BC ; sv HD_11
              L0753
                            ; forward to PROG
       JR
; ---
;; END-EXPT
L0750: CALL L05B7
                           ; routine ST-END
; the 'PROGRAM' SUBROUTINE is used when loading 'run'.
;; PROG
L0753: XOR
             ($5CE6),A
      LD
                           ; sv HD 00
            HL, ($5C59)
                           ; sv E LINE
       LD
                           ; sv PROG
       LD
            DE, ($5C53)
       LD
             ($5CE9),DE
                           ; sv HD OD
       SCF
       SBC HL, DE
```

```
($5CE7),HL ; sv HD_0B
HL,($5C4B) ; sv VARS
       LD
       LD
           HL,DE ; ($5CEB),HL ; sv HD_0F
       SBC
       LD
       RET
; ---
;; SCREEN$
L0771: RST 10H ; CALBAS
DEFW $0020 ; main NEXT-CHAR
       CALL L05B7
                             ; routine ST-END
       LD HL, $1B00
       LD
              ($5CE7),HL
                              ; sv HD 0B
       LD
             HL,$4000
              ($5CE9),HL
       LD
                              ; sv HD OD
       LD
             A,$03
       LD
              ($5CE6),A
                             ; sv HD 00
       RET
; ---
;; CODE
L0789: RST 10H
                             ; CALBAS
       DEFW $0020
                             ; main NEXT-CHAR
       CP
              $0D
                              ; is character a carriage return ?
              Z,L079A
                             ; forward to DEFLT-0
       JR
       СP
              $3A
                              ; is character a ':' ?
              NZ,L079F
                              ; forward to PAR-1
       JR
              5, (IY+$7C)
                              ; sv FLAGS 3
       BIT
             NZ,L073C
                              ; back to OREP-1-2
       JR
;; DEFLT-0
                           ; CALBAS
; main USE-ZERO
; forward to TEST-SAVE
L079A: RST
       DEFW $1CE6
JR L07A7
              10H
; ---
;; PAR-1
       RST 10H
DEFW $1C82
                           ; CALBAS
; main EXPT-1NUM
; routine SEPARATOR
L079F: RST
       CALL L05B1
              Z,L07B2
       JR
                             ; forward to PAR-2
;; TEST-SAVE
L07A7: BIT 5, (IY+$7C) ; sv FLAGS_3

JR NZ,L073C ; back to ORE
       JR
              NZ,L073C
                              ; back to OREP-1-2
                           ; CALBAS ; main USE-ZERO
              10H
       RST
       DEFW $1CE6
             L07B8
                             ; forward to END-CODE
       JR
; ---
;; PAR-2
                           ; CALBAS
; main NEXT-CHAR
L07B2: RST 10H
       DEFW $0020
```

```
; CALBAS
      RST 10H
      DEFW $1C82
                          ; main EXPT-1NUM
;; END-CODE
            10H
L07B8: RST
                           ; CALBAS
      DEFW $0018
                           ; main GET-CHAR
      CALL L05B7
                           ; routine ST-END
      RST
            10H
                           ; CALBAS
      DEFW $1E99
                           ; main FIND-INT2
      LD
             ($5CE7),BC
                          ; sv HD OB
      RST
            10H
                           ; CALBAS
      DEFW $1E99
                           ; main FIND-INT2
             ($5CE9),BC
      LD
                           ; sv HD OD
      LD
            A,$03
      LD
             ($5CE6),A
                           ; sv HD 00
      RET
                           ; return.
; ---
; ---
;; DATA
L07D2: BIT 6, (IY+$7C) ; sv FLAGS_3
                           ; forward to NO-M-ARR
            Z,L07DA
      JR
      RST
            20H
                           ; Shadow Error Restart
      DEFB
             $14
                           ; MERGE error
;; NO-M-ARR
                         ; CALBAS
L07DA: RST
             10H
             $0020
      DEFW
                           ; main NEXT-CHAR
                           ; CALBAS
      RST
             10H
             $28B2
       DEFW
                           ; main LOOK-VARS
       SET
             7,C
      JR
             NC,L07F2
                           ; forward to EXISTING
      LD
             HL,$0000
      LD
BIT
             4, (IY+$7C)
                           ; sv FLAGS 3
             NZ,L080E
                           ; forward to LD-DATA
      JR
             (IY+$00),$01 ; sv ERR NR to '2 Variable not found'
      LD
      RST
                           ; Error Main ROM
             28H
; ---
;; EXISTING
L07F2: JR
            Z,L07F6
                          ; forward to G-TYPE
;; NONS-BSC
                        ; Shadow Error Restart
      RST 20H
DEFB $00
L07F4: RST
                          ; Nonsense in BASIC
```

; ---

```
;; G-TYPE
L07F6: RST 18H
JR Z,L081C
                            ; checking syntax ?
                           ; forward to END-DATA
       BIT 5, (IY+$7C) ; sv FLAGS_3
             Z,L0803
                            ; forward to VR-DATA
       JR
       BIT
             7,(HL)
             Z,L07F4
                            ; back to NONS-BSC
       JR
;; VR-DATA
L0803: INC
             _{
m HL}
       _{
m LD}
             A, (HL)
       LD
             ($5CE7),A
                           ; sv HD OB
       INC
             _{
m HL}
       LD
             A, (HL)
       LD
             ($5CE8),A
                            ; sv HD OB hi
       INC
;; LD-DATA
L080E: LD
             A,C
             ($5CEB),A
                           ; sv HD OF
      LD
       LD
             A,$01
       BIT
             6,C
       JR
             Z,L0819
                            ; forward to NUM-ARR
       INC
             Α
;; NUM-ARR
L0819: LD
             ($5CE6),A ; sv HD 00
;; END-DATA
L081C: EX
             DE,HL
       RST
                            ; CALBAS
             10H
       DEFW
              $0020
                            ; main NEXT-CHAR
                            ; is character ')' ?
       CР
              $29
              NZ,L07F4
       JR
                            ; back to NONS-BSC
                            ; CALBAS
       RST
              10H
       DEFW
              $0020
                            ; main NEXT-CHAR
                         ; routine ST-END
; sv HD_0D
       CALL L05B7
             ($5CE9),DE
       LD
       RET
                             ; return.
; -----
; THE 'SAVE COMMAND SYNTAX' ROUTINE
;; SAVE-SYN
       SET 5,(IY+$7C) ; sv FLAGS_3
CALL L0701 ; routine EXE
L082F: SET
                            ; routine EXPT-PRMS
             A, ($5CD9)
                            ; sv L STR1 device letter.
       T.D
       CР
              $42
                            ; is character 'B' ?
              Z,L084F
                            ; forward to SA-HEADER
```

```
CP $4E ; is character 'N' ? JR NZ,L0849 ; forward to SAVE-M
       CALL L068F
                            ; routine TEST-STAT
       CALL LOF46
JR LO84F
                           ; routine OP-TEMP-N
; forward to SA-HEADER
; ---
;; SAVE-M
L0849: CALL L0685
JP L1AC4
                            ; routine TEST-MNAM
                            ; jump to SAVE-RUN
; ---
;; SA-HEADER
L084F: LD B,$09
      LD
             HL,$5CE6
                            ; sv HD 00
;; HD-LOOP
L0854: CALL L0884
                            ; routine SA-BYTE
       INC
             _{
m HL}
       DJNZ L0854
                            ; back to HD-LOOP
             HL, ($5CE9)
                            ; sv HD OD
       LD
                            ; sv FLAGS 3
       BIT
              3,(IY+$7C)
                            ; forward to SA-BLOCK
       JR
             Z,L086E
                            ; sv HD 00
       LD
              A, ($5CE6)
                            ; compare with three - type CODE ; forward to SA-BLOCK
       CP
             $03
             NC, L086E
       JR
             DE, $0114
       LD
       ADD
              HL, DE
;; SA-BLOCK
            BC, ($5CE7) ; sv HD_0B
L086E: LD
;; SA-BLK-LP
L0872: LD
              A,C
                             ;
       OR
       JR
              Z,L0881
                            ; forward to S-BLK-END
       PUSH
              IX
                            ;;;
       CALL L0884
                            ; routine SA-BYTE
       POP
             IX
                            ;;;
       DEC BC
INC HL
JR
                            ;
                            ; back to SA-BLK-LP
             L0872
; ---
;; S-BLK-END
L0881: JP L098C
                            ; jump to TST-MR-M
; ------
; THE 'SAVE A BYTE TO NETWORK OR RS232 LINK' ROUTINE
;
```

```
;; SA-BYTE
L0884: PUSH HL
                             ;
       PUSH BC
BIT 3, (IY+$7C)
LD A, (HL)
JR NZ, L0892
                             ; sv FLAGS 3
                             ; forward to SA-NET
       CALL LODO7
JR LO895
                             ; routine BCHAN-OUT
                             ; forward to SA-B-END
; ---
;; SA-NET
L0892: CALL L0E09
                            ; routine NCHAN-OUT
;; SA-B-END
L0895: POP BC POP HL
                              ;
                              ;
       RET
; -----
; THE 'LOAD COMMAND SYNTAX' ROUTINE
;; LOAD-SYN
L0898: SET 4, (IY+$7C) ; sv FLAGS_3
       CALL L0701
JP L08B3
                             ; routine EXPT-PRMS
                             ; jump to LD-VF-MR
; -----
; THE 'VERIFY COMMAND SYNTAX' ROUTINE
; ------
;; VERIF-SYN
       SET 7,(IY+$7C) ; sv FLAGS_3
CALL L0701 ; routine EXPT-PRMS
JP L08B3 ; jump to LD-VF-MR
L08A2: SET
                             ; jump to LD-VF-MR
; THE 'MERGE COMMAND SYNTAX' ROUTINE
;
;; MRG-SYN
L08AC: SET 6, (IY+$7C) ; sv FLAGS_3
      CALL L0701
                             ; routine EXPT-PRMS
; -----
; THE 'LOAD-VERIFY-MERGE COMMANDS' ROUTINE
      LD HL,$5CE6 ; set source to HD_00
LD DE,$5CDE ; set destination
LD BC.$0007
;; LD-VF-MR
L08B3: LD
                             ; set destination to D STR2
                             ; seven bytes to copy.
       LDIR
                             ; copy type, start, length, length of program.
                             ; sv L STR1 device letter.
       LD
             A,($5CD9)
                              ; "N" ?
       CР
             $4E
```

```
Z,L08D1 ; forward to TS-L-NET
                            ; "B" ?
       CP
          $42
       JR Z,L08D7 ; forward to TS-L-RS
; proceed with Microdrive device.
       CALL L0685
                             ; routine TEST-MNAM return without error if
                             ; device is "M" and drive and filename are OK.
       CALL L1971
                             ; routine F-M-HEAD loads the header type
                             ; record for the above filename and populates
                             ; the locations HD 00 to HD 11.
                            ; forward to TEST-TYPE which tests that file
       JR
             L08F6
                            ; types agree and then loads rest of records.
; ---
;; TS-L-NET
L08D1: CALL L068F
                            ; routine TEST-STAT
       CALL LOF46
                            ; routine OP-TEMP-N
;; TS-L-RS
                          ; sv HD 00
L08D7: LD
            HL,$5CE6
            B,$09
      LD
;; LD-HEADER
L08DC: PUSH HL
       PUSH BC
      BIT
                          ; sv FLAGS_3
             3,(IY+$7C)
             Z,L08EB
                            ; forward to LD-HD-RS
       JR
;; LD-HD-NET
L08E4: CALL L0DAF
JR NC,L08E4
                            ; routine NCHAN-IN
                            ; back to LD-HD-NET
       JR
             L08F0
                            ; forward to LD-HDR-2
; ---
;; LD-HD-RS
LOSEB: CALL LOBSS
             LOB88 ; routine BCHAN-IN NC,LO8EB ; back to LD-HD-RS
;; LD-HDR-2
L08F0: POP
             ВC
             _{
m HL}
       POP
       LD
             (HL),A
       INC
             _{
m HL}
       DJNZ L08DC
                           ; back to LD-HEADER
; -->
;; TEST-TYPE
L08F6: LD
             A, ($5CDE)
                            ; sv D STR2
       LD
             B,A
             A, ($5CE6)
                            ; sv HD 00
       LD
       CP
             В
             NZ,L0906
                            ; forward to NREPORT-N
```

JR

```
$03
Z,L0915
                          ; compare with three - type CODE
; forward to T-M-CODE
       CP
       JR
             C,L0908
                            ; forward to TST-MERGE
       JR
;; NREPORT-N
L0906: RST 20H
                            ; Shadow Error Restart
       DEFB $16
                             ; Wrong file type
; ---
;; TST-MERGE
L0908: BIT 6,(IY+$7C) ; sv FLAGS_3
       JR
             NZ,L096B
                            ; forward to MERGE-BLK
       BIT
              7,(IY+$7C)
                            ; sv FLAGS 3
                             ; jump to LD-PR-AR
       JΡ
              Z,L09A7
;; T-M-CODE
L0915: BIT
             6,(IY+$7C)
                            ; sv FLAGS 3
       JR
             Z,L091D
                             ; forward to LD-BLOCK
       RST
             20H
                             ; Shadow Error Restart
       DEFB $14
                             ; MERGE error
; ---
;; LD-BLOCK
             HL,($5CDF) ; sv D_STR2 (+1) length of data
DE,($5CE7) ; sv HD_0B
L091D: LD
       LD
              A,H
       LD
       OR
              Τ.
              Z,L0936
                            ; forward to LD-BLK-2
       JR
       SBC
              HL, DE
              NC,L0936
                             ; forward to LD-BLK-2
       JR
       BIT
              4, (IY+$7C)
                             ; sv FLAGS 3
                             ; forward to NREPORT-L
       JR
              Z,L0934
       RST
               20H
                             ; Shadow Error Restart
       DEFB
              $13
                             ; Code Error
; ---
;; NREPORT-L
                          ; Shadow Error Restart
L0934: RST 20H
DEFB $15
                            ; Verification has failed
; ---
;; LD-BLK-2
L0936: LD
             HL, ($5CE1) ; sv L_STR2
       LD
              A, (IX+$04) ; channel letter
                            ; 'M' +$80 ?
       CP
              $CD
             NZ,L0945
                             ; forward to LD-BLK-3
       JR
                                                  *****
       LD
          HL, ($5CE4) ; sv D_STR2
              L0956
                             ; forward to LD-BLK-4
       JR
; ---
```

;; LD-BLK-3

```
L0945: BIT 3,(IY+$7C) ; sv FLAGS_3
JR Z,L0956 ; forward to
                             ; forward to LD-BLK-4
           A, ($5CE6) ; sv HD 00
       LD
             $03
                             ; compare with three - type CODE
       CР
       JR
             Z,L0956
                             ; forward to LD-BLK-4
       LD BC,$0114
ADD HL,BC
;; LD-BLK-4
L0956: LD
             А,Н
       OR
             NZ,L095D
                             ; forward to LD-BLK-5
       JR
       LD HL, ($5CE9)
                             ; sv HD OD
;; LD-BLK-5
L095D: LD
             A, ($5CE6)
                             ; sv HD 00
       AND
              NZ,L0966
                             ; forward to LD-NO-PGM
       JR
       LD
             HL, ($5C53)
                             ; sv PROG
;; LD-NO-PGM
L0966: CALL L0A60
JR L098C
                             ; routine LV-ANY
                             ; forward to TST-MR-M
; ---
;; MERGE-BLK
       LD 21,
AND $C0
NZ,L0977
             A, ($5CEE)
                           ; sv HD 11 hi
L096B: LD
                             ; forward to NO-AUTOST
       CALL
             L17B7
                             ; routine RCL-T-CH
       RST
              20H
                             ; Shadow Error Restart
       DEFB
              $14
                             ; MERGE error
; ---
;; NO-AUTOST
       LD BC,($5CE7) ; sv HD_0B PUSH BC ;
L0977: LD
       INC
              ВC
                             ;
                          ; CALBAS
       RST 10H
DEFW $0030
                             ; main BC-SPACES
              (HL),$80
       LD
            (HL),$8
DE,HL
       EΧ
             DE
       POP
       PUSH HL
       CALL LOA60
                           ; routine LV-ANY
       POP
             _{
m HL}
       RST 10H ; CALBAS
DEFW $08CE ; main ME-CTRLX
; ---
```

```
;; TST-MR-M
L098C: LD A, (IX+$04); channel letter
             $CD
                            ; 'M' + $80 ?
; forward to TST-MR-N
             NZ,L0998
       CALL L138E ; routine CLOSE-M2 JR L09A4 ; forward to MERGE-
                             ; forward to MERGE-END
; ---
;; TST-MR-N
L0998: BIT 3,(IY+$7C) ; sv FLAGS_3
                             ; forward to MERGE-END
       JR
             Z,L09A4
       CALL LOFAE
                             ; routine SEND-NEOF
       CALL L17B7
                             ; routine RCL-T-CH
;; MERGE-END
L09A4: JP L05C1
                             ; jump to END1
; ---
;; LD-PR-AR
L09A7: LD LD
             DE, ($5CE7) ; sv HD_0B
HL, ($5CE1) ; sv L STR2
       PUSH HL
       LD
             A,H
       OR
             L
       JR
             NZ,L09B9 ; forward to LD-PROG
       TNC
             DE
       TNC
             DE
       INC
             DE
                             ;
       EX DE, HL
JR L09C2
                        ; forward to TST-SPACE
; ---
;; LD-PROG
           HL,($5CDF) ; sv D_STR2 (+1) length of data
L09B9: LD
       EΧ
              DE, HL
       SCF
                             ;
       SBC HL, DE
              C,L09CB
                            ; forward to TST-TYPE
;; TST-SPACE
       LD DE,$0005
ADD HL,DF
L09C2: LD
                            ;
                             ;
             В,Н
       LD
                             ;
       LD
              C,L
                        ; CALBAS
             10H
       RST
       DEFW $1F05
                             ; main TEST-ROOM
   Note. that before the above call, interrupts are disabled and the motor
   of the microdrive is running. If there should be insufficient room,
   then the processor stops at the HALT instruction at address $1303
   (MAIN-4), in the main ROM, while trying to output the "Out of Memory"
   report. This could be corrected by replacing the above 3 bytes to a
   call to a 6-byte subroutine which carries out the same instructions
   between an EI/DI pair. In the production of the "Out of Memory" report
   this ROM will be paged again by the instruction fetch at 0008. The
```

```
motors are stopped at START-4 and then Control will then pass to the
  other ROM to execute the "LD A, (HL)", then back to this ROM to eliminate
   the "OK" message before a final switch to the Main ROM for the actual
   message text.
;; TST-TYPE
L09CB: POP
              _{
m HL}
       LD
             A, ($5CE6) ; sv HD_00
       AND
             Α
             Z,L0A19
       JR
                            ; forward to SET-PROG
          А,Н
       LD
       OR
             Z,L09F7
                         ; forward to CRT-NEW
       JR
             A, (IX+$04)
       LD
                            ; channel letter
                            ; is character an inverted "M" ?
       CP
             $CD
             NZ,L09E2
                            ; forward to T-LD-NET
       JR
             HL, ($5CE4)
                            ; sv D_STR2
             L09EC
                            ; forward to RCLM-OLD
; ---
;; T-LD-NET
L09E2: BIT 3,(IY+$7C) ; sv FLAGS_3
             Z,L09EC
                            ; forward to RCLM-OLD
       JR
             DE, $0114
       LD
       ADD
             HL,DE
;; RCLM-OLD
L09EC: DEC
             _{
m HL}
       LD
             B, (HL)
             _{
m HL}
       DEC
              C, (HL)
       LD
             _{
m HL}
       DEC
       INC
              BC
              ВС
       INC
              ВC
       INC
                          ; CALBAS
       RST
              10H
       DEFW
              $19E8
                             ; main RECLAIM-2
;; CRT-NEW
                            ; sv E_LINE
L09F7: LD
             HL, ($5C59)
       DEC
              _{
m HL}
             BC, ($5CE7)
       LD
                            ; sv HD 0B
       PUSH BC
            ВС
       INC
             ВС
       INC
             ВC
       INC
             A, ($5CE3) ; sv D STR2
       LD
       PUSH AF
             10H
                          ; CALBAS
; main MAKE-ROOM
       RST
       DEFW $1655
       INC HL
       POP
             AF
             (HL),A
       LD
             DE
       POP
       INC
             _{
m HL}
       LD
             (HL),E
       INC
             _{
m HL}
       LD
             (HL),D
       INC HL
```

```
;; END-LD-PR
LOA13: CALL LOA60
                            ; routine LV-ANY
      JP L098C
                             ; jump to TST-MR-M
; ---
;; SET-PROG
LOA19: RES
              1, (IY+$7C) ; sv FLAGS_3
       LD
              DE, ($5C53)
                             ; sv PROG
             HL, ($5C59)
                             ; sv E LINE
       LD
             _{
m HL}
       DEC
              10H
       RST
                             ; CALBAS
       DEFW $19E5
                             ; main RECLAIM-1
       _{
m LD}
              BC, ($5CE7)
                            ; sv HD OB
       LD
             HL, ($5C53)
                             ; sv PROG
       RST
              10H
                             ; CALBAS
       DEFW $1655
                             ; main MAKE-ROOM
       INC
             _{
m HL}
             BC, ($5CEB)
                             ; sv HD OF
       LD
       ADD
             HL,BC
              ($5C4B),HL
                             ; sv VARS
       LD
       LD
             A, ($5CEE)
                             ; sv HD 11 hi
       LD
             H,A
              $C0
       AND
             NZ,LOA52
                             ; forward to NO-AUTO
       JR
       SET
              1, (IY+$7C)
                             ; sv FLAGS 3
                             ; sv HD 11
              A, ($5CED)
       T,D
       LD
             L,A
       LD
              ($5C42),HL
                             ; sv NEWPPC
              (IY+$0A),$00
                             ; sv NSPPC
       LD
;; NO-AUTO
L0A52: LD
             HL, ($5C53)
                             ; sv PROG
              DE, ($5CE7)
       LD
                             ; sv HD OB
       DEC
              HT.
       _{
m LD}
              ($5C57),HL
                             ; sv DATADD
       TNC
              _{
m HL}
       JR
              L0A13
                             ; back to END-LD-PR
; THE 'LOAD OR VERIFY' ROUTINE
; -----
  This routine is able to either LOAD or VERIFY a block of bytes, from any
  of the three possible binary sources, A Microdrive cartridge, the Binary
;
   "B" RS232 channel or the Network "N" channel.
  The block could be a program, code bytes or an array and the first
  receiving location is in HL and the length in DE.
;; LV-ANY
L0A60: LD
             A,D
                             ; test the length
       OR
             E
                             ; for zero.
       RET
                              ; return if so.
           A, (IX+$04)
                            ; fetch channel letter
       LD
              $CD
                             ; is letter "M" + $80 ?
       СP
             NZ,LOA6E
                             ; forward, if not, to LV-BN to load from
       ιTR
                              ; the B channel or network.
```

; else is a temporary "M" channel so load or verify and then return.

```
CALL L199A
                             ; routine LV-MCH loads or verifies a block
                              ; of code from microdrive.
       RET
                              ; return after called routine.
; ---
; Load or Verify from B channel or Network.
;; LV-BN
LOA6E: PUSH HL
                             ; save address.
                             ; save byte count.
       PUSH DE
       BIT
              3, (IY+$7C)
                            ; test FLAGS 3 - using network ?
                             ; forward, if not, to LV-B
       JR
             Z,L0A7D
; Load or Verify from "N" channel.
;; LV-N
LOA76: CALL LODAF
             LUDAF
NC,LOA76
                             ; routine NCHAN-IN
                             ; back to LV-N
       JR LOA82
                             ; forward to LV-BN-E
; ---
; Load or Verify from "B" channel.
;; LV-B
L0A7D: CALL L0B88
JR NC,L0A7D
                             ; routine BCHAN-IN
                           ; back to LV-B
; Load or Verify "B", "N" end test.
;; LV-BN-E
LOA82: POP
                             ; restore code length.
             DE
                              ; and decrement.
       DEC
              DE
       POP
                              ; restore load address.
              HT.
       BIT
              7, (IY+$7C) ; test FLAGS_3 - verify operation.
              NZ,LOA8E
                             ; forward, if so missing load, to VR-BN
                           ; load the byte into memory.
              (HL),A
       JR
               L0A93
                             ; forward to LVBN-END
; ---
; Verify "B" or "N" bytes.
;; VR-BN
LOA8E: CP
              (HL)
                             ; compare the received byte with the byte in
                             ; memory.
       JR
             Z,L0A93
                             ; forward, with match, to LVBN-END.
                          ; Shadow Error Restart
             20H
       RST
       DEFB
              $15
                             ; 'Verification has failed'
; ---
; Load or Verify "B", "N" end.
;; LVBN-END
LOA93: INC HL LD A, E
                             ; increment the address.
                             ; test the byte
```

```
NZ,LOA6E
                         ; back, if not, to LV-BN
       RET
                           ; return.
; THE 'LOAD "RUN" PROGRAM' ROUTINE
; ------
;; LOAD-RUN
            BC,$0001
L0A99: LD
                          ; set drive to one.
             ($5CD6),BC
      LD
                           ; update D STR1 drive number.
                           ; length of "run" is three.
      LD
            BC,$0003
             ($5CDA),BC
                           ; update N STR1 length of filename.
      LD
            BC, LOACA
                           ; addr: NAME-RUN (below)
             ($5CDC),BC
                           ; update A_STR1 - address of filename.
       LD
       SET
            4, (IY+$7C)
                           ; update FLAGS_3 signal a LOAD operation.
       CALL L0753
                           ; routine PROG sets up the first seven header
                            ; bytes for a program.
            HL,$5CE6
                           ; set start to HD 00
      LD
             DE,$5CDE
                           ; set destination to D STR2
       LD
            BC, $0009
                           ; nine bytes are copied.
       LD
                            ; Note. should be seven but is mostly harmless.
      LDIR
                            ; block copy.
       SET
             7, (IY+$0A)
                           ; update Main NSPPC - signal no jump to be made.
       CALL
             L1971
                            ; routine F-M-HEAD loads the header type
                            ; record for the 'run' file and populates
                            ; the nine locations HD 00 to HD 11.
                           ; jump back to TEST-TYPE to test that type is
       JP
            L08F6
                            ; 'program' and load the rest.
; ---
;; NAME-RUN
LOACA: DEFM "run"
                           ; the filename "run"
* *************
; ** THE RS232 ROUTINES **
; -----
; THE 'SET "BAUD" SYSTEM VARIABLE' ROUTINE
;; SET-BAUD
LOACD: LD BC,($5CD6) ; sv D_STR1 drive number LD HL,LOAF3 ; RS-CONSTS
;; NXT-ENTRY
LOAD4: LD
            E, (HL)
      INC
            _{
m HL}
            D, (HL)
      LD
```

; counter for zero.

OR

D

```
_{
m HL}
      INC
            DE,HL
      EΧ
            А,Н
      LD
            $4B
      CР
                        ; forward to END-SET
            NC, LOAE8
      JR
           A
      AND
      SBC HL,BC
           NC,LOAE8
      JR
                          ; forward to END-SET
      EΧ
           DE,HL
            _{
m HL}
      INC
      INC
            _{
m HL}
                         ; loop back to NXT-ENTRY
      JR
            LOAD4
; ---
;; END-SET
LOAE8: EX
            DE,HL
      LD
           E, (HL)
      INC
            _{
m HL}
            D, (HL)
      LD
            ($5CC3),DE
                         ; sv BAUD
      LD
                          ; jump to END1
            L05C1
; -----
; THE 'RS232 TIMING CONSTANTS' ROUTINE
; -----
;; RS-CONSTS
LOAF3: DEFW $0032
      DEFW $0A82
      DEFW
            $006E
                          ;
      DEFW $04C5
                          ;
      DEFW $012C
                          ;
      DEFW $01BE
                          ;
            $0258
      DEFW
                          ;
      DEFW
            $00DE
                          ;
      DEFW
            $04B0
                          ;
      DEFW
            $006E
                          ;
      DEFW
            $0960
                          ;
      DEFW
            $0036
                          ;
      DEFW
            $12C0
                         ;
           $001A
      DEFW
                         ;
      DEFW $2580
                         ;
      DEFW $000C
                         ;
      DEFW $4B00
                          ;
      DEFW $0005
; ------
; THE 'OPEN RS232 CHANNEL IN CHANS AREA' ROUTINE
;; OP-RS-CH
L0B17: LD
           HL, ($5C53)
                         ; use system variable PROG to address the
                          ; location following the Channels area.
      DEC
            _{
m HL}
                         ; step back to the end-marker.
      LD
           BC,$000B
                         ; eleven bytes of room required.
      PUSH BC
                          ; save bytes
      RST 10H
                          ; CALBAS
```

```
; register HL points to location before room.
       POP BC
                             ; bring back the eleven bytes.
       PUSH DE
                             ; save DE briefly
                             ; routine REST-N-AD adjusts the dynamic memory
       CALL L1A82
                             ; pointers to filenames in D STR1 and D STR2.
       POP DE
                             ; restore DE.
             HL,LOB76 - 1 ; last byte of T-Channel info.
       LD
       LD
             BC,$000B
                             ; eleven bytes to copy.
                             ; block copy downwards.
       LDDR
       INC
             DE
                             ; sv L STR1 device letter.
              A, ($5CD9)
                             ; is it "B" ?
       CP
              $42
                             ; return as must be "T".
       RET
             NΖ
; but if this is to be a binary channel then overwrite the letter and the output
; and input routines.
       PUSH DE
                             ;
            HL,$0004
       LD
             HL, DE
       ADD
                            ; 'B'
       LD
              (HL),$42
       INC
             ^{
m HL}
                          ; address B-CHAN-OUT
             DE,LOD07
       LD
       LD
              (HL),E
       INC
             _{
m HL}
       LD
              (HL),D
                             ;
       INC
             _{
m HL}
             DE,LOB7C ; address B-INPUT
       LD
       LD
              (HL),E
       INC
              _{
m HL}
              (HL),D
       LD
       POP
              DE
                             ;
       RET
                              ; return.
; THE 'ATTACH CHANNEL TO A STREAM' ROUTINE
;; OP-RSCHAN
LOB4E: CALL LOB17 ; routine OP-RS-CH
;; OP-STREAM
LOB51: LD HL, (\$5C4F) ; sv CHANS
       DEC
             _{
m HL}
       EΧ
             DE,HL
       AND
             Α
       SBC
             HL, DE
       EΧ
             DE, HL
             HL,$5C16 ; sv STRMS_00
A,($5CD8) ; sv D_STR1
       LD
       LD
       RLCA
       LD
            C,A
```

; main routine MAKE-ROOM opens up the space.

DEFW \$1655

```
LD B,$00
ADD HL,BC
LD (HL),E
INC HL
      LD (HL),D
JP L05C1
                        ; jump to END1
; -----
; THE '"T" CHANNEL DATA'
; -----
; the eleven-byte "T" CHANNEL descriptor.
;; TCHAN-DAT
L0B6B: DEFW $0008
                        ; main ERROR-1
      DEFW $0008
                         ; main ERROR-1
      DEFB $54
                         ; character "T"
      DEFW LOC3A
                         ; TCHAN-OUT
      DEFW L0B76
                         ; T-INPUT
      DEFW $000B
                         ; channel length - 11 bytes.
; -----
; THE '"T" CHANNEL INPUT' ROUTINE
;; T-INPUT
           HL,L0B82 ; address of routine TCHAN-IN L0D5A ; jump to CALL-INP
L0B76: LD
      JP
; -----
; THE '"B" CHANNEL INPUT' ROUTINE
; -----
;; B-INPUT
         HL, LOB88 ; address of routine BCHAN-IN
L0B7C: LD
      JΡ
            L0D5A
                         ; jump to CALL-INP
; THE '"T" CHANNEL INPUT SERVICE' ROUTINE
;; TCHAN-IN
LOB82: CALL LOB88 ; routine BCHAN-IN
      RES
            7,A
      RET
; -----
; THE '"B" CHANNEL INPUT SERVICE' ROUTINE
; -----
; (Hook Code: $1D)
;; BCHAN-IN
L0B88: LD
           HL,$5CC7 ; sv SER_FL
           A, (HL)
      LD
      LD
AND
           A
           Z,L0B95
      JR
                        ; forward to REC-BYTE
            (HL),$00
      LD
                         ;
      LD (HL),
INC HL
                         ;
      LD
           A, (HL)
      SCF
```

```
; Return.
       RET
; ---
;; REC-BYTE
L0B95: CALL L163E
                              ; routine TEST-BRK
       DI
                              ; Disable Interrupts
       LD
             A, ($5CC6)
                              ; sv IOBORD
       OUT
              ($FE),A
               DE, ($5CC3)
                             ; sv BAUD
       LD
              HL,$0320
                              ; 800d.
       LD
              B,D
       LD
              C,E
       LD
       SRL
              В
                              ;
       RR
              С
       LD
              A,$FE
       OUT
              ($EF),A
;; READ-RS
LOBAF: IN
              A, ($F7)
                             ; bit 7 is input serial data (txdata)
       RLCA
       JR
               NC,LOBC3
                              ; forward to TST-AGAIN
       IN
               A, ($F7)
       RLCA
               NC,LOBC3
                              ; forward to TST-AGAIN
       JR
       IN
               A, ($F7)
       RLCA
               NC,LOBC3
                              ; forward to TST-AGAIN
       JR
       IN
               A, ($F7)
       RLCA
               C,LOBCF
                              ; forward to START-BIT
       JR
;; TST-AGAIN
LOBC3: DEC
               _{
m HL}
                              ;
       LD
               A,H
                              ;
       OR
                           ; back to READ-RS
       JR
               NZ,LOBAF
       PUSH
               AF
                              ;
              A,$EE
       LD
                              ;
       OUT
              ($EF),A
                              ; forward to WAIT-1
       JR
               LOBEE
; ---
;; START-BIT
LOBCF: LD
           Н,В
                             ; Load HL with halved BAUD value.
       LD
              L,C
              B,$80
                              ; Load B with the start bit.
       LD
       DEC
              _{
m HL}
                              ; Reduce the counter by the time for the four
              _{
m HL}
       DEC
                              ; tests.
       DEC
               _{
m HL}
```

;; SERIAL-IN

```
; Add the BAUD value.
LOBD6: ADD HL, DE
       NOP
                              ; (4) a timing value.
;; BD-DELAY
LOBD8: DEC
                             ; (6) Delay for 26 * BAUD
              _{
m HL}
       LD
                              ; (4)
              A,H
                              ; (4)
       OR
              L
              NZ,LOBD8
       JR
                           ; (12) back to BD-DELAY
       ADD
             A,$00
                             ; (7) wait
       TN
              A, ($F7)
                             ; Read a bit.
       RLCA
                              ; Rotate bit 7 to carry.
                              ; pick up carry in B
       RR
               NC,LOBD6
                             ; back , if no start bit, to SERIAL-IN
       JR
       LD
             A,$EE
                              ; Send CTS line low (comms data 0 also)
       OUT
              ($EF),A
                              ; send to serial port
       LD
              A,B
                              ; Transfer the received byte to A.
                              ; Complement.
       CPL
       SCF
                              ; Set Carry to signal success.
       PUSH AF
                              ; (*) push the success flag.
   The success and failure (time out) paths converge here with the HL register
  holding zero.
;; WAIT-1
LOBEE: ADD HL, DE
                             ; (11) transfer DE (BAUD) to HL.
;; WAIT-2
LOBEF: DEC
                              ; ( 6) delay for stop bit.
             _{
m HL}
                              ; (4)
       LD
              A,L
                              ; (4)
       \cap R
              Н
                              ; (12/7) back to WAIT-2
              NZ,LOBEF
       JR
  Register HL is now zero again.
                              ; HL = 0 + BAUD
               HL, DE
       ADD
                              ; HL = 2 * BAUD
               HL,DE
       ADD
                              ; HL = 3 * BAUD
               HL,DE
       ADD
   The device at the other end of the cable (not a Spectrum) may send a
   second byte even though CTS (Clear To Send) is low.
;; T-FURTHER
LOBF7: DEC
              _{
m HL}
                              ; Decrement counter.
                              ; Test for
       LD
               A,L
                              ; zero.
       OR
       JR
              Z,L0C34
                              ; forward, if no second byte, to END-RS-IN
       ΙN
              A, ($F7)
                              ; Read TXdata.
       RLCA
                              ; test the bit read.
       JR
               NC,LOBF7
                              ; back, if none, to T-FURTHER
; As with first byte, TXdata must be high four four tests.
       ΙN
               A, ($F7)
       RLCA
                             ; back to T-FURTHER
               NC,LOBF7
       ιTR
               A, ($F7)
       ΤN
                              ;
       RLCA
             NC,LOBF7 ; back to T-FURTHER
```

```
A, ($F7)
                               ;
        RLCA
               NC,LOBF7
                               ; back to T-FURTHER
        JR
 A second byte is on its way and is received exactly as before.
               H,D
       LD
                               ;
               L,E
       LD
       SRL
               Н
               L
       RR
               в,$80
       LD
       DEC
              _{
m HL}
       DEC
              _{
m HL}
       DEC
              _{
m HL}
;; SER-IN-2
LOC1B: ADD
             HL,DE
       NOP
                               ; timing.
;; BD-DELAY2
LOC1D: DEC
               _{
m HL}
                               ;
       LD
               A,H
                               ;
       OR
               NZ,LOC1D
                              ; back to BD-DELAY2
       JR
       ADD
               A,$00
               A, ($F7)
       ΙN
       RLCA
       RR
                               ; back to SER-IN-2
               NC,LOC1B
       ιTR
; The start bit has been pushed out and B contains the second received byte.
                               ; Address the SER FL System Variable.
       LD
               HL,$5CC7
               (HL),$01
                              ; Signal there is a byte in the next location.
       LD
                               ; Address that location.
        INC
               _{
m HL}
                               ; Transfer the byte to A.
       LD
               A,B
       CPL
                               ; Complement
               (HL),A
                               ; and insert in the second byte of serial flag.
;; END-RS-IN
L0C34: CALL
               L0D4D
                               ; routine BORD-REST
       POP
               AF
                               ; ( either 0 and NC or the first received byte
                                   and the carry flag set )
       ΕI
                               ; Enable Interrupts
       RET
                               ; Return.
; -----
; THE '"T" CHANNEL OUTPUT' ROUTINE
  The text channel output routine is able to list programs and, when
; printing, takes correct action with TAB values etc.
;; TCHAN-OUT
LOC3A: CP
               $A5
                               ; 'RND' - first token
               C, L0C44
                               ; forward, if less, to NOT-TOKEN
       JR
        SUB
               $A5
                               ; reduce to range $00-5A
        RST
               10H
                               ; CALBAS
```

IN

```
; main PO-TOKENS
       DEFW $0C10
       RET
                            ; return.
; ---
;; NOT-TOKEN
L0C44: LD
              HL, $5C3B ; Address the FLAGS System Variable.
             0,(HL)
       RES
                            ; update FLAGS - allow for leading space.
       CP
              $20
                            ; compare to space
              NZ,LOC4F
                            ; forward, if not, to NOT-LEAD
       JR
       SET 0, (HL)
                            ; update FLAGS - signal suppress leading space.
;; NOT-LEAD
LOC4F: CP
              $7F
                            ; compare to copyright symbol. (DEL in ASCII)
              C,L0C55
                            ; forward, if less, to NOT-GRAPH
       JR
                            ; output CHR$(127) and graphics as '?'
       _{
m LD}
              A,$3F
;; NOT-GRAPH
L0C55: CP
              $20
                            ; compare against space.
             C,L0C70
                            ; forward to CTRL-CD
       JR
       PUSH AF
                            ; Preserve character.
                            ; Increment width
                                                   NMI ADD lo
             (IY+$76)
                            ; Load A with limit from NMI ADD hi
       LD
              A, ($5CB1)
       CР
              (IY+$76)
                            ; Compare to width NMI ADD lo
             NC,LOC6C
                            ; forward, if less or equal, to EMIT-CH
       JR
       CALL
             L0C74
                            ; routine TAB-SETZ emits CR/LF.
                                                   NMI ADD lo
       LD
             (IY+$76),$01
                            ; Set width to one
;; EMIT-CH
LOC6C: POP
                            ; Restore the unprinted character.
             AF
             L0D07
                            ; jump to BCHAN-OUT
       JΡ
; ---
;; CTRL-CD
              $0D
                            ; carriage return ?
L0C70: CP
              NZ,L0C82
       JR
                            ; forward to NOT-CR
;; TAB-SETZ
             (IY+$76),$00 ; sv NMI_ADD_lo
L0C74: LD
                            ; output a CR carriage return.
            A,$0D
      LD
       CALL LOD07
                            ; routine BCHAN-OUT
          A,$0A
                            ; output a LF line feed.
       LD
       JΡ
             L0D07
                            ; jump to BCHAN-OUT
; ---
;; NOT-CR
L0C82: CP
              $06
             NZ,LOCA5
                            ; forward to NOT-CMM
       JR
            BC, ($5CB0)
                           ; sv NMI ADD
       T.D
              E,$00
       LD
;; SPC-COUNT
```

```
LOC8C: INC
            E
       INC
              С
       LD
              A,C
       СР
              В
       JR
              Z,LOC9A
                       ; forward to CMM-LP2
;; CMM-LOOP
L0C92: SUB
              $08
                            ; forward to CMM-LP2
       JR
              Z,LOC9A
              NC,L0C92
                            ; back to CMM-LOOP
       JR
              L0C8C
                            ; back to SPC-COUNT
       JR
;; CMM-LP2
LOC9A: PUSH
             DE
       LD
             A,$20
       CALL LOC3A
                            ; routine TCHAN-OUT
       POP
       DEC
       RET
       JR
             LOC9A
                            ; back to CMM-LP2
; ---
;; NOT-CMM
LOCA5: CP
              $16
              Z,LOCB5
                            ; forward to TAB-PROC
       JR
       CР
              $17
              Z,L0CB5
                            ; forward to TAB-PROC
       JR
       CP
              $10
       RET
              С
              DE, $0CD0
       LD
                            ; forward to STORE-COD
       JR
              L0CB8
; ---
;; TAB-PROC
LOCB5: LD
             DE, LOCC8
                            ; addr: TAB-SERV
;; STORE-COD
LOCB8: LD
              ($5C0E),A
                            ; sv TVDATA
;; ALTER-OUT
LOCBB: LD
             HL, ($5C51) ; sv CURCHL
       PUSH DE
       LD
              DE, $0005
       ADD
             HL,DE
       POP
             DE
       LD
              (HL),E
       INC
             _{
m HL}
       LD
              (HL),D
       RET
; ---
;; TAB-SERV
LOCC8: LD
          DE, LOCDO ; addr: TAB-SERV2
```

```
LD ($5C0F),A ; sv TVDATA
JR LOCBB ; back to AI
                         ; back to ALTER-OUT
; ---
;; TAB-SERV2
LOCDO: LD DE,LOC3A ; addr: TCHAN-OUT
      CALL LOCBB
                         ; routine ALTER-OUT
      LD D, A
            A, ($5C0E) ; sv TVDATA
      LD
            $16
      CP
                          ; AT control code ?
            Z,LOCE6
                         ; forward to TST-WIDTH
      JR
      CP
           $17
                         ; TAB control code ?
      CCF
      RET
            NZ
      LD
            A, ($5COF) ; sv TVDATA
      LD
            D,A
;; TST-WIDTH
LOCE6: LD
            A, ($5CB1)
                         ; sv NMI ADD
      CР
            Z,LOCEE
                          ; forward to TAB-MOD
      JR
            NC,LOCF4
                          ; forward to TABZERO
      JR
;; TAB-MOD
LOCEE: LD
            B,A
            A,D
      LD
      SUB
            В
            D,A
      LD
            L0CE6
                         ; back to TST-WIDTH
      JR
; ---
;; TABZERO
            A,D
LOCF4: LD
           Α
      OR
                      ; jump to TAB-SETZ
      JΡ
            Z,L0C74
;; TABLOOP
         A, ($5CB0) ; sv NMI_ADD_lo
D ;
LOCF9: LD
      CP
      RET
                          ;
      PUSH DE
                          ;
      LD A,$20 CALL LOC3A
                        ; routine TCHAN-OUT;
      POP DE
      JR
            LOCF9
                         ; back to TABLOOP
; -----
; THE '"B" CHANNEL OUTPUT' ROUTINE
; ------
; (Hook Code: $1E)
  The bits of a byte are sent inverted. They are fixed in length and heralded
 by a start bit and followed by two stop bits.
;; BCHAN-OUT
LOD07: LD B,\$0B ; Set bit count to eleven - 1 + 8 + 2.
```

```
LD C,A
                              ; Copy the character to C.
               A, ($5CC6)
                             ; Load A from System Variable IOBORD
              ($FE),A
                             ; Change the border colour.
       THO
       LD
              A,$EF
                             ; Set to %11101111
       OUT
                             ; Make CTS (Clear to Send) low.
              ($EF),A
       CPL
                              ; reset bit 0 (other bits of no importance)
                              ; Make RXdata low. %00010000
       OUT
              ($F7),A
              HL, ($5CC3)
                              ; Fetch value from BAUD System Variable.
       LD
              D,H
                              ; Copy BAUD value to DE for count.
       LD
              E,L
       LD
;; BD-DEL-1
LOD1C: DEC
             DE
                             ; ( 6) Wait 26 * BAUD cycles
       LD
             A,D
                              ; (4)
       OR
                              ; (4)
             E
             NZ,LOD1C
                             ; (12) back to BD-DEL-1
;; TEST-DTR
LOD21: CALL L163E
                             ; routine TEST-BRK allows user to stop.
                             ; Read the communication port.
       IN
             A, ($EF)
              $08
                             ; isolate DTR (Data Terminal Ready) bit.
       AND
                             ; back, until DTR found high, to TEST-DTR
              Z,L0D21
       JR
       SCF
                              ; Set carry flag as the start bit.
                              ; Disable Interrupts.
       DΙ
;; SER-OUT-L
L0D2C: ADC
             A,$00
                             ; Set bit 0
                                                    76543210 <- C
              ($F7),A
                              ; Send RXdata the start bit.
       OUT
              D,H
                             ; Transfer the BAUD value to DE for count.
       LD
               E,L
       LD
;; BD-DEL-2
LOD32: DEC
                              ; ( 6) Wait for 26 * BAUD
               DE
       LD
               A,D
                              ; (4)
       OR
                              ; (4)
       JR
              NZ,L0D32
                              ; (12) back to BD-DEL-2
       DEC
               DΕ
                              ; (6)
       XOR
               Α
                              ; ( 4) clear rxdata bit
       SRL
                              ; shift a bit of output byte to carry.
               C
       DJNZ
               L0D2C
                              ; back for 11 bits to SER-OUT-L
  Note the last two bits will have been sent reset as C is exhausted.
       ΕI
                              ; Enable Interrupts.
       T<sub>1</sub>D
              A,$01
                              ; Set RXdata
              C,$EF
       LD
                             ; prepare port address.
              B,$EE
                             ; prepare value %11101110
       LD
                             ; Send RXdata high.
       OUT
              ($F7),A
       OUT
                             ; Send CTS and comms data low - switch off RS232
              (C),B
;; BD-DEL-3
LOD48: DEC
                             ; ( 6) The final 26 * BAUD delay
              _{
m HL}
       LD
               A,L
                             ; (4)
       OR
               Η
                              ; (4)
```

; Invert the bits of the character.

CPL

```
JR NZ,L0D48 ; (12) back to BD-DEL-3
```

; -----

```
; THE 'BORDER COLOUR RESTORE' ROUTINE
;; BORD-REST
LOD4D: PUSH AF
                               ; Preserve the accumulator value throughout.
       LD
              A,($5C48)
                              ; Fetch System Variable BORDCR
       AND
              $38
                               ; Mask off the paper bits.
                               ; Rotate to the range 0 - 7
       RRCA
       RRCA
       RRCA
       OUT
               ($FE),A
                               ; Change the border colour.
       POP
              AF
                               ; Restore accumulator and flags.
       RET
                               ; Return.
; THE 'CALL-INP' ROUTINE
; -----
   If the extended streams e.g. #7 are being used for input then this ROM
  will be paged in as a result of the $0008 address in the normal INPUT
   channel position. Since 'INPUT #7' or 'INKEYS #7' could have been used
   it is the purpose of this routine to determine which has been used.
  Note also that 'MOVE #7 TO #2' could also invoke this routine and that MOVE
  operations are further differentiated in the INKEY$ branch.
;; CALL-INP
LOD5A: RES
              3, (IY+$02)
                               ; update TV FLAG - The mode is to be considered
                                ; unchanged.
                                ; Note. this should have been done by the Main
                                ; ROM before entering the EDITOR.
        PUSH
               _{
m HL}
                               ; (*) Preserve HL the address of the actual
                                ; service routine - either NCHAN IN, MCHAN IN,
                                ; BCHAN_IN ot T_CHAN_IN.
       LD
               HL, ($5C3D)
                               ; Fetch address of Error Stack Pointer ERR SP
       LD
               E, (HL)
                               ; Extract the address of the error handler
                               ; If INPUT is being used this will be
        TNC
               HT.
                               ; address $107F in the Main ROM.
       LD
               D, (HL)
       AND
               Α
                               ; Prepare to subtract.
       T_1D
               HL, $107F
                               ; address of ED-ERROR in the Main ROM
       SBC
               HL,DE
                               ; subtract from test value.
               NZ,LOD98
                               ; forward if not in EDITOR to INKEY$
        JR
   continue to handle INPUT from a stream.
       POP
                               ; (*) POP service routine to HL e.g. NCHAN IN
               HT.
               SP, ($5C3D)
       T<sub>1</sub>D
                               ; set Stack Pointer from System Variable ERR SP
                               ; discard the known ED-ERROR address $107F.
        POP
                               ; POP the next value in hierarchy - MAIN-4
        POP
```

```
; (usually).
       LD ($5C3D), DE
                            ; and set the system variable ERR SP
;; IN-AGAIN.
LOD78: PUSH HL
                              ; Push the address of the service routine
                             ; e.g. NCHAN IN on the machine stack.
       LD DE,LOD7E
                             ; addr: IN-AG-RET (below)
       PUSH
             DE
                             ; push this address
       JP (HL)
                             ; jump to the service routine either MCHAN IN,
                              ; NCHAN IN, BCHAN IN or TCHAN IN and then return
                              ; to the next address IN-AG-RET.
; ---
;; IN-AG-RET
             C,LOD8A
LOD7E JR
                             ; forward with acceptable codes to ACC-CODE
       JR
             Z,L0D87
                             ; forward with time-out to NO-READ
; Otherwise Iris has closed her channel or the microdrive file was exhausted.
;; OREPORT-8
              (IY+\$00), \$07; set ERR_NR to '8 End of file'
L0D82: LD
                             ; Error Main ROM.
      RST
             28H
; ---
;; NO-READ
             HL
LOD87: POP
                             ; Retrieve the address of teh service routine
                             ; and try again as always for INPUT.
             L0D78
                             ; back to IN-AGAIN.
      JR
; ---
;; ACC-CODE
              $0D
                            ; Is the acceptable code ENTER?
LOD8A: CP
              Z,L0D94
                             ; forward, if so, to END-INPUT
       JR
       RST
              10H
                             ; CALBAS - Call the Base ROM.
       DEFW
               $0F85
                             ; main ADD-CHRX
                             ; A special entry point within ADD-CHAR to add
                             ; the character to WORKSPACE.
                             ; Retrieve the address of the saved service
       POP
             _{
m HL}
                             ; routine.
             L0D78
                             ; back for another character to IN-AGAIN.
       JR
; ---
;; END-INPUT
                           ; Discard the service routine.
LOD94: POP HL
       JΡ
             L0700
                            ; jump to UNPAGE
; -----
; THE 'INKEY$' BRANCH
;; INKEY$
      POP HL ; (*) POP service routine to HL e.g. NCHAN_IN LD DE,LOD9E ; ret addr. INK-RET (below)
LOD98: POP
       PUSH DE
                            ; push this address for the return address.
```

```
JP (HL)
                         ; jump to the service routine either MCHAN IN,
                         ; NCHAN IN, BCHAN IN or TCHAN IN and then return
                         ; to the next address IN-AG-RET.
; ---
;; INK-RET
                        ; Return with acceptable character.
LOD9E RET C
      RET Z
                        ; Return with no character.
      BIT 4, (IY+$7C) ; sv FLAGS_3
                                             MOVE?
                        ; back to OREPORT-8
      JR
           Z,L0D82
      OR $01
      RET
                         ; return with zero and carry reset.
; ** THE NETWORK ROUTINES **
************
; THE '"N" CHANNEL INPUT' ROUTINE
;; N-INPUT
          HL,LODAF ; Address: NCHAN-IN LOD5A ; jump to CALL-INP
LODA9: LD
     JP
; -----
; THE '"N" CHANNEL INPUT SERVICE' ROUTINE
; -----
;; NCHAN-IN
           IX, ($5C51) ; sv CURCHL A, (IX+$10) ; NCOBL
LODAF: LD
           A, (IX+$10)
      LD
      AND
           Α
      JR
            Z,LODBB
                        ; forward to TEST-BUFF
                      ; Shadow Error Restart
      RST
            20H
      DEFB
            $0D
                        ; Reading a 'write' file
; ---
;; TEST-BUFF
LODBB: LD
           A, (IX+$14) ; NCIBL
     AND A
                        ; forward to TST-N-EOF
      JR
           Z,LODD5
     LD E, (IX+$13)
DEC A
                        ; NCCUR
      SUB
           E
           C,LODD5 ; forward to TST-N-EOF
      JR
          D,$00
      LD
      INC
           Ε
           (IX+$13),E ; NCCUR
      LD
      ADD
           IX,DE
      LD
           A, (IX+$14) ;
      SCF
```

RET

```
; ---
;; TST-N-EOF
LODD5: LD A, (IX+$0F) ; NCTYPE
      AND
           Α
      JR
            Z,LODDC ; forward to GET-N-BUF
      RET
; ---
;; GET-N-BUF
           A, ($5CC6) ; sv IOBORD
LODDC: LD
      OUT
            ($FE),A
      DI
;; TRY-AGAIN
LODE2: CALL LOFD3
                         ; routine WT-SC-E
            NC,LODFC
                         ; forward to TIME-OUT
      CALL LOEB5
                          ; routine GET-NBLK
           NZ,LODFC
                          ; forward to TIME-OUT
      JR
      ΕI
      CALL
            L0D4D
                         ; routine BORD-REST
            (IX+$13),$00 ; NCCUR
      LD
            A, ($5CD2)
                          ; sv NTTYPE
            (IX+$0F),A
                          ; NCTYPE
      LD
            LODBB
                          ; back to TEST-BUFF
      JR
; ---
;; TIME-OUT
LODFC: LD
           A, (IX+$0B) ; NCIRIS
      AND A
                         ; back to TRY-AGAIN
            Z,LODE2
      JR
      ΕI
                        ; routine BORD-REST
      CALL LOD4D
      AND
            $00
                          ;
      RET
; -----
; THE '"N" CHANNEL OUTPUT' ROUTINE
;; NCHAN-OUT
L0E09: LD
            IX, ($5C51) ; sv CURCHL
      LD
           B,A
           A, (IX+$14) ; NCIBL
      LD
      AND
            Α
      LD
           A,B
                         ; forward to TEST-OUT
            Z,L0E17
      JR
      RST
           20H
                          ; Shadow Error Restart
      DEFB $0C
                          ; Writing to a 'read' file
;; TEST-OUT
LOE17: LD E, (IX+$10); NCOBL
```

```
PUSH AF
                             ;
       XOR A ; CALL LOE48 ; routine S-PACK-1
       POP AF
       LD
             E,$01
;; ST-BF-LEN
LOE25: LD (IX+$10),E ; NCOBL

LD D,$00 ;

ADD IX.DE ;
       ADD IX,DE ;
LD (IX+$14),A ; NCIBL
       RET
; -----
; THE 'OUT-BLK-N' ROUTINE
; -----
;; OUT-BLK-N
;; OUT-BLK-N
L0E30: CALL L1082 ; routine OUTPAK
LD A, (IX+$0B) ; NCIRIS
       LD
AND
       RET
              Ζ
             HL,$5CCD ; sv NTRESP (HL),$00 ;
       LD
       LD (HL),$00
LD E,$01
       CALL L104F
RET NZ
                             ; routine INPAK
       LD A,($5CCD); sv NTRESP DEC A;
       RET
; THE 'S-PACK-1' ROUTINE
;; S-PACK-1
L0E48: CALL L0E4F ; routine SEND-PACK
RET NZ ;
       JP
             L0EAC
                            ; jump to BR-DELAY
; -----
; THE 'SEND-PACK' ROUTINE
; -----
; (Hook Code: $30)
;; SEND-PACK
LOE4F: LD (IX+$0F),A ; NCTYPE

LD B,(IX+$10) ; NCOBL

LD A,($5CC6) ; sv IOBORD

OUT ($FE),A ;
       PUSH IX
       POP DE
```

```
LD HL,$0015
ADD HL,DE
XOR A
                           ;
                            ;
                            ;
;; CHKS1
            A, (HL)
L0E62: ADD
                        ;
            _{
m HL}
       INC
       DJNZ L0E62
                           ; back to CHKS1
       LD
             (IX+$11),A ; NCDCS
             HL,$000B
       LD
       ADD
             HL,DE
                            ;
       PUSH HL
                            ;
      LD B,$07
                            ;
       XOR
             A
;; CHKS2
            A, (HL)
L0E71: ADD
      INC
             _{
m HL}
       DJNZ L0E71
                            ; back to CHKS2
       LD (HL),A
                            ;
       DI
;; SENDSCOUT
L0E77: CALL L101E ; routine SEND-SC
       POP
             _{
m HL}
       PUSH HL
       LD E,$08
CALL L0E30
JR NZ,L0E77
                            ;
                            ; routine OUT-BLK-N
                            ; back to SENDSCOUT
       PUSH
             ΤX
            _{
m HL}
       POP
             DE, $0015
       LD
       ADD
             HL,DE
            E, (IX+$10) ; NCOBL
A, E ;
       LD
       LD
       AND
             Α
                           ; forward to INC-BLKN
       JR
              Z,LOE9A
       LD
             B,$20
;; SP-DL-1
L0E93: DJNZ L0E93
                            ; back to SP-DL-1
                            ; routine OUT-BLK-N
       CALL LOE30
             NZ,LOE77
                            ; back to SENDSCOUT
       JR
;; INC-BLKN
                         ; NCNUMB
LOE9A: INC
             (IX+$0D)
NZ,L0EA2
       JR
                            ; forward to SP-N-END
       INC
             (IX+$0E)
                            ; NCNUMB hi
;; SP-N-END
LOEA2: POP
             _{
m HL}
      CALL LOD4D
                            ; routine BORD-REST
       ΕI
       LD A, (IX+$0B)
AND A
                           ; NCIRIS
       RET
```

```
; -----
; THE 'BR-DELAY' ROUTINE
;; BR-DELAY
                     ;
LOEAC: LD DE, $1500
;; DL-LOOP
LOEAF: DEC
           DE
      LD
           A,E
      OR
           D
           NZ,LOEAF
      JR
                         ; back to DL-LOOP
      RET
; ------
; THE 'HEADER AND DATA BLOCK RECEIVING' ROUTINE
;; GET-NBLK
LOEB5: LD
           HL,$5CCE ; sv NTDEST
      LD
           E,$08
      CALL L104F
                         ; routine INPAK
      RET
           NZ
           HL,$5CCE
                        ; sv NTDEST
      LD
      XOR
           Α
           в,$07
      LD
;; CHKS3
LOEC4: ADD
           A, (HL)
      INC
            _{
m HL}
      DJNZ
                        ; back to CHKS3
            L0EC4
      CР
            (HL)
      RET
            NZ
      LD A,($5CCE) ; sv NTDEST AND A
      JR
            Z,LOEDD
                         ; forward to BRCAST
      CP
            (IX+$0C)
                        ; NCSELF
      RET
                      ; sv NTSRCE
      LD
           A, ($5CCF)
            (IX+$0B)
      CP
                         ; NCIRIS
      RET
            ΝZ
           L0EE2
      JR
                         ; forward to TEST-BLKN
; ---
;; BRCAST
           A,(IX+$0B) ; NCIRIS
LOEDD: LD
      OR
           Α
      RET
           NΖ
```

```
HL, ($5CD0) ; SV NTNUMB
E, (IX+$0D) ; NCNUMB_lo
D, (IX+$0E) ; NONUME
LOEE2: LD HL, ($5CDO)
       LD
       LD
              Α
       AND
             HL,DE
       SBC
       JR
              Z,L0F02 ; forward to GET-NBUFF
       DEC
              ΗL
       LD
              A,H
               L
       OR
       RET
               ΝZ
  Note. The return status of the next routine should really be checked.
       CALL
              L0F02
                              ; routine GET-NBUFF
   Note. The DEC instruction does not affect the carry flag.
       DEC
               (IX+$0D)
                              ; NCNUMB lo
       JR
               NC,LOEFF
                              ; forward, with no carry, to GETNB-END !!
       DEC
              (IX+$0E)
                               ; NCNUMB hi
;; GETNB-END
LOEFF: OR
              $01
       RET
;; GET-NBUFF
L0F02: LD
             A, ($5CCE) ; sv NTDEST
       OR
              Α
                              ; routine SEND-RESP
       CALL NZ,L107B
                              ; sv NTLEN
       T.D
               A, ($5CD3)
       AND
                              ; forward to STORE-LEN
               Z,L0F30
       JR
              IX
       PUSH
             ^{\rm HL}
       POP
              DE,$0015
       LD
       ADD
               HL, DE
       PUSH
               _{
m HL}
               E,A
       CALL
               L104F
                             ; routine INPAK
       POP
       RET
               ΝZ
       LD
              A, ($5CD3)
                              ; sv NTLEN
       LD
              B,A
       LD
              A, ($5CD4)
                              ; sv NTDCS
;; CHKS4
L0F24: SUB
              (HL)
       INC
              _{
m HL}
       DJNZ L0F24
                             ; back to CHKS4
       RET
               NΖ
       LD
              A, ($5CCE)
                             ; sv NTDEST
       AND
       CALL
              NZ,L107B
                              ; routine SEND-RESP
;; STORE-LEN
L0F30: LD
          A, ($5CD3)
                             ; sv NTLEN
```

```
LD (IX+$14),A ; NCIBL
INC (IX+$0D) ; NCNUMB_lo
JR NZ,L0F3E ; forward to GETBF-END
      INC (IX+$0E)
                         ; NCNUMB hi
;; GETBF-END
LOF3E: CP
           Α
      RET
; -----
; THE 'OPEN "N" CHANNEL COMMAND' ROUTINE
; -----
;; OPEN-N-ST
LOF40: CALL LOF52 ; routine OP-PERM-N
      JP
            L0B51
                         ; jump to OP-STREAM
; -----
; THE 'OPEN TEMPORARY "N" CHANNEL' ROUTINE
; -----
; (Hook Code: $2D)
;; OP-TEMP-N
LOF46: CALL LOF52 ; routine OP-PERM-N LD IX,($5C51) ; sv CURCHL SET 7,(IX+$04) ; channel letter
      RET
; -----
; THE 'OPEN PERMANENT "N" CHANNEL' ROUTINE
; -----
      LD HL,($5C53); sv PROG DEC HL
;; OP-PERM-N
L0F52: LD
      LD
            BC,$0114
      PUSH
      PUSH
            _{
m HL}
      LD HL,($5C65); sv STKEND ADD HL,BC
      JP
            C,LOF9E
                         ; jump to OUTMEM
      LD BC,$0050
ADD HL,BC
                         ; jump to OUTMEM
      JP
            C,LOF9E
      SBC HL, SP
            NC,LOF9E
                         ; jump to OUTMEM
      JΡ
      POP
           ВC
      POP
            _{
m HL}
                         ; CALBAS
      RST
            10H
      DEFW $1655
                         ; main MAKE-ROOM
      INC HL
```

```
POP BC L1A82
        CALL L1A82 ; routine REST-N-AD LD ($5C51), HL ; sv CURCHL
        EX DE, HL
        LD HL, L0FA3
LD BC, $000B
                              ; NCHAN-DAT ; eleven bytes.
        LDIR
        LD A, ($5CD6)
                            ; sv D STR1 drive number
        LD
               (DE),A
        INC
               DE
        LD
              A, ($5CC5)
                               ; sv NTSTAT
        LD
               (DE),A
        INC
              DE
        XOR
              Α
        LD
               (DE),A
        LD
              H,D
        LD
              L,E
        INC DE LD BC,$0106
        LDIR
              DE, ($5C51) ; sv CURCHL
        LD
        RET
; ---
;; OUTMEM
LOF9E: LD (IY+$00),$03 ; sv ERR_NR
RST 28H ; Error Mair
                                ; Error Main ROM
; -----
; THE '"N" CHANNEL DATA' ROUTINE
; -----
;; NCHAN DAT
LOFA3: DEFW $0008 ; main ERROR-1
DEFW $0008 ; main ERROR-1
DEFB $4E ; character "N'
DEFW LOE09 ; NCHAN-OUT
DEFW LODA9 ; N-INPUT
DEFW $0114 ; length
                               ; character "N"
; THE 'SEND EOF BLOCK TO NETWORK' ROUTINE
;; SEND-NEOF
LOFAE: LD IX, ($5C51) ; SV CURCHL LD A, (IX+$10) ; NCOBL AND A ;
              A
        RET
               Z
        LD A,$01
                               ; jump to S-PACK-1
        JP
               L0E48
; -----
; THE 'NETWORK STATE' ROUTINE
```

```
;
;; NET-STATE
LOFBC: LD A,R
                       ;
      OR $C0
LD B,A
      CALL LOFC7
                         ; routine CHK-REST
                        ; back to NET-STATE
      JR C,LOFBC
      RET
; -----
; THE 'CHECK-RESTING' ROUTINE
;; CHK-REST
LOFC7: CALL L163E ; routine TEST-BRK
;; MAKESURE
LOFCA: PUSH BC
                         ;
      POP
           ВC
           A, ($F7)
      IN
      RRCA
           С
      RET
      DJNZ LOFCA
                         ; back to MAKESURE
      RET
; -----
; THE 'WAIT-SCOUT' ROUTINE
; -----
;; WT-SC-E
LOFD3: CALL L163E ; routine TEST-BRK LD HL, $01C2 ;
;; CLAIMED
      LD B,$80 ;
CALL L0FC7 ; routine CHK-REST
JR NC,L0FED ; forward to WT-SYNC
LOFD9: LD
      DEC HL
                         ;
                         ;
           A,H
      LD
      OR
         L
      JR
            NZ,LOFD9
                         ; back to CLAIMED
      LD A, (IX+$0B) ; NCIRIS AND A ;
      JR
            Z,L0FD9
                         ; back to CLAIMED
      RET
;; WT-SYNC
           A, ($F7)
LOFED: IN
                       ;
      RRCA
      JR C,L1013 ; forward to SCOUT-END
```

```
A,$7F
A,($FE)
                       ;
      IN
           $FE
      OR
          A, ($FE)
      IN
      RRA
      CALL NC, L163E ; routine TEST-BRK
      DEC HL
          A,H
      LD
          L
      OR
      JR NZ,LOFED ; back to WT-SYNC
      LD A, (IX+$0B) ; NCIRIS
      AND
           Z,LOFED
                       ; back to WT-SYNC
      JR
      RET
; -----
; THE 'BREAK INTO I/O OPERATION' ROUTINE
; -----
; Note. an obsolete duplicate.
;; E-READ-N
L100A: EI
     CALL LOD4D ; routine BORD-REST
           (IY+$00),$14 ; sv ERR_NR
28H ; Error Main ROM
      LD
     ⊥D
RST
           28H
; -----
; THE 'SCOUT END' BRANCH
; -----
;; SCOUT-END
L1013: LD
          L,$09
;; LP-SCOUT
L1015: DEC
     SCF
     RET
           Z
     LD
           B,$0E
;; DELAY-SC
L101A: DJNZ L101A
                       ; back to DELAY-SC
     JR L1015
                       ; back to LP-SCOUT
; -----
; THE 'SEND-SCOUT' ROUTINE
;; SEND-SC
L101E: CALL L0FBC ; routine NET-STATE
     LD C,$F7
      LD
          HL,$0009
                       ; sv NTSTAT
      LD
          A, ($5CC5)
          E,A
      LD
      IN
          A,($F7)
      RRCA
      JR
          C, L101E
                  ; back to SEND-SC
```

 $_{
m LD}$

```
;; ALL-BITS
L102F: OUT
              (C),H
       LD
              D,H
             н,$00
       LD
       RLC
             E
       RL
              Η
       LD
             B,$08
;; S-SC-DEL
L103A: DJNZ
             L103A
                            ; back to S-SC-DEL
              A, ($F7)
       IN
       AND
              $01
       СP
              D
       JR
              Z,L101E
                            ; back to SEND-SC
       DEC
       JR
              NZ,L102F
                            ; back to ALL-BITS
       LD
              A,$01
       OUT
              ($F7),A
       LD
              B,$0E
;; END-S-DEL
L104C: DJNZ
             L104C
                            ; back to END-S-DEL
       RET
; THE 'INPAK' ROUTINE
; -----
;; INPAK
L104F: LD
             B,$FF
;; N-ACTIVE
L1051: IN
              A, ($F7)
       RRA
       JR
              C, L105A
                            ; forward to INPAK-2
       DJNZ
              L1051
                            ; back to N-ACTIVE
       INC
              В
       RET
; ---
;; INPAK-2
L105A: LD
             B,E
;; INPAK-L
L105B: LD
             E,$80
       LD
             A,$CE
       OUT
              ($EF),A
       NOP
       NOP
       INC
             IX
       DEC
              IX
```

```
INC IX DEC IX
;; UNTIL-MK
L106B: LD
            A,$00
      IN
            A,($F7)
      RRA
      RR
             \mathbf{E}
            NC, L106B
      JΡ
                         ; jump to UNTIL-MK
      LD
             (HL),E
      INC
            _{
m HL}
      DJNZ L105B
                          ; back to INPAK-L
      CP
            Α
      RET
; -----
; THE 'SEND RESPONSE BYTE' ROUTINE
;; SEND-RESP
L107B: LD
            A,$01
            HL,$5CCD
                          ; sv NTRESP
      LD
      LD
             (HL),A
            E,A
      LD
; -----
; THE 'OUTPAK' ROUTINE
; -----
;; OUTPAK
          A
($F7),A
B,$04
L1082: XOR
      OUT
      LD
;; DEL-0-1
L1087: DJNZ
            L1087
                          ; back to DEL-0-1
;; OUTPAK-L
L1089: LD
            A, (HL)
      CPL
      SCF
      RLA
            B,$0A
      LD
;; UNT-MARK
L108F: OUT
            ($F7),A
      RRA
      AND
            Α
            В
      DEC
            D,$00
      LD
            NZ,L108F ; jump to UNT-MARK
      JΡ
      INC
            _{
m HL}
      DEC
            E
      PUSH
           _{
m HL}
      POP
            _{
m HL}
            NZ,L1089 ; jump to OUTPAK-L
      JΡ
      LD
            A,$01
      OUT
             ($F7),A
      RET
```

```
; ** THE MICRODRIVE ROUTINES **
; The shadow ROM uses the alternate HL register solely in connection with the
; microdrive maps. This does not conflict with the Main ROM use in the
; calculator. When used as a Hook Codes, then the calculator is implicitly in
; use by the user and so HL' should be preserved throughout.
; -----
; THE 'SET A TEMPORARY "M" CHANNEL' ROUTINE
; -----
; (Hook Code: $2B)
; This routine is used to create all microdrive channels. The routine that
; creates a permanent channel (as used by a print file) uses this routine and
; then converts the temporary channel to a permanent one.
; Temporary channels are created by LOAD, SAVE, CAT etc. and last just as long
; as required. They are deleted before returning to the Main ROM by the next
; routine DEL-M-BUF.
;; SET-T-MCH
L10A5: EXX
                              ; exx
       LD
              HL,$0000
                              ; set HL' to zero as the default no-map-exists
                              ; condition.
       EXX
                              ; exx
                             ; set IX from system variable CHANS.
               IX, ($5C4F)
       LD
               DE, $0014
                              ; skip over the twenty bytes of the standard
       LD
               IX,DE
                              ; channels to point to the next or end-marker.
       ADD
; now enter a search of existing "M" channels to see if any use the same drive.
;; CHK-LOOP
L10B3: LD
              A, (IX+$00)
                             ; fetch the next byte.
               $80
                              ; compare to end-marker.
       CP
               Z,L10F1
                              ; forward, if so, to CHAN-SPC.
       JR
              A, (IX+$04)
                             ; fetch the letter of the extended channel.
                              ; reset bit 7.
       AND
               $7F
                              ; is it character 'M' ?
       CР
               $4D
              NZ,L10E7
                              ; forward, if not, to NEXT-CHAN.
; an existing Microdrive Channel has been found.
               A, ($5CD6)
                             ; fetch drive number from system variable D STR1
                              ; compare to CHDRIV the drive associated with
               (IX + $19)
                              ; this channel.
               NZ,L10E7
                              ; forward, if not the same, to NEXT-CHAN.
; a Microdrive Channel has been found that matches the current drive.
; It will not be necessary to create a new map for the temporary channel.
       EXX
       T<sub>1</sub>D
               L, (IX+$1A)
                              ; load address of the associated microdrive.
       LD
               H, (IX+$1B)
                              ; map into the HL' register.
       EXX
              BC, ($5CDA)
                             ; load BC with length of filename from N STR1.
       LD
              HL, ($5CDC)
                             ; load HL with address of filename.
       T.D
       CALL L1403
                              ; routine CHK-NAME checks name in channel
                              ; against name addressed by HL.
              NZ,L10E7
                             ; forward, with name mismatch, to NEXT-CHAN.
```

```
0,(IX+$18) ; test CHFLAG.
        BIT
                Z,L10E7
        JR
                               ; forward to NEXT-CHAN.
        RST
                20H
                               ; Shadow Error Restart.
        DEFB
               $0D
                               ; Reading a 'write' file.
;; NEXT-CHAN
                           ; fetch length of channel.
L10E7: LD
               E, (IX+$09)
                               ; to the DE register pair.
        LD
               D, (IX+$0A)
       ADD
                               ; add to point to the following location.
               IX,DE
                               ; loop back to CHK-LOOP until end-marker found.
        JR
               L10B3
; ---
; Now create the space for the channel.
;; CHAN-SPC
L10F1: LD
               HL, ($5C53)
                               ; set pointer from system variable PROG.
       DEC
                                ; now points to channels end-marker (as does IX)
        PUSH HL
                                ; * save a copy of new location.
               BC, $0253
                               ; set amount of bytes required.
   Note. interrupts are disabled so on the original shadow ROM, which launched
   straight into the MAKE-ROOM routine, the system hung if there was
   insufficient free memory, at the HALT instruction in the Main error report.
   The solution here is to perform the same checks that will be performed by
   the Main MAKE-ROOM routine.
                                ; save first location
        PUSH
               HT.
        PUSH
                                ; and amount while free memory is checked.
               RC
                               ; fetch start of free memory from STKEND
               HL, ($5C65)
        LD
                                ; add bytes required producing carry if
               HL,BC
        ADD
                                ; result is higher than 65535
        JΡ
                               ; jump, if so, to OUTMEM2
               C, L119A
               BC,$0050
                               ; now allow for overhead of eighty bytes.
        T.D
               HL,BC
        ADD
                               ; and perform same test.
        JΡ
               C, L119A
                               ; jump, if too high, to OUTMEM2
        SBC
               HL,SP
                                ; finally test that result is less than the
                                ; stack pointer at the other side of free
memorv.
        JΡ
               NC, L119A
                               ; jump, if higher, to OUTMEM2.
        POP
                                ; restore the new room
        POP
               HL
                                ; parameters.
; now call the MAKE-ROOM routine in the certain knowledge that nothing can
; go wrong.
       RST
               10H
                               ; CALBAS
        DEFW
               $1655
                               ; main MAKE-ROOM
        POP
               DF.
                               ; * restore pointer to first new location.
        PUSH
               DE
                                ; * and save on machine stack again.
                               ; the default "M" CHANNEL DATA.
               HL,L14B1
       T<sub>1</sub>D
       LD
                               ; twenty five bytes to copy including blank
               BC,$0019
       LDIR
                                ; filename to start of new channel.
               A, ($5CD6)
                               ; fetch drive number from D STR1.
        LD
```

```
BC,$0253
                              ; set BC to amount of room that was created.
       LD
                              ; move start of channel
       PUSH
               ΤX
       POP
               HT.
                              ; to HL register.
       CALL L1A82
                               ; routine REST-N-AD corrects filename pointers
                               ; leaving DE at first filename D STR1.
       EΧ
               DE,HL
                               ; transfer filename pointer to HL.
               BC, ($5CDA)
                              ; set BC to length of filename from N STR1.
       LD
       BTT
               7,B
                               ; test for the default $FF bytes.
               NZ,L1143
       JR
                               ; forward, with no name, to TEST-MAP
; now enter a loop to transfer the filename to CHNAME, counting BC down to zero.
; The filename could be in ROM with 'run' or more usually in string workspace
; with its parameters on the calculator stack as with
; LOAD * "m";1; "crapgame"
; SAVE * "M";7; CHR$0 + "secret".
;; T-CH-NAME
L1135: LD
               A,B
                              ; check length
               С
                               ; for zero.
       OR
               Z,L1143
                              ; forward, if so, to TEST-MAP.
       JR
                              ; fetch character of filename.
       T,D
               A, (HL)
               (IX+$0E),A
                              ; transfer to same position in CHNAME.
       T.D
       TNC
               HT.
                              ; increment
                              ; both pointers.
       TNC
               ΙX
                            ; decrement length.
; loop back to T-CH-NAME.
       DEC
               ВC
               L1135
       JR
; ---
;; TEST-MAP
L1143: POP
                              ; * restore pointer to first location of
              ΙX
channel.
       EXX
                               ; exchange set - no need now to keep balanced.
                               ; test map address for zero .
       T<sub>1</sub>D
               A,H
                               ; indicating that this drive has no map.
                               ; forward, if map exists, to ST-MAP-AD.
               NZ,L1168
; a microdrive map is now created for this drive.
       LD
               HL, ($5C4F) ; set pointer from system variable CHANS.
               HL
       PUSH
                               ; save this pointer to the new area.
       DEC
                              ; set HL to location before new room.
               _{
m HL}
       T_1D
               BC,$0020
                              ; thirty two bytes are required.
                            ; CALBAS
              10H
       RST
       DEFW
               $1655
                              ; main MAKE-ROOM.
; now handle dynamic pointers outside the control of the Main ROM
       POP
                              ; restore pointer to first location.
               HT.
              BC,$0020
       LD
                              ; thirty two bytes were created.
              IX,BC
                              ; channel was moved up so adjust that pointer.
```

(IX+\$19),A ; insert at CHDRIV.

```
CALL L1A82
                               ; routine REST-N-AD corrects filename pointers.
; fill map with $FF bytes
                               ; the fill byte.
       T.D
               A,$FF
       LD
               B,$20
                              ; thirty two locations.
       PUSH
                               ; save map address pointer.
               HT.
;; FILL-MAP
L1163: LD
               (HL),A
                            ; insert the byte
       INC
              HT.
                               ; next location.
       DJNZ L1163
                               ; loop back to FILL-MAP
        POP
              _{
m HL}
                               ; restore address.
;; ST-MAP-AD
L1168: LD
               (IX+$1A),L
                               ; place map address in
       LD
               (IX+$1B),H
                               ; channel at CHMAP.
; now make DE point to IX+$19 the header preamble and copy ROM preamble bytes.
        PUSH
                               ; push start of channel
        POP
                               ; pop to HL
              DE, $001C
       LD
                               ; the offset is $1C
                               ; add to point to start of header preamble.
       ADD
              HL,DE
               DE, HL
                               ; transfer this destination to DE.
       EΧ
               HL,L14CA
                               ; point HL to PREAMBLE data in this ROM.
       LD
               BC, $000C
                                ; twelve bytes to copy to channel.
       T_1D
                                ; in they go.
        LDIR
; now use the same technique to copy the same 12 bytes of ROM preamble
; to IX+$37, the data block preamble in the channel.
; A little long-winded as the destination only requires adjustment.
               IX
        PUSH
                               ;
        POP
               _{
m HL}
                               ;
               DE, $0037
       T<sub>1</sub>D
                               ;
               BC,$000C
       LD
       ADD
               HL,DE
                               ;
               DE, HL
               HL, L14CA
                               ; the PREAMBLE data.
       LDIR
; now form the offset from CHANS to this channel for a return value to be
; inserted in the STRMS area.
       PUSH
               IX
                               ; transfer
       POP
               _{
m HL}
                               ; pointer.
               DE, ($5C4F)
       T<sub>1</sub>D
                               ; fetch start of CHANS area from CHANS
        OR
                               ; clear carry for subtraction.
               Α
        SBC
                               ; the true offset.
               HL, DE
        INC
                               ; add one as the offset is to second location.
              _{
m HL}
       RET
                               ; return.
                                                       >>>
; ---
;; OUTMEM2
              (IY+$00),$03 ; set ERR NR for '4 Out of memory'
L119A: LD
```

```
; THE 'RECLAIM "M" CHANNEL' ROUTINE
; -----
; (Hook Code: $2C)
; This routine is used to reclaim a temporary "M" channel such as that created
; by the routine above and to reclaim a permanent "M" channel by the CLOSE
; command routines.
;; DEL-M-BUF
L119F: LD
             L,(IX+$1A) ; fetch map address.
                             ; from CHMAP.
       LD
             H,(IX+$1B)
       PUSH HL
                             ; and save.
             A, (IX+$19)
       T<sub>1</sub>D
                             ; fetch drive number from CHDRIV.
       PUSH AF
                             ; and save also.
       PUSH IX
                             ; transfer channel base address
       POP
                             ; to the HL register pair.
             BC, $0253
                             ; set BC to bytes to reclaim.
       LD
       RST
              10H
                             ; CALBAS
       DEFW $19E8
                             ; main RECLAIM-2 reclaims the channel.
       PUSH
              ΤX
                             ; transfer channel
       POP
                             ; base address again.
             _{
m HL}
             DE, ($5C4F) ; set DE to start of channels from CHANS
       LD
                             ; clear carry.
       OR
                             ; subtract to form the offset.
       SBC
             HL, DE
       TNC
              HT.
                             ; add 1 as points to second byte.
             BC, $0253
                             ; set the number of bytes reclaimed.
       LD
       CALL
                              ; routine REST-STRM corrects all stream offsets
              L1444
                              ; in the standard systems variables area
                              ; reducing them if they followed the deleted
                              ; channel.
       POP
              ΑF
                              ; restore drive number
       POP
              _{
m HL}
                              ; and old map address.
; now consider deleting the map if it was used only by the reclaimed channel.
                             ; transfer drive to B
       T<sub>1</sub>D
              B,A
              IX, ($5C4F)
                             ; set IX from CHANS
              DE, $0014
       T<sub>1</sub>D
                             ; prepare to step over the twenty standard bytes
       ADD
              IX,DE
                             ; to address next channel or end-marker.
;; TEST-MCHL
L11D0: LD
             A, (IX+$00) ; fetch current byte.
              $80
       CР
                             ; compare to end-marker.
       JR
              Z,L11EF
                             ; forward, with match, to RCLM-MAP
             A, (IX+\$04) ; fetch the channel letter.
       LD
       AND
             $7F
                             ; cancel any inverted bit.
                             ; is character "M" ?
       CP
              $4D
             NZ,L11E5
                             ; forward, if not, to NXTCHAN
       JR
             A, (IX+$19)
       T.D
                             ; fetch this channel drive number.
       CP
             В
                             ; compare to that of deleted channel.
       RET
                             ; return with match - the microdrive map is
                              ; still in use.
                                                                         >>
```

```
; else continue search.
;; NXTCHAN
L11E5: LD E,(IX+$09) ; fetch length of channel
LD D,(IX+$0A) ; to DE register.
ADD IX,DE ; add to address next channel.
JR L11D0 ; loop back to TEST-MCHL
; ---
; the branch was here when the end-marker was encountered without finding a
; channel that uses the map.
;; RCLM-MAP
L11EF: LD BC, $0020 ; thirty two bytes to reclaim.
        PUSH HL
                                ; save pointer to start.
        PUSH BC
                                ; save the 32 bytes.
        RST 10H
                                ; CALBAS
        DEFW $19E8
                                ; main RECLAIM-2 reclaims the microdrive map.
        POP
                                ; restore 32 counter.
        POP
                                ; restore map address.
               _{
m HL}
        CALL L1476
                                ; routine REST-MAP adjusts all channel map
                                 ; addresses.
        RET
                                 ; return.
; -----
; THE '"M" CHANNEL INPUT' ROUTINE
; ------
;; M-INPUT
            IX, ($5C51) ; sv CURCHL
HL, L1207 ; addr: MCHAN-IN
L11FD: LD
        LD
        JΡ
                L0D5A
                                ; jump to CALL-INP
; THE '"M" CHANNEL INPUT SERVICE' ROUTINE
;; MCHAN-IN
L1207: BIT 0,(IX+$18) ; test CHFLAG JR Z,L120F ; forward, if
                                ; forward, if reset, to TEST-M-BF
;; rwf-err
                             ; Shadow Error Restart
              20H
L120D: RST
       DEFB $0D
                                ; Reading a 'write' file
; ---
;; TEST-M-BF
L120F: LD E,(IX+\$0B) ; load DE with the offset from CHDATA of the LD D,(IX+\$0C) ; next byte to be received from CHBYTE.
              L, (IX+$45) ; load HL with the number of data bytes
        LD
        T<sub>1</sub>D
               H, (IX+$46)
                                ; in CHDATA from RECLEN.
        SCF
                                 ; set carry to include
        SBC HL, DE
                                 ; subtract the two relative positions.
```

```
JR C,L1233 ; forward to CHK-M-EOF
                               ; else increment pointer.
        INC
              (IX+$0B),E ; store back (IX+$0C),D ; in CHBYTE.
        LD
               (IX+$0C),D
                               ; in CHBYTE.
        T.D
        DEC
                               ; decrement pointer.
                               ; save start of channel.
        PUSH IX
               IX, DE
        ADD
                               ; add the offset within CHDATA first.
               IX,DE
A,(IX+$52)
                               ; now apply offset of CHDATA from start of
        T.D
                               ; channel to character.
        POP IX
                                ; restore channel start.
        SCF
                                ; set carry flag.
        RET
                                ; return.
; ---
;; CHK-M-EOF
L1233: BIT
               1, (IX+$43)
                               ; bit 1 of RECFLG is set if this is the last
                                ; record in this file.
              Z,L123D
                                ; forward, if not EOF, to NEW-BUFF.
        JR
                               ; set accumulator to zero.
        XOR
               A,$0D
        ADD
                                ; add to carriage return clearing the
                                ; carry flag and resetting the zero flag.
        RET
                                ; return.
; ---
               ; set next byte offset to zero. (IX+$0B),E ; and update the (IX+$0C),D ; pointer
;; NEW-BUFF
L123D: LD
       T<sub>1</sub>D
        T.D
        INC
                (IX+$0D)
                                ; increment record number CHREC.
        CALL
                L1252
                                ; routine GET-RECD gets the record specified
                                ; by CHREQ matching filename CHNAME from the
                                ; cartridge in the drive CHDRIV which is
                                ; started.
              Α
                                ; signal stop all motors.
        XOR
        CALL
               L1532
                                ; routine SEL-DRIVE.
               L120F
                               ; back to TEST-M-BF.
; THE 'GET A RECORD' ROUTINE
; -----
   This routine is used to read a specific record from a PRINT type file.
   It is called twice -
;
   1) From the "M" input routine when the current record is exhausted and the
;
     next record is to be read in.
  2) From Hook Code $27 READ-RANDOM.
;; GET-RECD
       LD A, (IX+$19) ; get drive number from CHDRIV.

CALL L1532 ; routine SEL-DRIVE starts the
L1252: LD
                               ; routine SEL-DRIVE starts the motor.
; ->
;; GET-R-2
              BC, $04FB ; set sector counter to 1275 = 255*5 ($5CC9), BC ; update system variable SECTOR
L1258: LD
```

```
;; GET-R-LP
L125F: CALL L1280
                              ; routine G-HD-RC reads in the next header and
                              ; matching record to pass the tape head.
              C, L1279
                              ; forward, with name mismatch, to NXT-SCT
       JR
                             ; forward, if not in use, to NXT-SCT
       JR
              Z,L1279
       T.D
             A, (IX+$44)
                             ; fetch the record number 0-n from RECNUM
              (IX+$0D)
NZ,L1279
       CP
                             ; compare with that required in CHREC
                             ; forward, if no number match, to NXT-SCT
       JR
                             ; transfer address of Microdrive channel
       PUSH
              ΙX
                             ; from the IX to HL registers.
       POP
              _{\mathrm{HL}}
             DE, $0052
       LD
                             ; offset to CHDATA
       ADD
             HL,DE
                             ; add to form address of start of 512 byte data
       CALL L142B
                             ; routine CHKS-BUFF
       RET
                             ; return if checksums match.
;; NXT-SCT
L1279: CALL L13F7
                             ; routine DEC-SECT
             NZ, L125F
                             ; loop back, if not zero, to GET-R-LP
       JR
; else produce the Error Report.
              20H
                              ; Shadow Error Restart
       RST
       DEFB
              $11
                              ; File not found
; -----
; THE 'GET HEADER AND DATA BLOCK' ROUTINE
; -----
; This routine fetches at random a header and matching record and sets the
; flags to indicate three possible outcomes.
; Zero flag set - record is not in use.
; Carry flag set - name does not match required
; Both flags reset - the name matches required.
;; G-HD-RC
L1280: CALL L13A9
                              ; routine GET-M-HD2 reads in and checksums
                              ; the next 14 byte header to pass tape heads.
              DE,$001B
       T<sub>1</sub>D
                             ; prepare the offset from header to RECFLG and
              HL,DE
                              ; add to address the start of 528 byte RECORD
       ADD
                              ; routine GET-M-BUF reads in the record
       CALL L15EB
                              ; descriptor and data.
                              ; register HL addresses RECFLG
       CALL L1426
                              ; routine CHKS-HD-R checksums the 14 bytes
                              ; of the record descriptor.
       JR
              NZ,L12B1
                             ; forward, with error, to G-REC-ERR
               0, (IX + $43)
                             ; check RECFLG - should be reset.
       RTT
               NZ,L12B1
                             ; forward, if not, to G-REC-ERR
       JR
; now test descriptor for an unused record.
              A, (IX+$43)
                            ; load A with RECFLG - bit 1 indicates EOF
                             ; combine with RECLEN hi bit 1 set if full.
              (IX+$46)
```

```
AND $02
RET Z
                             ; return if not with zero set and carry reset
             Z
                             ; signaling that record is unused.
; the record is a contender for a header record.
       PUSH
                            ; transfer start of channel
             ΤX
       POP
              _{
m HL}
                            ; to the HL register pair.
       LD DE, $0047
                           ; offset to 10 characters of filename.
       ADD
             HL,DE
                            ; add so HL addresses the start of RECNAM.
             BC, $000A
       LD
                            ; ten bytes to compare against required CHNAME.
       CALL L1403
                            ; routine CHK-NAME
       JR NZ,L12B1 ; forward, with name mismatch, to G-REC-ERR
; else set flags to signal success before returning.
             A,$FF
                            ; prepare to reset zero flag
                            ; also reset carry
       OR
             A
       RET
                             ; return with zero reset and carry reset.
; ---
; else set carry to signal names do not match.
;; G-REC-ERR
L12B1: SCF
                             ; set carry flag to signal failure and
                             ; instigate another search.
       RET
                             ; return with zero reset and carry set.
; ------
; THE '"M" CHANNEL OUTPUT' ROUTINE
; ------
; labeled MWRCH in source code.
;; MCHAN-OUT
      LD
ADD
BIT
L12B3: LD
             IX,$FFFA
              IX,DE
             0, (IX+$18) ; ???? CHFLAG
             NZ,L12C1
                            ; forward to NOREAD
             20H
                            ; Shadow Error Restart
       RST
       DEFB
              $0C
                            ; Writing to a 'read' file
;; NOREAD
L12C1: LD
            E, (IX+$0B) ; CHBYTE
       T_1D
            D, (IX+$0C) ; CHBYTE hi
       PUSH IX
       ADD
             IX,DE
             (IX+$52),A ; indexed
       LD
       POP
             ΙX
       INC
             DE
       LD
             (IX+$0B),E ; CHBYTE
(IX+$0C),D ; CHBYTE_hi
       LD
       BIT 1,D
RET Z
                            ; is CHBYTE the maximum $0200 ?
                            ; return if not.
```

; test for either full record or EOF.

```
; THE 'WRITE RECORD ONTO MICRODRIVE' ROUTINE
; (Hook Code: $26)
;; WR-RECD
L12DA: LD
            A, (IX+$19) ; fetch drive number.
       CALL L1532
                            ; routine SEL-DRIVE
       LD BC,$32C8
                            ; set BC to 13000 decimal
       CALL L1652
                            ; routine DELAY-BC
       CALL L12EE
                            ; routine WRITE-PRC
       XOR
                            ; signal stop motor
       CALL L1532
                             ; routine SEL-DRIVE
       RET
                            ; return.
; -----
; THE 'WRITE RECORD' SUBROUTINE
; -----
;
;
;; WRITE-PRC
L12EE: CALL L1349
                            ; routine CHK-FULL.
       JR
             NZ,L12FC
                            ; forward, if not, to NOFULL.
       CALL
                            ; routine DEL-M-BUF reclaims the buffer.
             L119F
       XOR
                             ; set accumulator to zero.
             Α
       CALL
              L1532
                             ; routine SEL-DRIVE stops the motor.
       RST
             20H
                             ; Shadow Error Restart.
       DEFB
                             ; 'Microdrive full'
              $0F
; ---
;; NOFULL
L12FC: PUSH
                            ; save the pointer to channel base.
              ΙX
              B,$0A
       LD
                             ; count ten characters.
              A, (1X+$0E) ; copy a character of CHNAME (IX+$47), A ; to RECNAM \mathsf{TX}
;; CP-NAME
L1300: LD
       LD
       INC
              IX
                            ; increment the index pointer.
       DJNZ
              L1300
                             ; loop back for all ten characters to CP-NAME
       POP
              ΙX
                             ; restore base of "M" channel.
             C, (IX+$0B)
              (IX+$45),C
                            ; fetch CHBYTE lo
       T.D
                             ; update RECLEN lo
       LD
             A, (IX+$0C)
                            ; fetch CHBYTE hi
       LD
              (IX+$46),A
                            ; update RECLEN hi
       LD
             A, (IX+$0D)
       T.D
                            ; fetch CHREC
       LD
              (IX+$44),A
                             ; update RECNUM
             0,(IX+$43)
       RES
                            ; reset RECFLG indicating a record.
       PUSH
                             ; transfer channel base address
```

```
DE, $0043
       T<sub>1</sub>D
                             ; prepare offset to point to RECFLG
                              ; and add to address the record descriptor.
       ADD
              HL, DE
       CALL
              L1426
                              ; routine CHKS-HD-R checksums the 14 bytes.
              DE, $000F
       LD
                             ; add extra offset to CHDATA
       ADD
              HL, DE
                              ; the 512 bytes of data.
       CALL
              L142B
                              ; routine CHKS-BUFF checksums the buffer.
       PUSH
              ΙX
                              ; Note. this code is redundant and erroneous.
       POP
              _{
m HL}
                              ; the three registers are set up properly
       LD
              DE,$0047
                              ; in the next routine.
       CALL L135A
                              ; routine SEND-BLK writes block to microdrive
                               ; cartridge as indicated my microdrive map
                              ; which is updated.
; now prepare channel for next record. accumulator could be used to set CHBYTE.
              DE, $0000
                             ; set DE to zero.
                             ; set CHBYTE lo to zero
              (IX+$0B),E
                             ; set CHBYTE hi to zero
               (IX+$0C),D
              (IX+$0D)
                             ; increment the record counter CHREC
       RET
                              ; return.
; -----
; THE 'CHK-FULL' ROUTINE
; -----
; Check the thirty two bytes of a microdrive map for a reset bit.
;; CHK-FULL
              L,(IX+$1A) ; load the address of the microdrive map H,(IX+$1B) ; from CHMAP to HL.
B.$20
L1349: LD
       LD
       LD
               B,$20
                              ; set counter to thirty two.
;; NXT-B-MAP
L1351: LD
              A, (HL)
                             ; fetch each byte in turn.
       CР
               SFF
                              ; compare to the all-full indicator.
       RET
               NZ
                              ; return if there is a spare sector
       TNC
              HT.
                              ; next address.
               L1351
                              ; loop back to NXT-B-MAP
       XOR
              Α
                              ; set the zero flag for failure.
       RET
                              ; return.
; -----
; THE 'SEND-BLK' ROUTINE
; -----
  This important routine is called from the FORMAT routine and the WRITE-PRC
  routine to write the record to the cartridge at the next available free
  sector as indicated by the microdrive map.
;; SEND-BLK
L135A: PUSH IX
                             ; transfer the channel
       POP
             _{
m HL}
                              ; address to HL.
       LD DE, $0037 ; offset to data preamble.
```

; to the HL register.

POP

```
ADD HL,DE ; add to address using HL
       PUSH
             _{
m HL}
                             ; save pointer to data block
; now enter a loop to find the header of an available record on microdrive.
; This SEND-BLK routine is only called when there is known to be a record
; available on the tape.
;; FAILED
L1362: CALL L13A9
                              ; routine GET-M-HD2 gets any old header.
                              ; routine CHECK-MAP checks if sector is free
       CALL L13C4
                              ; on the microdrive map.
       JR NZ, L1362
                              ; back, if not, to FAILED.
; A usable sector has been found on the drive. HL addresses byte within map.
       EΧ
              (SP),HL
                              ; map address to stack, bring back data pointer.
       PUSH
                              ; preserve B the map byte mask.
             A, ($EF)
                             ; test the drive.
              $01
                             ; examine 'write protect' bit.
              NZ,L1374
                             ; forward, if not protected, to NO-PRT.
       RST
             20H
                             ; Shadow Error Restart.
                             ; Drive 'write' protected
       DEFB $0E
;; NO-PRT
L1374: LD
             A,$E6
                                   xx100110
       OUT
              ($EF),A
                             ; enable writing.
                             ; a delay value of 360 decimal.
             BC,$0168
       CALL L1652
                              ; routine DELAY-BC pauses briefly as the
                              ; record now approaches the tape heads.
       CALL L15B3
                             ; routine OUT-M-BUF writes descriptor and
                              ; data buffer.
              A, $EE
       T<sub>1</sub>D
                                     xx101110
              ($EF),A
                             ; disable writing.
       OUT
       POP
                             ; restore the map bit.
       POP
                              ; and the address of the byte within microdrive
                             ; map.
                             ; transfer masked bit to A.
       LD
              A,B
                              ; combine with status of other 7 sectors.
              (HL)
                             ; update the map to show this sector is now
              (HL), A
                              ; used.
       RET
                              ; return.
; -----
; THE 'CLOSE FILE' ROUTINE
; -----
; Note. The first entry point is not used.
;; close-m
L138B: PUSH HL
       POP
              IX
; (Hook Code: $23)
;; CLOSE-M2
             0,(IX+$18); CHFLAG
Z,L139B; forward to NOEMP
L138E: BIT
       JR
```

```
SET 1,(IX+$43); RECFLG CALL L12DA; routine
                            ; routine WR-RECD
;; NOEMP
L139B: XOR
            А
                            ; routine SEL-DRIVE
       CALL L1532
       CALL L119F
                            ; routine DEL-M-BUF
       RET
                            ; return after subroutine.
; -----
; THE 'MAIN ERROR RESTART EMULATION' ROUTINE
;; ERR-RS
L13A3: POP HL
            A, (HL)
             A, (HL) ,
($5C3A), A ; sv ERR_NR
28H ; Error Main ROM
       LD
       LD
             28H
; -----
; THE 'FETCH HEADER FROM MICRODRIVE' ROUTINE
; -----
  This routine fetches the next valid 14-byte header to pass the tape heads
  ensuring that it is a header as opposed to a record descriptor.
;; GET-M-HD2
L13A9: PUSH IX
                            ; transfer start of channel
       POP
             _{
m HL}
                            ; to the HL register pair.
             DE, $0028
       T.D
                            ; offset to HDFLAG
       ADD
                            ; add to form first receiving location.
             HL,DE
       CALL
             L15E2
                             ; routine GET-M-HD reads 15 bytes from
                             ; microdrive - last is a checksum byte.
       CALL
             L1426
                            ; routine CHKS-HD-R checksums the bytes.
                            ; back, with error, to GET-M-HD2
       JR
             NZ,L13A9
                            ; test HDFLAG should be set.
              0,(IX+$28)
       JR
              Z,L13A9
                            ; back, if not a header, to GET-M-HD2
       RET
                             ; return - with HL addressing start of header.
; THE 'CHECK MAP BIT STATE' ROUTINE
;; CHK-MAP-2
L13BF: LD E,(IX+$44); pick up record from RECNUM JR L13C7; forward to ENTRY
; ---
;; CHECK-MAP
L13C4: LD E,(IX+$29) ; pick up sector from HDNUMB
; ->
;; ENTRY
L13C7: LD L, (IX+\$1A); fetch address of associated
```

```
; the pseudo-map routine enters here with a temporary map address.
;; ENTRY-2
L13CD: XOR
                            ; clear accumulator is one way to
            A
            D,A
       LD
                            ; clear D in preparation for addition.
       LD
            A,E
                            ; transfer sector to A.
       AND
            $07
                            ; and mask off lower 8 bits for later
       SRL
            E
                            ; returning to E,
            E
E
       SRL
                           ; divide the
                           ; sector or record by eight.
       SRL
                        ; add to map base to give address of map bit.
       ADD
             HL,DE
       LD
             B,A
                            ; now load sector mod 8 to B and
       INC
             В
                            ; increment to form counter 1 - 8.
       XOR A
                            ; clear A
       SCF
                            ; and set carry bit ready to rotate in.
;; ROTATE
L13DD: RLA
                            ; rotate left A
       DJNZ L13DD
                            ; back, while counter not zero, to ROTATE
       LD
                            ; return sector bit in B.
            B,A
             (HL)
                            ; AND accumulator with map sector byte.
       AND
       RET
                             ; return - Z = free, NZ = occupied.
; -----
; THE 'RESET BIT IN MAP AREA' ROUTINE
; -----
  This routine is called when opening a channel and by FORMAT, CAT and ERASE
 to mark a map bit representing a sector as available.
;; RES-B-MAP
L13E3: CALL L13C4
                            ; routine CHECK-MAP fetches bit mask for map
                            ; location addressed by HL into B register.
       LD
             A,B
                            ; fetch sector mask with one bit set.
       CPL
                            ; complement - seven bits set and one bit reset.
                            ; combine with other sector bits.
             (HL)
             (HL),A
                            ; and update map byte resetting the bit.
       LD
       RET
                            ; return.
; THE 'CHECK 'PSEUDO-MAP' BIT STATE' ROUTINE
;; TEST-PMAP
L13EB: PUSH IX
POP HL
       LD DE,$0052 ;
ADD HL,DE ;
LD E,(IX+$29) ; HDNUMB
JR L13CD ; back to
                            ; back to ENTRY-2
; -----
; THE 'DECREASE SECTOR COUNTER' ROUTINE
```

H, (IX+\$1B) ; microdrive map from CHMAP

```
;
;; DEC-SECT
L13F7: LD BC,($5CC9); sv SECTOR
            BC
       DEC
      LD
             ($5CC9),BC ; sv SECTOR
       LD
            A,B
            С
       OR
                            ;
       RET
; -----
; THE 'CHECK-NAME' ROUTINE
;; CHK-NAME
L1403: PUSH IX
                           ; preserve original channel base address.
      LD B,$0A
;; ALL-CHARS
L1407: LD
            A, (HL)
             A, (HL)
(IX+$0E)
, CHNAME
NZ.L1423
, forward to CKNAM-END
      CP
            NZ,L1423
       JR
       INC
            _{
m HL}
       INC
             IX
       DEC
            В
       DEC
             C
                           ; back to ALL-CHARS
            NZ,L1407
       JR
       LD
            A,B
       OR
             Z,L1423
                           ; forward to CKNAM-END
       JR
;; ALLCHR-2
             A, (IX+$0E) ; CHNAME
L1418: LD
      CР
             $20
       JR
             NZ,L1423 ; forward to CKNAM-END
       INC
       DJNZ
             L1418
                           ; back to ALLCHR-2
;; CKNAM-END
L1423: POP IX
                            ;
      RET
; ------
; THE 'CALCULATE/COMPARE CHECKSUMS' ROUTINE
; -----
; Used for microdrive channels only.
; While the two checksums within a Network buffer are simple 8-bit sums of
; the data, the algorithm used for the microdrive channels is a little more
; sophisticated as it avoids the formation of the result $FF. While across the
; network a byte is as good as its neighbour, with microdrives the value $FF
; might arise as a result of a failed read.
; The same routine is used both to prepare the checksum prior to saving and to
; calculate and compare the checksum after reading.
; The first entry point is used for the 14 bytes of HDCHK and DESCHK
; and the second entry point is used for the 512 bytes of DCHK.
```

```
L1426: LD BC, $000E ; fourteen bytes

JR L142E ; forward to CHKS
                               ; forward to CHKS-ALL
; ---
; ->
;; CHKS-BUFF
L142B: LD BC, $0200 ; 512 bytes.
; common code.
;; CHKS-ALL
L142E: PUSH HL LD E,$00
                             ; save pointer to first address.
; initialize checksum to zero
;; NXT-BYTE
                             ; fetch running sum
; add to current location.
L1431: LD
              A,E
              A, E
A, (HL)
       ADD
       INC
                               ; point to next location.
        ADC A, $01
                               ; avoid the value $FF.
              A, PUL
Z, L1439
                               ; forward to STCHK
        JR
        DEC
                               ; decrement.
              Α
;; STCHK
L1439: LD
              E,A
                               ; update the 8-bit sum.
       DEC
              BC
                               ; reduce counter
              А, В
С
        T.D
                               ; and check
                           ; for zero.
        OR
              NZ,L1431
                               ; back, if not, to NXT-BYTE
        JR
                             ; fetch running sum ; compare to checksum contents
        LD
              A,E
        CР
               (HL)
               (HL),A
                               ; before inserting the byte.
        LD
        POP
                               ; restore pointer to first address.
        RET
                                ; return - with zero flag set if sums agree.
; THE 'RESTORE STREAM DATA' ROUTINE
; -----
; When a channel is deleted, then the streams that point to channels beyond
; that one have to have their offsets reduced by the deleted amount.
; Also a stream that exactly matches the offset to the deleted channel, and
; there could be several, will have its entry set to zero.
; On entry, HL = offset, BC = $0253
;; REST-STRM
L1444: PUSH HL
LD A,$10
                               ; save the offset
                              ; maximum streams + 1
              HL,$5C16 ; the start of the user streams area STRMS_00
        LD
;; NXT-STRM
               ($5C5F),HL
L144A: LD
                               ; save stream pointer temporarily in X PTR
        LD E,(HL) ; fetch low byte of offset.
INC HL ; bump address.
LD D,(HL) ; fetch high byte of stream
                               ; fetch high byte of streams offset.
```

;; CHKS-HD-R

```
POP HL ; retrieve the PUSH HL ; supplied off:
                              ; supplied offset.
              Α
       OR
                              ; clear carry.
                            ; subtract looking for an exact match
             HL, DE
        SBC
               NZ,L145C
                              ; forward, if not, to NOTRIGHT
        JR
       T.D
           DE, $0000 ; else set displacement to zero.
       JR
              L1463
                              ; forward to STO-DISP to close the stream.
; ---
;; NOTRIGHT
                               ; forward, if entry lower, to UPD-POINT ->
L145C: JR
              NC,L1469
; else this stream entry is to be reduced by $0253 bytes.
               DE, HL
                              ; streams offset to HL
                               ; clear carry
               A
              HL,BC
                              ; reduce by 595 decimal bytes
        SBC
               DE, HL
                              ; transfer reduced entry to DE.
;; STO-DISP
              HL, ($5C5F) ; fetch stream address from X_PTR
L1463: LD
              (HL),E
                              ; and insert
       LD
       INC
              _{
m HL}
                              ; the updated
               (HL),D
                            ; offset.
       LD
; ->
;; UPD-POINT
L1469: LD
              HL, ($5C5F); fetch stream address from X_PTR.
              HL
       INC
                               ; bump - each stream entry
                              ; is two bytes.
       INC
               _{\mathrm{HL}}
                           ; decrement the loop counter. ; back if not
        DEC
              NZ,L144A
                              ; back, if not zero, to NXT-STRM
       JR
; else clean up and return.
               ($5C5F),A ; set X_PTR_hi to zero resting value.
        POP
                               ; balance stack.
       RET
                               ; return.
; THE 'RESTORE MAP ADDRESSES' ROUTINE
; -----
; When a microdrive map is reclaimed, then all the addresses of the microdrive
; maps in the "M" channels are examined and if higher than the deleted map, the
; address is reduced by thirty two bytes.
; On entry, HL = map \ address, BC = $0020.
;; REST-MAP
             BC,$0020 ; set BC to thirty two. Already done.
IX,($5C4F) ; load IX from system variable CHANS.
DE,$0014 ; there are 20 bytes of the standard 4 channels
IX,DE : add to skip these
L1476: LD
       LD
       LD
       ADD
               IX,DE
                              ; add to skip these.
; now enter a loop.
;; LCHAN
L1482: LD A, (IX+$00) ; fetch first byte.
       CР
              $80
                               ; is it the channels area end-marker ?
```

```
RET Z
                             ; return if so - all maps adjusted.
                             ; save map address.
       PUSH HL
                         ; fetch channel letter.
       LD A, (IX+$04)
             $7F
                             ; reset bit 7.
       AND
              $4D
       CP
                             ; compare to "M"
             NZ, L14A6
       JR
                            ; forward, if not, to LPEND
; a microdrive channel has been found so compare the address of the map.
              E, (IX+$1A)
                             ; fetch address of the microdrive
                             ; map for this channel from CHMAP.
       LD
             D,(IX+$1B)
       SBC
             HL,DE
                             ; subtract from that of deleted map.
              NC, L14A6
       JR
                             ; forward, if is lower, to LPEND
; address of this microdrive map is higher than the one deleted.
       EΧ
             DE,HL
                             ; transfer address to HL.
                             ; clear carry.
             A
             HL,BC
                             ; subtract thirty two.
              (IX+\$1A),L
                            ; and place back
                            ; in CHMAP.
              (IX+$1B),H
;; LPEND
             HL ; restore address of deleted map.
E,(IX+$09) ; fetch length of channel
L14A6: POP
       LD
             D, (IX+$0A) ; to DE.

IX, DE ; add to address next channel.
       LD
       ADD
            L1482
       JR
; -----
; THE '"M" CHANNEL DEFAULT' DATA
; -----
;; MCH-DAT
L14B1: DEFW $0008 ; main ERROR-1 DEFW $0008 ; main ERROR-1
                           ; main ERROR-1
; inverted "M" character
; MCHAN-OUT
       DEFB
              $CD
       DEFW L12B3
       DEFW L11FD
DEFW $0253
DEFW $0000
DEFB $00
DEFM "
                            ; M-INPUT
                            ; length
              $00
                       "; 10 spaces
       DEFM
       DEFB $FF
                             ; CHFLAG
; THE 'PREAMBLE DATA'
  The PREAMBLE consists of twelve distinctive bytes that are saved to a
; microdrive cartridge before the data. They are not read back but allow
; the ULA of the microdrive to recognize the start of a saved data block.
;; PREAMBLE
L14CA: DEFB $00, $00, $00
       DEFB $00, $00, $00
       DEFB $00, $00, $00
       DEFB $00, $FF, $FF
; -----
; THE 'NOT-USED TOOLKIT' ROUTINES
; -----
; The following four routines are for debugging
```

```
; purposes during development.
; THE 'DISP-HEX' ROUTINE
; -----
; display a byte as two hex characters.
;; DISP-HEX
L14D6: PUSH AF
      RRA
      RRA
      RRA
      RRA
      CALL L14DF
                     ; routine DISP-NIB
      POP
           AF
;; DISP-NIB
L14DF: AND $0F
      CP $0A
      JR C, L14E7
                         ; forward to CONV-1
      ADD
           A,$07
;; CONV-1
L14E7: ADD
           A,$30
      CALL L14F8
                         ; routine DISP-CH
      RET
; -----
; THE 'DISP-HEX2' ROUTINE
; -----
 display a byte in hexadecimal followed by a space
;; DISP-HEX2
L14ED: PUSH AF
                       ;
; routine DISP-HEX
     CALL L14D6
LD A,$20
CALL L14F8
POP AF
RET
                        ;
                        ; routine DISP-CH
                         ;
      RET
; -----
; THE 'DISP-CH' ROUTINE
;; DISP-CH
L14F8: PUSH HL
      PUSH DE
      PUSH BC
      PUSH AF
      EXX
      PUSH HL
      PUSH DE
      PUSH BC
      PUSH AF
      LD HL, ($5C51) ; sv CURCHL
      PUSH HL
      PUSH AF
```

```
LD A,$02
RST 10H
DEFW $1601
                           ; CALBAS
                          ; main CHAN-OPEN
           AF
       POP
             10H
                          ; CALBAS
; main PRINT-A
       RST
       DEFW $0010
       POP HL
             ($5C51),HL ; sv CURCHL
       LD
             AF
       POP
       POP
             BC
                            ;
       POP
POP
            DE
            _{
m HL}
       EXX
       POP AF
       POP
             BC
       POP
             DE
       POP
            _{
m HL}
       RET
; -----
; THE 'HEX-LINE' ROUTINE
  The Master routine which displays ten bytes of memory, addressed by HL,
  in Hexadecimal followed by a CR. The thirty output characters sit
  comfortably within the 32 character display of the Spectrum.
;; HEX-LINE
L151D: PUSH HL
       PUSH BC
       PUSH AF
             B,$0A
       LD
;; HEX-LINE2
            A, (HL)
L14ED
L1522: LD
                          ;
; routine DISP-HEX2
      CALL L14ED INC HL DJNZ L1522
             L1522
                            ; back to HEX-LINE2
            A,$0D
                           ;
       CALL L14F8
                          ; routine DISP-CH
           AF
BC
HL
       POP
                            ;
       POP
                            ;
       POP
       RET
                             ; return.
; THE 'SELECT DRIVE MOTOR' ROUTINE
; ------
; (Hook Code: $21)
; This important routine is called on over twenty occasions to activate a
  microdrive whose number is in the accumulator, or with a parameter of
  zero, to stop all motors. It is the sole means of controlling the real
  or virtual bank of eight microdrives.
  It is called with interrupts disabled and this condition should be in
; force when the Hook Code is used.
;; SEL-DRIVE
L1532: PUSH HL
                            ; preserve the original HL value throughout.
       CP $00
                            ; is the parameter zero ?
```

```
The requirement is to ensure that all eight drives are switched off.
       CALL
              L1565
                              ; routine SW-MOTOR with A holding zero.
       EΤ
                              ; Enable Interrupts.
       POP
             HT.
                              ; restore original HL value.
       RET
                              ; return.
                                                                     >>
; -----
; THE 'TURN ON' BRANCH
; -----
   This route turns on a drive in the range 1 - 8. If the Hook Code has
  been erroneously invoked with a higher value, then this will be treated
   in much the same way as with zero. See later.
;; TURN-ON
L153D: DI
                              ; Disable Interrupts.
       CALL L1565
                              ; routine SW-MOTOR
                             ; prepare decimal 5,000 delay value.
       LD
             HL,$1388
;; TON-DELAY
L1544: DEC
                              ; a simple
              _{\mathrm{HL}}
                              ; delay loop to
       LD
               A,H
                              ; let things settle down.
       OR
               NZ,L1544
                              ; back, if not zero, to TON-DELAY
       ιTR
       LD
               HL,$1388
                              ; load with five thousand again.
; Now enter another 5000 loop testing for break and searching for a GAP on
; the tape at each iteration.
;; REPTEST
L154C: LD
             B,$06
                              ; six consecutive reads required to register
                              ; as a gap.
;; CHK-PRES
L154E: CALL
               L163E
                              ; routine TEST-BRK allows the user to stop.
              A, ($EF)
       IN
                             ; read the microdrive port.
                             ; test for the gap bit
       AND
                              ; forward, if not, to NOPRES
               NZ,L155B
       DJNZ
              L154E
                              ; loop back six times to CHK-PRES
; A gap has been found - a formatted cartridge is in the drive.
       POP
             HT.
                              ; restore original HL value.
       RET
                               ; return with motor running, interrupts
                               ; disabled.
                                                                       >>
; -----
; THE 'NO GAP' BRANCH
; -----
  If no gap signal found on drive so far then continue counting down from
   5000 and looping back to test for six gaps.
;; NOPRES
L155B: DEC
                              ; decrement the counter
             _{
m HL}
```

NZ,L153D ; forward, if not, to TURN-ON.

```
A,H
                   ; test for
       LD
               L ; zero.
NZ,L154C ; back, if not, to REPTEST
       OR
       CALL L1532
                              ; routine SEL-DRIVE with accumulator zero
                              ; stops the drive motor.
             20H
       RST
                              ; Shadow Error Restart
       DEFB $10
                              ; 'Microdrive not present'
; -----
; THE 'SWITCH MOTOR' SUBROUTINE
; -----
   The main developer of the microdrives and acknowledged co-inventor was
   the late Ben Cheese, 14-Jul-1954 - 15-Jan-2001.
   This ROM software always handles the switching of microdrives as if
   there were eight drives connected. There is no short cut to directly
   switch on a drive and they must be handled as an array of eight devices.
   Each microdrive includes a D-flip flop, capable of holding logic state
   one or zero. When the flip-flop is set at logic one then the
   recording/playback device is switched on.
   The first microdrive has the D-input terminal of the flip-flop connected
   to the comms data line of the Interface 1 and the clock-input terminal
   connected to the clock-output terminal of Interface 1. Subsequent
   microdrives have the D-input terminal connected to the Q-output terminal
   of the next innermost drive/flip-flop and the CLOCK-input terminal
   connected to the CLOCK-input terminal of the same adjacent
   drive/flip-flop.
   The eight microdrives thus behave as a shift register allowing a logic 1
   condition, originating at the Interface 1 control device, to be loaded
   into the first flip-flop by a single clock pulse and to be shifted out
   to the appropriate flip-flop by a series of further clock pulses.
   As eight pulses will be required, then the logic state of drive eight is
   considered first and drive one is the last to be considered.
   By negating the drive number and adding nine, the routine below begins
   by effecting this reversal and, by converting zero to nine, it ensures
   that eight logic zeros are shifted out for this case and for the case
   of any out-of-range parameter, which can arise in the case of a User
   experimenting with Hook Codes.
   The limit of eight microdrives is set in the routine below and not in
   hardware.
   As Ben pointed out on his patent from which some of these details are
   taken, "it will be appreciated that the control device may be used to
   select associated devices other than recording/playback devices and that
   any number of associated devices may be accommodated by use of the
   technique described."
;; SW-MOTOR
L1565: PUSH DE
                              ; preserve the original DE value throughout.
             DE, $0100
                              ; load DE with the constants logic one and
       LD
                               ; logic zero.
       NEG
                              ; negate the supplied drive number 0 - n
       ADD
              A,$09
                             ; add 9 so that 0 = 9, -1 = 8, -8 = 1, -10 = -1
```

; place the reversed parameter in C. ; set clock shift counter to eight.

;

; ;

;

;

;

;

;

;

;

;

;

;

;

;

;

LD

C,A

B**,**\$08

```
; decrement the drive selector.
; forward, if not in position, to OFF-MOTOR.
L1570: DEC
               С
               NZ,L1586
; The time has come to send out a signal to start this drive.
       T.D
               A,D
                               ; select logic one.
       OUT
               ($F7),A
                               ; output to data port.
       LD
               A,$EE
                               ; select comms clock 1, comms data 0
       OUT
               ($EF),A
                               ; output to D-flip flop.
               L15A2
                               ; routine DEL-S-1 holds for a millisecond.
       CALL
       T<sub>1</sub>D
              A,$EC
                               ; select comms clock 0, comms data 0
       OUT
               ($EF),A
                               ; output to D-flip flops.
       CALL
             L15A2
                               ; routine DEL-S-1 holds for a millisecond.
              L1597
                              ; forward to NXT-MOTOR
       JR
; ---
;; OFF-MOTOR
              A,$EF
                              ; select comms clock 1, comms data 1
L1586: LD
               ($EF),A
       OUT
                              ; output to D-flip flop.
               A,E
                               ; select logic 0.
       LD
               ($F7),A
       OUT
                               ; output to data port.
       CALL
               L15A2
                               ; routine DEL-S-1 holds for a millisecond.
              A,$ED
                               ; select comms clock 0, comms data 1
       T.D
               ($EF),A
       OUT
                               ; output to microdrive port.
       CALL
               L15A2
                               ; routine DEL-S-1 holds for a millisecond.
;; NXT-MOTOR
L1597: DJNZ
                              ; back, for all eight drives, to ALL-MOTRS.
              L1570
                              ; select logic one.
              A,D
                              ; output to data port.
               ($F7),A
       OUT
                              ; select comms clock 1, comms data 0.
               A,$EE
               ($EF),A
       OUT
                               ; output to microdrive port.
       POP
                               ; restore original DE value.
       RET
                               ; return.
; THE '1 MILLISECOND DELAY' ROUTINE
   This subroutine is used to time the transitions of the Delay-flip-flops
  used, above, to control the array of microdrives attached to Interface 1.
  Delay flip flops become unstable if transitions are too close together
; and this routine provides a 1 millisecond delay between clock pulses.
;; DEL-S-1
L15A2: PUSH BC
                              ; preserve counters.
       PUSH AF
             BC, $0087 ; 135 decimal.
L1652 ; routine DELAY-BC
       T<sub>1</sub>D
       CALL L1652
```

;; ALL-MOTRS

```
POP AF POP BC
                            ; restore counters
       RET
                            ; return.
; THE 'SEND HEADER BLOCK TO MICRODRIVE' ROUTINE
; -----
; Routine is called once from the FORMAT routine.
;; OUT-M-HD
L15AD: PUSH HL
     LD DE, $001E ; 30 bytes.
      JR
            L15B7
                           ; forward to OUT-M-BLK ->
; -----
; THE 'SEND DATA BLOCK TO MICRODRIVE' ROUTINE
;; OUT-M-BUF
L15B3: PUSH HL
      LD DE, $021F ; 543 bytes.
; -> Common code.
;; OUT-M-BLK
      IN A, ($EF)
AND $01
JR NZ, L15BF
                         ;
; isolate write prot. bit.
; forward to NOT-PROT
L15B7: IN
      RST
            20H
                            ; Shadow Error Restart
      DEFB $0E
                            ; Drive 'write' protected
; ---
;; NOT-PROT
      LD
OUT ($14, 17)
A,$E2
($EF),
            A, ($5CC6) ; sv IOBORD ($FE), A ;
L15BF: LD
                            ;
       OUT ($EF),A
INC D
                           ;
      LD A,D
LD B,E
LD C,$E7
            A,D
                            ;
                            ;
      NOP
                            ;
       NOP
      NOP
;; OUT-M-BYT
L15D0: OTIR
      DEC A ;
JR NZ,L15D0 ; back to OUT-M-BYT
      LD A, $E6
OUT ($EF), A
             A, $E 6
($EF), A
       CALL LOD4D
                          ; routine BORD-REST
       POP HL
       RET
                            ; return.
; THE 'SIGNAL ERROR' EXIT POINT
```

```
; This exit point is used twice from the next routines when the required
  header or record block is not found within the requisite time.
;; SIGN-ERR
L15DE: POP BC
POP HL
INC (HL)
                              ; balance the stack.
                               ; first byte of destination.
                               ; increment RECFLG or HDFLAG.
        RET
                               ; return.
; -----
; THE 'RECEIVE BLOCK FROM MICRODRIVE HEADER' ROUTINE
;; GET-M-HD
L15E2: PUSH HL
                               ; save destination
       LD DE,$000F
                             ; save destination
; set fifteen bytes to load.
; set large delay when waiting for a header.
              HL, $0000
              L15F2
                               ; forward to GET-M-BLK
; -----
; THE 'RECEIVE BLOCK FROM MICRODRIVE RECORD' ROUTINE
;; GET-M-BUF
       PUSH HL ; save destination.

LD DE,$0210 ; set 528d bytes to load.

LD HL,$01F4 ; set delay counter to 500d.
L15EB: PUSH HL
; -->
;; GET-M-BLK
                            ; load B register for first INIR load.
; load C register with count of further loads.
; adjust to count down to zero.
L15F2: LD B,E
LD C,D
INC C
PUSH BC
                               ; save the INIR counters.
;; CHK-AGAIN
              B,$08
                         ; set gap counter to eight.
L15F6: LD
       DEC HL
                               ;
              А,Н
        LD
                               ;
        OR
                               ; back to SIGN-ERR
        JR
              Z,L15DE
;; CHKLOOP
L15FD: CALL L163E
                               ; routine TEST-BRK
       IN A, ($EF)
AND $04
                             ; isolate gap bit.
              Z,L15F6
                               ; back to CHK-AGAIN
        JR
       DJNZ L15FD
                               ; back to CHKLOOP
;; CHK-AG-2
L1608: LD B,$06
DEC HL
                             ;
       LD A, H
```

```
L
             Z,L15DE ; back to SIGN-ERR
;; CHK-LP-2
                           ; routine TEST-BRK
L160F: CALL L163E
       IN
           A, ($EF)
       AND
             $04
                            ; isolate gap bit.
                           ; back to CHK-AG-2
             NZ,L1608
       JR
       DJNZ L160F
                           ; back to CHK-LP-2
            A,$EE
       LD
       OUT
             ($EF),A
       LD
             в,$3С
                           ; set count 60 decimal.
;; DR-READY
L1620: IN
             A, ($EF)
      AND
             $02
                            ; isolate sync bit.
             Z,L162A
                            ; forward to READY-RE
       DJNZ L1620
                           ; back to DR-READY
      JR L15F6
                           ; back to CHK-AGAIN
; ---
;; READY-RE
L162A: POP
            BC
                           ; retrieve counters from the stack.
            HL
      POP
                            ; retrieve the destination
       PUSH HL
                            ; and stack again.
             L163E
                            ; routine TEST-BRK.
       CALL
                            ; transfer repeat counter to A.
             A,C
       LD
              C,$E7
                            ; set port to $E7.
       LD
 Now the INIR (INput to memory Increment and Repeat) instruction is used.
;; IN-M-BLK
L1633: INIR
                            ; read B bytes from port C to destination HL.
 B (zero) will now count 256 bytes if first block was not the total.
                            ; decrement repeat counter.
              NZ,L1633
                            ; back, if not zero, to IN-M-BLK
 All bytes, 15 or 528 have now been read.
       LD
             A,$EE
       OUT
             ($EF),A
       POP
              _{
m HL}
                            ; restore pointer to first byte.
       RET
                            ; return.
; -----
; THE 'TEST-BRK' ROUTINE
; -----
; Note. used more consistently in this ROM.
;; TEST-BRK
L163E: LD
            A,$7F
                           ; read port $7FFE - keys B, N, M, SYM, SPACE.
       IN
            A,($FE)
       RRA
                            ; test for SPACE key.
       RET
                            ; return if not pressed.
```

```
LD A, $FE
                           ; read port $FEFE - keys SHIFT, Z, X, C, V.
            A, ($FE)
       IN
      RRA
                            ; test for SHIFT key.
      RET
                            ; return if not pressed.
      CALL LOD4D
                           ; routine BORD-REST.
       T<sub>1</sub>D
             (IY+$00),$14 ; set ERR NR to main 'L BREAK into program'
                           ; invoke the Main ROM error routine.
      RST
            28H
; -----
; THE 'DELAY-BC' ROUTINE
; -----
;; DELAY-BC
L1652: PUSH AF
;; DELAY-BC1
L1653: DEC
      LD
            A,B
      OR
                           ; back to DELAY-BC1
            NZ,L1653
      JR
      POP
            AF
      RET
; -----
; THE 'READ BLOCK' ROUTINE
; -----
  Note. new in this ROM.
  Used by format routine.
;; READ-BLK
L165A: PUSH HL
      PUSH
             ВC
;; RDLOOP1
            B,$08
L165C: LD
;; RDLOOP2
L165E: CALL
             L163E
                           ; routine TEST-BRK
       ΙN
            A, ($EF)
      AND
             $04
                           ; isolate gap bit.
      JR
             Z,L165C
                           ; back to RDLOOP1
      DJNZ
            L165E
                           ; back to RDLOOP2
;; RDLOOP3
            B,$06
L1669: LD
;; RDLOOP4
L166B: CALL L163E
                          ; routine TEST-BRK
             A, ($EF)
       ΙN
      AND
             $04
                           ; isolate gap bit.
            NZ, L1669
                           ; back to RDLOOP3
       JR
       DJNZ L166B
                           ; back to RDLOOP4
```

```
A, $EE
       LD
              ($EF),A
       OUT
              B,$3C
                             ; set counter to 60d.
       LD
;; SYNC-RD
L167C: IN
              A, ($EF)
       AND
              $02
                             ; isolate sync bit.
                             ; forward to READY-R2
       JR
              Z,L1686
       DJNZ
             L167C
                             ; back to SYNC-RD
              L165C
                             ; back to RDLOOP1
       JR
; ---
;; READY-R2
L1686: POP
       POP
              _{
m HL}
       PUSH HL
              L163E
                             ; routine TEST-BRK
       CALL
              C,$E7
                             ; port
       LD
              E,$FC
                             ; required test byte
       LD
       LD
              B,$0F
                             ; initial counter.
       LD
              D,$64
                             ; final counter.
       INIR
;; RD-BYT-1
L1696: IN
              A, (C)
       CР
              NZ,L16AD
                             ; forward to ENDRD
       JR
                             ; back to RD-BYT-1
       DJNZ
              L1696
;; RD-BYT-2
L169D: IN
              A, (C)
       CР
       JR
              NZ,L16AD
                             ; forward to ENDRD
       DJNZ
              L169D
                             ; back to RD-BYT-2
       LD
              B,D
                             ; final counter is $64
;; RD-BYT-3
L16A5: IN
              A, (C)
       CP
       JR
              NZ,L16AD
                             ; forward to ENDRD
       DJNZ
             L16A5
                             ; back to RD-BYT-3
                             ; set zero flag to signal successful read
       XOR
              Α
;; ENDRD
L16AD: POP
              _{
m HL}
       RET
                             ; return.
; -----
; THE 'WRITE BLOCK' ROUTINE
; Note. new in this ROM.
```

```
; Called once from the FORMAT routine.
;; WR-BLK
L16AF: PUSH HL
                             ; preserve HL throughout.
            A, ($5CC6)
                             ; fetch the value of IOBORD
       LD
       OUT
                             ; and change the border colour.
              ($FE),A
             A,$E2
       LD
       OUT
              ($EF),A
                             ; enable writing
             E,$66
       LD
             C,$E7
       LD
             в,$1в
       LD
       LD
             A,$FC
                             ; test byte written
       NOP
       OTIR
;; WR-BYT-1
L16C4: OUT
              (C),A
       DJNZ L16C4
                             ; back to WR-BYT-1
;; WR-BYT-2
L16C8: OUT
              (C),A
       DJNZ L16C8
                             ; back to WR-BYT-2
       LD
             B,E
                             ; load counter with $66
;; WR-BYT-3
L16CD: OUT
              (C),A
       DJNZ L16CD
                             ; back to WR-BYT-3
             A,$E6
       LD
              ($EF),A
       OUT
                             ; routine BORD-REST
       CALL
              L0D4D
       POP
             _{
m HL}
                             ; restore initial HL value.
       RET
                             ; return.
; THE 'UNUSED' SECTION
  Contains copyright holder and initials of the main programmer. The rest
  is set to $FF. This section is situated before the fixed-position CLOSE
   rectification routine.
             $7F ;
" 1983 Sinclair"
                             ; copyright (c)
       DEFB
       DEFM " 1983 Sinclair"
DEFM " Research Ltd"
DEFM " MJB " ; Martin Brennan
       DEFB $FF
       DEFB $FF
```

```
DEFB $FF
DEFB $FF
; -----
; THE 'CLOSE STREAM' ROUTINE
; -----
; Note. An instruction fetch on main address L1708 pages in this ROM.
;; CLOSE-CH
            _{
m HL}
L1708: INC
      RST
            30H
                           ; create the new system variables
      SRL
            A
      SUB
            $03
      RES 1, (IY+$7C) ; sv FLAGS 3
      CALL L1718
                           ; routine CLOSE
       JP
            L05C1
                           ; jump back to normal command exit at END1
; -----
; THE 'CLOSE COMMAND' ROUTINE
; -----
;; CLOSE
L1718: RST 10H
                          ; CALBAS
                         ; main STR-DATA1
      DEFW $1727
      LD
            A,C
      OR
            В
      RET
            Z
      PUSH BC
      PUSH HL
           HL, ($5C4F) ; sv CHANS
      LD
       DEC
             _{
m HL}
            HL,BC
      ADD
      EX
             (SP),HL
      DEFW $16EB ; main CLOSEX LD HL,($5C4F) ; sv CHANS LD DE,$0014 ; ADD HL,DE
      POP
            DE
                           ;
       SCF
      SBC HL, DE POP
                           ;
                           ;
                           ;
      RET
            NC
                           ;
      PUSH BC
      PUSH DE
      EX DE, HL
LD ($5C51
INC HL
             ($5C51),HL ; sv CURCHL
      INC HL
                           ;
      INC
            _{
m HL}
                           ;
```

INC

 $_{
m HL}$

```
Now mark the channel as temporary so that if anything goes wrong, such
   as the user pressing BREAK, then the channel can be reclaimed by CLEAR #.
L1741: SET
              7,(HL)
                             ; As suggested by Andrew Pennell 1983.
              DE,$0005
       LD
       ADD
              HL,DE
              E, (HL)
       LD
       INC
             _{
m HL}
       LD
              D, (HL)
       PUSH DE
CP $54
                             ; compare to "T"
       CP
             NZ,L175C
       JR
                             ; forward to CL-N-CH
       BIT
              1,(IY+$7C)
                             ; sv FLAGS 3
                             ; forward to RCLM-CH
       JR
              NZ,L177D
       LD
             A,$0D
       CALL LOD07
                             ; routine BCHAN-OUT
             L177D
                             ; forward to RCLM-CH
; ---
;; CL-N-CH
             $4E
L175C: CP
                             ; character "N" ?
             NZ,L176B
                             ; forward to CL-M-CH
       JR
       BIT
              1, (IY+$7C)
                             ; sv FLAGS 3
                             ; forward to RCLM-CH
              NZ,L177D
       JR
                             ; routine SEND-NEOF
       CALL LOFAE
             L177D
                             ; forward to RCLM-CH
       JR
; ---
;; CL-M-CH
           $4D
N7.. t.1 77r
L176B: CP
              $4D ; character "M" NZ,L177D ; forward to RCLM-CH
       JR
       POP
                              ;
       POP
              ΙX
       POP
                         ; sv FLAGS_3
              1, (IY+$7C)
       BIT
                             ; jump to \overline{\text{CLOSE-M2}}
       JΡ
              Z,L138E
       JΡ
             L119F
                             ; jump to DEL-M-BUF
; ---
;; RCLM-CH
            BC
L177D: POP
       POP
             _{
m HL}
       PUSH BC
                             ; CALBAS
       RST
              10H
       DEFW $19E8
                            ; main RECLAIM-2
       XOR A
       LD
             HL,$5C16 ; sv STRMS 00
;; UPD-STRM
L1787: LD
              E, (HL)
```

; fetch the letter.

A, (HL)

INC

```
LD D, (HL)
      DEC HL ;
LD ($5C5F),HL ; sv X_PTR
POP BC
      POP HL
PUSH HL
      PUSH BC
      AND A
      SBC
           HL, DE
            NC, L17A2 ; forward to UPD-NXT-S
      JR
      EX DE, HL
            А
      AND
      SBC
           HL,BC
      EΧ
            DE,HL
      LD
            HL, ($5C5F) ; sv X_PTR
      LD
            (HL),E
      INC
            _{
m HL}
      LD
            (HL),D
;; UPD-NXT-S
           HL,($5C5F) ; sv X_PTR
L17A2: LD
      INC
      INC
            _{
m HL}
      INC
            Α
      CP
            $10
      JR
            C,L1787
                        ; back to UPD-STRM
      LD
            (IY+$26),$00 ; sv X_PTR_hi
            HL
      POP
      POP
            _{
m HL}
      RES
            1, (IY+$7C) ; sv FLAGS 3
      RET
                          ; return.
; -----
; THE 'RECLAIM TEMPORARY CHANNELS' ROUTINE
; -----
      LD IX,($5C4F) ; sv CHANS
LD DE,$0014
ADD IX.DF
;; RCL-T-CH
L17B7: LD
;; EX-CHANS
           A,(IX+$00) ; first character of channel $80 ; is it the end-marker?
L17C0: LD
      CР
                        ; forward to CHK-TEMPM
      JR
             NZ,L17D0
           A,$EE
      LD
      OUT
            ($EF),A
      XOR A
JP L1532
                          ; jump to SEL-DRIVE
; ---
     RET
                          ; unused - the above JP was probably once a
CALL.
; ---
;; CHK-TEMPM
L17D0: LD A, (IX+$04); channel letter
```

```
$CD ; is it an inverted "M" ? NZ,L17DC ; forward to CHK-TEMPN
       CP $CD
       CALL L119F
                             ; routine DEL-M-BUF
             L17B7
       JR
                             ; back to RCL-T-CH
;; CHK-TEMPN
L17DC: CP $CE
JR NZ,L17EB
                            ; is channel letter an inverted "N" ?
; forward to PT-N-CHAN
             BC,$0114
       LD
       PUSH
              IX
       POP HL
RST 10H
              10H
                             ; CALBAS
       DEFW $19E8
JR L17B7
                             ; main RECLAIM-2
                           ; back to RCL-T-CH
;; PT-N-CHAN
L17EB: LD
             E, (IX+$09) ; length of
             D, (IX+$0A)
                             ; channel
       LD
       ADD IX, DE L17C0
                             ; back to EX-CHANS
; -----
; THE 'MOVE COMMAND' ROUTINE
; -----
;; MOVE
L17F5: SET 4,(IY+$7C); update FLAGS_3 to indicate a MOVE is in
                              ; progress - see INKEY$
       CALL L1859
LD HL, ($5C4F)
                             ; routine OP-STRM
                             ; sv CHANS
       PUSH HL
                            ; routine EX-D-STR
; routine OP-STRM
       CALL L059F
CALL L1859
       CALL L059F
                              ; routine EX-D-STR
       POP DE
LD HL, ($5C4F)
                             ; sv CHANS
             A
       SBC HL, DE
LD DE, ($5CDA)
                             ; sv N STR1
       ADD HL, DE
              ($5CDA),HL
                             ; sv N STR1
;; M-AGAIN
L1818: LD HL, ($5CDA) ; sv N_STR1
LD ($5C51), HL ; sv CURCHL
;; I-AGAIN
       RST 10H
DEFW $15E6
L181E: RST
                           ; CALBAS
; main INPUT-AD
             C,L1827
       JR
                             ; forward to MOVE-OUT
                             ; back to I-AGAIN
             Z,L181E
       JR
       JR
             L1832
                             ; forward to MOVE-EOF
```

```
L1827: LD HL,($5CE2) ; sv D_STR2
LD ($5C51),HL ; sv CURCHL
RST 10H ; CALBAS
                           ; CALBAS
       DEFW $0010
                            ; main PRINT-A
       JR L1818
                           ; back to M-AGAIN
;; MOVE-EOF
            4,(IY+$7C) ; sv FLAGS_3
HL,($5C4F) ; sv CHANS
L1832: RES
       LD
       PUSH HL
       CALL L059F
                           ; routine EX-D-STR
       CALL L18A8
                           ; routine CL-CHAN
       CALL L059F
                           ; routine EX-D-STR
       POP
            DE
       LD
            HL, ($5C4F) ; sv CHANS
       OR
            A
       SBC HL, DE
            DE, ($5CDA)
                           ; sv N STR1
            HL, DE
             ($5CDA),HL
                           ; sv N STR1
       CALL L18A8
                           ; routine CL-CHAN
       CALL L17B7
                            ; routine RCL-T-CH
       RET
                            ; RETURN
; -----
; THE 'USE STREAM OR TEMPORARY CHANNEL' ROUTINE
; -----
;; OP-STRM
            A, ($5CD8) ; sv D_STR1
L1859: LD
            A
Z,L186A
       INC
                           ; forward to OP-CHAN
       JR
       DEC
             10H
       DEFW $1601
                           ; CALBAS
                        ; main CHAN-OPEN
; sv CURCHL
; sv N_STR1
       LD HL, ($5C51)
             ($5CDA),HL
       RET
;; OP-CHAN
L186A: LD
             A, ($5CD9) ; sv L STR1 device letter.
                            ; is character "M" ?
       СP
             $4D
             NZ,L1883
       JR
                            ; forward to CHECK-N
       CALL L1B05
                            ; routine OP-TEMP-M creates a temporary
                            ; microdrive channel, starts motor, and
                            ; fetches record zero of named file.
       XOR
             Α
       CALL L1532 ; routine SEL-DRIVE LD ($5CDA),IX ; sv N_STR1 BIT 2,(IX+$43) ; RECFLG
       RET
             Z
                           ; Shadow Error Restart
       RST
            20H
       DEFB $16
                            ; Wrong file type
```

```
;; CHECK-N
L1883: CP $4E ; is character "N" ?

JR NZ,L188F ; forward to CHECK-R
       CALL LOF46 ; routine OP-TEMP-N LD ($5CDA),IX ; sv N_STR1
       RET
; ---
; Finally, check for the RS232 channel before producing an error.
;; CHECK-R
             $54
L188F: CP
                             ; is character "T" ?
             Z,L1899
       JR
                             ; forward to USE-R
       CP
             $42
                             ; is character "B" ?
             Z,L1899
                             ; forward to USE-R
       RST 20H
                             ; Shadow Error Restart
       DEFB $00
                             ; Nonsense in BASIC
; ---
;; USE-R
L1899: CALL LOB17 ; routine OP-RS-CH LD ($5CDA), DE ; sv N_STR1
       PUSH DE
       POP IX ; channel letter ; return.
; ------
; THE 'CLOSE 'MOVE' CHANNEL' ROUTINE
; ------
;; CL-CHAN
           A, ($5CD8) ; sv D STR1
L18A8: LD
       INC
RET
       RET
              ΝZ
           A, ($5CD9) ; sv L_STR1 device letter.

$4D ; is character "M" ?

NZ,L18BC ; forward to CL-CHK-N
       LD
       CР
       JR
                             ; sv N STR1
       LD
             IX, ($5CDA)
       CALL L138E
                             ; routine CLOSE-M2
       RET
;; CL-CHK-N
L18BC: CP $4E ; is character "N" ? RET NZ ;
       LD IX,($5CDA) ; sv N_STR1
LD ($5C51),IX ; sv CURCHL
       CALL LOFAE
                             ; routine SEND-NEOF
       RET
```

; THE 'SAVE DATA BLOCK INTO MICRODRIVE' ROUTINE

```
;
;; SA-DRIVE
L18CB: LD
             A, ($5CD6) ; fetch drive number from D STR1
       CALL L1532
                              ; routine SEL-DRIVE starts motor.
       IN A, ($EF)
                             ; read microdrive port.
              $01
       AND
                             ; isolate 'write protect' bit.
              NZ,L18D9
       JR
                             ; forward, if not low, to STAR-SA
       RST 20H
                             ; Shadow Error Restart
       DEFB $0E
                             ; 'Drive 'write' protected'
; ---
;; STAR-SA
             HL, ($5CE9) ; sv HD_0D
L18D9: LD
              ($5CE4),HL
                             ; sv D STR2
       CALL L1B05
                              ; routine OP-TEMP-M creates a temporary
                              ; microdrive channel, starts motor, and
                              ; attempts to fetch record zero of named file.
              0, (IX + $18)
                              ; test CHFLAG
              NZ,L18ED
                              ; forward, with no existing file, to NEW-NAME
       JR
                              ; routine CLOSE-M2 closes temporary channel
       CALL L138E
                              ; and stops the motor.
             20H
                             ; Shadow Error Restart
       RST
       DEFB $0C
                              ; Writing to a 'read' file
; ---
;; NEW-NAME
L18ED: SET
              2, (IX+$43) ; update RECFLG signal not a PRINT type file.
   Note. the microdrive motor has been left running by OP-TEMP-M so the next
   two lines are not necessary. Redundant code elsewhere suggests that
   OP-TEMP-M once stopped the drive.
                             ; fetch drive from CHDRIV.
             A, (IX+$19)
                              ; routine SEL-DRIVE stops and then restarts the
       CALL
               L1532
                              ; motor.
       PUSH
                             ; transfer the channel base address
              IX
                              ; to the HL register pair.
       POP
             DE, $0052
                             ; prepare offset to data buffer.
       LD
                             ; add to address start of data.
       ADD
           HL,DE
       ΕX
              DE,HL
                              ; transfer this destination to DE.
             HL,$5CE6 ; set source to the n
BC,$0009 ; nine bytes to copy.
       T_1D
                             ; set source to the nine byte header at HD 00
       LD
              (IX+$0B),C
                              ; update CHBYTE lo with length saved so far.
       LD
       LDIR
                              ; block move the header info into the buffer.
       PUSH DE
                              ; save destination.
   Now calculate the number of sectors required using a similar method to
```

the one used for calculating the number of records to load.

Note. there is an error in the calculation as one byte should be subtracted

```
from the total bytes to ensure that there is at least one byte in the EOF
   record. The next instruction should be to load HL with eight.
               HL,$0009 ; start with the nine header bytes. ??
BC,($5CE7) ; fetch data length from HD_0B.
L190B: LD
       LD
       ADD
               HL,BC
                               ; add to give total size of block.
       SRL H
                               ; halve MSB to convert to 512 byte chunks.
        TNC
                               ; increment to include EOF block. Wrong.
   Note.
    511 bytes = 502 bytes + 9 header = $01FF, SRL=$00, INC=$01 sectors OK.
    512 bytes = 503 bytes + 9 header = $0200, SRL=$01, INC=$02 sectors WRONG!!
    513 bytes = 504 bytes + 9 header = $0201, SRL=$01, INC=$02 sectors OK.
        PUSH
                                ; preserve register H the sector counter.
               _{
m HL}
        CALL L1D43
                                ; routine FREESECT calculates free sectors on
                                ; cartridge.
        POP
                               ; bring back the sector estimate in H.
                               ; load accumulator with actual sectors.
        LD
               A,E
                               ; compare with estimate
        CP
               NC, L1921
                               ; forward, if equal or greater, to SA-DRI-2
       RST
               20H
                               ; Shadow Error Restart
                               ; 'Microdrive full'
        DEFB
               $0F
; ---
;; SA-DRI-2
L1921: POP
                               ; bring back destination.
               HL, ($5CE4)
BC, ($5CE7)
                               ; fetch start from D STR2
       LD
                               ; fetch data length from HD OB
       LD
;; SA-DRI-3
L1929: LD
               A,B
                               ; test for
                               ; zero bytes.
       OR
                Z,L194F
                               ; forward, if all chunks saved, to SA-DRI-4
        ιTR
               A, (IX+$0C)
                               ; fetch high byte of byte counter from CHBYTE hi
        CР
                $02
                               ; compare to 2 which would indicate 512 bytes.
                                ; forward, if less, to SA-DRI-WR
        JR
               NZ,L1943
; a sector is written to microdrive.
        PUSH
                                ; preserve start of data.
        PUSH
               ВС
                                ; preserve length.
       CALL L12EE
                               ; routine WRITE-PRC.
       POP
              ВC
                                ; restore length.
        PUSH
                               ; transfer the channel base address
               IX
        POP
               _{
m HL}
                               ; to the HL register pair.
               DE, $0052
                               ; add offset to
       LD
                               ; point to data buffer.
       ADD
               HL, DE
               DE,HL
                               ; transfer this destination to DE.
        ΕX
        POP
               HT.
                               ; restore the start of data.
```

;; SA-DRI-WR

```
; the total byte counter.
   now increment the channel byte counter which started at zero and has a
 limit of 512 bytes.
       INC
              (IX+$0B)
                             ; increment CHBYTE lo
                            ; back, if not 256, to SA-DRI-3
       .TR
              NZ,L1929
       INC
             (IX+$0C)
                            ; increment CHBYTE hi
       JR
             L1929
                             ; back to SA-DRI-3 to check high byte.
; ---
;; SA-DRI-4
              1, (IX+$43)
L194F: SET
                            ; update RECFLG mark this as EOF record.
       CALL L12EE
                             ; routine WRITE-PRC writes last record in set.
                            ; fetch user-alterable system variable COPIES
              A, ($5CEF)
                             ; decrement
              Z,L196A
                             ; forward, if zero, to END-SA-DR
       JR
                             ; place decremented value back in COPIES
       LD
              ($5CEF),A
                             ; update RECFLG - signal not the EOF record.
              1, (IX + $43)
             A,$00
                             ; prepare to start saving at record zero again.
       LD
              (IX+$0D),A
                             ; update the channel record counter CHREC.
       LD
                             ; back to NEW-NAME
       JR
             L18ED
; ---
;; END-SA-DR
                          ; set accumulator to zero.
L196A: XOR
       CALL L1532
                             ; routine SEL-DRIVE stops the motor.
       JP
             L119F
                             ; jump to DEL-M-BUF
; -----
; THE 'GET HEADER INFORMATION FROM MICRODRIVE' ROUTINE
; -----
; this routine extracts the nine bytes of global header information that
; is prepended to the data saved on microdrive. This relates to the type -
; Basic, Code and length etc. and is the equivalent of a tape header without
; the name which, in contrast, does have to be saved to every record.
; It is obtained therefore from the start of data at record zero.
; Note. the destination for this data, (program area or variable location),
; has already been calculated and since opening a channel will move this
; destination up in memory, the "Start of data" is transferred to the D STR2
; location, otherwise used for the second filename during moves, so that its
; value is adjusted by REST-N-AD during OP-TEMP-M.
;; F-M-HEAD
L1971: LD
                         ; copy start of data from D STR2(+3)
             HL, ($5CE1)
                            ; to dynamic location D_STR2(+6)
              ($5CE4),HL
       LD
                             ; routine OP-TEMP-M creates a temporary
       CALL L1B05
                             ; microdrive channel, starts motor, and
                             ; fetches record zero of named file.
              0,(IX+$18) ; test CHFLAG for valid first record.
       BIT
              Z,L1982
                             ; forward, if OK, to F-HD-2
```

; transfer one byte at a time decrementing BC

L1943: LDI

```
RST 20H ; Shadow Error Restart DEFB $11 ; 'File not found'
; ---
;; F-HD-2
             2, (IX+$43) ; test RECFLG is it a print file
L1982: BIT
              NZ,L198A
       JR
                             ; forward, if not, to F-HD-3
             20H
       RST
                             ; Shadow Error Restart
       DEFB $16
                             ; 'Wrong file type'
; ---
;; F-HD-3
L198A: PUSH
              IX
                             ; transfer the channel base address
       POP
              _{
m HL}
                             ; to the HL register pair.
              DE, $0052
                             ; offset to CHDATA
                             ; add to address start of data.
       ADD
              HL,DE
              DE, $5CE6
                             ; set destination to nine system variables
                             ; starting at location HD 00.
             BC,$0009
       LD
                             ; nine bytes to copy.
       LDIR
                              ; block move to HD 00 - HD 11.
       RET
                              ; return.
; -----
; THE 'LOAD OR VERIFY BLOCK FROM MICRODRIVE' ROUTINE
; -----
   This subroutine is called once only from LV-ANY to load a block of code,
   previously SAVED to a number of sectors, from microdrive.
   At this stage a temporary channel has already been created and it holds
   the first 512 byte record containing at the start the nine header bytes.
   There will be an accurate microdrive map for the drive which has its
   motor running.
   The block could be a program, code bytes or an array and the first
   receiving location is in HL and the length in DE.
;; LV-MCH
L199A: LD
              ($5CE9), HL ; save start in system variable HD_0D
; now directly read the header values at the start of the data buffer.
       LD
              E, (IX+$53) ; directly read the saved length
              D, (IX+$54)
                             ; from the data buffer into DE.
   now calculate how many 512 byte microdrive records need to be read in
   by taking the total minus one to ensure an EOF record.
   1023 bytes = 1014 bytes + 9 header - 1 = $03FE, SRL=$01, INC=$02 sectors
   1024 bytes = 1015 bytes + 9 header - 1 = \$03FF, SRL=\$01, INC=\$02 sectors
   1025 bytes = 1016 bytes + 9 header - 1 = $0400, SRL=$02, INC=$03 sectors
             HL,$0008
                           ; add eight in effect +9 for header -1.
       LD
       ADD
              HL, DE
                              ; add the program/code length.
   the MSB is the number of 256 chunks.
       SRL
              Н
                              ; shift right to halve and give 512 byte
       INC
                              ; increment to include the extra sector.
```

```
($5CE7),A
                              ; in the temporary system variable HD OB
   the microdrive map is now saved on the machine stack, for later recall,
    and at the same time the current map locations are all set to zero.
    The new map is to be used for records rather than sectors.
        CALL
               L1A04
                                ; routine SA-MAP saves the thirty two bytes
                                ; of the map on the machine stack safely
                                ; dipping into the 80 bytes of spare memory.
   now, since this is record zero, subtract the nine header bytes from the
   current record length and put back.
                DE, $0009
        LD
               L, (IX+$45)
        LD
                               ; RECLEN lo
               H, (IX+$46)
                               ; RECLEN hi
                               ; clear carry
        OR
               HL,DE
        SBC
               (IX+$45), L
                               ; RECLEN lo
       LD
               (IX+$46),H
                              ; RECLEN hi
        LD
;
        PUSH
                                ; transfer the channel base address
               ΤX
        POP
                                ; to the HL register pair.
               HT.
               DE,$005B
                               ; prepare offset $0052 to data and then an
        T.D
                                ; extra nine bytes. Add to skip the header.
               HL, DE
        ADD
               DE, ($5CE9)
                               ; set destination from HD 0D
        LD
                                ; forward to LOOK-MAP to enter the record
        JR
               L19EA
                                ; loading loop at the mid-point as record
                                ; zero is already in the channel.
; ---
   The record loading loop loads records in random order. Consider that
  multiple copies of a filename may have been saved so there may be several
   sectors with the same record number.
;; USE-REC
L19D0: CALL L1A5D
                                ; routine F-REC2 fetches only a header and
                                ; record that matches the name specified
                                ; in CHNAME and only if the map bit is reset
                                ; indicating no sector with this record number
                                ; has already been loaded.
        LD
               A_{r}(IX+$44)
                               ; re-fetch record number from RECNUM.
; Note. the next test is a nonsense as a record zero has already been marked
; so no sector with record zero could be reloaded.
        OR
                               ; test for a record zero.
               Z,L19D0
                                ; back, if so, to USE-REC.
        ιTR
; now calculate the destination if this 512 byte sector.
```

; use accumulator to store record count

А,Н

LD

```
; decrement to adjust for nine bytes of header.
       DEC
              Α
       LD
                              ; place in MSB of offset
              D,A
       LD
               E,$F7
                             ; set LSB of offset to $00 - $09 for header.
              HL, ($5CE9)
                             ; fetch start of data from HD OD
       T.D
       ADD
                             ; add to calculate destination for this sector.
              HL,DE
                             ; transfer destination to DE.
       EΧ
              DE,HL
       PUSH
              ΤX
                             ; transfer the channel base address
       POP
                             ; to the HL register pair.
               BC,$0052
                             ; prepare offset to start of 512 byte buffer
       LD
                              ; add so that HL addresses start of data.
       ADD
              HL,BC
; -> The mid loop entry point.
;; LOOK-MAP
L19EA: EXX
                              ; preserve HL and DE by using alternate
                              ; registers.
              L13BF
                              ; routine CHK-MAP-2 sets HL to the map byte
       CALL
                              ; and B to the mask.
; Note. the routine also resets the zero flag if this record has previously
; been loaded but this is not possible.
              NZ,L19D0
                             ; back, if already loaded, to USE-REC.
       JR
  since this is the first time for this record mark so that not loaded again.
              A, (HL)
                             ; mark the record bit
       T.D
                              ; by setting it so that it is not
       \cap R
                              ; considered for loading again.
       LD
               (HL), A
                              ; restore HL (source) and DE (destination).
       EXX
                              ; routine LD-VE-M loads or verifies a
       CALL
              L1A39
                              ; data record.
  now decrement the record count which is beyond reach of IY register.
              A, ($5CE7)
                             ; fetch count of records to be loaded HD OB
       DEC
                              ; decrement
              ($5CE7),A
                              ; and place back in system variable HD OB
              NZ,L19D0
                             ; back, if not finished to USE-REC
   the block is loaded
       CALL L1A1E
                              ; routine RE-MAP restores the true microdrive
                              ; map from the stack.
       RET
                              ; return.
; -----
; THE 'SAVE MICRODRIVE MAP CONTENTS' ROUTINE
; -----
  This routine saves the sector-mapped microdrive map on the machine stack
   at the same time setting each of the 32 vacated locations to zero.
```

RLA

;; SA-MAP

; double recnum to give 512 byte chunks

```
L1A04: POP HL
LD ($5
                                ; drop the return address into HL
               ($5CC9), HL; and save in unused system variable SECTOR
              L, (IX+$1A)
                               ; fetch address of microdrive map from CHMAP
               H, (IX+$1B)
                               ; fetch address of microdrive map from CHMAP
        T.D
                BC, $1000
        LD
                               ; set word counter B to sixteen and C to zero.
; now enter a loop stacking two bytes at a time.
;; SA-MAP-LP
                               ; fetch first byte to E.
; set location to zero.
L1A11: LD E, (HL)
               (HL),C
       LD
              HL
D,(HL)
                               ; bump address.
        INC
                            ; fetch second byte to D. ; set location to zero.
        LD
               (HL),C
        LD
        INC
              _{
m HL}
                               ; bump address.
        PUSH DE
                                ; save DE on machine stack.
        DJNZ
               L1A11
                                ; back, for 16 pairs, to SA-MAP-LP
              HL, ($5CC9)
                               ; restore return address from SECTOR
               (HL)
                                ; and jump to location.
; -----
; THE 'RESTORE MICRODRIVE MAP CONTENTS' ROUTINE
; -----
   This routine is the opposite of the above and restores the sector-mapped
  microdrive map from the machine stack back to its original location
  overwriting the now redundant record-indicating map.
;; RE-MAP
L1A1E: POP HL
                                 ; drop the subroutine return address.
       LD
               ($5CC9),HL
                                ; store in the multi-purpose variable SECTOR.
               L, (IX+$1A) ; fetch address of microdrive map from CHMAP.
H, (IX+$1B) ; fetch address of microdrive map from CHMAP.
DE,$001F ; thirty one locations are added.
HL, DE ; to address the last location.

Color of the pop counter to sixteen.
        T<sub>1</sub>D
        LD
        ADD
               B,$10
        _{
m LD}
                                ; set the pop counter to sixteen.
;; RE-MAP-LP
L1A2E: POP
                                ; pop two bytes of the map from the stack.
                             ; insert a map byte.
               (HL),D
        LD
                               ; decrement the address.
        DEC
              _{
m HL}
               нь
(HL),Е
                             ; insert second map byte.
        T<sub>1</sub>D
                HL
                                ; decrement the address again.
        DEC
        DJNZ
               L1A2E
                                ; back, sixteen times, to RE-MAP-LP.
           HL, ($5CC9) ; restore the return address from SECTOR.
        JP
               (HL)
                                ; and jump to address.
; -----
; THE 'LD-VE-M' ROUTINE
   The Load or Verify from Microdrive routine.
  This routine loads or verifies up to 512 bytes of data currently in the
  microdrive channel data buffer.
;; LD-VE-M
L1A39: LD C, (IX+$45) ; RECLEN_lo
LD B, (IX+$46) ; RECLEN_hi
```

```
; now test if a VERIFY operation by performing the equivalent of bit 7, (iy+$7c)
                             ; load system variable FLAGS 3 to accumulator.
       LD
              A, ($5CB6)
              7,A
       BIT
                             ; test FLAGS 3 value - performing VERIFY ?
          NZ,L1A49
                             ; forward, if so, to VE-M-E
       ıTR
 the operation is a LOAD.
       LDIR
                             ; block copy the bytes.
       RET
                              ; return.
; ---
; the operation is a VERIFY.
;; VE-M-E
                            ; fetch a byte from the destination.
L1A49: LD
             A, (DE)
                             ; compare to that of source
       CP
              (HL)
                           ; forward, with mismatch, to VE-FAIL
             NZ,L1A55
                             ; increment source address.
       INC
                             ; increment destination address.
       INC
                             ; decrement byte count.
       DEC
                             ; test for
       LD
              A,B
                             ; zero.
              С
       OR
             NZ,L1A49
                             ; back, if not, to VE-M-E
       JR
       RET
                             ; return.
; ---
;; VE-FAIL
                            ; Shadow Error Restart
L1A55: RST
              20H
       DEFB
                             ; 'Verification has failed'
              $15
; THE 'FETCH RECORD FROM MICRODRIVE' ROUTINE
; ------
   Entered at F-REC2,
   Note. the first entry point f-rec1 is unused.
;; f-rec1
L1A57: LD
             A, (IX+$19) ; fetch drive number.
      CALL
              L1532
                             ; routine SEL-DRIVE starts motor.
; -->
              BC, $04FB ; Set sector counter to 5 * 255 = 1275 ($5CC9), BC ; Update System Variable 7
;; F-REC2
L1A5D: LD BC,$04FB
      LD
;; UNTILFIVE
L1A64: CALL L1280
                             ; routine G-HD-RC fetches the next header and
                              ; matching record to pass tape head.
       JR
             C,L1A7B
                             ; forward, with name mismatch, to F-ERROR
                             ; forward, with unused record, to F-ERROR
       JR
              Z,L1A7B
                             ; routine CHK-MAP-2 checks RECORD.
       CALL
              L13BF
             NZ,L1A7B
                             ; forward, if already loaded, to F-ERROR
```

```
PUSH IX
POP HL
                          ; transfer the channel base address
                            ; to the HL register pair.
           DE,$0052
HL,DE
+1428
       LD
       ADD
       CALL L142B
                           ; routine CHKS-BUFF
       RET
;; F-ERROR
L1A7B: CALL L13F7 ; routine DEC-SECT JR NZ,L1A64 ; back to UNTILFIVE
                           ; back to UNTILFIVE
       RST
            20H
                            ; Shadow Error Restart
       DEFB $11
                           ; File not found
; -----
; THE 'RESTORE ADDRESS OF FILENAME' ROUTINE
; -----
   This subroutine performs a similar function to the Main ROM POINTERS routine
  by adjusting the extra system variables that point to filenames within
   the sliding, dynamic areas.
  On entry HL points to the start of the New Room and BC holds the number of
  bytes created.
;; REST-N-AD
L1A82: PUSH HL
                            ; Preserve HL throughout.
       PUSH HL
                            ; Preserve HL for second call.
            DE, ($5CE4) ; Fetch D STR2 - start of 2nd filename.
       CALL L1A9D
                            ; routine TST-PLACE may adjust fetched value.
              ($5CE4),DE
                            ; Store in System Variable D_STR2
       LD
       POP
             HT.
                            ; Restore HL for second call.
             DE,($5CDC)
                           ; Fetch D STR1 - start of 1st filename.
       T.D
       CALL
              L1A9D
                            ; routine TST-PLACE
              ($5CDC),DE
                            ; Store in System Variable D STR1
       POP
                            ; Restore original HL value.
                            ; return.
; THE 'TEST PLACE' SUBROUTINE
; -----
  This subroutine is used twice from above to test if the filename address
  is within the Spectrum's dynamic RAM area.
  HL = location before new room.
  DE = address of filename.
  BC = amount of room just created.
;; TST-PLACE
L1A9D: SCF
                            ; adjust for one before.
       SBC HL, DE
                            ; subtract filename address from start of room
       RET
             NC
                            ; and if before new room then return.
       LD HL, ($5C65)
SBC HL, DE
                           ; fetch STKEND and if the filename is above
                           ; then it is not in dynamic memory.
       RET
            С
```

```
EX DE,HL ; add the number of bytes created ADD HL,BC ; to the filename address EX DE,HL ; to bring it into line.
        RET
                               ; return.
; -----
; THE 'CALLS TO THE COMMANDS' ROUTINE
; -----
;; ERASE-RUN
L1AAB: CALL L1D79 ; routine ERASE JR L1AC9 ; forward to ENDC
; ---
;; MOVE-RUN
L1AB0: CALL L17F5 ; routine MOVE JR L1AC9 ; forward to ENDC
; ---
;; CAT-RUN
L1AB5: CALL L1C52 ; routine CAT

JR L1AC9 ; forward to ENDC
; ---
;; FOR-RUN
L1ABA: CALL L1B5D ; routine FORMAT JR L1AC9 ; forward to ENDC
; ---
;; OP-RUN
L1ABF: CALL L1ACC ; routine OP-M-STRM JR L1AC9 ; forward to ENDC
; ---
;; SAVE-RUN
L1AC4: CALL L18CB ; routine SA-DRIVE JR L1AC9 ; forward to ENDC
; ---
;; ENDC
L1AC9: JP L05C1
                               ; jump to END1
; -----
; THE 'OPEN A PERMANENT "M" CHANNEL' ROUTINE
; -----
;; OP-M-STRM
L1ACC: LD A, ($5CD8) ; sv D_STR1
ADD A, A ;
LD HL, $5C16 ; sv STRMS_00
       LD E,A
LD D,$00
ADD HL,DE
        PUSH HL
```

```
CALL L1B05
                             ; routine OP-TEMP-M creates a temporary
                             ; microdrive channel, starts motor, and
                             ; fetches record zero of named file.
       BIT 0, (IX+$18)
                            ; CHFLAG
             Z,L1AE9
                             ; forward to MAKE-PERM
       JR
       ΤN
            A, ($EF)
             $01
                            ; isolate write prot.
       AND
                          ; forward to MAKE-PERM
       JR
              NZ,L1AE9
             20H
       RST
                            ; Shadow Error Restart
       DEFB $0E
                            ; Drive 'write' protected
; ---
;; MAKE-PERM
L1AE9: RES 7, (IX+$04) ; channel letter
       XOR A
CALL L1532
                            ; routine SEL-DRIVE
       BIT 0,(IX+$18)
JR NZ,L1AFF
                            ; CHFLAG
                            ; forward to STORE-DSP
       BIT
             2, (IX+$43)
                            ; RECFLG
             Z,L1AFF
                             ; forward to STORE-DSP
       JR
       RST
             20H
                             ; Shadow Error Restart
       DEFB $16
                             ; Wrong file type
; ---
;; STORE-DSP
L1AFF: EX
             DE,HL
       POP
             _{
m HL}
              (HL),E
       LD
                             ;
       INC
LD
             _{
m HL}
                             ;
              (HL),D
       RET
; THE 'OPEN A TEMPORARY "M" CHANNEL' ROUTINE
; ------
; (Hook Code: $22)
;; OP-TEMP-M
L1B05: CALL L10A5
                             ; routine SET-T-MCH creates a temporary channel
                             ; using either an existing microdrive map from
                             ; a channel also using this drive or allocating
                             ; a new one initialized to $FF bytes.
                             ; fields CHREC etc. are set to zero.
       PUSH HL
                             ; preserve the offset to this channel from CHANS
             A, (IX+$19)
                            ; fetch drive number 1 - 8 from CHDRIV
       LD
       CALL L1532
                             ; routine SEL-DRIVE starts motor and disables
                             ; interrupts.
              BC, $0032 ; now set temporary unused ($5CC9), BC ; system wariable of
             BC, $0032
       T-D
                            ; system variable SECTOR lo to fifty
       LD
                             ; and set SECTOR hi to zero.
```

; now enter a loop

```
L1B16: CALL L1280
                               ; routine G-HD-RC fetches any header and
                               ; matching record
       PUSH
             AF
                               ; preserve return status flags.
; maintain the 'maximum sectors to visit' so only one rotation of tape occurs.
       T.D
               A, (IX+$29)
                              ; fetch sector from HDNUMB
                              ; add 3
       ADD
               A,$03
               HL,$5CC9
       LD
                              ; address current (max+3) in SECTOR lo
       CP
               (HL)
                              ; compare
               C,L1B26
                              ; forward, if less, to OP-F-X
       JR
       LD
              (HL), A
                              ; update with new max sectors to visit.
;; OP-F-X
L1B26: POP
              AF
                              ; restore status flags.
               C,L1B49
                              ; forward, with no name match, to OP-F-4
       JR
               Z,L1B46
                               ; forward, if unused, to OP-F-3
       JR
                               ; to reset map bit.
; the fetched record is one from the file named in CHNAME
       RES
               0, (IX + $18)
                              ; update CHFLAG to indicate success.
               A, (IX+$44)
                              ; fetch the record number within file RECNUM
       LD
                               ; test for zero - first record.
       OR
               NZ,L1B41
                               ; forward, if not, to OP-F-2
       ιTR
       PUSH
               ΤX
                              ; transfer the channel base address
       POP
                               ; to the HL register pair.
               _{\mathrm{HL}}
               DE, $0052
                              ; prepare offset to data and
       LD
                               ; add to address start of the 512 byte buffer
       ADD
               HL, DE
       CALL
                              ; routine CHKS-BUFF checks that checksum agrees.
               L142B
               Z,L1B5B
                              ; forward, if OK, to DP-F-5
;; OP-F-2
L1B41: CALL L1258
                               ; routine GET-R-2 repeatedly calls the
                               ; subroutine G-HD-RC (as at start of loop)
                               ; until the validated record matching CHREC
                               ; (zero) is loaded.
       JR
             L1B5B
                              ; forward, with success, to DP-F-5.
; ---
;; OP-F-3
L1B46: CALL L13E3
                              ; routine RES-B-MAP resets bit for unused
                               ; sectors.
; the branch was here
;; OP-F-4
L1B49: LD
              HL,$5CCA
                              ; address visited sector count SECTOR hi
                              ; fetch sector counter.
       T,D
               A, (HL)
       INC
               Α
                              ; increment
                             ; and put back in SECTOR hi.
       LD
               (HL),A
       DEC
                              ; address the max sector value.
```

;; OP-F-L

```
(HL)
                             ; compare.
             C,L1B16
                            ; back, if less than one revolution, to OP-F-L
; else a full revolution occurred without finding the record.
              1, (IX+$43) ; RECFLG
2, (IX+$43) ; RECFLG
       RES
                            ; RECFLG
       RES
              2, (IX+$43)
; the branch was here with record zero of named file.
;; DP-F-5
L1B5B: POP HL
                            ; restore the offset from CHANS.
       RET
                             ; return.
; -----
; THE 'FORMAT "M" COMMAND' ROUTINE
; -----
; e.g. FORMAT "m";1; "demos"
;; FORMAT
L1B5D: CALL L10A5
                             ; routine SET-T-MCH creates a temporary
                             ; microdrive channel with name of cartridge.
                             ; fetch drive number from CHDRIV
             A, (IX+$19)
       CALL
             L1565
                             ; routine SW-MOTOR starts the motor.
             BC,$32C8
                            ; decimal 1300
       LD
       CALL
                             ; routine DELAY-BC
             L1652
       DТ
                             ; Disable Interrupts.
              A, ($EF)
                             ; read microdrive port.
       ΙN
       AND
                             ; isolate write prot. bit.
              $01
              NZ,L1B75
                             ; forward, if not low, to FORMAT-1
       JR
       RST
              20H
                             ; Shadow Error Restart
       DEFB
                             ; Drive 'write' protected
              $0E
; ---
;; FORMAT-1
              ($EF),A
            A,$E6
                            ; enable writing.
L1B75: LD
       OUT
                             ; update microdrive port.
              BC, $00FF
                             ; assume 255 sectors will fit on a tape.
              ($5CC9),BC
                             ; set system variable SECTOR.
       PUSH
              ΙX
                             ; transfer the channel base address
              _{
m HL}
                             ; to the HL register pair.
       POP
             DE, $002C
       LD
                            ; offset to HDNAME
       ADD
             HL,DE
             DE, HL
       EΧ
                             ; make destination HDNAME
             HL, $FFE2
       LD
       ADD
              HL,DE
                             ; make source CHNAME
             BC,$000A
       T<sub>1</sub>D
                             ; ten bytes to copy.
       LDIR
                              ; copy - C is now zero.
; now prepare an 'unusable' record.
       XOR
             Α
                            ; make accumulator zero.
```

```
0, (IX+$28)
                               ; mark HDFLAG indicate a header.
        SET
                               ; mark RECFLG indicate a record.
        RES
               0, (IX + $43)
        SET
               1, (IX+$43)
                               ; mark RECFLG indicate an EOF record.
        PUSH
                                ; transfer the channel base address
               ΤX
        POP
               DE
                                ; to the DE register pair for a change.
        T.D
               HL,$0043
                               ; offset to RECFLG - start of record descriptor.
        ADD
               HL,DE
                                ; add offset to start of record descriptor.
               L1426
                                ; routine CHKS-HD-R inserts 14 byte checksum.
        CALL
   Now enter a loop to write the blocks to the cartridge
;; WR-F-TEST
                                ; routine DEC-SECT decrements sector originally
L1BAB: CALL
               L13F7
                                ; set to $FF
               Z,L1BDF
                                ; forward, if BC is zero, to TEST-SCT ->
        JR
               (IX+$29), C
                               ; insert reduced sector number in HDNUMB
        PUSH
                                ; transfer the base channel address
                                ; to the HL register pair.
        POP
        LD
                DE,L0028
                               ; offset to the header
        ADD
               HL,DE
                                ; add to address HDFLAG.
               L1426
                                ; routine CHKS-HD-R inserts 14 byte checksum
        CALL
                                ; preserving the HL value.
                                ; subtract twelve
        T.D
               DE, $FFF4
                                ; to address the header PREAMBLE.
        ADD
               HL,DE
       CALL
               L15AD
                                ; routine OUT-M-HD writes the header to tape.
               BC, $01B2
                               ; set timer for gap - 434 decimal.
        T<sub>1</sub>D
                                ; routine DELAY-BC
        CALL
               L1652
        PUSH
                               ; transfer start of channel
        POP
                                ; to HL register pair.
               DE,$0037
                               ; adjust HL to point to PREAMBLE at
                                ; start of record descriptor.
        ADD
               HL,DE
        CALL
               L16AF
                                ; routine WR-BLK writes record to tape.
               BC,$0100
                               ; a short delay.
        CALL
               L1652
                                ; routine DELAY-BC
        CALL
               L163E
                               ; routine TEST-BRK
        ιJR
               L1BAB
                               ; loop back to WR-F-TEST for sectors 254 - 1.
; ---
; -> the branch was to here when all sectors from 254 down to 1 have been
    written.
;; TEST-SCT
L1BDF: LD
                               ; use value 35 decimal.
              BC,$0087
                               ; routine DELAY-BC
               L1652
       CALL
        LD
               A,$EE
                               ; signal disable writing.
```

(IX+\$47),A ; set first character of RECNAM to zero.

LD

```
OUT
              ($EF),A
                        ; output to microdrive port.
       T<sub>1</sub>D
                              ; select drive number from CHDRIV.
               A, (IX+$19)
                              ; routine SEL-DRIVE.
       CALL
               L1532
       LD
               BC, $0032
                              ; set max sector to fifty, read sectors to zero.
              ($5CC9),BC
                              ; insert both values in SECTOR
       T.D
;; CHK-SCT
L1BF6: CALL L13A9
                              ; routine GET-M-HD2 reads the next valid header
                              ; to pass the tape head.
                             ; fetch the unique sector number from HDNUMB
               A_{r}(IX+$29)
       LD
              A,$03
                              ; add three to value.
       ADD
               HL,$5CC9
                             ; address system variable SECTOR
       LD
       CР
               (HL)
                              ; and compare to total of sectors to visit.
               C, L1C05
                              ; forward if less to CHK-SCT2
       JR
       LD
              (HL),A
                              ; else insert new value for sectors to visit.
;; CHK-SCT2
L1C05: CALL
               L13C4
                              ; routine CHECK-MAP checks if sector is free
                               ; on the microdrive map.
               Z,L1C1E
                              ; forward, if so, to CHK-NSECT
       PUSH
                              ; transfer channel base address
       POP
                              ; to the HL register pair.
               DE, $0043
                              ; offset to the start of record descriptor.
       LD
       ADD
               HL, DE
                              ; add to address RECFLG.
                              ; routine READ-BLK reads in a block.
       CAT.T.
               L165A
                              ; forward, with bad read, to CHK-NSECT
       .TR
              NZ,L1C1E
                               ; leaving map bit set.
               L1426
       CALL
                               ; routine CHKS-HD-R check the header checksum
               NZ,L1C1E
                              ; forward, with error, to CHK-NSECT
       JR
                               ; routine RES-B-MAP resets the map bit marking
       CALL
              L13E3
                               ; the sector as usable.
;; CHK-NSECT
               HL,$5CCA
                            ; address SECTOR_hi the visited sector counter.
L1C1E: LD
               A, (HL)
       LD
                              ; fetch the value.
                              ; increment
       INC
       T<sub>1</sub>D
               (HL),A
                              ; and place back.
                              ; decrement to address max sectors to visit.
       DEC
               (HL)
                             ; compare counter to limit.
       CР
               C,L1BF6
       JR
                              ; back, if counter is less, to CHK-SCT
                          ; load L from CHMAP lo
       T_1D
               L, (IX+$1A)
       T<sub>1</sub>D
               H, (IX+$1B)
                              ; load H from CHMAP hi
   Register HL now addresses the microdrive maps which at this stage have
   sectors 0 and 255 marked as unusable. If as is usual, the lower numbered
```

; sectors 0 and 255 marked as unusable. If as is usual, the lower numbered sectors have overwritten the higher numbered sectors then typically ; the top seventy sectors, or so, will be marked as unusable though not on an emulated machine which at this stage will only have 0 and 255 marked unusable. On a real machine the splice will show up as an unusable sector and there may be some other sectors unusable due to dirt on the recording ; film.

; What happens next is unique to this ROM and is no doubt due to extensive testing and analysis of the microdrives by Sinclair Research.

```
Microdrive sectors are encountered in descending order, as they are
   written, and the following routine marks any sector following a bad sector
   as bad also. One can conclude that Sinclair Research's test programme revealed that the first sectors to fail were those adjacent to contaminated
   or damaged sectors.
    This perhaps explains why my use of the microdrives with ROM 2 has been
   more reliable than early reviews, no doubt with ROM 1, suggested.
        T<sub>1</sub>D
                DE, $001F
                                ; add thirty one to start at the end of the map
        ADD
                HL,DE
                                ; - the byte that refers to sector 255.
        LD
                B,$20
                                ; count the thirty two bytes of a map.
        SCF
                                 ; set carry flag to ensure that sector 255
                                 ; is unusable - but it is already marked so ??
;; PREP-MARK
L1C35: LD
                A, (HL)
                                ; fetch a byte representing eight sectors.
        LD
               C,A
                                ; and store it in C - Note. unnecessary.
                                ; rotate right accumulator C->76543210->C
        RRA
                                ; combine with original value. Why not OR (HL) ?
        OR
                                ; store the modified byte back in the map.
        LD
                (HL),A
        DEC
                                ; point to the next byte for lower-numbered
                _{\rm HL}
                                 ; sectors.
L1C3B: DJNZ
               L1C35
                                ; loop back to PREP-MARK for all 32 map bytes.
   Note. the above routine is untidy. There is no need to set the carry flag
   and no need to store the original value in C. While it achieves it's aims,
    if sector one is bad it has no effect on the next sector to be encountered.
   That would be hard to implement but the first sector that is marked bad,
   the highest numbered sector, is marked so solely because it is adjacent to
   the overwritten section.
   Note. from details of addresses Andrew Pennell gave in the magazine "Your
   Sinclair" it can be deduced that the unpublished ROM 3 had two extra
   instruction bytes at this point and together with a cleanup, this may have
    addressed the above issue.
   Now prepare to overwrite the unusable sectors (which are mapped as usable)
   with record descriptors which are usable.
                                 ; routine IN-CHK marks the channel record
        CALL L1E49
                                 ; descriptor fields as usable by blanking
                                 ; both RECFLG and RECLEN and then inserting
                                 ; the descriptor checksum.
; A loop is now entered to write usable datablocks to every sector indicated
   as usable in the microdrive map.
;; MARK-FREE
L1C40: CALL
                L1349
                                 ; routine CHK-FULL checks if there is still a
                                 ; usable sector on the cartridge.
        JR
                NZ,L1C4D
                                 ; forward, if so, to MK-BLK.
   The FORMAT operation is now complete.
        XOR
                                ; select no motor
        CALL L1532
                                ; routine SEL-DRIVE stops the microdrive motor.
```

```
CALL L119F
                              ; routine DEL-M-BUF deletes the microdrive
                               ; buffer and the microdrive map.
       RET
                                                                 >>>>>>
                              ; return.
; ---
;; MK-BLK
L1C4D: CALL L135A
                               ; routine SEND-BLK writes block to microdrive
                               ; cartridge as indicated by the microdrive map
                               ; which is then updated by the routine.
              L1C40
        JR
                              ; loop back to MARK-FREE
; -----
; THE 'CAT COMMAND' ROUTINE
; -----
;; CAT
L1C52: LD
              A, ($5CD8)
                              ; fetch output stream from S STR1
       RST
              10H
                              ; CALBAS
       DEFW $1601
                              ; main CHAN-OPEN
       CALL
              L10A5
                              ; routine SET-T-MCH sets a temporary channel.
              A, (IX+$19)
                              ; fetch drive number from CHDRIV.
       LD
                               ; routine SEL-DRIVE starts the motor.
       CALL
               L1532
                               ; set maximum sector to 50 and initialize
       LD
               BC, $0032
                               ; value of sectors read to zero.
               ($5CC9),BC
                               ; update system variable SECTOR
       LD
   On the original Interface 1 ROM operations like CAT and ERASE were quite
;
    slow as the routines assumed the theoretical maximum number of sectors was
    256. In reality, the maximum number of sectors on a microdrive is
   approximately 180, so the original routines spent the last 3 seconds
   reading about 75 sectors for the second time. The improved algorithm above
   is to keep a record of the maximum sector + 3 and when the number of
   visited sectors is equal to this number then a complete revolution of the
   tape has been made and the operation can cease. The overhead of three is
   to ensure that bad sectors or the tape splice do not cause the operation to
   end prematurely.
;
   Happily, this algorithm also works with emulators which usually provide the
;
   full 256 sectors.
;; CAT-LP
L1C68: CALL L13A9
                              ; routine GET-M-HD2 reads in 14 byte header.
       T<sub>1</sub>D
              A, (IX+$29)
                              ; fetch value of sector from HDNUMB
       ADD
               A,$03
                              ; add 3 to value.
               HL,$5CC9
                              ; address system variable SECTOR lo
       T.D
               (HL)
                              ; compare to contents
       CP
               C, L1C77
                              ; forward if A is less to CAT-LP-E
        JR
                              ; else update SECTOR lo with higher value.
       T<sub>1</sub>D
              (HL), A
;; CAT-LP-E
L1C77: CALL L1E5E
                              ; routine G-RDES loads only a
                               ; 14 byte record descriptor.
```

```
; a record can be considered in use if either the RECLEN is maximum $0200 or
; the RECFLG indicates that it is the seldom full EOF record.
               A, (IX+$43)
        LD
                               ; RECFLG
               (IX + $46)
        ΩR
                               ; RECLEN hi
               $02
        AND
               NZ,L1C8B
                               ; forward, if used, to IN-NAME
        JR
; else mark sector free in microdrive map and find next sector.
               L13E3
                               ; routine RES-B-MAP
       CALL
              L1CF4
                               ; forward to F-N-SCT
        JR
; a name is to be inserted in the 512 byte data buffer workspace, if it is not
; there already. Secret files are not listed.
;; IN-NAME
L1C8B: LD
               A_{r}(IX+$47)
                              ; take first character of RECNAM
                               ; test for zero.
               Z,L1CF4
                               ; forward, if CHR$ 0, to F-N-SCT
       JR
       PUSH
                               ; transfer base address
               ΤX
       POP
                               ; to HL register.
               DE, $0052
                              ; offset to start of data buffer.
       LD
               HL,DE
                               ; add to address names.
       ADD
               DE, $000A
                               ; set DE to ten, the length of a name.
       LD
                               ; set high byte to zero.
       LD
               B,$00
                               ; fetch name total from CHREC initially zero.
               C, (IX+$0D)
       T<sub>1</sub>D
;; SE-NAME
L1CA0: LD
               A,C
                               ; test name count for zero
       OR
               Z,L1CDA
                               ; forward, with first name, to INS-NAME
        JR
                               ; save buffer address.
       PUSH
               HT.
                               ; save channel base address.
       PUSH
               ΤX
       PUSH
               BC
                               ; save name total.
              B,$0A
                               ; set character counter to ten.
;; T-NA-1
                              ; take letter of buffered name.
L1CAA: LD
               A, (HL)
               (IX+$47)
                              ; compare to that in RECNAM
       CР
               NZ,L1CB5
                              ; forward, with mismatch, to T-NA-2
                              ; increment
       INC
               HL
                              ; both pointers.
       INC
               IX
       DJNZ
               L1CAA
                               ; back, for all ten, to T-NA-1
;; T-NA-2
L1CB5: POP
               ВC
                               ; restore
       POP
               ΙX
                               ; all
       POP
               _{
m HL}
                               ; pointers.
; if all ten characters match then find next sector.
        JR
               Z,L1CF4 ; forward to F-N-SCT
; if buffered name is higher than new name then re-order to create a slot.
```

NZ,L1C68; back, with error or mismatch, to CAT-LP

```
NC,L1CC1 ; forward to ORD-NAM
; else add ten to buffer address and compare with following name performing
; a simple insert if the end of the list is reached.
       ADD
              HL,DE
                            ; add ten to address.
       DEC
              C
                             ; decrement name counter.
              L1CA0
       JR
                           ; back to SE-NAME
; ---
;; ORD-NAM
L1CC1: PUSH HL
                            ; save pointer to start of name slot.
       PUSH DE
                            ; save the value ten.
       PUSH BC
                             ; save the buffered name counter.
       PUSH HL
                            ; save address of name slot again.
       SLA
             С
                            ; double name count.
             H,B
                            ; set H to zero.
             L,C
                             ; HL = 2 * count
             HL,BC
                             ; HL = 4 * count
       ADD
             HL,BC
                             ; HL = 6 * count
                                                   Note. add hl, hl doubles.
       ADD
                                                  c.f. Main ROM
             HL,BC
                            ; HL = 8 * count
       ADD
             HL,BC
                             ; HL = 10 * count
       ADD
       LD
             B,H
                             ; transfer number of bytes
                             ; to be moved to BC register.
       LD
              C,L
       POP
                             ; restore address of insertion point.
             HT.
       DEC
              HT.
                             ; decrement and then add
              HL,BC
       ADD
                             ; bytes to be moved to point to end of block.
       EΧ
              DE, HL
                             ; now make DE
                             ; the destination
              HL, DE
       ADD
              DE,HL
                             ; ten bytes higher.
       EΧ
       LDDR
                             ; slide the block of higher names upwards.
       POP
              BC
                             ; restore name count.
       POP
              DE
                             ; restore ten value.
       POP
              _{
m HL}
                             ; restore insertion point.
;; INS-NAME
                          ; save channel base address.
L1CDA: PUSH
              B, $0A
                             ; set character count to ten.
;; MOVE-NA
                            ; fetch a character from new name at RECNAM
             A, (IX + $47)
L1CDE: LD
                             ; insert into buffer.
              (HL),A
       LD
       INC
              IX
                             ; increment both
                             ; pointers.
       INC
              _{
m HL}
       DJNZ
              L1CDE
                             ; loop back to MOVE-NA
       POP
              ΙX
                             ; restore channel base address.
              A, (IX+$0D)
                            ; fetch count of names from CHREC
       LD
       INC
                            ; increment
       LD
              (IX+\$0D),A
                            ; and store back in CHREC
       CP
              $32
                             ; compare to maximum of 50.
              Z,L1CFF
                             ; forward, if buffer filled, to BF-FILLED
       JR
```

```
;; F-N-SCT
L1CF4: LD HL,$5CCA ; sv SECTOR_hi
LD A,(HL) ; fetch actual count of used sectors.
       INC A
LD (HL), A
DEC HL
                          ; and increment.
; update SECTOR_hi
; address system variable SECTOR_lo
              (HL),A
             HL
(HL)
                           ; compare
; jump to CAT-LP
       CP
             C, L1C68
       JΡ
;; BF-FILLED
L1CFF: PUSH IX
       XOR
                             ; clear accumulator
       CALL L1532
                             ; routine SEL-DRIVE stops the motor.
       PUSH IX
                             ; transfer the channel base address
       POP
             _{
m HL}
                             ; to the HL register pair.
       LD
             DE, $002C
                             ; offset to cartridge name HDNAME.
             HL, DE
                             ; add the offset to address the name.
       CALL L1D5B
                              ; routine PRNAME prints name and a carriage
                              ; return.
       LD A,$0D CALL L1D71
                             ; prepare an extra carriage return.
                             ; routine PRCHAR outputs it.
       PUSH
              ΙX
       POP
             _{
m HL}
             DE,$0052 ; offset to CHDATA - the 512 byte data buffer.
       T.D
       ADD
             HL,DE
                              ; add to address list of up to fifty names.
              B, (IX+$0D)
                             ; load B with count of names from CHREC
       LD
              А,В
                              ; test for
       LD
                             ; zero.
       OR
              Α
              Z,L1D27
                             ; forward, if so, to NONAMES
       ιTR
;; OT-NAMS
                           ; routine PRNAME
L1D22: CALL L1D5B DJNZ L1D22
                             ; loop back to OT-NAMS
;; NONAMES
L1D27: CALL L1D43
                             ; routine FREESECT
       LD
           A,E
                             ;
       SRL
              A
                           ; CALBAS
       RST
              10H
              $2D28
       DEFW
                             ; main STACK-A
             A,$0D
       LD
       CALL L1D71
                             ; routine PRCHAR
       RST
              10H
                             ; CALBAS
       DEFW
              $2DE3
                             ; main PRINT-FP
             A,$0D
       LD
       CALL L1D71
                             ; routine PRCHAR
       POP IX
```

```
RET
                              ; return.
; -----
; THE 'FREESECT' ROUTINE
   This routine is called from SAVE and CAT to calculate the number of free
  sectors that are present on a microdrive from the map information.
   The count of free sectors is returned in the E register.
;; FREESECT
             L, (IX+$1A) ; address of microdrive map.
H, (IX+$1B) ; for channel transferred to
L1D43: LD
       LD
                              ; for channel transferred to HL.
       T.D
              E,$00
                              ; initialize sector count to zero.
       LD
              C,$20
                              ; there are thirty two bytes to examine.
;; FR-SC-LP
                              ; fetch a byte from the map.
L1D4D: LD
              A, (HL)
                              ; address next map location.
       INC
       LD
              B,$08
                              ; count eight bits.
;; FR-S-LPB
L1D51: RRA
                               ; rotate right.
              C,L1D55
                               ; forward, with carry, to FR-S-RES.
       JR
       TNC
              E
                              ; increment the free sector count.
;; FR-S-RES
L1D55: DJNZ
              L1D51
                              ; loop back for all eight bits to FR-S-LPB.
                              ; decrement byte count.
       DEC
               NZ,L1D4D
                              ; loop back for thirty two bytes to FR-SC-LP.
        JR
       RET
                               ; return.
; THE 'PRNAME' ROUTINE
   This routine outputs a ten character name, followed by a carriage return,
   and is used by the CAT command to first print the cartridge name and then
;
   the filenames on the cartridge.
;
   Note. For a routine that can output to any stream, it seems straightforward
   until one notices the call to TEMPS at the end. This applies the permanent
   colour screen attributes to the temporary set and has been placed within
;
   the routine as a security measure to ensure that if the cartridge name
;
   or filename contains a string of colour control codes that render filenames
;
   invisible then their effect does not last beyond the current name.
   On the other hand, colour control codes can be used in the cartridge name
   without affecting the cartridge contents display.
;; PRNAME
L1D5B: PUSH BC
                              ; preserve name count.
       T.D
              B,$0A
                              ; ten characters per name.
;; PRNM-LP
L1D5E: LD
              A, (HL)
                              ; fetch a character.
       CALL L1D71
                              ; routine PRCHAR
```

CALL L119F ; routine DEL-M-BUF

```
_{
m HL}
        INC
                              ; point to next character.
              L1D5E
       DJNZ
                              ; loop back for all ten to PRNM-LP
              A,$0D
       T.D
                              ; prepare a carriage return.
              L1D71
                              ; routine PRCHAR
       CALL
       PUSH HI.
                              ; preserve character address.
                              ; CALBAS
       RST
              10H
       DEFW
               $0D4D
                              ; main TEMPS restores temporary colours from
                               ; the permanent colours after each name.
       POP
              _{
m HL}
                              ; restore character address.
       POP
              ВC
                              ; restore name count.
       RET
                              ; return.
; -----
; THE 'PRCHAR' ROUTINE
; -----
   The PRINT CHARACTER routine utilizes the output restart in the main ROM
  which outputs to any stream and so a stream such as the "T" channel
   could be sent output. The IX register has therefore to be preserved.
;; PRCHAR
L1D71: PUSH
              ΙX
                               ; preserve this ad hoc channel address.
              10H
       RST
                               ; CALBAS
       DEFW $0010
                               ; main PRINT-A
              IX
       POP
                              ; restore this channel address.
       RET
                              ; return.
; THE 'ERASE COMMAND' ROUTINE
 _____
; (Hook Code: $24)
   The ERASE command is in two stages and uses the first 32 bytes of the
   otherwise unused data buffer to map out the sectors to be marked clear.
   The first stage performs this mapping and in one revolution of the tape
   it should find all sectors that have the specified name. It should also
   find the EOF record, which all files have, and which contains in the
   RECNUM field the maximum record number. For example with four records the
   numbers will be 0, 1, 2, 3.
   Once the number of marked records equals the max record plus one then the
   second stage can begin which is to mark free all the records.
   There are two circumstances under which the procedure might not be so
   straightforward.
   The first is if the user has pressed BREAK during a previous ERASE
   operation after a few records were marked free.
   The second is if the file has been saved with the System Variable COPIES
   holding a value larger than 1. For example with a value of 5, there will
   be five EOF records and five records with RECNUM equal to zero etc.
   For the first case the command will make five revolutions of the tape
   before marking all found sectors free.
   This may happen in the second case also if more multi records were found
   before the first EOF record was encountered.
   It is more likely that the ERASE command will have to be invoked several
```

;

;

; ;

```
loop. Multiple copy files are usually saved as part of a well-considered
   scheme and are seldom subsequently erased.
;; ERASE
L1D79: CALL L10A5
                               ; routine SET-T-MCH creates a temporary channel
                               ; using either an existing microdrive map from
                               ; a channel also using this drive or allocating
                               ; a new one initialized to $FF bytes.
       T.D
               A, (IX+$19)
                               ; fetch drive number from CHDRIV.
              L1532
                               ; routine SEL-DRIVE starts motor.
       CALL
                              ; read microdrive port.
        ΙN
               A, ($EF)
       AND
               $01
                               ; isolate 'write prot.' bit.
               NZ,L1D8A
                               ; forward, if not zero, to ERASE-1
        JR
             20H
       RST
                               ; Shadow Error Restart
        DEFB $0E
                               ; Drive 'write' protected
;; ERASE-1
L1D8A: PUSH
                               ; transfer address of start of channel.
               ΤX
       POP
                               ; to the HL register.
               DE, $0052
                              ; prepare offset to data buffer.
               HL,DE
                               ; add to address start.
       ADD
   A pseudo microdrive map will also be created within the buffer conserving
   memory. This is initialized to $00 bytes.
        PUSH
                               ; transfer buffer address
               HT.
       POP
                               ; from HL to DE register
               DF.
       INC
               DF.
                               ; and increment address.
               BC, $001F
                              ; set counter to 31 and B to zero.
       LD
       XOR
                               ; set A to zero.
                               ; insert zero in first location.
       T.D
               (HL),A
                               ; copy to other 31 addresses
       LDIR
       LD
               A,$FF
                               ; prepare, as a default, to examine every
sector.
       LD
               (IX+$0D),A
                               ; update CHREC with max record number.
               BC,$04FB
                               ; prepare decimal 1275 (5+ revolutions)
                               ; update system variable SECTOR
               ($5CC9),BC
   Note. if the EOF record is not found, or if the number of found sectors
   doesn't equal the maximum record then 5+ revolutions of the tape will
   occur after which all mapped sectors will be erased. Normally with a
   simple file it's all over in less than two revolutions.
;; ERASE-LP
L1DA7: CALL
               L13F7
                               ; routine DEC-SECT decrements the 1275 counter.
       JR
               Z,L1E03
                               ; forward, if zero, to ERASE-MK
                               ; routine GET-M-HD2 reads the next 14-byte
       CALL L13A9
                               ; header to pass the tape heads.
                               ; routine G-RDES reads the corresponding
       CALL
               L1E5E
                               ; 14-byte record descriptor for this sector.
        JR
               NZ,L1DE5
                              ; forward, with read error, to TST-NUM
```

times to erase the file. It is simpler to issue the command within a

```
at $0200 or if it is the EOF record.
                               ; RECFLG
                A, (IX+$43)
                (IX + $46)
        \cap R
                                ; RECLEN hi
                $02
        AND
                NZ,L1DC3
                                ; forward, if in use, to ERASE-2
        ıTR
                                 ; to consider for erasure.
; the sector is not used so reset the REAL microdrive map bit.
                L13E3
        CALL
                                 ; routine RES-B-MAP resets sector bit on
                                 ; the REAL microdrive map.
        ιJR
                L1DE5
                                ; forward to TST-NUM
; ---
; consider for erasure if filename matches.
;; ERASE-2
L1DC3: PUSH
                                ; transfer channel base address
                ΙX
                                ; to the HL register.
        POP
                DE, $0047
                                ; offset to 10 characters of filename.
        T_1D
                                ; add so HL addresses the start of RECNAM.
        ADD
                HL,DE
                BC, $000A
                                ; ten bytes to compare against required CHNAME.
        LD
                L1403
                                ; routine CHK-NAME
        CALL
                                ; forward, with no match, to TST-NUM
                NZ,L1DE5
        .TR
; the name matches so sector is marked free.
        CALL
               L13EB
                                 ; routine TEST-PMAP obtains address of sector
                                 ; bit in HL and bit mask in B.
                                ; transfer mask to B
                A,B
        T.D
                                ; combine with addressed byte
        OR
                (HL)
        T.D
                (HL), A
                                ; and update setting the sector bit.
                               ; test RECFLG is this an EOF record.
                1, (IX+$43)
        JR
                Z,L1DE5
                                ; forward, if not, to TST-NUM
; All files should have an EOF record and, if this is it, then the endpoint
; can be reduced from $FF to record number plus one as range starts at 1.
        LD
                A, (IX+$44)
                               ; fetch record number from RECNUM
        INC
                Α
                                ; increment as CHREC value starts at one not
                                ; zero.
                                ; update the endpoint CHREC
        LD
                (IX+\$0D), A
;; TST-NUM
                                ; transfer the channel base address
L1DE5: PUSH
                ΤX
       POP
                _{
m HL}
                                ; to the HL register.
                DE, $0052
                               ; add offset to data
        LD
        ADD
                HL, DE
                                ; to address the pseudomap.
                E,$00
                               ; initialize E to zero.
        T.D
        LD
                C,$20
                                ; and C counter to thirty two.
;; LP-P-MAP
L1DF0: LD
                                ; fetch a byte from pseudomap
                A, (HL)
```

now check if sector is in use. Considered it so if next position is

```
INC HL
                              ; and increment the address.
       LD B, $08 ; set bit counter to eight.
;; LP-B-MAP
L1DF4: RRA
                              ; rotate end bit to carry.
       JR NC, L1DF8
                              ; forward, with no carry, to NOINC-C
       INC E
                              ; increment recno
;; NOINC-C
L1DF8: DJNZ L1DF4
                              ; back to LP-B-MAP for all eight bits.
       DEC
                              ; decrement byte counter.
       JR
               NZ,L1DF0
                              ; back to LP-P-MAP for all 32 bytes.
; now E holds the number of records marked for erasure in range 1 to NR.
                              ; fetch records to be erased from CHREC
               A, (IX+$0D)
                              ; compare to records marked for erasure.
       CР
              NZ,L1DA7
                              ; back, if not exact match, to ERASE-LP
   Now the second stage begins. Since the pseudomap has a representation of
   all the records to be erased we can load the headers one by one, and
   rewrite the corresponding records with a clear one in the channel.
   The same record is written after all the appropriate headers. Fields
   like RECNUM only have relevance when the record is in use.
   First prepare a clear record descriptor. The actual data buffer does not
   have to be clear and in fact contains the pseudomap. Note also that the
   checksum for the data need not be calculated but the checksum for the
   record descriptor is required to be accurate.
;; ERASE-MK
L1E03: CALL L1E49
                              ; routine IN-CHK marks the channel record
                              ; descriptor fields as usable by blanking
                              ; both RECFLG and RECLEN and then inserting
                              ; the descriptor checksum.
; now enter a loop for all marked records.
;; ERASE-MK2
L1E06: CALL L13A9
                              ; routine GET-M-HD2 reads the next header
                              ; to pass the tape heads.
       CALL L13EB
                              ; routine TEST-PMAP checks if the sector,
                              ; (in HDNUMB) is marked to be erased in the
                              ; pseudomap.
              Z,L1E31
                              ; forward, if not, to T-OTHER
; this record is marked for erasure.
       PUSH HL
                              ; save pseudomap sector bit address.
       PUSH BC
                              ; save pseudomap bit mask which has one set bit.
             A,$E6
                             ; enable writing.
       LD
       OUT
              ($EF),A
                              ; output to microdrive port.
             BC,$0168
       T.D
                              ; set counter to 360 decimal.
       CALL L1652
                              ; routine DELAY-BC pauses briefly as the
                              ; record now approaches the tape heads.
       PUSH
                             ; transfer channel base address
              IX
       POP
                              ; to the HL register pair.
```

```
ADD
                              ; add to form start of save address.
              HL, DE
                               ; routine OUT-M-BUF rewrites descriptor and
       CALL L15B3
                               ; data buffer. The descriptor is checksummed,
                               ; the data is not.
               A,$EE
                               ; disable writing
       LD
       OUT
               ($EF),A
                              ; output to microdrive port
; now update bit the real microdrive map and the pseudomap.
               L13E3
                               ; routine RES-B-MAP resets appropriate bit
       CALL
                               ; for the now free sector in the REAL
                               ; microdrive map.
       POP
               BC
                               ; restore the pseudomap bit mask.
       POP
              _{
m HL}
                               ; restore the pseudomap sector bit address.
                              ; transfer bitmask to B.
       LD
              A,B
                               ; the set bit is now reset and the other seven
       CPL
                               ; bits are set.
                               ; reset the bit in the pseudomap
       AND
               (HL)
       LD
               (HL),A
                              ; and update.
; now check if there are any more sectors to do.
;; T-OTHER
L1E31: PUSH
                               ; transfer channel base address
               ΙX
       POP
                               ; to the HL register.
               HT.
               DE,$0052
                              ; prepare offset to the pseudomap
                               ; and add to address start of map.
       ADD
               HL,DE
               в,$20
                              ; set byte count to thirty two.
       LD
;; CHK-W-MAP
                              ; fetch a byte representing eight sectors.
L1E3A: LD
               A, (HL)
                              ; test for zero.
       OR
               NZ,L1E06
                               ; back, if a byte is not zero, to ERASE-MK2
       JR
                               ; increment the map address
       INC
               L1E3A
       DJNZ
                               ; loop back to CHK-W-MAP for all 32 bytes.
; at this point all records have been erased and it only remains to clear up.
       XOR
                               ; select no motor
       CALL
               L1532
                               ; routine SEL-DRIVE stops the motor.
       CALL L119F
                               ; routine DEL-M-BUF deletes the adhoc buffer.
       RET
                               ; return.
; -----
; THE 'PREPARE 'FREE SECTOR'' ROUTINE
   The two indicators within the current channel are marked clear and the
  RECORD DESCRIPTOR is checksumed in preparation for writing to each sector
   to be marked free.
;; IN-CHK
       LD A
              A ; clear accumulator A. (IX+$43),A ; blank RECFLG.
L1E49: XOR
```

; offset to record PREAMBLE.

DE,\$0037

 T_1D

```
(IX+$45),A ; blank RECLEN_lo. (IX+$46),A ; blank RECLEN_hi.
       PUSH
                             ; transfer the start of channel
              IX
       POP
                             ; to the HL register pair.
            DE,$0043
       T.D
                             ; prepare the offset to RECFLG.
       ADD
                             ; add to form start of record descriptor.
             HL, DE
       CALL L1426
                             ; routine CHKS-HD-R inserts 14-byte checksum.
       RET
                             ; return.
; -----
; THE 'OBTAIN RECORD DESCRIPTOR' ROUTINE
; -----
; This routine is used by CAT, ERASE and the GET-DESC Hook Code $33.
; It loads and verifies the 14 byte record descriptor from RECFLG to RECNAM.
; This is normally loaded with the following data block
; or with the header block.
; The Zero Flag is set upon successful completion.
;; G-RDES
L1E5E: PUSH IX
                             ; transfer channel address
                              ; to HL register.
       POP
                            ; offset to RECFLG
             DE, $0043
       LD
             HL, DE
       ADD
                             ; add to form first receiving location.
       CALL L15E2
                             ; routine GET-M-HD reads in 15 bytes.
                           ; routine GET-M-HD reads in 13 Bytes.
; routine CHKS-HD-R checksums the first 14 bytes
       CALL L1426
RET NZ
                             ; return with checksum error.
             0,(IX+$43) ; test bit 0 of RECFLAG - should be zero
       RTT
       RET
                              ; return.
; -----
; THE 'HOOK-CODE' ROUTINE
; -----
; This accesses the twenty six hook codes now reduced to the range $00 - $19.
;; HOOK-CODE
L1E71: CP
              $1A
                             ; compare to upper limit.
              C, L1E77
                             ; forward, if valid, to CLR-ERR.
                           ; Shadow Error Restart.
       RST
              20H
       DEFB
              $12
                             ; Hook code error.
; ---
;; CLR-ERR
L1E77: LD
              (IY+$00),$FF
                             ; set ERR NR to one less than zero - no error.
       SET
              2, (IY+$01)
                             ; update FLAGS signal 'L' mode.
                             ; step past the hook code location in RAM.
       INC
             _{
m HL}
       ΕX
              (SP),HL
                             ; make this the return address.
       PUSH HL
                             ; push back what was at stack pointer - the
                              ; preserved value of AF on entry.
       ADD
             A, A
                             ; double the code.
              D,$00
       T.D
                            ; set D to zero for indexing.
       _{
m LD}
              E,A
                             ; transfer the code to E.
          HL,L1E99 ; address: HOOK-TAB the base of the Hook Codes.
       LD
```

```
; index into this table.
      ADD HL, DE
                          ; low byte to E.
      LD
           E, (HL)
            HL
       INC
                          ; increment pointer.
                          ; high byte to D.
      T.D
             D, (HL)
      POP
            ΑF
                          ; restore AF from machine stack.
            HL,L0700
      T<sub>1</sub>D
                          ; push the address UNPAGE
      PUSH
            HT.
                          ; on the machine stack.
      EX
            DE,HL
                          ; transfer address to HL.
      JP
             (HL)
                          ; jump to Hook Code routine.
; -----
; THE 'HOOK CODE +32' ROUTINE
; -----
; (Hook Code: $32)
  This allows the user to call any address in the shadow ROM.
;; HOOK-32
            HL,($5CED) ; sv HD_11
L1E94: LD
                          ; jump to routine.
      JP
            (HL)
; -----
; THE 'HOOK CODE +31' ROUTINE
; -----
; (Hook Code: $31)
; This Hook Code ensures that the extra System Variables are created. Since
; this has already occurred, as is the case with all Hook Codes, then all that
; remains to do is to return to the address on the stack - the {\tt UNPAGE} location.
;; HOOK-31
L1E98: RET
                           ; return.
; -----
; THE 'HOOK CODE ADDRESSES' TABLE
; -----
 The addresses of the Hook Codes. The last two are new to this ROM.
;; HOOK-TAB
L1E99: DEFW
           L1ECD
                          ; $1B - CONS-IN
           L1EE0
                          ; $1C - CONS-OUT
      DEFW
                          ; $1D - BCHAN-IN
           L0B88
      DEFW
           L0D07
                          ; $1E - BCHAN-OUT
      DEFW
                          ; $1F - PRT-OUT
      DEFW L1EF0
                          ; $20 - KBD-TEST
      DEFW L1EF5
                          ; $21 - SEL-DRIVE
      DEFW L1532
                          ; $22 - OP-TEMP-M
      DEFW L1B05
      DEFW L138E
                          ; $23 - CLOSE-M2
      DEFW L1D79
                          ; $24 - ERASE
                          ; $25 - READ-SEQ
      DEFW L1EFD
      DEFW L12DA
                          ; $26 - WR-RECD
      DEFW L1F0B
                          ; $27 - RD-RANDOM
                          ; $28 - RD-SECTOR
      DEFW L1F3F
                          ; $29 - RD-NEXT
      DEFW L1F7A
      DEFW L1F85
                          ; $2A - WR-SECTOR
                          ; $2B - SET-T-MCH
      DEFW L10A5
                          ; $2C - DEL-M-BUF
      DEFW L119F
      DEFW L0F46
                          ; $2D - OP-TEMP-N
       DEFW L1F18
                          ; $2E - CLOSE-NET
```

```
DEFW L1F25 ; $2F - GET-PACK
DEFW L0E4F ; $30 - SEND-PACK
DEFW L1E98 ; $31 - HOOK-31
DEFW L1E94 ; $32 - HOOK-32
                          ; $30 - SEND-PACK
       DEFW L1FE4 ; $33 - GET-DESC
       DEFW L1FF6
                          ; $34 - OP-B-CHAN
; -----
; THE 'CONSOLE INPUT' ROUTINE
; -----
; (Hook Code: $1B)
;; CONS-IN
L1ECD: EI
                           ; enable interrupts.
      RES 5, (IY+$01)
                           ; update FLAGS signal no new key pressed.
;; WTKEY
L1ED2: HALT
                           ; wait for an interrupt.
      RST
            10H
                           ; CALBAS
      DEFW $02BF
                           ; main KEYBOARD
            5,(IY+$01)
                          ; test FLAGS - new key ?
      BIT
                           ; loop back, if not, to WTKEY
      JR
             Z,L1ED2
            A, ($5C08)
                           ; place decoded key in system variable LASTK
      LD
      RET
                           ; return.
; -----
; THE 'CONSOLE OUTPUT' ROUTINE
; ------
; (Hook Code: $1C)
  outputs a character to the unalterable system stream for the console.
;; CONS-OUT
                       ; save character to be output.
L1EEO: PUSH AF
LD A,$FE
                           ; use system stream $FE - upper screen.
; ->
;; OUT-CODE
            L1EE3: LD
      LD
                           ; load with a high number to suppress scroll
                           ; prompt.
             10H
                           ; CALBAS
      RST
      DEFW
             $1601
                           ; main CHAN-OPEN opens selected stream.
      POP
            ΑF
                           ; fetch the preserved print character.
             10H
      RST
                           ; CALBAS
      DEFW $0010
                           ; main PRINT-A prints character in accumulator.
      RET
                           ; return.
; -----
; THE 'PRINTER OUTPUT' ROUTINE
; -----
; (Hook code: $1D)
```

```
; outputs a character to stream 3.
;; PRT-OUT
                         ; preserve character to be printed
L1EF0: PUSH AF
                           ; select stream 3
       LD A,$03
       JR
             L1EE3
                           ; back to OUT-CODE
; -----
; THE 'KEYBOARD TEST' ROUTINE
; -----
; ( Hook Code: $20 )
; Normally a single reset bit in A determines which half row is read but by
; resetting all bits the entire keyboard is read. A pressed key will cause
; a bit to be reset. Routine returns with zero flag set if no keys pressed,
; NZ otherwise.
;; KBD-TEST
L1EF5: XOR
                           ; reset all eight high-order bits.
            A, ($FE)
                           ; read the entire keyboard.
                            ; retain any unpressed keys - will be $1F if
      AND
             $1F
                            ; no key.
       SUB $1F
                            ; subtract to give zero if no keys.
                            ; return.
       RET
; ------
; THE 'READ SEQUENTIAL' HOOK CODE
; -----
; (Hook Code: $25)
;; READ-SEQ
L1EFD: BIT 1,(IX+$43) ; RECFLG JR Z,L1F08 ; forward
                            ; forward to INCREC
             (IY+$00),$07 ; set ERR_NR to '8 End of file'
       T,D
       RST
                            ; Error Main ROM
              28H
; ---
;; INCREC
L1F08: INC
             (IX+$0D) ; increment the required record in CHREC
                            ; and continue into next routine...
; THE 'READ RANDOM' HOOK CODE
; (Hook Code: $27)
; reads a PRINT record randomly.
;; RD-RANDOM
L1F0B: CALL L1252
                           ; routine GET-RECD gets the record specified
                            ; by CHREQ matching filename CHNAME from the
                            ; cartridge in the drive CHDRIV which is
                            ; started.
       BIT 2, (IX+$43); test RECFLG - is it a PRINT type file.
       RET
             7.
                            ; return if so.
       CALL L119F
                           ; routine DEL-M-BUF reclaims the permanent
                            ; channel thus losing the buffer contents.
       RST 20H
                            ; Shadow Error Restart
```

```
DEFB $16
                   ; 'Wrong file type'
; THE 'CLOSE NETWORK CHANNEL' HOOK CODE
; -----
; (Hook Code: $2E)
; Hook Code Only
;; CLOSE-NET
L1F18: CALL L0FAE ; routine SEND-NEOF
      PUSH IX
                          ; pick up start address
      POP
            _{
m HL}
                          ; of the channel.
      LD BC, $0114
                          ; bytes to reclaim.
      RST
            10H
                          ; CALBAS.
      DEFW $19E8
                          ; main RECLAIM-2.
      RET
                          ; return.
; -----
; THE 'GET PACKET FROM NETWORK' ROUTINE
; -----
; (Hook Code: $2F)
;; GET-PACK
            A, ($5CC6) ; sv IOBORD
L1F25: LD
      TUO
            ($FE),A
      DΤ
      CALL LOFD3
JR NC,L1F3A
                          ; routine WT-SC-E
                          ; forward to GP-ERROR
      CALL L0EB5
JR NZ,L1F3A
                          ; routine GET-NBLK
                          ; forward to GP-ERROR
      ΕI
      AND A
JP LOD4D
                          ; jump to BORD-REST
; ---
;; GP-ERROR
L1F3A: SCF
                          ;
      ΕI
                          ; jump to BORD-REST
      JΡ
            L0D4D
; -----
; THE 'READ SECTOR' HOOK CODE
; -----
; (Hook Code: $28)
; fetches header from sector specified by CHREC.
; If the sector is from a PRINT type file then it returns with success.
; Otherwise if a program or code file the data area is 'cleared'.
;; RD-SECTOR
L1F3F: LD HL, $00FF
                          ; ensure every sector is tried.
                           ; Note. was $F0 (240) in original ROM which
                           ; would not be compatible with emulators.
            ($5CC9),HL
      T.D
                          ; update temporary variable SECTOR
;; NO-GOOD
```

```
L1F45: CALL L13A9
                             ; routine GET-M-HD2 reads the next header
                             ; to pass the tape heads.
                            ; fetch sector number from HDNUMB
       LD
          A,(IX+$29)
                             ; compare with required sector in CHREC
              (IX+$0D)
              Z,L1F57
                             ; forward, with match, to USE-C-RC
       ıTR
       CALL L13F7
                             ; routine DEC-SECT decrements the counter.
             NZ,L1F45
       JR
                            ; loop back, if not zero, to NO-GOOD
       RST
             20H
                            ; Shadow Error Restart
       DEFB $11
                            ; 'File not found'
; ---
;; USE-C-RC
L1F57: PUSH IX
                            ; transfer channel base address
       POP
             _{
m HL}
                             ; to the HL register.
             DE, $0043
                             ; offset to RECFLG
       ADD
                             ; add to address start of record descriptor.
             HL,DE
                             ; routine GET-M-BUF reads in the record
       CALL L15EB
                             ; descriptor and the 512 bytes of data.
       CALL L1426
                             ; routine CHKS-HD-R checksums the descriptor.
             NZ,L1F75
                             ; forward, with error, to DEL-B-CT
       JR
             DE, $000F
                             ; additional offset to data.
       T_1D
       ADD
                             ; add to address data.
             HL, DE
                             ; routine CHKS-BUFF checksums the data buffer.
       CALL L142B
              NZ,L1F75
                             ; forward, with error, to DEL-B-CT
                             ; clear carry
       OR
       BIT
                             ; test RECFLG - is this a PRINT file ?
              2, (IX+$43)
                             ; return if so.
       RET
;; DEL-B-CT
L1F75: CALL L1FD4
                             ; routine CLR-BUFF sets descriptor and data
                             ; contents to same values.
       SCF
                             ; signal error.
       RET
                             ; return from hook-code.
; THE 'READ NEXT SECTOR' HOOK CODE
; -----
; (Hook Code: $29)
; This hook code just reads the next header to pass the tape head and then,
; without further qualification, reads the corresponding data using the
; routine above. If not a PRINT file then the data is cleared.
; It needlessly sets up a sector counter in the System Variable SECTOR.
;; RD-NEXT
            HL,$00FF
                          ; set count to 255. Note. not used.
L1F7A: LD
              ($5CC9),HL
       LD
                            ; insert in system variable SECTOR.
                             ; routine GET-M-HD2 reads the next header
       CALL L13A9
                             ; to pass the tape heads.
       JR
             L1F57
                             ; back to USE-C-RC to read and validate the
                             ; corresponding descriptor and data.
```

```
; THE 'WRITE SECTOR' HOOK CODE
; -----
; (Hook Code: $2A)
; writes to microdrive the sector in CHREC.
;; WR-SECTOR
L1F85: LD
               HL, $00FF
                              ; set counter to ensure at least one revolution
       LD
              ($5CC9),HL
                              ; of the tape and update SECTOR
       PUSH
              ΙX
                               ; transfer base address
       POP
               _{
m HL}
                               ; of channel to HL.
               DE,$0037
       T.D
                              ; offset to header preamble
       ADD
               HL,DE
                               ; add and
       PUSH HL
                               ; preserve location on machine stack.
       LD
               DE, $000C
                              ; offset past preamble to RECFLG
               HL, DE
                               ; the start of the record descriptor.
       ADD
       CALL
               L1426
                               ; routine CHKS-HD-R insert checksum byte.
                              ; 15 byte offset to start of data.
               DE, $000F
                              ; add to address first of 512 bytes.
       ADD
              HL, DE
            L142B
                              ; routine CHKS-BUFF inserts buffer checksum.
       CALL
;; WR-S-1
L1FA1: CALL L13A9
                              ; routine GET-M-HD2 reads any header.
                              ; fetch sector from HDNUMB
              A, (IX+$29)
       T.D
       CP
               (IX+$0D)
                              ; compare to required sector in CHREC
                              ; forward, with match, to WR-S-2
       JR
               Z,L1FB3
       CALL
               L13F7
                               ; routine DEC-SECT decrements the counter
               NZ,L1FA1
                               ; back, if not zero, to WR-S-1
       JR
; else the header was not found after a complete tape revolution.
               20H
       RST
                               ; Shadow Error Restart
       DEFB
                               ; File not found
               $11
; ---
;; WR-S-2
               A, ($EF)
L1FB3: IN
                            ; read microdrive port.
                              ; isolate 'write prot.' bit. ; forward, if not, to WR-S-3
       AND
               $01
               NZ,L1FBB
       RST
               20H
                              ; Shadow Error Restart
       DEFB
               $0E
                               ; Drive 'write' protected
; ---
;; WR-S-3
L1FBB: LD
             A,$E6
                              ; enable writing
       OUT
              ($EF),A
                              ; output to port.
       T.D
             BC,$0168
                              ; set delay to 360
       CALL L1652
                               ; routine DELAY-BC pauses briefly as the
                               ; record now approaches the tape heads.
       POP
                               ; restore pointer to RECFLG
              _{
m HL}
       CALL
            L15B3
                               ; routine OUT-M-BUF writes descriptor and
                               ; data buffer.
```

; -----

```
A,$EE
              A, $EE ; disable writing ($EF), A ; output to port.
       OUT
                             ; routine CHECK-MAP fetches bit mask for map
       CALL L13C4
                              ; location addressed by HL into B register.
             A,B
       LD
                             ; transfer mask to accumulator
                             ; combine with any set bits already there.
       OR
              (HL)
       T.D
              (HL),A
                             ; update map marking sector used.
       RET
                             ; return.
; -----
; THE 'CLEAR BUFFER CONTENTS' ROUTINE
; -----
; This routine sets the contents of the 14 byte record descriptor and
; the 512 byte data buffer to the same value so that they are unreadable.
; This is invoked when the possibility that a secret file, whose name begins
; with CHR$ 0 has been read.
;; CLR-BUFF
L1FD4: PUSH
              IX
                             ; transfer the channel base
       POP
                             ; address to HL.
             DE, $0028
                             ; offset to HDFLAG.
       ADD
                             ; add to base address.
             HL, DE
                            ; transfer same
       LD
             D,H
                             ; address to DE and
       T_1D
              E,L
       TNC
              DF.
                             ; make one higher.
             BC,$0229
                            ; set counter to 553 bytes.
       T<sub>1</sub>D
                             ; fill with HDFLAG contents.
       LDIR
       RET
                              ; return.
; THE 'FETCH RECORD DESCRIPTOR' HOOK CODE
; -----
; (Hook Code: $33)
; Note. new in this ROM.
; This Hook Code reads the next header and corresponding record descriptor
; returning with carry flag set with header mismatch or if the name starts
; with CHR$ 0 and should therefore be secret.
;; GET-DESC
L1FE4: CALL L13A9
                              ; routine GET-M-HD2 reads the next 14-byte
                              ; header to pass the tape heads.
       CALL L1E5E
                              ; routine G-RDES reads the corresponding
                              ; 14-byte record descriptor for this sector.
       ιJR
             NZ,L1FF1
                              ; forward, with checksum error, to {\tt NOT-RECV}
; a valid header and matching descriptor has been read.
       LD A, (IX+$47)
                            ; fetch first character of RECNAM.
                              ; test for CHR$ 0.
       OR
             A
       RET
              ΝZ
                              ; return if not a secret file.
; but if a secret file then ensure that the 14 descriptor bytes (read) and
; the 512 buffer bytes (not read) are cleared to the same value.
;; NOT-RECV
L1FF1: CALL L1FD4
                             ; routine CLR-BUFF (above).
```

LD

```
SCF
                             ; signal error.
       RET
                             ; return from hook code.
; THE 'OPEN "B" CHANNEL' HOOK CODE
; ------
; (Hook Code: $34)
; New in this ROM.
;; OP-B-CHAN
L1FF6: LD
                            ; letter "B"
             A,$42
                            ; place in system variable L STR1
       LD
             ($5CD9),A
       CALL LOB17
                            ; routine OP-RS-CH opens an RS232 channel.
       RET
                             ; return.
; ---
       DEFB $FF
                            ; spare
; ---
.end
; -----
; THE 'SHADOW' SYSTEM VARIABLES
; X1 23734 $5CB6 FLAGS3
                                     ; IY+$7C - Flags
; X2 23735 $5CB7 VECTOR
                                      ; Address used to extend BASIC.
; X10 23732 $5CB9 SBRT
                                      ; 10 bytes of Z80 code to Page ROM.
; 2 23747 $5CC3 BAUD
                                      ; BAUD=(3500000/(26*baud rate)) -2
                                     ; Own network station number. ; Border colour during I/O
; 1 23749 $5CC5 NTSTAT
; 1
     23750 $5CC6 IOBORD
                                     ; 2 byte workspace used by RS232
; N2 23751 $5CC7 SER FL
                                     ; 2 byte workspace used by Microdrive.
; N2 23753 $5CC9 SECTOR
                                     ; Temporary store for CH_ADD
; N2 23755 $5CCB CHADD
     23757 $5CCC NTRESP
                                     ; Store for network response code.
; 1
                                     ; -----
     23758 $5CCD NTDEST
; 1
                                        Destination station number 0 - 64.
                                     ;
     23759 $5CCE NTSRCE
; 1
                                     ; Source station number.
                                     ; Network block number 0 - 65535
; X2 23760 $5CD0 NTNUMB
                                     ; Header type block.
; N1
     23762 $5CD2 NTTYPE
                                     ; Data block length 0 - 255.
; X1
     23763 $5CD3 NTLEN
; N1
     23764 $5CD4 NTDCS
                                     ; Data block checksum.
                                     ; Header block checksum.
; N1 23765 $5CD5 NTHDS
                                     ; -----
; --
                                     ; 2 byte drive number 1 - 8.
; N2 23766 $5CD6 D STR1
; N1 23768 $5CD8 S_STR1
                                     ; Stream number 1 - 15. [ also 0 ]
                                     ; Device type "M", "N", "T" or "B"
; N1 23769 $5CD9 L STR1
; N2 23770 $5CDA N-STR1
                                     ; Length of filename.
; N2 23772 $5CDC
                           (dynamic) ; Address of filename.
                                      ; -----
; --
     ----
; N1 23774 $5CDE D STR2
                                      ; 2 byte drive ; File type.
; N1 23775 $5CDF
                                      ; number. ; Length of
; N1 23776 $5CE0 S STR2
                                      ; Stream number. ; Data.
; N1 23777 $5CE1 L STR2
                                      ; Device type. ; Start of
                           ; Length of ; data. \
; filename. ; Program \
(dynamic) ; Address of ; length.; Start of (dynamic) ; filename ; ; data.
; N1 23778 $5CE2 N-STR2
; N1 23779 $5CE3
; N1 23780 $5CE4
; N1 23781 $5CE5
                                      ; -----
; --
     -----
                 _____
; N1 23782 $5CE6 HD 00
                                     ; File type .
; N2 23783 $5CE7 HD 0B
                                     ; Length of data.
; N2 23785 $5CE9 HD 0D
                                     ; Start of data. /
```

```
; Program length. /
; N2 23787 $5CEB HD OF
                                   ; Line number.
; N2 23789 $5CED HD_11
; -- -----
; 1
     23791 $5CEF COPIES
                                   ; Number of copies made by SAVE.
; Note. the System Variables HD 00 to HD 11 take their names from their
; position in the standard audio tape header. The ten bytes HD 01 to HD 0A
; would be the tape filename and are not held within the above area.
; The area D STR2 is multipurpose and sometimes the HD ?? variables are
; copied to this region and sometimes the D STR1 variables are copied there.
; -----
; THE 'MICRODRIVE MAPS' FORMAT
; The creation of the extra system variables moves the start of CHANS up to
; address 23792. It is at this location that the first of a possible eight
; Microdrive Maps will be created. Each map is 32 bytes in size containing
; 256 bits for each possible sector and as each map is created, CHANS moves
; up by another 32 bytes.
; Note. The continuous loop tape is formatted in such a way that sector $FE
; is written first and sector $01 is the last to be written. Sectors $00 and
; $FF are therefore always unavailable. As there is only room for about 180
; sectors on a 100 foot long tape, the higher numbered sectors are later
; overwritten by the lower numbered sectors.
; Where the tape is spliced together one or two bad sectors will appear.
; When saving bytes there isn't enough time to copy the next 512 bytes from
; the program/code area to the buffer between sectors so a program or
; code/data block is written to alternating sectors as with the 3K example
; above. As the tape cartridge fills up it becomes more difficult to find
; usable sectors and LOAD/SAVE operations take longer.
; A growing number of Spectrum emulators feature the microdrives and they
; usually make available all 254 sectors so a typical cartridge will hold 126
; Kilobytes compared to say 92 K on real hardware.
; During a LOAD operation the entire sector map is pushed on the machine stack
; and the microdrive map is used to map loaded records after which the previous
; map is 'popped' of the stack and reverts to mapping sectors again.
; THE 'STANDARD CHANNELS' FORMAT
; ------
; The twenty bytes of the standard channels as set up my Main ROM.
; CHANS
                                   ; PRINT-OUT
                      $09F4
                      $10A8
                                   ; KEY-INPUT
                                   ; 'K'
                                  ; PRINT-OUT ; REPORT-J
                      $09F4
;
                      $15C4
                                   ; 'S'
                                  ; ADD-CHAR
; REPORT-J
                      $0F81
                      $15C4
                                   ; 'R'
                               ; PRINT-OUT
                      $09F4
```

```
; REPORT-J
                      $15C4
;
                                   ; 'P'
                      $50
;
;
                                   ; End Marker
                      $80
; -----
; THE 'MICRODRIVE CHANNEL' FORMAT
                                  ; main ERROR-1
                     $0008
   2 IX+$00
  2 IX+$02
                                  ; main ERROR-1
                     $0008
  1 IX+$04
                    $CD
                                  ; inverted or regular "M" character
                    $12B3
  2 IX+$05
                                  ; MCHAN-OUT
;
  2 IX+$07
                    $11FD
                                  ; M-INPUT
;
  2 IX+$09 $0253 ; length of channel.
2 IX+$0B CHBYTE $0000 ; position of next byte rec'd/sto
1 IX+$0D CHREC $00 ; record number, also temporary $
10 IX+$0E CHNAME " ; filename with trailing spaces.
;
                                  ; position of next byte rec'd/stored
;
                                  ; record number, also temporary sector
;
; 10 IX+$0E CHNAME
                    %000000x
  1 IX+$18 CHFLAG
                                  ; bit 0 used
  1 IX+$19 CHDRIV
                                   ; drive number 0 - 7.
  2 IX+$1A CHMAP
                                   ; address of MAP for this microdrive.
; -----
                                   ; 12 bytes of header preamble
 12 IX+$1C
; -----
                                   ; Flag byte.
  1 IX+$28 HDFLAG
;
                                   ; bit 0 set indicates a header.
;
                                   ; Sector number. [1-254]
  1 IX+$29 HDNUMB
;
  2 IX+$2A
                                   ; Two unused bytes.
; 10 IX+$2C HDNAME
                                   ; Cartridge name with trailing spaces.
                                   ; Header checksum.
  1 IX+$36 HDCHK
; -----
                                   ; 12 bytes of data block preamble.
 12 IX+$37
; -----
  1 IX+$43 RECFLG
                                   ; Flag byte.
                                   ; bit 0 reset indicates a record.
;
                                   ; bit 1 reset no EOF, set EOF
;
                                   ; bit 2 reset indicates a PRINT FILE
  1 IX+$44 RECNUM
                                   ; Record number in the range 0-255
  2 IX+$45 RECLEN
                                   ; Number of databytes in record 0-512.
 10 IX+$47 RECNAM
                                   ; Filename with trailing spaces.
                                   ; Checksum of the preceding 14 bytes
  1 IX+$51 DESCHK
; ------
                                  ; the 512 bytes of data.
; 512 IX+$52 CHDATA
  1 +$0252 DCHK
                                   ; Checksum of preceding 512 bytes.
; THE 'NETWORK CHANNEL' FORMAT
   2 IX+$00
                     $0008
                                  ; main ERROR-1
;
                    $0008
                                  ; main ERROR-1
  2 IX+$02
;
                    $4E
                                  ; "N" character
  1 IX+$04
  2 IX+$05
                     $0E09
                                  ; NCHAN-OUT
  2 IX+$07
                     $0DA9
                                  ; N-INPUT
  2 IX+$09
                     $0114
                                  ; Length of channel 276 bytes.
  1 IX+$0B NCIRIS
                                   ; The destination station number.
  1 IX+$0C NCSELF
                                   ; This Spectrum's station number.
  2 IX+$0D NCNUMB
                                   ; The block number.
  1 IX+$0F NCTYPE
                                   ; The packet type code . 0 data, 1 EOF
  1 IX+$10 NCOBL
                                   ; Number of bytes in data block.
  1 IX+$11 NCDCS
                                   ; The data checksum.
  1 IX+$12 NCHCS
                                   ; The header checksum.
; 1 IX+$13 NCCUR
                                   ; The position of last buffer char
taken
```

```
; 1 IX+$14 NCIBL
                                       ; Number of bytes in the input buffer.
; 1 IX+$15 NCB
                                      ; A 255 byte data buffer.
; -----
; THE 'RS232 "T" CHANNEL' FORMAT
                      $0008
                                     ; main ERROR-1
; 2 IX+$00
  2 IX+$02
                      $0008
                                     ; main ERROR-1
                                     ; "T" character
; 1 IX+$04
                      $54
                                     ; TCHAN-OUT
; 2 IX+$05
                      $0C3A
; 2 IX+$07
                      $0B76
                                     ; T-INPUT
; 2 IX+$09
                                     ; length of channel.
                       $000B
; -----
; THE 'RS232 "B" CHANNEL' FORMAT
; -----
; created by overwriting a "T" channel
  2 IX+$00
                       $0008
                                     ; main ERROR-1
;
  2 IX+$02
                       $0008
                                     ; main ERROR-1
;
  1 IX+$04
                      $42
                                     ; "B" character
  2 IX+$05
                      $0D07
                                     ; BCHAN-OUT
;
  2 IX+$07
                      $0B7C
                                     ; B-INPUT
; 2 IX+$09
                      $000B
                                     ; length of channel.
; Acknowledgements
; -----
; Dr Ian Logan for main ROM labels (and half on Interface 1); Dr Frank O'Hara for main ROM labels.
; Gianluca Carri for Interface 1 v1.2 labels
; Credits
                     for requesting said labels on comp.sys.sinclair
; Jonathan Needle
                      thereby kick-starting this project.
                      Also for the Interfacel-aware Spectaculator emulator
                      and help with PORTS.
; Paul Dunn
                      for help with PORTS and the SPIN emulator.
```