,-**

;** An Assembly File Listing to generate a 16K ROM for the ZX Spectrum **

IR I b S 2 S b e S b S S S b S b I S b I S R I b R I b S b S b S b e S IR S b S b S b I Sh b I Sb b b b b 2h b S b b S 4
’

’

’

’

Last updated: 09-AUG-2003

TASM cross-assembler directives.

(

comment out, perhaps, for other assemblers - see Notes at end.)

#define DEFB .BYTE
#define DEFW .WORD
#define DEFM .TEXT
#define ORG .ORG
#define EQU .EQU
#define equ .EQU

’

It is always a good idea to anchor, using ORGs, important sections such as
the character bitmaps so that they don't move as code is added and removed.

Generally most approaches try to maintain main entry points as they are

often used by third-party software. The Sinclair Interface 1 ROM written
by Dr. Ian Logan and Martin Brennan calls numerous routines in this ROM.
Non-standard entry points have a label beginning with X.

ORG 0000

,-***

;** Part 1. RESTART ROUTINES AND TABLES **

ehkkhkhkhhhkhhkhkhhkhhkhkhhkhhkhhhkhhkhhkhhkhkhhhhkkhhhkhkhkhkx
’

THE 'START'

At switch on, the Z80 chip is in Interrupt Mode O.

The Spectrum uses Interrupt Mode 1.

This location can also be 'called' to reset the machine.
Typically with PRINT USR O.

;» START

L0000: DI ; Disable Interrupts.
XOR A ; Signal coming from START.
LD DE, SFFFF ; Set pointer to top of possible physical RAM.
JP L11CB ; Jump forward to common code at START-NEW.

THE 'ERROR' RESTART

The error pointer is made to point to the position of the error to enable
the editor to highlight the error position if it occurred during syntax

; checking. It is used at 37 places in the program. An instruction fetch
; on address $0008 may page in a peripheral ROM such as the Sinclair
; Interface 1 or Disciple Disk Interface. This was not an original design

concept and not all errors pass through here.

;7 ERROR-1

L.0008: LD HL, ($5C5D) ; Fetch the character address from CH ADD.
LD ($5C5F) , HL ; Copy it to the error pointer X PTR.
JR L0053 ; Forward to continue at ERROR-2.

THE 'PRINT CHARACTER' RESTART

; The A register holds the code of the character that is to be sent to

; the output stream of the current channel. The alternate register set is
; used to output a character in the A register so there is no need to

; preserve any of the current main registers (HL, DE, BC).

; This restart is used 21 times.

;; PRINT-A

L0010: JP L15F2 ; Jump forward to continue at PRINT-A-2.
DEFB SFF, SFF, SFF ; Five unused locations.
DEFB SFF, SFF ;

; THE 'COLLECT CHARACTER' RESTART

; The contents of the location currently addressed by CH ADD are fetched.

; A return is made if the value represents a character that has

; relevance to the BASIC parser. Otherwise CH ADD is incremented and the
; tests repeated. CH ADD will be addressing somewhere -

; 1) in the BASIC program area during line execution.

; 2) in workspace if evaluating, for example, a string expression.

; 3) in the edit buffer if parsing a direct command or a new BASIC line.
; 4) in workspace if accepting input but not that from INPUT LINE.

;; GET-CHAR
L0018: LD HL, ($5C5D) ; fetch the address from CH ADD.
LD A, (HL) ; use i1t to pick up current character.

;; TEST-CHAR

L0O01C: CALL LOO7D ; routine SKIP-OVER tests if the character is
; relevant.
RET NC ; Return if it is significant.

; THE 'COLLECT NEXT CHARACTER' RESTART

; As the BASIC commands and expressions are interpreted, this routine is
; called repeatedly to step along the line. It is used 83 times.

;; NEXT-CHAR

L0020: CALL L0074 ; routine CH-ADD+1 fetches the next immediate
; character.
JR Loo1cC ; jump back to TEST-CHAR until a valid

; character is found.

DEFB SFF, SFF, SFF ; unused

; THE 'CALCULATE' RESTART

; This restart enters the Spectrum's internal, floating-point, stack-based,
; FORTH-1ike language.

; It is further used recursively from within the calculator.

; It is used on 77 occasions.

;; FP-CALC

L0028: JP L335B ; jump forward to the CALCULATE routine.

’

’

rs

DEFB
DEFB

THE 'CREATE BC SPACES'

SFF, SFF,
SFF, SFF

RESTART

spare - note that on the ZX81, space being a
little cramped, these same locations were
used for the five-byte end-calc literal.

This restart is used on only 12 occasions to create BC spaces
between workspace and the calculator stack.

BC-SPACES
L0O030: PUSH
LD
PUSH
JPp

rr

BC
HL, ($5C61)
HL

L169E

THE 'MASKABLE INTERRUPT'

Save number of spaces.

Fetch WORKSP.

Save address of workspace.

Jump forward to continuation code RESERVE.

This routine increments the Spectrum's three-byte FRAMES counter fifty

times a second

(sixty times a second in the USA).

Both this routine and the called KEYBOARD subroutine use the IY register
to access system variables and flags so a user-written program must
disable interrupts to make use of the IY register.

MASK-INT

L0038: PUSH

rr

PUSH
LD
INC
LD
LD
OR
JR

INC

Now save the rest of the main

KEY-INT

L0048: PUSH

rs

PUSH

CALL

POP
POP

POP
POP

ET
RET

THE 'ERROR-2'

AF
HL

HL, ($5C78)
HL
($5C78) , HL
A,H

L

NZ,L0048

(IY+540)

BC
DE

LO2BF

DE
BC

HL
AF

ROUTINE

Save the registers that will be used but not
the IY register unfortunately.

Fetch the first two bytes at FRAMESI.
Increment lowest two bytes of counter.

Place back in FRAMES1.

Test if the result was zero.

Forward, i1f not, to KEY-INT

otherwise increment FRAMES3 the third byte.

registers and read and decode the keyboard.

Save the other main registers.

Routine KEYBOARD executes a stage in the

process of reading a key-press.

Restore registers.

Enable Interrupts.
Return.

A continuation of the code at 0008.
The error code is stored and after clearing down stacks, an indirect jump

is made to MAIN-4,

ERROR-2

L0O053: POP

HL

etc.

to handle the error.

drop the return address - the location
after the RST 08H instruction.

LD L, (HL) ; fetch the error code that follows.
; (nice to see this instruction used.)

Note. this entry point is used when out of memory at REPORT-4.
The L register has been loaded with the report code but X-PTR is not
updated.

ERROR-3

L0055: LD (IY+$00),L ; Store it in the system variable ERR NR.

LD SP, ($5C3D) ; ERR_SP points to an error handler on the
; machine stack. There may be a hierarchy
; of routines.
; To MAIN-4 initially at base.
; or REPORT-G on line entry.
; or ED-ERROR when editing.
; or ED-FULL during ed-enter.
; or IN-VAR-1 during runtime input etc.

Jp L16C5 ; Jump to SET-STK to clear the calculator stack
; and reset MEM to usual place in the systems
; variables area and then indirectly to MAIN-4,
; etc.

DEFB SFF, SFF, SFF ; Unused locations
DEFB SFF, SFF, SFF ; before the fixed-position
DEFB SFF ; NMI routine.

THE 'NON-MASKABLE INTERRUPT' ROUTINE

New

There is no NMI switch on the standard Spectrum or its peripherals.

When the NMI line is held low, then no matter what the 780 was doing at
the time, it will now execute the code at 66 Hex.

This Interrupt Service Routine will jump to location zero if the contents
of the system variable NMIADD are zero or return if the location holds a
non-zero address. So attaching a simple switch to the NMI as in the book
"Spectrum Hardware Manual" causes a reset. The logic was obviously
intended to work the other way. Sinclair Research said that, since they
had never advertised the NMI, they had no plans to fix the error "until
the opportunity arose'.

Note. The location NMIADD was, in fact, later used by Sinclair Research
to enhance the text channel on the ZX Interface 1.

On later Amstrad-made Spectrums, and the Brazilian Spectrum, the logic of
this routine was indeed reversed but not as at first intended.

It can be deduced by looking elsewhere in this ROM that the NMIADD system
variable pointed to L121C and that this enabled a Warm Restart to be
performed at any time, even while playing machine code games, or while
another Spectrum has been allowed to gain control of this one.

Software houses would have been able to protect their games from attack by
placing two zeros in the NMIADD system variable.

RESET
L0066: PUSH AF ; save the
PUSH HL ; registers.
LD HL, ($5CBO0) ; fetch the system variable NMIADD.
LD A,H ; test address
OR L ; for zero.

JR NZ, L0070 ; skip to NO-RESET if NOT ZERO

JP (HL) ; jump to routine (i.e. L0000)
;; NO-RESET
L0070: POP HL ; restore the
POP AF ; registers.
RETN ; return to previous interrupt state.

THE 'CH ADD + 1' SUBROUTINE

This subroutine is called from RST 20, and three times from elsewhere

to fetch the next immediate character following the current valid character
address and update the associated system variable.

The entry point TEMP-PTR1 is used from the SCANNING routine.

Both TEMP-PTR1 and TEMP-PTR2 are used by the READ command routine.

;; CH-ADD+1
L0074: LD HL, ($5C5D) ; fetch address from CH ADD.
;; TEMP-PTRL
L0077: INC HL ; increase the character address by one.
;; TEMP-PTR2
L0078: LD ($5C5D) , HL ; update CH ADD with character address.
X007B: LD A, (HL) ; load character to A from HL.
RET ; and return.

THE 'SKIP OVER' SUBROUTINE

This subroutine is called once from RST 18 to skip over white-space and
other characters irrelevant to the parsing of a BASIC line etc.

Initially the A register holds the character to be considered

and HL holds its address which will not be within quoted text

when a BASIC line is parsed.

Although the 'tab' and 'at' characters will not appear in a BASIC line,
they could be present in a string expression, and in other situations.
Note. although white-space is usually placed in a program to indent loops
and make it more readable, it can also be used for the opposite effect and
spaces may appear in variable names although the parser never sees them.
It is this routine that helps make the variables 'Anum bEr5 3BUS' and

'a number 53 bus' appear the same to the parser.

;7 SKIP-OVER
LO07D: CP $21 ; test if higher than space.
RET NC ; return with carry clear if so.
CP $0D ; carriage return °?
RET Z ; return also with carry clear if so.
; all other characters have no relevance
; to the parser and must be returned with
; carry set.
CP $10 ; test if 0-15d
RET C ; return, if so, with carry set.
CP $18 ; test 1if 24-32d
CCF ; complement carry flag.

RET C ; return with carry set if so.

INC

CP
JR

INC

;; SKIPS

L0090: SCF
LD
RET

;; TKN-TABLE
L0O095: DEFB
DEFM
DEFB
DEFM
DEFB
DEFB
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFB

; THE 'TOKEN'

; The tokenized characters 134d
; this table.
; the word.

HL

$lé
C,L0090

HL

($5C5D) , HL

TABLES

now leaves lod-23d

all above have at least one extra character
to be stepped over.

controls 22d ('at') and 23d ('tab') have two.
forward to SKIPS with ink, paper, flash,
bright, inverse or over controls.

Note. the high byte of tab is for RS232 only.
it has no relevance on this machine.

step over the second character of 'at'/'tab'.

set the carry flag
update the CH ADD system variable.
return with carry set.

(RND) to 255d (COPY) are expanded using

The last byte of a token is inverted to denote the end of

'?2'+$80
"RN"
"D'+580
"INKEY"
'$1+580
"P', 'I'+5$80
"F', 'N'+5$80
"POIN"
"T'+5$80
"SCREEN"
'$T+580
"ATT"
"R'+580

A , v +$80
IITA"
"B'+580
"VAL"
'$1+580
"cop"
"E'+580
"VA"
"L'+580
"LE"

'N'+580
IISI"
"N'+5$80
HCO"

'S'+580
IITA"
"N'+5$80

"AS "
"N'+580
"AC"

'S'+580
IIAT"
"N'+580
L', 'N'+580

The first is an inverted step-over byte.

DEFM "EX"

DEFB "P'+$80
DEFM "IN
DEFB "TT4+$80
DEFM "sQ"
DEFB TR'+$80
DEFM "SG"
DEFB "N'+$80
DEFM "AB"
DEFB 1S'+$80
DEFM "pEE"
DEFB "K'+$80
DEFB "I', 'N'+$80
DEFM "ys"
DEFB "R'+$80
DEFM "STR"
DEFB 1$14+580
DEFM "CHR"
DEFB 151 4$80
DEFM "NO"
DEFB "T'+$80
DEFM npI"
DEFB TN'+$80

The previous 32 function-type words are printed without a leading space
The following have a leading space if they begin with a letter

DEFB 'O', '"R'"+$80
DEFM "AN"

DEFB 'D'+580
DEFB $3C, '="+580 ;<=
DEFB S3E, '="+580 ; >=
DEFB $3C, $3E+580 ;<>
DEFM "LIN"

DEFB 'E'+580
DEFM "THE"

DEFB "N'+$80
DEFB "T','0'+$80
DEFM "STE"

DEFB '"P'+580
DEFM "DEF F"
DEFB "N'+$80
DEFM "CA"

DEFB "T'+580
DEFM "FORMA"
DEFB "T'+580
DEFM "MOV"

DEFB "E'+$80
DEFM "ERAS"

DEFB 'E'+580
DEFM "OPEN "
DEFB #4580
DEFM "CLOSE "
DEFB "#'+580
DEFM "MERG"

DEFB 'E'+580
DEFM "VERIF"
DEFB 'Y'+580
DEFM "BEE"

DEFB '"P'+580
DEFM "CIRCL"
DEFB "E'+$80
DEFM "IN"

DEFB 'K'+$80

DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB

"PAPE"
'R'+$80
"FLAS"
"H'+580
"BRIGH"
'T'+3580
"INVERS"
'E'+580
" OVE "
'R'+$80
IIOU"
'T'+3580
"LPRIN"
'"T'+3$80
"LLIS"
'T'+3$80
"STO"
"P'+580
"REA"
'D'+$80
"DAT"
'"A'+380
"RESTOR"
'E'+$80
IINE "
'W'+3$80
"BORDE"
'R'+580
"CONTINU"
'E'+380
" DI "
'M'+580
"RE "
'M'+$80
" FO"
'R'+380
"GO T"
'0'+$80
"GO su"
'B'+380
"INPU"
"T'+580
"LOA"
'D'+$80
"LIS"
'T'+3$80
n LE n
'"T'+3$80
"PAUS"
'E'+380
"NEX"
'"T'+580
” POK"
'E'+380
"PRIN"
'"T'+580
" PLO"
'T'+3$80
IIRU"
'N'+3$80
"SAV"
'E'+$80
"RANDOMIZ"
'E'+380

DEFB 'Y, '"F'+5$80

DEFM "CcL"
DEFB 'S'+$80
DEFM "DRA"
DEFB 'W'+$80
DEFM "CLEA"
DEFB 'R'+$80
DEFM "RETUR"
DEFB 'N'+$80
DEFM "COP"
DEFB 'Y'+580

; THE 'KEY' TABLES
; These six look-up tables are used by the keyboard reading routine
; to decode the key values.

; The first table contains the maps for the 39 keys of the standard

; 40-key Spectrum keyboard. The remaining key [SHIFT $27] is read directly.
; The keys consist of the 26 upper-case alphabetic characters, the 10 digit
; keys and the space, ENTER and symbol shift key.

; Unshifted alphabetic keys have $20 added to the value.

; The keywords for the main alphabetic keys are obtained by adding $A5 to

; the values obtained from this table.

;7 MAIN-KEYS

L.0205: DEFB S42 ; B
DEFB $48 ; H
DEFB $59 ;Y
DEFB $36 ;6
DEFB $35 ;5
DEFB $54 ;T
DEFB $47 ; G
DEFB $56 ;v
DEFB $4F ;N
DEFB S4A ; J
DEFB $55 ;U
DEFB $37 ;7
DEFB $34 ; 4
DEFB $52 ; R
DEFB $46 ; F
DEFB $43 ; C
DEFB $4D ;M
DEFB $4B ; K
DEFB $49 ;I
DEFB $38 ; 8
DEFB $33 ;3
DEFB $45 ; B
DEFB $44 ; D
DEFB $58 ; X
DEFB SOE ; SYMBOL SHIFT
DEFB S4C ; L
DEFB S4F ; O
DEFB $39 ;9
DEFB $32 ; 2
DEFB $57)
DEFB $53 ;S
DEFB S5A ; Z
DEFB $20 ; SPACE
DEFB $0D ; ENTER
DEFB $50 ; P
DEFB 330 ;0

DEFB $31 ;1

DEFB $51 ;0
DEFB $41 ; A

;; E-UNSHIFT
; The 26 unshifted extended mode keys for the alphabetic characters.
; The green keywords on the original keyboard.

1.022C: DEFB SE3 ; READ
DEFB $c4 ; BIN
DEFB SEOQ ; LPRINT
DEFB SE4 ; DATA
DEFB $B4 ; TAN
DEFB $BC ; SGN
DEFB $BD ; ABS
DEFB $BB ; SOR
DEFB SAF ; CODE
DEFB $BO ; VAL
DEFB $B1 ; LEN
DEFB $co ; USR
DEFB SA7 ; PI
DEFB $SA6 ; INKEYS
DEFB $BE ; PEEK
DEFB $AD ; TAB
DEFB $B2 ; SIN
DEFB $BA ; INT
DEFB SES ; RESTORE
DEFB $AS5 ; RND
DEFB $C2 ; CHRS
DEFB SE1 ; LLIST
DEFB $B3 ; COS
DEFB $B9 ; EXP
DEFB sc1 ; STRS
DEFB $B8 ; LN

;; EXT-SHIFT

; The 26 shifted extended mode keys for the alphabetic characters.
; The red keywords below keys on the original keyboard.
L0246: DEFB STE ;5 o~

DEFB $DC ; BRIGHT
DEFB $DA ; PAPER
DEFB $5C P

DEFB $B7 ; ATN
DEFB STB R

DEFB $7D ;)

DEFB $D8 ; CIRCLE
DEFB SBF ; IN

DEFB SAE ; VALS
DEFB SAA ; SCREENS
DEFB SAB ; ATTR
DEFB $DD ; INVERSE
DEFB $DE ; OVER
DEFB $DF ; OUT
DEFB STF ; (Copyright character)
DEFB $B5 ; ASN
DEFB $D6 ; VERIFY
DEFB S$7C o

DEFB $D5 ; MERGE
DEFB $5D ;o]

DEFB $DB ; FLASH
DEFB $B6 ; ACS
DEFB $D9 ; INK
DEFB $S5B P

DEFB $D7 ; BEEP

;; CTL-CODES
; The ten control codes assigned to the top line of digits when the shift
; key is pressed.

L0260: DEFB sSocC ; DELETE
DEFB $07 ; EDIT
DEFB $06 ; CAPS LOCK
DEFB $04 ; TRUE VIDEO
DEFB $05 ; INVERSE VIDEO
DEFB $08 ; CURSOR LEFT
DEFB SO0A ; CURSOR DOWN
DEFB SOB ; CURSOR UP
DEFB $09 ; CURSOR RIGHT
DEFB SOF ; GRAPHICS

;7 SYM-CODES

; The 26 red symbols assigned to the alphabetic characters of the keyboard.
; The ten single-character digit symbols are converted without the aid of
; a table using subtraction and minor manipulation.

1L.026A: DEFB SE2 ; STOP
DEFB S$2A ;o
DEFB $3F ;2
DEFB $CD ; STEP
DEFB s$C8 ; >=
DEFB s$cc ; TO
DEFB SCB ; THEN
DEFB $5E P
DEFB $AC ; AT
DEFB $2D ;-
DEFB $2B ;+
DEFB $3D ;o=
DEFB $2FE ;.
DEFB $2¢C .
DEFB $3B ;o
DEFB $22 ;"
DEFB s$C7 ;<=
DEFB $3C ;<
DEFB $C3 ; NOT
DEFB $3E ;>
DEFB $C5 ; OR
DEFB $2F o/
DEFB $C9 ; <>
DEFB $60 ; pound
DEFB $C6 ; AND
DEFB $3A ;o

;; E-DIGITS

; The ten keywords assigned to the digits in extended mode.
; The remaining red keywords below the keys.

1.0284: DEFB $DO ; FORMAT
DEFB SCE ; DEF FN
DEFB SA8 ; FN
DEFB SCA ; LINE
DEFB $D3 ; OPEN #
DEFB $D4 ; CLOSE #
DEFB $D1 ; MOVE
DEFB $D2 ; ERASE
DEFB SA9 ; POINT
DEFB SCF ; CAT

,-*******************************

;** Part 2. KEYBOARD ROUTINES **

,-*******************************

; Using shift keys and a combin
; can be mapped to 256 input ch

ation of modes the Spectrum 40-key keyboard
aracters

; 0 1 2 3 4 -Bits- 4 3 2 1 0

; PORT PORT
;FIFE L1021 031 (041051 1 (el 071 0811971101 EFFE
;o0 | v

; FBFE [QT [W] [T ET[RI ITI | [Y]l TUI I [TI1l1TlTOT1TlLP]I DFFE
. | v

; FDFE [AT [S1 DI [FI1ITG] | [H]1I[TJI I [KI]TI[ILI]I[ENT] BFFE
;0 | v

; FEFE [SHI] [2] [X] [C 1 [V] | [B]1 [N] [M] [sym] [SPC] 7FFE
. $27 $18 v

; Start End
; 00100111 00011000

; The above map may help in reading.

; The neat arrangement of ports means that the B register need only be

; rotated left to work up the left hand side and then down the right
; hand side of the keyboard. When the reset bit drops into the carry
; then all 8 half-rows have been read. Shift is the first key to be
; read. The lower six bits of the shifts are unambiguous.

; THE 'KEYBOARD SCANNING' ROUTINE

; From keyboard and s-inkey$
; Returns 1 or 2 keys in DE, mo
; key values 0-39 else 255

;+ KEY-SCAN

L028E: 1D L, $2F ;
1D DE, SFFFF ;
LD BC, $FEFE ;

;; KEY-LINE

1L0296: 1IN A, (C) ;
CPL ;
AND S1F ;
JR Z,L02AB ;
LD H,A ;
LD A, L ;

;; KEY-3KEYS
LO29F: INC D ;
RET NZ ;

st significant shift first if any

initial key wvalue

valid values are obtained by subtracting
eight five times.

a buffer to receive 2 keys.

the commencing port address
B holds 11111110 initially and is also
used to count the 8 half-rows

read the port to A - bits will be reset
if a key is pressed else set.

complement - pressed key-bits are now set
apply 00011111 mask to pick up the
relevant set bits.

forward to KEY-DONE if zero and therefore
no keys pressed in row at all.

transfer row bits to H
load the initial key value to A

now test the key buffer
if we have collected 2 keys already
then too many so quit.

rr

KEY-BITS

LO2Al: SUB 508 ; subtract 8 from the key value

; cycling through key values (top = $27)
; e.g. 2F> 27>1F>17>0F>07

; 2E> 26>1E>16>0E>06
SRL H ; shift key bits right into carry.
JR NC, L02A1 ; back to KEY-BITS if not pressed

; but if pressed we have a value (0-39d)

LD D,E ; transfer a possible previous key to D
LD E,A ; transfer the new key to E
JR NZ,LO29F ; back to KEY-3KEYS if there were more
; set bits - H was not yet zero.
;+ KEY-DONE
LO2AB: DEC L ; cycles 2F>2E>2D>2C>2B>2A>29>28 for
; each half-row.
RLC B ; form next port address e.g. FEFE > FDFE
JR C,L029%6 ; back to KEY-LINE if still more rows to do.
LD A,D ; now test if D is still FF ?
INC A ; 1f it is zero we have at most 1 key
; range now $01-$28 (1-40d)
RET Z ; return if one key or no key.
CP 528 ; 1s 1t capsshift (was $27) ?
RET 7 ; return if so.
CP 319 ; 1s it symbol shift (was $18) ?
RET Z ; return also
LD AE ; now test E
LD E,D ; but first switch
LD D,A ; the two keys.
CP $18 ; 1s it symbol shift ?
RET ; return (with zero set if it was).

’

’

; but with symbol shift now in D

THE 'KEYBOARD' ROUTINE

Called from the interrupt 50 times a second.

;5 KEYBOARD
LO2BEF: CALL LO28E ; routine KEY-SCAN
RET NZ ; return if invalid combinations

then decrease the counters within the two key-state maps

as this could cause one to become free.

if the keyboard has not been pressed during the last five interrupts
then both sets will be free.

LD HL, $5C00 ; point to KSTATE-0

;; K-ST-LOOP

L02C6: BIT 7, (HL) ; 1s it free ? (i.e. SFF)
JR NZ,L02D1 ; forward to K-CH-SET if so
INC HL ; address the 5-counter
DEC (HL) ; decrease the counter

DEC HL ; step back

JR NZ,L02D1 ; forward to K-CH-SET if not at end of count
LD (HL) , SFF ; else mark this particular map free.

;; K-CH-SET

L02D1: LD A,L ; make a copy of the low address byte.
LD HL, $5C04 ; point to KSTATE-4
; (1d 1,%04 would do)
CPp L ; have both sets been considered ?
JR NZ,L02C6 ; back to K-ST-LOOP to consider this 2nd set
; now the raw key (0-38d) is converted to a main key (uppercase).
CALL LO31E ; routine K-TEST to get main key in A
RET NC ; return if just a single shift
LD HL, $5C00 ; point to KSTATE-0
CP (HL) ; does the main key code match ?
JR Z,L0310 ; forward to K-REPEAT if so
; if not consider the second key map.
EX DE, HL ; save kstate-0 in de
LD HL, $5C04 ; point to KSTATE-4
CP (HL) ; does the main key code match ?
JR Z,L0310 ; forward to K-REPEAT if so
; having excluded a repeating key we can now consider a new key.
; the second set is always examined before the first.
BIT 7, (HL) ; 1s the key map free ?
JR NZ,LO2F1 ; forward to K-NEW if so.
EX DE, HL ; bring back KSTATE-0
BIT 7, (HL) ; 1s it free ?
RET Z ; return if not.

; as we have a key but nowhere to put it yet.

; continue or Jjump to here if one of the buffers was free.
;+ K-NEW
LO2F1: LD E,A ; store key in E
LD (HL) , A ; place in free location
INC HL ; advance to the interrupt counter
LD (HL) , $05 ; and initialize counter to 5
INC HL ; advance to the delay
LD A, ($5C09) ; pick up the system variable REPDEL
LD (HL) ,A ; and insert that for first repeat delay.
INC HL ; advance to last location of state map.
LD C, (IY+507) ; pick up MODE (3 bytes)
LD D, (IY+501) ; pick up FLAGS (3 bytes)
PUSH HL ; save state map location

; Note. could now have used, to avoid 1Y,
; 1d 1,%41; 1d ¢, (hl); 1d 1,%$3B; 1d d, (hl).
; six and two threes of course.

CALL L0333 ; routine K-DECODE
POP HL ; restore map pointer
LD (HL) , A ; put the decoded key in last location of map.

;» K-END

L0308: LD ($5C08),A ; update LASTK system variable.
SET 5, (IY+S$01) ; update FLAGS - signal a new key.
RET ; return to interrupt routine.

; THE 'REPEAT KEY' BRANCH

; A possible repeat has been identified. HL addresses the raw key.
; The last location of the key map holds the decoded key from the first

; context. This could be a keyword and, with the exception of NOT a repeat
; is syntactically incorrect and not really desirable.
;+ K-REPEAT
L0310: 1INC HL ; increment the map pointer to second location.
LD (HL) , $05 ; maintain interrupt counter at 5.
INC HL ; now point to third location.
DEC (HL) ; decrease the REPDEL value which is used to
; time the delay of a repeat key.
RET NZ ; return if not yet zero.
LD A, ($5C0A) ; fetch the system variable value REPPER.
LD (HL) , A ; for subsequent repeats REPPER will be used.
INC HL ; advance
LD A, (HL) ; pick up the key decoded possibly in another
; context.
; Note. should compare with $A5 (RND) and make
; a simple return if this is a keyword.
; e.g. cp $ab; ret nc; (3 extra bytes)
JR L0308 ; back to K-END

; THE 'KEY-TEST' ROUTINE

; also called from s-inkey$
; begin by testing for a shift with no other.

;; K-TEST
LO31E: LD B,D ; load most significant key to B
; will be S$FF if not shift.
LD D, $00 ; and reset D to index into main table
LD A,E ; load least significant key from E
CPp $27 ; is it higher than 39d i.e. FF
RET NC ; return with just a shift (in B now)
CP $18 ; is it symbol shift ?
JR NZ,L032C ; forward to K-MAIN if not

but we could have just symbol shift and no other

BIT 7,B ; 1s other key SFF (ie not shift)

RET NZ ; return with solitary symbol shift
;; K-MAIN
L032C: LD HL, L0205 ; address: MAIN-KEYS

ADD HL, DE ; add offset 0-38

LD A, (HL) ; pick up main key value

SCF ; set carry flag

RET ; return (B has other key still)

; THE 'KEYBOARD DECODING' SUBROUTINE

; also called from s-inkey$

;; K-DECODE

L0333: LD A,E ; pick up the stored main key
CP $3A ; an arbitrary point between digits and letters
JR C,L0367 ; forward to K-DIGIT with digits, space, enter.
DEC C ; decrease MODE (O0='KLC', 1='E', 2='G")
JP M, LO34F ; to K-KLC-LET if was zero
JR Z,L0341 ; to K-E-LET if was 1 for extended letters.

; proceed with graphic codes.

; Note. should selectively drop return address if code > 'U' ($55).
; i.e. abort the KEYBOARD call.
; e.g. cp 'V'; jr c,addit; pop af ;pop af ;;addit etc. (6 extra bytes).

; (s—inkey$ never gets into graphics mode.)
;7 addit
ADD A, $4F ; add offset to augment 'A' to graphics A say.
RET ; return.
; Note. (but [GRAPH] V gives RND, etc).
; the jump was to here with extended mode with uppercase A-7Z.

;; K-E-LET

L0341: LD HL,L022C-$41 ; base address of E-UNSHIFT L022c.
; (SO1EB in standard ROM).
INC B ; test B is it empty i.e. not a shift.
JR Z,L034A ; forward to K-LOOK-UP if neither shift.
LD HL,LO246-$41 ; Address: $0205 L0246-$41 EXT-SHIFT base

;; K-LOOK-UP

L034A: LD D, $00 ; prepare to index.
ADD HL, DE ; add the main key wvalue.
LD A, (HL) ; pick up other mode value.
RET ; return.

; the jump was here with mode = 0

;; K-KLC-LET

L034F: LD HL,LO26A-$41 ; prepare base of sym-codes
BIT 0,B ; shift=$27 sym-shift=5$18
JR Z,L034A ; back to K-LOOK-UP with symbol-shift
BIT 3,D ; test FLAGS is it 'K' mode (from OUT-CURS)
JR Z,L0364 ; skip to K-TOKENS if so
BIT 3, (IY+$30) ; test FLAGS2 - consider CAPS LOCK ?
RET NZ ; return if so with main code.
INC B ; 1s shift being pressed ?
; result zero if not
RET NZ ; return if shift pressed.

ADD A,S$20 ; else convert the code to lower case.

RET ;

; the jump was here for tokens

;+ K-TOKENS

L0364: ADD A, SAS ;
RET ;

; the jump was here with digits,

;+ K-DIGIT

L0367: CP $30 ;
RET C ;
DEC C ;
JP M, L039D ;
JR NZ,L0389 ;

; continue with extended digits
D HL,L0284-530 ;
BIT 5,B ’
JR Z,L034A ;
CP $38 ;
JR NC, L0382 ;
SUB $20 ;
INC B ;
RET Z ;
ADD A,S$08 ;
RET ’

; 89

;7 K-8-&-9

1.0382: SUB $36 ;
INC B ;
RET Z ;
ADD A, SFE ;
RET ;

; graphics mode with digits

;; K-GRA-DGT

L0389: LD HL,L0260-$30 ;
CP $39 ;
JR Z,L034A ;
CP $30 ;

return.

add offset to main code so that 'A'
becomes 'NEW' etc.
return.
space, enter and symbol shift
is it '0' or higher ?

return with space,

test MODE (was 0='KLC', 1='E',
jump to K-KLC-DGT if was 0.

forward to K-GRA-DGT if mode was 2.
0-9.

$0254 - base of E-DIGITS

test - shift=$27 sym-shift=$18

to K-LOOK-UP if sym-shift

'8'
greater than

is character ?

to K-8-&-9 if v
reduce to ink
shift ?

return if not.

range $10-$17

add 8 to give
return

paper range $18 - $1F

reduce to 02 and 03 bright codes
test if shift pressed.
return if not.

subtract 2 setting carry
to give 0 and 1 flash codes.

$0230 base address of CTL-CODES

is key '9' ?

back to K-LOOK-UP - changed to $0F, GRAPHICS.

is key '0' ?

(< $xx)

enter and symbol-shift

2="G")

JR

Z,L034A

’

back to K-LOOK-UP - changed to $0C, delete.

; for keys '0' - '7' we assign a mosaic character depending on shift.
AND $07 ; convert character to number. 0 - 7.
ADD A, $80 ; add offset - they start at $80
INC B ; destructively test for shift
RET Z ; and return if not pressed.
XOR SOF ; toggle bits becomes range $88-S$8F
RET ; return.
; now digits in 'KLC' mode
;+ K-KLC-DGT
L039D: INC B ; return with digit codes if neither
RET 7 ; shift key pressed.
BIT 5,B ; test for caps shift.
LD HL,L0260-$30 ; prepare base of table CTL-CODES.
JR NZ,L0O34A ; back to K-LOOK-UP if shift pressed.
; must have been symbol shift
SUB $10 ; for ASCII most will now be correct
; on a standard typewriter.
CP $22 ; but 'Q@' is not - see below.
JR Z,L03B2 ; forward to K-@-CHAR if so
CP $20 ; ' ' is the other one that fails
RET NZ ; return if not.
LD A, $5F ; substitute ASCII ' '
RET ; return.
;7 K-Q@-CHAR
LO3B2: LD A, $40 ; substitute ASCII '@'
RET ; return.
; The Spectrum Input character keys. One or two are abbreviated.

; From $00 Flash 0 to SFF COPY. The routine above has decoded all these.

| 00 F10

| 08 LFT

| 10 IkO

| 18 Pal

| 20 SP

| 28
;| 30

| 38

| 40

| 48

| 50

| 58

| 60 u

x X m® oo O~

P

01
09
11
19
21
29
31
39
41
49
51
59
61

F11|
RIG|
Ik1l|

Pal|
Vo

O KO H PO

02 BrO]
OA DWN |
12 Ik2|
1A Pa2|
22 "
2 %
32 2
3A
42 B
A J
52 R
5A 7
62 Db

03 Br
0B UP
13 Ik
1B Pa
23 #
2B+
33 3
3B ;
43 C
4B K
53 S
5B [
63 c

1] 04 InO| 05 Inl| O6 CAP| 07 EDT|
| OC DEL| OD ENT| OE SYM| OF GRA]
3] 14 Ik4]| 15 Ik5| 16 Iko| 17 Ik7|
3| 1C Pa4| 1D Pa5| 1E Pa6| 1F Pa7|
| 24 $ | 25 % | 26 & | 27 ' |

2¢ ,	2D -	2E	2F /
34 4	35 5	36 6	37 7
3¢ <	3D =	3E >	3F 2
44 D	45 E	46 F	47 G
4C L	4D M	4E N	4F O
54 T	55 U	56 V	57 W
5¢ \	5D]	58 ~	5F
64 d	65 e	66 f£	67 g

68 h | 69 1 | 6A j | 6B k | 6C 1 | 6D m | 6E n | 6F o |
70 p | 71 gl 72 | 73 s | 74 t | 75 u | 76 v | 77 w |
78 x | 79 y | 7TA z | 7B { | 7C | | 7D } | T7E ~ | TF (c)|
80 128 81 129| 82 130| 83 131| 84 132| 85 133| 86 134] 87 135]|
88 136| 89 137| 8A 138| 8B 139| 8C 140| 8D 141| 8E 142| 8F 143|
90 [A]l 91 [BlI 92 [C]| 93 [Dl| 94 [E]l 95 [F]| 96 [G]| 97 [H]]
98 [I1l 99 [J1Il SA [K]I| 9B [L]| S9C [M]| 9D [N]| 9E [O]| 9F [P]|
A0 [Q]| Al [R]| A2 [S]| A3 [T]| A4 [U]| A5 RND| A6 IKS$S| A7 PI |
A8 FN | A9 PNT| AA SCS$S| AB ATT| AC AT | AD TAB| AE VLS| AF COD|

|

|

|

|

|

|

|

|

|

| BO VAL| B1 LEN| B2 SIN| B3 COS| B4 TAN| B5 ASN| B6 ACS| B7 ATN|
| B8 LN | B9 EXP| BA INT| BB SQR| BC SGN| BD ABS| BE PEK| BF IN |

| CO USR| Cl ST$| C2 CHS$| C3 NOT| C4 BIN| C5 OR | C6 AND| C7 <= |

| C8 > | C9 <> | CA LIN| CB THN| CC TO | CD STP| CE DEF| CF CAT|

| DO FMT| D1 MOV| D2 ERS| D3 OPN| D4 CLO| D5 MRG| D6 VFY| D7 BEP|

| D8 CIR| D9 INK| DA PAP| DB FLA| DC BRI| DD INV| DE OVR| DF OUT|

| EO LPR| E1 LLI| E2 STP| E3 REA| E4 DAT| E5 RES| E6 NEW| E7 BDR]

| E8 CON| E9 DIM| EA REM| EB FOR| EC GTO| ED GSB| EE INP| EF LOA|

| FO LIS| F1 LET| F2 PAU| F3 NXT| F4 POK| F5 PRI| F6 PLO| F7 RUN|

| F8 SAV| F9 RAN| FA IF | FB CLS| FC DRW| FD CLR| FE RET| FF CPY|

Note that for simplicity, Sinclair have located all the control codes
below the space character.

ASCII DEL, $7F, has been made a copyright symbol.

Also $60, ''', not used in BASIC but used in other languages, has been
allocated the local currency symbol for the relevant country -

ukp in most Spectrums.

,-**********************************

;** Part 3. LOUDSPEAKER ROUTINES **

,-**********************************

Documented by Alvin Albrecht.

Outputs a square wave of given duration and frequency
to the loudspeaker.
Enter with: DE = #cycles - 1
HL = tone period as described next

The tone period is measured in T states and consists of
three parts: a coarse part (H register), a medium part

(bits 7..2 of L) and a fine part (bits 1..0 of L) which
contribute to the waveform timing as follows:

coarse medium fine
duration of low = 118 + 1024*H + 16*(L>>2) + 4* (L&0x3)
duration of hi = 118 + 1024*H + 16*(L>>2) + 4* (L&0x3)
Tp = tone period = 236 + 2048*H + 32* (L>>2) + 8* (L&0x3)
= 236 + 2048*H + 8*L = 236 + 8*HL

As an example, to output five seconds of middle C (261.624 Hz):
(a) Tone period = 1/261.624 = 3.822ms
(b) Tone period in T-States 3.822ms*fCPU = 13378
where fCPU = clock frequency of the CPU = 3.5MHz
(c) Find H and L for desired tone period:
HL = (Tp - 236) / 8 = (13378 - 236) / 8 = 1643 = 0x066B
(d) Tone duration in cycles = 5s/3.822ms = 1308 cycles
DE = 1308 - 1 = 0x051B

’
’
’

’

rr

The resulting waveform has a duty ratio of exactly 50%.

BEEPER

LO3B5: DI
timing

rr

LO3D1:

rr

LO3D2:

rs

LO3D3:

rs

LO3D4:

rr

LO3D6:

rr

LD
SRL
SRL
CPL
AND
LD
LD
LD
ADD

LD
AND
RRCA
RRCA
RRCA
OR

BE-IX+3
NOP

BE-IX+2
NOP

BE-IX+1
NOP

BE-IX+0
INC
INC

BE-H&L-LP
DEC
JR

LD
DEC
Jp

XOR
ouT
LD
LD
BIT
JR

LD
OR
JR

LD
LD
DEC
Jp

BE-AGAIN

LO3F2: LD

A,L
L
L
$03
c,A
B, $00
IX,L03D1
IX,BC
A, ($5C48)
$38
508
;(4)
7 (4)
7 (4)
B ; (4)
C ;(4)
C 7 (4)
NZ,LO3D6 ; (12
C, $3F :(7)
B 7 (4)
NZ,L0O3D6 ; (10
$10 :(7)
(SFE) ,A ; (11
B,H ;(4)
C,A ;(4)
4,A ;(8)
NZ,LO3F2 ; (12
A,D 7 (4)
E ;(4)
Z,L03F6 ; (12
A,C ;(4)
C,L ;(4)
DE ; (6)
(IX) ;(8)
C,L 7 (4)

/)

Disable Interrupts so they don't disturb

L = medium part of tone period
A = 3 - fine part of tone period
Address: BE-IX+3

IX holds address of entry into the loop
the loop will contain 0-3 NOPs, implementing
the fine part of the tone period.
BORDCR
bits 5..3 contain border colour
border colour bits moved to 2..0
to match border bits on port #FE

bit 3 set (tape output bit on port #FE)
for loud sound output

optionally executed NOPs for small
adjustments to tone period

timing loop for duration of
high or low pulse of waveform

to BE-H&L-LP

toggle output beep bit

output pulse

B = coarse part of tone period

save port #FE output byte

if new output bit is high, go
to BE-AGAIN

one cycle of waveform has completed
(low->low) . if cycle countdown = 0
go to BE-END

restore output byte for port #FE
C = medium part of tone period
decrement cycle count

do another cycle

halfway through cycle
C = medium part of tone period

INC C ; (4) ;
duration of low
JP (IX) ;(8) ; do high pulse of
;» BE-END
LO3F6: EI ; Enable Interrupts
RET ;
; THE 'BEEP' COMMAND

; BASIC interface to BEEPER subroutine.
; Invoked in BASIC with:

H BEEP dur, pitch

; where dur = duration in seconds

; pitch

; Enter with: pitch on top of calculator stack

adds 16 cycles to make duration of high

tone

of semitones above/below middle C

; duration next on calculator stack
;7 beep
LO3F8: RST 28H ;; FP-CALC
DEFB $31 ;;duplicate ; duplicate pitch
DEFB $27 ;rint ; convert to
integer
DEFB $CO ; 7 st-mem-0 ; store integer
pitch to memory 0
DEFB 503 ;;subtract ; calculate
fractional part of pitch = fp pitch - int pitch
DEFB $34 ;;stk-data ; push constant
DEFB SEC ; ;Exponent: $7C, Bytes: 4 ; constant =
0.05762265
DEFB $6C,$98,$1F,SF5 ;; ($6C,$98,$1F, SF5)
DEFB $04 ;ymultiply ; compute:
DEFB SAl ; ;stk-one ; 1 + 0.05762265 *
fraction part (pitch)
DEFB SOF ;;addition
DEFB $38 ;;end-calc ; leave on calc
stack
LD HL, $5C92 ; MEM-0: number stored here is in 16 bit integer
format (pitch)
; 0, O/FF (pos/neg), LSB, MSB, 0
; LSB/MSB is stored in two's complement
; In the following, the pitch is checked if it
is in the range -128<=p<=127
LD A, (HL) ; First byte must be zero, otherwise
AND A ; error in integer conversion
JR NZ,L046C ; to REPORT-B
INC HL ;
LD C, (HL) ; C = pos/neg flag = 0/FF
INC HL ;
LD B, (HL) ; B = LSB, two's complement
1D A,B ;
RLA ;
SBC A, A ; A = 0/FF if B is pos/neg
CP C ; must be the same as C if the pitch is
-128<=p<=127
JR NZ,L046C ; if no, error REPORT-B
INC HL ; if -128<=p<=127, MSB will be O/FF if B is

pos/neg

CP (HL) ; verify this

JR NZ,L046C ; 1if no, error REPORT-B
; now we know -128<=p<=127
LD A,B ; A = pitch + 60
ADD A, $3C ; if -60<=pitch<=67,
JP P,L0425 ; goto BE-i-0OK
JP PO, L046C ; if pitch <= 67 goto REPORT-B

; lower bound of pitch set at -60

;; BE-I-OK ; here, -60<=pitch<=127
; and A=pitch+60 -> 0<=A<=187

L0425: LD B, SFA ; 6 octaves below middle C
;; BE-OCTAVE ; A=# semitones above 5 octaves below middle C
L0427 : INC B ; increment octave
SUB $0C ; 12 semitones = one octave
JR NC, L0427 ; to BE-OCTAVE
ADD A, s0C ; A = # semitones above C (0-11)
PUSH BC ; B = octave displacement from middle C, 2's
complement: -5<=B<=10
LD HL, LO46E ; Address: semi-tone
CALL L3406 ; routine LOC-MEM
; HL = 5*A + $046E
CALL L33B4 ; routine STACK-NUM
; read FP value (freq) from semitone table

(HL) and push onto calc stack

RST 28H ;; FP-CALC
DEFB $04 ;smultiply
fraction part(pitch) stacked earlier

fractional part of pitch.
distance in Hz to the next
recorded in the semitone
fraction part of the pitch does
distance to the next note.

DEFB $38 ;;end-calc
on stack = middle frequency to generate

mult freq by 1 + 0.0576 *
thus taking into account

the number 0.0576*frequency is the
note (verify with the frequencies
table below) so that the
indeed represent a fractional

HL points to first byte of fp num

POP AF ; A = octave displacement from middle C, 2's
complement: -5<=A<=10

ADD A, (HL) ; increase exponent by A (equivalent to
multiplying by 274)

LD (HL) , A ;

RST 28H ;; FP-CALC

DEFB $CO ;7 st-mem-0 ; store frequency in memory
0

DEFB $02 ;;delete ; remove from calc stack

DEFB $31 ; ;duplicate ; duplicate duration
(seconds)

DEFB $38 ;;end-calc

CALL L1E94 ; routine FIND-INT1 ; FP duration to A

CP SOB ; 1f dur > 10 seconds,

JR NC, L0O46C ; goto REPORT-B

count

;75 The following calculation finds the tone period for HL and the cycle

;;; for DE expected in the BEEPER subroutine. From the example in the
BEEPER comments,

;7 HL
;;; DE

;;: Note
;7 below.

= ((fCPU / f)

- 236) / 8 = fCPU/8/f - 236/8 = 437500/f -29.5

= duration * frequency - 1

$43,$55,89F, $80

RST 28H
DEFB SEO
DEFB $04
duration * frequency

DEFB SEO
DEFB $34
DEFB $80
DEFB

DEFB $01
DEFB $05
DEFB $34
DEFB $35
DEFB $71
DEFB $03

tone period (HL)

= 437500 / freq

’
’

’

’
’
’
’
’
’
’
’
’
’

the different constant (30.125) used in the calculation of HL
This is probably an error.

; » FP-CALC

;get-mem-0 ; push frequency
;multiply ; resultl: #cycles =
;get-mem-0 ; push frequency
;stk-data ; push constant
;Exponent $93, Bytes: 3 ; constant = 437500
;7 ($55,39F,$80,500)

;exchange ; frequency on top
;division ; 437500 / frequency
;stk-data ; push constant

;Exponent: $85, Bytes: 1 ; constant = 30.125

;i ($71,$00,$00,500)

;subtract ; result2:
30.125

DEFB $38 ;;end-calc

CALL L1E99 ; routine FIND-INT2

PUSH BC ; BC = tone_ period (HL)

CALL L1ESS ; routine FIND-INT2, BC = f#cycles to generate

POP HL ; HL = tone period

D D,B ;

LD E,C ; DE = idcycles

LD A,D ;

OR BE ;

RET Z ; 1f duration = 0, skip BEEP and avoid 65536
cycle

; boondoggle that would occur next

DEC DE ; DE = #cycles - 1

JP LO3B5 ; to BEEPER
;+ REPORT-B
L046cC: RST 08H ; ERROR-1

DEFB S0A ; Error Report: Integer out of range
; THE 'SEMI-TONE' TABLE
; Holds frequencies corresponding to semitones in middle octave.
; To move n octaves higher or lower, frequencies are multiplied by 2”n.
;; semi-tone five byte fp decimal freqg note (middle)
LO46E: DEFB $89, $02, s$DO, s$12, $86; 261.625565290 C

DEFB $89, S$0A, $97, $60, $75; 277.182631135 C#

DEFB $89, $12, S$D5, $17, $1F; 293.664768100 D

DEFB $89, S$1B, $90, $41, $02; 311.126983881 D#

DEFB $89, $24, s$D0O, $53, S$CA; 329.627557039 E

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

$89, SZE,
$89, $38,
$89, $43,
$89, S4F,
$89, $5¢C,
$89, $69,
$89, s$76,

$9D,
SFF,
SFF,
SAT,
$00,
$14,
$F1,

$36, $B1l; 349.228231549 F
$49, S3E; 369.994422674 F#
S6A, $73; 391.995436072 G
$00, $54; 415.304697513 G#
$00, $00; 440.000000000 A
SF6, $24; 466.163761616 A#
$10, $05; 493.883301378 B

"Music is the hidden mathematical endeavour of a soul unconscious it
is calculating" - Gottfried Wilhelm Liebnitz 1646 - 1716

ekAhkhk kA Ak Ak kA kA kA kA kh kA hkhkk Ak h kA h Ak hkrhkhhrkhrk%k
’

;** Part 4.

CASSETTE HANDLING ROUTINES **

,-**

’

’

rs

These routines begin with the service routines followed by a single
command entry point.
The first of these service routines is a curiosity.

THE 'ZX81 NAME' ROUTINE

This routine fetches a filename in ZX81 format and is not used by the
cassette handling routines in this ROM.

zx81l-name

routine SCANNING to evaluate expression.
fetch system variable FLAGS.

test bit 7 - syntax, bit 6 - result type.
to REPORT-C if not string result
'Nonsense in BASIC'.

drop return address.
return early if checking syntax.

re-save return address.

routine STK-FETCH fetches string parameters.
transfer start of filename

to the HL register.

adjust to point to last character and
return if the null string.

or multiple of 256!

find last character of the filename.
and also clear carry.

LO4AA: CALL L24FB
LD A, ($5C3B)
ADD A, A
JP M, L1C8A
POP HL
RET NC
PUSH HL
CALL L2BF1
LD H,D
1D L,E
DEC C
RET M
ADD HL, BC
SET 7, (HL) invert it.
RET return.
PORT 254 (S$FE)
spk mic { border }
PORT | | | | | | |
254 | | | | | | | |
SFE | | | | | | | |
7 6 5 4 3 1 0

Save header and program/data bytes

This routine saves a section of data. It is called from SA-CTRL to save the
seventeen bytes of header data. It is also the exit route from that routine
when it is set up to save the actual data.

On entry -

HL points to start of data.

IX points to descriptor.

The accumulator is set to $00 for a header, S$FF for data.

;7 SA-BYTES
L.04C2: LD HL, LO53F ; address: SA/LD-RET
PUSH HL ; 1s pushed as common exit route.
; however there is only one non-terminal exit
; point.
LD HL, $S1F80 ; a timing constant H=$1F, L=$80
; inner and outer loop counters
; a five second lead-in is used for a header.
BIT 7,A ; test one bit of accumulator.
; (AND A ?)
JR Z,L04DO0 ; skip to SA-FLAG if a header is being saved.

’

else is data bytes and a shorter lead-in is used.

LD HL, $0C98 ; another timing value H=$0C, L=$98.
; a two second lead-in is used for the data.

;7 SA-FLAG
L04D0: EX AF,AF' ; save flag
INC DE ; increase length by one.
DEC IX ; decrease start.
DI ; disable interrupts
LD A,S$02 ; select red for border, microphone bit on.
LD B,A ; also does as an initial slight counter value.
;; SA-LEADER
1L04D8: DJNZ 1.L04D8 ; self loop to SA-LEADER for delay.
; after initial loop, count is $A4 (or S$A3)
ouT (SFE) , A ; output byte $02/$0D to tape port.
XOR SOF ; switch from RED (mic on) to CYAN (mic off).
LD B, $A4 ; hold count. also timed instruction.
DEC L ; originally $80 or $98.
; but subsequently cycles 256 times.
JR Nz,L04D8 ; back to SA-LEADER until L is zero.

’

the outer loop is counted by H

DEC B ; decrement count
DEC H ; originally twelve or thirty-one.
JP P,L04D8 ; back to SA-LEADER until H becomes S$FF

now send a sync pulse. At this stage mic is off and A holds value
for mic on.
A sync pulse is much shorter than the steady pulses of the lead-in.

LD B, $2F ; another short timed delay.

;7 SA-SYNC-1

LO4EA: DJNZ LO4EA ; self loop to SA-SYNC-1
ouT (SFE) , A ; switch to mic on and red.
LD A,S$0D ; prepare mic off - cyan
LD B, $37 ; another short timed delay.

;7 SA-SYNC-2

LO4F2: DJNZ LO4F2 ; self loop to SA-SYNC-2
ouT (SFE) , A ; output mic off, cyan border.
D BC, $3BOE ; B=S$3B time(*), C=$0E, YELLOW, MIC OFF.
EX AF,AF' ; restore saved flag

; which is 1st byte to be saved.

LD L,A ; and transfer to L.
; the initial parity is A, S$FF or $00.
JP L0507 ; JUMP forward to SA-START ->

; the mid entry point of loop.

; During the save loop a parity byte is maintained in H.
; the save loop begins by testing if reduced length is zero and if so
; the final parity byte is saved reducing count to S$FFFF.

;7 SA-LOOP
LO4FE: LD A,D ; fetch high byte
OR E ; test against low byte.
JR Z,LO50E ; forward to SA-PARITY if zero.
LD L, (IX+$00) ; load currently addressed byte to L.
;7 SA-LOOP-P
L0O505: LD A,H ; fetch parity byte.
XOR L ; exclusive or with new byte.

; —> the mid entry point of loop.

;7 SA-START

L0507: LD H,A ; put parity byte in H.
LD A,S$01 ; prepare blue, mic=on.
SCF ; set carry flag ready to rotate in.
JP L0525 ; JUMP forward to SA-8-BITS -8->
;7 SA-PARITY
LO50E: LD L,H ; transfer the running parity byte to L and
JR L0505 ; back to SA-LOOP-P

; to output that byte before quitting normally.

; The entry point to save yellow part of bit.

; A bit consists of a period with mic on and blue border followed by

; a period of mic off with yellow border.

; Note. since the DJNZ instruction does not affect flags, the zero flag is
; used to indicate which of the two passes is in effect and the carry

; maintains the state of the bit to be saved.

;; SA-BIT-2

L0511: LD A,C ; fetch 'mic on and yellow' which is
; held permanently in C.
BIT 7,B ; set the zero flag. B holds $3E.

; The entry point to save 1 entire bit. For first bit B holds $3B(*).
; Carry is set if saved bit is 1. zero is reset NZ on entry.

;7 SA-BIT-1
L0514: DJNZ L0514 ; self loop for delay to SA-BIT-1

JR NC, LO51C ; forward to SA-OUT if bit is O.

; but if bit is 1 then the mic state is held for longer.

LD B, S$42 ; set timed delay. (66 decimal)
;+ SA-SET
LO51A: DJNZ LO51A ; self loop to SA-SET

; (roughly an extra 66*13 clock cycles)

;; SA-0UT
L.051C: OUT (SFE) , A ; blue and mic on OR vyellow and mic off.
LD B, $3E ; set up delay
JR NZ,L0511 ; back to SA-BIT-2 if zero reset NZ (first pass)
; proceed when the blue and yellow bands have been output.
DEC B ; change value $3E to $3D.
XOR A ; clear carry flag (ready to rotate in).
INC A ; reset zero flag i.e. NZ.
; —8->

;; SA-8-BITS

L0525: RL L ; rotate left through carry
; C<76543210<C
JP NZ,L0514 ; JUMP back to SA-BIT-1

; until all 8 bits done.

; when the initial set carry is passed out again then a byte is complete.
DEC DE ; decrease length
INC IX ; increase byte pointer
LD B, $31 ; set up timing.
LD A, $TF ; test the space key and
IN A, (SFE) ; return to common exit (to restore border)
RRA ; 1f a space is pressed
RET NC ; return to SA/LD-RET. - - >

; now test i1if byte counter has reached SFFFF.

LD A,D ; fetch high byte

INC A ; increment.

JP NZ,LO4FE ; JUMP to SA-LOOP if more bytes.
LD B, $3B ; a final delay.

;; SA-DELAY
LO53C: DJNZ LO53C ; self loop to SA-DELAY

RET ; return - - >

; THE 'SAVE/LOAD RETURN' ROUTINE

; The address of this routine is pushed on the stack prior to any load/save
; operation and it handles normal completion with the restoration of the

; border and also abnormal termination when the break key, or to be more

; precise the space key is pressed during a tape operation.

; - - >

;; SA/LD-RET

LO53F: PUSH AF ; preserve accumulator throughout.
LD A, ($5C48) ; fetch border colour from BORDCR.
AND $38 ; mask off paper bits.

RRCA ; rotate

RRCA ; to the

RRCA ; range 0-7.

ouT (SFE) , A ; change the border colour.

LD A,S$TF ; read from port address S$T7FFE the
IN A, (SFE) ; row with the space key at outside.
RRA ; test for space key pressed.

EI ; enable interrupts

JR C,L0554 ; forward to SA/LD-END if not

;7 REPORT-Da
L0552: RST 08H ; ERROR-1
DEFB $0C ; Error Report: BREAK - CONT repeats

;; SA/LD-END
L0554 POP AF ; restore the accumulator.
RET ; return.

; Load header or block of information

; This routine is used to load bytes and on entry A is set to $00 for a

; header or to SFF for data. IX points to the start of receiving location

; and DE holds the length of bytes to be loaded. If, on entry the carry flag
; is set then data is loaded, if reset then it is verified.

;7 LD-BYTES

L0556: INC D ; reset the zero flag without disturbing carry.
EX AF,AF" ; preserve entry flags.
DEC D ; restore high byte of length.
DI ; disable interrupts
LD A, SOF ; make the border white and mic off.
ouT (SFE) , A ; output to port.
LD HL,LO53F ; Address: SA/LD-RET
PUSH HL ; 1s saved on stack as terminating routine.

; the reading of the EAR bit (D6) will always be preceded by a test of the
; space key (D0O), so store the initial post-test state.

IN A, (SFE) ; read the ear state - bit 6.

RRA ; rotate to bit 5.

AND $20 ; isolate this bit.

OR $02 ; combine with red border colour.

LD C,A ; and store initial state long-term in C.
CP A ; set the zero flag.

;» LD-BREAK
LO56B: RET NZ ; return if at any time space is pressed.

;; LD-START
L056C: CALL LOSE7 ; routine LD-EDGE-1
JR NC, L0O56B ; back to LD-BREAK with time out and no
; edge present on tape.

; but continue when a transition is found on tape.

LD HL, $0415 ; set up 16-bit outer loop counter for
; approx 1 second delay.

;; LD-WAIT

L.0574: DJNZ L.0574 ; self loop to LD-WAIT (for 256 times)
DEC HL ; decrease outer loop counter.
LD A,H ; test for
OR L ; Zero.
JR Nz,L0574 ; back to LD-WAIT, if not zero, with zero in B.
; continue after delay with H holding zero and B also.
; sample 256 edges to check that we are in the middle of a lead-in section.
CALL LO5SE3 ; routine LD-EDGE-2
JR NC, L0O56B ; back to LD-BREAK

; 1f no edges at all.

;; LD-LEADER

L0580: LD B, $9C ; set timing value.
CALL LOSE3 ; routine LD-EDGE-2
JR NC, L0O56B ; back to LD-BREAK if time-out
LD A, $Co ; two edges must be spaced apart.
CP B ; compare
JR NC, L0O56C ; back to LD-START if too close together for a

; lead-in.

INC H ; proceed to test 256 edged sample.

JR NZ, L0580 ; back to LD-LEADER while more to do.
; sample indicates we are in the middle of a two or five second lead-in.
; Now test every edge looking for the terminal sync signal.

;7 LD-SYNC

LO58F: LD B, $C9 ; initial timing value in B.
CALL LOSE7 ; routine LD-EDGE-1
JR NC, L0O56B ; back to LD-BREAK with time-out.
LD A,B ; fetch augmented timing value from B.
CP $D4 ; compare
JR NC, LO58F ; back to LD-SYNC if gap too big, that is,

; a normal lead-in edge gap.

; but a short gap will be the sync pulse.
; in which case another edge should appear before B rises to SFF

CALL LO5SE7 ; routine LD-EDGE-1
RET NC ; return with time-out.

; proceed when the sync at the end of the lead-in is found.
; We are about to load data so change the border colours.

LD A,C ; fetch long-term mask from C
XOR 503 ; and make blue/yellow.

LD C,A ; store the new long-term byte.
LD H,S$00 ; set up parity byte as zero.
LD B, $BO ; timing.

JR L05C8 ; forward to LD-MARKER

; the loop mid entry point with the alternate
; zero flag reset to indicate first byte
; 1s discarded.

; the loading loop loads each byte and is entered at the mid point.

;; LD-LOOP
LO5A9: EX AF,AF' ; restore entry flags and type in A.
JR NZ,L0O5B3 ; forward to LD-FLAG if awaiting initial flag
; which is to be discarded.
JR NC, LO5BD ; forward to LD-VERIFY if not to be loaded.
LD (IX+$00),L ; place loaded byte at memory location.
JR LO5C2 ; forward to LD-NEXT
;; LD-FLAG
LO5B3: RL C ; preserve carry (verify) flag in long-term
; state byte. Bit 7 can be lost.
XOR L ; compare type in A with first byte in L.
RET NZ ; return if no match e.g. CODE vs. DATA.

; continue when data type matches.

LD A,C ; fetch byte with stored carry
RRA ; rotate it to carry flag again
LD C,A ; restore long-term port state.
INC DE ; increment length ?°?

JR L05C4 ; forward to LD-DEC.

; but why not to location after ?

; for verification the byte read from tape is compared with that in memory.

;+ LD-VERIFY

LO5BD: LD A, (IX+$00) ; fetch byte from memory.
XOR L ; compare with that on tape
RET NZ ; return if not zero.

;; LD-NEXT

L05C2: INC IX ; increment byte pointer.

;; LD-DEC

L05C4: DEC DE ; decrement length.

EX AF,AF" ; store the flags.
LD B, $B2 ; timing.

when starting to read 8 bits the receiving byte is marked with bit at right.
when this is rotated out again then 8 bits have been read.

;+ LD-MARKER
LO5C8: LD L,s01 ; initialize as %$00000001
;; LD-8-BITS
LO5CA: CALL LO5E3 ; routine LD-EDGE-2 increments B relative to
; gap between 2 edges.
RET NC ; return with time-out.
LD A, SCB ; the comparison byte.
CP B ; compare to incremented value of B.
; 1f B is higher then bit on tape was set.
; 1f <= then bit on tape is reset.
RL L ; rotate the carry bit into L.
LD B, $BO ; reset the B timer byte.
JP NC, LO5CA ; JUMP back to LD-8-BITS

’

when carry set then marker bit has been passed out and byte is complete.

LD A,H ; fetch the running parity byte.

XOR L ; include the new byte.

LD H,A ; and store back in parity register.
LD A,D ; check length of

OR E ; expected bytes.

JR NZ,LO5A9 ; back to LD-LOOP

; while there are more.

when all bytes loaded then parity byte should be zero.

LD A,H ; fetch parity byte.
CP S01 ; set carry if zero.
RET ; return

; in no carry then error as checksum disagrees.

An edge is a transition from one mic state to another.

More specifically a change in bit 6 of value input from port S$FE.
Graphically it is a change of border colour, say, blue to yellow.

The first entry point looks for two adjacent edges. The second entry point
is used to find a single edge.

The B register holds a count, up to 256, within which the edge (or edges)
must be found. The gap between two edges will be more for a 'l' than a '0'
so the value of B denotes the state of the bit (two edges) read from tape.

;; LD-EDGE-2
LO5SE3: CALL LOSE7 ; call routine LD-EDGE-1 below.
RET NC ; return if space pressed or time-out.

; else continue and look for another adjacent
; edge which together represent a bit on the
; tape.

; this entry point is used to find a single edge from above but also
; when detecting a read-in signal on the tape.

;; LD-EDGE-1
LO5E7: LD A,S$16 ; a delay value of twenty two.

;; LD-DELAY

LO5E9: DEC A ; decrement counter
JR NZ,LO5E9 ; loop back to LD-DELAY 22 times.
AND A ; clear carry.

;; LD-SAMPLE

LOS5ED: INC B ; increment the time-out counter.
RET Z ; return with failure when S$SFF passed.
LD A, $TF ; prepare to read keyboard and EAR port
IN A, (SFE) ; row STFFE. bit 6 is EAR, bit 0 is SPACE key.
RRA ; test outer key the space. (bit 6 moves to 5)
RET NC ; return if space pressed. >>>
XOR C ; compare with initial long-term state.
AND $20 ; isolate bit 5
JR Z,LO5ED ; back to LD-SAMPLE if no edge.
; but an edge, a transition of the EAR bit, has been found so switch the
; long-term comparison byte containing both border colour and EAR bit.
LD A,C ; fetch comparison value.
CPL ; switch the bits
LD C,A ; and put back in C for long-term.
AND $07 ; isolate new colour bits.
OR $08 ; set bit 3 - MIC off.
ouT (SFE) ,A ; send to port to effect the change of colour.
SCF ; set carry flag signaling edge found within
; time allowed.
RET ; return.

; This is the single entry point for the four tape commands.

; The routine first determines in what context it has been called by examining
; the low byte of the Syntax table entry which was stored in T ADDR.

; Subtracting $EO (the present arrangement) gives a value of

; $00 - SAVE

; $01 - LOAD

; 502 - VERIFY

; 503 - MERGE

; As with all commands the address STMT-RET is on the stack.

;7 SAVE-ETC

L0605: POP AF ; discard address STMT-RET.
D A, ($5C74) ; fetch T ADDR
; Now reduce the low byte of the Syntax table entry to give command.

; Note. For ZASM use SUB S$SEO as next instruction.

L0609: SUB L1IADF + 1 % 256 ; subtract the known offset.
; (1s SUB SEO0 in standard ROM)

LD ($5C74) ,A ; and put back in T ADDR as 0,1,2, or 3

for future reference.

CALL Licsc routine EXPT-EXP checks that a string
expression follows and stacks the
parameters in run-time.

CALL L2530 routine SYNTAX-7Z

JR Z,L0652 forward to SA-DATA if checking syntax.

LD BC,$0011 presume seventeen bytes for a header.

LD A, ($5C74) fetch command from T ADDR.

AND A test for zero - SAVE.

JR Z,L0621 forward to SA-SPACE if so.

LD C,$22 else double length to thirty four.

;7 SA-SPACE

L0621: RST 30H BC-SPACES creates 17/34 bytes in workspace.
PUSH DE transfer the start of new space to
POP IX the available index register.

; ten spaces are required for

the default filename but it is simpler to

; overwrite the first file-type indicator byte as well.

LD B, SOB set counter to eleven.
LD A, $20 prepare a space.
;+ SA-BLANK
L0629: LD (DE) , A set workspace location to space.
INC DE next location.
DJNZ L0629 loop back to SA-BLANK till all eleven done.
LD (IX+$01),SFF set first byte of ten character filename
to $FF as a default to signal null string.
CALL L2BF1 routine STK-FETCH fetches the filename
parameters from the calculator stack.
length of string in BC.
start of string in DE.
LD HL, SFFF6 prepare the value minus ten.
DEC BC decrement length.
ten becomes nine, zero becomes S$SFFFF.
ADD HL, BC trial addition.
INC BC restore true length.
JR NC,L064B forward to SA-NAME if length is one to ten.

; the filename is more than ten

characters in length or the null string.

LD A, ($5C74) fetch command from T ADDR.
AND A test for zero - SAVE.
JR NZ,L0644 forward to SA-NULL if not the SAVE command.

; but no more than ten characters are allowed for SAVE.

; The first ten characters of any other command parameter are acceptable.

; Weird, but necessary, if saving to sectors.

; Note. the golden rule that there are no restriction on anything is broken.

;7 REPORT-Fa
L0642: RST 08H ; ERROR-1
DEFB SOE ; Error Report: Invalid file name

; continue with LOAD, MERGE, VERIFY and also SAVE within ten character limit.

;5 SA-NULL

L0644: LD A,B ; test length of filename
OR C ; for zero.
JR Z,L0652 ; forward to SA-DATA if so using the 255
; indicator followed by spaces.
LD BC, $000A ; else trim length to ten.

; other paths rejoin here with BC holding length in range 1 - 10.

;7 SA-NAME
L064B: PUSH IX ; push start of file descriptor.
POP HL ; and pop into HL.
INC HL ; HL now addresses first byte of filename.
EX DE, HL ; transfer destination address to DE, start
; of string in command to HL.
LDIR ; copy up to ten bytes
; if less than ten then trailing spaces follow.
; the case for the null string rejoins here.
;7 SA-DATA
L0652: RST 18H ; GET-CHAR
CP SE4 ; 1s character after filename the token 'DATA' ?
JR NZ, LO6AO ; forward to SA-SCRS$ to consider SCREENS if
; not.
; continue to consider DATA.
LD A, ($5C74) ; fetch command from T ADDR
CP $03 ; is it 'VERIFY' ?
JP Z,L1C8A ; jump forward to REPORT-C if so.

; 'Nonsense in BASIC'
; VERIFY "d" DATA is not allowed.

; continue with SAVE, LOAD, MERGE of DATA.

RST 20H ; NEXT-CHAR
CALL L28B2 ; routine LOOK-VARS searches variables area
; returning with carry reset if found or
; checking syntax.
SET 7,C ; this converts a simple string to a
; string array. The test for an array or string
; comes later.

JR NC, L0672 ; forward to SA-V-OLD if variable found.
LD HL, $0000 ; set destination to zero as not fixed.
LD A, ($5C74) ; fetch command from T ADDR

DEC A ; test for 1 - LOAD

JR Z,L0685 ; forward to SA-V-NEW with LOAD DATA.

; to load a new array.
; otherwise the variable was not found in run-time with SAVE/MERGE.
;7 REPORT-2a
L0670: RST 08H ; ERROR-1
DEFB S01 ; Error Report: Variable not found

; continue with SAVE/LOAD DATA

;; SA-V-0OLD
L0672: JP NZ,L1C8A ; to REPORT-C if not an array variable.

CALL
JR

INC
LD
LD
INC
LD
LD
INC

;7 SA-V-NEW

L0685: LD
LD
BIT
JR

INC

;7 SA-V-TYPE
LO68F: LD

;7 SA-DATA-1
L0692: EX

RST

CP
JR

RST
CALL

EX
JP

L2530
Z,10692

HL
A, (HL)
(IX+S0B) , A
HL

A, (HL)
(IX+$0C), A
HL

(IX+S0E),C
A,S$01

6,C
Z,L068F

A

(IX+$00),A

DE, HL

20H
$29
NZ,L0672

20H
L1BEE

DE, HL
L075A

or erroneously a simple string.
'Nonsense in BASIC'

routine SYNTAX-Z
forward to SA-DATA-1 if checking syntax.

step past single character variable name.
fetch low byte of length.

place in descriptor.

point to high byte.

and transfer that

to descriptor.

increase pointer within variable.

place character array name in header.
default to type numeric.

test result from look-vars.

forward to SA-V-TYPE if numeric.

set type to 2 - string array.

place type 0, 1 or 2 in descriptor.

save var pointer in DE

NEXT-CHAR

is character '")' ?

back if not to SA-V-OLD to report
'Nonsense in BASIC'

NEXT-CHAR advances character address.
routine CHECK-END errors if not end of
the statement.

bring back variables data pointer.
jump forward to SA-ALL

; the branch was here to consider a 'SCREENS', the display file.

;; SA-SCRS
LOGAO: CP
JR

LD
CP
Jp

SAA
NZ,L06C3

A, ($5C74)
$03
Z,L1C8A

’

is character the token 'SCREENS' ?
forward to SA-CODE if not.

fetch command from T ADDR
is it MERGE °?

Jjump to REPORT-C if so.
'Nonsense in BASIC'

: continue with SAVE/LOAD/VERIFY SCREENS.

RST 20H
CALL L1BEE
; continue in runtime.
LD (IX+$0B),$00
LD (IX+50C), $1B

NEXT-CHAR
routine CHECK-END errors if not at end of
statement.

set descriptor length
to $1b00 to include bitmaps and attributes.

LD HL, $4000 ; set start to display file start.
LD (IX+S0D),L ; place start in
LD (IX+SOE) ,H ; the descriptor.
JR L0710 ; forward to SA-TYPE-3
; the branch was here to consider CODE.
;7 SA-CODE
LO6C3: CP SAF ; is character the token 'CODE' ?
JR Nz,L0716 ; forward if not to SA-LINE to consider an
; auto-started BASIC program.
LD A, ($5C74) ; fetch command from T ADDR
CP 503 ; 1s it MERGE ?
JP Z,L1C8A ; Jump forward to REPORT-C if so.
; 'Nonsense in BASIC'
RST 20H ; NEXT-CHAR advances character address.
CALL 12048 ; routine PR-ST-END checks if a carriage
; return or ':' follows.
JR NZ,LO6E1l ; forward to SA-CODE-1 if there are parameters.
LD A, ($5C74) ; else fetch the command from T ADDR.
AND A ; test for zero - SAVE without a specification.
Jp Z,L1C8A ; jump to REPORT-C if so.
; 'Nonsense in BASIC'
; for LOAD/VERIFY put zero on stack to signify handle at location saved from.
CALL L1CE®6 ; routine USE-ZERO
JR LOG6FO ; forward to SA-CODE-2
; if there are more characters after CODE expect start and possibly length.
;; SA-CODE-1
LO6E1l: CALL L1C82 ; routine EXPT-1NUM checks for numeric
; expression and stacks it in run-time.
RST 18H ; GET-CHAR
CP $2C ; does a comma follow ?
JR Z,LO6F5 ; forward if so to SA-CODE-3
; else allow saved code to be loaded to a specified address.
LD A, ($5C74) ; fetch command from T ADDR.
AND A ; is the command SAVE which requires length ?
Jp Z,L1C8A ; jump to REPORT-C if so.
; 'Nonsense in BASIC'
; the command LOAD code may rejoin here with zero stacked as start.
;; SA-CODE-2
LO6F0: CALL L1CE6 ; routine USE-ZERO stacks zero for length.
JR LO6F9 ; forward to SA-CODE-4

’

; the branch was here with SAVE CODE start,

;7 SA-CODE-3

LO6F5:

RST

20H

’

NEXT-CHAR advances character address.

CALL L1C82 ; routine EXPT-1NUM checks for expression
; and stacks in run-time.
; paths converge here and nothing must follow.

;; SA-CODE-4

LO6F9: CALL L1BEE ; routine CHECK-END errors with extraneous
; characters and quits if checking syntax.

; in run-time there are two 16-bit parameters on the calculator stack.

CALL L1ES9 ; routine FIND-INT2 gets length.

LD (IX+$0B),C ; place length

LD (IX+s0C),B ; in descriptor.

CALL L1E9S9 ; routine FIND-INT2 gets start.

LD (IX+$0D),C ; place start

LD (IX+$0E),B ; 1in descriptor.

LD H,B ; transfer the

LD L,C ; start to HL also.

;7 SA-TYPE-3

L0710: LD (IX+$00),$03 ; place type 3 - code in descriptor.

JR LO75A ; forward to SA-ALL.
; the branch was here with BASIC to consider an optional auto-start line
; number.

;7 SA-LINE

L0716: CP SCA ; 1s character the token 'LINE' ?
JR Z,L0723 ; forward to SA-LINE-1 if so.
; else all possibilities have been considered and nothing must follow.
CALL L1BEE ; routine CHECK-END
; continue in run-time to save BASIC without auto-start.
LD (IX+S0E), $80 ; place high line number in descriptor to
; disable auto-start.
JR LO73A ; forward to SA-TYPE-0 to save program.
; the branch was here to consider auto-start.
;; SA-LINE-1
L0723: LD A, ($5C74) ; fetch command from T ADDR
AND A ; test for SAVE.
JP NZ,L1C8A ; Jjump forward to REPORT-C with anything else.
; 'Nonsense in BASIC'
RST 20H ; NEXT-CHAR
CALL L1C82 ; routine EXPT-1NUM checks for numeric
; expression and stacks in run-time.
CALL L1BEE ; routine CHECK-END quits if syntax path.
CALL L1E99 ; routine FIND-INT2 fetches the numeric
; expression.
LD (IX+$0D),C ; place the auto-start
LD (IX+$0E),B ; line number in the descriptor.

; Note. this isn't checked, but

is subsequently handled by the system.

; If the user typed 40000 instead of 4000 then it won't auto-start

; at line 4000, or indeed,

at all.

; continue to save program and any variables.

;; SA-TYPE-0

LO73A: LD
LD
LD
SCF

SBC

LD
LD
LD
SBC
LD
LD
EX

;; SA-ALL

LO75A: LD
AND
JP

’

; continue with LOAD, MERGE and

PUSH
LD
ADD

;; LD-LOOK-H

LO0767: PUSH
LD
XOR
SCF
CALL

POP
JR

LD
CALL

LD

LD

LD

CP

JR

LD

;; LD-TYPE

LO78A: CP
JR

; else A indicates type 0-3.

LD

(IX+$00),%00
HL, ($5C59)
DE, ($5C53)

HL, DE

(IX+$0B), L
(IX+$0C),H
HL, ($5C4B)
HL, DE

(IX+S$S0F), L
(IX+$10),H
DE, HL

A, ($5C74)
A
Z,L0970

HL
BC,$0011
IX,BC

IX
DE, $0011
A

L0556

IX
NC, L0767

A, SFE
L1601

(IY+$52),3503
C, $80

A, (IX+$00)
(IX-$11)

NZ,L078A

C,$F6

$04
NC, L0767

DE, LOSCO

’

’

place type zero - program in descriptor.
fetch E LINE to HL.

fetch PROG to DE.

set carry flag to calculate from end of
variables E LINE -1.

subtract to give total length.

place total length

in descriptor.

load HL from system variable VARS
subtract to give program length.
place length of program

in the descriptor.

start to HL, length to DE.

fetch command from T ADDR
test for zero - SAVE.
Jjump forward to SA-CONTRL with SAVE ->

VERIFY.

save start.
prepare to add seventeen
to point IX at second descriptor.

save IX

seventeen bytes

reset zero flag

set carry flag

routine LD-BYTES loads a header from tape
to second descriptor.

restore IX.

loop back to LD-LOOK-H until header found.

select system channel 'S'
routine CHAN-OPEN opens it.

set SCR CT to 3 lines.

C has bit 7 set to indicate type mismatch as

a default startpoint.

fetch loaded header type to A

compare with expected type.

forward to LD-TYPE with mis-match.

set C to minus ten - will count characters

up to zero.

check if type in acceptable range 0 - 3.
back to LD-LOOK-H with 4 and over.

address base of last 4 tape messages

PUSH
CALL

POP

PUSH
POP
LD
ADD
LD

LD
INC
JR

; but if it is the wildcard, then add ten to C which is minus ten for a type
; match or -128 for a type mismatch. Although characters have to be counted

BC
LOCOA

BC

IX
DE

HL, $FFFO
HL, DE

B, $0A

A, (HL)
A
NZ,LO7A6

save BC

routine PO-MSG outputs relevant message.
Note. all messages have a leading newline.
restore BC

transfer IX,

the 2nd descriptor, to DE.

prepare minus seventeen.

add to point HL to 1lst descriptor.

the count will be ten characters for the
filename.

fetch first character and test for
value 255.
forward to LD-NAME if not the wildcard.

; bit 7 of C will not alter from state set here.

LD
ADD
LD

14

14

QPP
> oW Q

4

’
’

’

transfer $F6 or $80 to A
add $0A
place result, zero or -118, in C.

; At this point we have either a type mismatch, a wildcard match or ten
; characters to be counted. The characters must be shown on the screen.

;; LD-NAME
LO7A6: INC
LD
CP
INC
JR

INC
;; LD-CH-PR

LO7AD: RST
DJINZ

; if ten characters matched and

DE
A, (DE)
(HL)

HL
NZ,LO7AD

C

10H
LO7A6

; now hold zero.

BIT
JR

7,C
NZ,L0767

’

’

address next input character
fetch character

compare to expected

address next expected character
forward to LD-CH-PR with mismatch

increment matched character count

PRINT-A prints character
loop back to LD-NAME for ten characters.
the types previously matched then C will

test if all matched
back to LD-LOOK-H if not

; else print a terminal carriage return.

LD
RST

A,$0D
10H

’

’

prepare carriage return.
PRINT-A outputs it.

; The various control routines for LOAD, VERIFY and MERGE are executed
; during the one-second gap following the header on tape.

POP
LD
CP
JR

; type is a program or an array.

LD
DEC
JP

HL
A, (IX+$00)
$03
Z,L07CB

A, ($5C74)
A
Z,L10808

restore xx

fetch incoming type

compare with CODE

forward to VR-CONTROL if it is CODE.

fetch command from T ADDR
was it LOAD ?
JUMP forward to LD-CONTRL if so to

’

’
’
’

’

rr

rs

LO7E9:

rs

LO7F4:

rs

L0800:

CP
JPp

’

$02 ;
Z,L08B6 ;

load BASIC or variables.

was command MERGE °?
jump forward to ME-CONTRL if so.

else continue into VERIFY control routine to verify.

'VERIFY CONTROL' ROUTINE

THE

There are two branches to this routine.
1) From above to verify a program or array
2) from earlier with no carry to load or verify code.

VR-CONTROL
LO7CB:

PUSH
LD
LD
LD
LD
LD
OR
JR

as opposed to,

SBC
JR

JR

a length on

LD
CP
JR

VR-CONT-1
POP
LD
OR
JR

LD
LD

VR-CONT-2
PUSH
POP
LD
CP
SCF
JR

AND

VR-CONT-3
LD

HL ;
IX-$06)
IX-$05) ;
)
)

L, (

H, (

E, (IX+$0B
D, (IX+$0C
A, H

L

A

,LO7E9 ;

say, LOAD 'x'
HL, DE ;
C,L0806 ;
Z,LOT7E9 ;

tape shorter than

A, (IX+500) ;
$03 ;
NZ,L0806 ;
HL ;
A,H ;
L ;
NZ,L07F4 ;
L, (IX+$0D) ;
H, (IX+$0E) ;
HL ;
IX ;
A, ($5C74) ;
$02 ;
NZ, L0800 ;
A ;
A, SFF ;

data.
old data

save pointer to
fetch length of
to HL.
fetch
to DE.
check length of
for zero.
forward to VR-CONT-1 if length unspecified
e.g. LOAD "x" CODE

length of new data

old

CODE 32768,300.

subtract the two lengths.

forward to REPORT-R if the length on tape is
larger than that specified in command.

'Tape loading error'

forward to VR-CONT-1 if lengths match.
expected is not allowed for CODE

else fetch type from tape.
is it CODE ?

forward to REPORT-R if so
'Tape loading error'

pop pointer to data

test for zero

e.g. LOAD 'x' CODE

forward to VR-CONT-2 if destination specified.

else use the destination in the header
and load code at address saved from.

push pointer to start of data block.
transfer to IX.

fetch reduced command from T ADDR
is it VERIFY ?

prepare a set carry flag

skip to VR-CONT-3 if not

clear carry flag for VERIFY so that
data is not loaded.

signal data block to be loaded

; This routine is called from 3 places other than above to load a data block.
; In all cases the accumulator is first set to SFF so the routine could be
; called at the previous instruction.

;5 LD-BLOCK
L..0802: CALL L0556 ; routine LD-BYTES
RET C ; return if successful.

;7 REPORT-R
L0806: RST 08H ; ERROR-1
DEFB S1A ; Error Report: Tape loading error

; THE 'LOAD CONTROL' ROUTINE

; This branch is taken when the command is LOAD with type 0, 1 or 2.

;; LD-CONTRL

.0808: LD E, (IX+S$S0B) ; fetch length of found data block
LD D, (IX+350C) ; from 2nd descriptor.
PUSH HL ; save destination
LD A,H ; test for zero
OR L ;
JR NZ,L0819 ; forward if not to LD-CONT-1
INC DE ; increase length
INC DE ; for letter name
INC DE ; and 16-bit length
EX DE, HL ; length to HL,
JR L0825 ; forward to LD-CONT-2

;; LD-CONT-1

L.0819: LD L, (IX-$06) ; fetch length from
LD H, (IX-$05) ; the first header.
EX DE, HL ;
SCF ; set carry flag
SBC HL,DE ;
JR C,L082E ; to LD-DATA

;7 LD-CONT-2

L0825: LD DE, $0005 ; allow overhead of five bytes.
ADD HL, DE ; add in the difference in data lengths.
LD B, H ; transfer to
LD C,L ; the BC register pair
CALL L1F05 ; routine TEST-ROOM fails if not enough room.

;+ LD-DATA

L082E: POP HL ; pop destination
LD A, (IX+500) ; fetch type 0, 1 or 2.
AND A ; test for program and variables.
JR Z,L0873 ; forward if so to LD-PROG
; the type is a numeric or string array.
LD A,H ; test the destination for zero
OR L ; indicating variable does not already exist.
JR Z,L084cC ; forward if so to LD-DATA-1

; else the destination is the

DEC
LD
DEC
LD
DEC
INC
INC
INC
LD
CALL

LD

;; LD-DATA-1

L084C:

LD
DEC
LD
LD
PUSH
INC
INC
INC
LD
PUSH

CALL

INC

POP
LD
POP
INC
LD
INC
LD
INC
PUSH
POP
SCF
LD
Jp

HL

B, (HL)

HL

C, (HL)

HL

BC

BC

BC
($5C5F) , IX
L19ES8

IX, ($5C5F)

HL, ($5C59)
HL
C, (IX+$0B)
B, (IX+$0C)
BC
BC
BC
BC
A, (IX-5$03)
AF

L1655

HL

AF
(HL) , A
DE
HL
(HL) ,E
HL
(HL) ,D
HL
HL
IX

A, SFF
L0802

first dimension within the array structure

address high byte of total length

transfer to B.

address low byte of total length.

transfer to C.

point to letter of variable.

adjust length to

include these

three bytes also.

save header pointer in X PTR.

routine RECLAIM-2 reclaims the old variable
sliding workspace including the two headers
downwards.

reload IX from X PTR which will have been
adjusted down by POINTERS routine.

address E_LINE

now point to the $80 variables end-marker.
fetch new data length

from 2nd header.

* save it.

adjust the

length to include

letter name and total length.

fetch letter name from old header.
preserve accumulator though not corrupted.

routine MAKE-ROOM creates space for variable
sliding workspace up. IX no longer addresses
anywhere meaningful.

point to first new location.

fetch back the letter name.
place in first new location.
* pop the data length.
address 2nd location

store low byte of length.
address next.

store high byte.

address start of data.
transfer address

to IX register pair.

set carry flag indicating load not verify.
signal data not header.

JUMP back to LD-BLOCK

; the branch is here when a program as opposed to an array is to be loaded.

;; LD-PROG

L.0873:

EX
LD
DEC
LD
LD
LD
PUSH

CALL

POP

DE, HL
HL, ($5C59)
HL
($5C5F) , IX
C, (IX+S0B)
B, (IX+50C)
BC

L19E5

BC

transfer dest to DE.

address E_LINE

now variables end-marker.

place the IX header pointer in X PTR
get new length

from 2nd header

and save it.

routine RECLAIM-1 reclaims program and vars.
adjusting X-PTR.

restore new length.

PUSH HL ; * save start

PUSH BC ; ** and length.

CALL L1655 ; routine MAKE-ROOM creates the space.

LD IX, ($5C5F) ; reload IX from adjusted X PTR

INC HL ; point to start of new area.

LD C, (IX+S0F) ; fetch length of BASIC on tape

LD B, (IX+$10) ; from 2nd descriptor

ADD HL, BC ; add to address the start of variables.

LD ($5C4B) , HL ; set system variable VARS

LD H, (IX+S$0E) ; fetch high byte of autostart line number.
LD A,H ; transfer to A

AND SCO ; test if greater than $3F.

JR N7, LO8AD ; forward to LD-PROG-1 if so with no autostart.
LD L, (IX+$0D) ; else fetch the low byte.

LD ($5C42),HL ; set system variable to line number NEWPPC
LD (IY+s0Aa),3%00 ; set statement NSPPC to zero.

;7 LD-PROG-1

LO8AD: POP DE ; ** pop the length
POP IX ; * and start.
SCF ; set carry flag
LD A, SFF ; signal data as opposed to a header.
JP L0802 ; jump back to LD-BLOCK

; THE 'MERGE CONTROL' ROUTINE

; the branch was here to merge a program and its variables or an array.

;; ME-CONTRL

LO08B6: LD C, (IX+$0B) ; fetch length

LD B, (IX+$S0C) ; of data block on tape.

PUSH BC ; save 1it.

INC BC ; one for the pot.

RST 30H ; BC-SPACES creates room in workspace.

; HL addresses last new location.

LD (HL), $80 ; place end-marker at end.

EX DE, HL ; transfer first location to HL.

POP DE ; restore length to DE.

PUSH HL ; save start.

PUSH HL ; and transfer it

POP IX ; to IX register.

SCF ; set carry flag to load data on tape.

LD A, SFF ; signal data not a header.

CALL L0802 ; routine LD-BLOCK loads to workspace.

POP HL ; restore first location in workspace to HL.
X08CE LD DE, ($5C53) ; set DE from system variable PROG.
; now enter a loop to merge the data block in workspace with the program and
; variables.

;; ME-NEW-LP

L08D2: LD A, (HL) ; fetch next byte from workspace.
AND $CO ; compare with $3F.
JR NZ,LO8FO ; forward to ME-VAR-LP if a variable or

; end-marker.

; continue when HL addresses a BASIC line number.

;; ME-OLD-LP
L08D7: LD A, (DE) ; fetch high byte from program area.
INC DE ; bump prog address.
CP (HL) ; compare with that in workspace.
INC HL ; bump workspace address.
JR NZ, LO8DF ; forward to ME-OLD-L1 if high bytes don't match
LD A, (DE) ; fetch the low byte of program line number.
CP (HL) ; compare with that in workspace.
;; ME-OLD-L1
LO8DF: DEC DE ; point to start of
DEC HL ; respective lines again.
JR NC, LO8SBEB ; forward to ME-NEW-L2 if line number in
; workspace is less than or equal to current
; program line as has to be added to program.
PUSH HL ; else save workspace pointer.
EX DE, HL ; transfer prog pointer to HL
CALL L19B8 ; routine NEXT-ONE finds next line in DE.
POP HL ; restore workspace pointer
JR L08D7 ; back to ME-OLD-LP until destination position

; 1n program area found.

; the branch was here with an insertion or replacement point.

;7 ME-NEW-L2
LO8EB: CALL L.092C ; routine ME-ENTER enters the line
JR L08D2 ; loop back to ME-NEW-LP.

’

; the branch was here when the location in workspace held a variable.

;; ME-VAR-LP
LO8FO: LD A, (HL) ; fetch first byte of workspace variable.

LD C,A ; copy to C also.

CP $80 ; 1s 1t the end-marker ?

RET Z ; return if so as complete. >>>>>

PUSH HL ; save workspace area pointer.

LD HL, ($5C4B) ; load HL with VARS - start of variables area.
;; ME-OLD-VP
LO8F9: LD A, (HL) ; fetch first byte.

CP $80 ; is it the end-marker ?

JR Z,L0923 ; forward if so to ME-VAR-L2 to add

; variable at end of variables area.
Cp C ; compare with variable in workspace area.
JR Z,L0909 ; forward to ME-OLD-V2 if a match to replace.

; else entire variables area has to be searched.

;; ME-OLD-V1
1L.0901: PUSH BC ; save character in C.
CALL L19B8 ; routine NEXT-ONE gets following variable
; address in DE.
POP BC ; restore character in C
EX DE, HL ; transfer next address to HL.

JR LO8F9 ; loop back to ME-OLD-VP

; the branch was here when first characters of name matched.

;; ME-OLD-V2

L0909: AND SEOQ ; keep bits 11100000
CP SA0 ; compare 10100000 - a long-named variable.
JR NzZ,L0921 ; forward to ME-VAR-L1 if just one-character.
; but long-named variables have to be matched character by character.
POP DE ; fetch workspace 1lst character pointer
PUSH DE ; and save it on the stack again.
PUSH HL ; save variables area pointer on stack.

;; ME-OLD-V3

L0912: INC HL ; address next character in vars area.
INC DE ; address next character in workspace area.
LD A, (DE) ; fetch workspace character.
CP (HL) ; compare to variables character.
JR NZ,LO91E ; forward to ME-OLD-V4 with a mismatch.
RLA ; test if the terminal inverted character.
JR NC, L0912 ; loop back to ME-OLD-V3 if more to test.

; otherwise the long name matches in its entirety.
POP HL ; restore pointer to first character of variable
JR L0921 ; forward to ME-VAR-L1

; the branch is here when two characters don't match

;; ME-OLD-V4

LO91E: POP HL ; restore the prog/vars pointer.
JR L0901 ; back to ME-OLD-V1 to resume search.
; branch here when variable is to replace an existing one

;; ME-VAR-L1
L0921: LD A, SFF ; indicate a replacement.

; this entry point is when A holds $80 indicating a new variable.

;7 ME-VAR-L2

L0923: POP DE ; pop workspace pointer.
EX DE, HL ; now make HL workspace pointer, DE vars pointer
INC A ; zero flag set if replacement.
SCF ; set carry flag indicating a variable not a
; program line.
CALL L09%2cC ; routine ME-ENTER copies variable in.
JR LO8FO ; loop back to ME-VAR-LP

; Merge a Line or Variable

; A BASIC line or variable is inserted at the current point. If the line
; number or variable names match (zero flag set) then a replacement takes
; place.

;; ME-ENTER
L092C: JR NZ,LO93E ; forward to ME-ENT-1 for insertion only.

’

but the program line or variable matches so old one is reclaimed.

EX
LD
EX
CALL

CALL
EX
LD
EX

now the new

AF, AR’ ;
($5C5F) , HL ;
DE, HL ;
L.19B8 ;
L19ES8 ;
DE, HL ;
HL, ($5C5F) ;
AF, AR ;

line or variable

save flag??

preserve workspace pointer in dynamic X PTR
transfer program dest pointer to HL.

routine NEXT-ONE finds following location

in program or variables area.

routine RECLAIM-2 reclaims the space between.
transfer program dest pointer back to DE.
fetch adjusted workspace pointer from X PTR
restore flags.

is entered.

;; ME-ENT-1
LO93E: EX AF,AF" ; save or re-save flags.
PUSH DE ; save dest pointer in prog/vars area.
CALL L19B8 ; routine NEXT-ONE finds next in workspace.
; gets next in DE, difference in BC.
; prev addr in HL
LD ($5C5F) , HL ; store pointer in X PTR
LD HL, ($5C53) ; load HL from system variable PROG
EX (SP) ,HL ; swap with prog/vars pointer on stack.
PUSH BC ; ** save length of new program line/variable.
EX AF,AF" ; fetch flags back.
JR C,L0955 ; skip to ME-ENT-2 if wvariable
DEC HL ; address location before pointer
CALL L1655 ; routine MAKE-ROOM creates room for BASIC line
INC HL ; address next.
JR L0958 ; forward to ME-ENT-3
;; ME-ENT-2
L0955: CALL L1655 ; routine MAKE-ROOM creates room for variable.
;; ME-ENT-3
L0958: INC HL ; address next?
POP BC ; ** pop length
POP DE ; * pop value for PROG which may have been
; altered by POINTERS if first line.
LD ($5C53),DE ; set PROG to original value.
LD DE, ($5C5F) ; fetch adjusted workspace pointer from X PTR
PUSH BC ; save length
PUSH DE ; and workspace pointer
EX DE, HL ; make workspace pointer source, prog/vars
; pointer the destination
LDIR ; copy bytes of line or variable into new area.
POP HL ; restore workspace pointer.
POP BC ; restore length.
PUSH DE ; save new prog/vars pointer.
CALL L19E8 ; routine RECLAIM-2 reclaims the space used
; by the line or variable in workspace block
; as no longer required and space could be
; useful for adding more lines.
POP DE ; restore the prog/vars pointer
RET ; return.
; THE 'SAVE CONTROL' ROUTINE

; A branch from the main SAVE-ETC routine at SAVE-ALL.

rr

L0970:

rr

L0O991:

First the header data is saved. Then after a wait of 1 second

the data

HL points to start of data.

itself is saved.

IX points to start of descriptor.

SA-CONTRL
PUSH

LD
CALL

XOR
LD
CALL
SET
CALL
PUSH
LD
XOR
CALL
POP
LD
SA-1-SEC
HALT
DJINZ

LD
LD

LD

POP
JP

HL

A, SFD
L1601

A
DE, L0O9A1
LOCOA

5, (IY+$02)
L15D4

IX

DE, $0011
A

L04C2

IX

B, $32

L0991

E, (IX+$0B)
D, (IX+$0C)

A, SFF

IX
L04c2

Arrangement of two headers in
Originally IX addresses first

when sav

OLD
HEADER

ing.

NEW

HEADER
IX+500
IX+$01
IX+$02
IX+S03
IX+$04
IX+$05
IX+$06
IX+S$07
IX+$08
IX+S09
IX+S0A X
IX+S$S0B
IX+s0C
IX+S$0D
IX+S0E

PROG

XXM X X X X X X X O

DX M X K K X X X X X P
P 0

o))
|
N

save start of data
select system channel 'S'
routine CHAN-OPEN

clear to address table directly
address: tape-msgs

routine PO-MSG -

'Start tape then press any key.'

TV_FLAG
clearing
routine WAIT-KEY

- Signal lower screen requires

save pointer to descriptor.

there are seventeen bytes.

signal a header.

routine SA-BYTES

restore descriptor pointer.

wait for a second - 50 interrupts.
wait for interrupt

back to SA-1-SEC until pause complete.

fetch length of bytes from the
descriptor.

signal data bytes.
retrieve pointer to start

jump back to SA-BYTES

workspace.
location and only one header is required

A DATA CODE
chr NOTES
2 3 Type
X X F (SFF if filename is null).
X X i
X X 1
X X e
X X n
X b4 a
X X m
X X e
X X
X X (terminal spaces).
1o 1o Total
hi hi Length of datablock.
- Start Various
a-z addr ($80 if no autostart).

; IX-$02 IX+SOF lo - - - Length of Program
; IX-501 1IX+$10 hi - - - only i.e. without variables.

; Canned cassette messages

; The last-character-inverted Cassette messages.
; Starts with normal initial step-over byte.

;; tape-msgs

LO9A1: DEFB $80

DEFM "Start tape, then press any key"
L09CO: DEFB '.'+580

DEFB $0D

DEFM "Program:"

DEFB ' '4+580

DEFB $0D

DEFM "Number array:"

DEFB ' '4+3580

DEFB $S0D

DEFM "Character array:"

DEFB ' '+580

DEFB S0D

DEFM "Bytes:"

DEFB ' '+580

,-**

;** Part 5. SCREEN AND PRINTER HANDLING ROUTINES **

,-**

; THE 'PRINT OUTPUT' ROUTINE

; This is the routine most often used by the RST 10 restart although the
; subroutine is on two occasions called directly when it is known that
; output will definitely be to the lower screen.

;7 PRINT-OUT

LO9F4: CALL LOBO3 ; routine PO-FETCH fetches print position

; to HL register pair.

CP $20 ; 1s character a space or higher ?

JP NC, LOADY ; Jjump forward to PO-ABLE if so.

CP $06 ; is character in range 00-05 ?

JR C,LOAGY ; to PO-QUEST to print '?' if so.

CP $18 ; 1s character in range 24d - 31d ?

JR NC, LOAGOY ; to PO-QUEST to also print '?' if so.

LD HL,LOAl1ll - 6 ; address OAOB - the base address of control
; character table - where zero would be.

LD E,A ; control character 06 - 23d

LD D, $00 ; is transferred to DE.

ADD HL, DE ; index into table.

LD E, (HL) ; fetch the offset to routine.

ADD HL, DE ; add to make HL the address.

PUSH HL ; push the address.

JP LOBO3 ; Jump forward to PO-FETCH,

; as the screen/printer position has been
; disturbed, and then indirectly to the PO-STORE
; routine on stack.

; THE 'CONTROL CHARACTER' TABLE

; For control characters in the range 6 - 23d the following table
; is indexed to provide an offset to the handling routine that
; follows the table.

;; ctlchrtab

LOAll: DEFB LOASF - $; 06d offset $4E to Address: PO-COMMA
DEFB LOAGYS - S ; 07d offset $57 to Address: PO-QUEST
DEFB LOA23 - S ; 08d offset $10 to Address: PO-BACK-1
DEFB LOA3D - $; 09d offset $29 to Address: PO-RIGHT
DEFB LOAGYS - S ; 10d offset $54 to Address: PO-QUEST
DEFB LOAGYS - S ; 11d offset $53 to Address: PO-QUEST
DEFB LOAGYS - $; 12d offset $52 to Address: PO-QUEST
DEFB LOA4F - $; 13d offset $37 to Address: PO-ENTER
DEFB LOAGYS - S ; 14d offset $50 to Address: PO-QUEST
DEFB LOAGY9 - S ; 15d offset $4F to Address: PO-QUEST
DEFB LOA7A - S ; lod offset $5F to Address: PO-1-OPER
DEFB LOA7A - S ; 17d offset S$5E to Address: PO-1-OPER
DEFB LOA7A - S ; 18d offset $5D to Address: PO-1-OPER
DEFB LOA7A - S ; 19d offset $5C to Address: PO-1-OPER
DEFB LOA7A - S ; 20d offset $5B to Address: PO-1-OPER
DEFB LOA7A - S ; 21d offset $5A to Address: PO-1-OPER
DEFB LOA75 - S ; 22d offset $54 to Address: PO-2-OPER
DEFB LOA75 - $; 23d offset $53 to Address: PO-2-OPER

; THE 'CURSOR LEFT' ROUTINE

; Backspace and up a line if that action is from the left of screen.
; For ZX printer backspace up to first column but not beyond.

;; PO-BACK-1

LOA23: INC C ; move left one column.
LD A, $22 ; value $21 is leftmost column.
CP C ; have we passed ?
JR NZ,LOA3A ; to PO-BACK-3 if not and store new position.
BIT 1, (IY+S$01) ; test FLAGS - is printer in use ?
JR NZ, LOA38 ; to PO-BACK-2 if so, as we are unable to

; backspace from the leftmost position.

INC B ; move up one screen line
LD C,$02 ; the rightmost column position.
LD A,S$18 ; Note. This should be $19
; credit. Dr. Frank O'Hara, 1982
CP B ; has position moved past top of screen ?
JR NZ, LOA3A ; to PO-BACK-3 if not and store new position.
DEC B ; else back to $18.
;7 PO-BACK-2
LOA38: LD C,$21 ; the leftmost column position.

;; PO-BACK-3
LOA3A: JP LODD9 ; to CL-SET and PO-STORE to save new

; position in system variables.

; THE 'CURSOR RIGHT' ROUTINE

; This moves the print position to the right leaving a trail in the
; current background colour.

; "However the programmer has failed to store the new print position
; so CHRS 9 will only work if the next print position is at a newly

; defined place.

; e.g. PRINT PAPER 2; CHRS$ 9; AT 4,0;

; does work but is not very helpful"

; - Dr. Ian Logan, Understanding Your Spectrum, 1982.

;; PO-RIGHT

LOA3D: LD A, (8$5C91) ; fetch P _FLAG value
PUSH AF ; and save it on stack.
LD (IY+$57),5%01 ; temporarily set P_FLAG 'OVER 1'.
LD A, $20 ; prepare a space.
CALL LOB65 ; routine PO-CHAR to print it.

; Note. could be PO-ABLE which would update
; the column position.

POP AF ; restore the permanent flag.
LD ($5C91) ,A ; and restore system variable P _FLAG
RET ; return without updating column position

; Perform carriage return

; A carriage return is 'printed' to screen or printer buffer.

;; PO-ENTER
LOA4F: BIT 1, (IY+S$01) ; test FLAGS - is printer in use ?
JP NZ, LOECD ; to COPY-BUFF if so, to flush buffer and reset
; the print position.

LD C,$21 ; the leftmost column position.

CALL LOC55 ; routine PO-SCR handles any scrolling required.
DEC B ; to next screen line.

JP LODDY ; jump forward to CL-SET to store new position.

; Print comma

; The comma control character. The 32 column screen has two 16 character
; tabstops. The routine is only reached via the control character table.

;; PO-COMMA

LOASF: CALL LOBO3 ; routine PO-FETCH - seems unnecessary.
LD A,C ; the column position. $21-$01
DEC A ; move right. $20-500
DEC A ; and again $1F-$00 or S$FF if trailing
AND $10 ; will be $00 or $10.
JR LOAC3 ; forward to PO-FILL

; Print question mark

; This routine prints a question mark which is commonly
; used to print an unassigned control character in range 0-31d.

; there are a surprising number yet to be assigned.

;; PO-QUEST
LOAG69: LD A, $3F ; prepare the character '?'.
JR LOADS ; forward to PO-ABLE.

; Certain control characters are followed by 1 or 2 operands.

; The entry points from control character table are PO-2-OPER and PO-1-OPER.
; The routines alter the output address of the current channel so that

; subsequent RST $10 instructions take the appropriate action

; before finally resetting the output address back to PRINT-OUT.

;; PO-TV-2

LOA6D: LD DE, LOA87 ; address: PO-CONT will be next output routine
LD ($5COF) , A ; store first operand in TVDATA-hi
JR LOA8O ; forward to PO-CHANGE >>

; —> This initial entry point deals with two operands - AT or TAB.
;; PO-2-0OPER

LOA75: LD DE, LOAG6D ; address: PO-TV-2 will be next output routine
JR LOA7D ; forward to PO-TV-1

; —> This initial entry point deals with one operand INK to OVER.

;; PO-1-OPER

LOA7A: LD DE, LOA87 ; address: PO-CONT will be next output routine
;; PO-TV-1
LOA7D: LD ($5COE) , A ; store control code in TVDATA-lo
;; PO-CHANGE
LOA80: LD HL, ($5C51) ; use CURCHL to find current output channel.
LD (HL) , E ; make it
INC HL ; the supplied
LD (HL) , D ; address from DE.
RET ; return.
;; PO-CONT
LOA87: LD DE, LOSF4 ; Address: PRINT-OUT
CALL LOAS8O ; routine PO-CHANGE to restore normal channel.
LD HL, ($5COE) ; TVDATA gives control code and possible
; subsequent character
LD D,A ; save current character
LD A, L the stored control code
CP $Slo was it INK to OVER (1 operand) °?
JP C,L2211 to CO-TEMP-5
JR NZ, LOAC2 to PO-TAB if not 22d i.e. 23d TAB.
else must have been 22d AT.
LD B,H line to H (0-23d)
LD C,D column to C (0-31d)
LD A, $1F the value 31d
SUB C reverse the column number.

rs

JR

ADD
LD

BIT
JR

LD
SUB

PO-AT-ERR

LOAAC: JP

rs

INC
LD
INC
BIT
Jp

CP
Jp

PO-AT-SET

LOABF: JP

rr

C, LOAAC
A, $02
C,A

1, (IY+$01)
NZ, LOABF

A,S16
B

C,L1E9F

;A

W w >

0, (IY+S$02)
Nz, LOC55

(IY+$31)
C,L0C86

LODD9

to PO-AT-ERR if C was greater than 31d.

transform to system range $02-521
and place in column register.

test FLAGS - 1is printer in use ?
to PO-AT-SET as line can be ignored.

22 decimal
subtract line number to reverse
0 - 22 becomes 22 - 0.

to REPORT-B if higher than 22 decimal
Integer out of range.

adjust for system range $01-S517
place in line register

adjust to system range $02-$18
TV_FLAG - Lower screen in use °?
exit to PO-SCR to test for scrolling

Compare against DF SZ

to REPORT-5 if too low
Out of screen.

print position is valid so exit via CL-SET

Continue here when dealing with TAB.

Note. In BASIC,

TAB is followed by a 16-bit number and was initially

designed to work with any output device.

PO-TAB

LOAC2: LD

rs

PO-FILL

LOAC3: CALL

rr

ADD
DEC
AND
RET

LD
SET

PO-SPACE

LOADO: LD

CALL

DEC
JR

RET

A, H

transfer parameter to A
Losing current character -
High byte of TAB parameter.

routine PO-FETCH, HL-addr, BC=line/column.
column 1 (right), $21 (left)

add operand to current column

range 0 - 31+

make range 0 - 31d

return if result zero

Counter to D

update FLAGS - signal suppress leading space.

space character.

routine PO-SAVE prints the character
using alternate set (normal output routine)

decrement counter.
to PO-SPACE until done

return

; Printable character (s)

; This routine prints printable characters and continues into

; the position store routine

;; PO-ABLE
LOAD9: CALL LOB24 ;

’

; THE 'POSITION STORE' ROUTINE

routine PO-ANY
and continue into position store routine.

; This routine updates the system variables associated with the main screen,
; the lower screen/input buffer or the ZX printer.

;; PO-STORE

LOADC: BIT 1, (IY+3$01) ; Test FLAGS - is printer in use ?
JR NZ, LOAFC ; Forward, if so, to PO-ST-PR
BIT 0, (IY+S$S02) ; Test TV_FLAG - is lower screen in use ?
JR NZ, LOAFO ; Forward, if so, to PO-ST-E
; This section deals with the upper screen.
LD ($5C88),BC ; Update S POSN - line/column upper screen
LD ($5C84) ,HL ; Update DF _CC - upper display file address
RET ; Return.
; This section deals with the lower screen.
;; PO-ST-E
LOAFO: LD ($5C8A) ,BC ; Update SPOSNL line/column lower screen
LD ($5C82),BC ; Update ECHO E line/column input buffer
LD ($5C86) , HL ; Update DFCCL lower screen memory address
RET ; Return.
; This section deals with the ZX Printer.
;; PO-ST-PR
LOAFC: LD (IY+$45),C ; Update P_POSN column position printer
LD ($5C80) , HL ; Update PR CC - full printer buffer memory
; address
RET ; Return.
; Note. that any values stored in location 23681 will be overwritten with
; the value 91 decimal.

; Credit April 1983, Dilwyn Jones.

; THE 'POSITION FETCH' ROUTINE

"Delving Deeper into your ZX Spectrum".

; This routine fetches the line/column and display file address of the upper
; and lower screen or, if the printer is in use, the column position and

; absolute memory address.

; Note. that PR-CC-hi (23681) is used by this routine and if, in accordance
; with the manual (that says this is unused), the location has been used for
; other purposes, then subsequent output to the printer buffer could corrupt

; a 256-byte section of memory.

;; PO-FETCH

speed.

LOB0O3: BIT 1, (IY+S$01) ; Test FLAGS - is printer in use ?
JR NZ,LOB1D ; Forward, if so, to PO-F-PR

; assume upper screen in use and thus optimize for path that requires
1D BC, ($5C88) ; Fetch line/column from S POSN
LD HL, ($5C84) ; Fetch DF CC display file address
BIT 0, (IY+S$S02) ; Test TV_FLAG - lower screen in use ?
RET Z ; Return if upper screen in use.

; Overwrite registers with values for lower screen.
LD BC, ($5C8A) ; Fetch line/column from SPOSNL
LD HL, ($5C86) ; Fetch display file address from DFCCL
RET ; Return.

; This section deals with the ZX Printer.

;; PO-F-PR

LOB1D: LD C, (IY+$45) ; Fetch column from P POSN.
LD HL, ($5C80) ; Fetch printer buffer address from PR _CC.
RET ; Return.

; THE 'PRINT ANY CHARACTER' ROUTINE

; This routine is used to print any character in range 32d - 255d

; It is only called from PO-ABLE which continues into PO-STORE

;; PO-ANY

LOB24: CP
JR
CP
JR

; The 16 2*2 mosaic characters 128-143 decimal are formed from
; bits 0-3 of the character.

LD
CALL

CALL
LD
JR

;; PO-GR-1
LOB38: LD

CALL

;7 PO-GR-2

LOB3E: RR
SBC
AND

$80
C,L0B65

$90
NC, LOB52

B,A
LOB38

LOBO3

DE, $5C92

LOB7F

HL, $5C92

LOB3E

’

’

’

’

ASCIT ?

to PO-CHAR is so.

test if a block graphic character.
to PO-T&UDG to print tokens and UDGs

save character

routine PO-GR-1 to construct top half

then bottom half.
routine PO-FETCH fetches print position.
MEM-0 is location of 8 bytes of character
to PR-ALL to print to screen or printer

address MEM-0 - a temporary buffer in

systems variables which is normally used
by the calculator.

routine PO-GR-2 to construct top half
and continue into routine to construct

bottom half.

rotate bit 0/2 to carry
result $00 or S$FF
mask off right hand side

LD C,A ; store part in C
RR B ; rotate bit 1/3 of original chr to carry
SBC A,A ; result $00 or SFF
AND SFO ; mask off left hand side
OR C ; combine with stored pattern
LD C,5$04 ; four bytes for top/bottom half
;; PO-GR-3
LOB4C: LD (HL) ,A ; store bit patterns in temporary buffer
INC HL ; next address
DEC C ; Jump back to
JR NZ,LOB4C ; to PO-GR-3 until byte is stored 4 times
RET ; return

; Tokens and User defined graphics are now separated.

;; PO-T&UDG

LOB52: SUB SA5 ; the 'RND' character
JR NC, LOBSF ; to PO-T to print tokens
ADD A, S$15 ; add 21d to restore to 0 - 20
PUSH BC ; save current print position
LD BC, ($5C7B) ; fetch UDG to address bit patterns
JR LOB6A ; to PO-CHAR-2 - common code to lay down

; a bit patterned character

LOB5F: CALL LOC10 ; routine PO-TOKENS prints tokens
JP LOBO3 ; exit via a JUMP to PO-FETCH as this routine
; must continue into PO-STORE.
; A JR instruction could be used.

; This point is used to print ASCII characters 32d - 127d.
;; PO-CHAR
LOB65: PUSH BC ; save print position

LD BC, ($5C36) ; address CHARS

; This common code is used to transfer the character bytes to memory.

;; PO-CHAR-2

LOB6A: EX DE, HL ; transfer destination address to DE
LD HL, $5C3B ; point to FLAGS
RES 0, (HL) ; allow for leading space
CP $20 ; is it a space ?
JR NZ,LOB76 ; to PO-CHAR-3 if not
SET 0, (HL) ; signal no leading space to FLAGS

;7 PO-CHAR-3

LOB76: LD H, $00 ; set high byte to 0
LD L,A ; character to A
; 0-21 UDG or 32-127 ASCII.
ADD HL, HL ; multiply
ADD HL, HL ; by
ADD HL, HL ; eight
ADD HL, BC ; HL now points to first byte of character
POP BC ; the source address CHARS or UDG

EX DE, HL ; character address to DE

; THE 'PRINT ALL CHARACTERS' ROUTINE

; This entry point entered from above to print ASCII and UDGs but also from

; earlier to print mosaic characters.
; HL=destination
; DE=character source
; BC=line/column
;; PR-ALL
LOB7F: LD A,C ; column to A
DEC A ; move right
LD A,$21 ; pre-load with leftmost position
JR NZ,LOB93 ; but if not zero to PR-ALL-1
DEC B ; down one line
LD C,A ; load C with $21
BIT 1, (IY+S$S01) ; test FLAGS - Is printer in use
JR Z,L0B93 ; to PR-ALL-1 if not
PUSH DE ; save source address
CALL LOECD ; routine COPY-BUFF outputs line to printer
POP DE ; restore character source address
LD A,C ; the new column number ($21) to C
;7 PR-ALL-1
LOB93: CP C ; this test is really for screen - new line ?
PUSH DE ; save source
CALL Z,L0C55 ; routine PO-SCR considers scrolling
POP DE ; restore source
PUSH BC ; save line/column
PUSH HL ; and destination
LD A, ($5C91) ; fetch P _FLAG to accumulator
LD B, SFF ; prepare OVER mask in B.
RRA ; bit 0 set 1f OVER 1
JR C,LOBA4 ; to PR-ALL-2
INC B ; set OVER mask to O
;; PR-ALL-2
LOBA4: RRA ; skip bit 1 of P FLAG
RRA ; bit 2 is INVERSE
SBC A,A ; will be FF for INVERSE 1 else zero
LD C,A ; transfer INVERSE mask to C
LD A, $08 ; prepare to count 8 bytes
AND A ; clear carry to signal screen
BIT 1, (IY+S$S01) ; test FLAGS - is printer in use ?
JR Z,LOBBG6 ; to PR-ALL-3 if screen
SET 1, (IY+$30) ; update FLAGS2 - signal printer buffer has
; been used.
SCF ; set carry flag to signal printer.
;; PR-ALL-3
LOBB6: EX DE, HL ; now HL=source, DE=destination
;; PR-ALL-4
LOBB7: EX AF,AF' ; save printer/screen flag
LD A, (DE) ; fetch existing destination byte
AND B ; consider OVER

XOR (HL) ; now XOR with source

XOR C ; now with INVERSE MASK

LD (DE) , A ; update screen/printer

EX AF,AF' ; restore flag

JR C,L0OBD3 ; to PR-ALL-6 - printer address update
INC D ; gives next pixel line down screen

;; PR-ALL-5

LOBCl: INC HL ; address next character byte
DEC A ; the byte count is decremented
JR NZ, LOBB7 ; back to PR-ALL-4 for all 8 bytes
EX DE, HL ; destination to HL
DEC H ; bring back to last updated screen position
BIT 1, (IY+S$01) ; test FLAGS - is printer in use ?
CALL 7, LOBDB ; if not, call routine PO-ATTR to update
; corresponding colour attribute.
POP HL ; restore original screen/printer position
POP BC ; and line column
DEC C ; move column to right
INC HL ; increase screen/printer position
RET ; return and continue into PO-STORE

; within PO-ABLE

; This branch is used to update the printer position by 32 places
; Note. The high byte of the address D remains constant (which it should).

;; PR-ALL-6

LOBD3: EX AF,AF' ; save the flag
LD A, $20 ; load A with 32 decimal
ADD A,E ; add this to E
LD E,A ; and store result in E
EX AF,AF" ; fetch the flag
JR LOBC1 ; back to PR-ALL-5

; THE 'GET ATTRIBUTE ADDRESS' ROUTINE

; This routine is entered with the HL register holding the last screen
; address to be updated by PRINT or PLOT.
; The Spectrum screen arrangement leads to the L register holding the correct
; value for the attribute file and it is only necessary to manipulate H to
; form the correct colour attribute address.
;; PO-ATTR
LOBDB: LD A,H ; fetch high byte $40 - $57
RRCA ; shift
RRCA ; bits 3 and 4
RRCA ; to right.
AND $03 ; range is now 0 - 2
OR $58 ; form correct high byte for third of screen
LD H,A ; HL is now correct
LD DE, ($5C8F) ; make D hold ATTR T, E hold MASK-T
LD A, (HL) ; fetch existing attribute
XOR E ; apply masks
AND D ;
XOR E ;
BIT 6, (IY+$57) ; test P FLAG - is this PAPER 9 2?7
JR Z,LOBFA ; skip to PO-ATTR-1 if not.
AND SC7 ; set paper

BIT 2,A ; to contrast with ink

JR NZ, LOBFA skip to PO-ATTR-1
XOR $38
;; PO-ATTR-1
LOBFA: BIT 4, (IY+S$57) test P_FLAG - Is this INK 9 ?2?
JR Z,L0C08 skip to PO-ATTR-2 if not
AND SF8 make ink
BIT 5,A contrast with paper.
JR NZ,L0CO08 to PO-ATTR-2
XOR $07
;; PO-ATTR-2
LOC08: LD (HL) , A save the new attribute.
RET return.
; THE 'MESSAGE PRINTING' SUBROUTINE
; This entry point is used to print tape, boot-up, scroll? and error messages.
; On entry the DE register points to an initial step-over byte or the
; inverted end-marker of the previous entry in the table.
; Register A contains the message number, often zero to print first message.
; (HL has nothing important usually P_FLAG)
;; PO-MSG
LOCOA: PUSH HL put hi-byte zero on stack to suppress
LD H, $00 trailing spaces
EX (SP) , HL 1d h,0; push hl would have done 2.
JR L0C1l4 forward to PO-TABLE.

; This entry point prints the

;;+ PO-TOKENS

LO0C10: LD
PUSH

; —>

;; PO-TABRLE

L0C14: CALL

JR

LD
BIT

CALL
;;» PO-EACH
L0C22: LD

AND

CALL

LD

DE, L0095
AF

L0C41

C,L0C22

A,$20
0, (IY+$01)

Z,L0C3B

A, (DE)
STE

LOC3B

A, (DE)

BASIC keywords, '<>' etc. from alt set

address: TKN-TABLE
save the token number to control
trailing spaces - see later *

routine PO-SEARCH will set carry for
all messages and function words.

forward to PO-EACH if not a command, '<>' etc.

prepare leading space
test FLAGS - leading space if not set

routine PO-SAVE to print a space without
disturbing registers.
Fetch character from the table.

Cancel any inverted bit.

Routine PO-SAVE to print using the alternate
set of registers.

Re-fetch character from table.

INC

ADD

JR

POP

CP

JR

CP

RET

;7 PO-TR-SP
LOC35: LD

CP

RET

LD

DE
A, A

NC, LOC22
DE

$48

Z,L0C35

$82

Address next character in the table.

Was character inverted ?

(this also doubles character)

back to PO-EACH if not.

* re-fetch trailing space byte to D

was the last character '$' ?

forward to PO-TR-SP to consider trailing

space if so.

was it < 'A' i.e. '"#','>'",'='" from tokens

or P (from tape) or '?' from scroll

Return if so as no trailing space required.

The trailing space flag (zero if an error msg)

Test against RND, INKEYS$ and PI which have no
parameters and therefore no trailing space.

Return if no trailing space.

Prepare the space character and continue to
print and make an indirect return.

; THE 'RECURSIVE PRINTING'

SUBROUTINE

; This routine which is part of PRINT-OUT allows RST $10 to be used

; recursively to print tokens and the spaces associated with them.
; It is called on three occasions when the value of DE must be preserved.
;; PO-SAVE
LOC3B: PUSH DE Save DE value.
EXX Switch in main set
RST 10H PRINT-A prints using this alternate set.
EXX Switch back to this alternate set.
POP DE Restore the initial DE value.
RET Return.

; Table search

; This subroutine searches a message or the token table for the
; message number held in A. DE holds the address of the table.

;; PO-SEARCH

LOC41: PUSH
EX
INC

;; PO-STEP
L.0C44: BIT
INC
JR

DEC
JR

AF
DE, HL

7, (HL)
HL
z,L0C44

A
NZ,L0C44

save the message/token number
transfer DE to HL
adjust for initial step-over byte

is character inverted ?
address next
back to PO-STEP if not inverted.

decrease counter
back to PO-STEP if not =zero

EX DE, HL ; transfer address to DE

POP AF ; restore message/token number

CP $20 ; return with carry set

RET C ; for all messages and function tokens
LD A, (DE) ; test first character of token

SUB $41 ; and return with carry set

RET ; 1f it is less that 'A'

;ollel >, <=t =0

; This test routine is called when printing carriage return, when considering
; PRINT AT and from the general PRINT ALL characters routine to test if

; scrolling is required, prompting the user if necessary.

; This is therefore using the alternate set.

; The B register holds the current line.

;; PO-SCR
LOC55: BIT 1, (IY+S$01) ; test FLAGS - is printer in use ?
RET NZ ; return immediately if so.
LD DE, LODDY ; set DE to address: CL-SET
PUSH DE ; and push for return address.
LD A,B ; transfer the line to A.
BIT 0, (IY+S502) ; test TV _FLAG - lower screen in use ?
JP NZ,L0ODO02 ; jump forward to PO-SCR-4 if so.
CP (IY+S$31) ; greater than DF SZ display file size ?
JR C,L0C86 ; forward to REPORT-5 if less.
; 'Out of screen'
RET NZ ; return (via CL-SET) if greater
BIT 4, (IY+$02) ; test TV _FLAG - Automatic listing ?
JR Z,L0C88 ; forward to PO-SCR-2 if not.
LD E, (IY+$2D) ; fetch BREG - the count of scroll lines to E.
DEC E ; decrease and jump
JR Z,L0OCD2 ; to PO-SCR-3 if zero and scrolling required.
LD A, $00 ; explicit - select channel zero.
CALL L1601 ; routine CHAN-OPEN opens it.
LD SP, ($5C3F) ; set stack pointer to LIST SP
RES 4, (IY+S$02) ; reset TV_FLAG - signal auto listing finished.
RET ; return ignoring pushed value, CL-SET
; to MAIN or EDITOR without updating
; print position >>
;7 REPORT-5
LOC86: RST 08H ; ERROR-1
DEFB $04 ; Error Report: Out of screen

; continue here if not an automatic listing.

;; PO-SCR-2

LOC88:

DEC
JR

(IY+$52)
NZ,L0CD2

; now produce prompt.

LD
SUB
LD
LD
PUSH
LD
PUSH

LD
CALL
XOR
LD
CALL
SET

LD

SET
RES
EXX

CALL

EXX
CP
JR

CP
JR

OR
CP
JR

LD
CALL
POP
LD
POP
LD

;7 PO-SCR-3

LOCD2:

CALL
LD
INC
LD
PUSH

CALL

LD

RRCA
RRCA
RRCA

A,S$18

B
($5C8C) , A
HL, ($5C8F)
HL

A, ($5C91)
AF

A, SFD
11601

A

DE, LOCF8
LOCOA

5, (IY+$02)

HL, $5C3B
3, (HL)
5, (HL)

L15D4

$20
Z,L0D00

SE2
Z,L0DO00

$20
S6E
Z,L0D00

A, SFE
L1601

AF
($5C91) ,A
HL
($5C8F) , HL

LODFE

B, (IY+$31)
B

c,s21

BC

LOEOSB

’

decrease SCR CT
forward to PO-SCR-3 to scroll display if
result not zero.

reset

the

SCR_CT scroll count

L=ATTR T, H=MASK T

save on stack

P _FLAG

save on stack to prevent lower screen
attributes (BORDCR etc.) being applied.
select system channel 'K'

routine CHAN-OPEN opens it

clear to address message directly

make DE address: scrl-mssg

routine PO-MSG prints to lower screen
set TV _FLAG
clearing
make HL address FLAGS

signal 'L' mode.

signal 'no new key'.

switch to main set.

as calling chr input from alternative set.
routine WAIT-KEY waits for new key

Note. this is the right routine but the
stream in use is unsatisfactory. From the
choices available, it is however the best.

switch back to alternate set.
space is considered as BREAK
forward to REPORT-D if so
'BREAK - CONT repeats'

is character 'STOP' ?
forward to REPORT-D if so

convert to lower-case
is character 'n' ?
forward to REPORT-D if so else scroll.

select system channel 'S'

routine CHAN-OPEN

restore original P _FLAG

and save in P_FLAG.

restore original ATTR T, MASK T

and reset ATTR T, MASK-T as 'scroll?' has
been printed.

routine CL-SC-ALL to scroll whole display
fetch DF SZ to B

increase to address last line of display
set C to $21 (was $21 from above routine)
save the line and column in BC.

routine CL-ADDR finds display address.

now find the corresponding attribute byte
(this code sequence is used twice
elsewhere and is a candidate for

a subroutine.)

- signal lower screen requires

AND
OR
LD

LD
LD
LD
LD
EX

;7 PO-SCR-3A

LOCFO: LD
LD
INC
INC
DJINZ

POP
RET

; The message

;; scrl-mssg
LOCF8: DEFB
DEFM
DEFB

;; REPORT-D
LODOO: RST
DEFB

; continue here

;; PO-SCR-4
LOD02: CP
JR

ADD
SUB
RET

NEG
PUSH
LD
LD
PUSH
LD
PUSH

CALL
LD

;; PO-SCR-4A

LOD1C: PUSH
LD
LD
LD
INC
LD

'scroll?'

$03
$58
H,A

DE, $5AEQ
A, (DE)
C, (HL)
B, $20
DE, HL

(DE) ,A
(HL) , C
DE

HL
LOCFO

BC

$80
"scroll"
'274+580

08H
$0C

appears

start of last 'line' of attribute area
get attribute for last line

transfer to base line of upper part
there are thirty two bytes

swap the pointers.

transfer

attributes.

address next.

address next.

loop back to PO-SCR-3A for all adjacent
attribute lines.

restore the line/column.
return via CL-SET (was pushed on stack).

here with last byte inverted.

’

’

’

initial step-over byte.

ERROR-1
Error Report: BREAK - CONT repeats

if using lower display - A holds line number.

$02
C,L0C86

A, (IY+$31)
$19
NC

BC
B,A

HL, ($5C8F)
HL

HL, ($5C91)
HL

1L0D4D
A,B

AF
HL, $5C6B
B, (HL)
A,B

A

(HL) , A

is line number less than 2 ?
to REPORT-5 if so
'Out of Screen'.

add DF SZ
return if scrolling unnecessary

Negate to give number of scrolls required.
save line/column

count to B

fetch current ATTR T, MASK T to HL.

and save

fetch P_FLAG

and save.

to prevent corruption by input AT

routine TEMPS sets to BORDCR etc
transfer scroll number to A.

save scroll number.
address DF_S7Z
fetch old value
transfer to A

and increment

then put back.

LD
CP
JR

INC
LD

;; PO-SCR-4B

LOD2D:

CALL
POP
DEC
JR

POP
LD

POP
LD

LD
RES
CALL

SET
POP
RET

HL, $5C89
(HL)
C,L0D2D

(HL)
B, 518

LOEOO

AF

A
NZ,L0OD1C

HL
(IY+$57),L

HL
($5C8F) , HL

BC, ($5C88)
0, (IY+$02)
LODD9Y

0, (IY+$02)
BC

; Temporary colour items

address S _POSN hi - line
compare

forward to PO-SCR-4B if scrolling required

else increment S POSN hi
set count to whole display ?°?

Note. should be $17 and the top line will be
scrolled into the ROM which is harmless on

the standard set up.
credit P.Giblin 1984.

routine CL-SCROLL scrolls B lines
restore scroll counter.

decrease

back to PO-SCR-4A until done

restore original P FLAG.
and overwrite system variable P_FLAG.

restore original ATTR T/MASK T.
and update system variables.

fetch S POSN to BC.
signal to TV_FLAG - main screen in use.
call routine CL-SET for upper display.

signal to TV _FLAG - lower screen in use.
restore line/column
return via CL-SET for lower display.

; This subroutine is called 11 times to copy the permanent colour items
; to the temporary ones.

;; TEMPS
LOD4D: XOR
LD
BIT
JR
LD
LD
;; TEMPS-1
LOD5B: LD

; for the print

LD
JR

LD
RRCA

;; TEMPS-2

LOD65:

XOR
AND
XOR
LD

RET

A
HL, ($5C8D)
0, (IY+$02)
7,L0OD5B

H,A
L, (

14

IY+$SOE)

($5C8F) , HL

flag the permanent values are odd bits,

HL, $5C91
NZ,LOD65

A, (HL)

(HL)
$55
(HL)
(HL) , A

’

’

clear the accumulator

fetch L=ATTR P and H=MASK P

test TV _FLAG - is lower screen in use °?
skip to TEMPS-1 if not

set H, MASK P, to 00000000.
fetch BORDCR to L which is used for lower
screen.

transfer values to ATTR T and MASK T

address P_FLAG.

skip to TEMPS-2 if lower screen using A=0.

else pick up flag bits.
rotate permanent bits to temporary bits.

BIN 01010101

permanent now as original

apply permanent bits to temporary bits.
and return.

temporary even bits.

; THE 'CLS' COMMAND

; This command clears the display.

; The routine is also called during initialization and by the CLEAR command.
; If it's difficult to write it should be difficult to read.

;; CLS

LOD6B: CALL LODAF ; Routine CL-ALL clears the entire display and

; sets the attributes to the permanent ones
; from ATTR-P.

; Having cleared all 24 lines of the display area, continue into the
; subroutine that clears the lower display area. Note that at the moment
; the attributes for the lower lines are the same as upper ones and have

; to be changed to match the BORDER colour.

; THE 'CLS-LOWER' SUBROUTINE

; This routine is called from INPUT, and from the MAIN execution loop.

; This is very much a housekeeping routine which clears between 2 and 23

; lines of the display, setting attributes and correcting situations where
; errors have occurred while the normal input and output routines have been
; temporarily diverted to deal with, say colour control codes.

;; CLS-LOWER

LOD6E: LD HL, $5C3C ; address System Variable TV _FLAG.
RES 5, (HL) ; TV_FLAG - signal do not clear lower screen.
SET 0, (HL) ; TV_FLAG - signal lower screen in use.
CALL LOD4D ; routine TEMPS applies permanent attributes,

; in this case BORDCR to ATTR T.
; Note. this seems unnecessary and is repeated
; within CL-LINE.

LD B, (IY+$31) ; fetch lower screen display file size DF SZ
CALL L0E44 ; routine CL-LINE clears lines to bottom of the
; display and sets attributes from BORDCR while

; preserving the B register.

LD HL, $5ACO ; set initial attribute address to the leftmost
; cell of second line up.

LD A, ($5C8D) ; fetch permanent attribute from ATTR P.
DEC B ; decrement lower screen display file size.
JR LOD8E ; forward to enter the backfill loop at CLS-3

; where B is decremented again.

; The backfill loop is entered at midpoint and ensures, 1if more than 2

; lines have been cleared, that any other lines take the permanent screen
; attributes.

;; CLS-1

LOD87: LD C,$20 ; set counter to 32 character cells per line
;; CLS-2

L.OD89: DEC HL ; decrease attribute address.

LD (HL) ,A ; and place attributes in next line up.

DEC C ; decrease the 32 counter.
JR NZ,L0D89 ; loop back to CLS-2 until all 32 cells done.
;; CLS-3
LOD8E: DJNZ LOD87 ; decrease B counter and back to CLS-1
; if not zero.
LD (IY+$31),5%02 ; now set DF SZ lower screen to 2

; This entry point is also called from CL-ALL below to
; reset the system channel input and output addresses to normal.

;; CL-CHAN
LOD94: LD A, SFD ; select system channel 'K'
CALL L1601 ; routine CHAN-OPEN opens it.
LD HL, ($5C51) ; fetch CURCHL to HL to address current channel
LD DE, LO9F4 ; set address to PRINT-OUT for first pass.
AND A ; clear carry for first pass.

;; CL-CHAN-A

LODAO: LD (HL) ,E ; Insert the output address on the first pass
INC HL ; or the input address on the second pass.
LD (HL) , D ;
INC HL ;
LD DE, L10A8 ; fetch address KEY-INPUT for second pass
CCF ; complement carry flag - will set on pass 1.
JR C,LODAO ; back to CL-CHAN-A if first pass else done.
LD BC, $1721 ; line 23 for lower screen
JR LODDS ; exit via CL-SET to set column

; for lower display

; This subroutine called from CLS, AUTO-LIST and MAIN-3

; clears 24 lines of the display and resets the relevant system variables.

; This routine also recovers from an error situation where, for instance, an

; invalid colour or position control code has left the output routine addressing
; PO-TV-2 or PO-CONT.

;; CL-ALL
LODAF: LD HL, $0000 ; Initialize plot coordinates.
LD ($5C7D) , HL ; Set system variable COORDS to 0,0.
RES 0, (IY+$30) ; update FLAGS2 - signal main screen is clear.
CALL L0D9%4 ; routine CL-CHAN makes channel 'K' 'normal'.
LD A, SFE ; select system channel 'S'
CALL L1601 ; routine CHAN-OPEN opens it.
CALL LOD4D ; routine TEMPS applies permanent attributes,
; in this case ATTR P, to ATTR T.
; Note. this seems unnecessary.
LD B,S$18 ; There are 24 lines.

CALL LOE44 ; routine CL-LINE clears 24 text lines and sets

’

rr

LD

LD
LD
INC
LD

LD

HL, ($5C51)

DE, LO9F4
(HL) ,E
HL
(HL), D

(IY+$52),501

’

attributes from ATTR-P.
This routine preserves B and sets C to $21.

fetch CURCHL make HL address output routine.
address: PRINT-OUT

is made

the normal

output address.

set SCR CT - scroll count - to default.

Note. BC already contains $1821.

LD

BC,$1821

THE 'CL-SET' ROUTINE

’
’

’

reset column and line to 0,0
and continue into CL-SET, below, exiting
via PO-STORE (for the upper screen).

This important subroutine is used to calculate the character output
address for screens or printer based on the line/column for screens

or the column for printer.

CL-SET

LODDY9: LD

rs

LODEE:

rs

BIT
JR

LD
BIT
JR

ADD
SUB

CL-SET-1

PUSH

LD

CALL

POP

CL-SET-2

LODF4: LD

’

’

’

rs

SUB
LD
LD
ADD

Jp

The routine CL-SC-ALL is called

HL, $5B00
1, (IY+S$S01)
NZ,LODF4

A,B
0, (IY+$02)
Z,LODEE

4

A, (IY+$31)
$18

BC
B,A
LOE9B

BC

A,s$21
E,A

D, $00
HL, DE

LOADC

and from the routine CL-SCROLL,

CL-SC-ALL

LODFE: LD

B,$17

the base address of printer buffer
test FLAGS - is printer in use ?
forward to CL-SET-2 if so.

transfer line to A.
test TV _FLAG - lower screen in use ?
skip to CL-SET-1 if handling upper part

add DF_SZ for lower screen
and adjust.

save the line/column.
transfer line to B
(adjusted if lower screen)

routine CL-ADDR calculates address at left
of screen.
restore the line/column.

the column $01-$21 is reversed
to range $00 - $20

now transfer to DE

prepare for addition

and add to base address

exit via PO-STORE to update the relevant
system variables.

once from PO to scroll all the display
once, to scroll part of the display.

scroll 23 lines, after 'scroll?'.

;; CL-SCROLL
LOEOO: CALL LOEOSB ; routine CL-ADDR gets screen address in HL.
LD c, %08 ; there are 8 pixel lines to scroll.

;; CL-SCR-1

LOEO5: PUSH BC ; save counters.
PUSH HL ; and initial address.
LD A,B ; get line count.
AND 507 ; will set zero if all third to be scrolled.
LD A,B ; re—-fetch the line count.
JR NZ,LOE19 ; forward to CL-SCR-3 if partial scroll.

; HL points to top line of third and must be copied to bottom of previous 3rd.
; (so HL = $4800 or $5000) (but also sometimes $4000)

;; CL-SCR-2

LOEOD: EX DE, HL ; copy HL to DE.
LD HL, SF8EOQ ; subtract $08 from H and add $EO0 to L -
ADD HL, DE ; to make destination bottom line of previous
; third.
EX DE, HL ; restore the source and destination.
LD BC, $0020 ; thirty-two bytes are to be copied.
DEC A ; decrement the line count.
LDIR ; copy a pixel line to previous third.

;; CL-SCR-3

LOE19: EX DE, HL ; save source in DE.

LD HL, SFFEO ; load the value -32.

ADD HL, DE ; add to form destination in HL.

EX DE, HL ; switch source and destination

LD B,A ; save the count in B.

AND $07 ; mask to find count applicable to current

RRCA ; third and

RRCA ; multiply by

RRCA ; thirty two (same as 5 RLCAs)

LD C,A ; transfer byte count to C ($E0 at most)

LD A,B ; store line count to A

LD B, $00 ; make B zero

LDIR ; copy bytes (BC=0, H incremented, L=0)

LD B, $07 ; set B to 7, C is =zero.

ADD HL, BC ; add 7 to H to address next third.

AND SF8 ; has last third been done ?

JR NZ,LOEOD ; back to CL-SCR-2 if not.

POP HL ; restore topmost address.

INC H ; next pixel line down.

POP BC ; restore counts.

DEC C ; reduce pixel line count.

JR NZ,LOEOS ; back to CL-SCR-1 if all eight not done.

CALL LOE88 ; routine CL-ATTR gets address in attributes
; from current 'ninth line', count in BC.

LD HL, SFFEO ; set HL to the 16-bit value -32.

ADD HL, DE ; and add to form destination address.

EX DE, HL ; swap source and destination addresses.

LDIR ; copy bytes scrolling the linear attributes.

LD B, $01 ; continue to clear the bottom line.

; THE 'CLEAR TEXT LINES' ROUTINE

; This subroutine, called from CL-ALL, CLS-LOWER and AUTO-LIST and above,

; clears text lines at bottom of display.
; The B register holds on entry the number of lines to be cleared 1-24.

;; CL-LINE

LLOE44: PUSH
CALL
LD

;; CL-LINE-1

LOE4A: PUSH
PUSH
LD

;; CL-LINE-2

LOE4D: AND
RRCA
RRCA
RRCA
LD
LD
LD
DEC
LD
LD
LD
INC
LDIR
LD
ADD
DEC
AND
LD
JR

POP
INC
POP
DEC
JR

CALL

LD
LD

INC

LD
BIT
JR

LD

;7 CL-LINE-3

LOE80: LD
DEC
LDIR
POP
LD
RET

BC
LOESB
C,$08

BC
HL

$07

w» W
o
o

~

o~ o~
H e

) ,$00

U~MHOQWX QO

=

DE, $0701
HL, DE

A

SFS8

B,A
NZ,LOE4D

HL

H

BC

C
NZ,LOE4A

LOES88
H,D
L,E
DE

A, ($5C8D)
0, (IY+$02)

Z,LOES8O

A, ($5C48)

save line count
routine CL-ADDR gets top address
there are eight screen lines to a text line.

save pixel line count
and save the address
transfer the line to A (1-24).

mask 0-7 to consider thirds at a time
multiply

by 32 (same as five RLCA instructions)
now 32 - 256(0)

store result in C

save line in A (1-24)

set high byte to 0, prepare for ldir.
decrement count 31-255.

copy HL

to DE.

blank the first byte.

make DE point to next byte.

ldir will clear lines.

now address next third adjusting
register E to address left hand side
decrease the line count.

will be 16, 8 or O (AND $18 will do).
transfer count to B.

back to CL-LINE-2 if 16 or 8 to do
the next third.

restore start address.

address next line down.

fetch counts.

decrement pixel line count

back to CL-LINE-1 till all done.

routine CL-ATTR gets attribute address
in DE and B * 32 in BC.

transfer the address
to HL.

make DE point to next location.

fetch ATTR P - permanent attributes
test TV _FLAG - lower screen in use ?
skip to CL-LINE-3 if not.

else lower screen uses BORDCR as attribute.

put attribute in first byte.

decrement the counter.

copy bytes to set all attributes.

restore the line $01-$24.

make column $21. (No use 1s made of this)
return to the calling routine.

Attribute handling

This subroutine is called from CL-LINE or CL-SCROLL with the HL register

pointing to the 'ninth'

the division.

line and H needs to be decremented before or after
Had it been done first then either present code or that used

at the start of PO-ATTR could have been used.

The Spectrum screen arrangement

leads to the L register already holding

the correct value for the attribute file and it is only necessary
to manipulate H to form the correct colour attribute address.

;; CL-ATTR

LOE88: LD A,H ;
RRCA ;
RRCA ;
RRCA ;
DEC A ;
OR $50 ;
LD H,A ;
EX DE, HL ;
LD H,C ;
D L,B ;
ADD HL, HL ;
ADD HL, HL ;
ADD HL, HL ;
ADD HL, HL ;
ADD HL, HL ;
LD B,H ;
LD C,L ;
RET ;

’

’

’

fetch H to A - $48,
divide by

eight.

$09, $0A or S$OB.
$08, $09 or S$OA.
$58, $59 or S$5A.
save high byte of attributes.

$50, or $58.

transfer attribute address to DE
set H to zero - from last LDIR.
load L with the line from B.
multiply

by

thirty two

to give count of attribute

cells to the end of display.

transfer the result
to register BC.

return.

This subroutine is called from four places to calculate the address
of the start of a screen character line which is supplied in B.

;; CL-ADDR

LOE9B: LD A,S$18 ;
SUB B :
LD D,A :
RRCA ;
RRCA ;
RRCA ;
AND SEO ;
LD L,A ;
LD A,D ;
AND $18 ;
OR $40 ;
LD H,A ;
RET ;

’

’

’

This command copies the top 176
It is popular to call this from

reverse the line number
to range $00 - $17.

save line in D for later.
multiply

by

thirty-two.

mask off low bits to make
L a multiple of 32.

bring back the line to A.
now $00, $08 or $10.

add the base address of screen.

HL now has the correct address.
return.

lines to the ZX Printer
machine code at point

; LOEAF with B holding 192
; copy. This particularly applies
; machine code routines cannot be
; 1t is shared with the ULA which

;; COPY

LOEAC: DI ;
LD B, $BO ;

LOEAF: LD HL, $4000 ;

; now enter a loop to handle each

;; COPY-1

LOEB2: PUSH HL ;
PUSH BC ;
CALL LOEF4 ;
POP BC ;
POP HL ;
INC H ;
LD A,H ;
AND 507 ;
JR NZ,LOEC9 :
LD A, L ;
ADD A, $20 ;
LD L,A ;
CCF ;
SBC A,A ;
AND SF8 ;
ADD A,H ;
LD H,A ;

;; COPY-2

LOEC9: DJNZ LOEB2 ;
JR LOEDA ;

(and interrupts disabled)

for a full-screen
to 16K Spectrums as time-critical
written in the first 16K of RAM as
has precedence over the Z80 chip.

disable interrupts as this is time-critical.

top 176 lines.
address start of the display file.

pixel line.

save the screen address.
and the line counter.

routine COPY-LINE outputs one line.

restore the line counter.
and display address.

next line down screen within
high byte to A.

result will be zero if we have left third.
forward to COPY-2 if not to continue loop.

'"thirds'.

consider low byte first.

increase by 32 - sets carry if back to zero.
will be next group of 8.
complement - carry set if more lines in

the previous third.

will be FF, if more, else 00.

will be F8 (-8) or 00.

that is subtract 8, if more to do in third.
and reset address.

back to COPY-1 for all lines.

forward to COPY-END to switch off the printer

motor and enable interrupts.
Note. Nothing else is required.

; This routine is used to copy 8 text lines from the printer buffer

; to the ZX Printer.

These text lines are mapped linearly so HL does

; not need to be adjusted at the end of each line.

;; COPY-BUFF

LOECD: DI ;
LD HL, $5B00 ;
LD B, $08 ;

;; COPY-3

LOED3: PUSH BC ;
CALL LOEF4 ;
POP BC ;
DJNZ LOED3 ;

disable interrupts
the base address of the Printer Buffer.
set count to 8 lines of 32 bytes.

save counter.
routine COPY-LINE outputs 32 bytes
restore counter.

loop back to COPY-3 for all 8 lines.
then stop motor and clear buffer.

’

’

Note. the COPY command rejoins here, essentially to execute the next
three instructions.

;; COPY-END

LOEDA: LD A, S04 ; output value 4 to port
ouT (SFB) , A ; to stop the slowed printer motor.
EI ; enable interrupts.

This routine clears an arbitrary 256 bytes of memory.

Note. The routine seems designed to clear a buffer that follows the
system variables.

The routine should check a flag or HL address and simply return if COPY
is in use.

(T-ADDR-1lo0 would work for the system but not if COPY called externally.)
As a consequence of this omission the buffer will needlessly

be cleared when COPY is used and the screen/printer position may be set to
the start of the buffer and the line number to 0 (B)

giving an 'Out of Screen' error.

There seems to have been an unsuccessful attempt to circumvent the use
of PR _CC hi.

;; CLEAR-PRB
LOEDF: LD HL, $5B00 ; the location of the buffer.
LD (IY+$46),L ; update PR CC lo - set to zero - superfluous.
XOR A ; clear the accumulator.
LD B,A ; set count to 256 bytes.
;+ PRB-BYTES
LOEE7: LD (HL) , A ; set addressed location to zero.
INC HL ; address next byte - Note. not INC L.
DJNZ LOEE7 ; back to PRB-BYTES. repeat for 256 bytes.
RES 1, (IY+S$30) ; set FLAGS2 - signal printer buffer is clear.
LD C,$21 ; set the column position
JPp LODDY ; exit via CL-SET and then PO-STORE.

This routine is called from COPY and COPY-BUFF to output a line of
32 bytes to the ZX Printer.

Output to port S$FB -

bit 7 set - activate stylus.

; bit 7 low - deactivate stylus.
; bit 2 set - stops printer.
; bit 2 reset - starts printer
; bit 1 set - slows printer.
; bit 1 reset - normal speed.
;; COPY-LINE
LOEF4: LD A,B ; fetch the counter 1-8 or 1-176
CP $03 ; is it 01 or 02 2.
SBC A,A ; result is S$FF if so else $00.
AND $02 ; result is 02 now else 00.
; bit 1 set slows the printer.
ouT (SFB) , A ; slow the printer for the
; last two lines.
LD D,A ; save the mask to control the printer later.
;; COPY-L-1

LOEFD: CALL L1F54 ; call BREAK-KEY to read keyboard immediately.

JR

LD
OouT
ET
CALL

7+ REPORT-Dc
LOFOA: RST
DEFB

;; COPY-L-2
LOFOC: IN
ADD
RET

JR

LD

;; COPY-L-3
LOF14: LD
INC
LD

;; COPY-L-4
LOF18: RL
RL
RR

;; COPY-L-5

LOF1E: IN
RRA
JR

LD
OouT
DJINZ

DEC
JR

RET

C,LOFOC

A, 504
($FB) , A

LOEDF

NC, LOEFD

C,$20

E, (HL)
HL
B, $08

=

A, (SFB)
NC, LOF1E
A,D
(SFB) ,A
LOF18

C
NZ,LOF14

forward to COPY-L-2 if 'break' not pressed.

else stop the

printer motor.

enable interrupts.

call routine CLEAR-PRB.

Note. should not be cleared if COPY in use.

ERROR-1
Error Report: BREAK - CONT repeats

test now to see if

a printer is attached.

return if not - but continue with parent
command.

back to COPY-L-1 if stylus of printer not
in position.

set count to 32 bytes.

fetch a byte from line.
address next location. Note. not INC L.
count the bits.

prepare mask to receive bit.
rotate leftmost print bit to carry
and back to bit 7 of D restoring bit 1

read the port.
bit 0 to carry.
back to COPY-L-5 if stylus not in position.

transfer command bits to A.
and output to port.
loop back to COPY-L-4 for all 8 bits.

decrease the byte count.
back to COPY-L-3 until 256 bits done.

return to calling routine COPY/COPY-BUFF.

; The editor is called to prepare or edit a BASIC line.

; It is also called from INPUT to input a numeric or string expression.
; The behaviour and options are quite different in the various modes

; and distinguished by bit 5 of FLAGX.

; This is a compact and highly versatile routine.

;; EDITOR
LOF2C: LD
PUSH

;; ED-AGAIN
LOF30: LD

HL, ($5C3D)

HL

HL,L107F

fetch ERR SP
save on stack

address: ED-ERROR

PUSH HL ; save address on stack and
LD ($5C3D), SP ; make ERR SP point to it.

; Note. While in editing/input mode should an error occur then RST 08 will

; update X PTR to the location reached by CH ADD and jump to ED-ERROR

; where the error will be cancelled and the loop begin again from ED-AGAIN

; above. The position of the error will be apparent when the lower screen is
; reprinted. If no error then the re-iteration is to ED-LOOP below when

; input is arriving from the keyboard.

;; ED-LOOP
LOF38: CALL L15D4 ; routine WAIT-KEY gets key possibly
; changing the mode.
PUSH AF ; save key.
LD D, $00 ; and give a short click based
LD E, (IY-$01) ; on PIP value for duration.
LD HL, $00C8 ; and pitch.
CALL LO3B5 ; routine BEEPER gives click - effective
; with rubber keyboard.
POP AF ; get saved key value.
LD HL, LOF38 ; address: ED-LOOP is loaded to HL.
PUSH HL ; and pushed onto stack.

; At this point there is a looping return address on the stack, an error
; handler and an input stream set up to supply characters.
; The character that has been received can now be processed.

CP $18 ; range 24 to 255 ?

JR NC, LOF81 ; forward to ADD-CHAR if so.
CP 507 ; lower than 7 ?

JR C,LOF81 ; forward to ADD-CHAR also.

; Note. This is a 'bug' and chr$ 6, the comma
; control character, should have had an

; entry in the ED-KEYS table.

; Steven Vickers, 1984, Pitman.

CP $10 ; less than 16 ?
JR C,LOF92 ; forward to ED-KEYS if editing control
; range 7 to 15 dealt with by a table

LD BC, $0002 ; prepare for ink/paper etc.

LD D,A ; save character in D

CP S16 ; 1s it ink/paper/bright etc. ?
JR C,LOF6C ; forward to ED-CONTR if so

; leaves 22d AT and 23d TAB

; which can't be entered via KEY-INPUT.

; so this code is never normally executed
; when the keyboard is used for input.

INC BC ; if it was AT/TAB - 3 locations required
BIT 7, (IY+$37) ; test FLAGX - Is this INPUT LINE °?
JP Z,L101E ; jump to ED-IGNORE if not, else
CALL L15D4 ; routine WAIT-KEY - input address is KEY-NEXT
; but is reset to KEY-INPUT
LD E,A ; save first in E
;+ ED-CONTR
LOF6C: CALL L15D4 ; routine WAIT-KEY for control.

; input address will be key-next.

PUSH DE ; saved code/parameters

LD
RES

CALL

POP
INC
LD
INC
LD

JR

HL, ($5C5B)
0, (IY+507)

L1655

; fetch address of keyboard cursor from K CUR
; set MODE to 'L'

; routine MAKE-ROOM makes 2/3 spaces at cursor

; restore code/parameters

; address first location

; place code (ink etc.)

; address next

; place possible parameter. If only one
; then DE points to this location also.
; forward to ADD-CH-1

; this is the branch used to add normal non-control characters
; with ED-LOOP as the stacked return address.
; it is also the OUTPUT service routine for system channel 'R'.

;; ADD-CHAR

LOF81: RES
X0F85: LD
CALL

0, (IY+507)
HL, ($5C5B)

L1652

; either a continuation of

;; ADD-CH-1
LOF8B: LD
INC
LD
RET

; set MODE to 'L'
; fetch address of keyboard cursor from K CUR
; routine ONE-SPACE creates one space.

above or from ED-CONTR with ED-LOOP on stack.
; load current character to last new location.
; address next
; and update K CUR system variable.

; return - either a simple return
; from ADD-CHAR or to ED-LOOP on stack.

; a branch of the editing loop to deal with control characters
; using a look-up table.

;; ED-KEYS

LOF92: LD
LD
LD
ADD
LD
ADD
PUSH
LD
RET

E,A
D, $00
HL,LOFAQ -
HL, DE

E, (HL)

HL, DE

HL

HL, ($5C5B)

; character to E.
; prepare to add.
7 ; base address of editing keys table.
; add E
; fetch offset to E
; add offset for address of handling routine.
; push the address on machine stack.
; load address of cursor from K CUR.
; an make an indirect jump forward to routine.

SO0F99

; For each code in the range $07 to S$OF this table contains a
; single offset byte to the routine that services that code.

; Note.

for what was intended there should also have been an

; entry for chr$ 6 with offset to ed-symbol.

;; ed-keys-t
LOFAO: DEFB
DEFB
DEFB

LOFA9 - $
L1007 - $
L100C - S

; 07d offset $09 to Address: ED-EDIT
; 08d offset $66 to Address: ED-LEFT
; 09d offset $6A to Address: ED-RIGHT

DEFB LOFF3 - S 10d offset $50 to Address: ED-DOWN
DEFB L1059 - 3 11d offset $B5 to Address: ED-UP
DEFB L1015 - $ 12d offset $70 to Address: ED-DELETE
DEFB L1024 - $ 13d offset $7E to Address: ED-ENTER
DEFB L1076 - S 14d offset S$SCF to Address: ED-SYMBOL
DEFB L107C - S 15d offset $D4 to Address: ED-GRAPH

; The user has pressed SHIFT 1 to bring edit line down to bottom of screen.
; Alternatively the user wishes to clear the input buffer and start again.

; Alternatively
;; ED-EDIT
LOFA9: LD HL, ($5C49) fetch E PPC the last line number entered.
Note. may not exist and may follow program.
BIT 5, (IY+$37) test FLAGX - input mode *?
JP NZ,L1097 jump forward to CLEAR-SP if not in editor.
CALL L196E routine LINE-ADDR to find address of line
or following line if it doesn't exist.
CALL L1695 routine LINE-NO will get line number from
address or previous line if at end-marker.
LD A,D if there is no program then DE will
OR E contain zero so test for this.
Jp Z,L1097 jump to CLEAR-SP if so.

; Note. at this point we have a
; approximation and it would be
; cursor line value which would

validated line number, not just an
best to update E PPC with the true
enable the line cursor to be suppressed

; in all situations - see shortly.

PUSH

INC HL address low byte of length.

LD C, (HL) transfer to C

INC HL next to high byte

LD B, (HL) transfer to B.

LD HL, $000A an overhead of ten bytes

ADD HL, BC is added to length.

LD B,H transfer adjusted value

LD C,L to BC register.

CALL L1F05 routine TEST-ROOM checks free memory.

CALL L1097 routine CLEAR-SP clears editing area.

LD HL, ($5C51) address CURCHL

EX (SP) ,HL swap with line address on stack

PUSH HL save line address underneath

LD A, SFF select system channel 'R'

CALL L1601 routine CHAN-OPEN opens it

POP HL drop line address

DEC HL make it point to first byte of line num.

DEC (IY+S0F) decrease E PPC_lo to suppress line cursor.
Note. ineffective when E PPC is one
greater than last line of program perhaps
as a result of a delete.
credit. Paul Harrison 1982.

CALL L1855 routine OUT-LINE outputs the BASIC line
to the editing area.

INC (IY+SOF) restore E PPC lo to the previous value.

LD HL, ($5C59) address E_LINE in editing area.

INC HL advance

HL

save address of line.

INC HL ; past space

INC HL ; and digit characters

INC HL ; of line number.

LD ($5C5B) , HL ; update K CUR to address start of BASIC.
POP HL ; restore the address of CURCHL.

CALL L1615 ; routine CHAN-FLAG sets flags for it.
RET ; RETURN to ED-LOOP.

; Cursor down editing

; The BASIC lines are displayed at the top of the screen and the user
; wishes to move the cursor down one line in edit mode.

; With INPUT LINE, this key must be used instead of entering STOP.

;+ ED-DOWN
LOFF3: BIT 5, (IY+$37) ; test FLAGX - Input Mode ?
JR NZ,L1001 ; skip to ED-STOP if so
LD HL, $5C49 ; address E PPC - 'current line'
CALL L190F ; routine LN-FETCH fetches number of next
; line or same if at end of program.
JR L106E ; forward to ED-LIST to produce an

; automatic listing.

;; ED-STOP
L1001: LD (IY+$00),510 ; set ERR NR to 'STOP in INPUT' code
JR L1024 ; forward to ED-ENTER to produce error.

; Cursor left editing
; This acts on the cursor in the lower section of the screen in both
; editing and input mode.

;; ED-LEFT
L1007: CALL L1031 ; routine ED-EDGE moves left if possible
JR L1011 ; forward to ED-CUR to update K-CUR
; and return to ED-LOOP.

; Cursor right editing

; This acts on the cursor in the lower screen in both editing and input
; mode and moves it to the right.

;; ED-RIGHT

L100C: LD A, (HL) ; fetch addressed character.
CP $0D ; 1s it carriage return ?
RET Z ; return i1f so to ED-LOOP
INC HL ; address next character

;; ED-CUR

L1011: LD ($5C5B) , HL ; update K CUR system variable
RET ; return to ED-LOOP

; DELETE editing

; This acts on the lower screen and deletes the character to left of

; cursor. If control characters are present these are deleted first

; leaving the naked parameter (0-7) which appears as a '?' except in the

; case of chr$ 6 which is the comma control character. It is not mandatory
; to delete these second characters.

;; ED-DELETE

L1015: CALL L1031 ; routine ED-EDGE moves cursor to left.
LD BC, $0001 ; of character to be deleted.
Jp L19E8 ; to RECLAIM-2 reclaim the character.

; Since AT and TAB cannot be entered this point is never reached

; from the keyboard. If inputting from a tape device or network then

; the control and two following characters are ignored and processing

; continues as if a carriage return had been received.

; Here, perhaps, another Spectrum has said print #15; AT 0,0; "This is yellow"
; and this one is interpreting input #15; a$.

;; ED-IGNORE
L101E: CALL L15D4 ; routine WAIT-KEY to ignore keystroke.
CALL L15D4 ; routine WAIT-KEY to ignore next key.

; Enter/newline

; The enter key has been pressed to have BASIC line or input accepted.

;; ED-ENTER

1L1024: POP HL ; discard address ED-LOOP
POP HL ; drop address ED-ERROR
;+ ED-END
L1026: POP HL ; the previous value of ERR SP
LD ($5C3D) , HL ; 1s restored to ERR _SP system variable
BIT 7, (IY+S00) ; is ERR NR SFF (= 'OK') 2
RET NZ ; return if so
LD SP,HL ; else put error routine on stack
RET ; and make an indirect jump to it.

; This routine moves the cursor left. The complication is that it must

; not position the cursor between control codes and their parameters.

; It is further complicated in that it deals with TAB and AT characters

; which are never present from the keyboard.

; The method is to advance from the beginning of the line each time,

; jumping one, two, or three characters as necessary saving the original

; position at each jump in DE. Once it arrives at the cursor then the next
; legitimate leftmost position is in DE.

;; ED-EDGE
L1031: SCF ; carry flag must be set to call the nested
CALL L1195 ; subroutine SET-DE.
; 1f input then DE=WORKSP
; 1f editing then DE=E_ LINE
SBC HL, DE ; subtract address from start of line
ADD HL, DE ; and add back.
INC HL ; adjust for carry.
POP BC ; drop return address

RET C ; return to ED-LOOP if already at left

; of line.

PUSH BC ; resave return address - ED-LOOP.
LD B,H ; transfer HL - cursor address
LD C,L ; to BC register pair.

; at this point DE addresses start of line.

;; ED-EDGE-1

L103E: LD H,D ; transfer DE - leftmost pointer
LD L,E ; to HL
INC HL ; address next leftmost character to
; advance position each time.
LD A, (DE) ; pick up previous in A
AND SFO ; lose the low bits
CP $10 ; is 1t INK to TAB $10-S1F 2
; that is, is it followed by a parameter ?
JR Nz,L1051 ; to ED-EDGE-2 if not
; HL has been incremented once
INC HL ; address next as at least one parameter.

; in fact since 'tab' and 'at' cannot be entered the next section seems
; superfluous.
; The test will always fail and the jump to ED-EDGE-2 will be taken.

LD A, (DE) ; reload leftmost character
SUB $17 ; decimal 23 ('tab')

ADC A, S$00 ; will be 0 for 'tab' and 'at'.
JR NZ,L1051 ; forward to ED-EDGE-2 if not

; HL has been incremented twice

INC HL ; increment a third time for 'at'/'tab'

;; ED-EDGE-2

L1051: AND A ; prepare for true subtraction
SBC HL, BC ; subtract cursor address from pointer
ADD HL, BC ; and add back

; Note when HL matches the cursor position BC,
; there is no carry and the previous
; position is in DE.
EX DE, HL ; transfer result to DE if looping again.
; transfer DE to HL to be used as K-CUR
; if exiting loop.
JR C,L103E ; back to ED-EDGE-1 if cursor not matched.

RET ; return.

; The main screen displays part of the BASIC program and the user wishes
; to move up one line scrolling if necessary.
; This has no alternative use in input mode.

;; ED-UP
L1059: BIT 5, (IY+$37) ; test FLAGX - input mode ?
RET NZ ; return if not in editor - to ED-LOOP.
LD HL, ($5C49) ; get current line from E PPC
CALL L196E ; routine LINE-ADDR gets address
EX DE, HL ; and previous in DE
CALL L1695 ; routine LINE-NO gets prev line number
LD HL, $5C4A ; set HL to E _PPC _hi as next routine stores

; top first.

’

CALL L191C ; routine LN-STORE loads DE value to HL
; high byte first - E PPC lo takes E

this branch is also taken from ed-down.

;; ED-LIST
L106E: CALL L1795 ; routine AUTO-LIST lists to upper screen
; including adjusted current line.
LD A, S$00 ; select lower screen again
JP L1601 ; exit via CHAN-OPEN to ED-LOOP

’

These will not be encountered with the keyboard but would be handled
otherwise as follows.

As noted earlier, Vickers says there should have been an entry in

the KEYS table for chr$ 6 which also pointed here.

If, for simplicity, two Spectrums were both using #15 as a bi-directional
channel connected to each other:-

then when the other Spectrum has said PRINT #15; x, vy

input #15; i ; J would treat the comma control as a newline and the
control would skip to input j.

You can get round the missing chr$ 6 handler by sending multiple print
items separated by a newline '.

chr$14 would have the same functionality.

This is chr$ 14.

;; ED-SYMBOL
L1076: BIT 7, (IY+$37) ; test FLAGX - is this INPUT LINE °?
JR Z,L1024 ; back to ED-ENTER if not to treat as if

’

’

rr

; enter had been pressed.
; else continue and add code to buffer.

Next is chr$ 15
Note that ADD-CHAR precedes the table so we can't offset to it directly.

ED-GRAPH

L107C: JP LOF81 ; Jjump back to ADD-CHAR

’

’

’

If an error occurs while editing, or inputting, then ERR SP
points to the stack location holding address ED ERROR.

; + ED-ERROR
L107F: BIT 4, (IY+$30) ; test FLAGS2 - is K channel in use ?
JR Z,L1026 ; back to ED-END if not.

’

’

’

but as long as we're editing lines or inputting from the keyboard, then
we've run out of memory so give a short rasp.

LD (IY+$00),SFF ; reset ERR NR to 'OK'.

LD D, $00 ; prepare for beeper.

LD E, (IY-502) ; use RASP value.

LD HL, $1A90 ; set a duration.

CALL LO3B5 ; routine BEEPER emits a warning rasp.
JP LOF30 ; to ED-AGAIN to re-stack address of

; this routine and make ERR SP point to it.

Clear edit/work space

; The editing area or workspace is cleared depending on context.
; This is called from ED-EDIT to clear workspace if edit key is

; used during input, to clear editing area if no program exists

; and to clear editing area prior to copying the edit line to it.
; It is also used by the error routine to clear the respective

; area depending on FLAGX.

;; CLEAR-SP
L1097: PUSH HL ; preserve HL
CALL L1190 ; routine SET-HL
; if in edit HL
; 1f in input HL

WORKSP-1, DE E LINE
STKBOT, DE = WORKSP

DEC HL ; adjust

CALL L19ES ; routine RECLAIM-1 reclaims space
LD ($5C5B) , HL ; set K CUR to start of empty area
LD (IY+$07),$00 ; set MODE to 'KLC'

POP HL ; restore HL.

RET ; return.

; THE 'KEYBOARD INPUT' ROUTINE

; This is the service routine for the input stream of the keyboard channel 'K'.

;5 KEY-INPUT
L10A8: BIT 3, (IY+$02) ; test TV _FLAG - has a key been pressed in
; editor ?

CALL NZ,L111D ; routine ED-COPY, if so, to reprint the lower
; screen at every keystroke/mode change.

AND A ; clear carry flag - required exit condition.
BIT 5, (IY+$01) ; test FLAGS - has a new key been pressed ?
RET Z ; return if not. >>

LD A, ($5C08) ; system variable LASTK will hold last key -

; from the interrupt routine.

RES 5, (IY+5$01) ; update FLAGS - reset the new key flag.
PUSH AF ; save the input character.

BIT 5, (IY+$02) ; test TV _FLAG - clear lower screen ?

CALL NZ, LOD6E ; routine CLS-LOWER if so.

POP AF ; restore the character code.

CP $20 ; 1f space or higher then

JR NC,L111B ; forward to KEY-DONEZ2 and return with carry

; set to signal key-found.

CP $10 ; with 16d INK and higher skip

JR NC, L10FA ; forward to KEY-CONTR.

CP $06 ; for 6 - 15d

JR NC, L10DB ; skip forward to KEY-M-CL to handle Modes

; and CapsLock.
; that only leaves 0-5, the flash bright inverse switches.
LD B,A ; save character in B

AND S01 ; isolate the embedded parameter (0/1).
LD C,A ; and store in C

LD
RRA
ADD

JR

; Now separate capslock 06 from

;; KEY-M-CL
L10DB: JR

LD
LD
XOR
LD
JR

;; KEY-MODE
L10E6: CP
RET

SUB

LD
CP
LD
JR

LD

;; KEY-FLAG
L10F4: SET
CP

RET

; now deal with

;7 KEY-CONTR

L10FA: LD
AND
LD
LD
BIT
JR

INC

;; KEY-DATA

L1105: LD
LD

A,$12

L1105

NZ,L10E6

HL, $5C6A
A, $08
(HL)
(HL) , A
L10F4

SOE

$0D

HL, $5C41
(HL)

(HL) ,A
NZ,L10F4

(HL) , $00

3, (IY+$02)
A

colour controls

B,A
$07

c,A
A,S$10
3,B
NZ,L11105

(IY-$2D),C
DE,L110D

re-fetch copy (0-5)

halve it 0, 1 or 2.

add 18d gives 'flash', 'bright'
and 'inverse'.

forward to KEY-DATA with the
parameter (0/1) in C.

modes 7-15.

forward to KEY-MODE if not 06 (capslock)

point to FLAGS2

value 00001000

toggle BIT 3 of FLAGS2 the capslock bit
and store result in FLAGSZ again.
forward to KEY-FLAG to signal no-key.

compare with chr 14d

return with carry set "key found" for
codes 7 - 13d leaving 14d and 15d
which are converted to mode codes.

subtract 13d leaving 1 and 2

1 is 'E' mode, 2 is 'G' mode.

address the MODE system variable.
compare with existing value before
inserting the new value.

forward to KEY-FLAG if it has changed.

else make MODE zero - KLC mode

Note. while in Extended/Graphics mode,
the Extended Mode/Graphics key is pressed
again to get out.

update TV _FLAG - show key state has changed
clear carry and reset zero flags -

no actual key returned.

make the return.

16-23 ink, 24-31 paper

make a copy of character.

mask to leave bits 0-7

and store in C.

initialize to 1l6d - INK.

was it paper ?

forward to KEY-DATA with INK l6d and
colour in C.

else change from INK to PAPER (17d) if so.

put the colour (0-7)/state(0/1) in KDATA
address: KEY-NEXT will be next input stream

JR

L1113

forward to KEY-CHAN to change it

; ... so that INPUT AD directs control to here at next call to WAIT-KEY

;7 KEY-NEXT
L110D: LD
LD
;7 KEY-CHAN
L1113: LD
INC
INC
LD
INC
LD
;; KEY-DONE2
L111B: SCF
RET

A, ($5C0D)
DE, L10AS8
HL, ($5C4F)
HL

HL

(HL) ,E

HL

(HL),D

pick up the parameter stored in KDATA.
address: KEY-INPUT will be next input stream
continue to restore default channel and

make a return with the control code.

address start of CHANNELS area using CHANS
system variable.

Note. One might have expected CURCHL to
have been used.

step over the

output address

and update the input

routine address for

the next call to WAIT-KEY.

set carry flag to show a key has been found
and return.

; This subroutine is called whenever the line in the editing area or
; input workspace is required to be printed to the lower screen.
; It is by calling this routine after any change that the cursor, for

; instance,

appears to move to the left.

; Remember the edit line will contain characters and tokens

; e.g. "1000 LET a=1"

;; ED-COPY

L111D: CALL
RES
RES

LD
PUSH

LD
PUSH
LD
PUSH
LD

LD
PUSH

SCF
CALL

EX

CALL

EX

LOD4D
3, (IY+502)
5, (IY+$02)

HL, ($5C8A)
HL

HL, ($5C3D)
HL

HL, L1167
HL
($5C3D), SP
HL, ($5C82)
HL

11195

DE, HL

L187D

DE, HL

is 8 characters.

routine TEMPS sets temporary attributes.

update TV_FLAG - signal no change in mode
update TV _FLAG - signal don't clear lower
screen.

fetch SPOSNL
and save on stack.

fetch ERR_SP

and save also

address: ED-FULL

is pushed as the error routine
and ERR_SP made to point to it.

fetch ECHO E
and push also

set carry flag to control SET-DE
call routine SET-DE

if in input DE = WORKSP

if in edit DE = E _LINE

start address to HL

routine OUT-LINE2 outputs entire line up to
carriage return including initial
characterized line number when present.
transfer new address to DE

CALL L18E1l ; routine OUT-CURS considers a
; terminating cursor.

LD HL, ($5C8A) ; fetch updated SPOSNL

EX (SP) , HL ; exchange with ECHO _E on stack

EX DE, HL ; transfer ECHO E to DE

CALL LOD4D ; routine TEMPS to re-set attributes

; 1if altered.

; the lower screen was not cleared, at the outset, so if deleting then old
; text from a previous print may follow this line and requires blanking.

;5 ED-BLANK

L1150: LD A, ($5C8B) ; fetch SPOSNL hi is current line
SUB D ; compare with old
JR C,L1l17C ; forward to ED-C-DONE if no blanking
JR NZ,L115E ; forward to ED-SPACES if line has changed
LD AE ; old column to A
SUB (IY+$50) ; subtract new in SPOSNL lo
JR NC,L117C ; forward to ED-C-DONE if no backfilling.
;; ED-SPACES
L115E: LD A, $20 ; prepare a space.
PUSH DE ; save old line/column.
CALL LO9F4 ; routine PRINT-OUT prints a space over

; any text from previous print.
; Note. Since the blanking only occurs when
; using $09F4 to print to the lower screen,
; there is no need to vector via a RST 10
; and we can use this alternate set.
POP DE ; restore the old line column.
JR L1150 ; back to ED-BLANK until all old text blanked.

; THE 'EDITOR-FULL' ERROR ROUTINE

; This is the error routine addressed by ERR SP. This is not for the out of

; memory situation as we're just printing. The pitch and duration are exactly
; the same as used by ED-ERROR from which this has been augmented. The

; situation is that the lower screen is full and a rasp is given to suggest

; that this is perhaps not the best idea you've had that day.

;; ED-FULL
L11le67: LD D, $00 ; prepare to moan.
LD E, (IY-502) ; fetch RASP value.
LD HL, $1A90 ; set duration.
CALL LO3BS ; routine BEEPER.
LD (IY+$00),SFF ; clear ERR NR.
LD DE, ($5C8A) ; fetch SPOSNL.
JR L117E ; forward to ED-C-END

; the exit point from line printing continues here.

;; ED-C-DONE

L117C: POP DE ; fetch new line/column.
POP HL ; fetch the error address.

; the error path rejoins here.

;; ED-C-END

L117E: POP HL ; restore the old value of ERR SP.
LD ($5C3D) , HL ; update the system variable ERR _SP
POP BC ; old value of SPOSN L
PUSH DE ; save new value
CALL LODD9 ; routine CL-SET and PO-STORE

; update ECHO _E and SPOSN L from BC

POP HL ; restore new value

LD ($5C82),HL ; and overwrite ECHO E

LD (IY+$26),S00 ; make error pointer X PTR hi out of bounds
RET ; return

; Point to first and last locations of work space

; These two nested routines ensure that the appropriate pointers are
; selected for the editing area or workspace. The routines that call
; these routines are designed to work on either area.

; this routine is called once

;+ SET-HL

L1190: LD HL, ($5C61) ; fetch WORKSP to HL.
DEC HL ; point to last location of editing area.
AND A ; clear carry to limit exit points to first

; or last.

; this routine is called with carry set and exits at a conditional return.

;; SET-DE
L1195: LD DE, ($5C59) ; fetch E LINE to DE
BIT 5, (IY+$37) ; test FLAGX - Input Mode ?
RET Z ; return now if in editing mode
LD DE, ($5C61) ; fetch WORKSP to DE
RET C ; return if carry set (entry = set-de)
LD HL, ($5C63) ; fetch STKBOT to HL as well
RET ; and return (entry = set-hl (in input))

; THE 'REMOVE FLOATING POINT' ROUTINE

; When a BASIC LINE or the INPUT BUFFER is parsed any numbers will have

; an invisible chr 14d inserted after them and the 5-byte integer or

; floating point form inserted after that. Similar invisible value holders
; are also created after the numeric and string variables in a DEF FN list.
; This routine removes these 'compiled' numbers from the edit line or

; input workspace.

;; REMOVE-FP

L11A7: 1D A, (HL) ; fetch character
CP SOE ; 1s it the CHRS 14 number marker ?
LD BC, $0006 ; prepare to strip six bytes
CALL Z,L19ES8 ; routine RECLAIM-2 reclaims bytes if CHRS 14.

LD A, (HL) ; reload next (or same) character

INC
CP
JR

RET

HL
$0D
NZ,L11A7

; and advance address
; end of line or input buffer ?
; back to REMOVE-FP until entire line done.

; return.

R R i I R e d R ah SR S R i S SR i db R S S SR S S R S dh R a i

** Part 6.

EXECUTIVE ROUTINES

* K

khkkhkhkkhkkhhkkhkkhkhkkhkhkhkkhhkhkk Ak Ak Ak ik ki h ki

The memory.

; o ————— o o o —— +-=

;| BASIC | Display | Attributes | ZX Printer | System |

;| ROM | File | File | Buffer | Variables

;A o ——— o ——— o —— o —— +—-

; $0000 $4000 $5800 $5B00 $5C00 $5CB6 = CHANS
; ot o ot —— =t ———t—=

H | Channel |$80| BASIC | Variables |$80| Edit Line |NL|$80]

; | Info | | Program | Area | | or Command | |

;. -t o ————— ot — -t ———t—=

7 CHANS PROG VARS E LINE WORKSP

; -——=5-=> <—==2-—— <-=-3---

;. o - o - et +
; | INPUT |NL| Temporary Calc. | Spare | Machine | GOSUB |?|$3E| UDGs |
; | data | | Work Space Stack | | Stack | Stack | | |

;. o t—————— o t—————— = +
; WORKSP STKBOT STKEND sp RAMTOP UDG P_RAMT
; THE 'NEW' COMMAND

rs

L11B7:

The NEW command is about to set all RAM below RAMTOP to
re-initialize the system.

preserved.

There is nowhere to store values in RAM or on the stack
Similarly PUSH and CALL instructions cannot
values or section common code.

inoperable.

zero and then
All RAM above RAMTOP should, and will be,

which becomes

be used to store
The alternate register set is the only place

available to store 3 persistent 16-bit system variables.

NEW

LD
LD
EXX
LD
LD
LD
EXX

'START-NEW'

THE

A, SFF
DE, ($5CB2)

BC, ($5CB4)
DE, ($5C38)
HL, ($5C7B)

BRANCH

; Disable Interrupts - machine stack will be

; cleared.

; Flag coming from NEW.

; Fetch RAMTOP as top value.

; Switch in alternate set.

; Fetch P-RAMT differs on 16K/48K machines.

; Fetch RASP/PIP.

; Fetch UDG differs on 16K/48K machines.

; Switch back to main set and continue into...

; This branch is taken from above and from RST 00h.

; The common code tests RAM and sets it to zero re-initializing all the

; non-zero system variables and channel information. The A register flags
; if coming from START or NEW.

;7 START-NEW

L11CB: LD B,A ; Save the flag to control later branching.
LD A, $07 ; Select a white border
ouT ($SFE) ,A ; and set it now by writing to a port.
LD A, S3F ; Load the accumulator with last page in ROM.
LD I,A ; Set the I register - this remains constant
; and can't be in the range $40 - $7F as 'snow'

; appears on the screen.

NOP ; These seem unnecessary.
NOP ;
NOP ;
NOP ;
NOP ;
NOP ;

; THE 'RAM CHECK' SECTION

; Typically, a Spectrum will have 16K or 48K of RAM and this code will test
; it all till it finds an unpopulated location or, less likely, a faulty

; location. Usually it stops when it reaches the top SFFFF, or in the case
; of NEW the supplied top value. The entire screen turns black with
; sometimes red stripes on black paper just visible.

;; ram-check

L11DA: 1D H,D ; Transfer the top value to the HL register
LD L,E ; pair.
;+ RAM-FILL
L11DC: LD (HL), $02 ; Load memory with $02 - red ink on black paper.
DEC HL ; Decrement memory address.
CP H ; Have we reached ROM - $3F ?
JR Nz,L11DC ; Back to RAM-FILL if not.
; + RAM-READ
L11E2: AND A ; Clear carry - prepare to subtract.
SBC HL, DE ; subtract and add back setting
ADD HL, DE ; carry when back at start.
INC HL ; and increment for next iteration.
JR NC, L11EF ; forward to RAM-DONE if we've got back to
; starting point with no errors.
DEC (HL) ; decrement to 1.
JR Z,L11EF ; forward to RAM-DONE if faulty.
DEC (HL) ; decrement to zero.
JR Z,L11E2 ; back to RAM-READ if zero flag was set.
; ; RAM-DONE
L11EF: DEC HL ; step back to last valid location.
EXX ; regardless of state, set up possibly
; stored system variables in case from NEW.
LD ($5CB4) ,BC ; insert P-RAMT.
LD ($5C38),DE ; ilnsert RASP/PIP.
LD ($5C7B) , HL ; insert UDG.

EXX ; switch in main set.

INC B ; now test if we arrived here from NEW.
JR Z2,L1219 ; forward to RAM-SET if we did.

; This section applies to START only.

LD ($5CB4) , HL ; set P-RAMT to the highest working RAM
; address.

LD DE, $3EAF ; address of last byte of 'U' bitmap in ROM.

LD BC, $00AS8 ; there are 21 user defined graphics.

EX DE, HL ; switch pointers and make the UDGs a

LDDR ; copy of the standard characters A - U.

EX DE, HL ; switch the pointer to HL.

INC HL ; update to start of 'A' in RAM.

LD ($5C7B) , HL ; make UDG system variable address the first
; bitmap.

DEC HL ; point at RAMTOP again.

LD BC, $0040 ; set the values of

LD ($5C38),BC ; the PIP and RASP system variables.

; The NEW command path rejoins here.

;; RAM-SET
L1219: 1D ($5CB2) , HL ; set system variable RAMTOP to HL.
; New

; Note. this entry point is a disabled Warm Restart that was almost certainly
; once pointed to by the System Variable NMIADD. It would be essential that
; any NMI Handler would perform the tasks from here to the EI instruction

; below.
77+ NMI VECT
L121cC:
LD HL, $3C00 ; a strange place to set the pointer to the
LD ($5C36) , HL ; character set, CHARS - as no printing yet.
LD HL, ($5CB2) ; fetch RAMTOP to HL again as we've lost it.
LD (HL) , $3E ; top of user ram holds GOSUB end marker
; an impossible line number - see RETURN.
; no significance in the number $3E. It has
; been traditional since the ZX80.
DEC HL ; followed by empty byte (not important).
LD SP, HL ; set up the machine stack pointer.
DEC HL ;
DEC HL ;
LD ($5C3D) , HL ; ERR SP is where the error pointer is
; at moment empty - will take address MAIN-4
; at the call preceding that address,
; although interrupts and calls will make use
; of this location in meantime.
IM 1 ; select interrupt mode 1.
LD IY,S$5C3A ; set IY to ERR NR. IY can reach all standard
; system variables but shadow ROM system
; variables will be mostly out of range.
ET ; enable interrupts now that we have a stack.

; If, as suggested above, the NMI service routine pointed to this section of
; code then a decision would have to be made at this point to jump forward,
; in a Warm Restart scenario, to produce a report code, leaving any program

; intact.

LD

LD

LD
LD
EX
LDIR

EX
DEC
LD
INC

LD
LD
LD
INC
LD

LD
INC
LD
INC
LD
LD
LD

LD
LD

LD
LD

LD

LD

DEC
DEC

LD
LD
LD
LDIR

SET
CALL

LD

CALL

XOR
LD

HL, $5CB6
($5C4F) , HL

DE, L15AF
BC,$0015
DE, HL

DE, HL
HL
($5C57) , HL
HL

($5C53) ,HL
($5C4B) , HL
(HL), $80
HL

($5C59) ,HL

(HL), $0D
HL

(HL), $80
HL
($5C61) , HL
($5C63) , HL
($5C65) , HL

A,$38

($5C8D) , A
($5C8F) , A
($5C48) ,A

HL, $0523
($5C09) , HL

(IY-$3R)
(IY-$36)

HL,L15C6
DE, $5C10
BC, SO000E

1, (IY+S$01)
LOEDF

(IY+$31),502

LOD6B

A
DE, L1539 -

The address of the channels - initially
following system variables.
Set the CHANS system variable.

Address: init-chan in ROM.

There are 21 bytes of initial data in ROM.
swap the pointers.

Copy the bytes to RAM.

Swap pointers. HL points to program area.
Decrement address.

Set DATADD to location before program area.
Increment again.

Set PROG the location where BASIC starts.
Set VARS to same location with a
variables end-marker.

Advance address.

Set E LINE, where the edit line

will be created.

Note. it is not strictly necessary to
execute the next fifteen bytes of code

as this will be done by the call to SET-MIN.
initially just has a carriage return
followed by

an end-marker.

address the next location.

set WORKSP - empty workspace.

set STKBOT - bottom of the empty stack.
set STKEND to the end of the empty stack.
the colour system is set to white paper,
black ink, no flash or bright.

set ATTR P permanent colour attributes.
set ATTR T temporary colour attributes.
set BORDCR the border colour/lower screen
attributes.

The keyboard repeat and delay values are
loaded to REPDEL and REPPER.

set KSTATE-0 to $FF - keyboard map available.
set KSTATE-4 to SFF - keyboard map available.

set source to ROM Address: init-strm

set destination to system variable STRMS-FD
copy the 14 bytes of initial 7 streams data
from ROM to RAM.

update FLAGS - signal printer in use.

call routine CLEAR-PRB to initialize system
variables associated with printer.

The buffer is clear.

set DF _S7Z the lower screen display size to
two lines

call routine CLS to set up system
variables associated with screen and clear
the screen and set attributes.

clear accumulator so that we can address
the message table directly.

CALL Locoa

SET 5, (IY+502)

;; MAIN-EXEC

L12A2: 1D (IY+$31),502
CALL L1795

;; MAIN-1

L12A9: CALL L16B0

;; MAIN-2

L12AC: LD A, $00
CALL L1601
CALL LOF2C
CALL L1B17
BIT 7, (IY+S00)
JR NZ,L12CF
BIT 4, (IY+$30)
JR Z,L1303
LD HL, ($5C59)
CALL L11A7
LD (IY+$00), SFF
JR L12AC

; the branch was here if syntax

;; MAIN-3
L12CF: LD HL, ($5C59)
LD ($5C5D) , HL

; routine PO-MSG puts

; '"(c) 1982 Sinclair Research Ltd'

; at bottom of display.

; update TV _FLAG - signal lower screen will
; require clearing.

; forward to MAIN-1

; set DF Sz lower screen display file size to
; two lines.
; routine AUTO-LIST

; routine SET-MIN clears work areas.

; select channel 'K' the keyboard

; routine CHAN-OPEN opens it

; routine EDITOR is called.

; Note the above routine is where the Spectrum
; waits for user-interaction. Perhaps the

; most common input at this stage

; is LOAD "".

; routine LINE-SCAN scans the input.

; test ERR NR - will be SFF if syntax is OK.
; forward, if correct, to MAIN-3.

; test FLAGS2 - K channel in use ?
; forward to MAIN-4 if not.

; an editing error so address E LINE.

; routine REMOVE-FP removes the hidden

; floating-point forms.

; system variable ERR NR is reset to 'OK'.
; back to MAIN-2 to allow user to correct.

has passed test.

; fetch the edit line address from E LINE.

; system variable CH ADD is set to first

; character of edit line.

; Note. the above two instructions are a little
; inadequate.

; They are repeated with a subtle difference

; at the start of the next subroutine and are

; therefore not required above.

CALL L19FB ; routine E-LINE-NO will fetch any line
; number to BC if this is a program line.

LD A,B ; test if the number of
OR C ; the line is non-zero.
JP NZ,L155D ; jump forward to MAIN-ADD if so to add the

; line to the BASIC program.

; Has the user just pressed the ENTER key ?

RST 18H ;7 GET-CHAR gets character addressed by CH ADD.
CP S0D ; 1s it a carriage return ?
JR Z,L12A2 ; back to MAIN-EXEC if so for an automatic

; listing.

; this must be a direct command.

BIT 0, (IY+$30) ; test FLAGS2 - clear the main screen ?
CALL NZ, LODAF ; routine CL-ALL, if so, e.g. after listing.
CALL LODGE ; routine CLS-LOWER anyway.

LD A,$19 ; compute scroll count as 25 minus

SUB (IY+S4F) ; value of S POSN hi.

LD ($5C8C),A ; update SCR CT system variable.

SET 7, (IY+S$01) ; update FLAGS - signal running program.

LD (IY+$00),SFF ; set ERR NR to 'OK'.

LD (IY+$0A),S$01 ; set NSPPC to one for first statement.

CALL L1B8A ; call routine LINE-RUN to run the line.

; sysvar ERR SP therefore addresses MAIN-4

; Examples of direct commands are RUN, CLS, LOAD "", PRINT USR 40000,

; LPRINT "A"; etc..

; If a user written machine-code program disables interrupts then it

; must enable them to pass the next step. We also jumped to here if the
; keyboard was not being used.

;; MAIN-4
L1303: HALT ; wait for interrupt the only routine that can
; set bit 5 of FLAGS.
RES 5, (IY+5$01) ; update bit 5 of FLAGS - signal no new key.
BIT 1, (IY+$30) ; test FLAGS2 - is printer buffer clear ?
CALL Nz, LOECD ; call routine COPY-BUFF if not.
; Note. the programmer has neglected
; to set bit 1 of FLAGS first.
LD A, ($5C3n) ; fetch ERR NR
INC A ; increment to give true code.

; Now deal with a runtime error as opposed to an editing error.
; However if the error code is now zero then the OK message will be printed.

;; MAIN-G

L1313: PUSH AF ; save the error number.
LD HL, $0000 ; prepare to clear some system variables.
LD (IY+$37),H ; clear all the bits of FLAGX.
LD (IY+$26),H ; blank X PTR hi to suppress error marker.
LD ($5CO0B) , HL ; blank DEFADD to signal that no defined

; function is currently being evaluated.

LD HL, $0001 ; explicit - inc hl would do.

LD ($5C16), HL ; ensure STRMS-00 is keyboard.

CALL L16BO ; routine SET-MIN clears workspace etc.

RES 5, (IY+$37) ; update FLAGX - signal in EDIT not INPUT mode.
; Note. all the bits were reset earlier.

CALL LOD6GE ; call routine CLS-LOWER.

SET 5, (IY+$02) ; update TV_FLAG - signal lower screen
; requires clearing.

POP AF ; bring back the true error number
LD B,A ; and make a copy in B.
CP S0A ; 1s it a print-ready digit ?
JR C,L133C ; forward to MAIN-5 if so.
ADD A, S$07 ; add ASCII offset to letters.
;7 MAIN-5
L133C: CALL L15EF ; call routine OUT-CODE to print the code.
LD A, $20 ; followed by a space.
RST 10H ; PRINT-A
LD A,B ; fetch stored report code.
LD DE, L1391 ; address: rpt-mesgs.
CALL LOCOA ; call routine PO-MSG to print the message.
X1349: XOR A ; clear accumulator to directly
LD DE,L1537 - 1 ; address the comma and space message.
CALL LOCOA ; routine PO-MSG prints ', ' although it would

; be more succinct to use RST $10.

LD BC, ($5C45) ; fetch PPC the current line number.

CALL L1A1B ; routine OUT-NUM-1 will print that

LD A, $3A ; then a ':' character.

RST 10H ; PRINT-A

LD C, (IY+$0D) ; then SUBPPC for statement

LD B, $00 ; limited to 127

CALL L1A1B ; routine OUT-NUM-1 prints BC.

CALL L1097 ; routine CLEAR-SP clears editing area which

; probably contained 'RUN'.

LD A, ($5C3Rn) ; fetch ERR NR again

INC A ; test for no error originally $FF.
JR Z,L1386 ; forward to MAIN-9 if no error.

CP 509 ; 1s code Report 9 STOP ?

JR Z,L1373 ; forward to MAIN-6 if so

CP $15 ; 1is code Report L Break ?

JR NZ,L1376 ; forward to MAIN-7 if not

; Stop or Break was encountered so consider CONTINUE.

;; MAIN-6
L1373: INC (IY+3S0D) ; increment SUBPPC to next statement.

;; MAIN-7

L1376: LD BC, $0003 ; prepare to copy 3 system variables to
LD DE, $5C70 ; address OSPPC - statement for CONTINUE.
; also updating OLDPPC line number below.
LD HL, $5C44 ; set source top to NSPPC next statement.
BIT 7, (HL) ; did BREAK occur before the jump ?
; e.9. between GO TO and next statement.
JR Z,L1384 ; skip forward to MAIN-8, if not, as set-up
; 1s correct.
ADD HL, BC ; set source to SUBPPC number of current
; statement/line which will be repeated.
;7 MAIN-8
1L.1384: LDDR ; copy PPC to OLDPPC and SUBPPC to OSPCC
; or NSPPC to OLDPPC and NEWPPC to OSPCC
;7 MAIN-9
L1386: LD (IY+S$S0A), SFF ; update NSPPC - signal 'no jump'.
RES 3, (IY+$01) ; update FLAGS - signal use 'K' mode for
; the first character in the editor and
JP L12AC ; jump back to MAIN-2.

; The Error reports with the last byte inverted. The first entry
; 1s a dummy entry. The last, which begins with $7F, the Spectrum
; character for copyright symbol, is placed here for convenience

; as 1s the preceding comma and space.

; The report line must accommodate a 4-digit line
; statement number which limits the length of the
; characters.

; e.g. "B Integer out of range, 1000:127"

;7 rpt-mesgs

number and a 3-digit
message text to twenty

L1391: DEFB $80
DEFB '0','"K'+580 ;0
DEFM "NEXT without FO"
DEFB "R'+$80 F
DEFM "Variable not foun"
DEFB 'd'"+$80 ;2
DEFM "Subscript wron"
DEFB 'g'+$80 ;3
DEFM "Out of memor"
DEFB 'y'+580 ; 4
DEFM "Out of scree"
DEFB 'n'+3$80 ;5
DEFM "Number too bi"
DEFB 'g'+$80 ;6
DEFM "RETURN without GOSU"
DEFB 'B'+5$80 ;7
DEFM "End of fil"
DEFB 'e'+3580 ; 8
DEFM "STOP statemen"
DEFB 't'+5$80 ;9
DEFM "Invalid argumen"
DEFB "t'+$80 ; A
DEFM "Integer out of rang"
DEFB 'e'+$80 ; B
DEFM "Nonsense in BASI"
DEFB 'C'+$80 ; C

rs

DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
comma-—-Ssp

L1537: DEFB

rs

copyright

L1539: DEFB

rs

’

DEFM
DEFB

Note ERR SP
normal 'Out
precise 'No

REPORT-G
No Room for

L1555: LD

LD
JPp

of Memory'

"BREAK - CONT repeat"
's'+$80

"Out of DAT"
'"A'+580

"Invalid file nam"
'e'+5$80

"No room for lin"
'e'+3580

"STOP in INPU"
'"T'+5$80

"FOR without NEX"
'T'+$80

"Invalid I/0 devic"
'e'+$80

"Invalid colou"
'r'+$80

"BREAK into progra"
'm'+$80

"RAMTOP no goo"
'd'+$80

"Statement los"
't'+380

"Invalid strea"
'm'+$80

"FN without DE"
'F'+380

"Parameter erro"
'r'+5$80

"Tape loading erro"
'r'+380

',',' '+$8O

STF

" 1982 Sinclair Research Lt"

'd'+$80

line
A,S$10 ; l.e.
BC, $0000 ; this seems unnecessary.
L1313 ; jump back to MAIN-G

Q

R
used in report line.

copyright

points here during line entry which allows the
report to be augmented to the more
Room for line' report.

Note this is not a subroutine but a branch of the main execution loop.
System variable ERR SP still points to editing error handler.
A new line is added to the BASIC program at the appropriate place.

An existing line with same number is deleted first.
Entering an existing line number deletes that line.

Entering a non-existent line allows the subsequent line to be edited next.

;; MAIN-ADD
L155D: LD
LD

($5C49),BC ; set E PPC to extracted line number.
HL, ($5C5D) ; fetch CH ADD - points to location after the

; initial digits (set in E LINE NO).

EX DE, HL ; save start of BASIC in DE.
LD HL, L1555 ; Address: REPORT-G
PUSH HL ; 1s pushed on stack and addressed by ERR_SP.

; the only error that can occur is
; 'Out of memory'.

LD HL, ($5C61) ; fetch WORKSP - end of line.
SCF ; prepare for true subtraction.
SBC HL, DE ; find length of BASIC and
PUSH HL ; save 1t on stack.
LD H,B ; transfer line number
LD L,C ; to HL register.
CALL L196E ; routine LINE-ADDR will see if
; a line with the same number exists.
JR NZ,L157D ; forward if no existing line to MAIN-ADDI.
CALL L19B8 ; routine NEXT-ONE finds the existing line.
CALL L19E8 ; routine RECLAIM-2 reclaims it.
;; MAIN-ADD1
L157D: POP BC ; retrieve the length of the new line.
LD A,C ; and test if carriage return only
DEC A ; 1.e. one byte long.
OR B ; result would be zero.
JR Z,L15AB ; forward to MAIN-ADD2 is so.
PUSH BC ; save the length again.
INC BC ; adjust for inclusion
INC BC ; of line number (two bytes)
INC BC ; and line length
INC BC ; (two bytes).
DEC HL ; HL points to location before the destination
LD DE, ($5C53) ; fetch the address of PROG
PUSH DE ; and save it on the stack
CALL L1655 ; routine MAKE-ROOM creates BC spaces in
; program area and updates pointers.
POP HL ; restore old program pointer.
LD ($5C53) ,HL ; and put back in PROG as it may have been

; altered by the POINTERS routine.

POP BC ; retrieve BASIC length
PUSH BC ; and save again.
INC DE ; points to end of new area.
LD HL, ($5C61) ; set HL to WORKSP - location after edit line.
DEC HL ; decrement to address end marker.
DEC HL ; decrement to address carriage return.
LDDR ; copy the BASIC line back to initial command.
LD HL, ($5C49) ; fetch E PPC - line number.
EX DE, HL ; swap it to DE, HL points to last of
; four locations.
POP BC ; retrieve length of line.
LD (HL) , B ; high byte last.
DEC HL ;
LD (HL) ,C ; then low byte of length.
DEC HL ;
LD (HL) ,E ; then low byte of line number.
DEC HL ;

LD (HL), D ; then high byte range $0 - $27 (1-9999).

;; MAIN-ADD2
L15AB: POP AF ; drop the address of Report G
JP L12A2 ; and back to MAIN-EXEC producing a listing
; and to reset ERR SP in EDITOR.

; THE 'INITIAL CHANNEL' INFORMATION

; This initial channel information is copied from ROM to RAM, during

; initialization. 1It's new location is after the system variables and is

; addressed by the system variable CHANS which means that it can slide up and
; down in memory. The table is never searched, by this ROM, and the last

; character, which could be anything other than a comma, provides a

; convenient resting place for DATADD.

;7 init-chan

L15AF: DEFW LO9F4 ; PRINT-OUT
DEFW L10AS8 ; KEY-INPUT
DEFB $4B ; 'K'

DEFW LO9F4 ; PRINT-OUT
DEFW L15C4 ; REPORT-J
DEFB $53 ; 'S!

DEFW LOF81 ; ADD-CHAR
DEFW L15C4 ; REPORT-J
DEFB 552 ; 'R!

DEFW LO9F4 ; PRINT-OUT
DEFW L15C4 ; REPORT-J
DEFB 550 ; 'P!

DEFB $80 ; End Marker

;7 REPORT-J
L15C4: RST 08H ; ERROR-1
DEFB $12 ; Error Report: Invalid I/O device

; THE '"INITIAL STREAM' DATA

; This is the initial stream data for the seven streams S$SFD - $03 that is

; copied from ROM to the STRMS system variables area during initialization.
; There are reserved locations there for another 12 streams. Each location
; contains an offset to the second byte of a channel. The first byte of a
; channel can't be used as that would result in an offset of zero for some
; and zero 1is used to denote that a stream is closed.

;5 init-strm

L15C6: DEFB 501, SO0 ; stream S$FD offset to channel 'K'
DEFB 506, $00 ; stream SFE offset to channel 'S'
DEFB $0B, $00 ; stream SFF offset to channel 'R’
DEFB 501, SO0 ; stream $00 offset to channel 'K'
DEFB 501, $00 ; stream $01 offset to channel 'K'
DEFB $06, $00 ; stream $02 offset to channel 'S'
DEFB $10, $00 ; stream $03 offset to channel 'P'

; THE 'INPUT CONTROL' SUBROUTINE

;; WAIT-KEY
L15D4: BIT 5, (IY+$02) ; test TV FLAG - clear lower screen ?

JR NZ, L15DE ; forward to WAIT-KEY1l if so.

SET 3, (IY+502) ; update TV _FLAG - signal reprint the edit
; line to the lower screen.

;7 WAIT-KEY1

L15DE: CALL L15E6 ; routine INPUT-AD is called.
RET C ; return with acceptable keys.
JR Z,L15DE ; back to WAIT-KEY1l if no key is pressed

; or it has been handled within INPUT-AD.

; Note. When inputting from the keyboard all characters are returned with
; above conditions so this path is never taken.

;7 REPORT-8
L15E4: RST 08H ; ERROR-1
DEFB $07 ; Error Report: End of file

; THE 'INPUT ADDRESS' ROUTINE

; This routine fetches the address of the input stream from the current
; channel area using the system variable CURCHL.

;; INPUT-AD

L15E6: EXX ; switch in alternate set.
PUSH HL ; save HL register
LD HL, ($5C51) ; fetch address of CURCHL - current channel.
INC HL ; step over output routine
INC HL ; to point to low byte of input routine.
JR L15F7 ; forward to CALL-SUB.

; THE 'CODE OUTPUT' ROUTINE
; This routine is called on five occasions to print the ASCII equivalent of
; a value 0-9.

;» OUT-CODE
L15EF: LD E,$30 ; add 48 decimal to give the ASCII character
ADD A,E ; '0'" to '9' and continue into the main output
; routine.

; THE 'MAIN OUTPUT' ROUTINE

; PRINT-A-2 is a continuation of the RST 10 restart that prints any character.

; The routine prints to the current channel and the printing of control codes
; may alter that channel to divert subsequent RST 10 instructions to temporary
; routines. The normal channel is $09F4.

;7 PRINT-A-2

L15F2: EXX ; switch in alternate set
PUSH HL ; save HL register
LD HL, ($5C51) ; fetch CURCHL the current channel.

; 1lnput-ad rejoins here also.

;; CALL-SUB

L15F7: LD E, (HL) ; put the low byte in E.
INC HL ; advance address.
LD D, (HL) ; put the high byte to D.

EX DE, HL ; transfer the stream to HL.
CALL L162C ; use routine CALL-JUMP.
; in effect CALL (HL).

POP HL ; restore saved HL register.
EXX ; switch back to the main set and
RET ; return.

; THE 'OPEN CHANNEL' ROUTINE

; This subroutine is used by the ROM to open a channel 'K', 'S', 'R' or 'P'.
; This is either for its own use or in response to a user's request, for

; example, when '#' is encountered with output - PRINT, LIST etc.

; or with input - INPUT, INKEYS$ etc.

; It is entered with a system stream $FD - SFF, or a user stream $00 - S$OF

; in the accumulator.

;; CHAN-OPEN

L1601: ADD A,A ; double the stream (SFF will become S$SFE etc.)
ADD A,S$16 ; add the offset to stream 0 from $5C00
LD L,A ; result to L
LD H, $5C ; now form the address in STRMS area.
LD E, (HL) ; fetch low byte of CHANS offset
INC HL ; address next
LD D, (HL) ; fetch high byte of offset
LD A,D ; test that the stream is open.
OR E ; zero i1f closed.
JR NZ,L1610 ; forward to CHAN-OP-1 if open.
;+ REPORT-0Oa
L160E: RST 08H ; ERROR-1
DEFB $17 ; Error Report: Invalid stream

; continue here if stream was open. Note that the offset is from CHANS
; to the second byte of the channel.

;; CHAN-OP-1

L1610: DEC DE ; reduce offset so it points to the channel.
LD HL, ($5C4F) ; fetch CHANS the location of the base of
; the channel information area
ADD HL, DE ; and add the offset to address the channel.

; and continue to set flags.

; Set channel flags

; This subroutine is used from ED-EDIT, str$ and read-in to reset the
; current channel when it has been temporarily altered.

;; CHAN-FLAG

L1615: LD ($5C51) ,HL ; set CURCHL system variable to the

; address in HL

RES 4, (IY+$30) ; update FLAGS2 - signal K channel not in use.
; Note. provide a default for channel 'R'.

INC HL ; advance past

INC HL ; output routine.

INC HL ; advance past

INC HL ; 1lnput routine.

LD C, (HL) ; pick up the letter.

LD HL,L162D ; address: chn-cd-1lu

CALL L1e6eDC ; routine INDEXER finds offset to a

; flag-setting routine.

RET NC ; but if the letter wasn't found in the

; table just return now. - channel 'R'.
LD D, $00 ; prepare to add
LD E, (HL) ; offset to E
ADD HL, DE ; add offset to location of offset to form

; address of routine

;; CALL-JUMP
L162C: JP (HL) ; jump to the routine

; Footnote. calling any location that holds JP (HL) is the equivalent to
; a pseudo 7280 instruction CALL (HL). The ROM uses the instruction above.

; Channel code look-up table

; This table is used by the routine above to find one of the three
; flag setting routines below it.
; A zero end-marker is required as channel 'R' is not present.

;7 chn-cd-1u

1L162D: DEFB "K', 1L1634-$-1 ; offset $06 to CHAN-K
DEFB 'S', L1642-5-1 ; offset $12 to CHAN-S
DEFB 'P', Ll64D-5-1 ; offset $1B to CHAN-P
DEFB 500 ; end marker.

; Channel K flag

; routine to set flags for lower screen/keyboard channel.

;; CHAN-K

L1634: SET 0, (IY+S$02) ; update TV _FLAG - signal lower screen in use
RES 5, (IY+$01) ; update FLAGS - signal no new key
SET 4, (IY+$30) ; update FLAGS2 - signal K channel in use
JR L1646 ; forward to CHAN-S-1 for indirect exit

; Channel S flag

; routine to set flags for upper screen channel.

;» CHAN-S
L1642: RES 0, (IY+S502) ; TV_FLAG - signal main screen in use

;; CHAN-S-1
Ll646: RES 1, (IY+S01) ; update FLAGS - signal printer not in use
JP LOD4D ; jump back to TEMPS and exit wvia that
; routine after setting temporary attributes.

; This routine sets a flag so that subsequent print related commands
; print to printer or update the relevant system variables.
; This status remains in force until reset by the routine above.

;; CHAN-P
L164D: SET 1, (IY+S01) ; update FLAGS - signal printer in use
RET ; return

; THE 'ONE SPACE' SUBROUTINE

’

’

rr

This routine is called once only to create a single space
in workspace by ADD-CHAR.

ONE-SPACE

L1652: LD BC, $0001 ; create space for a single character.

This entry point is used to create BC spaces in various areas such as
program area, variables area, workspace etc..

The entire free RAM is available to each BASIC statement.

On entry, HL addresses where the first location is to be created.
Afterwards, HL will point to the location before this.

; + MAKE-ROOM
L1655: PUSH HL ; save the address pointer.
CALL L1FO05 ; routine TEST-ROOM checks if room
; exists and generates an error if not.
POP HL ; restore the address pointer.
CALL L1664 ; routine POINTERS updates the
; dynamic memory location pointers.
; DE now holds the old value of STKEND.
LD HL, ($5C65) ; fetch new STKEND the top destination.
EX DE, HL ; HL now addresses the top of the area to
; be moved up - old STKEND.
LDDR ; the program, variables, etc are moved up.
RET ; return with new area ready to be populated.

; HL points to location before new area,
; and DE to last of new locations.

This routine is called by MAKE-ROOM to adjust upwards and by RECLAIM to
adjust downwards the pointers within dynamic memory.

The fourteen pointers to dynamic memory, starting with VARS and ending
with STKEND, are updated adding BC if they are higher than the position
in HL.

The system variables are in no particular order except that STKEND, the first

free location after dynamic memory must be the last encountered.

;;» POINTERS

L1664: PUSH AF ; preserve accumulator.
PUSH HL ; put pos pointer on stack.
LD HL, $5C4B ; address VARS the first of the
LD A, SOE ; fourteen variables to consider.

;+ PTR-NEXT

L166B: LD E, (HL) ; fetch the low byte of the system variable.
INC HL ; advance address.
LD D, (HL) ; fetch high byte of the system variable.
EX (SP) , HL ; swap pointer on stack with the variable

; pointer.

AND A ; prepare to subtract.
SBC HL, DE ; subtract variable address
ADD HL, DE ; and add back
EX (SP) , HL ; swap pos with system variable pointer
JR NC,L167F ; forward to PTR-DONE if var before pos
PUSH DE ; save system variable address.

EX DE, HL ; transfer to HL

ADD HL, BC ; add the offset

EX DE, HL ; back to DE

LD (HL) , D ; load high byte

DEC HL ; move back

LD (HL) ,E ; load low byte

INC HL ; advance to high byte

POP DE ; restore old system variable address.

;; PTR-DONE
L167F: INC HL ; address next system variable.

DEC A ; decrease counter.

JR NZ,L166B ; back to PTR-NEXT if more.

EX DE, HL ; transfer old value of STKEND to HL.
; Note. this has always been updated.

POP DE ; pop the address of the position.

POP AF ; pop preserved accumulator.

AND A ; clear carry flag preparing to subtract.

SBC HL, DE ; subtract position from old stkend

LD B,H ; to give number of data bytes

LD C,L ; to be moved.

INC BC ; increment as we also copy byte at old STKEND.

ADD HL, DE ; recompute old stkend.

EX DE, HL ; transfer to DE.

RET ; return.

This routine extracts a line number, at an address that has previously
been found using LINE-ADDR, and it is entered at LINE-NO. If it encounters
the program 'end-marker' then the previous line is used and if that

should also be unacceptable then zero is used as it must be a direct
command. The program end-marker is the variables end-marker $80, or

if variables exist, then the first character of any variable name.

;; LINE-ZERO
L168F: DEFB $00, $00 ; dummy line number used for direct commands
;; LINE-NO-A
L1691: EX DE, HL ; fetch the previous line to HL and set
LD DE, L168F ; DE to LINE-ZERO should HL also fail.

’

-> The Entry Point.

;5 LINE-NO

L1695: LD A, (HL) ; fetch the high byte - max $2F
AND SCO ; mask off the invalid bits.
JR NZ,L1691 ; to LINE-NO-A if an end-marker.
LD D, (HL) ; reload the high byte.
INC HL ; advance address.
LD E, (HL) ; pick up the low byte.
RET ; return from here.

’

’

This is a continuation of the restart BC-SPACES

rr

RESERVE

L169E: LD HL, ($5C63) ; STKBOT first location of calculator stack
DEC HL ; make one less than new location
CALL L1655 ; routine MAKE-ROOM creates the room.
INC HL ; address the first new location
INC HL ; advance to second
POP BC ; restore old WORKSP
LD ($5C61),BC ; system variable WORKSP was perhaps
; changed by POINTERS routine.
POP BC ; restore count for return value.
EX DE, HL ; switch. DE = location after first new space
INC HL ; HL now location after new space
RET ; return.

This routine sets the editing area, workspace and calculator stack

to their minimum configurations as at initialization and indeed this
routine could have been relied on to perform that task.

This routine uses HL only and returns with that register holding
WORKSP/STKBOT/STKEND though no use is made of this. The routines also
reset MEM to its usual place in the systems variable area should it
have been relocated to a FOR-NEXT variable. The main entry point
SET-MIN is called at the start of the MAIN-EXEC loop and prior to
displaying an error.

;; SET-MIN
L16B0: LD HL, ($5C59) ; fetch E LINE
LD (HL) , $0D ; insert carriage return
LD ($5C5B) , HL ; make K CUR keyboard cursor point there.
INC HL ; next location
LD (HL), $80 ; holds end-marker $80
INC HL ; next location becomes
LD ($5C61) , HL ; start of WORKSP

’

’

This entry point is used prior to input and prior to the execution,
or parsing, of each statement.

;7 SET-WORK
L16BF: LD HL, ($5C61) ; fetch WORKSP value
LD ($5C63) ,HL ; and place in STKBOT

’

’

This entry point is used to move the stack back to its normal place
after temporary relocation during line entry and also from ERROR-3

;7 SET-STK
L16C5: LD HL, ($5C63) ; fetch STKBOT value
LD ($5C65) , HL ; and place in STKEND.
PUSH HL ; perhaps an obsolete entry point.
LD HL, $5C92 ; normal location of MEM-0
LD ($5C68) , HL ; 1s restored to system variable MEM.
POP HL ; saved value not required.
RET ; return.

This seems to be legacy code from the ZX80/ZX81 as it is
not used in this ROM.

; That task, in fact, is performed here by the dual-area routine CLEAR-SP.
; This routine is designed to deal with something that is known to be in the
; edit buffer and not workspace.

’

On entry, HL must point to the end of the something to be deleted.

;; REC-EDIT
L16D4: LD DE, ($5C59) ; fetch start of edit line from E LINE.
JP L19ES ; Jjump forward to RECLAIM-1.

rs

This routine is used to search two-byte hash tables for a character
held in C, returning the address of the following offset byte.

if it is known that the character is in the table e.g. for priorities,
then the table requires no zero end-marker. If this is not known at the
outset then a zero end-marker is required and carry is set to signal
success.

INDEXER-1

L16DB: INC HL ; address the next pair of values.

’

-> The Entry Point.

;+ INDEXER

L1eDC: LD A, (HL) ; fetch the first byte of pair
AND A ; is it the end-marker ?
RET Z ; return with carry reset if so.
CP C ; 1s it the required character ?
INC HL ; address next location.
JR NZ,L16DB ; back to INDEXER-1 if no match.
SCF ; else set the carry flag.
RET ; return with carry set

’

rs

A channel is an input/output route to a hardware device

and is identified to the system by a single letter e.g. 'K' for
the keyboard. A channel can have an input and output route
associated with it in which case it is bi-directional like

the keyboard. Others like the upper screen 'S' are output

only and the input routine usually points to a report message.
Channels 'K' and 'S' are system channels and it would be inappropriate
to close the associated streams so a mechanism is provided to
re-attach them. When the re-attachment is no longer required, then
closing these streams resets them as at initialization.

Early adverts said that the network and RS232 were in this ROM.

Channels 'N' and 'B' are user channels and have been removed successfully

if, as seems possible, they existed.

Ironically the tape streamer is not accessed through streams and
channels.

Early demonstrations of the Spectrum showed a single microdrive being
controlled by the main ROM.

THE 'CLOSE #' COMMAND

This command allows streams to be closed after use.
Any temporary memory areas used by the stream would be reclaimed and
finally flags set or reset if necessary.

CLOSE

L16E5: CALL L171E ; routine STR-DATA fetches parameter

; from calculator stack and gets the

’

’

’

rr

CALL

LD
LD

EX

ADD
JR

proceed with a negative result.

LD

ADD
LD
INC
LD

L1701

BC, $0000
DE, $A3E2

DE, HL

HL, DE
C,L16FC

BC,L15C6 + 14

HL, BC
C, (HL)
HL

B, (HL)

existing STRMS data pointer address in HL
and stream offset from CHANS in BC.

Note. this offset could be zero if the
stream is already closed. A check for this
should occur now and an error should be
generated, for example,

Report S 'Stream status closed'.

routine CLOSE-2 would perform any actions
peculiar to that stream without disturbing
data pointer to STRMS entry in HL.

the stream is to be blanked.

the number of bytes from stream 4, $5C1E,
to $10000

transfer offset to HL, STRMS data pointer
to DE.

add the offset to the data pointer.
forward to CLOSE-1 if a non-system stream.
i.e. higher than 3.

prepare the address of the byte after

the initial stream data in ROM. ($15D4)

index into the data table with negative wvalue.
low byte to C

address next.

high byte to B.

and for streams 0 - 3 just enter the initial data back into the STRMS entry
streams 0 - 2 can't be closed as they are shared by the operating system.
-> for streams 4 - 15 then blank the entry.

CLOSE-1

L16FC: EX

rs

LD
INC
LD
RET

THE 'CLOSE-2'

DE, HL
(HL) ,C
HL

(HL) , B

SUBROUTINE

address of stream to HL.
place zero (or low byte).
next address.

place zero (or high byte).
return.

There is not much point in coming here.

The purpose was once to find the offset to a special closing routine,

in this ROM and within 256 bytes of the close stream look up table that
would reclaim any buffers associated with a stream. At least one has been

removed.

Any attempt to CLOSE streams $00 to $04, without first opening the stream,
will lead to either a system restart or the production of a strange report.
credit: Martin Wren-Hilton 1982.

CLOSE-2

L1701: PUSH

LD
ADD

INC
INC

HL

HL, ($5C4F)
HL, BC

HL
HL

* save address of stream data pointer
in STRMS on the machine stack.

fetch CHANS address to HL

add the offset to address the second
byte of the output routine hopefully.
step past

the input routine.

Note. When the Sinclair Interfacel is fitted then an instruction fetch

on the next address pages this ROM out and the shadow ROM in.

;; ROM_TRAP
L1708: INC HL ; to address channel's letter
LD C, (HL) ; pick it up in C.
; Note. but if stream is already closed we
; get the value $10 (the byte preceding 'K').
EX DE, HL ; save the pointer to the letter in DE.

’

rs

Note. The string pointer is saved but not used!!

LD HL,L1716 ; address: cl-str-1lu in ROM.

CALL L16eDC ; routine INDEXER uses the code to get
; the 8-bit offset from the current point to
; the address of the closing routine in ROM.
; Note. it won't find $10 there!

LD C, (HL) ; transfer the offset to C.
LD B, $00 ; prepare to add.
ADD HL, BC ; add offset to point to the address of the

; routine that closes the stream.
; (and presumably removes any buffers that
; are associated with it.)

JP (HL) ; jump to that routine.

THE 'CLOSE STREAM LOOK-UP' TABLE
This table contains an entry for a letter found in the CHANS area.
followed by an 8-bit displacement, from that byte's address in the
table to the routine that performs any ancillary actions associated
with closing the stream of that channel.
The table doesn't require a zero end-marker as the letter has been
picked up from a channel that has an open stream.

cl-str-1u

L1716: DEFB 'K', L171C-$-1 ; offset 5 to CLOSE-STR
DEFB 's', L171C-$-1 ; offset 3 to CLOSE-STR
DEFB 'P', L171C-$-1 ; offset 1 to CLOSE-STR

’

’

’

THE 'CLOSE STREAM' SUBROUTINES

The close stream routines in fact have no ancillary actions to perform
which is not surprising with regard to 'K' and 'S'.

;7 CLOSE-STR
L171C: POP HL ; * now just restore the stream data pointer
RET ; in STRMS and return.

rs

This routine finds the data entry in the STRMS area for the specified
stream which is passed on the calculator stack. It returns with HL
pointing to this system variable and BC holding a displacement from
the CHANS area to the second byte of the stream's channel. If BC holds
zero, then that signifies that the stream is closed.

STR-DATA

L171E: CALL L1E94 ; routine FIND-INT1 fetches parameter to A

CP 310 ; 1is it less than 16d ?

JR
;7 REPORT-Ob
L1725: RST

DEFB

;7 STR-DATAL
L1727: ADD

RLCA
LD
LD

LD
ADD

c,L1727

08H
$17

A,$03

HL, $5C10

C,A
B, $00
HL, BC

skip forward to STR-DATAl if so.

ERROR-1
Error Report: Invalid stream

add the offset for 3 system streams.
range 00 - 15d becomes 3 - 18d.

double as there are two bytes per

stream - now 06 - 36d

address STRMS - the start of the streams
data area in system variables.

transfer the low byte to A.

prepare to add offset.

add to address the data entry in STRMS.

; the data entry itself contains an offset from CHANS to the address of the

; stream

LD
INC
LD
DEC

RET

C, (HL)
HL
B, (HL)
HL

; Command syntax example:
; On entry the channel code entry is on the calculator stack with the next
; value containing the stream identifier. They have to swapped.

;; OPEN

L1736: RST
DEFB
DEFB

CALL

LD
OR
JR

; 1f it is a system channel then

EX
LD
ADD

INC
INC
INC
LD
EX

CP
JR

28H
$01
$38

L171E

A,B
C
z,L1756

DE, HL
HL, ($5C4F)
HL, BC

HL
HL
HL
A, (HL)
DE, HL

$4B
7,L1756

’
’

’

low byte of displacement to C.

address next.

high byte of displacement to B.

step back to leave HL pointing to STRMS
data entry.

return with CHANS displacement in BC
and address of stream data entry in HL.

OPEN #5,"s"

;; FP-CALC ;S,C.

;exchange ;C,S.
;end-calc

routine STR-DATA fetches the stream off
the stack and returns with the CHANS
displacement in BC and HL addressing
the STRMS data entry.

test for zero which

indicates the stream is closed.

skip forward to OPEN-1 if so.

it can re-attached.

save STRMS address in DE.

fetch CHANS.

add the offset to address the second
byte of the channel.

skip over the

input routine.

and address the letter.

pick up the letter.

save letter pointer and bring back
the STRMS pointer.

is it 'K' ?
forward to OPEN-1 if so

Cp $53

JR Z,L1756
CP $50
JR NZ,L1725

is it 'sS' ?
forward to OPEN-1 if so

is it 'P' ?
back to REPORT-Ob if not.
to report 'Invalid stream'.

; continue if one of the upper-case letters was found.
; and rejoin here from above if stream was closed.

;; OPEN-1
L1756: CALL L175D

routine OPEN-2 opens the stream.

; 1t now remains to update the STRMS variable.

1D (HL) ,E
INC HL

1D (HL), D
RET

; OPEN-2 Subroutine

; There is some point in coming
; this routine also sets flags.

;; OPEN-2
L175D: PUSH HL
CALL L2BF1
LD A,B
OR C
JR NZ,L1767

;7 REPORT-FDb

L1765: RST 08H
DEFB SOE

;; OPEN-3

L1767: PUSH BC
1D A, (DE)
AND SDF
1D c,A
1D HL,L177A
CALL L16DC
JR NC, L1765
1D C, (HL)
1D B, $00
ADD HL, BC
POP BC
JP (HL)

insert or overwrite the low byte.
address high byte in STRMS.

insert or overwrite the high byte.
return.

here as, as well as once creating buffers,

* save the STRMS data entry pointer.
routine STK-FETCH now fetches the
parameters of the channel string.
start in DE, length in BC.

test that it is not

the null string.

skip forward to OPEN-3 with 1 character
or more!

ERROR-1
Error Report: Invalid file name

save the length of the string.

pick up the first character.

Note. if the second character is used to
distinguish between a binary or text
channel then it will be simply a matter
of setting bit 7 of FLAGX.

make it upper-case.

place it in C.

address: op-str-lu is loaded.

routine INDEXER will search for letter.
back to REPORT-F if not found

'Invalid filename'

fetch the displacement to opening routine.
prepare to add.

now form address of opening routine.
restore the length of string.

now jump forward to the relevant routine.

The open stream look-up table consists of matched pairs.

The channel letter is followed by an 8-bit displacement to the
associated stream-opening routine in this ROM.

The table requires a zero end-marker as the letter has been
provided by the user and not the operating system.

;7 op-str-1lu

L177A: DEFB 'K', L1781-%-1 ; $06 offset to OPEN-K
DEFB 'sS', L1785-$-1 ; $08 offset to OPEN-S
DEFB 'P', L1789-$-1 ; $O0A offset to OPEN-P
DEFB $00 ; end-marker.

These routines would have opened any buffers associated with the stream
before jumping forward to OPEN-END with the displacement value in E

and perhaps a modified value in BC. The strange pathing does seem to
provide for flexibility in this respect.

There is no need to open the printer buffer as it is there already

even if you are still saving up for a ZX Printer or have moved onto
something bigger. In any case it would have to be created after

the system variables but apart from that it is a simple task

and all but one of the ROM routines can handle a buffer in that position.
(PR-ALL-6 would require an extra 3 bytes of code).

However it wouldn't be wise to have two streams attached to the ZX Printer
as you can now, so one assumes that if PR CC _hi was non-zero then

the OPEN-P routine would have refused to attach a stream if another

stream was attached.

Something of significance is being passed to these ghost routines in the
second character. Strings 'RB', 'RT' perhaps or a drive/station number.
The routine would have to deal with that and exit to OPEN END with BC
containing $0001 or more likely there would be an exit within the routine.
Anyway doesn't matter, these routines are long gone.

Open Keyboard stream.

;7 OPEN-K
L1781: LD E,S$01 ; 01 is offset to second byte of channel 'K'.
JR L178B ; forward to OPEN-END

’

’

Open Screen stream.

;; OPEN-S
L1785: LD E, $06 ; 06 is offset to 2nd byte of channel 'S’
JR L178B ; to OPEN-END

’

’

rs

Open Printer stream.

OPEN-P

L1789: LD E,S10 ; led is offset to 2nd byte of channel 'P'

rr

OPEN-END

L178B: DEC

rs

LD
OR
JR

LD

POP
RET

BC

A,B

C
NZ,L1765
D, A

HL

the stored length of 'K','S','P' or
whatever is now tested. ?27?

test now if initial or residual length
is one character.

to REPORT-Fb 'Invalid file name' if not.
load D with zero to form the displacement
in the DE register.

* restore the saved STRMS pointer.

return to update STRMS entry thereby
signaling stream is open.

Handle CAT, ERASE,

FORMAT, MOVE

These just generate an error report as the ROM is

"incomplete'.

Luckily this provides a mechanism for extending these in a shadow ROM
but without the powerful mechanisms set up in this ROM.
An instruction fetch on $0008 may page in a peripheral ROM,

e.g.

the Sinclair Interface 1 ROM, to handle these commands.
However that wasn't the plan.

Development of this ROM continued for another three months until the cost
of replacing it and the manual became unfeasible.
The ultimate power of channels and streams died at birth.

CAT-ETC

L1793: JR

’

’

rr

’

to REPORT-0Ob

This produces an automatic listing in the upper screen.

AUTO-LIST

L1795: LD

LD
CALL
SET

LD
CALL

RES
SET

LD
LD

AND
SBC
ADD
JR

PUSH
CALL
LD

EX
SBC

EX

($5C3F),SP

(IY+$02),810

LODAF
0, (IY+S502)

B, (IY+$31)
LOE44

0, (IY+502)
0, (I¥Y+$30)

HL, ($5C49)
DE, ($5C6C)

A
HL, DE
HL, DE
C,L17E1

DE
L196E
DE, $02C0

DE, HL
HL, DE

(SP) ,HL

’

save stack pointer in LIST SP
update TV _FLAG set bit 3

routine CL-ALL.
update TV _FLAG

fetch DF _SZ to B.

routine CL-LINE clears lower display
preserving B.
update TV _FLAG

clear main screen.

fetch E PPC current edit line to HL.
fetch S TOP to DE, the current top line
(initially zero)

prepare for true subtraction.

subtract and

add back.

to AUTO-L-2 if S TOP higher than E_PPC
to set S TOP to E PPC

save the top line number.

routine LINE-ADDR gets address of E PPC.
prepare known number of characters in

the default upper screen.

offset to HL, program address to DE.
subtract high value from low to obtain
negated result used in addition.

swap result with top line number on stack.

- signal lower screen in use

- signal main screen in use
update FLAGS2 - signal will be necessary to

’

’

AUTO-

L17CE:

’

’

’

CALL

POP

L-1
PUSH
CALL

POP
ADD
JR

EX
LD
INC
LD
DEC
LD
JR

L196E

BC

BC
L19B8

BC
HL, BC
C,L17E4

DE, HL
D, (HL)

HL

E, (HL)

HL
($5C6C) , DE
L17CE

; routine LINE-ADDR gets address of that
; top line in HL and next line in DE.
; restore the result to balance stack.

; save the result.

; routine NEXT-ONE gets address in HL of
; line after auto-line (in DE).

; restore result.

; compute back.

; to AUTO-L-3 if line 'should' appear

; address of next line to HL.

; get line

; number

; in DE.

; adjust back to start.

; update S TOP.

; to AUTO-L-1 until estimate reached.

the jump was to here if S TOP was greater than E PPC

AUTO-

L17E1:

’

’

’

’

L-2
LD

($5C6C) , HL

; make S TOP the same as E_PPC.

continue here with valid starting point from above or good estimate
from computation

AUTO-

L17E4:

’

’

AUTO-

L17ED:

’

’

’

’

’

L-3
LD
CALL
JR
EX

L-4
CALL

HL, ($5C6C)
L196E

Z,L17ED

DE, HL

L1833

; fetch S TOP line number to HL.

; routine LINE-ADDR gets address in HL.
; address of next in DE.

; to AUTO-L-4 if line exists.

; else use address of next line.

; routine LIST-ALL >>>

The return will be to here if no scrolling occurred

RES
RET

4, (IY+$02)

A short form of LIST #3.

LLIST

L17F5:

’

’

LD
JR

A, $03
L17FB

List to any stream.
While a starting line can be specified it is
not possible to specify an end line.

Just listing a line makes it the current edit line.

Note.

LIST

; update TV_FLAG - signal no auto listing.

; return.

The listing goes to stream 3 - default printer.

; the usual stream for 7ZX Printer
; forward to LIST-1

L17F9: LD A, $02
;; LIST-1
L17FB: LD (IY+$02),%00
CALL L2530
CALL NZ,L1601
RST 18H
CALL L2070
JR C,L181F
RST 18H
CP $3B
JR Z,11814
CP $2C
JR NZ,L181A
; we have, say, LIST #15,
;5 LIST-2
1L1814: RST 20H
CALL L1C82
JR L1822
; the branch was here with just
;; LIST-3
L181A: CALL L1CEG6
JR L1822
; the branch was here with LIST
;; LIST-4
L181F: CALL L1CDE
;; LIST-5
L1822: CALL L1BEE
CALL L1E99
LD A,B
AND S3F
1D H,A
LD L,C
LD ($5C49) ,HL
CALL L196E

’

This routine

and a number must follow

’
’

’

default is stream 2 - the upper screen.

the TV FLAG is initialized with bit 0 reset
indicating upper screen in use.

routine SYNTAX-Z - checking syntax ?
routine CHAN-OPEN if in run-time.

GET-CHAR

routine STR-ALTER will alter if '#'.

forward to LIST-4 not a '#'
GET-CHAR

is it ';' 2

skip to LIST-2 if so.

is it ',"' ?
forward to LIST-3 if neither separator.

the separator.
NEXT-CHAR

routine EXPT-1NUM
forward to LIST-5

LIST #3 etc.

USE-ZERO
to LIST-5

routine
forward

FETCH-NUM checks if a number
else uses zero.

routine
follows

routine CHECK-END quits if syntax OK >>>
routine FIND-INT2 fetches the number

from the calculator stack in run-time.
fetch high byte of line number and

make less than $40 so that NEXT-ONE

(from LINE-ADDR) doesn't lose context.
Note. this is not satisfactory and the typo
LIST 20000 will 1list an entirely different
section than LIST 2000. Such typos are not
available for checking if they are direct
commands .

transfer the modified

line number to HL.

update E PPC to new line number.

routine LINE-ADDR gets the address of the
line.

is called from AUTO-LIST

;; LIST-ALL
L1833: LD E,S$01 ; signal current line not yet printed

;; LIST-ALL-2

L1835: CALL L1855 ; routine OUT-LINE outputs a BASIC line
; using PRINT-OUT and makes an early return
; when no more lines to print. >>>

RST 10H ; PRINT-A prints the carriage return (in A)
BIT 4, (IY+$02) ; test TV _FLAG - automatic listing ?
JR Z,L1835 ; back to LIST-ALL-2 if not

; (loop exit is via OUT-LINE)

; continue here if an automatic listing required.

LD A, ($5C6B) ; fetch DF SZ lower display file size.

SUB (IY+S4F) ; subtract S POSN hi ithe current line number.
JR NZ,L1835 ; back to LIST-ALL-2 if upper screen not full.
XOR E ; A contains zero, E contains one if the

; current edit line has not been printed
; or zero if it has (from OUT-LINE) .

RET Z ; return if the screen is full and the line
; has been printed.

; continue with automatic listings if the screen is full and the current
; edit line is missing. OUT-LINE will scroll automatically.

PUSH HL ; save the pointer address.
PUSH DE ; save the E flag.
LD HL, $5C6C ; fetch S TOP the rough estimate.
CALL L190F ; routine LN-FETCH updates S TOP with
; the number of the next line.
POP DE ; restore the E flag.
POP HL ; restore the address of the next line.
JR L1835 ; back to LIST-ALL-2.

; This routine prints a whole BASIC line and it is called
; from LIST-ALL to output the line to current channel
; and from ED-EDIT to 'sprint' the line to the edit buffer.

;7 OUT-LINE

L.1855: LD BC, ($5C49) ; fetch E PPC the current line which may be
; unchecked and not exist.
CALL L1980 ; routine CP-LINES finds match or line after.
LD D, $3E ; prepare cursor '>' in D.
JR Z,L1865 ; to OUT-LINE1l if matched or line after.
LD DE, $0000 ; put zero in D, to suppress line cursor.
RL E ; pick up carry in E if line before current

; leave E zero if same or after.

;; OUT-LINE1

L1865: LD (IY+$2D),E ; save flag in BREG which is spare.
LD A, (HL) ; get high byte of line number.
CP 540 ; is it too high ($2F is maximum possible) ?
POP BC ; drop the return address and

RET NC ; make an early return if so >>>

PUSH
CALL

INC
INC
INC
RES
LD

AND
JR

RST

; this entry point is called from

;7 OUT-LINE2
L187D: SET

;; OUT-LINE3

L1881: PUSH
EX
RES

LD
RES
BIT
JR

SET

;7 OUT-LINE4
L189%4: LD

AND
SBC
JR

LD
CALL

;7 OUT-LINES
L18Al: CALL

EX
LD
CALL
INC
CP
JR

EX
CALL

JR

;; OUT-LINEG
L.18B4: POP

RET

BC
L1A28

10H

0, (IY+$01)

DE
DE, HL
2, (IY+$30)

HL, $5C3B
2, (HL)

5, (IY+$37)
Z,L1894

2, (HL)

HL, ($5C5F)
A

HL, DE
NZ,L18Al
A, $3F
L18C1
L18E1l
DE, HL

A, (HL)
L18B6

HL

$0D
7,L18B4

DE, HL
L1937

L1894

DE

save return address

routine OUT-NUM-2 to print addressed number
with leading space.

skip low number byte.

and the two

length bytes.

update FLAGS - signal leading space required.

fetch the cursor.
test for zero.
to OUT-LINE3 if zero.

PRINT-A prints '>' the current line cursor.

ED-COPY

update FLAGS - suppress leading space.

save flag E for a return value.
save HL address in DE.
update FLAGS2 - signal NOT in QUOTES.

point to FLAGS.

signal 'K' mode. (starts before keyword)
test FLAGX - input mode ?

forward to OUT-LINE4 if not.

signal 'L' mode. (used for input)

fetch X PTR - possibly the error pointer
address.

clear the carry flag.

test if an error address has been reached.
forward to OUT-LINE5 if not.

load A with '?' the error marker.
routine OUT-FLASH to print flashing marker.

routine OUT-CURS will print the cursor if
this is the right position.

restore address pointer to HL.

fetch the addressed character.

routine NUMBER skips a hidden floating
point number if present.

now increment the pointer.

is character end-of-line ?

to OUT-LINE6, if so, as line is finished.

save the pointer in DE.
routine OUT-CHAR to output character/token.

back to OUT-LINE4 until entire line is done.

bring back the flag E, zero if current
line printed else 1 if still to print.
return with A holding $0D

; this subroutine is called from two processes. while outputting BASIC lines
; and while searching statements within a BASIC line.

; during both, this routine will pass over an invisible number indicator

; and the five bytes floating-point number that follows it.

; Note that this causes floating point numbers to be stripped from

; the BASIC line when it is fetched to the edit buffer by OUT LINE.

; the number marker also appears after the arguments of a DEF FN statement

; and may mask old 5-byte string parameters.

;5 NUMBER

L18B6: CP SOE ; character fourteen ?
RET NZ ; return if not.
INC HL ; skip the character
INC HL ; and five bytes
INC HL ; following.
INC HL ;
INC HL ;
INC HL ;
LD A, (HL) ; fetch the following character
RET ; for return value.

; This subroutine is called from OUT-LINE to print a flashing error

; marker '?' or from the next routine to print a flashing cursor e.g. 'L'.
; However, this only gets called from OUT-LINE when printing the edit line
; or the input buffer to the lower screen so a direct call to $09F4 can

; be used, even though out-line outputs to other streams.

; In fact the alternate set is used for the whole routine.

;; OUT-FLASH

L18Cl: EXX ; switch in alternate set
LD HL, ($5C8F) ; fetch L = ATTR T, H = MASK-T
PUSH HL ; save masks.
RES 7,H ; reset flash mask bit so active.
SET 7, L ; make attribute FLASH.
LD ($5C8F) , HL ; resave ATTR T and MASK-T
LD HL, $5C91 ; address P _FLAG
LD D, (HL) ; fetch to D
PUSH DE ; and save.
LD (HL), $00 ; clear inverse, over, ink/paper 9
CALL LO9F4 ; routine PRINT-OUT outputs character

; without the need to vector via RST 10.

POP HL ; pop P _FLAG to H.

LD (IY+$57),H ; and restore system variable P FLAG.

POP HL ; restore temporary masks

LD (S5C8F) , HL ; and restore system variables ATTR T/MASK T
EXX ; switch back to main set

RET ; return

; Print the cursor

; This routine is called before any character is output while outputting

; a BASIC line or the input buffer. This includes listing to a printer
; or screen, copying a BASIC line to the edit buffer and printing the
; input buffer or edit buffer to the lower screen. It is only in the

; latter two cases that it has any relevance and in the last case it

; performs another very important function also.

;7 OUT-CURS

L18El: LD HL, ($5C5B) ; fetch K CUR the current cursor address
AND A ; prepare for true subtraction.
SBC HL, DE ; test against pointer address in DE and
RET NZ ; return if not at exact position.

; the value of MODE, maintained by KEY-INPUT, is tested and if non-zero
; then this value 'E' or 'G' will take precedence.

LD A, ($5C41) ; fetch MODE O0='KLC', 1='E', 2='G"'.

RLC A ; double the value and set flags.

JR Z,L18F3 ; to OUT-C-1 if still zero ('KLC').

ADD A, $43 ; add 'C' - will become 'E' if originally 1
; or 'G' if originally 2.

JR L1909 ; forward to OUT-C-2 to print.

; If mode was zero then, while printing a BASIC line, bit 2 of flags has been

; set 1f '"THEN' or ':' was encountered as a main character and reset otherwise.
; This is now used to determine if the 'K' cursor is to be printed but this

; transient state is also now transferred permanently to bit 3 of FLAGS

; to let the interrupt routine know how to decode the next key.

;; OUT-C-1
L18F3: LD HL, $5C3B ; Address FLAGS
RES 3, (HL) ; signal 'K' mode initially.
LD A, $4B ; prepare letter 'K'.
BIT 2, (HL) ; test FLAGS - was the
; previous main character ':' or 'THEN' ?
JR Z,L1909 ; forward to OUT-C-2 if so to print.
SET 3, (HL) ; signal 'L' mode to interrupt routine.
; Note. transient bit has been made permanent.
INC A ; augment from 'K' to 'L'.
BIT 3, (IY+$30) ; test FLAGS2 - consider caps lock ?
; which is maintained by KEY-INPUT.
JR Z,L1909 ; forward to OUT-C-2 if not set to print.
LD A,S$43 ; alter 'L' to 'C'.
;; OUT-C-2
L1909: PUSH DE ; save address pointer but OK as OUT-FLASH
; uses alternate set without RST 10.
CALL L18C1 ; routine OUT-FLASH to print.
POP DE ; restore and
RET ; return.

; These two subroutines are called while editing.
; This entry point is from ED-DOWN with HL addressing E_PPC
; to fetch the next line number.

’
’

’

Also from AUTO-LIST with HL addressing S TOP just to update S _TOP
with the value of the next line number. It gets fetched but is discarded.
These routines never get called while the editor is being used for input.

;; LN-FETCH
L190F: LD E, (HL) ; fetch low byte
INC HL ; address next
LD D, (HL) ; fetch high byte.
PUSH HL ; save system variable hi pointer.
EX DE, HL ; line number to HL,
INC HL ; increment as a starting point.
CALL L196E ; routine LINE-ADDR gets address in HL.
CALL L1695 ; routine LINE-NO gets line number in DE.
POP HL ; restore system variable hi pointer.

’

This entry point is from the ED-UP with HL addressing E_PPC hi

;; LN-STORE
L191C: BIT 5, (IY+$37) ; test FLAGX - input mode ?
RET NZ ; return if so.
; Note. above already checked by ED-UP/ED-DOWN.
LD (HL), D ; save high byte of line number.
DEC HL ; address lower
LD (HL) ,E ; save low byte of line number.
RET ; return.

This routine entered at OUT-SP-NO is used to compute then output the first

three digits of a 4-digit BASIC line printing a space if necessary.

The line number, or residual part, is held in HL and the BC register
holds a subtraction value -1000, -100 or -10.

Note. for example line number 200 -

space (out char), 2(out code), O (out char) final number always out-code.

;; OUT-SP-2
L1925: LD A,E ; will be space if OUT-CODE not yet called.
; or SFF if spaces are suppressed.
; else $30 ('0'").
; (from the first instruction at OUT-CODE)
; this guy is just too clever.
AND A ; test bit 7 of A.
RET M ; return if SFF, as leading spaces not
; required. This is set when printing line
; number and statement in MAIN-5.
JR L1937 ; forward to exit via OUT-CHAR.

-> the single entry point.

;; OUT-SP-NO
L192A: XOR A ; initialize digit to O
;; OUT-SP-1
L192B: ADD HL, BC ; add negative number to HL.
INC A ; increment digit
JR C,L192B ; back to OUT-SP-1 until no carry from

; the addition.

SBC HL, BC ; cancel the last addition

DEC
JR

JPp

A
Z,L1925

L15EF

and decrement the digit.
back to OUT-SP-2 if it is =zero.

jump back to exit via OUT-CODE. ->

; Outputting characters in a BASIC line

; This subroutine

;; OUT-CHAR
L1937: CALL
JR

CP
JR

RES

CP
JR

CP
JR

BIT
JR

BIT
JR

JR

;; OUT-CH-1
L195A: CP
JR

PUSH
LD
XOR
LD
POP

;; OUT-CH-2
L1968: SET
;; OUT-CH-3
L196C: RST

RET

L2D1B
NC,L196C

$21
C,L196C

2, (IY+$01)

SCB
Z,L196C

S$3A
NZ,L195A

5, (IY+$37)
NZ,L1968

2, (IY+$30)
Z,L196C

L1968

$22
NZ,L1968

AF
A, ($5C6R)
$04
($5C6A) , A
AF

2, (IY+S$01)

10H

routine NUMERIC tests if it is a digit ?
to OUT-CH-3 to print digit without
changing mode. Will be 'K' mode if digits
are at beginning of edit line.

less than quote character ?
to OUT-CH-3 to output controls and space.

initialize FLAGS to 'K' mode and leave
unchanged if this character would precede
a keyword.

is character 'THEN' token ?
to OUT-CH-3 to output if so.

is it ':" 2
to OUT-CH-1 if not statement separator
to change mode back to 'L'.

FLAGX - Input Mode ?7?

to OUT-CH-2 if in input as no statements.
Note. this check should seemingly be at
the start. Commands seem inappropriate in
INPUT mode and are rejected by the syntax
checker anyway.

unless INPUT LINE is being used.

test FLAGS2 - is the ':' within quotes ?
to OUT-CH-3 if ':' is outside quoted text.

to OUT-CH-2 as ':' is within quotes

is it quote character '"' ?
to OUT-CH-2 with others to set 'L' mode.

save character.

fetch FLAGS2.

toggle the quotes flag.
update FLAGS2

and restore character.

update FLAGS - signal L mode if the cursor
is next.

PRINT-A vectors the character to
channel 'S', 'K', 'R' or 'P'.
return.

; Get starting address of line, or line after

; This routine is used often to get the address, in HL, of a BASIC line
; number supplied in HL, or failing that the address of the following line
; and the address of the previous line in DE.

;; LINE-ADDR

L196E: PUSH HL ; save line number in HL register
LD HL, ($5C53) ; fetch start of program from PROG
LD D,H ; transfer address to
LD E, L ; the DE register pair.

;; LINE-AD-1

L1974: POP BC ; restore the line number to BC
CALL 11980 ; routine CP-LINES compares with that
; addressed by HL
RET NC ; return if line has been passed or matched.

; if Nz, address of previous is in DE

PUSH BC ; save the current line number
CALL L19B8 ; routine NEXT-ONE finds address of next
; line number in DE, previous in HL.
EX DE, HL ; switch so next in HL
JR L1974 ; back to LINE-AD-1 for another comparison

; Compare line numbers

; This routine compares a line number supplied in BC with an addressed
; line number pointed to by HL.

;; CP-LINES

L1980: LD A, (HL) ; Load the high byte of line number and
CP B ; compare with that of supplied line number.
RET NZ ; return if yet to match (carry will be set).
INC HL ; address low byte of
LD A, (HL) ; number and pick up in A.
DEC HL ; step back to first position.
CP C ; nNow compare.
RET ; zero set if exact match.

; carry set if yet to match.

; no carry indicates a match or
; next available BASIC line or
; program end marker.

; The single entry point EACH-STMT is used to
; 1) To find the D'th statement in a line.
; 2) To find a token in held E.

;5 not-used

1,1988: INC HL ;
INC HL ;
INC HL ;

; —> entry point.

;; EACH-STMT
L198B: LD ($5C5D) , HL ; save HL in CH_ADD

LD C,$00 ; initialize quotes flag
;; EACH-S-1
L1990: DEC D ; decrease statement count
RET Z ; return if zero
RST 20H ; NEXT-CHAR
CP E ; 1s it the search token ?
JR NZ,L199A ; forward to EACH-S-3 if not
AND A ; clear carry
RET ; return signalling success.
;; EACH-S-2
L1998: INC HL ; next address
LD A, (HL) ; next character
;; EACH-S-3
L199A: CALL L18B6 ; routine NUMBER skips if number marker
LD ($5C5D) , HL ; save in CH_ADD
CP $22 ; is it quotes '"' ?
JR NZ,L19A5 ; to EACH-S-4 if not
DEC C ; toggle bit 0 of C
;; EACH-S-4
L19A5: CP $3A ; is it ':!
JR Z,L19AD ; to EACH-S-5
CP SCB ; 'THEN'
JR NZ,L19B1 ; to EACH-S-6
;; EACH-S-5
L19AD: BIT 0,C ; 1s it in quotes
JR Z,L1990 ; to EACH-S-1 if not
;; EACH-S-6
L19B1: CP $0D ; end of line ?
JR NZ,L1998 ; to EACH-S-2
DEC D ; decrease the statement counter
; which should be zero else
; 'Statement Lost'.
SCF ; set carry flag - not found
RET ; return
; Storage of variables. For full details - see chapter 24.

; ZX Spectrum BASIC Programming by Steven Vickers 1982.
; It is bits 7-5 of the first character of a variable that allow

; the six types to be distinguished. Bits 4-0 are the reduced letter.
; So any variable name is higher that $3F and can be distinguished

; also from the variables area end-marker $80.

; 76543210 meaning

; 010
; 110
; 100
; 011
; 101

string variable.

string array.

array of numbers.

simple numeric variable.
variable length named numeric.

brief outline

2 byte length
2 byte length
2 byte length
5 bytes.
5 bytes.

of format.
+ contents.
+ contents.
+ contents.

; 111 for-n
; 10000000 the v

; Note. any of t

; This versatile
; 1in the program
; The reason one
; is that it can
; variable.

;; NEXT-ONE

L19B8: PUSH
LD
CP
JR

ext loop
ariables

he above

routine
area or
routine

variable. 18 bytes.
area end-marker.

seven will serve as a program end-marker.

is used to find the address of the next line
the next variable in the variables area.
is made to handle two apparently unrelated tasks

be called indiscriminately when merging a line or a

HL
A, (HL)
$40
C,L19D5

; save the pointer address.

; get first byte.

; compare with upper limit for line numbers.
; forward to NEXT-0-3 if within BASIC area.

; the continuation here is for the next variable unless the supplied
; line number was erroneously over 16383. see RESTORE command.

BIT
JR

ADD
JP

CCF

;7 NEXT-0-1

L19C7: LD
JR

LD

; now deal with

;7 NEXT-0-2
L19CE: RLA

INC

LD
JR

JR

5,A
Z,L19D6

A, A
M, L19C7

BC,$0005
NC, L19CE

C,812

; is it a string or an array variable ?
; forward to NEXT-0-4 to compute length.

; test bit 6 for single-character variables.
; forward to NEXT-0-1 if so

; clear the carry for long-named variables.
; it remains set for for-next loop variables.

; set BC to 5 for floating point number
; forward to NEXT-0-2 if not a for/next
; variable.

; set BC to eighteen locations.
; value, limit, step, line and statement.

long-named variables

HL
A, (HL)
NC, L19CE

L19DB

; test if character inverted. carry will also
; be set for single character variables

; address next location.

; and load character.

; back to NEXT-0-2 if not inverted bit.

; forward immediately with single character

; variable names.

; forward to NEXT-0-5 to add length of
; floating point number (s etc.).

; this branch is for line numbers.

;7 NEXT-0-3
L19D5: INC

HL

; increment pointer to low byte of line no.

; strings and arrays rejoin here

;7 NEXT-0-4

L19D6: INC HL ; increment to address the length low byte.
LD C, (HL) ; transfer to C and
INC HL ; point to high byte of length.
LD B, (HL) ; transfer that to B
INC HL ; point to start of BASIC/variable contents.

; the three types of numeric variables rejoin here

;7 NEXT-0-5

L19DB: ADD HL, BC ; add the length to give address of next
; line/variable in HL.
POP DE ; restore previous address to DE.

; Difference routine
; This routine terminates the above routine and is also called from the
; start of the next routine to calculate the length to reclaim.

;; DIFFER
L19DD: AND A ; prepare for true subtraction.
SBC HL, DE ; subtract the two pointers.
LD B, H ; transfer result
LD C,L ; to BC register pair.
ADD HL, DE ; add back
EX DE, HL ; and switch pointers
RET ; return values are the length of area in BC,

; low pointer (previous) in HL,
; high pointer (next) in DE.

; Handle reclaiming space

;; RECLAIM-1
L19E5: CALL L19DD ; routine DIFFER immediately above

;7 RECLAIM-2

L19ES8: PUSH BC 7
D A,B ;
CPL ;
LD B, A ;
LD A,C ;
CPL ;
LD C,A ;
INC BC ;
CALL L1664 ; routine POINTERS
EX DE, HL 7
POP HL ;
ADD HL, DE ;
PUSH DE ;
LDIR ; copy bytes
POP HL ;
RET ;

; Read line number of line in editing area

; This routine reads a line number in the editing area returning the number
; in the BC register or zero if no digits exist before commands.

; It is called from LINE-SCAN to check the syntax of the digits.

; It is called from MAIN-3 to extract the line number in preparation for

; inclusion of the line in the BASIC program area.

; Interestingly the calculator stack is moved from its normal place at the

; end of dynamic memory to an adequate area within the system variables area.

; This ensures that in a low memory situation, that valid line numbers can

; be extracted without raising an error and that memory can be reclaimed

; by deleting lines. If the stack was in its normal place then a situation

; arises whereby the Spectrum becomes locked with no means of reclaiming space.

;; E-LINE-NO
L19FB: LD HL, ($5C59) ; load HL from system variable E LINE.

DEC HL ; decrease so that NEXT CHAR can be used
; without skipping the first digit.

LD ($5C5D) , HL ; store in the system variable CH ADD.

RST 20H ; NEXT-CHAR skips any noise and white-space
; to point exactly at the first digit.

LD HL, $5C92 ; use MEM-0 as a temporary calculator stack
; an overhead of three locations are needed.
LD ($5C65) ,HL ; set new STKEND.
CALL L2D3B ; routine INT-TO-FP will read digits till
; a non-digit found.
CALL L2DA2 ; routine FP-TO-BC will retrieve number
; from stack at membot.
JR C,L1A15 ; forward to E-L-1 if overflow i.e. > 65535.

; 'Nonsense in BASIC'

LD HL, $D8FO0 ; load HL with value -9999
ADD HL, BC ; add to line number in BC
;; E-L-1
L1A15: JP C,L1C8A ; to REPORT-C 'Nonsense in BASIC' if over.
; Note. As ERR SP points to ED ERROR
; the report is never produced although
; the RST $08 will update X PTR leading to
; the error marker being displayed when
; the ED LOOP is reiterated.
; in fact, since it is immediately
; cancelled, any report will do.
; a line in the range 0 - 9999 has been entered.
JP L1e6C5 ; jump back to SET-STK to set the calculator

; stack back to its normal place and exit
; from there.

; Entry point OUT-NUM-1 is used by the Error Reporting code to print

; the line number and later the statement number held in BC.

; If the statement was part of a direct command then -2 is used as a

; dummy line number so that zero will be printed in the report.

; This routine is also used to print the exponent of E-format numbers.

; Entry point OUT-NUM-2 is used from OUT-LINE to output the line number
; addressed by HL with leading spaces if necessary.

;7 OUT-NUM-1

L1A1B: PUSH
PUSH
XOR
BIT
JR

LD
LD
LD
JR

; from OUT-LINE

;7 OUT-NUM-2

L1A28: PUSH
LD
INC
LD
PUSH
EX
LD

;; OUT-NUM-3

L1A30: LD
CALL
LD
CALL
LD
CALL
LD

;; OUT-NUM-4
L1A42: CALL

POP
POP
RET

DE
HL

A

7,B
NZ,L1A42

; save the

; registers.

; set A to zero.

; 1s the line number minus two ?

; forward to OUT-NUM-4 if so to print zero
; for a direct command.

; transfer the

; number to HL.

; signal 'no leading zeros'.

; forward to continue at OUT-NUM-3

- HL addresses line number.

DE
D, (HL)
HL

E, (HL)
HL

DE, HL
E, $20

BC, SFC18
L192A
BC, SFF9C
L192A
C,S$F6
L192A
A, L

L15EF

HL
DE

; save flags

; high byte to D

; address next

; low byte to E

; save pointer

; transfer number to HL

; signal 'output leading spaces'

; value -1000

; routine OUT-SP-NO outputs space or number
; value -100

; routine OUT-SP-NO

; value -10 (B is still SFF)

; routine OUT-SP-NO

; remainder to A.

; routine OUT-CODE for final digit.
; else report code zero wouldn't get
; printed.

; restore the

; registers and

; return.

DR I b S b e S b S b S b S b S b S b I S SR S b I S b I Ih R S b S 2h S b b S db S
’

;** Part 7. BASIC LINE AND COMMAND INTERPRETATION **

,-***

; The BASIC interpreter has found a command code $CE - SFF

; which is then reduced to range $00 - $31 and added to the base address
; of this table to give the address of an offset which, when added to
rein, gives the location in the following parameter table

; the offset the

; where a list of class codes,

; command exists.

;; offst-tbl
L1A48: DEFB
DEFB

L1AF9 -
L1B14 -

separators and addresses relevant to the

; Bl offset to Address: P-DEF-FN
; CB offset to Address: P-CAT

DEFB L1B06 - $; BC offset to Address: P-FORMAT
DEFB L1BOA - S ; BF offset to Address: P-MOVE
DEFB L1B10 - $; C4 offset to Address: P-ERASE
DEFB L1AFC - $; AF offset to Address: P-OPEN
DEFB L1B02 - S ; B4 offset to Address: P-CLOSE
DEFB L1AE2 - $; 93 offset to Address: P-MERGE
DEFB L1AEl - $; 91 offset to Address: P-VERIFY
DEFB L1AE3 - S ; 92 offset to Address: P-BEEP
DEFB L1AE7 - $; 95 offset to Address: P-CIRCLE
DEFB L1AEB - $; 98 offset to Address: P-INK
DEFB L1IAEC - $; 98 offset to Address: P-PAPER
DEFB LI1IAED - $; 98 offset to Address: P-FLASH
DEFB L1AEE - $; 98 offset to Address: P-BRIGHT
DEFB L1AEF - $; 98 offset to Address: P-INVERSE
DEFB L1IAFO - S ; 98 offset to Address: P-OVER
DEFB L1IAF1 - S ; 98 offset to Address: P-0OUT
DEFB L1ADYS - $; TF offset to Address: P-LPRINT
DEFB L1ADC - $; 81 offset to Address: P-LLIST
DEFB L1A8A - $; 2E offset to Address: P-STOP
DEFB L1IACYS - $; 6C offset to Address: P-READ
DEFB L1ACC - S ; 6E offset to Address: P-DATA
DEFB LI1IACF - $; 70 offset to Address: P-RESTORE
DEFB L1AA8 - $; 48 offset to Address: P-NEW
DEFB L1AFS5 - $; 94 offset to Address: P-BORDER
DEFB L1AB8 - $; 56 offset to Address: P-CONT
DEFB L1AA2 - S ; 3F offset to Address: P-DIM
DEFB L1AAS - S ; 41 offset to Address: P-REM
DEFB L1AS0 - $; 2B offset to Address: P-FOR
DEFB L1A7D - $; 17 offset to Address: P-GO-TO
DEFB L1A86 - $; 1F offset to Address: P-GO-SUB
DEFB L1ASF - $; 37 offset to Address: P-INPUT
DEFB L1AEO - S ; 77 offset to Address: P-LOAD
DEFB L1AAE - $; 44 offset to Address: P-LIST
DEFB L1A7A - S ; OF offset to Address: P-LET
DEFB LI1IAC5 - S ; 59 offset to Address: P-PAUSE
DEFB L1A98 - S ; 2B offset to Address: P-NEXT
DEFB L1AB1 - $; 43 offset to Address: P-POKE
DEFB L1ASC - $; 2D offset to Address: P-PRINT
DEFB LI1IACL - S ; 51 offset to Address: P-PLOT
DEFB L1AAB - $; 3A offset to Address: P-RUN
DEFB L1ADF - $; 6D offset to Address: P-SAVE
DEFB L1ABS - $; 42 offset to Address: P-RANDOM
DEFB L1A81 - $; 0D offset to Address: P-IF
DEFB L1ABE - $; 49 offset to Address: P-CLS
DEFB L1AD2 - $; 5C offset to Address: P-DRAW
DEFB LI1IABB - $; 44 offset to Address: P-CLEAR
DEFB L1A8D - $; 15 offset to Address: P-RETURN
DEFB L1AD6 - $; 5D offset to Address: P-COPY

The parameter or "Syntax" table

For each command there exists a variable list of parameters.

If the character is greater than a space it is a required separator.

If less, then it is a command class in the range 00 - 0B.

Note that classes 00, 03 and 05 will fetch the addresses from this table.
Some classes e.g. 07 and OB have the same address in all invocations

and the command is re-computed from the low-byte of the parameter address.
Some e.g. 02 are only called once so a call to the command is made from
within the class routine rather than holding the address within the table.
Some class routines check syntax entirely and some leave this task for the
command itself.

Others for example CIRCLE (x,y,z) check the first part (x,y) using the

; class routine and the final part

(,2z) within the command.

; The last few commands appear to have been added in a rush but their syntax
; is rather simple e.g. MOVE "M1","M2"

;; P-LET
L1ATA: DEFB
DEFB
DEFB
;+ P-GO-TO
L1A7D: DEFB
DEFB
DEFW
;; P-1IF
L1A81: DEFB
DEFB
DEFB
DEFW

;; P-GO-SUB
L1A86: DEFB

DEFB

DEFW
;; P-STOP
L1A8A: DEFB

DEFW

;; P-RETURN
L1A8D: DEFB
DEFW

;; P-FOR
L1A90: DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFW

;; P-NEXT
L1A98: DEFB

DEFB
DEFW

;+ P—-PRINT
L1A9C: DEFB

DEFW

;5 P-INPUT
L1A9F: DEFB

DEFW

;; P-DIM
L1AA2: DEFB

$01
$3D
$02

$06
$00
L1E67

$06
SCB
$05
L1CFO
506

$00
L1EED

$00
L1CEE

$00
L1F23
$04
$3D
$06
Scc
$06
$05

L1DO03
$04
$00

L1DAB

$05

L1FCD

$05

L2089

$05

Class-01 - A variable is required.
Separator: '="

Class-02 - An expression, numeric or
must follow.

Class-06 - A numeric expression must
Class-00 - No further operands.
Address: $1E67; Address: GO-TO

Class-06 - A numeric expression must
Separator: 'THEN'

Class-05 - Variable syntax checked
by routine.

Address: $1CF0; Address: IF

Class-06 - A numeric expression must
Class-00 - No further operands.
Address: S$1EED; Address: GO-SUB

Class-00 - No further operands.
Address: S$1CEE; Address: STOP

Class-00 - No further operands.
Address: $1F23; Address: RETURN

string,

follow.

follow.

follow.

Class-04 - A single character variable must

follow.

Separator: ="

Class-06 - A numeric expression must
Separator: 'TO!

Class-06 - A numeric expression must
Class-05 - Variable syntax checked
by routine.

Address: $1D03; Address: FOR

follow.

follow.

Class-04 - A single character variable must

follow.
Class-00 - No further operands.
Address: $1DAB; Address: NEXT

Class-05 - Variable syntax checked entirely

by routine.
Address: $1FCD; Address: PRINT

Class-05 - Variable syntax checked entirely

by routine.
Address: $2089; Address: INPUT

Class-05 - Variable syntax checked entirely

DEFW

;; P-REM
L1AAS5: DEFB

DEFW
;; P-NEW
L1AAS8: DEFB

DEFW

;; P-RUN
L1AAB: DEFB

DEFW

;; P-LIST
L1AAE: DEFB

DEFW

;+ P-POKE
L1ABRl1: DEFB

DEFB
DEFW

;5 P-RANDOM
L1AB5: DEFB

DEFW
;; P-CONT
L1ABR8: DEFB

DEFW

;; P-CLEAR
L1ABB: DEFB

DEFW
;; P-CLS
L1ABE: DEFB
DEFW
;; P-PLOT
L1ACl: DEFB
DEFB
DEFW
;; P-PAUSE
L1AC5: DEFB
DEFB
DEFW

;; P-READ
L1ACO: DEFB

DEFW

;; P-DATA

L2C02

$05

L1BB2

$00
L11B7

$03

L1EAL

$05

L17F9

$08

$00
L1E8O

$03

L1E4F

$00
L1ESF

$03

L1EAC

$00
LOD6B

$09

$00
L22DC

$06
$00
L1F3A

$05

L1DED

by routine.
Address: $2C02; Address: DIM

Class-05 - Variable syntax checked entirely
by routine.
Address: $1BB2; Address: REM

Class-00 - No further operands.
Address: $11B7; Address: NEW

Class-03 - A numeric expression may follow
else default to zero.
Address: $1EAl; Address: RUN

Class-05 - Variable syntax checked entirely
by routine.
Address: $17F9; Address: LIST

Class-08 - Two comma-separated numeric
expressions required.

Class-00 - No further operands.
Address: $1E80; Address: POKE

Class-03 - A numeric expression may follow
else default to zero.
Address: $1E4F; Address: RANDOMIZE

Class-00 - No further operands.
Address: $1E5F; Address: CONTINUE

Class-03 - A numeric expression may follow
else default to zero.
Address: S$1EAC; Address: CLEAR

Class-00 - No further operands.
Address: $0D6B; Address: CLS

Class-09 - Two comma-separated numeric
expressions required with optional colour
items.

Class-00 - No further operands.

Address: $22DC; Address: PLOT

Class-06 - A numeric expression must follow.
Class-00 - No further operands.
Address: $1F3A; Address: PAUSE

Class-05 - Variable syntax checked entirely
by routine.
Address: $1DED; Address: READ

L1ACC: DEFB

DEFW

;; P-RESTORE
L1ACF: DEFB

DEFW

;; P-DRAW
L1AD2: DEFB

DEFB

DEFW
;7 P-COPY
L1AD6: DEFB

DEFW

;; P-LPRINT
L1AD9: DEFB

DEFW

;; P-LLIST
L1ADC: DEFB

DEFW
;; P-SAVE

L1ADF: DEFB

;; P-LOAD
L1AEO: DEFB

;; P-VERIFY
L1AEl: DEFB

;; P-MERGE
L1AE2: DEFB

;; P-BEEP

L1AE3: DEFB

DEFB
DEFW

;; P-CIRCLE

L1AE7: DEFB

DEFB

DEFW

;; P-INK
L1AEB: DEFB

$05

L1E27

$03

L1E42

$09

$05

L2382

$00
LOEAC

$05

L1FC9

$05

L17F5

SOB

SOB

SOB

SOB

$08
$00
LO3F8

$09

$05

L2320

$07

Class-05 - Variable syntax checked entirely
by routine.
Address: $1E27; Address: DATA

Class-03 - A numeric expression may follow
else default to zero.
Address: $1E42; Address: RESTORE

Class-09 - Two comma-separated numeric
expressions required with optional colour
items.

Class-05 - Variable syntax checked

by routine.

Address: $2382; Address: DRAW

Class-00 - No further operands.
Address: $OEAC; Address: COPY

Class-05 - Variable syntax checked entirely
by routine.
Address: $1FC9; Address: LPRINT

Class-05 - Variable syntax checked entirely
by routine.
Address: $17F5; Address: LLIST

Class-0B - Offset address converted to tape
command.

Class-0B - Offset address converted to tape
command.

Class-0B - Offset address converted to tape
command.

Class-0B - Offset address converted to tape
command.

Class-08 - Two comma-separated numeric

expressions required.
Class-00 - No further operands.
Address: $03F8; Address: BEEP

Class-09 - Two comma-separated numeric
expressions required with optional colour
items.

Class-05 - Variable syntax checked

by routine.

Address: $2320; Address: CIRCLE

Class-07 - Offset address is converted to
colour code.

;; P-PAPER
L1AEC: DEFB

;; P-FLASH
L1AED: DEFB

;; P-BRIGHT
L1AEE: DEFB

;; P-INVERSE
L1AEF: DEFB

;; P-OVER
L1AFO: DEFB

;; P-0UT
L1AFl: DEFB

DEFB
DEFW

;; P-BORDER
L1AF5: DEFB
DEFB
DEFW

;; P-DEF-FN
L1AF9: DEFB

DEFW

;; P-OPEN

L1AFC: DEFB
DEFB
DEFB
DEFB
DEFW

;; P-CLOSE

L1B02: DEFB
DEFB
DEFW

;; P-FORMAT

L1BO6: DEFB
DEFB
DEFW

;; P-MOVE

L1BOA: DEFB
DEFB
DEFB
DEFB
DEFW

;; P-ERASE
L1B10: DEFB
DEFB

$07

$07

$07

$07

$07

$08

$00
L1E7A

$06
$00
L2294

$05

L1F60

$06
$2C
SO0A
$00
L1736

$06
$00
L16ES

SO0A
$00
L1793

SOA
$2¢C
SOA
$00
L1793

SOA
$00

Class-07 - Offset address is converted to
colour code.

Class-07 - Offset address is converted to
colour code.

Class-07 - Offset address is converted to
colour code.

Class-07 - Offset address is converted to
colour code.

Class-07 - Offset address is converted to
colour code.

Class-08 - Two comma-separated numeric
expressions required.

Class-00 - No further operands.
Address: $1E7A; Address: OUT

Class-06 - A numeric expression must follow.
Class-00 - No further operands.
Address: $2294; Address: BORDER

Class-05 - Variable syntax checked entirely
by routine.
Address: $1F60; Address: DEF-FN

Class-06 - A numeric expression must follow.
Separator: v see Footnote *
Class-0A - A string expression must follow.
Class-00 - No further operands.

Address: $1736; Address: OPEN

Class-06 - A numeric expression must follow.
Class-00 - No further operands.
Address: $16E5; Address: CLOSE

Class-0A - A string expression must follow.
Class-00 - No further operands.
Address: $1793; Address: CAT-ETC

Class-0A - A string expression must follow.
Separator: !

Class-0A - A string expression must follow.
Class-00 - No further operands.

Address: $1793; Address: CAT-ETC

Class-0A - A string expression must follow.
Class-00 - No further operands.

rs

DEFW L1793 ; Address: $1793; Address: CAT-ETC

P-CAT

L1B14: DEFB $00 ; Class-00 - No further operands.

’

DEFW L1793 ; Address: $1793; Address: CAT-ETC

* Note that a comma is required as a separator with the OPEN command
but the Interface 1 programmers relaxed this allowing ';' as an
alternative for their channels creating a confusing mixture of
allowable syntax as it is this ROM which opens or re-opens the
normal channels.

Main parser (BASIC interpreter)

This routine is called once from MAIN-2 when the BASIC line is to
be entered or re-entered into the Program area and the syntax
requires checking.

;; LINE-SCAN

L1B17: RES 7, (IY+501) ; update FLAGS - signal checking syntax
CALL L19FB ; routine E-LINE-NO >>

; fetches the line number if in range.

XOR A ; clear the accumulator.
LD ($5C47) ,A ; set statement number SUBPPC to zero.
DEC A ; set accumulator to SFF.
LD ($5C32) ,A ; set ERR NR to 'OK' - 1.
JR L1B29 ; forward to continue at STMT-L-1.

; Statement loop

;; STMT-LOOP

L1B28: RST 20H ; NEXT-CHAR

’

-> the entry point from above or LINE-RUN

;; STMT-L-1
L1B29: CALL L16BF ; routine SET-WORK clears workspace etc.
INC (IY+30D) ; increment statement number SUBPPC
Jp M, L1C8A ; to REPORT-C to raise
; 'Nonsense in BASIC' if over 127.
RST 18H ; GET-CHAR
LD B, $00 ; set B to zero for later indexing.
; early so any other reason 27?7
CP S0D ; 1s character carriage return ?
; i.e. an empty statement.
JR Z,L1BB3 ; forward to LINE-END if so.
CP $3A ; 1s it statement end marker ':' ?
; 1.e. another type of empty statement.
JR Z,L1B28 ; back to STMT-LOOP if so.
LD HL,L1B76 ; address: STMT-RET
PUSH HL ; 1s now pushed as a return address

LD C,A ; transfer the current character to C.

’

’

’

rs

advance CH ADD to a position after command and test if it is a command.

RST
LD
SUB
Jp

LD

LD
ADD
LD
ADD
JR

20H
A,C
SCE
C,L1C8A

C,A

HL,L1A48
HL, BC
C, (HL)
HL, BC
L1B55

not documented properly

SCAN-LOOP

L1B52: LD

’

rr

-> the initial entry point with

GET-PARAM

L1B55: LD

INC
LD

LD
PUSH
LD
CP
JR

LD
LD
ADD
LD
ADD
PUSH

RST

DEC

RET

Note. one of the class routines

HL, ($5C74)

A, (HL)
HL
($5C74) , HL

BC,L1B52
BC

C,A

$20

NC, L1B6F

HL,L1CO1
B, $00
HL, BC

C, (HL)
HL, BC

HL

18H

NEXT-CHAR to advance pointer
restore current character

subtract 'DEF FN' - first command
jump to REPORT-C if less than a command
raising

'Nonsense in BASIC'

put the valid command code back in C.
register B is zero.

address: offst-tbl

index into table with one of 50 commands.
pick up displacement to syntax table entry.
add to address the relevant entry.

forward to continue at GET-PARAM

fetch temporary address from T ADDR
during subsequent loops.

HL addressing start of syntax table entry.

pick up the parameter.
address next one.
save pointer in system variable T ADDR

address: SCAN-LOOP

is now pushed on stack as looping address.
store parameter in C.

is it greater than ' ' 2

forward to SEPARATOR to check that correct
separator appears in statement if so.

address: class-tbl.

prepare to index into the class table.
index to find displacement to routine.
displacement to BC

add to address the CLASS routine.

push the address on the stack.

GET-CHAR - HL points to place in statement.

reset the zero flag - the initial state
for all class routines.

and make an indirect jump to routine
and then SCAN-LOOP (also on stack).

will eventually drop the return address

off the stack breaking out of the above seemingly endless loop.

This routine is called once to verify that the mandatory separator
present in the parameter table is also present in the correct

; location following the command. For example, the 'THEN' token after
; the '"IF' token and expression.

;7 SEPARATOR

L1B6F: RST 18H ; GET-CHAR
CP C ; does it match the character in C ?
JP NZ,L1C8A ; Jump forward to REPORT-C if not

; 'Nonsense in BASIC'.

RST 20H ; NEXT-CHAR advance to next character
RET ; return.

;7 STMT-RET

L1B76: CALL L1F54 ; routine BREAK-KEY is tested after every
; Statement.
JR C,L1B7D ; step forward to STMT-R-1 if not pressed.

;7 REPORT-L
L1B7B: RST 08H ; ERROR-1
DEFB $14 ; Error Report: BREAK into program

;; STMT-R-1

L1B7D: BIT 7, (IY+S$0R) ; test NSPPC - will be set if S$FF -
; no jump to be made.
JR NZ,L1BF4 ; forward to STMT-NEXT if a program line.
LD HL, ($5C42) ; fetch line number from NEWPPC
BIT 7,H ; will be set if minus two - direct command(s)
JR Z,L1BO9E ; forward to LINE-NEW if a jump is to be

; made to a new program line/statement.

; Run a direct command

; A direct command is to be run or, if continuing from above,
; the next statement of a direct command is to be considered.

;7 LINE-RUN

L1B8A: LD HL, SFFFE ; The dummy value minus two
LD ($5C45) , HL ; 1s set/reset as line number in PPC.
LD HL, ($5C61) ; point to end of line + 1 - WORKSP.
DEC HL ; now point to $80 end-marker.
LD DE, ($5C59) ; address the start of line E LINE.
DEC DE ; now location before - for GET-CHAR.
LD A, ($5C44) ; load statement to A from NSPPC.
JR L1BD1 ; forward to NEXT-LINE.

; The branch was to here if a jump is to made to a new line number
; and statement.
; That is the previous statement was a GO TO, GO SUB, RUN, RETURN, NEXT etc..

;+ LINE-NEW
L1BSE: CALL L196E ; routine LINE-ADDR gets address of line
; returning zero flag set if line found.
LD A, ($5C44) ; fetch new statement from NSPPC

JR Z,L1BBF ; forward to LINE-USE if line matched.
; continue as must be a direct command.
AND A ; test statement which should be zero

JR NZ, L1BEC ; forward to REPORT-N if not.
; 'Statement lost'

LD B,A ; save statement in B. ?
LD A, (HL) ; fetch high byte of line number.
AND $CO ; test if using direct command
; a program line is less than $3F
LD A,B ; retrieve statement.
; (we can assume it is zero).
JR Z,L1BBF ; forward to LINE-USE if was a program line

; Alternatively a direct statement has finished correctly.

;7 REPORT-0
L1BBO: RST 08H ; ERROR-1
DEFB SFF ; Error Report: OK

; Handle REM command

; The REM command routine.
; The return address STMT-RET is dropped and the rest of line ignored.

;; REM

L1BB2: POP BC ; drop return address STMT-RET and
; continue ignoring rest of line.

;; LINE-END

L1BB3: CALL L2530 ; routine SYNTAX-Z (UNSTACK-Z?)
RET Z ; return if checking syntax.
LD HL, ($5C55) ; fetch NXTLIN to HL.
LD A, $CO ; test against the
AND (HL) ; system limit $3F.
RET NZ ; return if more as must be

; end of program.
; (or direct command)

XOR A ; set statement to zero.

; and continue to set up the next following line and then consider this new one.

; The branch was here from LINE-NEW if BASIC is branching.
; or a continuation from above if dealing with a new sequential line.
; First make statement zero number one leaving others unaffected.

;; LINE-USE
L1BBF: CP S01 ; will set carry if zero.

ADC

LD
INC
LD
LD

INC
LD
INC
LD

EX
ADD
INC

A, 500

D, (HL)

HL

E, (HL)
($5C45) ,DE

HL
E, (HL)
HL
D, (HL)

DE, HL
HL, DE
HL

; Update NEXT LINE but consider
; previous line or edit line.

add in any carry.

high byte of line number to D.
advance pointer.

low byte of line number to E.
set system variable PPC.

advance pointer.
low byte of line length to E.
advance pointer.
high byte of line length to D.

swap pointer to DE before
adding to address the end of line.
advance to start of next line.

; The pointer will be the next line if continuing from above or to
; edit line end-marker ($80)

;7 NEXT-LINE
L1BD1l: LD

EX
LD

LD
LD

LD
DEC

LD
Jp

INC

CALL

JR

;; REPORT-N

L1BEC: RST
DEFB

($5C55) , HL

DE, HL
($5C5D) , HL

D,A
E, $00

(IY+$0A), SFF
D

(IY+s0D),D
Z,L1B28

D
1L198B
Z,L1BF4

08H
$16

if from LINE-RUN.

store pointer in system variable NXTLIN

bring back pointer to previous or edit line
and update CH ADD with character address.

store statement in D.

set E to zero to suppress token searching
if EACH-STMT is to be called.

set statement NSPPC to S$FF signalling

no jump to be made.

decrement and test statement

set SUBPPC to decremented statement number.
to STMT-LOOP if result zero as statement is
at start of line and address is known.

else restore statement.

routine EACH-STMT finds the D'th statement
address as E does not contain a token.
forward to STMT-NEXT if address found.

ERROR-1
Error Report: Statement lost

; This combination of routines is called from 20 places when
; the end of a statement should have been reached and all preceding
; syntax is in order.

;; CHECK-END
L1BEE: CALL
RET

POP
POP

L2530
NZ

BC
BC

routine SYNTAX-Z
return immediately in runtime

drop address of calling routine.
drop address STMT-RET.
and continue to find next statement.

; Go to next statement

; Acceptable characters at this point are carriage return and

; If so go to next statement which in the first case will be on next line.

;7 STMT-NEXT

L1BF4:

; Note.

RST

CP
JR

CP
Jp

the two-byte sequence

18H

S0D
z,L1BB3

$3A
Z,L1B28

L1cC8A

; Command class table

;; class-tbl

’

L1C0l: DEFB L1C10 - $
DEFB LICIF - $
DEFB L1C4E -
DEFB L1COD - $
DEFB L1C6C - $
DEFB L1Cll - $
DEFB L1C82 - $
DEFB L1C% - $
DEFB L1C7A -
DEFB LICBE - $
DEFB L1C8C - $
DEFB L1CDB - $

; Command classes---00, 03, and

; class-03 e.qg.
; class-00 e.qg.
; class-05 e.qg.

;; CLASS-03

L1COD:

CALL

;7 CLASS-00

L1C10:

CP

RUN or RUN 200
CONTINUE
PRINT

L1CDE

A

’

; 1f entering here then all class

;; CLASS-05

L1C11:

POP
CALL

EX
LD
LD

BC
Z,L1BEE

DE, HL
HL, ($5C74)
C, (HL)

GET-CHAR - ignoring white space etc.

is it carriage return ?
back to LINE-END if so.

is it ':'" ?
Jjump back to STMT-LOOP to consider
further statements

jump to REPORT-C with any other character
'Nonsense in BASIC'.

'rst 08; defb $0b' could replace the above jp.

OF offset to Address: CLASS-00
1D offset to Address: CLASS-01
4B offset to Address: CLASS-02
09 offset to Address: CLASS-03
67 offset to Address: CLASS-04
OB offset to Address: CLASS-05
7B offset to Address: CLASS-06
8E offset to Address: CLASS-07
71 offset to Address: CLASS-08
B4 offset to Address: CLASS-09
81 offset to Address: CLASS-0A
CF offset to Address: CLASS-0B

optional operand
no operand
variable syntax checked by routine

routine FETCH-NUM

reset zero flag.

routines are entered with zero reset.

drop address SCAN-LOOP.
if zero set then call routine CHECK-END >>>
as should be no further characters.

save HL to DE.
fetch T ADDR
fetch low byte of routine

INC HL ; address next.

LD B, (HL) ; fetch high byte of routine.

EX DE, HL ; restore HL from DE

PUSH BC ; push the address

RET ; and make an indirect jump to the command.
; Command classes---01, 02, and 04

; class-01 e.g. LET A = 2*3 ; a variable is reqd

; This class routine is also called from INPUT and READ to find the
; destination variable for an assignment.

;; CLASS-01

L1Cl1F: CALL L28B2 ; routine LOOK-VARS returns carry set if not

; found in runtime.

;; VAR-A-1
L1Cc22: LD (IY+$37),$00 ; set FLAGX to zero
JR NC, L1C30 ; forward to VAR-A-2 if found or checking
; syntax.
SET 1, (IY+$37) ; FLAGX - Signal a new variable
JR NzZ,L1lC46 ; to VAR-A-3 if not assigning to an array
; e.g. LET a$(3,3) = "xX"
;7 REPORT-2
L1C2E: RST 08H ; ERROR-1
DEFB S01 ; Error Report: Variable not found
;7 VAR-A-2
L1C30: CALL Z,L2996 ; routine STK-VAR considers a subscript/slice
BIT 6, (IY+S01) ; test FLAGS - Numeric or string result ?
JR Nz,L1C46 ; to VAR-A-3 if numeric
XOR A ; default to array/slice - to be retained.
CALL L2530 ; routine SYNTAX-Z
CALL NZ, L2BF1 ; routine STK-FETCH is called in runtime
; may overwrite A with 1.
LD HL, $5C71 ; address system variable FLAGX
OR (HL) ; set bit 0 if simple variable to be reclaimed
LD (HL) , A ; update FLAGX
EX DE, HL ; start of string/subscript to DE
;7 VAR-A-3
L1C46: LD ($5C72),BC ; update STRLEN
LD ($5C4D) , HL ; and DEST of assigned string.
RET ; return.

; class-02 e.g. an expression must follow
;; CLASS-02
L1C4E: POP BC ; drop return address SCAN-LOOP
CALL L1C56 ; routine VAL-FET-1 is called to check
; expression and assign result in runtime

CALL L1BEE ; routine CHECK-END checks nothing else

;; VAL-FET-1

L1C56: LD A, ($5C3B)
;; VAL-FET-2
L1C59: PUSH AF
CALL L24FB
POP AF
LD D, (IY+$01)
XOR D
AND $40
JR NZ,L1C8A
BIT 7,D
JP NZ, L2ZAFF
RET
; Command class---04
; class-04 e.g. FOR 1
;; CLASS-04
L1C6C: CALL L28B2
PUSH AF
D A,C
OR SOF
INC A
JR NZ,L1C8A
POP AF
JR L1C22

’

’

is present in statement.
Return

initial FLAGS to A

save A briefly

routine SCANNING evaluates expression.
restore A

post-SCANNING FLAGS to D

xor the two sets of flags

pick up bit 6 of xored FLAGS should be zero
forward to REPORT-C if not =zero

'Nonsense in BASIC' - results don't agree.

test FLAGS - is syntax being checked ?
Jjump forward to LET to make the assignment
in runtime.

but return from here if checking syntax.

; a single character variable must follow

routine LOOK-VARS

preserve flags.

fetch type - should be 01lxxxxx
combine with 10011111.

test if now S$FF by incrementing.
forward to REPORT-C if result not zero.

else restore flags.
back to VAR-A-1

; This routine is used to get the two coordinates of STRINGS, ATTR and POINT.
; It is also called from PRINT-ITEM to get the two numeric expressions that

; follow the AT

;7 NEXT-2NUM
L1C79: RST

; class-08 e.qg.
;; CLASS-08

;7 EXPT-2NUM
L1CTA: CALL

CP
JR

(in PRINT AT,

20H

POKE 65535,2

L1C82

$2¢C
NZ,L1C8A

’

’
’
’
’

’

INPUT AT) .

NEXT-CHAR advance past 'AT' or '('.

; two numeric expressions separated by comma

routine EXPT-1NUM is called for first
numeric expression

is character ',' ?

to REPORT-C if not required separator.
'Nonsense in BASIC'.

RST
; —>
; class-06
;; CLASS-06
;; EXPT-1NUM
L1C82: CALL
BIT
RET
;5 REPORT-C
L1C8A: RST
DEFB

20H

e.g. GOTO a*1000

L24FB
6, (IY+$01)
NZ

08H
SOB

’

NEXT-CHAR

a numeric expression must follow

routine SCANNING
test FLAGS - Numeric or string result ?
return if result is numeric.

ERROR-1
Error Report: Nonsense in BASIC

class-0A e.qg.

;7 CLASS-0A

;7 EXPT-EXP

L1C8C: CALL
BIT
RET
JR

Set permanent
class 07

class-07 e.g.

; Note.

;; CLASS-07

L1C9%6: BIT
RES
CALL
POP
LD

’

Note if you move alter the syntax table next line may have

; Note.

L1CA5: SUB
CALL
CALL

’

ERASE "27222"

L24FB
6, (IY+$01)

PAPER 6

7, (IY+S$01)

0, (IY+$02)
NZ,L0OD4D
AF

A, ($5C74)

L1AEB-$D8 %

L21FC
L1BEE

return here in runtime.

LD
LD
LD

HL, ($5C8F)
($5C8D) , HL
HL, $5C91

’

’

’

’

these commands should ensure that current channel is

For ZASM assembler replace following expression with

a string expression must follow.

these only occur in unimplemented commands
although the routine expt-exp is called
from SAVE-ETC

routine SCANNING
test FLAGS - Numeric or string result ?
return i1f string result.

back to REPORT-C if numeric.

a single class for a collection of
similar commands. Clever.

lSl

test FLAGS - checking syntax only ?

Note. there is a subroutine to do this.
update TV _FLAG - signal main screen in use
routine TEMPS is called in runtime.

drop return address SCAN-LOOP

T ADDR lo to accumulator.
points to '$07' entry + 1
e.g. for INK points to $EC now
to be altered.
SUB $13.

convert S$SEB to $D8 ('INK') etc.
(1s SUB $13 in standard ROM)

routine CO-TEMP-4
routine CHECK-END check that nothing else
in statement.

pick up ATTR T and MASK T
and store in ATTR P and MASK P
point to P_FLAG.

LD A, (HL) ; pick up in A

RLCA ; rotate to left

XOR (HL) ; combine with HL

AND SAA ; 10101010

XOR (HL) ; only permanent bits affected

LD (HL) , A ; reload into P_FLAG.

RET ; return.
; Command class---09
; e.g. PLOT PAPER 0; 128,88 ; two coordinates preceded by optional
; ; embedded colour items.

; Note. this command should ensure that current channel is actually 'S'.

;7 CLASS-09

L1CBE: CALL L2530 ; routine SYNTAX-Z
JR Z,L1CD6 ; forward to CL-09-1 if checking syntax.
RES 0, (IY+S$02) ; update TV _FLAG - signal main screen in use
CALL LOD4D ; routine TEMPS is called.
LD HL, $5C90 ; point to MASK T
LD A, (HL) ; fetch mask to accumulator.
OR SF8 ; or with 11111000 paper/bright/flash 8
LD (HL) , A ; mask back to MASK T system variable.
RES 6, (IY+$57) ; reset P _FLAG - signal NOT PAPER 9 ?
RST 18H ; GET-CHAR
;7 CL-09-1
L1CD6: CALL L21E2 ; routine CO-TEMP-2 deals with any embedded
; colour items.
JR L1C7A ; exit via EXPT-2NUM to check for x,y.

; Note. if either of the numeric expressions contain STRS$ then the flag setting
; above will be undone when the channel flags are reset during STRS.

; e.g.

; 10 BORDER 3 : PLOT VAL STRS 128, VAL STRS$ 100

; credit John Elliott.

; Again a single class for four commands.

; This command just jumps back to SAVE-ETC to handle the four tape commands.
; The routine itself works out which command has called it by examining the
; address in T ADDR lo. Note therefore that the syntax table has to be

; located where these and other sequential command addresses are not split

; over a page boundary.

;; CLASS-0B
L1CDB: JP L0605 ; jump way back to SAVE-ETC

; This routine is called from CLASS-03 when a command may be followed by
; an optional numeric expression e.g. RUN. If the end of statement has

; been reached then zero is used as the default.

; Also called from LIST-4.

;; FETCH-NUM
L1CDE: CP S0D ; 1s character a carriage return ?

JR Z,L1CEG6 ; forward to USE-ZERO if so

CP $3A ; is it ' 2
JR NZ,L1C82 ; forward to EXPT-1NUM if not.
; else continue and use zero.

; Use zero routine

; This routine is called four times to place the value zero on the
; calculator stack as a default value in runtime.

;+ USE-ZERO

L1CEG: CALL L2530 ; routine SYNTAX-Z (UNSTACK-7Z7?)
RET 7 ;
RST 28H ;; FP-CALC
DEFB SAQ ;;stk-zero ;0.
DEFB $38 ;;end-calc
RET ; return.

; Handle STOP command
; Command Syntax: STOP
; One of the shortest and least used commands. As with 'OK' not an error.

;; REPORT-9
;; STOP
L1CEE: RST 08H ; ERROR-1
DEFB 508 ; Error Report: STOP statement

; e.g. IF score>100 THEN PRINT "You Win"

; The parser has already checked the expression the result of which is on
; the calculator stack. The presence of the 'THEN' separator has also been
; checked and CH-ADD points to the command after THEN.

;7 IF
L1CFO: POP BC ; drop return address - STMT-RET
CALL L2530 ; routine SYNTAX-Z
JR Z,L1D00 ; forward to IF-1 if checking syntax
; to check syntax of PRINT "You Win"
RST 28H ;; FP-CALC score>100 (1=TRUE O=FALSE)
DEFB $02 ;;delete
DEFB $38 ; ;end-calc
EX DE, HL ; make HL point to deleted value
CALL L34E9 ; routine TEST-ZERO
JP C,L1BB3 ; jJump to LINE-END if FALSE (0)
7, IF-1
L1D00: JP L1B29 ; to STMT-L-1, if true (1) to execute command

; after 'THEN' token.

; e.g. FOR 1

0 TO 1 STEP 0.1

; Using the syntax tables,
; limit value and also for the intervening separator.

; the two values v,1l are on the calculator stack.

;7 CLASS-04 has also checked the variable and the name is in STRLEN lo.
; The routine begins by checking for an optional STEP.

;; FOR
L1D03: CP
JR

RST
CALL
CALL
JR

;; F-USE-1
L1D10: CALL

RST
DEFB
DEFB

;; F-REORDER

L1D16: RST
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

CALL

LD

DEC
LD
SET
LD
ADD
RLCA
JR

LD

CALL
INC

;; F-L-S
L1D34: PUSH

RST

DEFB
DEFB
DEFB

SCD
NZ,L1D10

20H

L1C82
L1BEE
L1D16

L1BEE

28H
$Al
$38

28H
$CO
$02
$01
SEOQ
$01
$38

L2AFF
($5C68) , HL
HL

A, (HL)

7, (HL)
BC,$0006
HL, BC

C,L1D34

C,s$0D

L1655
HL

HL

28H
$02
$02
$38

’

’

’

’

the parser has already checked for a start and

is there a 'STEP' ?
to F-USE-1 if not to use 1 as default.

NEXT-CHAR

routine EXPT-1NUM
routine CHECK-END
to F-REORDER

routine CHECK-END

; FP-CALC v, 1.
; stk-one v,1l,1l=s.
;end-calc

; FP-CALC v
; st-mem-0 v
;delete v
;exchange 1,
;get-mem-0 1
;exchange 1
;end-calc

routine LET assigns the initial value v to
the variable altering type if necessary.
The system variable MEM is made to point to
the variable instead of its normal
location MEMBOT

point to single-character name

fetch name

set bit 7 at location

add six to HL

to address where limit should be.

test bit 7 of original name.

forward to F-L-S if already a FOR/NEXT
variable

otherwise an additional 13 bytes are needed.
5 for each value, two for line number and

1 byte for looping statement.

routine MAKE-ROOM creates them.

make HL address limit.

save position.

;; FP-CALC 1,s.
; rdelete 1.
; rdelete

; ;end-calc

DE points to STKEND, 1.

’

’

L1D64:

’

POP
EX
LD
LDIR
LD
EX
LD
INC
LD
LD
INC
INC
LD

CALL
RET

no loop is possible so execution continues after the matching

LD
LD
LD
LD
NEG

LD
LD
LD

F-LOOP
PUSH
LD
CALL
LD
POP
JR

RST
OR
CP
JR

HL
DE, HL
C, $0A

HL, ($5C45)
DE, HL
(HL) , E

HL

(HL),D

D, (IY+$0D)
D

HL

(HL), D

L1DDA
NC

B, (IY+5$38)
HL, ($5C45)
($5C42) , HL
A, ($5C47)

D,A
HL, ($5C5D)
E, $F3

BC

BC, ($5C55)
L1D86
($5C55),BC
BC

C,L1D84

208

$20

B
z,L1D7C

’

restore variable position

swap pointers

ten bytes to move

Copy 'deleted' wvalues to variable.
Load with current line number from PPC
exchange pointers.

save the looping line

in the next

two locations.

fetch statement from SUBPPC system variable.
increment statement.

and pointer

and store the looping statement.

routine NEXT-LOOP considers an initial
iteration. Return to STMT-RET if a loop is
possible to execute next statement.

'NEXT'

get single-character name from STRLEN lo
get the current line from PPC

and store it in NEWPPC

fetch current statement from SUBPPC
Negate as counter decrements from zero
initially and we are in the middle of a
line.

Store result in D.

get current address from CH ADD

search will be for token 'NEXT'

save variable name.

fetch NXTLIN

routine LOOK-PROG searches for
update NXTLIN

and fetch the letter

forward to REPORT-I if the end of program
was reached by LOOK-PROG.

'"FOR without NEXT'

'NEXT' token.

NEXT-CHAR fetches character after NEXT
ensure it is upper-case.

compare with FOR variable name

forward to F-FOUND if it matches.

; but if no match i.e. nested FOR/NEXT loops then continue search.

’

L1D7C:

’

’

’

RST
JR

F-FOUND
RST
LD
SUB
LD
RET

REPORT-T

20H
L1D64

20H

A,$01

D
($5C44) , A

’

’

NEXT-CHAR
back to F-LOOP

NEXT-CHAR

subtract the negated counter from 1

to give the statement after the NEXT
set system variable NSPPC

return to STMT-RET to branch to new

line and statement. ->

L1D84: RST 08H ; ERROR-1
DEFB s11 ; Error Report: FOR without NEXT

; Find DATA, DEF FN or NEXT.

; This routine searches the program area for one of the above three keywords.
; On entry, HL points to start of search area.

; The token is in E, and D holds a statement count, decremented from zero.

;5 LOOK-PROG

L1D86: LD A, (HL) ; fetch current character
CP $3A ; 1s it ':' a statement separator ?
JR Z,L1DA3 ; forward to LOOK-P-2 if so.

; The starting point was PROG - 1 or the end of a line.

;7 LOOK-P-1

L1D8B: INC HL ; increment pointer to address

LD A, (HL) ; the high byte of line number

AND SCO ; test for program end marker $80 or a
; variable

SCF ; Set Carry Flag

RET NZ ; return with carry set if at end
; of program. ->

LD B, (HL) ; high byte of line number to B

INC HL ;

LD C, (HL) ; low byte to C.

LD ($5C42),BC ; set system variable NEWPPC.

INC HL ;

LD C, (HL) ; low byte of line length to C.

INC HL ;

LD B, (HL) ; high byte to B.

PUSH HL ; save address

ADD HL,BC ; add length to position.

LD B,H ; and save result

LD C,L ; in BC.

POP HL ; restore address.

LD D, $00 ; initialize statement counter to zero.

;; LOOK-P-2

L1DA3: PUSH BC ; save address of next line
CALL L.198B ; routine EACH-STMT searches current line.
POP BC ; restore address.
RET NC ; return if match was found. ->
JR L1D8B ; back to LOOK-P-1 for next line.

; Handle NEXT command

; e.g. NEXT i
; The parameter tables have already evaluated the presence of a variable

;7 NEXT
L1DAB: BIT 1, (IY+$37) ; test FLAGX - handling a new variable ?
JP NZ,L1C2E ; Jjump back to REPORT-2 if so
; 'Variable not found'

; now test if found variable is a simple variable uninitialized by a FOR.

LD HL, ($5C4D) ; load address of variable from DEST

BIT 7, (HL) ; 1s 1t correct type ?
JR Z,L1DD8 ; forward to REPORT-1 if not
; '"NEXT without FOR'

INC HL ; step past variable name
LD ($5C68) , HL ; and set MEM to point to three 5-byte values
; value, limit, step.

RST 28H ;; FP-CALC add step and re-store

DEFB SEO ; rget-mem-0 V.

DEFB SE2 ;;get-mem-2 V,S.

DEFB SOF ;;addition v+s.

DEFB $CO ; ;7 st-mem-0 v+s.

DEFB $02 ;;delete

DEFB $38 ;;end-calc

CALL L1DDA ; routine NEXT-LOOP tests against limit.
RET C ; return if no more iterations possible.

LD HL, ($5C68) ; find start of variable contents from MEM.
LD DE, $O000F ; add 3*5 to

ADD HL, DE ; address the looping line number

LD E, (HL) ; low byte to E

INC HL ;

LD D, (HL) ; high byte to D

INC HL ; address looping statement

LD H, (HL) ; and store in H

EX DE, HL ; swap registers

JP L1E73 ; exit via GO-TO-2 to execute another loop.

;7 REPORT-1
L1DD8: RST 08H ; ERROR-1
DEFB $00 ; Error Report: NEXT without FOR

; This routine is called from the FOR command to test for an initial

; iteration and from the NEXT command to test for all subsequent iterations.
; the system variable MEM addresses the variable's contents which, in the

; latter case, have had the step, possibly negative, added to the value.

;; NEXT-LOOP

L1DDA: RST 28H ;; FP-CALC
DEFB SE1 ; rget-mem-1 1
DEFB SEO ;7 get-mem-0 1l,v
DEFB SE2 ;7 get-mem-2 1l,v,s.
DEFB $36 ;;less-0 1,v, (1/0) negative step ?
DEFB $00 ;; jump-true 1,v.(1/0)
DEFB $02 ;;to L1IDE2, NEXT-1 if step negative
DEFB S01 ; ;exchange v, 1.
;7 NEXT-1
L1DE2: DEFB $03 ;;subtract 1-v OR v-1.
DEFB $37 ;;greater-0 (1/0)
DEFB $00 ;; jump-true

DEFB 504 ;;to L1IDE9, NEXT-2 if no more iterations.

DEFB

AND
RET

;7 NEXT-2
L1DE9: DEFB

SCF
RET

; e.g. READ a,

bs,

$38 ;

’

$38 ;

’

’

;end-calc

clear carry flag signalling another loop.
return

;end-calc

set carry flag signalling looping exhausted.
return

c$ (1000 TO 3000)

; A list of comma-separated variables is assigned from a list of
; comma-separated expressions.
; As it moves along the first list, the character address CH ADD is stored
; in X PTR while CH ADD is used to read the second list.

;7 READ-3
L1DEC: RST

20H ;

; —> Entry point.

;; READ

L1DED: CALL
CALL
JR

RST
LD
LD

LD
CP
JR

; else all data
LD

CALL
JR

LI1C1F ;
L2530 ;
Z,L1ELE ;
18H ;
($5C5F) , HL ;
HL, ($5C57) ;
A, (HL) ;
$2cC ;
Z,L1EOA ;

in this statement

E, SE4 ;
L1D86 ;
NC, L1EOA ;

; else report the error.

;7 REPORT-E
L1E0O8: RST
DEFB

;7 READ-1
L1EOA: CALL

CALL

RST
LD

08H ;
$S0D ;
L0077 ;
L1C56 ;
18H ;

($5C57) , HL ;

NEXT-CHAR

routine CLASS-01 checks wvariable.
routine SYNTAX-7Z
forward to READ-2 if checking syntax

GET-CHAR

save character position in X PTR.

load HL with Data Address DATADD, which is
the start of the program or the address
after the last expression that was read or
the address of the line number of the

last RESTORE command.

fetch character

is it a comma °?

forward to READ-1 if so.

has been read so look for next DATA token

token 'DATA'
routine LOOK-PROG
forward to READ-1 if DATA found

ERROR-1
Error Report: Out of DATA

routine TEMP-PTR1 advances updating CH ADD
with new DATADD position.

routine VAL-FET-1 assigns value to variable
checking type match and adjusting CH ADD.

GET-CHAR fetches adjusted character position
store back in DATADD

LD HL, ($5C5F) ; fetch X PTR the original READ CH ADD

LD (IY+$26),$00 ; now nullify X PTR hi
CALL L0078 ; routine TEMP-PTR2Z restores READ CH ADD
;; READ-2
L1ELE: RST 18H ; GET-CHAR
CP $2C ; is it ',' indicating more variables to read ?
JR Z,L1DEC ; back to READ-3 if so
CALL L1BEE ; routine CHECK-END
RET ; return from here in runtime to STMT-RET.

; Handle DATA command

; In runtime this 'command' is passed by but the syntax is checked when such
; a statement is found while parsing a line.

; e.g. DATA 1, 2, "text", score-1, a$(location, room, object), FN r(49),

; wages - tax, TRUE, The meaning of life
;; DATA
L1E27: CALL L2530 ; routine SYNTAX-Z to check status

JR NZ,L1E37 ; forward to DATA-2 if in runtime
;; DATA-1
L1E2C: CALL L24FB ; routine SCANNING to check syntax of

; expression
CP $2C ; 1s it a comma ?
CALL NZ, L1BEE ; routine CHECK-END checks that statement

; 1s complete. Will make an early exit if
; SO. >>>

RST 20H ; NEXT-CHAR
JR L1E2C ; back to DATA-1
;; DATA-2
L1E37: LD A, SE4 ; set token to 'DATA' and continue into

; the PASS-BY routine.

; Check statement for DATA or DEF FN

; This routine is used to backtrack to a command token and then
; forward to the next statement in runtime.

;; PASS-BY
L1E39: LD B,A ; Give BC enough space to find token.
CPDR ; Compare decrement and repeat. (Only use).
; Work backwards till keyword is found which
; 1s start of statement before any quotes.
; HL points to location before keyword.
LD DE, $0200 ; count 1+1 statements, dummy value in E to
; inhibit searching for a token.
JP L198B ; to EACH-STMT to find next statement

; A General Note on Invalid Line Numbers.

; One of the revolutionary concepts of Sinclair BASIC was that it supported

; virtual line numbers. That is the destination of a GO TO, RESTORE etc. need
; not exist. It could be a point before or after an actual line number.

; Zero suffices for a before but the after should logically be infinity.

’

rr

Since the maximum actual line limit is 9999 then the system limit, 16383
when variables kick in, would serve fine as a virtual end point.

However, ironically, only the LOAD command gets it right. It will not
autostart a program that has been saved with a line higher than 16383.

All the other commands deal with the limit unsatisfactorily.

LIST, RUN, GO TO, GO SUB and RESTORE have problems and the latter may
crash the machine when supplied with an inappropriate virtual line number.
This is puzzling as very careful consideration must have been given to
this point when the new variable types were allocated their masks and also
when the routine NEXT-ONE was successfully re-written to reflect this.

An enigma.

The restore command sets the system variable for the data address to
point to the location before the supplied line number or first line
thereafter.

This alters the position where subsequent READ commands look for data.
Note. If supplied with inappropriate high numbers the system may crash

in the LINE-ADDR routine as it will pass the program/variables end-marker
and then lose control of what it is looking for - variable or line number.
- observation, Steven Vickers, 1984, Pitman.

RESTORE

L1E42: CALL L1ESS ; routine FIND-INT2 puts integer in BC.

’

; Note. B should be checked against limit $3F
; and an error generated if higher.

this entry point is used from RUN command with BC holding zero

;7 REST-RUN

L1E45: LD H,B ; transfer the line
LD L, C ; number to the HL register.
CALL L196E ; routine LINE-ADDR to fetch the address.
DEC HL ; point to the location before the line.
LD ($5C57) , HL ; update system variable DATADD.
RET ; return to STMT-RET (or RUN)

This command sets the SEED for the RND function to a fixed value.
With the parameter zero, a random start point is used depending on
how long the computer has been switched on.

;» RANDOMIZE
L1E4F: CALL L1ES9 ; routine FIND-INT2 puts parameter in BC.
LD A,B ; test this
OR C ; for zero.
JR NZ,L1E5A ; forward to RAND-1 if not =zero.
LD BC, ($5C78) ; use the lower two bytes at FRAMESI.
;7 RAND-1
L1E5A: LD ($5C76),BC ; place in SEED system variable.
RET ; return to STMT-RET

’

’

’

The CONTINUE command transfers the OLD (but incremented) values of
line number and statement to the equivalent "NEW VALUE" system variables

; by using the last part of GO TO and exits indirectly to STMT-RET.

7+ CONTINUE

L1E5F: LD HL, ($5C6E) ; fetch OLDPPC line number.
LD D, (IY+$306) ; fetch OSPPC statement.
JR L1E73 ; forward to GO-TO-2

; The GO TO command routine is also called by GO SUB and RUN routines

; to evaluate the parameters of both commands.

; It updates the system variables used to fetch the next line/statement.
; It is at STMT-RET that the actual change in control takes place.

; Unlike some BASICs the line number need not exist.

; Note. the high byte of the line number is incorrectly compared with $FO
; instead of $3F. This leads to commands with operands greater than 32767
; being considered as having been run from the editing area and the

; error report 'Statement Lost' is given instead of 'OK'.

; — Steven Vickers, 1984.

;; GO-TO
L1E67: CALL L1E99 ; routine FIND-INT2 puts operand in BC
LD H,B ; transfer line
LD L,C ; number to HL.
LD D, $00 ; set statement to 0 - first.
LD A,H ; compare high byte only
CP SFO ; to SFO i.e. 61439 in full.
JR NC, L1ESF ; forward to REPORT-B if above.

; This call entry point is used to update the system variables e.g. by RETURN.

;5 GO-TO-2
L1E73: LD ($5C42),HL ; save line number in NEWPPC
LD (IY+$0A),D ; and statement in NSPPC
RET ; to STMT-RET (or GO-SUB command)

; Handle OUT command

; Syntax has been checked and the two comma-separated values are on the
; calculator stack.

;. OUT
L1E7A: CALL L1E85 ; routine TWO-PARAM fetches values
; to BC and A.
ouT (C),A ; perform the operation.
RET ; return to STMT-RET.

; This routine alters a single byte in the 64K address space.
; Happily no check is made as to whether ROM or RAM is addressed.
; Sinclair BASIC requires no poking of system variables.

;; POKE
L1E80O: CALL L1E85 ; routine TWO-PARAM fetches values
; to BC and A.
LD (BC),A ; load memory location with A.
RET ; return to STMT-RET.

; Fetch two parameters from calculator stack

; This routine fetches a byte and word from the calculator stack
; producing an error if either is out of range.

;7 TWO-PARAM

L1E85: CALL L2DD5 ; routine FP-TO-A
JR C,L1E9F ; forward to REPORT-B if overflow occurred
JR Z,L1E8E ; forward to TWO-P-1 if positive
NEG ; negative numbers are made positive
;7 TWO-P-1
L1E8E: PUSH AF ; save the wvalue
CALL L1E9S9 ; routine FIND-INT2 gets integer to BC
POP AF ; restore the value
RET ; return

; The first of these routines fetches a 8-bit integer (range 0-255) from the
; calculator stack to the accumulator and is used for colours, streams,

; durations and coordinates.

; The second routine fetches 16-bit integers to the BC register pair

; and 1is used to fetch command and function arguments involving line numbers
; or memory addresses and also array subscripts and tab arguments.

; —>

;; FIND-INTI1

L1E9%4: CALL L2DD5 ; routine FP-TO-A
JR L1ESC ; forward to FIND-I-1 for common exit routine.
; —>
;; FIND-INT2
L1E99: CALL L2DA2 routine FP-TO-BC
;; FIND-I-1
L1E9C: JR C,L1E9F to REPORT-Bb with overflow.
RET 7 return if positive.
;7 REPORT-BDb
L1E9F: RST 08H ERROR-1
DEFB SOA Error Report: Integer out of range

’

’

This command runs a program starting at an optional line.

; It performs a 'RESTORE 0' then CLEAR
;+ RUN
L1EAl: CALL L1E67 routine GO-TO puts line number in
system variables.
LD BC, $0000 prepare to set DATADD to first line.
CALL L1E45 routine REST-RUN does the 'restore'.
Note BC still holds =zero.
JR L1EAF forward to CLEAR-RUN to clear variables

without disturbing RAMTOP and

; exit indirectly to STMT-RET

; This command reclaims the space used by the wvariables.

; It also clears the screen and the GO SUB stack.

; With an integer expression, it sets the uppermost memory

; address within the BASIC system.

; "Contrary to the manual, CLEAR doesn't execute a RESTORE"
; Steven Vickers, Pitman Pocket Guide to the Spectrum, 1984.

;; CLEAR
L1EAC: CALL L1E99 ; routine FIND-INT2 fetches to BC.
;; CLEAR-RUN
L1EAF: LD A,B ; test for
OR C ; Zero.
JR NZ, L1EB7 ; skip to CLEAR-1 if not zero.
LD BC, ($5CB2) ; use the existing value of RAMTOP if zero.
;; CLEAR-1
L1EB7: PUSH BC ; save ramtop value.
LD DE, ($5C4B) ; fetch VARS
LD HL, ($5C59) ; fetch E LINE
DEC HL ; adjust to point at variables end-marker.
CALL L19E5S ; routine RECLAIM-1 reclaims the space used by
; the variables.
CALL LODG6B ; routine CLS to clear screen.
LD HL, ($5C65) ; fetch STKEND the start of free memory.
LD DE, $0032 ; allow for another 50 bytes.
ADD HL, DE ; add the overhead to HL.
POP DE ; restore the ramtop value.
SBC HL, DE ; if HL is greater than the value then Jjump
JR NC, L1IEDA ; forward to REPORT-M
; 'RAMTOP no good'
LD HL, ($5CB4) ; now P-RAMT (S7FFF on 16K RAM machine)
AND A ; exact this time.
SBC HL, DE ; new ramtop must be lower or the same.
JR NC, L1EDC ; skip to CLEAR-2 if in actual RAM.
;7 REPORT-M
L1EDA: RST 08H ; ERROR-1
DEFB $15 ; Error Report: RAMTOP no good
;; CLEAR-2
L1EDC: EX DE, HL ; transfer ramtop value to HL.
LD ($5CB2) , HL ; update system variable RAMTOP.
POP DE ; pop the return address STMT-RET.
POP BC ; pop the Error Address.
LD (HL) , $S3E ; now put the GO SUB end-marker at RAMTOP.
DEC HL ; leave a location beneath it.
LD SP, HL ; initialize the machine stack pointer.
PUSH BC ; push the error address.
LD ($5C3D), SP ; make ERR SP point to location.
EX DE, HL ; put STMT-RET in HL.

JP (HL) ; and go there directly.

; The GO SUB command diverts BASIC control to a new line number
; in a very similar manner to GO TO but
; the current line number and current statement + 1

; are placed on the GO SUB

;; GO-SUB

L1EED: POP DE
LD H, (IY+$S0D)
INC H
EX (SP) , HL
INC SP
LD BC, ($5C45)
PUSH BC
PUSH HL
LD ($5C3D), SP
PUSH DE
CALL L1E67
LD BC, $0014

; Check available memory

stack as a RETURN point.

drop the address STMT-RET

fetch statement from SUBPPC and
increment it

swap - error address to HL,

H (statement) at top of stack,

L (unimportant) beneath.

adjust to overwrite unimportant byte
fetch the current line number from PPC
and PUSH onto GO SUB stack.

the empty machine-stack can be rebuilt
push the error address.

make system variable ERR SP point to it.
push the address STMT-RET.

call routine GO-TO to update the system
variables NEWPPC and NSPPC.

then make an indirect exit to STMT-RET via
a 20-byte overhead memory check.

; This routine is used on many occasions when extending a dynamic area
; upwards or the GO SUB stack downwards.

;; TEST-ROOM

L1F05: LD HL, ($5C65)
ADD HL, BC
JR C,L1F15
EX DE, HL
LD HL, $0050
ADD HL, DE
JR C,L1F15
SBC HL, SP
RET C

;; REPORT-4

L1F15: LD L,$03
JP L0055

; THE 'FREE MEMORY' USER ROUTINE

fetch STKEND
add the supplied test value
forward to REPORT-4 if over S$SFFFF

was less so transfer to DE

test against another 80 bytes

anyway

forward to REPORT-4 if this passes S$FFFF

if less than the machine stack pointer
then return - OK.

prepare 'Out of Memory'
jump back to ERROR-3 at $0055
Note. this error can't be trapped at $0008

; This routine is not used by the ROM but allows users to evaluate
; approximate free memory with PRINT 65536 - USR 7962.

;; free-mem

L1F1A: LD BC,$0000
CALL L1FO05
LD B,H
LD C,L

allow no overhead.
routine TEST-ROOM.

transfer the result
to the BC register.

RET ; the USR function returns value of BC.

; THE 'RETURN' COMMAND

; As with any command, there are two values on the machine stack at the time

; it is invoked. The machine stack is below the GOSUB stack. Both grow

; downwards, the machine stack by two bytes, the GOSUB stack by 3 bytes.

; The highest location is a statement byte followed by a two-byte line number.

;+ RETURN
L1F23: POP BC ; drop the address STMT-RET.
POP HL ; now the error address.
POP DE ; now a possible BASIC return line.
LD A,D ; the high byte $00 - $27 is
CP S3E ; compared with the traditional end-marker $3E.
JR Z,L1F36 ; forward to REPORT-7 with a match.

; 'RETURN without GOSUB'

; It was not the end-marker so a single statement byte remains at the base of
; the calculator stack. It can't be popped off.

DEC SP ; adjust stack pointer to create room for two
; bytes.
EX (SP) , HL ; statement to H, error address to base of
; new machine stack.
EX DE, HL ; statement to D, BASIC line number to HL.
LD ($5C3D), SP ; adjust ERR _SP to point to new stack pointer
PUSH BC ; now re-stack the address STMT-RET
JP L1E73 ; to GO-TO-2 to update statement and line
; system variables and exit indirectly to the
; address just pushed on stack.

;7 REPORT-7
L1F36: PUSH DE ; replace the end-marker.
PUSH HL ; now restore the error address
; as will be required in a few clock cycles.

RST 08H ; ERROR-1
DEFB $06 ; Error Report: RETURN without GOSUB

; The pause command takes as its parameter the number of interrupts
; for which to wait. PAUSE 50 pauses for about a second.

; PAUSE 0O pauses indefinitely.

; Both forms can be finished by pressing a key.

;; PAUSE
L1F3A: CALL L1E99 ; routine FIND-INT2 puts value in BC
;; PAUSE-1
L1F3D: HALT ; wait for interrupt.
DEC BC ; decrease counter.
1D A,B ; test if
OR C ; result is zero.
JR Z,L1F4F ; forward to PAUSE-END if so.
LD A,B ; test if
AND C ; now SFFFF
INC A ; that is, initially =zero.

JR NZ,L1F49 ; skip forward to PAUSE-2 if not.

INC BC ; restore counter to zero.

;; PAUSE-2

L1F49: BIT 5, (IY+$01) ; test FLAGS - has a new key been pressed ?
JR Z,L1F3D ; back to PAUSE-1 if not.

;7 PAUSE-END
L1F4F: RES 5, (IY+$01) ; update FLAGS - signal no new key
RET ; and return.

; This routine is called from COPY-LINE, when interrupts are disabled,
; to test if BREAK (SHIFT - SPACE) is being pressed.
; It is also called at STMT-RET after every statement.

;5 BREAK-KEY

L1F54: 1D A, $TF ; Input address: $7FFE
IN A, (SFE) ; read lower right keys
RRA ; rotate bit 0 - SPACE
RET C ; return if not reset
LD A, SFE ; Input address: SFEFE
IN A, (SFE) ; read lower left keys
RRA ; rotate bit 0 - SHIFT
RET ; carry will be set i1if not pressed.

; return with no carry if both keys
; pressed.

; Handle DEF FN command

; e.g. DEF FN r$(a$,a) = aS$(a TO)
; this 'command' is ignored in runtime but has its syntax checked
; during line-entry.

;; DEF-FN

L1F60: CALL L2530 ; routine SYNTAX-Z
JR Z,L1F6A ; forward to DEF-FN-1 if parsing
LD A, SCE ; else load A with 'DEF FN' and
JP L1E39 ; Jjump back to PASS-BY

; continue here if checking syntax.

;; DEF-FN-1

L1F6A: SET 6, (IY+$S01) ; set FLAGS - Assume numeric result
CALL L2C8D ; call routine ALPHA
JR NC, L1F89 ; if not then to DEF-FN-4 to jump to

; '"Nonsense in BASIC'

RST 20H ; NEXT-CHAR

CP $24 ; is it 's' 2

JR NZ,L1F7D ; to DEF-FN-2 if not as numeric.
RES 6, (IY+$S01) ; set FLAGS - Signal string result

RST 20H ; get NEXT-CHAR

;; DEF-FN-2
L1F7D: CP
JR

RST

CP

JR
;; DEF-FN-3
L1F86: CALL

;; DEF-FN-4

L1F89: JP

EX

RST

CP
JR

EX
RST
;; DEF-FN-5

L1F94: EX
LD

CALL

INC
INC
LD

; Note. these invisible storage

$28
NZ,L1FBD

208
$29
Z,L1FA6

L2C8D

NC,L1C8A

DE, HL
208

$24
NZ,L1F94

DE, HL

20H

DE, HL
BC, $0006

L1655

HL
HL
(HL) , $OE

is it '"(' ?
to DEF-FN-7 'Nonsense in BASIC'

NEXT-CHAR
is it ") 2
to DEF-FN-6 if null argument

routine ALPHA checks that it is the expected

alphabetic character.

to REPORT-C if not
'Nonsense in BASIC'.

save pointer in DE

NEXT-CHAR re-initializes HL from CH ADD
and advances.

'$' ? is it a string argument.

forward to DEF-FN-5 if not.

save pointer to '$' in DE

NEXT-CHAR re-initializes HL and advances

bring back pointer.

the function requires six hidden bytes for
each parameter passed.

The first byte will be $0E

then 5-byte numeric value

or 5-byte string pointer.

routine MAKE-ROOM creates space in program
area.

adjust HL (set by LDDR)
to point to first location.
insert the 'hidden' marker.

locations hold nothing meaningful for the

; moment. They will be used every time the corresponding function is
; evaluated in runtime.
; Now consider the following character fetched earlier.

CP
JR

RST
JR

;; DEF-FN-6
L1FAG: CP
JR

$2C
NZ,L1FA6

20H

L1F86

$29
NZ,L1FBD

is it ',' ? (more than one parameter)
to DEF-FN-6 1f not

else NEXT-CHAR
and back to DEF-FN-3

should close with a ")'
to DEF-FN-7 1f not
'Nonsense in BASIC'

RST 20H

; get NEXT-CHAR

CP $3D ; is it '=' 2

JR NZ,L1FBD ; to DEF-FN-7 if not 'Nonsense...'

RST 20H ; address NEXT-CHAR

LD A, ($5C3B) ; get FLAGS which has been set above

PUSH AF ; and preserve

CALL L24FB ; routine SCANNING checks syntax of expression
; and also sets flags.

POP AF ; restore previous flags

XOR (IY+$01) ; xor with FLAGS - bit 6 should be same
; therefore will be reset.

AND $40 ; 1lsolate bit 6.

;; DEF-FN-7

L1FBD: JP NZ,L1C8A ; jump back to REPORT-C if the expected result
; 1s not the same type.
; 'Nonsense in BASIC'
CALL L1BEE ; routine CHECK-END will return early if

; at end of statement and move onto next
; else produce error report. >>>

; There will be no return to here.

; All routines are capable of being run in two modes - syntax checking mode
; and runtime mode. This routine is called often to allow a routine to return
; early if checking syntax.

;; UNSTACK-Z
L1FC3: CALL L2530 ; routine SYNTAX-Z sets zero flag if syntax
; 1s being checked.

POP HL ; drop the return address.

RET Z ; return to previous call in chain if checking
; syntax.

JP (HL) ; jump to return address as BASIC program is

; actually running.

; Handle LPRINT command

; A simple form of 'PRINT #3' although it can output to 16 streams.
; Probably for compatibility with other BASICs particularly ZX81 BASIC.
; An extra UDG might have been better.

;+ LPRINT
L1FC9: LD A, $03 ; the printer channel
JR L1FCF ; forward to PRINT-1

; The Spectrum's main stream output command.
; The default stream is stream 2 which is normally the upper screen
; of the computer. However the stream can be altered in range 0 - 15.

;5 PRINT
L1FCD: LD A,S$02 ; the stream for the upper screen.

; The LPRINT command joins here.

;; PRINT-1
L1FCF: CALL L2530 ; routine SYNTAX-Z checks if program running
CALL Nz,L1601 ; routine CHAN-OPEN if so
CALL LOD4D ; routine TEMPS sets temporary colours.
CALL L1FDF ; routine PRINT-2 - the actual item
CALL L1BEE ; routine CHECK-END gives error if not at end
; of statement
RET ; and return >>>

; this subroutine is called from above
; and also from INPUT.

;7 PRINT-2

L1FDF: RST 18H ; GET-CHAR gets printable character
CALL L2045 ; routine PR-END-Z checks if more printing
JR Z,L1FF2 ; to PRINT-4 if not e.g. just 'PRINT :'

; This tight loop deals with combinations of positional controls and
; print items. An early return can be made from within the loop
; 1f the end of a print sequence is reached.

;7 PRINT-3
L1FE5: CALL L204E ; routine PR-POSN-1 returns zero if more
; but returns early at this point if
; at end of statement!
JR Z,L1FES5 ; to PRINT-3 if consecutive positioners
CALL L1FFC ; routine PR-ITEM-1 deals with strings etc.
CALL L204E ; routine PR-POSN-1 for more position codes
JR Z,L1FES ; loop back to PRINT-3 if so
;; PRINT-4
L1FF2: CP 329 ; return now i1if this is ')' from input-item.
; (see INPUT.)
RET Z ; or continue and print carriage return in

; runtime

; Print carriage return

; This routine which continues from above prints a carriage return
; in run-time. It is also called once from PRINT-POSN.

;7 PRINT-CR

L1FF5: CALL L1FC3 ; routine UNSTACK-Z
LD A,S$0D ; prepare a carriage return
RST 10H ; PRINT-A
RET ; return

; Print items

; This routine deals with print items as in
; PRINT AT 10,0;"The value of A is ";a

; It returns once a single item has been dealt with as it is part
; of a tight loop that considers sequences of positional and print items

;; PR-ITEM-1

L1FFC: RST 18H ; GET-CHAR
CP SAC ; 1s character 'AT' ?
JR NZ,L200E ; forward to PR-ITEM-2 if not.
CALL L1C79 ; routine NEXT-2NUM check for two comma

; separated numbers placing them on the
; calculator stack in runtime.

CALL L1FC3 ; routine UNSTACK-Z quits if checking syntax.
CALL L2307 ; routine STK-TO-BC get the numbers in B and C.
LD A,S$16 ; prepare the 'at' control.

JR L201E ; forward to PR-AT-TAB to print the sequence.

;7 PR-ITEM-2

L200E: CP SAD ; 1s character 'TAB' ?
JR Nz,L2024 ; to PR-ITEM-3 if not
RST 20H ; NEXT-CHAR to address next character
CALL L1C82 ; routine EXPT-1NUM
CALL L1FC3 ; routine UNSTACK-Z quits if checking syntax.
CALL L1E99 ; routine FIND-INT2 puts integer in BC.
LD A,S$17 ; prepare the 'tab' control.

;; PR-AT-TAB

L201E: RST 10H ; PRINT-A outputs the control
LD A,C ; first value to A
RST 10H ; PRINT-A outputs it.
LD A,B ; second value
RST 10H ; PRINT-A
RET ; return - item finished >>>

; Now consider paper 2; #2; a$

;7 PR-ITEM-3

L2024: CALL L21F2 ; routine CO-TEMP-3 will print any colour
RET NC ; items - return if success.
CALL L2070 ; routine STR-ALTER considers new stream
RET NC ; return if altered.
CALL L24FB ; routine SCANNING now to evaluate expression
CALL L1FC3 ; routine UNSTACK-Z if not runtime.
BIT 6, (IY+S01) ; test FLAGS - Numeric or string result ?
CALL Z,L2BF1 ; routine STK-FETCH if string.

; note no flags affected.

JP NZ,L2DE3 ; to PRINT-FP to print if numeric >>>

; It was a string expression - start in DE, length in BC

; Now enter a loop to print it

’

L203C:

’

PR-STRING

1D A,B ;
OR C ;
DEC BC ;
RET z ;
1D A, (DE) ;
INC DE ;
RST 10H ;
JR L203C ;

This subroutine returns zero if
in the current statement.
The first terminator is found in
the others in print items.

;; PR-END-Z

1.2045: CP $29 ;
RET 7 ;

;; PR-ST-END

L2048: CP S0D ;
RET Z ;
CP $3A ;
RET ;

’

’

This routine considers a single

;; PR-POSN-1

L204E: RST 18H ;
CP S3B ;
JR Z,L2067 ;
CP $2¢C ;
JR NZ,L2061 ;
CALL L2530 ;
JR Z,L2067 ;
LD A,S$06 ;
RST 10H ;
JR L2067 ;

’

’

’

check for newline.

PR-POSN-2

this tests if the

length is zero and sets flag accordingly.

this doesn't but decrements counter.
return if zero.

fetch character.
address next location.

PRINT-A.

loop back to PR-STRING.

no further printing is required

escaped input items only,

is character a '")' ?

return if so - e.g. INPUT (pS);

is it a carriage return

return also - e.g. PRINT a

is character a ':' ?

return - zero flag will be set if so.
e.g. PRINT a

positional character ';', ',', '"!

GET-CHAR

is it ';' 2

i.e. print from last position.
forward to PR-POSN-3 if so.
i.e. do nothing.

is it ', ' ?
i.e. print at next tabstop.

forward to PR-POSN-2 if anything else.

routine SYNTAX-Z

as

forward to PR-POSN-3 if checking syntax.

prepare the 'comma'

PRINT-A
run-time.

skip to PR-POSN-3.

control character.

outputs to current channel in

L2061: CP $27 ; 1s character a "'" ? (newline)
RET NZ ; return if no match >>>

CALL L1FF5 ; routine PRINT-CR outputs a carriage return
; in runtime only.

;7 PR-POSN-3

L2067: RST 20H ; NEXT-CHAR to A.
CALL L2045 ; routine PR-END-Z checks if at end.
JR NZ,L206E ; to PR-POSN-4 if not.
POP BC ; drop return address if at end.

;; PR-POSN-4
L206E: CP A ; reset the zero flag.
RET ; and return to loop or quit.

; Alter stream

; This routine is called from PRINT ITEMS above, and also LIST as in
; LIST #15

;7 STR-ALTER

L2070: CP $23 ; 1s character '#' °?
SCF ; set carry flag.
RET NZ ; return if no match.
RST 20H ; NEXT-CHAR
CALL L1C82 ; routine EXPT-1NUM gets stream number
AND A ; prepare to exit early with carry reset
CALL L1FC3 ; routine UNSTACK-Z exits early if parsing
CALL L1E94 ; routine FIND-INT1l gets number off stack
CP $10 ; must be range 0 - 15 decimal.
JP NC, L160E ; jump back to REPORT-Oa if not

; '"Invalid stream'.

CALL L1601 ; routine CHAN-OPEN
AND A ; clear carry - signal item dealt with.
RET ; return

; Handle INPUT command

; This command

;; INPUT
L2089: CALL L2530 ; routine SYNTAX-Z to check if in runtime.
JR Z,L2096 ; forward to INPUT-1 if checking syntax.
LD A,S$01 ; select channel 'K' the keyboard for input.
CALL L1601 ; routine CHAN-OPEN opens the channel and sets
; bit 0 of TV FLAG.
CALL LODGE ; routine CLS-LOWER clears the lower screen
; and sets DF _SZ to two and TV_FLAG to $01.
;5 INPUT-1
L2096: LD (IY+$02),501 ; update TV_FLAG - signal lower screen in use

; ensuring that the correct set of system
; variables are updated and that the border
; colour is used.

’

’

’

Note. The Complete Spectrum ROM Disassembly incorrectly names DF-SZ as the
system variable that is updated above and if, as some have done, you make
this unnecessary alteration then there will be two blank lines between the
lower screen and the upper screen areas which will also scroll wrongly.

CALL L20C1 ; routine IN-ITEM-1 to handle the input.

CALL L1BEE ; routine CHECK-END will make an early exit
; 1f checking syntax. >>>

keyboard input has been made and it remains to adjust the upper
screen in case the lower two lines have been extended upwards.

LD BC, ($5C88) ; fetch S POSN current line/column of
; the upper screen.
LD A, ($5C6B) ; fetch DF_SZ the display file size of
; the lower screen.
CP B ; test that lower screen does not overlap
JR C,L20AD ; forward to INPUT-2 if not.

the two screens overlap so adjust upper screen.

LD C,$21 ; set column of upper screen to leftmost.
LD B,A ; and line to one above lower screen.
; continue forward to update upper screen
; print position.

;; INPUT-2

L20AD: LD ($5C88),BC ; set S _POSN update upper screen line/column.
LD A,S$19 ; subtract from twenty five
SUB B ; the new line number.
LD ($5C8C) ,A ; and place result in SCR CT - scroll count.
RES 0, (IY+S$S02) ; update TV_FLAG - signal main screen in use.
CALL LODD9 ; routine CL-SET sets the print position

; system variables for the upper screen.

JP LOD6E ; Jump back to CLS-LOWER and make

rs

; an indirect exit >>.

This subroutine deals with the input items and print items.

from the current input channel.

It is only called from the above INPUT routine but was obviously
once called from somewhere else in another context.

IN-ITEM-1

L20C1l: CALL L204E ; routine PR-POSN-1 deals with a single

’

’

; position item at each call.
JR Z,L20C1 ; back to IN-ITEM-1 until no more in a
; sequence.

CP 328 ; 1s character '"(' ?
JR NZ,L20D8 ; forward to IN-ITEM-2 if not.

any variables within braces will be treated as part, or all, of the prompt
instead of being used as destination variables.

RST 20H ; NEXT-CHAR

CALL L1FDF ; routine PRINT-2 to output the dynamic
; prompt.

RST 18H ; GET-CHAR

CP 329 ; 1s character a matching '")' ?

rr

JPp

RST
JP

IN-ITEM-2

L20D8: CP

’

rr

JR

RST
CALL

SET
BIT
Jp

JR

IN-ITEM-3

L20ED: CALL

rr

Jp

CALL

RES

IN-PROMPT

L20FA: CALL

rs

JPp
CALL
LD
RES
SET
LD
BIT
JR

LD
AND

JR

LD

IN-PR-1

L211A: OR

LD

NZ,L1C8A

20H
L21B2

SCA
NZ,L20ED

20H
L1C1F

7, (IY+$37)
6, (IY+$01)
NZ,L1C82A

L20FA

1L2C8D
NC, L21AF
L1C1F

7, (IY+$37)
L2530
z,L21B2
L16BF
HL, $5C71
6, (HL)
5, (HL)
BC,$0001
7, (HL)

NZ,L211C

A, ($5C3B)
$40

NZ,L211A

C,503

(HL)
(HL) , A

jump back to REPORT-C if not.
'Nonsense in BASIC'.

NEXT-CHAR
forward to IN-NEXT-2

is the character the token 'LINE' ?
forward to IN-ITEM-3 if not.

NEXT-CHAR - variable must come next.
routine CLASS-01 returns destination
address of variable to be assigned.
or generates an error if no variable
at this position.

update FLAGX - signal handling INPUT LINE
test FLAGS - numeric or string result ?
jump back to REPORT-C if not string
'Nonsense in BASIC'.

forward to IN-PROMPT to set up workspace.

the jump was here for other wvariables.

routine ALPHA checks if character is
a suitable variable name.
forward to IN-NEXT-1 if not

routine CLASS-01 returns destination
address of variable to be assigned.
update FLAGX - signal not INPUT LINE.

routine SYNTAX-Z
forward to IN-NEXT-2 if checking syntax.

routine SET-WORK clears workspace.
point to system variable FLAGX
signal string result.

signal in Input Mode for editor.
initialize space required to one for
the carriage return.

test FLAGX - INPUT LINE in use °?
forward to IN-PR-2 if so as that is
all the space that is required.

load accumulator from FLAGS

mask to test BIT 6 of FLAGS and clear
the other bits in A.

numeric result expected ?

forward to IN-PR-1 if so

increase space to three bytes for the

pair of surrounding quotes.

if numeric result, set bit 6 of FLAGX.
and update system variable

;; IN-PR-2

L211C: RST
LD
LD

RRCA
RRCA

JR

LD
LD
DEC
LD

;; IN-PR-3

1L.2129: LD
BIT
JR

LD

PUSH

LD

PUSH

;; IN-VAR-1
L213A: LD

PUSH

BIT

JR

LD

;7 IN-VAR-2
L2148: LD

CALL

LD

CALL

; 1f we pass to

RES

CALL

; proceed if syntax passed.

JR

; the jump was to here when using

NC, L2129

A, 822
(DE) ,A
HL
(HL) , A

($5C5B) , HL
7, (IY+$37)
NZ,L215E

HL, ($5C5D)
HL
HL, ($5C3D)
HL

HL, L2132
HL

4, (IY+S$30)
Z,L2148

($5C3D), SP

HL, ($5C61)
L11A7

(IY+$00), SFF

LOF2C

next then there

7, (IY+$S01)
L21B9

L2161

BC-SPACES opens 1 or 3 bytes in workspace
insert carriage return at last new location.
fetch the length, one or three.

lose bit 0.

test if quotes required.

forward to IN-PR-3 if not.

load the '"' character
place quote in first new location at DE.
decrease HL - from carriage return.

and place a quote in second location.

set keyboard cursor K CUR to HL

test FLAGX - is this INPUT LINE ?°?
forward to IN-VAR-3 if so as input will
be accepted without checking its syntax.

fetch CH ADD
and save on stack.
fetch ERR_SP
and save on stack

address: IN-VAR-1 - this address

is saved on stack to handle errors.
test FLAGS2 - is K channel in use ?
forward to IN-VAR-2 if not using the
keyboard for input. (?7?)

set ERR SP to point to IN-VAR-1 on stack.

set HL to WORKSP - start of workspace.
routine REMOVE-FP removes floating point
forms when looping in error condition.

set ERR NR to 'OK' cancelling the error.
but X PTR causes flashing error marker

to be displayed at each call to the editor.
routine EDITOR allows input to be entered
or corrected if this is second time around.

re no system errors

update FLAGS - signal checking syntax
routine IN-ASSIGN checks syntax using

the VAL-FET-2 and powerful SCANNING routines.
any syntax error and its back to IN-VAR-1.
but with the flashing error marker showing
where the error is.

Note. the syntax of string input has to be
checked as the user may have removed the
bounding quotes or escaped them as with

"hat" + "stand" for example.

jump forward to IN-VAR-4

INPUT LINE.

;; IN-VAR-3
L215E: CALL

LOF2C ;

routine EDITOR is called for input

; when ENTER received rejoin other route but with no syntax check.

; INPUT and INPUT LINE converge here.

;; IN-VAR-4
L2161: LD

CALL

JR

; continue here

CALL

LD
CALL

(IY+$22),$00 ;
L21D6 ;
NZ,L2174 ;

set K CUR hi to a low value so that the cursor
no longer appears in the input line.

routine IN-CHAN-K tests if the keyboard

is being used for input.

forward to IN-VAR-5 if using another input
channel.

if using the keyboard.

L111D ;
BC, ($5C82) ;
LODDY ;

; if using another input channel

;; IN-VAR-5
L2174: LD
RES
BIT
RES
JR

POP
POP

LD
POP

LD
SET
CALL

LD
LD
LD
JR

HL, $5C71 ;
51 (HL) ;
7, (HL) 7
7, (HL) ;
NZ,L219B ;
HL ;
HL ;
($5C3D) , HL ;
HL ;
($5C5F) , HL ;
7, (IY+$01) ;
L21B9 ;
HL, ($5C5F) ;
(IY+$26),5$00 ;
($5C5D) , HL ;
L21B2 ;

; the jump was to here with INPUT

;; IN-VAR-6
L219B: LD
LD

HL, ($5C63) ;
DE, ($5C61) ;

routine ED-COPY overprints the edit line
to the lower screen. The only visible
affect is that the cursor disappears.

if you're inputting more than one item in
a statement then that becomes apparent.

fetch line and column from ECHO E
routine CL-SET sets S-POSNL to those
values.

rejoin here.

point HL to FLAGX

signal not in input mode

is this INPUT LINE °?

cancel the bit anyway.

forward to IN-VAR-6 if INPUT LINE.

drop the looping address

drop the address of previous

error handler.

set ERR SP to point to it.

drop original CH ADD which points to
INPUT command in BASIC line.

save in X PTR while input is assigned.
update FLAGS - Signal running program
routine IN-ASSIGN is called again
this time the wvariable will be assigned
the input value without error.

Note. the previous example now
becomes "hatstand"

fetch stored CH ADD value from X PTR.

set X PTR hi so that iy is no longer relevant.
put restored value back in CH_ADD

forward to IN-NEXT-2 to see if anything

more in the INPUT list.

LINE only

STKBOT points to the end of the input.
WORKSP points to the beginning.

SCF ; prepare for true subtraction.

SBC HL, DE ; subtract to get length

LD B, H ; transfer it to

LD C,L ; the BC register pair.

CALL L2AB2 ; routine STK-STO-$ stores parameters on
; the calculator stack.

CALL L2AFF ; routine LET assigns it to destination.

JR L21B2 ; forward to IN-NEXT-2 as print items

; not allowed with INPUT LINE.

; Note. that "hat" + "stand" will, for
; example, be unchanged as also would
; 'PRINT "Iris was here"'.

; the jump was to here when ALPHA found more items while looking for
; a variable name.

;7 IN-NEXT-1
L21AF: CALL L1FFC ; routine PR-ITEM-1 considers further items.

;7 IN-NEXT-2
L21B2: CALL L204E ; routine PR-POSN-1 handles a position item.
JP Z,L20C1 ; Jjump back to IN-ITEM-1 if the zero flag
; indicates more items are present.

RET ; return.

; This subroutine is called twice from the INPUT command when normal

; keyboard input is assigned. On the first occasion syntax is checked
; using SCANNING. The final call with the syntax flag reset is to make
; the assignment.

;7 IN-ASSIGN

L21B9: LD HL, ($5Ce61) ; fetch WORKSP start of input
LD ($5C5D) , HL ; set CH ADD to first character
RST 18H ; GET-CHAR ignoring leading white-space.
CP SE2 ; 1s it 'STOP'
JR Z,L21D0 ; forward to IN-STOP if so.
LD A, ($5C71) ; load accumulator from FLAGX
CALL L1C59 ; routine VAL-FET-2 makes assignment

; or goes through the motions if checking
; syntax. SCANNING is used.

RST 18H ; GET-CHAR
CP $0D ; 1s it carriage return °?
RET 7 ; return if so

; either syntax is OK
; or assignment has been made.

; 1f another character was found then raise an error.
; User doesn't see report but the flashing error marker
; appears in the lower screen.

;+ REPORT-Cb
L21CE: RST 08H ; ERROR-1
DEFB SOB ; Error Report: Nonsense in BASIC

;5 IN-STOP

L21D0: CALL L2530 ; routine SYNTAX-Z (UNSTACK-Z?)
RET Z ; return if checking syntax
; as user wouldn't see error report.
; but generate visible error report
; on second invocation.

;+ REPORT-H
L21D4: RST 08H ; ERROR-1
DEFB $10 ; Error Report: STOP in INPUT

; THE 'TEST FOR CHANNEL K' SUBROUTINE

; This subroutine is called once from the keyboard INPUT command to check if
; the input routine in use is the one for the keyboard.

;; IN-CHAN-K

L21D6: LD HL, ($5C51) ; fetch address of current channel CURCHL
INC HL ;
INC HL ; advance past
INC HL ; 1lnput and
INC HL ; output streams
LD A, (HL) ; fetch the channel identifier.
CP $4B ; test for 'K'
RET ; return with zero set if keyboard is use.

; These routines have 3 entry points -

; 1) CO-TEMP-2 to handle a series of embedded Graphic colour items.
; 2) CO-TEMP-3 to handle a single embedded print colour item.

; 3) CO TEMP-4 to handle a colour command such as FLASH 1

; "Due to a bug, if you bring in a peripheral channel and later use a colour
; statement, colour controls will be sent to it by mistake." - Steven Vickers
; Pitman Pocket Guide, 1984.

; To be fair, this only applies if the last channel was other than 'K', 'S'
; or '"P', which are all that are supported by this ROM, but if that last

; channel was a microdrive file, network channel etc. then

; PAPER 6; CLS will not turn the screen yellow and

; CIRCLE INK 2; 128,88,50 will not draw a red circle.

; This bug does not apply to embedded PRINT items as it is quite permissible
; to mix stream altering commands and colour items.

; The fix therefore would be to ensure that CLASS-07 and CLASS-09 make

; channel 'S' the current channel when not checking syntax.

;; CO-TEMP-1
L21E1l: RST 20H ; NEXT-CHAR

; —> Entry point from CLASS-09. Embedded Graphic colour items.
; e.g. PLOT INK 2; PAPER 8; 128,88
; Loops till all colour items output, finally addressing the coordinates.

;7 CO-TEMP-2

L21E2: CALL L21F2 ; routine CO-TEMP-3 to output colour control.
RET C ; return if nothing more to output. ->

RST 18H ; GET-CHAR

CP
JR

CP
JR

s2C
z,L21E1

$3B
7,L21E1

L1C8A

is it ',' separator ?
back if so to CO-TEMP-1

is it ';' separator ?
back to CO-TEMP-1 for more.

to REPORT-C (REPORT-Cb is within range)
'Nonsense in BASIC'

; —> this routine evaluates and outputs a colour control and parameter.

; It is called from above and also from PR-ITEM-3 to handle a single embedded
; print item e.g. PRINT PAPER 6;
; multiple items is within the PR-ITEM routine.

; It is quite permissible to send these to any stream.

;; CO-TEMP-3

L21F2: CP
RET
CP
CCF
RET
PUSH

RST
POP

; —> this entry

;; CO-TEMP-4

$D9
C

SDF

AF

20H
AF

"Hi". In the latter case, the looping for

is it '"INK' ?
return if less.

compare with 'OUT'
Complement Carry Flag
return if greater than 'OVER', S$DE.

save the colour token.

address NEXT-CHAR
restore token and continue.

point used by CLASS-07. e.g. the command PAPER 6.

L21FC: SUB SC9 reduce to control character $10 (INK)
thru $15 (OVER).
PUSH AF save control.
CALL L1C82 routine EXPT-1NUM stacks addressed
parameter on calculator stack.
POP AF restore control.
AND A clear carry
CALL L1FC3 routine UNSTACK-Z returns if checking syntax.
PUSH AF save again
CALL L1E94 routine FIND-INT1 fetches parameter to A.
LD D,A transfer now to D
POP AF restore control.
RST 10H PRINT-A outputs the control to current
channel.
LD A,D transfer parameter to A.
RST 10H PRINT-A outputs parameter.
RET return. ->
; {fl}{br}{ paper J{ ink } The temporary colour attributes
; system variable.
; ATTR_ T | | | | | | | |
; | | | | | | | | |
; 23695 | | | | | | | | |
; 7 6 5 4 3 1 0

{£f1l}{br}{ H{ ink } The temporary mask used for

transparent colours. Any bit

paper

; MASK T | | | | | | | | | that is 1 shows that the

; | | | | | | | | | corresponding attribute is

; 23696 | | | | | | | | | taken not from ATTR-T but from
; 7 6 5 4 3 2 1 0 what is already on the screen.
; {paper9 }{ ink9 }{ invl }{ overl} The print flags. Even bits are
; temporary flags. The odd bits
; P_FLAG | | | | | | | | | are the permanent flags.

; lpl tlpltlpltlplt]

7 23697 | | | | | | | | |

’
’

’

This is an exit branch from PO-1-OPER, PO-2-OPER

A holds control $10 (INK) to $15 (OVER)

D holds parameter 0-9 for ink/paper 0,1 or 8 for bright/flash,
0 or 1 for over/inverse.

;; CO-TEMP-5
L2211: SUB S11 ; reduce range SFF-504
ADC A, S$00 ; add in carry if INK
JR Z,L2234 ; forward to CO-TEMP-7 with INK and PAPER.
SUB $02 ; reduce range SFF-$02
ADC A, 3500 ; add carry if FLASH
JR Z,L2273 ; forward to CO-TEMP-C with FLASH and BRIGHT.
CP 501 ; 1s it '"INVERSE' ?
LD A,D ; fetch parameter for INVERSE/OVER
LD B,s01 ; prepare OVER mask setting bit 0.
JR NZ,L2228 ; forward to CO-TEMP-6 if OVER
RLCA ; shift bit O
RLCA ; to bit 2
LD B, $04 ; set bit 2 of mask for inverse.
;; CO-TEMP-6
1L.2228: LD C,A ; save the A
LD A,D ; re-fetch parameter
CP $02 ; 1s it less than 2
JR NC, L2244 ; to REPORT-K if not 0 or 1.
; 'Invalid colour'.
LD A,C ; restore A
LD HL, $5C91 ; address system variable P _FLAG
JR L226C ; forward to exit via routine CO-CHANGE

; the branch was here with INK/PAPER and carry set for INK.

;; CO-TEMP-7
1L2234: 1D A,D ; fetch parameter
LD B,S07 ; set ink mask 00000111
JR C,L223E ; forward to CO-TEMP-8 with INK

RLCA
RLCA
RLCA
LD

; both paper

;; CO-TEMP-8

L223E: LD
LD
CP
JR

; ink 10 etc.

;+ REPORT-K

L2244: RST 08H ;
DEFB $13 ;

;; CO-TEMP-9

1L2246: LD HL, $5C8F ;
CP $08 ;
JR C,L2258 ;
LD A, (HL) ;
JR Z,L2257 ;

; it i1s either ink 9 or paper 9
OR B ;
CPL ;
AND $24 ;
JR 7,12257 ;
LD A,B ;

;; CO-TEMP-A

L.2257: LD C,A ;

;; CO-TEMP-B

1L.2258: LD A,C ;
CALL L226C ;
LD A,$07 ;
CP D ;
SBC A,A ;
CALL L226C ;

B, $38 ;

and ink rejoin here

C,A ;
A,D ;
SO0A ;
C,L2246 ;

is not allowed.

; now consider P-FLAG.

RLCA
RLCA
AND
LD
LD
CP
SBC

$50 ;
B,A ;
A, 508 ;
D ;
A,A ;

shift bits 0-2

to

bits 3-5

set paper mask 00111000

value to C

fetch parameter

is it less than 10d ?
forward to CO-TEMP-9 if so.

ERROR-1

Error Report: Invalid colour

address system variable ATTR T initially.
compare with 8
forward to CO-TEMP-B with 0-7.

fetch temporary attribute as no change.
forward to CO-TEMP-A with INK/PAPER 8

(contrasting)

or with mask to make white

make black and change other to dark
00100100

forward to CO-TEMP-A if black and
originally light.

else just use the mask (white)

save A in C

load colour to A
routine CO-CHANGE addressing ATTR-T

put 7 in accumulator

compare with parameter

$00 if 0-7, SFF if 8

routine CO-CHANGE addressing MASK-T
mask returned in A.

01110000
11100000
01000000 or 00010000
transfer to mask

load A with 8

compare with parameter
SFF if was 9, $00 if 0-8
continue while addressing P-FLAG
setting bit 4 if ink 9

setting bit 6 if paper 9

00001110
00011100

or
or
(AND 01010000)

; This routine addresses a system
; colour value in A, mask in B.

;; CO-CHANGE

L226C: XOR
AND
XOR
LD
INC
LD
RET

variable ATTR T, MASK T or P-FLAG in HL.

impress bits specified

by mask

on system variable.

update system variable.
address next location.

put current value of mask in A
return.

; the branch was here with flash and bright

;; CO-TEMP-C

L2273: SBC
LD
RRCA
LD
JR

RRCA
LD

;; CO-TEMP-D

L227D: LD
LD
CP
JR

CP
JR

;; CO-TEMP-E

L2287: LD
LD
CALL
LD
RRCA
RRCA
RRCA
JR

; Command syntax example:

AR
A,D

14

B, $80
NZ,L227D

B, $40

c,A
A,D
508
7,12287

$02
NC, L2244

A,C
HL, $5C8F
L226C
A,C

L226C

BORDER 7

set zero flag for bright.

fetch original parameter 0,1 or 8
rotate bit 0 to bit 7

mask for flash 10000000

forward to CO-TEMP-D if flash

rotate bit 7 to bit 6
mask for bright 01000000

store value in C

fetch parameter

compare with 8

forward to CO-TEMP-E if 8

test if 0 or 1
back to REPORT-K if not
'Invalid colour'

value to A

address ATTR T

routine CO-CHANGE addressing ATTR T
fetch value

for flash8/bright8 complete
rotations to put set bit in

bit 7 (flash) bit 6 (bright)

back to CO-CHANGE addressing MASK T
and indirect return.

; This command routine sets the border to one of the eight colours.
; The colours used for the lower screen are based on this.

; ; BORDER

L2294: CALL
CP
JR
ouT

L1E94
$08
NC, L2244

($FE) , A

routine FIND-INT1

must be in range 0 (black) to 7 (white)
back to REPORT-K 1if not

'Invalid colour'.

outputting to port effects an immediate

; change.

RLCA ; shift the colour to
RLCA ; the paper bits setting the
RLCA ; ink colour black.
BIT 5,A ; 1s the number light coloured ?
; i.e. in the range green to white.
JR NZ,L22A6 ; skip to BORDER-1 if so
XOR $07 ; make the ink white.

;7 BORDER-1
L22A6: LD ($5C48) ,A ; update BORDCR with new paper/ink
RET ; return.

;; PIXEL-ADD

L22AA: LD A, SAF ; load with 175 decimal.
SUB B ; subtract the y value.
JP C,L24F9 ; Jjump forward to REPORT-Bc if greater.

; 'Integer out of range'

; the high byte is derived from Y only.

; the first 3 bits are always 010

; the next 2 bits denote in which third of the screen the byte is.

; the last 3 bits denote in which of the 8 scan lines within a third
; the byte is located. There are 24 discrete values.

LD B,A ; the line number from top of screen to B.
AND A ; clear carry (already clear)
RRA ; OXXXXXXX
SCF ; set carry flag

RRA ; 10xxxxXXX
AND A ; clear carry flag

RRA ; 010xxxxxX
XOR B ;

AND SF8 ; keep the top 5 bits 11111000
XOR B ; 010xxbbb
LD H,A ; transfer high byte to H.

; the low byte is derived from both X and Y.

LD A,C ; the x value 0-255.

RLCA ;

RLCA ;

RLCA ;

XOR B ; the y value

AND s$C7 ; apply mask 11000111
XOR B ; restore unmasked bits xxXyyyxxx
RLCA ; rotate to XYYYXXXX
RLCA ; required position. VYYXXXKK
LD L,A ; low byte to L.

; finally form the pixel position in A.

LD A,C ; x value to A
AND 507 ; mod 8
RET ; return

’

’

’

The point subroutine is called from s-point via the scanning functions
table.

;; POINT-SUB
L22CB: CALL L2307 ; routine STK-TO-BC
CALL L22AA ; routine PIXEL-ADD finds address of pixel.
LD B,A ; pixel position to B, 0-7.
INC B ; increment to give rotation count 1-8.
LD A, (HL) ; fetch byte from screen.
;; POINT-LP
1L22D4: RLCA ; rotate and loop back
DJINZ 1L.22D4 ; to POINT-LP until pixel at right.
AND $01 ; test to give zero or one.
JP 1.2D28 ; jump forward to STACK-A to save result.

’

; Command Syntax example: PLOT 128,88

;; PLOT

L22DC: CALL L2307 ; routine STK-TO-BC
CALL L22E5 ; routine PLOT-SUB
JP LOD4D ; to TEMPS

so it is necessary to rotate a mask
leave the other 7 pixels unaffected.
character cell take any embedded colour

A screen byte holds 8 pixels
into the correct position to
However all 64 pixels in the
items.

A pixel can be reset (inverse 1), toggled (over 1), or set (with inverse
and over switches off). With both switches on, the byte is simply put
back on the screen though the colours may change.

;; PLOT-SUB
L22E5: LD ($5C7D) ,BC ; store new x/y values in COORDS
CALL L22AA ; routine PIXEL-ADD gets address in HIL,
; count from left 0-7 in B.
LD B,A ; transfer count to B.
INC B ; increase 1-8.
LD A, SFE ; 11111110 in A.
;; PLOT-LOOP
L22F0: RRCA ; rotate mask.
DJINZ L22F0 ; to PLOT-LOOP until B circular rotations.
LD B,A load mask to B
LD A, (HL) fetch screen byte to A
LD C, (IY+$57) P FLAG to C
BIT 0,C is it to be OVER 1 ?
JR NZ,L22FD forward to PL-TST-IN if so.

’

was over 0

AND B ; combine with mask to blank pixel.

;7 PL-TST-IN

L22FD: BIT 2,C ; is it inverse 1 ?
JR NZ,L2303 ; to PLOT-END if so.
XOR B ; switch the pixel
CPL ; restore other 7 bits

;; PLOT-END
L2303: LD (HL) , A ; load byte to the screen.
JP LOBDB ; exit to PO-ATTR to set colours for cell.

;; STK-TO-BC

L2307: CALL L2314 ; routine STK-TO-A
LD B, A ;
PUSH BC ;
CALL L2314 ; routine STK-TO-A
LD E,C ;
POP BC ;
LD D,C ;
LD C,A ;
RET ;

; Put stack in A register

; This routine puts the last value on the calculator stack into the accumulator
; deleting the last value.

;7 STK-TO-A

1L2314: CALL L2DD5 ; routine FP-TO-A compresses last value into
; accumulator. e.g. PI would become 3.
; zero flag set if positive.

Jp C,L24F9 ; jump forward to REPORT-Bc if >= 255.5.
LD C,s$01 ; prepare a positive sign byte.

RET 7 ; return if FP-TO-BC indicated positive.
LD C,SFF ; prepare negative sign byte and

RET ; return.

; Handle CIRCLE command

; syntax has been partly checked using the class for draw command.

;; CIRCLE
L2320: RST 18H ; GET-CHAR
CP $2C ; is it required comma ?
JP NZ,L1C8A ; JjJump to REPORT-C if not
RST 20H ; NEXT-CHAR
CALL L1Cc82 ; routine EXPT-1NUM fetches radius

CALL L1BEE ; routine CHECK-END will return here if

; nothing follows command.

RST 28H ;; FP-CALC

DEFB $2A ; ;abs ; make radius positive

DEFB $3D ;;re-stack ; in full floating point form
DEFB $38 ;;end-calc

LD A, (HL) ; fetch first floating point byte

CP $81 ; compare to one

JR NC, L233B ; forward to C-R-GRE-1 if circle radius

; 1s greater than one.

RST 28H ;; FP-CALC

DEFB 502 ;;delete ; delete the radius from stack.
DEFB 338 ;;end-calc

JR L22DC ; to PLOT to just plot x,vy.

;; C-R-GRE-1

L233B: RST 28H ;; FP-CALC ; X, YV, T
DEFB SA3 ;istk-pi/2 ; X, y, r, pi/2.
DEFB 338 ;;end-calc
LD (HL), $83 ; ; X, y, r, 2*PI
RST 28H ;; FP-CALC
DEFB SC5 ;7 st-mem-5 ; store 2*PI in mem-5
DEFB 502 ;;delete ;OX, Y, Z.
DEFB $38 ;;end-calc
CALL L247D ; routine CD-PRMS1
PUSH BC ;
RST 28H ;; FP-CALC
DEFB $31 ;;duplicate
DEFB SE1 ;;get-mem-1
DEFB $04 ;smultiply
DEFB $38 ; ;end-calc
LD A, (HL) ;
CP $80 ;
JR NC, L235A ; to C-ARC-GEL
RST 28H ;; FP-CALC
DEFB 502 ;;delete
DEFB 502 ;;delete
DEFB $38 ;;end-calc
POP BC ;
JPp L22DC ; JUMP to PLOT

;; C-ARC-GEL1

L235A: RST 28H ;; FP-CALC
DEFB $C2 ;7 st-mem-2
DEFB S01 ; ;exchange

DEFB 3CO ;7 st-mem-0

;5 DRAW
L.2382:

;; DR-3-

L238D:

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

INC
CALL
LD
PUSH
CALL
POP
LD
LD
POP
Jp

RST
CP
JR

CALL
JPp

PRMS
RST

CALL
CALL

RST

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB

DEFB
DEFB

$02
$03
$01
SEO
SOF
$co
$01
$31
SEOQ
$01
$31
SEOQ
SAO
s$c1l
$02
$38

(IY+$62)
L1E94

L,A

HL

L1E94

HL

H,A
($5C7D) , HL
BC

12420

18H
$2cC
Z,L238D

L1BEE
L2477

20H
L1C82
L1BEE

28H
$C5
SA2
$04
S1F
$31
$30
$30
$00

$06

$02
$38

’
’
’
’
’
’
’
’
’
’
’
’
’
’
’

’

’

’
’
’
’
’
’
’
’

’

’

’

’

; ;delete

;5 subtract
; ;exchange
; s get-mem-0
;;addition
; 7 st-mem-0
; ;exchange
; ;duplicate
;s get-mem-0
; ;exchange
; ;duplicate

;get-mem-0

; 7 stk-zero
;7 st-mem-1
; rdelete

;end-calc

MEM-2-1st

routine FIND-INT1

routine FIND-INT1

COORDS

to DRW-STEPS

GET-CHAR

to DR-3-PRMS

routine CHECK-END
to LINE-DRAW

NEXT-CHAR

routine EXPT-1NUM
routine CHECK-END

;; FP-CALC

; 7 st-mem-5

; ;stk-half

;y;multiply

;;sin

; ;duplicate
; ;not

;not

;5 jump-true

; ;to L23A3,

;delete

; ;end-calc

DR-SIN-NZ

JPp

;7 DR-SIN-NZ

L23A3:

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

LD
CP
JR

RST

DEFB
DEFB
DEFB

JPp

;5 DR-PRMS

L23C1:

CALL
PUSH

RST

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

L2477

$CO
$02
sc1
$02
$31
$2R
SE1
$01
SE1
$2R
SOF
SEO
$05
S2A
SEO
$01
$3D
$38

A, (HL)
$81
NC,L23C1

28H
$02
$02
$38

L2477

L247D
BC

28H
$02
SE1
$01
$05
sC1
$02
$01
$31
SE1
$04
s$c2
$02
$01
$31
SE1
$04
SE2
SE5
SEO
$03

’

’
’
’
’
’
’
’
’
’
’

’

’
’
’
’
’

’

’

’
’
’

’

’

’

’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’

’

to LINE-DRAW

; 7 st-mem-0
; ;delete

; ;st-mem-1
; sdelete

; ;duplicate

;abs

;;get—-mem-1
; ;exchange
; ;get-mem-1

;abs

; ;addition

;get-mem-0

; ;division

;abs

; 5 get-mem-0
; ;exchange
; ;re-stack
; ;end-calc

to DR-PRMS

;5 FP-CALC
; ;delete

;delete

; ;end-calc

to LINE-DRAW

routine CD-PRMS1

; ; FP-CALC
; ;delete

;s get-mem-1
; ;exchange
; ;division
;7 st-mem-1

;delete

; ;exchange
; ;duplicate
;;get-mem-1
;y;multiply
; ; st—-mem-2
; ;delete

; ;exchange
; ;duplicate
;s get-mem-1
;;multiply
;s get-mem-2
; 5 get-mem-5

;get-mem-0

; ;subtract

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

LD
CP
POP
JP

PUSH

RST
DEFB
DEFB

LD
CALL

RST

DEFB
DEFB
DEFB
DEFB

LD
CALL

RST

DEFB
DEFB
DEFB
DEFB

SA2
$04
$31
S1F
$C5
$02
$20
$CO
$02
$C2
$02
$ci1
SE5
$04
$EO
SE2
$04
SOF
SE1
$01
$ci1
$02
SEO
$04
SE2
$ES5
$04
$03
$C2
S2A
SE1
S2A
SOF
$02
$38

A, (DE)
$81

BC

C,L2477

BC

28H
$01
$38

A, ($5C7D)
L2D28

28H
$co
SOF
$01
$38

A, ($5CTE)
1.2D28

28H
$C5
SOF
SEO
SES5

’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’

’

’
’
’

’

’
’
’

’

’
’

’

’

’

’
’
’
’

’

’

’

’
’
’
’

’

; ;stk-half
;;multiply
; ;duplicate
;5 sin

; ;st-mem-5
; sdelete
;7 COS

; 7 st-mem-0
; ;delete

; 7 st-mem-2
; rdelete

; st-mem-1

; 5 get-mem-5
;smultiply
; s get-mem-0

;get-mem-2

;smultiply
; ;addition
; ;get-mem-1

;exchange

; 7 st-mem-1
; ;delete

; ;get-mem-0
;;multiply

;get-mem-2
;get-mem-5

;smultiply
; ;7 subtract

; st-mem-2

; ;abs

;get-mem-1

; ;abs

;addition

; rdelete
; rend-calc

to LINE-DRAW

; » FP-CALC
; ;exchange
; ;end-calc

COORDS-x
routine STACK-A

;; FP-CALC
; 7 st-mem-0
; ;addition

;exchange

; ;end-calc

COORDS-y
routine STACK-A

;; FP-CALC
;7 sSt-mem-5
;;addition

;get-mem-0

; ;get-mem-5

DEFB

POP

;7 DRW-STEPS

L2420:

DEC
JR

JR

; + ARC-LOOP

L2425:

RST

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

;7 ARC-START

L2439:

PUSH

RST

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

LD
CALL

RST

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

LD
CALL

RST
DEFB

$38

BC

B
Z,L245F

L2439

28H
SE1
$31
SE3
504
SE2
SE4
$04
$03
sC1
$02
SE4
$04
SE2
$E3
504
SOF
$C2
$02
$38

BC

28H
$CO
$02
SE1
$OF
$31
$38

A, ($5C7D)
1.2D28

28H
$03
SEO
SE2
$OF
$CO
$01
$EO
$38

A, (S5CTE)
L2D28

28H
$03

’

’

’

’
’

’

’
’
’
’
’
’

’

’
’
’
’
’
’
’

’

’
’
’
’
’
’

’

’

’

’

’

’
’
’
’
’

’

’

’

’

’

;end-calc

to ARC-END

to ARC-START

;; FP-CALC

;get-mem-1

; ;duplicate

;get-mem-3

;ymultiply

;get-mem-2

;5 get-mem-4
;;multiply
; ; subtract
;;st-mem-1

;delete
;get-mem-4

;smultiply
;s get-mem-2

;get-mem-3

;ymultiply
; ;addition
; 7 st-mem-2

;delete

; ;end-calc

;; FP-CALC
; 7 st-mem-0
; ;delete

; ;get-mem-1
; ;addition
; ;duplicate
; ;end-calc

COORDS-x
routine STACK-A

;5 FP-CALC
; ;subtract

;get-mem-0

;5 get-mem-2

;addition

; ; st-mem-0
; ;exchange
;5 get-mem-0

;end-calc

COORDS-y
routine STACK-A

; ; FP-CALC

;subtract

DEFB

CALL
POP
DJINZ

;; ARC-END

L245F: RST
DEFB
DEFB
DEFB
DEFB

LD
CALL

RST

DEFB
DEFB
DEFB

LD
CALL

RST
DEFB
DEFB

;; LINE-DRAW
L2477: CALL
Jp

;7 CD-PRMS1

L247D: RST
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

CALL
JR

AND
ADD
JR

;; USE-252
L.2495: LD

$38

L24B7
BC
L2425

28H
$02
$02
$01
$38

A, ($5C7D)
1.2D28

28H
$03
$01
$38

A, ($5CTE)
1L2D28

28H
$03
$38

L24B7
LOD4D

28H
$31
$28
$34
$32
$00
$01
$05
SES
$01
$05
S2A
$38

L2DD5
C,L2495

SFC

A,504
NC, L2497

A, SFC

;;end-calc
; routine DRAW-LINE

; to ARC-LOOP

;; FP-CALC
; ;delete
;;delete
; ;exchange
;;end-calc

; COORDS-x
; routine STACK-A

;; FP-CALC
;;subtract
; ;exchange
;;end-calc

; COORDS-y
; routine STACK-A

;; FP-CALC
;;subtract
;;end-calc

; routine DRAW-LINE
; to TEMPS

;; FP-CALC
;;duplicate
;7sqr

;;stk-data

; ;Exponent: $82, Bytes:

;; (+00,+00,+00)
; ;exchange
;;division

; ;get-mem-5

; ;exchange
;;division
;;abs
;;end-calc

; routine FP-TO-A
; to USE-252

; to DRAW-SAVE

1

;7 DRAW-SAVE

L2497:

PUSH
CALL

RST

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

POP
RET

;; DRAW-LINE

L24B7:

CALL
LD
CP
JR

LD
PUSH
XOR
LD
JR

;; DL-X-GE-Y

L24C4:

OR
RET

LD
LD
PUSH
LD

AF
L2D28

28H
SES
$01
$05
$31
S$1F
$c4
$02
$31
SA2
$04
S1F
s$c1
$01
$co
$02
$31
$04
$31
SOF
$A1
$03
S1B
$C3
$02
$38

BC

L2307
A, C

B
NC,L24C4

L,C
DE

A
E,A
1L24CB

N Q

D, $00

’

’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’

’

’

routine STACK-A

; ; FP-CALC
; 5 get-mem-5
; ;exchange
; ;division
; ;duplicate
;7 sin

; st-mem-4

; ;delete
; ;duplicate
; ;stk-half

;multiply

;7sin
;;st-mem-1
; ;exchange

; st-mem-0

; ;delete

; ;duplicate
;;multiply
; ;duplicate

;addition

; 7 stk-one
; ;subtract
; rnegate

; st-mem-3

; sdelete
; ;end-calc

routine STK-TO-BC

to DL-X-GE-Y

to DL-LARGER

;; DL-LARGER

L24CB: LD
LD
RRA

;; D-L-LOOP
L24CE: ADD
JR

CP
JR

;; D-L-DIAG

L24D4: SUB
LD
EXX
POP
PUSH
JR

;7 D-L-HR-VT

L24DB: LD
PUSH
EXX
POP

;; D-L-STEP
L24DF: LD
LD
ADD
LD
LD
INC
ADD
JR

JR

;; D-L-PLOT

L24EC: DEC
LD
CALL
EXX
LD
DJINZ

POP
RET

;; D-L-RANGE
L24F7: JR

7+ REPORT-Bc
L24F9: RST
DEFB

A, L
C,L24D4

H
C,L24DB

BC
BC
L24DF

C,A
DE

BC

HL, ($5C7D)

~

Qyr - w-~

=

, L24F7

Z,L24F9

C,A
L22E5

A,C
L24CE

DE

Z,L24EC

08H
SOA

’

’

to D-L-DIAG

to D-L-HR-VT

to D-L-STEP

COORDS

to D-L-RANGE

to REPORT-Bc

routine PLOT-SUB

to D-L-LOOP

to D-L-PLOT

ERROR-1

Error Report: Integer out of range

,-***********************************

;** Part 8. EXPRESSION EVALUATION **

,-***********************************

It is a this stage of the ROM that the Spectrum ceases altogether to be
just a colourful novelty. One remarkable feature is that in all previous
commands when the Spectrum is expecting a number or a string then an
expression of the same type can be substituted ad infinitum.

This is the routine that evaluates that expression.

This is what causes 2 + 2 to give the answer 4.

That is quite easy to understand. However you don't have to make it much
more complex to start a remarkable juggling act.

e.g. PRINT 2 * (VAL "2+2" + TAN 3)

In fact, provided there is enough free RAM, the Spectrum can evaluate

an expression of unlimited complexity.

Apart from a couple of minor glitches, which you can now correct, the
system is remarkably robust.

;; SCANNING
L24FB: RST 18H ; GET-CHAR
LD B, $00 ; priority marker zero is pushed on stack

; to signify end of expression when it is
; popped off again.
PUSH BC ; put in on stack.
; and proceed to consider the first character
; of the expression.

;7 S-LOOP-1
L24FF: LD C,A ; store the character while a look up is done.
LD HL, L2596 ; Address: scan-func
CALL L16DC ; routine INDEXER is called to see if it is
; part of a limited range '+', '(', 'ATTR' etc.
LD A,C ; fetch the character back
JP NC, L2684 ; jump forward to S-ALPHNUM if not in primary
; operators and functions to consider in the
; first instance a digit or a variable and
; then anything else. >>>
LD B, $00 ; but here if it was found in table so
LD C, (HL) ; fetch offset from table and make B zero.
ADD HL,BC ; add the offset to position found
JP (HL) ; and jump to the routine e.g. S-BIN

’

; making an indirect exit from there.

; PRINT """Hooray!"" he cried."
;7 S—-QUOTE-S
L250F: CALL L0074 ; routine CH-ADD+1 points to next character
; and fetches that character.
INC BC ; increase length counter.
CP $0D ; 1s it carriage return ?

; inside a quote.
JP Z,L1C8A ; Jjump back to REPORT-C if so.

; 'Nonsense in BASIC'.

CP $22 ; 1s it a quote '"' ?

JR NZ,L250F ; back to S-QUOTE-S if not for more.
CALL L0074 ; routine CH-ADD+1

CP $22 ; compare with possible adjacent quote
RET ; return. with zero set if two together.

; This subroutine is used to get two coordinate expressions for the three
; functions SCREENS$, ATTR and POINT that have two fixed parameters and
; therefore require surrounding braces.

;7 S$-2-COORD

L2522: RST 20H ; NEXT-CHAR
CP $28 ; is it the opening '(' ?
JR NZ,L252D ; forward to S-RPORT-C if not

; '"Nonsense in BASIC'.

CALL L1C79 ; routine NEXT-2NUM gets two comma-separated
; numeric expressions. Note. this could cause
; many more recursive calls to SCANNING but
; the parent function will be evaluated fully
; before rejoining the main juggling act.

RST 18H ; GET-CHAR
CP 329 ; is it the closing '")' ?

;7 S—RPORT-C
L252D: JP NZ,L1C8A ; jJump back to REPORT-C if not.
; 'Nonsense in BASIC'.

; This routine is called on a number of occasions to check if syntax is being
; checked or if the program is being run. To test the flag inline would use
; four bytes of code, but a call instruction only uses 3 bytes of code.

;7 SYNTAX-Z
L2530: BIT 7, (IY+S$01) ; test FLAGS - checking syntax only ?
RET ; return.

; This function returns the code of a bit-mapped character at screen

; position at line C, column B. It is unable to detect the mosaic characters
; which are not bit-mapped but detects the ASCII 32 - 127 range.

; The bit-mapped UDGs are ignored which is curious as it requires only a

; few extra bytes of code. As usual, anything to do with CHARS is weird.

; If no match is found a null string is returned.

; No actual check on ranges is performed - that's up to the BASIC programmer.
; No real harm can come from SCREENS (255,255) although the BASIC manual

; says that invalid values will be trapped.

; Interestingly, in the Pitman pocket guide, 1984, Vickers says that the

; range checking will be performed.

;7 S—-SCRNS-S

L2535: CALL L2307 ; routine STK-TO-BC.
LD HL, ($5C36) ; fetch address of CHARS.
LD DE, $0100 ; fetch offset to chr$ 32

ADD HL, DE ; and find start of bitmaps.
; Note. not inc h. ?°?

LD A,C ; transfer line to A.

RRCA ; multiply

RRCA ; by

RRCA ; thirty-two.

AND SEO ; and with 11100000

XOR B ; combine with column $00 - $1F

LD E,A ; to give the low byte of top line

LD A,C ; column to A range 00000000 to 00011111
AND $18 ; and with 00011000

XOR $40 ; xor with 01000000 (high byte screen start)
LD D,A ; register DE now holds start address of cell.
LD B, $60 ; there are 96 characters in ASCII set.

;7 S—-SCRN-LP

L254F: PUSH BC ; save count
PUSH DE ; save screen start address
PUSH HL ; save bitmap start
LD A, (DE) ; first byte of screen to A
XOR (HL) ; xor with corresponding character byte
JR Z,L255A ; forward to S-SC-MTCH if they match

; if inverse result would be S$FF
; 1f any other then mismatch

INC A ; set to $00 if inverse
JR NZ,L2573 ; forward to S-SCR-NXT if a mismatch
DEC A ; restore SFF

; a match has been found so seven more to test.
;; S-SC-MTCH
L255A: LD C,A ; load C with inverse mask $00 or S$FF

LD B, $07 ; count seven more bytes

;7 S—-SC-ROWS

L255D: INC D ; increment screen address.
INC HL ; increment bitmap address.
LD A, (DE) ; byte to A
XOR (HL) ; will give $00 or S$FF (inverse)
XOR C ; Xor with inverse mask
JR NZ,L2573 ; forward to S-SCR-NXT if no match.
DJINZ L255D ; back to S-SC-ROWS until all eight matched.

; continue if a match of all eight bytes was found

POP BC ; discard the

POP BC ; saved

POP BC ; pointers

LD A, $80 ; the endpoint of character set

SUB B ; subtract the counter
; to give the code 32-127

LD BC, $0001 ; make one space in workspace.

RST 30H ; BC-SPACES creates the space sliding
; the calculator stack upwards.

LD (DE) , A ; start is addressed by DE, so insert code

JR L257D ; forward to S-SCR-STO

; the jump was here if no match and more bitmaps to test.

;7 S—SCR-NXT

L2573: POP HL ; restore the last bitmap start
LD DE, $0008 ; and prepare to add 8.
ADD HL, DE ; now addresses next character bitmap.
POP DE ; restore screen address
POP BC ; and character counter in B
DJINZ L254F ; back to S-SCRN-LP if more characters.
LD C,B ; B is now zero, so BC now zero.

;7 S-SCR-STO
L257D: JP L2AB2 ; to STK-STO-$ to store the string in
; workspace or a string with zero length.
; (value of DE doesn't matter in last case)

; Note. this exit seems correct but the general-purpose routine S-STRING
; that calls this one will also stack any of its string results so this
; leads to a double storing of the result in this case.

; The instruction at L257D should just be a RET.

; credit Stephen Kelly and others, 1982.

; This function subroutine returns the attributes of a screen location -
; a numeric result.
; Again it's up to the BASIC programmer to supply valid values of line/column.

;7 S-ATTR-S

L2580: CALL L2307 ; routine STK-TO-BC fetches line to C,
; and column to B.
LD A,C ; line to A $00 - $17 (max 00010111)
RRCA ; rotate
RRCA ; bits
RRCA ; left.
LD C,A ; store in C as an intermediate value.
AND SEO ; pick up bits 11100000 (was 00011100)
XOR B ; combine with column $00 - $1F
LD L,A ; low byte now correct.
LD A,C ; bring back intermediate result from C
AND $03 ; mask to give correct third of
; screen $00 - $02
XOR $58 ; combine with base address.
LD H,A ; high byte correct.
LD A, (HL) ; pick up the colour attribute.
JP L2D28 ; forward to STACK-A to store result

; and make an indirect exit.

; This table is used by INDEXER routine to find the offsets to

; four operators and eight functions. e.g. $A8 is the token 'FN'.

; This table is used in the first instance for the first character of an

; expression or by a recursive call to SCANNING for the first character of
; any sub-expression. It eliminates functions that have no argument or

; functions that can have more than one argument and therefore require

; braces. By eliminating and dealing with these now it can later take a

; simplistic approach to all other functions and assume that they have

; one argument.

; Similarly by eliminating BIN and '.' now it is later able to assume that

rs

all numbers begin with a digit and that the presence of a number or
variable can be detected by a call to ALPHANUM.

By default all expressions are positive and the spurious '+'
now as in print +2. This should not be confused with the operator
Note. this does allow a degree of nonsense to be accepted as in
PRINT +"3 is the greatest.".

An acquired programming skill is the ability to include brackets where
they are not necessary.

A bracket at the start of a sub-expression may be spurious or necessary
to denote that the contained expression is to be evaluated as an entity.
In either case this is dealt with by recursive calls to SCANNING.

An expression that begins with a quote requires special treatment.

is eliminated
l+l

scan-func

L2596: DEFB $22, L25B3-$-1 ; $1C offset to S-QUOTE
DEFB '(', L25E8-5-1 ; S4F offset to S-BRACKET
DEFB '.', L268D-S$-1 ; SF2 offset to S-DECIMAL
DEFB '+', L25AF-S5-1 ; $12 offset to S-U-PLUS
DEFB SA8, L25F5-$-1 ; $56 offset to S-EN
DEFB SA5, L25F8-$-1 ; $57 offset to S-RND
DEFB SA7, L2627-$-1 ; $84 offset to S-PI
DEFB SA6, L2634-$-1 ; S$8F offset to S-INKEYS
DEFB $C4, L268D-$-1 ; SE6 offset to S-BIN
DEFB SAA, L2668-$-1 ; SBF offset to S-SCREENS
DEFB SAB, L2672-$-1 ; SC7 offset to S-ATTR
DEFB SA9, L267B-$-1 ; SCE offset to S-POINT
DEFB 500 ; zero end marker

These are the 11 subroutines accessed by the above table.

S-BIN and S-DECIMAL are the same

The 1l-byte offset limits their location to within 255 bytes of their
entry in the table.

; —>
;7 S-U-PLUS
L25AF: RST 20H ; NEXT-CHAR just ignore
JP L24FF ; to S-LOOP-1
;>
;7 S—-QUOTE
L25B3: RST 18H ; GET-CHAR
INC HL ; address next character (first in quotes)
PUSH HL ; save start of quoted text.
LD BC, $0000 ; initialize length of string to zero.
CALL L250F ; routine S-QUOTE-S
JR NZ,L25D9 ; forward to S-Q-PRMS if
;7 S—-Q-AGAIN
L25BE: CALL L250F ; routine S-QUOTE-S copies string until a
; quote is encountered
JR Z,L25BE ; back to S-Q-AGAIN if two quotes WERE

; but if just an isolated quote

CALL
JR

L2530
7,L25D9%

’

’

together.

then that terminates the string.

routine SYNTAX-Z
forward to S-Q-PRMS if checking syntax.

RST

POP
PUSH

; ;7 S—-Q0-COPY

L25CB: LD
INC
LD
INC
CP
JR

LD
INC
CP
JR

30H

HL
DE

A, (HL)
HL
(DE) , A
DE

$22
NZ,L25CB

A, (HL)
HL

$22
Z,L25CB

BC-SPACES creates the space for true
copy of string in workspace.
re-fetch start of quoted text.

save start in workspace.

fetch a character from source.
advance source address.

place in destination.

advance destination address.

was it a '"' just copied ?

back to S-Q-COPY to copy more if not

fetch adjacent character from source.
advance source address.

is this '"' ? - i.e. two quotes together ?
to S-Q-COPY if so including just one of the
pair of quotes.

; proceed when terminating quote encountered.

;7 S—-Q-PRMS
L25D9: DEC
POP

;7 S—-STRING

L25DB: LD
RES
BIT
CALL
Jp

; —>
;7 S—-BRACKET
L25E8: RST

CALL
CP
JP
RST
JP

; =>

;7 S-FN

L25F5: JP

;>

;7 S—-RND

L25F8: CALL
JR
LD
CALL
RST

BC
DE

HL, $5C3B
6, (HL)
7, (HL)
NZ,L2AB2
L2712

208
L24FB
$29
NZ,L1C8A

20H
L2712

L27BD

L2530
Z,L2625

BC, ($5C76)
L2D2B

28H

’

’

’

’

decrease count by 1.
restore start of string in workspace.

Address FLAGS system variable.

signal string result.

is syntax being checked.

routine STK-STO-$ is called in runtime.

jump forward to S-CONT-2 ===>
NEXT-CHAR

routine SCANNING is called recursively.
is it the closing '")' ?

jump back to REPORT-C if not

'Nonsense in BASIC'

NEXT-CHAR

jump forward to S-CONT-2 ===>

Jjump forward to S-FN-SBRN.

routine SYNTAX-Z
forward to S-RND-END if checking syntax.

fetch system variable SEED
routine STACK-BC places on calculator stack

FP-CALC ;S.

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

CALL
LD
LD
AND
JR

SUB
LD

;75 S—RND-END
L2625: JR

; the number

;>

;; S—-PI

L2627: CALL
JR
RST
DEFB
DEFB
INC

;; S—-PI-END
L2630: RST
JP

;; S-INKEYS
L2634: LD

RST
CP
Jp

PI

$A1
SOF
$34
$37

$lé
$04
$34
$80
$41
$00,500,580
$32
$02
SAl
$03
$31
$38

L2DA2
($5C76) ,BC
A, (HL)

A

Z,L2625

$10
(HL) , A

L2630

3.14159...

L2530
Z,L2630

28H
SA3
$38

(HL)

20H
L26C3

BC, $105A

20H
$23
Z,L270D

; ;stk-one
;;addition
;;stk-data

; sExponent:
;;Bytes: 1
;5 (+00,+00,+
;smultiply
;;stk-data
;;Bytes: 3

; ;Exponent $
;: (+00)

; ;n—mod-m

; ;delete

;7 stk-one
;;subtract
;;duplicate
;;end-calc

; routine FP-TO-BC

$87,

00)

91

;s, 1.
;s+1.

;s+1,75.
; (s+1)*75 =
;V.

;v,65537.

; remainder,
;remainder.
;remainder,
;remainder -
;rnd, rnd.

v

result.

1.

1.

= rnd

; store in SEED for next starting point.

; fetch exponent

; is it =zero

?

; forward if so to S-RND-END

; reduce exponent by 2716

; place back

; forward to S-PI-END

; routine SYNTAX-Z

; to S-PI-END if checking syntax.

;; FP-CALC
;stk-pi/2
;;end-calc

~e
~

; increment the exponent leaving pi
; on the calculator stack.

; NEXT-CHAR

; jJump forward to S-NUMERIC

; priority $

10,

operation code $1A
; +$40 for string result,

pi/2.

('"read-in")

numeric operand.

; set this up now in case we need to use the

; calculator
; NEXT-CHAR
;oTHEY 2

; to S-PUSH-PO if so to use the calculator

; single operation

; to read from network/RS232 etc.

; else read a key from the keyboard.

LD HL, $5C3B ; fetch FLAGS

RES 6, (HL) ; signal string result.

BIT 7, (HL) ; checking syntax ?

JR Z,L2665 ; forward to S-INKS-EN if so

CALL LO28E ; routine KEY-SCAN key in E, shift in D.
LD C,s$00 ; the length of an empty string

JR NZ, L2660 ; to S-IK$-STK to store empty string if

; no key returned.

CALL LO31E ; routine K-TEST get main code in A
JR NC, L2660 ; to S-IK$-STK to stack null string if
; invalid

DEC D ; D is expected to be FLAGS so set bit 3 S$FF
; 'L' Mode so no keywords.

LD E,A ; main key to A
; C is MODE 0 'KLC' from above still.

CALL L0333 ; routine K-DECODE

PUSH AF ; save the code

LD BC, $0001 ; make room for one character

RST 30H ; BC-SPACES

POP AF ; bring the code back

LD (DE) ,A ; put the key in workspace

LD C,S$01 ; set C length to one

;; S-IKS$-STK
L2660: LD B,S$00 ; set high byte of length to zero
CALL L2AB2 ; routine STK-STO-$

;7 S—-INKS-EN

L2665: JP L2712 ; to S-CONT-2 ===>
; —>
;7 S—-SCREENS
1L.2668: CALL L2522 ; routine S-2-COORD
CALL NZ, L2535 ; routine S-SCRNS$-S
RST 20H ; NEXT-CHAR
Jp L25DB ; forward to S-STRING to stack result
; =>
;; S-ATTR
L2672: CALL L2522 ; routine S-2-COORD
CALL Nz, L2580 ; routine S-ATTR-S
RST 20H ; NEXT-CHAR
JR L26C3 ; forward to S-NUMERIC
;>
;5 S—-POINT
L267B: CALL L2522 ; routine S-2-COORD
CALL NZ,L22CB ; routine POINT-SUB

RST 20H ; NEXT-CHAR

’

JR L26C3 ; forward to S-NUMERIC

==> The branch was here if not in table.

;5 S—-ALPHNUM
L2684: CALL L2C88 ; routine ALPHANUM checks if variable or
; a digit.
JR NC, L26DF ; forward to S-NEGATE if not to consider
; a '-' character then functions.
CP $41 ; compare 'A'
JR NC, L26C9 ; forward to S-LETTER if alpha ->

’
rr

rr

; else must have been numeric so continue
; into that routine.

This important routine is called during runtime and from LINE-SCAN
when a BASIC line is checked for syntax. It is this routine that
inserts, during syntax checking, the invisible floating point numbers
after the numeric expression. During runtime it Jjust picks these
numbers up. It also handles BIN format numbers.

->
S-BIN
S-DECIMAL

L268D: CALL L2530 ; routine SYNTAX-Z

’

’

JR NZ,L26B5 ; to S-STK-DEC in runtime

this route is taken when checking syntax.

CALL L2C9B ; routine DEC-TO-FP to evaluate number
RST 18H ; GET-CHAR to fetch HL

LD BC, $0006 ; six locations required

CALL L1655 ; routine MAKE-ROOM

INC HL ; to first new location

LD (HL) , SOE ; insert number marker

INC HL ; address next

EX DE, HL ; make DE destination.

LD HL, ($5C65) ; STKEND points to end of stack.

LD C,$05 ; result is five locations lower

AND A ; prepare for true subtraction

SBC HL, BC ; point to start of value.

LD ($5C65) , HL ; update STKEND as we are taking number.
LDIR ; Copy five bytes to program location
EX DE, HL ; transfer pointer to HL

DEC HL ; adjust

CALL L0077 ; routine TEMP-PTR1 sets CH-ADD

JR L26C3 ; to S-NUMERIC to record nature of result

branch here in runtime.

;7 S-STK-DEC
L26B5: RST 18H ; GET-CHAR positions HL at digit.
;; S—-SD-SKIP
L26B6: INC HL ; advance pointer
LD A, (HL) ; until we find
CP SOE ; chr 14d - the number indicator
JR NZ,L26B6 ; to S-SD-SKIP until a match

; 1t has to be here.

INC
CALL
LD

;7 S-NUMERIC
L26C3: SET
JR

; end of functions accessed from

; Scanning variable routines

;; S-LETTER
L26C9: CALL
Jp

CALL
LD
CP
JR

INC
CALL

;7 S-CONT-1
L26DD: JR

HL
L33B4
($5C5D) , HL

6, (IY+$01)
L26DD

L28B2
C,L1C2E

Z,L2996
A, ($5C3B)
$co
C,L26DD

HL
L33B4

point to first byte of number
routine STACK-NUM stacks it
update system variable CH ADD

update FLAGS - Signal numeric result
forward to S-CONT-1 ===>
actually S-CONT-2 is destination but why
waste a byte on a jump when a JR will do.
actually a JR L2712 can be used. Rats.

scanning functions table.

routine LOOK-VARS

Jjump back to REPORT-2 if not found
'Variable not found'

but a variable is always 'found' if syntax
is being checked.

routine STK-VAR considers a subscript/slice
fetch FLAGS value

compare 11000000

step forward to S-CONT-1 if string ===>

advance pointer
routine STACK-NUM

forward to S-CONT-2 ===>

; —> the scanning branch was here if not alphanumeric.
; All the remaining functions will be evaluated by a single call to the

; calculator.

The correct priority for the operation has to be placed in
; the B register and the operation code, calculator literal in the C register.

; the operation code has bit 7 set if result is numeric and bit 6 is

; set 1f operand is numeric.

; $CO = numeric result, numeric operand. e.g. 'sin'

; $80 = numeric result, string operand. e.g. 'code'
; $40 = string result, numeric operand. e.g. 'str$'
; $00 = string result, string operand. e.g. 'vals'

;7 S-NEGATE
L26DF: LD

CP
JR

LD

CP
JR

BC, $09DB

$2D
Z,L270D

BC,$1018

SAE
7,1270D

prepare priority 09, operation code $CO +

'negate' ($1B) - bits 6 and 7 set for numeric

result and numeric operand.

is it '-'" ?
forward if so to S-PUSH-PO

prepare priority $10, operation code 'val$'
bits 6 and 7 reset for string result and
string operand.

is it 'VALS' ?
forward if so to S-PUSH-PO

SUB

JPp

LD

CP
JR

JP

LD
ADD

LD
CP
JR

; all the rest
; and 'chrs$'.

RES

;7 S-NO-TO-$
L2707: CP
JR

RES

; >> This is where they

;; S—-PUSH-PO
L270D: PUSH

RST
JPp

; ===>

;7 S-CONT-2
L2712: RST

;7 S—-CONT-3
L2713: CP
JR

BIT
JR

'cos'

SAF

C,L1cC8A

BC, $04F0

$14

Z,L270D

NC,L1C8A

B, $10
A, $DC

c,A
$DF
NC, L2707

6,C

SEE
C,L270D

7,C

BC

20H
L24FF

18H
$28
NZ,L2723

6, (IY+$01)
NZ,L2734

through

’

subtract token 'CODE' wvalue to reduce
functions 'CODE' to 'NOT' although the
upper range is, as yet, unchecked.
valid range would be $00 - $14.

Jjump back to REPORT-C with anything else
'Nonsense in BASIC'

prepare priority $04, operation $CO +
'not' ($30)

is it 'NOT'
forward to S-PUSH-PO if so

to REPORT-C if higher
'Nonsense in BASIC'

priority $10 for all the rest
make range $DC - SEF
$CO + 'code' ($1C) thru 'chr$' (S$2F)

transfer 'function' to C

is it 'sin' ?

forward to S-NO-TO-$ with 'sin' through
'chr$' as operand is numeric.

'chr$' give a numeric result except 'str$'

signal string operand for 'code', 'val' and
'len'.

compare 'str$'
forward to S-PUSH-PO if lower as result
is numeric.

reset bit 7 of op code for 'str$', 'chr$'
as result is string.

were all headed for.

push the priority and calculator operation
code.

NEXT-CHAR
jump back to S-LOOP-1 to go round the loop
again with the next character.

there were many branches forward to here

GET-CHAR

is it "(' 2

forward to S-OPERTR if not >

test FLAGS - numeric or string result ?

forward to S-LOOP if numeric to evaluate >

; 1f a string preceded '(' then slice it.

CALL L2A52 ; routine SLICING
RST 20H ; NEXT-CHAR
JR L2713 ; back to S-CONT-3
; the branch was here when possibility of an operator ' (' has been excluded.

;7 S—-OPERTR

L2723: LD B, S$00 ; prepare to add
LD C,A ; possible operator to C
LD HL, L2795 ; Address: $2795 - tbl-of-ops
CALL L16DC ; routine INDEXER
JR NC, L2734 ; forward to S-LOOP if not in table

; but 1if found in table the priority has to be looked up.

LD C, (HL) ; operation code to C (B is still zero)
LD HL,L27B0 - $C3 ; $26ED is base of table

ADD HL, BC ; index into table.

LD B, (HL) ; priority to B.

; Scanning main loop

; the juggling act

;; S-LOOP

1L.2734: POP DE ; fetch last priority and operation
LD A,D ; priority to A
CP B ; compare with this one
JR C,L2773 ; forward to S-TIGHTER to execute the

; last operation before this one as it has
; higher priority.

; the last priority was greater or equal this one.

AND A ; 1f it is zero then so is this
JP Z,L0018 ; jump to exit via get-char pointing at
; next character.
; This may be the character after the
; expression or, if exiting a recursive call,
; the next part of the expression to be
; evaluated.

PUSH BC ; save current priority/operation
; as it has lower precedence than the one
; now in DE.

; the 'USR' function is special in that it is overloaded to give two types
; of result.

LD HL, $5C3B ; address FLAGS

LD AE ; new operation to A register
CP SED ; 1s it $CO + 'usr-no' ($2D) *?
JR Nz, L274C ; forward to S-STK-LST if not
BIT 6, (HL) ; string result expected ?

; (from the lower priority operand we've
; just pushed on stack)

JR NZ,L274C ; forward to S-STK-LST if numeric
; as operand bits match.

LD E, $99 ; reset bit 6 and substitute $19 'usr-$'
; for string operand.

;7 S—-STK-LST

L274C: PUSH DE ; now stack this priority/operation
CALL L2530 ; routine SYNTAX-Z
JR Z,L275B ; forward to S-SYNTEST if checking syntax.
LD A,E ; fetch the operation code
AND S3F ; mask off the result/operand bits to leave
; a calculator literal.
LD B,A ; transfer to B register
; now use the calculator to perform the single operation - operand is on

; the calculator stack.

; Note. although the calculator is performing a single operation most

; functions e.g. TAN are written using other functions and literals and

; these in turn are written using further strings of calculator literals so
; another level of magical recursion joins the juggling act for a while

; as the calculator too is calling itself.

RST 28H ;; FP-CALC
DEFB S3B ;i fp-calc-2
L2758: DEFB $38 ;;end-calc
JR L2764 ; forward to S-RUNTEST

; the branch was here if checking syntax only.

;7 S—-SYNTEST

L275B: LD AE ; fetch the operation code to accumulator
XOR (IY+301) ; compare with bits of FLAGS
AND $40 ; bit 6 will be zero now if operand

; matched expected result.
;7 S—-RPORT-C2
L2761: JP Nz,L1C8A ; to REPORT-C if mismatch
; 'Nonsense in BASIC'
; else continue to set flags for next

; the branch is to here in runtime after a successful operation.

;7 S-RUNTEST

L2764: POP DE ; fetch the last operation from stack
LD HL, $5C3B ; address FLAGS
SET 6, (HL) ; set default to numeric result in FLAGS
BIT 7,E ; test the operational result
JR NZ,L2770 ; forward to S-LOOPEND if numeric
RES 6, (HL) ; reset bit 6 of FLAGS to show string result.

;; S—-LOOPEND
L2770: POP BC ; fetch the previous priority/operation
JR L2734 ; back to S-LOOP to perform these

; the branch was here when a stacked priority/operator had higher priority
; than the current one.

;; S-TIGHTER

1L2773: PUSH DE ;
LD A,C ;
BIT 6, (IY+$01) ;
JR NZ, L2790 ;

; 1f this is lower priority yet ha
; Since these can only be evaluate
; numeric in operator look up they

AND $3F ;
ADD A, $08 ;
LD C,A ;
CP 510 ;
JR NZ,L2788 ;
SET 6,C ;
JR L2790 ;

;7 S—-NOT-AND

L2788: JR C,L2761 ;
CP $17 ;
JR Z,L2790 ;
SET 7,C ;

;7 S—-NEXT

L2790: PUSH BC ;
RST 20H ;
JP L24FF ;

; This table is used to look up th
; the operator character. The thir
; have bits 6 and 7 set to signify
; Some of these codes and bits may
; a string comparison or operation
; that is l_I_l, l:l, l>l, l<l, Te=1"

;; tbl-of-ops

12795: DEFB 41, SCF ;
DEFB -1, sC3 ;
DEFB Tkv . 8C4 ;
DEFB v/, $C5 ;
DEFB AT SCE ;

save high priority op on stack again
fetch lower priority operation code
test FLAGS - Numeric or string result ?
forward to S-NEXT if numeric result

s string then must be a comparison.
d in context and were defaulted to
must be changed to string equivalents.

mask to give true calculator literal
augment numeric literals to string
equivalents.

'no-&-no' => 'str-&-no'

'no-l-eql' => 'str-l-eql'

'no-gr-eq' => 'str-gr-eq'

'nos-neqgl' => 'strs-neql'
'no-grtr' => 'str-grtr'
'no-less' => 'str-less'
'nos-eqgl' => 'strs-eql'

'addition' => 'strs-add'

put modified comparison operator back
is it now 'str-&-no' ?

forward to S-NOT-AND if not.

set numeric operand bit
forward to S-NEXT

back to S-RPORT-C2 if less
'Nonsense in BASIC'.
e.g. a$ * bs

is it 'strs-add' ?
forward to S-NEXT if so
(bit 6 and 7 are reset)

set numeric (Boolean) result for all others

now save this priority/operation on stack

NEXT-CHAR
Jjump back to S-LOOP-1

e calculator literals associated with
teen calculator operations $03 - S$OF

a numeric result.

be altered later if the context suggests

, '>=" or '<>'.

SCO0 + 'addition'
SCO0 + 'subtract'
$CO + 'multiply'
SCO0 + 'division'
$CO0 + 'to-power'

DEFB '=', SCE ; SCO + 'nos-eql'

DEFB '>', SCC ; $CO0 + 'no-grtr'
DEFB '<', SCD ; SCO0 + 'no-less'
DEFB 3C7, SC9 ; '<=" $C0 + 'no-l-eql'
DEFB $C8, SCA g '>=" $CO + 'no-gr-eql'
DEFB $C9, SCB PR $CO0 + 'nos-neql'
DEFB SC5, S$C7 ; 'OR' SCO + 'or'

DEFB $Co6, $C8 ; '"AND' S$CO + 'mo-&-no'
DEFB $00 ; zero end-marker.

; Table of priorities

; This table is indexed with the operation code obtained from the above
; table $C3 - SCF to obtain the priority for the respective operation.

;; tbl-priors

L27B0: DEFB $06 AR opcode $C3
DEFB $08 HERR opcode $C4
DEFB 508 PV opcode $C5
DEFB S0A P opcode $C6
DEFB $02 ; '"OR' opcode $C7
DEFB $03 ; '"AND' opcode S$C8
DEFB $05 ; '<=' opcode $C9
DEFB $05 ; '>=' opcode $CA
DEFB $05 ; '<>'" opcode SCB
DEFB 505 ;> opcode S$CC
DEFB $05 ;o< opcode $CD
DEFB $05 ;=" opcode S$CE
DEFB 506 PR opcode SCF

; This routine deals with user-defined functions.

; The definition can be anywhere in the program area but these are best

; placed near the start of the program as we shall see.

; The evaluation process is quite complex as the Spectrum has to parse two
; statements at the same time. Syntax of both has been checked previously
; and hidden locations have been created immediately after each argument

; of the DEF FN statement. Each of the arguments of the FN function is

; evaluated by SCANNING and placed in the hidden locations. Then the

; expression to the right of the DEF FN '=' is evaluated by SCANNING and for
; any variables encountered, a search is made in the DEF FN variable list
; 1n the program area before searching in the normal variables area.

; Recursion is not allowed: i.e. the definition of a function should not use

; the same function, either directly or indirectly (through another function).
; You'll normally get error 4, ('Out of memory'), although sometimes the system
; will crash. - Vickers, Pitman 1984.

; As the definition is just an expression, there would seem to be no means

; of breaking out of such recursion.

; However, by the clever use of string expressions and VAL, such recursion is
; possible.

; e.g. DEF FN a(n) = VAL "n+FN a(n-1)+0" ((n<l) * 10 + 1 TO)

; will evaluate the full ll-character expression for all values where n is

; greater than zero but just the 11th character, "0", when n drops to zero

; thereby ending the recursion producing the correct result.

; Recursive string functions are possible using VALS instead of VAL and the

; null string as the final addend.

; — from a turn of the century newsgroup discussion initiated by Mike Wynne.

;7 S—-FN-SBRN
L27BD: CALL
JR

RST
CALL
Jp

RST
CP
PUSH
JR

RST

;7 SEF-BRKT-1
L27D0: CP
JR

RST
CP
JR

;; SEF-ARGMTS
L27D9: CALL

RST
CP
JR

RST
JR

;7 SEF-BRKT-2
L27E4: CP

;7 SEF-RPRT-C
L27E6: JP

; at this point

;7 SF-FLAG-6

L27E9: RST
LD
RES
POP
JR

SET

;7 SF-SYN-EN

L2530
NZ,L27F7

208
L2C8D
NC,L1C8A

208

524

AF
NZ,L27D0

20H

$28
NZ,L27E6

208
$29
Z2,L27E9

L24FB

18H
s2C
NZ,L27E4

20H

L27D9

$29

NZ,L1C8A

’

’

routine SYNTAX-7Z
forward to SF-RUN in runtime

NEXT-CHAR

routine ALPHA check for letters A-7Z a-z
Jjump back to REPORT-C if not

'Nonsense in BASIC'

NEXT-CHAR

is it '$' ?

save character and flags

forward to SF-BRKT-1 with numeric function

NEXT-CHAR

is "(' 7
forward to SF-RPRT-C if not
'Nonsense in BASIC'

NEXT-CHAR
is it ")' 2
forward to SF-FLAG-6 if no arguments.

routine SCANNING checks each argument
which may be an expression.
GET-CHAR

is it a ',"' ?
forward if not to SF-BRKT-2 to test bracket

NEXT-CHAR 1f a comma was found

back to SF-ARGMTS to parse all arguments.

is character the closing '")' ?

jump to REPORT-C
'Nonsense in BASIC'

any optional arguments have had their syntax checked.

208

HL, $5C3B
6, (HL)
AF
Z,L27F4

6, (HL)

NEXT-CHAR

address system variable FLAGS

signal string result

restore test against 'S$'.

forward to SF-SYN-EN if string function.

signal numeric result

L27F4: JP L2712 ; Jjump back to S-CONT-2 to continue scanning.

; the branch was here in runtime.

;7 SEF-RUN
L27F7: RST 20H ; NEXT-CHAR fetches name
AND SDF ; AND 11101111 - reset bit 5 - upper-case.
LD B,A ; save in B
RST 20H ; NEXT-CHAR
SUB $24 ; subtract 'S'
LD C,A ; save result in C
JR NZ,L2802 ; forward if not '$' to SF-ARGMT1
RST 20H ; NEXT-CHAR advances to bracket
;; SF-ARGMT1
1L.2802: RST 20H ; NEXT-CHAR advances to start of argument
PUSH HL ; save address
LD HL, ($5C53) ; fetch start of program area from PROG
DEC HL ; the search starting point is the previous
; location.
;; SEF-FND-DF
1L2808: LD DE, SO0CE ; search is for token 'DEF FN' in E,
; statement count in D.
PUSH BC ; save C the string test, and B the letter.
CALL L1D86 ; routine LOOK-PROG will search for token.
POP BC ; restore BC.
JR NC, L2814 ; forward to SF-CP-DEF if a match was found.
;; REPORT-P
1L.2812: RST 08H ; ERROR-1
DEFB $18 ; Error Report: FN without DEF
;; SF-CP-DEF
1L.2814: PUSH HL ; save address of DEF FN
CALL L28AB ; routine FN-SKPOVR skips over white-space etc.
; without disturbing CH-ADD.
AND SDF ; make fetched character upper-case.
CP B ; compare with FN name
JR Nz,L2825 ; forward to SF-NOT-FD if no match.

; the letters match so test the type.

CALL L28AB ; routine FN-SKPOVR skips white-space

SUB $24 ; subtract '$' from fetched character

CPp C ; compare with saved result of same operation
; on FN name.

JR Z,L2831 ; forward to SF-VALUES with a match.

; the letters matched but one was string and the other numeric.

;7 SF-NOT-FD
L2825: POP HL ; restore search point.
DEC HL ; make location before
LD DE, $0200 ; the search is to be for the end of the
; current definition - 2 statements forward.
PUSH BC ; save the letter/type
CALL L198B ; routine EACH-STMT steps past rejected

; definition.

’

’

rr

POP
JR

Success!

BC
L2808

the branch was here with

SEF-VALUES

L2831: AND

rs

CALL

POP
POP
LD

CALL
PUSH
CP
JR

SEF-ARG-LP

L2843: INC

rr

LD
CP
LD
JR

DEC
CALL
INC
LD

SF-ARG-VL

L2852: INC

PUSH
PUSH

CALL

POP

XOR
AND
JR

POP
EX

LD
LD
SBC
LD

LDIR
EX
DEC
CALL
CP

A
Z,L28AB

DE
DE
($5C5D) , DE

L28AB
HL

$29
Z,L2885

HL
A, (HL)
SOE

D, $40
Z,L12852

HL
L28AB
HL

D, $00

HL
HL
DE

L24FB

AF

(IY+S01)
$40
NZ,L288B

HL
DE, HL

HL, ($5C65)
BC, $0005
HL, BC
($5C65) , HL

DE, HL
HL
L28AB
$29

restore letter/type
back to SF-FND-DF to continue search

matching letter and numeric/string type.

test A (will be zero if string '$' - 'S$')
routine FN-SKPOVR advances HL past '$'.

discard pointer to 'DEF FN'.
restore pointer to first FN argument.
save in CH_ADD

routine FN-SKPOVR advances HL past '('
save start address in DEF FN ***

is character a '")' ?

forward to SF-R-BR-2 if no arguments.

point to next character.

fetch it.

is it the number marker

signal numeric in D.

forward to SF-ARG-VL if numeric.

back to letter

routine FN-SKPOVR skips any white-space
advance past the expected '$' to

the 'hidden' marker.

signal string.

now address first of 5-byte location.
save address in DEF FN statement
save D - result type

routine SCANNING evaluates expression in
the FN statement setting FLAGS and leaving
result as last value on calculator stack.

restore saved result type to A

xor with FLAGS

and with 01000000 to test bit 6
forward to REPORT-Q if type mismatch.
'Parameter error'

pop the start address in DEF FN statement
transfer to DE ?? pop straight into de ?

set HL to STKEND location after value
five bytes to move

decrease HL by 5 to point to start.

set STKEND 'removing' value from stack.

copy value into DEF FN statement

set HL to location after value in DEF FN
step back one

routine FN-SKPOVR gets next valid character
is it '")' end of arguments ?

JR Z,L2885 ; forward to SF-R-BR-2 if so.

; a comma separator has been encountered in the DEF FN argument list.

PUSH HL ; save position in DEF FN statement
RST 18H ; GET-CHAR from FN statement

CP $2C ; is it ', ' 2

JR NZ,L288B ; forward to REPORT-Q if not

; 'Parameter error'

RST 20H ; NEXT-CHAR in FN statement advances to next
; argument.

POP HL ; restore DEF FN pointer

CALL L28AB ; routine FN-SKPOVR advances to corresponding
; argument.

JR 12843 ; back to SF-ARG-LP looping until all

; arguments are passed into the DEF FN
; hidden locations.

; the branch was here when all arguments passed.

;7 SF-R-BR-2

1L.2885: PUSH HL ; save location of '")' in DEF FN
RST 18H ; GET-CHAR gets next character in FN
CP $29 ; is it a '")!' also ?
JR Z,L288D ; forward to SF-VALUE if so.

;; REPORT-Q

L.288B: RST 08H ; ERROR-1
DEFB $19 ; Error Report: Parameter error

;; SF-VALUE

1.288D: POP DE ; location of ')' in DEF FN to DE.
EX DE, HL ; now to HL, FN ')' pointer to DE.
LD ($5C5D) , HL ; initialize CH ADD to this value.

; At this point the start of the DEF FN argument list is on the machine stack.
; We also have to consider that this defined function may form part of the

; definition of another defined function (though not itself).

; As this defined function may be part of a hierarchy of defined functions

; currently being evaluated by recursive calls to SCANNING, then we have to

; preserve the original value of DEFADD and not assume that it is zero.

LD HL, ($5COB) ; get original DEFADD address
EX (SP) ,HL ; swap with DEF FN address on stack **x*
LD ($5CO0B) , HL ; set DEFADD to point to this argument list

; during scanning.

PUSH DE ; save FN ')' pointer.

RST 20H ; NEXT-CHAR advances past ')' in define

RST 20H ; NEXT-CHAR advances past '=' to expression
CALL L24FB ; routine SCANNING evaluates but searches

; initially for variables at DEFADD

POP HL ;
LD ($5C5D) , HL ;
POP HL ;
LD ($5C0B) , HL ;
RST 20H ;
Jp L2712 ;

; e.g. DEF FN s $ (x) =

pop the FN ')' pointer

set CH_ADD to this

pop the original DEFADD value

and re-insert into DEFADD system variable.

NEXT-CHAR advances to character after ')'

to S-CONT-2 - to continue current
invocation of scanning

b $ (TO x) : REM exaggerated

; This routine is used 10 times to advance along a DEF FN statement

; skipping spaces and colour control codes. It is similar to NEXT-CHAR

; which is, at the same time, used to skip along the corresponding FN function
; except the latter has to deal with AT and TAB characters in string

; expressions. These cannot occur
; simpler as both colour controls

;; EFN-SKPOVR

L28AB: INC HL ;
LD A, (HL) ;
CP $21 ;
JR C,L28AB ;
RET ;

;7 LOOK-VARS

L28B2: SET 6, (IY+$01) ;
RST 18H ;
CALL L2C8D ;
Jp NC, L1C8A ;
PUSH HL ;
AND S1F ;
LD C,A ;
RST 20H ;
PUSH HL ;
CP 528 ;
JR Z,L28EF ;
SET 6,C ;
CP $24 ;
JR Z,L28DE ;
SET 5,C ;
CALL 1L.2C88 ;
JR NC, L28E3 ;

in a program area so this routine is
and their parameters are less than space.

increase pointer

fetch addressed character
compare with space + 1
back to FN-SKPOVR if less

return pointing to a valid character.

update FLAGS - presume numeric result

GET-CHAR

routine ALPHA tests for A-Za-z
Jjump to REPORT-C if not.
'Nonsense in BASIC'

save pointer to first letter ~1
mask lower bits, 1 - 26 decimal 000xxxxxX
store in C.

NEXT-CHAR
save pointer to second character ~2
is it '"(' - an array °?

forward to V-RUN/SYN if so.

set 6 signaling string if solitary 010
is character a '$' ?
forward to V-STR-VAR

signal numeric 011
routine ALPHANUM sets carry if second
character is alphanumeric.

forward to V-TEST-FN if just one character

; It is more than one character but re-test current character so that 6 reset
; This loop renders the similar loop at V-PASS redundant.

;; V-CHAR

1L.28D4: CALL L.2C88 ; routine ALPHANUM
JR NC, L28EF ; to V-RUN/SYN when no more
RES 6,C ; make long named type 001
RST 20H ; NEXT-CHAR
JR L28D4 ; loop back to V-CHAR

;7 V-STR-VAR
L28DE: RST 20H ; NEXT-CHAR advances past '$'
RES 6, (IY+$01) ; update FLAGS - signal string result.

;; V-TEST-FN

L28E3: LD A, ($5C0C) ; load A with DEFADD hi
AND A ; and test for zero.
JR Z,L28EF ; forward to V-RUN/SYN if a defined function

; 1s not being evaluated.
; Note.
CALL L2530 ; routine SYNTAX-Z
JP NZ,L2951 ; JUMP to STK-F-ARG in runtime and then

; back to this point if no variable found.

;; V-RUN/SYN

L28EF: LD B,C ; save flags in B
CALL L2530 ; routine SYNTAX-Z
JR NZ,L28FD ; to V-RUN to look for the variable in runtime

; 1f checking syntax the letter is not returned

LD A,C ; copy letter/flags to A

AND SEO ; and with 11100000 to get rid of the letter
SET 7,A ; use spare bit to signal checking syntax.
LD C,A ; and transfer to C.

JR 12934 ; forward to V-SYNTAX

; but in runtime search for the variable.

;+ V-RUN
L28FD: LD HL, ($5C4B) ; set HL to start of variables from VARS
;; V-EACH
L2900: LD A, (HL) ; get first character
AND STF ; and with 01111111
; ignoring bit 7 which distinguishes
; arrays or for/next variables.
JR Z,L2932 ; to V-80-BYTE if zero as must be 10000000
; the variables end-marker.
CP C ; compare with supplied value.
JR NZ,L292A ; forward to V-NEXT if no match.
RLA ; destructively test
ADD A, A ; bits 5 and 6 of A

; Jumping if bit 5 reset or 6 set

JPp

JR

; leaving long name variables.

POP
PUSH
PUSH

;; V-MATCHES
L2912: INC

;; V-SPACES
L2913: LD
INC
CP
JR

OR
CP
JR

OR

CP
JR

P,L293F

C,L293F

DE
DE
HL

HL

A, (DE)

DE
$20
Z,L2913

$20
(HL)
Z,L2912

$80

(HL)

NZ,L2929

to V-FOUND-2 strings and arrays

to V-FOUND-2 simple and for next

pop pointer to 2nd. char
save it again
save variable first character pointer

address next character in vars area

pick up letter from prog area
and advance address

is it a space

back to V-SPACES until non-space

convert to range 1 - 26.

compare with addressed variables character
loop back to V-MATCHES if a match on an
intermediate letter.

now set bit 7 as last character of long
names are inverted.

compare again

forward to V-GET-PTR if no match

; but 1if they match check that this is also last letter in prog area

LD
CALL
JR

;; V-GET-PTR
L2929: POP

;5 V-NEXT

L292A: PUSH
CALL
EX
POP
JR

;; V-80-BYTE
L2932: SET

A, (DE)

L2C88

NC, L293E

HL

BC

11988
DE, HL

BC

L2900

7,B

fetch next character
routine ALPHANUM sets carry if not alphanum
forward to V-FOUND-1 with a full match.

pop saved pointer to char 1

save flags

routine NEXT-ONE gets next variable in DE
transfer to HL.

restore the flags

loop back to V-EACH

to compare each variable

will signal not found

; the branch was here when checking syntax

;7 V-SYNTAX
L2934: POP

RST
CP
JR

SET
JR

DE

18H
$28
Z,L2943

5,B
L294B

discard the pointer to 2nd. character v2
in BASIC line/workspace.

GET-CHAR gets character after variable name.
is it "(' ?

forward to V-PASS

Note. could go straight to V-END °?

signal not an array
forward to V-END

’

’

rs

the jump was here when a long name matched and HL pointing to last character
in variables area.

V-FOUND-1

L293E: POP DE ; discard pointer to first var letter

’

the jump was here with all other matches HL points to first wvar char.

;7 V-FOUND-2

L293F: POP DE ; discard pointer to 2nd prog char v2
POP DE ; drop pointer to lst prog char vl
PUSH HL ; save pointer to last char in vars
RST 18H ; GET-CHAR

;; V-PASS

L2943: CALL L2C88 ; routine ALPHANUM
JR NC, L294B ; forward to V-END if not

’

but it never will be as we advanced past long-named variables earlier.

RST 20H ; NEXT-CHAR
JR L2943 ; back to V-PASS
;+ V-END
1L294B: POP HL ; pop the pointer to first character in
; BASIC line/workspace.
RL B ; rotate the B register left
; bit 7 to carry
BIT 6,B ; test the array indicator bit.
RET ; return

This branch is taken from LOOK-VARS when a defined function is currently
being evaluated.

Scanning is evaluating the expression after the '=' and the variable
found could be in the argument list to the left of the '=' or in the
normal place after the program. Preference will be given to the former.
The variable name to be matched is in C.

;; STK-F-ARG
L2951: LD HL, ($5CO0B) ; set HL to DEFADD
LD A, (HL) ; load the first character
CP $29 ; is it ") ' 2
JP Z,L28EF ; JUMP back to V-RUN/SYN, if so, as there are

’

; no arguments.

but proceed to search argument list of defined function first if not empty.

;; SFA-LOOP
L295A: LD A, (HL) ; fetch character again.
OR $60 ; or with 01100000 presume a simple variable.
LD B,A ; save result in B.
INC HL ; address next location.
LD A, (HL) ; pick up byte.
CP SOE ; is 1t the number marker ?

JR Z,L296B ; forward to SFA-CP-VR if so.

’

it was a string. White-space may be present but syntax has been checked.

DEC HL ; point back to letter.
CALL L28AB ; routine FN-SKPOVR skips to the 'S$S'
INC HL ; now address the hidden marker.
RES 5,B ; signal a string variable.
;7 SFA-CP-VR
L296B: LD A,B ; transfer found variable letter to A.
CP C ; compare with expected.
JR Z,L2981 ; forward to SFA-MATCH with a match.
INC HL ; sStep
INC HL ; past
INC HL ; the
INC HL ; five
INC HL ; bytes.
CALL L28AB ; routine FN-SKPOVR skips to next character
CP $29 ; is it ") ' 2
Jp Z,L28EF ; jump back if so to V-RUN/SYN to look in

; normal variables area.

CALL L28AB ; routine FN-SKPOVR skips past the ','
; all syntax has been checked and these
; things can be taken as read.

JR L295A ; back to SFA-LOOP while there are more
; arguments.

;7 SFA-MATCH
L2981: BIT 5,C ; test if numeric
JR NZ,L2991 ; to SFA-END if so as will be stacked
; by scanning
INC HL ; point to start of string descriptor
LD DE, ($5C65) ; set DE to STKEND
CALL L33CO0 ; routine MOVE-FP puts parameters on stack.
EX DE, HL ; new free location to HL.
LD ($5C65) ,HL ; use 1t to set STKEND system variable.
;7 SFA-END
1L2991: POP DE ; discard
POP DE ; pointers.
XOR A ; clear carry flag.
INC A ; and zero flag.
RET ; return.

This is called to evaluate a complex structure that has been found, in
runtime, by LOOK-VARS in the variables area.

In this case HL points to the initial letter, bits 7-5

of which indicate the type of variable.

010 - simple string, 110 - string array, 100 - array of numbers.

It is called from CLASS-01 when assigning to a string or array including
a slice.

It is called from SCANNING to isolate the required part of the structure.

An important part of the runtime process is to check that the number of

dimensions of the variable match the number of subscripts supplied in the
BASIC line.

If checking syntax,

the B register, which counts dimensions is set to zero (256) to allow

the loop to continue till all subscripts are checked. While doing this it
is reading dimension sizes from some arbitrary area of memory. Although
these are meaningless it is of no concern as the limit is never checked by
int-exp during syntax checking.

The routine is also called from the syntax path of DIM command to check the
syntax of both string and numeric arrays definitions except that bit 6 of C
is reset so both are checked as numeric arrays. This ruse avoids a terminal
slice being accepted as part of the DIM command.

All that is being checked is that there are a valid set of comma-separated
expressions before a terminal ')', although, as above, it will still go
through the motions of checking dummy dimension sizes.

;; STK-VAR

L2996: XOR A ; clear A
LD B,A ; and B, the syntax dimension counter (256)
BIT 7,C ; checking syntax ?
JR NZ,L29E7 ; forward to SV-COUNT if so.

’

runtime evaluation.

BIT 7, (HL) ; will be reset if a simple string.
JR NZ, L29AE ; forward to SV-ARRAYS otherwise
INC A ; set A to 1, simple string.
;; SV-SIMPLES
L29A1: INC HL ; address length low
LD C, (HL) ; place in C
INC HL ; address length high
LD B, (HL) ; place in B
INC HL ; address start of string
EX DE, HL ; DE = start now.
CALL L2AB2 ; routine STK-STO-$ stacks string parameters

’

’

; DE start in variables area,
; BC length, A=1 simple string

the only thing now is to consider if a slice is required.

RST 18H ; GET-CHAR puts character at CH ADD in A
JP L2A49 ; jump forward to SV-SLICE? to test for '('

the branch was here with string and numeric arrays in runtime.

;+ SV-ARRAYS
L29AE: INC HL ; step past
INC HL ; the total length
INC HL ; to address Number of dimensions.
LD B, (HL) ; transfer to B overwriting zero.
BIT 6,C ; a numeric array °?
JR Z,L29CO0 ; forward to SV-PTR with numeric arrays
DEC B ; l1gnore the final element of a string array
; the fixed string size.
JR Z,L29A1 ; back to SV-SIMPLES if result is zero as has

; been created with DIM a$(10) for instance

; and can be treated as a simple string.

; proceed with multi-dimensioned string arrays in runtime.

EX DE, HL ; save pointer to dimensions in DE
RST 18H ; GET-CHAR looks at the BASIC line
CP $28 ; 1s character ' (' ?
JR NZ,L2A20 ; to REPORT-3 if not

; 'Subscript wrong'

EX DE, HL ; dimensions pointer to HL to synchronize
; with next instruction.

; runtime numeric arrays path rejoins here.

;5 SV-PTR
L29C0: EX DE, HL ; save dimension pointer in DE
JR L29E7 ; forward to SV-COUNT with true no of dims

; in B. As there is no initial comma the
; loop is entered at the midpoint.

; the dimension counting loop which is entered at mid-point.

;7 SV-COMMA

L29C3: PUSH HL ; save counter
RST 18H ; GET-CHAR
POP HL ; pop counter
CP S2C ; 1s character ',' ?
JR Z,L29EA ; forward to SV-LOOP if so

; in runtime the variable definition indicates a comma should appear here
BIT 7,C ; checking syntax ?
JR Z,L2A20 ; forward to REPORT-3 if not
; 'Subscript error'

; proceed if checking syntax of an array?

BIT 6,C ; array of strings
JR NZ,L29D8 ; forward to SV-CLOSE if so

; an array of numbers.
CP $29 ; 1s character '")' ?
JR NZ,L2A12 ; forward to SV-RPT-C if not

; 'Nonsense in BASIC'

RST 20H ; NEXT-CHAR moves CH-ADD past the statement
RET ; return ->

; the branch was here with an array of strings.

;7 SV-CLOSE

L29D8: CP $29 ; as above ')' could follow the expression
JR Z,L2A48 ; forward to SV-DIM if so
CP sCC ; is it 'TO' ?

JR NZ,L2A12 ; to SV-RPT-C with anything else

’

'Nonsense in BASIC'

; now backtrack CH ADD to set up for slicing routine.
; Note. in a BASIC line we can safely backtrack to a colour parameter.

;7 SV-CH-ADD

L29E0: RST
DEC
LD
JR

; —> the mid-point entry point of

;; SV-COUNT
L29E7: LD

;7 SV-LOOP
L29EA: PUSH

RST

POP
LD
CP

JR

18H
HL

($5C5D) , HL

L2A45

HL, $0000

HL

20H

HL
A,C
$CO

NZ,L29FB

GET-CHAR

backtrack HL

to set CH ADD up for slicing routine
forward to SV-SLICE and make a return
when all slicing complete.

initialize data pointer to =zero.

save the data pointer.

NEXT-CHAR in BASIC area points to an
expression.

restore the data pointer.

transfer name/type to A.

is it 11000000 2

Note. the letter component is absent if
syntax checking.

forward to SV-MULT if not an array of
strings.

; proceed to check string arrays during syntax.

RST
CP
JR

CP
JR

; 1f neither,

;; SV-MULT

L29FB: PUSH
PUSH
CALL

EX
EX

CALL

JR

DEC

CALL

ADD

18H
$29
Z,L2A48

scc
Z,L29EQ

’

GET-CHAR
'Y' end of subscripts ?
forward to SV-DIM to consider further slice

is it 'TO' ?
back to SV-CH-ADD to consider a slice.
(no need to repeat get-char at L29EOQ)

then an expression is required so rejoin runtime loop ?°?
; registers HL and DE only point to somewhere meaningful in runtime so
; comments apply to that situation.

BC
HL

L2AEE

(SP), HL
DE, HL

L2ACC
C,L2A20
BC
L2AF4

HL, BC

save dimension number.

push data pointer/rubbish.

DE points to current dimension.

routine DE, (DE+1) gets next dimension in DE
and HL points to it.

dim pointer to stack, data pointer to HL (*)
data pointer to DE, dim size to HL.

routine INT-EXP1l checks integer expression
and gets result in BC in runtime.

to REPORT-3 if > HL

'Subscript out of range'

adjust returned result from 1-x to 0-x
routine GET-HL*DE multiplies data pointer by
dimension size.

add the integer returned by expression.

* kK

POP

POP
DJINZ

BIT

;7 SV-RPT-C

L2Al12:

JR

DE

BC
L29C3

NZ,L2A7A

’

pop the dimension pointer.

pop dimension counter.

back to SV-COMMA if more dimensions

Note. during syntax checking, unless there
are more than 256 subscripts, the branch
back to SV-COMMA is always taken.

are we checking syntax ?
then we've got a joker here.

forward to SL-RPT-C if so
'Nonsense in BASIC'
more than 256 subscripts in BASIC line.

; but in runtime the number of subscripts are at least the same as dims

PUSH
BIT
JR

HL
6,C
NZ,L2A2C

’
’

’

save data pointer.
is it a string array ?
forward to SV-ELEMS$ if so.

; a runtime numeric array subscript.

LD B,D ; register DE has advanced past all dimensions
LD C,E ; and points to start of data in variable.
; transfer it to BC.
RST 18H ; GET-CHAR checks BASIC line
CP 329 ; must be a '")' ?
JR Z,L2A22 ; skip to SV-NUMBER if so

; else more subscripts in BASIC line than the variable definition.
;5 REPORT-3
L2A20: RST 08H ; ERROR-1

DEFB $02 ; Error Report: Subscript wrong

; continue if subscripts matched the numeric array.

;; SV-NUMBER

L2A22: RST 20H ; NEXT-CHAR moves CH ADD to next statement

; — finished parsing.

POP HL ; pop the data pointer.

LD DE, $0005 ; each numeric element is 5 bytes.

CALL L2AF4 ; routine GET-HL*DE multiplies.

ADD HL, BC ; now add to start of data in the variable.

RET ; return with HL pointing at the numeric
; array subscript. ->

; the branch was here for string subscripts when the number of subscripts
; in the BASIC line was one less than in variable definition.

;; SV-ELEMS

L2A2C: CALL L2AEE ; routine DE, (DE+1l) gets final dimension
; the length of strings in this array.
EX (SP),HL ; start pointer to stack, data pointer to HL.
CALL L2AF4 ; routine GET-HL*DE multiplies by element
; size.

POP BC ; the start of data pointer is added

ADD HL, BC ; in - now points to location before.

INC HL ; point to start of required string.

LD B,D ; transfer the length (final dimension size)

LD C,E ; from DE to BC.

EX DE, HL ; put start in DE.

CALL L2AB1 ; routine STK-ST-0 stores the string parameters
; with A=0 - a slice or subscript.

; now check that there were no more subscripts in the BASIC line.

RST 18H ; GET-CHAR
CP $29 ; is it ") ' 2
JR Z,L2A48 ; forward to SV-DIM to consider a separate

; subscript or/and a slice.

CP $2¢C ; a comma is allowed if the final subscript
; is to be sliced e.g. a$(2,3,4 TO 6).
JR NZ,L2A20 ; to REPORT-3 with anything else

; 'Subscript error'

;7 SV-SLICE
L2A45: CALL L2A52 ; routine SLICING slices the string.

; but a slice of a simple string can itself be sliced.

;; SV-DIM
L2A48: RST 20H ; NEXT-CHAR

;; SV-SLICE?

L22A49: CP 328 ; 1s character '(' ?
JR Z,L2A45 ; loop back if so to SV-SLICE
RES 6, (IY+$01) ; update FLAGS - Signal string result
RET ; and return.

; The above section deals with the flexible syntax allowed.

; DIM a$(3,3,10) can be considered as two dimensional array of ten-character
; strings or a 3-dimensional array of characters.

; a$(l,1) will return a l0-character string as will a$(1,1,1 TO 10)

; a$(l,1,1) will return a single character.

; a$(l,1) (1 TO 6) 1is the same as a$(l,1,1 TO 6)

; A slice can itself be sliced ad infinitum

;bSO O O O (O (O (2 TO 10) (2 TO 9) (3) is the same as b$(5)

; The syntax of string slicing is very natural and it is as well to reflect
; on the permutations possible.

; a$() and a$(TO) indicate the entire string although just a$ would do
; and would avoid coming here.

; h$(16) indicates the single character at position 16.

; a$(TO 32) indicates the first 32 characters.

; a$(257 TO) indicates all except the first 256 characters.

; a$ (19000 TO 19999) indicates the thousand characters at position 19000.
; Also a$(9 TO 5) returns a null string not an error.

; This enables a$(2 TO) to return a null string if the passed string is

; of length zero or 1.

; A string expression in brackets can be sliced. e.g. (STRS PI) (3 TO)

; We arrived here from SCANNING with CH-ADD pointing to the initial '('

; or from above.
;; SLICING

L2A52: CALL
CALL

RST
CP
JR
PUSH

XOR
PUSH

PUSH
LD

RST
POP
CP
JR
POP
CALL
PUSH
LD
LD
PUSH
RST
POP
CP
JR
CP
;7 SL-RPT-C

L2A7A: JP

LD
LD
JR

;; SL-SECOND
L2A81: PUSH

RST

POP

CP
JR

L2530
NZ,L2BF1

20H
$29
7, L2AAD
DE

A
AF

BC
DE, $0001

18H

HL

scc
Z,L2A81
AF

L2ACD

18H

Scc
Z,L2A81

$29

NZ,L1C8A

H,D
L,E
L2A94

HL
20H
HL

$29
7,L2A94

routine SYNTAX-Z

routine STK-FETCH fetches parameters of
string at runtime, start in DE, length

in BC. This could be an array subscript.
NEXT-CHAR

is it ")' ? e.g. as()

forward to SL-STORE to store entire string.

else save start address of string

clear accumulator to use as a running flag.
and save on stack before any branching.

save length of string to be sliced.
default the start point to position 1.

GET-CHAR

pop length to HL as default end point
and limit.

is it 'TO' ? e.g. as$(TO 10000)
to SL-SECOND to evaluate second parameter.

pop the running flag.

routine INT-EXP2 fetches first parameter.
save flag (will be S$FF if parameter>limit)
transfer the start

to DE overwriting 0001.

save original length.

GET-CHAR

pop the limit length.

is it 'TO' after a start 2

to SL-SECOND to evaluate second parameter
is it ")' ? e.g. as$(365)

Jjump to REPORT-C with anything else
'Nonsense in BASIC'

copy start

to end - just a one character slice.
forward to SL-DEFINE.

save limit length.
NEXT-CHAR
pop the length.

is character '")' ? e.g. as$(7 TO)
to SL-DEFINE using length as end point.

POP AF ; else restore flag.

CALL L2ACD ; routine INT-EXP2 gets second expression.
PUSH AF ; save the running flag.

RST 18H ; GET-CHAR

LD H,B ; transfer second parameter

LD L,C ; to HL. e.g. as$ (42 to 99)

CP $29 ; 1s character a '")' ?

JR NZ,L2ATA ; to SL-RPT-C if not

; '"Nonsense in BASIC'

; we now have start in DE and an end in HL.

;; SL-DEFINE

L2A%4: POP AF ; pop the running flag.
EX (SP) , HL ; put end point on stack, start address to HL
ADD HL, DE ; add address of string to the start point.
DEC HL ; point to first character of slice.
EX (SP) , HL ; start address to stack, end point to HL (¥*)
AND A ; prepare to subtract.
SBC HL, DE ; subtract start point from end point.
LD BC, $0000 ; default the length result to zero.
JR C,L2AAS8 ; forward to SL-OVER if start > end.
INC HL ; increment the length for inclusive byte.
AND A ; now test the running flag.
JP M, L2A20 ; jump back to REPORT-3 if S$FF.

; 'Subscript out of range'

LD B,H ; transfer the length
LD C,L ; to BC.
;7 SL-OVER
L2AA8: POP DE ; restore start address from machine stack ***
RES 6, (IY+$01) ; update FLAGS - signal string result for
; syntax.
;7 SL-STORE
L2AAD: CALL L2530 ; routine SYNTAX-Z (UNSTACK-Z?)
RET 7 ; return if checking syntax.

; but continue to store the string in runtime.

; other than from above, this routine is called from STK-VAR to stack
; a known string array element.

;7 STK-ST-0
L2AB1: XOR A ; clear to signal a sliced string or element.

; this routine is called from chr$, scrn$ etc. to store a simple string result.

;7 STK-STO-$
L2AB2: RES 6, (IY+$01) ; update FLAGS - signal string result.
; and continue to store parameters of string.

; Pass five registers to calculator stack

’

This subroutine puts five registers on the calculator stack.

;+ STK-STORE
L2AB6: PUSH BC ; save two registers
CALL L33A9 ; routine TEST-5-SP checks room and puts 5
; in BC.
POP BC ; fetch the saved registers.
LD HL, ($5C65) ; make HL point to first empty location STKEND
LD (HL) , A ; place the 5 registers.
INC HL ;
LD (HL) , E ;
INC HL ;
D (HL), D ;
INC HL ;
LD (HL) , C ;
INC HL ;
LD (HL) ,B ;
INC HL ;
LD ($5C65) , HL ; update system variable STKEND.
RET ; and return.

rs

This clever routine is used to check and evaluate an integer expression
which is returned in BC, setting A to $FF, if greater than a limit supplied
in HL. It is used to check array subscripts, parameters of a string slice
and the arguments of the DIM command. In the latter case, the limit check
is not required and H is set to $FF. When checking optional string slice
parameters, it is entered at the second entry point so as not to disturb
the running flag A, which may be $00 or SFF from a previous invocation.

INT-EXP1

L2ACC: XOR A ; set result flag to zero.

’

-> The entry point is here if A is used as a running flag.

;7 INT-EXP2
L2ACD: PUSH DE ; preserve DE register throughout.
PUSH HL ; save the supplied limit.
PUSH AF ; save the flag.
CALL L1C82 ; routine EXPT-1NUM evaluates expression
; at CH ADD returning if numeric result,
; with value on calculator stack.
POP AF ; pop the flag.
CALL L2530 ; routine SYNTAX-Z
JR Z,L2AEB ; forward to I-RESTORE if checking syntax so
; avoiding a comparison with supplied limit.
PUSH AF ; save the flag.
CALL L1ESS ; routine FIND-INT2 fetches value from
; calculator stack to BC producing an error
; if too high.
POP DE ; pop the flag to D.
LD A,B ; test value for zero and reject
OR C ; as arrays and strings begin at 1.
SCF ; set carry flag.

JR Z,L2AES8 ; forward to I-CARRY if =zero.

POP HL ; restore the limit.

PUSH HL ; and save.
AND A ; prepare to subtract.
SBC HL, BC ; subtract value from limit.
;7 I-CARRY
L2AE8: LD A,D ; move flag to accumulator $00 or S$SFF.
SBC A, $00 ; will set to SFF if carry set.
;7 I-RESTORE
L2AEB: POP HL ; restore the limit.
POP DE ; and DE register.
RET ; return.

LD DE, (DE+1) Subroutine

This routine just loads the DE register with the contents of the two
locations following the location addressed by DE.

It is used to step along the 16-bit dimension sizes in array definitions.
Note. Such code is made into subroutines to make programs easier to

write and it would use less space to include the five instructions in-line.
However, there are so many exchanges going on at the places this is invoked
that to implement it in-line would make the code hard to follow.

It probably had a zippier label though as the intention is to simplify the
program.

;; DE, (DE+1)

L2AEE: EX DE, HL ;
INC HL ;
LD E, (HL) ;
INC HL ;
LD D, (HL) ;
RET ;

This routine calls the mathematical routine to multiply HL by DE in runtime.
It is called from STK-VAR and from DIM. In the latter case syntax is not
being checked so the entry point could have been at the second CALL
instruction to save a few clock-cycles.

;; GET-HL*DE
L2AF4: CALL L2530 ; routine SYNTAX-Z.
RET Z ; return if checking syntax.
CALL L30A9 ; routine HL-HL*DE.
JP C,L1F15 ; jump back to REPORT-4 if over 65535.
RET ; else return with 16-bit result in HL.

THE 'LET' COMMAND

Sinclair BASIC adheres to the ANSI-78 standard and a LET is required in
assignments e.g. LET a = 1 : LET h$ = "hat".

Long names may contain spaces but not colour controls (when assigned).
a substring can appear to the left of the equals sign.

An earlier mathematician Lewis Carroll may have been pleased that
10 LET Babies cannot manage crocodiles = Babies are illogical AND

; Nobody is despised who can manage a crocodile AND Illogical persons
; are despised

; does not give the 'Nonsense..' error if the three variables exist.

; I digress.

;; LET

L2AFF: LD HL, ($5C4D) ; fetch system variable DEST to HL.
BIT 1, (IY+$37) ; test FLAGX - handling a new variable ?
JR Z,L2B66 ; forward to L-EXISTS if not.

; continue for a new variable. DEST points to start in BASIC line.
; from the CLASS routines.

LD BC, $0005 ; assume numeric and assign an initial 5 bytes
;; L-EACH-CH

L2B0B: INC BC ; increase byte count for each relevant
; character

;; L-NO-SP
L2B0C: INC HL ; increase pointer.
LD A, (HL) ; fetch character.
CP $20 ; is it a space ?
JR Z,L2B0C ; back to L-NO-SP is so.
JR NC, L2B1F ; forward to L-TEST-CH if higher.
CcPp $10 ; is it $00 - $OF ?
JR C,L2B29 ; forward to L-SPACES if so.
CP $lo ; is it $16 - S1F 2
JR NC, L2B29 ; forward to L-SPACES if so.
; it was $10 - $15 so step over a colour code.
INC HL ; increase pointer.
JR L2B0C ; loop back to L-NO-SP.

; the branch was to here if higher than space.

;; L-TEST-CH

L2B1F: CALL 1.L.2C88 ; routine ALPHANUM sets carry if alphanumeric
JR C,L2BOB ; loop back to L-EACH-CH for more if so.
CP $24 ; ois it '$' o2
JP Z,L2BCO ; jump forward if so, to L-NEWS

; with a new string.

;; L-SPACES

L2B29: LD A,C ; save length lo in A.

1D HL, ($5C59) ; fetch E LINE to HL.

DEC HL ; point to location before, the variables
; end-marker.

CALL L1655 ; routine MAKE-ROOM creates BC spaces
; for name and numeric value.

INC HL ; advance to first new location.

INC HL ; then to second.

EX DE, HL ; set DE to second location.

PUSH DE ; save this pointer.

LD HL, ($5C4D) ; reload HL with DEST.

DEC DE ; point to first.

SUB $06 ; subtract six from length lo.

LD B,A ; save count in B.
JR Z,L2B4F ; forward to L-SINGLE if it was just
; one character.

; HL points to start of variable name after 'LET' in BASIC line.

;+ L-CHAR
L2B3E: INC HL ; increase pointer.
LD A, (HL) ; pick up character.
CP $21 ; is it space or higher ?
JR C,L2B3E ; back to L-CHAR with space and less.
OR $20 ; make variable lower-case.
INC DE ; increase destination pointer.
LD (DE) , A ; and load to edit line.
DJNZ L2B3E ; loop back to L-CHAR until B is zero.
OR $80 ; invert the last character.
LD (DE) , A ; and overwrite that in edit line.

; now consider first character which has bit 6 set

LD A, $CO ; set A 11000000 is xor mask for a long name.
; %101 is xor/or result

; single character numerics rejoin here with %00000000 in mask.
; %011 will be xor/or result

;; L-SINGLE

L2B4F: LD HL, ($5C4D) ; fetch DEST - HL addresses first character.
XOR (HL) ; apply variable type indicator mask (above).
OR $20 ; make lowercase - set bit 5.
POP HL ; restore pointer to 2nd character.
CALL L2BEA ; routine L-FIRST puts A in first character.

; and returns with HL holding
; new E LINE-1 the $80 vars end-marker.

;7 L-NUMERIC
L2B59: PUSH HL ; save the pointer.

; the value of variable is deleted but remains after calculator stack.

RST 28H ;; FP-CALC
DEFB 502 ;;delete ; delete variable value
DEFB $38 ;;end-calc

; DE (STKEND) points to start of wvalue.

POP HL ; restore the pointer.

LD BC, $0005 ; start of number is five bytes before.
AND A ; prepare for true subtraction.

SBC HL, BC ; HL points to start of wvalue.

JR L2BAG ; forward to L-ENTER ==>

; the jump was to here if the variable already existed.

;; L-EXISTS
L2B66: BIT 6, (IY+S$S01) ; test FLAGS - numeric or string result ?
JR Z,L2B72 ; skip forward to L-DELETES —*—>
; if string result.

; A numeric variable could be simple or an array element.
; They are treated the same and the old value is overwritten.

LD DE, $0006 ; six bytes forward points to loc past value.
ADD HL, DE ; add to start of number.
JR L2B59 ; back to L-NUMERIC to overwrite value.

; —*-> the branch was here if a string existed.

;; L-DELETES

L2B72: LD HL, ($5C4D) ; fetch DEST to HL.
; (still set from first instruction)
LD BC, ($5C72) ; fetch STRLEN to BC.
BIT 0, (IY+$37) ; test FLAGX - handling a complete simple
; string ?
JR NZ, L2BAF ; forward to L-ADDS if so.

; must be a string array or a slice in workspace.
; Note. LET a$(3 TO 6) = h$ will assign "hat " if h$ "hat"
; and "hats" if h$ = "hatstand".

; This is known as Procrustian lengthening and shortening after a

; character Procrustes in Greek legend who made travellers sleep in his bed,
; cutting off their feet or stretching them so they fitted the bed perfectly.
; The bloke was hatstand and slain by Theseus.

LD A,B ; test if length
OR C ; 1s zero and
RET Z ; return if so.
PUSH HL ; save pointer to start.
RST 30H ; BC-SPACES creates room.
PUSH DE ; save pointer to first new location.
PUSH BC ; and length (*)
LD D, H ; set DE to point to last location.
LD E,L ;
INC HL ; set HL to next location.
LD (HL), $20 ; place a space there.
LDDR ; copy bytes filling with spaces.
PUSH HL ; save pointer to start.
CALL L2BF1 ; routine STK-FETCH start to DE,
; length to BC.
POP HL ; restore the pointer.
EX (SP),HL ; (*) length to HL, pointer to stack.
AND A ; prepare for true subtraction.
SBC HL, BC ; subtract old length from new.
ADD HL, BC ; and add back.
JR NC, L2B9B ; forward if it fits to L-LENGTH.
LD B,H ; otherwise set
LD C,L ; length to old length.

; "hatstand" becomes "hats"

;7 L-LENGTH

L2B9B: EX (SP),HL ; (*) length to stack, pointer to HL.
EX DE, HL ; pointer to DE, start of string to HL.
LD A,B ; 1s the length zero ?
OR C ;
JR Z,L2BA3 ; forward to L-IN-W/S if so

; leaving prepared spaces.

LDIR
;; L-IN-W/S
L2BA3: POP

POP

POP

; ==> branch here from

;5 L-ENTER
L2BA6: EX
LD
OR
RET

PUSH
LDIR
POP
RET

BC
DE
HL

DE, HL
A,B

C

zZ

DE

HL

L-NUMERIC

else copy bytes overwriting some spaces.

pop the new length. (*)

pop pointer to new area.

pop pointer to variable in assignment.
and continue copying from workspace
to variables area.

exchange pointers HL=STKEND DE=end of vars.
test the length

and make a

return if zero (strings only).

save start of destination.
copy bytes.

address the start.

and return.

; the branch was here from L-DELETES if an existing simple string.
; register HL addresses start of string in variables area.

;; L-ADDS

L2BAF: DEC
DEC
DEC
LD
PUSH
PUSH
CALL

POP
POP
INC
INC
INC
Jp

HL
HL
HL
A, (HL)
HL
BC
L2BC6

BC
HL
BC
BC
BC
L19ES8

point to high byte of length.

to low byte.

to letter.

fetch masked letter to A.

save the pointer on stack.

save new length.

routine L-STRING adds new string at end
of variables area.

if no room we still have old one.
restore length.

restore start.

increase

length by three

to include character and length bytes.
jump to indirect exit via RECLAIM-2
deleting old version and adjusting pointers.

; the jump was here with a new string variable.

;; L-NEWS
L2BCO: LD

LD
AND

;; L-STRING
L2BC6: PUSH
CALL

EX
ADD
PUSH
DEC

A, SDF

HL, ($5C4D)
(HL)

AF
L2BF1

DE, HL
HL, BC
BC
HL

indicator mask %11011111 for

$010xxxxx will be result
address DEST first character.
combine mask with character.

save first character and mask.

routine STK-FETCH fetches parameters of
the string.

transfer start to HL.

add to length.

save the length.

point to end of string.

LD ($5C4D) , HL ; save pointer in DEST.
; (updated by POINTERS if in workspace)

INC BC ; extra byte for letter.
INC BC ; two bytes
INC BC ; for the length of string.
LD HL, ($5C59) ; address E LINE.
DEC HL ; now end of VARS area.
CALL L1655 ; routine MAKE-ROOM makes room for string.
; updating pointers including DEST.

LD HL, ($5C4D) ; pick up pointer to end of string from DEST.
POP BC ; restore length from stack.
PUSH BC ; and save again on stack.
INC BC ; add a byte.
LDDR ; copy bytes from end to start.
EX DE, HL ; HL addresses length low
INC HL ; increase to address high byte
POP BC ; restore length to BC
LD (HL) , B ; insert high byte
DEC HL ; address low byte location
LD (HL) ,C ; insert that byte
POP AF ; restore character and mask

;; L-FIRST

L2BEA: DEC HL ; address variable name
LD (HL) , A ; and insert character.
LD HL, ($5C59) ; load HL with E LINE.
DEC HL ; now end of VARS area.
RET ; return

;; STK-FETCH

L2BFl: LD HL, ($5C65) ; STKEND
DEC HL ;
LD B, (HL) ;
DEC HL ;
LD C, (HL) ;
DEC HL ;
LD D, (HL) ;
DEC HL ;
LD E, (HL) ;
DEC HL ;
LD A, (HL) ;
LD ($5C65) , HL ; STKEND
RET ;

; e.g. DIM a(2,3,4,7): DIM a$(32) : DIM b$(20,2,768) : DIM c$(20000)

; the only limit to dimensions is memory so, for example,

; DIM a(2,2,2,2,2,2,2,2,2,2,2,2,2) 1is possible and creates a multi-

; dimensional array of zeros. String arrays are initialized to spaces.
; It is not possible to erase an array, but it can be re-dimensioned to
; a minimal size of 1, after use, to free up memory.

;; DIM
L2C02: CALL L28B2 ; routine LOOK-VARS

;; D-RPORT-C

L2C05: JP

’

rr

CALL
JR

RES

CALL

CALL

the branch

D-RUN

L2C15: JR

rr

PUSH
CALL

CALL

POP

D-LETTER

L2ClF: SET

rr

LD
PUSH
LD
BIT
JR

LD

D-SIZE

L2C2D: EX

’

rs

NZ,L1C8A

L2530
NZ,L2C15
6,C

L2996
L1BEE

was here in runtime.

C,L2C1F
BC

L19B8
L19ES8

BC

7,C

B, $00

BC

HL, $0001
6,C

NZ,L2C2D

L,$05

DE, HL

’

jump to REPORT-C if a long-name variable.
DIM lottery numbers (49) doesn't work.

routine SYNTAX-7Z
forward to D-RUN in runtime.

signal 'numeric' array even if string as
this simplifies the syntax checking.

routine STK-VAR checks syntax.
routine CHECK-END performs early exit ->

skip to D-LETTER if variable did not exist.
else reclaim the old one.

save type in C.

routine NEXT-ONE find following variable
or position of $80 end-marker.

routine RECLAIM-2 reclaims the

space between.

pop the type.

signal array.

initialize dimensions to zero and

save with the type.

make elements one character presuming string
is it a string ?

forward to D-SIZE if so.

make elements 5 bytes as is numeric.

save the element size in DE.

now enter a loop to parse each of the integers in the list.

D-NO-LOOP

L2C2E: RST

’

LD
CALL
Jp

POP
PUSH
INC
PUSH
LD
LD
CALL

EX

RST

CP
JR

when loop complete continue.

208

H, $FF
L2ACC
C,L2A20

HL
BC

HL
H,B
1,C
L2AF4

DE, HL
18H

s2C
Z,L2C2E

NEXT-CHAR

disable limit check by setting HL high
routine INT-EXP1

to REPORT-3 if > 65280 and then some
'Subscript out of range'

pop dimension counter, array type

save dimension size KAk
increment the dimension counter

save the dimension counter

transfer size

to HL

routine GET-HL*DE multiplies dimension by
running total of size required initially

1 or 5.

save running total in DE

GET-CHAR

is it ', " 2

loop back to D-NO-LOOP until all dimensions
have been considered

cp 529 S is it) 2
JR NZ,L2C05 ; to D-RPORT-C with anything else
; 'Nonsense in BASIC'

RST 20H ; NEXT-CHAR advances to next statement/CR
POP BC ; pop dimension counter/type
LD A,C ; type to A

; now calculate space required for array variable

LD L,B ; dimensions to L since these require 16 bits
; then this value will be doubled
LD H, $00 ; set high byte to zero
; another four bytes are required for letter(l), total length(2), number of

; dimensions (1) but since we have yet to double allow for two

INC
INC

ADD

ADD

JPp

PUSH
PUSH
PUSH
LD
LD
LD

DEC
CALL

INC
LD

POP
DEC
DEC
DEC
INC
LD

INC
LD

POP
LD
INC
LD

LD
LD
DEC
LD
BIT
JR

HL
HL

HL, HL
HL, DE

C,L1F15

increment
increment

now double giving 4 + dimensions * 2

add to space required for array contents

to REPORT-4 if > 65535
'Out of memory'

save data space

save dimensions/type

save total space

total space

to BC

address E LINE - first location after
variables area

point to location before - the $80 end-marker

routine MAKE-ROOM creates the space if
memory is available.

point to first new location and
store letter/type

pop total space
exclude name
exclude the 1l6-bit
counter itself

point to next location the 16-bit counter

insert low byte
address next
insert high byte

pop the number of dimensions.
dimensions to A

address next

and insert "No. of dims"

transfer DE space + 1 from make-room
to HL

set DE to next location down.
presume numeric and insert a zero
test bit 6 of C. numeric or string ?
skip to DIM-CLEAR if numeric

LD (HL), $20 ; place a space character in HL

;+ DIM-CLEAR
L2C7C: POP BC ; pop the data length

LDDR ; LDDR sets to zeros or spaces
; The number of dimensions is still in A.
; A loop is now entered to insert the size of each dimension that was pushed

; during the D-NO-LOOP working downwards from position before start of data.

;7 DIM-SIZES

L2C7F: POP BC ; pop a dimension size *xx
LD (HL) ,B ; insert high byte at position
DEC HL ; next location down
LD (HL) ,C ; insert low byte
DEC HL ; next location down
DEC A ; decrement dimension counter
JR NZ,L2CTF ; back to DIM-SIZES until all done.
RET ; return.

; Check whether digit or letter

; This routine checks that the character in A is alphanumeric
; returning with carry set if so.

;5 ALPHANUM

L2C88: CALL L2D1B ; routine NUMERIC will reset carry if so.
CCF ; Complement Carry Flag
RET C ; Return if numeric else continue into

; next routine.

; This routine checks that the character in A is alphabetic

;; ALPHA

L2C8D: CP $41 ; less than 'A' ?
CCF ; Complement Carry Flag
RET NC ; return if so
CP $5B ; less than 'Z'+1 ?
RET C ; is within first range
CP So6l ; less than 'a' ?
CCF ; Complement Carry Flag
RET NC ; return if so.
CP S7B ; less than 'z'+1 ?
RET ; carry set if within a-z.

; This routine finds the floating point number represented by an expression
; beginning with BIN, '.' or a digit.

; Note that BIN need not have any 'O's or 'l's after it.

; BIN is really just a notational symbol and not a function.

;; DEC-TO-FP
L2C9B: CP SC4 ; '"BIN' token ?
JR NZ,L2CB8 ; to NOT-BIN if not

LD
;7 BIN-DIGI
L2CA2: RST
SUB
ADC
JR
EX
CCF

ADC
Jp

EX
JR

;; BIN-END
L2CB3: LD
LD
JPp

; continue

;5 NOT-BIN

L2CBS8: CP
JR
CAL
CP

JR

RST
CAL

JR

JR

T

here

L

L

DE, $0000

201

$31

A, $00
NZ,L2CB3
DE, HL

HL, HL
C,L31AD

DE, HL
L2CA2

B,D
C,E
1L2D2B

with .1,
S2E
7,L2CCB
L2D3B
$2F
NZ,L2CEB

20H
L2D1B

C,L2CEB

L2CD5

42,

.14, 5.,

’

initialize 16 bit buffer register.

NEXT-CHAR

'1'

will be zero if '1l' or '0'

carry will be set if was '0'

forward to BIN-END if result not zero

buffer to HL

Carry now set if originally
shift the carry into HL

to REPORT-6 if overflow - too many digits
after first 'l'. There can be an unlimited
number of leading zeros.

'Number too big' - raise an error

'1'

save the buffer
back to BIN-DIGIT for more digits

transfer 16 bit buffer
to BC register pair.
JUMP to STACK-BC to put on calculator stack

2.3 E -4

L} L}

- leading decimal point ?
skip to DECIMAL if so.

routine INT-TO-FP to evaluate all digits
This number 'x' is placed on stack.
'.'" - mid decimal point ?

to E-FORMAT if not to consider that format

NEXT-CHAR
routine NUMERIC returns carry reset if 0-9

to E-FORMAT if not a digit e.g. 'l1.'

to DEC-STO-1 to add the decimal part to 'x'

; a leading decimal point has been found in a number.

;; DECIMAL

L2CCB: RST

CAL
;; DEC-RPT-
L2CCF: JP

L

C

20H
L2D1B

C,LlC8Aa

NEXT-CHAR
routine NUMERIC will reset carry if digit

to REPORT-C if just a '.'
raise 'Nonsense in BASIC'

; since there is no leading zero put one on the calculator stack.

RST
DEF

B

28H
SAQ

’

FP-CALC

;;stk-zero ; O.

rs

DEFB

If rejoining from earlier there will be a value

$38

’

;end-calc

x' on stack.

If continuing from above the value zero.
Now store 1 in mem-0.
Note. At each pass of the digit loop this will be divided by ten.

DEC-STO-1

L2CD5: RST

rr

DEFB
DEFB
DEFB
DEFB

NXT-DGT-1

L2CDA: RST

rr

CALL
JR

RST

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

RST
JR

28H
$Al
$CO
$02
$38

18H
12D22
C,L2CEB

28H
SEO
SA4
$05
$CO
$04
SOF
$38

20H
L2CDA

’
’
’
’

’

’
’

’

’
’
’
’
’
’
’

’

’

’

;; FP-CALC
; ; stk-one ;x or 0,1.
;;st-mem-0 ;x or 0,1.

;delete ;x or O.

; rend-calc

GET-CHAR
routine STK-DIGIT stacks single digit 'd’
exit to E-FORMAT when digits exhausted >

;; FP-CALC ;x or 0,d. first pass.
; ;get-mem-0 ;x or 0,d,1.

;7 stk-ten ;x or 0,d,1,10

;division ;x or 0,d,1/10

;5 st-mem-0 ;x or 0,d,1/10

;smultiply ;x or 0,d/10.
; ;addition ;x or 0 + d/10.

;end-calc last wvalue.

NEXT-CHAR moves to next character
back to NXT-DGT-1

although only the first pass is shown it can be seen that at each pass
the new less significant digit is multiplied by an increasingly smaller

factor (1/100,

1/1000,

1/10000

) before being added to the previous

last value to form a new last value.

Finally see if an exponent has been input.

E-FORMAT

L2CEB: CP

rr

JR

CP
RET

SIGN-FLAG

L2CF2: LD

’
’

’

RST
CP
JR

CP
JR

INC

$45
Z,L2CEF2

$65
NZ

B, SFF
20H
$2B

Z,L2CFE

$2D
NZ,L2CFF

B

is character 'E' ?
to SIGN-FLAG if so

'e' is acceptable as well.

return as no exponent.

initialize temporary sign byte to $FF
NEXT-CHAR

is character '+' ?

to SIGN-DONE

is character '-' ?
to ST-E-PART as no sign

set sign to zero

now consider digits of exponent.
Note. incidentally this is the only occasion in Spectrum BASIC when an
expression may not be used when a number is expected.

;7 SIGN-DONE
L2CFE: RST 20H ; NEXT-CHAR

;; ST-E-PART
L2CFF: CALL L2D1B ; routine NUMERIC
JR C,L2CCF ; to DEC-RPT-C if not
; raise 'Nonsense in BASIC'.

PUSH BC ; save sign (in B)

CALL L2D3B ; routine INT-TO-FP places exponent on stack
CALL L2DD5 ; routine FP-TO-A transfers it to A

POP BC ; restore sign

JP C,L31AD ; to REPORT-6 if overflow (over 255)

; raise 'Number too big'.

AND A ; set flags

JP M, L31AD ; to REPORT-6 if over '127'.
; raise 'Number too big'.
; 127 is still way too high and it is
; ilmpossible to enter an exponent greater
; than 39 from the keyboard. The error gets
; raised later in E-TO-FP so two different
; error messages depending how high A is.

INC B ; SFF to $00 or $00 to $01 - expendable now.
JR Z,L2D18 ; forward to E-FP-JUMP if exponent positive
NEG ; Negate the exponent.

;+ E-FP-JUMP

1L2D18: JP L2D4F ; JUMP forward to E-TO-FP to assign to
; last value x on stack x * 10 to power A
; a relative jump would have done.

; Check for valid digit

; This routine checks that the ASCII character in A is numeric
; returning with carry reset if so.

;+ NUMERIC
L2D1B: CP $30 ; '0’
RET C ; return if less than zero character.
CP S3A ; The upper test is '9'
CCF ; Complement Carry Flag
RET ; Return - carry clear if character '0' - '9'

; Stack Digit

; This subroutine is called from INT-TO-FP and DEC-TO-FP to stack a digit
; on the calculator stack.

;; STK-DIGIT

L2D22: CALL L2D1B ; routine NUMERIC
RET C ; return if not numeric character
SUB $30 ; convert from ASCII to digit

;; STACK-A
L2D28: LD
LD

; Stack BC r

;+ STACK-BC
L2D2B: LD

XOR
LD
LD
LD
LD
CALL

RST
DEFB

AND
RET

’

’

’

’

transfer to C
and make B zero

re-initialize ERR_NR

clear to signal small integer
place in E for sign

LSB to D

MSB to C

last byte not used

routine STK-STORE

;; FP-CALC
; ;end-calc make HL = STKEND-5

clear carry
before returning

; This routine places one or more digits found in a BASIC line
; on the calculator stack multiplying the previous value by ten each time
; before adding in the new digit to form a last value on calculator stack.

;; INT-TO-FP
L2D3B: PUSH

RST
DEFB
DEFB

POP

;7 NXT-DGT-2
L2D40: CALL
RET

RST

DEFB
DEFB
DEFB
DEFB
DEFB

CALL
JR

AF

28H
SA0
$38

AF

L2D22

28H
$01
SA4
$04
SOF
$38

L0074
L2D40

’

’
’

’

’

’

’

’
’
’
’
’

’

’

’

save first character

;5 FP-CALC
; »stk-zero ; v=0. initial wvalue
; ;end-calc

fetch first character back.

routine STK-DIGIT puts 0-9 on stack
will return when character is not numeric >

; ;» FP-CALC ; v, d.

;exchange ; d, v.

;7 stk-ten ; d, v, 10.
;;multiply ; d, v*10.

; ;addition ; d + v*10 = newvalue
;end-calc ; V.

routine CH-ADD+1 get next character
back to NXT-DGT-2 to process as a digit

,-*********************************

ARITHMETIC ROUTINES **

ekAhkhkhkAhkhkkhkhkkhkhhkkhhkhkkhhkhkkhhkhkhA Ak h Ak kA rkhx%k
’

;** Part 9.

; E-format to floating point

; This subroutine is used by the PRINT-FP routine and the decimal to FP

; routines to stack a number expressed in exponent format.

; Note. Though not used by the ROM as such,
; a unary calculator literal but this will not work as the accumulator
; 1s not available from within the calculator.

it has also been set up as

; on entry there is a value x on the calculator stack and an exponent of ten

; in A.

;; e-to-fp

;; E-TO-FP

L2D4F: RLCA
RRCA
JR

CPL
INC

;; E-SAVE
L2D55: PUSH

LD

CALL

RST
DEFB
DEFB

POP

NC, L2D55

AF
HL, $5C92

L350B

28H
$A4
$38

AF

; now enter a loop

;; E-LOOP
L2D60: SRL

JR
PUSH
RST
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB

DEFB

;; E-DIVSN
L2D6D: DEFB

;; E-FETCH
L2D6E: DEFB
DEFB

A
NC,L2D71
AF

2841

sc1

SEO

$00

$04

$04
$33

$02

$05

SE1
$38

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

The required value is x + 10 ~ A

this will

set the

carry 1f bit 7 is set

to E-SAVE

if positive.

make negative positive
without altering carry.

save positive exp and sign in carry

address MEM-0

routine FP-0/1

places an

integer zero,

if no carry,

else a one in mem-0 as a sign flag

;5 FP-CALC
; ;stk-ten

;end-calc

pop the exponent.

0>76543210>C

x, 10.

forward to E-TST-END if no bit

save shifted exponent.

;; FP-CALC
;;st-mem-1
; ;get-mem-0
;5 jump-true

;;multiply

; jump

; ;division

; ;get-mem-1

;end-calc

;;to L2D6D, E-DIVSN

;;to L2D6E, E-FETCH

x, 10.

x, 10, (0/1).

x*10.

x/10.

x/10 or x*10,
new x, 10.

10.

’

POP AF ;

restore shifted exponent

the loop branched to here with no carry

;; E-TST-END

L2D71: JR Z,L2D7B :
PUSH AF ;
RST 28H i
DEFB $31]
DEFB 504 Py
DEFB $38 Y
POP AF ;
JR L2D60 ;

although only the first pass is

forward to E-END if A emptied of bits
re-save shifted exponent

FP-CALC
duplicate new x, 10, 10.
multiply new x, 100.
end-calc

restore shifted exponent
back to E-LOOP wuntil all bits done.

shown it can be seen that for each set bit

; representing a power of two, x is multiplied or divided by the

; corresponding power of ten.

;; E-END

L2D7B: RST 28H ;; FP-CALC final x, factor.
DEFB 502 ;;delete final x.
DEFB $38 ;;end-calc X.
RET ; return

; Fetch integer

; This routine is called by the mathematical routines - FP-TO-BC, PRINT-FP,

mult, re-stack and negate
HL points to the stack or

; If the number is negative

; is

; in C.

;; INT-FETCH

L2D7F: INC HL ;
LD C, (HL) ;
INC HL ;
LD A, (HL) ;
XOR C ;
SUB C ;
LD E, A ;
INC HL ;
LD A, (HL) ;
ADC A,C ;
XOR C ;
LD D,A ;
RET ;

’

’

’

This entry point is not used in
store any integer as positive.

to fetch an integer from address HL.

a location in MEM and no deletion occurs.

then a similar process to that used in INT-STORE
used to restore the twos complement number to normal in DE and a sign

skip zero indicator.
fetch sign to C
address low byte
fetch to A

two's complement

place in E
address high byte
fetch to A
two's complement

place in D
return

this ROM but would

;5 p-int-sto
L2D8C: LD C,$00 ; make sign byte positive and continue

; this routine stores an integer in DE at address HL.

; It is called from mult, truncate, negate and sgn.

; The sign byte $00 +ve or S$FF -ve is in C.

; If negative, the number is stored in 2's complement form so that it is
; ready to be added.

;7 INT-STORE

L2D8E: PUSH HL ; preserve HL
LD (HL) , $00 ; first byte zero shows integer not exponent
INC HL ;
LD (HL) ,C ; then store the sign byte
INC HL ;
; e.g. +1 -1
LD ALE ; fetch low byte 00000001 00000001
XOR C ; Xor sign 00000000 or 11111111
; gives 00000001 or 11111110
SUB C ; sub sign 00000000 or 11111111
; gives 00000001>0 or 11111111>C
LD (HL) , A ; store 2's complement.
INC HL ;
LD A,D ; high byte 00000000 00000000
ADC A,C ; sign 00000000<0 11111111<C
; gives 00000000 or 00000000
XOR C ; Xor sign 00000000 11111111
LD (HL) ,A ; store 2's complement.
INC HL ;
LD (HL), $00 ; last byte always zero for integers.

; 1s not used and need not be looked at when
; testing for zero but comes into play should
; an integer be converted to fp.

POP HL ; restore HL

RET ; return.

; Floating point to BC register

; This routine gets a floating point number e.g. 127.4 from the calculator
; stack to the BC register.

;; FP-TO-BC

L2DA2: RST 28H ;; FP-CALC set HL to
DEFB $38 ;;end-calc point to last value.
LD A, (HL) ; get first of 5 bytes
AND A ; and test
JR Z,L2DAD ; forward to FP-DELETE if an integer

; The value is first rounded up and then converted to integer.

RST 28H ;; FP-CALC X.

DEFB SA2 ;;stk-half x. 1/2.
DEFB SOF ;;addition x + 1/2.
DEFB 527 ;rint int(x + .5)
DEFB $38 ;;end-calc

; now delete but leave HL pointing at integer

;; FP-DELETE

L2DAD: RST 28H ;; FP-CALC
DEFB $02 ; ;delete
DEFB $38 ;;end-calc
PUSH HL ; save pointer.
PUSH DE ; and STKEND.
EX DE, HL ; make HL point to exponent/zero indicator
LD B, (HL) ; indicator to B
CALL L2D7F ; routine INT-FETCH

; gets int in DE sign byte to C
; but meaningless values if a large integer

XOR A ; clear A
SUB B ; subtract indicator byte setting carry
; 1f not a small integer.

BIT 7,C ; test a bit of the sign byte setting zero
; 1f positive.

LD B,D ; transfer int

1D C,E ; to BC

LD A,E ; low byte to A as a useful return value.
POP DE ; pop STKEND

POP HL ; and pointer to last value

RET ; return

; 1f carry is set then the number was too big.

; This routine is used when printing floating point numbers to calculate
; the number of digits before the decimal point.

; first convert a one-byte signed integer to its five byte form.

;; LOG(27A)
L2DC1l: LD D,A ; store a copy of A in D.
RLA ; test sign bit of A.
SBC A,A ; now SFF if negative or $00
LD E,A ; sign byte to E.
LD C,A ; and to C
XOR A ; clear A
LD B,A ; and B.
CALL L2AB6 ; routine STK-STORE stacks number AEDCB

; so 00 00 XX 00 00 (positive) or 00 FF XX FF 00 (negative).
; 1.e. integer indicator, sign byte, low, high, unused.

; now multiply exponent by log to the base 10 of two.

RST 28H ;; FP-CALC

DEFB $34 ;;stk-data .30103 (log 2)
DEFB SEF ; ;Exponent: $7F, Bytes: 4

DEFB $1A,$20,$9A,885 ;;

DEFB $04 ;omultiply

DEFB $27 ;;int

DEFB 338 ;;end-calc

; this routine collects a floating point number from the stack into the

; accumulator returning carry set if not in range 0 - 255.

; Not all the calling routines raise an error with overflow so no attempt
; 1s made to produce an error report here.

;; FP-TO-A

L2DD5: CALL L2DA2 ; routine FP-TO-BC returns with C in A also.
RET C ; return with carry set if > 65535, overflow
PUSH AF ; save the wvalue and flags
DEC B ; and test that
INC B ; the high byte is zero.
JR Z,L2DE1 ; forward FP-A-END if zero

; else there has been 8-bit overflow

POP AF ; retrieve the value
SCF ; set carry flag to show overflow
RET ; and return.

;; FP-A-END
L2DEl: POP AF ; restore value and success flag and
RET ; return.

; Print a floating point number

; Not a trivial task.
; Begin by considering whether to print a leading sign for negative numbers.

;; PRINT-FP

L2DE3: RST 28H ;; FP-CALC
DEFB $31 ;;duplicate
DEFB $36 ;7 1less-0
DEFB $00 ;7 jump-true
DEFB S0B ;;to L2DF2, PF-NEGTVE
DEFB $31 ; ;duplicate
DEFB $37 ;;greater-0
DEFB $00 ;; jump-true
DEFB $0D ;;to L2DF8, PF-POSTVE

; must be zero itself

DEFB $02 ;;delete

DEFB $38 ;;end-calc

LD A, $30 ; prepare the character '0'
RST 10H ; PRINT-A

RET ; return. ->

;; PF-NEGTVE
L2DF2: DEFB $2A ; ;abs
DEFB 338 ;;end-calc

LD A, S$2D ; the character '-'
RST 10H ; PRINT-A

; and continue to print the now positive number.
RST 28H ;; FP-CALC

;; PF-POSTVE

L2DF8: DEFB SAO ;;stk-zero x,0. begin by
DEFB SC3 ;7 st-mem-3 x,0. clearing a temporary
DEFB $c4 ; ;st-mem-4 x,0. output buffer to
DEFB SC5 ;5 st-mem-5 x,0. fifteen zeros.
DEFB 502 ;;delete X.
DEFB $38 ;;end-calc X.
EXX ; 1n case called from 'str$' then save the
PUSH HL ; pointer to whatever comes after
EXX ; str$ as H'L' will be used.
; now enter a loop?
;; PEF-LOOP
L2EO1: RST 28H ;; FP-CALC
DEFB 531 ;;duplicate X, X.
DEFB 527 ;;int X,1int x.
DEFB SC2 ;5 st-mem-2 X,1int x.
DEFB 503 ;;subtract x-int x. fractional part.
DEFB SE2 ; ;get-mem-2 x-int x, int x.
DEFB S01 ; ;exchange int x, x-int x.
DEFB SC2 ;7 st-mem-2 int x, x-int x.
DEFB 502 ;;delete int x.
DEFB $38 ;;end-calc int x.

; mem-2 holds the fractional part.

; HL points to last value int x

LD A, (HL) ; fetch exponent of int x.
AND A ; test
JR NZ,L2E56 ; forward to PF-LARGE if a large integer
; > 65535
; continue with small positive integer components in range 0 - 65535

; 1f original number was say .999 then this integer component is zero.

CALL L2D7F ; routine INT-FETCH gets x in DE
; (but x is not deleted)

LD B,S$10 ; set B, bit counter, to 1lod

LD A,D ; test if

AND A ; high byte is zero

JR NZ,L2E1E ; forward to PF-SAVE if 16-bit integer.
; and continue with integer in range 0 - 255.

OR E ; test the low byte for zero

; 1.e. originally just point something or other.
JR Z,L2E24 ; forward if so to PF-SMALL

rs

LD D,E ; transfer E to D
LD B, $08 ; and reduce the bit counter to 8.
PF-SAVE
L2E1E: PUSH DE ; save the part before decimal point.
EXX ;
POP DE ; and pop in into D'E'
EXX ;
JR L2E7B ; forward to PF-BITS

’

the branch was here when 'int x' was found to be zero as in say 0.5.

The zero has been fetched from the calculator stack but not deleted and
this should occur now. This omission leaves the stack unbalanced and while
that causes no problems with a simple PRINT statement, it will if str$ is
being used in an expression e.g. "2" + STRS$ 0.5 gives the result "0.5"
instead of the expected result "20.5".

credit Tony Stratton, 1982.

A DEFB 02 delete is required immediately on using the calculator.

;; PF-SMALL
L2E24: RST 28H ;; FP-CALC int x = 0.
L2E25: DEFB SE2 ; rget-mem-2 int x = 0, x-int x.
DEFB $38 ;;end-calc
LD A, (HL) ; fetch exponent of positive fractional number
SUB STE ; subtract
CALL L2DC1 ; routine LOG(27A) calculates leading digits.
LD D,A ; transfer count to D
LD A, ($5CAC) ; fetch total MEM-5-1
SUB D ;
LD ($5CAC) , A ; MEM-5-1
LD A,D ;
CALL L2D4F ; routine E-TO-FP
RST 28H ;; FP-CALC
DEFB $31 ;;duplicate
DEFB $27 ;int
DEFB SC1 ;7 st-mem-1
DEFB 503 ; ;subtract
DEFB SE1 ;s get-mem-1
DEFB $38 ;;end-calc
CALL L2DD5 ; routine FP-TO-A
PUSH HL ; save HL
LD ($5CAl), A ; MEM-3-1
DEC A ;
RLA ;
SBC A,A ;
INC A ;
LD HL, $5CAB ; address MEM-5-1 leading digit counter
LD (HL) , A ; store counter
INC HL ; address MEM-5-2 total digits
ADD A, (HL) ; add counter to contents
LD (HL) , A ; and store updated value
POP HL ; restore HL
JP L2ECF ; JUMP forward to PF-FRACTN

; Note. while it would be pedantic to comment on every occasion a JP

; instruction could be replaced with a JR instruction, this applies to the
; above, which is useful if you wish to correct the unbalanced stack error
; by inserting a 'DEFB 02 delete' at L2E25, and maintain main addresses.

; the branch was here with a large positive integer > 65535 e.g. 123456789
; the accumulator holds the exponent.

;; PF-LARGE

L2E56: SUB $80 ; make exponent positive
CP $1cC ; compare to 28
JR C,L2E6F ; to PF-MEDIUM if integer <= 2727
CALL L2DC1 ; routine LOG(2"A)
SUB 507 ;
LD B,A ;
LD HL, $5CAC ; address MEM-5-1 the leading digits counter.
ADD A, (HL) ; add A to contents
LD (HL) ,A ; store updated value.
LD A,B ;
NEG ; negate
CALL L2D4F ; routine E-TO-FP
JR L2EO01 ; back to PF-LOOP

;+ PF-MEDIUM

L2E6F: EX DE, HL ;
CALL L2FBA ; routine FETCH-TWO
EXX ;
SET 7,D ;
LD A, L ;
EXX ;
SUB $80 ;
LD B,A ;

; the branch was here to handle bits in DE with 8 or 16 in B 1if small int
; and integer in D'E', 6 nibbles will accommodate 065535 but routine does
; 32-bit numbers as well from above

;; PEF-BITS
L2E7B: SLA E ;5 C<xxxxxxxx<0
RL D ; C<xxxXXXXXXLC
EXX ;
RL E ; C<xxxxxxxx<C
RL D ; C<xxxxxXxXxX<C
EXX ;
LD HL, $5CAA ; set HL to mem-4-5th last byte of buffer
LD C,S$05 ; set byte count to 5 - 10 nibbles

;; PF-BYTES

L2E8A: LD A, (HL) ; fetch 0 or prev wvalue
ADC A,A ; shift left add in carry C<xxxxxxxx<C
DAA ; Decimal Adjust Accumulator.

; 1f greater than 9 then the left hand

; nibble is incremented. If greater than

; 99 then adjusted and carry set.

; so if we'd built up 7 and a carry came in
; 0000 0111 < C

; 0000 1111

LD
DEC
DEC
JR

DJINZ

(HL) , A
HL

C
NZ,L2E8A

L2E7B

’

daa 1 0101 which is 15 in BCD

put back
work down thru mem 4
decrease the 5 counter.

back to PF-BYTES until the ten nibbles rolled

back to PF-BITS until 8 or 16 (or 32) done

; at most 9 digits for 32-bit number will have been loaded with digits
; each of the 9 nibbles in mem 4 is placed into ten bytes in mem-3 and mem 4
; unless the nibble is zero as the buffer is already zero.

; (or in the case of mem-5 will become zero as a result of RLD instruction)
XOR A ; clear to accept
LD HL, $5CA6 ; address MEM-4-0 byte destination.
LD DE, $5CAl ; address MEM-3-0 nibble source.
LD B, S$09 ; the count is 9 (not ten) as the first
; nibble is known to be blank.
RLD ; shift RH nibble to left in (HL)
; A (HL)
; 0000 0000 < 0000 3210
; 0000 0000 3210 0000
; A picks up the blank nibble
LD C, SFF ; set a flag to indicate when a significant
; digit has been encountered.
;; PEF-DIGITS
L2EAl: RLD ; pick up leftmost nibble from (HL)
; A (HL)
; 0000 0000 < 7654 3210
; 0000 7654 3210 0000
JR NZ, L2EAS ; to PF-INSERT if non-zero value picked up.
DEC C ; test
INC C ; flag
JR NZ, L2EB3 ; skip forward to PF-TEST-2 if flag still S$FF

’

indicating this is a leading zero.

; but 1if the zero is a significant digit e.g. 10 then include in digit totals.
; the path for non-zero digits rejoins here.

;7 PF-INSERT

L2EA9: LD
INC
INC
INC
LD

;; PF-TEST-2
L2EB3: BIT
JR

INC

;; PF-ALL-9

(DE) ,A
DE
(IY+S$71)
(IY+S$72)
C,$00

0,B
Z,L2EB8

HL

insert digit at destination

increase the destination pointer

increment MEM-5-1st digit counter
increment MEM-5-2nd leading digit counter
set flag to zero indicating that any
subsequent zeros are significant and not
leading.

test if the nibble count is even
skip to PF-ALL-9 if so to deal with the
other nibble in the same byte

point to next source byte if not

L2EBRS8: DJINZ L2EAL ; decrement the nibble count,
; if all nine not done.

; For 8-bit integers there will be at most 3 digits.
; For 16-bit integers there will be at most 5 digits.
; but for larger integers there could be nine leading digits.

back to PF-DIGITS

; 1f nine digits complete then the last one is rounded up as the number will

; be printed using E-format notation

LD A, ($5CAB) ; fetch digit count from MEM-5-1st

SUB $09 ; subtract 9 - max possible

JR C,L2ECB ; forward if less to PF-MORE

DEC (IY+$71) ; decrement digit counter MEM-5-1st to 8
LD A, $04 ; load A with the value 4.

CP (IY+S6F) ; compare with MEM-4-4th - the ninth digit
JR L2F0C ; forward to PF-ROUND

; to consider rounding.

; now delete int x from calculator stack and fetch fractional part.

;; PEF-MORE

L2ECB: RST 28H ;; FP-CALC
DEFB 502 ;;delete
DEFB SE2 ; ;get-mem-2
DEFB $38 ;;end-calc

;7 PF-FRACTN

L2ECE: EX DE, HL ;
CALL L2FBA ; routine FETCH-TWO
EXX ;
LD A, $80 ;
SUB L ;
LD L, $00 ;
SET 7,D ;
EXX ;
CALL L2FDD ; routine SHIFT-FP

;; PEF-FRN-LP

L2EDEFE: LD A, (IY+S$S71) ; MEM-5-1st
CP 508 ;
JR C,L2EEC ; to PF-FR-DGT
EXX ;
RL D ;
EXX ;
JR L2F0C ; to PF-ROUND

;; PF-FR-DGT
L2EEC: LD BC, $0200 ;

;; PEF-FR-EXX

L2EEF: LD AE ;
CALL L2F8B ; routine CA-10*A+C
1D E,A ;
1D A,D ;
CALL L2F8B ; routine CA-10*A+C
LD D, A ;
PUSH BC ;

EXX ’

f.

POP BC ;

DJNZ L2EEF ; to PF-FR-EXX
LD HL, $5CA1 ; MEM-3

1D A,C ;

LD C, (IY+$71) ; MEM-5-1st
ADD HL, BC ;

1D (HL) , A ;

INC (IY+$71) ; MEM-5-1st

JR L2EDF ; to PF-FRN-LP

; 1) with 9 digits but 8 in mem-5-1 and A holding 4, carry set if rounding up.

; e.g.
; 999999999 is printed as 1E+9
; 100000001 is printed as 1E+8
; 100000009 is printed as 1.0000001E+8
;; PF-ROUND
L2F0C: PUSH AF ; save A and flags
LD HL, $5CA1 ; address MEM-3 start of digits
LD C, (IY+$71) ; MEM-5-1st No. of digits to C
LD B, $00 ; prepare to add
ADD HL, BC ; address last digit + 1
LD B,C ; No. of digits to B counter
POP AF ; restore A and carry flag from comparison.

;+ PEF-RND-LP

L2F18: DEC HL ; address digit at rounding position.
LD A, (HL) ; fetch it
ADC A, $00 ; add carry from the comparison
LD (HL) , A ; put back result even if S$OA.
AND A ; test A
JR Z,L2F25 ; skip to PF-R-BACK if ZERO?
CP S0A ; compare to 'ten' - overflow
CCF ; complement carry flag so that set if ten.
JR NC, L2F2D ; forward to PF-COUNT with 1 - 9.

;» PF-R-BACK
L2F25: DJNZ L2F18 ; loop back to PF-RND-LP

; if B counts down to zero then we've rounded right back as in 999999995.
; and the first 8 locations all hold $O0A.

LD (HL), $01 ; load first location with digit 1.
INC B ; make B hold 1 also.

; could save an instruction byte here.
INC (IY+S72) ; make MEM-5-2nd hold 1.

; and proceed to initialize total digits to 1.

;; PEF-COUNT
L2F2D: LD (IY+s$71),B ; MEM-5-1st

; now balance the calculator stack by deleting it

RST 28H ;; FP-CALC
DEFB 502 ;;delete
DEFB $38 ;;end-calc

; note i1f used from str$ then other values may be on the calculator stack.
; we can also restore the next literal pointer from its position on the

; machine stack.

EXX
POP
EXX

LD

LD
LD
CP
JR

CP
JR

;; PEF-NOT-E
L2F46: AND

CALL

;; PF-E-SBRN

L2F4A: XOR
SUB
Jp

LD
JR

;; PF-OUT-LP

L2F52: LD
AND
JR

LD
INC
DEC

;; PEF-OUT-DT
L2F59: CALL
DJINZ

;; PEF-DC-0OUT

L2F5E: LD
AND
RET

INC
LD

;; PF-DEC-0$
L2F64: RST

LD
DJINZ

LD
JR

HL

BC, ($5CAB)

HL, $5CA1
A,B
$09
C,L2F46

SFC
C,L2F6C

Z,L15EF

< m >

, L2F52

L2F5E

L15EF
L2F52

N

A, $2F

10H
A,$30
L2F64

B, C
L2F52

restore next literal pointer.

set C to MEM-5-1st digit counter.
set B to MEM-5-2nd leading digit counter.
set HL to start of digits at MEM-3-1

to PF-NOT-E

to PF-E-FRMT

test for zero leading digits as in .123

routine OUT-CODE prints a zero e.g. 0.123

skip forward to PEF-OUT-LP if originally +ve

else negative count now +ve
forward to PF-DC-0OUT ->

fetch total digit count
test for zero
forward to PF-QUT-DT if so

fetch digit
address next digit
decrease total digit counter

routine OUT-CODE outputs it.
loop back to PF-OUT-LP until B leading
digits output.

fetch total digits and
test if also zero
return if so -——>

increment B
prepare the character '.'

PRINT-A outputs the character '.' or '0'
prepare the character '0'
(for cases like .000012345678)

loop back to PF-DEC-0$ for B times.

load B with now trailing digit counter.
back to PF-OUT-LP

; the branch was here for E-format printing e.g. 123456789 => 1.2345679%e+8

;; PF-E-FRMT

L2F6C: LD D,B ; counter to D
DEC D ; decrement
LD B,s01 ; load B with 1.
CALL L2F4A ; routine PF-E-SBRN above
LD A, $45 ; prepare character 'e'
RST 10H ; PRINT-A
LD C,D ; exponent to C
LD A,C ; and to A
AND A ; test exponent
JP P,L2F83 ; to PF-E-POS if positive
NEG ; negate
LD C,A ; positive exponent to C
LD A, $2D ; prepare character '-'
JR L2F85 ; skip to PF-E-SIGN

;; PF-E-POS

L2F83: LD A, $2B ; prepare character '+'

;; PF-E-SIGN

L2F85: RST 10H ; PRINT-A outputs the sign
LD B, $00 ; make the high byte zero.
Jp L1A1B ; exit via OUT-NUM-1 to print exponent in BC

; Handle printing floating point

; This subroutine is called twice from above when printing floating-point
; numbers. It returns 10*A +C in registers C and A

;; CA-10*A+C

L2F8B: PUSH DE ; preserve DE.
LD L,A ; transfer A to L
LD H,$00 ; zero high byte.
LD E,L ; copy HL
LD D,H ; to DE.
ADD HL, HL ; double (*2)
ADD HL, HL ; double (*4)
ADD HL, DE ; add DE (*5)
ADD HL, HL ; double (*10)
LD E,C ; copy C to E (D is 0)
ADD HL, DE ; and add to give required result.
LD C,H ; transfer to
LD A, L ; destination registers.
POP DE ; restore DE
RET ; return with result.

; Prepare to add

; This routine is called twice by addition to prepare the two numbers. The
; exponent is picked up in A and the location made zero. Then the sign bit

; 1s tested before being set to the implied state. Negative numbers are twos
; complemented.

;; PREP-ADD

L2F9B: LD A, (HL) ; pick up exponent
LD (HL) , $00 ; make location zero
AND A ; test if number is zero
RET Z ; return if so
INC HL ; address mantissa
BIT 7, (HL) ; test the sign bit
SET 7, (HL) ; set it to implied state
DEC HL ; point to exponent
RET Z ; return if positive number.
PUSH BC ; preserve BC
LD BC, $0005 ; length of number
ADD HL,BC ; point HL past end
LD B, C ; set B to 5 counter
LD C,A ; store exponent in C
SCF ; set carry flag
;7 NEG-BYTE
L2FAF: DEC HL ; work from LSB to MSB
LD A, (HL) ; fetch byte
CPL ; complement
ADC A, $00 ; add in initial carry or from prev operation
LD (HL) , A ; put back
DJINZ L2FAF ; loop to NEG-BYTE till all 5 done
LD A,C ; stored exponent to A
POP BC ; restore original BC
RET ; return

; This routine is called twice when printing floating point numbers and also
; to fetch two numbers by the addition, multiply and division routines.

; HL addresses the first number, DE addresses the second number.

; For arithmetic only, A holds the sign of the result which is stored in

; the second location.

;; FETCH-TWO

L2FBA: PUSH HL ; save pointer to first number, result if math.

PUSH AF ; save result sign.

D C, (HL) ;

INC HL ;

D B, (HL) ;

LD (HL) , A ; store the sign at correct location in

; destination 5 bytes for arithmetic only.

INC HL ;

LD A,C ;

D C, (HL) ;

PUSH BC ;

INC HL ;

LD C, (HL) ;

INC HL ;

D B, (HL) ;

EX DE, HL ;

LD D,A ’

LD E, (HL) ;

PUSH DE ;

INC HL ;

D D, (HL) ;

INC HL ;

LD E, (HL) ;

PUSH DE ;

EXX ;

POP DE ;

POP HL ;

POP BC ;

EXX ;

INC HL ;

D D, (HL) ;

INC HL ;

LD E, (HL) ;

POP AF ; restore possible result sign.
POP HL ; and pointer to possible result.
RET ; return.

;; SHIFT-FP

L2FDD: AND A ;
RET 7 ;
CP $21 ;
JR NC, L2FF9 ; to ADDEND-0
PUSH BC ;
LD B,A ;

;7 ONE-SHIFT

L2FE5: EXX ;
SRA L ;
RR D ;
RR B ;
EXX ;
RR D ;
RR E ;
DJINZ L2FES5 ; to ONE-SHIFT
POP BC ;
RET NC ;
CALL L3004 ; routine ADD-BACK
RET NZ ;

;7 ADDEND-0
L2FF9: EXX ;
XOR A ;

;; ZEROS-4/5

L2FFB: 1D 1, $00 ;
1D D, A ;
LD E,L ;
EXX ;
LD DE, $0000 ;

RET ’

;; ADD-BACK

L3004: INC E
RET NZ
INC D
RET NZ
EXX
INC E
JR NZ,L300D
INC D

;; ALL-ADDED
L300D: EXX
RET

; Handle subtraction (03)

; to ALL-ADDED

; Subtraction is done by switching the sign byte/bit of the second number
; which may be integer of floating point and continuing into addition.

;5 subtract

L300F: EX DE, HL
CALL L346E
EX DE, HL

; Handle addition (OF)

; HL points to first number,
; If they are both integers,

;; addition

13014: 1D A, (DE)
OR (HL)
JR NZ,L303E

; address second number with HL
; routine NEGATE switches sign

; address first number again
; and continue.

DE to second.
then go for the easy route.

; fetch first byte of second

; combine with first byte of first

; forward to FULL-ADDN if at least one was
; in floating point form.

; continue if both were small integers.

PUSH DE
INC HL
PUSH HL
INC HL
LD E, (HL)
INC HL
LD D, (HL)
INC HL
INC HL

; save pointer to lowest number for result.

; address sign byte and
; push the pointer.

; address low byte

; to E

; address high byte

; to D

; address unused byte

; address known zero indicator of 1lst number

INC
LD
INC
LD
INC
LD

POP
EX

ADD

EX

ADC

RRCA

ADC

JR

SBC

LD
INC
LD
INC
LD
DEC
DEC
DEC

POP
RET

;; ADDN-OFLW

L303C:

DEC
POP

;; FULL-ADDN

L303E:

CALL
EXX
PUSH
EXX
PUSH
PUSH
CALL
LD
EX
CALL
LD
CP
JR

LD
LD

HL
A, (HL)

HL
C, (HL)
HL

B, (HL)

HL
DE, HL

HL, BC

DE, HL

A, (HL)

A, $00
NZ,L303C
AR

(HL) , A
HL
(HL) ,E
HL
(HL) ,D
HL
HL
HL

DE

HL
DE

L3293
HL

DE
HL
L2F9B
B,A
DE, HL
L2F9B
c,A

NC, L3055

address sign byte
sign to A, $00 or S$FF
address low byte

to C

address high byte

to B

pop result sign pointer
integer to HL

add to the other one in BC
setting carry if overflow.

save result in DE bringing back sign pointer
if pos/pos A=01 with overflow else 00

if neg/neg A=FF with overflow else FE

if mixture A=00 with overflow else FF

bit 0 to (C)

both acceptable signs now zero

forward to ADDN-OFLW if not

restore a negative result sign

STKEND

routine RE-ST-TWO

routine PREP-ADD

routine PREP-ADD

to SHIFT-LEN

EX

;7 SHIFT-LEN

L3055:

PUSH
SUB
CALL
CALL
POP
POP
LD
PUSH
LD
LD
ADD
EXX
EX
ADC
EX
LD
ADC
LD
RRA
XOR
EXX
EX
POP
RRA
JR

LD
CALL
INC
JR

;; TEST-NEG

L307C:

EXX
LD
AND
EXX
INC
LD
DEC
JR

LD
NEG
CCF
LD
LD
CPL
ADC
LD
EXX
LD
CPL
ADC
LD
LD
CPL
ADC
JR

RRA
EXX

DE, HL

AF

L2FBA
L2FDD
AF

HL
(HL) , A
HL

1,B
H,C
HL, DE

DE, HL
HL, BC
DE, HL
A, H
A, L
L,A

L

DE, HL
HL

NC,L307C

A, 501
L2FDD
(HL)
Z,L309F

A, L
$80
HL
(HL) ,A
HL
Z,L30A5

AE

A,$00
NC, L30A3

’

’

’

’

’

routine FETCH-TWO
routine SHIFT-FP

to TEST-NEG

routine SHIFT-FP

to ADD-REP-6

to GO-NC-MLT

Negate
Complement Carry Flag

to END-COMPL

INC (HL) ;

;; ADD-REP-6
L309F: JP Z,L31AD ; to REPORT-6

EXX ;

;; END-COMPL
L30A3: LD D, A ;
EXX ;

;; GO-NC-MLT
L30A5: XOR A ;
JPp L3155 ; to TEST-NORM

; This routine is used, in the first instance, by the multiply calculator
; literal to perform an integer multiplication in preference to
; 32-bit multiplication to which it will resort if this overflows.

; It is also used by STK-VAR to calculate array subscripts and by DIM to
; calculate the space required for multi-dimensional arrays.

;; HL-HL*DE

L30A9: PUSH BC ; preserve BC throughout
LD B,S$10 ; set B to 16
LD A,H ; save H in A high byte
LD C,L ; save L in C low byte
LD HL, $0000 ; initialize result to zero

; now enter a loop.

;; HL-LOOP
L30B1: ADD HL, HL ; double result
JR C,L30BE ; to HL-END if overflow
RL C ; shift AC left into carry
RLA ’
JR NC, L30BC ; to HL-AGAIN to skip addition if no carry
ADD HL, DE ; add in DE
JR C,L30BE ; to HL-END if overflow

;; HL-AGAIN

L30BC: DJNZ L30B1 ; back to HL-LOOP for all 16 bits
;; HL-END
L30BE: POP BC ; restore preserved BC
RET ; return with carry reset if successful

; and result in HL.

; THE 'PREPARE TO MULTIPLY OR DIVIDE' SUBROUTINE

; This routine is called in succession from multiply and divide to prepare
; two mantissas by setting the leftmost bit that is used for the sign.

; On the first call A holds zero and picks up the sign bit. On the second

; call the two bits are XORed to form the result sign - minus * minus giving
; plus etc. If either number is zero then this is flagged.
; HL addresses the exponent.

;; PREP-M/D

L30CO:

CALL
RET

INC
XOR
SET
DEC
RET

;; multiply

L30CA:

LD
OR
JR

PUSH
PUSH
PUSH
CALL
EX
EX
LD
CALL
LD
XOR
LD
POP
CALL
EX
POP
JR

LD
OR
JR

LD

;7 MULT-RSLT

L30EA:

CALL
POP
RET

;7 MULT-OFLW

L30EF:

POP

;7 MULT-LONG

L30FO0:

CALL
XOR
CALL
RET

EXX
PUSH
EXX
PUSH
EX

L34E9

A, (DE)
(HL)
NZ,L30F0

DE
HL

DE
L2D7F
DE, HL
(SP), HL
B,C
L2D7F
A,B

C

c,A

HL
L30A9
DE, HL
HL
C,L30EF

A,D
E
NZ,L30EA
c,A

L2D8E
DE

DE

L3293

L30CO

HL

DE
DE, HL

’

’

routine TEST-ZERO preserves accumulator.
return carry set if zero

address first byte of mantissa

pick up the first or xor with first.
now set to give true 32-bit mantissa
point to exponent

return with carry reset

to MULT-LONG

routine INT-FETCH

routine INT-FETCH

routine HL-HL*DE

to MULT-OFLW

to MULT-RSLT

routine INT-STORE

routine RE-ST-TWO

routine PREP-M/D

CALL
EX
JR

PUSH
CALL
LD
AND
SBC
EXX
PUSH
SBC
EXX
LD
JR

;; MLT-LOOP

L3114:

JR

ADD
EXX
ADC
EXX

;+ NO-ADD

L311B:

EXX
RR
RR
EXX
RR
RR

;7 STRT-MLT

L3125:

EXX
RR
RR
EXX
RR
RRA
DJINZ

EX
EXX
EX
EXX
POP
POP
LD
ADD
JR

AND

;; MAKE-EXPT

L313B:

DEC
CCF

;; DIVN-EXPT

L313D:

RLA
CCF
RRA
JP

L30CO
DE, HL
C,L315D
HL
L2FBA
A,B

A

HL, HL

HL
HL, HL

B, $21
L3125

NC,L311B
HL, DE

HL, DE

13114
DE, HL
DE, HL

BC

HL

A,B

A,C
NZ,L313B

A

P,13146

’

’

’

routine PREP-M/D

to ZERO-RSLT

routine FETCH-TWO

to STRT-MLT

to NO-ADD

to MLT-LOOP

to MAKE-EXPT

Complement Carry Flag

Complement Carry Flag

to OFLW1-CLR

JR NC, L31AD ; to REPORT-6
AND A ;

;; OFLWI1-CLR

L3146: INC A ;
JR NZ,L3151 ; to OFLW2-CLR
JR C,L3151 ; to OFLW2-CLR
EXX ;
BIT 7,D ;
EXX ;
JR NZ,L31AD ; to REPORT-6

;7 OFLW2-CLR

1L3151: LD (HL) , A ;
EXX ;
LD A,B ;
EXX ;

;7 TEST-NORM

L3155: JR NC,L316C ; to NORMALISE
LD A, (HL) ;
AND A ;

;5 NEAR-ZERO
L3159: LD A, $80 ;
JR Z,L315E ; to SKIP-ZERO

;; ZERO-RSLT
L315D: XOR A ;

;; SKIP-ZERO

L315E: EXX ;
AND D ;
CALL L2FFB ; routine ZEROS-4/5
RLCA 7
LD (HL) , A ;
JR C,L3195 ; to OFLOW-CLR
INC HL ;
LD (HL) , A ;
DEC HL ;
JR 1.3195 ; to OFLOW-CLR

;; NORMALISE
L316C: LD B, $20 ;

;7 SHIFT-ONE

L316E: EXX ;
BIT 7,D ;
EXX ;
JR NZ,L3186 ; to NORML-NOW
RLCA ;
RL E ;
RL D ;
EXX ;

RL E ’

RL
EXX
DEC
JR

DJINZ

JR

;5 NORML-NOW
L3186: RLA
JR

CALL
JR

EXX
LD
EXX
INC
JR

;; OFLOW-CLR

L3195: PUSH
INC
EXX
PUSH
EXX
POP
LD
RLA
RL
RRA
LD
INC
LD
INC
LD
INC
LD
POP
POP
EXX
POP
EXX
RET

;7 REPORT-6
L31AD: RST
DEFB

;; division
L31AF: CALL
EX

D

(HL)
Z,L3159

L316E

L315D

NC, L3195

L3004
NZ,L3195

D, $80

(HL)
Z,L31AD

HL
HL

DE

BC

(HL)

(HL) , A
HL
(HL) ,C
HL
(HL),D
HL
(HL) ,E
HL
DE

HL

L3293
DE, HL

’

’

’

’

to NEAR-ZERO
to SHIFT-ONE

to ZERO-RSLT

to OFLOW-CLR

routine ADD-BACK
to OFLOW-CLR

to REPORT-6

ERROR-1
Error Report: Number too big

routine RE-ST-TWO

XOR
CALL
JR

EX
CALL
RET

EXX
PUSH
EXX
PUSH
PUSH
CALL
EXX
PUSH
LD
LD
EXX
LD
LD
XOR
LD
JR

;; DIV-LOOP

L31D2: RLA
RL
EXX
RL
RL
EXX

;; div-34th
L31DB: ADD
EXX
ADC
EXX
JR

;7 DIV-START

L31E2: SBC
EXX
SBC
EXX
JR

ADD
EXX
ADC
EXX
AND
JR

;; SUBN-ONLY

L31F2: AND
SBC
EXX
SBC
EXX

A

L30CO
C,L31AD
DE, HL
L30CO

C

HL

DE

HL
L2FBA

HL, HL
HL, HL

C,L31F2

HL, DE
HL, DE
NC,L31F9
HL, DE
HL, DE

A
L31FA

HL, DE

HL, DE

routine PREP-M/D
to REPORT-6

routine PREP-M/D

routine FETCH-TWO

to DIV-START

to SUBN-ONLY

to NO-RSTORE

to COUNT-ONE

;7 NO-RSTORE
L31F9: SCF

;; COUNT-ONE
L31FA: INC
JP

PUSH
JR

LD
LD
EXX
LD
LD
POP
RR
POP
RR
EXX
POP
POP
LD
SUB
JPp

;; Ttruncate
L.3214: LD
AND
RET

CP
JR

LD
LD
JR

;; T-GR-ZERO
L3221: CP
JR

INC
INC
INC
LD

AND
DEC
OR

DEC

B
M, L31D2

AF
z,L31E2

BC
HL
A,B

L313D

A, (HL)
A
Z

$81
NC, L3221

(HL), $00
A,$20
L3272

$91
NZ,L323F

HL
HL

HL

A, 580
(HL)
HL
(HL)
HL

Set Carry Flag

to DIV-LOOP

to DIV-START

jump back to DIVN-EXPT

to T-GR-ZERO

to NIL-BYTES

to T-SMALL

JR

LD
XOR

;; T-FIRST
1L.3233: DEC
JR

LD
INC
LD
DEC
LD
JR

;; T-SMALL
L323F: JR

PUSH
CPL
ADD
INC
LD
INC
LD
DEC
DEC
LD
BIT
JR

DEC

;7 T-NUMERIC

L3252: SET
LD
SUB
ADD
JR

LD
LD
SUB

;; T-TEST
L325E: JR

LD

;; T-SHIFT

L3261: SRL
RR
DJINZ

;; T-STORE

L3267: CALL
POP
RET

Nz,L3233

HL
NZ,L326C

(HL) , A
HL
(HL) , SFF
HL

A,s$18
L3272

NC,L326D
DE

A,s$91
HL

D, (HL)
HL

E, (HL)
HL

HL
C,$00
7,D
Z,L3252

C

~
O
o
[o¢]

325E

W o =
L O
o
o

Z,L3267

L3261

L2D8E
DE

to T-FIRST

to T-EXPNENT

to NIL-BYTES

to X-LARGE

to T-NUMERIC

to T-TEST

to T-STORE

to T-SHIFT

routine INT-STORE

rr

T-EXPNENT

L326C: LD A, (HL) ;
;7 X-LARGE
L.326D: SUB SAQ ;
RET P ;
NEG ; Negate
;; NIL-BYTES
L3272: PUSH DE ;
EX DE, HL ;
DEC HL ;
LD B,A ;
SRL B ;
SRL B ;
SRL B ;
JR Z,L3283 ; to BITS-ZERO
;; BYTE-ZERO
L327E: LD (HL) , $00 ;
DEC HL ;
DJINZ L327E ; to BYTE-ZERO
;; BITS-ZERO
1.3283: AND 507 ;
JR Z,L3290 ; to IX-END
LD B,A 7
LD A, SFF ;
;; LESS-MASK
L328A: SLA A ;
DJINZ L328A ; to LESS-MASK
AND (HL) ;
LD (HL) , A ;
;5 IX-END
1.3290: EX DE, HL ;
POP DE ;
RET ;

Storage of numbers in 5 byte form.

Both integers and floating-point numbers can be stored in five bytes.
Zero 1s a special case stored as 5 zeros.

For integers the form is

Byte 1 - zero,

Byte 2 - sign byte, $00 +ve, S$SFF -ve.
Byte 3 - Low byte of integer.

Byte 4 - High byte

Byte 5 - unused but always zero.

it seems unusual to store the low byte first but it is just as easy either
way. Statistically it just increases the chances of trailing zeros which
is an advantage elsewhere in saving ROM code.

zero sign low high unused
So +1 is 00000000 00000000 00000001 00000000 00000000

and -1 is 00000000 11111111 11111111 11111111 00000000

’

much of the arithmetic found in BASIC lines can be done using numbers
in this form using the Z80's 16 bit register operation ADD.

(multiplication is done by a sequence of additions).

Storing -ve integers in two's complement form,

addition and you might like to add the numbers
this case, the carry
This only applies when
numbers a carry denotes the result is out of integer range.
numbers a carry denotes the result is within range.

to the last rule is when the result is -65536

answer 1s zero.
the result is
With positive
With negative
The exception

If, as in
positive.

means that they are ready for

above to prove that the

is set then that denotes that

the signs don't match.

Floating point form is an alternative method of storing numbers which can

be used for integers and larger

In this form 1 is stored as
10000001 00000000 00000000 00000000 00000000

(or fractional)

numbers.

When a small integer is converted to a floating point number the last two

bytes are always blank so they are omitted in the following steps

first make exponent +1 +16d

10010001
10010000
10000010
10000001

00000000
00000000

01000000
10000000

however since the
be used to denote
PREP routines which gives

00000001
00000010

00000000
00000000

leftmost
the sign

10000001 00000000 00000000

INTEGERS' SUBROUTINE

THE 'RE-STACK TWO

"SMALL"

<- now shift left and decrement exponent

<- until a 1 abuts the imaginary point
to the left of the mantissa.

(bit 7 of the exponent is set if positive)

bit of the mantissa is always set then it can
of the mantissa and put back when needed by the

This routine is called to re-stack two numbers in full floating point form

e.g. from mult when integer multiplication has overflowed.

;; RE-ST-TWO
L3293: CALL L3296
;; RESTK-SUB
L3296: EX DE, HL

’

’

; routine RESTK-SUB below and continue
; into the routine to do the other one.

; swap pointers

THE 'RE-STACK ONE

$3D 're-stack')

(offset:

This routine re-stacks an integer,
floating point form.

"SMALL"

;; re-stack

1L3297: LD A, (HL)
AND A
RET NZ
PUSH DE
CALL L2D7F

INTEGER' SUBROUTINE

usually on the calculator stack,
HL points to first byte.

; Fetch Exponent byte to A

; test it

; return if not zero as already in full

; floating-point form.

; preserve DE.

; routine INT-FETCH

; integer to DE,

sign to C.

in full

; HL points to 4th byte.

XOR A ; clear accumulator.

INC HL ; point to 5th.

LD (HL) , A ; and blank.

DEC HL ; point to 4th.

LD (HL) , A ; and blank.

LD B, $91 ; set exponent byte +ve $81

; and imaginary dec point 16 bits to right
; of first bit.

; we could skip to normalize now but it's quicker to avoid normalizing
; through an empty D.

LD A,D ; fetch the high byte D

AND A ; is it zero ?

JR NZ,L32B1 ; skip to RS-NRMLSE if not.

OR E ; low byte E to A and test for zero

LD B,D ; set B exponent to O

JR Z,L32BD ; forward to RS-STORE if value is zero.

LD D,E ; transfer E to D

LD E,B ; set E to O

LD B, $89 ; reduce the initial exponent by eight.
;7 RS-NRMLSE
L32B1: EX DE, HL ; integer to HL, addr of 4th byte to DE.
;7 RSTK-LOOP
L32B2: DEC B ; decrease exponent

ADD HL, HL ; shift DE left

JR NC, L32B2 ; loop back to RSTK-LOOP

; until a set bit pops into carry

RRC C ; now rotate the sign byte $00 or S$FF
; into carry to give a sign bit

RR H ; rotate the sign bit to left of H
RR L ; rotate any carry into L
EX DE, HL ; address 4th byte, normalized int to DE

;7 RS-STORE

L32BD: DEC HL ; address 3rd byte
LD (HL) , E ; place E
DEC HL ; address 2nd byte
LD (HL),D ; place D
DEC HL ; address 1lst byte
LD (HL) , B ; store the exponent
POP DE ; restore initial DE.
RET ; return.

,-**

;** Part 10. FLOATING-POINT CALCULATOR **

,-**

; As a general rule the calculator avoids using the IY register.
; exceptions are val, val$ and str$.
; So an assembly language programmer who has disabled interrupts to use

; IY for other purposes can still use the calculator for mathematical
; purposes.

; THE 'TABLE OF CONSTANTS'

; used 11 times

;7 stk-zero 00 00 00 00 00
L32C5: DEFB $00 ;:Bytes: 1

DEFB $SBO ; ;Exponent $00

DEFB $00 ;7 (+00,+00,+00)

; used 19 times

;7 stk-one 00 00 01 00 00
1.32C8: DEFB $40 ;;Bytes: 2

DEFB SBO ; ;Exponent $00

DEFB $00,501 77 (+00,+00)

; used 9 times

;; stk-half 80 00 00 00 00
L32CC: DEFB $30 ; ;Exponent: $80, Bytes: 1

DEFB $00 ;7 (+00,+00,+00)
; used 4 times.
;; stk-pi/2 81 49 OF DA A2
L32CE: DEFB SF1 ; ;Exponent: $81, Bytes: 4

DEFB $49, $OF, $DA, SA2 ;;

; used 3 times.

;7 stk-ten 00 00 0A 00 00
L32D3: DEFB $40 ;;Bytes: 2

DEFB S$SBO ; ;Exponent $00

DEFB $00, $0A ;7 (+00,+00)

; THE 'TABLE OF ADDRESSES'

; Starts with binary operations which have two operands and one result.
; Three pseudo binary operations first.

;; tbl-addrs

L32D7: DEFW L368F ; $00 Address: $368F - Jjump-true
DEFW L343C ; $01 Address: $343C - exchange
DEFW L33A1 ; $02 Address: $33A1 - delete

; True binary operations.
DEFW L300F ; $03 Address: $300F - subtract
DEFW L30CA ; $04 Address: $30CA - multiply
DEFW L31AF ; $05 Address: $31AF - division
DEFW L3851 ; $06 Address: $3851 - to-power
DEFW L351B ; $07 Address: $351B - or
DEFW L3524 ; $08 Address: $3524 - no-&-no
DEFW L353B ; $09 Address: $353B - no-l-eql
DEFW L353B ; $OA Address: $353B - no-gr-eql
DEFW L353B ; $OB Address: $353B - nos-neql

DEFW L353B ; $0C Address: $353B - no-grtr

DEFW L353B ; $0D Address: $353B - no-less

DEFW L353B ; SOE Address: $353B - nos-eql
DEFW L3014 ; SOF Address: $3014 - addition
DEFW L352D ; $10 Address: $352D - str-&-no
DEFW L353B ; $11 Address: $353B - str-l-eql
DEFW L353B ; $12 Address: $353B - str-gr-eql
DEFW L353B ; $13 Address: $353B - strs-neql
DEFW L353B ; $14 Address: $353B - str-grtr
DEFW L353B ; $15 Address: $353B - str-less
DEFW L353B ; $16 Address: $353B - strs-eql
DEFW L359C ; $17 Address: $359C - strs-add

Unary follow.

DEFW L35DE ; $18 Address: $35DE - val$
DEFW L34BC ; $19 Address: $34BC - usr-$
DEFW 1L.3645 ; $1A Address: $3645 - read-in
DEFW L346E ; $1B Address: $346E - negate
DEFW L3669 ; $1C Address: $3669 - code
DEFW L35DE ; $1D Address: $35DE - val
DEFW L3674 ; S1E Address: $3674 - len
DEFW L37B5 ; S1F Address: $37B5 - sin
DEFW L37AA ; $20 Address: $37AA - cos
DEFW L37DA ; $21 Address: $37DA - tan
DEFW 1.3833 ; $22 Address: $3833 - asn
DEFW 1.3843 ; $23 Address: $3843 - acs
DEFW L37E2 ; $24 Address: $37E2 - atn
DEFW L3713 ; $25 Address: $3713 - 1n
DEFW L36C4 ; $26 Address: $36C4 - exp
DEFW L36AF ; $27 Address: S36AF - int
DEFW L384A ; $28 Address: $384A - sqgr
DEFW L3492 ; $29 Address: $3492 - sgn
DEFW L346A ; $2A Address: $346A - abs
DEFW L34AC ; $2B Address: $34AC - peek
DEFW L34A5 ; $2C Address: $34A5 - in
DEFW L34B3 ; $2D Address: $34B3 - usr-no
DEFW L361F ; $2E Address: $361F - str$
DEFW L35C9 ; $2F Address: $35C9 - chrs
DEFW L3501 ; $30 Address: $3501 - not

End of true unary.

DEFW L33C0 ; $31 Address: $33C0 - duplicate
DEFW L36A0 ; $32 Address: $36A0 - n-mod-m
DEFW L3686 ; $33 Address: $3686 - jump

DEFW L33C6 ; $34 Address: $33C6 - stk-data
DEFW L367A ; $35 Address: $367A - dec-jr-nz
DEFW L3506 ; $36 Address: $3506 - less-0
DEFW L34F9 ; $37 Address: $34F9 - greater-0
DEFW L369B ; $38 Address: $369B - end-calc
DEFW L3783 ; $39 Address: $3783 - get-argt
DEFW L3214 ; $3A Address: $3214 - truncate
DEFW L33A2 ; $3B Address: $33A2 - fp-calc-2
DEFW L2D4F ; $3C Address: $2D4F - e-to-fp
DEFW L3297 ; $3D Address: $3297 - re-stack

The following are just the next available slots for the 128 compound

literals which are in range $80 - SFF.
DEFW 13449 ; Address: $3449 - series-xx $80 - SO9F.
DEFW L341B ; Address: $341B - stk-const-xx $A0 - S$BF.

DEFW 1.342D ; Address: $342D - st-mem-xx SCO0 - SDF.

DEFW L340F ; Address: $340F - get-mem-xx SEO0 - SFF.

; Aside: 3E - 3F are therefore unused calculator literals.
; If the literal has to be also usable as a function then bits 6 and 7 are
; used to show type of arguments and result.

; The Calculator

;; CALCULATE

L335B: CALL L35BF ; routine STK-PNTRS is called to set up the
; calculator stack pointers for a default
; unary operation. HL = last value on stack.
; DE = STKEND first location after stack.

; the calculate routine is called at this point by the series generator...

;7 GEN-ENT-1

L335E: LD A,B ; fetch the 7280 B register to A
LD ($5C67) ,A ; and store value in system variable BREG.
; this will be the counter for dec-jr-nz
; or if used from fp-calc2 the calculator
; instruction.
; ... and again later at this point

;7 GEN-ENT-2
L3362: EXX ; switch sets
EX (SP),HL ; and store the address of next instruction,
; the return address, in H'L'.
; If this is a recursive call the H'L'
; of the previous invocation goes on stack.
; c.f. end-calc.
EXX ; switch back to main set

; this is the re-entry looping point when handling a string of literals.

;7 RE-ENTRY

L3365: LD ($5C65),DE ; save end of stack in system variable STKEND
EXX ; switch to alt
LD A, (HL) ; get next literal
INC HL ; increase pointer'

; single operation jumps back to here

;7 SCAN-ENT

L336C: PUSH HL ; save pointer on stack
AND A ; now test the literal
JP P,1L3380 ; forward to FIRST-3D if in range $00 - $3D

; anything with bit 7 set will be one of
; 128 compound literals.

; compound literals have the following format.

; bit 7 set indicates compound.

; bits 6-5 the subgroup 0-3.

; bits 4-0 the embedded parameter $00 - S$1F.

; The subgroup 0-3 needs to be manipulated to form the next available four
; address places after the simple literals in the address table.

LD D,A ; save literal in D
AND $60 ; and with 01100000 to isolate subgroup

RRCA ; rotate bits

RRCA ; 4 places to right

RRCA ; not five as we need offset * 2

RRCA ; 00000xx0

ADD A,S$7C ; add ($3E * 2) to give correct offset.
; alter above if you add more literals.

LD L,A ; store in L for later indexing.

LD A,D ; bring back compound literal

AND S1F ; use mask to isolate parameter bits

JR L338E ; forward to ENT-TABLE

; the branch was here with simple literals.

;; FIRST-3D

L3380: CP $18 ; compare with first unary operations.
JR NC, L338C ; to DOUBLE-A with unary operations

; it is binary so adjust pointers.

EXX ;

LD BC, SFFFB ; the value -5

LD D,H ; transfer HL, the last value, to DE.

LD E,L ;

ADD HL, BC ; subtract 5 making HL point to second
; value.

EXX ;

;; DOUBLE-A
L338C: RLCA ; double the literal
LD L,A ; and store in L for indexing

;; ENT-TABLE

L338E: LD DE, L32D7 ; Address: tbl-addrs
LD H,$00 ; prepare to index
ADD HL, DE ; add to get address of routine
LD E, (HL) ; low byte to E
INC HL ;
LD D, (HL) ; high byte to D
LD HL, L3365 ; Address: RE-ENTRY
EX (SP) , HL ; goes to stack
PUSH DE ; now address of routine
EXX ; main set
; avoid using IY register.
LD BC, ($5C606) ; STKEND_hi

; nothing much goes to C but BREG to B
; and continue into next ret instruction
; which has a dual identity

; A simple return but when used as a calculator literal this
; deletes the last value from the calculator stack.

; On entry, as always with binary operations,

; HL=first number, DE=second number

; On exit, HL=result, DE=stkend.

; So nothing to do

;; delete
L33A1: RET ; return - indirect jump if from above.

’

’

’

this single operation is used, in the first instance, to evaluate most
of the mathematical and string functions found in BASIC expressions.

;7 fp-calc-2
L33A2: POP AF ; drop return address.
LD A, ($5C67) ; load accumulator from system variable BREG
; value will be literal e.g. 'tan'
EXX ; switch to alt
JR L336C ; back to SCAN-ENT

; next literal will be end-calc at L2758

THE 'TEST FIVE SPACES' SUBROUTINE
This routine is called from MOVE-FP, STK-CONST and STK-STORE to test that
there is enough space between the calculator stack and the machine stack
for another five-byte value. It returns with BC holding the value 5 ready
for any subsequent LDIR.

;; TEST-5-SP
L33A9: PUSH DE ; save
PUSH HL ; registers
LD BC, $0005 ; an overhead of five bytes
CALL L1F05 ; routine TEST-ROOM tests free RAM raising
; an error if not.
POP HL ; else restore
POP DE ; registers.
RET ; return with BC set at 5.

THE 'STACK NUMBER' SUBROUTINE

This routine is called to stack a hidden floating point number found in

; a BASIC line. It is also called to stack a numeric variable value, and
; from BEEP, to stack an entry in the semi-tone table. It is not part of the
; calculator suite of routines. On entry, HL points to the number to be
; stacked.
;+ STACK-NUM
L33B4: LD DE, ($5C65) ; Load destination from STKEND system variable.
CALL L33CO0 ; Routine MOVE-FP puts on calculator stack
; with a memory check.
LD ($5C65) ,DE ; Set STKEND to next free location.
RET ; Return.

rs

rs

This simple routine is a 5-byte LDIR instruction

that incorporates a memory check.

When used as a calculator literal it duplicates the last value on the
calculator stack.

Unary so on entry HL points to last value, DE to stkend

duplicate
MOVE-FP

L33C0: CALL L33A9 ; routine TEST-5-SP test free memory

; and sets BC to 5.

LDIR
RET

; Stack lite

rals ($34)

’
’

’

copy the five bytes.
return with DE addressing new STKEND
and HL addressing new last value.

; When a calculator subroutine needs to put a value on the calculator
; stack that is not a regular constant this routine is called with a
; variable number of following data bytes that convey to the routine
; the integer or floating point form as succinctly as is possible.

;; stk-data
L33C6: LD
LD

;7 STK-CONST
L33C8: CALL

EXX
PUSH
EXX

EX
PUSH

LD
AND
RLCA
RLCA
LD
INC

LD
AND
JR

; else byte

INC
LD

;; FORM-EXP
L33DE: ADD
LD
LD
SUB

INC
INC
LD
LDIR
POP

EX

EXX
POP

= =
e

L33A9

HL

(SP) , HL
BC

A, (HL)
$COo

C,A

C

A, (HL)

S3F
NZ,L33DE

transfer STKEND
to HL for result.

routine TEST-5-SP tests that room exists
and sets BC to $05.

switch to alternate set
save the pointer to next literal on stack
switch back to main set

pointer to HL, destination to stack.
save BC - value 5 from test room ??.

fetch the byte following 'stk-data'
isolate bits 7 and 6

rotate

to bits 1 and 0 range $00 - $03.
transfer to C

and increment to give number of bytes
to read. $01 - $04

reload the first byte

mask off to give possible exponent.
forward to FORM-EXP if it was possible to
include the exponent.

is just a byte count and exponent comes next.

HL
A, (HL)

A,$50
(DE) , A
A, 505

HL
DE
B,S00

BC

(SP) ,HL

HL

’

’

address next byte and
pick up the exponent (- $50).

now add $50 to form actual exponent
and load into first destination byte.
load accumulator with $05 and
subtract C to give count of trailing
zeros plus one.

increment source

increment destination

prepare to copy

copy C bytes

restore 5 counter to BC ?7?.
put HL on stack as next literal pointer
and the stack value - result pointer -

to HL.

switch to alternate set.
restore next literal pointer from stack

; to H'L'.

EXX ; switch back to main set.
LD B,A ; zero count to B
XOR A ; clear accumulator
;7 STK-ZEROS
L33F1: DEC B ; decrement B counter
RET Z ; return if zero. >>

; DE points to new STKEND
; HL to new number.

LD (DE) , A ; else load zero to destination
INC DE ; increase destination
JR L33F1 ; loop back to STK-ZEROS until done.

THE 'SKIP CONSTANTS' SUBROUTINE

This routine traverses variable-length entries in the table of constants,
stacking intermediate, unwanted constants onto a dummy calculator stack,
in the first five bytes of ROM. The destination DE normally points to the
end of the calculator stack which might be in the normal place or in the
system variables area during E-LINE-NO; INT-TO-FP; stk-ten. In any case,
it would be simpler all round if the routine just shoved unwanted values
where it is going to stick the wanted value. The instruction LD DE, $0000
can be removed.

;7 SKIP-CONS
L33F7: AND A ; test if initially zero.
;7 SKIP-NEXT
L33F8: RET Z ; return if zero. >>
PUSH AF ; save count.
PUSH DE ; and normal STKEND
LD DE, $0000 ; dummy value for STKEND at start of ROM

; Note. not a fault but this has to be

; moved elsewhere when running in RAM.

; e.g. with Expandor Systems 'Soft ROM'.

; Better still, write to the normal place.
CALL 1L33C8 ; routine STK-CONST works through variable

; length records.

POP DE ; restore real STKEND
POP AF ; restore count

DEC A ; decrease

JR L33F8 ; loop back to SKIP-NEXT

THE 'LOCATE MEMORY' SUBROUTINE

This routine, when supplied with a base address in HL and an index in A,
will calculate the address of the A'th entry, where each entry occupies
five bytes. It is used for reading the semi-tone table and addressing
floating-point numbers in the calculator's memory area.

It is not possible to use this routine for the table of constants as these
six values are held in compressed format.

;; LOC-MEM
L3406: LD C,A ; store the original number $00-$1F.
RLCA ; X2 - double.

RLCA ; X4 - quadruple.

’
’
’

’

rr

ADD A,C ; X5 - now add original to multiply by five.

LD C,A ; place the result in the low byte.

LD B,S$00 ; set high byte to zero.

ADD HL, BC ; add to form address of start of number in HL.
RET ; return.

Get from memory area ($SE0 etc.)

Literals $EO to SFF
A holds $00-$1F offset.
The calculator stack increases by 5 bytes.

get-mem-xx

L340F: PUSH DE ; save STKEND
LD HL, ($5C68) ; MEM is base address of the memory cells.
CALL L3406 ; routine LOC-MEM so that HL = first byte
CALL L33CO ; routine MOVE-FP moves 5 bytes with memory
; check.
; DE now points to new STKEND.
POP HL ; original STKEND is now RESULT pointer.
RET ; return.

rr

Stack a constant (A0 etc.)

This routine allows a one-byte instruction to stack up to 32 constants
held in short form in a table of constants. In fact only 5 constants are
required. On entry the A register holds the literal ANDed with 1F.

It isn't very efficient and it would have been better to hold the
numbers in full, five byte form and stack them in a similar manner

to that used for semi-tone table values.

stk-const-xx

L341B: LD H,D ; save STKEND - required for result
D L,E ;
EXX ; sSwap
PUSH HL ; save pointer to next literal
LD HL,L32C5 ; Address: stk-zero - start of table of
; constants
EXX ;
CALL L33F7 ; routine SKIP-CONS
CALL L33C8 ; routine STK-CONST
EXX ;
POP HL ; restore pointer to next literal.
EXX ;
RET ; return.

Store in a memory area ($CO etc.)

Offsets $CO to $DF

Although 32 memory storage locations can be addressed, only six
$CO to $C5 are required by the ROM and only the thirty bytes (6*5)
required for these are allocated. Spectrum programmers who wish to
use the floating point routines from assembly language may wish to
alter the system variable MEM to point to 160 bytes of RAM to have
use the full range available.

A holds the derived offset $00-$1F.

This is a unary operation, so on entry HL points to the last value and DE
points to STKEND.

;7 St-mem—-xx

1L342D: PUSH HL ; save the result pointer.
EX DE, HL ; transfer to DE.
LD HL, ($5C68) ; fetch MEM the base of memory area.
CALL L3406 ; routine LOC-MEM sets HL to the destination.
EX DE, HL ; swap - HL is start, DE is destination.
CALL L33CO0 ; routine MOVE-FP.

; note. a short 1d bc,5; 1ldir
; the embedded memory check is not required
; so these instructions would be faster.

EX DE, HL ; DE = STKEND
POP HL ; restore original result pointer
RET ; return.

; THE 'EXCHANGE' SUBROUTINE

; (offset: $01 'exchange')

; This routine swaps the last two values on the calculator stack.
; On entry, as always with binary operations,
; HL=first number, DE=second number

; On exit, HL=result, DE=stkend.

;; exchange
L343C: LD B, $05 ; there are five bytes to be swapped

; start of loop.

;; SWAP-BYTE

L343E: LD A, (DE) ; each byte of second

LD C, (HL) ; each byte of first

EX DE, HL ; swap pointers

LD (DE) , A ; store each byte of first

LD (HL) ,C ; store each byte of second

INC HL ; advance both

INC DE ; pointers.

DJINZ L343E ; loop back to SWAP-BYTE until all 5 done.

EX DE, HL ; even up the exchanges so that DE addresses
; STKEND.

RET ; return.

; THE 'SERIES GENERATOR' ROUTINE
; (offset: $86 'series-06")
; (offset: $88 'series-08"')
; (offset: $8C 'series-0C')

; The Spectrum uses Chebyshev polynomials to generate approximations for

; SIN, ATN, LN and EXP. These are named after the Russian mathematician

; Pafnuty Chebyshev, born in 1821, who did much pioneering work on numerical
; series. As far as calculators are concerned, Chebyshev polynomials have an
; advantage over other series, for example the Taylor series, as they can

; reach an approximation in just six iterations for SIN, eight for EXP and

; twelve for LN and ATN. The mechanics of the routine are interesting but

; for full treatment of how these are generated with demonstrations in

; Sinclair BASIC see "The Complete Spectrum ROM Disassembly" by Dr Ian Logan
; and Dr Frank O'Hara, published 1983 by Melbourne House.

;; series-xx
L3449: LD B,A ; parameter $00 - S$1F to B counter
CALL L335E ; routine GEN-ENT-1 is called.
; A recursive call to a special entry point

; in the calculator that puts the B register

; in the system variable BREG. The return

; address 1is the next location and where

; the calculator will expect its first

; instruction - now pointed to by HL'.

; The previous pointer to the series of

; five-byte numbers goes on the machine stack.

; The initialization phase.

DEFB $31 ;;duplicate X, X
DEFB SOF ;;addition x+x
DEFB SCO ;;st-mem-0 X+x
DEFB 502 ;;delete .
DEFB SA0 ;;stk-zero 0
DEFB 3C2 ;7 st-mem-2 0

; a loop is now entered to perform the algebraic calculation for each of
; the numbers in the series

;+ G-LOOP

1L3453: DEFB $31 ;;duplicate v, V.
DEFB SEO ; rget-mem-0 v, Vv, X+2
DEFB $04 ;imultiply vV, V¥x+2
DEFB SE2 ;7 get-mem-2 Vv,V *x+2,v
DEFB sC1 ;s st-mem-1
DEFB 503 ;s subtract
DEFB $38 ;;end-calc

; the previous pointer is fetched from the machine stack to H'L' where it
; addresses one of the numbers of the series following the series literal.

CALL L33C6 ; routine STK-DATA is called directly to
; push a value and advance H'L'.
CALL L3362 ; routine GEN-ENT-2 recursively re-enters

; the calculator without disturbing

; system variable BREG

; H'L' value goes on the machine stack and is
; then loaded as usual with the next address.

DEFB SOF ;;addition

DEFB 501 ; ;exchange

DEFB SC2 ;;st-mem-2

DEFB 502 ; ;delete

DEFB $35 ;;dec-jr-nz

DEFB SEE ;:back to L3453, G-LOOP

; when the counted loop is complete the final subtraction yields the result
; for example SIN X.

DEFB SE1 ;;get-mem-1
DEFB 503 ;;subtract
DEFB $38 ;;end-calc
RET ; return with H'L' pointing to location

; after last number in series.

; THE 'ABSOLUTE MAGNITUDE' FUNCTION

; (offset: $2A 'abs')
; This calculator literal finds the absolute value of the last value,
; integer or floating point, on calculator stack.

;; abs
L346A: LD B, SFF ; signal abs
JR L3474 ; forward to NEG-TEST

; THE 'UNARY MINUS' OPERATION

; (offset: $1B 'negate')
; Unary so on entry HL points to last value, DE to STKEND.

;+ NEGATE

;7 negate

L346E: CALL L34E9 ; call routine TEST-ZERO and
RET C ; return if so leaving zero unchanged.
LD B,S$00 ; signal negate required before joining

; common code.

;; NEG-TEST

1L3474: 1D A, (HL) ; load first byte and
AND A ; test for zero
JR Z,L3483 ; forward to INT-CASE if a small integer

; for floating point numbers a single bit denotes the sign.

INC HL ; address the first byte of mantissa.

LD A,B ; action flag $FF=abs, $00=neg.

AND $80 ; now $80 $00

OR (HL) ; sets bit 7 for abs

RLA ; sets carry for abs and if number negative
CCF ; complement carry flag

RRA ; and rotate back in altering sign

LD (HL) , A ; put the altered adjusted number back

DEC HL ; HL points to result

RET ; return with DE unchanged

; for integer numbers an entire byte denotes the sign.

;; INT-CASE

1.3483: PUSH DE ; save STKEND.
PUSH HL ; save pointer to the last value/result.
CALL L2D7F ; routine INT-FETCH puts integer in DE

; and the sign in C.

POP HL ; restore the result pointer.

LD A,B ; SFF=abs, $00=neg

OR C ; SFF for abs, no change neg

CPL ; $00 for abs, switched for neg

LD C,A ; transfer result to sign byte.

CALL L2D8E ; routine INT-STORE to re-write the integer.
POP DE ; restore STKEND.

RET ; return.

; THE 'SIGNUM' FUNCTION

’

’

(offset: $29 'sgn')

This routine replaces the last value on the calculator stack,
which may be in floating point or integer form, with the integer wvalues

zero if zero, with one if positive and

;7 Sgn

13492: CALL L34E9
RET c
PUSH DE
LD DE, $0001
INC HL
RL (HL)
DEC HL
SBC A, A
LD C,A
CALL L2D8E
POP DE
RET

’

’

THE 'IN' FUNCTION

(offset: $2C 'in'")

with -minus one if negative.

call routine TEST-ZERO and
exit 1f so as no change is required.

save pointer to STKEND.

the result will be 1.

skip over the exponent.

rotate the sign bit into the carry flag.

step back to point to the result.

byte will be S$FF if negative, $00 if positive.
store the sign byte in the C register.

routine INT-STORE to overwrite the last

value with 0001 and sign.

restore STKEND.
return.

This function reads a byte from an input port.

;7 in

L34A5: CALL L1E99
IN A, (C)
JR L34B0

’

’

’

THE 'PEEK' FUNCTION

(offset: $2B 'peek')

Routine FIND-INT2 puts port address in BC.
All 16 bits are put on the address line.

Read the port.

exit to STACK-A (via IN-PK-STK to save a byte
of instruction code).

This function returns the contents of a memory address.
The entire address space can be peeked including the ROM.

7 peek

L34AC: CALL L1E99
LD A, (BC)

;; IN-PK-STK

1L34B0: JP 1.2D28

’

’

’

THE 'USR' FUNCTION

(offset: $2d 'usr-no')

routine FIND-INT2 puts address in BC.
load contents into A register.

exit via STACK-A to put the value on the
calculator stack.

The USR function followed by a number 0-65535 is the method by which
the Spectrum invokes machine code programs. This function returns the
contents of the BC register pair.

Note. that STACK-BC re-initializes the IY register if a user-written

program has altered it.

usr—no

L34B3: CALL L1ES9 ; routine FIND-INT2 to fetch the
; supplied address into BC.
LD HL,L2D2B ; address: STACK-BC 1is
PUSH HL ; pushed onto the machine stack.
PUSH BC ; then the address of the machine code
; routine.
RET ; make an indirect jump to the routine
; and, hopefully, to STACK-BC also.
; THE 'USR STRING' FUNCTION
; (offset: $19 'usr-$')
; The user function with a one-character string argument, calculates the
; address of the User Defined Graphic character that is in the string.
; As an alternative, the ASCII equivalent, upper or lower case,
; may be supplied. This provides a user-friendly method of redefining

; the 21 User Definable Graphics e.g.

; POKE USR "a", BIN 10000000 will put a dot in the top left corner of the

; character 144.

; Note. the curious double check on the range. With 26 UDGs the first check
; only is necessary. With anything less the second check only is required.
; It is highly likely that the first check was written by Steven Vickers.

;; usr-$
L34BC: CALL L2BF1 routine STK-FETCH fetches the string
parameters.
DEC BC decrease BC by
LD A,B one to test
OR C the length.
JR NZ, L34E7 to REPORT-A if not a single character.
LD A, (DE) fetch the character
CALL L2C8D routine ALPHA sets carry if 'A-Z' or 'a-z
JR C,L34D3 forward to USR-RANGE if ASCITI.
SUB $90 make UDGs range 0-20d
JR C,L34E7 to REPORT-A if too low. e.g. usr " ".
CP $15 Note. this test is not necessary.
JR NC, L34E7 to REPORT-A if higher than 20.
INC A make range 1-21d to match LSBs of ASCII
;7 USR-RANGE
1L34D3: DEC A make range of bits 0-4 start at zero
ADD A,A multiply by eight
ADD A,A and lose any set bits
ADD AA range now 0 - 25*8
CP SA8 compare to 21*8
JR NC, L34E7 to REPORT-A if originally higher
than 'U','u' or graphics U.
LD BC, ($5C7B) fetch the UDG system variable value.
ADD A,C add the offset to character
LD C,A and store back in register C.
JR NC, L34E4 forward to USR-STACK if no overflow.
INC B increment high byte.
;7 USR-STACK
L34E4: JP L2D2B Jjump back and exit via STACK-BC to store

;; REPORT-A

L34E7: RST 08H ERROR-1
DEFB 509 Error Report: Invalid argument
; THE 'TEST FOR ZERO' SUBROUTINE
; Test 1f top value on calculator stack is zero. The carry flag is set if
; the last value is zero but no registers are altered.

; All five bytes will be zero but first four only need be tested.
, HL points to the exponent the first byte of the value.

; On entry

;; TEST-ZERO

L34E9: PUSH
PUSH
LD

LD
INC
OR
INC
OR
INC
OR

LD

POP
POP
RET

SCF
RET

; (offset: $

HL
BC
B,A

A, (HL)
HL

(HL)
HL

(HL)
HL

(HL)

A,B
BC
HL

NZ

; THE 'GREATER THAN ZERO'

37 'greater-0'

preserve HL which is used to address.
preserve BC which is used as a store.
preserve A in B.

load first byte to accumulator
advance.

OR with second byte and clear carry.
advance.

OR with third byte.

advance.

OR with fourth byte.

restore A without affecting flags.
restore the saved
registers.

return if not zero and with carry reset.

set the carry flag.
return with carry set if zero.

OPERATOR

; Test i1f the last value on the calculator stack is greater than zero.
; This routine is also called directly from the end-tests of the comparison
; routine.

;; GREATER-0
;7 greater-0

L34F9: CALL L34E9 routine TEST-ZERO
RET C return if was zero as this
is also the Boolean 'false' value.
LD A, SFF prepare XOR mask for sign bit
JR L3507 forward to SIGN-TO-C
to put sign in carry
(carry will become set if sign is positive)
and then overwrite location with 1 or O
as appropriate.
; THE 'NOT' FUNCTION
; (offset: $30 'not')
; This overwrites the last value with 1 if it was zero else with zero

; if it was any other value.

; e.g. NOT O returns 1, NOT 1 returns 0, NOT -3 returns O.

; The subroutine is also called directly from the end-tests of the comparison
; operator.
;7 NOT
;7 not
L3501: CALL L34E9 ; routine TEST-ZERO sets carry if zero
JR L350B ; to FP-0/1 to overwrite operand with

; 1 if carry is set else to overwrite with zero.

; THE 'LESS THAN ZERO' OPERATION

; (offset: $36 'less-0')
; Destructively test if last value on calculator stack is less than zero.
; Bit 7 of second byte will be set if so.

;7 less-0
L3506: XOR A ; set XOR mask to zero
; (carry will become set if sign is negative).

; transfer sign of mantissa to Carry Flag.

;7 SIGN-TO-C

L3507: INC HL ; address 2nd byte.
XOR (HL) ; bit 7 of HL will be set if number is negative.
DEC HL ; address 1lst byte again.
RLCA ; rotate bit 7 of A to carry.

; THE 'ZERO OR ONE' SUBROUTINE

; This routine places an integer value of zero or one at the addressed
; location of the calculator stack or MEM area. The value one is written if
; carry 1s set on entry else zero.
;; FP-0/1
L350B: PUSH HL ; save pointer to the first byte

LD A, S$00 ; load accumulator with zero - without

; disturbing flags.

LD (HL) , A ; zero to first byte

INC HL ; address next

LD (HL) ,A ; zero to 2nd byte

INC HL ; address low byte of integer

RLA ; carry to bit 0 of A

LD (HL) , A ; load one or zero to low byte.

RRA ; restore zero to accumulator.

INC HL ; address high byte of integer.

LD (HL) ,A ; put a zero there.

INC HL ; address fifth byte.

LD (HL) , A ; put a zero there.

POP HL ; restore pointer to the first byte.

RET ; return.

; THE 'OR' OPERATOR

; (offset: $07 'or')
; The Boolean OR operator. e.g. X OR Y
; The result is zero if both values are zero else a non-zero value.

’

’

rr

e.g. 0 OR 0 returns 0.
-3 OR 0 returns -3.

0 OR -3 returns 1.

-3 OR 2 returns 1.

A binary operation.

On entry HL points to first operand (X) and DE to second operand (Y).

or

L351B: EX DE, HL

’

CALL L34E9
EX DE, HL
RET C

SCF

JR L350B

; make HL point to second number

; routine TEST-ZERO

; restore pointers

; return if result was zero - first operand,
; now the last value, is the result.

; set carry flag

; back to FP-0/1 to overwrite the first operand
; with the value 1.

THE 'NUMBER AND NUMBER' OPERATION

(offset: $08 'no-&-no')
The Boolean AND operator.

e.g. -3 AND 2 returns -3.

-3 AND O returns
0 and -2 returns
0 and 0 returns

o O O

Compare with OR routine above.

7, nNo—-&—no

13524: EX DE, HL
CALL L34E9
EX DE, HL
RET NC
AND A
JR L350B

’

’

’

THE 'STRING AND NUMBER' OPERAT
(offset: $10 'str-&-no')
e.g. "You Win" AND score>99
or the null string if false.

;7 str-&-no

L352D: EX DE, HL
CALL L34E9
EX DE, HL
RET NC

if the number was zero (fals
altering the length of the s

; make HL address second operand.
; routine TEST-ZERO sets carry if zero.

; restore pointers.
; return if second non-zero, first is result.

; else clear carry.
; back to FP-0/1 to overwrite first operand
; with zero for return value.

ION

will return the string if condition is true

; make HL point to the number.

; routine TEST-ZERO.

; restore pointers.

; return if number was not zero - the string
; is the result.

e) then the null string must be returned by
tring on the calculator stack to zero.

PUSH DE ; save pointer to the now obsolete number
; (which will become the new STKEND)

DEC DE ; point to the 5th byte of string descriptor.
XOR A ; clear the accumulator.

LD (DE) ,A ; place zero in high byte of length.

DEC DE ; address low byte of length.

LD (DE) ,A ; place zero there - now the null string.

POP DE ; restore pointer - new STKEND.

RET ; return.

THE 'COMPARISON' OPERATIONS
offset: $O0A 'no-gr-eql')
offset: $0B 'nos-neql')
offset: $0C 'no-grtr')
offset: $0D 'no-less')
offset: $0E 'nos-egl')
offset: $11 'str-l-eql')
offset: $12 'str-gr-eql')
offset: $13 'strs-neql')
offset: $14 'str-grtr')
offset: $15 'str-less')
offset: $16 'strs-eqgl')

o~ o~~~ o~~~ o~~~ —~

True binary operations.

A single entry point is used to evaluate six numeric and six string
comparisons. On entry, the calculator literal is in the B register and
the two numeric values, or the two string parameters, are on the
calculator stack.

The individual bits of the literal are manipulated to group similar
operations although the SUB 8 instruction does nothing useful and merely
alters the string test bit.

Numbers are compared by subtracting one from the other, strings are
compared by comparing every character until a mismatch, or the end of one
or both, is reached.

Numeric Comparisons.

The 'x>y' example is the easiest as it employs straight-thru logic.

Number y is subtracted from x and the result tested for greater-0 yielding

a final value 1 (true) or 0 (false).

For 'x<y' the same logic is used but the two values are first swapped on the
calculator stack.

For 'x=y' NOT is applied to the subtraction result yielding true if the
difference was zero and false with anything else.

The first three numeric comparisons are just the opposite of the last three
so the same processing steps are used and then a final NOT is applied.

literal Test No sub 8 ExOrNot 1st RRCA exch sub °? End-Tests

no-l-eqgl x<=y 09 00000001 dec 00000000 00000000 ---- x-y ? —--- >07? NOT
no-gr-eql x>=y 0A 00000010 dec 00000001 10000000c swap y- ? -—-— >07? NOT
nos-neql xX<>Y 0B 00000011 dec 00000010 00000001 =---- x-y ? NOT --- NOT
no-grtr x>y 0C 00000100 - 00000100 00000010 ---- x-y ? —--= >07? --—-
no-less x<y 0D 00000101 - 00000101 10000010c swap y-x ? --- >0? --—-
nos-eql xX=y 0OE 00000110 - 00000110 00000011 =--- x-y ? NOT --- ---

comp -> C/F
str-l-egl x$<=y$ 11 00001001 dec 00001000 00000100 ---- xSy$ O lor >0? NOT

str-gr-eqgl x$>=y$ 12 00001010 dec 00001001 10000100c swap yx 0 lor >07? NOT

; strs-neql x$<>y$ 13 00001011 dec 00001010 00000101 ---- xy O lor >0? NOT
; str-grtr x$>y$ 14 00001100 - 00001100 00000110 ---- xy 0 lor >0? ---
; str-less x$<y$ 15 00001101 - 00001101 10000110c swap yx 0 lor >02 ---
; strs—eql x$=y$ 16 00001110 - 00001110 00000111 ---- xy O lor >02 ---

; String comparisons are a little different in that the eql/neql carry flag
; from the 2nd RRCA is, as before, fed into the first of the end tests but

; along the way it gets modified by the comparison process. The result on the
; stack always starts off as zero and the carry fed in determines if NOT is

; applied to it. So the only time the greater-0 test is applied is if the

; stack holds zero which is not very efficient as the test will always yield

; zero. The most likely explanation is that there were once separate end tests
; for numbers and strings.

;; no-l-eql,etc.
L353B: LD A,B ; transfer literal to accumulator.
$08

SUB ; subtract eight - which is not useful.

BIT 2,A ; isolate '>', '<', '="',

JR NZ, L3543 ; skip to EX-OR-NOT with these.

DEC A ; else make $00-$02, $08-350A to match bits 0-2.

;7 EX-OR-NOT
1L3543: RRCA ; the first RRCA sets carry for a swap.
JR NC, L354E ; forward to NU-OR-STR with other 8 cases

; for the other 4 cases the two values on the calculator stack are exchanged.
PUSH AF ; save A and carry.
PUSH HL ; save HL - pointer to first operand.

; (DE points to second operand).

CALL L343C ; routine exchange swaps the two values.
; (HL = second operand, DE = STKEND)

POP DE ; DE = first operand
EX DE, HL ; as we were.
POP AF ; restore A and carry.

; Note. it would be better if the 2nd RRCA preceded the string test.
; It would save two duplicate bytes and if we also got rid of that sub 8
; at the beginning we wouldn't have to alter which bit we test.

;; NU-OR-STR
L354E: BIT 2,A ; test if a string comparison.
JR NZ, L3559 ; forward to STRINGS if so.

; continue with numeric comparisons.

RRCA ; 2nd RRCA causes egl/neqgl to set carry.
PUSH AF ; save A and carry
CALL L300F ; routine subtract leaves result on stack.
JR 1L358C ; forward to END-TESTS

;5 STRINGS

1L3559: RRCA ; 2nd RRCA causes egl/neqgl to set carry.
PUSH AF ; save A and carry.

CALL L2BF1 ; routine STK-FETCH gets 2nd string params

’

;; BYTE-COMP
L3564: LD A, H
OR L
EX (SP) , HL
1D A,B
JR NZ, L3575
OR C
;; SECND-LOW
L356B: POP BC
JR Z,L3572
; the true condition - first is
POP AF
CCF
JR 1.3588

’

’

PUSH DE
PUSH BC
CALL L2BF1
POP HL

A loop is now entered to compare, by subtraction, each corresponding character

save start2 *.
and the length.

routine STK-FETCH gets lst string
parameters - start in DE, length in BC.
restore length of second to HL.

of the strings. For each successful match, the pointers are incremented and
the lengths decreased and the branch taken back to here. If both string
remainders become null at the same time, then an exact match exists.

the branch was here with

;; BOTH-NULL
L3572: POP AF
JR L3588

’
’

’

the branch was here when

to be tested.

;; SEC-PLUS
L3575: OR C
JR Z,L3585

’

test if the second string
is the null string and hold flags.

put length2 on stack, bring start2 to HL *.
hi byte of lengthl to A

forward to SEC-PLUS if second not null.
test length of first string.
pop the second length off stack.

forward to BOTH-NULL if first string is also
of zero length.

longer than second (SECND-LESS)

restore carry (set if egl/neql)

complement carry flag.

Note. equality becomes false.

Inequality is true. By swapping or applying
a terminal 'not', all comparisons have been
manipulated so that this is success path.
forward to leave via STR-TEST

restore carry - set for eqgl/neql
forward to STR-TEST

2nd string not null and low byte of first is yet

test the length of first string.
forward to FRST-LESS if length is zero.

both strings have at least one character left.

LD A, (DE)
SUB (HL)

JR C,L3585
JR NZ,L356B
DEC BC

fetch character of first string.
subtract with that of 2nd string.
forward to FRST-LESS if carry set

back to SECND-LOW and then STR-TEST
if not exact match.

decrease length of 1st string.

INC

INC
EX
DEC
JR

’

DE

HL
(SP), HL
HL
L3564

; the false condition.

;; FRST-LESS
L3585: POP
POP
AND

’

BC
AF

increment 1lst string pointer.

increment 2nd string pointer.
swap with length on stack
decrement 2nd string length
back to BYTE-COMP

discard length

pop A
clear the carry for false result.

; exact match and x$>y$ rejoin here

;; STR-TEST
1.3588: PUSH

RST
DEFB
DEFB

; both numeric and string paths

;; END-TESTS
L358C: POP
PUSH

CALL

POP

PUSH

CALL

POP
RRCA
CALL
RET

AF
28H

$A0
$38

AF
AF

C,L3501
AF
AF

NC, L34F9

AF

NC, L3501

’

’

;;stk-zero

’

save A and carry

FP-CALC
an initial false value.

;;end-calc

converge here.

pop carry - will be set if eql/neql
save it again.

routine NOT sets true(l) if equal (0)
or, for strings, applies true result.

pop carry and
save A

routine GREATER-0 tests numeric subtraction
result but also needlessly tests the string
value for zero - it must be.

pop A

the third RRCA - test for '<="',
apply a terminal NOT if so.
return.

'>='" or '<>'.

; THE 'STRING CONCATENATION' OPERATION

; (offset: $17 'strs-add')
; This literal combines two strings into one e.g. LET a$ = b$ + c$
; The two parameters of the two strings to be combined are on the stack.
;; strs-add
L359C: CALL L2BF1 ; routine STK-FETCH fetches string parameters
; and deletes calculator stack entry.
PUSH DE ; save start address.
PUSH BC ; and length.
CALL L2BF1 ; routine STK-FETCH for first string
POP HL ; re-fetch first length
PUSH HL ; and save again
PUSH DE ; save start of second string
PUSH BC ; and its length.

ADD HL, BC
LD B, H
LD c,L
RST 30H
CALL L2AB2
POP BC
POP HL
LD A,B
OR C
JR 7,L35B7
LDIR

;; OTHER-STR

L35B7: POP BC
POP HL
1D A,B
OR C
JR Z,L35BF
LDIR

add the two lengths.
transfer to BC

and create

BC-SPACES in workspace.

DE points to start of space.

routine STK-STO-$ stores parameters
of new string updating STKEND.

length of first

address of start

test for

zero length.

to OTHER-STR if null string

copy string to workspace.

now second length

and start of string

test this one

for zero length

skip forward to STK-PNTRS if so as complete.

else copy the bytes.
and continue into next routine which
sets the calculator stack pointers.

THE 'SET STACK POINTERS' SUBROUTINE

Register DE is set to STKEND
locations below this.

This routine is used when it
time the calculator stack is
machine stack.

This routine is also used to

and HL, the result pointer, is set to five

is inconvenient to save these values at the
manipulated due to other activity on the

terminate the VAL and READ-IN routines for

the same reason and to initialize the calculator stack at the start of

the CALCULATE routine.

;; STK-PNTRS
L35BF: LD HL, ($5C65)
LD DE, SFFFB
PUSH HL
ADD HL, DE
POP DE
RET

’

’

THE 'CHRS$' FUNCTION

(offset: $2f 'chrs$')

fetch STKEND value from system variable.
the value -5
push STKEND value.

subtract 5 from HL.

pop STKEND to DE.
return.

This function returns a single character string that is a result of

; converting a number in the range 0-255 to a string e.g. CHRS$ 65 = "A".
;; chrs
L35C9: CALL L2DD5 routine FP-TO-A puts the number in A.

JR C,L35DC forward to REPORT-Bd if overflow

JR NZ,L35DC forward to REPORT-Bd if negative

PUSH AF ; save the argument.

LD BC, $0001 ; one space required.

RST 30H ; BC-SPACES makes DE point to start

POP AF ; restore the number.

LD (DE) ,A ; and store in workspace

CALL L2AB2 ; routine STK-STO-$ stacks descriptor.

EX DE, HL ; make HL point to result and DE to STKEND.
RET ; return.

;7 REPORT-Bd
L35DC: RST 08H ; ERROR-1
DEFB S0A ; Error Report: Integer out of range

; THE 'VAL and VALS' FUNCTIONS

; (offset: $1d 'val')
; (offset: $18 'val$')

; VAL treats the characters in a string as a numeric expression.
; e.g. VAL "2.3" = 2.3, VAL "2+44" = 6, VAL ("2" + "4") = 24,
; VALS treats the characters in a string as a string expression.
; e.g. VALS (z$+"(2)") = a$(2) if z$ happens to be "as".
;i val
;i oval$
L35DE: LD HL, ($5C5D) fetch value of system variable CH ADD
PUSH HL and save on the machine stack.
LD A,B fetch the literal (either $1D or $18).
ADD A, SE3 add $E3 to form $00 (setting carry) or S$FB.
SBC A,A now form S$SFF bit 6 = numeric result
or $00 bit 6 = string result.
PUSH AF save this mask on the stack
CALL L2BF1 routine STK-FETCH fetches the string operand
from calculator stack.
PUSH DE save the address of the start of the string.
INC BC increment the length for a carriage return.
RST 30H BC-SPACES creates the space in workspace.
POP HL restore start of string to HL.
LD ($5C5D) , DE load CH_ADD with start DE in workspace.
PUSH DE save the start in workspace
LDIR copy string from program or variables or
workspace to the workspace area.
EX DE, HL end of string + 1 to HL
DEC HL decrement HL to point to end of new area.
LD (HL), $0D insert a carriage return at end.
RES 7, (IY+S$01) update FLAGS - signal checking syntax.
CALL L24FB routine SCANNING evaluates string
expression and result.
RST 18H GET-CHAR fetches next character.
CP $0D is it the expected carriage return ?
JR NZ,L360C forward to V-RPORT-C if not

'Nonsense in BASIC'.

POP HL restore start of string in workspace.
POP AF restore expected result flag (bit 6).
XOR (IY+$01) xor with FLAGS now updated by SCANNING.
AND $40 test bit 6 - should be zero if result types
match.
;+ V-RPORT-C
L360C: JP NZ,L1C8A jump back to REPORT-C with a result mismatch.
LD ($5C5D) , HL set CH_ADD to the start of the string again.
SET 7, (IY+S$01) update FLAGS - signal running program.
CALL L24FB routine SCANNING evaluates the string
in full leaving result on calculator stack.
POP HL restore saved character address in program.
LD ($5C5D) , HL and reset the system variable CH ADD.
JR L35BF back to exit via STK-PNTRS.

resetting the calculator stack pointers
HL and DE from STKEND as it wasn't possible
to preserve them during this routine.

; THE 'STRS$' FUNCTION

; (offset: $2e 'str$')

; This function produces a string comprising the characters that would appear
; if the numeric argument were printed.

; e.g. STRS (1/10) produces "0.1".

;i str$
L361F: LD BC, $0001 create an initial byte in workspace

RST 30H using BC-SPACES restart.

LD ($5C5B) , HL set system variable K CUR to new location.

PUSH HL and save start on machine stack also.

LD HL, ($5C51) fetch value of system variable CURCHL

PUSH HL and save that too.

LD A, SFF select system channel 'R'.

CALL L1601 routine CHAN-OPEN opens it.

CALL L2DE3 routine PRINT-FP outputs the number to
workspace updating K-CUR.

POP HL restore current channel.

CALL L1615 routine CHAN-FLAG resets flags.

POP DE fetch saved start of string to DE.

LD HL, ($5C5B) load HL with end of string from K CUR.

AND A prepare for true subtraction.

SBC HL, DE subtract start from end to give length.

LD B,H transfer the length to

LD C,L the BC register pair.

CALL L2AB2 routine STK-STO-$ stores string parameters
on the calculator stack.

EX DE, HL HL = last value, DE = STKEND.

RET return.

; THE 'READ-IN' SUBROUTINE

; (offset: $la 'read-in')

; This is the calculator literal used by the INKEYS$S function when a '#'
; is encountered after the keyword.

; INKEYS # does not interact correctly with the keyboard, #0 or #1, and
; its uses are for other channels.

;; read-in

L3645: CALL L1E94 ; routine FIND-INT1l fetches stream to A
CP $10 ; compare with 16 decimal.
Jp NC, L1ESF ; JUMP to REPORT-Bb if not in range 0 - 15.

; 'Integer out of range'
; (REPORT-Bd is within range)

LD HL, ($5C51) ; fetch current channel CURCHL

PUSH HL ; save it

CALL L1601 ; routine CHAN-OPEN opens channel

CALL L15E6 ; routine INPUT-AD - the channel must have an
; 1lnput stream or else error here from stream
; stub.

LD BC, $0000 ; initialize length of string to zero

JR NC, L365F ; forward to R-I-STORE if no key detected.

INC C ; increase length to one.

RST 30H ; BC-SPACES creates space for one character
; in workspace.

LD (DE) , A ; the character is inserted.

;; R-I-STORE

L365F: CALL L2AB2 ; routine STK-STO-$ stacks the string
; parameters.
POP HL ; restore current channel address
CALL L1615 ; routine CHAN-FLAG resets current channel

; system variable and flags.

Jp L35BF ; jump back to STK-PNTRS

; THE 'CODE' FUNCTION

; (offset: $1c 'code')

; Returns the ASCII code of a character or first character of a string

; e.g. CODE "Aardvark" = 65, CODE "" = 0.

;; code

L3669: CALL L2BF1 ; routine STK-FETCH to fetch and delete the

; string parameters.
; DE points to the start, BC holds the length.

LD A,B ; test length

OR C ; of the string.

JR Z,L3671 ; skip to STK-CODE with zero if the null string.
LD A, (DE) ; else fetch the first character.

;75 STK-CODE
L3671: JP L2D28 ; jump back to STACK-A (with memory check)

’

’

’

’

rs

THE 'LEN' FUNCTION

(offset: $le 'len')
Returns the length of a string.
In Sinclair BASIC strings can be more than twenty thousand characters long
SO a sixteen-bit register is required to store the length

len

L3674: CALL L2BF1 ; Routine STK-FETCH to fetch and delete the

’

’

’

rs

; string parameters from the calculator stack.
; Register BC now holds the length of string.

JP L2D2B ; Jump back to STACK-BC to save result on the
; calculator stack (with memory check).

THE 'DECREASE THE COUNTER' SUBROUTINE

(offset: $35 'dec-jr-nz')
The calculator has an instruction that decrements a single-byte
pseudo-register and makes consequential relative jumps just like
the 7Z80's DJNZ instruction.

dec-jr-nz

L367A: EXX ; switch in set that addresses code
PUSH HL ; save pointer to offset byte
LD HL, $5C67 ; address BREG in system variables
DEC (HL) ; decrement it
POP HL ; restore pointer
JR NZ, L3687 ; to JUMP-2 if not zero
INC HL ; step past the jump length.
EXX ; switch in the main set.
RET ; return.

Note. as a general rule the calculator avoids using the IY register
otherwise the cumbersome 4 instructions in the middle could be replaced by
dec (iy+$2d) - three bytes instead of six.

THE 'JUMP' SUBROUTINE

(offset: $33 '"jump')
This enables the calculator to perform relative jumps just like the Z80
chip's JR instruction.

77 Jump

;» JUMP

L3686: EXX ; switch in pointer set

;; JUMP-2

L3687: LD E, (HL) ; the jump byte 0-127 forward, 128-255 back.
LD AE ; transfer to accumulator.
RLA ; if backward jump, carry is set.
SBC A,A ; will be SFF if backward or $00 if forward.
LD D,A ; transfer to high byte.
ADD HL, DE ; advance calculator pointer forward or back.
EXX ; switch back.

RET ; return.

; THE 'JUMP-TRUE' SUBROUTINE

; (offset: $00 'jump-true')
; This enables the calculator to perform conditional relative Jjumps dependent
; on whether the last test gave a true result.

;7 Jjump-true

L368F: INC DE ; Collect the
INC DE ; third byte
LD A, (DE) ; of the test
DEC DE ; result and
DEC DE ; backtrack.
AND A ; Is result 0 or 1 ?
JR NZ,L3686 ; Back to JUMP if true (1).
EXX ; Else switch in the pointer set.
INC HL ; Step past the jump length.
EXX ; Switch in the main set.
RET ; Return.

; THE 'END-CALC' SUBROUTINE

; (offset: $38 'end-calc')
; The end-calc literal terminates a mini-program written in the Spectrum's
; internal language.

;; end-calc

L369B: POP AF ; Drop the calculator return address RE-ENTRY
EXX ; Switch to the other set.
EX (SP) , HL ; Transfer H'L' to machine stack for the

; return address.
; When exiting recursion, then the previous
; pointer is transferred to H'L'.

EXX ; Switch back to main set.
RET ; Return.

; THE 'MODULUS' SUBROUTINE

; (offset: $32 'n-mod-m')

; (nl,n2 -- r,q)

; Similar to FORTH's 'divide mod' /MOD

; On the Spectrum, this is only used internally by the RND function and could
; have been implemented inline. On the ZX81, this calculator routine was also
; used by PRINT-FP.

;7 n-mod-m

L36A0: RST 28H ;; FP-CALC 17, 3.
DEFB SCO s st-mem-0 17, 3.
DEFB $02 ;;delete 17.
DEFB $31 ;;duplicate 17, 17.
DEFB SEO ; rget-mem-0 17, 17, 3.
DEFB 505 ;;division 17, 17/3.
DEFB $27 ;rint 17, 5.
DEFB SEO ; rget-mem-0 17, 5, 3.
DEFB 501 ; ;exchange 17, 3, 5.
DEFB 3CO ;7 st-mem-0 17, 3, 5.

DEFB 504 ;ymultiply 17, 15.

DEFB 503 ;;subtract 2.

DEFB SEO ;7 get-mem-0 2, 5.
DEFB $38 ;;end-calc 2, 5.
RET ; return.

; THE 'INT' FUNCTION

; (offset $27: 'int')

; This function returns the integer of x, which is just the same as truncate
; for positive numbers. The truncate literal truncates negative numbers

; upwards so that -3.4 gives -3 whereas the BASIC INT function has to

; truncate negative numbers down so that INT -3.4 is -4.

; It is best to work through using, say, +-3.4 as examples.

;7 int

L36AF: RST 28H ;; FP-CALC X. (= 3.4 or -3.4).
DEFB $31 ; ;duplicate X, X.
DEFB $36 ;1 less-0 x, (1/0)
DEFB 500 ;7 jump-true x, (1/0)
DEFB $04 ;:to L36B7, X-NEG
DEFB $3A ;;truncate trunc 3.4 = 3.
DEFB 338 ;;end-calc 3.
RET ; return with + int x on stack.

;. X-NEG

L36B7: DEFB $31 ;;duplicate -3.4, -3.4.
DEFB $3A ;;truncate -3.4, -3.
DEFB $CO ;7 st-mem-0 -3.4, -3.
DEFB 503 ; ;subtract -.4
DEFB SEO ; ;get-mem-0 -.4, -=-3.
DEFB 501 ; ;exchange -3, -.4.
DEFB 330 ;;not -3, (0).
DEFB $00 ;7 jump-true -3.
DEFB $03 ;;to L36C2, EXIT -3.
DEFB SA1 ;s stk-one -3, 1.
DEFB 503 ;s subtract -4,

;; EXIT

L36C2: DEFB $38 ; ;end-calc -4,
RET ; return.

; THE 'EXP' FUNCTION

; (offset $26: 'exp')

; The exponential function EXP x is equal to e”x, where e is the mathematical
; name for a number approximated to 2.718281828.

; ERROR 6 if argument is more than about 88.

;; EXP

;i exp

L36C4: RST 28H ;; FP-CALC
DEFB $3D ;s re-stack

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

CALL
JR

JR

ADD
JR

;5 REPORT-6Db
L3703: RST
DEFB

;75 N-NEGTV
L3705: JR

SUB
JR

NEG
;7 RESULT-OK

L370C: LD
RET

;; RSLT-ZERO

$34

SF1

$38, SAA, $3B, $29
$04

$31

$27

$c3

$03

$31

SOF

SAlL

$03

$88

$13

$36

$58

$65,$66

$9D

578,565,540

SA2

$60,$32,5C9

SE7
$21,S$F7,SAF,S24
$SEB
$2F, $SBO, $B0O, $14
SEE

$S7E, $BB, $94, $58
SF1

$3A, $7E, SF8, SCF
SE3

$38

1L2DD5
NZ,L3705

C,L3703

A, (HL)
NC, L370C

08H
$05

C,L370E

(HL)
NC,L370E

’

’
’
’
’
’
’
’
’
’
’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

; Exponent:

; ;stk-data

;Exponent: $81, Bytes: 4

’

;smultiply
; ;duplicate
;;int

; 7 st-mem-3
; ;subtract
; ;duplicate
; ;addition
; ;stk-one

;subtract

; ;series-08

;Exponent: $63, Bytes: 1

;; (+00,+00,+00)

;Exponent: $68, Bytes: 2

;7 (+00,+00)

;Exponent: $6D, Bytes: 3

;7 (+00)

;Exponent: $72, Bytes: 3

;7 (+00)

;Exponent: $77, Bytes: 4

’

$7B, Bytes: 4

’

;Exponent: $7E, Bytes: 4

; Exponent:

$81, Bytes: 4

’

;5 get-mem-3
; ;end-calc

routine FP-TO-A
to N-NEGTV

to REPORT-6Db

'Number too big'

to RESULT-0OK

ERROR-1
Error Report:

to RSLT-ZERO

to RSLT-ZERO

Negate

return.

Number too big

L370E: RST 28H ;; FP-CALC

DEFB 502 ;;delete
DEFB SAO ;;stk-zero
DEFB $38 ;;end-calc
RET ; return.

; THE 'NATURAL LOGARITHM' FUNCTION

; (offset $25: 'ln')

; Function to calculate the natural logarithm (to the base e).
; e.qg. LN EXP 5.3 = 5.3
; Error A if the argument is 0 or negative.
;77 1n
L3713: RST 28H ;; FP-CALC
DEFB $3D ;;re-stack
DEFB $31 ;;duplicate
DEFB $37 ; ;greater-0
DEFB $00 ;7 jump-true
DEFB $04 ;;to L371C, VALID
DEFB $38 ;;end-calc

;7 REPORT-ADb

L371A: RST 08H ; ERROR-1
DEFB $09 ; Error Report: Invalid argument
;; VALID
L371C: DEFB SA0 ;;stk-zero
DEFB $02 ;delete
DEFB $38 ;;end-calc
i) A, (HL) ;
LD (HL), $80 ;
CALL L.2D28 ; routine STACK-A
RST 28H ;; FP-CALC
DEFB $34 ;7 stk-data
DEFB $38 ; ;Exponent: $88, Bytes: 1
DEFB 500 ;7 (+00,+00,+00)
DEFB $03 ; ;subtract
DEFB S01 ; ;exchange
DEFB $31 ;;duplicate
DEFB $34 ;;stk-data
DEFB SFO ; ;Exponent: $80, Bytes: 4
DEFB $4C, $CC,$CC, SCD ;;
DEFB $03 ; ;subtract
DEFB $37 ; ;greater-0
DEFB $00 ;7 jump-true
DEFB 508 ;;to L373D, GRE.S
DEFB 501 ; ;exchange
DEFB SAl ;7 stk-one
DEFB 503 ; ;subtract
DEFB S01 ; ;exchange
DEFB $38 ;;end-calc
INC (HL) ;

RST 28H ;; FP-CALC

;; GRE.S8

L373D: DEFB $01 ; ;exchange
DEFB $34 ;7 stk-data
DEFB SFO ; ;Exponent: $80, Bytes: 4
DEFB $31,$72,%17,S8F8 ;;
DEFB $04 ;smultiply
DEFB 501 ; ;exchange
DEFB SA2 ;;stk-half
DEFB $03 ; ;subtract
DEFB SA2 ;;stk-half
DEFB $03 ;;subtract
DEFB $31 ;;duplicate
DEFB $34 ;;stk-data
DEFB $32 ; ;Exponent: $82, Bytes: 1
DEFB $20 ;7 (+00,+00,+00)
DEFB $04 ;smultiply
DEFB SA2 ;stk-half
DEFB $03 ; ;subtract
DEFB $8C ;:series-0C
DEFB $11 ; ;Exponent: $61, Bytes: 1
DEFB SAC ;: (+00,+00,+00)
DEFB $14 ; ;Exponent: $64, Bytes: 1
DEFB $09 77 (+00,+00,+00)
DEFB $56 ; ;Exponent: $66, Bytes: 2
DEFB $DA, SA5 ;7 (+00,+00)
DEFB $59 ; ;Exponent: $69, Bytes: 2
DEFB $30, $C5 ;5 (+00,+00)
DEFB $5C ; ;Exponent: $6C, Bytes: 2
DEFB $90, $AA 77 (+00,+00)
DEFB S9OE ; ;Exponent: $6E, Bytes: 3
DEFB $70,$6F, $61 ;: (+00)
DEFB SAl ; ;Exponent: $71, Bytes: 3
DEFB $CB, $DA, $96 ;7 (+00)
DEFB SA4 ; ;Exponent: $74, Bytes: 3
DEFB $31, $9F, $B4 ;: (+00)
DEFB SE7 ; ;Exponent: $77, Bytes: 4
DEFB $SAO, SFE, $5C, SFC ; ;
DEFB SEA ; ;Exponent: S$7A, Bytes: 4
DEFB $1B, $43,SCA, $36 ;;
DEFB SED ; ;Exponent: $7D, Bytes: 4
DEFB $A7,$9C, $TE, $5E ;;
DEFB SFO ; ;Exponent: $80, Bytes: 4
DEFB $S6E, $23,$80,893 ;;
DEFB $04 ;smultiply
DEFB SOF ;;addition
DEFB $38 ;;end-calc
RET ; return.

; THE 'TRIGONOMETRIC' FUNCTIONS

; Trigonometry is rocket science. It is also used by carpenters and pyramid
; builders.

; Some uses can be quite abstract but the principles can be seen in simple
; right-angled triangles. Triangles have some special properties -

; 1) The sum of the three angles is always PI radians (180 degrees).

; Very helpful if you know two angles and wish to find the third.
; 2) In any right-angled triangle the sum of the squares of the two shorter
; sides is equal to the square of the longest side opposite the right-angle.

; Very useful if you know the length of two sides and wish to know the

length of the third side.

3) Functions sine, cosine and tangent enable one to calculate the length
of an unknown side when the length of one other side and an angle is
known.

4) Functions arcsin, arccosine and arctan enable one to calculate an unknown
angle when the length of two of the sides is known.

THE 'REDUCE ARGUMENT' SUBROUTINE

(offset $39: 'get-argt')

This routine performs two functions on the angle, in radians, that forms
the argument to the sine and cosine functions.

First it ensures that the angle 'wraps round'. That if a ship turns through
an angle of, say, 3*PI radians (540 degrees) then the net effect is to turn
through an angle of PI radians (180 degrees).

Secondly it converts the angle in radians to a fraction of a right angle,
depending within which quadrant the angle lies, with the periodicity
resembling that of the desired sine value.

The result lies in the range -1 to +1.

90 deg
(pi/2)
11 +1 I
|
sin+ I\ | /| sin+
cos- N 1/ cos+
tan- N/ tan+
| NT/)Y
180 deg. (pi) O -|-—==+-———=|-=- 0 (0) 0 degrees
| VAR |
sin- I/ 1\ sin-
cos- I/ 1 N\ | cos+
tan+ |/ | \ | tan-
|
IIT -1 Iv
(3pi/2)
270 deg.
get-argt
1L3783: RST 28H ;; FP-CALC X.
DEFB $3D ;;re-stack
DEFB $34 ;;stk-data
DEFB SEE ; ;Exponent: $7E,
;;Bytes: 4
DEFB $22,8F9,$83,$6E ;; X, 1/(2*PI)
DEFB 504 ;omultiply X/ (2*PI) = fraction
DEFB $31 ; ;duplicate
DEFB SA2 ;;stk-half
DEFB SOF ;;addition
DEFB $27 ;rint
DEFB $03 ; ;subtract now range -.5 to .5
DEFB $31 ;;duplicate
DEFB SOF ;;addition now range -1 to 1.
DEFB $31 ;;duplicate
DEFB SOF ;;addition now range -2 to +2.

quadrant I (0 to +1) and quadrant IV (-1 to 0) are now correct.

’

’

’

’

quadrant II ranges +1 to +2.
quadrant III ranges -2 to -1.

DEFB $31 ; ;duplicate Y, Y.
DEFB S2A ; ;abs Y, abs(Y). range 1 to 2
DEFB sAl ;;stk-one Y, abs(Y), 1.
DEFB $03 ; ;subtract Y, abs (Y)- range 0 to 1
DEFB $31 ; ;duplicate Y, Z, Z.
DEFB $37 ; ;greater-0 Y, Z, (1/0).
DEFB SCO ;7 st-mem-0 store as possible sign
HH for cosine function.
DEFB $00 ;7 jump-true
DEFB $04 ;;to L37A1, ZPLUS with quadrants II and III.

else the angle lies in quadrant I or IV and value Y is already correct.

DEFB 502 ;;delete Y. delete the test value.
DEFB $38 ;;end-calc Y.
RET ; return. with Q1 and Q4 >>>

the branch was here with quadrants II (0 to 1) and III (1 to 0).
Y will hold -2 to -1 if this is gquadrant IIT.

;; ZPLUS
L37A1: DEFB SAl ;s stk-one Y, Z2, 1
DEFB $03 ;;subtract Y, Z-1. 03 = 0 to -1
DEFB S01 ; ;exchange z-1, Y.
DEFB $36 ;1 1less-0 Zz-1, (1/0)
DEFB $00 ; ; jump-true Z-1.
DEFB 502 ;;to L37A8, YNEG
;;1f angle in quadrant III
; else angle is within quadrant II (-1 to 0)
DEFB S1B ; ;negate range +1 to 0.
;7 YNEG
L37A8: DEFB $38 ;;end-calc quadrants II and III correct.
RET ; return.

’

’
’

’

’

’

THE 'COSINE' FUNCTION

(offset $20: 'cos')

Cosines are calculated as the sine of the opposite angle rectifying the
sign depending on the quadrant rules.

/|
h /vyl
/ o
/x|
/====

a

The cosine of angle x is the adjacent side (a) divided by the hypotenuse 1.
However if we examine angle y then a/h is the sine of that angle.

Since angle x plus angle y equals a right-angle, we can find angle y by
subtracting angle x from pi/2.

However it's just as easy to reduce the argument first and subtract the
reduced argument from the value 1 (a reduced right-angle).

It's even easier to subtract 1 from the angle and rectify the sign.

In fact, after reducing the argument, the absolute value of the argument
is used and rectified using the test result stored in mem-0 by 'get-argt'
for that purpose.

;; cos
L37AA: RST 28H ;; FP-CALC angle in radians.
DEFB $39 ;rget-argt X reduce -1 to +1
DEFB S2A ; ;abs ABS X. 0 to 1
DEFB sAl ; ;stk-one ABS X, 1.
DEFB $03 ;s subtract now opposite angle
H although sign is -ve.
DEFB SEO ;s get-mem-0 fetch the sign indicator
DEFB $00 ;7 jump-true
DEFB $06 ;;fwd to L37B7, C-ENT

’

’

;;forward to common code if in QII or QITII.

DEFB S1B ; ;negate else make sign +ve.
DEFB $33 i 7 Jump
DEFB 503 ;;fwd to L37B7, C-ENT

;; with quadrants I and IV.

THE 'SINE' FUNCTION

(offset $1F: 'sin')

This is a fundamental transcendental function from which others such as cos
and tan are directly, or indirectly, derived.

It uses the series generator to produce Chebyshev polynomials.

/|
1/ |
/ Ix
/a |
/====
Y

The 'get-argt' function is designed to modify the angle and its sign
in line with the desired sine value and afterwards it can launch straight
into common code.

;; sin
L37B5: RST 28H ;; FP-CALC angle in radians
DEFB $39 ;;get-argt reduce - sign now correct.
;; C-ENT
L37B7: DEFB $31 ;;duplicate
DEFB $31 ; ;duplicate
DEFB $04 ;;multiply
DEFB $31 ;;duplicate
DEFB SOF ;;addition
DEFB SAl ; ;stk-one
DEFB $03 ; ;subtract
DEFB $86 ;;series-06

DEFB $14 ; ;Exponent: $64, Bytes: 1

DEFB SEG6 ;; (+00,+00,+00)

DEFB $5C ; ;Exponent: $6C, Bytes: 2
DEFB S1F, SO0B ;7 (+00,+00)

DEFB SA3 ; ;Exponent: $73, Bytes: 3
DEFB $8F, $38, SEE ;5 (+00)

DEFB SE9 ; ;Exponent: $79, Bytes: 4
DEFB $15,$63,$BB,$23 ;;

DEFB SEE ; ;Exponent: $7E, Bytes: 4
DEFB $92,$0D, $CD, $SED ;;

DEFB SF1 ; ;Exponent: $81, Bytes: 4
DEFB $23,$5D,$1B, SEA ;;

DEFB 504 ;omultiply

DEFB $38 ;rend-calc

RET ; return.

; THE 'TANGENT' FUNCTION

; Evaluates tangent x as sin(x) / cos (x).
; /|

; h / |

; / 1o

; /x|

; /====

; a

; the tangent of angle x is the ratio of the length of the opposite side
; divided by the length of the adjacent side. As the opposite length can
; be calculates using sin(x) and the adjacent length using cos(x) then

; the tangent can be defined in terms of the previous two functions.

; Error 6 if the argument, in radians, is too close to one like pi/2
; which has an infinite tangent. e.g. PRINT TAN (PI/2) evaluates as 1/0.
; Similarly PRINT TAN (3*PI/2), TAN (5*PI/2) etc.

;; tan
L37DA: RST 28H ;; FP-CALC X.
DEFB $31 ; ;duplicate X, X.
DEFB S1F ;;sin X, Sin Xx.
DEFB S01 ; ;exchange sin x, X.
DEFB $20 ;;COSs sin x, cos X.
DEFB S05 ;;division sin x/cos x (= tan x).
DEFB $38 ; ;end-calc tan x.
RET ; return.

; THE 'ARCTAN' FUNCTION

; (Offset $24: 'atn')

; the inverse tangent function with the result in radians.

; This is a fundamental transcendental function from which others such as asn
; and acs are directly, or indirectly, derived.

; It uses the series generator to produce Chebyshev polynomials.

;7 o atn
L37E2: CALL L3297 ; routine re-stack
LD A, (HL) ; fetch exponent byte.
CP $81 ; compare to that for 'one'

JR

RST

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB

;7 SMALL
L37F8: RST
DEFB

;; CASES
L37FA: DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

RET

C,L37F8

28H
SAl
S1B
$01
$05
$31
$36
$A3
$01
$00
$06

$1B
$33
$03

28H
SAQ

$01

$31

$31

$04

$31

SOF

SAl

$03

$8C

$10

SB2

$13

SOE

$55

SE4,$8D

$58

$39, $BC

$5B

$98, SFD

SOE

$00,$36,5$75

SAOD

$DB, $SE8, $B4

$63

$42,%C4

SE6
$B5,$09, $36, SBE
SEQ
$36,%$73,%$1B,$5D
SEC

$D8, $SDE, $63, SBE
SEFO
$61,%A1, $B3, $0C
$04

SOF

$38

’

’
’
’
’
’
’
’
’
’
’

’

’

’

’

’

’
’
’
’
’
’
’
’
’
’

’

’
’

’

’
’
’
’

’

’
’
’

’

’
’

’

’

forward,

; » FP-CALC
; ; stk-one

; rnegate

; ;exchange
;;division
; ;duplicate
;7 1less-0
;;stk-pi/2
; ;exchange

; jump-true

;;to L37FA,

; rnegate

; jump

; ;to L37FA,

;; FP-CALC
; ;stk-zero

; ;exchange

;duplicate

; ;duplicate
;smultiply
; ;duplicate

;addition

; 7 stk-one
; ;subtract
; ;series-0C

; Exponent:

;7 (+00,+00,

; Exponent:

;7 (+00,+00,
; Exponent:
;7 (+00,+00)

; Exponent:

;7 (+00,+00)
; Exponent:
;7 (+00,+00)
; s Exponent:
;7 (+00)

;Exponent:

;5 (+00)

; » Exponent:
;7 (+00,+00)
; s Exponent:

; Exponent:
; Exponent:
;Exponent:

’

;ymultiply

;addition

; ;end-calc

return.

if less, to SMALL

CASES

CASES

560,
+00)
$63,
+00)
$65,
$68,
$6B,
S6E,
$70,
$73,
$76,
$79,

$7¢C,

$80,

Bytes: 1
Bytes: 1
Bytes: 2
Bytes: 2
Bytes: 2
Bytes: 3
Bytes: 3
Bytes: 2
Bytes: 4
Bytes: 4
Bytes: 4
Bytes: 4

THE 'ARCSIN' FUNCTION

(Offset $22: 'asn')

the inverse sine function with result in radians.

derived from arctan function above.

Error A unless the argument is between -1 and +1 inclusive.
uses an adaptation of the formula asn(x) = atn(x/sgr(l-x*x))

/1
1/ |
/o Ix
/a |
/====
Yy
e.g. we know the opposite side (x) and hypotenuse (1)
and we wish to find angle a in radians.
we can derive length y by Pythagoras and then use ATN instead.

since y*y + x*x = 1*1 (Pythagoras Theorem) then

y=sqgr (1-x*x) - no need to multiply 1 by itself.
so, asn(a) = atn(x/y)

or more fully,

asn(a) = atn(x/sqr(l-x*x))

Close but no cigar.

While PRINT ATN (x/SQR (l-x*x)) gives the same results as PRINT ASN x,
it leads to division by zero when x is 1 or -1.

To overcome this, 1 is added to y giving half the required angle and the
result is then doubled.

That is PRINT ATN (x/(SQR (l-x*x) +1)) *2

A value higher than 1 gives the required error as attempting to find
square root of a negative number generates an error in Sinclair BASIC.

the

;5 asn
L.3833: RST 28H ;; FP-CALC X.
DEFB $31 ; ;duplicate X, X.
DEFB 531 ;;duplicate X, X, X.
DEFB $04 ;smultiply X, X*X.
DEFB SAl ;s stk-one X, x*x, 1.
DEFB $03 ;;subtract X, X*x-1.
DEFB S1B ; ;negate X, 1l-x*x.
DEFB $28 ;;sqr X, sqr(l-x*x) =y
DEFB SAl ;s stk-one X, vy, 1.
DEFB SOF ;;addition x, y+1.
DEFB $05 ;;division x/y+1.
DEFB 524 ;;atn a/2 (half the angle)
DEFB $31 ;;duplicate a/2, a/2.
DEFB SOF ;;addition a.
DEFB $38 ;;end-calc a.
RET ; return.
; THE 'ARCCOS' FUNCTION
; (Offset $23: 'acs')

the inverse cosine function with the result in radians.
Error A unless the argument is between -1 and +1.
Result in range 0 to pi.

Derived from asn above which is in turn derived from the preceding atn.
It could have been derived directly from atn using acs(x) =

atn(sqr (1-x*x) /x) .

However, as sine and cosine are horizontal translations of each other,
uses acs(x) = pi/2 - asn(x)

e.g. the arccosine of a known x value will give the required angle b in
radians.

We know, from above, how to calculate the angle a using asn(x).

Since the three angles of any triangle add up to 180 degrees, or pi radians,
and the largest angle in this case is a right-angle (pi/2 radians), then

we can calculate angle b as pi/2 (both angles) minus asn(x) (angle a).

; /|

; 1 /b

; /Ix

; /a |

; /====

; Yy

;; acs

1.3843: RST 28H ;; FP-CALC X.
DEFB $22 ;;asn asn (x)
DEFB SA3 ;istk-pi/2 asn(x), pi/2.
DEFB 503 ;;subtract asn(x) - pi/2.
DEFB S1B ; ;negate pi/2 -asn(x) = acs(x).
DEFB 338 ;;end-calc acs (x) .
RET ; return.

THE 'SQUARE ROOT' FUNCTION

(Offset $28: 'sqgr')

This routine is remarkable only in its brevity - 7 bytes.

It wasn't written here but in the ZX81 where the programmers had to squeeze
a bulky operating system into an 8K ROM. It simply calculates

the square root by stacking the value .5 and continuing into the 'to-power'
routine. With more space available the much faster Newton-Raphson method
should have been used as on the Jupiter Ace.

;7 sar
L384A: RST 28H ;; FP-CALC

DEFB $31 ;;duplicate

DEFB $30 ;;not

DEFB $00 ;7 jump-true

DEFB $1E ;;to L386C, LAST

DEFB SA2 ;;stk-half

DEFB $38 ;;end-calc

’

’

’

’

’

THE 'EXPONENTIATION' OPERATION

(Offset $06: 'to-power')

This raises the first number X to the power of the second number Y.
As with the 7X80,

0~ 0=1.
0 "~ 4n = 0.
0 ~ -n = arithmetic overflow.

;7 to-power

L3851:

RST

DEFB
DEFB
DEFB
DEFB
DEFB

28H
$01
$31
$30
$00
$07

; else X is non-zero.

; these
; begin

;; XISO
L.385D:

DEFB
DEFB
DEFB

Jp

$25
$04
$38

L36C4

rr

Function 'ln'

FP-CALC
; ;exchange
; ;duplicate
;snot
;7 jump-true
;;to L385D, XISO

R R
SIS

, X.
(1/0).

14 14

if X is zero.

will catch a negative value of X.

;71n Y, LN X.
;omultiply Y * LN X.
;;end-calc

; jump back to EXP routine ->

routines form the three simple results when the number is zero.
by deleting the known zero to leave Y the power factor.

DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB

$02
$31
$30
$00
$09

SAQ
$01
$37
$00
$06

;;delete

;;duplicate
;snot
;7 jump-true

;;to L386A,

;;stk-zero
; ;exchange
;;greater-0
;7 jump-true

;sto L386C,

rs

ONE

LAST

Y, Y.
Y, (1/0).

if Y is zero.
, O.

, Y.
, (1/0).

O O K

(@)

if Y was any positive
number.

; else force division by zero thereby raising an Arithmetic overflow error.
; There are some one and two-byte alternatives but perhaps the most formal
; might have been to use end-calc;

;; ONE
L386A:

;5 LAST
L.386C:

; THE 'SPARE'

;; spare
L386E:

DEFB
DEFB
DEFB

DEFB

DEFB

DEFB

RET

DEFB

DEFB
DEFB
DEFB

$Aal
$01
$05

$02
$Al

$38

LOCATIONS

SFF,

SFF,
SFF,
SFF,

SFF

SFF,
SFF,
SFF,

; ;stk-one

rst 08;

; ;exchange
;;division

; ;delete
; ;stk-one

;;end-calc

; return.

SFF, SFF,
$FF, SFF,
$FF, SFF,

SFF,
SFF,
SFF,

SFF,
SFF,
SFF,

defb 05.

SFF,
SFF,
SFF,

SFF;
SFF;
SFF;

1/0 ouch!

last value is 1 or O.

Whew!

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,

SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,

SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,

SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,

SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,

SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,

SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,

SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,

SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,

SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,

SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,

SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,

SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,

SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,

SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;

’

’

’

’

’

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

ORG $3D00

SFF, SFF,
SFF, SFF,
SFF, SFF,
SFF, S$FF,
SFF, SFF,
SFF, SFF,
SFF, S$FF,
SFF, SFF,
SFF, SFF,
SFF, SFF,
SFF, SFF,
SFF, SFF,
SFF, SFF,
SFF, SFF,
SFF, SFF,

SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,

SFF, SFF,
SFF, SFF,
SFF, SFF,
SFF, S$FF,
SFF, SFF,
SFF, SFF,
SFF, S$FF,
SFF, SFF,
SFF, SFF,
SFF, SFF,
SFF, SFF,
SFF, SFF,
SFF, SFF,
SFF, SFF,
SFF, SFF,

THE 'ZX SPECTRUM CHARACTER SET'

char-set

$20 - Character: ' '

L3D00: DEFB

’

’

’

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

$00000000
$00000000
500000000
500000000
500000000
500000000
500000000
%00000000

$21 - Character: '!!

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

$00000000
500010000
500010000
$00010000
500010000
500000000
500010000
500000000

$22 - Character: '"™!'

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

500000000
$00100100
$00100100
$00000000
500000000
500000000
500000000
500000000

$23 - Character: '#'

DEFB
DEFB
DEFB
DEFB
DEFB

500000000
$00100100
$01111110
$00100100
$00100100

CHRS (32)

CHRS (33)

CHRS (34)

CHRS (35)

SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,

SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,
SFF,

SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;
SFF;

’

’

’

’

’

’

DEFB $01111110
DEFB $00100100
DEFB 00000000

$24 - Character: 'S$'

DEFB 500000000
DEFB $00001000

DEFB %$00111110
DEFB %$00101000
DEFB $00111110
DEFB $00001010
DEFB 00111110
DEFB 00001000

$25 - Character: '$'

DEFB $00000000
DEFB $01100010
DEFB %$01100100
DEFB $00001000
DEFB $00010000
DEFB %$00100110
DEFB 01000110
DEFB $00000000

$26 - Character: '&'

DEFB 500000000
DEFB 500010000
DEFB $00101000
DEFB $00010000

DEFB %$00101010
DEFB %$01000100
DEFB $00111010

DEFB 500000000

$27 - Character: '''

DEFB 500000000
DEFB $00001000
DEFB $00010000
DEFB 500000000
DEFB %00000000
DEFB 500000000
DEFB $00000000
DEFB %00000000

$28 - Character: "'('

DEFB $00000000
DEFB $00000100
DEFB $00001000
DEFB 500001000
DEFB $00001000
DEFB $00001000
DEFB %00000100
DEFB %00000000

$29 - Character: '")'

DEFB 00000000
DEFB $00100000
DEFB $00010000

CHRS (36)

CHRS (37)

CHRS (38)

CHRS (39)

CHRS (40)

CHRS (41)

’

’

’

’

’

’

DEFB $00010000
DEFB $00010000
DEFB $00010000
DEFB $00100000
DEFB $00000000

S2A - Character: '*!'

DEFB %00000000
DEFB %00000000
DEFB $00010100
DEFB $00001000

DEFB 00111110
DEFB 00001000
DEFB $00010100

DEFB 500000000

$2B - Character: '+'

DEFB %$00000000
DEFB $00000000
DEFB $00001000
DEFB %$00001000
DEFB 00111110
DEFB $00001000
DEFB $00001000
DEFB 00000000

$2C - Character: ','

DEFB $00000000
DEFB $00000000
DEFB %$00000000
DEFB %$00000000
DEFB $00000000
DEFB $00001000
DEFB $00001000
DEFB $00010000

$2D - Character: '-!

DEFB 500000000
DEFB 500000000
DEFB %00000000
DEFB 500000000

DEFB $00111110
DEFB %$00000000
DEFB 00000000

DEFB 500000000

$2E - Character: '.'

DEFB 500000000
DEFB 500000000
DEFB 500000000
DEFB 500000000
DEFB %00000000
DEFB %00011000
DEFB $00011000
DEFB 500000000

$2F - Character: '/'

DEFB 500000000

CHRS (42)

CHRS (43)

CHRS (44)

CHRS (45)

CHRS (46)

CHRS (47)

DEFB $00000000
DEFB $00000010
DEFB $00000100
DEFB $00001000
DEFB $00010000
DEFB 500100000
DEFB $00000000

; $30 - Character: '0' CHRS (48)

DEFB $00000000

DEFB $00111100
DEFB 01000110
DEFB 01001010
DEFB $01010010
DEFB $01100010
DEFB $00111100

DEFB %$00000000
; $31 - Character: '1l' CHRS (49)

DEFB $00000000
DEFB %$00011000
DEFB 00101000
DEFB $00001000
DEFB $00001000
DEFB 00001000
DEFB $00111110
DEFB $00000000

; $32 - Character: '2' CHRS (50)

DEFB %00000000
DEFB %00111100
DEFB $01000010
DEFB $00000010

DEFB 00111100
DEFB 01000000
DEFB 01111110

DEFB %00000000
; $33 - Character: '3' CHRS (51)

DEFB %00000000
DEFB $00111100
DEFB $01000010
DEFB %00001100

DEFB %$00000010
DEFB %$01000010
DEFB %$00111100
DEFB 00000000
; $34 - Character: '4' CHRS (52)

DEFB $00000000
DEFB $00001000
DEFB %00011000
DEFB %00101000
DEFB $01001000

DEFB $01111110
DEFB 00001000
DEFB 00000000

; $35 - Character: '5' CHRS (53)

DEFB 500000000

DEFB 01111110
DEFB $01000000
DEFB $01111100

DEFB 500000010
DEFB $01000010
DEFB $00111100
DEFB %00000000

; $36 - Character: 'o6' CHRS (54)
DEFB $00000000
DEFB $00111100
DEFB %$01000000
DEFB $01111100

DEFB $01000010
DEFB $01000010
DEFB 500111100
DEFB %00000000

; $37 - Character: '7' CHRS (55)
DEFB $00000000
DEFB %$01111110
DEFB %$00000010
DEFB $00000100

DEFB $00001000
DEFB $00010000
DEFB 500010000
DEFB 500000000

; $38 - Character: '8’ CHRS (56)

DEFB 500000000

DEFB $00111100
DEFB 01000010
DEFB 00111100
DEFB $01000010
DEFB $01000010
DEFB $00111100

DEFB %$00000000
; $39 - Character: '9' CHRS (57)

DEFB $00000000

DEFB %$00111100
DEFB 01000010
DEFB $01000010
DEFB $00111110
DEFB 00000010
DEFB $00111100

DEFB %00000000
; $3A - Character: ':' CHRS (58)

DEFB %$00000000
DEFB %$00000000
DEFB $00000000
DEFB $00010000
DEFB 00000000
DEFB 00000000
DEFB $00010000
DEFB $00000000

; $3B - Character: ';' CHRS (59)

DEFB $00000000
DEFB 500000000
DEFB 500010000
DEFB 500000000
DEFB 500000000
DEFB %00010000
DEFB %00010000
DEFB $00100000

; $3C - Character: '<! CHRS (60)

DEFB 500000000
DEFB 500000000
DEFB $00000100
DEFB $00001000
DEFB 500010000
DEFB %00001000
DEFB $00000100
DEFB %00000000

; $3D - Character: '=' CHRS (61)

DEFB 500000000

DEFB 00000000
DEFB 00000000
DEFB $00111110
DEFB $00000000
DEFB $00111110

DEFB 500000000
DEFB %00000000

; $3E - Character: '>' CHRS (62)
DEFB $00000000
DEFB $00000000

DEFB $00010000
DEFB $00001000
DEFB $00000100
DEFB $00001000
DEFB 500010000
DEFB %00000000

; $3F - Character: '?' CHRS (63)
DEFB $00000000
DEFB %$00111100
DEFB %$01000010
DEFB $00000100

DEFB $00001000
DEFB 500000000
DEFB 500001000
DEFB 500000000

; $40 - Character: '@’ CHRS (64)

DEFB $00000000

DEFB $00111100
DEFB 01001010
DEFB 01010110
DEFB $01011110

DEFB $01000000

DEFB $00111100
DEFB $00000000

; $41 - Character: 'A' CHRS (65)

DEFB $00000000
DEFB $00111100
DEFB $01000010
DEFB %$01000010
DEFB %$01111110
DEFB $01000010
DEFB $01000010
DEFB 00000000

; $42 - Character: 'B' CHRS (66)

DEFB 00000000

DEFB $01111100
DEFB $01000010
DEFB %$01111100

DEFB $01000010
DEFB $01000010

DEFB $01111100
DEFB $00000000
; $43 - Character: 'C' CHRS (67)

DEFB 00000000
DEFB $00111100
DEFB 501000010
DEFB $01000000
DEFB $01000000
DEFB %01000010
DEFB %00111100
DEFB $00000000

; $44 - Character: 'D' CHRS (68)

DEFB $00000000
DEFB $01111000
DEFB $01000100
DEFB $01000010
DEFB 501000010
DEFB %01000100
DEFB $01111000
DEFB $00000000

; $45 - Character: 'E' CHRS (69)

DEFB 500000000

DEFB 01111110
DEFB $01000000
DEFB $01111100

DEFB $01000000
DEFB $01000000
DEFB $01111110
DEFB %$00000000

; $46 - Character: 'F! CHRS (70)
DEFB $00000000
DEFB $01111110

DEFB $01000000
DEFB $01111100

DEFB $01000000
DEFB $01000000
DEFB $01000000
DEFB $00000000

; $47 - Character: 'G' CHRS (71)

DEFB $00000000
DEFB %00111100
DEFB %01000010
DEFB $01000000

DEFB $01001110
DEFB 01000010
DEFB 00111100

DEFB %00000000
; $48 - Character: 'H' CHRS (72)
DEFB %00000000

DEFB %01000010
DEFB $01000010

DEFB $01111110
DEFB %$01000010
DEFB 01000010

DEFB $01000010
DEFB 500000000

; $49 - Character: 'I' CHRS (73)

DEFB 500000000
DEFB $00111110
DEFB $00001000
DEFB %00001000
DEFB %00001000
DEFB $00001000

DEFB %$00111110
DEFB $00000000
; $4A - Character: 'J' CHRS (74)

DEFB 00000000
DEFB $00000010
DEFB 500000010
DEFB %00000010
DEFB $01000010
DEFB $01000010

DEFB $00111100
DEFB $00000000
; $4B - Character: 'K!' CHRS (75)

DEFB $00000000
DEFB $01000100
DEFB 501001000
DEFB $01110000
DEFB $01001000
DEFB %01000100
DEFB %01000010
DEFB $00000000

; $4C - Character: 'L' CHRS (76)

DEFB 500000000
DEFB $01000000

DEFB $01000000
DEFB $01000000

DEFB 01000000
DEFB $01000000
DEFB 01111110

DEFB %00000000
; $4D - Character: 'M' CHRS (77)

DEFB %00000000
DEFB $01000010

DEFB $01100110
DEFB 01011010
DEFB 01000010
DEFB $01000010
DEFB $01000010

DEFB %$00000000
; $4E - Character: 'N' CHRS (78)

DEFB $00000000
DEFB $01000010

DEFB %$01100010
DEFB %01010010
DEFB $01001010
DEFB $01000110
DEFB 01000010

DEFB %$00000000
; $4F - Character: 'O’ CHRS (79)

DEFB $00000000
DEFB %$00111100
DEFB %$01000010
DEFB $01000010
DEFB $01000010
DEFB 01000010
DEFB 00111100
DEFB $00000000

; $50 - Character: 'P' CHRS (80)

DEFB $00000000
DEFB %$01111100
DEFB $01000010
DEFB $01000010
DEFB %$01111100
DEFB 01000000
DEFB $01000000
DEFB $00000000

; $51 - Character: 'Q' CHRS (81)

DEFB 500000000
DEFB $00111100
DEFB $01000010
DEFB %01000010

DEFB %$01010010
DEFB $01001010
DEFB $00111100
DEFB 00000000

; $52 - Character: 'R’ CHRS (82)

DEFB 500000000

DEFB $01111100
DEFB 01000010
DEFB $01000010
DEFB $01111100

DEFB %$01000100
DEFB %$01000010
DEFB %$00000000
; $53 - Character: 'S' CHRS (83)

DEFB $00000000

DEFB 00111100
DEFB 01000000
DEFB $00111100

DEFB $00000010
DEFB $01000010
DEFB $00111100
DEFB 500000000

; $54 - Character: 'T' CHRS (84)

DEFB %$00000000
DEFB 11111110
DEFB $00010000
DEFB $00010000
DEFB 00010000
DEFB $00010000
DEFB $00010000
DEFB $00000000

; $55 - Character: 'U' CHRS (85)
DEFB %$00000000

DEFB $01000010
DEFB $01000010

DEFB 01000010
DEFB 01000010
DEFB $01000010
DEFB $00111100

DEFB %$00000000
; $56 - Character: 'V' CHRS (86)
DEFB %$00000000

DEFB $01000010
DEFB %01000010

DEFB 01000010
DEFB $01000010
DEFB $00100100
DEFB 00011000

DEFB %$00000000
; $57 - Character: 'W' CHRS (87)

DEFB $00000000
DEFB %$01000010
DEFB %$01000010
DEFB $01000010
DEFB $01000010
DEFB 01011010
DEFB %00100100
DEFB $00000000

; $58 - Character: 'X' CHRS (88)

DEFB 00000000
DEFB $01000010
DEFB $00100100

DEFB 500011000
DEFB $00011000
DEFB $00100100
DEFB %01000010
DEFB %00000000

; $59 - Character: 'Y' CHRS (89)
DEFB 00000000
DEFB %$10000010
DEFB %$01000100

DEFB $00101000
DEFB $00010000
DEFB 500010000
DEFB %00010000
DEFB $00000000

; S$5A - Character: 'z’ CHRS (90)

DEFB $00000000
DEFB $01111110
DEFB 00000100
DEFB $00001000
DEFB $00010000
DEFB $00100000
DEFB $01111110
DEFB $00000000

; $5B - Character: '[' CHRS (91)

DEFB $00000000
DEFB 00001110
DEFB 00001000
DEFB $00001000
DEFB $00001000
DEFB $00001000
DEFB $00001110
DEFB $00000000

; $5C - Character: '"\' CHRS (92)

DEFB %$00000000
DEFB 00000000
DEFB $01000000
DEFB $00100000
DEFB 00010000
DEFB $00001000
DEFB $00000100
DEFB $00000000

; $5D - Character: ']' CHRS (93)

DEFB %00000000

DEFB $01110000
DEFB $00010000
DEFB 00010000
DEFB 00010000

DEFB $00010000
DEFB $01110000

’

’

’

’

’

’

DEFB

500000000

$S5E - Character: '"!'

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

500000000
500010000
$00111000
$01010100
%00010000
%00010000
500010000
$00000000

$5F - Character: ' '

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

500000000
$00000000
500000000
500000000
%00000000
$00000000
%00000000
%$11111111

$60 - Character: 'ukp'

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

$00000000
$00011100
$00100010
501111000
$00100000
$00100000
%01111110
%00000000

$61 - Character: 'a'

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

$00000000
500000000
$00111000
$00000100
$00111100
501000100
%00111100
500000000

$62 - Character: 'b'

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

500000000
$00100000
$00100000
$00111100
$00100010
500100010
$00111100
500000000

$63 - Character: 'c'

DEFB
DEFB
DEFB
DEFB
DEFB

500000000
$00000000
$00011100
$00100000
$00100000

CHRS (94)

CHRS (95)

CHRS (96)

CHRS (97)

CHRS (98)

CHRS (99)

’

’

’

’

’

’

DEFB $00100000
DEFB $00011100
DEFB 00000000

$64 - Character: 'd'

DEFB $00000000
DEFB $00000100
DEFB %$00000100
DEFB %$00111100
DEFB $01000100
DEFB $01000100
DEFB 00111100
DEFB 00000000

$65 - Character: 'e'

DEFB 500000000
DEFB 500000000

DEFB %$00111000
DEFB $01000100
DEFB $01111000
DEFB %$01000000
DEFB 00111100

DEFB 500000000

$66 — Character: 'f'

DEFB 500000000
DEFB 500001100
DEFB $00010000
DEFB $00011000
DEFB %00010000
DEFB %00010000
DEFB $00010000
DEFB 500000000

$67 - Character: 'g'

DEFB $00000000
DEFB 00000000
DEFB $00111100
DEFB 501000100
DEFB %01000100

DEFB $00111100
DEFB $00000100
DEFB %$00111000

$68 - Character: 'h'

DEFB 00000000
DEFB $01000000
DEFB $01000000
DEFB $01111000
DEFB $01000100
DEFB $01000100
DEFB %$01000100
DEFB %$00000000

$69 - Character: 'i'

DEFB 00000000
DEFB $00010000
DEFB $00000000

CHRS$ (100)

CHRS (101)

CHRS$ (102)

CHRS$ (103)

CHRS (104)

CHRS$ (105)

’

’

’

’

’

’

DEFB
DEFB
DEFB
DEFB
DEFB

$00110000
$00010000
$00010000
$00111000
500000000

$6A - Character: 'j'

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

%00000000
%00000100
$00000000
$00000100
$00000100
$00000100
$00100100
$00011000

$S6B - Character: 'k'

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

%00000000
$00100000
$00101000
%00110000
$00110000
$00101000
$00100100
$00000000

$6C - Character: '1'

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

500000000
$00010000
%00010000
%00010000
$00010000
$00010000
$00001100
$00000000

$6D - Character: 'm'

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

500000000
500000000
%01101000
$01010100
$01010100
%01010100
$01010100
500000000

$S6E - Character: 'n'

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

500000000
500000000
$01111000
$01000100
%01000100
%01000100
$01000100
500000000

S6F - Character: 'o'

DEFB

500000000

CHRS (106)

CHRS (107)

CHRS$ (108)

CHRS$ (109)

CHRS$ (110)

CHRS$ (111)

DEFB 500000000

DEFB $00111000
DEFB 01000100
DEFB $01000100
DEFB $01000100
DEFB $00111000

DEFB %$00000000
; $70 - Character: 'p' CHRS (112)

DEFB $00000000
DEFB $00000000

DEFB 01111000
DEFB %01000100
DEFB $01000100
DEFB $01111000

DEFB $01000000
DEFB $01000000

; $71 - Character: 'q' CHRS (113)

DEFB %00000000
DEFB %00000000

DEFB $00111100
DEFB %$01000100
DEFB %01000100
DEFB $00111100
DEFB %00000100
DEFB %00000110
; $72 - Character: 'r' CHRS (114)

DEFB %00000000
DEFB %00000000

DEFB $00011100
DEFB $00100000
DEFB 00100000
DEFB 00100000

DEFB $00100000
DEFB 500000000

; $73 - Character: 's' CHRS (115)

DEFB %00000000
DEFB 500000000

DEFB %$00111000
DEFB %$01000000
DEFB $00111000
DEFB %$00000100
DEFB %$01111000
DEFB $00000000
; $74 - Character: 't' CHRS (116)

DEFB $00000000
DEFB $00010000
DEFB %$00111000
DEFB %$00010000
DEFB $00010000
DEFB $00010000
DEFB 00001100
DEFB 00000000

; $75 - Character: 'u' CHRS (117)

DEFB 500000000

DEFB 00000000
DEFB $01000100
DEFB $01000100

DEFB 501000100
DEFB $01000100
DEFB $00111000
DEFB %00000000

; $76 - Character: 'v' CHRS (118)
DEFB $00000000
DEFB $00000000
DEFB %$01000100
DEFB %$01000100

DEFB $00101000
DEFB $00101000
DEFB 500010000
DEFB %00000000

; $77 - Character: 'w' CHRS (119)
DEFB $00000000
DEFB %$00000000
DEFB %$01000100
DEFB $01010100
DEFB %$01010100
DEFB %$01010100

DEFB 500101000
DEFB $00000000

; $78 - Character: 'x' CHRS (120)

DEFB 500000000
DEFB 500000000

DEFB 01000100
DEFB 00101000
DEFB $00010000
DEFB $00101000

DEFB $01000100
DEFB 500000000

; $79 - Character: 'y' CHRS (121)

DEFB $00000000
DEFB %00000000

DEFB $01000100
DEFB %$01000100
DEFB %01000100
DEFB $00111100
DEFB %00000100
DEFB %$00111000
; $7A - Character: 'z' CHRS (122)

DEFB %00000000
DEFB %00000000

DEFB $01111100
DEFB $00001000
DEFB 00010000
DEFB 00100000
DEFB $01111100

DEFB 500000000

’

’

’

’

’

$7B - Character:

DEFB $00000000
DEFB $00001110
DEFB 500001000
DEFB $00110000
DEFB $00001000
DEFB %00001000
DEFB %00001110
DEFB $00000000

$7C - Character:

DEFB 500000000
DEFB $00001000
DEFB $00001000
DEFB $00001000
DEFB 500001000
DEFB %00001000
DEFB $00001000
DEFB %00000000

$7D - Character:

DEFB 500000000

DEFB 01110000
DEFB $00010000
DEFB $00001100

DEFB 500010000
DEFB $00010000
DEFB $01110000
DEFB %00000000

S7E - Character:

DEFB 00000000
DEFB 00010100
DEFB $00101000

DEFB 500000000
DEFB 00000000
DEFB 500000000
DEFB 500000000
DEFB %00000000

$7F - Character:

#end

DEFB %$00111100
DEFB %01000010
DEFB $10011001
DEFB %$10100001
DEFB $10100001
DEFB $10011001
DEFB $01000010
DEFB 00111100
Acknowledgements

Sean Irvine
Dr. Tan Logan
Dr. Frank O'Hara

'{'

l}l

1 1

'(C)'

CHRS (123)

CHRS (124)

CHRS$ (125)

CHRS (126)

CHRS (127)

; generic cross-assembler directive

for default list of section headings
for labels and functional disassembly.
for labels and functional disassembly.

; Credits

; Alex Pallero Gonzales for corrections.

; Mike Dailly for comments.

; Alvin Albrecht for comments.

; Andy Styles for full relocatability implementation and testing.
testing.

; Andrew Owen for ZASM compatibility and format improvements.
; For other assemblers you may have to add directives like these near the
; beginning - see accompanying documentation.

; ZASM (MacOs) cross-assembler directives. (uncomment by removing ';')

; #target rom ; declare target file format as binary.

; #code 0,$4000 ; declare code segment.

; Also see notes at Address Labels 0609 and 1CA5 if your assembler has
; trouble with expressions.

