’

’

Disassembly of the file "C:\lab\ifl-2.rom"
CPU Type: Z80
Created with dzZ80 1.50

on Sunday, 28 of April 2002 at 12:35 PM

#define DEFB .BYTE
#define DEFW .WORD
#define DEFM .TEXT
#define EQU .EQU
#define ORG .ORG

’

’

ORG $0000

FLAGS3 System Variable - IY+$7C ($S5CB6)

Bit 0 - set when executing an extended command.

Bit 1 - set during CRT-VARS and CLEAR #, CLOSE etc.

Bit 2 - settable by User to force the ERR SP routine to handle errors.
Bit 3 - set when networking.

Bit 4 - set during LOAD and MOVE

Bit 5 - set during SAVE

Bit 6 - set during MERGE

Bit 7 - set during VERIFY

Note. before initialization of FLAGS 3, this is considered to be the first
byte of channels and so PEEK 23734 gives 244 decimal (%11110100) the high

order byte of the Main ROM address PRINT-OUT - $09F4.

THE 'RETURN TO MAIN ROM' ROUTINE

The system is initialized by the Main ROM so this address is accessed

solely by a RST 00H instruction. It is used from five locations to return

to the Main ROM.

; ; MAIN-ROM

L0000: POP HL ; discard the return address in this ROM.
LD (IY+$7C),$00 ; reset all the bits of FLAGS 3.
JP L0700 ; Jjump forward to UNPAGE address.

THE 'START' ROUTINE

An instruction fetch on address $0008 pages in this ROM.

The three-byte instruction at this location must exist on both sides of

the looking-glass. The value fetched is immediately discarded.
It follows that this restart should never be invoked from this ROM.

;+ ST-SHADOW
L0008: LD HL, ($5C5D) ; fetch character address from CH ADD.
POP HL ; pop return address to HL register.

PUSH HL ; and save again on machine stack.

JP LO0OSA ; jump forward to continue at START-2.

; THE 'CALL A MAIN ROM' ROUTINE

; Call an address in the main ROM. The address follows the restart so this
; is as convenient and as brief as a CALL instruction.

; The SBRT routine within the system variables area reads

; L5CB9 LD HL,value

; L5C5C CALL addr

; L5C5F LD (L5CB9+1) , HL

; L5CC2 RET

; By immediately placing the current value of HL in the subroutine, then
; all registers before the call are as they were before the RST

; instruction. The value of HL after the call is stored immediately in

; this now redundant location so that, after this ROM is paged back in,

; the registers, after the RST instruction has executed, are as they were

; immediately after the CALL.
; see START-2.

;; CALBAS
L.0010: LD ($5CBA) , HL ; insert the current value of HL in the
; 280 code to be picked up later.
POP HL ; drop the return address - the location
; of address to be called.
PUSH DE ; preserve the DE register contents.
JR L0081 ; forward to continue at CALBAS-2.
DEFB SFF ; unused.

; THE 'TEST IF SYNTAX IS BEING CHECKED' ROUTINE

; On the 7zX80, testing the syntax flag was done with the 4-byte

; instruction that tests the System Variable FLAGS. On the ZX81 and

; ZX Spectrum, a call to SYNTAX-Z reduced the invocation to a three-byte
; CALL. Here it is reduced to a one-byte restart.

;5 CHKSYNTAX
L0018: BIT 7, (IY+S$S01) ; test most significant bit of FLAGS
RET ; return the result.
; (Z = Syntax, NZ = Run-time)

DEFB SFF ; unused.
DEFB SFF ; unused.
DEFB SFF ; unused.

; THE 'SHADOW-ERROR' ROUTINE

; This is similar to the Main ROM error handler and the following byte

; indicates the type of error and in runtime the message that should be
; printed. If checking syntax then the error pointer is set before a
; return is made to the Main ROM.
;; SH-ERR
L0020: RST 18H ; checking syntax ?
JR Z,L0068 ; forward, if so, to ST-ERROR

JR LOO3A ; forward, in run-time, to TEST-SP,

; and then REP-MSG

DEFB SFF ; unused.
DEFB SFF ; unused.
DEFB SFF ; unused.

; THE 'MAIN ROM ERROR RESTART' ROUTINE

; This restart invokes the error handler of the Main 16K ROM. The required
; error number is usually first placed in the System Variable ERR NR. 1In
; some cases the error code is already present and this restart is used when
; the error situations handled by this ROM have been eliminated.
; Since the exit from this point is by manipulating the stack, the return
; address is of no importance as that route is never taken. There are also
; three conditional jumps back to this point.
; + ROMERR
L0028: RES 3, (IY+502) ; update TV_FLAG - signal no change in mode.
JR L0040 ; forward to RMERR-2.
DEFB SFF ; unused.
DEFB SFF ; unused.

; THE 'CREATE NEW SYSTEM VARIABLES RESTART' ROUTINE

; This restart is used the first time that that the ROM is paged in to
; create the System Variables. This will be either by an instruction
; fetch on $0008 or $1708.
; ;+ NEWVARS
1L0030: JP LO1F7 ; jump to CRT-VARS

DEFB SFF ; unused.

DEFB SFF ; unused.

DEFB SFF ; unused.

DEFB SFF ; unused.

DEFB SFF ; unused.

; THE 'MASKABLE INTERRUPT' ROUTINE

; There is no service routine but should the routine be called either

; directly or by straying into a RST $38 instruction, then interrupts are
; enabled.

;7 INT-SERV
L0038: EI ; Enable Interrupts
RET ; return.

; THE 'TEST SYSTEM' BRANCH

; This branch allows the user to trap errors before this ROM is used to print
; the error report.

;; TEST-SP

LOO3A: CALL L0077 ; routine CHECK-SP

; usually returns.
JP L0260 ; jump to REP-MSG

; THE 'MAIN ROM ERROR' ROUTINE

; a continuation of RST 28H.
; This ROM has inserted a Main ROM error code into ERR NR and the routine in
; the Main ROM is now invoked.
; First a check is made to see if the user wishes to trap errors using a
; custom routine in ERR SP. This will be used in the syntax path anyway.
;; RMERR-2
L0040: RST 18H ; checking syntax ?
JR Z,L0068 ; forward, if so, to ST-ERROR.
CALL L0077 ; routine CHECK-SP allows the user to trap
; run-time errors at this point but normally
; returns here.
CALL L17B7 ; routine RCL-T-CH reclaims any temporary
; channels and stops all microdrive motors.
BIT 1, (IY+S7C) ; test FLAGS 3.
JR Z,L0068 ; forward, if executing CLOSE, to ST-ERROR.
BIT 4, (IY+STC) ; test FLAGS 3 - loading filename 'run' ?
JR Z,L0068 ; forward, if not, to ST-ERROR.
; As a security measure, the file 'run' can not be hacked.
LD A, (IY+500) ; fetch error number from the System Variable
; ERR NR.
CP $14 ; 1s it "CODE error" °?
JR NZ,L0068 ; forward, if not, to ST-ERROR.

; The user has pressed BREAK while trying to load the program 'run'.

LD HL, $0000 ; cause a system reset.

PUSH HL ; place address zero on machine stack.
RST 00H ; switch to MAIN-ROM.

DEFB SFF ; unused

DEFB SFF ; unused

DEFB SFF ; unused

DEFB SFF ; unused

DEFB SFF ; unused

; THE 'NON-MASKABLE INTERRUPT' ROUTINE

; There is no NMI functionality.

;; NMINT-SRV
L0066: RETN ; return to previous interrupt state.

; THE 'SYNTAX ERROR' ROUTINE

; An error has occurred during syntax checking so the position must be
; highlighted when a return is made to the Editor in the Main ROM.

;7 ST-ERROR
L.0068: LD HL, ($5C5D) ; fetch character address from CH ADD.

LD ($5C5F) , HL ; set X PTR to same to position error cursor.

LD SP, ($5C3D) ; set the Stack Pointer from ERR_SP.

LD HL, $16C5 ; prepare address of main SET-STK.

PUSH HL ; push on the machine stack.

RST 00H ; switch to MAIN-ROM where SET-STK will clean up

; the work areas before returning to the Error
; Routine obtained from ERR SP.

; THE 'CHECK ERROR STACK POINTER' ROUTINE

; This allows the user's software to trap any errors at this point by setting
; the otherwise unused bit 2 of FLAGS 3 after inserting a custom error

; handler in the System Variable ERR SP.

; Both Shadow ROM situations and Main ROM situations can be trapped and the

; routine is called from BOTH RST 20H and RST 28H.

;7 CHECK-SP

L0077: BIT 2, (IY+S7C) ; test FLAGS 3 has the user set up a custom
; error handler in Main RAM °?
RET Z ; return if not.
; Otherwise the user, or the third party software, has set up a custom routine

; in the system variable ERR SP and set bit 2 of FLAGS 3 so that it is invoked
; at this point.

LD SP, ($5C3D) ; set stack pointer from ERR_SP.
RST 00H ; switch to MAIN-ROM.

; THE 'CALBAS-2' ROUTINE

; A continuation of the code at $0010.
; Continue by picking up the address to be called, located after the RST
; instruction and placing after the CALL instruction in the SBRT sequence.

;; CALBAS-2

L0081: LD E, (HL) ; fetch low byte of called address
INC HL ; advance pointer.
LD D, (HL) ; fetch high byte.
LD ($5CBD) , DE ; place in the 780 code SBRT
INC HL ; increment pointer.
EX (SP),HL ; transfer continuation address to machine

; stack - and the stack value (was DE) to HL.

EX DE, HL ; original DE value now restored.

LD HL, $0000 ; signal CALBAS routine in use.

PUSH HL ; place on stack.

LD HL, $0008 ; address of main ERROR restart

PUSH HL ; place on stack

LD HL, $5CB9 ; address of calling SBRT subroutine.
PUSH HL ; place on stack.

JP ..0700 ; jump to UNPAGE

; THE 'CONTROL' ROUTINE

; A continuation of code at L0008. The return address has been dropped off
; the machine stack into HL.

; First see if this ROM was paged in as a result of the $0008 address
; stacked during the CALBAS routine. (see above)

;; START-2
LO0O9A: PUSH AF ; preserve accumulator and status flags.
LD A,H ; test HL for zero - the CALBAS
OR L ; indicator value.
JR NZ,LOOAS ; forward, if not, to START-3.
POP AF ; restore accumulator and flags.
POP HL ; discard address stacked by RST 08.
LD HL, ($5CBA) ; pick up post-CALL HL value from SBRT.
RET ; return.
; Now consider that the address $0008 may have been an input or output
; routine that precedes the letter of one of the new channels. These
; paging addresses ensure that this ROM is paged in so that the real
; input/output addresses can be read from the locations after the
; channel's letter. In this case, the return address is towards the end
; of the CALL-SUB routine in the Main ROM, i.e.
; L15FB CALL $162C ; routine CALL-JUMP (a JP (HL) instr.)
; L15FE POP HL ; return address
;7 START-3
LOOA5: PUSH DE ; preserve DE.
LD DE, $15FE ; test against possible return address Ox15FE
SBC HL, DE ; subtract (carry is clear)
POP DE ; restore DE.
JR Nz, LOOBC ; forward with no match to START-4.

; This ROM has been paged by an attempt to use a stream.

POP AF ; restore accumulator.
LD HL, L0700 ; stack the address UNPAGE to switch to
PUSH HL ; the Main ROM afterwards.
LD HL, $0004 ; the shadow routine is 4 bytes forward
ADD HL, DE ; adjust input/output address pointer.
LD E, (HL) ; pick up low-order byte of I/O routine.
INC HL ; bump pointer.
LD D, (HL) ; pick up high-order byte of routine.
EX DE, HL ; transfer I/0 address to HL.
JP (HL) ; jump to routine and then to UNPAGE

; By elimination, the address $0008 has been reached as a result of a

; RST 08 instruction in the Main ROM. This may be the very first time
; that this ROM has been paged in after startup or NEW.

;; START-4
LOOBC: RST 30H ; create new system variables if first time.

LD A,s$01 ; %00000001

ouT (SF7),A ;
LD A, SEE ; $11101110
ouUT (SEF) , A ;
POP AF ; temporarily drop the accumulator.
POP HL ; fetch address of error code/hook code to HL.
PUSH AF ; save accumulator again.
; Note. the address of the code could be anywhere in the 64K address space
; but it is not in this ROM. Luckily in the Main ROM at $007B is the
; sequence 1d a, (hl) ; ret which will fetch the unknown error code from
; the known address.
RST 10H ; CALBAS
DEFW $007B ; main TEMP-PTR3
LD ($5C3A) ,A ; place the error code in sysvar ERR NR
; The error code at this stage is one less than actual code.
CP SFF ; is it 'OK'
JR NZ,LOOE9 ; forward, if not, to TEST-CODE
BIT 1, (IY+S7C) ; test FLAGS 3 - first time ?
JR Z,LO0E7 ; forward, if not, to NREPORT-2

; 'Program finished'

BIT 7, (IY+S0C) ; test PPC_hi - a direct command ?

JR Z,LO0E7 ; forward, if not, to NREPORT-2

LD HL, ($5C59) ; use E LINE to address the first character of
; the edit buffer.

LD A, (HL) ; searching for RUN without whitespace.

CP SF7 ; 1s character the token 'RUN' °?

JP Z,LOA99 ; jump forward, if so, to LOAD-RUN

;7 NREPORT-2

LOOE7: RST 20H ; Shadow Error Restart
DEFB SFF ; 'Program finished'
; Continue to consider the error code. This may have occurred after the

; Error RESTART in the Main ROM - range $00 (NEXT without FOR) to
; $1A (Tape Loading Error) or a RESTART in RAM which could also include
; the Hook Codes.

;; TEST-CODE

LOOE9: SUB S1B ; subtract lowest Hook Code (PAUSE)
JP NC,L1E71 ; jump, if same or higher, to HOOK-CODE
CP SFO ; was 1t $OB 'Nonsense in basic'
JR Z,LO0FB ; forward to COPYCHADD
CP SF3 ; was 1t $0D 'Invalid file name'
JR Z,LO0FB ; forward to COPYCHADD
CP SFC ; was 1t $17 'Invalid stream'
JP NZ, L0028 ; jump, if not, to ROMERR

; If one of the above three reports, then this is possibly an extended

; command and further investigation is required. A number of situations
; may apply. The error could have occurred -

; 1) In INPUT - just pass control back to Main ROM. This is just a normal
; Nonsense in BASIC and will not be due to anything new.

; 2) While already investigating an error. Too much - just use Main ROM.
; 3) While entering a new or modified line and syntax failed.

; 4) While running the program and an error was encountered.

; The character address CH ADD is not much use as that is the place

; after the command where the standard ROM encountered an error.

; It will be required by the Main ROM if control is passed back so, in

; order that the Main ROM parsing routines can be used, make a copy of the
; error character position. We will have to work forward from the

; beginning of the line if checking syntax or from the start of the

; program in run-time so that the errant command can be found. It may also
; be necessary to remove hidden characters from the BASIC line.

;; COPYCHADD

LOOFB: LD HL, ($5C5D) ; fetch character address from CH ADD and
LD ($5CCB) , HL ; store in shadow system variable CHADD
POP AF ; restore accumulator.
BIT 5, (IY+$37) ; test FLAGX - in INPUT mode ?
JP NZ, L0028 ; jump back, if so, to ROMERR

; Continue if in Editing or Run-time Mode.

BIT 0, (IY+S$7C) ; test FLAGS 3 - already extended command ?
JP NZ,L0028 ; Jjump, if so, to ROMERR
; else signal - handling an extended command - so that such a double error

; can be trapped.

SET 0, (IY+S7C) ; update FLAGS 3 - signal executing an
; extended command.

RST 18H ; checking syntax ?
JR Nz,LO011B ; skip forward, if not, to RUNTIME
LD (IY+$0C), SFF ; set bit 7 of PPC_hi to indicate a line

; entry situation.

; In both cases, load B with the statement number where the error was
; encountered. Previous validated statements are not to be disturbed.

;; RUNTIME

L011B: LD B, (IY+$0D) ; load B with statement number from SUBPPC
LD C,$00 ; and set C to zero for a quotes flag.
BIT 7, (IY+S0C) ; test PPC_hi - line entry ?
JR Z,L0130 ; forward, if not, to PROG-LINE

; An edit line may have a line number at start and whitespace. We need to
; set CH ADD at the first command.

PUSH BC ; save BC
RST 10H ; CALBAS
DEFW S19FB ; main E-LINE-NO fetches any line number to

; BC, setting CH _ADD at the command token.

POP BC ; restore BC - discarding line number.
RST 10H ; CALBAS
DEFW $0018 ; main GET-CHAR gets first command of the

; first statement of the errant line.

JR LO16F ; forward to statement loop - S-STAT to find
; the errant statement.

;7 PROG-LINE
L0130: 1D HL, ($5C53) ; set pointer to start of program from PROG.

;; SC-L-LOOP

L0133: LD A, ($5C46) ; fetch high byte of errant line from PPC hi
CP (HL) ; compare with tested high byte.
JR NC,L013B ; forward, if errant line higher or same,

; to TEST-LOW
; else, unusually, the current line is not there so let Main ROM handle.
;; NREPORT-1

L.0139: RST 20H ; Shadow Error Restart
DEFB 300 ; Nonsense in BASIC

;; TEST-LOW

L013B: INC HL ; increment program pointer to address low byte.
JR NZ,L0144 ; forward, if high bytes not same, to LINE-LEN
LD A, ($5C45) ; fetch low byte of current line from PPC lo
CP (HL) ; compare to addressed byte.
JR C,L0139 ; back, if not in program area, to NREPORT-1

;; LINE-LEN

L0144: INC HL ; increment program
LD E, (HL) ; pointer and
INC HL ; pick up the
LD D, (HL) ; length of the BASIC line
INC HL ; resting at the first character.
JR Z,L016F ; forward, if line numbers matched, to S-STAT

; the mid-entry point of the statement loop.

ADD HL, DE ; else add length to current address.
JR L0133 ; loop back to SC-L-LOOP

; THE 'STATEMENT LOOP'

; Entered at mid-point S-STAT with statement counter in B and a quotes
; counter, C, set at an even zero.

;7 SKIP-NUM

LO14E: 1D DE, $0006 ; a hidden floating point number has six bytes.
ADD HL, DE ; add to skip to next character.

; —> The Looping Point.

;; EACH-ST

L0152: LD A, (HL) ; fetch addressed BASIC character.

CP SO0E ; is it the hidden number indicator ?
JR Z,L014E ; back to SKIP-NUM to ignore.
INC HL ; else increase pointer.
CP $22 ; 1s it quotes character '""' ?
JR Nz,L015D ; skip forward, if not, to CHKEND
DEC C ; decrement quotes counter.
;; CHKEND
L015D: CP $3A ; 1s character ':' ?
JR Z,L0165 ; skip forward to CHKEVEN
CP SCB ; 1s character 'THEN' ?
JR NZ,L0169 ; skip forward to CHKEND-L
; ; CHKEVEN
L0l6e5: BIT 0,C ; are quotes balanced ?
JR Z,L016F ; forward, if so, to S-STAT

; for next statement.
; A carriage return must not appear within quotes.

;; CHKEND-L

L0169: CP $0D ; carriage return °?
JR NZ,L0152 ; back, if not, to EACH-ST
JR L0139 ; back to NREPORT-1

; '"Nonsense in BASIC'

; The Statement Loop Entry Point -->
;5 S-STAT
LOl6F: DJNZ L0152 ; decrement statement counter and loop back

; to EACH-ST.

; The errant statement has been located and CH ADD is set to start.
DEC HL ; point to start or ':'
LD ($5C5D) , HL ; set the Main ROM system variable CH ADD
RST 18H ; checking syntax ?
JR NZ,LO1AA ; forward, if not, to CL-WORK
BIT 7, (IY+$0C) ; test PPC hi - is it an Edit Line ?
JP Z,LO01FO0 ; jump forward, if not, to ERR-6.
DEC HL ; prepare to enter loop below.
LD C,$00 ;2?7
; It is well to reflect on what has been achieved up to this point. At

; each statement, the first attempt at validation is made by the Main ROM.
; Then if that should encounter something not to its liking, this ROM has

; a bash. There could be ten or more statements before this one and each
; will have been validated by the Main ROM or by this routine. As part of
; that validation process, when a number is parsed, then the integer or

; floating point form of the number is inserted after the digits, rendered

; invisible by a CHRS (14).

; Once a statement has passed validation by either ROM, then it is not
; undone. If, say, the Main ROM has failed on the third statement of

; 10 PRINT "Hi :"™ : LET vat = 15 : OPEN# 7, "T" : LET tax = cost * (vat/100)
; then it will have already inserted six bytes after the '7' before raising
; the error 'Invalid stream'. This ROM has located the separator before

; the command but needs to remove the hidden numbers before parsing the

; statement as the latter process will put them back in and we can't

; double up. The easiest way to do this is to search for hidden numbers

; right to the end of the line. There won't be any after this statement

; but stopping at a CHR$(13) is easier than considering end of statement

; markers in quotes. It seems that this neat solution was not arrived at

; immediately and the instruction, above, sets C to the quotes flag again

; and it is needlessly preserved on the stack.

; The end-user is oblivious to this elegant toing and froing between ROMS

; and the unseen error code generation and cancellation. All that is

; apparent is that when the RETURN key is pressed, the line simply enters
; the program.

;; RCLM-NUM

L0182: INC HL ; increment character pointer
LD A, (HL) ; fetch the character.
CP SOE ; is it the number marker ?
JR NZ,LO1AS ; forward, if not, to NEXTNUM
PUSH BC ; preserve BC (zero)
LD BC, $0006 ; six bytes to reclaim.
RST 10H ; CALBAS
DEFW S19E8 ; main RECLAIM-2
PUSH HL ; preserve character pointer.
LD DE, ($5CCB) ; fetch error pointer from CHADD
AND A ; prepare for true subtraction.
SBC HL, DE ; test if character position less than error.
JR NC, LO1A3 ; forward, if not, to NXT-1
EX DE, HL ; transfer CHADD value to HL.
LD BC, $0006 ;
AND A ;
SBC HL,BC ; reduce by six.
LD ($5CCB) , HL ; store back in system variable CHADD
;7 NXT-1
LO1A3: POP HL ; restore character pointer.
POP BC ; and restore BC (zero)
;+ NEXTNUM
LO1A5: LD A, (HL) ; fetch character.
CP $0D ; carriage return ?
JR NZ,L0182 ; loop back, if not, to RCLM-NUM

; The run-time path rejoins here

;+ CL-WORK
LO1AA: RST 10H ; CALBAS
DEFW S16BF ; main SET-WORK

CALL L0255 ; routine RES-VARS sets new system variables
; from that following CHADD to that preceding
; COPIES to the value S$FF.
RST 10H ; CALBAS
DEFW $0020 ; main NEXT-CHAR advances CH ADD and fetches
; the command character.
SUB SCE ; reduce tokens - why?
CP S01 ; '"CAT' 2
JP 7,L0486 ; jump to CAT-SYN
CP 502 ; '"FORMAT' ?
JP Z,L04B4 ; jump to FRMT-SYN
CcPp $03 ; 'MOVE' ?
JP Z,L053D ; jump to MOVE-SYN
CP 504 ; '"ERASE' ?
JP Z,L0531 ; jump to ERASE-SYN
CP 505 ; 'OPEN #' 2
JP Z,LO4ED ; jump to OPEN-SYN
CP $2A ; '"SAVE' *?
Jp Z,L082F ; jump to SAVE-SYN
CP $21 ; '"LOAD'" ?
JP Z,L0898 ; jJump to LOAD-SYN
CP 508 ; '"VERIFY' ?
JP Z,L0O8A2 ; jump to VERIF-SYN
CP $07 ; '"MERGE' ?
JP Z,LO8AC ; jump to MRG-SYN
CP $2D ; 'CLS' 2
JP Z,L0559 ; jump to CLS#-SYN
CP $2F ; '"CLEAR' ?
JP Z,L057F ; jump to CLR#-SYN
; If none of the new extended commands then load HL from the VECTOR
; system variable which normally points to the error routine below.
; However the user, or a third party software publisher, may have
; altered the vector to point to their own extended BASIC routines.
;; ERR-V
LO1EC: LD HL, ($5CB7) ; fetch address from system variable VECTOR
JP (HL) ; Jjump to address.
;7 ERR-6
LO1FO: LD HL, ($5CCB) ; fetch original character address from
; CHADD
LD ($5C5D) , HL ; and place in standard CH _ADD
RST 28H ; Error Main ROM.
; THE 'CREATE NEW SYSTEM VARIABLES' ROUTINE

; A continuation of the restart code at $0030. A check is made to see if
; the 58 variables already exist and the stack is set up to create the
; room using the main ROM routine. If there isn't 58 free bytes available

; then an
;;+ CRT-VARS
LO1F7: LD

LD

ADD
JR

LD
PUSH

LD
LD

LD
LD

LD

LD

'Out of memory'

HL, ($5CA4F)
DE, $A349

HL, DE
C,L023D

HL,L0224
HL

HL, ($5C63)
($5C65) , HL

HL, $5C92
($5C68) , HL

HL, $5CB5

BC,L003A

report is generated by the Main ROM.

system variable CHANS normally $5CB6.
add test value SA349.
add - if uninitialized will give S$FFFF.
forward, if higher, to VAR-EXIST

prepare address of DEFAULT routine
push on machine stack

use system variable STKBOT
to set system variable STKEND

use system variable MEMBOT
to set system variable MEM

the last standard system variable.
P-RAMT hi - the location before new area.
58 bytes to allocate.

Now call MAKE-ROOM in the Main ROM by placing a sequence of addresses
on the machine stack as it is not possible to use the CALBAS routine yet.

LD DE, $0000 ; indicator - signals Main ROM has been used.
PUSH DE ; stack word.

LD E, $08 ; form address $0008 in Main ROM.

PUSH DE ; stack word.

LD DE, $1655 ; the Main ROM address MAKE-ROOM.

PUSH DE ; stack word.

The machine stack now has the hierarchy DEFAULT; $0000; ERROR-1;
MAKE-ROOM which will be handled in reverse order.

JP L0700 ; jump to UNPAGE.
After creating room and paging this ROM back in, 'return' to the next

address which was the first in the sequence pushed on machine stack
earlier.

DEFAULT

L0224: 1D HL, L0242 ; default system variable values.
LD BC,$0013 ; nineteen bytes to move.
LD DE, $5CB6 ; old CHANS area, new sysvar FLAGS 3.
LDIR ; copy the bytes.
LD A,S$01 ; set accumulator to 1.
LD ($5CEF) , A ; set system variable COPIES.
LD (IY+$77),$50 ; set NMI ADD hi to eighty.
LD (IY+$76),500 ; set NMI ADD lo to zero.
RET ; return.

The extended System Variables already exist.

;; VAR-EXIST
L023D: RES 1, (IY+S7C) ; reset indicator in FLAGS 3.
RET ; return.

; THE 'SYSTEM VARIABLES DEFAULT VALUES' TABLE

; These are the initial values of the first section of the extended System
; Variables that are copied, once only, to a newly opened area following

; the standard 48K Spectrum System Variables. The memory area that was at
; this location (CHANS) is moved upwards to make room.

; The first new location (which was the first byte of CHANS) is now

; FLAGS 3, accessible by the IY register, and normally zero when the Main
; ROM becomes active again. Bit 1 is set when a CLEAR# is active and also

; by the copy itself.

;5 SV-DEFS
1L0242: DEFB $02 ; FLAGS3 (with bit 1 already set).
DEFW S01FO0 ; VECTOR
LD HL, $0000 ; SBRT located at $5CB9
CALL 50000 ;
LD ($5CBA) , HL ;
RET ;
DEFW $000C ; BAUD
DEFB s01 ; NTSTAT
DEFB 500 ; IOBORD - black.
DEFW $0000 ; SER FL

; THE 'RESET NEW SYSTEM VARIABLES' ROUTINE

; The central area is filled with SFF bytes.
; This occurs whenever a new extended command is invoked.

;7 RES-VARS
L0255: LD HL, $5CCD ; set pointer to NTRESP - start of area.
LD B, $22 ; thirty four bytes to fill.

;7 EACH-VAR

L025A: LD (HL) , SFF ; insert a default S$FF value.
INC HL ; bump the pointer.
DJNZ L0O25A ; loop back to EACH-VAR.
RET ; return.

; THE 'SHADOW REPORT PRINTING' ROUTINE

; This routine prints the error reports of the Shadow ROM.
; These relate to the code that follows a RST 20H restart. The error code
; is not printed as it would conflict with Main ROM reports. The text of

; the message is printed and then the Main ROM routine is used to print a

; comma and then the line number and statement. For example,

; Program finished, 0:1

; The code is similar to that at MAIN-4 in the Main ROM. Some improvements
; have been made but at least one slight error has been replicated.

;; REP-MSG

L0260: LD (IY+$7C),$00 ; clear FLAGS 3 in preparation for leaving

; this ROM.

ET ; Enable Interrupts.
HALT ; wait for the first interrupt.

CALL L17B7 ; routine RCL-T-CH reclaims any temporary
; channels and stops any running drive motor.

RES 5, (IY+S$01) ; update FLAGS - 'Ready for new key'.

BIT 1, (IY+$30) ; test FLAGS2 - is printer buffer empty ?
JR Z,L0276 ; forward, if so, to FETCH-ERR

RST 10H ; CALBAS - call a Base ROM routine.

DEFW SO0ECD ; main routine - COPY-BUFF

; Note. the programmer has neglected to
; set bit 1 of FLAGS first.

;; FETCH-ERR

L0276: POP HL ; drop the return address - after RST.
LD A, (HL) ; fetch the error code.
LD (IY+$00),A ; place in system variable ERR NR.
INC A ; increment setting zero if was SFF.
PUSH AF ; save actual code and status flags.
LD HL, $0000 ; prepare to blank some system variables.
LD (IY+$37),H ; clear all the bits of FLAGX.
LD (IY+$26),H ; blank X PTR hi to suppress error marker.
LD ($5C0B) , HL ; blank DEFADD to signal that no defined

; function is being evaluated.

INC L ; select offset of 1 (explicit in main ROM).
LD ($5Cl6) ,HL ; update STRMS 00 - inputs from keyboard.

RST 10H ; CALBAS

DEFW $16B0 ; main SET-MIN clears workspace etc.

RES 5, (IY+$37) ; update FLAGX - signal in EDIT mode

; not INPUT mode.
; Note. all the bits were reset earlier.

RST 10H ; CALBAS

DEFW SOD6E ; main CLS-LOWER

SET 5, (IY+$02) ; update TV_FLAG - signal lower screen
; requires clearing.

RES 3, (IY+S$02) ; update TV _FLAG - no change in mode.

POP AF ; restore the incremented error code.

LD HL, LO2BF ; start search at REP-MSGS table below.

LD B, $04 ; roughly ensure that BC does not limit
; search area as code must be found.

CPIR ; search for code $00 - $17 skipping

; all ASCII text.
; At this point HL addresses first character of message.

;; PR-REP-LP

LO02A7: LD A, (HL) ; fetch each character in turn.
CP $20 ; compare to space.
JR C,L02B4 ; forward if less to END-PR-MS
PUSH HL ; save the character pointer
RST 10H ; CALBAS

DEFW $0010 ; main PRINT-A

rs

POP
INC
JR

END-PR-MS

LO02B4: LD

’
’

’

’

rr

INC
INC
LD

PUSH
RST

HL ; restore pointer

HL ; and increment.

LO2A7 ; loop back to PR-REP-LP

SP, ($5C3D) ; set machine stack pointer from ERR SP

SP ; prepare to overwrite the MAIN-4

SP ; address $1303.

HL, $1349 ; substitute with the part that prints
; the comma and line statement.

HL ; push address to base of stack.

00H ; return to MAIN-ROM.

Note. at this stage we have, say, "Program finished" on the screen and
the Main ROM routine at $1349 will complete the ", 0:1" part looping
back to MAIN-2 to put $1303 on the stack again.

THE 'SHADOW REPORT MESSAGES' ROUTINE

These are the Shadow Error Reports. Note. that the never used
"Header mismatch error" has been largely reclaimed. Each error code,
which must be less than a space, serves to delimit the preceding text.
The final delimiter might just as well be $18.

REP-MSGS

LO2BF DEFB

DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB

$00
"Program
$01

finished"

"Nonsense in BASIC" ; Duplicate of a Main ROM error

$02
"Invalid
$03
"Invalid
$04
"Invalid
$05
"Invalid
$06
"Invalid
$07
"Missing
$08
"Missing
$09
"Missing
$0A
"Missing
$0B

stream number"
device expression"
name"

drive number"
station number"
name"

station number"
drive number"

baud rate"

"er mismatch e" ; Note. remnants of unused text.

soc

"Stream already open"

$0D
"Writing
$SOE
"Reading
$OF

to a 'read' file"

a 'write' file"

"Drive 'write' protected"

$10

"Microdrive full"

$11

DEFM "Microdrive not present"

DEFB s12

DEFM "File not found"

DEFB $13

DEFM "Hook code error" ; not listed in manual.
DEFB $14

DEFM "CODE error"

DEFB $15

DEFM "MERGE error"

DEFB 516

DEFM "Verification has failed"

DEFB 517

DEFM "Wrong file type"

DEFB 518 ; end-marker

R A b I S b I S b S R S R S b B S S S R S S S I R S b R S b R S b S b

; ** T HE SYNTAX ROUTINES **

Ak khkhkhkhkhkhkhkhhkhkhhkhhkhhhhkhkhhkhhkhhkhkhrhkhhkhkhhkrhkkhhhkkxkx*k

; THE 'CAT COMMAND SYNTAX' ROUTINE

; e.g. CAT 3

; Without the syntax tables of the Main ROM, checking syntax is quite
; laborious. Although the Main ROM allowed CAT without a parameter, a

; single expression in the range 1 - 8 is now required. By default, CAT
; outputs to the upper screen but output may be directed to any stream in
; the range 0 to 15 decimal. The subroutines used to evaluate the numeric
; expressions use the SCANNING routine, in Main ROM, which inserts the
; hidden five-byte numbers after any numeric arguments.
;; CAT-SYN
L0486: LD HL, $5CD8 ; address system variable S STRI.

LD (HL) , $02 ; default to stream 2 the screen.

RST 10H ; CALBAS

DEFW 50020 ; main NEXT-CHAR

CP S0D ; carriage return ?

JR Z,L0494 ; forward, if so, to MISSING-D

CP $3A ; 1s character ':' ?

;7 MISSING-D

1L0494: JP Z,L0683 ; jJump if no parameter to NREPORT-9
CP $23 ; 1s character '#' ?
JR NZ,LO4AG6 ; forward to CAT-SCRN
; Output is directed at a specific stream.
CALL LO64E ; routine EXPT-STRM checks for number in range.
CALL LO5B1 ; routine SEPARATOR checks for ',' or ';'.
JR NZ,L04B2 ; forward, if not present, to OREPORT-1

; '"Nonsense in BASIC'

RST 10H ; CALBAS
DEFW $0020 ; main NEXT-CHAR

;; CAT-SCRN

LO4AG: CALL LOG1E ; routine EXPT-NUM
CALL LO5B7 ; routine ST-END
CALL L0O66D ; routine CHECK-M-2 checks that drive is in

; range 1 - 8.

JPp

;; OREPORT-1
LO4B2: RST
DEFB

L1ABS

20H
$00

; jump forward to CAT-RUN

; Shadow Error Restart
; Nonsense in BASIC

; THE 'FORMAT COMMAND SYNTAX' ROUTINE

;; FRMT-SYN

L04B4: CALL
CALL
JR

CALL

;; NO-FOR-M

LO4BF: CALL
LD
CP
JR

CP
JR

;; FOR-B-T
LO4CD: CALL
JP

;; NOT-FOR-B
L04D3: CP
JR

CALL
LD
AND
Jp
LD
Jp

;; FOR-M
LO4E7: CALL

JPp

;; OPEN-SYN

LO4ED: CALL
CALL
JR

CALL
CALL
JR

LO5F2
1L05B1
NZ,LO4BF

LO62F

LO5B7

A, ($5CD9)
$54
Z,L04CD

$42
NZ,L04D3

LO6BO
LOACD

S4E
NZ,LO4E7

LO68F

A, ($5CD6)
A

Z,L069F
($5CC5) , A
L05C1

L0685
L1ABA

LOG4E
L05B1
NZ,L04B2

LOSF2
LO5B1
NZz,L0500

; routine EXPT-SPEC
; routine SEPARATOR
; forward to NO-FOR-M

; routine EXPT-NAME

; routine ST-END

; sv L STR1 device letter.
; i1s character "T" ?

; forward to FOR-B-T

; is character "B" ?
; forward to NOT-FOR-B

; routine TEST-BAUD
; Jjump to SET-BAUD

; 1s character "N" ?
; forward to FOR-M

; routine TEST-STAT
; sv D STR1 drive number

; jump to NREPORT-6
; sv NTSTAT
; Jump to ENDI

; routine TEST-MNAM
; jump to FOR-RUN

; THE 'OPEN COMMAND SYNTAX'

ROUTINE

; routine EXPT-STRM
; routine SEPARATOR
; back to OREPORT-1
; 'Nonsense in BASIC'

; routine EXPT-SPEC
; routine SEPARATOR
; forward to NOT-OP-M

CALL

;; NOT-OP-M
L0O500: CALL
LD

RST
DEFW

LD
AND
SBC
JR

LD
CP
JR

CP
JR

;; OPEN-RS
LO51C: JP

;; NOT-OP-B
LOS5S1F: CP
JR

CALL
Jp

;; OP-M-C
L0529: CALL
JP

7 NREPORT-C
LO52F: RST
DEFB

; THE 'ERASE

;; ERASE-SYN

L0O531: CALL
CALL
CALL
Jp

LO62F

LO5B7
A, ($5CD8)

10H
$1727

HL,$0011
A

HL, BC
C,LO52F

A, ($5CD9)
$54
Z,L051C

$42
NZ,LOS5S1F

LOB4E

S4E
NZ, L0529

LO68F
LOF40

L0685
L1ABF

20H
SOB

LO6A3
LO5B7
L0685
L1AAB

; THE 'MOVE COMMAND SYNTAX'

;; MOVE-SYN

routine EXPT-NAME
routine ST-END
sv D _STR1

CALBAS
main STR-DATAl

forward to NREPORT-C

sv L STR1 device letter.
IITII ?

forward to OPEN-RS

"B" ?
forward to NOT-OP-B

jump to OP-RSCHAN

is character "N" ?
forward to OP-M-C

routine TEST-STAT
jump to OPEN-N-ST

routine TEST-MNAM
Jjump to OP-RUN

Shadow Error Restart
Stream already open

routine EXPT-EXPR
routine ST-END

routine TEST-MNAM
jump to ERASE-RUN

ROUTINE

LO53D:

CALL
CALL
RST

DEFW

CP
JR

CALL
CALL
RST

DEFW

CALL
JPp

LO6BY
LO59F
10H

$0018

scc
NZ,L0584

L06BY
LO59F
10H

$0018

LO5B7
L1ABO

'"CLS# COMMAND' ROUTINE

;; CLS#-SYN

L0559:

; THE

RST
DEFW

CP
JR

RST
DEFW

CALL
LD
LD
LD

LD
LD

LD
ouT

RST
DEFW

Jp

10H
$0020

$23
NZ,L0584

10H
$0020

LO5B7

HL, L0038
($5C8D) , HL
($5C8F) , HL

(IY+SOE), L
(IY+$57),H

A,$07
(SFE) ,A

10H
$S0D6B

LO5C1

'CLEAR# COMMAND' ROUTINE

;; CLR#-SYN

LOS7F:

RST
DEFW

CP

;» NONSENSE

L0584:

Jp

10H
$0020

$23

NZ,L04B2

routine EXPT-EXP1
routine EX-D-STR
CALBAS

main GET-CHAR

'TO' 2
forward to NONSENSE

routine EXPT-EXP1
routine EX-D-STR
CALBAS

main GET-CHAR

routine ST-END
jump to MOVE-RUN

CALBAS
main NEXT-CHAR

is the character '"#' ?
forward, if not, to NONSENSE

CALBAS
main NEXT-CHAR

routine ST-END

prepare a zero and black ink on white paper.
set system variables ATTR P and MASK P.

set system variables ATTR T and MASK T.
Note. not really necessary as done by CLS.
set system variable BORDCR to colour scheme.
set system variable P_FLAG to zero.

load A with white.
directly change border colour.

CALBAS
main CLS clears screen and sets colours.

Jjump forward to ENDI.

CALBAS
main NEXT-CHAR

v#v ?

Jjump to OREPORT-1
'Nonsense in BASIC'

RST 10H ; CALBAS

DEFW 50020 ; main NEXT-CHAR
CALL LO5B7 ; routine ST-END
XOR A ;

;7 ALL-STRMS

LO58E: PUSH AF ;
SET 1, (IY+S7C) ; SV FLAGS_3
CALL L1718 ; routine CLOSE
POP AF ;
INC A ;
CP $10 ;
JR C,LO58E ; back to ALL-STRMS
JP L05C1 ; jump to END1

; THE 'EXCHANGE FILE SPECIFIERS DSTRI AND STR2' ROUTINE

; This routine is used by the MOVE routines to bring one of the two 8-byte
; file specifiers into context. There were two similar routines in the
; first Interface 1 ROM and this, the most efficient, has survived.

;; EX-D-STR

LO5%F: LD HL, $5CD6 ; sv D _STR1. drive number
LD DE, $5CDE ; sv D STR2.
LD B, $08 ; eight bytes to swap.

;7 ALL-BYTES

LO5A7: LD A, (DE) ; fetch byte 1.
LD C, (HL) ; fetch byte 2.
LD (HL) , A ; place byte 1.
LD A,C ; byte 2 to accumulator.
LD (DE) ,A ; place byte 2.
INC HL ; increment the
INC DE ; two pointers.
DJINZ LO5A7 ; loop back, for all eight, to ALL-BYTES.
RET ; return.

; THE 'SEPARATOR' ROUTINE

; This routine returns with zero flag set if the current character is
; either a comma or semi-colon.

;7 SEPARATOR

LO5B1: CP $2C ; 1s character ',' ?
RET Z ; return with zero set if so.
CP $3B ; 1s character ';' ?
RET ; return.

; THE 'END OF STATEMENT' ROUTINE

;; ST-END

LO5B7: CP $0D ; 1s character carriage return ?
JR Z,LO5SBF ; forward, if so, to TEST-RET
CP $3A ; 1s character a ':' ?
JR Nz,L0584 ; back, if not, to NONSENSE

;; TEST-RET
LO5BF: RST 18H ; checking syntax ?
RET NZ ; return if not.

; THE 'RETURN TO THE MAIN INTERPRETER' ROUTINE

;; ENDI1
L05C1l: LD SP, ($5C3D) ; sv ERR _SP
LD (IY+$00), SFF ; sv ERR NR
LD HL, $1BF4 ; Main ROM address STMT-NEXT
RST 18H ; checking syntax ?
JR Z,LO5EO ; forward, if so, to RETAD-SYN
LD A,STF ;
IN A, (SFE) ;
RRA ;
JR C,LO5DD ; forward to RETAD-RUN
LD A, SFE ;
IN A, (SFE) ;
RRA ;
JR NC, LO5SE2 ; forward to BREAK-PGM

;» RETAD-RUN
LO5DD: LD HL, $1B7D ; Main ROM address STMT-R-1

;7 RETAD-SYN
LO5EO: PUSH HL ;
RST 00H ; to MAIN-ROM

;; BREAK-PGM
LO5E2: LD (IY+300),$14 ; insert error code in system variable ERR NR.
RST 28H ; Error Main ROM
; '"BREAK into program'

; THE 'EVALUATE STRING EXPRESSION' ROUTINE

;; EXPT-STR

LOSE7: RST 10H ; CALBAS
DEFW $1C8C ; main EXPT-EXP
RST 18H ; checking syntax ?

RET Z

PUSH
RST
DEFW
POP
RET

; THE 'EVALUATE

;7 EXPT-SPEC
LO5F2: RST
DEFW

;7 EXP-SPEC2
LO5SF5 CALL

AF
10H
$2BF1
AF

’

’

CALBAS
main STK-FETCH

CHANNEL EXPRESSION' ROUTINE

10H
$0020

LOSE7

’

’

’

’

CALBAS
main NEXT-CHAR

routine EXPT-STR evaluates a string e.g. "m"
start in DE, length in BC.

; one of the main tenets of Sinclair BASIC is that a value can be replaced
; by an expression of the same type at any time, so this routine must allow

; something like "tomato" (3)

as well as the more conventional "m" specifier.

; Only in runtime when the expression is evaluated can a single character be

; insisted upon.

JR
PUSH
LD
DEC
OR

JR

LD

RST
DEFW

JR
AND
LD
POP
;; TEST-NEXT
L060C: CP

RET

CP
RET

CP
RET

CALL

JP

Z,L060C

NZ,L062D

A, (DE)

10H
$2C8D

NC,L062D
$DF
($5CDY9) , A
AF

$0D

z

S$3A
zZ

SAS
NC

LO5B1

NZ,L04B2

’

forward, if checking syntax, to TEST-NEXT.
save following character.

in runtime check

immediately for

a single character.

forward, if not, to NREPORT-3
'Invalid device expression'

fetch the addressed character.

CALBAS
main ALPHA

forward, if not alphabetic, to NREPORT-3
convert to uppercase with 'AND $11011111'
place in system variable L STR1 device letter.
restore the following character.

test for carriage return.

return if so.

is character ':' ?
return if so.

RND
return with a token??

routine SEPARATOR tests for both ';' and ','.

jump back, if not, to OREPORT-1

; 'Nonsense in BASIC'

RST 10H ; CALBAS
DEFW $0020 ; main NEXT-CHAR

; THE 'EVALUATE NUMERIC DRIVE EXPRESSION' ROUTINE

; This routine is called once only to evaluate the numeric expression
; following a 'CAT' command token or is used from above to check a numeric
; expression following for example "M";

;5 EXPT-NUM

LO61E: RST 10H ; CALBAS
DEFW $1C82 ; main EXPT-1NUM
RST 18H ; checking syntax ?
RET Z ; return if checking syntax.
PUSH AF ; save NZ not syntax flag
RST 10H ; CALBAS
DEFW S1E99 ; main FIND-INT2
LD ($5CDo) , BC ; set system variable D STR1 drive number
POP AF ; restore NZ not syntax flag
RET ; return.

;5 NREPORT-3
L062D: RST 20H ; Shadow Error Restart
DEFB $02 ; 'Invalid device expression'

; THE 'EVALUATE FILENAME' ROUTINE

;; EXPT-NAME

LOG2F: RST 10H ; CALBAS
DEFW 50020 ; main NEXT-CHAR
CALL LO5SE7 ; routine EXPT-STR
RET 7
PUSH AF
LD A,C
OR B
JR Z,L064cC ; forward to NREPORT-4
1D HL, $000A
SBC HL, BC
JR C,L0o64C ; forward to NREPORT-4
LD ($5CDA) , BC ; SV N_STRl
LD ($5CDC) , DE ; sv D _STRI
POP AF

RET

;; NREPORT-4

LO64C:

; THE

;7 EXPT-STRM

LOG4E:

RST
DEFW

RST
DEFW
RST
RET

PUSH
RST
DEFW
CP
JR

LD
POP
RET

;7 NREPORT-2

L0663:

; THE

RST
DEFB

'CHECK

;; CHECK-M
L0665: LD
CP
JP

;; CHECK-M-2

LO66D:

LD
LD
OR
JR

INC
LD
OR
JR

DEC
LD

SBC
RET

10H
$0020

10H
$1C82
18H

AF
10H
$1E94
$10

NC, L0663

($5CD8) ,A
AF

20H
$01

A, ($5CD9)
$4D
NZ,L062D

DE, ($5CD6)
ALE

D

7Z,L0681

DE
AE

D
Z,L0683

DE
HL, L0008
HL, DE

NC

Shadow Error Restart
Invalid name

RST 20H
DEFB $03
'EVALUATE STREAM NUMBER'

ROUTINE

CALBAS
main NEXT-CHAR

CALBAS
main EXPT-1NUM
checking syntax ?

CALBAS
main FIND-INTL1

forward to NREPORT-2

sv D_STR1

Shadow Error Restart
Invalid stream number

"M" PARAMETERS'

; called once from TEST-MNAM

ROUTINE

fetch system variable L STR1 device letter.
is character "M" ?

jump back, if not, to NREPORT-3

Error: 'Invalid device expression'.

fetch system variable D STR1 drive number.
test for

zero.

forward, if so, to NREPORT-5

'Invalid drive number'

also test that

location does not hold

the default SFFFF value.
forward, if so, to NREPORT-9
'Missing drive number'.

restore to initial wvalue.
and test that
drive is in range 1 - 8.
return if so.

NREPORT-5

rs

L0681: RST
DEFB
;7 NREPORT-9
L0683: RST
DEFB
; THE 'CHECK

; This routine checks that the device expression is "M",

v

20H
$04

20H
$08

Shadow Error Restart
Invalid drive number

Shadow Error Restart
Missing drive number

PARAMETERS AND FILENAME'

ROUTINE

that the drive is in

; the range 1 - 8 and that the filename is not null.

;; TEST-MNAM

L0685: CALL
LD
AND
RET

L0665

A, ($5CDB)

A
Z

; else system default S$SFF.

RST
DEFB

; THE
;7 TEST-STAT
LO68F: LD
INC
LD
OR
JR
DEC
LD
SBC
RET
;7 NREPORT-6
LO69F: RST
DEFB
;7 NREPORT-8
LO6Al: RST
DEFB
; THE 'EVALUATE

EXPT-EXPR

rr

20H
506

DE, ($5CD6)
DE

ALE

D

Z,L06A1

DE
HL, 10040
HL, DE

NC

20H
$05

20H
$07

"X",'N,' "NAME" !

’

’

routine CHECK-M checks for "M" and valid

drive number.

load A with D _STR1 the high byte of length
of filename.

test for zero.

return if so.

Shadow Error Restart
Missing name

'CHECK STATION NUMBER'

sv D _STR1 drive number

forward to NREPORT-8

Shadow Error Restart
Invalid station number

Shadow Error Restart
Missing station number

ROUTINE

LOGA3: CALL LO5F2 ; routine EXPT-SPEC
CALL LO5B1 ; routine SEPARATOR
Jp NZ,L04B2 ; jump to OREPORT-1

; 'Nonsense in BASIC'

CALL LOG2F ; routine EXPT-NAME
RET ; return...

; THE 'CHECK BAUD RATE' ROUTINE

;; TEST-BAUD

LO6B0O: LD HL, ($5CD6) ; sv D_STR1 drive number
INC HL
LD A, L
OR H
RET NZ
RST 20H ; Shadow Error Restart
DEFB $09 ; Missing baud rate

; THE 'EVALUATE STREAM OR EXPRESSION' ROUTINE

;7 EXPT-EXP1

LO6B9: RST 10H ; CALBAS

DEFW $0020 ; main NEXT-CHAR

CP $23 ; 1s character '"#' ?
JP Z,L06G4E ; jump to EXPT-STRM

CALL LO5SF5 ; routine EXP-SPEC2

CALL LO5B1 ; routine SEPARATOR

JR NZ,LO6CC ; forward to ENDHERE
CALL LO6G2F ; routine EXPT-NAME

;; ENDHERE

LOeCC: RST 18H ; checking syntax ?
RET 7
LD A, ($5CD9) ; sv L STR1 device letter.
CP $54 ; i1s character "T" ?
RET 7 ;
CP $42 ; is character "B" ?
RET 7 ;
CP S4E ; is character "N" ?
Jp Z,LO068F ; jJump, if so, to TEST-STAT
JP L0685 ; jump to TEST-MNAM
DEFB SFF
DEFB SFF

DEFB SFF

’

’

’

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

SFF
SFF
SFF
SFF
SFF
SFF
SFF
SFF
SFF
SFF
SFF
SFF
SFF
SFF
SFF
SFF
SFF
SFF
SFF
SFF
SFF
SFF
SFF
SFF
SFF
SFF
SFF
SFF
SFF
SFF

THE 'UNPAGE' ROUTINE

UNPAGE

L0700: RET

’

’

’

THE 'EVALUATE PARAMETERS'

ROUTINE

EXPT-PRMS

L0O701: RST

’

’

DEFW

CP

JR

RST

DEFW

CALL
CALL
JR

CALL

NO-NAME

10H
$0020

S$2A
Nz,L073C
10H

$0020

LO5SF5
LO5B1
NZ,L0716

LO62F

; CALBAS
; main NEXT-CHAR

; is character '*'
; forward, if not, to OREP-1-2
; CALBAS

; main NEXT-CHAR

; routine EXP-SPEC2
; routine SEPARATOR
; forward to NO-NAME

; routine EXPT-NAME

LO716:

PUSH
LD

CP
JR

SET

;; NOT-NET

L0722:

;; OREP-

LO73C:

;; LINE
LO73E:

POP
CP
JR

CP
JR

CP
JR

CP
JR

CP
JR

CP
Jp

1-2

RST
DEFB

RST
DEFW

RST
DEFW

CALL

RST
DEFW

LD
JR

;; END-EXPT

L0750:

; the 'PROGRAM'

; + PROG
LO753:

CALL

XOR
LD
LD
LD
LD
SCF
SBC

AF
A, (S5CD9)

S4E
NZ,L0722

3, (IY+$7C)
AF
$0D

Z,L0750

$3A
Z,L0750

SAA
Z,L0771

SAF
Z,L0789

SCA
Z,L073E

SE4
Z,L07D2

20H
$00

10H
$0020

10H
$1C82

LO5B7

10H
$1E99

($5CED) , BC
L0753

LO5B7

’

sv L _STR1 device letter.

is character "N" ?

forward, if not, to NOT-NET

update FLAGS 3 signal networking.

is character carriage return ?

forward to END-EXPT

is character ':' ?
forward to END-EXPT

is character the token
forward to SCREENS

is character the token
forward to CODE

is character the token
forward to LINE

is character the token

jump to DATA

Shadow Error Restart
Nonsense in BASIC

CALBAS
main NEXT-CHAR

CALBAS
main EXPT-1NUM

routine ST-END

CALBAS
main FIND-INT2

sv HD 11
forward to PROG

routine ST-END

SUBROUTINE is used when loading 'run'.

A
($5CE6) , A
HL, ($5C59)
DE, ($5C53)
($5CE9) , DE

HL, DE

sv HD 00
sv E_LINE
sv PROG
sv HD 0D

' SCREENS'

'CODE’

'LINE’

'DATA'

?

?

?

?

1D ($5CE7) , HL ; sv HD OB

i) HL, ($5C4B) ; sv VARS
SBC HL, DE ;
LD ($5CEB) , HL ; SV HD70F
RET
;7 SCREENS
L0771: RST 10H ; CALBAS
DEFW 50020 ; main NEXT-CHAR
CALL LO5BR7 ; routine ST-END
LD HL, $1B00
LD ($5CE7) , HL ; sv HD 0B
LD HL, $4000
LD ($5CE9) , HL ; SV HD70D
LD A,S$03
LD ($5CE6) , A ; sv HD 00
RET
;; CODE
L.0789: RST 10H ; CALBAS
DEFW 30020 ; main NEXT-CHAR
CP $0D ; 1s character a carriage return ?
JR Z,L079A ; forward to DEFLT-0
CP $3A ; is character a ':' ?
JR NZ,LO79F ; forward to PAR-1
BIT 5, (IY+S$S7C) ; SV FLAGS_3
JR NZ,L073C ; back to OREP-1-2
;; DEFLT-0
LO79A: RST 10H ; CALBAS
DEFW S1CE®6 ; main USE-ZERO
JR LO7A7 ; forward to TEST-SAVE
;; PAR-1
LO79F: RST 10H ; CALBAS
DEFW $1C82 ; main EXPT-1NUM
CALL LO5BR1 ; routine SEPARATOR
JR Z,L07B2 ; forward to PAR-2

;; TEST-SAVE

LO7A7: BIT 5, (IY+S7C) ; sv FLAGS 3
JR NZ,L073C ; back to OREP-1-2
RST 10H ; CALBAS
DEFW S1CE6 ; main USE-ZERO
JR LO7B8 ; forward to END-CODE
;; PAR-2
LO7B2: RST 10H ; CALBAS

DEFW $0020 ; main NEXT-CHAR

RST
DEFW

;+ END-CODE
LO7B8: RST
DEFW

CALL

RST
DEFW
LD

RST
DEFW
LD

LD
LD
RET

;; DATA
LO7D2: BIT
JR

RST
DEFB

;; NO-M-ARR
LO7DA: RST
DEFW

RST
DEFW

SET
JR

LD
BIT
JR

LD
RST

;; EXISTING
LO7F2: JR

;5 NONS-BSC
LO7F4: RST
DEFB

10H
$1C82

10H
$0018

LO5B7

10H
$1E99
($5CE7) ,BC

10H
S1E99
($5CE9) ,BC

A,3503
($5CE®6) ,A

6, (IY+$7C)
Z,L07DA

20H
$14

10H
$0020

10H
$28B2

7,C
NC,LO7F2

HL, $0000
4, (IY+$7C)
NZ,L0O8OE

(IY+$00),$01
28H

Z,L07F6

20H
$00

CALBAS
main EXPT-1NUM

CALBAS

main GET-CHAR
routine ST-END
CALBAS

main FIND-INT2
sv HD OB
CALBAS

main FIND-INT2
sv HD 0D

sv HD 00
return.

sv FLAGS 3
forward to NO-M-ARR

Shadow Error Restart
MERGE error

CALBAS
main NEXT-CHAR

CALBAS
main LOOK-VARS

forward to EXISTING
sv FLAGS 3

forward to LD-DATA

sv ERR NR to '2 Variable not found'
Error Main ROM

forward to G-TYPE

Shadow Error Restart
Nonsense in BASIC

;; G-TYPE

LO7F6: RST 18H ; checking syntax ?
JR Z,L081C ; forward to END-DATA
BIT 5, (IY+S$7C) ; SV FLAGS_3
JR Z,1L0803 ; forward to VR-DATA
BIT 7, (HL)
JR Z,L07F4 ; back to NONS-BSC

;7 VR-DATA

1L0803: INC HL
1D A, (HL)
1D ($5CE7) , A ; sv HD OB
INC HL
1D A, (HL)
LD ($5CE8) , A ; sv HD OB hi
INC HL

;; LD-DATA

LO8OE: LD A,C
LD ($5CEB) , A ; SV HD_OF
LD A,S$01
BIT 6,C
JR Z,L0819 ; forward to NUM-ARR
INC A
;; NUM-ARR
1.L.0819: LD ($S5CE6) , A ; sv HD 00
;; END-DATA
L081C: EX DE, HL
RST 10H ; CALBAS
DEFW 30020 ; main NEXT-CHAR
CP 329 ; 1s character '")' ?
JR Nz,LO7F4 ; back to NONS-BSC
RST 10H ; CALBAS
DEFW 50020 ; main NEXT-CHAR
CALL LO5B7 ; routine ST-END
LD ($5CE9) , DE ; SV HD_OD
RET ; return.

; THE 'SAVE COMMAND SYNTAX' ROUTINE

;7 SAVE-SYN

LO82F: SET 5, (IY+S$7C) ; sv FLAGS 3
CALL L0701 ; routine EXPT-PRMS
LD A, ($5CD9) ; sv L STR1 device letter.
CP $42 ; 1s character 'B' ?

JR Z,L084F ; forward to SA-HEADER

rs

1.L.0849:

rs

CP
JR

CALL
CALL
JR

SAVE-M
CALL
Jp

SA-HEADER

LO84F: LD

rs

1.L.0854:

rs

LD

HD-LOOP
CALL
INC
DJINZ

LD
BIT
JR

LD
CP
JR

LD
ADD

SA-BLOCK

LO86E: LD

rr

SA-BLK-LP

L0872: LD

rs

OR
JR

PUSH

CALL

POP

DEC

INC
JR

S-BLK-END

L0881: JP

’

S4E
NZ, L0849

LO68F
LOF46
LO84F

L0685
L1AC4

B, $09
HL, $5CE6

L0884
HL
L0854

HL, ($5CE9)
3, (IY+$7C)
Z,L08B6E

A, (S5CE6)
$03

NC, LO86E
DE, $0114
HL, DE

BC, ($5CE7)

IX

BC
HL
L0872

is chara
forward

routine

routine
forward

routine
Jjump to

sv HD 00

routine
back to
sv HD 0D
sv FLAGS
forward
sv HD 00

compare
forward

sv HD OB

forward

’

routine

back to

cter 'N' ?
to SAVE-M

TEST-STAT

OP-TEMP-N
to SA-HEADER

TEST-MNAM

SAVE-RUN

SA-BYTE

HD-LOOP

3

to SA-BLOCK

with three - type CODE

to SA-BLOCK

to S-BLK-END

SA-BYTE

SA-BLK-LP

TST-MR-M

THE 'SAVE A BYTE TO NETWORK OR RS232 LINK' ROUTINE

SA-BYTE

rr

1.L.0884: PUSH
PUSH
BIT
LD
JR
CALL
JR

;7 SA-NET

L0892: CALL

;7 SA-B-END

L0895: POP
POP
RET

; THE

;; LOAD-SYN

1L0898: SET
CALL
JP

; THE

;7 VERIF-SYN

LO8A2: SET
CALL
JP

; THE 'MERGE

;; MRG-SYN

LO8BAC: SET
CALL

; THE

;; LD-VF-MR

LO8B3: LD
LD
LD
LDIR
LD
CP

HL

BC

3, (IY+S7C)
A, (HL)
NZ,L0892

LODO7
L0895

LOEOS

BC
HL

4, (IY+ST7C)
L0701
LO8B3

'VERIFY COMMAND SYNTAX'

7, (IY+S7C)
L0701
LO8B3

6, (IY+$7C)
L0701

HL, $5CE6
DE, $5CDE
BC, $0007

A, ($5CD9)

S4E

sv FLAGS 3
forward to SA-NET

routine BCHAN-OUT
forward to SA-B-END

routine NCHAN-OUT

'LOAD COMMAND SYNTAX'

ROUTINE

’
’

’

’
’

’

’

’

'LOAD-VERIFY-MERGE COMMANDS'

’
’

’

’

sv FLAGS 3
routine EXPT-PRMS
jump to LD-VF-MR

ROUTINE

sv FLAGS 3
routine EXPT-PRMS
jump to LD-VF-MR

sv FLAGS 3
routine EXPT-PRMS

ROUTINE

set source to HD 00
set destination to D STR2
seven bytes to copy.
copy type, start, length,

sv L STR1 device letter.

"N" ?

length of program.

JR Z,L08D1 ; forward to TS-L-NET

CP $42 ; "B"O?

JR Z,L08D7 ; forward to TS-L-RS
; proceed with Microdrive device.

CALL L0685 ; routine TEST-MNAM return without error if
; device is "M" and drive and filename are OK.

CALL L1971 ; routine F-M-HEAD loads the header type
; record for the above filename and populates
; the locations HD 00 to HD 11.

JR LO8F6 ; forward to TEST-TYPE which tests that file
; types agree and then loads rest of records.

;; TS-L-NET
L.O8D1: CALL LO6G8F ; routine TEST-STAT
CALL LOF46 ; routine OP-TEMP-N
;; TS-L-RS
L08D7: LD HL, $5CE6 ; sv HD 00
LD B,S$09 ;
;; LD-HEADER
L08DC: PUSH HL
PUSH BC
BIT 3, (IY+S$7C) ; SV FLAGS_3
JR Z,LO8SEB ; forward to LD-HD-RS
;; LD-HD-NET
LO8E4: CALL LODAF ; routine NCHAN-IN
JR NC, LO8E4 ; back to LD-HD-NET
JR LO8FO ; forward to LD-HDR-2
;; LD-HD-RS
LO8EB: CALL LOB88 ; routine BCHAN-IN
JR NC, LOBEB ; back to LD-HD-RS
;; LD-HDR-2
LO8F0: POP BC
POP HL
LD (HL) , A
INC HL
DJINZ L.08DC ; back to LD-HEADER
; >
;; TEST-TYPE
LO8F6: LD A, ($5CDE) ; sv D _STR2
LD B,A
LD A, (S5CE®6) ; sv HD 00
CP B

JR NZ,L0906 ; forward to NREPORT-N

CP
JR

JR

;5 NREPORT-N
L0906: RST
DEFB

;7 TST-MERGE
L0908: BIT

JR

BIT

JPp

;; T-M-CODE
L.0915: BIT

JR

RST
DEFB

;; LD-BLOCK

LO91D: LD
LD
LD
OR
JR

SBC

JR

BIT

JR

RST
DEFB

7 NREPORT-L
L0934: RST
DEFB

;; LD-BLK-2

L0936: LD
LD
CP
JR

LD
JR

;; LD-BLK-3

$03
Z,L0915

C,L0908

20H
$lé

6, (IY+$7C)
NZ,L096B

7, (IY+STC)
Z,L0O9A7

6, (IY+$7C)
Z,L091D

20H
$14

HL, ($S5CDF)
DE, ($5CE7)
A,H

L

Z,L0936

HL, DE
NC, L0936

4, (IY+S7C)
Z,L0934

20H
$13

20H
$15

HL, ($5CE1)
A, (IX+$04)
SCD

NZ, L0945

HL, ($5CE4)
L0956

compare with three - type CODE
forward to T-M-CODE

forward to TST-MERGE

Shadow Error Restart
Wrong file type

sv FLAGS 3
forward to MERGE-BLK

sv FLAGS 3
Jjump to LD-PR-AR

sv FLAGS 3
forward to LD-BLOCK

Shadow Error Restart
MERGE error

sv D _STR2 (+1) length of data
sv HD OB

forward to LD-BLK-2

forward to LD-BLK-2

sv FLAGS 3
forward to NREPORT-L

Shadow Error Restart
Code Error

Shadow Error Restart
Verification has failed

sv L STR2

channel letter

'™M' +$80 ?

forward to LD-BLK-3
sV D STR2 * Kk Kk ok kK kK
forward to LD-BLK-4

L0945: BIT
JR

LD
CP
JR

LD
ADD

;; LD-BLK-4
L0956: LD
OR
JR

LD

;; LD-BLK-5
L095D: LD
AND
JR

LD

;; LD-NO-PGM
L0966: CALL
JR

;; MERGE-BLK

LO96B: LD
AND
JR

CALL

RST
DEFB

;; NO-AUTOST

L0977: LD
PUSH
INC

RST
DEFW

LD
EX
POP
PUSH
CALL
POP

RST
DEFW

3, (IY+S7C)
Z,L0956

A, ($5CE06)
$03
Z,L0956

BC, $0114
HL, BC

A, H
L
NZ,L095D

HL, ($5CE9)

A, ($5CE6)
A
NZ,L0966

HL, ($5C53)

LOAGO
L098C

A, ($5CEE)
$Co
NZ,L0977

L17B7

20H
$14

BC, ($5CE7)
BC
BC

10H
$0030

(HL), $80
DE, HL

DE

HL

LOAGO

HL

10H
S08CE

sv FLAGS 3
forward to LD-BLK-4

sv HD 00

compare with three - type CODE

forward to LD-BLK-4

forward to LD-BLK-5

sv HD 0D

sv HD 00
forward to LD-NO-PGM

sv PROG

routine LV-ANY
forward to TST-MR-M

sv HD 11 hi

forward to NO-AUTOST
routine RCL-T-CH
Shadow Error Restart

MERGE error

sv HD 0B

CALBAS
main BC-SPACES

routine LV-ANY

CALBAS
main ME-CTRLX

;; TST-MR-M

L.098C: LD A, (IX+504) ; channel letter
CP SCD ; 'M' 4+ $80 2
JR NZ,L0998 ; forward to TST-MR-N
CALL L138E ; routine CLOSE-M2
JR LO9A4 ; forward to MERGE-END
;; TST-MR-N
L0998: BIT 3, (IY+$7C) ; sv FLAGS 3
JR Z,L09%A4 ; forward to MERGE-END
CALL LOFAE ; routine SEND-NEOF
CALL L17B7 ; routine RCL-T-CH
;; MERGE-END
L09A4: JP LO5C1 ; jump to END1
;; LD-PR-AR
LO9A7: LD DE, ($5CE7) ; sv HD OB
LD HL, ($5CE1) ; sv L STR2
PUSH HL ;
LD A,H ;
OR L ;
JR NZ,LO9B9 ; forward to LD-PROG
INC DE ;
INC DE ;
INC DE ;
EX DE, HL ;
JR L09C2 ; forward to TST-SPACE
;; LD-PROG
LO9BY9: 1D HL, ($5CDF) ; sv D STR2 (+1) length of data
EX DE, HL ;
SCF ;
SBC HL,DE ;
JR C,L0O9CB ; forward to TST-TYPE
;; TST-SPACE
L09C2: LD DE, $0005 ;
ADD HL, DE ;
LD B,H ;
LD C,L ;
RST 10H ; CALBAS
DEFW S1FO05 ; main TEST-ROOM
; Note. that before the above call, interrupts are disabled and the motor

; of the microdrive is running. If there should be insufficient room,

; then the processor stops at the HALT instruction at address $1303

; (MAIN-4), in the main ROM, while trying to output the "Out of Memory"

; report. This could be corrected by replacing the above 3 bytes to a

; call to a 6-byte subroutine which carries out the same instructions

; between an EI/DI pair. In the production of the "Out of Memory" report
; this ROM will be paged again by the instruction fetch at 0008. The

; motors are stopped at START-4 and then Control will then pass to the

; other ROM to execute the

"LD A, (HL)", then back to this ROM to eliminate

; the "OK" message before a final switch to the Main ROM for the actual
; message text.

;; TST-TYPE
LO9CB: POP
LD
AND
JR

LD
OR
JR

LD
CP
JR

LD
JR

;; T-LD-NET
LO9E2: BIT
JR

LD
ADD

;; RCLM-OLD

LO9EC: DEC
LD
DEC
LD
DEC
INC
INC
INC
RST
DEFW

;; CRT-NEW

LO9F7: LD
DEC
LD
PUSH
INC
INC
INC
LD
PUSH
RST
DEFW
INC
POP
LD
POP
INC
LD
INC
LD
INC

HL
A, ($5CE6)
A
Z,LO0A19

A,H

L

Z,LO9F7

A, (IX+$04)

SCD
NZ, LO9E2

HL, ($S5CE4)
LOSEC

3, (IY+$7C)
Z,LO9EC

DE, $0114
HL, DE

HL
B, (HL)
HL

C, (HL)
HL

BC

BC

BC
10H
$19E8

HL, ($5C59)
HL

BC, ($5CE7)
BC

BC

BC

BC

A, ($5CE3)
AF

10H

$1655

HL

AF

(HL) , A

DE

HL

(HL) ,E

HL

(HL),D

HL

sv HD 00

forward to SET-PROG

forward to CRT-NEW
channel letter
is character an inverted "M" ?

forward to T-LD-NET

sv D_STR2
forward to RCLM-OLD

sv FLAGS 3
forward to RCLM-OLD

CALBAS
main RECLAIM-2
sv E LINE

sv HD 0B

sv D_STR2

CALBAS
main MAKE-ROOM

;; END-LD-PR
LOAl13: CALL

JP

;+ SET-PROG

LOA19: RES
LD
LD
DEC
RST
DEFW
LD
LD
RST
DEFW
INC
LD
ADD
LD
LD
LD
AND
JR

SET
LD
LD
LD
LD

;5 NO-AUTO
LOA52: LD
LD
DEC
LD
INC
JR

LOA6O

L098C

1, (IY+$7C)
DE, ($5C53)
HL, ($5C59)
HL

10H

$19E5

BC, ($5CE7)
HL, ($5C53)
10H

$1655

HL

BC, ($5CEB)
HL, BC
($5C4B) , HL
A, ($5CEE)
H,A

$co
NZ,LOA52

IY+S$7C)
S5CED)

14

Cc42),HL

1
A,
L
(
(+$OA)I$OO

(
(
, A
$5
1Y

HL, ($5C53)
DE, ($5CE7)
HL
($5C57) , HL
HL

LOA13

; THE 'LOAD OR VERIFY'

ROUTINE

routine LV-ANY

Jjump to TST-MR-M

sv FLAGS 3
sv PROG
sv E LINE

CALBAS

main RECLAIM-1

sv HD OB

sv PROG

CALBAS

main MAKE-ROOM

sv HD OF

sv VARS

sv HD 11 hi
forward to NO-AUTO

sv FLAGS 3
sv HD 11

sv NEWPPC
sv NSPPC
sv PROG

sv HD 0B

sv DATADD

back to END-LD-PR

; This routine is able to either LOAD or VERIFY a block of bytes, from any
; of the three possible binary sources, A Microdrive cartridge, the Binary
; "B" RS232 channel or the Network "N" channel.

; The block could be a program,

code bytes or an array and the first

; receiving location is in HL and the length in DE.

;» LV-ANY

LOAGO: LD
OR
RET

LD
CP

JR

; else is a temporary "M" channel

, D

N EO

A, (IX+$04)
SCD

NZ, LOAGE

test the length
for zero.
return if so.

fetch channel letter
is letter "M" + $80 7

forward, if not, to LV-BN to load from
the B channel or network.

so load or verify and then return.

CALL L199A ;

’

RET ’

routine LV-MCH loads or verifies a block
of code from microdrive.

return after called routine.

; Load or Verify from B channel or Network.

;; LV-BN

LOAGE: PUSH HL ;
PUSH DE ;
BIT 3, (IY+S7C) ;
JR Z,LOA7D ;

; Load or Verify from "N" channel.

;; LV-N

LOA76: CALL LODAF ;
JR NC, LOA76 ;
JR LOAS82 ;

; Load or Verify from "B" channel.

;; LV-B
LOA7D: CALL LOB88 ;
JR NC, LOA7D ;

; Load or Verify "B","N" end test.

;; LV-BN-E

LOA82: POP DE ;
DEC DE ;
POP HL ;
BIT 7, (IY+S7C) ;
JR NZ, LOASE ;
LD (HL) , A ;
JR LOA93 ;

; Verify "B" or "N" bytes.

;5 VR-BN

LOASE: CP (HL) ;
JR Z,L0A93 ;
RST 20H ;
DEFB $15 ;

; Load or Verify "B","N" end.

;; LVBN-END
LOA93: INC HL ;
1D AE ;

save address.

save byte count.

test FLAGS 3 - using network ?
forward, if not, to LV-B

routine NCHAN-IN
back to LV-N

forward to LV-BN-E

routine BCHAN-IN
back to LV-B

restore code length.
and decrement.
restore load address.

test FLAGS 3 - verify operation.
forward, if so missing load, to VR-BN

load the byte into memory.
forward to LVBN-END

compare the received byte with the byte in
memory.
forward, with match, to LVBN-END.

Shadow Error Restart
'Verification has failed'

increment the address.
test the byte

OR
JR

RET

; THE 'LOAD

;; LOAD-RUN
LOA99: LD
LD

LD
LD

LD
LD

SET

CALL

LD

LD

LD

LDIR

SET

CALL

JP

;5 NAME-RUN
LOACA: DEFM

; ** T HE

; THE 'SET

;7 SET-BAUD
LOACD: LD
LD

;7 NXT-ENTRY

LOAD4: LD
INC
LD

"RUN"

"BAUD"

D
NZ,LOAGE

PROGRAM'

BC, $0001
($5CD6) ,BC

BC, $0003
($5CDA) ,BC

BC, LOACA
($5CDC) , BC

4, (IY+S7C)

L0753

HL, $5CE6
DE, $5CDE
BC,$0009

7, (IY+S0A)

L1971

LO8F6

" run"

RS 232

BC, ($5CD6)
HL, LOAF3

E, (HL)
HL
D, (HL)

’

’

’

ROUTINE

’

’

’

counter for zero.
back, i1f not, to LV-BN

return.

set drive to one.
update D STR1 drive number.

length of "run" is three.
update N STR1 length of filename.

addr: NAME-RUN (below)
update A STR1 - address of filename.

update FLAGS 3 signal a LOAD operation.

routine PROG sets up the first seven header
bytes for a program.

set start to HD 00

set destination to D STR2

nine bytes are copied.

Note. should be seven but is mostly harmless.

block copy.

update Main NSPPC - signal no jump to be made.
routine F-M-HEAD loads the header type

record for the 'run' file and populates

the nine locations HD 00 to HD 11.

jump back to TEST-TYPE to test that type is
'program' and load the rest.

the filename "run"

kkhkkhkhkkhkkhkhkkhkhkhkkhhkhkkhhhkkhhkhkkhhhkh Ak hA Ak h Ak hkrhkhkrkhkhkhkhx%k

ROUTINES **

R g I d b A b S b S b I S R S R S S S S S R S I R S S R S I R S b R a4

SYSTEM VARIABLE' ROUTINE

sv D _STR1 drive number
RS-CONSTS

INC
EX
LD
CP
JR

AND
SBC
JR

EX
INC
INC
JR

;; END-SET
LOAE8: EX
LD
INC
LD
LD
Jp

;7 RS-CONSTS
LOAF3: DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW

HL
DE, HL
A, H

S4B

NC, LOAES

A
HL, BC
NC, LOAES

DE, HL
HL
HL
LOAD4

DE, HL

E, (HL)

HL

D, (HL)
($5CC3),DE
1L05C1

50032
SO0A82
S006E
$04C5
$012C
$S01BE
$0258
SO00DE
$04B0
SO006E
50960
50036
$12C0
$S001A
$2580
5000C
$4B00
50005

’

’

’

’

’

forward to END-SET

forward to END-SET

loop back to NXT-ENTRY

sv BAUD
Jjump to ENDL

; THE 'RS232 TIMING CONSTANTS'

ROUTINE

; THE 'OPEN RS232 CHANNEL IN CHANS AREA' ROUTINE

;; OP-RS-CH
LOB17: LD

DEC
LD
PUSH

RST

HL, ($5C53)
HL

BC, $000B
BC

10H

use system variable PROG to address the
location following the Channels area.
step back to the end-marker.

eleven bytes of room required.

save bytes

CALBAS

; but 1if this is to be a binary

DEFW

POP

PUSH
CALL

POP

LD
LD
LDDR

INC
LD
CP
RET

$1655

BC

DE
L1A82

DE

HL,LOB76 -
BC, $000B

DE
A, ($5CD9)
$42
NZ

; and input routines.

; THE

PUSH

LD
ADD

LD
INC

LD
LD
INC
LD
INC

LD
LD
INC
LD

POP
RET

;7 OP-RSCHAN

LOB4E:

CALL

;; OP-STREAM

LOB51:

LD
DEC
EX
AND
SBC
EX
LD
LD
RLCA
LD

DE

HL, $0004
HL, DE

(HL) , $42
HL

DE,LOD07
(HL) , E
HL
(HL) , D
HL

DE, LOB7C
(HL) , E
HL
(HL) , D

DE

LOB17

HL, ($5CA4F)
HL

DE, HL

A

HL, DE

DE, HL

HL, $5C16
A, ($5CD8)

C,A

1

main routine MAKE-ROOM opens up the space.
register HL points to location before room.

bring back the eleven bytes.

save DE briefly

routine REST-N-AD adjusts the dynamic memory
pointers to filenames in D STR1 and D STRZ.
restore DE.

last byte of T-Channel info.
eleven bytes to copy.
block copy downwards.

sv L STR1 device letter.
is it "B" ?
return as must be "T".

channel then overwrite the letter and the output

’

’

’

’

address B-CHAN-OUT

address B-INPUT

return.

'ATTACH CHANNEL TO A STREAM'

ROUTINE

routine OP-RS-CH

sv CHANS

sv STRMS_ 00
sv D_STR1

LD B,S00

ADD HL, BC

D (HL) , E

INC HL

LD (HL),D

JP L05C1 ; jump to END1

; THE '"T" CHANNEL DATA'

; the eleven-byte "T" CHANNEL descriptor.

;; TCHAN-DAT

LOB6B: DEFW 50008 ; main ERROR-1
DEFW 30008 ; main ERROR-1
DEFB 554 ; character "T"
DEFW LOC3A ; TCHAN-OUT
DEFW LOB76 ; T-INPUT
DEFW $000B ; channel length - 11 bytes.

; THE '"T" CHANNEL INPUT' ROUTINE

;; T-INPUT
LOB76: LD HL, LOB82 ; address of routine TCHAN-IN
JP LOD5A ; jump to CALL-INP

; THE '"B" CHANNEL INPUT' ROUTINE

;; B-INPUT
LOB7C: LD HL, LOB88 ; address of routine BCHAN-IN
JP LODS5SA ; jump to CALL-INP

; THE '"T" CHANNEL INPUT SERVICE' ROUTINE

;; TCHAN-IN

LOB82: CALL LOB88 ; routine BCHAN-IN
RES 7,A
RET

; THE '"B" CHANNEL INPUT SERVICE' ROUTINE

; (Hook Code: $1D)

;; BCHAN-IN

L.OB88: LD HL, $5CC7 ; sv SER FL
1D A, (HL) ;
AND A ;
JR Z,L0B95 ; forward to REC-BYTE
LD (HL), $00 ;
INC HL ;
LD A, (HL) ;

SCF ;

RET ; Return.

;; REC-BYTE
LOB95: CALL L163E ; routine TEST-BRK
DI ; Disable Interrupts
LD A, ($5CCo) ; sv IOBORD
ouT (SFE) , A
LD DE, ($5CC3) ; sv BAUD
LD HL, $0320 ; 800d.
LD B,D ;
LD C,E ;
SRL B ;
RR C ;
LD A, SFE ;
ouT (SEF) ,A ;
;+ READ-RS
LOBAF: 1IN A, (SF7) ; bit 7 is input serial data (txdata)
RLCA ;
JR NC, LOBC3 ; forward to TST-AGAIN
IN A, (SF7) ;
RLCA 7
JR NC, LOBC3 ; forward to TST-AGAIN
IN A, (SF7) ;
RLCA ;
JR NC, LOBC3 ; forward to TST-AGAIN
IN A, (SE7) ;
RLCA ;
JR C, LOBCF ; forward to START-BIT
;; TST-AGAIN
LOBC3: DEC HL ;
LD A,H ;
OR L ;
JR NZ, LOBAF ; back to READ-RS
PUSH AF ;
D A, SEE ;
ouT (SEF) , A ;
JR LOBEE ; forward to WAIT-1
;7 START-BIT
LOBCF: LD H,B ; Load HL with halved BAUD value.
1D L,C ;
LD B, $80 ; Load B with the start bit.
DEC HL ; Reduce the counter by the time for the four
DEC HL ; tests.
DEC HL ;

;7 SERIAL-IN

LOBD6: ADD
NOP

;; BD-DELAY
LOBD8: DEC
LD
OR
JR

ADD
IN
RLCA
RR
JR

LD
OouT

LD
CPL
SCF
PUSH

; The success and failure

HL, DE

HL
A, H

L
NZ,LOBDS

A, 3500
A, (SE'T)

B
NC, LOBD6

A, SEE
(SEF) ,A

A,B

AF

; holding zero.

;; WAIT-1
LOBEE: ADD

;5 WAIT-2

LOBEF: DEC
LD
OR
JR

; Register HL

ADD
ADD
ADD

; The device at the other end
; second byte even though CTS

;; T-FURTHER

LOBF7: DEC
LD
OR
JR

IN
RLCA
JR

HL, DE

HL
A, L

H
NZ,LOBEF

is now zero again.

HL, DE
HL, DE
HL, DE

HL
A, L

H
z,10C34
A, (SE7)
NC, LOBE7

; As with first byte,

IN
RLCA
JR

IN
RLCA
JR

A, (SET)
NC, LOBF7
A, (SFT)

NC, LOBF7

(time

Add the BAUD value.
(4) a timing value.

(6) Delay for 26 * BAUD
(4)

(4)

(12) back to BD-DELAY
(7) wait

Read a bit.

Rotate bit 7 to carry.
pick up carry in B
back , i1f no start bit, to SERIAL-IN

Send CTS line low (comms data 0 also)
send to serial port

Transfer the received byte to A.
Complement.

Set Carry to signal success.

(*) push the success flag.

out) paths converge here with the HL register

(11) transfer DE (BAUD) to HL.

(6) delay for stop bit.
(4)

(4)

(12/7) back to WAIT-2

HL = 0 + BAUD
HL = 2 * BAUD
HL = 3 * BAUD

of the cable (not a Spectrum) may send a
(Clear To Send) is low.

Decrement counter.

Test for

zZero.

forward, if no second byte, to END-RS-IN

Read TXdata.
test the bit read.
back, if none, to T-FURTHER

TXdata must be high four four tests.

’

back to T-FURTHER

back to T-FURTHER

IN A, (SET) ;

RLCA ;
JR NC, LOBF7 ; back to T-FURTHER
; A second byte is on its way and is received exactly as before.
1D H,D ;
1D L,E ;
SRL H ;
RR L ;
LD B, $80 ;
DEC HL ;
DEC HL ;
DEC HL ;

;7 SER-IN-2
LOC1B: ADD HL, DE ;
NOP ; timing.

;; BD-DELAY2

LOC1D: DEC HL ;
LD A H ;
OR L ;
JR NZ,LOC1D ; back to BD-DELAY2
ADD A, $00 ;
IN A, (SF7) ;
RLCA 7
RR B ;
JR NC, LOC1B ; back to SER-IN-2

; The start bit has been pushed out and B contains the second received byte.

LD HL, $5CC7 ; Address the SER FL System Variable.

LD (HL), $01 ; Signal there is a byte in the next location.
INC HL ; Address that location.

LD A,B ; Transfer the byte to A.

CPL ; Complement

LD (HL) ,A ; and insert in the second byte of serial flag.

;7 END-RS-IN
LOC34: CALL LOD4D ; routine BORD-REST

POP AF ; (either 0 and NC or the first received byte
; and the carry flag set)

ET ; Enable Interrupts

RET ; Return.

; THE '"T" CHANNEL OUTPUT' ROUTINE

; The text channel output routine is able to list programs and, when
; printing, takes correct action with TAB values etc.

;; TCHAN-OUT

LOC3A: CP SAS ; 'RND' - first token
JR C,L0C44 ; forward, if less, to NOT-TOKEN
SUB SAS ; reduce to range $00-5A

RST 10H ; CALBAS

DEFW
RET

;7 NOT-TOKEN

L0C44: LD
RES
CP
JR

SET

;7 NOT-LEAD
LOC4F: CP
JR

LD

;7 NOT-GRAPH
LOC55: CP
JR

PUSH

INC
LD
CP

JR

CALL

LD

;; EMIT-CH
LOC6C: POP

JPp

;; CTRL-CD
LOC70: CP
JR

;7 TAB-SETZ

LOC74: LD
LD
CALL
LD
JP

;; NOT-CR
LOC82: CP
JR

LD
LD

;; SPC-COUNT

S0C10

HL, $5C3B
0, (HL)
$20
NZ,LOC4F
0, (HL)
STF
C,L0C55
A, $3F
$20
C,L0C70
AF
(IY+$76)
A, ($5CB1)
(IY+S76)
NC, LOC6C

LOC74

(IY+$76),501

AF

LODO7

S0D
NZ,L0C82

(IY+$76),$00
A, S$0D
L.0DO07
A, $OA
L0DO7

$06
NZ,LOCAS

BC, ($5CBO)
E, $00

main PO-TOKENS
return.

Address the FLAGS System Variable.

update FLAGS - allow for leading space.
compare to space

forward, if not, to NOT-LEAD

update FLAGS - signal suppress leading space.
compare to copyright symbol. (DEL in ASCII)
forward, if less, to NOT-GRAPH

output CHRS$ (127) and graphics as '?'
compare against space.

forward to CTRL-CD

Preserve character.

Increment width NMI ADD 1lo

Load A with limit from NMI ADD hi

Compare to width NMI ADD lo

forward, if less or equal, to EMIT-CH
routine TAB-SETZ emits CR/LF.

Set width to one NMI ADD lo

Restore the unprinted character.

jump to BCHAN-OUT

carriage return ?
forward to NOT-CR

sv NMI_ADD lo

output a CR carriage return.
routine BCHAN-OUT

output a LF line feed.

jump to BCHAN-OUT

forward to NOT-CMM

sv NMI ADD

LOC8C: INC
INC
LD
CP
JR

;7 CMM-LOOP
LOC92: SUB
JR

JR

JR

;; CMM-LP2

LOCY9A: PUSH
LD
CALL
POP
DEC
RET

JR

;5 NOT-CMM
LOCAS: CP
JR

CP
JR

CP
RET

LD
JR

;+ TAB-PROC
LOCB5: LD

;; STORE-COD
LOCB8: LD

;; ALTER-OUT

LOCBB: LD
PUSH
LD
ADD
POP
LD
INC
LD
RET

;; TAB-SERV
LOCC8: LD

508
Z,LOC9A

NC, L0C92

L0C8C

DE
A,$20
LOC3A
DE

LOC9A

$16
z,L0CB5

$17
z,L0CB5

$10
C

DE, $0CDO

LOCBS

DE, LOCCS8

($5COE) , A

HL, ($5C51)
DE

DE, $0005
HL, DE

DE, LOCDO

forward

forward

back to

back to

routine

back to

forward

forward

forward

to CMM-LP2

to CMM-LP2

CMM-LOOP

SPC-COUNT

TCHAN-OUT

CMM-LP2

to TAB-PROC

to TAB-PROC

to STORE-COD

addr: TAB-SERV

sv TVDATA

sv CURCHL

addr: TAB-SERV2

1D ($5COF) , A ; sv TVDATA

JR LOCBB ; back to ALTER-OUT
;; TAB-SERV2
LOCDO: LD DE, LOC3A ; addr: TCHAN-OUT
CALL LOCBB ; routine ALTER-OUT
1D D,A
LD A, ($5COE) ; sv TVDATA
CP $16 ; AT control code ?
JR Z,LOCE®6 ; forward to TST-WIDTH
CP $17 ; TAB control code ?
CCF
RET Nz
1D A, ($5COF) ; sv TVDATA
1D D,A
;; TST-WIDTH
LOCE6: LD A, ($5CB1) ; sv NMI_ ADD
CP D
JR Z,LOCEE ; forward to TAB-MOD
JR NC, LOCF4 ; forward to TABZERO
;; TAB-MOD
LOCEE: LD B,A
1D A,D
SUB B
D D,A
JR LOCE®6 ; back to TST-WIDTH
;; TABZERO
LOCF4: LD A,D
OR A
Jp Z,L0C74 ; jump to TAB-SETZ
;; TABLOOP
LOCF9: LD A, ($5CBO) ; sv NMI_ADD lo
CP D ;
RET 7 ;
PUSH DE ;
LD A,S$20 7
CALL LOC3A ; routine TCHAN-OUT
POP DE ;
JR LOCF9 ; back to TABLOOP

; THE '"B" CHANNEL OUTPUT' ROUTINE

; (Hook Code: $1E)
; The bits of a byte are sent inverted. They are fixed in length and heralded
; by a start bit and followed by two stop bits.

;+ BCHAN-OUT
LOD0O7: LD B, SOB ; Set bit count to eleven - 1 + 8 + 2.

CPL
LD

LD
OouT

LD
OouT

CPL
OouT

LD
LD
LD

;; BD-DEL-1
LOD1C: DEC
LD
OR
JR

;7 TEST-DTR

LOD21: CALL
IN
AND
JR

SCF
DI

;7 SER-OUT-L
LOD2C: ADC
ouT

LD
LD

;; BD-DEL-2
LOD32: DEC
LD
OR
JR

DEC
XOR
SRL
DJINZ

; Note the last two bits will

EI

LD

LD
LD
ouT
OouT

;; BD-DEL-3
L.OD48: DEC
LD
OR

C,A

A, ($5CC6)
(SFE) ,A
A, SEF
(SEF) ,A

(SE7) , A

DE
A,D

E
NZ,L0D1C

L163E
A, (SEF)
$08
Z,L0D21

DE
A,D

E
NZ,L0OD32

DE

A

C
LOoD2C

A, 501

C, $EF
B, $SEE
($F7) ,A
(C),B

’

Invert the bits of the character.
Copy the character to C.

Load A from System Variable IOBORD
Change the border colour.

Set to
Make C

reset

$11101111

TS (Clear to Send)

bit 0

Make RXdata low.

500010000

low.

(other bits of no importance)

Fetch value from BAUD System Variable.
Copy BAUD wvalue to DE for count.

Wait 26 * BAUD cycles

back to BD-DEL-1

routine TEST-BRK allows user to stop.

Read the communication port.
(Data Terminal Ready)
until DTR found high,

isolat
back,

e DTR

bit.
to TEST-DTR

Set carry flag as the start bit.
Disable Interrupts.

Set bi

t 0

76543210 <- C
Send RXdata the start bit.

Transfer the BAUD value to DE for count.

N DD O

Wait for 26 * BAUD

back to BD-DEL-2

clear rxdata bit

shift a bit of output byte to carry.
back for 11 bits to SER-OUT-L

have been sent reset as C is exhausted.

’

Enable Interrupts.

Set RX

data

prepare port address.
prepare value %11101110

Send RXdata high.
Send CTS and comms data low -

switch off RS232

The final 26 * BAUD delay

JR NZ,L0D48 ; (12) back to BD-DEL-3

; THE 'BORDER COLOUR RESTORE' ROUTINE

;; BORD-REST

LOD4D: PUSH AF ; Preserve the accumulator value throughout.
LD A, ($5C48) ; Fetch System Variable BORDCR
AND $38 ; Mask off the paper bits.
RRCA ; Rotate to the range 0 - 7
RRCA ;
RRCA ’
ouT (SFE) , A ; Change the border colour.
POP AF ; Restore accumulator and flags.
RET ; Return.

; THE 'CALL-INP' ROUTINE

; If the extended streams e.g. #7 are being used for input then this ROM

; will be paged in as a result of the $0008 address in the normal INPUT

; channel position. Since 'INPUT #7' or 'INKEYS #7' could have been used

; it is the purpose of this routine to determine which has been used.

; Note also that 'MOVE #7 TO #2' could also invoke this routine and that MOVE
; operations are further differentiated in the INKEYS$ branch.

;; CALL-INP

LOD5A: RES 3, (IY+502) ; update TV _FLAG - The mode is to be considered
; unchanged.
; Note. this should have been done by the Main
; ROM before entering the EDITOR.

PUSH HL ; (*) Preserve HL the address of the actual
; service routine - either NCHAN IN, MCHAN IN,
; BCHAN IN ot T CHAN IN.

LD HL, ($5C3D) ; Fetch address of Error Stack Pointer ERR SP
LD E, (HL) ; Extract the address of the error handler
INC HL ; If INPUT is being used this will be
LD D, (HL) ; address $107F in the Main ROM.
AND A ; Prepare to subtract.
LD HL, $107F ; address of ED-ERROR in the Main ROM
SBC HL, DE ; subtract from test wvalue.
JR NZ,L0OD98 ; forward if not in EDITOR to INKEYS

; continue to handle INPUT from a stream.
POP HL ;7 (*) POP service routine to HL e.g. NCHAN IN
LD SP, ($5C3D) ; set Stack Pointer from System Variable ERR SP
POP DE ; discard the known ED-ERROR address $107F.

POP DE ; POP the next value in hierarchy - MAIN-4

LD
;; IN-AGAIN.
LOD78: PUSH

LD

PUSH

JPp

;7 IN-AG-RET
LOD7E JR

JR

; Otherwise Iris has closed her

;; OREPORT-8
LOD82: LD
RST

;+ NO-READ
L.OD87: POP

JR

;;» ACC-CODE
LOD8A: CP
JR

RST
DEFW

POP

JR

;; END-INPUT
LOD94: POP
Jp

;; INKEYS

L.OD9S8: POP
LD
PUSH

; THE 'INKEYS$'

($5C3D) ,DE

HL

DE, LOD7E

DE

(HL)

C,L0OD8A

Z,L0D87

(IY+$00),507
28H

HL

LOD78

S0D
7,1.0D94

10H
SOF85

HL

LOD78

BRANCH

HL
DE, LOD9E
DE

(usually) .
and set the system variable ERR_SP

Push the address of the service routine
e.g. NCHAN IN on the machine stack.

addr: IN-AG-RET (below)
push this address

jump to the service routine either MCHAN IN,
NCHAN IN, BCHAN IN or TCHAN IN and then return
to the next address IN-AG-RET.

forward with acceptable codes to ACC-CODE
forward with time-out to NO-READ

channel or the microdrive file was exhausted.

set ERR NR to '8 End of file'

Error Main ROM.

Retrieve the address of teh service routine
and try again as always for INPUT.
back to IN-AGAIN.

Is the acceptable code ENTER?
forward, if so, to END-INPUT

CALBAS - Call the Base ROM.

main ADD-CHRX

A special entry point within ADD-CHAR to add
the character to WORKSPACE.

Retrieve the address of the saved service
routine.
back for another character to IN-AGAIN.

Discard the service routine.
jump to UNPAGE

(*) POP service routine to HL e.g. NCHAN IN
ret addr. INK-RET (below)
push this address for the return address.

rs

LODOE

JP (HL) ;
INK-RET
RET C ;
RET A ;
BIT 4, (IY+$7C) ;
JR Z,1L0D82 ;
OR $01 ;
RET ;

khkkhkhkkhkkhkhkkhkkhkhkkhhkhkkhhhkk rhkkxAkrhkhA ki hkkhhk

T HE NETWORK R O

R R e d R I d AR e S IR I S SR I 2 IR i S R S S R dh S b S g g

* K

; THE '"N" CHANNEL INPUT' ROUTINE
;; N-INPUT
LODA9: LD HL, LODAF ;
JP LOD5A ;
; THE '"N" CHANNEL INPUT SERVICE'
;; NCHAN-IN
LODAF: LD IX, ($5C51) ;
LD A, (IX+5$10) ;
AND A
JR 7, LODBB ;
RST 20H ;
DEFB S0D ;
;; TEST-BUFF
LODBB: LD A, (IX+S$14) ;
AND A
JR Z,L0DD5 ;
LD E, (IX+$13) ;
DEC A
SUB E
JR C, LODD5 ;
LD D, $00
INC E
LD (IX+$13),E ;
ADD IX,DE
LD A, (IX+514) ;
SCF

RET

jump to the service routine either MCHAN IN,
NCHAN IN, BCHAN IN or TCHAN IN and then return

to the next address IN-AG-RET.

Return with acceptable character.
Return with no character.

sv FLAGS 3
back to OREPORT-8

MOVE?

return with zero and carry reset.

kkhkkkkhkkhkhkkhkkhkhkkhkkhhk kKK

UTINES

khkkkhkhkhkhkkhkkhkkhkkhk

* K

Address: NCHAN-IN
jump to CALL-INP

sv CURCHL
NCOBL

forward to TEST-BUFF

Shadow Error Restart
Reading a 'write' file

NCIBL
forward to TST-N-EOF

NCCUR

forward to TST-N-EOF

NCCUR

;; TST-N-EOF

LODD5: LD
AND
JR

RET

;7 GET-N-BUF

LODDC: LD
OuT
DI

;; TRY-AGAIN
LODE2: CALL
JR

CALL
JR

ET

CALL

LD
LD
LD
JR

;; TIME-OUT
LODFC: LD
AND
JR

EI
CALL
AND
RET

;; NCHAN-OUT

LOEO9: LD
LD
LD
AND
LD
JR

RST
DEFB

;; TEST-0UT
LOE17: LD

A, (IX+$0F)
A
Z,1L0DDC

A, ($5CC6)
(SFE) , A

LOFD3
NC, LODFC

LOEBS
NZ, LODFC

LOD4D

(IX+$13),5$00
A, ($5CD2)
(IX+$O0F),A
LODBB

A, (IX+$0B)
A
7,LODE2

LOD4D
$00

; THE '"N" CHANNEL OUTPUT'

IX,
-\
(

14

($5C51)

IX+$14)

N o W

,B
LOE17

4

20H
s$ocC

E, (IX+$10)

ROUTINE

NCTYPE

forward to GET-N-BUF

sv IOBORD

routine WT-SC-E
forward to TIME-OUT

routine GET-NBLK
forward to TIME-OUT

routine BORD-REST
NCCUR
sv NTTYPE

NCTYPE
back to TEST-BUFF

NCIRIS

back to TRY-AGAIN

routine BORD-REST

sv CURCHL

NCIBL

forward to TEST-OUT
Shadow Error Restart

Writing to a 'read' file

NCOBL

INC E ;

JR NZ,LOE25 ; forward to ST-BF-LEN
PUSH AF ;

XOR A 7

CALL LOE48 ; routine S-PACK-1

POP AF ;

1D E, $01 ;

;7 ST-BF-LEN

LOE25: LD (IX+$10) ,E ; NCOBL
LD D, $00 ;
ADD IX,DE ;
LD (IX+$14),A ; NCIBL
RET ;

; THE 'OUT-BLK-N' ROUTINE

;7 OUT-BLK-N

LOE30: CALL L1082 ; routine OUTPAK
LD A, (IX+$0B) ; NCIRIS
AND A ;
RET Z ;
LD HL, $5CCD ; sv NTRESP
LD (HL), $00 :
LD E,S$01 ;
CALL L104F ; routine INPAK
RET NZ ;
LD A, ($5CCD) ; sv NTRESP
DEC A ;
RET ;

; THE 'S-PACK-1' ROUTINE

;7 S-PACK-1

LOE48: CALL LOEAF ; routine SEND-PACK
RET NZ ;
JP LOEAC ; jump to BR-DELAY

; THE 'SEND-PACK' ROUTINE

; (Hook Code: $30)

;; SEND-PACK

LOE4F: LD (IX+S$0F) , A ; NCTYPE
LD B, (IX+$10) ; NCOBL
LD A, ($5CC6) ; sv IOBORD
OuT ($FE) ,A ;
PUSH IX ;

POP DE ;

LD
ADD
XOR

;; CHKS1

LOE62: ADD
INC
DJNZ

LD
LD
ADD
PUSH
LD
XOR

;; CHKS2

LOE71: ADD
INC
DJINZ

LD
DI

;; SENDSCOUT

LOE77: CALL
POP
PUSH
LD
CALL
JR

PUSH
POP

LD
ADD
LD
LD
AND
JR

LD

;; SP-DL-1
LOE93: DJINZ

CALL
JR

;; INC-BLKN
LOE9A: INC
JR

INC

;; SP-N-END

LOEA2: POP
CALL
EI
LD
AND
RET

HL, $0015
HL, DE
A

A, (HL)
HL
LOE62

(IX+511),A
HL, $S000B
HL, DE

HL

B, $07

A

A, (HL)
HL
LOE71

(HL) , A

L101E

HL

HL

E,$08
LOE30
NZ,LOE77

IX
HL

DE, $0015
HL, DE

E, (IX+$10)
AE

A

Z,LOEOSA

B, $20

LOE93

LOE30
NZ,LOE77

(IX+$0D)
NZ, LOEA2

(IX+SOE)
HL
LOD4D

A, (IX+$0B)
A

back to

NCDCS

back to

routine

routine
back to

NCOBL

forward

back to

routine
back to

NCNUMB
forward

CHKS1

CHKS2

SEND-SC

OUT-BLK-N
SENDSCOUT

to INC-BLKN

SP-DL-1

OUT-BLK-N
SENDSCOUT

to SP-N-END

NCNUMB_hi

routine

NCIRIS

BORD-REST

; THE

'BR-DELAY'

;; BR-DELAY

LOEAC: LD
;; DL-LOOP
LOEAF: DEC
LD
OR
JR
RET
; THE

ROUTINE

DE, $1500

DE
A,E

D

NZ, LOEAF

back to DL-LOOP

'HEADER AND DATA BLOCK RECEIVING' ROUTINE

;; GET-NBLK

LOEBS:

LD
LD
CALL
RET

LD
XOR
LD

;; CHKS3

LOEC4:

ADD
INC
DJINZ

CP
RET

LD
AND
JR

CP
RET

LD
CP
RET

JR

;; BRCAST

LOEDD:

LD
OR
RET

;7 TEST-BLKN

HL, $5CCE
E, $08
L104F

Nz

HL, $5CCE
A
B, 507

A, (HL)
HL
LOEC4

(HL)
NZ

A, ($5CCE)
A
Z,LOEDD

(IX+50C)
NZ

A, ($5CCF)
(IX+$0B)
NZ

LOEEZ2

A, (IX+S0B)
A
NZ

sv NTDEST

routine INPAK

sv NTDEST

back to CHKS3

sv NTDEST

forward to BRCAST

NCSELF

sv NTSRCE
NCIRIS

forward to TEST-BLKN

NCIRIS

LOEE2: LD
LD
LD
AND
SBC
JR

DEC
LD
OR
RET

; Note.

CALL

; Note.

DEC
JR

DEC

;7 GETNB-END
LOEFF: OR
RET

;; GET-NBUFF

LOF02: LD
OR
CALL
LD
AND
JR

PUSH
POP

LD
ADD
PUSH
LD
CALL
POP
RET

LD
LD
LD

;; CHKS4
LOF24: SUB
INC

DJINZ
RET
LD
AND
CALL

;; STORE-LEN
LOF30: LD

HL, ($5CDO0)
E, (IX+$0D)
D, (IX+S$0E)
A

HL, DE
Z,LOF02

A,H
L
NZ

LOF02

(IX+$0D)
NC, LOEFF

(IX+$O0E)

$01

A, ($5CCE)
A
NZ,L107B
A, ($5CD3)
A
Z,LOF30

IX
HL

DE, $0015
HL, DE
HL

E,A
L104F

(HL)
LOF24

NZ

A, ($5CCE)

A
NZ,L107B

A, ($5CD3)

’

’

’

sv NTNUMB
NCNUMB_lo
NCNUMB_hi

forward t

routine G

NCNUMB_lo
forward,

NCNUMB_hi

sv NTDEST

routine S
sv NTLEN

forward t

routine I

sv NTLEN

sv NTDCS

back to C

sv NTDEST

routine S

sv NTLEN

o GET-NBUFF

ET-NBUFF

with no carry,

END-RESP

o STORE-LEN

NPAK

HKS4

END-RESP

The DEC instruction does not affect the carry flag.

to GETNB-END

!

The return status of the next routine should really be checked.

!

1D (IX+$14),A ; NCIBL

INC (IX+30D) ; NCNUMB_lo
JR NZ, LOF3E ; forward to GETBF-END
INC (IX+$0E) ; NCNUMB hi

;; GETBF-END
LOF3E: CP A
RET

; THE 'OPEN "N" CHANNEL COMMAND' ROUTINE

;; OPEN-N-ST
LOF40: CALL LOF52 ; routine OP-PERM-N
JP LOB51 ; jump to OP-STREAM

; THE 'OPEN TEMPORARY "N" CHANNEL' ROUTINE

; (Hook Code: $2D)

;7 OP-TEMP-N

LOF46: CALL LOF52 ; routine OP-PERM-N
LD IX, ($5C51) ; sv CURCHL
SET 7, (IX+504) ; channel letter
RET

; THE 'OPEN PERMANENT "N" CHANNEL' ROUTINE

LOF52: LD HL, ($5C53) ; sv PROG
DEC HL
LD BC,$0114
PUSH BC
PUSH HL
PUSH BC
LD HL, ($5C65) ; sv STKEND
ADD HL, BC
JP C,LOF9E ; Jjump to OUTMEM
LD BC, $0050
ADD HL, BC
JP C,LOF9E ; Jjump to OUTMEM
SBC HL, SP
JP NC, LOFOE ; jump to OUTMEM
POP BC
POP HL
RST 10H ; CALBAS
DEFW $1655 ; main MAKE-ROOM

INC HL

POP
CALL
LD

EX
LD
LD
LDIR

LD
LD
INC
LD
LD
INC
XOR
LD
LD
LD
INC
LD
LDIR
LD
RET

;; OUTMEM
LOF9E: LD
RST

BC

L1A82 ;
($5C51) , HL ;
DE, HL ;
HL, LOFA3 :
BC, $000B ;
A, ($5CD6) ;
(DE) , A

DE

A, ($5CC5) ;
(DE) , A

DE

A

(DE) , A

H,D

L,E

DE

BC,$0106

DE, ($5C51) ;
(IY+$00),s03 ;
28H ;

; THE '"N" CHANNEL DATA' ROUTINE

;7 NCHAN_ DAT
LOFA3: DEFW
DEFW
DEFB
DEFW
DEFW
DEFW

; THE 'SEND EOF

;; SEND-NEOF

LOFAE: LD
LD
AND
RET

LD
JPp

50008 ;
50008 ;
S4E ;
LOEOOS ;
LODA9 ;
S0114 ;

IX, ($5C51) ;
A, (IX+$10) ;
A ;
7 ;
A,s$01 ;
LOE48 ;

; THE 'NETWORK STATE' ROUTINE

routine REST-N-AD
sv CURCHL

NCHAN-DAT
eleven bytes.

sv D _STR1 drive number

sv NTSTAT

sv CURCHL

sv ERR_NR
Error Main ROM

main ERROR-1
main ERROR-1
character "N"
NCHAN-OUT
N-INPUT
length

sv CURCHL
NCOBL

Jjump to S-PACK-1

;7 NET-STATE

LOFBC: LD A,R ;
OR $CO ;
LD B,A ;
CALL LOFC7 ; routine CHK-REST
JR C,LOFBC ; back to NET-STATE
RET ;

; THE 'CHECK-RESTING' ROUTINE

;; CHK-REST
LOFC7: CALL L163E ; routine TEST-BRK

;; MAKESURE

LOFCA: PUSH BC ;
POP BC ;
IN A, (SE7) ;
RRCA ;
RET C ;
DJNZ LOFCA ; back to MAKESURE
RET ;

; THE 'WAIT-SCOUT' ROUTINE

;; WI-SC-E

LOFD3: CALL L163E ; routine TEST-BRK
LD HL, $01C2 7

;+ CLAIMED

LOFD9: LD B, $80 ;
CALL LOFC7 ; routine CHK-REST
JR NC, LOFED ; forward to WT-SYNC
DEC HL ;
DEC HL ;
LD A,H ;
OR L ;
JR NZ, LOFDO9 ; back to CLAIMED
LD A, (IX+$0B) ; NCIRIS
AND A ;
JR Z,LOFD9 ; back to CLAIMED
RET ;

;7 WT-SYNC

LOFED: 1IN A, (SFT) ;
RRCA ;

JR C,L1013 ; forward to SCOUT-END

’

’

1D A, STF

IN A, (SFE)
OR SFE

IN A, (SFE)
RRA

CALL NC, L163E
DEC HL

LD A,H

OR L

JR NZ,LOFED
LD A, (IX+$0B)
AND A

JR Z,LOFED
RET

routine TEST-BRK

back to WT-SYNC

NCIRIS

back to WT-SYNC

THE 'BREAK INTO I/O OPERATION'

ROUTINE

;; E-READ-N

L100A: EI
CALL LOD4D
LD (IY+$00),514
RST 28H

’

THE 'SCOUT END' BRANCH

;; SCOUT-END
L1013: LD L,$09
;; LP-SCOUT
L1015: DEC L
SCF
RET Z
LD B, SOE
;; DELAY-SC
L101A: DJNZ L101A
JR L1015

’

THE 'SEND-SCOUT' ROUTINE

;7 SEND-SC
L101E: CALL LOFBC
LD C,SF7
LD HL, $0009
LD A, ($5CC5)
LD E,A
IN A, (SE7)
RRCA

JR C,L101E

’
’
’

’

’

’

’

’

’

routine BORD-REST
sv ERR_NR
Error Main ROM

back to DELAY-SC

back to LP-SCOUT

routine NET-STATE

sv NTSTAT

back to SEND-SC

;7 ALL-BITS

L102F: OUT (C),H
LD D,H
LD H, $00
RLC E
RL H
LD B,$08
;; S-SC-DEL
L103A: DJNZ L103A ; back to S-SC-DEL
IN A, (SF7)
AND S01
CP D
JR Z,L101E ; back to SEND-SC
DEC L
JR NZ,L102F ; back to ALL-BITS
LD A,S$01
ouT (SE7) ,A
LD B, SOE
;; END-S-DEL
L.104cC: DJINZ L.104C ; back to END-S-DEL

RET

; THE 'INPAK' ROUTINE

;; INPAK
L104F: LD B, SFF

;; N-ACTIVE

L1051: 1IN A, (SF7)
RRA
JR C,L105A ; forward to INPAK-2
DJNZ L1051 ; back to N-ACTIVE
INC B
RET

;; INPAK-2

L105A: LD B,E

;5 INPAK-L

L105B: LD E, $80
1D A, SCE
ouUT (SEF) , A
NOP
NOP
INC IX

DEC IX

INC IX
DEC IX

;5 UNTIL-MK

L106B: LD A, $00
IN A, (SF7)
RRA
RR E
Jp NC,L106B ; jump to UNTIL-MK
LD (HL) , E
INC HL
DJNZ L105B ; back to INPAK-L
CP A
RET

; THE 'SEND RESPONSE BYTE' ROUTINE

;; SEND-RESP

L107B: LD A,s01
1D HL, $5CCD ; sv NTRESP
1D (HL) , A
LD E,A

; THE 'OUTPAK' ROUTINE

;; OUTPAK
L1082: XOR A
ouT (SEF7) ,A
1D B, $04
;; DEL-0-1
1.1087: DJNZ .1087 ; back to DEL-0-1
;; OUTPAK-L
11089: 1D A, (HL)
CPL
SCF
RLA
1D B, SOA
;; UNT-MARK
L108F: OUT (SF7),A
RRA
AND A
DEC B
LD D, $00
JP NZ,L108F ; jump to UNT-MARK
INC HL
DEC E
PUSH HL
POP HL
JP NZ,1.1089 ; jump to OUTPAK-L
1D A, $01
ouT (SF7),A

RET

R R i A b dh b A A b I S SR S A R S b e S I S 2 R S b B S b I S SR B S R B S I SR S 2 e S i S g

; * THE MICRODRIVE ROUTTINES S **

R b b b b b a2 b b b b b b b b b b b b d b b b b b b b b b b I b b b b b b b b b b b b d b db b b b 4

; The shadow ROM uses the alternate HL register solely in connection with the
; microdrive maps. This does not conflict with the Main ROM use in the

; calculator. When used as a Hook Codes, then the calculator is implicitly in
; use by the user and so HL' should be preserved throughout.

; THE 'SET A TEMPORARY "M" CHANNEL' ROUTINE

; (Hook Code: S$2B)

; This routine is used to create all microdrive channels. The routine that

; creates a permanent channel (as used by a print file) uses this routine and
; then converts the temporary channel to a permanent one.

; Temporary channels are created by LOAD, SAVE, CAT etc. and last just as long
; as required. They are deleted before returning to the Main ROM by the next

; routine DEL-M-BUF.

;; SET-T-MCH

L10A5: EXX ; exx
LD HL, $0000 ; set HL' to zero as the default no-map-exists
; condition.
EXX ; exx
LD IX, ($5C4F) ; set IX from system variable CHANS.
LD DE, $0014 ; skip over the twenty bytes of the standard
ADD IX,DE ; channels to point to the next or end-marker.

; now enter a search of existing "M" channels to see if any use the same drive.

;;» CHK-LOOP

L10B3: LD A, (IX+500) ; fetch the next byte.
CP $80 ; compare to end-marker.
JR Z,L10F1 ; forward, if so, to CHAN-SPC.
LD A, (IX+504) ; fetch the letter of the extended channel.
AND STE ; reset bit 7.
CP $4D ; 1s it character '™M' ?
JR NZ,L10E7 ; forward, if not, to NEXT-CHAN.

; an existing Microdrive Channel has been found.

LD A, ($5CDo6) ; fetch drive number from system variable D STRI1
CP (IX+$19) ; compare to CHDRIV the drive associated with

; this channel.
JR NZ,L10E7 ; forward, if not the same, to NEXT-CHAN.

; @ Microdrive Channel has been found that matches the current drive.
; It will not be necessary to create a new map for the temporary channel.

EXX 7~

LD L, (IX+$1A) ; load address of the associated microdrive.
LD H, (IX+$1B) ; map into the HL' register.

EXX 5~

LD BC, ($S5CDA) ; load BC with length of filename from N STRI.
LD HL, ($5CDC) ; load HL with address of filename.

CALL 11403 ; routine CHK-NAME checks name in channel

; against name addressed by HL.

JR NZ,L10E7 ; forward, with name mismatch, to NEXT-CHAN.

BIT 0, (IX+$18) ; test CHFLAG.

JR Z,L10E7 ; forward to NEXT-CHAN.
RST 20H ; Shadow Error Restart.
DEFB S0D ; Reading a 'write' file.
;; NEXT-CHAN
L10E7: LD E, (IX+$09) ; fetch length of channel.
LD D, (IX+50AR) ; to the DE register pair.
ADD IX,DE ; add to point to the following location.
JR L10B3 ; loop back to CHK-LOOP until end-marker found.

; Now create the space for the channel.

;; CHAN-SPC

L10F1l: LD HL, ($5C53) ; set pointer from system variable PROG.
DEC HL ; now points to channels end-marker (as does IX)
PUSH HL ; * save a copy of new location.
LD BC,$0253 ; set amount of bytes required.

; Note. interrupts are disabled so on the original shadow ROM, which launched
; straight into the MAKE-ROOM routine, the system hung if there was

; insufficient free memory, at the HALT instruction in the Main error report.
; The solution here is to perform the same checks that will be performed by

; the Main MAKE-ROOM routine.

PUSH HL ; save first location
PUSH BC ; and amount while free memory is checked.
LD HL, ($5C65) ; fetch start of free memory from STKEND
ADD HL, BC ; add bytes required producing carry if
; result is higher than 65535
JP C,L119A ; jump, 1if so, to OUTMEM2
LD BC, $0050 ; now allow for overhead of eighty bytes.
ADD HL, BC ; and perform same test.
JP C,L119A ; jump, if too high, to OUTMEM2
SBC HL, SP ; finally test that result is less than the
; stack pointer at the other side of free
memory.
JP NC,L119A ; jump, if higher, to OUTMEMZ2.
POP BC ; restore the new room
POP HL ; parameters.

; now call the MAKE-ROOM routine in the certain knowledge that nothing can
; go wrong.

RST 10H ; CALBAS

DEFW $1655 ; main MAKE-ROOM

POP DE ; * restore pointer to first new location.
PUSH DE ; * and save on machine stack again.

LD HL,L14B1 ; the default "M" CHANNEL DATA.

LD BC,$0019 ; twenty five bytes to copy including blank
LDIR ; filename to start of new channel.

LD A, ($5CDo6) ; fetch drive number from D STRI.

LD (IX+$19),A ; insert at CHDRIV.

LD BC, $0253 ; set BC to amount of room that was created.
PUSH IX ; move start of channel

POP HL ; to HL register.

CALL L1A82 ; routine REST-N-AD corrects filename pointers

; leaving DE at first filename D_STRI.

EX DE, HL ; transfer filename pointer to HL.

LD BC, ($5CDA) ; set BC to length of filename from N _STRI.
BIT 7,B ; test for the default SFF bytes.

JR NZ,L1143 ; forward, with no name, to TEST-MAP

; now enter a loop to transfer the filename to CHNAME, counting BC down to zero.
; The filename could be in ROM with 'run' or more usually in string workspace

; with its parameters on the calculator stack as with

; LOAD * "m";1;"crapgame"

; SAVE * "M";7; CHRSO + "secret".

;; T-CH-NAME

L1135: LD A,B ; check length
OR C ; for zero.
JR Z,L1143 ; forward, if so, to TEST-MAP.
LD A, (HL) ; fetch character of filename.
LD (IX+S$0E) , A ; transfer to same position in CHNAME.
INC HL ; 1lncrement
INC IX ; both pointers.
DEC BC ; decrement length.
JR L1135 ; loop back to T-CH-NAME.
;; TEST-MAP
L1143: POP IX ; * restore pointer to first location of
channel.
EXX ; exchange set - no need now to keep balanced.
LD A,H ; test map address for zero
OR L ; indicating that this drive has no map.
JR NZ,L1168 ; forward, if map exists, to ST-MAP-AD.

; a microdrive map is now created for this drive.

LD HL, ($5C4F) ; set pointer from system variable CHANS.
PUSH HL ; save this pointer to the new area.

DEC HL ; set HL to location before new room.

LD BC, $0020 ; thirty two bytes are required.

RST 10H ; CALBAS

DEFW $1655 ; main MAKE-ROOM.

; now handle dynamic pointers outside the control of the Main ROM

POP HL ; restore pointer to first location.
LD BC, $0020 ; thirty two bytes were created.
ADD IX,BC ; channel was moved up so adjust that pointer.

CALL

L1A82

; £i1ll map with S$SFF bytes

LD
LD
PUSH

;; FILL-MAP

L1163: LD
INC
DJINZ

POP
;; ST-MAP-AD

L1168: LD
LD

; now make DE point to IX+$19 the

PUSH
POP

LD
ADD
EX

LD
LD
LDIR

A, SFF
B, $20
HL

(HL) , A
HL
L1163

HL

(IX+$1R),L
(IX+S$1B),H

IX
HL

DE, $001C
HL, DE
DE, HL

HL,L14CA
BC, $000C

routine REST-N-AD corrects filename pointers.

the fill byte.
thirty two locations.
save map address pointer.

insert the byte
next location.
loop back to FILL-MAP

restore address.

place map address in
channel at CHMAP.

header preamble and copy ROM preamble bytes.

push start of channel
pop to HL

the offset is $1C
add to point to start of header preamble.
transfer this destination to DE.

point HL to PREAMBLE data in this ROM.
twelve bytes to copy to channel.
in they go.

; now use the same technique to copy the same 12 bytes of ROM preamble
the data block preamble in the channel.
; A little long-winded as the destination only requires adjustment.

; to IX+$37,

PUSH
POP
LD
LD

ADD
EX
LD
LDIR

IX
HL

DE, $0037
BC, $000C

HL, DE
DE, HL
HL,L14CA

’

the PREAMBLE data.

; now form the offset from CHANS to this channel for a return value to be

; inserted in the STRMS area.

PUSH
POP

LD
OR
SBC
INC

RET

;; OUTMEM2
L119A: LD

IX
HL

DE, ($5C4F)
HL, DE

HL

(IY+$00),$03

transfer
pointer.

fetch start of CHANS area from CHANS
clear carry for subtraction.
the true offset.

add one as the offset is to second location.

return. >>>

set ERR NR for '4 Out of memory'

RST 28H ; Error Main ROM

; THE 'RECLAIM "M" CHANNEL' ROUTINE

; (Hook Code: $2C)

; This routine is used to reclaim a temporary "M" channel such as that created
; by the routine above and to reclaim a permanent "M" channel by the CLOSE

; command routines.

;; DEL-M-BUF

L119F: LD L, (IX+$1A) ; fetch map address.
LD H, (IX+$1B) ; from CHMAP.
PUSH HL ; and save.
LD A, (IX+5$19) ; fetch drive number from CHDRIV.
PUSH AF ; and save also.
PUSH X ; transfer channel base address
POP HL ; to the HL register pair.
LD BC,$0253 ; set BC to bytes to reclaim.
RST 10H ; CALBAS
DEFW $19ES8 ; main RECLAIM-2 reclaims the channel.
PUSH IX ; transfer channel
POP HL ; base address again.
LD DE, ($S5C4F) ; set DE to start of channels from CHANS
OR A ; clear carry.
SBC HL, DE ; subtract to form the offset.
INC HL ; add 1 as points to second byte.
LD BC,$0253 ; set the number of bytes reclaimed.
CALL L1444 ; routine REST-STRM corrects all stream offsets

; 1n the standard systems variables area
; reducing them if they followed the deleted
; channel.

POP AF ; restore drive number
POP HL ; and old map address.

; now consider deleting the map if it was used only by the reclaimed channel.

LD B,A ; transfer drive to B

LD IX, ($5C4F) ; set IX from CHANS

LD DE, $0014 ; prepare to step over the twenty standard bytes
ADD IX,DE ; to address next channel or end-marker.

;; TEST-MCHL

L11D0: LD A, (IX+500) ; fetch current byte.
CP $80 ; compare to end-marker.
JR Z,L11EF ; forward, with match, to RCLM-MAP
LD A, (IX+504) ; fetch the channel letter.
AND STF ; cancel any inverted bit.
CP $4D ; is character "M" ?
JR NZ,L11ES ; forward, if not, to NXTCHAN
LD A, (IX+519) ; fetch this channel drive number.
Cp B ; compare to that of deleted channel.
RET Z ; return with match - the microdrive map is

; still in use. >>

; else continue search.

; ; NXTCHAN

L11E5: LD E, (IX+$09) ; fetch length of channel
LD D, (IX+50R) ; to DE register.
ADD IX,DE ; add to address next channel.
JR L11D0 ; loop back to TEST-MCHL

; the branch was here when the end-marker was encountered without finding a
; channel that uses the map.

;; RCLM-MAP

L11EF: LD BC, $0020 ; thirty two bytes to reclaim.
PUSH HL ; save pointer to start.
PUSH BC ; save the 32 bytes.
RST 10H ; CALBAS
DEFW $19E8 ; main RECLAIM-2 reclaims the microdrive map.
POP BC ; restore 32 counter.
POP HL ; restore map address.
CALL L1476 ; routine REST-MAP adjusts all channel map

; addresses.

RET ; return.

; THE '"M" CHANNEL INPUT' ROUTINE

;; M-INPUT

L11FD: LD IX, ($5C51) ; sv CURCHL
LD HL,L1207 ; addr: MCHAN-IN
Jp LOD5A ; jump to CALL-INP

; THE '"M" CHANNEL INPUT SERVICE' ROUTINE

;; MCHAN-IN
L1207: BIT 0, (IX+$18) ; test CHFLAG
JR Z,L120F ; forward, if reset, to TEST-M-BF

;; rwf-err

L120D: RST 20H ; Shadow Error Restart
DEFB $0D ; Reading a 'write' file

;; TEST-M-BF

L120F: LD E, (IX+S$S0B) ; load DE with the offset from CHDATA of the
LD D, (IX+50C) ; next byte to be received from CHBYTE.
LD L, (IX+$45) ; load HL with the number of data bytes
LD H, (IX+$46) ; in CHDATA from RECLEN.
SCF ; set carry to include

SBC HL, DE ; subtract the two relative positions.

JR C,L1233 ; forward to CHK-M-EOF

INC DE ; else increment pointer.

LD (IX+$0B),E ; store back

LD (IX+$0C),D ; in CHBYTE.

DEC DE ; decrement pointer.

PUSH X ; save start of channel.

ADD IX,DE ; add the offset within CHDATA first.

LD A, (IX+$52) ; now apply offset of CHDATA from start of
; channel to character.

POP IX ; restore channel start.

SCF ; set carry flag.

RET ; return.

;; CHK-M-EOF

L.1233: BIT 1, (IX+$43) ; bit 1 of RECFLG is set if this is the last
; record in this file.
JR Z,L123D ; forward, if not EOF, to NEW-BUFF.
XOR A ; set accumulator to zero.
ADD A, $0D ; add to carriage return clearing the
; carry flag and resetting the zero flag.
RET ; return.

;; NEW-BUFF

L123D: LD DE, $0000 ; set next byte offset to zero.
LD (IX+$0B) ,E ; and update the
LD (IX+$0C),D ; pointer CHBYTE.
INC (IX+$0D) ; increment record number CHREC.
CALL L1252 ; routine GET-RECD gets the record specified

; by CHREQ matching filename CHNAME from the
; cartridge in the drive CHDRIV which is

; started.

XOR A ; signal stop all motors.

CALL L1532 ; routine SEL-DRIVE.

JR L120F ; back to TEST-M-BF.
; THE 'GET A RECORD' ROUTINE
; This routine is used to read a specific record from a PRINT type file.
; It is called twice -
; 1) From the "M" input routine when the current record is exhausted and the
; next record is to be read in.

; 2) From Hook Code $27 READ-RANDOM.

;; GET-RECD

L1252: LD A, (IX+$19) ; get drive number from CHDRIV.
CALL L1532 ; routine SEL-DRIVE starts the motor.
;>
;; GET-R-2
L1258: LD BC, $SO4FB ; set sector counter to 1275 = 255*5

LD ($5CC9),BC ; update system variable SECTOR

;; GET-R-LP
L125F: CALL L1280 ; routine G-HD-RC reads in the next header and
; matching record to pass the tape head.

JR C,L1279 ; forward, with name mismatch, to NXT-SCT
JR Z,L1279 ; forward, if not in use, to NXT-SCT
LD A, (IX+544) ; fetch the record number 0-n from RECNUM
CP (IX+3S0D) ; compare with that required in CHREC
JR Nz,L1279 ; forward, if no number match, to NXT-SCT
PUSH IX ; transfer address of Microdrive channel
POP HL ; from the IX to HL registers.
LD DE, $0052 ; offset to CHDATA
ADD HL, DE ; add to form address of start of 512 byte data
CALL L142B ; routine CHKS-BUFF
RET Z ; return if checksums match.

;7 NXT-SCT

L1279: CALL L13F7 ; routine DEC-SECT
JR NZ,L125F ; loop back, if not zero, to GET-R-LP

; else produce the Error Report.

RST 20H ; Shadow Error Restart
DEFB s11 ; File not found

; THE 'GET HEADER AND DATA BLOCK' ROUTINE
; This routine fetches at random a header and matching record and sets the
; flags to indicate three possible outcomes.

; Zero flag set - record is not in use.
; Carry flag set - name does not match required
; Both flags reset - the name matches required.

;; G-HD-RC
L1280: CALL L13A9 ; routine GET-M-HD2 reads in and checksums
; the next 14 byte header to pass tape heads.

LD DE, $001B ; prepare the offset from header to RECFLG and
ADD HL, DE ; add to address the start of 528 byte RECORD
CALL L15EB ; routine GET-M-BUF reads in the record

; descriptor and data.
; register HL addresses RECFLG

CALL L1426 ; routine CHKS-HD-R checksums the 14 bytes
; of the record descriptor.

JR Nz,L12B1 ; forward, with error, to G-REC-ERR
BIT 0, (IX+$43) ; check RECFLG - should be reset.
JR NZ,L12B1 ; forward, if not, to G-REC-ERR

; now test descriptor for an unused record.

LD A, (IX+543) ; load A with RECFLG - bit 1 indicates EOF
OR (IX+3%546) ; combine with RECLEN hi bit 1 set if full.

’

’

’

AND
RET

the record is

PUSH
POP

LD
ADD
LD
CALL

JR

$02

a contender for a

IX
HL

DE, $0047
HL, DE
BC, $000A
11403

NZ,L12B1

else set flags to signal

LD
OR
RET

A, SFF
A

else set carry to signal

; test for either full record or EOF.
; return if not with zero set and carry reset
; signaling that record is unused.

header record.

; transfer start of channel
; to the HL register pair.

; offset to 10 characters of filename.
; add so HL addresses the start of RECNAM.
; ten bytes to compare against required CHNAME.

; routine CHK-NAME
; forward, with name mismatch, to G-REC-ERR
success before returning.

; prepare to reset zero flag

; also reset carry
; return with zero reset and carry reset.

names do not match.

; set carry flag to signal failure and
; instigate another search.
; return with zero reset and carry set.

;7 G-REC-ERR
L12B1: SCF

RET
. THE '"M"

’

’

rr

L12B3:

rs

L12C1:

CHANNEL OUTPUT'

labeled MWRCH in source code.

MCHAN-OUT
LD
ADD
BIT
JR

RST
DEFB

NOREAD
LD

LD
PUSH
ADD
LD
POP
INC
LD
LD
BIT
RET

IX, SFFFA
IX,DE

0, (IX+$18)
NZ,L12C1

20H
$0cC

E, (IX+$0B)

D, (IX+50C)
X

IX,DE
(IX+$52) ,A
X

DE
(IX+$0B) ,E
(IX+$0C),D
1,D
z

; 2?72?27 CHFLAG
; forward to NOREAD

; Shadow Error Restart
; Writing to a 'read'

file
; CHBYTE
; CHBYTE hi

; indexed

; CHBYTE

; CHBYTE hi
; 1s CHBYTE
; return if

the maximum $0200 ?
not.

; THE 'WRITE RECORD ONTO MICRODRIVE' ROUTINE

; (Hook Code: $26)

;+ WR-RECD
L12DA: LD A, (IX+5$19) ; fetch drive number.
CALL L1532 ; routine SEL-DRIVE
LD BC, $32C8 ; set BC to 13000 decimal
CALL L1652 ; routine DELAY-BC
CALL L12EE ; routine WRITE-PRC
XOR A ; signal stop motor
CALL L1532 ; routine SEL-DRIVE
RET ; return.

; THE 'WRITE RECORD' SUBROUTINE

;7 WRITE-PRC

L12EE: CALL L1349 ; routine CHK-FULL.
JR NZ,L12FC ; forward, if not, to NOFULL.
CALL L119F ; routine DEL-M-BUF reclaims the buffer.
XOR A ; set accumulator to zero.
CALL L1532 ; routine SEL-DRIVE stops the motor.
RST 20H ; Shadow Error Restart.
DEFB SOF ; '"Microdrive full'
;+ NOFULL
L12FC: PUSH IX ; save the pointer to channel base.
LD B, $0A ; count ten characters.
;; CP-NAME
L1300: LD A, (IX+S0E) ; copy a character of CHNAME
LD (IX+$47),A ; to RECNAM
INC IX ; increment the index pointer.
DJINZ L1300 ; loop back for all ten characters to CP-NAME
POP IX ; restore base of "M" channel.
LD C, (IX+$S0B) ; fetch CHBYTE_lo
LD (IX+$45),C ; update RECLEN lo
LD A, (IX+350C) ; fetch CHBYTE_hi
D (IX+5$46),A ; update RECLEN hi
LD A, (IX+$0D) ; fetch CHREC
LD (IX+$44),A ; update RECNUM
RES 0, (IX+3$43) ; reset RECFLG indicating a record.

PUSH IX ; transfer channel base address

’

’

’

rr

POP

LD
ADD

CALL

LD
ADD

CALL
PUSH
POP
LD

CALL

HL

DE, $0043
HL, DE

L1426

DE, $000F
HL, DE

L142B

IX

HL

DE, 50047

L135A

to the HL register.

prepare offset to point to RECFLG
and add to address the record descriptor.

routine CHKS-HD-R checksums the 14 bytes.

add extra offset to CHDATA
the 512 bytes of data.

routine CHKS-BUFF checksums the buffer.

Note. this code is redundant and erroneous.
the three registers are set up properly
in the next routine.

routine SEND-BLK writes block to microdrive
cartridge as indicated my microdrive map
which is updated.

now prepare channel for next record. accumulator could be used to set CHBYTE.

LD
LD
LD
INC

RET

THE 'CHK-FULL'

Check the thirty two bytes of

CHK-FULL

L1349: LD

rs

LD
LD

NXT-B-MAP

L1351: LD

’

’

rr

CP
RET

INC
DJINZ

XOR
RET

THE 'SEND-BLK'

DE, $0000
(IX+$0B) ,E
(IX+$0C),D
(IX+$0D)

ROUTINE

L, (IX+S1A)
H, (IX+$1B)
B, $20

A, (HL)
SFF
NZ

HL
L1351

A

ROUTINE

set DE to zero.

set CHBYTE lo to zero

set CHBYTE hi to zero

increment the record counter CHREC

return.

microdrive map for a reset bit.

load the address of the microdrive map
from CHMAP to HL.
set counter to thirty two.

fetch each byte in turn.
compare to the all-full indicator.
return if there is a spare sector >>

next address.
loop back to NXT-B-MAP

set the zero flag for failure.
return.

This important routine is called from the FORMAT routine and the WRITE-PRC
routine to write the record to the cartridge at the next available free
sector as indicated by the microdrive map.

SEND-BLK
L135A: PUSH
POP

LD

IX
HL

DE, $0037

transfer the channel
address to HL.

offset to data preamble.

ADD
PUSH

HL, DE
HL

’

’

add to address using HL
save pointer to data block

; now enter a loop to find the header of an available record on microdrive.
; This SEND-BLK routine is only called when there is known to be a record
; available on the tape.

;; FAILED

L1362: CALL
CALL
JR

L13A9
L13C4

NZ,L1362

routine GET-M-HD2 gets any old header.
routine CHECK-MAP checks if sector is free
on the microdrive map.

back, if not, to FAILED.

; A usable sector has been found on the drive. HL addresses byte within map.

EX
PUSH

IN
AND
JR

RST
DEFB

;; NO-PRT

L1374: LD
OouT
LD
CALL
CALL
LD

OouT

POP
POP

LD

OR
LD

RET

(SP) ,HL
BC

A, (SEF)
$01
NZ,L1374
20H

SOE

A, SE6
(SEF) ,A
BC,5$0168
L1652

L15B3

; THE 'CLOSE FILE'

ROUTINE

map address to stack, bring back data pointer.
preserve B the map byte mask.

test the drive.
examine 'write protect' bit.
forward, if not protected, to NO-PRT.

Shadow Error Restart.
Drive 'write' protected

xx100110
enable writing.

a delay value of 360 decimal.
routine DELAY-BC pauses briefly as the
record now approaches the tape heads.

routine OUT-M-BUF writes descriptor and
data buffer.

xx101110
disable writing.

restore the map bit.

and the address of the byte within microdrive
map .

transfer masked bit to A.

combine with status of other 7 sectors.
update the map to show this sector is now
used.

return.

; Note. The first entry point is not used.

;; close-m
1.138B: PUSH
POP

; (Hook Code:

;; CLOSE-M2
L138E: BIT
JR

HL
IX

$23)

0, (IX+5$18)
7,L139B

’

’

CHFLAG
forward to NOEMP

SET 1, (IX+$43) ; RECFLG

CALL L12DA ; routine WR-RECD
;; NOEMP
L139B: XOR A ;
CALL L1532 ; routine SEL-DRIVE
CALL L119F ; routine DEL-M-BUF
RET ; return after subroutine.

; THE 'MAIN ERROR RESTART EMULATION' ROUTINE

;; ERR-RS
L13A3: POP HL ;
D A, (HL) ;
LD ($5C3A2) ,A ; sv ERR NR
RST 28H ; Error Main ROM

; THE 'FETCH HEADER FROM MICRODRIVE' ROUTINE

; This routine fetches the next valid 1l4-byte header to pass the tape heads
; ensuring that it is a header as opposed to a record descriptor.

;; GET-M-HD2

L13A9: PUSH IX ; transfer start of channel
POP HL ; to the HL register pair.
LD DE, $0028 ; offset to HDFLAG
ADD HL, DE ; add to form first receiving location.
CALL L15E2 ; routine GET-M-HD reads 15 bytes from

; microdrive - last is a checksum byte.

CALL L1426 ; routine CHKS-HD-R checksums the bytes.
JR NZ,L13A9 ; back, with error, to GET-M-HD2
BIT 0, (IX+$28) ; test HDFLAG should be set.
JR Z,L13A9 ; back, if not a header, to GET-M-HD2
RET ; return - with HL addressing start of header.

; THE 'CHECK MAP BIT STATE' ROUTINE

;; CHK-MAP-2
L13BF: LD E, (IX+$44) ; pick up record from RECNUM
JR L13C7 ; forward to ENTRY

;; CHECK-MAP
L13C4: LD E, (IX+$29) ; pick up sector from HDNUMB

; —>

;5 ENTRY
L13C7: LD L, (IX+$1A) ; fetch address of associated

’

rr

LD

H, (IX+$1B)

; microdrive map from CHMAP

the pseudo-map routine enters here with a temporary map address.

ENTRY-2

L13CD: XOR

rs

LD
LD
AND

SRL
SRL
SRL
ADD
LD

INC

XOR
SCF

ROTATE

L13DD: RLA

rr

DJINZ

0P oo
-~ =

HL, DE
B,A

; clear accumulator is one way to

; clear D in preparation for addition.
; transfer sector to A.

; and mask off lower 8 bits for later

; returning to E,

; divide the

; sector or record by eight.

; add to map base to give address of map bit.
; now load sector mod 8 to B and

; increment to form counter 1 - 8.

; clear A
; and set carry bit ready to rotate in.

; rotate left A
; back, while counter not zero, to ROTATE

; return sector bit in B.
; AND accumulator with map sector byte.
; return - Z = free, NZ = occupied.

THE 'RESET BIT IN MAP AREA' ROUTINE

This routine is called when opening a channel and by FORMAT, CAT and ERASE
to mark a map bit representing a sector as available.

RES-B-MAP

L13E3: CALL

’

rs

LD
CPL
AND
LD
RET

L13C4

; routine CHECK-MAP fetches bit mask for map
; location addressed by HL into B register.

; fetch sector mask with one bit set.

; complement - seven bits set and one bit reset.
; combine with other sector bits.

; and update map byte resetting the bit.

; return.

THE 'CHECK

'PSEUDO-MAP'

BIT STATE' ROUTINE

TEST-PMAP

L13EB: PUSH

POP

LD
ADD
LD
JR

IX
HL

DE, $0052
HL, DE

E, (IX+$29)
1L13CD

; HDNUMB
; back to ENTRY-2

THE 'DECREASE SECTOR COUNTER' ROUTINE

;; DEC-SECT

L13F7: LD BC, ($5CC9) ; sv SECTOR
DEC BC ;
LD ($5CC9) , BC ; sv SECTOR
LD A,B ;
OR C ;
RET ;

; THE 'CHECK-NAME' ROUTINE

; » CHK-NAME
L1403: PUSH IX ; preserve original channel base address.
1D B, S0A ;

;; ALL-CHARS

1L1407: LD A, (HL) ;
CP (IX+SO0E) ; CHNAME
JR NZ,L1423 ; forward to CKNAM-END
INC HL ;
INC IX ;
DEC B ;
DEC C ;
JR NZ,L1407 ; back to ALL-CHARS
D A,B ;
OR A ;
JR Z,L1423 ; forward to CKNAM-END

;; ALLCHR-2

1.1418: LD A, (IX+S0E) ; CHNAME
CP $20 ;
JR NZ,L1423 ; forward to CKNAM-END
INC IX ;
DJINZ 1.1418 ; back to ALLCHR-2

;; CKNAM-END
L1423: POP IX ;
RET ;

; THE 'CALCULATE/COMPARE CHECKSUMS' ROUTINE

; Used for microdrive channels only.

; While the two checksums within a Network buffer are simple 8-bit sums of

; the data, the algorithm used for the microdrive channels is a little more

; sophisticated as it avoids the formation of the result $FF. While across the
; network a byte is as good as its neighbour, with microdrives the wvalue SFF

; might arise as a result of a failed read.

; The same routine is used both to prepare the checksum prior to saving and to
; calculate and compare the checksum after reading.

; The first entry point is used for the 14 bytes of HDCHK and DESCHK

; and the second entry point is used for the 512 bytes of DCHK.

rr

CHKS-HD-R

L1426: LD BC, $000E ; fourteen bytes
JR L142E ; forward to CHKS-ALL
;>
;7 CHKS-BUFF
L142B: LD BC, $0200 ; 512 bytes.

’

common code.

;; CHKS-ALL
L142E: PUSH HL ; save pointer to first address.
LD E, $00 ; initialize checksum to zero
;+ NXT-BYTE
L1431: LD A,E ; fetch running sum
ADD A, (HL) ; add to current location.
INC HL ; point to next location.
ADC A,S$01 ; avoid the value S$FF.
JR Z,L1439 ; forward to STCHK
DEC A ; decrement.
;7 STCHK
L1439: LD E,A ; update the 8-bit sum.
DEC BC ; reduce counter
LD A,B ; and check
OR C ; for zero.
JR Nz,L1431 ; back, if not, to NXT-BYTE
LD AE ; fetch running sum
CPp (HL) ; compare to checksum contents
LD (HL) ,A ; before inserting the byte.
POP HL ; restore pointer to first address.
RET ; return - with zero flag set if sums agree.

THE 'RESTORE STREAM DATA' ROUTINE

When a channel is deleted, then the streams that point to channels beyond
that one have to have their offsets reduced by the deleted amount.

Also a stream that exactly matches the offset to the deleted channel, and
there could be several, will have its entry set to zero.

On entry, HL = offset, BC = $0253

;; REST-STRM
L1444: PUSH HL ; save the offset
LD A,S$10 ; maximum streams + 1
LD HL, $5C16 ; the start of the user streams area STRMS 00
;7 NXT-STRM
L144A: LD ($5C5F) , HL ; save stream pointer temporarily in X PTR
LD E, (HL) ; fetch low byte of offset.
INC HL ; bump address.

LD D, (HL) ; fetch high byte of streams offset.

POP

PUSH

OR
SBC
JR

LD
JR

;7 NOTRIGHT
L145C: JR

; else this stream entry is to be

EX
OR
SBC
EX

;; STO-DISP

L1463: LD
LD
INC
LD
; —>

;; UPD-POINT

L1469: LD
INC
INC
DEC
JR

; else clean up

LD
POP
RET

HL
HL

A
HL, DE
NZ,L145C

DE, $0000
L1463

NC, L1469

DE, HL
A

HL, BC
DE, HL

HL, ($5C5F)
(HL) , E

HL

(HL),D

HL, ($5C5F)
HL

HL

A
NZ,L144A

and return.

($5C5F) ,A
HL

retrieve the
supplied offset.

clear carry.
subtract looking for an exact match
forward, if not, to NOTRIGHT

else set displacement to zero.
forward to STO-DISP to close the stream.

forward, if entry lower, to UPD-POINT ->
reduced by $0253 bytes.

streams offset to HL

clear carry

reduce by 595 decimal bytes
transfer reduced entry to DE.

fetch stream address from X PTR
and insert

the updated

offset.

fetch stream address from X PTR.
bump - each stream entry

is two bytes.

decrement the loop counter.
back, if not zero, to NXT-STRM

set X PTR hi to zero resting value.
balance stack.
return.

; THE 'RESTORE MAP ADDRESSES'

ROUTINE

; When a microdrive map is reclaimed, then all the addresses of the microdrive
; maps in the "M" channels are examined and if higher than the deleted map, the
; address 1is reduced by thirty two bytes.

; On entry,

;7 REST-MAP
L1476: LD
LD
LD
ADD

map address,

BC, $0020
IX, ($5C4F)
DE, $0014
IX,DE

; now enter a loop.

;; LCHAN
1.1482: LD
CP

A, (IX+500)
$80

BC = $0020.

set BC to thirty two. Already done.

load IX from system variable CHANS.

there are 20 bytes of the standard 4 channels
add to skip these.

fetch first byte.
is it the channels area end-marker ?

RET

PUSH
LD
AND
CP
JR

; a microdrive channel has been

LD
LD
SBC
JR

HL
A, (IX+504)
STF

$4D
NZ,L14A6

E, (IX+$12)
D, (IX+S$1B)
HL, DE

NC, L14A6

; address of this microdrive map

EX
OR
SBC
LD
LD

;; LPEND

L14A6: POP
LD
LD
ADD
JR

DE, HL
A

HL, BC
(IX+$1A),L
(IX+S$1B),H

HL
E, (IX+$09)
D, (IX+S0A)
IX,DE
11482

; THE '"M" CHANNEL DEFAULT' DATA

;; MCH-DAT

L14B1: DEFW
DEFW
DEFB
DEFW
DEFW
DEFW
DEFW
DEFB
DEFM
DEFB

$0008
$0008
$CD

L12B3
L11FD
$0253
$0000
$00

SFF

; THE 'PREAMBLE DATA'

return if

save map
fetch cha
reset bit
compare t
forward,

fetch add

so - all maps adjusted. >>

address.
nnel letter.
7.
o "M"
if not, to LPEND

found so compare the address of the map.

ress of the microdrive

map for this channel from CHMAP.

subtract
forward,

is higher

transfer
clear car
subtract
and place
in CHMAP.

restore a
fetch len
to DE.

add to ad
loop back

main ERRO
main ERRO
inverted
MCHAN-OUT
M-INPUT
length

10 spaces
CHFLAG

from that of deleted map.
if is lower, to LPEND

than the one deleted.

address to HL.
ry.

thirty two.
back

ddress of deleted map.
gth of channel

dress next channel.
to LCHAN.

R-1
R-1
"M" character

; The PREAMBLE consists of twelve distinctive bytes that are saved to a
; microdrive cartridge before the data.
; the ULA of the microdrive to recognize the start of a saved data block.

;; PREAMBLE
L14CA: DEFB
DEFB
DEFB
DEFB

$00, $00,
$00, $00,
$00, $00,
$00, SFF,

$00
$00
$00
SFF

; THE 'NOT-USED TOOLKIT'

ROUTINES

They are not read back but allow

; The following four routines are for debugging

; purposes during development.

; THE 'DISP-HEX' ROUTINE
; display a byte as two hex characters.
;; DISP-HEX
L14D6: PUSH AF ;
RRA ;
RRA ;
RRA ;
RRA ;
CALL L14DF ; routine DISP-NIB
POP AF ;
;; DISP-NIB
L14DF: AND SOF ;
CP $0A ;
JR C,L14E7 ; forward to CONV-1
ADD A, S$07 ;
;; CONV-1
L14E7: ADD A, $30 ;
CALL L14F8 ; routine DISP-CH
RET ;
; THE 'DISP-HEX2' ROUTINE
; display a byte in hexadecimal followed by a space

;; DISP-HEX2

L14ED:

; THE

PUSH
CALL
LD
CALL
POP
RET

'DISP-CH'

;; DISP-CH

L14F8:

PUSH
PUSH
PUSH
PUSH
EXX
PUSH
PUSH
PUSH
PUSH
LD
PUSH
PUSH

AF ;
L14D6 ;
A, $20 ;
L14F8 ;
AF ;
ROUTINE

HL ;
DE ;
BC ;
AF ;
HL ;
DE ;
BC ;
AF ;
HL, ($5C51) ;
HL ;

AF ’

routine DISP-HEX

routine DISP-CH

sv CURCHL

LD A,S$02 ;

RST 10H ; CALBAS

DEFW $1601 ; main CHAN-OPEN
POP AF ;

RST 10H ; CALBAS

DEFW 30010 ; main PRINT-A
POP HL ;

LD ($5C51) , HL ; sv CURCHL
POP AF ;

POP BC ;

POP DE ;

POP HL ;

EXX ;

POP AF ;

POP BC ;

POP DE ;

POP HL ;

RET ;

; THE 'HEX-LINE' ROUTINE

; The Master routine which displays ten bytes of memory, addressed by HL,
; in Hexadecimal followed by a CR. The thirty output characters sit
; comfortably within the 32 character display of the Spectrum.

;7 HEX-LINE

1L151D: PUSH HL ;
PUSH BC ;
PUSH AF ;
LD B, $0A ;

;7 HEX-LINE2

L1522: LD A, (HL) ;
CALL L14ED ; routine DISP-HEX2
INC HL ;
DJNZ L1522 ; back to HEX-LINE2
LD A,S$0D ;
CALL L14F8 ; routine DISP-CH
POP AF ;
POP BC ;
POP HL ;
RET ; return.

; THE 'SELECT DRIVE MOTOR' ROUTINE

; (Hook Code: $21)

; This important routine is called on over twenty occasions to activate a
; microdrive whose number is in the accumulator, or with a parameter of

; zero, to stop all motors. It is the sole means of controlling the real
; or virtual bank of eight microdrives.

; It is called with interrupts disabled and this condition should be in

; force when the Hook Code is used.

;7 SEL-DRIVE
L1532: PUSH HL ; preserve the original HL value throughout.

CP $00 ; 1s the parameter zero ?

’

JR NZ,L153D ; forward, if not, to TURN-ON.

The requirement is to ensure that all eight drives are switched off.

CALL L1565 ; routine SW-MOTOR with A holding zero.

EI ; Enable Interrupts.

POP HL ; restore original HL value.

RET ; return. >>

THE 'TURN ON' BRANCH

; This route turns on a drive in the range 1 - 8. 1If the Hook Code has
; been erroneously invoked with a higher value, then this will be treated
; in much the same way as with zero. See later.
;; TURN-ON
L153D: DI ; Disable Interrupts.
CALL L1565 ; routine SW-MOTOR
LD HL, $1388 ; prepare decimal 5,000 delay value.
;; TON-DELAY
L1544: DEC HL ; a simple
LD A,H ; delay loop to
OR L ; let things settle down.
JR Nz,L1544 ; back, if not zero, to TON-DELAY
LD HL, $1388 ; load with five thousand again.

’

’

Now enter another 5000 loop testing for break and searching for a GAP on
the tape at each iteration.

;; REPTEST
L154C: LD B, S$06 ; sSix consecutive reads required to register
; as a gap.
;+ CHK-PRES
L154E: CALL L163E ; routine TEST-BRK allows the user to stop.
IN A, (SEF) ; read the microdrive port.
AND $04 ; test for the gap bit
JR NZ,L155B ; forward, if not, to NOPRES
DJINZ L154E ; loop back six times to CHK-PRES

’

’

rr

A gap has been found - a formatted cartridge is in the drive.

POP HL ; restore original HL value.
RET ; return with motor running, interrupts
; disabled. >>

THE 'NO GAP' BRANCH

If no gap signal found on drive so far then continue counting down from
5000 and looping back to test for six gaps.

NOPRES

L155B: DEC HL ; decrement the counter

LD A,H ; test for

OR L ; zero.
JR Nz, L154C ; back, if not, to REPTEST
CALL L1532 ; routine SEL-DRIVE with accumulator zero

; stops the drive motor.

RST 20H ; Shadow Error Restart
DEFB $10 ; 'Microdrive not present'

; THE '"SWITCH MOTOR' SUBROUTINE

; The main developer of the microdrives and acknowledged co-inventor was
; the late Ben Cheese, 14-Jul-1954 - 15-Jan-2001.

; This ROM software always handles the switching of microdrives as if

; there were eight drives connected. There is no short cut to directly

; switch on a drive and they must be handled as an array of eight devices.
; Each microdrive includes a D-flip flop, capable of holding logic state

; one or zero. When the flip-flop is set at logic one then the

; recording/playback device is switched on.

; The first microdrive has the D-input terminal of the flip-flop connected
; to the comms data line of the Interface 1 and the clock-input terminal

; connected to the clock-output terminal of Interface 1. Subsequent

; microdrives have the D-input terminal connected to the Q-output terminal
; of the next innermost drive/flip-flop and the CLOCK-input terminal

; connected to the CLOCK-input terminal of the same adjacent

; drive/flip-flop.

; The eight microdrives thus behave as a shift register allowing a logic 1
; condition, originating at the Interface 1 control device, to be loaded

; into the first flip-flop by a single clock pulse and to be shifted out

; to the appropriate flip-flop by a series of further clock pulses.

; As eight pulses will be required, then the logic state of drive eight is

; considered first and drive one is the last to be considered.

; By negating the drive number and adding nine, the routine below begins
; by effecting this reversal and, by converting zero to nine, it ensures
; that eight logic zeros are shifted out for this case and for the case
; of any out-of-range parameter, which can arise in the case of a User

; experimenting with Hook Codes.

; The limit of eight microdrives is set in the routine below and not in
; hardware.

; As Ben pointed out on his patent from which some of these details are
; taken, "it will be appreciated that the control device may be used to
; select associated devices other than recording/playback devices and that
; any number of associated devices may be accommodated by use of the

; technique described."

;7 SW-MOTOR
L1565: PUSH DE ; preserve the original DE value throughout.

LD DE, $0100 ; load DE with the constants logic one and
; logic zero.

NEG ; negate the supplied drive number 0 - n
ADD A,$09 ; add 9 so that 0 = 9, -1 =8, -8 =1, -10 = -1
LD C,A ; place the reversed parameter in C.

LD B, $08 ; set clock shift counter to eight.

;; ALL-MOTRS
L1570: DEC
JR

; The time has come to send out

C
NZ,L1586

decrement the drive selector.

forward, if not in position,

signal to start this drive.

to OFF-MOTOR.

LD A,D ; select logic one.
ouT (SF7),A ; output to data port.
LD A, SEE ; select comms clock 1, comms data O
ouT (SEF) , A ; output to D-flip flop.
CALL L15A2 ; routine DEL-S-1 holds for a millisecond.
LD A, SEC ; select comms clock 0, comms data O
OouT (SEF) , A ; output to D-flip flops.
CALL L15A2 ; routine DEL-S-1 holds for a millisecond.
JR L1597 ; forward to NXT-MOTOR
;7 OFF-MOTOR
L1586: LD A, SEF ; select comms clock 1, comms data 1
ouT (SEF) ,A ; output to D-flip flop.
LD AE ; select logic 0.
OouT (SF7),A ; output to data port.
CALL L15A2 ; routine DEL-S-1 holds for a millisecond.
LD A, SED ; select comms clock 0, comms data 1
OuT (SEF) , A ; output to microdrive port.
CALL L15A2 ; routine DEL-S-1 holds for a millisecond.
; ; NXT-MOTOR
L1597: DJNZ L1570 ; back, for all eight drives, to ALL-MOTRS.
LD A,D ; select logic one.
ouT (SF7),A ; output to data port.
LD A, SEE ; select comms clock 1, comms data O.
OouT (SEF) , A ; output to microdrive port.
POP DE ; restore original DE value.
RET ; return.
; THE 'l MILLISECOND DELAY' ROUTINE
; This subroutine is used to time the transitions of the Delay-flip-flops
; used, above, to control the array of microdrives attached to Interface 1.
; Delay flip flops become unstable if transitions are too close together
; and this routine provides a 1 millisecond delay between clock pulses.
;; DEL-S-1
L15A2: PUSH BC ; preserve counters.
PUSH AF ;
LD BC, $0087 ; 135 decimal.
CALL L1652 ; routine DELAY-BC

’

’

POP
POP

RET

AF
BC

’

’

’

restore counters

return.

'SEND HEADER BLOCK TO MICRODRIVE' ROUTINE

THE

Routine is called once from the FORMAT routine.

HL
DE, $001E
L15B7

30 bytes.
forward to OUT-M-BLK ->

;; OUT-M-HD

L15AD: PUSH
LD
JR

; THE

’

'SEND DATA BLOCK TO MICRODRIVE' ROUTINE

;7 OUT-M-BUF
L15B3: PUSH
LD

’

rs

L15B7:

rs

L15BF:

rs

L15D0:

’

HL
DE, $021F

-> Common code.

OUT-M-BLK

IN
AND
JR

RST
DEFB

NOT-PROT

LD
OouT
LD
ouT
INC
LD
LD
LD

NOP
NOP
NOP

OUT-M-BYT

OTIR
DEC
JR

LD
ouT
CALL
POP
RET

A, (SEF)
$01
NZ,L15BF

20H
SOE

A, ($5CC6)
(SFE) , A
A, S$E2
SEF) , A

14

(
D
A,
B
C

Lo)

E7

14

A
NZ,L15D0

A, SE6
(SEF) , A
LOD4D
HL

'SIGNAL ERROR' EXIT POINT

THE

’

’

543 bytes.

isolate write prot. bit.
forward to NOT-PROT

Shadow Error Restart
Drive 'write' protected

sv IOBORD

back to OUT-M-BYT

routine BORD-REST

return.

; This exit point is used twice from the next routines when the required
; header or record block is not found within the requisite time.

;7 SIGN-ERR

L15DE: POP BC ; balance the stack.
POP HL ; first byte of destination.
INC (HL) ; increment RECFLG or HDFLAG.
RET ; return.

; THE 'RECEIVE BLOCK FROM MICRODRIVE HEADER' ROUTINE

;; GET-M-HD

L15E2: PUSH HL ; save destination
LD DE, $SO00F ; set fifteen bytes to load.
LD HL, $0000 ; set large delay when waiting for a header.
JR L15F2 ; forward to GET-M-BLK

; THE 'RECEIVE BLOCK FROM MICRODRIVE RECORD' ROUTINE

;; GET-M-BUF

L15EB: PUSH HL ; save destination.

LD DE, $0210 ; set 528d bytes to load.

LD HL, $01F4 ; set delay counter to 500d.
; >

;; GET-M-BLK

L15F2: LD B,E ; load B register for first INIR load.
LD C,D ; load C register with count of further loads.
INC C ; adjust to count down to zero.
PUSH BC ; save the INIR counters.

;7 CHK-AGAIN

L15F6: LD B, $08 ; set gap counter to eight.
DEC HL ;
LD A,H ;
OR L ;
JR Z,L15DE ; back to SIGN-ERR
; » CHKLOOP
L15FD: CALL L163E ; routine TEST-BRK
IN A, (SEF) ;
AND 504 ; 1solate gap bit.
JR Z,L15F6 ; back to CHK-AGAIN
DJNZ L15FD ; back to CHKLOOP

;; CHK-AG-2

L1608: LD B, $06 ;
DEC HL ;
LD A,H ;

OR L ;
JR Z,L15DE ; back to SIGN-ERR

;; CHK-LP-2

L160F: CALL L163E ; routine TEST-BRK
IN A, (SEF) ;
AND 504 ; 1solate gap bit.
JR NZ,L1608 ; back to CHK-AG-2
DJINZ L160F ; back to CHK-LP-2
LD A, SEE ;
oUT (SEF) , A ;
LD B, $3C ; set count 60 decimal.

;7 DR-READY

L1620: 1IN A, (SEF) :
AND $02 ; 1solate sync bit.
JR Z,L162A ; forward to READY-RE
DJINZ L1620 ; back to DR-READY
JR L15F6 ; back to CHK-AGAIN

;+ READY-RE

L162A: POP BC ; retrieve counters from the stack.
POP HL ; retrieve the destination
PUSH HL ; and stack again.
CALL L163E ; routine TEST-BRK.
LD A,C ; transfer repeat counter to A.
LD C,SE7 ; set port to SE7.
; Now the INIR (INput to memory Increment and Repeat) instruction is used.

;; IN-M-BLK
L1633: INIR ; read B bytes from port C to destination HL.

; B (zero) will now count 256 bytes if first block was not the total.

DEC A ; decrement repeat counter.
JR Nz,L1633 ; back, if not zero, to IN-M-BLK

; All bytes, 15 or 528 have now been read.

LD A, SEE ;

OUT ($SEF) , A ;

POP HL ; restore pointer to first byte.
RET ; return.

; THE 'TEST-BRK' ROUTINE

; Note. used more consistently in this ROM.

;; TEST-BRK

L163E: LD A, S$7F ; read port $7FFE - keys B, N, M, SYM, SPACE.
IN A, (SFE) ;
RRA ; test for SPACE key.

RET C ; return if not pressed.

; THE

LD
IN
RRA
RET

CALL

LD
RST

A, SFE
A, (SFE)

C
LOD4D

(IY+$00),514
28H

'DELAY-BC' ROUTINE

;; DELAY-BC

L1652: PUSH AF
;; DELAY-BC1
L1653: DEC BC
LD A,B
OR C
JR NZ,L1653
POP AF
RET
; THE 'READ BLOCK' ROUTINE
; Note. new in this ROM.
; Used by format routine.

;; READ-BLK

L165A: PUSH
PUSH
;; RDLOOP1
L165C: LD
;; RDLOOP2
L165E: CALL
IN
AND
JR
DJINZ

;; RDLOOP3

L1669: LD

;7 RDLOOP4

L166B: CALL
IN
AND
JR

DJINZ

HL
BC

B,$08

L163E

A, (SEF)
$04

Z,L165C

L165E

B, 3506

L163E

A, (SEF)
$04

NZ,L1669

L166B

read port S$FEFE - keys SHIFT, Z, X, C, V.

test for SHIFT key.
return i1f not pressed.

routine BORD-REST.

set ERR NR to main 'L BREAK into program'
invoke the Main ROM error routine.

back to

routine

isolate

back to

back to

routine

isolate

back to

back to

DELAY-BC1

TEST-BRK

gap bit.
RDLOOP1

RDLOOP2

TEST-BRK

gap bit.
RDLOOP3

RDLOOP4

rs

SYNC-

L167C:

rr

rs

LD
ouT

LD
RD
IN
AND
JR
DJINZ

JR

READY-R2
L1686:

RD-BY

L1696:

rr

rs

rs

POP
POP
PUSH
CALL

LD
LD
LD
LD
INIR

T-1
IN
CP
JR

DJINZ

RD-BYT-2
L169D:

IN
CP
JR
DJINZ

LD

RD-BYT-3
L16A5:

ENDRD

L16AD:

’

’

THE 'WRITE BLOCK' ROUTINE

IN

CP

JR

DJINZ

XOR

POP
RET

A, SEE
(SEF) ,A

B, $3C
A, (SEF)
$02
Z,L1686

Ll67C

L165C

BC
HL
HL
L163E

C,SE7
E, SFC

B, SOF
D, $64

A, (C)
E
NZ,L16AD

L1696

A, (C)

E
NZ,L16AD
L169D
B,D

A, (C)

E
NZ,L16AD

L16A5

A

HL

set counter to 60d.

isolate sync bit.
forward to READY-R2

back to SYNC-RD

back to RDLOOPL

routine TEST-BRK
port
required test byte

initial counter.
final counter.

forward to ENDRD

back to RD-BYT-1

forward to ENDRD
back to RD-BYT-2

final counter is $64

forward to ENDRD
back to RD-BYT-3

set zero flag to signal successful read

return.

; Called once from the FORMAT routine.

;; WR-BLK
L16AF: PUSH HL ; preserve HL throughout.
LD A, ($5CCo) ; fetch the value of IOBORD
ouT (SFE) , A ; and change the border colour.
LD A, $E2
OuT (SEF) , A ; enable writing
LD E, $66
D C,$E7
D B, $1B
LD A, SFC ; test byte written
NOP 7
OTIR ;
;; WR-BYT-1
L16C4: OUT (C),A
DJINZ L1lo6C4 ; back to WR-BYT-1
;7 WR-BYT-2
L16C8: ouT (C),A
DJINZ L16C8 ; back to WR-BYT-2
LD B, E ; load counter with $66
;5 WR-BYT-3
L16CD: ouT (C),A
DJINZ L16CD ; back to WR-BYT-3
LD A, $E6
ouT (SEF) , A
CALL L.OD4D ; routine BORD-REST
POP HL ; restore initial HL value.
RET ; return.

; THE 'UNUSED' SECTION

; Contains copyright holder and initials of the main programmer. The rest
; is set to $FF. This section is situated before the fixed-position CLOSE
; rectification routine.

DEFB STF ; copyright (c)
DEFM " 1983 Sinclair"

DEFM " Research Ltd"

DEFM " MJB " ; Martin Brennan
DEFB SEFF

DEFB SEFF

DEFB SFF

DEFB SFF

DEFB SFF

DEFB SFF

DEFB SFF

DEFB SFF

DEFB SFF

DEFB SFF

DEFB SFF
DEFB SFF
DEFB SFF

; THE 'CLOSE STREAM' ROUTINE

; Note. An instruction fetch on main address L1708 pages in this ROM.

;; CLOSE-CH

L1708: INC HL
RST 30H ; create the new system variables
SRL A
SUB $03
RES 1, (IY+S7C) ; sv FLAGS 3
CALL L1718 ; routine CLOSE
JP LO5C1 ; jJump back to normal command exit at ENDI1

; THE 'CLOSE COMMAND' ROUTINE

;; CLOSE
L1718: RST 10H ; CALBAS
DEFW $1727 ; main STR-DATAl
LD A,C ;
OR B ;
RET Z ;
PUSH BC ;
PUSH HL ;
LD HL, ($5CA4F) ; sv CHANS
DEC HL ;
ADD HL, BC ;
EX (SP) , HL 7
RST 10H ; CALBAS
DEFW S16EB ; main CLOSEX
LD HL, (S5C4F) ; sv CHANS
LD DE, $0014 ;
ADD HL, DE ;
POP DE ;
SCF ;
SBC HL, DE ;
POP BC ;
RET NC ;
PUSH BC ;
PUSH DE ;
EX DE, HL ;
LD ($5C51) , HL ; sv CURCHL
INC HL ;
INC HL ;
INC HL ;

INC HL ;

LD A, (HL) ; fetch the letter.

; Now mark the channel as temporary so that if anything goes wrong, such
; as the user pressing BREAK, then the channel can be reclaimed by CLEAR #.

L1741: SET 7, (HL) ; As suggested by Andrew Pennell 1983.
LD DE, $0005 ;
ADD HL, DE ;
LD E, (HL) ;
INC HL ;
LD D, (HL) ;
PUSH DE ;
CP $54 ; compare to "T"
JR Nz,L175C ; forward to CL-N-CH
BIT 1, (IY+$7C) ; sv FLAGS 3
JR NZ,L177D ; forward to RCLM-CH
1D A, $0D
CALL LODO7 ; routine BCHAN-OUT
JR L177D ; forward to RCLM-CH
;; CL-N-CH
L175C: CP S4E ; character "N" ?
JR NZ,L176B ; forward to CL-M-CH
BIT 1, (IY+S7C) ; SV FLAGS_3
JR NZ,L177D ; forward to RCLM-CH
CALL LOFAE ; routine SEND-NEOF
JR L177D ; forward to RCLM-CH
;; CL-M-CH
L176B: CP $4D ; character "M"
JR NZ,L177D ; forward to RCLM-CH
POP DE ;
POP IX ;
POP DE ;
BIT 1, (IY+S7C) ; sv FLAGS 3
JP 7,L138E ; jump to CLOSE-M2
JP L119F ; jump to DEL-M-BUF
;; RCLM-CH
L177D: POP BC ;
POP HL ;
PUSH BC ;
RST 10H ; CALBAS
DEFW S19E8 ; main RECLAIM-2
XOR A ;
LD HL, $5C16 ;7 sv STRMS 00
;; UPD-STRM
1L1787: LD E, (HL) ;

INC HL ;

LD D, (HL) ;

DEC HL ;
LD ($5C5F) , HL ; sv X PTIR

POP BC ;

POP HL ;

PUSH HL ;

PUSH BC ;

AND A ;

SBC HL, DE ;

JR NC, L17A2 ; forward to UPD-NXT-S
EX DE, HL :

AND A ;

SBC HL, BC ;

EX DE, HL :

LD HL, ($5C5F) ; sv X _PIR

LD (HL) ,E ;

INC HL ;

LD (HL),D ;

;7 UPD-NXT-S

L17A2: LD HL, ($5C5F) ; sv X _PTR
INC HL ;
INC HL ;
INC A ;
CP $10 ;
JR C,L1787 ; back to UPD-STRM
LD (IY+$26),500 ; sv X PTR hi
POP HL ;
POP HL ;
RES 1, (IY+$7C) ; sv FLAGS 3
RET ; return.

; THE 'RECLAIM TEMPORARY CHANNELS' ROUTINE

;; RCL-T-CH

L17B7: LD IX, ($5C4F) ; sv CHANS
LD DE, $0014
ADD IX,DE

;5 EX-CHANS

L17C0: LD A, (IX+500) ; first character of channel

CP $80 ; 1s it the end-marker ?

JR Nz, L17DO0 ; forward to CHK-TEMPM

LD A, S$EE

ouT (SEF) , A

XOR A

JP L1532 ; jump to SEL-DRIVE

RET ; unused - the above JP was probably once a
CALL.

;; CHK-TEMPM
L17D0: LD A, (IX+504) ; channel letter

CP SCD ; is it an inverted "M" ?

JR Nz,L17DC ; forward to CHK-TEMPN
CALL L119F ; routine DEL-M-BUF
JR L17B7 ; back to RCL-T-CH
;; CHK-TEMPN
L17DC: CP SCE ; 1s channel letter an inverted "N" ?
JR NZ,L17EB ; forward to PT-N-CHAN
LD BC,$0114
PUSH IX
POP HL
RST 10H ; CALBAS
DEFW S19E8 ; main RECLAIM-2
JR L17B7 ; back to RCL-T-CH
;; PT-N-CHAN
L17EB: LD E, (IX+$09) ; length of
LD D, (IX+S$S0A) ; channel
ADD IX,DE
JR L17CO ; back to EX-CHANS

; THE 'MOVE COMMAND' ROUTINE

;; MOVE
L17F5: SET 4, (IY+ST7C) ; update FLAGS 3 to indicate a MOVE is in
; progress - see INKEYS
CALL L1859 ; routine OP-STRM
LD HL, ($5C4F) ; sv CHANS
PUSH HL
CALL LO59F ; routine EX-D-STR
CALL L1859 ; routine OP-STRM
CALL LO59F ; routine EX-D-STR
POP DE
LD HL, ($5C4F) ; sv CHANS
OR A
SBC HL, DE
LD DE, ($5CDA) ; sv N_STR1
ADD HL, DE
LD ($5CDA) , HL ; SV N_STRl
;; M-AGAIN
1.L.1818: LD HL, ($S5CDA) ; sv N _STRIL
LD ($5C51) , HL ; sv CURCHL
;; I-AGAIN
L181E: RST 10H ; CALBAS
DEFW S15E6 ; main INPUT-AD
JR C,L1827 ; forward to MOVE-OUT
JR Z,L181E ; back to I-AGAIN
JR L1832 ; forward to MOVE-EOF

;; MOVE-0OUT

L1827: LD

rs

LD
RST
DEFW
JR

MOVE-EOF

L1832: RES

’

rs

LD
PUSH
CALL
CALL
CALL
POP
LD
OR
SBC
LD
ADD
LD
CALL
CALL

RET

HL, ($5CE2)
($5C51) , HL
10H

50010

L1818

4, (IY+$7C)
HL, ($5C4F)
HL

LO59F
1L18A8
LO59F

DE

HL, ($5C4F)
A

HL, DE

DE, ($5CDA)
HL, DE
($5CDA) , HL
L18AS8
L17B7

sv D_STR2

sv CURCHL
CALBAS

main PRINT-A

back to M-AGAIN
sv FLAGS 3

sv CHANS

routine EX-D-STR
routine CL-CHAN

routine EX-D-STR

sv CHANS

sv N_STR1
sv N_STR1
routine CL-CHAN
routine RCL-T-CH

RETURN

THE 'USE STREAM OR TEMPORARY CHANNEL' ROUTINE

OP-STRM

L1859: LD

rs

INC
JR

DEC
RST
DEFW
LD
LD
RET

OP-CHAN

L186A: LD

CP
JR

CALL

XOR
CALL
LD
BIT
RET

RST
DEFB

104
$1601

HL, ($5C51)
($5CDA) , HL

A, ($5CD9)

$4D
NZ,L1883

L1BOS

A
L1532
($5CDA) , IX
2, (IX+543)
z

20H
$16

sv D_STR1

forward to OP-CHAN

CALBAS

main CHAN-OPEN
sv CURCHL

sv N_STR1

sv L STR1 device letter.

is character "M" ?
forward to CHECK-N

routine OP-TEMP-M creates a temporary
microdrive channel, starts motor, and
fetches record zero of named file.

routine SEL-DRIVE
sv N_STR1
RECFLG

Shadow Error Restart
Wrong file type

;; CHECK-N

1L1883: CP S4E ; 1s character "N" ?
JR NZ,L188F ; forward to CHECK-R
CALL LOF46 ; routine OP-TEMP-N
LD ($5CDA) , IX ; SV N_STRl
RET
; Finally, check for the RS232 channel before producing an error.
;; CHECK-R
L188F: CP $54 ; is character "T" ?
JR Z,11899 ; forward to USE-R
CP $42 ; is character "B" ?
JR Z,11899 ; forward to USE-R
RST 20H ; Shadow Error Restart
DEFB S00 ; Nonsense in BASIC
;; USE-R
1L.1899: CALL LOB17 ; routine OP-RS-CH
LD ($5CDA) , DE ; SV N_STRl
PUSH DE ;
POP IX ;
SET 7, (IX+504) ; channel letter
RET ; return.

; THE 'CLOSE 'MOVE' CHANNEL' ROUTINE

;; CL-CHAN
L18A8: LD A, ($5CD8) ; sv D _STR1
INC A
RET NZ
LD A, ($5CD9) ; sv L _STR1 device letter.
CP $4D ; is character "M" ?
JR NZ,L18BC ; forward to CL-CHK-N
LD IX, ($5CDA) ; sv N _STRI1
CALL L138E ; routine CLOSE-M2
RET ;

;; CL-CHK-N

L18BC: CP S4E ; 1s character "N" ?
RET NZ ;
LD IX, ($5CDA) ; sv N _STRI1
LD ($5C51), IX ; sv CURCHL
CALL LOFAE ; routine SEND-NEOF
RET

; THE 'SAVE DATA BLOCK INTO MICRODRIVE' ROUTINE

rs

SA-DRIVE

L18CB: LD

rs

CALL
IN
AND
JR

RST
DEFB

STAR-SA

L18D9: LD

rr

LD

CALL

BIT
JR

CALL

RST
DEFB

NEW-NAME

L18ED: SET

’
’

’

’

Note.

two lines are not necessary.

A, ($5CD6)
11532

A, (SEF)
$01
NZ,L18D9

20H
SOE

HL, ($5CE9)
($5CE4) , HL

L1BOS5

0, (IX+518)
NZ,L18ED

L138E
20H

$0cC

2, (IX+$43)

fetch drive number from D STR1
routine SEL-DRIVE starts motor.

read microdrive port.
isolate 'write protect' bit.
forward, if not low, to STAR-SA

Shadow Error Restart
'Drive 'write' protected'

sv HD 0D
sv D_STR2

routine OP-TEMP-M creates a temporary
microdrive channel, starts motor, and
attempts to fetch record zero of named file.

test CHFLAG

forward, with no existing file, to NEW-NAME
routine CLOSE-M2 closes temporary channel
and stops the motor.

Shadow Error Restart

Writing to a 'read' file

update RECFLG signal not a PRINT type file.

the microdrive motor has been left running by OP-TEMP-M so the next

Redundant code elsewhere suggests that

OP-TEMP-M once stopped the drive.

LD
CALL

PUSH
POP
LD
ADD
EX
LD
LD
LD
LDIR

PUSH

A, (IX+$19)
L1532

IX
HL

DE, $0052
HL, DE
DE, HL

HL, $5CE6

BC, $0009
(IX+$0B),C

DE

’

fetch drive from CHDRIV.

routine SEL-DRIVE stops and then restarts the

motor.

transfer the channel base address
to the HL register pair.

prepare offset to data buffer.

add to address start of data.

transfer this destination to DE.

set source to the nine byte header at HD 00
nine bytes to copy.

update CHBYTE lo with length saved so far.

block move the header info into the buffer.

save destination.

Now calculate the number of sectors required using a similar method to
the one used for calculating the number of records to load.

Note.

there is an error in the calculation as one byte should be subtracted

; from the total bytes to ensure that there is at least one byte in the EOF

; record. The next instruction should be to load HL with eight.
L190B: LD HL, $0009 ; start with the nine header bytes. 2?7
D BC, ($5CE7) ; fetch data length from HD OB.
ADD HL, BC ; add to give total size of block.
SRL H ; halve MSB to convert to 512 byte chunks.
INC H ; increment to include EOF block. Wrong.
; Note.

; 511 bytes = 502 bytes + 9 header $01FF, SRL=$00, INC=$01 sectors OK.
; 512 Dbytes 503 bytes + 9 header $0200, SRL=$01, INC=$02 sectors WRONG!!
; 513 Dbytes = 504 bytes + 9 header = $0201, SRL=$01, INC=$02 sectors OK.

PUSH HL ; preserve register H the sector counter.

CALL L1D43 ; routine FREESECT calculates free sectors on
; cartridge.

POP HL ; bring back the sector estimate in H.

LD AE ; load accumulator with actual sectors.

CP H ; compare with estimate

JR NC, L1921 ; forward, if equal or greater, to SA-DRI-2
RST 20H ; Shadow Error Restart

DEFB SOF ; '"Microdrive full'

;7 SA-DRI-2

1L1921: POP DE ; bring back destination.
LD HL, ($5CE4) ; fetch start from D _STR2
LD BC, ($5CE7) ; fetch data length from HD OB

;; SA-DRI-3

L1929: LD A,B ; test for
OR C ; zero bytes.
JR Z,L194F ; forward, if all chunks saved, to SA-DRI-4
LD A, (IX+$0C) ; fetch high byte of byte counter from CHBYTE hi
CP $02 ; compare to 2 which would indicate 512 bytes.
JR NZ,L1943 ; forward, if less, to SA-DRI-WR

; a sector is written to microdrive.

PUSH HL ; preserve start of data.

PUSH BC ; preserve length.

CALL L12EE ; routine WRITE-PRC.

POP BC ; restore length.

PUSH X ; transfer the channel base address
POP HL ; to the HL register pair.

LD DE, $0052 ; add offset to

ADD HL, DE ; point to data buffer.

EX DE, HL ; transfer this destination to DE.
POP HL ; restore the start of data.

;75 SA-DRI-WR

1L1943: LDI ; transfer one byte at a time decrementing BC

rr

rs

INC (IX+S0B) increment CHBYTE lo
JR NZ,L1929 back, if not 256, to SA-DRI-3
INC (IX+s0C) increment CHBYTE hi
JR L1929 back to SA-DRI-3 to check high byte.
SA-DRI-4
L194F: SET 1, (IX+$43) update RECFLG mark this as EOF record.
CALL L12EE routine WRITE-PRC writes last record in set.
LD A, (S$S5CEF) fetch user-alterable system variable COPIES
DEC A decrement
JR Z,L196A forward, if zero, to END-SA-DR
LD ($5CEF) , A place decremented value back in COPIES
RES 1, (IX+$43) update RECFLG - signal not the EOF record.
LD A,s$00 prepare to start saving at record zero again.
LD (IX+$0D),A update the channel record counter CHREC.
JR L18ED back to NEW-NAME
END-SA-DR
L196A: XOR A set accumulator to zero.
CALL L1532 routine SEL-DRIVE stops the motor.
JP L119F jump to DEL-M-BUF

; the total byte counter.

now increment the channel byte counter which started at zero and has a
limit of 512 bytes.

THE 'GET HEADER INFORMATION FROM MICRODRIVE' ROUTINE

this routine extracts the nine bytes of global header information that
is prepended to the data saved on microdrive. This relates to the type -

Basic, Code and length etc.
the name which,

in contrast,

and is the equivalent of a tape header without
does have to be saved to every record.

It is obtained therefore from the start of data at record zero.

Note. the destination for this data, (program area or variable location),
has already been calculated and since opening a channel will move this

destination up in memory,

location,

the "Start of data" is transferred to the D STR2
otherwise used for the second filename during moves, so that its

value is adjusted by REST-N-AD during OP-TEMP-M.

;; F-M-HEAD
L1971: 1D HL, ($5CE1) copy start of data from D_STR2 (+3)

LD ($5CE4) , HL to dynamic location D_STR2 (+6)

CALL L1BOS routine OP-TEMP-M creates a temporary
microdrive channel, starts motor, and
fetches record zero of named file.

BIT 0, (IX+5$18) test CHFLAG for valid first record.

JR Z,L1982 forward, if OK, to F-HD-2

RST 20H ; Shadow Error Restart

DEFB S11 ; '"File not found'
;; F-HD-2
L1982: BIT 2, (IX+$43) ; test RECFLG is it a print file
JR NZ,L198A ; forward, if not, to F-HD-3
RST 20H ; Shadow Error Restart
DEFB S16 ; 'Wrong file type'
;; F-HD-3
L198A: PUSH IX ; transfer the channel base address
POP HL ; to the HL register pair.
LD DE, $0052 ; offset to CHDATA
ADD HL, DE ; add to address start of data.
LD DE, $5CE6 ; set destination to nine system variables
; starting at location HD 00.
LD BC,$0009 ; nine bytes to copy.
LDIR ; block move to HD 00 - HD 11.
RET ; return.

; THE 'LOAD OR VERIFY BLOCK FROM MICRODRIVE' ROUTINE

; This subroutine is called once only from LV-ANY to load a block of code,
; previously SAVED to a number of sectors, from microdrive.

; At this stage a temporary channel has already been created and it holds
; the first 512 byte record containing at the start the nine header bytes.
; There will be an accurate microdrive map for the drive which has its

; motor running.

; The block could be a program, code bytes or an array and the first

; receiving location is in HL and the length in DE.

;; LV-MCH

L199A: LD ($5CE9) , HL ; save start in system variable HD 0D

; now directly read the header values at the start of the data buffer.

LD E, (IX+$53) ; directly read the saved length

LD D, (IX+5$54) ; from the data buffer into DE.
; now calculate how many 512 byte microdrive records need to be read in
; by taking the total minus one to ensure an EOF record.

; e.g.
; 1023 bytes = 1014 bytes + 9 header - 1 = S$03FE, SRL=$01, INC=$02 sectors
; 1024 bytes 1015 bytes + 9 header - 1 SO03FF, SRL=$01, INC=$02 sectors
; 1025 bytes 1016 bytes + 9 header -1 $0400, SRL=$02, INC=$03 sectors

LD HL, $0008 ; add eight in effect +9 for header -1.
ADD HL, DE ; add the program/code length.

; the MSB is the number of 256 chunks.
SRL H ; shift right to halve and give 512 byte

; chunks.
INC H ; increment to include the extra sector.

’

’

LD A
(

H ; use accumulator to store record count
LD 5

CE7),A ; in the temporary system variable HD 0B

the microdrive map is now saved on the machine stack, for later recall,
and at the same time the current map locations are all set to zero.
The new map is to be used for records rather than sectors.

CALL L1A04 ; routine SA-MAP saves the thirty two bytes
; of the map on the machine stack safely
; dipping into the 80 bytes of spare memory.

now, since this is record zero, subtract the nine header bytes from the
current record length and put back.

LD DE, $0009 ;

LD L, (IX+$45) ; RECLEN 1lo

LD H, (IX+$46) ; RECLEN_hi

OR A ; clear carry

SBC HL,DE ;

LD (IX+$45),L ; RECLEN lo

LD (IX+$46),H ; RECLEN hi

PUSH IX ; transfer the channel base address

POP HL ; to the HL register pair.

LD DE, $005B ; prepare offset $0052 to data and then an
ADD HL, DE ; extra nine bytes. Add to skip the header.
LD DE, ($5CE9) ; set destination from HD 0D

JR L19EA ; forward to LOOK-MAP to enter the record

; loading loop at the mid-point as record
; zero is already in the channel.

The record loading loop loads records in random order. Consider that
multiple copies of a filename may have been saved so there may be several
sectors with the same record number.

;; USE-REC
L19D0: CALL L1A5D ; routine F-REC2 fetches only a header and
; record that matches the name specified
; in CHNAME and only if the map bit is reset
; indicating no sector with this record number
; has already been loaded.
LD A, (IX+544) ; re-fetch record number from RECNUM.

’

’

Note. the next test is a nonsense as a record zero has already been marked
so no sector with record zero could be reloaded.

OR A ; test for a record zero.
JR Z,L19D0 ; back, if so, to USE-REC.

now calculate the destination if this 512 byte sector.

’

’

RLA

DEC A

LD D, A

1D E,S$F7

LD HL, ($5CE9)
ADD HL, DE

EX DE, HL
PUSH IX

POP HL

LD BC, $0052
ADD HL, BC

-> The mid loop entry point.

; LOOK-MAP

L19EA: EXX

’

’

’

’

’

CALL L13BF

Note. the routine also resets

; double recnum to give 512 byte chunks
; decrement to adjust for nine bytes of header.
; place in MSB of offset

; set LSB of offset to $00 - $09 for header.
; fetch start of data from HD 0D

; add to calculate destination for this sector.
; transfer destination to DE.

; transfer the channel base address
; to the HL register pair.

; prepare offset to start of 512 byte buffer
; add so that HL addresses start of data.

; preserve HL and DE by using alternate
; registers.

; routine CHK-MAP-2 sets HL to the map byte
; and B to the mask.

the zero flag if this record has previously

been loaded but this is not possible.

JR NZ,L19D0

; back, if already loaded, to USE-REC.

since this is the first time for this record mark so that not loaded again.

LD A, (HL)
OR B

1D (HL) , A
EXX

CALL L1A39

; mark the record bit
; by setting it so that it is not
; considered for loading again.

; restore HL (source) and DE (destination).

; routine LD-VE-M loads or verifies a
; data record.

now decrement the record count which is beyond reach of IY register.

LD A, ($5CE7)
DEC A

LD ($5CE7) , A
JR NZ,L19D0

the block is loaded

CALL L1AlE

RET

; fetch count of records to be loaded HD OB
; decrement
; and place back in system variable HD 0B

; back, if not finished to USE-REC

; routine RE-MAP restores the true microdrive
; map from the stack.

; return.

THE 'SAVE MICRODRIVE MAP CONTENTS' ROUTINE

This routine saves the sector-mapped microdrive map on the machine stack
at the same time setting each of the 32 vacated locations to zero.

;7 SA-MAP

L1A04: POP
LD

LD
LD
LD

; now enter a

;; SA-MAP-LP

L1A11l: LD
LD
INC
LD
LD
INC

PUSH

DJINZ

LD
Jp

HL ;
($5CC9),HL ;
L, (IX+$1R) ;
H, (IX+$1B) ;
BC, $1000 ;

loop stacking two

E, (HL) ;
(HL) ,C ;
HL ;
D, (HL) ;
(HL) ,C ;
HL ;
DE ;
L1A11 ;
HL, ($5CC9) ;
(HL) ;

drop the return address into HL
and save in unused system variable SECTOR

fetch address of microdrive map from CHMAP
fetch address of microdrive map from CHMAP
set word counter B to sixteen and C to zero.

bytes at a time.

fetch first byte to E.
set location to zero.
bump address.

fetch second byte to D.
set location to zero.
bump address.

save DE on machine stack.
back, for 16 pairs, to SA-MAP-LP

restore return address from SECTOR
and jump to location.

; THE 'RESTORE MICRODRIVE MAP CONTENTS' ROUTINE

; This routine is the opposite of the above and restores the sector-mapped
; microdrive map from the machine stack back to its original location
; overwriting the now redundant record-indicating map.
;+ RE-MAP
L1AlE: POP HL ; drop the subroutine return address.
LD ($5CC9) , HL ; store in the multi-purpose variable SECTOR.
LD L, (IX+$1A) ; fetch address of microdrive map from CHMAP.
LD H, (IX+$1B) ; fetch address of microdrive map from CHMAP.
LD DE, $001F ; thirty one locations are added.
ADD HL, DE ; to address the last location.
LD B,S$10 ; set the pop counter to sixteen.
;+ RE-MAP-LP
L1A2E: POP DE ; pop two bytes of the map from the stack.
LD (HL),D ; insert a map byte.
DEC HL ; decrement the address.
LD (HL) ,E ; insert second map byte.
DEC HL ; decrement the address again.
DJINZ L1A2E ; back, sixteen times, to RE-MAP-LP.
LD HL, ($5CC9) ; restore the return address from SECTOR.
JP (HL) ; and jump to address.
; THE 'LD-VE-M' ROUTINE
; The Load or Verify from Microdrive routine.
; This routine loads or verifies up to 512 bytes of data currently in the
; microdrive channel data buffer.
;+ LD-VE-M
L1A39: LD C, (IX+$45) ; RECLEN 1o
LD B, (IX+$46) ; RECLEN hi

; now test if a VERIFY operation by performing the equivalent of bit 7, (iy+$7c)

LD A, (S5CB6) ; load system variable FLAGS 3 to accumulator.
BIT 7,A ; test FLAGS 3 value - performing VERIFY ?
JR NZ,L1A49 ; forward, if so, to VE-M-E

; the operation is a LOAD.

LDIR ; block copy the bytes.
RET ; return.

; the operation is a VERIFY.

;; VE-M-E
L1A49: LD A, (DE) ; fetch a byte from the destination.
CP (HL) ; compare to that of source
JR NZ,L1A55 ; forward, with mismatch, to VE-FAIL
INC HL ; increment source address.
INC DE ; increment destination address.
DEC BC ; decrement byte count.
LD A,B ; test for
OR C ; zero.
JR NZ,L1A49 ; back, if not, to VE-M-E
RET ; return.

;7 VE-FAIL
L1A55: RST 20H ; Shadow Error Restart
DEFB $15 ; 'Verification has failed'

; THE 'FETCH RECORD FROM MICRODRIVE' ROUTINE

; Entered at F-REC2,
; Note. the first entry point f-recl is unused.

;; f-recl

L1A57: LD A, (IX+519) ; fetch drive number.
CALL L1532 ; routine SEL-DRIVE starts motor.

; ——>

;; F-REC2

L1A5D: LD BC, $S04FB ; Set sector counter to 5 * 255 = 1275
LD ($5CC9),BC ; Update System Variable SECTOR

;; UNTILFIVE
L1A64: CALL L1280 ; routine G-HD-RC fetches the next header and
; matching record to pass tape head.

JR C,L1A7B ; forward, with name mismatch, to F-ERROR
JR Z,L1ATB ; forward, with unused record, to F-ERROR
CALL L13BF ; routine CHK-MAP-2 checks RECORD.

JR NZ,L1A7B ; forward, if already loaded, to F-ERROR

PUSH IX transfer the channel base address
POP HL to the HL register pair.
LD DE, $0052
ADD HL, DE
CALL L142B routine CHKS-BUFF
RET Z
;; F-ERROR
L1A7B: CALL L13F7 routine DEC-SECT
JR NZ,Ll1A64 back to UNTILFIVE
RST 20H Shadow Error Restart
DEFB $11 File not found
; THE 'RESTORE ADDRESS OF FILENAME' ROUTINE
; This subroutine performs a similar function to the Main ROM POINTERS routine
; by adjusting the extra system variables that point to filenames within

; the sliding,

dynamic areas.

; On entry HL points to the start of the New Room and BC holds the number of
; bytes created.

;; REST-N-AD

L1A82: PUSH HL Preserve HL throughout.
PUSH HL Preserve HL for second call.
LD DE, ($S5CE4) Fetch D STR2 - start of 2nd filename.
CALL L1A9D routine TST-PLACE may adjust fetched value.
LD ($5CE4) , DE Store in System Variable D STR2
POP HL Restore HL for second call.
LD DE, ($5CDC) Fetch D _STR1 - start of 1lst filename.
CALL L1A9D routine TST-PLACE
LD ($5CDC) , DE Store in System Variable D STR1
POP HL Restore original HL value.
RET return.
; THE 'TEST PLACE' SUBROUTINE
; This subroutine is used twice from above to test if the filename address
; is within the Spectrum's dynamic RAM area.
; HL = location before new
; DE = address of filename.
; BC = amount of room just created.
;; TST-PLACE
L1A9D: SCF adjust for one before.
SBC HL, DE subtract filename address from start of room
RET NC and if before new room then return.
LD HL, ($5C65) fetch STKEND and if the filename 1is above
SBC HL, DE then it is not in dynamic memory.
RET C

EX DE, HL ; add the number of bytes created

ADD HL, BC ; to the filename address
EX DE, HL ; to bring it into line.
RET ; return.

; THE 'CALLS TO THE COMMANDS' ROUTINE

;; ERASE-RUN
L1AAB: CALL L1D79 ; routine ERASE
JR L1AC9 ; forward to ENDC

;7 MOVE-RUN

L1ABO: CALL L17F5 ; routine MOVE
JR L1ACO ; forward to ENDC
;; CAT-RUN
L1AB5: CALL L1C52 ; routine CAT
JR L1ACOS ; forward to ENDC
;; FOR-RUN
L1ABA: CALL L1B5D ; routine FORMAT
JR L1AC9 ; forward to ENDC
;; OP-RUN
L1ABF: CALL L1ACC ; routine OP-M-STRM
JR L1AC9 ; forward to ENDC

;7 SAVE-RUN

L1ACA4: CALL L18CB ; routine SA-DRIVE
JR L1AC9 ; forward to ENDC

;5 ENDC

L1AC9: JP LO5C1 ; Jjump to ENDI1

; THE 'OPEN A PERMANENT "M" CHANNEL' ROUTINE

;; OP-M-STRM

L1ACC: LD A, ($5CD8) ; sv D STRI1
ADD A,A ;
LD HL, $5C16 ; sv STRMS 00
LD E,A ;
LD D, $00 ;
ADD HL, DE ;

PUSH HL ;

CALL L1BOS

BIT 0, (IX+$1
JR 7,L1AE9
IN A, (SEF)
AND $01
JR NZ,L1AE9
RST 20H
DEFB SOE

;; MAKE-PERM

L1AE9: RES 7, (IX+$0
XOR A
CALL L1532
BIT 0, (IX+51
JR NZ,L1AFF
BIT 2, (IX+34
JR Z,L1AFF
RST 20H
DEFB $16

;; STORE-DSP

L1AFF: EX DE, HL
POP HL
LD (HL) ,E
INC HL
LD (HL),D
RET

; THE 'OPEN A TEMPORARY "M"
; (Hook Code: $22)
;; OP-TEMP-M
L1BO0S5: CALL L10AS
PUSH HL
LD A, (IX+$19)
CALL L1532
LD BC,$0032
LD ($5CC9), BC

’

8)

4)

8)

3)

routine OP-TEMP-M creates a temporary
microdrive channel, starts motor, and
fetches record zero of named file.
CHFLAG

forward to MAKE-PERM

isolate write prot.
forward to MAKE-PERM

Shadow Error Restart
Drive 'write' protected

channel letter

routine SEL-DRIVE
CHFLAG
forward to STORE-DSP

RECFLG
forward to STORE-DSP

Shadow Error Restart
Wrong file type

CHANNEL' ROUTINE

now enter a loop

routine SET-T-MCH creates a temporary channel
using either an existing microdrive map from
a channel also using this drive or allocating
a new one initialized to S$FF bytes.
fields CHREC etc. are set to zero.

preserve the offset to this channel from CHANS

fetch drive number 1 - 8 from CHDRIV
routine SEL-DRIVE starts motor and disables
interrupts.

now set temporary unused
system variable SECTOR lo to fifty
and set SECTOR hi to zero.

;; OP-F-L

L1Bl6:

CALL

PUSH

; maintain the

LD
ADD
LD
CP
JR

LD

;; OP-F-X

L1B26:

POP

JR

JR

L1280

AF
'maximum sectors
A, (IX+$29)
A,s$03

HL, $5CC9

(HL)

C,L1B26

(HL) , A

AF
C,L1B49

z,L1B46

’

’

’

routine G-HD-RC fetches any header and

matching record

preserve return status flags.

to visit' so only one rotation of tape occurs.

fetch sector from HDNUMB

add 3

address current (max+3) in SECTOR lo
compare

forward, if less, to OP-F-X

update with new max sectors to visit.

restore status flags.
forward, with no name match, to OP-F-4

forward, if unused, to OP-F-3
to reset map bit.

; the fetched record is one from the file named in CHNAME

RES

LD
OR
JR

PUSH
POP

LD
ADD

CALL
JR

;; OP-F-2

L1B41:

CALL

JR

;; OP-F-3

L1B46:

CALL

0, (IX+518)
A, (IX+$44)
A
NZ,L1B41

IX
HL

DE, $0052
HL, DE

1L142B
7,L1B5B

L1258

L1B5B

L13E3

; the branch was here

;; OP-F-4

L1B49: LD
LD
INC
LD

DEC

HL, $5CCA
» (HL)

HL) , A

A
A

(
HL

’

update CHFLAG to indicate success.

fetch the record number within file RECNUM
test for zero - first record.
forward, if not, to OP-F-2

transfer the channel base address
to the HL register pair.

prepare offset to data and
add to address start of the 512 byte buffer

routine CHKS-BUFF checks that checksum agrees.
forward, if OK, to DP-F-5

routine GET-R-2 repeatedly calls the
subroutine G-HD-RC (as at start of loop)
until the validated record matching CHREC
(zero) 1is loaded.

forward, with success, to DP-F-5.

routine RES-B-MAP resets bit for unused
sectors.

address visited sector count SECTOR hi

fetch sector counter.
increment

and put back in SECTOR hi.
address the max sector value.

CP (HL) ; compare.
JR C,L1Blo6 ; back, if less than one revolution, to OP-F-L

; else a full revolution occurred without finding the record.

RES 1, (IX+$43) ; RECFLG
RES 2, (IX+$43) ; RECFLG

; the branch was here with record zero of named file.

;; DP-F-5
L1B5B: POP HL ; restore the offset from CHANS.
RET ; return.

; THE 'FORMAT "M" COMMAND' ROUTINE

; e.g. FORMAT "m";1;"demos"

;; FORMAT
L1B5D: CALL L10AS5 ; routine SET-T-MCH creates a temporary
; microdrive channel with name of cartridge.
LD A, (IX+519) ; fetch drive number from CHDRIV
CALL L1565 ; routine SW-MOTOR starts the motor.
LD BC, $32C8 ; decimal 1300
CALL L1652 ; routine DELAY-BC
DI ; Disable Interrupts.
IN A, (SEF) ; read microdrive port.
AND S01 ; isolate write prot. bit.
JR NZ,L1B75 ; forward, if not low, to FORMAT-1
RST 20H ; Shadow Error Restart
DEFB SO0E ; Drive 'write' protected

;; FORMAT-1

L1B75: LD A, SE6 ; enable writing.
ouT (SEF) , A ; update microdrive port.
LD BC, $S00FF ; assume 255 sectors will fit on a tape.
LD ($5CC9), BC ; set system variable SECTOR.
PUSH IX ; transfer the channel base address
POP HL ; to the HL register pair.
LD DE, $002C ; offset to HDNAME
ADD HL, DE ;
EX DE, HL ; make destination HDNAME
LD HL, SFFE2 ;
ADD HL, DE ; make source CHNAME
LD BC, $000A ; ten bytes to copy.
LDIR ; copy - C is now zero.

; now prepare an 'unusable' record.

XOR A ; make accumulator zero.

LD IX+%47) ,A ; set first character of RECNAM to zero.

(
SET 0, (IX+$28) ; mark HDFLAG indicate a header.
RES 0, (IX+$43) ; mark RECFLG indicate a record.
SET 1, (IX+543) ; mark RECFLG indicate an EOF record.
PUSH IX ; transfer the channel base address
POP DE ; to the DE register pair for a change.
LD HL, $0043 ; offset to RECFLG - start of record descriptor.
ADD HL, DE ; add offset to start of record descriptor.
CALL L1426 ; routine CHKS-HD-R inserts 14 byte checksum.

; Now enter a loop to write the blocks to the cartridge

;7 WR-F-TEST
L1BAB: CALL L13F7 ; routine DEC-SECT decrements sector originally
; set to S$FF
JR Z,L1BDF ; forward, if BC is zero, to TEST-SCT ->
LD (IX+529),C ; insert reduced sector number in HDNUMB
PUSH IX ; transfer the base channel address
POP HL ; to the HL register pair.
LD DE, L0028 ; offset to the header
ADD HL, DE ; add to address HDFLAG.
CALL L1426 ; routine CHKS-HD-R inserts 14 byte checksum
; preserving the HL value.
LD DE, SFFF4 ; subtract twelve
ADD HL, DE ; to address the header PREAMBLE.
CALL L15AD ; routine OUT-M-HD writes the header to tape.
LD BC, $01B2 ; set timer for gap - 434 decimal.
CALL L1652 ; routine DELAY-BC
PUSH IX ; transfer start of channel
POP HL ; to HL register pair.
LD DE, $0037 ; adjust HL to point to PREAMBLE at
ADD HL, DE ; start of record descriptor.
CALL L16AF ; routine WR-BLK writes record to tape.
LD BC,$0100 ; a short delay.
CALL L1652 ; routine DELAY-BC
CALL L163E ; routine TEST-BRK
JR L1BAB ; loop back to WR-F-TEST for sectors 254 - 1.

; —> the branch was to here when all sectors from 254 down to 1 have been

; written.

;; TEST-SCT

L1BDF: LD BC, $0087 ; use value 35 decimal.
CALL L1652 ; routine DELAY-BC

LD A, SEE ; signal disable writing.

ouT (SEF) ,A ;

LD A, (IX+519) ;
CALL L1532 ;
LD BC,$0032 ;
LD ($5CC9), BC ;

;; CHK-SCT

L1BF6: CALL L13A9 ;
LD A, (IX+529) ;
ADD A,S$03 ;
LD HL, $5CC9 ;
CP (HL) ;
JR C,L1CO05 ;
LD (HL) , A ;

;; CHK-SCT2

L1C05: CALL L13C4 ;
JR Z,L1C1E ;
PUSH IX ;
POP HL ;
LD DE, $0043 ;
ADD HL, DE ;
CALL L165A ;
JR NZ,L1C1lE ;
CALL L1426 ;
JR NZ,L1C1lE ;
CALL L13E3 ;

;; CHK-NSECT

L1ClE: LD HL, $5CCA ;
LD A, (HL) ;
INC A ;
LD (HL) , A ;
DEC HL ;
CP (HL) ;
JR C,L1BF6 ;
LD L, (IX+$1A) ;
LD H, (IX+$1B) ;

; Register HL now addresses the

output to microdrive port.

select drive number from CHDRIV.
routine SEL-DRIVE.

set max sector to fifty, read sectors to zero.

insert both values in SECTOR

routine GET-M-HD2 reads the next valid header
to pass the tape head.

fetch the unique sector number from HDNUMB
add three to value.

address system variable SECTOR

and compare to total of sectors to visit.
forward if less to CHK-SCT2

else insert new value for sectors to visit.

routine CHECK-MAP checks if sector is free
on the microdrive map.
forward, if so, to CHK-NSECT

transfer channel base address
to the HL register pair.

offset to the start of record descriptor.
add to address RECFLG.

routine READ-BLK reads in a block.

forward, with bad read, to CHK-NSECT
leaving map bit set.

routine CHKS-HD-R check the header checksum
forward, with error, to CHK-NSECT

routine RES-B-MAP resets the map bit marking
the sector as usable.

address SECTOR hi the visited sector counter.
fetch the value.

increment

and place back.

decrement to address max sectors to visit.
compare counter to limit.

back, i1f counter is less, to CHK-SCT

load L from CHMAP lo
load H from CHMAP hi

microdrive maps which at this stage have

; sectors 0 and 255 marked as unusable. If as is usual, the lower numbered
; sectors have overwritten the higher numbered sectors then typically

; the top seventy sectors, or so,

will be marked as unusable though not on an

; emulated machine which at this stage will only have 0 and 255 marked
; unusable. On a real machine the splice will show up as an unusable sector
; and there may be some other sectors unusable due to dirt on the recording

H film.

; What happens next is unique to this ROM and is no doubt due to extensive
; testing and analysis of the microdrives by Sinclair Research.

Microdrive sectors are encountered in descending order, as they are
written, and the following routine marks any sector following a bad sector
as bad also. One can conclude that Sinclair Research's test programme
revealed that the first sectors to fail were those adjacent to contaminated
or damaged sectors.

This perhaps explains why my use of the microdrives with ROM 2 has been
more reliable than early reviews, no doubt with ROM 1, suggested.

LD DE, $SO001F ; add thirty one to start at the end of the map
ADD HL, DE ; — the byte that refers to sector 255.

LD B, $20 ; count the thirty two bytes of a map.

SCF ; set carry flag to ensure that sector 255

; 1s unusable - but it is already marked so ?7?

;; PREP-MARK
L1C35: LD A, (HL) ; fetch a byte representing eight sectors.
LD C,A ; and store it in C - Note. unnecessary.
RRA ; rotate right accumulator C->76543210->C
OR C ; combine with original wvalue. Why not OR (HL)
LD (HL) ,A ; store the modified byte back in the map.
DEC HL ; point to the next byte for lower-numbered
; sectors.
L1C3B: DJNZ L1C35 ; loop back to PREP-MARK for all 32 map bytes.

Note. the above routine is untidy. There is no need to set the carry flag
and no need to store the original value in C. While it achieves it's aims,
if sector one is bad it has no effect on the next sector to be encountered.
That would be hard to implement but the first sector that is marked bad,
the highest numbered sector, is marked so solely because it is adjacent to
the overwritten section.

Note. from details of addresses Andrew Pennell gave in the magazine "Your
Sinclair" it can be deduced that the unpublished ROM 3 had two extra
instruction bytes at this point and together with a cleanup, this may have
addressed the above issue.

Now prepare to overwrite the unusable sectors (which are mapped as usable)
with record descriptors which are usable.

CALL L1E49 ; routine IN-CHK marks the channel record
; descriptor fields as usable by blanking
; both RECFLG and RECLEN and then inserting
; the descriptor checksum.

A loop is now entered to write usable datablocks to every sector indicated
as usable in the microdrive map.

;; MARK-FREE
L1C40: CALL L1349 ; routine CHK-FULL checks if there is still a
; usable sector on the cartridge.
JR NZ,L1C4D ; forward, if so, to MK-BLK.

The FORMAT operation is now complete.

XOR A ; select no motor
CALL L1532 ; routine SEL-DRIVE stops the microdrive motor.

?

CALL L119F ; routine DEL-M-BUF deletes the microdrive
; buffer and the microdrive map.

RET ; return. >>>>>>>
;; MK-BLK
L1C4D: CALL L135A ; routine SEND-BLK writes block to microdrive

’

; cartridge as indicated by the microdrive map
; which is then updated by the routine.

JR L1C40 ; loop back to MARK-FREE

THE 'CAT COMMAND' ROUTINE

;; CAT
L1C52: LD A, ($5CD8) ; fetch output stream from S_STRI1
RST 10H ; CALBAS
DEFW 51601 ; main CHAN-OPEN
CALL L10AS5 ; routine SET-T-MCH sets a temporary channel.
LD A, (IX+519) ; fetch drive number from CHDRIV.
CALL L1532 ; routine SEL-DRIVE starts the motor.
LD BC, $0032 ; set maximum sector to 50 and initialize
; value of sectors read to zero.
LD ($5CC9), BC ; update system variable SECTOR

On the original Interface 1 ROM operations like CAT and ERASE were quite
slow as the routines assumed the theoretical maximum number of sectors was
256. In reality, the maximum number of sectors on a microdrive is
approximately 180, so the original routines spent the last 3 seconds
reading about 75 sectors for the second time. The improved algorithm above
is to keep a record of the maximum sector + 3 and when the number of
visited sectors is equal to this number then a complete revolution of the
tape has been made and the operation can cease. The overhead of three is

to ensure that bad sectors or the tape splice do not cause the operation to
end prematurely.

Happily, this algorithm also works with emulators which usually provide the
full 256 sectors.

;; CAT-LP
L1Ce68: CALL L13A9 ; routine GET-M-HD2 reads in 14 byte header.
LD A, (IX+529) ; fetch value of sector from HDNUMB
ADD A,S$03 ; add 3 to value.
LD HL, $5CC9 ; address system variable SECTOR lo
CP (HL) ; compare to contents
JR C,L1C77 ; forward if A is less to CAT-LP-E
LD (HL) ,A ; else update SECTOR lo with higher value.
;; CAT-LP-E
L1C77: CALL L1ESE ; routine G-RDES loads only a

; 14 byte record descriptor.

JR NZ,L1C68 ; back, with error or mismatch, to CAT-LP

; a record can be considered in use if either the RECLEN is maximum $0200 or
; the RECFLG indicates that it is the seldom full EOF record.

LD A, (IX+543) ; RECFLG

OR (IX+$46) ; RECLENihi

AND $02 ;

JR NZ,L1C8B ; forward, if used, to IN-NAME

; else mark sector free in microdrive map and find next sector.

CALL L13E3 ; routine RES-B-MAP
JR L1CF4 ; forward to F-N-SCT

; @ name 1s to be inserted in the 512 byte data buffer workspace, if it is not
; there already. Secret files are not listed.

;7 IN-NAME

L1C8B: LD A, (IX+547) ; take first character of RECNAM
OR A ; test for zero.
JR Z,L1CF4 ; forward, if CHRS$ 0, to F-N-SCT
PUSH IX ; transfer base address
POP HL ; to HL register.
LD DE, $0052 ; offset to start of data buffer.
ADD HL, DE ; add to address names.
LD DE, $000A ; set DE to ten, the length of a name.
LD B, $00 ; set high byte to zero.
LD C, (IX+s0D) ; fetch name total from CHREC initially zero.
;; SE-NAME
L1CAO: LD A,C ; test name count for zero
OR A ;
JR Z,L1CDA ; forward, with first name, to INS-NAME
PUSH HL ; save buffer address.
PUSH IX ; save channel base address.
PUSH BC ; save name total.
LD B, $0A ; set character counter to ten.
;; T-NA-1
L1CAA: LD A, (HL) ; take letter of buffered name.
CP (IX+$47) ; compare to that in RECNAM
JR NZ,L1CB5 ; forward, with mismatch, to T-NA-2
INC HL ; increment
INC IX ; both pointers.
DJNZ L1CAA ; back, for all ten, to T-NA-1
;5 T-NA-2
L1CB5: POP BC ; restore
POP IX ; all
POP HL ; pointers.

; 1f all ten characters match then find next sector.
JR Z,L1CF4 ; forward to F-N-SCT

; 1f buffered name is higher than new name then re-order to create a slot.

JR

NC,L1lcCl

; forward to ORD-NAM

; else add ten to buffer address and compare with following name performing

; a simple insert if the end of

ADD
DEC
JR

; + ORD-NAM

L1CCl: PUSH
PUSH
PUSH

PUSH
SLA
LD
LD
ADD
ADD
ADD
ADD

LD
LD

POP
DEC
ADD

EX
ADD
EX

LDDR

POP
POP
POP

;7 INS-NAME
L1CDA: PUSH
LD

;; MOVE-NA

L1CDE: LD
LD
INC
INC
DJINZ

POP
LD
INC
LD

CP
JR

HL, DE
C
L1CAO

HL
DE
BC

HL

H,B
1,C

HL, BC
HL, BC
HL, BC
HL, BC

DE, HL
HL, DE
DE, HL

BC
DE
HL

IX
B, S0A

A, (IX+$47)
(HL) ,A

IX

HL

L1CDE

IX
A, (IX+$0D)
A

(IX+$0D) , A

$32
Z,L1CFF

the list is reached.

; add ten to address.
; decrement name counter.
; back to SE-NAME

; save pointer to start of name slot.
; save the wvalue ten.
; save the buffered name counter.

; save address of name slot again.
; double name count.
; set H to zero.

; HL = 2 * count

; HL = 4 * count

; HL = 6 * count Note. add hl,hl doubles.
; HL = 8 * count c.f. Main ROM

; HL 10 * count

; transfer number of bytes
; to be moved to BC register.

; restore address of insertion point.
; decrement and then add
; bytes to be moved to point to end of block.

; now make DE
; the destination
; ten bytes higher.

; slide the block of higher names upwards.

; restore name count.
; restore ten value.
; restore insertion point.

; save channel base address.
; set character count to ten.

; fetch a character from new name at RECNAM
; insert into buffer.

; increment both

; pointers.

; loop back to MOVE-NA

; restore channel base address.
; fetch count of names from CHREC
; increment

; and store back in CHREC

; compare to maximum of 50.
; forward, if buffer filled, to BF-FILLED

;; F-N-SCT

L1CF4: LD HL, $5CCA ; SV SECTOR_hi
LD A, (HL) ; fetch actual count of used sectors.
INC A ; and increment.
LD (HL) , A ; update SECTOR hi
DEC HL ; address system variable SECTOR lo
CP (HL) ; compare
Jp C,L1C68 ; jump to CAT-LP
;; BF-FILLED
L1CFF: PUSH IX ;
XOR A ; clear accumulator
CALL L1532 ; routine SEL-DRIVE stops the motor.
PUSH IX ; transfer the channel base address
POP HL ; to the HL register pair.
LD DE, $002C ; offset to cartridge name HDNAME.
ADD HL, DE ; add the offset to address the name.
CALL L1D5B ; routine PRNAME prints name and a carriage
; return.
LD A,S$0D ; prepare an extra carriage return.
CALL L1D71 ; routine PRCHAR outputs it.
PUSH IX ;
POP HL ;
LD DE, $0052 ; offset to CHDATA - the 512 byte data buffer.
ADD HL, DE ; add to address list of up to fifty names.
LD B, (IX+S$0D) ; load B with count of names from CHREC
LD A,B ; test for
OR A ; Zero.
JR Z,L1D27 ; forward, if so, to NONAMES
;5 OT-NAMS
L1D22: CALL L1D5B ; routine PRNAME
DJNZ L1D22 ; loop back to OT-NAMS
; + NONAMES
L1D27: CALL L1D43 ; routine FREESECT
LD AE ;
SRL A ;
RST 10H ; CALBAS
DEFW $2D28 ; main STACK-A
LD A, $0D ;
CALL L1D71 ; routine PRCHAR
RST 10H ; CALBAS
DEFW $2DE3 ; main PRINT-FP
LD A,$0D ;
CALL L1D71 ; routine PRCHAR

POP IX ;

CALL

RET

L119F ; routine DEL-M-BUF

; return.

; THE 'FREESECT' ROUTINE

’

’

This routine
sectors that

is called from SAVE and CAT to calculate the number of free
are present on a microdrive from the map information.

;7 FREESECT

The count of free sectors is returned in the E register.

L1D43: LD L, (IX+$1A) ; address of microdrive map.
LD H, (IX+$1B) ; for channel transferred to HL.
LD E, $00 ; initialize sector count to zero.
LD C,$20 ; there are thirty two bytes to examine.
;; FR-SC-LP
L1D4D: LD A, (HL) ; fetch a byte from the map.
INC HL ; address next map location.
LD B, $08 ; count eight bits.
;; FR-S-LPB
L1D51: RRA ; rotate right.
JR C,L1D55 ; forward, with carry, to FR-S-RES.
INC E ; ilncrement the free sector count.
;; FR-S-RES
L1D55: DJNZ L1D51 ; loop back for all eight bits to FR-S-LPB.
DEC C ; decrement byte count.
JR NZ,L1D4D ; loop back for thirty two bytes to FR-SC-LP.
RET ; return.
; THE 'PRNAME' ROUTINE
; This routine outputs a ten character name, followed by a carriage return,
; and is used by the CAT command to first print the cartridge name and then
; the filenames on the cartridge.
; Note. For a routine that can output to any stream, it seems straightforward
; until one notices the call to TEMPS at the end. This applies the permanent
; colour screen attributes to the temporary set and has been placed within
; the routine as a security measure to ensure that if the cartridge name
; or filename contains a string of colour control codes that render filenames
; invisible then their effect does not last beyond the current name.

; On the other hand,

colour control codes can be used in the cartridge name

; without affecting the cartridge contents display.

;; PRNAME
L1D5B: PUSH BC
1D B, $0A
;; PRNM-LP
L1D5E: LD A, (HL)
CALL 11D71

’

’

’

’

preserve name count.

ten characters per name.

fetch a character.

routine PRCHAR

’

’
’

’

INC HL ; point to next character.

DJINZ L1D5E ; loop back for all ten to PRNM-LP

LD A,S$0D ; prepare a carriage return.

CALL L1D71 ; routine PRCHAR

PUSH HL ; preserve character address.

RST 10H ; CALBAS

DEFW $0D4D ; main TEMPS restores temporary colours from

; the permanent colours after each name.

POP HL ; restore character address.
POP BC ; restore name count.
RET ; return.

THE 'PRCHAR' ROUTINE
The PRINT CHARACTER routine utilizes the output restart in the main ROM
which outputs to any stream and so a stream such as the "T" channel
could be sent output. The IX register has therefore to be preserved.

; + PRCHAR
L1D71: PUSH IX ; preserve this ad hoc channel address.
RST 10H ; CALBAS
DEFW $0010 ; main PRINT-A
POP IX ; restore this channel address.
RET ; return.

THE 'ERASE COMMAND' ROUTINE

(Hook Code: $24)
The ERASE command is in two stages and uses the first 32 bytes of the
otherwise unused data buffer to map out the sectors to be marked clear.
The first stage performs this mapping and in one revolution of the tape
it should find all sectors that have the specified name. It should also
find the EOF record, which all files have, and which contains in the
RECNUM field the maximum record number. For example with four records the
numbers will be 0, 1, 2, 3.
Once the number of marked records equals the max record plus one then the
second stage can begin which is to mark free all the records.

There are two circumstances under which the procedure might not be so
straightforward.

The first is if the user has pressed BREAK during a previous ERASE
operation after a few records were marked free.

The second is if the file has been saved with the System Variable COPIES
holding a value larger than 1. For example with a value of 5, there will
be five EOF records and five records with RECNUM equal to zero etc.

For the first case the command will make five revolutions of the tape
before marking all found sectors free.

This may happen in the second case also if more multi records were found
before the first EOF record was encountered.

It is more likely that the ERASE command will have to be invoked several

; times to erase the file.

It is simpler to issue the command within a

; loop. Multiple copy files are usually saved as part of a well-considered
; scheme and are seldom subsequently erased.
;; ERASE

L1D79: CALL

LD
CALL

IN
AND
JR

RST
DEFB

;; ERASE-1
L1D8A: PUSH
POP

LD
ADD

; A pseudo

L10AS5

A, (IX+$19)
L1532

A, (SEF)
$01
NZ,L1D8A

20H
SOE

IX
HL

DE, $0052
HL, DE

routine SET-T-MCH creates a temporary channel
using either an existing microdrive map from
a channel also using this drive or allocating
a new one initialized to S$FF bytes.

fetch drive number from CHDRIV.
routine SEL-DRIVE starts motor.

read microdrive port.
isolate 'write prot.' bit.
forward, if not zero, to ERASE-1

Shadow Error Restart
Drive 'write' protected

transfer address of start of channel.
to the HL register.

prepare offset to data buffer.
add to address start.

microdrive map will also be created within the buffer conserving

; memory. This is initialized to $00 bytes.
PUSH HL transfer buffer address
POP DE from HL to DE register
INC DE and increment address.
LD BC, $S001F set counter to 31 and B to zero.
XOR A set A to zero.
LD (HL) ,A insert zero in first location.
LDIR copy to other 31 addresses
LD A, SFF prepare, as a default, to examine every
sector.
LD (IX+$0D),A update CHREC with max record number.
LD BC, $04FB prepare decimal 1275 (5+ revolutions)
LD ($5CC9),BC update system variable SECTOR
; Note. if the EOF record is not found, or if the number of found sectors
; doesn't equal the maximum record then 5+ revolutions of the tape will
; occur after which all mapped sectors will be erased. Normally with a
; simple file it's all over in less than two revolutions.
;; ERASE-LP
L1DA7: CALL L13F7 routine DEC-SECT decrements the 1275 counter.
JR Z,L1EO03 forward, if zero, to ERASE-MK
CALL L13A9 routine GET-M-HD2 reads the next 1l4-byte
header to pass the tape heads.
CALL L1ESE routine G-RDES reads the corresponding
l4-byte record descriptor for this sector.
JR NZ,L1DES forward, with read error, to TST-NUM

; now check if sector is in use. Considered it so if next position is
; at $0200 or if it is the EOF record.

LD A, (IX+5$43) ; RECFLG

OR (IX+3%546) ; RECLEN_hi

AND $02

JR Nz, L1DC3 ; forward, if in use, to ERASE-2

; to consider for erasure.
; the sector is not used so reset the REAL microdrive map bit.

CALL L13E3 ; routine RES-B-MAP resets sector bit on
; the REAL microdrive map.

JR L1DES ; forward to TST-NUM
; consider for erasure if filename matches.
;; ERASE-2
L1DC3: PUSH IX ; transfer channel base address
POP HL ; to the HL register.
LD DE, $0047 ; offset to 10 characters of filename.
ADD HL, DE ; add so HL addresses the start of RECNAM.
LD BC, $000A ; ten bytes to compare against required CHNAME.
CALL 11403 ; routine CHK-NAME
JR NZ,L1DES ; forward, with no match, to TST-NUM

; the name matches so sector is marked free.

CALL L13EB ; routine TEST-PMAP obtains address of sector
; bit in HL and bit mask in B.

LD A,B ; transfer mask to B

OR (HL) ; combine with addressed byte

LD (HL) , A ; and update setting the sector bit.
BIT 1, (IX+$43) ; test RECFLG is this an EOF record.
JR Z,L1DES ; forward, if not, to TST-NUM

; All files should have an EOF record and, if this is it, then the endpoint
; can be reduced from $FF to record number plus one as range starts at 1.

LD A, (IX+544) ; fetch record number from RECNUM

INC A ; increment as CHREC value starts at one not
; zero.

LD (IX+$0D),A ; update the endpoint CHREC

;; TST-NUM

L1DE5: PUSH IX ; transfer the channel base address
POP HL ; to the HL register.
LD DE, $0052 ; add offset to data
ADD HL, DE ; to address the pseudomap.
LD E, $00 ; initialize E to zero.
LD C,$20 ; and C counter to thirty two.

;; LP-P-MAP
L1DFO: LD A, (HL) ; fetch a byte from pseudomap

INC HL ; and increment the address.

LD B, S$08 ; set bit counter to eight.

;; LP-B-MAP

L1DF4: RRA ; rotate end bit to carry.
JR NC, L1DF8 ; forward, with no carry, to NOINC-C
INC E ; lncrement recno

;; NOINC-C

L1DF8: DJNZ L1DF4 ; back to LP-B-MAP for all eight bits.
DEC C ; decrement byte counter.
JR NZ, L1DFO ; back to LP-P-MAP for all 32 bytes.

’

now E holds the number of records marked for erasure in range 1 to NR.

LD A, (IX+30D) ; fetch records to be erased from CHREC
CP E ; compare to records marked for erasure.
JR NZ, L1DA7 ; back, if not exact match, to ERASE-LP

Now the second stage begins. Since the pseudomap has a representation of

all the records to be erased we can load the headers one by one,

and

rewrite the corresponding records with a clear one in the channel.
The same record is written after all the appropriate headers. Fields

like RECNUM only have relevance when the record is in use.

; First prepare a clear record descriptor. The actual data buffer does not
; have to be clear and in fact contains the pseudomap. Note also that the

; checksum for the data need not be calculated but the checksum for the

; record descriptor is required to be accurate.

;7 ERASE-MK

L1EO3:

CALL

L1E49

routine IN-CHK marks the channel record
descriptor fields as usable by blanking
both RECFLG and RECLEN and then inserting
the descriptor checksum.

; now enter a loop for all marked records.
;7 ERASE-MK2
L1EO6: CALL L13A9 routine GET-M-HD2 reads the next header
to pass the tape heads.
CALL L13EB routine TEST-PMAP checks if the sector,
(in HDNUMB) is marked to be erased in the
pseudomap.
JR Z,L1E31 forward, if not, to T-OTHER

; this record is marked for erasure.

PUSH HL save pseudomap sector bit address.
PUSH BC save pseudomap bit mask which has one set bit.
LD A, SE6 enable writing.
ouT (SEF) , A output to microdrive port.
LD BC, $0168 set counter to 360 decimal.
CALL L1652 routine DELAY-BC pauses briefly as the
record now approaches the tape heads.
PUSH IX transfer channel base address
POP HL to the HL register pair.

LD DE, $0037 ; offset to record PREAMBLE.
ADD HL, DE ; add to form start of save address.

CALL L15BR3 ; routine OUT-M-BUF rewrites descriptor and
; data buffer. The descriptor is checksummed,
; the data is not.

LD A, SEE ; disable writing
OuT (SEF) , A ; output to microdrive port

; now update bit the real microdrive map and the pseudomap.
CALL L13E3 ; routine RES-B-MAP resets appropriate bit

; for the now free sector in the REAL
; microdrive map.

POP BC ; restore the pseudomap bit mask.

POP HL ; restore the pseudomap sector bit address.

LD A,B ; transfer bitmask to B.

CPL ; the set bit is now reset and the other seven
; bits are set.

AND (HL) ; reset the bit in the pseudomap

LD (HL) , A ; and update.

; now check if there are any more sectors to do.

;+ T-OTHER

L1E31: PUSH IX ; transfer channel base address
POP HL ; to the HL register.
LD DE, $0052 ; prepare offset to the pseudomap
ADD HL, DE ; and add to address start of map.
LD B, $20 ; set byte count to thirty two.

;; CHK-W-MAP

L1E3A: LD A, (HL) ; fetch a byte representing eight sectors.
OR A ; test for zero.
JR NZ,L1EO6 ; back, if a byte is not zero, to ERASE-MK2
INC HL ; increment the map address
DJINZ L1E3A ; loop back to CHK-W-MAP for all 32 bytes.

; at this point all records have been erased and it only remains to clear up.

XOR A ; select no motor

CALL L1532 ; routine SEL-DRIVE stops the motor.

CALL L119F ; routine DEL-M-BUF deletes the adhoc buffer.
RET ; return.

; THE 'PREPARE 'FREE SECTOR'' ROUTINE

; The two indicators within the current channel are marked clear and the

; RECORD DESCRIPTOR is checksumed in preparation for writing to each sector
; to be marked free.

;+ IN-CHK
L1E49: XOR A ; clear accumulator A.
LD (IX+543),A ; blank RECFLG.

rs

L1ESE:

’

; This accesses the twenty six hook codes now reduced to the range $00 - $19.
;» HOOK-CODE
L1E71: CP S1A compare to upper limit.
JR C,L1E77 forward, if wvalid, to CLR-ERR.
RST 20H Shadow Error Restart.
DEFB $12 Hook code error.
;; CLR-ERR
L1E77: LD (IY+$00), SFF set ERR NR to one less than zero - no error.
SET 2, (IY+501) update FLAGS signal 'L' mode.
INC HL step past the hook code location in RAM.
EX (SP),HL make this the return address.
PUSH HL push back what was at stack pointer - the
preserved value of AF on entry.
ADD A,A double the code.
LD D, $00 set D to zero for indexing.
LD E,A transfer the code to E.
LD HL,L1E99 address: HOOK-TAB the base of the Hook Codes.

LD
LD

PUSH
POP

LD
ADD

CALL

RET

(IX+$45),

A
(IX+$46) ,A

IX

HL

DE, $0043
HL, DE

L1426

blank RECLEN lo.
blank RECLEN hi.

transfer the start of channel
to the HL register pair.

prepare the offset to RECFLG.
add to form start of record descriptor.

routine CHKS-HD-R inserts 1l4-byte checksum.

return.

THE 'OBTAIN RECORD DESCRIPTOR'

ROUTINE

This routine is used by CAT,

ERASE and the GET-DESC Hook Code $33.

It loads and verifies the 14 byte record descriptor from RECFLG to RECNAM.
This is normally loaded with the following data block

or with the header block.
The Zero Flag is set upon successful completion.

G-RDES
PUSH
POP

LD
ADD
CALL
CALL
RET

BIT
RET

IX
HL

DE, $0043
HL, DE
L15E2
L1426

NZ

0, (IX+$43)

THE 'HOOK-CODE' ROUTINE

transfer channel address
to HL register.

offset to RECFLG
add to form first receiving location.
routine GET-M-HD reads in 15 bytes.

routine CHKS-HD-R checksums the first 14 bytes

return with checksum error.

test bit 0 of RECFLAG - should be zero
return.

ADD HL, DE ; index into this table.

LD E, (HL) ; low byte to E.

INC HL ; increment pointer.

LD D, (HL) ; high byte to D.

POP AF ; restore AF from machine stack.
LD HL, L0700 ; push the address UNPAGE

PUSH HL ; on the machine stack.

EX DE, HL ; transfer address to HL.

JP (HL) ; Jjump to Hook Code routine.

; THE 'HOOK CODE +32' ROUTINE

; (Hook Code: $32)

; This allows the user to call any address in the shadow ROM.
;; HOOK-32
L1ES94: 1D HL, ($5CED) ; sv HD 11

JP (HL) ; Jjump to routine.

; THE 'HOOK CODE +31' ROUTINE

; (Hook Code: $31)

; This Hook Code ensures that the extra System Variables are created. Since

; this has already occurred, as is the case with all Hook Codes, then all that
; remains to do is to return to the address on the stack - the UNPAGE location.

;; HOOK-31
L1E98: RET ; return.

; THE 'HOOK CODE ADDRESSES' TABLE

; The addresses of the Hook Codes. The last two are new to this ROM.

;; HOOK-TAB

L1E99: DEFW L1ECD ; $1B - CONS-IN
DEFW L1EEO ; S$1C - CONS-OUT
DEFW LOB88 ; $1D - BCHAN-IN
DEFW LODO7 ; $1E - BCHAN-OUT
DEFW L1EFO ; S1F - PRT-OUT
DEFW L1EF5 ; $20 - KBD-TEST
DEFW L1532 ; $21 - SEL-DRIVE
DEFW L1BOS ; $22 - OP-TEMP-M
DEFW L138E ; $23 - CLOSE-M2
DEFW L1D79 ; $24 - ERASE
DEFW L1EFD ; $25 - READ-SEQ
DEFW L12DA ; $26 - WR-RECD
DEFW L1FOB ; $27 - RD-RANDOM
DEFW L1F3F ; $28 - RD-SECTOR
DEFW L1F7A ; $29 - RD-NEXT
DEFW L1F85 ; $2A - WR-SECTOR
DEFW L10A5 ; $2B - SET-T-MCH
DEFW L119F ; $2C - DEL-M-BUF
DEFW LOF46 ; $2D - OP-TEMP-N

DEFW L1F18 ; S2E - CLOSE-NET

DEFW
DEFW
DEFW
DEFW

DEFW
DEFW

; THE 'CONSOLE INPUT' ROUTINE
; (Hook Code: S$1B)
;7 CONS-IN
L1ECD: EI enable interrupts.
RES 5, (IY+5$01) update FLAGS signal no new key pressed.
;+ WIKEY
L1ED2: HALT wait for an interrupt.
RST 10H CALBAS
DEFW S02BF main KEYBOARD
BIT 5, (IY+S$01) test FLAGS - new key ?
JR Z,L1ED2 loop back, if not, to WTKEY
LD A, ($5C08) place decoded key in system variable LASTK
RET return.
; THE 'CONSOLE OUTPUT' ROUTINE
; (Hook Code: $1C)
; outputs a character to the unalterable system stream for the console.
;7 CONS-OUT
L1EEO: PUSH AF save character to be output.
LD A, SFE use system stream SFE - upper screen.
;>
;; OUT-CODE
L1EE3: LD HL, $5C8C address system variable SCR CT.
LD (HL) , SFF load with a high number to suppress scroll
prompt.
RST 10H CALBAS
DEFW $1601 main CHAN-OPEN opens selected stream.
POP AF fetch the preserved print character.
RST 10H CALBAS
DEFW $0010 main PRINT-A prints character in accumulator.
RET return.
; THE 'PRINTER OUTPUT' ROUTINE

; (Hook code:

L1F25
LOE4F
L1ES8
L1E94

L1FE4
L1FF6

$1D)

$2F - GET-PACK
$30 - SEND-PACK
$31 - HOOK-31
$32 - HOOK-32
$33 - GET-DESC
$34 - OP-B-CHAN

’

outputs a character to stream 3.

;; PRT-OUT

L1EFO: PUSH AF ; preserve character to be printed
LD A,S$03 ; select stream 3
JR L1EE3 ; back to OUT-CODE

THE 'KEYBOARD TEST' ROUTINE

(Hook Code: $20)

Normally a single reset bit in A determines which half row is read but by
resetting all bits the entire keyboard is read. A pressed key will cause
a bit to be reset. Routine returns with zero flag set if no keys pressed,
NZ otherwise.

;+ KBD-TEST
L1EF5: XOR A ; reset all eight high-order bits.
IN A, (SFE) ; read the entire keyboard.
AND S1F ; retain any unpressed keys - will be $1F if
; no key.
SUB S1F ; subtract to give zero if no keys.
RET ; return.

’

’

THE 'READ SEQUENTIAL' HOOK CODE

(Hook Code: $25)

;+ READ-SEQ
L1EFD: BIT 1, (IX+$43) ; RECFLG
JR Z,L1F08 ; forward to INCREC
LD (IY+$00),507 ; set ERR NR to '8 End of file'
RST 28H ; Error Main ROM
;5 INCREC
L1F08: INC (IX+30D) ; increment the required record in CHREC

’

’

; and continue into next routine...

THE 'READ RANDOM' HOOK CODE

(Hook Code: $27)
reads a PRINT record randomly.

; + RD-RANDOM
L1FOB: CALL L1252 ; routine GET-RECD gets the record specified
; by CHREQ matching filename CHNAME from the
; cartridge in the drive CHDRIV which is
; started.
BIT 2, (IX+543) ; test RECFLG - 1is it a PRINT type file.
RET Z ; return if so.
CALL L119F ; routine DEL-M-BUF reclaims the permanent

; channel thus losing the buffer contents.

RST 20H ; Shadow Error Restart

’

’

’

DEFB S16 ; '"Wrong file type'

THE 'CLOSE NETWORK CHANNEL' HOOK CODE

(Hook Code: $2E)
Hook Code Only

;; CLOSE-NET

L1F18: CALL LOFAE ; routine SEND-NEOF
PUSH IX ; pick up start address
POP HL ; of the channel.
LD BC,$0114 ; bytes to reclaim.
RST 10H ; CALBAS.
DEFW $19ES8 ; main RECLAIM-2.
RET ; return.

’

’

THE 'GET PACKET FROM NETWORK' ROUTINE

(Hook Code: $2F)

;+ GET-PACK
L1F25: LD A, ($5CC6) ; sv IOBORD
ouT (SFE) ,A ;
DI
CALL LOFD3 ; routine WT-SC-E
JR NC, L1F3A ; forward to GP-ERROR
CALL LOEBS ; routine GET-NBLK
JR NZ,L1F3A ; forward to GP-ERROR
ET ;
AND A ;
JP LOD4D ; jump to BORD-REST
;7 GP-ERROR
L1F3A: SCF ;
EI ;
JP LOD4D ; jump to BORD-REST
; THE 'READ SECTOR' HOOK CODE
; (Hook Code: $28)
; fetches header from sector specified by CHREC.

If the sector is from a PRINT type file
Otherwise if a program or code file the

then it returns with success.
data area is 'cleared'.

;7 RD-SECTOR
L1F3F: LD HL, $O00FF ; ensure every sector is tried.
; Note. was S$FO (240) in original ROM which
; would not be compatible with emulators.
LD ($5CC9) ,HL ; update temporary variable SECTOR

rr

NO-GOOD

L1F45: CALL L13A9 routine GET-M-HD2 reads the next header
to pass the tape heads.
LD A, (IX+529) fetch sector number from HDNUMB
CP (IX+$0D) compare with required sector in CHREC
JR Z,L1EF57 forward, with match, to USE-C-RC
CALL L13F7 routine DEC-SECT decrements the counter.
JR NZ,L1F45 loop back, if not zero, to NO-GOOD
RST 20H Shadow Error Restart
DEFB $11 'File not found'
;; USE-C-RC
L1F57: PUSH X transfer channel base address
POP HL to the HL register.
LD DE, $0043 offset to RECFLG
ADD HL, DE add to address start of record descriptor.
CALL L15EB routine GET-M-BUF reads in the record
descriptor and the 512 bytes of data.
CALL L1426 routine CHKS-HD-R checksums the descriptor.
JR NZ,L1F75 forward, with error, to DEL-B-CT
LD DE, $SO00F additional offset to data.
ADD HL, DE add to address data.
CALL L142B routine CHKS-BUFF checksums the data buffer.
JR NZ,L1F75 forward, with error, to DEL-B-CT
OR A clear carry
BIT 2, (IX+543) test RECFLG - is this a PRINT file ?
RET 7 return if so.
;; DEL-B-CT
L1F75: CALL L1FD4 routine CLR-BUFF sets descriptor and data
contents to same values.
SCF signal error.
RET return from hook-code.

THE 'READ NEXT SECTOR' HOOK CODE

(Hook Code: $29)

This hook code just reads the next header to pass the tape head and then,
without further qualification, reads the corresponding data using the
routine above. If not a PRINT file then the data is cleared.

It needlessly sets up a sector counter in the System Variable SECTOR.

;; RD-NEXT
L1F7A: LD HL, SOOFF ; set count to 255. Note. not used.
LD ($5CC9) , HL ; insert in system variable SECTOR.
CALL L13A9 ; routine GET-M-HD2 reads the next header
; to pass the tape heads.
JR L1F57 ; back to USE-C-RC to read and validate the

; corresponding descriptor and data.

; THE 'WRITE SECTOR' HOOK CODE

; (Hook Code: $2A)
; writes to microdrive the sector in CHREC.

;; WR-SECTOR

L1F85: LD HL, SOOFF ; set counter to ensure at least one revolution
LD ($5CC9) , HL ; of the tape and update SECTOR
PUSH IX ; transfer base address
POP HL ; of channel to HL.
LD DE, $0037 ; offset to header preamble
ADD HL, DE ; add and
PUSH HL ; preserve location on machine stack.
LD DE, $000C ; offset past preamble to RECFLG
ADD HL, DE ; the start of the record descriptor.
CALL L1426 ; routine CHKS-HD-R insert checksum byte.
LD DE, $000F ; 15 byte offset to start of data.
ADD HL, DE ; add to address first of 512 bytes.
CALL L142B ; routine CHKS-BUFF inserts buffer checksum.
;7 WR-S-1
L1FAl: CALL L13A9 ; routine GET-M-HD2 reads any header.
LD A, (IX+529) ; fetch sector from HDNUMB
CP (IX+$0D) ; compare to required sector in CHREC
JR Z,L1FB3 ; forward, with match, to WR-S-2
CALL L13F7 ; routine DEC-SECT decrements the counter
JR NZ,L1FAl ; back, if not zero, to WR-S-1

; else the header was not found after a complete tape revolution.

RST 20H ; Shadow Error Restart
DEFB S11 ; File not found
;; WR-S-2
L1FB3: 1IN A, (SEF) ; read microdrive port.
AND S01 ; isolate 'write prot.' bit.
JR NZ,L1FBB ; forward, if not, to WR-S-3
RST 20H ; Shadow Error Restart
DEFB SO0E ; Drive 'write' protected
;7 WR-S-3
L1FBB: LD A, SE6 ; enable writing
ouT (SEF) , A ; output to port.
LD BC,$0168 ; set delay to 360
CALL L1652 ; routine DELAY-BC pauses briefly as the

; record now approaches the tape heads.

POP HL ; restore pointer to RECFLG
CALL L15B3 ; routine OUT-M-BUF writes descriptor and
; data buffer.

LD A, SEE ; disable writing
ouT (SEF) , A ; output to port.

CALL L13C4 ; routine CHECK-MAP fetches bit mask for map
; location addressed by HL into B register.

LD A,B ; transfer mask to accumulator

OR (HL) ; combine with any set bits already there.
LD (HL) ,A ; update map marking sector used.

RET ; return.

; THE 'CLEAR BUFFER CONTENTS' ROUTINE

; This routine sets the contents of the 14 byte record descriptor and

; the 512 byte data buffer to the same value so that they are unreadable.

; This is invoked when the possibility that a secret file, whose name begins
; with CHR$ 0 has been read.

;; CLR-BUFF

L1FD4: PUSH IX ; transfer the channel base
POP HL ; address to HL.
LD DE, $0028 ; offset to HDFLAG.
ADD HL, DE ; add to base address.
LD D,H ; transfer same
LD E,L ; address to DE and
INC DE ; make one higher.
LD BC, $0229 ; set counter to 553 bytes.
LDIR ; fill with HDFLAG contents.
RET ; return.

; THE 'FETCH RECORD DESCRIPTOR' HOOK CODE

; (Hook Code: $33)

; Note. new in this ROM.

; This Hook Code reads the next header and corresponding record descriptor
; returning with carry flag set with header mismatch or if the name starts
; with CHRS 0 and should therefore be secret.

;; GET-DESC

L1FE4: CALL L13A9 ; routine GET-M-HD2 reads the next 14-byte
; header to pass the tape heads.
CALL L1ESE ; routine G-RDES reads the corresponding
; l4-byte record descriptor for this sector.
JR NZ,L1FF1 ; forward, with checksum error, to NOT-RECV

; a valid header and matching descriptor has been read.

LD A, (IX+547) ; fetch first character of RECNAM.
OR A ; test for CHRS 0.
RET NZ ; return if not a secret file.

; but if a secret file then ensure that the 14 descriptor bytes (read) and
; the 512 buffer bytes (not read) are cleared to the same value.

;7 NOT-RECV
L1FF1l: CALL L1FD4 ; routine CLR-BUFF (above).

’

’

’

SCF
RET

; signal error.
; return from hook code.

'OPEN "B" CHANNEL'

THE

(Hook Code:
New in this ROM.

$34)

HOOK CODE

;7 OP-B-CHAN
L1FFG: LD A,S$42 ; letter "B"
LD ($5CD9) ,A ; place in system variable L STRI1
CALL LOB17 ; routine OP-RS-CH opens an RS232 channel.
RET ; return.
DEFB SFF ; spare
end
; THE 'SHADOW' SYSTEM VARIABLES
; X1 23734 $5CB6 FLAGS3 ; IY+$7C - Flags
; X2 23735 $5CB7 VECTOR ; Address used to extend BASIC.
; X10 23732 $5CB9 SBRT ; 10 bytes of Z80 code to Page ROM.
;2 23747 $5CC3 BAUD ; BAUD=(3500000/ (26*baud rate)) -2
HE 23749 $5CC5 NTSTAT ; Own network station number.
;1 23750 $5CC6 IOBORD ; Border colour during I/0
; N2 23751 $5CC7 SER _FL ; 2 byte workspace used by RS232
; N2 23753 $5CC9 SECTOR ; 2 byte workspace used by Microdrive.
; N2 23755 $5CCB CHADD ; Temporary store for CH ADD
;1 23757 $5CCC NTRESP ; Store for network response code.
;1 23758 $5CCD NTDEST ; Destination station number 0 - 64.
;o1 23759 $5CCE NTSRCE ; Source station number.
; X2 23760 $5CDO NTNUMB ; Network block number 0 - 65535
; N1 23762 $5CD2 NTTYPE ; Header type block.
; X1 23763 $5CD3 NTLEN ; Data block length 0 - 255.
; N1 23764 $5CD4 NTDCS ; Data block checksum.
; N1 23765 $5CD5 NTHDS ; Header block checksum.
; N2 23766 $5CD6 D_STRI ; 2 byte drive number 1 - 8.
; N1 23768 $5CDS8 S _STRI1 ; Stream number 1 - 15. [also 0]
; N1 23769 $5CD9 L STRI ; Device type "M", "N", "T" or "B"
; N2 23770 $5CDA N-STR1 ; Length of filename.
; N2 23772 $5CDC (dynamic) ; Address of filename.
; N1 23774 $5CDE D STR2 ; 2 byte drive ; File type.
; N1 23775 S$5CDF ; number. ; Length of
; NI 23776 $5CEO0 S _STR2 ; Stream number. ; Data.
; NI 23777 $5CE1 L STR2 ; Device type. ; Start of
; N1 23778 $5CE2 N-STR2 ; Length of ; data. \
; N1 23779 $5CE3 ; filename. ; Program \
; N1 23780 S$5CE4 (dynamic) ; Address of ; length. ; Start of
; N1 23781 S$5CE5S (dynamic) ; filename ; ; data.
; N1 23782 $5CE6 HD 00 ; File type _
; N2 23783 $5CE7 HD OB ; Length of data. /\
; N2 23785 $5CE9 HD 0D ; Start of data. /

N2 23787 $5CEB HD OF ; Program length. /
N2 23789 $5CED HD 11 ; Line number.

Note. the System Variables HD 00 to HD 11 take their names from their
position in the standard audio tape header. The ten bytes HD 01 to HD 0OA
would be the tape filename and are not held within the above area.

The area D _STR2 is multipurpose and sometimes the HD ?? variables are
copied to this region and sometimes the D STR1 variables are copied there.

THE 'MICRODRIVE MAPS' FORMAT

The creation of the extra system variables moves the start of CHANS up to
address 23792. It is at this location that the first of a possible eight
Microdrive Maps will be created. Each map is 32 bytes in size containing
256 bits for each possible sector and as each map is created, CHANS moves
up by another 32 bytes.

10000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 0OOOOOOO 0OOOOOOO 00010101 01010100 00000000 0OOOOOOO
00000000 01100000 00000000 00000000 00000000 00000000 00000111 11111111
11111111 1171121127 111111217 1117117117 11111111 111171717171 1717171771171 11111111

Note. The continuous loop tape is formatted in such a way that sector S$FE
is written first and sector $01 is the last to be written. Sectors $00 and
SFF are therefore always unavailable. As there is only room for about 180
sectors on a 100 foot long tape, the higher numbered sectors are later
overwritten by the lower numbered sectors.

Where the tape is spliced together one or two bad sectors will appear.
When saving bytes there isn't enough time to copy the next 512 bytes from
the program/code area to the buffer between sectors so a program or
code/data block is written to alternating sectors as with the 3K example
above. As the tape cartridge fills up it becomes more difficult to find
usable sectors and LOAD/SAVE operations take longer.

A growing number of Spectrum emulators feature the microdrives and they
usually make available all 254 sectors so a typical cartridge will hold 126
Kilobytes compared to say 92 K on real hardware.

During a LOAD operation the entire sector map is pushed on the machine stack
and the microdrive map is used to map loaded records after which the previous
map is 'popped' of the stack and reverts to mapping sectors again.

THE 'STANDARD CHANNELS' FORMAT

The twenty bytes of the standard channels as set up my Main ROM.

CHANS S09F4 ; PRINT-OUT
$10A8 ; KEY-INPUT
S4B ; 'K!
$S09F4 ; PRINT-OUT
$15C4 ; REPORT-J
$53 ;'S
S0F81 ; ADD-CHAR
$15C4 ; REPORT-J
$52 ; 'R!

S09F4 ; PRINT-OUT

;12
; 1
; 1
; 2
;10
; 1
; 12
; 1
; 1
; 2
;10
; 1
; 512
; 1
; THE

\
PR R RRNNRERENDODNDRE NN

taken

IX+$00
IX+$02
IX+$04
IX+$05
IX+$07
IX+$09
IX+$0B
IX+$0D
IX+S$0E
IX+$18
IX+$19
IX+S1A

IX+$28

IX+$29
IX+$2A
IX+$2C
IX+$36

IX+$43

IX+$S44
IX+$45
IX+$47
IX+$51

IX+$52
+50252

IX+$00
IX+502
IX+$04
IX+$05
IX+$07
IX+$09
IX+S0B
IX+$0C
IX+$0D
IX+SO0F
IX+$10
IX+$11
IX+S$12
IX+$13

CHBYTE
CHREC
CHNAME
CHFLAG
CHDRIV
CHMAP

HDFLAG

HDNUMB

HDNAME
HDCHK

RECFLG

RECNUM
RECLEN
RECNAM
DESCHK

CHDATA
DCHK

NCIRIS
NCSELF
NCNUMB
NCTYPE
NCOBL
NCDCS
NCHCS
NCCUR

$15C4
$50

$80

$0008
$0008
$CD

$12B3
$11FD
$0253
$0000
$00

$0000000x

'NETWORK CHANNEL'

FORMAT

50008
$0008
S4E

SO0EO09
SODA9
50114

REPORT-J
'P'

End Marker

main ERROR-1

main ERROR-1

inverted or regular "M" character
MCHAN-OUT

M-INPUT

length of channel.

position of next byte rec'd/stored
record number, also temporary sector
filename with trailing spaces.

bit 0 used

drive number 0 - 7.

address of MAP for this microdrive.

Flag byte.
bit 0 set indicates a header.
Sector number. [1-254]

Two unused bytes.
Cartridge name with trailing spaces.
Header checksum.

Flag byte.

bit 0 reset indicates a record.

bit 1 reset no EOF, set EOF

bit 2 reset indicates a PRINT FILE
Record number in the range 0-255
Number of databytes in record 0-512.
Filename with trailing spaces.
Checksum of the preceding 14 bytes

the 512 bytes of data.
Checksum of preceding 512 bytes.

main ERROR-1

main ERROR-1

"N" character

NCHAN-OUT

N-INPUT

Length of channel 276 bytes.

The destination station number.
This Spectrum's station number.
The block number.

The packet type code . 0 data, 1 EOF
Number of bytes in data block.
The data checksum.

The header checksum.

The position of last buffer char

1 IX+$14 NCIBL ; Number of bytes in the input buffer.
1 IX+$15 NCB ; A 255 byte data buffer.

THE 'RS232 "T" CHANNEL' FORMAT

2 IX+500 $0008 ; main ERROR-1

2 IX+$02 50008 ; main ERROR-1

1 IX+$04 $54 ; "T" character

2 IX+S505 $0C3A ; TCHAN-OUT

2 IX+S07 S0B76 ; T-INPUT

2 IX+$09 $000B ; length of channel.

THE 'RS232 "B" CHANNEL' FORMAT

created by overwriting a "T" channel

2 IX+$00 50008 ; main ERROR-1

2 IX+5$02 $0008 ; main ERROR-1

1 IX+$04 $42 ; "B" character

2 IX+S$05 $0D07 ; BCHAN-OUT

2 IX+S507 S0B7C ; B-INPUT

2 IX+509 $S000B ; length of channel.
Acknowledgements
Dr Ian Logan for main ROM labels (and half on Interface 1)
Dr Frank O'Hara for main ROM labels.
Gianluca Carri for Interface 1 v1.2 labels
Credits
Jonathan Needle for requesting said labels on comp.sys.sinclair

thereby kick-starting this project.
Also for the Interfacel-aware Spectaculator emulator
and help with PORTS.

Paul Dunn for help with PORTS and the SPIN emulator.

