Creating my personal "superspec".
A project for the purpose of study. RoKo2012

Introduction.

This is a project which | started as early as 1987. In those days the so called "dot commands"
were a hot item on the Sinclair Spectrum. These were new commands that could be added to
the BASIC. The dot was added to the name of the command to provoke a call to the error
routine, from where special programming took care of the new commands. All sorts of toolkits
were around, with Andrew Wrights BetaBasic and Mike Leamans MegaBasic up front.

Being a hardware man myself, | at that moment already had extended my hardware with extra
'ROM' banks, and also had invented my own method to add new keyword modes (modi for
some), and new commands and functions to the Spectrums system. The commands BRIGHT,
OVER and INVERSE only allow for the parameters 0 or 1, so | decided to use CHR$ 21
(BRIGHT) as a kind of 'Escape’ and create my extensions using the parameters 128 and up.
It appeared that the system accepted my new mode's and keywords in a rather natural way.
From that moment on there were hundreds of examples around to learn (and borrow) from.
As a result of all the time that | spent playing with the matter, | never came to using the Basic
extensions but got addicted to programming in Machine Code. Through the years a number of
'spin-off' projects were published in the (dutch) SGG Bulletin and the (german) SPC
magazine.

My original goal was to take part in creating a 'better' Spectrum, but in a rather early stage it
became clear to me that the PC had won the race and Windows along with it, and that my
project never would go beyond the status of a silly dream of some stubborn person. This
made no real diference for me as | had always considered the status of the Spectrum as a
challenging gadget for studying and practicing programming skills.

Over the years my project has gone through many stages in hard and software and it
probably is not finished yet. Anyway, today (2012, Speccy's 30th anniversary) is the time that |
put bits and pieces from all kinds of experiments together in order to consolidate the results
sofar. | think that the result is ready for service, or at least useful.

As far as the name 'superspec' (mentioned above) brings associations with a "Super
Spectrum" for a "Superman”, this is only ment as pun. In fact the name means 'super
specifications'. Which just means that the specifications of this machine go beyond those of
the standard Spectrum.

1— Super Specs
2 =Load "Run-
3 — HHI Menu

4 = ClLas

The hardware contours.

1. Video output combined with TV signal, over the existing VHF
connector. Increased decoupling of +5V and + 12V for a better,
cleaner picture.

2. A switching regulator is replacing the standard 7805 voltage
regulator, in order to get rid of the enormous heatsource. Also
for gaining space inside a rubber Spectrum.

3. Added polarity protection from the power supply by means of a
diode.

4. Mounting the 48K RAM chips on sockets and replace these by type
4164. Thus creating 2 banks of 32K RAM. Some 16K of the extra RAM
is needed for all kind of buffers and extra system variables.

5. Mounting the standard 16K ROM on a socket and replace it by a
64K EPROM (27C512), or by a 128K FlashRAM. (29EE010)

6. Wiring a programmed GAL22V10 inside the Spectrum, for providing
the necessary logic for the added hardware.

7. Wiring a CompactFlash-card inside the Spectrum. (4GB expected)

The software contours.

The software resides in a ROM that holds 4 banks of 16K:

A modified Spectrum ROM that communicates with banks 2 & 3.
A ROM holding some 40 extra commands and 30 extra functions.
A ROM holding a complete Disk Operating System.

The original Spectrum ROM.

S N

The easiest way for giving a general idea of what can be expected, is
saying that several commands and functions known from Beta Basic can
be found, and most of the disk commands as known from Opus Discovery.
However, don't expect existing programs for these two systems to
work, as no effort is made to keep or to create compatibility. This
system is just ment to be close to how I feel that a Spectrum should
be.

Missing at the moment (2012):

a. a hardware reset button.
b. NMI menu, RS232: hard + soft
c. Programming Manual

Credits.

A few names must be mentioned: Toni Baker for writing Mastering
Machine Code, being the only book I found usefull. Steven Vickers for
writing a genius BASIC dialect. Ian Logan & Geoff Wearmouth for their
commented ROM disassemblies. Dave Corney for writing the Opus
Discovery DOS. Andrew Wright for the glorious BetaBasic. A.Collier
for repairing a calculation problem in ROM. Alvin Albrecht for his
'flood fill'. Rudy Biesma & Edwin Blink for the many enlightening
brainstorming sessions that I had with them. I have to leave hundreds
(i1f not thousands) of names out simply because I learned from almost
everyone who ever wrote a contribution in one of the many computer
magazines of the eighties...

The building of my second prototype. (nr.2)

I start off with a circuit board of a 48K Spectrum issue 4A. As it
happens the Z80 on this board is defect, and the complete 48K RAM
extension is in sockets, except the 74LS00.

SiNc=r

unmodded

ADDING SOCKETS

Should the upper-RAM chips (3732) not have been in sockets, it would
have been necessary to remove these as larger chips (4164) are
needed. Now I only remove the Z80 chip for repairing, and also the
ROM chip as it has to be socketed and replaced... The Z80 and ROM had
been soldered before, and the resin-flux that was left has now turned
brown in the removing process. Alcohol was used to clean up.

oy
e

e

empty board

After soldering in the sockets, and inserting Z80 and ROM, the board
is tested for working as 16K. The memory sockets are then filled with
4164s, and another test is done. I make a test after each step taken,
so that in case of problems there only is one suspected issue. When
everything is allright the most difficult part is done now. BTW. the
256K Siemens chips shown here did not refresh the 'alternative' bank.

allsockets

EXCHANGING 7805

“Dberemaced

jumper THA0 l lby RECCM

replaced l_ﬂ_l R7E3.0-10
by diode -0 —,
. o)

: = . e o
regulator+diode Note the direction of the

diode.

As is illustrated on the previous page, I replace the 7805 by a R785,
(switching regulator) and add a safety diode in the +9V line that
comes from the connector. In the issue4 this is easily done. The
chance to accidently connect an alien power brick exists, and a
different polarity might kill the Spectrum. The diode is there to
prevent such.

Using this Recom R785 makes the heatsink redundant, and the removal
frees some valuable space inside rubber Speccies.

VIDEO OVER VHF

Next step is adding the video signal to the VHF output. This is done
by connecting 'video' to the Cinch output connector on the modulator
by means of a 47 uF electrolytic capacitor, minus at the output. This
combined use of one connector is a modification Sir Clive himself
would like. If he only knew about it.

Testing with a video monitor shows a crisp and clear screen. If the
screen is not free from stripes then the electrolytic capacitors that
smoothen the +5 and +12 voltages should be replaced.

videomod

ADDING GAL CHIP

Now I must solder in a pre-programmed GAL chip. Of course such GAL
could be socketed, but then a place must be found to hold such
socket. And there is little space left inside the rubber 48K for
which I prepare this board! Maybe a little PCB should be designed...
Anyway, this 2nd prototype can be recognised by the fact that the GAL
is glued onto the Z80. This keeps the wiring nicely short. The photo
on the next page shows the input signals (red [=grey!] wires) and
four outputs (white wires). 'clk' and 'ramselect' are connected with
a very thin copper wire. The CF Card is not yet connected.

L]
“h- -~ . b — &l}li.)l'IH:E lHN_Field
s o epald I
..' o~ epald -- Eprom p.l
-
E
vr.- 1 d oy B 40
J"‘-- - F 39
‘- 53 d P35
4 Tl
,. 5 P36
(5 d P35
74 P34
g 4 P33
9 4 r 2
10 4 Foal
1M1 = P30
12 4 29
13 4 P28
14 4 Foar
13 4 P26
16 9 P25
17 4 B2
18 4 ,/ P23
19 1 T~ 2
20 4 5
ramsel < —
CPwrite < —
! CFread <a—

1 S i [OOSRl 20T
(HMN-Field)

GALwiring

All twelve signals going into the GAL come from the Z80, except one
(romselect) which is taken from the H-N jumper field. From the seven
outgoing signals two go to the H-N jumper field, one to the EPROM
socket, and one to the TI/OKI jumper field. Also two wires go to a
CompactFlash Card connector (discribed further on). Two GAL pins are
not connected when using a 64K EPROM. (EP-WriteEnable and EP-Al6)

The existing jumpers in the H-N field (on board near the
loudspeaker)are removed in the process, and the same goes for any
Jjumper in the TI/OKI field, except that the Jjumper for OKI remains if
it is present, or soldered in when missing. The outside pin of 'H' is
connected with 'ramselect' on the GAL.

epa14[1§3¥] connect
l Tl 0Kl
The H-N 0" ® o' o0"e ..
jumper field — QL O30
romzelect from ULAh |N H D:G)Tiio Lanitalium
jumpers epromCE (S5 —}.T I\,
rermoved, to ramselect
Jwires
connected The TIOKI
jumper field
speaker 5 jumper an Ok anly
-

jumpers

SOME._TESTING

Now some simple but serious testing is done with the original ROM
still in its socket. After powering up the normal startup message
(1982 Sinclair Research) should appear.

PRINT IN 224 should do nothing.

PRINT IN 225 should result in a crash with vertical stripes on
screen. You have just seen how the ROM disappeared from (electrical)
existance. Restart after disconnecting the power.

Now type:
10 CLEAR 32768
20 POKE 40000,111

30 PRINT IN 118, PEEK 40000 (should be 111)
40 PRINT IN 119, PEEK 40000 (should be 0 or some other wvalue)
50 GOTO 30

Running this program demonstrates the RAM bank switching.

Now the 16K ROM can be replaced with a pre-programmed 64K EPROM.
(How a 128K EEPROM can be fitted is explained further on.)

After powering up a menu should appear, something like the one that
is depicted on page 1.

Choose 'l', then type and run:

10 SOUND 111

20 SOUND 112

30 GOTO 10

The new commands can be typed in as ASCII characters when they are
preceeded with a space, which will make the editor go from 'K'-mode
into 'L'-mode. Tokenizing will take place after entering the line.
The keyword SOUND is found in 'R'-mode (which is invoked by pressing
keys CAPS+4 simultaniously), under key 'Z'.

This simple program should generate a sound that is more or less like
the horn of a police car.

Entering 'PRINT USR 8' should result in printing a number in the
range 4.01 to 4.99.

Entering 'CAT 3' should result in the "44 Invalid drive number"
message.

Pressing 'Break' (Caps Shift + Space) while editing (entering BASIC
lines or direct commands) should bring the last entered direct
command back to the lower screen (i.c. in the editor).

Pressing Symbol Shift + Space simultaneously must result in a 'S$'
cursor (the MACRO mode), and a default macro is then found under key
"1l", ready to be entered. (FOR f=23755 TO ..etc..)

This space is reserved for remarks that do not fit in the text.

X5k F o X X X X % X %

ADDING A COMPACT FLASH CARD

Now a CF connector that already is prepared with wires will be
soldered into the system. On the picture is a partly demolished
PCMCIA connector shown which is fine for a card that is ment to
reside (permanent) internally. (As my plans are.) The wiring is
rather simple: +5V and ground, 8 data lines plus 3 address lines go
to the 780, and the #Rd and #Wr signals are connected to the GAL.

CF cards can work in different modes (modi) which are choosen by the
wiring of certain pins. The wiring used here is for the so called
'memory mode' which allows 8-bit devices to use the full IDE-like
capabilities of the card in a direct manner. This memory mode has
nothing to do with memory mapping as known in the world of Spectrum
and 780, in fact the CF is just addressed as if it were a peripheral
chip like a PIO. The wiring for this 'memory mode' differs from the
'ide mode' as is wired on most IDE-CF adaptors. Such adaptors can
only be used in connection with a full IDE interface.

N COMPACTFLASH™ CARD

2Kz CEl

#r0 =1 T Ld7
A15 2 a2 — {6
A1 | tds

ue

Aj I | |0 e —— T
dl p——— abatlatala {d3
d1 ——— Splem| P8 |10 =

d2 3————

/

h Z5 [-X-3-N-] 1
g0 Tﬂﬂﬂﬂﬂ?ﬂﬂﬂﬂ??ﬂ"??ﬂ?ﬂﬂﬂﬂﬂﬂ 26

Gnd o -CSEL
nd] RE% lé) éxl)é) Flash Disk
e

jord -CE2 for ZX-Spectrum

towr #ID & §TTR are combined with
address decoding!

W >

Due to a difference between the timings of the Z80 signals at one
side and the needs of a CF card on the other side, the card is
enabled all the time (by -CEl) and only controlled by decoded Read
and Write signals. The #RD pulse is here fed over a resistor. The
wiring used here seems to be over the maximum possible length and not
all my cards worked reliably. Inserting an old fashioned resistor
(spiral carbon) in the #RD line adds some inductance and solved this
problem. A much shorter wiring would be a far better solution!

Because there is no real need to ever exchange a 4Gb CF card, and
because I have not yet made a decision about making extra holes in
the housing, I just tie the CF card onto the board, or onto the chips
or where ever. If IC23, IC25 and IC26 had not been on sockets then
the six small chips between ULA and Z80 would have formed a nice
platform to tie the CF Card onto. I already mentioned the length of
the wires!

On second thoughts I have decided that prototype-2 will stay outside
its housing for a while, and serve demonstration purposes.
As shown on this picture:

CldlieidBeRilRT

. SRR R R EREEL SRR B

- R R EC R R RS R R g

In the picture above the white wire going to the TI/OKI jumper field
can be seen, and also the two white wires plus a red one going to the
H-N jumper field. In the picture there is no resistor in the #RD
line. The CF card gets its 0V and 5V from the TI/OKI jumper field by
means of a red and a black wire. At the same traces a 4.7ufF, 16V,
tantalium capacitor is placed between +5 and OV for decoupling
purposes. In the picture this small capacitor is hidden behind the
white nylon spacer.

Time for testing again.

Without CF card inserted:
Entering 'CAT 1' should result in "48 Sector error". In fact this is
the 'time out' error that occurs when a CF Card is not responding.

With CF card inserted:

Entering 'CAT 1' or 'CAT 2' should return "45 No format found".

After 'FORMAT 1;"ROOT"' and 'CAT 1' an empty catalogue should appear,
with "3580Kb Free".

USING FLASHRAM INSTEAD OF EPROM

It might be wise to program a FlashRAM with the ROM files before
installing it in the Spectrum. This is the simplest way to get the
flash programmer code into memory, because a working command
interpreter is needed for 'in situ' flashing. The common FlashRAM
types 29EE010 and 29EE020 have 4 pins more than the EPROM type that
is used in the Spectrum. When 4 pins are left out of the socket,
these FlashRams still can be inserted. These 4 pins should be bent
sideways. Two of these pins are wired from the GAL chip, one is not
connected, and one is connected with +5V at socket p.28.

In the picture above the Al6 line is not connected with the GAL but
direct with ground, and +5V is taken (over a Not Connected pin of the
29EE010) from the Eprom socket.

Below can be seen how the extra signals are connected to the GAL.

epromE
52 ¥oo
31 JWE .
5 0 a1 MO When a 29EEDZ0 is used
4 0 o Al :
. O = Al3 Lhen ping 1 adnd 2 should
6 0 7 AR e cannected.
7 (29EE010 hae a0
0 2= All
¢ 0 24 JOE
10 0 2 Al@
11 [2z JCE
1; A 120 a1 07
g A7 1 pe 13 O D6
D2 15 15 D4
Gnd 15 O e]
\\\\ Should it ewver he necessary
Sﬂcl{e‘t Each Side 2 pins To t.a}{E t-hE FlaShRAH out
f __1 for re- prograning then the
~ four extra pins should not
r be hent back into position,
Wit e but 'new' pins should be
. . . created by soldering small
Bend four pins outside. Shaould the chip ever Wires
be programimed and fitted in a socket then solder '
pieces of wire under the four pins as shown.

FLASHING

ROM banks are electrically switched by instructions IN 224 to IN 231.
For that reason I call them "bank 224" and on. Bank 227 (holding the
original SpectrumROM) holds a small M.C. routine for flashing an EE-
or C type flashRAM chips. With the command PRINT USR 15000 this
routine is moved into the printerbuffer. Normally when the original
ROM is chosen then bankswitching (paging ROMs) is locked and writing
to FlashRAM is disabled. For actual flashing the writing must be
enabled and the bank switch must be unlocked.

The method for getting this unlocking done exists of plugging in the
power while key "S" is pressed. From there on:

PRINT USR 15000 : REM move routine to addr 23300 in printer buff.

PRINT PEEK 23300: REM just a check if routine is present, must be 24

CLEAR 32760

LOAD "romcode" CODE 32768,16384 : REM the code to be flashed must
come from via EAR!

POKE 23302,0 : POKE 23303,128 : REM start addr. of file (32768)

POKE 23304,0 : POKE 23305,64 : REM length (16384)

POKE 23306,0 : POKE 23307,0 : REM first addr to flash (0)

POKE 23308,bank : REM rom bank nr. to flash (224, 225, 226 etc.)

POKE 23309,227 : REM ROM bank to return to when finished

PRINT USR 23300 : REM do it. Any other result as '0O' signals an

error. Flashing 16K takes a half second.

The both 'BASIC' ROMs (225 and 226) are heavily interacting, so lots
of code cannot be changed without a thorough knowledge of the system.
ROM 224 holds the DOS plus the data for the coldstart menu and is
interacting with ROM 225.

The 4 ROM pages 228, 229, 230 and 231 are still empty.

The added hardware overview

from Z80
I memlock {n.c)
| I
|
| epAlE E(E}FROM
i A0] Eam—
| Al S>——at BpA1S 64K/128K
| A ——ai
| Ja—
I . A epromCE
I AT —ar o
I GAL 2210 epromvE
| MR s 5
I IRD »— =4 i
| IMEMRG —mermrq CF#RD S60R Al4
415
| NORQ>—{iera . [
I RESET :}— resek %
CF connector
ramselect ——Jromsel lect
from ULA clk LI
data

)

to RAM

HEHEH A
; GAL EQUATIONS for superspec 09-06-2012
PHEH A AR R R

chip Sup22v10b GAL22V10

e e e it pins nrs. for DIP24 only! --
clk=1 A7=2 A4=3 A3=4 A2=5 Al=6 AO0=7 reset=8 wr=9 rd=10 iorg=1l1l
GND=12 memrg=13 romsel=14 cfread=15 cfwrite=16 ramsel=17

memlock=18 epromwe=19 epromce=20 epAl4=21 epAl5=22 epAl6=23 VCC=24

@ues 4346535045434359 ;CFSPECCY (signature)

equations

epAld AO /A3 * A7 * /Jiorq * /rd * /memlock * reset
epAld * reset * A3

epAl4d reset * /A7
epAld reset * iorg
epAl4 reset * rd
*

epAld reset memlock

+ o+ o+
b S

epAl5 = Al /A3 * A7 * /Jiorg * /rd * /memlock * reset
epAl5 * reset * A3

epAlS reset /AT

epAl>S reset iorg

epAl>S reset rd

epAl>S reset memlock

+ o+ 4+ o+ x
ol I

*
*
*
*

epAl6 = A2 /A3 * A7 * /Jiorg * /rd * /memlock * reset
epAl6 * reset * A3

epAl6 reset /A7

epAl6 reset iorqg

epAlb reset rd

epAl6 reset memlock

+ o+ o+
b

*
*
*
*

ramsel = A0 * /A3 * /A7 * /iorqg * /rd * /memlock * reset

+ ramsel * reset * A3

+ ramsel * reset * A7

+ ramsel * reset * iorqg

+ ramsel * reset * rd

+ ramsel * reset * memlock
e
memlock = reset * memlock

+ reset * /A3 * A7 * A4 * /iorg * /rd

/cfread = /epAl5 * /epAld4 * /iorq * /rd * /A7 * A3
/cfwrite = /epAl5 * /epAld * /iorg * /wr * /A7 * A3

;the eprom-WE signal comes from a flipflop
;the clock of this flipflop ('clk') is connected extern to ramsel!

epromwe := reset ;only low after power-on
epromwe.oe = /wr * /epromce * /memlock ;oe follows /wr

Heavy stuff about the equations for GAL 22V10.

Outputs 'epA14’, 'epA15’, and 'epA16' are data latches that latch the levels on resp. address
lines AO, A1, A2. The first term holds the exact conditions for 'true' (making the output high)
while all consequetive terms together create the 'not true' conditions for resetting the output.
In fact the decoded situations are IN 224 to IN 231.

The output 'memlock’ is a data latch too, but without possibility to reset the output after it is
set. It acts on A4.

Output 'ramsel’ is a latch that is constructed identical with epA14 etc., but with different
addresses for 'lo’ and 'hi' namely IN 118 and IN 119.

'EpromCE' just ORs the signals MEMRQ and the existing 'romsel', a job that normally is done
inside the Sinclair specific ROM chip.

'CFread/write' are OR gates that decode 10 instructions on address 127. (The CF card also
uses combinations with A8, A14, A15.) The CF Card only 'exists' when the ROM-bank holding
the DOS is current, for safety reasons.

The output 'EpromWE!' is a real Flipflop, for which pin 1 of the GAL (when 24DIP, for PLCC it
is p.2) is used as clock input. This pin is automaticly assigned to this duty when a registered
output is chosen. This 'WRITE-ENABLE!' flipflop is set to the Spectrum's /RESET signal,
which is low for a moment following a coldstart. This short low pulse is the only LOW that
passes by! The state of the flipflop is passed on to epromWE pin whenever epromWE.OE is
made valid, in casu when a write to the ROM is made. On other moments the output of the
flipflop is just 'tristate’ (=hi).

As soon as a (any!) RAMSEL signal reaches 'CLK', then the FlipFlop is set to the current level
of RESET, which is HIGH. In this new situation an epromWE.OE signal has no longer any
effect on the output level of the FlipFlop, which is now high all the time. So writing to EPROM
(FlashRAM) is prevented. This RAMSEL pulse is generated by the default BOOT routine so
this routine must be circumvented when ROM has to be flashed. This is done by holding key
'S' held down during a coldstart.

The 'epromWE.OE' input (which enables the 'EpromWE' output) detects 'write to ROM'
situations.

Heavy stuff about the ROMs

Both hardware and software are built around the idea that it is not necessary to have different
parts of an operating system in physically separated ROM chips, and to controll this by a
dedicated piece of hardware. That situation once was dictated by commercial laws, but there
is no need whatsoever for hobbyists to follow that rule. Different ROMs can reside in different
blocks (banks, pages) of the same physical memory chip (EPROM). And then the normally
used hardware controlled switch (acting on address 8) can be replaced by a software
controlled switch. Which is a rather simple device from the hardware point of view. Several of
these switches fit in one GAL.....

The software routines that do the switching (acting on the MC instruction IN A,(n)) are
positioned on addresses 15586 (DOS) and 15600 (ext-Basic) in the Spectrum ROM page.
The equivalent routines are in the resp. DOS and EXT pages are in the same position.
These small routines handle both departure and arrival. The result of the instruction (in the A-
register) is not used.

The EXT ROM is paged in at addresses 19, 6833, 15452 and 15457, and then takes over

at addresses 11, 85, 657 and 13027 respectively. For the DOS ROM a more direct paging is
used on addresses 11 and 5897 from where DOS takes over right away. For that purpose the
instruction CALL 15586 is poked in Spectrum ROM in the latter locations. Note that DOS
ROM is not limited to 8K but can use the full 16K.

The different methods reflect the many years that ly between the development of these

When using a (writable) FlashRAM, then writing to this RAM outside the programming
environment must be prevented. Some chips await a full programming sequence after one
accidental write happens. And then get lost, which causes the Spectrum to crash. Therefore
two bugs in the Spectrum ROM must be repaired. The ' 5 byte floating point dump into ROM
addresses' must be diverted towards the keyboard buffer. Plus the scrolling of the top screen
line into ROM must be stopped. Three patches are made in Spectrum ROM for this purpose.

Heavy stuff about the DOS

The (large) Compact Flash card is divided in 1000 equally sized 'blocks'. Each block acts (in
technical sense) as a (hard) disk. The number of 1000 is chosen for making it possible to
have a complete overview of all blocks fitting in memory. Describing each block in 24 bytes
will thus result in a file of 24k, this allows a future 'DIR manager' program to work with that
file. A chosen limit makes it easier to control things, resulting is less overhead. This is
important because a nice general speed and a good 'feel' of the system was a design goal.
The blocks are called 'DIR's here. Each of the DIRs carries data that allow a hierarchical
system of filing. The DIRs have no number but a name, and are accessed via the 'parent’ they
are a 'child' of. The hierarchical system is created by using the FORMAT!"name" command.
Files are stored in these DIRs in a consequetive manner, occupying a closed line of storage
cells. Deleting files may create gaps between the remaining files. Such spaces can only be
reused by new files that fit there. By choosing the size of a storage medium much larger that
the total size of the files to store, the need for defragmentation of the gaps is minimised.

The size of DIRs is (loosely) determined on 4 MB. The maximum number of files that can be
stored in a DIR is limited to 256, as this is what the existing File Manager program can
handle. Practice showed that having a larger amount of files in one DIR is impractical.

On new CFs all storage cells are filled with FF, and therefore are DIRs that are unused or
deleted (from the hierarchical system) recognised by having FFFFFF in the first positions.
There always has to be a 'ROOT' DIR to start from. This is the only directory created with the
normal FORMAT command, note that this command should NOT be used for making other
DIRs as this would destroy the hierarchical system!

At this moment the DOS still uses a (512 bytes) buffer in RAM while loading and saving. That
buffer collides with very long programs. So several mega games cannot be not loaded yet.
Changing this is on my to-do list, but | do not want to give up the versatile Streams and
Channels system introduced by Opus Discovery. So there is another job waiting.

| have been focussed on 'creating' most of the time, and hardly found time for 'using'. In fact
building this prototype 2 is the first time for me to play with things. | have already noticed a
few issues that |, as a user, want to see changed. For instance the sub directory system
seems much too powerfull to be handled by direct commands.....

The current 64K ROM file can be downloaded from: "www.biehold.nl/roelof/supr190712.bin".

Those who want a commented assembly source, or need assistance with acquiring or
programming an EPROM, can send me a Personal Mail on the WorldOfSpectrum forum.

Added Commands and Functions (BASIC)

Two extra input modes (F & R) are created, so every key can generate two more keywords. These are
visible on the keyboard overview, depicted somewhere in these pages.
Also two other new input modes must be mentioned, ' $'and ' X .

*The ' R' mode is entered by pressing 'INV. VIDEO' (Caps + "4"), and gives access to 34 new
commands.

*The ' F ' mode is entered by pressing 'TRUE VIDEO' (Caps + "3"), and gives access to 26 new
functions. (No functions under the number keys.)

* Embedded True and Inverse Video markers can still be entered by means of ' R' mode 1 or 0.

*The ' $ ' mode is entered by pressing SymbShift and Space simultaneously, and allows to recall a
saved Macro expression created by means of the MACRO command. See there for further
explanation.

*The ' X' mode is entered by pressing SymbShift and Enter simultaneously, and acts as a forced ' K
mode while the Spectrum actually is in ' L ' mode. This allows the use of tokens (keywords) in
situations where they normally only can be obtained using tricks. (Like in REM statements)

® As usual, changing ' K' mode into ' L ' mode is done by typing a space. This is needed when keywords
are entered in single-key ASCII characters instead of (the normal way) by tokens.

® Indeed, all keywords can be entered by just typing in ASCII (' L ' mode). Tokenising will follow after
entering. (note that 'cat$' has a problem there....)

*Because PROCedures are allowed, misspelled keywords will be treated as if they where procedure
names!

* Existing and new keywords can be entered in single-keys without a space, like: DEFFN, OPEN#,
CLOSE#, GOTO, GOSUB, DEFPROC, ENDPROC, DEFKEY, DEFWIN, EXITIF.

Added functions

Examples

BAND
BOR
XOR
BINS
CHARS$
NUMB
DEC
HEX$
DPEEK
INARRAY
INSTRING
LENGTH
MAKE$
MEM$
MOD
NXTDATA
RNDM
SCRN$
SHIFTS
USING$
WINMENU
ERRNR$
SYSTEM
CATS
EOF#

(W'=CASE=

;binary AND.

;binary OR.

;binary XOR.

;create a set of binary digits in a string.

;translate a number into ASCI! string .

;translate string into number.

;translate a string with HEX into decimal number.
:translate a decimal number into a HEX$.

;PEEK a 16 bit nr. from a double address

;search in 2 dimensional array for $

;search n$ inside m$, starting from position n.
;find mem addr of $ (0), or lenght of dimension (1)
;create string of given length

;move block of memory into string.

;modulus. (get remainder)

;preview the type of the nxt data to be read.
;random number inside given range

;move block of screen into string

;make changes (1-6 types) in string

;format a given number according to caliper

;print menu bar in window 'n' and fetch the choice
;move line+stmt with error into $ (see ONERROR)
;=temporary tool =PEEK in alternative RAM bank

PRINT BAND (4,10)
PRINT BOR (4,10)
PRINT XOR (4,10)

LET n$=BIN$ 223

PRINT CHARS$ 31354

PRINT NUMB "zz"

LET x= DEC "A0B2"

LET n$= HEXS$ "FFFF"

LET basic= DPEEK 23635
PRINT INARRAY (z$(n),"pp")
PRINT INSTRING (n, m$,n$)
LET n=LENGTH (0,n$)

PRINT MAKES$ (300,"ha")

LET n$=MEMS$ (100 TO 1300)
PRINT MOD (44,9)

IF NXTDATA =2 THEN READ a$
PRINT RNDM 100

LET n$= SCRN$ (100,100,3,4;1)
LET m$= SHIFT$ (2,n$)

PRINT USINGS$ ("##.#",12.3456)
LET a= WINMENU 1

LET lino= NUMB ERRNR$(TO 2)

;move the result of a '"CAT n' or 'CAT n!' command into a string
;End_Of _File test. EOF# n is valid (= 1) if end of file in stream n is reached

unconnected)

Added Commands

Examples

EDIT
PROC
DEF PROC
END PROC
DEFAULT
LOCAL
REF
ONERROR
ALTER
AFTER
EVERY
DO

UNTIL
WHILE
LOOP
EXITIF
ELSE
ELLIPSE
FILL

GET

GET INPUT
JOIN
KEYIN
MACRO
ON
DPOKE
POP
ROLL
SCROLL
SORT
DEFWIN
WINDOW
CSIZE

;move line or string to edit screen
;execute a procedure, using given parameters

;start of defining a procedure

;end of defined procedure

;assign a value to undeclared variables

;Make variables inside procedures just local
;Search a program for references

;set Onerr flag, define command as subroutine
;Change screen attributes or expressions

;after 'n' NMl's a next statement is processed (sub!)
;every 'n' NMl's a next statement is processed
;start a loop ending with LOOP

;condition for both DO and LOOP

;condition for both DO and LOOP

;end of a DO-loop

;exit from a DO-loop

;exit from invalid IF statement

;draw ellipse using xy-center, height, width

;Fill a closed figure solid or with pattern

;Fetch key press without input on bottom line
;Input in full screen, n=size of field

;Add next line to current line or add strings
;enter a command or line in BASIC from variable
;User defined keys. With or without inserting
:Choose a statement, based on value

;Poke into 2 addresses

;Remove last entry from GOSUB stack

;Roll current window. direction=5678 equ. cursor
:See Roll. Default is 1 pixel row,
;Sort strings and arrays

;Define window n, topleft2,H,W, Csize, Font
;make 0-15 windows 'current’, perm. or temp.
:character width for current window

EDIT n: EDIT n$

PROC sketch x,y

DEFROC sketch; x, y

ENDPROC

DEFAULT a=1, b=2, z=26

LOCAL n: LET n=999

REF "a" : REF a$: REF (a$)
ONERROR errr: PRINT: RETURN
ALTER n$ TO m$ (INK 7 TO INK 1)
AFTER 100: SOUND 55:RETURN
EVERY 100: SOUND 94:RETURN
DO: PRINT "hallo": LOOP

DO UNTIL a>3: LET a=a+1: LOOP
DO WHILE a>4: LET a=a+1: LOOP
DO: LET a=a+1: LOOP UNTIL a>3
EXIT IF a=6

IF a=6 THEN PRINT 6: ELSE CLS
ELLIPSE x,y,h,w

FILL INK 3; x, y, address
GET a: GET a$

GET INPUT n; AT 10,10; a
JOIN : JOIN n$ TO m$
KEYIN "10 PRINT 1"
MACRO "2"; "PRINT " hallo"" :"
ON a: PRINT 1::PRINT 3: GOTO n
DPOKE 16384,65535

POP : POP n

ROLL 6 : ROLL windownr, dir
SCROLL windownr, dir, rows
SORT INVERSE n$(2 TO 20)
DEFWIN n,x,y,h,w,a,b

WINDOW n :PRINT WINDOW n;"a"
PRINT WINDOW 2; CSIZE 7;"hh"

(a$)

FONT
SOUND

;font type (bold, italic, etc) for current window
;make sliding sounds

FONT n. (0-255, not all readable!)
SOUND n (0-255)

<> ;SPLIT up a line while editing, only available as direct command.

Move cursor behind a " : " in line, then Symbsh+W

Extended existing Commands

PAUSE ;Allowed without number, is PAUSE 0

LET ;multiple assignments allowed: LET a=1, b=2, c=3

POKE string ;POKE 16384," COPY COPY COPY COPY " : REM use keyword
CLS # :clear main screen with default B/W values

CLS n[,m] ;CLS windownr [, attribute]

WINDOW ERASE ;remove all window definitions

MACRO ERASE ;remove all defined macro's except key "1"

PRINT TO ;print text to pixel positions in main screen

DRAW TO ;draw to absolute x,y, position in main screen

GOSUB /RET ;changed, might give error when used as direct command

CLEAR DATA n$
CLEAR LINE n[,m]

;deletes specified variable
:delete line n, or lines from n to mincl.

ERASE DATA ;deletes part of arrays: ERASE DATA a(1)

LIST DATA list variables

LIST FORMAT ;listing with formatted layout

INPUT :see GET INPUT in new commands

'BREAK' ;pressed during editing it will return the last entered direct comand
'BREAK' ;quits from MC after keeping CapsSh+Space down for 5 seconds.

; (assuming interupts are enabled and system variables are intact.)

DOS REFERENCE GUIDE

The Disk Operating System is based on disk-images, which images (called 'DIRs') are managed in a

hidden hierarchical scheme that makes them appear as sub-directories.

IMPORTANT: For keeping that hierarchical structure intact only the ROOT directory should be created
with the command 'FORMAT 1;ROOT". Other 'DIRs' should ONLY be created using the new command
'FORMAT!"dirname™.

The created 'DIRs' appear in a CAT as files that can be loaded. By loading such a DIR it becomes
‘current’, and will display its contents following a CAT command. The command 'POINTA' will make the
'parent’ directory current. DIRs can also be deleted as if they were files, but should be emptied before
doing so.

Two different drives (numbers) are provided, mainly for copying purposes. After coldstart both drives are
connected to the ROOT directory. The last used drive is the current one, and (important) DOS
commands that do not use a drive number will act on this 'current' one.

The whole concept is brand new and some commands that were only ment as tools for experimenting
are not yet removed. Use with care.

File names (with a length up to 10 characters) can carry an extension of 3 characters long, following a
dot. Such extension must be entered by the user during SAVE or MOVE.
The recognised extensions are:
"BAS","ARR","$AR","COD","SNA","MDR","SCR","SPC",
"128""FIL","EXE","DIR","CRE","TW3","TOR","RAF"
The extensions can (next to other texts) be used for filtering file names like in the command CAT
n;"p*.bas". Filtering will work as expected on file names like in LET n$=CAT$ n;"pr?g*". The filtering
uses '?' as wildcard character and ™' as end-of-filter marker.
The extensions are shown/not shown depending on using the CAT, CAT n or CAT! command. For
LOADiINg a file (or OPENIng etc.) the extensions play no role.
The special file manager, invoked by 'CAT'[enter], will use the extensions for sorting.
After a coldstart or NEW, it is possible to automatically load and run a program from disk. Only type
RUN [ENTER] and the system will load a file called 'run' from drive 1. Of course that file must been
saved with the LINE option to make it self starting.

Useful USR routines

USR 14070 - resets the disk system.
USR 8 - returns the version number of the dos software.
USR 4007 - allocates system variable space as if Interface 1 was fitted to the Spectrum.

Notations used below:

<drive>
DOS supports two 'drives’ which are numbered 1 and 2. Each directory ('DIR') can be connected to
each 'drive’. So programs always can work with 'drive 1'.

<filename>

File names can be up to 10 characters long (e.g. "x123") and can be followed by a dot and an extension
of 3 characters long like "utility.bas". Upper/lower case makes a diffence.

A file of which the name starts with CHR$ 0, is not displayed in the catalogue but can still be loaded,
opened, erased etc.

<file specification>
The channel plus the drive number must be given along with the file name for pointing out a file. The

complete file specification is:
"m";<drive>;<filename>. The "m" with semicolon can be omitted from the specification as "m" (disk) is
the default channel.

<stream>

The Spectrum uses streams to transfer data from a source (e.g. keyboard) or to a destination (e.g.
screen). Every stream ('#') has a unique number between 0 and 15 (integer). Streams #0, #1 and #2 are
reserved by the Spectrum system. Stream #3 is set up by the Spectrum for use with the ZX printer.
Streams #4 to #15 are available to the user and can be connected to 'channels'.

See under <channel specifications>.

<channel specification>
Channels represent input and output devices and are represented by a letter. Both upper or lower case

letters can be used in the channel specification. DOS adds a few to the existing "K, "S" and "P"
channels. The available channels are:
"K" - the keyboard. Also outputs to the lower part of the screen. This channel is connected to
streams #0 and #1.
"S" - the top part of the screen. (Standard connected to #2)
"P" - the ZX printer. (Standard connected to #3)
"d" - this channel treats the disk as one single entity and is used by the MOVE command. The full
specification is "d";<drive>.
"m" - a file on disk. Further information is needed to specify it completely. See <file specification>.
"#" - this 'stream' channel allows the opening of one stream to another. The full spec. is "#"; <stream>.
For example OPEN# 4;"#";1 'links' stream four to stream one. The quotes and the separator can
be omitted: OPEN# 4;#1
"CAT" - this channel gives access to the disc catalogue file. The complete channel specification is
"CAT"; <drive>. This channel is best opened as a random access file with a record lenght of 16.
"CODE"- this channel writes or reads directly to/from memory. POINT can be used to select the
memory location to read or write from/to.

DOS Commands

*hkkkkkkhkhkhkhkhkhkhkkkkkhkhhhkhhhkhkkhkhkhhkhhhhkd

CAT <channel spec.><drive> :obsolete long version!

CAT :invokes the filemanager

CAT <drive> :display catalogue of specified drive
CAT <drive>! :display file names incl. extension
CAT <drive>;"filter" .display filtered file names

CAT <drive>;"filter"! .display filtered names incl. extension
CAT? list all occupied DIRs by number
CAT*<drive> :select drive 1 or 2 as 'current', unseen
CAT #<stream>;<drive> :send catalogue into specified stream.

:The stream must have been previously
:opened for output.

CLEAR# :clear out all open streams
CLEAR# <stream> :clear out the specified stream

CLOSE# <stream> :close specified stream after emptying
:after closing streams 0,1, 2 or 3, they
:are reopened automatically to their
:default (Spectrum) channels.

ERASE <file spec.> :erase the specified file, no error msge
ERASE <channel spec.><drive><file spec.> :obsolete, with error msge

FORMAT "m"; <drive>; "name" :obsolete long version do not use!
FORMAT <drive>; "name" :short version do not use!
FORMAT!"name" :create a DIR inside the hierarchy
INKEY$ #<stream> :read one character from specified stream

INPUT #<stream>; variable1; var2;etc. :This inputs values from the
:spec. stream into the spec. variables.

LOAD* <channel spec.> :load a program from the spec. channel

:extensions: CODE, DATA and SCREENS.
LOAD n :load BAS or COD file numbered n in CAT
LOAD @n,address :load sector nr. n from curr DIR to addr.
LPRINT# <stream>; variable1, var2,... :Print variables to specified

:stream. Exactly as the PRINT# command.

MERGE* <channel spec.> :merge a program from the spec. channel
MOVE <stream> TO <channel spec.> :transfers information from
MOVE <stream> TO <stream> :an input channel or stream,
MOVE <channel spec.> TO <stream> :to an output channel or
MOVE <channel spec.> TO <channel spec.> :stream.

This command can a.o. move files around, for example: MOVE 1;"myfile" TO 2;"backup". But
also MOVE 1;"myfile" TO #2 will work.

Because the free space in each DIR can get fragmented after lots of operations, this space
can be defragmented by MOVE "d";1 TO "d";1. You also might say that the occupied space is
compacted. This rearranging is needed when the error 'No Room On Disk' is met while a DIR
shows enough free KBs.

OPEN# <stream>; <channel spec.> <access> :associate specified stream with specified
channel
<access> can be IN, OUT, EXP, RND or be omitted

POINT n :make DIR number n the current
POINT # :make the parent DIR current

POINT "name" :make the DIR named "name" current
POINT <stream>; n :set pointer in spec. strm to nth record

PRINT# <stream>; variable1; var2;...:see LPRINT#

SAVE * <channel spec.> 'saves current program
SAVE @n,address :save addr,512 to sector nr. n from curr DIR
VERIFY* <channel spec.> :verify current program

SCREENS$, CODE, DATA, LINE :extension for LOAD, SAVE and VERIFY

the end. 2012 Roelof Koning (RoKo).

IT0Z A9 ~o=2dgradng

olaewms= apow-§ = aseds + quAs Woayg = aaeds + sden 4oz Lg ¢WHD = Jajug + sdes pueRwWwWodIzApow-y = ¢+ sden
PIOALAIN= ApOoW-w = 133U 4+ quAS aul] ypa anaulad = aaeds + sden apow-3 = quwAs 4+ sden HOI13aUNy = apow-4 = ¢ 4 sden

0doM 35d3anMl LNOd 4300 43147 LHI1d3 Ad3ng H5Y1d 3Z150 43dod NI 30 WHI dNnDsS 4334

1=n'od 1IN 10404 FRE] LH0D do31d Ad0D
aoedg qWAS ﬁ Al . N « g i A : D _ r X : 2 sdej
$HIN 1d AHNN $ATHHI $HI1G HMId JOM 15177 $doHD 1HIddT 40X d4X3 $LdIHE H1
d007 dLllY HIATY $H3I3™EIs HIOr 7oA 3541113 379412 139 { 1114 H oa % 1405 | 41T -~

Al Bw] Tel TR fees| [a] [eal [ees| [eew

HI9H31 450 $HYY5 H3IT1 WALSAS 1PN $X3H 405 NHIWMHIM 537 $L0¥) HIs 230 vLIvd $THAYM IUOLITY AHYE av3Id

d31N3

FHAOdd (=) HO 1nog 41 LIX3 HI THN [FTHM] 170425 39d3aH 170W AdIEaA 3573 HLY MOOHIM 527 dod HSY
1HIdd TH0d LNdHI ﬁ.ﬂ:.ﬁﬂ aNYd [hTF] [TET] Ada 1074

d N w | ﬂn: aner A < 1 | = = == M uu.G

WI3dd 4dYL dH04 WI3d DHIYLSHNIZOOD AXddoHI$HHD $OHISN $4LS YIvALlWH OHd WANY 1N #1403 HYL IsYI 503 FUNYE3I HIS

alA INdL LoWdod 40ddINe Lod 439 LHIOd 19307 35743 J0dddNI 30K 30dd #3507230dd 430 #3400 LTNY43a 3N 1103 Hd 0JIA AHL Hd 430

—o) ‘e 58 k<l &Y B mr 2 3E (@Y
L, |

3137340 S2IHdYd9 = = Jaonyd Ja0Kd Y0154 1103
Havi14a ILIHAL TIHIITH a3d ania

