’

R R e b e dh b I S IR I dh SR I A IR i S R S S R S S S S I R S dh R S b R S b R S b S b I A SR B S R S S SR S A R A A R S I R S A R I i

** An Assembly File to generate a 16K Custom ROM for the ZX Spectrum **
Ak Ak hhkh Ak hkhhkhhkhhrhhhhhhkhhhhkhhkhk Ak hhkhhkhkhhkhhkhhkhkhdhkhkhkhhkkhhrhkkhkhkhhkkhhdhkkhhhrhkkhhhkkhkhkhk*

THE 16K "SEA CHANGE" Z7ZX MINIMAL ROM

Last updated: 23-FEB-2003

To produce a user-friendly operating system for a colour computer to exploit
the hardware available in the early 1980s. Apart from a few sensible
alphabetical restrictions, there should be no other limitations other than
available memory. All the computer's unused memory should be placed at the
disposal of the user after each statement has executed. Whenever the
interpreter is expecting a number or a string, then an expression of the
same type can be substituted ad infinitum.

This is a "Concept Computer" and the ROM may not recognize the format of
programs saved from a conventional ZX Spectrum whether they have been saved
as tapes or snapshots.

This implementation does not try to maintain common routine addresses such
as $09F4. Nor are the System Variables compatible with the BASIC manual.
With the exception of those programs written in BASIC, third-party software
is unlikely to run on this platform.

This program is a re-arrangement of other people's code, including the
open standard "Sinclair Network Standard" and remains the copyright of
Amstrad PLC and Sinclair Research Ltd.

TASM cross—-assembler directives.

(

comment out, perhaps, for other assemblers - see Notes at end.)

#define DEFB .BYTE
#define DEFW .WORD
#define DEFM .TEXT
#define ORG .ORG
#define EQU .EQU
#define equ .EQU

ORG 0000

,-***

;** Part 1. RESTART ROUTINES AND TABLES **

PR I b e b b S b e S b S b S b S b I S S I b b I 2b b S b S dh S i
’

THE 'START'

At switch on, the Z80 chip is in Interrupt Mode O.

It needs to be placed in Interrupt Mode 1.

This location can also be 'called' to reset the machine.
Typically with PRINT USR O.

L0000
START DI ; Disable Interrupts.
XOR A ; Signal coming from START.
LD DE, SFFFF ; Set pointer to top of possible physical RAM.

JP START NEW ;7 Jump forward to common code at START NEW.

; THE OLD 'ERROR' RESTART

; Note. The ERROR restart is to be moved to L0O030.

; An instruction fetch on address $0008 may page in a peripheral ROM such as
; the Sinclair Interface 1 or Disciple Disk Interface. This would now be
; disastrous as none of the routines it uses in this ROM are where they used

; to be. Also the network and RS232 are now controlled from this ROM.
; The shadow ROM could also paged by an instruction fetch on address $1708.

; Since this restart is unused, just stick a return here. Leave room for an
; error report but for now use location nine for release number.
; The command PRINT PEEK 9 gives release number.
L0008
RESTART8 RET ;+ Disabled.
DEFB 74 ;+ unused - but for now has release number.

DEFB $FF, $FF, $FF ;+ unused
DEFB S$FF, SFF, SFF ;+ unused

; THE 'PRINT CHARACTER' RESTART

; The A register holds the code of the character that is to be sent to

; the output stream of the current channel. The alternate register set is
; used to output a character in the A register so there is no need to
; preserve any of the current main registers (HL, DE, BC).
; This restart is used 21 times.
L0010
PRINT A JP PRINT A 2 ; Jump forward to continue at PRINT A 2.
H DEFB S$FF, SFF, SFF ; was unused.
H DEFB S$FF, SFF ; was unused.
; This 5-byte routine is part of the new FORMAT command and has been moved
; here to exploit spare space. (JS)
FORMAT T LD A,C ;+ Get user-supplied TAB width
LD ($5BBS) , A ;+ Set it
RET ;+ Return.

; THE 'COLLECT CHARACTER' RESTART

; The contents of the location currently addressed by CH ADD are fetched.

; A return is made if the value represents a character that has

; relevance to the BASIC parser. Otherwise CH ADD is incremented and the
; tests repeated. CH ADD will be addressing somewhere -

; 1) in the BASIC program area during line execution.

; 2) in workspace if evaluating, for example, a string expression.

; 3) in the edit buffer if parsing a direct command or a new BASIC line.
; 4) in workspace if accepting input but not that from INPUT LINE.

L0018

GET CHAR LD HL, ($5B5D) ; Fetch the address from CH ADD.

LD A, (HL) ; Use it to pick up the current character.

TEST CHAR CALL SKIP OVER ; Routine SKIP OVER tests if the character is
; relevant.
RET NC ; Return if it is significant.

; THE 'COLLECT NEXT CHARACTER' RESTART

; As the BASIC commands and expressions are interpreted, this routine is
; called repeatedly to step along the line. It is used 83 times.

L0020

NEXT CHAR CALL CH ADD 1 ; Routine CH ADD+1 fetches the next immediate
; character.

JR TEST CHAR ; Jump back to TEST CHAR until a valid
; character is found.

; THE 'STOP' COMMAND

; Command Syntax: STOP

; One of the shortest and least used commands. As with 'OK' not an error.
; This has been moved here as two bytes were unused.
STOP RST 30H ; ERROR_l
DEFB $08 ; Error Report: STOP statement
P DEFB SFF, SFF ; was unused
DEFB SFF ; unused.

; THE 'CALCULATE' RESTART

; This restart enters the Spectrum's internal, floating-point,

; stack-based, FORTH-like language.

; It is further used recursively from within the calculator.

; It is used on 77 occasions.

L0028

FP CALC JP CALCULATE ; Jump forward to the CALCULATE routine.

H DEFB Sff, Sff, Sff ; Spare - note that on the ZX81, space being a
HE DEFB S$ff, Sff ; little cramped, these same locations were
S ; used for the five-byte 'end-calc' operator.
HE ; Note. This idea may be re-visited!

; (offset: $38 'end-calc')

; The end-calc literal terminates a mini-program written in the Spectrum's
; internal language.
end calc POP AF ;+ Drop the calculator return address RE ENTRY

EXX ;+ Switch to the other set.

EX (SP) , HL ;+ Transfer H'L' to machine stack for the
;+ return address.
;+ When exiting recursion, then the previous
;+ pointer is transferred to H'L'.

EXX ;+ Switch back to main set.

RET ;+ Return.

; THE 'RST 30H' ERROR RESTART

; This restart is to be used for error handling without paging in Interfacel
; while, at the same time, allowing access to its hardware.

; The error pointer is made to point to the position of the error to enable
; the editor to highlight the error position if it occurred during syntax

; checking. It is used at 37 places in the program although not all errors

; pass through here.

L0030

ERROR 1 LD HL, ($5B5D) ;+ Fetch the character address from CH ADD.
LD ($5B5F) , HL ;+ Copy it to the error pointer X PTR.
JR ERROR 2 ;+ Forward to continue at ERROR 2.

; THE 'MASKABLE INTERRUPT' ROUTINE

; This routine increments the Spectrum's three-byte FRAMES counter

; fifty times a second (sixty times a second in the USA).

; Both this routine and the called KEYBOARD subroutine use

; the IY register to access system variables and flags so a user-written

; program must disable interrupts to make use of the IY register.

L0038 ; Note Interrupts are automatically disabled.

MASK INT PUSH AF ; Save the registers that will be used.
PUSH HL ;

H LD HL, ($5B78) ; Fetch the first two bytes at FRAMESI.

S INC HL ; Increment lowest two bytes of counter.

H LD ($5B78) , HL ; Place back in FRAMESI1.

HE LD A,H ; Test if the result was zero.

P OR L ;

HE JR NZ,KEY INT ; Forward, if not, to KEY INT

. INC (IY+340) ; otherwise increment FRAMES3 the third byte.

; Note. the above code has been replaced with this neater and shorter

; sequence which also avoids using the IY register.
LD HL, $5B78 ;+ Address FRAMES
INC (HL) ;+ Increment low byte of counter.
JR NZ,KEY INT ;+ Forward, if not back to zero, to KEY INT.
INC L ;+ Increment address using 4 clock cycles.
INC (HL) ;+ Increment middle counter.
JR NZ,KEY INT ;+ Forward, if not back to zero, to KEY INT.
INC L ;+ All the FRAMES addresses have same high byte.
INC (HL) ;+ Increment last counter.

; Now save the rest of the main registers and read and decode the keyboard.

KEY INT

PUSH
PUSH

CALL

POP
POP

POP
POP

EI
RET

BC
DE

KEYBOARD

DE
BC

HL
AF

; THE 'ERROR 2' ROUTINE

Save the other main registers.

Routine KEYBOARD executes a stage in the
process of reading a key-press.
Only registers HL, DE, BC and AF can be used.

Restore all four registers.

Enable Interrupts.
Return.

; A continuation of the code at ERROR 1.

; The error code is stored and,

after clearing down the calculator stack, an

; indirect jump is made to the Error Stack Pointer to handle the error.

ERROR_2

; Note.

POP

LD

HL

L, (HL)

Drop the return address - the location after
the error restart.
Fetch the error code that follows.

this entry point is used when out of memory at REPORT 4.
; The L register has been loaded with the report code but X PTR is not

; updated.
ERROR 3 LD
LD
JP
; SPARE
DEFB
DEFB
DEFB
L0066

(IY+$00),L
SP, ($5B3D)

SET STK

SFF, SFF,
SFF, SFF,
$FF, SFF,

Store it in the system variable ERR NR.

ERR _SP points to an error handler on the
machine stack. There may be a hierarchy
of routines.

To MAIN 4 initially at base.

or REPORT G on line entry.

or ED ERROR when editing.

or ED FULL during ed-enter.

or IN VAR 1 during runtime input etc.

Jump to SET STK to clear the calculator

stack and reset MEM to usual place in the
systems variables area and then indirectly to
one of the addresses above.

; THE 'NON-MASKABLE INTERRUPT'

;+ Spare

;+

;+
ROUTINE

; There was no NMI switch on the standard Spectrum.
; There was however a well-developed NMI routine, reproduced here with one

; major difference.

On the original Spectrum the branch to the address held

; in the NMIADD System Variables was taken if the address was zero and not,

NMI

NMI

NMI

as expected, if the address was non-zero.

Sinclair Research said that, since they had never advertised the NMI, they
had no plans to fix the error "until the opportunity arose". In fact, the
location NMIADD was later used by Interface 1 for other purposes.

On later Amstrad Spectrums, and the Brazilian Spectrum, the logic of this
routine was reversed but not as at first intended.

The original functionality is resurrected in full here. The clue is the
rather clumsy initialization of CHARS in the code at RAM SET . The
NMIADD System variable now holds the address NMI PTR by default and the
code there provides for a Warm Reset which re-initializes the system
without losing the BASIC program.

In all probability the NMI button would have been on the advertized
RS232/Network board.

Software houses who didn't want their programs broken into could presumably
set NMIADD to zero to defeat hackers.

PUSH AF ; Save the
PUSH HL ; registers.
LD HL, ($S5BB0) ; Fetch the system variable NMIADD.
LD A,H ; Test address
OR L ; for zero.
JR NZ,NMI 2 ;— Skip to NO NMI if both bytes default N Z!
JR Z,NMI 2 ;+ Skip to NO_NMI if both bytes default ZERO.
JP (HL) ; else jump to routine.
2 POP HL ; Restore the
POP AF ; registers.
END RETN ; Return to previous interrupt state.

; THE 'CH ADD + 1' SUBROUTINE

This subroutine is called from RST 20, and three times from elsewhere

to fetch the next immediate character following the current valid character
address and update the associated system variable.

The entry point TEMP PTR1 is used from the SCANNING routine.

Both TEMP PTR1 and TEMP PTR2 are used by the READ command routine.

CH ADD 1 LD HL, ($5B5D) ; fetch address from CH_ADD.
TEMP PTR1 INC HL ; increase the character address by one.
TEMP_PTR2
LD A, (HL) ; load character to A from HL.
TEMP PTR3 LD ($5B5D) , HL ; update CH ADD with character address.
RET ; and return.

; THE 'SKIP OVER' SUBROUTINE

This subroutine is called once from RST 18 to skip over white-space and
other characters irrelevant to the parsing of a BASIC line etc.

Initially the A register holds the character to be considered and HL holds
its address which will not be within quoted text when a BASIC line is

; parsed.

; Although the 'tab' and characters will not appear in a BASIC line,
; they could be present in a string expression, and in other situations.
; Note. although white-space is usually placed in a program to indent loops
; and make it more readable, can also be used for the opposite effect and
; spaces may appear in variable names although the parser never sees them.
; It is this routine that helps make the variables 'Anum bEr5 3BUS' and
; 'a number 53 bus' appear the same to the parser.
SKIP OVER CP $21 test i1if higher than space.
RET NC return with carry clear if higher.
CP $0D carriage return ?
RET Z return, if so, also with carry clear.
all other characters have no relevance
to the parser and must be returned with
carry set.
CP $10 test if 0-15d
RET C return, if so, with carry set.
CP $18 test if 24-32d
CCF complement carry flag.
RET C return, if so, with carry set.
now leaves 16d-23d
INC HL all above have at least one extra character
to be stepped over.
CP Slo6 controls 22d ('at') and 23d ('tab') have two.
JR C, SKIPS forward to SKIPS with ink, paper, flash,
bright, inverse or over controls.
Note. the high byte of tab is for RS232 only.
INC HL step over the second character of 'at'/'tab'.
SKIPS SCF set the carry flag
JR TEMP_ PTR3 ;+ back to similar code above.
HHY LD ($5B5D) , HL ; update the CH ADD system variable.
HH RET return with carry set.

TKN_TABLE DEFB
DEFM
DEFB
DEFM
DEFB
DEFB
DEFB
DEFM
DEFB
DEFM
DEFB

; The tokenized characters 134d
; this table.

(RND) to 255d (COPY) are expanded using

The last byte of a token is inverted to denote the end of
; the word. The first is an inverted step-over byte.

'2'+5$80

" RN "

'D'+580
"INKEY"
'$'+$80
'P','I'+580
'F','N'+580
"POIN"
'"T'+3$80
"SCREEN"
'$'+$80

DEFM "ATT"
DEFB 'R'+$80
DEFB 'A','T'+$80

DEFM "TA"
DEFB 'B'+$80
DEFM "VAL"
DEFB '$'+$80
DEFM "COD"
DEFB 'E'+$80
DEFM "VA"
DEFB 'L'+$80
DEFM "LE"
DEFB 'N'+$80
DEFM "SI"
DEFB 'N'+$80
DEFM "CO"
DEFB 'S'+$80
DEFM "TA"
DEFB 'N'+$80
DEFM "AS"
DEFB 'N'+$80
DEFM "AC"
DEFB 'S'+$80
DEFM "AT"

DEFB 'N'+$80
DEFB 'L','N'+$80

DEFM "EX"
DEFB 'P'+$80
DEFM "IN"
DEFB 'T'+$80
DEFM "SQ"
DEFB 'R'+$80
DEFM "SG"
DEFB 'N'+$80
DEFM "AB"
DEFB 'S'+$80
DEFM "PEE"

DEFB 'K'+$80
DEFB 'I','N'+$80

DEFM "US"
DEFB 'R'+$80
DEFM "STR"
DEFB '$'+$80
DEFM "CHR"
DEFB '$'+$80
DEFM "NO"
DEFB 'T'+$80
DEFM "BI"

DEFB 'N'+$80

The previous 32 function-type words are printed without a leading space
The following have a leading space if they begin with a letter

DEFB 'O', 'R'+580

DEFM "AN"

DEFB 'D'+$80

DEFB $3C, '='+$80 ;<=
DEFB S$3E, '="'+$80 ; >=
DEFB $3C, $3E+$80 s <>
DEFM "LIN"

DEFB 'E'+S$80

DEFM "THE"

DEFB 'N'+$80
DEFB 'T','0O'+$80

DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB
DEFM
DEFB

"STE"
'P'+3580
"DEF F"
'N'+580
” CA"
'T'+3580
"FORMA"
'"T'+580
"MOV"
'E'+380
"ERAS"
'E'+380
"OPEN "
"#1'4+3580
"CLOSE "
"#'+580
"MERG"
'"E'+580
"VERIFE"
'Y'+3$80
"BEE"
'P'+380
"CIRCL"
'E'+$80
" INII
'K'+380
"PAPE"
'R'+580
” FLAS ”
'H'+380
"BRIGH"
'"T'+580
"INVERS"
'E'+380
"OVE"
'R'+380
" OU"
'"T'+3$80
"LPRIN"
'T'+3$80
"LLIS"
"T'+580
" STO"
'P'+380
"REA"
'D'+380
n DAT n
'"A'+$80
"RESTOR"
'E'+380
IINE "
"W'+580
"BORDE"
'R'+380
"CONTINU"
'E'+580
" DI "
'M'+$80
IIRE"
'M'+3$80
" FO"
'R'"+$80
" GO TH
'0'+380

DEFM "GO SU"
DEFB 'B'+$80
DEFM "INPU"
DEFB 'T'+$80
DEFM "LOA"
DEFB 'D'+$80

DEFM "LIS"
DEFB 'T'+$80
DEFM "LE"

DEFB 'T'+$80
DEFM "PAUS"
DEFB 'E'+$80

DEFM "NEX"
DEFB 'T'+$80
DEFM "POK"

DEFB 'E'+$80
DEFM "PRIN"
DEFB 'T'+$80

DEFM "PLO"
DEFB 'T'+$80
DEFM "RU"
DEFB 'N'+$80
DEFM "SAV"

DEFB 'E'+$80
DEFM "RANDOMIZ"
DEFB 'E'+$80
DEFB 'I','F'+$80

DEFM "CL"
DEFB 'S'+$80
DEFM "DRA"

DEFB 'W'+$80
DEFM "CLEA"

DEFB 'R'+$80
DEFM "RETUR"
DEFB 'N'+$80
DEFM "COP"

DEFB 'Y'+$80

; THE 'KEY' TABLES
; These six look-up tables are used by the keyboard reading routine
; to decode the key wvalues.

; The first table contains the maps for the 39 keys of the standard

; 40-key Spectrum keyboard. The remaining key [SHIFT $27] is read directly.
; The keys consist of the 26 upper-case alphabetic characters, the 10 digit
; keys and the space, ENTER and symbol shift key.

; Unshifted alphabetic keys have $20 added to the value.

; The keywords for the main alphabetic keys are obtained by adding $A5 to

; the values obtained from this table.

MAIN KEYS DEFB $42 ; B
DEFB $48 ; H
DEFB $59 ;Y
DEFB $36 ;6
DEFB $35 ;5
DEFB $54 ;T
DEFB $47 ; G
DEFB $56 Y
DEFB S$4E ;N
DEFB $4A ; J
DEFB $55 ;U
DEFB $37 ;7

DEFB $34 ; 4
DEFB $52 ; R
DEFB $46 ; F
DEFB $43 ; C
DEFB $4D ;M
DEFB $4B ; K
DEFB $49 ;I
DEFB $38 ;8
DEFB $33 ;3
DEFB $45 ; E
DEFB $44 ; D
DEFB $58 ;X
DEFB S$OE ; SYMBOL SHIFT
DEFB $4C ; L
DEFB $4F ; O
DEFB $39 ;9
DEFB $32 ;2
DEFB $57 ;W
DEFB $53 ;S
DEFB S5A ; 2z
DEFB $20 ; SPACE
DEFB $0D ; ENTER
DEFB $50 ; P
DEFB $30 ;0
DEFB $31 ;1
DEFB $51 ;0
DEFB $41 ; A

; The 26 unshifted extended mode keys for the alphabetic characters.
; The green keywords on the original keyboard.

E UNSHIFT DEFB S$E3 ; READ
DEFB S$C4 ; BIN
DEFB SEO ; LPRINT
DEFB S$E4 ; DATA
DEFB S$B4 ; TAN
DEFB S$BC ; SGN
DEFB $BD ; ABS
DEFB $BB ; SOR
DEFB S$AF ; CODE
DEFB S$BO ; VAL
DEFB S$B1 ; LEN
DEFB S$CO ; USR
DEFB SA7 ; PI
DEFB S$A6 ; INKEYS
DEFB S$BE ; PEEK
DEFB S$SAD ; TAB
DEFB S$B2 ; SIN
DEFB S$BA ; INT
DEFB S$ES ; RESTORE
DEFB S$A5 ; RND
DEFB S$C2 ; CHRS
DEFB SE1 ; LLIST
DEFB $B3 ; COS
DEFB $B9 ; EXP
DEFB SC1 ; STRS
DEFB S$BS ; LN

; The 26 shifted extended mode keys for the alphabetic characters.
; The red keywords below keys on the original keyboard.
EXT SHIFT DEFB STE ; o~

DEFB $DC ; BRIGHT

DEFB $DA ; PAPER

DEFB $5C ;
DEFB S$B7 ;
DEFB S$7B ;
DEFB $7D ;
DEFB $DS8 ;
DEFB SBF ;
DEFB SAE ;
DEFB S$SAA ;
DEFB SAB ;
DEFB SDD ;
DEFB S$DE ;
DEFB S$DF ;
DEFB S$7F ;
DEFB S$B5 ;
DEFB $D6 :
DEFB $7C ;
DEFB $D5 ;
DEFB $5D ;
DEFB S$SDB ;
DEFB S$B6 ;
DEFB $DO ;
DEFB $5B ;
DEFB S$SD7 ;

; The ten control
; key is pressed.

CTL CODES DEFB $0C ;
DEFB $07 ;
DEFB 506 ;
DEFB $04 ;
DEFB $05 ;
DEFB $08 ;
DEFB S$SO0A ;
DEFB S$SOB ;
DEFB $09 ;
DEFB S$SOF ;

ATN

{

}
CIRCLE
IN

VALS
SCREENS
ATTR
INVERSE
OVER
OouT
(Copyright character)
ASN
VERIFY
|

MERGE

]

FLASH
ACS

INK

[

BEEP

codes assigned to the top line of digits when the shift

DELETE

EDIT

CAPS LOCK
TRUE VIDEO
INVERSE VIDEO
CURSOR LEFT
CURSOR DOWN
CURSOR UP
CURSOR RIGHT
GRAPHICS

; The 26 red symbols assigned to the alphabetic characters of the keyboard.
; The ten single-character digit symbols are converted without the aid of

; a table using subtraction and

SYM CODES DEFB S$E2 ;
DEFB S2A ;
DEFB S$3F ;
DEFB S$CD ;
DEFB SCS8 ;
DEFB S$CC ;
DEFB S$CB ;
DEFB S$5E ;
DEFB S$SAC ;
DEFB $2D ;
DEFB $2B ;
DEFB S$3D ;
DEFB S$2E ;
DEFB $2C ;
DEFB S$3B ;
DEFB $22 ;
DEFB S$C7 ;
DEFB $3C ;
DEFB S$C3 ;
DEFB S$3E ;
DEFB S$C5 ;
DEFB $2F ;

minor manipulation.
STOP

’

’

DEFB S$C9

DEFB $60
DEFB $C6
DEFB $3A

The ten keywords assigned to

’
’

’

<>
pound
AND

the digits in extended mode.

The remaining red keywords below the keys.
E DIGITS DEFB $DO

DEFB S$CE
DEFB SAS8
DEFB S$CA
DEFB $D3
DEFB $D4
DEFB $D1
DEFB $D2
DEFB S$SA9
DEFB SCF

,-*******************************

;** Part 2.

KEYBOARD ROUTINES **

;*******************************

’

’

’

’

FORMAT
DEF FN
E'N

LINE
OPEN #
CLOSE #
MOVE
ERASE
POINT
CAT

Using shift keys and a combination of modes the Spectrum 40-key keyboard
can be mapped to 256 input characters

0 1 2
PORT
FIFE [1 1 [21 [3
FBFE [Q] [W] [E
FDFE [A1 [S 1 [D
FEFE [SHI] [z 1 [X

~ 527

Start

00100111

4 -Bits- 4 3 2 1 0
51 1 el 071081 0971T1O0]
T] : (Y] (Ul [Tl (O] I[P]
G] : (H]T [J1 [K] [L] [ENT]
V] : (B] [N] [M] [sym] [SPC]
$18
00011000

PORT

EFFE

DEFFE

BFFE

TFFE

End

The above map may help in reading.

The neat arrangement of ports means that the B register need only be
rotated left to work up the left hand side and then down the right
hand side of the keyboard. When the reset bit drops into the carry
then all 8 half-rows have been read. Shift is the first key to be
read. The lower six bits of the shifts are unambiguous.

THE 'KEYBOARD SCANNING'

ROUTINE

From keyboard and s-inkey$

Returns 1 or 2 keys in DE,

key values 0-39 else 255

KEY SCAN LD L, $2F
LD DE, SFFFF
1D BC, $FEFE

’

most significant shift first if any

initial key value

valid values are obtained by subtracting
eight five times.

a buffer to receive 2 keys.

the commencing port address
B holds 11111110 initially and is also

KEY LINE 1IN A, (C)
CPL
AND $1F
JR Z,KEY DONE
1D H,A
1D A, L
KEY 3KEYS INC D
RET NZ

KEY BITS SUB $08

SRL, H
JR NC,KEY BITS
1D D,E
LD E,A
JR NZ,KEY 3KEYS

KEY DONE DEC L

RLC B
JR C,KEY LINE
1D A,D
INC A
RET 2
CP $28
RET 2
CP $19
RET 2
LD A,E
LD E,D
1D D, A
cp $18
RET

; THE 'KEYBOARD' ROUTINE

used to count the 8 half-rows

read the port to A - bits will be reset
if a key is pressed else set.

complement - pressed key-bits are now set
apply 00011111 mask to pick up the
relevant set bits.

forward to KEY DONE if zero and therefore
no keys pressed in row at all.

transfer row bits to H
load the initial key value to A

now test the key buffer
if we have collected 2 keys already
then too many so quit.

subtract 8 from the key value
cycling through key values (top = $27)
e.g. 2F> 27>1F>17>0F>07
2E> 26>1E>16>0E>06
shift key bits right into carry.
back, if not pressed, to KEY BITS
but if pressed we have a value (0 _39d)

transfer a possible previous key to D
transfer the new key to E

back to KEY 3KEYS if there were more
set bits - H was not yet zero.

cycles 2F>2E>2D>2C>2B>2A>29>28 for

each half-row.

form next port address e.g. FEFE > FDFE
back to KEY LINE if still more rows to do.

now test if D is still FF ?

if it is zero we have at most 1 key
range now $01-$28 (1-40d)

return if one key or no key.

is it capsshift (was $27) ?
return if so.

is it symbol shift (was $18) 2
return also

now test E

but first switch

the two keys.

is it symbol shift ?

return (with zero set if it was).
but with symbol shift now in D

; Called from the interrupt 50 times a second.

KEYBOARD CALL KEY SCAN

RET NZ

routine KEY SCAN

return if invalid combinations

; Decrease the counters within the two key-state maps

; as this could cause one to become free.
; If the keyboard has not been pressed during the last five interrupts

; then both sets will be free.

LD

K ST LOOP BIT

K _CH_SET

; Now the raw

JR

INC

DEC

DEC

JR

LD

LD

LD

LD

CP
JR

CALL

RET

LD

CP
JR

HL, $5B00

7, (HL)
NZ,K_CH_SET

HL
(HL)

HL
NZ,K_CH_SET
(HL) , SFF
A, L

HL, $5B04

L,$04

L
Nz,K ST LOOP

key (0-384d)
K_TEST

NC

HL, $5B00

(HL)
Z,K REPEAT

’

point to KSTATE 0

is it free ? (i.e. SFF)
forward, if so, to K CH SET

address the 5-counter

decrease the counter

step back

forward, if not at end of count, to K CH SET

else mark this particular map free.

make a copy of the low address byte.

;- point to KSTATE 4 (Note. 1d 1,$04 would do)

;+ point low order byte to KSTATE 4

’

’

’

have both sets been considered ?
back to K ST LOOP to consider this 2nd set

is converted to a main key (uppercase).

routine K TEST to get main key in A
return if just a single shift
point to KSTATE 0

does the main key code match ?
forward, if so, to K REPEAT

; If not consider the second key map for a repeat.

EX
LD

LD
CP
JR

DE, HL
HL, $5B04

L,$04
(HL)
Z,K_REPEAT

’

’

save KSTATE 0O in DE
point to KSTATE 4

;+ point to KSTATE 4

’

’

does the main key code match ?
forward, if so, to K REPEAT

; Having excluded a repeating key we can now consider a new key.
; The second set is always examined before the first.

; Continue or

K_NEW

BIT
JR

EX

LD

BIT

RET

LD

7, (HL)
NZ,K NEW
DE, HL
L,$00

7, (HL)

z

’

’

’

is the key map free ?
forward, if so, to K NEW

bring back KSTATE 0

;+ bring back KSTATE O

’

’

’

is it free ?

return if not.
as we have a key but nowhere to put it yet.

jump to here if one of the buffers was free.

E,A

’

store key in E

’

’

’

LD
INC
LD
INC
LD
LD
INC

LD
LD

PUSH

LD
LD
LD
LD

CALL

POP
LD

K_END LD

SET

LD
SET

RET

(HL) , A
HL
(HL) , $05
HL

A, ($5B09)
(HL) , A
HL

C, (IY+$07)
D, (IY+$01)

HL

L, $41
C, (HL)
L,$3B
D, (HL)

K DECODE

HL
(HL) , A

; place in free location

; advance to the interrupt counter

; and initialize counter to 5

; advance to the delay

; pick up the system variable REPDEL

; and insert that for first repeat delay.
; advance to last location of state map.

; pick up MODE
; pick up FLAGS

(3 bytes)
(3 bytes)

; save state map location

; Note. could now have used, to avoid 1IY,

; 1d 1,%41; 1d ¢, (hl); 1d 1,$3B; 1d d, (hl).
; six and two threes of course.

;+ Avoid IY usage

;+ Load C register with system variable MODE.
;+

;+ Load D register with system variable FLAGS.
; routine K DECODE

; restore map pointer
; put the decoded key in last location of map.

; update LASTK system variable.
;— update FLAGS

- signal a new key.

;+ HL now addresses FLAGS
;+ signal new key.

; return to interrupt routine.

; THE 'REPEAT KEY' BRANCH

; A possible repeat has been identified. HL addresses the raw key.

; The last location of the key map holds the decoded key from the first

; context. This could be a keyword and, with the exception of NOT, a repeat
; is syntactically incorrect and not really desirable.

; credit: Chris Thornton 1983.

K REPEAT 1INC HL ; increment the map pointer to second location.
LD (HL) , $05 ; maintain interrupt counter at 5.
INC HL ; now point to third location.
DEC (HL) ; decrease the REPDEL value which is used to
; time the delay of a repeat key.
RET NZ ; return if not yet zero.
LD A, ($5B0OR) ; Fetch the system variable value REPPER.
LD (HL) , A ; For subsequent repeats REPPER will be used.
INC HL ; Advance
LD A, (HL) ; Pick up the key decoded possibly in another
; context.
; Note. should compare with $A5 (RND) and make
; a simple return if this is a keyword.
; e.g. cp $ab5; ret nc; (3 extra bytes)
CP SAS ;+ Is repeat a keyword ?

RET NC ;+ Ignore if a keyword.

JR K END ; Back, to accept key, at K END

; THE 'KEY TEST' ROUTINE

; This is also called from s-inkey$
; Begin by testing for a shift with no other.

K TEST LD B,D ; Load most significant key to B - will be S$FF
; 1f not shift.

LD D, $00 ; Reset D to index into main table.
LD AE ; Load least significant key from E.
CP $27 ; Is it higher than 39d ? i.e. FF
RET NC ; return with just a shift (in B now).
CP $18 ; is it symbol shift ?
JR NZ,K MAIN ; forward, if not, to K MAIN

; but we could have just symbol shift and no other
BIT 7,B ; 1is other key S$FF (i.e. not shift)
RET NZ ; return with solitary symbol shift.

K MAIN LD HL,MAIN KEYS ; address: MAIN KEYS
ADD HL, DE ; add offset 0-38
LD A, (HL) ; pick up main key value
SCF ; set carry flag
RET ; return (B has other key still)

; THE 'KEYBOARD DECODING' SUBROUTINE

; This is also called from s-inkey$

K DECODE LD A,E ; pick up the stored main key

K DECODE2 CP $3A ; an arbitrary point between digits and letters
JR C,K DIGIT ; forward to K DIGIT with digits, space, enter.
DEC C ; decrease MODE (0='KLC', 1='E', 2='G'")
JP M,K KLC LET ; to K KLC_LET if was zero
JR Z,K_E LET ; to K E LET if was 1 for extended letters.

; Proceed with graphic codes.

; Note. should not augment the keycode if code > 'U' ($55).
; (s—inkey$ never gets into graphics mode.)

CP 'v! ;+ compare with non graphic keys
JR C,ADDIT ;+ skip forward if this key has a UDG.
XOR A ;+ set key value to zero.
RET ;+ return with 'no key'.
ADDIT ADD A, $4F ; add offset to augment 'A' to graphics A say.
RET ; return.

; Note. (but [GRAPH] V gave RND, etc).

; the jump was to here with extended mode with uppercase A-Z.

K E LET

K_LOOK_ UP

; the jump was here with mode

K_KLC_LET

LD

INC

JR

LD

LD

ADD

LD

RET

LD
BIT
JR

BIT
JR

BIT

LD
BIT

RET

INC

RET

ADD

RET

HL,E UNSHIFT-$41; base address of E UNSHIFT.

B ;
Z,K_LOOK_UP ;

HL,EXT SHIFT-S41;

D, $00 ;
HL, DE ;
A, (HL) ;

HL, SYM CODES-$41;
0,B ;
Z,K_LOOK_ UP ;

test B is it empty i.e. not a shift.
forward, if neither shift, to K LOOK UP
Address: EXT SHIFT base

prepare to index.

add the main key value.

pick up other mode value.

return.

prepare base of sym-codes
shift=$27 sym-shift=$18
back to K LOOK UP with symbol-shift

3,D ; test FLAGS is it 'K' mode (from OUT CURS)
Z,K_TOKENS ; skip, 1if so, to K TOKENS

3, (IY+$30) ;- test FLAGS2 - consider CAPS LOCK ?

HL, $5B6A ;+ Address sysvar FLAGS2 using HL not IY

3, (HL) ;+ test FLAGS2 - consider CAPS LOCK °?

NZ ; return, if so, with main code.

B ; 1s shift being pressed ?

NZ ; return if shift pressed.

A, $20 ; else convert the code to lower case.

’

; the jump was here for tokens

K TOKENS

ADD

RET

A, SAS ;

’

’

; the jump was here with digits,

K_DIGIT

CP
RET

DEC
Jp

JR

$30 ;
C ;

C ;
M, K_KLC_DGT ;

NZ,K_GRA DGT ;

return.

add offset to main code so that 'A'
becomes 'NEW' etc.

return.

space, enter and symbol shift (< $xx)

is it '0' or higher ?
return with space, enter and symbol-shift

test MODE (was 0='KLC', 1='E', 2='G')
jump to K KLC DGT if was 0.

forward to K GRA DGT if mode was 2.

’

continue with extended digits

LD
BIT
JR

CP
JR

SUB
INC
RET

ADD
RET

K 8 and 9 SUB

’

INC
RET

ADD

RET

graphics

K _GRA DGT LD

’

CP
JR

CP
JR

for keys

AND
ADD

INC
RET

XOR
RET

now digit

K _KLC_DGT INC

’

RET

BIT

LD

JR

must have been symbol shift

HL,E DIGITS-$30
5,B
Z,K_LOOK_UP

$38
NC,K 8 and 9

$20
B
Z

A, 508

$36

A, SFE

mode with digits

’

HL,CTL CODES-$30;

$39
Z,K_LOOK_UP

$30
Z,K_LOOK_UP

0-9.

base of E DIGITS
test - shift=$27 sym-shift=$18
back to K LOOK UP if sym-shift

is character '8' ?
to K 8 & 9 if greater than '7'

reduce to ink range $10-$17
shift ?
return if not.

add 8 to give paper range $18 - S$1F
return

reduce to 02 and 03 Dbright codes
test if shift pressed.
return if not.

subtract 2 setting carry to give 0 and 1

flash codes.
Return.

base address of CTL CODES

is key '9' ?
back to K LOOK UP - changed to $0F, GRAPHICS.

is key '0' ?
back to K LOOK UP - changed to $0C, delete.

'0' - '7'" we assign a mosaic character depending on shift.
$07 ; convert character to number. 0 - 7.
A, $80 ; add offset - they start at $80
B ; destructively test for shift
Z ; and return if not pressed.
SOF ; toggle accumulator bits -gives range $88-$8F.

s in 'KLC' mode

B
Z

5,B

’

HL,CTL CODES-$30;

NZ,K_LOOK_UP

return.

return with digit codes if neither
shift key pressed.

test for caps shift.
prepare base of table CTL CODES.

back to K LOOK UP if shift pressed.

SUB $10 ; for ASCII most will now be correct
; on a standard typewriter.

CP $22 ; but '@' is not - see below.
JR Z,K _at CHAR ; forward, if so, to K @ CHAR
CP $20 ; character ' ' is the other one that fails
RET NZ ; return if not.
LD A, $5F ; substitute ASCII ' '
RET ; return.
K at CHAR LD A, $40 ; substitute ASCII '@’
RET ; return.

The Spectrum Input character keys. One or two are abbreviated.
From $00 Flash 0 to S$FF COPY. The routine above has decoded all these.

00 F10| 01 F11| 02 BrO| 03 Brl| 04 InO| 05 Inl| 06 CAP| 07 EDT|
08 LFT| 09 RIG| OA DWN| OB UP | OC DEL| OD ENT| OE SYM| OF GRA]
10 IkO| 11 Tkl| 12 Tk2]| 13 Ik3| 14 Ik4| 15 Ik5| 16 Ik6| 17 Ik7|
18 PalO| 19 Pal| 1A Pa2| 1B Pa3| 1C Pa4| 1D Pab5| 1lE Pa6| 1F Pa7|

2008SP | 21 ! | 22 "™ | 23 # | 24 $ |25 % |26 & | 27 ' |
28 (|1 29) | 2A * | 2B + | 2C , | 2D - | 2E | 2F / |
30 0] 31 1|32 2|33 3134 4135 51|36 6137 7|
38 8 | 39 9 | 32 : | 3B ; | 3C < | 3D =3 > | 3F ? |
40 @ | 41 A | 42 B | 43 C | 44 D | 45 E | 46 F | 47 G |
48 H | 49 I | 4A J | 4B K | 4C L | 4D M | 4E N | 4F O |
50 P | 51 Q| 52 R |53 S| 54 T |55 U| 56 V|57 W,|
58 X | 59 Y | 5A Zz | 5B [| 5C \ | 5D] | SE ~ | 5F |
60 ukp| 61 a | 62 b | 63 c | 64 d | 65 e | 66 f | 67 g |
68 h | 69 i | 6A § | 6B k| 6C 1 | 6D m | 6E n | 6F o |
700 p | 71 g | 72 r | 73 s | 74 t |75 ul|l 76 v | 77 w |
78 x | 79 y | 7A z | 7B { | 7C | | 7D } | TE ~ | 7F (c)|
80 128| 81 129| 82 130| 83 131| 84 132| 85 133| 86 134| 87 135]
88 136| 89 137| 8A 138| 8B 139| 8C 140| 8D 141| 8E 142| 8F 143]
90 [A]] 91 [B]| 92 [C]| 93 [D]| 94 [E]| 95 [F]| 96 [G]| 97 [H]|
98 [I]| 99 [J]I| 9A [K]| 9B [L]| SC [M]| 9D [N]| 9E [O]| 9F [P]|
A0 [Q]] Al [R]] A2 [S]| A3 [T]| A4 [U]| A5 RND| A6 IKS| A7 PI |
A8 FN | A9 PNT| AA SCS$| AB ATT| AC AT | AD TAB| AE VLS| AF COD|

BO VAL| B1 LEN| B2 SIN| B3 COS| B4 TAN| B5 ASN| B6 ACS| B7 ATN|
B8 LN | B9 EXP| BA INT| BB SQR| BC SGN| BD ABS| BE PEK| BF IN |
CO USR| C1 STS$| C2 CH$| C3 NOT| C4 BIN| C5 OR | C6 AND| C7 <= |
C8 »>= | C9 <> | CA LIN|] CB THN| CC TO | CD STP| CE DEF| CF CAT|
DO FMT| D1 MOV| D2 ERS| D3 OPN| D4 CLO| D5 MRG| D6 VFY| D7 BEP|
D8 CIR| D9 INK| DA PAP| DB FLA| DC BRI| DD INV| DE OVR| DF OUT|
EO LPR| E1 LLI| E2 STP| E3 REA| E4 DAT| E5 RES| E6 NEW| E7 BDR|
E8 CON| E9 DIM| EA REM| EB FOR| EC GTO| ED GSB| EE INP| EF LOA|
FO LIS| F1 LET| F2 PAU| F3 NXT| F4 POK| F5 PRI| F6 PLO| F7 RUN|
F8 SAV| F9 RAN| FA IF | FB CLS| FC DRW| FD CLR| FE RET| FF CPY|

Note that for simplicity, Sinclair have located all the control codes
below the space character.

ASCII DEL, $7F, has been made a copyright symbol.

Also $60, ''', not used in BASIC but used in other languages, has been
allocated the local currency symbol for the relevant country -

ukp in most Spectrums.

,-**********************************

;** Part 3.

LOUDSPEAKER ROUTINES **

ekAhkhkhk kA k kA hkhkhkkhkhkhkkhkhkhkkhhkhkhk Ak hA Ak hkrkhhkk
’

’

’

Documented by Alvin Albrecht.

THE 'BEEPER' SUBROUTINE
Outputs a square wave of given
to the loudspeaker.
Enter with: DE =
HL =

#cycles - 1

The tone period is measured in
three parts: a coarse part

duration and frequency

tone period as described next

T states and consists of
(H register),

a medium part

(bits 7..2 of L) and a fine part (bits 1..0 of L) which
contribute to the waveform timing as follows:
coarse medium fine
duration of low = 118 + 1024*H + 16*(L>>2) + 4*(L&0x3)
duration of hi = 118 + 1024*H + 16*(L>>2) + 4*(L&0x3)
Tp = tone period = 236 + 2048*H + 32* (L>>2) + 8* (L&0x3)
= 236 + 2048*H + 8*L = 236 + 8*HL
As an example, to output five seconds of middle C (261.624 Hz):
(a) Tone period = 1/261.624 = 3.822ms
(b) Tone period in T-States = 3.822ms*fCPU = 13378
where fCPU = clock frequency of the CPU = 3.5MHz
(c) Find H and L for desired tone period:
HL = (Tp - 236) / 8 = (13378 - 236) / 8 = 1643 = 0x066B
(d) Tone duration in cycles = 5s/3.822ms = 1308 cycles
DE = 1308 - 1 = 0x051B

The resulting waveform has a duty ratio of exactly 50%.

BEEPER DI ;
LD A, L :
SRL L ;
SRL L ;
CPL ;
AND $03 ;
LD C,A ;
LD B, $00 ;
LD IX,BE IX p 3 ;
ADD IX,BC ;
LD A, ($5B48) ;
AND $38 ;
RRCA ;
RRCA ;
RRCA ;
OR 508 ;
BE IX p 3 NOP ;

BE IX p 2 NOP ;

(4)

Disable Interrupts so they don't disturb

timing

=
Il

medium part of tone period

Address: BE IX+3
IX holds address of entry

3 - fine part of tone period

into the loop
the loop will contain 0-3 NOPs,

implementing

the fine part of the tone period.

BORDCR
bits 5..3 contain border colour

border colour bits moved to 2..0
to match border bits on port #FE

bit 3 set
for loud sound output

(4)

(tape output bit on port #FE)

optionally executed NOPs for small
adjustments to tone period

BE IX p 1 NOP i (4)

BE IX p 0 INC B i (4)
INC C 7 (4)
BE H L. LP DEC c ;(4) timing loop for duration of
JR NZ,BE H L LP ;(12/7) high or low pulse of waveform
LD C,$3F 7 (7)
DEC B 7 (4)
JP Nz,BE H L LP ; (10) JUMP to BE H&L LP
XOR $10 ; (7) toggle output beep bit
ouT (SFE) , A ;(11) output pulse
LD B, H ; (4) B = coarse part of tone period
LD C,A ; (4) save port #FE output byte
BIT 4,A ;(8) if new output bit is high, go
JR NzZ,BE_AGAIN 3 (2/7) to BE AGAIN
LD A,D ;(4) one cycle of waveform has completed
OR E ;(4) (low->low) . if cycle countdown = 0
JR Z,BE_END ;(12/7) go to BE _END
LD A,C ; (4) restore output byte for port #FE
LD C,L ;(4) C = medium part of tone period
DEC DE ;(6) decrement cycle count
JP (IX) 7 (8) do another cycle
BE AGAIN LD C,L ; (4) C = medium part of tone period
INC C ;(4) adds 16 cycles to make duration of high
= duration of low
JP (IX) ; (8) do high pulse of tone
BE_END ET ; Enable Interrupts
RET ;

; THE 'BEEP' COMMAND

; BASIC interface to BEEPER subroutine.

; Invoked in BASIC with:

; BEEP dur, pitch

; where dur = duration in seconds

; pitch = # of semitones above/below middle C

; Enter with: pitch on top of calculator stack

; duration next on calculator stack
BEEP RST 28H 7+ FP_CALC

DEFB $31 ;;duplicate ; duplicate pitch

DEFB $27 ;;int ; convert to
integer

DEFB $CO ;7 st-mem-0 ; store integer
pitch to memory O

DEFB $03 ; ;subtract ; calculate
fractional part of pitch = fp pitch - int pitch

DEFB $34 ;;stk-data ; push constant

DEFB S$EC ; ;Exponent: $7C, Bytes: 4 ; constant =
0.05762265

DEFB $6C,$98,$1F,$F5 ;; ($6C,$98,31F, $F5)
DEFB $04 ;ymultiply ; compute:

BE I OK

BE OCTAVE

DEFB

DEFB
DEFB

stack

LD

LD
AND
JR

INC
LD
INC
LD
LD
RLA
SBC
CP

JR

INC

CP

JR

Now we know

LD

ADD

JP

JPp

LD
INC
SUB
JR

ADD
PUSH

LD
CALL

CALL

RST
DEFB

SAl

fraction part (pitch)

SOF
$38

HL, $5B92

A, (HL)
A
NZ,REPORT B

C, (HL)

NZ,REPORT B

HL
(HL)
NZ,REPORT B
-128<=p<=127
A,B

A,$3C

P,BE_I OK

PO, REPORT B

B, $FA

B

socC

NC, BE_OCTAVE

A, $0C
BC

HL, semi tone
LOC_MEM

STACK_NUM

28H
$04

;7 stk-one ; 1 + 0.05762265
;;addition
;;end-calc ; leave on calc
MEM-0: number stored here is in 16 bit
integer format (pitch)
0, O/FF (pos/neg), LSB, MSB, 0

’

’

’

’

LSB/MSB is stored in two's complement
In the following, the pitch is checked if
it is in the range -128<=p<=127
First byte must be zero, otherwise

error in integer conversion
to REPORT B
'Integer out of range'

C = pos/neg flag = 0/FF
B = LSB, two's complement
A = O0/FF if B is pos/neg

must be the same as C if the pitch
is -128<=p<=127

if no, error REPORT B

'Integer out of range'

if -128<=p<=127, MSB will be O0/FF if B 1is
pos/neg

verify this

if no, error REPORT B

'Integer out of range'

A = pitch + 60
if -60<=pitch<=67,
goto BE I OK

if pitch <= 67 goto REPORT B
lower bound of pitch set at -60

and A=pitch+60 -> 0<=A<=187
6 octaves below middle C

increment octave
12 semitones = one octave
to BE_ OCTAVE

A = # semitones above C (0-11)
B = octave displacement from middle C,
2's complement: -5<=B<=10
Address: semi-tone
routine LOC_ MEM
HL = 5*A + S$046E
routine STACK NUM
read FP value (freq) from semitone table
(HL) and push onto calc stack

FP CALC

;s;multiply mult freq by 1 + 0.0576 *

fraction part (pitch)

part of pitch.

distance in Hz to the next

recorded in the semitone

fraction part of the pitch does

distance to the next note.

DEFB
stack =

POP

ADD

LD

RST

DEFB
DEFB
DEFB
DEFB

CALL
CP
JR

i
count

rrr

BEEPER comments,

$38

AF
A, (HL)
(HL) , A

28H
$CO
$02
$31
$38

FIND INT1
SOB
NC, REPORT B

’

’

middle frequency to generate

’

’

’
’
’
’

’

’
’
’

’

; 7 st-mem-0
; rdelete
; ;duplicate

stacked earlier

;end-calc

A =
complement:

octave displacement from middle C,
-5<=A<=10
increase exponent by A

HH thus taking into account fractional
; the number 0.0576*frequency is the
; note (verify with the frequencies
; table below) so that the
; indeed represent a fractional

HL points to first byte of fp num on

2's

(equivalent to multiplying by 27A)

;; FP_CALC

;end-calc

routine FIND INT1 ;
if dur > 10 seconds,

goto REPORT B

store frequency in memory O
remove from calc stack
duplicate duration

(seconds)

FP duration to A

'Integer out of range'

following calculation finds the tone period for HL and the cycle

DE expected in the BEEPER

subroutine.

Bytes:

From the example in the

3

Bytes:

Y ((fcpu / f) - 236) / 8 =
HE duration * frequency - 1
H the different constant (30.125)
N w. This is probably an error.
RST 28H ;7 FP_CALC
DEFB S$EO ;s get-mem-0
DEFB $04 ;smultiply

duration * frequency
DEFB S$EO ;i get-mem-0
DEFB $34 ;;stk-data
DEFB $80 ; ;Exponent $93,
DEFB $43,%55,%9F,$80 ;; ($55,$9F, $80,500)
DEFB $01 ; ;exchange
DEFB $05 ;;division
DEFB $34 ;;stk-data
DEFB $35 ; ;Exponent: $85,
DEFB $71 ;7 ($71,500,5%00,500)
DEFB $03 ; ;subtract

tone period(HL) = 437500 / freq - 30.125
DEFB $38 ;;end-calc
CALL FIND_INTZ ; routine FIND_INTZ
PUSH BC ; BC = tone period (HL)
CALL FIND INT2 ; routine FIND INT2, BC
POP HL ; HL = tone period
LD D,B ;

fCPU/8/f - 236/8

1

437500/f -29.5

used in the calculation of HL

push frequency
resultl: #cycles =

push frequency
push constant
constant = 437500

frequency on top
437500 / frequency
push constant
constant = 30.125

result2:

#cycles to generate

LD E,C ; DE = #cycles
LD A,D ;
OR E ;
RET Z ; 1f duration = 0, skip BEEP and avoid 65536
; cycle boondoggle that would occur next
DEC DE ; DE = #cycles - 1
JP BEEPER ; Jump back to BEEPER
REPORT B RST 30H ; ERROR 1
DEFB $0A ; Error Report: Integer out of range
; THE 'SEMI-TONE' TABLE
; Holds frequencies corresponding to semitones in middle octave.
; To move n octaves higher or lower, frequencies are multiplied by 2”n.
semi tone DEFB $89, $02, $D0O, $12, $86; 261.625565290 C
DEFB $89, $0A, $97, $60, $75; 277.182631135 C#
DEFB $89, $12, $D5, $17, $1F; 293.664768100 D
DEFB $89, $1B, $90, $41, $02; 311.126983881 D#
DEFB $89, $24, $DO, $53, S$CA; 329.627557039 E
DEFB $89, $2E, $9D, $36, $B1l; 349.228231549 F
DEFB $89, $38, SFF, $49, S$3E; 369.994422674 F#
DEFB $89, $43, SFF, $6A, $73; 391.995436072 G
DEFB $89, $4F, S$A7, $00, $54; 415.304697513 G#
DEFB $89, $5C, $00, $00, $00; 440.000000000 A
DEFB $89, $69, $14, S$SF6, $24; 466.163761616 A#
DEFB $89, $76, S$F1, $10, $05; 493.883301378 B

,-**

;** Part 4. CASSETTE HANDLING ROUTINES **

ek kA kA Ak kA A hk Ak kA kA hhkhkkh Ak h Ak hAk Ak hAk Ak hkrkhrk%k
’

; These routines begin with the service routines followed by a single
; command entry point.
; The first of these service routines is a curiosity.

; THE 'ZX81 NAME' ROUTINE

; This routine fetches a filename in ZX81 format and is not used by the
; cassette handling routines in this ROM.

;7 zx8l-name

;77 LO4AA: CALL SCANNING ; routine SCANNING to evaluate expression.
HE LD A, ($5B3B) ; fetch system variable FLAGS.

] ADD A,A ; test bit 7 - syntax, bit 6 - result type.
il Jp M, Report C ; to REPORT-C if not string result

ii ; 'Nonsense in BASIC'.

HE POP HL ; drop return address.

Y RET NC ; return early if checking syntax.

H PUSH HL ; re-save return address.

e CALL STK FETCH ; routine STK-FETCH fetches string parameters.
P LD H,D ; transfer start of filename

] LD L,E ; to the HL register.

H DEC C ; adjust to point to last character and

;i RET M ; return if the null string.

i ; or multiple of 256!

HE ADD HL, BC ; find last character of the filename.
N ; and also clear carry.

HE SET 7, (HL) ; invert it.

;i RET ; return.

; PORT 254 (SFE)

; spk mic { border }
; PORT | | | | | | | |

; 254 | | | | | | | | |
; SFE | | | | | | | | |
; 7 6 5 4 3 2 1 0

; THE NEW 'STACK TO LINE COLUMN' SUBROUTINE

; This new subroutine is used by S ATTR and S _SCRNS essentially to call the

; routine below but, in addition, it produces a runtime error if the column
; is greater than 31 or the line is greater than 23.
; Both parameters must be positive as specified by the BASIC manual.
STK _TO LC CALL BC POSTVE ;

LD A,B ;

CP $17 ;

JR NC, REPORT B ;

LD A,C ;

CP S1F ;

JR NC,REPORT B ;

RET ;

DEFB 0,0,0,0 ; ballast 1

; THE 'SAVE BYTES' SUBROUTINE

; This routine saves a section of data. It is called from SA CTRL to save the
; seventeen bytes of header data. It is also the exit route from that routine
; when it is set up to save the actual data.

; On entry -

; DE holds the length of data.
; IX points to the start.

; The accumulator is set to $00 for a header, S$SFF for data.
TAGL
L04C2:
SA BYTES LD HL,SA LD RET ; address: SA/LD_RET
PUSH HL ; 1s pushed as common exit route.
LD HL, $S1F80 ; a timing constant H=$1F, L=$80

; inner and outer loop counters
; a five second lead-in is used for a header.

BIT 7,A ; test one bit of accumulator. (AND A ?)

JR Z,SA FLAG ; skip to SA-FLAG if a header is being saved.
; else is data bytes and a shorter lead-in is used.
LD HL, $0C98 ; another timing value H=$0C, L=$98.
; a two second lead-in is used for the data.
SA FLAG EX AF,AF' ; save flag
INC DE ; increase length by one.
DEC IX ; decrease start.
DI ; disable interrupts
LD A,S$02 ; select red for border, microphone bit on.
LD B,A ; also does as an initial slight counter value.
; Note. the next location is trapped by emulators, see Z80.doc, in order to
; save bytes to a real tape recorder. The address should be $04DS8
; However saving on emulators is not supported.
TAG2
1L.04D8:
SA LEADER DJNZ SA LEADER ; self loop to SA-LEADER for delay.
; after initial loop, count is $A4 (or S$A3)
ouT (SFE) ,A ; output byte $02/$0D to tape port.
XOR SOF ; switch from RED (mic on) to CYAN (mic off).
LD B, $A4 ; hold count. also timed instruction.
DEC L ; originally $80 or $98.
; but subsequently cycles 256 times.
JR Nz, SA LEADER ; back to SA-LEADER until L is zero.
; the outer loop is counted by H
DEC B ; decrement count
DEC H ; originally twelve or thirty-one.
Jp P, SA LEADER ; back to SA-LEADER until H becomes SFF
; now send a sync pulse. At this stage mic is off and A holds value
; for mic on.
; A sync pulse is much shorter than the steady pulses of the lead-in.
LD B, $2F ; another short timed delay.
SA SYNC 1 DJNZ SA SYNC 1 ; self loop to SA-SYNC-1
ouT (SFE) ,A ; switch to mic on and red colour.
LD A,S$0D ; prepare mic off - cyan
LD B, $37 ; another short timed delay.
SA SYNC 2 DJNZ SA SYNC 2 ; self loop to SA-SYNC-2
ouT (SFE) , A ; output mic off, cyan border.
LD BC, $3BOE ; B=$3B time(*), C=$0E, YELLOW, MIC OFF.
EX AF,AF" ; restore saved flag

; which is 1st byte to be saved.

LD L,A ; and transfer to L.
; the initial parity is A, SFF or $00.

JP SA_ START ; JUMP forward to SA-START ->
; the mid entry point of loop.

; During the save loop a parity byte is maintained in H.
; the save loop begins by testing if reduced length is zero and if so
; the final parity byte is saved reducing count to SFFFF.

SA LOOP LD A,D ; fetch high byte

OR E ; test against low byte.

JR Z,SA_PARITY ; forward to SA-PARITY if zero.

LD L, (IX+$00) ; load currently addressed byte to L.
SA LOOP_P LD A,H ; fetch parity byte.

XOR L ; exclusive or with new byte.

; —> the mid entry point of loop.

SA_START LD H,A ; put parity byte in H.
LD A,S$01 ; prepare blue, mic=on.
SCF ; set carry flag ready to rotate in.
JP SA 8 BITS ; JUMP forward to SA-8-BITS -8->
SA PARITY LD L,H ; transfer the running parity byte to L and
JR SA _LOOP P ; back to SA-LOOP-P

; to output that byte before quitting normally.

; The entry point to save yellow part of bit.

; A bit consists of a period with mic on and blue border followed by
; a period of mic off with yellow border.
; Note. since the DJNZ instruction does not affect flags, the zero flag is
; used to indicate which of the two passes is in effect and the carry
; maintains the state of the bit to be saved.
SA BIT 2 LD A,C ; fetch 'mic on and yellow' which is
; held permanently in C.
BIT 7,B ; set the zero flag. B holds $3E.

; The entry point to save 1 entire bit. For first bit B holds $3B(*).

; Carry is set if saved bit is 1. zero is reset NZ on entry.
SA BIT 1 DJNZ SA BIT 1 ; self loop for delay to SA-BIT-1
JR NC, SA OUT ; forward to SA-OUT if bit is 0.

; but if bit is 1 then the mic state is held for longer.
LD B, $42 ; set timed delay. (66 decimal)

SA SET DJNZ SA SET ; self loop to SA-SET
; (roughly an extra 66*13 clock cycles)

SA OUT ouT (SFE) , A ; blue and mic on OR yellow and mic off.

LD B, $3E ; set up delay

JR NZ,SA BIT 2 ; back to SA-BIT-2 if zero reset NZ (first pass)
; proceed when the blue and yellow bands have been output.

DEC B ; change value $3E to $3D.

XOR A ; clear carry flag (ready to rotate in).

INC A ; reset zero flag i.e. NZ.
; —8->
SA 8 BITS RL L ; rotate left through carry

; C<76543210<C
JP NZ,SA BIT 1 ; JUMP back to SA-BIT-1
; until all 8 bits done.

; when the initial set carry is passed out again then a byte is complete.

DEC DE ; decrease length

INC X ; increase byte pointer

LD B, $31 ; set up timing.

LD A, $TF ; test the space key and

IN A, (SFE) ; return to common exit (to restore border)

RRA ; 1f a space is pressed

RET NC ; return to SA/LD-RET. - - >
; now test if byte counter has reached S$SFFFF.

LD A,D ; fetch high byte

INC A ; ilncrement.

JP NZ, SA LOOP ; JUMP to SA-LOOP if more bytes.

LD B, $3B ; a final delay.
SA DELAY DJNZ SA DELAY ; self loop to SA-DELAY

RET ; return - - >
; THE 'SAVE/LOAD RETURN' ROUTINE
; The address of this routine is pushed on the stack prior to any load/save
; operation and it handles normal completion with the restoration of the
; border and also abnormal termination when the break key or, to be more
; precise, the space key is pressed during a tape operation.

; - - >

SA LD RET PUSH

Y LD
A AND
A RRCA
HE RRCA
e RRCA
A ouT
CALL
LD
IN
RRA

AF ;
A, ($5B48) ;
$38 ;
(SFE) , A ;
BORD REST ;
A,$TF ;
A, (SFE) ;

’

preserve accumulator throughout.

fetch border colour from BORDCR.
mask off paper bits.

rotate

to the

range 0-7.

change the border colour.

+ Use new routine to restore border colour.

read from port address $7FFE the
row with the space key at outside.

test for space key pressed.

A EI ; enable interrupts

JR C,SA LD _END ; forward, if not, to SA/LD-END
REPORT Da RST 30H ; ERROR-1

DEFB $0C ; Error Report: BREAK - CONT repeats
SA LD END POP AF ; restore the accumulator.

RET ; return.

DEFB 0,0,0,0,0,0,0,0 ; ballast 2

; THE 'LOAD BYTES' SUBROUTINE

; This routine is used to load bytes and on entry A is set to $00 for a
; header or to $FF for data. IX points to the start of receiving location
; and DE holds the length of bytes to be loaded.
; If, on entry the carry flag is set then data is loaded, if reset then it
; is to be verified only.
TAG3
L0556:
LD BYTES 1INC D ; reset the zero flag without disturbing carry.
EX AF,AF’ ; preserve entry flags.
DEC D ; restore high byte of length.
DI ; disable interrupts
LD A, SOF ; make the border white and mic off. **x*x¥*x*
ouT (SFE) , A ; output to port.
LD HL,SA LD RET ; Address: SA/LD-RET
PUSH HL ; 1s saved on stack as terminating routine.

; the reading of the EAR bit (D6) will always be preceded by a test of the

; space key (D0), so store the initial post-test state.
IN A, (SFE) ; read the ear state - bit 6.
RRA ; rotate to bit 5.
AND $20 ; isolate this bit.
OR $02 ; combine with red border colour.
LD C,A ; and store initial state long-term in C.
; Note. the next locations is trapped by emulators, see Z80.doc in order to

; load bytes from a tape recorder. No longer supported. Was LO56A

TAG4

LO56A: CP A ; set the zero flag.

LD BREAK RET NZ ; return if at any time space is pressed.
LD START CALL LD EDGE 1 ; routine LD-EDGE-1

JR NC, LD BREAK ; back to LD-BREAK with time out and no
; edge present on tape.

; but continue when a transition is found on tape.

LD HL, $0415 ; set up 16-bit outer loop counter for
; approx 1 second delay.

LD WAIT DJNZ LD WAIT ; self loop to LD-WAIT (for 256 times)
DEC HL ; decrease outer loop counter.
LD A,H ; test for
OR L ; zero.
JR NZ,LD WAIT ; back, if not zero, to LD-WAIT

; continue after delay with H holding zero and B also.
; sample 256 edges to check that we are in the middle of a lead-in section.

CALL LD EDGE 2 ; routine LD-EDGE-2

JR NC, LD_BREAK ; back, if no edges at all, to LD-BREAK
LD LEADER LD B, $9C ; set timing value.

CALL LD EDGE 2 ; routine LD-EDGE-2

JR NC, LD_BREAK ; back, if time-out, to LD-BREAK

LD A, SC6 ; two edges must be spaced apart.

CP B ; compare

JR NC, LD START ; back to LD-START

; 1f too close together for a lead-in.

INC H ; proceed to test 256 edged sample.
JR Nz, LD LEADER ; back, while more to do, to LD-LEADER

; Note. H is zero again.
; sample indicates we are in the middle of a two or five second lead-in.
; Now test every edge looking for the terminal sync signal.

LD SYNC LD B, $C9 ; initial timing value in B.
CALL LD EDGE 1 ; routine LD-EDGE-1
JR NC, LD_BREAK ; back, with time-out, to LD-BREAK
LD A,B ; fetch augmented timing value from B.
CP $D4 ; compare
JR NC, LD SYNC ; back, if gap too big, to LD-SYNC

; 1t i1s a normal lead-in edge gap.

; but a short gap will be the sync pulse.
; in which case another edge should appear before B rises to S$FF

CALL LD_EDGE_l ; routine LD-EDGE-1
RET NC ; return with time-out.

; proceed when the sync at the end of the lead-in is found.
; We are about to load data so change the border colours.

LD A,C ; fetch long-term mask from C

XOR 503 ; and make blue/yellow.

LD C,A ; store the new long-term byte.
H LD H,S$00 ; set up parity byte as zero.

LD B, $BO ; timing.

JR LD MARKER ; forward to LD-MARKER

; the loop mid-entry point with the alternate
; zero flag reset to indicate first byte
; 1s discarded.

’

LD _LOOP

LD FLAG

’

The loading loop loads each

EX AF,AF"

JR NZ,LD FLAG
JR NC, LD VERIFY
1D (IX+$00),L
JR LD NEXT

RL C

XOR L

RET NZ

Continue when expected data

1D A,C
RRA

LD C,A
INC DE

JR LD DEC

byte and is entered at the mid point.

; restore entry flags and type in A.

; forward to LD-FLAG if awaiting initial flag
; which is to be discarded.

if not to be loaded,

; forward, to LD-VERIFY

; place loaded byte at memory location.

; forward to LD-NEXT

; preserve carry (verify) flag in long-term
; state byte. Bit 7 can be lost.

; compare type in A with first byte in L.
; return if no match e.g. CODE vs. DATA.

type matches first byte received.

; fetch byte with stored carry
; rotate it to carry flag again
; restore long-term port state.

; increment length ?°?

; forward to LD-DEC.

; but why not to location after ?
; Timing.

For verification the byte read from tape is compared with that in memory.

LD _VERIFY LD A, (IX+500)
XOR L
RET Nz
; Note. the report
LD NEXT INC IX
LD DEC DEC DE
EX AF,AF'
LD B, $B2

’

’

'Verification has failed'

; fetch byte from memory.

; compare with that on tape

; return if not zero.

could be added.
; Increment the byte pointer.

; decrement length.

; store the flags.
; timing.

when starting to read 8 bits the receiving byte is marked with bit at right.
when this is rotated out again then 8 bits have been read.

LD MARKER LD L,$01

LD 8 BITS CALL LD EDGE_2
RET NC
LD A, $CB
cp B

; initialize as %00000001

; routine LD-EDGE-2 increments B relative to
; gap between 2 edges.

; return with time-out.

; the comparison byte.

; compare to incremented value of B.

; if B is higher then bit on tape was set.
; 1f <= then bit on tape is reset.

RL L ; rotate the carry bit into L.

LD B, $BO ; reset the B timer byte.
Jp NC,LD_8_BITS ; JUMP back to LD-8-BITS

; when the carry flag is set, then the marker bit has been passed out and
; the received byte is complete.

LD A,H ; fetch the running parity byte.

XOR L ; include the new byte.

LD H,A ; and store back in parity register.

LD A,D ; check length of

OR E ; expected bytes.

JR NZ,LD_ LOOP ; back, while there are more, to LD-LOOP

; When all bytes loaded then parity byte should be zero.

LD A,H ; fetch the adjusted parity byte.
CP S01 ; set carry if zero.
RET ; return

; If no carry then error as checksum disagrees.

; An edge is a transition from one mic state to another.

; More specifically a change in bit 6 of value input from port SFE.

; Graphically it is a change of border colour, say, blue to yellow.

; The first entry point looks for two adjacent edges. The second entry point
; is used to find a single edge.

; The B register holds a count, up to 256, within which the edge (or edges)
; must be found. The gap between two edges will be more for a 'l' than a '0'
; so the value of B denotes the state of the bit (two edges) read from tape.

; >
LD EDGE 2 CALL LD EDGE 1 ; call routine LD-EDGE-1 below.
RET NC ; return if space pressed or time-out.
; else continue and look for another adjacent
; edge which together represent a bit on the
; tape.
;>

; this entry point is used to find a single edge from above but also
; when detecting a read-in signal on the tape.

LD EDGE 1 LD A,S16 ; a delay value of twenty two.
LD DELAY DEC A ; decrement counter
JR NZ,LD DELAY ; loop back to LD-DELAY 22 times.
AND A ; clear carry.
LD SAMPLE INC B ; increment the time-out counter.
RET Z ; return with failure when S$FF passed.
LD A,STF ; prepare to read keyboard and EAR port
IN A, (SFE) ; row STFFE. bit 6 is EAR, bit 0 is SPACE key.
RRA ; test outer key the space. (bit 6 moves to 5)

RET NC ; return if space pressed. >>>

XOR C ; compare with initial long-term state.

AND $20 ; isolate bit 5
JR Z,LD SAMPLE ; back to LD-SAMPLE if no edge.
; but an edge, a transition of the EAR bit, has been found so switch the
; long-term comparison byte containing both border colour and EAR bit.
LD A,C ; fetch comparison value.
CPL ; switch the bits
LD C,A ; and put back in C for long-term.
AND $07 ; isolate new colour bits.
OR $08 ; set bit 3 - MIC off.
ouT (SFE) , A ; send to port to effect the change of colour.
SCF ; set carry flag signaling edge found within
; time allowed.
RET ; return.

; THE 'SAVE, LOAD, VERIFY AND MERGE' COMMAND

; This is the single entry point for the four tape commands.

; The routine first determines in what context it has been called by

; examining the low byte of the Syntax table entry which was stored in T ADDR.
; Subtracting $SEO (the original arrangement) gives a value of

; $00 - SAVE

; $01 - LOAD

; 502 - VERIFY

; $03 - MERGE

; Note. as the Syntax table is in ROM then bit 7 of T ADDR hi must be reset
; This bit can be used to indicate a non-tape operation.

; As with all commands, the address STMT-RET is on the stack.

SAVE ETC POP AF ; discard the address STMT-RET.
; Now reduce the low byte of the Syntax table entry to give command.
LD HL, $5B74 ; Address T ADDR
LD A, (HL) ; fetch value.
SUB P SAVE +1 % 256 ; subtract the known offset.
LD (HL) ,A ; and put back for future reference.
H LD A, ($5B74) ; fetch the low order address byte of T ADDR.
] SUB P SAVE +1 % 256 ; subtract the known offset.
HH LD ($5B74) ,A ; and put back for future reference.
HE CALL SYNTAX 7 ; checking syntax
P JR Z,SA_STRM ;
LD A, SFD ; select system channel 'K'
CALL CHN O SYN ; and set as a default for tape message.
N CALL CHAN SLCT ; routine CHAN-OPEN
SA_ STRM CALL STR ALTER ;+ Allow for SAVE #8;
JR C,SA EXP ;+ forward if no stream specified.
; If a stream has been specified then check for a separator and set bit
; of T ADDR hi to show Tape is not being used as medium.
; e.g. SAVE #7,"marsupials" LOAD #15; "" SCREENS

CALL CLASS 0C ;+ check for a separator

SET 7, (IY+S$3B) ;+ flag extended command by setting T ADDR hi
SA EXP CALL EXPT EXP ; routine EXPT-EXP checks that a CLASS 0OA
; string expression follows and stacks the

; parameters in run-time.

CALL SYNTAX Z ; routine SYNTAX-Z
JR Z,SA DATA ; forward, if checking syntax, to SA-DATA

; In runtime create the workspace which is addressed by IX register.

LD BC,$0011 ; presume seventeen bytes for a SAVE header.
LD A, ($5B74) ; fetch command from T ADDR lo.
AND A ; test for zero, the SAVE command.
JR Z,SA SPACE ; forward, if so, to SA-SPACE
LD C,$22 ; else double length to thirty four.

SA SPACE CALL BC SPACES ; BC_SPACES creates 17/34 bytes in workspace.
PUSH DE ; transfer the start of the new space to the
POP IX ; available index register.

; Ten spaces are required for the default filename but it is simpler to
; overwrite the first file-type indicator byte as well.

LD B, $SOB ; set counter to eleven.
LD A, $20 ; prepare a space.
SA BLANK LD (DE) , A ; set workspace location to space.
INC DE ; next location.
DJNZ SA BLANK ; loop back to SA-BLANK till all eleven done.
LD (IX+$01),SFF ; set first byte of ten character filename

; to SFF as a default to signal a null string.
; Now have SFF $20 $20...

CALL STK FETCH ; routine STK-FETCH fetches the filename
; parameters from the calculator stack.
; length of string in BC.
; start of string in DE.

LD HL, SFFF6 ; prepare the value minus ten.
DEC BC ; decrement length.
; ten becomes nine, zero becomes SFFFF.
ADD HL, BC ; trial addition.
INC BC ; restore the true length.
JR NC, SA NAME ; forward, if length 1 - 10 to SA-NAME

; The filename is more than ten characters in length or the null string.

LD A, ($5B74) ; fetch command from T ADDR.
AND A ; test for zero, the SAVE command.
HF JR NzZ,SA NULL ; forward, if not SAVE, to SA-NULL
JP Z,REPORT F ; forward, if command is SAVE, to report

; '"Invalid file name'

; This could be a null filename or one greater than ten characters in length
; neither of which is acceptable for the SAVE command.

; The first ten characters of any other command parameter are acceptable.

;77 REPORT Fa RST 30H ; ERROR-1
S DEFB S$OE ; Error Report: Invalid file name

; continue with LOAD, MERGE, VERIFY and also SAVE within ten character limit.

SA NULL LD A,B ; test length of filename
OR C ; for zero.
JR Z,SA DATA ; forward, if zero, to SA-DATA
; using S$FF indicator followed by spaces.
LD BC, $000A ; else trim length to ten.

; other paths rejoin here with BC holding length in range 1 - 10.

SA NAME PUSH IX ; push start of file descriptor.
POP HL ; and pop into HL.
INC HL ; HL now addresses first byte of filename.
EX DE, HL ; transfer destination address to DE, start
; of string in command to HL.
LDIR ; copy up to ten bytes

; 1f less than ten then trailing spaces follow.

; the case for the null string rejoins here.

SA DATA RST 18H ; GET-CHAR
CP SE4 ; 1s character after filename the token 'DATA' ?
JR NZ,SA SCREEN ; forward, if not, to SA SCREEN

; to consider SCREENS
; continue to consider DATA.

LD A, ($5B74) ; fetch command from T ADDR
CP 503 ; 1s it '"VERIFY' ?

; VERIFY "d" DATA is not allowed.

JR Z,REPORT_ Ca ; forward, if so, to REPORT-Ca.
; '"Nonsense in BASIC'

; continue with SAVE, LOAD, MERGE of DATA.

RST 20H ; NEXT-CHAR points to the array variable.
CALL LOOK VARS ; routine LOOK-VARS searches variables area
; returning with carry reset if found or
; checking syntax.
; CH ADD points to opening bracket.
SET 7,C ; this converts a simple string to a
; string array. The test for an array or string
; comes later.
JR NC,SA V _OLD ; forward, if wvariable found, to SA-V-OLD

; This is the runtime path only.

LD HL, $0000 ; set destination to zero as not fixed.
LD A, ($5B74) ; fetch command from T ADDR

DEC A ; test for 1 - LOAD

JR Z,SA V_NEW ; forward, with LOAD DATA, to SA-V-NEW

; to load a new array.

; otherwise the variable was not found in run-time with SAVE/MERGE.

REPORT 2a RST 30H ; ERROR-1

DEFB $01 ; Error Report: Variable not found

continue with SAVE and LOAD of DATA

SA V_OLD JR NZ, REPORT Ca ; forward, if not an array, to REPORT Ca

; '"Nonsense in BASIC'

CALL SYNTAX 7Z ; routine SYNTAX-Z
JR Z,SA DATA 1 ; forward, if checking syntax, to SA-DATA-1

In runtime exclude a simple string by examining the VARS letter.

Note. the standard ROM allows these to be saved but errors when they are
subsequently loaded.

credit: Dr. Ian Logan in The Complete Spectrum ROM Disassembly.
solution: also by Dr. Ian Logan, in the Interface 1 ROM.

BIT 7, (HL) ;+ test VARS letter - is it a simple string ?
JR Z,REPORT Ca ;+ back, if so, to REPORT Ca

Now transfer the array's details to the tape descriptor.

INC HL ; step past single letter array variable name.
LD A, (HL) ; fetch low byte of array length.
LD (IX+$0B) ,A ; place in descriptor.
INC HL ; point to high byte of array length.
LD A, (HL) ; and transfer that
LD (IX+s0C),A ; to descriptor.
INC HL ; increase pointer within variable.
; The two runtime paths converge here. There is no syntax path error.
SA V_NEW LD (IX+S$S0E),C ; place the character array letter, formed

; earlier, in the header.

LD A,S$01 ; default the array type to numeric.
BIT 6,C ; test the result from the LOOK-VARS routine.
JR Z,SA V TYPE ; forward, if numeric, to SA-V-TYPE
INC A ; set type to 2 - a string array.
SA V _TYPE LD (IX+$00),A ; place type 0, 1 or 2 in descriptor.

’

The syntax path rejoins here.

SA DATA 1 EX DE, HL ; save var pointer in DE

; Note. LOOK _VARS left CH ADD pointing at ' (' in, say, SAVE "name" DATA a().
RST 20H ; NEXT-CHAR

H CP $29 ; is character '")' ?

HHE JR NZ,SA V _OLD ; back, if not, to SA-V-OLD

HE RST 20H ; NEXT-CHAR advances character address.
CALL RBRKT NXT ;+ check for right hand bracket and advances.
CALL CHECK END ; routine CHECK-END errors if not at end of

; the statement.

EX DE, HL ; bring back variables data pointer.
JR RJ SA ALL ; jump forward to SA-ALL.

TST_COM 0
TST_COM

REPORT Ca

XOR
CP
RET

RST
DEFB

A ;
(IY+$3R) ;
NZ ;

30H ;
SOB ;

default comparison
compare A to T ADDR lo
return if not.

ERROR-1
'Nonsense in BASIC'

; the branch was here to consider a 'SCREENS', the display file.

SA_SCREEN

CP
JR

LD
CP
JR
RST
DEFB

LD
CALL

SAA ; 1s character the token 'SCREENS' ?
NZ,SA CODE ; forward, if not, to SA CODE

A, ($5B74) ; fetch command from T ADDR lo

503 ; 1s it 'MERGE' ?

NZ,SA SCR _OK ; skip forward, if not, to SA SCR OK
30H ; ERROR-1

S0B ; '"Nonsense in BASIC'

A,S$03 ;+ Produce an error

TST COM ;+ if command is 'MERGE'

; continue with SAVE/LOAD/VERIFY SCREENS.

SA SCR _OK RST

; continue in

; the branch was here to

SA_CODE

CALL

LD

LD
LD
LD

LD
LD
LD
JR

CP
JR

LD
CP
JR

LD
CALL

RST
CALL

20H ; NEXT-CHAR advances past command

CHECK_END ; routine CHECK-END errors if not at end of
; Statement.

runtime.

HL, $4000 ;+ set start to display file start.

(IX+$0B), $00 ;

set descriptor length

(IX+S$0B), L ;+ set descriptor length

(IX+$0C),S1B ;

HL, $4000 ;
(IX+$0D),L ;
(IX+S0E) , H ;
SA TYPE 3 ;

to $1b00 to include bitmaps and attributes.

set start to display file start.
place start in

the descriptor.

forward to SA-TYPE-3

consider CODE.

SAF ; 1s character the token 'CODE' ?
NzZ,SA LINE ; forward, if not, to SA LINE
; to consider an auto-started BASIC program.
A, ($5B74) ; fetch command from T ADDR
$03 ; is it MERGE ?
Z,REPORT_Ca ; back, if so, to REPORT-Ca.
A,S$03 ;+ Produce an error
TST COM ;+ i1f command is 'MERGE'
20H ; NEXT-CHAR advances character address.

PR_ST END ;

’

routine PR-ST-END checks if a carriage
return or ':' follows.

JR NZ,SA CODE 1 ; forward, if there are parameters, to SA-CODE-1

H LD A, ($5B74) ; else fetch the command from T ADDR.
] AND A ; test for zero - SAVE without a specification.
H JR Z,REPORT_Ca ; back, if so, to REPORT-Ca.

CALL TST COM 0 ;+ Test that command is not zero - SAVE

; For LOAD and VERIFY put a zero on the stack to signal use the address that
; the code was saved from.

CALL USE ZERO ; routine USE-ZERO stacks a zero in runtime.
JR SA CODE 2 ; forward to SA-CODE-2

; if there are more characters after CODE expect start and possibly length.

SA CODE_1 CALL EXPT 1NUM ; routine EXPT-1NUM checks for numeric
; expression and stacks it in run-time.

RST 18H ; GET-CHAR was the last instruction.
CP $2C ; does a comma follow ?
JR Z,SA CODE 3 ; forward, if so, to SA-CODE-3

; else allow saved code to be loaded to a specified address.

P LD A, ($5B74) ; fetch command from T ADDR.
;i AND A ; is the command SAVE which requires length ?
HE JR Z,REPORT Ca ; back, if so, to REPORT-Ca

CALL TST COM O ;+ Test that command is not zero - SAVE

; the command 'LOAD CODE' may rejoin here with zero handled as start.

SA CODE_2 CALL USE ZERO ; routine USE-ZERO stacks zero for length
; 1f not checking syntax.
JR SA CODE 4 ; forward to SA CODE 4

’

; the branch was here with SAVE CODE start,
SA CODE_3 RST 20H ; NEXT-CHAR advances character address.
CALL EXPT 1NUM ; routine EXPT 1INUM checks for an expression
; and stacks in run-time.

; paths converge here and nothing must follow.

SA CODE 4 CALL CHECK_END ; routine CHECK-END errors with extraneous
; characters and quits if checking syntax.

; in runtime there are two 16-bit parameters on the calculator stack.

CALL FIND INT2 ; routine FIND-INT2 gets length.
LD (IX+S$0B),C ; place length

LD (IX+s0C),B ; 1in descriptor.

CALL FIND_INTZ ; routine FIND-INT2 gets start.
LD (IX+$0D),C ; place start

LD (IX+$0E),B ; in descriptor.

LD H,B ; transfer the

LD L,C ; start to HL also.

SA TYPE 3 LD (IX+$00),$03 ; place type 3 - 'CODE' in descriptor.

RJ SA ALL JR SA ALL ; forward to SA-ALL.

; the branch was here with BASIC to consider an optional auto-start line
; number e.g.

; SAVE "some name" LINE

; SAVE "fruitbats" LINE 200

SA LINE CP SCA ; 1s character the token 'LINE' ?
JR Z,SA LINE 1 ; forward, if so, to SA-LINE-1

; else all possibilities have been considered and nothing must follow.
CALL CHECK _END ; routine CHECK-END

; continue in run-time to save BASIC without auto-start.

H LD (IX+SO0E), $80 ; place a high line number in descriptor
LD B, $80 ; set B to $80 as a disabling value.
JR SA TYPE O ; forward, to save program, to SA-TYPE-0

; the branch was here to consider auto-start.
; Note. both the BASIC manual and the Pocket Book state that the line number
; may be omitted

SA LINE 1 LD A, ($5B74) ; fetch command from T ADDR
AND A ; test for SAVE.
JR NZ,REPORT Ca ; jump forward, with anything else, to REPORT-C

; 'Nonsense in BASIC'

RST 20H ; NEXT-CHAR
HE CALL EXPT_1NUM ; routine EXPT 1INUM checks for numeric
H ; expression and stacks in run-time.
CALL FETCH NUM ;+ routine FETCH NUM checks for numeric

;+ expression and stacks in run-time defaulting
;+ to zero.
CALL CHECK END ; routine CHECK-END quits if syntax path.

CALL FIND LINE ; New routine FIND-LINE fetches a valid line
; number expression to BC.

LD (IX+$0D),C ; place the valid auto-start
SA TYPE 0 LD (IX+$0E),B ; line number in the descriptor.

; continue to save program and any variables.
; Note. label has been moved back.

sa_type 0 LD (IX+$00),$00 ; place type zero - program in descriptor.
LD HL, ($5B59) ; fetch E LINE to HL.
LD DE, ($5B53) ; fetch PROG to DE.
SCF ; set carry flag to calculate from end of
; variables E LINE -1.
SBC HL, DE ; subtract to give total length.

LD (IX+S0B), L ; place total length

SA ALL

’

LD _LOOK_ H

LD _TYPE

LD TYPE M

’

’

LD
LD
SBC
LD
LD
EX

LD
AND

JPp

(IX+$0C),H
HL, ($S5B4B)
HL, DE
(IX+S$S0F),L
(IX+$10),H
DE, HL

A, ($5B74)
A

Z,SA_ CONTRL

; in descriptor.
; load HL from system variable VARS

; subtract to give program length only.
; place length of program

; in the descriptor.

; Transfer start to HL, length to DE.
; fetch command from system variable T ADDR lo
; test for zero - SAVE.
with SAVE,

; jump forward, to SA-CONTRL ->

THE

'LOAD, MERGE and VERIFY'

BRANCH

continue with LOAD, MERGE and VERIFY.

’

’

’

PUSH
LD
ADD
PUSH
LD
XOR
SCF
CALL

POP
JR

LD
CALL

LD

LD

LD

CP

JR

LD

CP
JR

LD

PUSH
CALL

CALL

POP

PUSH
POP

HL
BC,$0011
IX,BC

IX

DE, $0011
A

LD BYTESZ2

IX
NC,LD LOOK_H

A, $FE
CHAN_SLCT

(IY+$52),503
C, $80

A, (IX+$00)
(IX-$11)
NzZ,LD TYPE

C,SF6

$04
NC, LD LOOK_H

DE, type msgs

BC
PO_MSG

DISP_MSG
BC

IX
DE

; (*) save start.
; prepare to add seventeen
; to point IX at second descriptor.

; save IX

; seventeen bytes

; reset zero flag

; set carry flag to signal load the bytes.

; routine LD-BYTES loads a header from tape
; to second descriptor.

; restore IX.
; loop back, until header found, to LD-LOOK-H
; select system channel 'S'

; routine CHAN-OPEN opens system channel.

; set SCR CT to 3 lines.

; C has bit 7 set to indicate type mismatch as
; a default startpoint.

; fetch loaded header type to A
; compare with expected type 0 - 3 placed in
; header by this ROM.

; forward, with mismatch, to LD-TYPE

; set C to minus ten - will count characters
; up to zero.

; check if type is in acceptable range 0 - 3.
; back, with 4 and above, to LD-LOOK-H

; address base of last 4 tape messages

; save BC
; routine PO-MSG outputs relevant message.

;+ routine DISP_MSG outputs relevant message.
; restore BC

; transfer IX,

; the 2nd descriptor, to DE.

LD HL, SFFFO ; prepare minus seventeen.

ADD HL, DE ; add to point HL back to 1lst descriptor.
LD B, $0A ; the count will be ten characters for the
; filename.

; Check if user has typed something like LOAD "".

LD A, (HL) ; fetch first character of filename and test
INC A ; for the value SFF.
JR NZ,LD NAME ; forward, if not the S$FF wildcard, to LD-NAME

; but if it is the wildcard, then add ten to C, which holds minus ten for a
; type match or -128 for a type mismatch. Although characters have to be
; counted, bit 7 of C will not alter from the state set here.

LD A,C ; transfer $F6 or $80 to A
ADD A,B ; add $0A
LD C,A ; place result, $00 or $8A, in C.

; At this point we have either a type mismatch, a wildcard match or ten
; characters to be counted. The characters must be shown on the screen.

LD NAME INC DE ; Address the next input character.

LD A, (DE) ; Fetch character

CP (HL) ; Compare to expected

INC HL ; Address next expected character

JR NZ,LD CH PR ; Forward, with mismatch, to LD-CH-PR

INC C ; Increment C - the matched character count.
LD CH PR

AND A ;+ clear carry for 1 character.

CALL DISP MSG ;+ call directly as screen is known
H RST 10H ; PRINT-A prints the character.

DJNZ LD NAME ; loop back, for ten characters, to LD-NAME

; if ten characters matched, and the types previously matched, then C will
; now hold zero.

BIT 7,C ; test if all characters matched
JR NZ,LD_LOOK_H ; back, if not, to LD-LOOK-H

; else, if name matched, print a terminal carriage return.

LD A, $0D ; prepare carriage return. 2?22?27
HE RST 10H ; PRINT-A outputs it.
CALL DISP_MSG ;+ Call print directly.

; The various control routines for LOAD, VERIFY and MERGE are now executed
; during the one-second gap following the header on tape.

POP HL ; (*) restore START

LD A, (IX+$00) ; Fetch the validated incoming type.
CP $03 ; compare with type for CODE.

JR Z,VR_CONTRL ; forward, if it is CODE, to VR-CONTRL

; to load or verify CODE data.
; type is a PROGRAM or an ARRAY.

LD A, ($5B74) ; fetch command from T ADDR
DEC A ; was it LOAD ?

JR Z,LD CONTRL ; JUMP forward, if so, to LD-CONTRL
; to load BASIC or variables.

CP 502 ; was command MERGE ?

Jp Z,ME CONTRL ; jump forward, if so, to ME-CONTRL

; else continue into VERIFY control routine to verify.

; THE 'VERIFY CONTROL' ROUTINE

; There are two branches to this routine.

; 1) From above to verify a program or array

; 2) from earlier with no carry to LOAD or verify CODE.
to data.

VR CONTRL PUSH HL ; save pointer

; as opposed to,

; a length

VR _CONT 1

VR_CONT 2

LD L, (IX-506) ; fetch length of old data

LD H, (IX-$05) ; to HL.

LD E, (IX+$0B) ; fetch length of new data

LD D, (IX+3$0C) ; to DE.

LD A,H ; check length of old

OR L ; for zero.

JR Z,VR_CONT 1 ; forward to VR-CONT-1 if length is unspecified

SBC
JR

JR

on

LD

CP
JR

POP
LD
OR
JR

LD
LD

PUSH
POP

LD

CP

SCF
JR

JR

say,
HL, DE
C,REPORT R

Z,VR_CONT 1

tape shorter than

A, (IX+S500)
$03

NZ,REPORT R

HL
A, H
L

NZ,VR_CONT 2

(IX+$S0D)
(IX+S0E)

L,
H,

HL
IX

, ($5B74)

$02

NZ,VR_CONT_ 3

Z,LD_BLOCK

LOAD

L}

X

L}

;+ skip,

e.g. LOAD "x" CODE

CODE 32768,300.

subtract the new length from the old length.
forward to REPORT-R if the length on tape is
larger than that specified in command.
'Loading error'

to VR-CONT-1

forward, if lengths match,

expected is only allowed for CODE XX

Fetch type from tape.
Is it CODE *?

forward, if not,
'Loading error'

to REPORT-R

pop the pointer to the data
test for zero

e.g. LOAD 'x' CODE

forward, if destination given, to VR-CONT-2
the destination in the header

code at address saved from.

else use
and load

push the
transfer

pointer to the start of data block.
to IX.

fetch the reduced command from T ADDR
is it VERIFY ?

prepare a set carry flag
skip, if not, to VR-CONT-3

if VERIFY, to LD BLOCK

;+ with carry clear.

H AND A ; clear carry flag for VERIFY

; THE NEW 'LOAD BLOCK' WITH CARRY SET ROUTINE

; This saves some bytes by consolidating the most popular conditions.

LD BLCK C SCF ;+ Set carry flag so that data is loaded.
; Continue to use, for verification, the same routine used to LOAD data.
;77 VR _CONT 3 LD A, SFF ; signal data block to be loaded

; THE 'LOAD DATA BLOCK' ROUTINE

; This routine is called from 3 places other than above to load a data block.
; In all cases the accumulator is first set to SFF so the routine could be
; called at the previous instruction.
;77 LD BLOCK CALL LD BYTES ; routine LD-BYTES
LD BLOCK LD A, SFF ;+ signal data block to be loaded, not header.
CALL LD BYTES2 ; routine LD-BYTES
RET C ; return if successful.
REPORT R RST 30H ; ERROR-1 1la
DEFB S$1A ; Error Report: Loading error

; THE 'LOAD CONTROL' ROUTINE

; This branch is taken when the command is LOAD with type 0, 1 or 2.

LD _CONTRL LD E, (IX+S$S0B) ; fetch length of found data block
LD D, (IX+50C) ; from 2nd descriptor.
PUSH HL ; save destination.
LD A,H ; test for zero which indicates
OR L ; an array - types 1 or 2.
JR NZ,LD CONT 1 ; forward, if not, to LD-CONT-1
INC DE ; ilncrease array length
INC DE ; for letter name
INC DE ; and 16-bit length.
EX DE, HL ; transfer adjusted length to HL.
JR LD CONT 2 ; forward to LD-CONT-2

; The branch was here with type PROGRAM.

LD CONT 1 LD L, (IX-506) ; fetch length from
LD H, (IX-505) ; the first header.
EX DE, HL ;
SCF ; set carry flag
SBC HL,DE ;
JR C,LD DATA ; to LD-DATA

LD CONT_2 LD DE, $0005 ; allow an overhead of five bytes.

LD DATA

’

ADD
LD
LD

CALL
POP
LD
AND
JR
the type is

LD
OR

JR

else the destination is the

DEC
LD
DEC
LD

DEC
INC
INC
INC

LD

CALL

LD

HL, DE
B, H
c,L

TEST ROOM

HL
A, (IX+$00)
A

7,LD_PROG

; add in the difference in data lengths.
; transfer to
; the BC register pair

; routine TEST-ROOM fails if not enough room.

; pop destination

; fetch type 0, 1 or 2.

; test for PROGRAM and variables.
; forward, if so, to LD-PROG

a numeric or string array.

A, H
L

7Z,LD DATA 1

HL
B, (HL)

HL

C, (HL)

HIL,

BC

BC

BC
($5B5F) , IX
RECLAIM 2
IX, ($5B5F)

;7; LD DATA 1 LD HL, ($5B59)
P DEC HL
LD DATA 1 CALL L EL DHL
LD C, (IX+$0B)
LD B, (IX+50C)
PUSH BC
INC BC
INC BC
INC BC
LD A, (IX-$03)
P PUSH AF
CALL MAKE ROOM
ri INC HL
P POP AF

; test the destination for zero which
; indicates variable does not already exist.
to LD-DATA-1

; forward, if so,

first dimension within the array structure

; address high byte of total array length
; transfer to B.
; address low byte of total array length.
; transfer to C.

; point to letter of variable.
; adjust length to

; include these

; three bytes also.

; save header pointer in X PTR which is
; updated by the POINTERS routine.

; routine RECLAIM-2 reclaims the old variable
; sliding workspace including the two headers

; downwards.

; reload IX from X PTR which will have been
; adjusted down by the POINTERS routine.

; address E LINE

; now point to the $80 variables end-marker.

; instead of prev 2 lines.

; fetch new data length
; from 2nd header.

; ¥ save it.

; adjust the

; length to include the letter name
; and two total length bytes.

; fetch letter name from old header.

; preserve accumulator though not corrupted.

; routine MAKE-ROOM creates space for variable
; sliding workspace up. IX no longer addresses
; anywhere meaningful.

; point to the first new location.

; fetch back the letter name.

TX_BLK C

LD BLK R

’

LD
POP

INC
LD
INC
LD
INC
PUSH
POP
SCF

LD

JR

The branch

LD PROG EX

’

’

’

’

’

’

CALL
LD
DEC

LD
LD
LD
PUSH

CALL

POP
PUSH
PUSH

CALL

LD

INC
LD
LD
ADD
LD

LD

Note.
still

LD
AND
JR

LD
LD
LD

(HL), D

HL

IX

A, SFF

LD BLCK C

DE, HL

L_EL_DHL
HL, ($5B59)
HL

($5B5F) , IX
C, (IX+$0B)
B, (IX+$0C)
BC

RECLATM 1
BC

HL

BC

MAKE ROOM
IX, ($5B5F)
HL

C, (IX+$0F)
B, (IX+$10)
HL, BC
($5B4B) , HL

H, (IX+$0E)

A, H
$COo

NZ,LD_PROG 1

L, (IX+$0D)
($5B42) , HL
(

IY+S0A),S00

’

place in first new location.
* pop the data length.

address 2nd location
store low byte of length.
address next.

store high byte.

address start of data.
transfer the address

to IX register pair.

set carry flag indicating load not verify.

signal data not header.

;+ JUMP back to LD-BLOCK

is here when a PROGRAM,

’

as opposed to an ARRAY, is to be loaded.

transfer data destination to DE.

;+ instead of next 2 lines?

’

although the line number is checked at SAVE time,
relevant as by default auto-start is inhibited.

address E_LINE
now address variables end-marker.

place the IX header pointer in X PTR
get new length

from 2nd header

and save it.

routine RECLAIM-1 reclaims program and vars.
adjusting X-PTR.

restore the new length.
* save start
** and length.

routine MAKE-ROOM creates the space.
reload IX from adjusted X PTR

point to start of new area.

fetch length of BASIC on tape

from 2nd descriptor

add to address the start of variables.
set the system variable VARS

fetch high byte of autostart line number.

this check is

transfer to A

test i1if greater than $3F.
forward, if so, to LD-PROG-1
with no autostart.

fetch the low byte.
set system variable NEWPPC to line number
set statement NSPPC to zero.

LD (IY+$0A),A ; set statement NSPPC to zero.

LD PROG_1 POP DE ; ** pop the length
P POP IX ; * and start.
i SCF ; set carry flag
HE LD A, SFF ; signal data as opposed to a header.
P JP LD BLCK C ; jump back to LD-BLOCK
JR LD BLK R ;+ NEW relative jump back to LD-BLOCK routine

;+ at the instruction POP IX

; THE 'MERGE CONTROL' ROUTINE

; The branch was here to merge a program and its variables or an array.

ME CONTRL LD C, (IX+$0B) ; fetch length
LD B, (IX+$0C) ; of data block on tape.
PUSH BC ; save 1it.
INC BC ; add one for the end-marker.
CALL BC SPACES ; routine BC SPACES creates room in workspace.

; HL addresses last new location.

LD (HL), $80 ; place end-marker at end.
EX DE, HL ; transfer first location to HL.
POP DE ; restore length to DE.
PUSH HL ; save address of first location.
HH PUSH HL ; and transfer first location
- POP IX ; to IX register.
s SCF ; set carry flag to load data on tape.
HE LD A, SFF ; signal data not a header.
CALL TX BLK C ;+ routine LD-BLOCK loads to workspace.
POP HL ; restore first location in workspace to HL.
LD DE, ($5B53) ; set DE from system variable PROG.

; now enter a loop to merge the data block in workspace with the program and

; variables.
ME NEW LP LD A, (HL) ; fetch next byte from workspace.
AND SCO ; compare with $3F.
JR NZ,ME VAR LP ; forward to ME-VAR-LP if a variable or

; end-marker.

; Continue when HL, the WORKSPACE pointer, still addresses a BASIC line
number.

ME OLD LP LD A, (DE) ; fetch high byte from PROGRAM area.
INC DE ; increment the PROGRAM address.
CP (HL) ; compare with line number in WORKSPACE.
INC HL ; increment WORKSPACE address.

JR NzZ,ME OLD L1 ; forward to ME-OLD-L1 if high bytes don't match

LD
CP

ME_OLD L1 DEC

’

DEC

JR

PUSH

EX

CALL

POP

JR

NC,ME_NEW L2

HL
DE, HL
NEXT_ ONE
HL

ME_OLD LP

the branch was here with

ME NEW L2 CALL ME_ENTER

’

JR

ME_NEW_LP

the branch was here when
New variables are easier
the end of the VARIABLES

ME VAR LP LD

LD
CP
RET

PUSH
LD

ME_OLD VP LD

’

CP
JR

CP
JR

else entire

ME OLD V1 PUSH

CALL

POP
EX

JR

A, (HL)
c,

$8

7

HL

HL, ($5B4B)
A, (HL)

$80
Z,ME_VAR L2

C
Z,ME_OLD V2

fetch the low byte of PROGRAM line number.
compare with low byte in WORKSPACE.

point to start of
respective lines again.

forward to ME-NEW-L2 if line number in
WORKSPACE 1is less than or equal to current
PROGRAM line as has to be added to program.
else save workspace pointer.

transfer prog pointer to HL

routine NEXT-ONE finds next line in DE.

restore workspace pointer

back to ME-OLD-LP until destination position
in program area found.

an insertion or replacement point.

’

’

routine ME-ENTER enters the line

loop back to ME-NEW-LP.

the location in workspace held a variable.
than program lines as they are merely added at

area.

fetch first byte of workspace variable.
copy to C also.

is it the workspace VARIABLES end-marker ?
return, if so, as MERGE is complete. >>>>>

save workspace area pointer.
load HL with VARS - start of variables area.

fetch first byte.

is it the VARIABLES end-marker °?

forward, if so, to ME-VAR-L2

to add variable at end of variables area.

compare with variable in workspace area.
forward, with a match, to ME-OLD-V2
to replace.

variables area has to be searched.

BC
NEXT_ONE
BC

DE, HL

ME_OLD VP

’

save character in C.

routine NEXT-ONE gets following variable
address in DE.

restore character in C
transfer next address to HL.

loop back to ME-OLD-VP

; the branch was here when first characters of name matched.

ME OLD V2 AND SEOQ ; keep bits 11100000
CP SA0 ; compare 10100000 - a long-named variable.
JR NZ,ME VAR L1 ; forward to ME-VAR-L1 if just one-character.
; but long-named variables have to be matched character by character.
POP DE ; fetch workspace 1lst character pointer
PUSH DE ; and save it on the stack again.
PUSH HL ; save variables area pointer on stack.
ME OLD V3 INC HL ; address next character in vars area.
INC DE ; address next character in workspace area.
LD A, (DE) ; fetch workspace character.
CP (HL) ; compare to variables character.
JR NZ,ME OLD V4 ; forward, with a mismatch, to ME-OLD-V4
RLA ; test if it is the terminal inverted character.
JR NC,ME OLD V3 ; loop back, if more to test, to ME-OLD-V3
; otherwise the long name matches in its entirety.
POP HL ; restore pointr to first character of variable
JR ME_VAR_Ll ; forward to ME-VAR-L1
; the branch is here when two characters don't match
ME OLD V4 POP HL ; restore the prog/vars pointer.
JR ME OLD V1 ; back to ME-OLD-V1 to resume search.
; branch here when variable is to replace an existing one
ME VAR L1 LD A, SFF ; indicate a replacement.
; this entry point is when A holds $80 indicating a new variable.
ME VAR L2 POP DE ; pop workspace pointer.
EX DE, HL ; now make HL workspace pointer, DE vars pointer
INC A ; zero flag set if replacement.
SCF ; set carry flag indicating a variable not a

; program line.
CALL ME_ENTER ; routine ME-ENTER copies variable in.

JR ME VAR LP ; loop back to ME-VAR-LP

; THE 'MERGE A LINE OR VARIABLE' SUBROUTINE

; A BASIC line or variable is inserted at the current point. If the line

; number or variable names match (zero flag set) then a replacement takes
; place.

ME ENTER JR NZ,ME ENT 1 ; forward, for insertion only, to ME-ENT-1

; but the program line or variable matches so old one is reclaimed.

EX

LD

EX

CALL

CALL

CALL

EX

LD

EX

now the new

AF,AF'
($5B5F) , HL
DE, HL
NEXT_ ONE
RECLAIM 2
NXT 1 RC2
DE, HL

HL, ($5B5F)

AF,AF"

line or variable

; save carry - prog/var flag

; preserve workspace pointer in dynamic X PTR

; transfer program dest pointer to HL.

; routine NEXT-ONE finds the following location
; in program or variables area.

; routine RECLAIM-2 reclaims the space between.
;+ routine combines above 2 routines.

; transfer program dest pointer back to DE.

; fetch adjusted workspace pointer from X PTR

; restore carry - program/variable flag.

is entered.

EX AF,AF" ; save or re-save carry - prog/var flag.
PUSH DE ; save dest pointer in prog/vars area.
CALL NEXT ONE ; routine NEXT-ONE finds next in workspace.
; gets next in DE, difference in BC.
; prev addr in HL
LD ($5B5F) , HL ; store pointer in X PTR
LD HL, ($5B53) ; load HL from system variable PROG
EX (SP) ,HL ; swap with prog/vars pointer on stack.
PUSH BC ; ** save length of new program line/variable.
EX AF,AF' ; fetch back carry - prog/var flag.
JR C,ME_ENT 2 ; skip, if handling a variable, to ME-ENT-2
CALL MK RM DHL ;+ MAKE ROOM decrementing HL first
HE DEC HL ; address location before pointer
S CALL MAKE ROOM ; routine MAKE-ROOM creates room for BASIC line
INC HL ; address next. (keep this one)
JR ME ENT 3b ; forward to ME-ENT-3
ME ENT 2 CALL MAKE ROOM ; routine MAKE-ROOM creates room for variable.
;7;; me_ent 3 INC HL ; address next?
ME ENT 3b POP BC ; ** pop length
EX DE, HL ;+ DE now holds first new location

; Note. HL is now used instead of DE

POP HL ; * pop value for PROG which may have been
; altered by POINTERS if first line.

LD ($5B53) , HL ; set PROG back to original value.

LD

PUSH
PUSH

LDIR

POP
POP

PUSH

CALL

POP

RET

; THE 'SAVE CO

; A branch £

; First the header data is saved. Then,

; the data i
; For tape,
; HL points
; IX points
; For RS232
; HL points
; IX points
; If saving

SA CONTRL PUSH

A LD
Y CALL

CALL
JR

i XOR

LD
CALL

i SET

SET
CALL

SA_CBN PUSH

LD
XOR
CALL

POP

HL, ($5B5F)

fetch adjusted workspace pointer from X PTR

BC ; save the length.

HL ; and save the workspace pointer.

DE, HL ; make workspace pointer the source,
; prog/vars pointer the destination.
; copy bytes of line or variable into new area.

HL ; restore workspace pointer.

BC ; restore length.

DE ; save new prog/vars pointer.

RECLAIM 2 ; routine RECLAIM-2 reclaims the space used by
; the line or variable in workspace block as no
; longer required and space could be useful
; for adding more lines.

DE ; restore the prog/vars pointer.
; return.

NTROL' ROUTINE

rom the main SAVE-ETC routine at SAVE-ALL.
after a wait of 1 second
tself is saved.

to start of data.

to start of descriptor.
and network,

to the start of the data
to start of descriptor.

to tape then channel 'K' will be open for messages.

HL ; save start of data.

A, SFD ; select system channel 'K'

CHAN SLCT ; routine CHAN-OPEN

IN CHAN K ; 1s tape being used ?

NZ, SA CBN ; skip the prompt message if not.

A ; Clear to address table directly

DE, tape msgs ; Address: tape-msgs

PO MSG 0 ; Routine PO-MSG -
; 'Start tape then press any key.'

5, (IY+502) ; Update TV _FLAG - signal lower screen requires
; clearing.

3, (IY+S$01) ;+ Set 'L' key mode for prompt situation.

WAIT KEY ; routine WAIT KEY

IX ; Save pointer to descriptor.

DE, $0011 ; There are seventeen bytes to save.

A ; Set A to zero - to signal a header block.

SA BYTESZ ; routine SA-BYTES saves block

X ; restore descriptor pointer.

LD B, $32

SA 1 SEC HALT

DJNZ SA 1 SEC

LD E, (IX+$0B)
LD D, (IX+$0C)
P LD A, SFF
DEC A
POP IX
;s Jp SA BYTES

SA BYTES2 BIT 7, (IY+S$3B)

Jp Z,SA BYTES
LD HL,SA LD RET
PUSH HL

wait for a second - 50 interrupts.

wait for an interrupt
back to SA-1-SEC until pause complete.

fetch length of bytes from the
descriptor.

signal data bytes. (dec a)

;+ signal data bytes.

’

’

retrieve pointer to start

jump back to SA-BYTES

;+ are extended streams being used. T ADDR hi
;+ back to tape routine if not

’

’

address: SA/LD RET Duplication.
is pushed as common exit route.

THE NEW 'SAVE BYTES TO NETWORK/RS232' SUBROUTINE

This can also, for amusement, be used to save a small program to the

Screen e.g. SAVE #2, "ABC"
DE holds the length of data.

IX points to the start.

Begin by transferring the start of data from IX to HL as the extended
streams will use the IX register. RST 10 preserves the main registers.

SA_BYT NB PUSH IX

POP HL
SA_BYT LP LD A,D

OR E

RET 2

LD A, (HL)

INC HL

DEC DE

RST 10H

JR SA_BYT LP

LD BYTESZ2 BIT 7, (IY+S$3B)

’

Jp Z,LD BYTES
LD HL,SA LD RET
PUSH HL

EX AF, AF'

’

Transfer start to
the HL register.

Test for zero length.

Return if so. >>
Fetch a byte to the accumulator.
Increment address.

decrement byte count.

Restart outputs a byte to current channel.

loop back to save another byte to SA BYT LP

Test T ADDR hi
jump to tape routines

Address: SA/LD-RET
is saved on stack as terminating routine.

preserve carry

THE NEW 'LOAD BYTES FROM NETWORK/RS232' SUBROUTINE

; IX points to start
; DE holds length
; The alternate CARRY is set if data is to be loaded.

LD BYT NB PUSH IX ; transfer the destination start address
POP HL ; to the HL register pair.
LD BYT LP CALL INPUT AD ; input a byte from the current channel
JR NC,LD BYT LP ; repeat until byte is acceptable. XXXXXXXXXX
EX AF,AF' ; fetch the carry flag.
JR C,LD BYT 1 ; forward, with carry, to LOAD byte.
EX AF, AF' ; Ppreserve carry.
HE XOR (HL) ; verify against byte in memory.
CP (HL) ; compare
RET NZ ; return if verification failed with NC also.
JR LD BYT 2 ; skip forward for next byte.
LD BYT 1 EX AF,AF" ; preserve carry flag bring back new byte.
LD (HL) , A ; insert byte from network or RS232.
LD BYT 2 1INC HL ; ilncrement memory pointer.
DEC DE ; decrement the byte count.
LD A,D ; Test for zero.
OR E ;
JR NZ,LD BYT LP ; back if not zero for more.
SCF ; signal success.
RET ; Return.

; THE NEW 'DISP_MSG' ROUTINE

; If, on entry, carry is set then this routine prints a message without
; disturbing the current channel. If the carry flag is reset then the
; single character in A is output.

DISP_MSG
PUSH HL ; Preserve Main registers.
PUSH BC ;
PUSH DE ;
LD HL, ($5B51) ; fetch the current channel.
PUSH HL ; and save it
PUSH DE ; preserve message pointer
PUSH AF ; preserve type and carry flag
CALL CHAN O FE ; select system channel for 'S'
POP AF ; bring back the type
POP DE ; and the message pointer
JR NC,DISP 1 ; forward with no carry to output a single char

CALL PO_MSG ; output message to upper screen

LD A,':! ; follow the type message with ': '

RST 10H ;
D A, ;
DISP 1 RST 10H ; else print the character
POP HL ; restore channel.
CALL CHAN FLAG ; routine CHAN FLAG updates CURCHL and flags.
POP DE ; Restore main registers.
POP BC ;
POP HL ;
RET ; Return.
; Arrangement of the two tape cassette headers in workspace.
; Originally IX addresses first location and only one header is required
; when saving.
; OLD NEW PROG DATA DATA CODE
; HEADER HEADER num chr NOTES.
; IX-$11 IX+$00 0 1 2 3 Type.
; IX-$10 IX+$01 X X X X F (SFF if filename is null).
; IX-$0F IX+$02 b4 b4 b4 b4 i
; IX-S0E IX+$03 X X X X 1
; IX-$0D IX+$04 be be be b 4 e
; IX-$0C IX+$05 X be X X n
; IX-$0B IX+$06 X X X b4 a
; IX-$0A IX+$07 X X X X m
; IX-$09 1IX+$08 X X X b 4 e
; IX-$08 IX+$09 X X X X .
; IX-507 IX+S0A X X X X (terminal spaces).
; IX-$06 IX+S0B lo lo lo lo Total length
: IX-$05 1IX+$0C hi hi hi hi of datablock.
; IX-504 IX+$S0D Auto - - Start Various
; IX-$03 IX+S$SOE Start a-z a-z addr/0 ($80 if no autostart).
; IX-$02 IX+S$0F lo - - - Length of Program
; IX-$01 IX+$10 hi - - - only i.e. without variables.

; Arrangement of 9-byte Interfacel Network/RS232 header when saving loading.
; Note. This has not been adopted by this ROM.

; $5BE6 HD 00 0 1 2 3 Type.

; S5BE7 HD OB lo lo lo lo Total length

; $5BES HD 0C hi hi hi hi of datablock

; $5BE9 HD 0D -- -- -- 1lo/00 Start

; $5BEA HD OE -- -- -- hi/00 Address.

; $S5BEB HD OF lo a-z a-z -= Length

; $5BEC HD 10 hi -= -= -= of program.

; $5BED HD 11 Auto - - - Auto start line

; $S5BEE HD 12 Start -- - - number. S$SFFFF if none.

; THE 'CANNED CASSETTE' MESSAGES

; The last-character-inverted Cassette messages.
; Starts with normal initial step-over byte.

tape msgs DEFB $80
DEFM "Start tape, then press a key"

type msgs DEFB '.'+$80
DEFB $0D
DEFM "Progra"
DEFB 'm'+$80
DEFB $0D
DEFM "Number arra"
DEFB 'y'+5$80
DEFB $0D
DEFM "Char arra"
DEFB 'y'+580
DEFB $0D
DEFM "Byte"
DEFB 's'+$80

,-~k***

;** Part 5. SCREEN AND PRINTER HANDLING ROUTINES **

,-**

; THE 'PRINT OUTPUT' ROUTINE

; This is the routine most often used by the RST 10 restart although the

; subroutine is on two occasions called directly when it is known that
; output will definitely be to the lower screen.
PRINT OUT CALL PO _FETCH ; routine PO-FETCH fetches print position
; to HL register pair.

CP $20 ; 1s character a space or higher ?

JR NC, PO_Q ABLE ; jump forward, if so, to PO-ABLE

CP S06 ; 1s character in range 00-05 ?

JR C,PO_QUEST ; forward, if so, to PO-QUEST

CP $18 ; 1s character in range 24d - 31d ?

JR NC, PO_QUEST ; forward, 1f so, to PO-QUEST

LD HL,ctlchrtab-6 ; address - the base address of control

; character table - where zero would be.

LD E,A ; control character 06 - 23d
LD D, $00 ; 1s transferred to DE.

ADD HL, DE ; index into table.

LD E, (HL) ; fetch the offset to routine.
ADD HL, DE ; add to make HL the address.
PUSH HL ; push the address of routine.
Jp PO _FETCH ; Jump forward to PO-FETCH,

; as the screen/printer position has been
; disturbed, and then indirectly to the
; routine on the stack.

; THE 'CONTROL CHARACTER' TABLE

; For control characters in the range 6 - 23d the following table
; is indexed to provide an offset to the handling routine that

; follows the table.

ctlchrtab DEFB PO_COMMA
DEFB PO QUEST
DEFB PO BACK 1 -
DEFB PO RIGHT -
DEFB PO_QUEST -
DEFB PO QUEST -
DEFB PO _QUEST -
DEFB PO_ENTER -
DEFB PO_QUEST -
DEFB PO _QUEST -
DEFB PO 1 OPER -
DEFB PO _1 OPER -
DEFB PO _1 OPER -
DEFB PO 1 OPER -
DEFB PO 1 OPER -
DEFB PO _1 OPER -
DEFB PO 2 OPER -
DEFB PO _2 OPER -

; 06d offset to Address: PO-COMMA
; 07d offset to Address: PO-QUEST
; 08d offset to Address: PO-BACK-1
; 09d offset to Address: PO-RIGHT
; 10d offset to Address: PO-QUEST
; 11d offset to Address: PO-QUEST
; 12d offset to Address: PO-QUEST
; 13d offset to Address: PO-ENTER
; 14d offset to Address: PO-QUEST
; 15d offset to Address: PO-QUEST
; 1l6d offset to Address: PO-1-0OPER
; 17d offset to Address: PO-1-0OPER
; 18d offset to Address: PO-1-0OPER
; 19d offset to Address: PO-1-0OPER
; 20d offset to Address: PO-1-0OPER
; 21d offset to Address: PO-1-0OPER
; 22d offset to Address: PO-2-0PER
; 23d offset to Address: PO-2-0OPER

Uy Uy Uy Ur Ur Uy O 0 A O O O O U Uy Uy U Oy
~

; THE 'CURSOR LEFT' ROUTINE

; Backspace and up a line if that action is from the left of screen.
; For the ZX printer backspace up to first column but not beyond.
PO BACK 1 INC c ; Move left one column.

LD A,S$22 ; Value $21 1is leftmost column.

CP C ; Have we passed ?

JR NZ, PO _BACK 3 ; Forward, if not, to PO-BACK-3

; to store the new position.

BIT 1, (IY+S$S01) ; Test FLAGS - is printer in use ?
JR NZ, PO BACK 2 ; Forward, if so, to PO-BACK-2
; as it is not possible to move left.

INC B ; Move up one screen line
LD C,$02 ; The rightmost column position.
P LD A,S$18 ; Note. This should be $19 (not $18)
HH ; Credit: Dr. Frank O'Hara, 1982
LD A,S$19 ;+ Test against the top line plus one.
CP B ; Has position moved past top of screen ?
JR NZ, PO _BACK 3 ; Forward, if not, to PO-BACK-3

; to store the new position.

DEC B ; else back to $18.
PO BACK 2 LD c,821 ; the leftmost column position.
PO BACK_ 3 JR PO_ENTEND ;+ Forward, indirectly, to CL-SET and PO-STORE

; to store new position in system variables.
Y Jp CL_SET ; a 3-byte direct jump.

; THE 'CURSOR RIGHT' ROUTINE

; This moves the print position to the right leaving a trail in the
; current background colour.

; "However the programmer has failed to store the new print position

so CHRS 9 will only work if the next print position is at a newly
defined place.

e.g. PRINT PAPER 2; CHRS 9; AT 4,0;

does work but is not very helpful"

- Dr. Ian Logan, Understanding Your Spectrum, 1982.

;77 PO _RIGHT LD A, ($5B91) ; fetch P _FLAG value
HE PUSH AF ; and preserve the original value on the stack.
N LD (IY+$57),5%01 ; temporarily set P _FLAG 'OVER 1'.
S LD A, $20 ; prepare a space.
- CALL PO_CHAR ; routine PO-CHAR to print it.
HHE POP AF ; restore the original P_FLAG value.
HE LD ($5B91) ,A ; and restore system variable P FLAG
HE RET ; return without need to update column position.
PO _RIGHT LD HL, $5B91 ;+ Address system variable P_FLAG
LD D, (HL) ;+ Fetch the System Variable value and
LD (HL) , 1 ;+ Set to OVER 1
CALL PO SV _SP ;+ Routine prints a space
LD (HL) ,D ;+ and place in P_FLAG
RET ;+ Return

’

THE 'PRINT CARRIAGE RETURN' ROUTINE

A carriage return is 'printed' to screen or printer buffer.

PO _ENTER BIT 1, (IY+S$S01) ; test FLAGS - is printer in use ?

’

JP NZ,COPY BUFF ; to COPY-BUFF if so, to flush buffer and reset
; the print position.

Continue if writing to screen.

LD C,$21 ; the leftmost screen column position.
CALL PO_SCR ; routine PO-SCR handles any scrolling required.
DEC B ; adjust to next screen line.

PO_ENTEND JP CL_SET ; jump forward to CL-SET to store new position.

’

THE 'PRINT COMMA' SUBROUTINE
The comma control character. The 32 column screen has two 16 character
tabstops. The routine is only reached via the control character table.
If it was called from elsewhere then the call to PO-FETCH would be needed.

i CALL PO_FETCH ; routine PO-FETCH - seems unnecessary.

PO COMMA LD A,C ; the column position. $21-$01
DEC A ; move right. $20-500
DEC A ; and again $1F-$00 or SFF if trailing
AND $10 ; will be $00 or $10.
JR PO _FILL ; forward to PO-FILL

’

THE 'PRINT QUESTION MARK' SUBROUTINE

This routine prints a question mark which is commonly used to print an

; unassigned control character in range 0-31d. There are a surprising number
; yet to be assigned.

PO QUEST LD A, $3F ; prepare the character '?'.

PO_Q ABLE JR PO_ABLE ; forward to PO-ABLE.

; THE 'CONTROL CHARACTERS WITH OPERANDS' ROUTINES

; Certain control characters are followed by 1 or 2 operands.

; The entry points from control character table are PO-2-OPER and PO-1-OPER.
; The routines alter the output address of the current channel so that

; subsequent RST $10 instructions take the appropriate action

; before finally resetting the output address back to PRINT-OUT.

PO TV 2 LD DE, PO_CONT ; address: PO-CONT will be next output routine
PO TV 3 LD ($5BOF) , A ; store first operand in TVDATA-hi
JR PO _CHANGE ; forward to PO-CHANGE >>

; -> This initial entry point deals with two operands - AT or TAB.

PO 2 OPER LD DE,PO_TV 2 ; address: PO-TV-2 will be next output routine
JR PO TV 1 ; forward to PO-TV-1

; -> This initial entry point deals with one operand INK to OVER.

PO 1 OPER LD DE, PO_CONT ; address: PO-CONT will be next output routine
PO TV 1 LD ($5BOE) , A ; store control code in TVDATA-1lo
PO CHANGE LD HL, ($5B51) ; use CURCHL to find current output channel.
PO CH 2 LD (HL) , E ; make it
INC HL ; the supplied
LD (HL), D ; address from DE.
RET ; return.
PO _NORM LD DE, PRINT OUT ; prepare to make PRINT OUT normal.
JR PO_CHANGE ;
PO CONT
HE LD DE, PRINT OUT ; Address: PRINT-OUT
H CALL PO_CHANGE ; routine PO-CHANGE to restore normal channel.
CALL PO NORM ;+ routine embodies above two instructions.

; Now that all the sequence of codes have been received they can be handled.
; The accumulator holds the final parameter and any previous codes are in
; the system variable TVDATA.

LD HL, ($5BOE) ; TVDATA gives control code and possible
; subsequent character
LD D,A ; save current code.

LD A, L ; fetch the stored control code

CP S16 ; was it one operand - INK to OVER ?

JP C,CO_TEMP 5 ; jump forward, if so, to CO-TEMP-5
; Consider the two control codes with two operands.

JR Nz, PO TAB ; forward, if not 22 decimal, to PO-TAB (23)
; else must have been 22 decimal - 'AT'.

LD B,H ; line to H (0-23d)

LD Cc,D ; column to C (0-31d)

LD A, $1F ; prepare the value 31d

SUB C ; reverse the column number.

JR C,PO_AT ERR ; forward, if greater than 31, to PO-AT-ERR

; '"Integer out of range'

ADD A, $02 ; transform to system range $02-$21
LD C,A ; and place in the column register.
; Now consider the line parameter.
BIT 1, (IY+S$S01) ; test FLAGS - is printer in use ?
JR NZ, PO_ENTEND ; forward, if so, ignoring line to PO-AT-SET
LD A,$16 ; prepare 22 decimal
SUB B ; subtract line number to reverse legal values
; 0 - 22 becomes 22 - 0.
PO_AT ERR JP C, REPORT Bb ; jump, if higher than 22, to REPORT-B
; 'Integer out of range'
INC A ; adjust for the system range $01-$17
LD B,A ; place in the line register
INC B ; adjust to system range $02-$18
BIT 0, (IY+S$S02) ; test TV _FLAG - Lower screen in use ?
JP NZ, PO _SCR ; forward, if so, to PO-SCR
; to test for scrolling.
CP (IY+$31) ; for upper screen, compare against DF SZ
N JP C,REPORT_5 ; to REPORT-5 if too low
I ; 'Out of screen'
Pi JP CL_SET ; to CL_SET if valid.
PO AT SET JR NC, PO_ENTEND ;+ print position is valid so exit via CL-SET
REPORT 5a RST 30H ;+ ERROR-1
DEFB $04 ;+ Error Report: Out of screen

; The branch was here when dealing with TAB.
; Note. In BASIC, TAB is followed by a 16-bit number and was initially
; designed to work with any output device.

PO TAB LD A,H ; transfer parameter to A losing the current
; contents - the high byte of the TAB parameter.

PO _FILL CALL PO _FETCH ; routine PO-FETCH, HL = addr, BC = line/column.
; column 1 (right), $21 (left)

ADD A,C ; add operand to current column

DEC A ; range 0 - 31+
AND S1F ; make range mod 32 that is 0 - 31.
RET Z ; return if result is zero.
LD D,A ; Counter to D
SET 0, (IY+301) ; update FLAGS - signal suppress leading space.
PO SPACE CALL PO SV SP ;+ call instruction before PO _SAVE - 1ld a,$20
Pl LD A, $20 ; space character.
H CALL PO_SAVE ; routine PO-SAVE prints the character
; using alternate set (normal output routine)
DEC D ; decrement the spaces counter.
JR NZ, PO_SPACE ; back to PO-SPACE until done.
RET ; Return.
; Printable character (s)
; This routine prints printable characters and continues into
; the position store routine
PO _ABLE CALL PO_ANY ; routine PO-ANY

; This routine updates the system variables associated with the main screen,
; the lower screen/input buffer or the ZX printer.
PO _STORE BIT 1, (IY+S$S01) ; Test FLAGS - is printer in use ?
JR Nz,PO_ST PR ; Forward, if so, to PO-ST-PR
BIT 0, (IY+S$S02) ; Test TV _FLAG - is lower screen in use ?
JR NZ,PO_ST E ; Forward, if so, to PO-ST-E
; This section deals with the upper screen.
LD ($5B88) ,BC ; Update S POSN - line/column upper screen
LD ($5B84) , HL ; Update DF CC - upper display file address
RET ; Return.
; This section deals with the lower screen.
PO ST E LD (S5B8A) ,BC ; Update SPOSNL line/column lower screen
LD ($5B82) ,BC ; Update ECHO E line/column input buffer
LD ($5B86) , HL ; Update DFCCL lower screen memory address
RET ; Return.
; This section deals with the ZX Printer.

; THE 'POSITION STORE' ROUTINE

; and continue into position store routine.

; Now just update the column number $00 - $21 within the channel.

PO_ST PR LD

LD

IX, ($5B51)

(IX+$07),C

;+ set IX to CURCHL

;+ Update P_POSN column position printer

RET

; Return.

THE 'POSITION FETCH' ROUTINE

This routine fetches the line/column and display file address of the upper

and lower

screen or, if the printer is in use, the column position and

absolute memory address.

Note. that PR-CC is no longer used. The output address is calculated
by this routine every time from the new channel variable P_ POSN.

The output address now alters whenever a channel is reclaimed.

PO_FETCH BIT

’

’

JR

1, (IY+3$01) ; Test FLAGS - is printer in use ?
NZ,PO_F PR ; Forward, if so, to PO-F-PR

assume upper screen in use and thus optimize for path that requires speed.

LD
LD

BIT
RET

Overwrite
LD

LD
RET

BC, ($5B88) ; Fetch line/column from S_POSN

HL, ($5B84) ; Fetch DF CC display file address

0, (IY+502) ; Test TV _FLAG - lower screen in use ?
Z ; Return if upper screen in use.

registers with values for lower screen.

BC, ($5B8A) ; Fetch line/column from SPOSNL
HL, ($5B86) ; Fetch display file address from DFCCL
; Return.

This section deals with the ZX Printer.
The column is obtained from the location within the channel.
The output address HL is derived from this column number.

PO F PR LD

LD
ADD
LD
INC
LD
LD
SUB
ADD
LD
LD
RET
INC

RET

HL, ($5B51) ;+ set HL to start of Channel from CURCHL
BC, $0007 ;+ offset to column number.

HL,BC ;+ add to address P_POSN

C, (HL) ;+ Fetch column from P_POSN.

HL ;+ Start of 256 buffer.

B,A ;+ copy character to B.

A,S$21 ;+ Reverse the column number

C ;+ Now $00 (left) S$1F (right)

A,L ;+ add to low byte possibly setting carry flag.
L,A ;+ place back in low byte.

A,B ;+ copy character back to A

NC ;+ return if address is correct.

H ;+ else increase by 256 bytes.

;+ Return.

THE 'PRINT ANY CHARACTER' ROUTINE

This routine is used to print any character in range 32d - 255d
It is only called from PO-ABLE which continues into PO-STORE

On entry,

HL contains the output address and BC the line column or just

the column in the case of the ZX Printer.

PO_ANY CP
JR

CP
JR

$80
C,PO_CHAR

$90
NC,PO T UDG

ASCII ?
to PO-CHAR if so.

test if a block graphic character.
to PO-T&UDG to print tokens and UDGs

; The 16 2*2 mosaic characters 128-143 decimal are formed from

; bits 0-3 of the character.

LD

CALL

CALL
LD

JR

PO GR 1 LD

CALL

PO GR 2 RR
SBC
AND
LD
RR
SBC
AND
OR
LD

PO GR 3 LD
INC
DEC
JR

RET

B,A

PO GR 1

PO_FETCH
DE, $5B92

PR _ALL

HL, $5B92

PO GR 2

C,s504

(HL) , A

HL

C
NZ,PO GR 3

save character

routine PO-GR-1 to construct top half
then bottom half.

routine PO-FETCH re-fetches print position.
MEM-0 is location of 8 bytes of character

forward to PR-ALL
to print to screen or printer.

address MEM-0 - a temporary buffer in
systems variables which is normally used
by the calculator.

routine PO-GR-2 to construct top half
and continue into routine to construct
bottom half.

rotate bit 0/2 to carry

result $00 or S$FF

mask off right hand side

store part in C

rotate bit 1/3 of original chr to carry
result $00 or S$FF

mask off left hand side

combine with stored pattern

four bytes for top/bottom half

store bit patterns in temporary buffer
next address
jump back to
to PO-GR-3 until byte is stored 4 times

return

; Tokens and User defined graphics are now separated.

PO T UDG SUB
JR

ADD
PUSH
LD
JR

; Tokens

SAS
NC,PO T

A,S$15

BC

BC, ($5B7B)
PO _CHAR 2

’

subtract the 'RND' character
forward, if a token, to PO-T

add 21d to restore to 0 - 20

save current print position

fetch UDG to address bit patterns
forward to common code at PO-CHAR-2
to lay down a bit patterned character

PO T

CALL

JPp

JR

PO_TOKENS
PO_FETCH

PO_FETCH

; routine PO-TOKENS prints tokens
; an absolut jump to PO FETCH
;+ exit via a JUMP to PO-FETCH as this routine

;+ must continue into PO-STORE.
;+ A JR instruction could be used. (Done)

; This point is used to print ASCII characters 32d - 127d.

PO _CHAR PUSH

; This common

LD

PO_CHAR 2 EX

LD
RES

CP
JR

SET

PO_CHAR 3 LD

; THE

LD

ADD
ADD
ADD
ADD

POP

EX

BC
BC, ($5B36)

; Preserve print position
; Fetch font pointer from address CHARS

code 1s used to transfer the character bytes to memory.

DE, HL

HL, $5B3B
0, (HL)

$20
NZ, PO CHAR 3

0, (HL)

H,$00
L,A

HL, HL
HL, HL
HL, HL
HL, BC

BC

'PRINT ALL CHARACTERS'

; transfer destination address to DE

; point to FLAGS
; update FLAGS - allow for leading space

; 1s output character a space ?
; skip forward, if not, to PO-CHAR-3

; update FLAGS - signal no leading space.

; set high byte to O
; character to A, 0-21 UDG or 32-127 ASCII.

; multiply

i by

; eight.

; HL now points to first byte of character.

; retrieve the source address from CHARS or UDG.

; transfer the character bitmap address to DE.

ROUTINE

; This entry point entered from above to print ASCII and UDGs but also from
; earlier to print the mosaic characters.

; HL
; DE
; BC

PR _ALL

; If
; is

; transfer the column to A
; move to the right

; pre-load with leftmost position
;+ Save character source before any branching.
; forward, if not zero, to PR-ALL-1

line, but B is of no significance if printer

; down one line
; load C with $21

= screen or printer destination
= character bitmap source
= line/column

LD A,C

DEC A

LD A,$21

PUSH DE

JR NZ,PR_ALL 1
zero then move down a
in use

DEC B

LD C,A

BIT 1, (IY+$01)

; test FLAGS - is printer in use

HHE JR Z,PR_ALL 1 ; forward, if not, to PR-ALL-1

; This is the printer-only path but we can trickle through.

H PUSH DE ; save source address
;i CALL COPY BUFF ; Routine COPY-BUFF outputs line to printer
CALL NZ,COPY BUFF ;+ Routine COPY-BUFF conditionally outputs line

;+ to printer leaving A=$00 and C=$21 and
;+ the zero flag reset - NZ.

HE POP DE ; Restore the character source address
HE LD A,C ; the new column number ($21) to A from C.

; This is the screen-only path but we can trickle through as A!=C.

PR ALL 1

CP C ; this test is really for screen - new line ?
HE PUSH DE ; save source

CALL Z,PO _SCR ; routine PO-SCR considers scrolling.

POP DE ; restore source address.

; The following applies to screen and printer.

PR ALL la PUSH BC ; save line/column
PUSH HL ; and destination
LD A, ($5B91) ; fetch P FLAG to accumulator
LD B, $FF ; prepare an OVER mask in B.
RRA ; carry is set if temporary bit is OVER 1
JR C,PR_ALL 2 ; forward, if OVER 1, to PR-ALL-2
INC B ; set OVER mask to O
PR ALL 2 RRA ; skip bit 1 of P FLAG
RRA ; bit 2 is temporary INVERSE
SBC A,A ; will be FF for INVERSE 1 else zero
LD C,A ; transfer the INVERSE mask to C
LD A, $08 ; prepare to count 8 bytes
AND A ; clear carry to signal screen in use.
BIT 1, (IY+501) ; test FLAGS - is screen in use ?
JR Z,PR_ALL 3 ; forward, if screen, to PR-ALL-3
HE SET 1, (IY+$30) ; update FLAGS2 - signal printer buffer has

HHE ; been used.

SCF ; set the carry flag to signal printer in use.
PR ALL 3 EX DE, HL ; now HL=source, DE=destination
PR ALL 4 EX AF,AF' ; Save the printer/screen Carry flag

LD A, (DE) ; Fetch the existing destination byte

AND B ; consider OVER

XOR (HL) ; now XOR with source

XOR C ; now with INVERSE MASK

LD (DE) ,A ; update screen/printer location.

EX AF,AF" ; restore discriminating flag

JR C,PR ALL 6 ; forward, if printer, to PR-ALL-6

; Continue with screen printing.

INC D ; lncrement D - gives next screen pixel line
PR ALL 5 INC HL ; address next character source byte

DEC A ; the byte count is decremented

JR NZ,PR_ALL 4 ; back to PR-ALL-4 for all 8 bytes

EX DE, HL ; transfer destination to HL

DEC H ; bring back to last updated screen position

; from the 'ninth' line.
BIT 1, (IY+S$01) ; test FLAGS - is printer in use ?
CALL Z,PO ATTR ; 1f not, call routine PO-ATTR to update the

; corresponding colour attribute.
; (the address of which is now retained in DE)

POP HL ; restore original screen/printer position
POP BC ; and the line and column

DEC C ; move column to right

INC HL ; increase screen/printer position

RET ; return and continue into PO-STORE

; within PO-ABLE

; Note. that DE has been made to retain the attribute byte.

; This branch is used to update the ZX printer position by 32 places
; Note. The high byte of the address D now increments if a page boundary

; is crossed as this ROM supports up to thirteen ZX Printer buffers.
PR ALL 6 EX AF,AF' ; save the flag

LD A,$20 ; load A with 32 decimal

ADD AE ; add this to E

LD E,A ; and store result in E

JR NC, PR _ALL 7 ;+ skip forward if no wrap.

INC D ;+ increment the high byte of channel address.
PR ALL 7 EX AF, AF' ; fetch the flag

JR PR ALL 5 ; back to PR-ALL-5

; THE 'UPDATE ATTRIBUTE CELL' ROUTINE

; This routine is entered with the HL register holding the last screen

; address to be updated by PRINT or PLOT.

; The Spectrum screen arrangement leads to the L register holding the correct
; value for the attribute file and it is only necessary to manipulate H to
; form the correct colour attribute address.

;7 PO _ATTR LD ALH ; fetch high byte $40 - $57

H RRCA ; shift

Y RRCA ; bits 3 and 4

Y RRCA ; to right.

H AND $03 ; range is now 0 - 2

HEH OR $58 ; form correct high byte for third of screen

H LD H,A ; HL is now correct

PO_ATTR CALL CL _ATTR2 ;+ NEW subroutine with above code.

LD DE, ($5B8F) ; make D hold ATTR T, E hold MASK-T
LD A, (HL) ; fetch existing attribute from attribute file
XOR E ; apply masks
AND D ;
XOR E ;
BIT 6, (IY+$57) ; test P _FLAG - is this PAPER 9 ?27?
JR Z,PO ATTR 1 ; skip, if not, to PO-ATTR-1
AND SC7 ; set paper
BIT 2,A ; to contrast with ink
JR NZ,PO_ATTR 1 ; skip to PO-ATTR-1
XOR $38 ;

PO ATTR 1 BIT 4, (IY+S$57) ; test P FLAG - is this INK 9 ??
JR Z,PO ATTR 2 ; skip, if not, to PO-ATTR-2
AND SF8 ; make the ink colour contrast with paper.
BIT 5,A ; Is paper light ?
JR NZ,PO ATTR 2 ; forward, if so, to PO-ATTR-2
XOR $07 ; toggle ink colour.

PO ATTR 2 LD (HL) ,A ; write the new attribute to the attribute file
EX DE, HL ;+ Note. NEW - return the attribute byte in DE.
RET ; return.

; THE 'MESSAGE PRINTING' SUBROUTINE

; This entry point is used to print tape, boot-up, scroll? and error messages.
; On entry the DE register points to an initial step-over byte or the

; inverted end-marker of the previous entry in the table.

; Register A contains the message number, often zero to print first message.

; (HL has nothing important usually P_FLAG)

PO MSG 0 XOR A ;+ NEW entry point to print first message.

PO MSG 1 SET 5, (IY+3502) ;+ update TV_FLAG - signal lower screen will

;+ require clearing.

; —> Normal Entry Point.

PO MSG PUSH HL ; put hi-byte zero on stack to suppress
LD H,$00 ; trailing spaces
EX (SP),HL ; 1d h,0; push hl would have done 2.
JR PO _TABLE ; forward to PO-TABLE.

; This entry point prints the BASIC keywords, '<>' etc. from alt set

PO _TOKENS LD DE, TKN_ TABLE ; address: TKN-TABLE
PUSH AF ; stack the token number to control
; trailing spaces - see later *
; —=>

PO TABLE CALL PO_SEARCH ; routine PO-SEARCH will set carry for

JR C,PO_EACH

i LD A,$20
BIT 0, (IY+$01)

Y CALL Z,PO_SAVE
CALL %,PO_SV_SP
PO_EACH LD A, (DE)
AND S$7F

CALL PO_SAVE

LD A, (DE)
INC DE
ADD A,A
JR NC, PO_EACH
POP DE
CP $48
JR Z,PO TR SP
CP $82
RET C
PO TR _SP LD A,D
CP $03
RET C
PO_SV_SP LD A, $20

all messages and function words.
forward to PO-EACH if not a command, '<>' etc.

prepare leading space
test FLAGS - leading space i1if not set

routine PO-SAVE to print the space in A.

routine PO-SV_SP to print a space without
disturbing registers.

Fetch character from the table.
Cancel any inverted bit.

Routine PO-SAVE to print using the alternate
set of registers.

Re-fetch character from table.
Address next character in the table.

Was character inverted ?

(this also doubles character e.g. $41 -> $82)
back, if not, to PO-EACH

* re-fetch trailing space byte to D

was the last character '$' ?

forward, if so, to PO-TR-SP

to consider a trailing space.

was it < 'A' i.e. '#','>'",'='" from tokens
or " ','." (from tape) or '?' from scroll

Return if so as no trailing space required.
The trailing space flag (zero if an error msqg)

Test against RND, INKEYS$S and PI which have no
parameters and therefore no trailing space.

Return if no trailing space.

Prepare the space character and continue to
print and make an indirect return.

; THE 'RECURSIVE PRINTING' SUBROUTINE

; This routine which is part of PRINT-OUT allows RST $10 to be used
; recursively to print tokens and the spaces associated with them.
; It is called on three occasions when the value of DE must be preserved.

PO_SAVE PUSH DE

EXX

RST 10H
EXX

POP DE
RET

Save DE value.
Switch in main set

PRINT-A prints using this alternate set.

Switch back to this alternate set.
Restore the initial DE wvalue.

Return.

; THE 'TABLE SEARCH' ROUTINE

; This subroutine searches a message or the token table for the
; message number held in A. DE holds the address of the table.

PO _SEARCH PUSH AF ; save the original message/token number
EX DE, HL ; transfer table address, DE to HL
INC A ; adjust for initial step-over byte
PO _STEP BIT 7, (HL) ; 1s character inverted ?
INC HL ; address next
JR Z,PO_STEP ; back, if not inverted, to PO-STEP

; The start

of a new message token.

DEC A ; decrease message counter
JR Nz, PO _STEP ; back, if not zero, to PO-STEP
; Register HL now addresses the first character of the required message.
EX DE, HL ; transfer address to DE
POP AF ; restore original message/token number
CP $20 ; compare to thirty two
RET C ; return for all messages and function tokens.

; Note. ther

LD
SUB

RET

; THE 'TEST FO

e are thirty error messages, originally twenty eight.

A, (DE) ; test first character of token

$41 ; against character 'A'

; Return - with carry set if it is less

;oi.e. T<>Y, k=t >t

R SCROLL' SUBROUTINE

; This test routine is called when printing carriage return, when considering
; PRINT AT and from the general PRINT ALL characters routine to test if
; scrolling is required, prompting the user if necessary.

; This is th
; The B regi

; The curren
; 'scroll?'
; no prompt
PO_SCR
i BIT
i RET
; Continue i
LD
PUSH
LD
BIT
JP
CP
REP 5 JR

erefore using the alternate set.
ster holds the current line.

t channel could be the upper screen 'S' in which case the

prompt is printed or from the lower screen 'K' in which case
is given.
1, (IY+3$01) ; test FLAGS - is printer in use ?
NZ ; return immediately if so.
f handling upper or lower screen.
DE,CL_ SET ; set DE to address: CL-SET
DE ; and push for the return address.
A,B ; transfer the line to A.
0, (IY+S502) ; test TV _FLAG - lower screen in use ?
NZ,PO _SCR 4 ; jump forward, if so, to PO-SCR-4
(IY+$31) ; greater than DF SZ display file size ?

C, REPORT 5b ; forward, 1f less, to REPORT-5

; 'Out of screen'

RET NZ ; return (via CL-SET) if greater
BIT 4, (IY+$02) ; test TV _FLAG - Automatic listing ?
JR Z,PO_SCR 2 ; forward, if not, to PO-SCR-2
LD E, (IY+$2D) ; fetch BREG - the count of scroll lines to E.
DEC E ; decrease
JR Z,PO_SCR 3 ; forward, if zero to scroll, at PO-SCR-3.

H LD A, S$00 ; explicit - select channel zero.

HE CALL CHAN_ SLCT ; routine CHAN-OPEN opens it invoking TEMPS.
CALL CHAN_ZERO ;+ routine CHAN-OPEN opens it invoking TEMPS.
LD SP, ($5B3F) ; set stack pointer to LIST SP

PO N AUTO RES 4, (IY+3502) ; Update TV_FLAG - signal auto listing finished.
RET ; return, ignoring pushed wvalue CL-SET, to MAIN

; or EDITOR without updating print position >>

REPORT 5b RST 30H ; ERROR-1
DEFB $04 ; Error Report: Out of screen

; Continue here if not an automatic listing.

PO SCR 2 DEC (IY+$52) ; decrease the scroll count - SCR CT
JR NZ,PO SCR 3 ; forward, if not zero, to scroll at PO-SCR-3

; If scroll count is zero, produce prompt, so that user can see the scrolled
; output and BREAK if desired.

LD A,S$18 ; prepare 24 decimal.
SUB B ; subtract the current line.
LD ($5B8C) , A ; update the scroll count - SCR CT

; Although printing to lower screen will

LD HL, ($5B8F) ; L=ATTR T, H=MASK T

PUSH HL ; save on stack

LD A, ($5B91) ; P_FLAG

PUSH AF ; save on stack to prevent lower screen

; attributes (BORDCR etc.) being applied.

LD A, SFD ; select system channel 'K'
CALL CHAN_SLCT ; routine CHAN-OPEN opens it and invokes TEMPS.
HE XOR A ; clear to address message directly
LD DE, scrl mssg ; make DE address: scrl-mssg
CALL PO MSG O ; routine PO-MSG prints 'scroll?' to the lower
; screen.
HE SET 5, (IY+502) ; set TV _FLAG - signal lower screen requires

; clearing

LD
SET
RES

EXX

CALL

EXX

CP

JR

CP
JR

OR
CP
JR

HL, $5B3B
3, (HL)
5, (HL)

WAIT KEY

$20
Z,REPORT D

SE2
Z,REPORT D

$20
S6E
Z,REPORT D

; Scrolling is required.

PO_SCR_3

LD
CALL

CALL

POP
LD
POP
LD

CALL

LD
INC

LD
PUSH
CALL
LD
RRCA
RRCA
RRCA
AND
OR
LD
CALL
LD

LD
LD

A, SFE
CHAN SLCT

CHAN O FE

AF
($5B91) ,A
HL
($5B8F) , HL
CL_SC ALL

B, (IY+$31)
B

c,s21
BC
CL_ADDR

A, H

$03
$58
H,A
CL_ATTR2
DE, $5AE0

A, (DE)
C, (HL)

; make HL address FLAGS
; signal 'L' mode.
; signal 'no new key'.

; switch to main set.
; as calling chr input from alternative set.

; routine WAIT KEY waits for new key
; switch back to alternate set.

; space is considered as BREAK
; forward, if so, to REPORT-D
; '"BREAK - CONT repeats'

; 1s character 'STOP' ?
; forward, if so, to REPORT-D
; '"BREAK - CONT repeats'

; convert to lower-case

; is character 'n' ?

; forward, if so, to REPORT-D
; '"BREAK - CONT repeats'

; select system channel 'S’

;+ Routine CHAN-OPEN opens it but applies
;+ ATTR P to ATTR T nullifying any embedded

;+ colour items in the current print statement.

; Restore original P _FLAG

; and save in P_FLAG.

; Restore original ATTR T, MASK T

; and reset ATTR T, MASK-T as 'scroll?' has
; been printed.

; routine CL-SC-ALL to scroll whole display

; fetch DF SZ to B
; increase to address last line of display

; set C to $21 (was $21 from above routine)
; save the line and column in BC.

; routine CL ADDR finds display address.

; now find the corresponding attribute byte
; (this code sequence is used twice

; elsewhere and is a candidate for
; a subroutine.)

;+ Note. A NEW routine with the above code.
; start of last 'line' of attribute area

; get attribute for last line
; get attribute for base line of upper part

copy

LD B, $20 ; there are thirty two attribute bytes to
EX DE, HL ; swap the pointers.
PO SCR 3A LD (DE) , A ; exchange the two
LD (HL) ,C ; attributes.
INC DE ; address next source location.
INC HL ; address next destination location.
DJNZ PO _SCR 3A ; loop back to PO-SCR-3A
; for all adjacent attribute cells.
POP BC ; restore the line/column.
RET ; return via CL-SET (was pushed on stack).
; THE 'SCROLL?' PROMPT
; The message 'scroll?' appears here with last byte inverted.
scrl mssg DEFB $80 ; initial step-over byte.
DEFM "scroll"
DEFB '274+580
REPORT D RST 30H ; ERROR-1
DEFB $0C ; Error Report: BREAK - CONT repeats
; Continue here if using lower display - A holds line number.
PO SCR 4 CP $02 ; 1s line number less than 2 ?
JR C,REPORT 5b ; back, if so, to REPORT-5
; 'Out of Screen'
ADD A, (IY+S$31) ; add DF _SZ
SUB $19 ; subtract twenty five.
RET NC ; return if scrolling is unnecessary
NEG ; Negate to give number of scrolls required.
PUSH BC ; (*) save line/column
; to prevent corruption by input AT
LD B,A ; transfer count to B
I LD HL, ($5B8F) ; fetch current ATTR T, MASK T to HL.
N PUSH HL ; and save
P 1D HL, ($5B91) ; fetch P _FLAG
H PUSH HL ; and save.
HE CALL TEMPs ; routine TEMPs sets to BORDCR etc.
LD A,B ; transfer scroll number to A.
PO SCR _4A PUSH AF ; save scroll number.
; Now increment the lower screen display file size DF SZ.

; Retain the old value in the B register as scroll count

LD HL, $5B6B ; address DF Sz
LD B, (HL) ; fetch old value
LD A,B ; transfer to A
INC A ; and increment
LD (HL) , A ; then put back.
P LD HL, $5B89 ; address S POSN hi - line
LD L,$89 ; address S _POSN hi - line
CP (HL) ; compare DF SZ to the line number.
JR C,PO_SCR 4B ; forward, if less, to PO-SCR-4B
; to scroll the lower screen only.
INC (HL) ; else increment S POSN hi the upper line value
HE LD B,S$18 ; set count to whole display ?°7?
s ; Note. should be $17 (not $18) and the top
Y ; line will be scrolled into the ROM which
S ; 1s harmless on the standard set up.
S ; credit: P. Giblin 1984.
LD B,$17 ;T
PO _SCR 4B CALL CL SCROLL ; routine CL-SCROLL scrolls bottom B lines up.
POP AF ; restore the scroll counter.
DEC A ; decrease counter.
JR NZ, PO SCR_4A ; back to PO-SCR-4A until done
P POP HL ; restore original P_FLAG.
HE LD (IY+$57),L ; and overwrite system variable P FLAG.
P POP HL ; restore original ATTR T/MASK T.
e LD ($5B8F) , HL ; and update system variables.
LD BC, ($5B88) ; fetch upper display line/column S POSN to BC.
RES 0, (IY+$02) ; signal to TV_FLAG - main screen in use.
CALL CL_SET ; call routine CL-SET for upper display.
POP BC ; (*) restore lower line/column
SIG_L SCR SET 0, (IY+3502) ; signal to TV_FLAG - lower screen in use.
RET ; return via CL-SET for lower display.
; THE 'SET TEMPORARY COLOUR ATTRIBUTES' ROUTINE
; This subroutine is called several times to copy the permanent colour items
; to the temporary ones.
TEMPS XOR A ; clear the accumulator
LD HL, ($5B8D) ; fetch L = ATTR P and H = MASK P
BIT 0, (IY+S$S02) ; test TV _FLAG - is lower screen in use ?
JR Z,TEMPS 1 ; skip, 1f not lower screen, to TEMPS-1
LD H,A ; set H (MASK P) to 00000000. (All bits show)
LD L, (IY+S$OE) ; fetch BORDCR to L which 1s used for lower
; screen.
TEMPS 1 LD ($5B8F) , HL ; update system variables ATTR T and MASK T

For the print flag the permanent values are odd bits, temporary even bits.
For the lower screen the temporary mask bits are reset. The ink colour
has already been chosen to contrast with the border colour and attributes
like OVER 1 are never allowed as it would confuse. For the upper screen
then ink 9, paper 9, inverse 1, over 1 are the same as permanent values.

LD HL, $5B91 ; address the print flag P FLAG.

JR NZ, TEMPS 2 ; skip, if lower screen using zero, to TEMPS-2

LD A, (HL) ; else pick up flag bits.

RRCA ; rotate permanent bits to temporary bits.
TEMPS 2 XOR (HL) ;

AND $55 ; mask %$01010101

XOR (HL) ; permanent bits now as original

LD (HL) ,A ; apply the updated temporary bits.

RET ; return.

; THE 'CLS' COMMAND

This command clears the display.
The routine is also called during initialization and by the CLEAR command.
If it's difficult to write it should be difficult to read.

CALL CL ALL ; Routine CL-ALL clears the entire display and
; sets the attributes to the permanent ones
; from ATTR-P.

Having cleared all 24 lines of the display area, continue into the
subroutine that clears the lower display area. Note that at the moment
the attributes for the lower lines are the same as upper ones and have
to be changed to match the BORDER colour.

; THE 'CLS-LOWER' SUBROUTINE

CLS

This routine is called from INPUT, and from the MAIN execution loop.

This is very much a housekeeping routine which clears between 2 and 23
lines of the display, setting attributes and correcting situations where
errors have occurred while the normal input and output routines have been
temporarily diverted to deal with, say colour control codes.

LOWER LD HL, $5B3C ; address System Variable TV FLAG.
RES 5, (HL) ; TV_FLAG - signal do not clear lower screen.
SET 0, (HL) ; TV_FLAG - signal lower screen in use.
CALL TEMPs ; routine TEMPs applies permanent attributes,

; in this case BORDCR to ATTR T.
; Note. this seems unnecessary and is repeated
; within CL-LINE.

LD B, (IY+$31) ; fetch lower screen display file size DF SZ
CALL CL _LINE ; routine CL-LINE clears lines to bottom of the
; display and sets attributes from BORDCR while

; preserving the B register.

LD HL, $5ACO ; set initial attribute address to the leftmost
; cell of second line up.

LD A, ($5B8D) ; fetch permanent attribute from ATTR P.
DEC B ; decrement lower screen display file size.

JR CLs 3 ; forward to enter the backfill loop at CLS-3
; where B is decremented again.

; The backfill loop is entered at midpoint and ensures, if more than 2
; lines have been cleared, that any other lines take the permanent screen
; attributes.
CLs 1 LD C,$20 ; set counter to 32 character cells per line
CLs 2 DEC HL ; decrease attribute address.

LD (HL) , A ; and place attributes in next line up.

DEC C ; decrease the 32 counter.

JR NZ,CLS 2 ; loop back to CLS-2 until all 32 cells done.
CLs 3 DJNZ CLS 1 ; decrease B counter and back to CLS-1

; if not zero.
LD (IY+$31),5%02 ; now set DF SZ lower screen to 2

; This entry point is also called from CL-ALL below to

; reset the system channel input and output addresses to normal should they
; have been left in an unstable state while outputting or inputting colour
; control codes.
CL CHAN LD A, SFD ; select system channel 'K'
CALL CHAN_SLCT ; routine CHAN-OPEN opens it.
B LD HL, ($5B51) ; fetch CURCHL to HL to address current channel
HHE LD DE, PRINT OUT ; set address to 'PRINT-OUT' for first pass.
HE AND A ; clear carry for first pass.
CALL PO _NORM ;+ routine embodies above two instructions.
;77 CL CHAN A LD (HL) , E ; Insert the output address on the first
pass
N INC HL ; or the input address on the second pass.
i LD (HL),D ;
P INC HL ;
LD DE,KEY INPUT ; fetch address 'KEY-INPUT' for second pass
CALL KEY CH2 ;+ inserts values
I CCF ; complement carry flag - will set on pass 1.
P JR C,CL CHAN A ; back to CL-CHAN-A if first pass else done.
LD BC, $1721 ; line 23 for lower screen
JR CL SET ; exit via CL-SET to set column

; for lower display

; THE 'CLEAR WHOLE DISPLAY' SUBROUTINE

; This subroutine called from CLS, AUTO-LIST and MAIN-3, clears 24 lines of
; the display and resets the relevant system variables. This routine also

; recovers from an error situation where,

for instance, an invalid colour or

; position control code has left the output routine addressing PO-TV-2

; or PO-CONT.

CL ALL LD HL, $0000 ; Initialize plot coordinates.
LD ($5B7D) , HL ; Set system variable COORDS to 0,0.
RES 0, (IY+$30) ; update FLAGS2 - signal main screen is clear.
CALL CL _CHAN ; routine CL-CHAN makes channel 'K' 'normal'.
H LD A, SFE ; select system channel 'S'
CALL CHAN O FE ;+ routine CHAN-OPEN opens it calling TEMPS.
H CALL TEMPs ; routine TEMPs applies permanent attributes,
; in this case ATTR P, to ATTR T.
; Note. this seems unnecessary.
LD B, $18 ; There are 24 text lines to clear.
CALL CL _LINE ; routine CL-LINE clears 24 text lines and sets
; attributes from ATTR-P.
; This routine preserves B and sets C to $21.
HE LD HL, ($5B51) ; fetch CURCHL make HL address output routine.
HE LD DE, PRINT OUT ; address: PRINT-OUT
HE LD (HL) , E ; 1s made
S INC HL ; the normal
HE LD (HL) , D ; output address.
CALL PO_NORM ;+ make PRINT OUT normal.
LD (IY+$52),5%01 ; set SCR _CT - scroll count - to default.
; Note. BC already contains $1821.
HE LD BC, $1821 ; reset column and line to 0,0
; and continue into CL-SET, below, exiting
; via PO-STORE (for the upper screen).
; THE 'CL-SET' ROUTINE
; This important subroutine is used to calculate the character output
; address for screens or printer based on the line/column for screens
; or the column for printer.
CL_SET BIT 1, (IY+S$01) ; test FLAGS - is printer in use ?
JR NZ,CL_SET 2 ; forward, if so, to CL-SET-2
LD A,B ; transfer line to A.
BIT 0, (IY+S502) ; test TV _FLAG - lower screen in use ?
JR Z,CL_SET 1 ; skip, if handling upper part, to CL-SET-1
ADD A, (IY+$31) ; add DF _SZ for lower screen
SUB $18 ; and adjust.
CL SET 1 PUSH BC ; save the line/column.
LD B,A ; transfer line to B
; (adjusted if lower screen)
CALL CL_ADDR ; routine CL-ADDR calculates HL address at left

of screen.

POP

CL_SET 2 LD
SUB
LD
LD
ADD

Jp

BC

A,$21
C

E,A
D, $00
HL, DE

PO_STORE

; THE 'SCROLLING'

SUBROUTINE

restore the line/column.

the column $01-$21 is reversed
to range $00 - $20

now transfer to DE

prepare for addition

and add to base address

exit via PO-STORE
to update the relevant system variables.

; The routine CL-SC-ALL is called once from PO to scroll all the display
; and from the routine CL-SCROLL, once, to scroll part of the display.

CL_SC_ALL LD

CL_SCROLL CALL
LD

CL_SCR 1 PUSH
PUSH

LD
AND
LD
JR

; Register HL
; line of the

; (so HL =

CL SCR_2 EX
LD
ADD

EX
LD

DEC
LDIR

CL SCR 3 EX
LD
ADD
EX

LD
AND
RRCA
RRCA
RRCA

LD
LD
LD
LDIR

LD
ADD

B, $17

CL_ADDR
C,$08

BC
HL

A,B
$07
A,B
NZ,CL SCR 3

DE, HL
HL, $F8EO
HL, DE

DE, HL
BC, $0020

A

DE, HL
HL, SFFEO
HL, DE
DE, HL

B, A
$07

’

scroll 23 lines, after 'scroll?'.

routine CL-ADDR gets screen address in HL.
there are 8 pixel lines to scroll.

save counters.
and initial address.

get line count.

will set zero if all third to be scrolled.
re-fetch the line count.

forward, if partial scroll, to CL-SCR-3

points to top line of the third which must be copied to bottom
previous third.
$4800 or $5000

transfer HL to DE.

subtract $08 from H and add $EO to L -

to make destination bottom line of previous
third.

restore the source to HL and destination to DE
thirty-two bytes are to be copied.

decrement the line count.
copy a pixel line to previous third.

save source in DE.
load the wvalue -32.
add to form destination in HL.
switch source and destination

save the count in B.

mask to find count applicable to current
third and

multiply by

thirty two (same as 5 RLCAs)

transfer byte count to C ($SEO at most)
store line count to A
make B zero

copy bytes (BC=0, H incremented, L=0)

set B to 7, C 1s zero.
add 7 to H to address next third.

; This subroutine,

AND
JR

POP
INC
POP
DEC
JR

CALL

LD

ADD

EX

LDIR

LD

SF8
NZ,CL_SCR_2

HL
H
BC
C
NZ,CL SCR_1

CL_ATTR
HL, $FFEO

HL, DE
DE, HL

; THE 'CLEAR TEXT LINES'

called from CL-ALL, CLS-LOWER and AUTO-LIST and above,

ROUTINE

has last third been done ?
back, if not, to CL-SCR-2.

restore topmost address.

next pixel line down.

restore counts.

reduce pixel line count.

back, if all eight not done, to CL-SCR-1

routine CL-ATTR gets address in attributes
from current 'ninth line' and count in BC.

set HL to the 16-bit value -32.
and add to form destination address.
swap source and destination addresses.

copy bytes scrolling the linear attributes.

continue to clear the bottom line.

; clears text lines at bottom of display.
; The B register holds on entry the number of lines to be cleared 1-24.

CL_LINE

CL_LINE 1

CL_LINE 2

PUSH

CALL

LD

PUSH
PUSH
LD

AND
RRCA
RRCA
RRCA
LD
LD
LD
DEC
LD
LD

LD
LD
INC
LDIR
LD
ADD
DEC
AND

LD
JR

BC
CL_ADDR

C,s08

DE, $0701

HL, DE

A

SF8

B, A
NZ,CL_LINE 2

save line count
routine CL-ADDR gets top address
there are eight pixel lines to a text line.

save pixel line count
and save the screen address
transfer the line to A (1-24).

mask 0-7 to consider thirds at a time
multiply

by 32 (same as five RLCA instructions)
now 32 - 256 (0)

store result in C

save line in A (1-24)

set high byte to 0, prepare for 1ldir.
decrement count 31-255.

copy HL

to DE.

blank the first byte.

;+ blank the first byte. [was LD (HL),0]

make DE point to next byte.
block move will clear lines.

now address next third adjusting
register E to address left hand side.
decrease the line count.

will be 16, 8 or O (AND $18 will do).
transfer count to B.

back to CL-LINE-2 if 16 or 8 to do
the next third.

POP
INC
POP
DEC
JR

CALL

INC
LD
BIT
JR
LD

CL _LINE 3 LD
DEC

LDIR
POP

LD
RET

; THE 'ATTRIBUTE

HL
H
BC
C

NZ,CL_LINE 1 ;

CL_ATTR
H,D
L,E
DE

A, ($5B8D)
0, (IY+$02)

Z,CL_LINE_

A, ($5B48)

(HL) , A
BC

ADDRESS'

3 ;

ROUTINE

restore start address.

address next line down.

fetch counts.

decrement pixel line count

back to CL-LINE-1 till all done.

routine CL ATTR gets attribute address
in DE and HL and B * 32 in BC.

transfer the address
to HL.

make DE point to next location.

fetch ATTR P - permanent attributes
test TV_FLAG - lower screen in use ?
skip, if not, to CL-LINE-3

else lower screen uses BORDCR as attribute.

put attribute in first byte.
decrement the counter.

copy bytes to set all attributes.
restore the line $01-$24.

make column $21. (No use WAS made of this)
return to the calling routine.

; This subroutine is called from CL-LINE or CL-SCROLL with the HL register

; pointing to the 'ninth' line and H needs to be decremented before or after
; the division. Had it been done first then either present code or that used
; at the start of PO-ATTR could have been used.
; The Spectrum screen arrangement leads to the L register already holding
; the correct value for the attribute file and it is only necessary
; to manipulate H to form the correct colour attribute address.
;77 CL ATTR LD A,H ; fetch H to A - $48, $50, or $58.
- RRCA ; divide by
HEH RRCA ; eight.
HE RRCA ; $09, SOA or S$OB.
P DEC A ; $08, $09 or $OA.
i OR S50 ; $58, $59 or S$5A.
HE LD H,A ; save high byte of attributes.
CL ATTR EX DE, HL ; transfer attribute address to DE
LD H,C ; set H to zero - from last LDIR.
LD L,B ; load L with the line from B.
ADD HL,HL ; multiply
ADD HL, HL ; by
ADD HL, HL ; thirty two
ADD HL, HL ; to give count of attribute
ADD HL, HL ; cells to the end of display.
LD B, H ; transfer the result
LD C,L ; to register BC.
EX DE, HL ; restore attribute address to HL
DEC H ; decrease from ninth line to eighth.

CL ATTR2 LD A,H ;
RRCA ;
RRCA ;
RRCA ;
AND $03 ;
OR $58 ;
D H, A ;
LD D,H ;
D E,L ;
RET ;
; THE 'SCREEN ADDRESS' SUBROUTINE

’

fetch H to A - $47, $4F, or $57.

divide by 2?7
eight.

$08, $09 or S$OA.

$00, $01 or $02.

$58, $59 or S$5A.

save high byte of attributes.

return.

This subroutine is called from four places to calculate the address
of the start of a screen character line which is supplied in B.

CL_ADDR LD A,S$18 ; reverse the line number
SUB B ; to range $00 - $17.
LD D,A ; save line in D for later.
RRCA ; multiply
RRCA ; by
RRCA ; thirty-two.
AND SEO ; mask off low bits to make
LD L,A ; register L a multiple of 32.
LD A,D ; bring back the line to A.
AND 518 ; mask to form $00, $08 or $10.
OR $40 ; add $40 - the base address of screen.
LD H,A ; HL now has the correct address.
RET ; return.
; THE NEW 'CHANNEL SPECIFIER' SUBROUTINE
; 10 bytes.

This subroutine checks for a single character ALPHA.
It is also now used by the usr $ function to exploit similarities in

the functional specification.

EXPT SPEC CALL STK FETCH ;
LD A,C ;
DEC A ;
OR B ;
LD A, (DE) ;
RET 7 ;
REPORT Ae RST 30H ;
DEFB $09 ;

routine STK-FETCH to fetch and delete the
string parameters.

DE points to the start, BC holds the length.

fetch character
return with single character.

ERROR-1
'Invalid argument'

; THE NEW 'BC POSITIVE' SUBROUTINE
BC POSTVE CALL STK TO BC ;
LD A,D ; fetch sign $01 or SFF (negative)
OR E ; combine both signs - S$FF if either negative.
INC A ;
RET NZ ; Return if both positive.
REPORT By RST 30H ; ERROR-1
DEFB S$O0A ; Error Report: Integer out of range
; Text for banner of CAT command
CAT1
DEFB $14,501 ; Control codes for INVERSE 1
DEFB SCF ; The ' CAT ' token.
DEFB $06 ; The 'comma control'
DEFM "Free " ; Text.
CAT2
DEFB 0,0 ; ballast
; THE 'COPY' COMMAND

; This command copies the top 176 lines to the ZX Printer

; It is popular to call this from machine code at point

; LOEAF with B holding 192 (and interrupts disabled) for a full-screen
; copy. This particularly applies to 16K Spectrums as time-critical

; machine code routines cannot be written in the first 16K of RAM as

; it is shared with the ULA which has precedence over the Z80 chip.

COPY

; now enter a

CoPY 1

DI

LD
LD

PUSH
PUSH

CALL

POP
POP
INC
LD
AND
JR

LD
ADD
LD
CCF

B, $BO
HL, $4000

’

’

’

disable interrupts as this is time-critical.

top 176 lines.
address start of the display file.

loop to handle each pixel line.

HL
BC

COPY LINE

BC

’

save the screen address.
and the line counter.

routine COPY-LINE outputs one line.

restore the line counter.
and display address.

next line down screen within
high byte to A.

result will be zero if we have left third.
forward to COPY-2 if not to continue loop.

'"thirds'.

consider low byte first.

increase by 32 - sets carry if back to zero.
will be next group of 8.

complement - carry set if more lines in

SBC
AND
ADD
LD

COPY 2 DJNZ

COPY END LD
OUT
ET

RET

; the previous third.

; will be FF, if more, else 00.

; will be F8 (-8) or 00.

; that is subtract 8, if more to do in third.
; and reset address.

; back to COPY-1 for all lines.
;+ output value 4 to port
;+ to stop the slowed printer motor.

;+ enable interrupts.

;+ return

; THE 'COPY BUFFER' SUBROUTINE

; This routine is used to copy 8 text lines from the printer buffer
; to the ZX Printer. These text lines are mapped linearly so HL does
; not need to be adjusted at the end of each line.

; The routine is invoked in two situations.

; 1) From PO-ENTER when a carriage return is received.

; 2) From PR-ALL when the column count C is reduced to zero.

COPY BUFF DI

; Disable Interrupts

HE LD HL, $5B00 ; the old way.
LD HL, ($5B51) ;+ Address of Current Channel.
LD DE, $08 ;+ The offset to the 256 byte channel buffer.
ADD HL, DE ;+
H LD B, $08 ; set count to 8 lines of 32 bytes.
LD B,E ; set count to 8 lines of 32 bytes.
COPY 3 PUSH BC ; save counter.
CALL COPY LINE ; routine COPY-LINE outputs 32 bytes
POP BC ; restore counter.
DJNZ COPY 3 ; loop back to COPY-3 for all 8 lines.
; then stop motor and clear buffer.
;777 COPY 4 LD A, $04 ; output value 4 to port
H ouT (SFB) ,A ; to stop the slowed printer motor.
HE EI ; enable interrupts.
COPY 4 CALL COPY END ;+
; THE 'CLEAR PRINTER BUFFER' SUBROUTINE
; This routine clears an arbitrary 256 bytes of memory.
; Note. The routine seems designed to clear a buffer that follows the
; system variables.
; The routine should check a flag or HL address and simply return if COPY
; is in use.
; As a consequence of this omission the buffer was needlessly
; cleared when COPY was used and the screen/printer position was set to

; the start of the buffer and the line number to 0 (B)

; giving an

CLEAR PRB LD

'Out of Screen'

HL, ($5B51)

error.

;+ address of Current Channel.

PRB BYTES

LD
ADD

LD
LD

XOR
LD

LD
INC

DE, $08

;+ the offset to buffer.

’

’

’

DJINZ

RES
LD
Jp

DEC
JP

Note. The
the start

'COPY LI

This routi
bytes to t
Output to
bit 7 set
bit low
bit set
bit rese
bit set
bit rese

PR NN

The slowin
motor-driv

COPY_LINE LD

COPY L 1

CP
SBC
AND
ouT
LD
CALL
JR
LD
ouT
ET
CALL
CALL

Now see 1if

HL, DE ;+ now points to start of 256 byte buffer.

HL, $5B00 ; The old way.

(IY+S$46),L ; update PR CC lo - set to zero - superfluous.
A ; clear the accumulator.

B,D ; set count to 256 bytes.

(HL) , D ; set addressed location to =zero.

HL ; address next byte - Note. not INC L.
PRB_BYTES ; back to PRB-BYTES. repeat for 256 bytes.

1, (IY+$30) ; set FLAGS2 - signal printer buffer is clear.
C,$21 ; set the column position.

CL SET ;

H ;+ Set pointer to start of buffer.

PO_STORE ;+ exit to PO-STORE to store C only.

correct value of HL is required for when COPY BUFF is called at
of PR ALL.

THE

NE' SUBROUTINE

ne is called from COPY and COPY-BUFF to output a line of 32
he ZX Printer.

port S$EFB -

- activate stylus.

- deactivate stylus.

- stops printer.

t - starts printer

- slows printer.

t - normal speed.

g of the printer ensures that the two stylii, attached to the
en rubber belt, come to rest off the paper.

A,B ; Fetch the counter 1-8 or 1-176
503 ; Is it 01 or 02 ~2.

A,A ; Result is S$FF if so else $00.
$02 ; Result is 02 now else 00.

; Bit 1 set slows the printer.

(SFB) , A ; Slow the printer for the last two lines.

D,A ; Save the mask to control the printer later.
BREAK KEY ; Call BREAK-KEY to read keyboard immediately.
C,COPY L 2 ; Forward, if 'break' not pressed, to COPY-L-2
A,S504 ; Stop the

(SFB) , A ; printer motor.

; Enable interrupts.
COPY_ END ;+ Routine stops the motor and performs EI.
CLEAR PRB ; Call routine CLEAR-PRB.

it is part of the fixed screen that is being copied.

LD A,H ;+ Fetch high byte of address being copied.
CP $58 ;+ Is address less than attribute file ?
CALL NC,CLEAR_PRB ;+ If not call routine CLEAR-PRB.
;+ Note. should not be cleared if COPY in use.
REPORT Dc RST 30H ; ERROR-1
DEFB $0C ; Error Report: BREAK - CONT repeats

COPY L 2 1IN A, (SFB) ; Test now to see 1if
ADD A,A ; a printer is attached.
RET M ; return if not - but continue with parent
; command.
JR NC,COPY L 1 ; back, if stylus not in position, to COPY-L-1
LD C,$20 ; set count to 32 bytes.
COPY L 3 LD E, (HL) ; fetch a byte from line.
INC HL ; address next location. Note. not INC L.
LD B, $08 ; count the bits.
COPY L 4 RL D ; prepare mask to receive bit.
RL E ; rotate leftmost print bit to carry
RR D ; and back to bit 7 of D restoring bit 1
COPY L 5 1IN A, (SFB) ; read the port.
RRA ; bit 0 to carry.
JR NC,COPY L 5 ; back, if stylus not in position, to COPY-L-5
TAGS LD A,D ; transfer command bits to A.
LOF24: ouT (SFB) ,A ; and output to port.
DJNZ COPY L 4 ; loop back, for all 8 bits, to COPY-L-4
DEC C ; decrease the byte count.
JR NZ,COPY L 3 ; back, until 256 bits done, to COPY-L-3
RET ; return to calling routine COPY/COPY-BUFF.

; THE 'EDITOR' ROUTINE

; The editor is called to prepare or edit a BASIC line.

; It is also called from INPUT to input a numeric or string expression or
; to input characters sent by a network station or serial device.

; The behaviour and options are quite different in the various modes

; and distinguished by bit 5 of FLAGX.

; This is a compact and highly versatile routine.

EDITOR LD HL, (S5B3D) ; fetch ERR SP
PUSH HL ; save on stack

ED AGAIN LD HL,ED ERROR ; address: ED-ERROR
PUSH HL ; save address on stack and
LD ($5B3D), SP ; make ERR SP point to it.

; Note. While in editing/input mode should an error occur then RST 08 will
; update X PTR to the location reached by CH ADD and jump to ED-ERROR
; where the error will be cancelled and the loop begin again from ED-AGAIN

; above. The position of the error will be apparent when the lower screen is
; reprinted. If no error then the re-iteration is to ED-LOOP below when
; input is arriving from the keyboard.

ED_LOOP CALL WAIT KEY ; routine WAIT-KEY gets key possibly changing
; the mode.
PUSH AF ; save the key.

; Do we need to always click?

LD HL, $00C8 ; Give a short click.
i LD D, $00 ;
LD D,H ;+
LD E, (IY-501) ; Use PIP value for duration.
CALL BEEPER ; routine BEEPER gives click - effective

; with rubber keyboard.

POP AF ; get saved key value.
LD HL,ED_ LOOP ; address: ED-LOOP is loaded to HL.
PUSH HL ; and pushed onto stack.

; At this point there is a looping return address on the stack, an error
; handler and an input stream set up to supply characters.
; The character that has been received can now be processed.

Cp $18 ; range 24 to 255 ?

JR NC,ADD CHAR ; forward, if so, to ADD-CHAR.
i CP $07 ; lower than 7 ?

CP $06 ;+ lower than 6 ?

JR C,ADD_CHAR ; forward to ADD-CHAR also.

; Note. This is a 'bug' and chr$ 6, the comma
; control character, should have had an

; entry in the ED-KEYS table.

; Steven Vickers, 1984, Pitman.

LD BC, $0002 ; Prepare early for ink/paper etc.
CP $10 ; less than 16 decimal ?
JR C,ED _KEYS ; forward to ED-KEYS ,if editing control in the
; range 6 to 15, as dealt with by a table.
Y LD BC, $0002 ; prepare for ink/paper etc.
LD D,A ; save character in D
CP $S1le6 ; is it ink/paper/bright etc. ?
JR C,ED_CONTR ; forward, if so, to ED-CONTR

; leaves 22d AT and 23d TAB

; which can't be entered via KEY-INPUT.

; so this code is never normally executed
; when the keyboard is used for input.

INC BC ; if it was AT/TAB - 3 locations required

BIT 7, (IY+$37) ; test FLAGX - Is this INPUT LINE ?

JP Z,ED_IGNORE ; jump to ED-IGNORE if not, else

CALL WAIT KEY ; routine WAIT-KEY - input address is KEY-NEXT
; but is reset to KEY-INPUT

LD E,A ; save first in E

ED CONTR CALL WAIT KEY ; routine WAIT-KEY for control.

; input address will be key-next.

PUSH DE ; saved code/parameters
LD HL, ($5B5B) ; fetch address of keyboard cursor from K CUR
RES 0, (IY+S07) ; allow MODE 'L' or 'G' cancelling 'E'
CALL MAKE ROOM ; routine MAKE-ROOM makes 2/3 spaces at cursor
POP BC ; restore code/parameters
- INC HL ; Address the first location
LD (HL),B ; place code (ink etc.)
INC HL ; address next
LD (HL) ,C ; place possible parameter. If only one
; then DE points to this location also.
JR ADD CH 1 ; forward to ADD-CH-1

; THE 'ADD CHAR' SUBROUTINE

; This is the branch used to add normal non-control characters
; with ED-LOOP as the stacked return address.

; It is also the OUTPUT service routine for system channel 'R'.

ADD CHAR RES 0, (IY+S07) ; allow MODE 'L' or 'G' cancelling 'E'
LD HL, ($5B5B) ; fetch address of keyboard cursor from K CUR
LD BC, $0001 ; one space required
CALL MAKE ROOM ; Create space at K CUR.

Y CALL ONE_ SPACE ; routine ONE SPACE creates one space.

; Either a continuation of above or from ED-CONTR with ED-LOOP on stack.

ADD CH 1 LD (DE) , A ; load current character to last new location.
INC DE ; address next
LD ($5B5B) , DE ; and update K CUR system variable.
RET ; return - either a simple return

; from ADD-CHAR or to ED-LOOP on stack.

; THE 'ED KEYS' SECTION

; A branch of the editing loop to deal with control characters using a
; look-up table. On entry BC now holds $0002.

ED_KEYS LD E,A ; character to E.
HE LD D, $00 ; prepare to add.
LD D,B ; prepare to add.
HEH LD HL,ED KEYS T -7 ; base address of editing keys table.
LD HL,ED KEYS T -6 ;+ NEW base address of editing keys table.
ADD HL, DE ; add E
LD E, (HL) ; fetch one-byte offset to E.
ADD HL, DE ; add offset for address of handling routine.
PUSH HL ; push the routine address on the machine stack.

LD HL, ($5B5B) ; load address of the cursor from K CUR.

; New. carry results of next tes
; the tests separately within th

TST INP M BIT 5, (IY+$37) ;+
RET ;
; Note Zero flag determines mode

; THE 'EDITING KEYS' TABLE

; For each code in the range $07
; byte to the routine that servi
; Note. for the correct handling
; there should be an entry for C

ED KEYS T DEFB ED SYMBOL-$ P+
DEFB ED EDIT -$;
DEFB ED LEFT -$;
DEFB ED RIGHT -$;
DEFB ED DOWN -$;
DEFB ED_UP -$;
DEFB ED DELETE-$;
DEFB ED ENTER -$;
DEFB ED SYMBOL-$;
DEFB ED GRAPH -$;

; THE 'EDIT KEY' SUBROUTINE

; The user has pressed SHIFT 1 t
; Alternatively the user wishes
; Alternatively

ED EDIT LD HL, ($5B49) ;
H BIT 5, (IY+S$37) ;
JR NZ,CLEAR SP ;
CALL LINE ADDR ;
CALL LINE NO ;
LD A,D ;
OR BE 7
JR Z,CLEAR SP ;
; Note. at this point we have a
; approximation and it would be
; cursor line value which would
; in all situations - see shortl
LD ($5B49) , DE i
PUSH HL ;
INC HL ;
LD C, (HL) ;
INC HL ;

t into the routine to save performing
e routines.

Test FLAGX - INPUT mode ?
Make an indirect jump forward to routine.

, BC holds $0002.

to $O0F this table contains a single offset
ces that code.

of comma-separated items, over the network,
HRS$6 with offset to ED-SYMBOL. Done.

0bod offset to Address: ED-SYMBOL
07d offset to Address: ED-EDIT
08d offset to Address: ED-LEFT
09d offset to Address: ED-RIGHT
10d offset to Address: ED-DOWN
11d offset to Address: ED-UP

12d offset to Address: ED-DELETE
13d offset to Address: ED-ENTER
14d offset to Address: ED-SYMBOL
15d offset to Address: ED-GRAPH

0 bring edit line down to bottom of screen.
to clear the input buffer and start again.

fetch E PPC the last line number entered.
Note. may not exist and may follow program.

test FLAGX - INPUT mode ?
Jjump forward, if INPUT mode, to CLEAR-SP

routine LINE-ADDR to find address of line

or following line if it doesn't exist.

in DE.

routine LINE-NO will get line number from
address or number of previous line if at the
end-marker.

If there is no program then DE will

contain zero so test for this.

jump forward, if so, to CLEAR-SP

validated line number, not just an
best to update E PPC with the true
enable the line cursor to be suppressed

y.
make E PPC number the true line number.

save address of line.
address low byte of length.
transfer to C

next to high byte

LD B, (HL) transfer to B.
LD HL, $000A an overhead of ten bytes
ADD HL,BC is added to length.
LD B,H transfer adjusted value
LD C,L to BC register.
CALL TEST ROOM routine TEST-ROOM checks free memory.
CALL CLEAR SP routine CLEAR-SP clears editing area.
LD HL, ($5B51) address CURCHL
EX (SP),HL swap with line address on stack
PUSH HL save line address underneath
LD A, SFF select system channel 'R'
CALL CHAN_ SLCT routine CHAN-OPEN opens it
POP HL drop line address
DEC HL make it point to first byte of line num.
DEC (IY+SO0F) decrease E PPC lo to suppress line cursor.
Note. ineffective when E PPC is one
greater than last line of program perhaps
as a result of a delete.
credit: Paul Harrison 1982.
fixed above
CALL OUT_LINE routine OUT-LINE outputs the BASIC line
to the editing area.
INC (IY+SO0F) restore E PPC lo to the previous value.
1D HL, ($5B59) address E LINE in editing area.
INC HL advance
INC HL past space
INC HL and digit characters
INC HL of line number.
LD ($5B5B) , HL update K CUR to address start of BASIC.
REST CHAN POP HL restore the address of CURCHL.
JP CHAN FLAG ;+ routine CHAN-FLAG sets flags for it.
HH CALL CHAN_ FLAG ; routine CHAN-FLAG sets flags for it.
HE RET ; RETURN to ED-LOOP.

; THE 'CLEAR SPACE' SUBROUTINE

; The editing area or workspace is cleared depending on context.
; This is called from ED-EDIT to clear workspace if edit key is

; used during input, to clear editing area if no program exists

; and to clear editing area prior to copying the edit line to it.
; It is also used by the error routine to clear the respective

; area depending on FLAGX.

CLEAR SP PUSH HL ; preserve HL throughout.
CALL SET HL ; routine SET-HL
; 1f in edit HL = WORKSP-1, DE = E LINE
; 1f in input HL = STKBOT, DE = WORKSP
DEC HL ; adjust
CALL RECLAIM 1 ; routine RECLAIM-1 reclaims space setting BC

; to zero.

LD ($5B5B) , HL ; set K CUR to start of empty area.
PP LD (IY+$07),$00 ; set MODE to 'KLC'

LD (IY+$07),B ;+ set MODE to 'KLC'

POP HL ; restore HL.

RET ; return.

; THE 'CURSOR DOWN EDITING' SUBROUTINE

; The BASIC lines are displayed at the top of the screen and the user
; wishes to move the cursor down one line in edit mode.

; With INPUT LINE, this key must be used instead of entering STOP.

;77 ED_ DOWN BIT 5, (IY+$37) ; test FLAGX - Input Mode ?
ED DOWN JR Nz,ED_STOP ; skip, if INPUT mode, to ED-STOP
LD HL, $5B49 ; address E PPC - 'current line'
CALL LN _FETCH ; routine LN-FETCH fetches number of next
; line or same if at end of program.
JR ED LIST ; forward to ED-LIST to produce an

; automatic listing.

ED STOP LD (IY+$00),810 ; set ERR NR to 'STOP in INPUT' code
JR ED_ENTER ; forward to ED-ENTER to produce error.

; THE 'CURSOR LEFT EDITING' SUBROUTINE

; This acts on the cursor in the lower section of the screen in both

; editing and input mode.

ED LEFT CALL ED _EDGE ; routine ED-EDGE moves left if possible
JR ED CUR ; forward to ED-CUR to update K-CUR

; and return to ED-LOOP.

; THE 'CURSOR RIGHT EDITING' SUBROUTINE

; This acts on the cursor in the lower screen in both editing and input
; mode and moves it to the right.
; Note. The new code, suggested by Andrew Owen, avoids placing the cursor
; between a control code and its parameter.
ED RIGHT LD A, (HL) ; fetch addressed character.

CP S0D ; 1s it carriage return ?

RET Z ; return if so to ED-LOOP

INC HL ; address next character

Cp $15 ;+ OVER or higher

JR NC,ED CUR ;+

Cp SOF ;T

JR C,ED_CUR P+

INC HL ;+ Step over a control code parameter.
ED CUR LD ($5B5B) , HL ; update K CUR system variable

RET ; return to ED-LOOP

; THE 'EDITING DELETE' SUBROUTINE

; This acts on the lower screen and deletes the character to left of
; cursor. If control characters are present these are deleted first
; leaving the naked parameter (0-7) which appears as a '?' except in the
; case of chr$ 6 which is the comma control character. It is not mandatory
; to delete these second characters.
; Note. the second method would delete both controls and their parameters.
ED DELETE CALL ED EDGE ; routine ED-EDGE moves cursor to left

LD BC, $0001 ; of character to be deleted.

JP RECLAIM 2 ; to RECLAIM-2 reclaim the one character.
P EX DE, HL :
P JP RECLAIM 1 ;

; THE 'EDITING IGNORE' SUBROUTINE

; Since AT and TAB cannot be entered this point is never reached
; from the keyboard. If inputting from a tape device or network then
; the control and two following characters are ignored and processing
; continues as if a carriage return had been received.
; Here, perhaps, another Spectrum has said print #15; AT 0,0; "This is yellow"
; and this one is interpreting input #7; a$.
ED IGNORE CALL WAIT KEY ; routine WAIT-KEY to ignore code.
CALL WAIT KEY ; routine WAIT-KEY to ignore next code.

; THE 'EDITING ENTER KEY' SUBROUTINE

; The ENTER key has been pressed to have BASIC line or INPUT accepted.

ED ENTER POP HL ; discard address ED-LOOP
POP HL ; drop address ED-ERROR
ED END POP HL ; the previous value of ERR SP
LD ($5B3D) , HL ; 1s restored to ERR _SP system variable
BIT 7, (IY+S00) ; 1s ERR NR SFF ?
RET NZ ; return if 'OK'
LD SP,HL ; else put error routine on stack
RET ; and make an indirect jump to it.

; THE 'ED-EDGE' SUBROUTINE

; This routine moves the cursor left. The complication is that it must

; not position the cursor between control codes and their parameters.

; It is further complicated in that it deals with TAB and AT characters
; which are never present from the keyboard.

; The method is to advance from the beginning of the line each time,

; jumping one, two, or three characters as necessary saving the original

; position at each jump in DE. Once it arrives at the cursor then the next

; legitimate leftmost position is in DE.

ED EDGE SCF ; carry flag must be set to call the nested
CALL SET DE ; subroutine SET-DE.
; if input then DE=WORKSP
; 1f editing then DE=E LINE

SBC HL, DE ; subtract address from start of line
ADD HL, DE ; and add back.

INC HL ; adjust for carry.

POP BC ; drop return address

RET C ; return to ED-LOOP if already at left

; of line.

PUSH BC ; resave return address - ED-LOOP.
LD B, H ; transfer HL - cursor address
LD C,L ; to BC register pair.

; at this point DE addresses start of line.

ED EDGE 1 LD H,D ; transfer DE - leftmost pointer
LD L,E ; to HL
INC HL ; address next leftmost character to
; advance position each time.
LD A, (DE) ; pick up previous in A
AND SFO ; lose the low bits
CPp $10 ; is it INK to TAB $10-S1F 2
; that is, is it followed by a parameter ?
JR NZ,ED EDGE 2 ; forward, if not, to ED-EDGE-2
; HL has been incremented once
INC HL ; address next as at least one parameter.
; In fact since 'tab' and 'at' cannot be entered the next section seems
; superfluous.

; The test will always fail and the jump to ED-EDGE-2 will be taken.

; However, as Vickers later revealed these can be encountered with the
; RS232 and Network.

LD A, (DE) ; reload leftmost character

SUB 317 ; decimal 23 ('tab')

ADC A, S$00 ; will be 0 for 'tab' and 'at'.
JR NZ,ED EDGE 2 ; forward, if not, to ED-EDGE-2

; HL has been incremented twice

INC HL ; increment a third time for 'at'/'tab'
ED EDGE 2 AND A ; prepare for true subtraction

SBC HL, BC ; subtract cursor address from pointer

ADD HL, BC ; and add back

; Note when HL matches the cursor position BC,
; there is no carry and the previous
; position is in DE.
EX DE, HL ; transfer result to DE if looping again.
; transfer DE to HL to be used as K-CUR
; 1f exiting loop.
JR C,ED EDGE 1 ; back to ED-EDGE-1 if cursor not matched.

RET ; return.

; THE 'CURSOR UP EDITING' SUBROUTINE

; The main screen displays part of the BASIC program and the user wishes
; to move up one line scrolling if necessary.

; This has no alternative use in INPUT mode.

;7; ED UP BIT 5, (IY+$37) ; test FLAGX - INPUT mode °?
ED_UP RET NZ ; return if in INPUT mode - to ED-LOOP.
LD HL, ($5B49) ; get current line from E PPC
CALL LINE ADDR ; routine LINE-ADDR gets address
EX DE, HL ; and previous in DE
CALL LINE NO ; routine LINE-NO gets prev line number
LD HL, $5B4A ; set HL to E _PPC _hi as next routine stores
; top first.
CALL LN _STORE ; routine LN-STORE loads DE value to HL

; high byte first - E PPC lo takes E

; this branch is also taken from ED DOWN.

ED LIST CALL AUTO_LIST ; routine AUTO-LIST lists to upper screen
; including adjusted current line.
HE LD A, $00 ;- explicit - select lower screen again
CHAN_ ZERO XOR A ;+ select lower screen again.
JP CHAN_ SLCT ; exit via CHAN-OPEN to ED-LOOP

; THE 'symbol and graphics' CODES

; These will not be encountered with the keyboard but would be handled
; otherwise as follows.

; As noted earlier, Vickers says there should have been an entry in

; the KEYS table for chr$ 6 which also pointed here.

; If, for simplicity, two Spectrums were both using #15 as a directional

; channel connected to each other:-

; then, when the other Spectrum has said PRINT #15; 24, 7

; INPUT #15; x ; y would then treat the comma control as a newline and the
; control would skip to INPUT vy.

; On the standard Spectrum, it was possible to get round the missing chr$ 6
; handler by sending multiple print items separated by a newline '.

; Otherwise the expression "24,7" would be assigned to the first variable x
; raising 'Nonsense in BASIC'.

; chr$14 would have the same functionality.

; This is chr$ 14.
ED SYMBOL BIT 7, (IY+S$37) ; test FLAGX - 1is this INPUT LINE °?
JR Z,ED_ENTER ; back, if not, to ED-ENTER
; to treat as if enter had been pressed
; else continue and add code to buffer.

; Next is chr$ 15
; Note that ADD-CHAR precedes the table so we can't offset to it directly.

ED GRAPH JP ADD CHAR ; jump back to ADD-CHAR

; THE 'ED ERROR' ROUTINE

; If an error occurs while editing, or inputting, then ERR_SP

; points to the stack location holding address ED_ ERROR.

; Note. this is specifically designed to deal with a BREAK into network input.

ED ERROR BIT

’

’
’
’

’

'K'.

JR

4, (IY+$30) ;
Z,ED_END ;

test FLAGS2 - is K channel in use °?
back, if not, to ED-END

but as long as we're editing lines or inputting from the keyboard, then
we've run out of memory so give a short rasp.

LD
LD
LD
LD
CALL

CALL

JP

(IY+$00),SFF ; reset ERR NR to 'OK'.

D, $00 ; prepare for beeper.

E, (IY-502) ; use RASP value.

HL, $1A90 ; set a duration.

BEEPER ; routine BEEPER emits a warning rasp.

ED RASP ;+ call the above code in new subroutine.
ED_AGAIN ; to ED-AGAIN to re-stack the address of

’

THE 'KEYBOARD

This 1is the

KEY INPUT BIT

’

’

’

CALL

AND

BIT

LD
BIT

RET

Continue if

LD

RES

RES

PUSH

INPUT' ROUTINE

this routine and make ERR SP point to it.

service routine for the input stream of the keyboard channel

3, (IY+$02) ; test TV_FLAG - has a key been pressed in
; editor 2
NZ,ED COPY ; routine ED-COPY, if so, to reprint the lower
; screen at every keystroke/mode change.
A ; clear carry flag - required exit condition.
5, (IY+$01) ; test FLAGS - has a new key been pressed ?
HL, $5B3B ;+ Address system variable FLAGS
5, (HL) ;+ test FLAGS - has a new key been pressed ?
Z ; return if no key has been pressed. >>

the interrupt routine has supplied a key.

A, ($5B08) ;
5, (IY+501) ;
5, (HL) 7
AF ;

system variable LASTK will hold last key -
from the interrupt routine.

update FLAGS - reset the new key flag.
+update FLAGS - reset the new key flag.

Save the input character.

Now test if screen is to be cleared. after scroll?, Start tape, the
copyright message or an error message.

BIT

JR

BIT

PUSH

CALL
CALL

5, (IY+$02) ; test TV FLAG - clear lower screen °?
Z,KEY CMP ;+ forward if not

3, (HL) ;+ is FLAGS set - L mode

AF ;+ Now save the input character.
Nz,CLS_LOWER ;

CLS_LOWER ;+ routine CLS-LOWER.

KEY CMP

; that only leaves 0-5,

; Now separate capslock 06 from

KEY M CL

KEY MODE

KEY FLAG

POP

JR

CP
JR

CP
JR

CP
JR

LD
AND
LD
LD
RRA
ADD

JR

JR

LD
LD
XOR
LD
JR

CP
RET

SUB
LD
CP
LD
JR
LD

LD

CP

AF

NZ,KEY DONE2

$20
NC,KEY DONE2

$10
NC,KEY CONTR

$06
NC,KEY M CL

A,$12

KEY DATA

Nz,KEY MODE

HL, $5B6A
A,$08
(HL)

(HL) ,A
KEY FLAG
SOE

C

$0D

HL, $5B41
(HL)

(HL) ,A

NZ,KEY FLAG
(HL), $00

(HL), $00

;+ else make MODE zero - KLC mode

restore the character code and test result.

;+ forward as single key required.

if space or higher then
forward to KEY-DONE2 and return with carry
set to signal key-found.

with 16d INK and higher skip
forward to KEY-CONTR.

for 6 - 15d
skip forward to KEY-M-CL to handle Modes
and CapsLock.

the flash bright inverse switches.

save character in B

isolate the embedded parameter (0/1).
and store in C

re-fetch copy (0-5)

halve it 0, 1 or 2.

add 18d gives 'flash', 'bright'

and 'inverse'.

forward to KEY-DATA with the
parameter (0/1) in C.

modes 7-15.
forward to KEY-MODE if not 06 (capslock)

point to FLAGS2

value 00001000

toggle BIT 3 of FLAGS2 the capslock bit
and store result in FLAGS2 again.
forward to KEY-FLAG to signal no-key.

compare with chr 14d

return with carry set "key found" for
codes 7 - 13d leaving 14d and 15d
which are converted to mode codes.

subtract 13d leaving 1 and 2

1 is 'E' mode, 2 is 'G' mode.

address the MODE system variable.
compare with existing value before
inserting the new value.

forward to KEY-FLAG if it has changed.

else make MODE zero - KLC mode XXXX

(D=0, fr CLS)
Note. while in Extended/Graphics mode,
the Extended Mode/Graphics key is pressed
again to get out.

clear carry and reset zero flags -
no actual key returned.

SIG _KSTAT SET

; now deal with colour controls

RET

KEY CONTR LD

KEY DATA

KEY NEXT

KEY CHAN

KEY CH2

KEY DONE2

AND
LD
LD
BIT
JR

INC

LD

LD
JR

that

LD
LD

LD

INC
INC
LD
INC
LD

SCF

RET

3, (IY+S$02)

B, A
$07

c,A

A,S$10

3,B

NZ,KEY DATA

A
(IY-$2D),C

DE,KEY NEXT
KEY CHAN

update TV_FLAG - show key state has changed
make the return.

- 16-23 ink, 24-31 paper

make a copy of character.

mask to leave bits 0-7

and store in C.

initialize to 1l6d - INK.

was it paper ?

forward to KEY-DATA with INK 1l6d and
colour in C.

else change from INK to PAPER (17d)
put the colour (0-7)/state(0/1) in KDATA

address: KEY-NEXT will be next input stream
forward to KEY-CHAN to change it

INPUT AD directs control to here at next call to WAIT-KEY

A, ($5B0OD)
DE, KEY INPUT

HL, ($5B4F)
HL

HL

(HL) , E

HL

(HL) , D

; THE 'LOWER SCREEN COPYING'

’

pick up the parameter stored in KDATA.
address: KEY-INPUT will be next input stream
continue to restore default channel and

make a return with the control code.

address start of CHANNELS area using CHANS
system variable.

step over the

output address

and update the input

routine address for

the next call to WAIT-KEY.

set carry flag to show a key has been found

Return.

ROUTINE

; This subroutine is called whenever the line in the editing area or
; input workspace is required to be printed to the lower screen.

; It is by calling this routine after any change that the cursor, for
; instance,
; Remember the edit line will contain characters and tokens
LET a=1" is 8 characters.

; It may also contain embedded colour control codes.

; e.g.

ED COPY

"1000

CALL

RES
RES

LD
PUSH

LD
PUSH

TEMPS

3, (IY+$02)
5, (IY+$02)

HL, ($5B8A)
HL

HL, ($5B3D)
HL

’

appears to move to the left.

; .routine TEMPS sets temporary attributes.

update TV_FLAG - signal no change in mode
update TV_FLAG - signal don't clear lower
screen.

fetch SPOSNL
and save on stack.

fetch ERR_SP
and save also

’

’

LD HL,ED FULL ; address: ED-FULL
PUSH HL ; 1s pushed as the error routine
LD ($5B3D), SP ; and ERR _SP made to point to it.
LD HL, ($5B82) ; fetch ECHO E
PUSH HL ; and push also
SCF ; set carry flag to control SET-DE
CALL SET_DE ; call routine SET-DE
; 1f in input DE = WORKSP
; 1f in edit DE = E LINE
EX DE, HL ; start address to HL
CALL OUT_LINE2 ; routine OUT-LINE2 outputs entire line up to
; carriage return including initial
; characterized line number when present.
EX DE, HL ; transfer new address to DE
CALL OUT_CURS ; routine OUT-CURS considers a
; terminating cursor.
LD HL, ($5B8A) ; fetch updated SPOSNL
EX (SP),HL ; exchange with ECHO_E on stack
EX DE, HL ; transfer ECHO E to DE
CALL TEMPS ; .routine TEMPS to re-set attributes if altered.

the lower
text from

screen was not cleared,

at the outset, so if deleting then old

a previous print may follow this line and requires blanking.

ED BLANK LD A, ($5B8B) ; fetch SPOSNL hi is current line
SUB D ; compare with old
JR C,ED _C DONE ; forward to ED-C-DONE if no blanking
JR NZ,ED_SPACES ; forward to ED-SPACES if line has changed
LD AE ; old column to A
SUB (IY+$50) ; subtract new in SPOSNL lo
JR NC,ED_C_DONE ; forward to ED-C-DONE if no backfilling.
ED SPACES LD A, $20 ; prepare a space.
PUSH DE ; save old line/column.
CALL PRINT_OUT ; routine PRINT-OUT prints a space over
; any text from previous print.
; Note. Since the blanking only occurs when
; using PRINT OUT to print to the lower screen,
; there is no need to vector via a RST 10
; and we can use this alternate set.
POP DE ; restore the old line column.
JR ED BLANK ; back to ED-BLANK until all old text blanked.
; THE 'EDITOR-FULL' ERROR ROUTINE

; This is the error routine addressed by ERR SP. This is not for the out of

; memory situation as we're just printing. The pitch and duration are exactly
; the same as used by ED-ERROR from which this has been augmented. The

; situation is that the lower screen is full and a rasp is given to suggest

; that to continue would perhaps not be the best idea you've had that day.

ED_FULL
LD

LD D, $00 ;

E, (IY-$%02) ;

prepare to moan.
fetch RASP value.

rrr

rrr

A LD HL, $1A90 ; set duration.

Fr CALL BEEPER ; routine BEEPER.

;i LD (IY+$00), SFF ; clear ERR NR.

ED FULL CALL ED RASP ;+ call the above code in new subroutine.
LD DE, ($5B8A) ; fetch SPOSNL.
JR ED C_END ; forward to ED-C-END

; THE NEW 'ED RASP' SUBROUTINE

ED RASP LD D, $00 ;+ prepare to moan.
LD E, (IY-502) ;+ fetch RASP value.
LD HL, $1A90 ;+ set duration.
CALL BEEPER ;+ routine BEEPER.
SET ER FF LD (IY+500), $FF ;+ clear ERR NR.
RET it
; the exit point from line printing continues here.
ED C DONE POP DE ; fetch new line/column.
POP HL ; fetch the error address.
; the error path rejoins here.
ED C END POP HL ; restore the old value of ERR SP.
LD ($5B3D) , HL ; update the system variable ERR_SP
POP BC ; old value of SPOSN L
PUSH DE ; save new value
CALL CL_ SET ; routine CL-SET and PO-STORE update ECHO_E

; and SPOSN L from BC (and sets D to zero)

POP HL ; restore new value
LD ($5B82), HL ; and overwrite ECHO E

H LD (IY+326),$00 ; make error pointer X PTR hi out of bounds
LD (IY+$26),D ;+ make error pointer X PTR hi out of bounds
RET ; return

; These two nested routines ensure that the appropriate pointers are
; selected for the editing area or workspace. The routines that call
; these routines are designed to work on either area.

; this routine is called once

SET HL LD HL, ($5B61)
DEC HL
AND A

this routine is called with

SET DE LD DE, ($5B59)
P BIT 5, (IY+$37)
CALL TST INP M
RET 7
LD DE, ($5B61)
RET C
LD HL, ($5B63)
RET
; THE 'REMOVE FLOATING POINT' R

When a BASIC LINE or the IN
an invisible chr 14d insert
floating point form inserte
are also created after the
This routine removes these
edit line or input workspac

REMOVE FP LD A, (HL) ; fetch character
CP SO0E ; 1s i1t the CHRS 14 number marker ?
LD BC, $0006 ; prepare to strip six bytes
CALL Z,RECLAIM 2 ; routine RECLAIM-2 reclaims bytes if CHRS 14.
LD A, (HL) ; reload next (or same) character
INC HL ; and advance address
CP $0D ; end of the line or the input buffer ?
JR NZ, REMOVE FP ; back to REMOVE-FP until entire line done.
RET ; return.

; R e I b b b b b I b b b b b b I a2 b b b b b Sb b b b b e

; ** Part 6. EXECUTIVE ROUTINES **

; R b b b b b dh dh 2 b b b b b Sh S g 2 2 b b b db Sh dh dh 2 b b g

; The memory.

; = i fomm = i +—4-=

; | BASIC | Display | Attributes | System |

;| ROM | File | File | Variables

; i it fom - i it +—t-=

; $0000 $4000 $5800 $5B00 $5BC8 = CHANS

;. e fom = fom - it ettt f——t———t—=

; | Channel [|$80| BASIC | Variables |$80| Edit Line |NL|$80|

; | Info | | Program | Area | | or Command | |

;. = it ettt e i T f——f—— =

; CHANS PROG VARS E LINE WORKSP

fetch WORKSP to HL.

point to last location of editing area.
clear carry to limit exit points to first
or last.

carry set and exits at a conditional return.

fetch E LINE to DE

; test FLAGX - Input Mode ?

;+ bit 5, (iy+$37) as a 3-byte call.
return now if in editing mode

’

’

fetch WORKSP to DE
return if carry set

(entry set-de)

fetch STKBOT to HL as well
and return (entry set-hl

(in input))

OUTINE

PUT BUFFER is parsed any numbers will have

ed after them and the 5-byte integer or

d after that. Similar invisible value holders
numeric and string variables in a DEF FN list.
'compiled' numbers starting at a point in the
e.

; -——5--—> <===2--- <=-3---

;. o ——— o o Fom————— o et +
; | INPUT |NL| Temporary | Calc. | Spare | Machine | GO SUB |?|$3E| UDGs |
; | data | | Work Space | Stack | | Stack | Stack | | |

;. e o — - - o ————— t—m————— -t +
; WORKSP STKBOT STKEND sp RAMTOP UDG P _RAMT
; THE 'NEW' COMMAND

; The NEW command is about to set all RAM below RAMTOP to

zero and then

; re-initialize the system. All RAM above RAMTOP should, and will be,
; preserved.
; There is nowhere to store values in RAM or on the stack which becomes
; inoperable. Similarly PUSH and CALL instructions cannot be used to store
; values or section common code. The alternate register set is the only place
; available to store 3 persistent 16-bit system variables.
NEW DI ; Disable Interrupts - machine stack will be
; cleared.
LD A, SFF ; Flag coming from NEW.
LD DE, ($5BB2) ; Fetch RAMTOP as top value.
EXX ; Switch in alternate set.
LD BC, ($5BB4) ; Fetch P-RAMT differs on 16K/48K machines.
LD DE, ($5B38) ; Fetch RASP/PIP.
LD HL, ($5B7B) ; Fetch UDG differs on 16K/48K machines.
EXX ; Switch back to main set and continue into...
; THE 'START-NEW' BRANCH
; This branch is taken from above and from RST 00h.
; The common code tests RAM and sets it to zero re-initializing all the
; non-zero system variables and channel information. The A register flags

; if coming from START or NEW.

START NEW LD

LD
ouT

LD
LD

NOP
NOP
NOP
] NOP
NOP
;7 NOP

; THE
; Typically,

; location.

B

A
(

A
I

'RAM CHECK'
a Spectrum will have 16K or 48K of RAM and this code will test
; it all until it finds an unpopulated location or,
Usually it stops when it reaches the top S$SFFFF,
; of NEW the supplied top value.

' A ;
,$07 ;
SFE) ,A ;
, S3F ;
P A ;
SECTION

Save the flag to control later branching.

Select a white border
and set it now by writing to a port.
Load the accumulator with
Set the I register - this
and can't be in the range
appears on the screen.

last page in ROM.
remains constant
$40 - S$7TF as 'snow'
These seem unnecessary.

Ho Ho Hum.

Reset the network probably.

less likely, a faulty
or in the case
The entire screen turns black with

; sometimes red stripes on black paper just visible.

ram chec

RAM FILL

RAM READ

RAM_DONE

k LD
LD

LD
DEC
CP
JR

AND
SBC
ADD
INC
JR

DEC
JR

DEC
JR

DEC
EXX

LD
LD
LD
EXX
INC
JR

H,D
L,E

(HL), $02

HL

H

NZ,RAM FILL

A
HL, DE

HL, DE

HL

NC, RAM DONE

(HL)

7,RAM DONE
(HL)
Z,RAM_READ
HL
($5BB4) , BC
($5B38), DE
($5B7B) , HL
B

7,RAM SET

; this section applies to START

; the
RAM SET
; the

NMI PTR

LD

LD
LD
EX
LDDR
EX
INC
LD

DEC

LD

LD

INC
LD

($5BB4) , HL

DE, $3EAF
BC, $O0AS8
DE, HL

DE, HL
HL
($5B7B) , HL
HL
BC,$0040
($5B38), BC

A
($5B38) ,A

’

’

Transfer the top value to the HL register
pair.

Load memory with $02 - red ink on black paper.
Decrement memory address.

Have we reached ROM - $3F ?

Back, if not, to RAM-FILL

Clear carry - prepare to subtract.
subtract and add back setting

carry when back at start.

and increment for next iteration.
forward to RAM-DONE if we've got back to
starting point with no errors.

decrement to 1.
forward to RAM-DONE if faulty.

decrement to zero.
back to RAM-READ if zero flag was set.

step back to last valid location.
regardless of state, set up possibly
stored system variables in case from NEW.
insert P-RAMT.

insert RASP/PIP.

insert UDG.

switch in main set.

now test if we arrived here from NEW.
forward to RAM-SET if we did.

only.

set P-RAMT to the highest working RAM
address.

address of last byte of 'U' bitmap in ROM.
there are 21 user defined graphics.

switch pointers and make the UDGs a

copy of the standard characters A - U.
switch the pointer to HL.

update to start of 'A' in RAM.

make UDG system variable address the first
bitmap.

point at RAMTOP again.

without disturbing HL, set the values of
the PIP and RASP system variables.
Note. PIP is already zero.

;+ increment from $3F to $40.
;+ set RASP only to sixty four.

NEW command path rejoins here.

LD

($5BB2) , HL

’

set system variable RAMTOP to HL.

NMI ADD system variable points here by default to provide a Warm Reset.

LD
LD

LD

HL, $3C00
($5B36) , HL

HL, ($5BB2)

’

’

’

"A seemingly strange place to set CHARS"
Note. but it all makes sense now - see L0066.

fetch RAMTOP to HL.

’

LD

DEC
LD
DEC
DEC
LD

M
LD

ET

(HL) , S3E

HL
SP, HL

HL

HL
($5B3D) , HL

1
IY, $5B3A

At this point check to see if

LD
AND
JR

else the NMI was activated and

LD

CALL

LD
Jp

SET CHANS

’

LD

LD

LD

LD

LD

LD

EX
LDIR

EX
DEC
LD
INC

LD

A, ($5B50)
A
7,SET CHANS

A,$03

NMI_STRMS

A, $1D
MAIN G

HL, $5BB6

HL, $5BC9

($5B4F) , HL
DE, INIT CHAN
BC,$0015
c,s$10

DE, HL

DE, HL

HL
($5B57) , HL

HL

($5B53) , HL

;+
;+
;+

’

P+
;+

’

’

’

;+

’

top of user ram holds GO SUB end marker
an impossible line number - see RETURN.
no significance in the number $3E. On the
ZX80 and ZX81 $3F was used.

followed by empty byte (not important).
set up the machine stack pointer.

ERR SP is where the error pointer is

at moment empty - will take address MAIN-4
at the call preceding that address,
although interrupts and calls will make use
of this location in meantime.

select interrupt mode 1.

set IY to ERR NR. IY can reach all standard
system variables but shadow ROM system
variables will be mostly out of range.
enable interrupts now that we have a stack.
the NMI has been activated.

fetch high byte of CHANS hi

is it unitialized?

forward if so as from NEW/START

we don't want to lose the program.

prepare to reset streams 2,1 and O.

reset the streams - reclaiming any dynamic
buffers without incurring memory leaks.

prepare the NMI error code.
forward to report NMI.

the old address of the channels

the address of the channels - now following
the system variables NTHCS.

set the CHANS system variable.
init-chan in ROM.

address:

there were 21 Dbytes of initial data.

there are [16]
swap the pointers.
copy the bytes to RAM.

swap pointers. HL points to program area.
decrement address.

set DATADD to location before program area.
increment again.

set PROG the location where BASIC starts.

bytes of initial data in ROM.

’

’

’

LD
LD
INC
LD

($5B4B) ,HL
(HL) , $80
HL
($5B59) , HL

So let's test this theory

LD
INC
LD
INC
LD
LD
LD

LD

LD

LD
LD

LD
LD

(HL) , $OD
HL

(HL), $80
HL
($5B61) , HL
($5B63) , HL
($5B65) , HL

A,S$38
($5B8D) ,

A
($5B8F) , A
($5B48) ,A

HL, $0523
($5B09) , HL

set VARS to same location with a
variables end-marker.

advance address.

set E LINE, where the edit line
will be created.

Note. it is not strictly necessary to
execute the next fifteen bytes of code
as this will be done by the call to SET-MIN.

initially just has a carriage return
followed by

an end-marker.

address the next location.

set WORKSP - empty workspace.

set STKBOT - bottom of the empty stack.
set STKEND to the end of the empty stack.
the colour
black ink,
set ATTR P
set ATTR T
set BORDCR
attributes.

system is set to white paper,
no flash or bright.

permanent colour attributes.
temporary colour attributes.
the border colour/lower screen

The keyboard repeat and delay values are
loaded to REPDEL and REPPER.

Now initialize BAUD and NTSTAT for RS232 and Network.

LD
DEC

HL, $5BB6
(HL)

;+
;+

address FLAGS3
so set to S$FF

- unused but 0 could mislead

Use new WIDTH to control printer width

INC
INC
LD

INC
INC
LD

INC
INC
INC

LD
LD

HL,NMI PTR
($5BBO) , HL

Back to normal.

DEC
DEC

LD
LD

LD

LD

LDIR

(IY-$3R)
(IY-$36)

HL, INIT STRM
DE, $5B10

BC, S000E

c,s$0C

o+

’

skip WIDTH lo

address WIDTH hi

set width to 80 characters.

skip MAXIY - the last IY addressable loc.
address BAUD 1lo

set default BAUD rate (9600).

skip BAUD hi

address NTSTAT - own station number.

Default Global Station Number to 1.
initialize the NMI vector above.

set the NMI ADD

set KSTATE-0 to $FF - keyboard map available.
set KSTATE-4 to $FF - keyboard map available.
set source to ROM Address: init-strm

set destination to system variable STRMS-FD
copy the 14 Dbytes of initial 7 streams
copy the [12] bytes of initial [6] streams

data from ROM to RAM.

H SET 1, (IY+S$01) ; update FLAGS - signal printer in use.

;i CALL CLEAR PRB ; call routine CLEAR-PRB to initialize system
N ; variables associated with printer.
Pi ; The buffer is clear.

LD (IY+$31),5%02 ; set DF SZ the lower screen display size to

; two lines

CALL CLS ; call routine CLS to set up system
; variables associated with screen and clear
; the screen and set attributes.

HHE XOR A ; clear accumulator so that we can address
LD DE, COPYRIGHT-1 ; the message table directly.
CALL PO MSG O ; routine PO-MSG puts

; '(c) 1982 Sinclair Research Ltd'
; at bottom of display.

P SET 5, (IY+$02) ; update TV _FLAG - signal lower screen will
A ; require clearing.
JR MAIN 1 ; forward to MAIN-1

; THE 'MAIN EXECUTION' LOOP

; This is the Main Execution Loop within which control remains after
; initialization. It is entered for the first time at MAIN-1 and thereafter
; each iteration begins with an Automatic Listing. An 'automatic Listing' is
; one that appears without involving the LIST command, for example, when the
; user presses [ENTER] after an Error Report.
MAIN EXEC LD (IY+$31),%02 ; set DF Sz lower screen display file size to

B ; two lines.

CALL AUTO LIST ; routine AUTO-LIST

; The Initial Entry Point.

MAIN 1 CALL SET MIN ; routine SET-MIN clears work areas.
;;; MAIN 2 LD A, S$00 ;— explicit - select stream zero.
MAIN 2
CALL CHAN ZERO ;+ routine CHAN ZERO opens channel zero
MAIN 2b res 3, (1y+$02) ;+ Gotcha! Signal no change in Mode.
CALL EDITOR ; routine EDITOR is called.

; Note the above routine is where the Spectrum
; waits for user-interaction. Perhaps the
; most common input at this stage is LOAD "".

CALL LINE SCAN ; routine LINE-SCAN scans the User's input.
BIT 7, (IY+S00) ; test ERR NR - will be S$FF if syntax is OK.
JR NZ,MAIN 3 ; forward, if correct, to MAIN-3.

; Note. Now test if channel 'K' is in use
BIT 4, (IY+$30) ; test FLAGS2 - K channel in use ?

JR Z,MAIN 4 ; forward, if not, to MAIN-4

; Channel 'K'

was in use so

X PTR will have been set.

LD HL, ($5B59) ; an editing error so address E LINE.
CALL REMOVE FP ; routine REMOVE-FP removes the hidden
; floating-point forms.
s LD (IY+$00), SFF ; system variable ERR NR is reset to 'OK'.
CALL SET ER FF ;+ NEW 3-byte call
JR MAIN 2b ; back to MAIN-2 to allow user to correct.
; The branch was here if syntax has passed test.
;77 MAIN 3 LD HL, ($5B59) ; fetch the edit line address from E LINE.
H LD ($5B5D) , HL ; system variable CH ADD is set to first
HE ; character of edit line.
HE ; Note. the above two instructions are a
H ; little inadequate.
S ; They are repeated with a subtle difference
HE ; at the start of the next subroutine and
are
HE ; therefore not required above.
MAIN 3 CALL E _LINE NO ; routine E-LINE-NO will fetch any line
; number to BC if this is a program line.
LD A,B ; test if the number of
OR C ; the line is non-zero.
JP NZ,MAIN ADD ; jump forward to MAIN-ADD if so to add the
; line to the BASIC program.
; Has the user just pressed the ENTER key ?
RST 18H ; GET-CHAR gets character addressed by CH ADD.
CP S0D ; is it a carriage return ?
JR Z,MAIN EXEC ; back, if so, to MAIN-EXEC
; for an automatic listing.
; This must be a direct command.
BIT 0, (IY+$30) ; test FLAGS2 - clear the main screen ?
CALL NZ,CL ALL ; routine CL-ALL, if so, e.g. after listing.
CALL CLS LOWER ; routine CLS-LOWER anyway.
LD A,$19 ; compute scroll count as twenty five
SUB (IY+S4F) ; minus the value of S POSN hi.
LD ($5B8C) , A ; update SCR CT system variable.
SET 7, (IY+501) ; update FLAGS - signal running program.
HE LD (IY+$00), SFF ; set ERR NR to 'OK'.
CALL SET ER FF ;+ NEW 3-byte call
LD (IY+$0A),501 ; set NSPPC to one for first statement.
CALL LINE RUN ; call routine LINE-RUN to run the line.

’

sysvar ERR SP therefore addresses MAIN-4

Examples of direct commands are RUN, CLS, LOAD "", PRINT USR 40000,
LPRINT "A"; etc.

Also, OPEN #0,"n";2 which allows another Spectrum to take control of this
one.

If a user written machine-code program disables interrupts then it

must enable them to pass the next step. We also jumped to here if the
keyboard was not being used.

MAIN 4 HALT ; wait for interrupt the only routine that can
; set bit 5 of FLAGS.
RES 5, (IY+S01) ; reset bit 5 of FLAGS - signal no new key.
BIT 1, (IY+$30) ; test FLAGS2 - is printer buffer clear ?
CALL NZ,COPY BUFF ; call routine COPY-BUFF if not empty.

’

; Note. the programmer has neglected
; to set bit 1 of FLAGS first.

1D A, ($5B3A) ; fetch ERR NR
INC A ; increment to give true code.

Now deal with a runtime error as opposed to an editing error.
However if the error code is now zero then the OK message will be printed.

MAIN G PUSH AF ; save the error number.

; LD HL, $0000 ; prepare to clear some system variables.
; LD (IY+$37),H ; clear all the bits of FLAGX.

; LD (IY+$26),H ; blank X PTR hi to suppress error marker.
; LD ($5BOB) , HL ; blank DEFADD to signal that no defined

; function is currently being evaluated.

XOR A ; Set accumulator to zero
LD (IY+$37),A ; clear all the bits of FLAGX.
LD (IY+$26),A ; blank X PTR hi to suppress error marker.
LD (IY+S2E) , A ; blank DEFADD hi to signal inactive.
; LD HL, $0001 ; prepare stream data.
; LD ($5B16), HL ; ensure STRMS-00 is the keyboard.
; ; and not the network as would have been set
; ; by OPEN #0, "n" ; 2
CALL SET MIN ; routine SET-MIN clears workspace etc.
; RES 5, (IY+$37) ; update FLAGX - signal in EDIT not INPUT mode.
; ; Note. all the bits were reset earlier.
CALL CLS LOWER ; call routine CLS-LOWER.
; SET 5, (IY+502) ; update TV_FLAG - signal lower screen
; ; requires clearing.
POP AF ; bring back the true error number
LD B,A ; and make a copy in B.
CP $0A ; 1s it a print-ready digit ?
JR C,MAIN 5 ; forward, if so, to MAIN-5
ADD A,S$07 ; add ASCII offset to letters.
MAIN 5 CALL OUT CODE ; call routine OUT-CODE to print the code.

LD A, $20 ; followed by a space.

RST

LD
LD

CALL

XOR
LD
CALL

LD
RST
LD
RST

LD
CALL

LD
RST

LD

LD
CALL

CALL

LD

INC

JR

CP
JR

CP
JR

10H

A,B
DE, rpt mesgs

PO MSG 1

A

DE, comma sp -1
PO MSG 0

AI'I'

A,' v
10H

BC, ($5B45)
OUT NUM 1

A, $3A
10H

C, (IY+$0D)

B, $00
OUT NUM 0

CLEAR SP
A, ($5B3R)
A

7Z,MAIN 9

$09
7,MAIN 6

515
NZ,MAIN 7

+ + + +

~.

; Stop or Break was encountered

MAIN 6 INC
777 MAIN 7 LD
MAIN 7 LD
LD
LD
BIT

JR

ADD

MAIN 8 LDDR

(IY+$0D)
BC, $0003
c,$03
DE, $5B70
HL, $5B44
7, (HL)

Z,MAIN 8

HL, BC

’

;+

PRINT-A

fetch stored report code.

address:

rpt-mesgs.

call routine PO-MSG to print the message.

clear accumulator to directly
address the comma and space message.

routine PO-MSG prints ', '

although it would

be more succinct to use RST $10.

comma
print
space
print

fetch PPC the current line number.
routine OUT-NUM-1 will print that

then a ':'
PRINT-A

character.

then SUBPPC for statement

limited to 127

routine OUT-NUM-0 prints C.

routine CLEAR-SP clears editing area which
probably contained 'RUN'. (B = 0)

fetch ERR NR again
test for no error originally SFF.

forward,

if no error,

to MAIN-9

is code Report 9 STOP *?

forward, if so,

to MAIN-6

is code Report L BREAK ?

forward, if so,

to MAIN-7

so consider CONTINUE.

increment SUBPPC to next statement.

prepare to copy 3 system variables to

prepare to copy 3 system variables to

...address OSPPC -

statement for CONTINUE.

also updating OLDPPC line number below.

set source top to NSPPC next statement.
did BREAK occur before the jump ?
e.g. between GO TO and next statement.

skip forward to MAIN-8§,

is correct.

if not, as set-up

set source to SUBPPC number of current
statement/line which will be repeated.

copy PPC to OLDPPC and SUBPPC to OSPCC
or NSPPC to OLDPPC and NEWPPC to OSPCC

MAIN 9 LD
RES
Jp
; THE

(IY+S0A), SFF

3, (IY+$01)

MAIN 2

update NSPPC - signal

update FLAGS

- signal use

'no jump'.

lKl

mode for

the first character in the editor and

jump back to MAIN-2.

'CANNED REPORT MESSAGES'

; The 30 Error reports with the last byte inverted.

; The first entry is a dummy entry. The last, which begins with $7F, the
; Spectrum character for copyright symbol, is placed here for convenience
; as is the preceding comma and space.
; The report line must accommodate a 4-digit line number and a 3-digit
; statement number which limits the length of the message text to twenty
; characters.
; e.g. "B RETURN without GOSUB, 1000:127" [32 characters]
rpt _mesgs DEFB $80
DEFB '0','"K'+$80 ;0
DEFM 'NEXT without FO"
DEFB 'R'+580 ;01
DEFM "Variable not foun"
DEFB 'd'+$80 ;2
DEFM "Subscript wron"
DEFB 'g'+580 ;3
DEFM "Out of memor"
DEFB 'y'+5$80 ; 4
DEFM "Out of scree"
DEFB 'n'+380 ;5
DEFM "Number too bi"
DEFB 'g'+$80 ;6
DEFM "RETURN without GOSU" ;
DEFB 'B'+580 ;7
DEFM "End of fil"
DEFB 'e'+580 ;8
DEFM "STOP statemen"
DEFB 't'+$80 ;9
DEFM "Invalid argumen"
DEFB 't'4+580 ; A
DEFM "Integer out of rang"
DEFB 'e'+580 ; B
DEFM "Nonsense in BASI"
DEFB 'C'+580 ; C
DEFM "BREAK - CONT repeat"
DEFB 's'+580 ; D
DEFM "Out of DAT"
DEFB 'A'+580 ; E
DEFM "Invalid file nam"
DEFB 'e'+580 ; F
DEFM "No room for 1in"
DEFB 'e'+580 ; G
DEFM "STOP in INPU"
DEFB 'T'+3580 ; H
DEFM "FOR without NEX"
DEFB 'T'+580 ;0 I
DEFM "Invalid I/O devic"
DEFB 'e'+580 ; J
DEFM "Invalid colou"
DEFB 'r'+$80 ; K
DEFM "BREAK into progra"
DEFB 'm'+$80 ; L

DEFM "RAMTOP no goo"

DEFB 'd'+$80 ; M

DEFM "Statement los"

DEFB 't'+3$80 ; N

DEFM "Invalid strea"

DEFB 'm'+$80 ; O

DEFM "FN without DE"

DEFB 'F'+580 ; P

DEFM "Parameter erro"

DEFB 'r'+$80 ;7 Q

DEFM "Loading erro"

DEFB 'r'+3$80 ; R

DEFM "Stream close" 7t

DEFB 'd'+$80 ;+ S

DEFM "NM" ;+

DEFB 'I'+$80 ;+ T

DEFM "Net R/W erro" s+

DEFB 'r'+s$80 ;+ U
;7;; comma sp DEFB ',',' '+$80 ; used in report line.
COPYRIGHT DEFB S$7F ; copyright

DEFM " 1982 Sinclair Research Ltd"

DEFB '.'+$80 ;+ just differentiate

Note ERR SP points here during line entry which allows the normal

'Out of Memory' report to be augmented to the more precise 'No room for
line' report. Since this can only occur as a result of a direct command,
there is no need to record the X-PTR via the error restart.

No room for line

REPORT G LD A,S$10 ; 1.e. 'G' =830 -$S07
H LD BC, $0000 ; this seems unnecessary.
JP MAIN G ; jump back to MAIN-G

; THE 'MAIN ADD' SECTION

Note this is not a subroutine but a branch of the main execution loop.
System variable ERR SP still points to editing error handler.

A new line is added to the BASIC program at the appropriate place.

An existing line with same number is deleted first.

Entering an existing line number deletes that line.

Entering a non-existent line allows the subsequent line to be edited next.

MAIN ADD LD ($5B49),BC ; set E PPC to extracted line number.
RST 18H H
P LD HL, ($5B5D) ; fetch CH ADD - points to location after the
; initial digits (set in E LINE NO).
EX DE, HL ; save start of BASIC in DE.
LD HL, REPORT G ; Address: REPORT-G
PUSH HL ; 1s pushed on stack and addressed by ERR_SP.

; the only error that can occur is
; 'Out of memory'.

LD HL, ($5B61) ; fetch WORKSP - end of line.

MAIN ADDI

MAIN ADD2

SCF
SBC
PUSH
LD
LD
CALL

JR

CALL
CALL

CALL

POP
LD
DEC
OR
JR

PUSH
INC
INC
INC
INC
DEC

LD
PUSH

CALL

CALL

POP
LD

POP
PUSH

INC
LD

DEC
DEC

LDDR

LD
EX

POP
LD
DEC
LD
DEC
LD
DEC
LD

POP

JPp

HL, DE
HL
H,B
1,C
LINE ADDR

NZ,MAIN ADDI1

NEXT_ONE
RECLAIM 2

NXT 1 RC2

BC
A, C

A

B

Z,MAIN ADD2

BC
BC
BC
BC
BC
HL

DE, ($5B53)
DE

MK _RM DHL
MAKE ROOM

HL
($5B53) , HL

BC
BC

DE
HL, ($5B61)
HL
HL

HL, ($5B49)
DE, HL

BC
(HL) , B
HL
(HL) ,C
HL
(HL) ,E
HL
(HL),D

AF

MAIN EXEC

prepare for true subtraction.

find length of BASIC and

save it on stack.

transfer line number

to HL register.

routine LINE-ADDR will see if

a line with the same number exists.
forward if no existing line to MAIN-ADDI.

routine NEXT-ONE finds the existing line.
routine RECLAIM-2 reclaims it.

;+ routine combines above 2 routines.

retrieve the length of the new line.
and test if a carriage return only
i.e. one byte long.

result would be zero.

forward, if so, to MAIN-ADD2

save the length again.

adjust for inclusion

of line number (two bytes)

and line length

(two bytes).

HL points to location before the destination

fetch the address of PROG
and save it on the stack

;+ MAKE ROOM decrementing HL first

routine MAKE-ROOM creates BC spaces in
program area and updates pointers.
restore old program pointer.

and put back in PROG as it may have been
altered by the POINTERS routine.

retrieve BASIC length
and save again.

points to end of new area.

set HL to WORKSP - location after edit line.
decrement to address end marker.

decrement to address the carriage return.

copy the BASIC line back to initial command.
fetch E PPC - line number.

swap it to DE, HL points to last of

four locations.

retrieve length of line.

high byte last.

then low byte of length.

then low byte of line number.
then high byte range $0 - $27 (1-9999).
drop the address of Report G

and back to MAIN-EXEC producing a listing
and to reset ERR SP in EDITOR.

; THE 'INITIAL CHANNEL' INFORMATION

; This initial channel information is copied from ROM to RAM, during

; initialization. 1It's new location is after the system variables and is

; addressed by the system variable CHANS which means that it can slide up and

; down in memory. The table is never searched, by this ROM, and the last
; character, which could be anything other than a comma, provides a
; convenient resting place for DATADD.
INIT CHAN DEFW PRINT OUT ; PRINT-OUT

DEFW KEY INPUT ; KEY-INPUT

DEFB $4B ; 'K!

DEFW PRINT_OUT ; PRINT-OUT

DEFW REPORT J ; REPORT-J

DEFB $53 ; 's!

DEFW ADD CHAR ; ADD-CHAR

DEFW REPORT J ; RAW_INPUT

DEFB $52 ; 'R
HE DEFW PRINT OUT ; PRINT-OUT
HE DEFW REPORT J ; REPORT-J
I;I DEFB $50 ,' 'P'

DEFB $80 ; End Marker
REPORT_J RST 30H ; ERROR-1

DEFB $12 ; Error Report: Invalid I/O device
; THE 'INITIAL STREAM' DATA
; This is the initial stream data for the seven streams $FD - $03 that is
; copied from ROM to the STRMS system variables area during initialization.
; There are reserved locations there for another 12 streams. Each location
; contains an offset to the second byte of a channel. The first byte of a
; channel can't be used as that would result in an offset of zero for some
; and zero is used to denote that a stream is closed.
INIT STRM DEFB $01, $00 ; stream $FD offset to channel 'K'

DEFB $06, $00 ; stream SFE offset to channel 'S'

DEFB $0B, $00 ; stream SFF offset to channel 'R’

DEFB $01, $00 ; stream $00 offset to channel 'K'

DEFB $01, $00 ; stream $01 offset to channel 'K'

DEFB $06, $00 ; stream $02 offset to channel 'S'
HE DEFB $10, $00 ; stream $03 offset to channel 'P'
; THE 'INPUT CONTROL' SUBROUTINE
WAIT KEY BIT 5, (IY+$02) ; test TV _FLAG - clear lower screen ?

JR NZ,WAIT KEY1 ; forward, if so, to WAIT-KEY1

SET 3, (IY+502) ; update TV _FLAG - signal reprint the edit

; line to the lower screen. SIG KSTAT.

WAIT_KEYl CALL INPUT AD ; routine INPUT-AD is called.

RET C ; return with acceptable keys.

JR Z,WAIT KEY1 ; back to WAIT-KEY1l if no key is pressed
; or it has been handled within INPUT-AD.

; Note. When inputting from the keyboard all characters are returned with
; above conditions so this path is never normally taken.
; It is taken when 'Iris' closes her channel.
REPORT 8 RST 30H ; ERROR-1
DEFB $07 ; Error Report: End of file

; THE 'INPUT ADDRESS' ROUTINE

; This routine fetches the address of the input stream from the current
; channel area using the system variable CURCHL.
INPUT AD EXX ; switch in alternate set.
PUSH HL ; save HL register
LD HL, ($5B51) ; fetch address of CURCHL - current channel.
INC HL ; step over output routine
INC HL ; to point to low byte of input routine.
JR CALL_ SUB ; forward to CALL-SUB.

; THE 'OUT CODE' ROUTINE

; This routine is called on five occasions to print the ASCII equivalent of

; a value 0-9.

OUT CODE LD E, $30 ; add 48 decimal to give the ASCII character
ADD A,E ; '0'" to '9' and continue into the main output

; routine.

; THE 'MAIN OUTPUT' ROUTINE

; The PRINT-A-2 is a continuation of the RST 10 restart that outputs any

; character. The routine prints to the current channel and the printing of
; control codes may alter that channel to divert subsequent RST 10
; instructions to temporary routines. The normal channel is PRINT OUT.
PRINT A 2 EXX ; switch in alternate set
PUSH HL ; save HL register
LD HL, ($5B51) ; fetch CURCHL the current channel.
; input-ad rejoins here also.
CALL SUB LD E, (HL) ; put the low byte in E.
INC HL ; advance address.
LD D, (HL) ; put the high byte to D.
EX DE, HL ; transfer the stream to HL.
CALL CALL JUMP ; use routine CALL-JUMP in effect CALL (HL).
POP HL ; restore saved HL register.
EXX ; switch back to the main set and

RET ; return.

; Note. the most popular channel number could be placed here e.g. LD A,SFE

; THE 'OPEN CHANNEL OxFE' ROUTINE

CHAN O FE LD
JR

A, SFE

CHAN_ SLCT ;

; THE 'OPEN CHANNEL SYNTAX' ROUTINE

; THE 'CHANNEL SELECT'

ROUTINE

; This subroutine is used by the ROM to select a channel 'K', 'S', 'R' or 'P'.

; This is either for its own use or in response to a user's request, for
; example, when '#' is encountered with output - PRINT, LIST etc.
; or with input - INPUT, INKEYS etc.
; It is entered with a system stream $FD - $FF, or a user stream $00 - $OF
; in the accumulator.
CHAN_ SLCT ADD A,A ; double the stream ($FF will become SFE etc.)
ADD A,S$16 ; add the offset to stream 0 from $5B00
LD L,A ; result to L
LD H, $5B ; now form the address in STRMS area.
LD E, (HL) ; fetch low byte of CHANS offset
INC HL ; address next
LD D, (HL) ; fetch high byte of offset
LD A,D ; test that the stream is open.
OR E ; zero 1f closed.
JP Z,REPORT_O ; forward if closed to report
; 'Invalid stream'
H JR NZ,CHAN OP 1 ; forward to CHAN-OP-1 if open.
;77 REPORT Oa RST 30H ; ERROR-1
H DEFB $17 ; Error Report: Invalid stream
; continue here if stream was open. Note that the offset is from CHANS

; to the second byte of the channel.

CHAN OP_1 DEC
LD

ADD

DE ; reduce offset so it points to the channel.
HL, ($5B4F) ; fetch CHANS the location of the base of

; the channel information area
HL, DE ; and add the offset to address the channel.

; and continue to set flags.

; THE 'CHANNEL FLAGS' SUBROUTINE

; This subroutine is used from ED-EDIT, str$ and read-in to reset the

; current channel when it has been temporarily altered.

CHAN FLAG RES 4, (IY+$30) ; update FLAGS2 - signal K channel not in use.

LD
A INC
A INC
A INC

; Note. provide a default for
; channel 'R','S' and 'P'.

($5B51) , HL ; set CURCHL system variable to the

HL
HL
HL

; address in HL

; advance past

; output routine.
; advance past

A INC HL ; input routine.

H LD C, (HL) ; pick up the letter.
CALL 1IN CHAN K ;+ routine gets channel letter in A.
LD HL,CHN CD LU-1 ; address: chn-cd-1lu
CALL INDEXER 0 ; routine INDEXER finds offset to a

; flag-setting routine.

RET NC ; but if the letter wasn't found in the
; table just return now. - channel 'R'.
HE LD D, $00 ; prepare to add.
HE LD E, (HL) ; offset to E
HE ADD HL, DE ; add offset to location of offset to form
H ; address of routine
CALL JUMP JP (HL) ; jump to the routine

; Footnote. calling any location that holds JP (HL) is the equivalent to
; a pseudo Z80 instruction CALL (HL). The ROM uses the instruction above.

; THE 'CHANNEL CODE LOOK-UP' TABLE

; This table is used by the routine above to find one of the three
; flag setting routines below it.
; A zero end-marker is required as channel 'R' is not present.

CHN CD LU DEFB 'K', CHAN K-$-1 ; offset $06 to CHAN-K
DEFB 'S', CHAN S-$-1 ; offset $12 to CHAN-S
DEFB 'P', CHAN P-$-1 ; offset $1B to CHAN-P

DEFB $00 ; end marker.

; THE 'CHANNEL K FLAG' ROUTINE

; routine to set flags for lower screen/keyboard channel.
CHAN K
. SET 0, (IY+S$S02) ; update TV_FLAG - signal lower screen in use
CALL SIG L SCR 7+ set 0, (iy+$02) as a 3-byte call.
RES 5, (IY+$01) ; update FLAGS - signal no new key ?7?
SET 4, (IY+$30) ; update FLAGS2 - signal K channel in use
JR CHAN S 1 ; forward to CHAN-S-1 for indirect exit

; THE 'CHANNEL S FLAG' ROUTINE

; routine to set flags for upper screen channel.

CHAN S RES 0, (IY+S502) ; TV_FLAG - signal main screen in use

CHAN S 1 RES 1, (IY+S$01) ; update FLAGS - signal printer not in use
JP TEMPS ; jump back to TEMPS and exit wvia that

; routine after setting temporary attributes.

; THE 'CHANNEL P FLAG' ROUTINE

; This routine sets a flag so that subsequent print related commands

; print to printer or update the relevant system variables.

; This status remains in force until reset by the routine above.

CHAN P SET 1, (IY+S$01) ; update FLAGS - signal printer in use
RET ; return

; THE 'ONE SPACE' SUBROUTINE

; This routine WAS called once only to create a single space

;;; ONE SPACE LD BC, $0001 ; create space for a single character.
MK RM EL LD HL, ($5B59) ; fetch E LINE to HL.

MK RM DHL DEC HL ; point to location before.

; THE 'MAKE ROOM' ROUTINE

; This entry point is used to create BC spaces in various areas such as
; program area, variables area, workspace etc..

; The entire free RAM is available to each BASIC statement.

; On entry, HL addresses where the first location is to be created.

; Afterwards, HL will address this location.

; Note. It used to point to the location before this.

MAKE ROOM PUSH HL ; save the address pointer.
CALL TEST_ ROOM ; routine TEST-ROOM checks if room
; exists and generates an error if not.
POP HL ; restore the address pointer.
CALL POINTERS ; routine POINTERS updates the

; dynamic memory location pointers.
; DE now holds the old value of STKEND.

LD HL, ($5B65) ; fetch new STKEND the top destination.
EX DE, HL ; HL now addresses the top of the area to
; be moved up - old STKEND.

LDDR ; the program, variables, etc are moved up.

INC HL ;+ New - as suggested by James Smith.

RET ; return with new area ready to be populated.
; Note. HL now points to first location of new area, and DE to last of new
; locations.

; THE 'POINTERS' SUBROUTINE

; This routine is called by MAKE-ROOM to adjust upwards and by RECLAIM to
; adjust downwards the pointers within dynamic memory.

; The fourteen pointers to dynamic memory, starting with VARS and ending
; with STKEND, are updated adding BC if they are higher than the position
; in HL.

POINTERS PUSH AF ; preserve accumulator.
PUSH HL ; put pos pointer on stack.
LD HL, $5B4B ; address VARS the first of the
LD A, SOE ; fourteen variables to consider.
PTR NEXT LD E, (HL) ; fetch the low byte of the system variable.
INC HL ; advance address.
LD D, (HL) ; fetch high byte of the system variable.
EX (SP),HL ; swap pointer on stack with the variable
; pointer.
AND A ; prepare to subtract.
SBC HL, DE ; subtract variable address
ADD HL, DE ; and add back
EX (SP) , HL ; swap pos with system variable pointer
JR NC, PTR_DONE ; forward, if var before pos, to PTR-DONE
PUSH DE ; save system variable address.
EX DE, HL ; transfer to HL
ADD HL, BC ; add the offset
EX DE, HL ; back to DE
LD (HL),D ; load high byte
DEC HL ; move back
LD (HL) ,E ; load low byte
INC HL ; advance to high byte
POP DE ; restore old system variable address.
PTR DONE INC HL ; address next system variable.
DEC A ; decrease counter.
JR NZ, PTR_NEXT ; back, if more, to PTR-NEXT
EX DE, HL ; transfer old value of STKEND to HL.
; Note. this has always been updated.
POP DE ; pop the address of the position.
POP AF ; pop preserved accumulator.
AND A ; clear carry flag preparing to subtract.
SBC HL, DE ; subtract position from old STKEND
LD B,H ; to give number of data bytes
LD C,L ; to be moved.
INC BC ; increment as we also copy byte at old STKEND.
ADD HL, DE ; recompute old STKEND.
EX DE, HL ; transfer to DE.
RET ; return.

’

’

’

The system variables are in no particular order except that STKEND, the
first free location after dynamic memory must be the last encountered.

THE 'COLLECT LINE NUMBER' SUBROUTINE

’

’

This routine extracts a line number, at an address that has previously
been found using LINE-ADDR, and it is entered at LINE-NO. If it encounters
the program 'end-marker' then the previous line is used and if that

should also be unacceptable then zero is used as it must be a direct
command. The program end-marker is the variables end-marker $80, or

if variables exist, then the first character of any variable name.

Note. any two zero bytes in ROM will do for a line zero.

LINE ZERO DEFB $00, $00 ; dummy line number used for direct commands
; Note. space character is now used instead.

LINE NO A EX DE, HL ; fetch the previous line to HL and set

’

LD DE, LINE ZERO ; set DE to word zero pointer should HL also
; fail.

-> The Entry Point.

LINE NO LD A, (HL) ; fetch the high byte - max $2F
AND $CO ; mask off the invalid bits.
JR NZ,LINE NO A ; to LINE-NO-A if an end-marker.
LD D, (HL) ; reload the high byte.
INC HL ; advance address.
LD E, (HL) ; pick up the low byte.
RET ; return from here.

THE 'CREATE BC SPACES' SUBROUTINES

;+ This was formerly a restart but is now called as a subroutine
;+ to free up the RST 30 for error handling.
BC SPACEl LD c,1 ;+ Creates one space - the most popular option.
BC SPACEO LD B, 0 ;+ Only C need be specified.
BC SPACES PUSH BC ; save number of spaces.
LD HL, ($5B61) ; fetch WORKSP.
PUSH HL ; save address of workspace.
RESERVE LD HL, ($5B63) ; STKBOT first location of calculator stack
CALL MK RM DHL ;+ routine MAKE ROOM adjusting HL
H DEC HL ; make one less than new location
- CALL MAKE ROOM ; routine MAKE-ROOM creates the room.
H INC HL ; address the first new location
INC HL ; advance to second
POP BC ; restore old WORKSP
LD ($5B61) ,BC ; system variable WORKSP was perhaps
; changed by POINTERS routine.
POP BC ; restore count for return value.
EX DE, HL ; switch. DE = location after first new space
INC HL ; HL now location after new space
RET ; Return.

THE 'SET MINIMUM' SUBROUTINE

This routine sets the editing area, workspace and calculator stack

to their minimum configurations as at initialization and indeed this
routine could have been relied on to perform that task.

This routine uses HL only and returns with that register holding
WORKSP/STKBOT/STKEND though no use is made of this. The routines also
resets MEM to its usual place in the systems variable area should it
have been relocated to a FOR-NEXT variable. The main entry point
SET-MIN is called at the start of the MAIN-EXEC loop and prior to
displaying an error.

Although not intended as such, this routine used to clear up any imbalance
in the calculator stack.

SET MIN LD HL, ($5B59) ; fetch E_LINE

LD (HL) , $0D ; insert carriage return

LD ($5B5B) , HL ; make K CUR keyboard cursor point there.
INC HL ; next location

LD (HL) , $80 ; holds end-marker $80

INC HL ; next location becomes

LD ($5B61), HL ; start of WORKSP

This entry point is used prior to input and prior to the execution,
or parsing, of each statement.

SET_WORK LD HL, ($5B61) ; fetch WORKSP value

’

LD ($5B63) , HL ; and place in STKBOT

This entry point is used to move the stack back to its normal place
after temporary relocation during line entry and also from ERROR-3

SET_ STK LD HL, ($5B63) ; fetch STKBOT value

LD ($5B65) , HL ; and place in STKEND.
HE PUSH HL ; perhaps an obsolete entry point.

LD HL, $5B92 ; normal location of MEM-0

LD ($5B68) , HL ; 1s restored to system variable MEM.
HE POP HL ; saved value not required.

RET ; return.

; THE 'REC-EDIT' ROUTINE

This is legacy code from the ZX80/ZX81 and it is not used in this ROM.
That task, in fact, is performed here by the dual-area routine CLEAR-SP.

REC-EDIT
L16D4: LD DE, ($5B59) ; fetch start of edit line from E LINE.
JP RECLAIM_l ; Jump forward to RECLAIM-1.

; THE 'TABLE INDEXING' SUBROUTINE

This routine is used to search two-byte hash tables for a character held
in C, returning the address of the following offset byte. If it is known
that the character is in the table e.g. for priorities, then the table
requires no zero end-marker. TIf this is not known at the outset then a
zero end-marker is required and carry is set to signal success.

-> The Entry Point.

INDEXER 0 LD C,A ;+ Replaces 4 similar instructions
LD B, $00 ;+ A useful return value.
INDEXER 1 INC HL ; Address the next pair of values.
INDEXER LD A, (HL) ; Fetch the first byte of pair
AND A ; Is it the end-marker ?
HE RET Z ; Return, if so, with carry reset.
JR NZ,INDEXER_2 ;
LD A,C ;
RET ;
INDEXER 2 CP C ; Is it the required character ?

INC HL ; Address next location.

JR NZ, INDEXER 1 ; Back, if no match, to INDEXER-1

LD C, (HL) ;

ADD HL, BC ;

SCF ; Set the carry flag.
RET ; Return with carry set.

A channel is an input/output route to a hardware device

and is identified to the system by a single letter e.g. 'K' for

the keyboard. A channel can have an input and output route

associated with it in which case it is bi-directional like

the keyboard. Others like the upper screen 'S' are output

only and the input routine usually points to a report message.
Channels 'K' and 'S' are system channels and it would be inappropriate
to close the associated streams so a mechanism is provided to
re-attach them. When the re-attachment is no longer required, then
closing these streams resets them as at initialization.

; THE 'CLOSE STREAM' COMMAND

This command allows streams to be closed after use.

Any temporary memory areas used by the stream would be reclaimed and
finally flags set or reset if necessary.

Any attempt to CLOSE streams $00 to $04, without first opening the stream,
will lead to either a system restart or the production of a strange report.
credit: Martin Wren-Hilton 1982.

CLOSE CALL STR DATA ; routine STR-DATA fetches parameter

; from calculator stack and gets the
; existing STRMS data pointer address in HL
; and stream offset from CHANS in BC.

Note. this offset could be zero if the stream is already closed. A check
for this should occur now and an error should be generated, for example,
Report S 'Stream is closed'.

JR NZ,CLOSE_OK ;+ Continue if stream is open.
REPORT S RST 30H ;+ ERROR-1
DEFB $1B ;+ 'Stream is closed'
CLOSE OK CALL CLOSE 2 ; routine CLOSE-2 will perform any actions

; peculiar to that stream without disturbing
; data pointer to STRMS entry in HL.

LD BC, $0000 ; the stream is to be blanked.

LD DE, SA3E2 ;

LD DE, $A4E4 ;+ the number of bytes from stream 4 to $10000

EX DE, HL ; transfer the offset to HL and the STRMS data
; pointer to the DE register.

ADD HL, DE ; add the offset to the data pointer.

JR C,CLOSE 1 ; forward, if a non-system stream, to CLOSE 1

proceed with a negative result offset now 12 (was 14).

HE LD BC, INIT STRM +14; prepare the address of the byte after streams.

LD BC, INIT STRM +12;+ prepare the address of the byte after the
;+ initial stream data in ROM.

ADD HL, BC ; index into the ROM data table with negative
; value.

LD C, (HL) ; Read low-order byte from ROM to C

INC HL ; address next ROM location.

LD B, (HL) ; Read high-order byte from ROM to B.

; For streams 0 - 2 just enter the initial data back into the STRMS entry
; Streams 0 - 2 can't be closed as they are shared by the operating system.
; For streams 3 - 15, the BC register holds zero, and the entry is blanked.

CLOSE 1 EX DE, HL ; Transfer address of stream to HL.
LD (HL) ,C ; place zero (or low byte).
INC HL ; next address.
LD (HL) , B ; place zero (or high byte).
RET ; return.

; THE 'CLOSE-2' SUBROUTINE

; This routine finds the offset to a special closing routine,
; in this ROM and within 256 bytes of the close stream look up table that
; reclaims any buffers associated with a stream.

; IN: HL=address in STRMS BC=offset from CHANS to 2nd byte of channel

CLOSE 2 PUSH HL ; * save address of stream data pointer
; in STRMS on the machine stack.
LD HL, ($5B4F) ; fetch CHANS address to HL
ADD HL, BC ; add the offset to address the second byte
DEC HL ; point to first byte.
LD ($5B51) , HL ;+ Update system variable CURCHL

;+ While we have the channel in the register,
;+ make it 'current; as we may have to flush.

PUSH HL ;+ copy to IX register.

POP IX ;+

LD D,B ;+ Save offset in DE.

LD E,C 7t

LD A, (IX+504) ;+ pick up the channel letter in A.

LD HL,CL_STR LU-1 ; address: cl-str-lu in ROM.

CALL INDEXER 0 ; routine INDEXER uses the code to get

; the 8-bit offset from the current point to
; the address of the Closing Routine in ROM.

HE LD C, (HL) ; transfer the offset to C.

HE LD B, $00 ; prepare to add.

P ADD HL, BC ; add offset to point to the address of the
HE ; routine that closes the stream.

JP (HL) ; jump to that routine.

DEFB 0,0,0,0 ;+ ballast
TAGG6: DEFB 0,0,0,0 ;+ ballast

; THE 'CLOSE STREAM LOOK UP' TABLE

; This table contains an entry for a letter found in the CHANS area

; followed by an 8-bit displacement, from that byte's address in the
; table to the routine that performs any ancillary actions associated
; with closing the stream of that channel.

; The table doesn't require a zero end-marker as the letter has been
; picked up from a channel that has an open stream.

CL _STR LU DEFB 'K', CLOSE E-
DEFB 'S', CLOSE E-

$-1; offset to CLOSE E

$
DEFB 'P', CLOSE P-S5-

$

$

$

; offset to CLOSE E

offset to CLOSE P
offset to CLOSE A
offset to CLOSE A
offset to CLOSE N

DEFB 'B', CLOSE A-
DEFB 'T', CLOSE A-
DEFB 'N', CLOSE N-

; THE 'CLOSE PRINTER STREAM' SUBROUTINE

; The last data block must be sent as an EOF record.
CLOSE P CALL COPY BUFF ; send EOF record.
JR CLOSE_A ; skip forward to generic CLOSE A routine.

; THE 'CLOSE NETWORK' SUBROUTINE

; The last data block must be sent as an EOF record except when T ADDR hi
; indicates that 'CLEAR #' has been used. In this case the network buffer

; is simply closed losing its contents.
CLOSE N BIT 6, (IY+$S3B) ; Test T ADDR hi
CALL Z7,SEND NEOF ; send EOF record.

; THE 'CLOSE ALL' SUBROUTINE

;+ Initially, removed the 264 byte "P" channel and the ZX printer buffer.
;+ In fact this routine is generic and will remove any channel.

CLOSE A PUSH DE ; Save CHANS offset.
PUSH IX ;
POP HL ; HL addresses the start of the channel.
LD C, (IX+$05) ;
LD B, (IX+$06) ; BC contains length.
PUSH BC ; Preserve bytes to reclaim.
CALL RECLAIM_Z ; Routine RECLAIM-2
POP BC ; Restore reclaimed byte count.

; Any open streams that point to channels beyond that deleted (offset =DE)
; will have to have offsets reduced by the amount reclaimed (length = BC)
; This is similar to REST-STRM in Interface 1

LD A,S$10 ; 16 user streams

LD HL, $5B16 ; Start of user streams in sysvars.
NEXT STRM LD ($5B5F) , HL ; Save current pointer in X PTR
LD E, (HL) ; Fetch displacement for current stream.
INC HL ;
LD D, (HL) ;
POP HL ; restore chans offset
PUSH HL ; push the value again.
AND A ; clear carry
SBC HL, DE ; compare by subtraction.
JR NC, UPD_POINT ; forward if before deleted channel to do a

; dummy update as provides easier pathing.

EX DE, HL ; transfer current displacement to HL.
AND A ; clear carry.
SBC HL, BC ; reduce displacement by amount deleted.
EX DE, HL ; transfer new displacement to DE.
UPD POINT LD HL, ($5B5F) ; Fetch STRMS pointer from X PTR
LD (HL) ,E ;
INC HL ;
LD (HL) , D ;
INC HL ;
DEC A ; Decrement stream counter.
JR NZ,NEXT STRM ; loop back till all sixteen tested.
POP HL ; balance stack

’

Note. as long as X PTR points to somewhere harmless it need not be set to
a zero value. Interface 1 mistakenly sets the low byte anyway.

THE 'CLOSE END' SUBROUTINE

The close stream routines have no ancillary actions to perform with regard
to 'K' and 'S'.

CLOSE_E POP HL ; * now just restore the stream data pointer

RET ; in STRMS and return.

THE 'STREAM DATA' SUBROUTINE
This routine finds the data entry in the STRMS area for the specified
stream which is passed on the calculator stack. It returns with HL
pointing to this system variable and BC holding a displacement from
the CHANS area to the second byte of the stream's channel. If BC holds
zero, then that signifies that the stream is closed.

STR _DATA

; Note.

REPORT O

STR_DATA1

CALL

CP
JR

FIND INT1 ;

$10 ;
C,STR _DATAl ;

the unimplemented ERASE

RST
DEFB

ADD

RLCA

LD

LD

LD

ADD

30H ;
S17 ;

A,$03 ;

HL, $5B10 ;
C,A ;
B, $00 ;

HL, BC ;

; the data entry itself contain
; Stream

LD
INC
LD
DEC

LD
OR

RET

; THE 'OPEN #'

Routine FIND-INT1 fetches parameter to A
setting B to zero.

Is it less than 16d ?
Skip forward, if so, to STR-DATAL

and MOVE commands also now point here.

ERROR-1
Error Report: Invalid stream

add the offset for the three system streams.
range 00 - 15d becomes 3 - 18d.

double the offset as there are two bytes per
stream - now 06 - 36d

address STRMS - the start of the streams
data area in the system variables.

transfer the low byte to C.

prepare to add offset.

add to address the data entry in STRMS.

s an offset from CHANS to the address of the

C, (HL) ; Fetch low byte of displacement to C.
HL ; Address next.
B, (HL) ; Fetch high byte of displacement to B.
HL ; Step back to leave HL pointing to STRMS
; data entry.
A,B ;+ Test for zero now
C ;+ as a common return condition.
; Return with CHANS displacement in BC
; and address of stream data entry in HL.
COMMAND

; This command has been changed from CLASS 03 to CLASS 05

; Command syntax example:

LD
EX

CALL
JR

A, SFF ;
AF, AF' ;

EXPT_SEP ;
NZ,CHK_O END ;

; If there was a separator then

H It is

RST
CALL
CALL

CALL

OPEN #6,"p" and OPEN #7,"n";64

set all bits of A as station indicator.
preserve as an invalid network station.

is next character a separator ?
forward if not to check end - no station.

the network station comes next.

20H ; NEXT CHAR

EXPT 1NUM ; routine EXPT-1NUM checks for number
CHECK_END ; as in OPEN #9,"n", 64

CHK_END 1 ;+ above three routines combined.

runtime so the network station is on the stack.

CALL

FIND INT1 ;+ routine FIND-INT1 fetches parameter to A.

EX AF, AR’ ;+ preserve in alternate register

; It is simpler to pass through check than jump over it.
CHK O END CALL CHECK END ; finish if checking syntax.
; In runtime, the channel code entry is on the calculator stack with the next
; value containing the stream identifier. They have to be swapped.
RST 28H ;; FP-CALC ;s,C.
DEFB $01 ; ;exchange ;C,S.
DEFB $38 ;;end-calc
CALL STR DATA ; routine STR-DATA fetches the stream off

; the stack and returns with the CHANS

; displacement in BC and HL addressing

; the STRMS data entry. The zero flag will be
; set 1f the stream is closed.

HE LD A,B ; test for zero which
HE OR C ; indicates the stream is closed.
JR Z,0PEN 1 ; skip forward, if closed, to OPEN-1
; If it is an open system channel, then it can be re-attached.
EX DE, HL ; save STRMS address in DE.
LD HL, ($5B4F) ; fetch CHANS.
ADD HL, BC ; add the offset to address the second

; byte of the channel.

P INC HL ;
P INC HL ;
P INC HL ;
iii LD A, (HL) ;

CALL NUMBER 3 ;+ add 3 to hl and fetch A comparing to 'K'.
; A new channel can replace an existing one only if the existing channel
; is not associated with a dynamic buffer. Otherwise the buffer would be

; left hanging. The channel to be replaced is checked against a list of
; those that are not dynamic.

; Note. If the channel is dynamic then it must be closed and then opened.
; This manual closure may involve re-instating an initial channel.
EX DE, HL ; bring back the STRMS pointer.
H CP $4B ; is it 'K' ?
JR Z,0PEN_1 ; forward, if so, to OPEN-1
P CP $53 ; is it 'S' 2
HHE JR Z,0PEN_1 ; forward, 1f so, to OPEN-1
CP $53 ; is it 'sS' 2 (was 'P'")
JR Nz, REPORT O ; back, if not, to REPORT-O

; '"Invalid stream'.

; Continue if one of the upper-case letters was found and rejoin here from
; above if the stream was already closed.

OPEN 1 CALL OPEN_2 ; routine OPEN-2 opens the stream.

; It now remains to update the STRMS variable.

JP PO CH 2 ;+ Jump to similar code to that below. (JS)
H LD (HL) ,E ; lnsert or overwrite the low byte.
Pi INC HL ; address high byte in STRMS.
e LD (HL) ,D ; insert or overwrite the high byte.
i RET ; return.

; As well as creating buffers, this routine also sets flags.
; Note. that on the original Spectrum the network station was passed in
; after the "N" channel identifier. This made syntax checking easy but if
; the station identifier was numeric it is a departure from the rule that
; any number can be replaced by a numeric expression. The station identifier
; could have been a character.
OPEN_2 PUSH HL ; * save the STRMS data entry pointer throughout
CALL EXPT_SPEC ;+ NEW routine fetches a one character specifier
;+ to A
H CALL STK FETCH ; routine STK-FETCH now fetches the paremeters.
HEH LD A,B ; test that it is not
Y OR C ; the null string.
Pri JR NZ,OPEN 3 ; skip forward to OPEN-3 with 1 character or
Pi ; more!!!!
;77 REPORT F RST 30H ; ERROR-1
I DEFB S$OE ; Error Report: Invalid file name
;;7; OPEN 3 PUSH BC ; Save the length of the string.
HE LD A, (DE) ; Pick up the first character.
AND SDF ; Make it upper-case.
HE LD C,A ; Place channel specifier in C.
LD HL,OP_STR LU-1 ; Address: op-str-lu is addressed.
CALL INDEXER 0 ; Routine INDEXER will search for the letter.
JR NC,REPORT F ; Forward, if not found, to REPORT-F

; '"Invalid filename'

Y LD C, (HL) ; Fetch the displacement to opening routine.
H LD B, $00 ; prepare to add.
i ADD HL, BC ; Now form address of the opening routine.
HA POP BC ; Restore the length of the string.

Jp (HL) ; Jump forward to the relevant routine.

; THE 'OPEN STREAM LOOK-UP' TABLE

; The open stream look-up table consists of matched pairs.

; The channel letter is followed by an 8-bit displacement to the

; associated stream-opening routine in this ROM.

; The table requires a zero end-marker as the letter has been

; provided by the user and not the operating system.

; Note. The table has been re-arranged so that those without buffers
; come last providing two look-up tables in one.

OP STR LU

DEFB 'P', OPEN_P-35-1 ; offset to OPEN-P

DEFB 'N', OPEN_N—$—1 ;+ offset to OPEN N
DEFB 'B', OPEN_B—$—1 ;+ offset to OPEN-B
DEFB 'T', OPEN_T—$—1 ;+ offset to OPEN-T

NOBUF_ LU DEFB 'K', OPEN_K—$—1 ; offset to OPEN-K
DEFB 'S', OPEN S-$-1 ; offset to OPEN-S
DEFB $00 ; end-marker.

; THE 'STREAM OPENING' SUBROUTINES

; Note. That was then, this is now.

; These routines would have opened any buffers associated with the stream
; before jumping forward to OPEN-END with the displacement value in E

; and perhaps a modified value in BC. The strange pathing does seem to

; provide for flexibility in this respect.

; THE 'OPEN-K' SUBROUTINE

; Open Keyboard channel.
; Note. the full 16-bit offset is now supplied in DE.

;77 OPEN K LD E,$01 ; offset to channel 'K'.
OPEN_K LD DE, $0001 7+ 01 is offset to 2nd byte of channel 'K'.
JR OPEN_END ; forward to OPEN-END

; THE 'OPEN-S' SUBROUTINE

; Open Screen channel.
; Note. the full 16-bit offset is now supplied in DE.

;77 OPEN S LD E, $06 ; offset to channel 'K'.
OPEN_S LD DE, $0006 7+ 06 is offset to 2nd byte of channel 'S'
JR OPEN_END ; forward to OPEN-END

; THE 'OPEN-P' SUBROUTINE

; Open Printer channel.
OPEN_P LD IX, PCHAN DAT ;+ point to the channel data.
JR OPEN ALL ;+ forward to generic opening routine.

; THE 'OPEN-B' SUBROUTINE

; Open B RS232 channel

OPEN B LD IX,BCHAN DAT ;+ point to the channel data.

JR OPEN_ ALL ;+ forward to generic opening routine.

; THE 'OPEN-T' SUBROUTINE

; Open T RS232 channel

OPEN_T LD IX, TCHAN DAT ;+ point to the channel data.

JR OPEN_ ALL ;+ forward to generic opening routine.

; THE 'OPEN PERMANENT "N" CHANNEL' ROUTINE

; e.g. OPEN #9,"N";2
OPEN_N LD IX,NCHAN DAT ;+

; THE 'OPEN ALL' ROUTINE

;+ Generic Channel Opening Routine.
;+ DE still points to string

OPEN ALL LD HL, ($S5B53) ; Set pointer from PROG
LD C, (IX+$05) ; length lo.
LD B, (IX+$06) ; length hi.
CALL MK RM DHL ;+ routine MAKE ROOM decrementing HL first.
; HL points to the 1st location, DE to last new location, BC is zero
s INC HL ; HL points to start of new channel
PUSH HL ; (*) Save channel pointer.
EX DE, HL ; Transfer HL to DE.
PUSH IX ; Transfer ROM data pointer
POP HL ; to HL.
LD C, (IX-$01) ; Find number of bytes in ROM
LDIR ; Block copy the channel data.
; Note. a call to clear the ZX Printer buffer is required here.
; but can be done directly.
LD A, (IX+5$04) ;
CP 'p! ;
JR Z,P BLANK ; Forward, if printer, to P_BLANK
CP "N ; is it network ?
JR Nz, OFFSET ;
EX AF,AF' ; save device letter, bring back station.
CP $41 ; compare to 64
JP NC, REPORT B ; forward, if over, to report

; 'Integer out of range'

LD (DE) , A ; set channel variable NCIRIS

INC DE ; address own station number.

LD A, ($5BBC) ; fetch global station number from sysvar NTSTAT
LD (DE) , A ; update channel variable NCSELF

EX AF,AF' ; save again.

’

’

INC

DE

’

point to next location

Note. the network buffer does not have to be cleared. As long as we set
the other channel variables to zero that is sufficient so use the same
routine as is used for the 7ZX Printer buffer which does all but 4.

P_BLANK LD

LD
INC

LD
DEC

LDIR

4

==

D
B
E

g

(HL) , B
C

’

’

Blank first location
set count to 255 decimal or whatever.

now calculate offset from CHANS

OFFSET LD

’

’

’

’

POP

EX
INC
AND
SBC
EX

POP

CP
JR

HL, ($5B4F)
DE

DE, HL
HL

HL, DE
DE, HL

BC

'N'
Z,0PEN_END2

THE 'OPEN EN

’

’

OPEN_END

LD
OR

OPEN_IFN JP

’

’

LD

It used to go like that and

OPEN_END EX

INC

OPEN_END2 POP

’

’

RET

e.g. OPEN

REPORT F RST

DEFB

D' ROUTINE

DEC BC
A,B
C
NZ, REPORT F

D, A

AF,AF!
A

HL

#6,"t",78

30H
SOE

’

’

Address CHANS

(*) Restore the channel pointer

the second byte is used.
prepare to subtract
result is in HL
transfer offset to DE

Restore length of string.

skip the length test

the stored length of 'K','S','P' or whatever
is now tested.

test now if initial or residual length

is one character.

; back, if not, to REPORT-FD

'Invalid file name'

load D with zero to form the displacement.

now it goes like this...

A parameter has been supplied

station number - should be S$FF
test for SFF

* restore the saved STRMS pointer.

return to update STRMS entry thereby
signaling stream is open.

for a channel that does not require one

ERROR-1
Error Report: Invalid file name

; THE '"P" CHANN

; The eight by
DEFB

PCHAN DAT DEFW
DEFW
DEFB
DEFW
DEFB

; THE '"B" CHANN

; The seven by
DEFB

BCHAN_ DAT DEFW
DEFW
DEFB
DEFW

; THE '"T" CHANN

; The seven by
DEFB

TCHAN DAT DEFW
DEFW
DEFB
DEFW

; THE '"N" CHANN

; The seven by
DEFB

NCHAN DAT DEFW
DEFW
DEFB
DEFW

; The other ch

NCIRIS
NCSELF
NCNUMB
NCTYPE
NCOBL
NCDCS
NCHCS
NCCUR

\
I = = e SIS

; 1 NCIBL
; 255 NCB

EL DATA'

tes "P" channel
$08

PRINT OUT
REPORT J
'P'
$0108

$21

EL DATA'

tes "B" channel
$07

BCHAN_ OUT
BCHAN IN
'B' -
$0007

EL DATA'

tes "T" channel
$07

TCHAN OUT
TCHAN IN
'T' -
$0007

EL DATA'

tes "N" channel
$07

NCHAN OUT
NCHAN IN
S4E

$0110

annel variables

IX+$07
IX+$08
IX+$09
IX+$0B
IX+S0C
IX+$0D
IX+$S0E
IX+S0F

IX+$10
IX+511

descriptor.

;+ length of channel data

;+ PRINT-OUT

;+ REPORT-J

;+ Letter as in standard ROM

;+ Length of channel including printer buffer.
;+ P_POSN (IX+$07)

descriptor. Maybe stick the 2-byte buffer here.

;+ length of channel data

;+ BCHAN OUT

;+ BCHAN_ IN

;+ Letter

;+ Length of channel

descriptor.

;t+ length of channel data

~e N

+ + + +

~e

TCHAN_OUT

TCHAN_ IN

Letter

Length of channel

descriptor.

;+ length of data

~e N

+ + + +

~e

NCHAN-OUT
NCHAN IN
character "N"
length

for network are defaulted to zero. They are -

; The

destination station number.

; This SPECTRUM's station number.

; The
; The
; The
; The
; The
; The
; the
; The

block number.

packet type code ... 0 data, 1 EOF.
number of bytes in the data block.

data checksum.

header checksum.

position of the last character taken from
buffer.

number of bytes in the input buffer.

; A 255 byte data buffer.

R R i b I A b S R i S R A A R S I R S b i 4

; ** THE RS232 ROUTINES **

kkhkkhkhkkhkkhkhkkhkhkhkk kA hkhkk Ak hrkkkk%k

; THE '"T" CHANNEL INPUT SERVICE' ROUTINE
; __;gé_E;;E_;g;;;;I_;;E;E_;;_Ilélgéé_gg_7 bits so use the binary channel input
; and reset the most significant bit.
TCHAN IN CALL BCHAN IN ; routine BCHAN-IN
RES 7,A ; reset the MSB.
RET ; Return.
\ THE '"B" CHANNEL INPUT SERVICE' ROUTINE

; For serial input a two-byte buffer SER FL is used.

; Sometimes 16 bits are received at a time so the second byte is stored
; here.
BCHAN IN LD HL, $5BBE ; Point to the SER FL system variable.
LD A, (HL) ; Fetch a byte.
AND A ; Test for zero which signals no stored byte.
JR Z,REC_BYTE ; Forward, if so, to REC-BYTE.
LD (HL), $00 ; else signal taking the stored byte.
INC HL ; Point to the stored byte.
LD A, (HL) ; Load it to the accumulator.
SCF ; Signal success by setting carry.
RET ; Return.
REC_BYTE CALL TEST BRK ; Routine TEST-BRK tests the BREAK keys.
DI ; Disable Interrupts
LD A, ($5BBD) ; Fetch I/0 colour from IOBORD system variable.
ouT (SFE) , A ; Change the border to show activity.
; The value for
LD DE, ($S5BBA) ; fetch value from BAUD system variable.
LD HL, $0320 ; set counter to 800 decimal.
LD B,D copy BAUD value
LD C,E to BC register.
SRL B 0 -> 76543210 -> C Halve the value
RR C C -> 76543210 -> C
LD A, SFE Make CTS (Clear To Send) high.
ouT (SEF) ,A

’

’

The other device,

the data.

READ RS IN

A, (SET)

VTX modem, BBC computer, PC,

Spectrum etc. will now send

bit 7 is TXdata serial data

RLCA
JR

IN
RLCA
JR

IN
RLCA
JR

IN
RLCA
JR

TST AGAIN DEC

’

LD
OR
JR
PUSH

LD
OouT

JR

NC, TST AGAIN
A, (SF7)

NC, TST AGAIN
A, (SF7)

NC, TST AGAIN
A, (SE7)
C,START BIT
HL

A, H

L

NZ,READ RS

AF

A, SEE
(SEF) , A

WAIT 1

rotate into carry.
forward to TST-AGAIN if TXdata low

repeat the

forward to

forward to

forward,

test 3 times

TST-AGAIN

TST-AGAIN

if high for four tests,

decrement the 800 counter.

test for
zZero.
back, if not, to READ-RS

(*) Save the zero failure flag

make CTS

(Clear To Send)

forward to WAIT-1

The branch was here when TXdata was high for 4 tests.

START BIT LD

LD

LD

DEC

DEC
DEC

SERIAL IN ADD

NOP

BD DELAY DEC

’

’

LD
OR
JR

ADD
IN
RLCA
RR
JR

After looping eight times,

H,B
L,C

4

B, $80

HL
HL
HL

HL, DE

HL

A, H

L

NZ,BD DELAY

A,$00
A, (SFT)
B

NC, SERIAL IN

contain a received byte.

LD
OuT

LD
CPL
SCF

A, SEE
(SEF) , A

A,B

’

’

’

Load HL with halved BAUD value.

Load B with start bit.

to START-BIT

line low.

reduce counter by the time for the 4 tests.

Add the BAUD value.
(4) timing value.

(6) Delay
(4)

(4)

(12)

(7) wait
Read a bit
rotate bit

for 26 * BAUD

back to BD-DELAY

7 to carry.

pick up carry in B.

loop back,

if no start bit,

to SERIAL-IN

the start bit will pass through and B will

’

’
’

’

Send CTS line low.

transfer received byte to A.

complement.

signal success.

PUSH AF ; (*) push success flag

; The success and failure (time out) paths converge here with HL holding zero.

WAIT 1 ADD HL, DE ; transfer DE (BAUD) to HL.
WAIT 2 DEC HL ; (6) Delay for stop bit.
LD A, L ;o 4)
OR H ;o 4)
JR NZ,WAIT 2 ; (12/7) back to WAIT-2
; Register HL is now zero.
ADD HL, DE ; HL = 0 + BAUD
ADD HL, DE ; HL = 2 * BAUD
ADD HL, DE ; HL = 3 * BAUD

; The device at the other end of the cable may send a second byte even though

; CTS is low.
T FURTHER DEC HL ; decrement counter.
LD A, L ; Test for
OR H ; zero.
JR Z,END RS IN ; forward, if no 2nd byte, to END-RS-IN
IN A, (SF7) ; Read TXdata.
RLCA ; test bit.
JR NC,T_FURTHER ; back, if none, to T-FURTHER

; As with first byte, TXdata must be high for four tests

IN A, (SF7) ;
RLCA ;
JR NC, T FURTHER ; back to T-FURTHER
IN A, (SE7) ;
RLCA ;
JR NC, T FURTHER ; back to T-FURTHER
IN A, (SE7) ;
RLCA ;
JR NC, T _FURTHER ; back to T-FURTHER

; A second byte is on its way and is received exactly as before.

LD H,D ;
LD L,E ;
SRL H ;
RR L ;
LD B, $80 ;
DEC HL ;
DEC HL ;
DEC HL ;

SER IN 2 ADD HL,DE ;
NOP ; timing

BD DELAY2 DEC HL ;

LD A,H ;
OR L ;
JR NZ,BD_DELAY2 ; back to BD-DELAY2

ADD A, $00 ’

IN A, (SET) ;

RLCA ;
RR B ;
JR NC, SER IN 2 ; back to SER-IN-2
; The start bit has been pushed out and B contains the second received byte.
LD HL, $5BBE ; Address the SER FL system variable.
LD (HL), $01 ; signal there is a byte in next location
INC HL ; address that location
LD A,B ; transfer byte to A.
CPL ; complement.
LD (HL) , A ; and insert in second byte of serial flag.
END RS IN CALL BORD_REST ; routine BORD-REST restores the normal border.
POP AF ; restore byte and flags

; (either 0 and NC or received byte and carry).
HE ET ; Enable Interrupts

RET ; Return.

; THE '"T" CHANNEL OUTPUT' ROUTINE

; The text channel output routine is able to list programs and, when printing,
; takes correct action with TAB values etc. I think.
; Note. The "t" channel can be tested on the RealSpec emulator as follows -

; 1) Assemble this file and note down addresses of BCHAN IN and BCHAN OUT
;) Select this ROM [F3] and serial interface [ALT F3]
3) Select output to a file.
; 3) Arrow down to bottom and supply IO addresses e.g. I 184E 19BO
4) Session "t" channel output will appear in file SERIAL.BIN

TCHAN OUT CP SAS ; Compare to 'RND' - first token

JR C,NOT_ TOKEN ; Forward, if less, to NOT-TOKEN

SUB SAS ; Reduce token to range $00-$5A

JP PO TOKENS ; Routine PO TOKENS recursively prints tokens
Y RET ; Return.
NOT TOKEN LD HL, $5B3B ; Address the FLAGS system variable.

RES 0, (HL) ; update FLAGS - allow for leading space.

CP $20 ; compare character to space

JR NZ,NOT LEAD ; forward, if not, to NOT-LEAD

SET 0, (HL) ; update FLAGS - signal suppress leading space.
; The mosaic graphics and UDGs are output as '?' as also is (c) copyright.
NOT LEAD CP STF ; compare to copyright symbol. (DEL in ASCITI)

JR C,NOT_ GRAPH ; forward, if less, to NOT-GRAPH

LD A, S3F ; Output CHRS$ (127) and graphics as '?'
NOT GRAPH CP $20 ; compare against space.

JR C,CTRL_CODE ; forward, if less, to CTRL_CODE

PUSH AF ; preserve character.

INC (IY+S7D) ; increment width WIDTH 1lo

D A, ($5BB8) ; load A with limit WIDTH hi

CP (IY+S$7D) ; compare to width WIDTH lo

JR NC,EMIT CH ; forward, if width less or equal, to EMIT-CH
CALL TAB SETZ ; routine TAB-SETZ sets iy+$7D to zero and

; emits CR/LF.

HE LD (IY+$7D),S$01 ; set WIDTH lo to one - for current character.
INC (IY+S$7D) ;+ set WIDTH lo to one - for current character.
EMIT CH POP AF ; restore the unprinted character.
JR BCH_OUT ; jump, indirectly, to BCHAN-OUT

; The branch was here with control codes.

CTRL CODE CP $0D ; 1s character a carriage return ?
JR NZ,NOT CR ; forward, if not, to NOT-CR
TAB SETZ LD (IY+$7D),$00 ; set width WIDTH lo to zero.
LD A, $0D ; output a CR carriage return.
CALL BCHAN OUT ; routine BCHAN-OUT
LD A, S0A ; output a LF line feed.
BCH OUT JR BCHAN OUT ; jump to BCHAN-OUT
NOT CR CP $06 ; 1s character a comma control ?
JR Nz,NOT COMMA ; forward, if not, to NOT COMMA
LD BC, ($5BB7) ; load BC with width and limit from WIDTH
LD E, $00 ; set the space counter to zero.
SPC_COUNT INC E ; increment space counter.
INC C ; increment width.
LD A,C ; load A with width.
CP B ; and compare to limit.
JR Z,CMM LP2 ; forward, if at limit, to CMM-LP2
CMM LOOP SUB $08 ; subtract 8 - the tab stop.
JR Z,CMM LP2 ; forward, when zero, to CMM-LP2
JR NC,CMM_LOOP ; back, if higher than 8, to CMM-LOOP

; The result is less than zero so back to space count.
JR SPC_COUNT ; back to SPC-COUNT

; The count in E is the spaces to advance to next multiple of eight.

CMM LP2 CALL PO SV SP P+

- PUSH DE ; save counter.

HE LD A, $20 ; prepare a space.

i CALL TCHAN_ OUT ; routine TCHAN-OUT outputs recursively.

;i POP DE ; restore counter.

DEC BE ; decrement

RET Z ; return when zero.

JR CMM LP2 ; loop back, if not, to CMM-LP2
NOT COMMA CP 316 ; compare to twenty two ('AT')

JR Z, TAB_PROC ; forward, if so, to TAB-PROC

CP S17 ; compare to twenty three ('TAB')

JR Z, TAB PROC ; forward, also, to TAB-PROC

CP 310 ; compare to sixteen (INK)

RET C ; return if less.

H Now store code in TVDATA and alter the current channel to TAB SERVZ

LD DE, TAB_SERV2 ; Service routine for ink, paper etc.
JR STORE_COD ; forward to STORE-COD
TAB_PROC LD DE, TAB_SERV ; addr: TAB-SERV
STORE COD JP PO TV 1 ; Jump to similar code for tv output.
;77 STORE COD LD ($5BOE) ,A ; store control code in TVDATA lo
;77 ALTER OUT LD HL, ($5B51) ; Fetch current channel from CURCHL
HE LD (HL) ,E ; Update the low byte of output address.
PP INC HL ;
e LD (HL) ,D ; Now update the high byte.
I RET ; Return.

; THE 'TAB SERVICE ROUTINE'

; This deals with TAB and AT control codes.

TAB SERV LD DE, TAB_SERV2 ; addr: TAB-SERV2

JP PO TV 3 ;+ use existing PO routine
H LD ($5BOF) ,A ; store second byte in TVDATA hi
HH JR ALTER _OUT ; back to ALTER-OUT

; THE 'TAB SERVICE 2' ROUTINE

; Once all the control sequence has been received this routine sorts them.

TAB SERV2 LD DE, TCHAN OUT ; prepare normal address TCHAN-OUT
CALL PO _CHANGE ;+ routine PO CHANGE restores it.
LD D,A ; save final character in D.
LD A, ($5BOE) ; fetch first character from TVDATA 1o
CP $1o6 ; is it the AT control code ?

JR Z,TST WIDTH ; forward, with AT, to TST-WIDTH 2?7?2727

CP $17 ; is it the TAB control code ?

CCF ; if less, e.g. INK the carry is set so reset
; the carry for return condition.
RET NZ ; return if INK - INVERSE and ignore.

; Continue with TAB.

$5BOF) ; fetch low byte 0 - 255 from TVDATA hi

1D A, (
D,A ; and store in D, ignoring high byte.

LD

; The TAB parameter, which is 16 bit is therefore taken mod 256 as only the
; low byte is used. For AT the column value is used and the line is ignored.

TST WIDTH LD A, ($5BB8) ; fetch limit (max width, default 80) to A.
CP D ; compare to column/tab value.
JR Z, TAB MOD ; forward, if a match, to TAB-MOD 2?2?27
JR NC, TABZERO ; forward if column less than limit to TABZERO

; The column/tab value is higher than the maximum width so calculate

TAB MOD LD B,A ; Transfer maximum width to B.
LD A,D ; Transfer column/tab value to A.
SUB B ; subtract a full line of characters.
LD D,A ; and load result back to column/tab.
JR TST WIDTH ; loop back to TST-WIDTH

; The branch was here when the column/tab value was less than the width.

TABZERO LD A,D ; Transfer column/tab to A.
OR A ; Test for zero.
JR Z,TAB_SETZ ; Back, if so, to TAB-SETZ
; to output a carriage return and linefeed.
TABLOOP LD A, ($5BB7) ; Fetch current print position from WIDTH lo
CP D ; Compare to column/tab value.
RET Z ; Return when positions equal.
>>
CALL PO _SV_SP P+
S PUSH DE ; Preserve the column/tab value.
P LD A, $20 ; Prepare a space.
A CALL TCHAN OUT ; Routine TCHAN-OUT outputs a space.
s POP DE ; Restore the column/tab value.
JR TABLOOP ; Back to TABLOOP

; THE '"B" CHANNEL OUTPUT' ROUTINE

; The bits of a byte are sent inverted. They are fixed in length and heralded
; by a start bit and followed by two stop bits.

BCHAN OUT LD B, $0B ; Set bit count to eleven - 1 + 8 + 2.

CPL ; Invert the bits in the character.

LD C,A ; Copy character to C.

LD A, ($5BBD) ; select I/0O border colour from IOBORD
ouT (SFE) , A ; change the border colour.
LD A, SEF ; 11101111
OuT (SEF) , A ; Make CTS (Clear To Send) low.
CPL ; reset bit O, 00010000
ouT (SE7) ,A ; Make RXdata low
LD HL, ($5BBA) ; fetch value from BAUD system variable
LD D,H ; Copy to DE.
LD E,L ;
BD DEL 1 DEC DE ; (6) Wait 26 * BAUD cycles.
1D A,D ; (4
OR E ;o (4)
JR NZ,BD_DEL_l ; (12) back to BD-DEL-1
TEST DTR CALL TEST BRK ; routine TEST-BRK allows user to stop.
IN A, (SEF) ; Read the communication port.
AND 508 ; isolate DTR (Data Terminal Ready) bit.
JR Z, TEST DTR ; back, until DTR found high, to TEST-DTR
SCF ; Set carry flag as start bit.
DI ; Disable Interrupts.
; The bit sending loop.
SER_OUT L ADC A,$00 ;76543210 <- C
ouT (SEF7),A ; Send rxdata, start bit
LD D,H ; transfer BAUD to DE.
LD E,L ;
BDiDEL72 DEC DE ; (6) Wait for 26 * BAUD
LD A,D ;o 4)
OR E ;o 4)
JR NZ,BD_DEL_2 ; (12) back to BD-DEL-2
DEC DE ; (6)
XOR A ; clear rxdata bit
SRL C ; shift a bit of output byte to carry.
DJNZ SER OUT L ; back for 11 bits to SER-OUT-L

; Note. the last two bits will have been sent reset as C is exhausted.

HE ET ; Enable Interrupts.
e LD A,$01 ; set rxdata bit (inc a)
INC A ; set rxdata bit.
LD C, SEF ; prepare port address.
LD B, $SEE ; prepare mask %11101110
OouT (SF7),A ; Send rxdata high.
OouT (C),B ; Send CTS and comms data low - switch off

RS232.

BD DEL 3 DEC HL ; (6) The final 26 * BAUD delay.
LD A, L ;o (4)
OR H ;o4
JR Nz,BD DEL 3 ; (12) back to BD-DEL-3

THE 'BORDER RESTORE' SUBROUTINE

This routine could also be used by the tape routines

It restores the border colour to normal after it has been altered to show
communication activity. Since interrupts are usually enabled at the same
time, that instruction has been incorporated here to conserve ROM space.

BORD REST PUSH AF ; Preserve accumulator throughout.
LD A, ($5B48) ; Fetch border colour from BORDCR.
AND $38 ; Mask off paper bits.
RRCA ; Rotate
RRCA ; to the
RRCA ; range 0-7.
ouT (SFE) ,A ; Change the border colour.
POP AF ; Restore flags.
ET ;+ Enable Interrupts.
RET ; Return.

’

’

THE 'TEST BREAK' SUBROUTINE

Note. this could also be called at statement return STMT RET.

TEST BRK CALL BREAK KEY ; Call the standard ROM routine.

RET C ; return if BREAK not pressed.

CALL BORD REST ; else restore the border colour to normal.
REPORT_Lb RST 30H ; ERROR-1

DEFB $14 ; Error Report: BREAK into program

’

khkkhkhkkhkkhkhkkhkhkhkkhkhkhkk Ak kA ki kkhhk%k

** THE NETWORK ROUTINES **

R R i i A b i S IR I S R A A R S I R S dh i O 4

"Spectrum" is the Latin word for a rainbow.

"Iris" is the Greek word for a rainbow.

By convention, "Spectrum" refers to this computer and "Iris" refers to the
other computer which could be a ZX Spectrum or Sinclair QL.

While Sinclair Research were secretive about the microdrive internals,
there were no such restrictions on the Sinclair Network which remains an
open standard. It was also adopted by the Disciple Disk Interface.

"Indeed the linking of one microcomputer to another should be encouraged
and the establishment of a Sinclair Network Standard may prove an
important step forward"

- Dr. Ian Logan, Interface 1 ROM co-author, 1983.

THE '"N" CHANNEL INPUT SERVICE' ROUTINE

; The address of this network input service routine is contained in the
; channel information area and accessed by the INPUT AD routine when the

; current channel has been made the

"N" channel.

; The routine inputs a single byte from the network and if the 255-byte
this may involve receiving a packet from the

; network buffer is empty,

; network.
NCHAN IN LD IX, ($5B51) ; Set index register from system variable CURCHL
LD A, (IX+S50C) ; Fetch number of output buffer bytes from NCOBL
; This should be zero when reading.
AND A ; Test for zero.
JR Z, TEST BUFF ; Forward, if so, to TEST-BUFF.
RST 30H ; ERROR-1
DEFB $1D ; '"Net R/W error'
; Should be -
; 'Reading a 'write' file' 22 chars
TEST BUFF LD A, (IX+510) ; Fetch number of input buffer bytes from NCIBL
AND A ; test for zero.
JR Z,TST N EOF ; forward, if so, to TST-N-EOF
LD E, (IX+S0F) ; Fetch position of last character taken NCCUR
DEC A ; Decrement the total count.
SUB E ; Subtract the taken count - will set the carry
; flag if at end.
JR C,TST N _EOF ; Forward, if so, to TST-N-EOF
LD D, $00 ; Prepare to index.
INC E ; Increment the position
LD (IX+$0F) ,E ; and update the channel variable NCCUR.
ADD IX,DE ; Index into the buffer at that position.
LD A, (IX+510) ; Read the byte from the buffer.
SCF ; Signal success.
RET ; Return.
TST N _EOF LD A, (IX+S$S0B) ; Fetch packet type from NCTYPE - 0 data, 1 EOF.
AND A ; Test for data.
JR Z,GET N BUF ; Forward, if so, to GET-N-BUF ->
; Note. Iris has closed her channel.
RET ; Return (NC and N2Z)
; Note. causes error 'End of file'
; ->
GET N BUF LD A, ($S5BBD) ; fetch I/0 border colour from IOBORD
OouT (SFE) , A ; and change the colour to show activity.
DI ; Disable Interrupts.

TRY AGAIN CALL WT SCOUT ;
JR NC, TIME OUT ;
CALL GET NBLK ;
JR Nz, TIME OUT ;
Y ET ;
CALL BORD_REST ;
LD (IX+S0F),$00 ;
LD A, ($5BCH) ;
LD (IX+$0B),A H
JR TEST BUFF ;
;;; TIME OUT LD A, (IX+$07) ;
e AND A ;
TIME OUT CALL TST BR
JR Z, TRY AGAIN ;
JR BORD_REST ;
] ET ;
P CALL BORD_REST ;
:;: AND $00 i
N RET ;
© THE '"N" CHANNEL OUTPUT' ROUTINE

routine WT-SCOUT waits for the scout leader.

forward, if none, to TIME-OUT

routine GET-NBLK gets the header and data.
forward, if error, to TIME-OUT

Enable Interrupts

routine BORD-REST restores the border.

Set cursor position NCCUR to zero.

Fetch header type code from NTTYPE - data/EOF.
update the channel variable NCTYPE

back to TEST-BUFF to read the first byte.

Fetch the destination station number NCIRIS
test for zero - a broadcast.

;+ New routine to test for a broadcast.

back,
Note.

if a broadcast, to TRY-AGAIN
a broadcast will not time out.

back to exit via BORD REST restoring border.

enable interrupts

routine BORD-REST restores border preserving
the AF registers and enabling interrupts.
signal failure. (NZ NC already set)

Return.

; The address of this network output service routine is contained in the
; channel information area and accessed by the RST 10H output restart

; routine when the current channel has been made the

"N" channel.

; The routine outputs a single byte to the network and if the 255-byte

; network buffer is full,

; network.

NCHAN OUT LD
LD
LD
AND
LD
JR

RST
DEFB

IX, ($5B51)
B,A

A, (IX+5$10)
A

A, B

7, TEST OUT

30H
$1D

this may involve sending a packet to the

’

Set index register from system variable CURCHL
Copy the character to B.

Fetch number of input buffer bytes from NCIBL
should be zero if channel is used for writing.
test for zero bytes.

bring the character back.

forward, if zero bytes, to TEST-OUT
ERROR-1

'Net R/W error'

; Should be -
; '"Writing to a 'read' file' 24 chars

TEST OUT LD E, (IX+$0C) ; fetch number of output buffer bytes from NCOBL
INC E ; increment the count. 1-255
JR NZ,ST BF LEN ; forward, if not full, to ST-BF-LEN
; The buffer is full and must be sent to the network.
PUSH AF ; preserve character yet to be output
XOR A ; Set A to 0 to signal data and not EOF.
CALL S _PACK 1 ; routine S-PACK-1 sends the 255-byte buffer.
; The character can now be placed in the empty buffer at position 1.
POP AF ; restore the output character.
LD E,$01 ; set buffer position to 1.
ST BF LEN LD (IX+s0C),E ; Update the byte count channel variable NCOBL
LD D, $00 ; Prepare to index.
ADD IX,DE ; Index into the network buffer.
LD (IX+$10),A ; and store the byte at the offset.
RET ; Return.

; THE NEW 'NETWORK CR' ROUTINE

; This routine is an extra check after outputting a carriage return.

CR_END CALL 1IN _CHAN K ;+ routine fetches the current channel letter.
Cp 'N' ;+ Is it the network.
RET NZ ;+ Return if not.

; THE 'SEND CR BLOCK TO NETWORK' ROUTINE

; This should be sent as part of PRINT CR to flush.
SEND NCR LD C,s$00 ; a data block signal.

JR SEND_END ; forward to send the packet.

; THE 'SEND EOF BLOCK TO NETWORK' ROUTINE

; This should be sent as part of CLOSE to flush.

SEND NEOF LD c,s01 ;+ An EOF signal
SEND END LD IX, ($5B51) ; Set IX to current channel from CURCHL
LD A, (IX+30C) ; Load A from NCOBL the number of characters in
; the output buffer.
AND A ; Test for zero.

RET Z ; Return with =zero.

LD A,C ; Signal an EOF packet if 1.

; THE 'S-PACK-1' ROUTINE

S PACK 1 CALL SEND PACK ; routine SEND-PACK sends a packet

RET NZ ; Return if not a broadcast.

; THE 'BROADCAST DELAY' ROUTINE

; This routine ensures that there is a gap between packets when broadcasting.
BR DELAY LD DE, $1500 ; Set a delay counter.
DL LOOP DEC DE ; decrement.

LD AE ; Test for zero.

OR D ;

JR NZ,DL_LOOP ; back, if not, to DL-LOOP

RET ; Return.

; THE 'SEND-PACK' ROUTINE

; This routine checksums, and then outputs to the network, an 8-byte
; header and a corresponding data block.
SEND PACK LD (IX+$0B) ,A ; Update the channel variable NCTYPE with the

; packet type - 0 data, 1 EOF.

LD B, (IX+$0C) ; Load counter with number of output characters
; from NCOBL channel variable.

LD A, ($S5BBD) ; Fetch I/0 border colour from IOBORD
ouT (SFE) ,A ; Change border to show communication activity.
PUSH IX ; Transfer the channel base address
POP DE ; to the DE register pair.
LD HL, $0011 ; prepare the offset seventeen.
ADD HL, DE ; and add to point to the first data byte.
HH XOR A ; Initialize the data checksum to zero.
;;; CHKS1 ADD A, (HL) ; add a data byte.
- INC HL ; increment buffer pointer.
HHE DJINZ CHKS1 ; back, for count of characters, to CHKSI1
CALL CHKSO ;+ New general purpose checksum routine.
LD (IX+$0D),A ; insert the checksum in NCDCS channel variable.
LD HL, $0007 ; prepare the offset seven
ADD HL, DE ; and add to address NCIRIS first header byte.
PUSH HL ; (*)save the header pointer.
HE LD B, $07 ; Set byte counter to seven.
HHE XOR A ; Initialize the header checksum to zero.

;;; CHKS2 ADD A, (HL) ; add the addressed byte.

P INC HL
P DJNZ CHKS?2
CALL CHKS7
LD (HL) , A
DI
SENDSCOUT CALL SEND SC
POP HL
PUSH HL
LD E, $08
CALL OUT BLK N
JR NZ, SENDSCOUT
PUSH IX
POP HL
LD DE, $0011
ADD HL, DE
LD E, (IX+30C)
LD AE
AND A
JR Z, INC BLKN
LD B,$20
SP DL 1 DJNZ SP DL 1
CALL OUT BLK N
JR NZ, SENDSCOUT
;7: INC BLKN INC (IX+$09)
P JR NZ,SP_N END
P INC (IX+S0R)
INC BLKN CALL SUBINC
SP_ N END POP HL
CALL BORD REST
P EI
LD (IX+$0C),0
TST BR LD A, (IX+$07)
AND A
RET
; THE 'OUT-BLK-N' ROUTINE

; increment the pointer.
; loop back to CHKS2

; routine checksums seven bytes

; insert the checksum into NCHCS channel var.
; Disable Interrupts

; routine SEND-SC

Po(*)
;o)

restore the header pointer - NCIRIS.
and preserve again.

; There are eight bytes in a network header.

; routine OUT-BLK-N sends HEADER and receives
; the response code.

; back, with no response, to SENDSCOUT

; transfer base address of channel
; to the HL register.

; prepare an offset of seventeen.

; add to address the first byte of buffer data.

; Fetch count of output characters from NCOBL
; copy value to A.
; test for zero.

; forward, if zero, to INC-BLKN

; Set a delay value for a gap between the
; physical 8-byte header and data.

; self loop to SP-DL-1

; routine OUT-BLK-N sends the DATA and receives

; the response byte.

; back, with no response, to SENDSCOUT

; increment the channel variable NCNUMB lo
; forward, if not '256' to SP-N-END

; increment the channel variable NCNUMB hi
;+ an existing subroutine that does above.
; (*) restore the pointer to NCIRIS
; routine BORD-REST restores border.
; enable interrupts.

;+++ SET the number of output bytes to zero.

; fetch station of other machine from NCIRIS
; test for zero - a broadcast.

; Return - with zero flag set for broadcast.

’

This routine sends a single block of data, which could be a header or
buffer block, and validates the response from IRIS.

OUT BLK N CALL OUTPAK ; routine OUTPAK sends the data block returning

’

’

’

; with DE holding zero.

P LD A, (IX+507) ; fetch the other station number from NCIRIS
; AND A ; test for zero.
CALL TST BR ;+ New routine to test for a broadcast.
RET Z ; Return if a broadcast, no response required.
LD HL, $5BCO ; Make HL address system variable NTRESP
D LD (HL), $00 ; and insert a zero.
P LD E,S$01 ; set byte count to 1.
LD (HL) ,E ;+ and insert a =zero.
INC E ;+ set byte count to 1.
CALL INPAK ; routine INPAK reads one byte from network.
RET NZ ; return, signaling failure, if no activity.
LD A, ($5BCO) ; Fetch updated value of NTRESP.
DEC A ; test for $01.
RET ; Return, with zero flag set for success.

THE 'HEADER AND DATA BLOCK RECEIVING' ROUTINE
This subroutine is called once from NCHAN IN to read in the next header
and data block from the network, when the buffer is empty.
An eight byte header is sent from the network channel of the sending
computer but received into eight system variables.

GET NBLK LD HL, $5BC1 ; Address system variable NTDEST
LD E, $08 ; Set byte count to eight.
CALL INPAK ; Routine INPAK reads in a header.
RET NZ ; Return, signaling failure, if inactive.
- LD HL, $5BC1 ; Address system variable NTDEST again.
LD L,S$C1 ;+ Address system variable NTDEST again
s XOR A ; Initialize checksum to zero.
HE LD B, $07 ; Set byte count to seven.
;;; CHKS3 ADD A, (HL) ; Add the addressed byte.
HE INC HL ; Point to next header byte.
HE DJNZ CHKS3 ; Back, for all seven bytes, to CHKS3
S CP (HL) ; Compare with eighth byte.
CALL CHKS7 ; routine to checksum seven bytes.
RET NZ ; Return if checksum disagrees.

’

’

The header has been successfully received and it can be examined to see
what type of data this is.

’

’

’

The header indicates the data

LD A, ($5BC1)

LD 1, $C1

LD A, (HL)
INC L

AND A

JR Z,BRCAST
CP (IX+$08)
RET NZ

LD A, ($5BC2)
LD A, (HL)

CP (IX+$07)
RET NZ

’

Fetch the value of NTDEST the received sysvar

;+ Set HL to NTDEST the received system variable
;+ Fetch value to A.

;+ Set HL to $5BC2 NTSRCE before branching.

test for zero.
forward, if so, to BRCAST

Compare the destination with NCSELF - this
station's number.
Return if data not intended for this Spectrum.

is for SELF.

Fetch value of received system variable NTSRCE
the sending station.

;+ Fetch the sender from $5BCF NTSRC.

’

’

Compare to channel variable NCIRIS.
Return if not the expected sender.

The header indicates that both the sender and recipient (SELF) are correct.

JR TEST BLKN

’

Forward to TEST-BLKN

The branch was here when the header indicated a broadcast.

BRCAST

rorrs

rrrs

LD A, (IX+S$07)
OR A

CALL TST BR

RET Nz

The two paths converge here.

TEST BLKN LD HL, ($5BC3)
LD E, (IX+$09)
LD D, (IX+$0R)
AND A
SBC HL, DE
JR Z,GET NBUFF
DEC HL
LD A,H
OR L
RET NZ

’

Note.

CALL GET NBUFF

the next check is new.

’

’

Check the station number of NCIRIS.
Test for zero - a broadcast.

;+ New routine to test for a broadcast.

’

Return, with failure, i1f not.

Fetch, from received system variable NTNUME,
the number of the block.

Fetch bytes of expected block NCNUMB lo and
NCNUMB hi, to DE, from channel variables.

prepare for true subtraction.
subtract the two block numbers.
forward, if they match, to GET-NBUFF

Decrement HL in case the previously received
block is being resent because the sender
missed our response byte.

Return if this is not the previous block.

Routine GET-NBUFF gets the buffer data and
resends the response byte also incrementing
the block count.

RET NZ ;+ Return if, say, the checksum disagrees the

;+ second time around.

; Cancel the increment and return failure so that we try for the expected
; data again.

; Note. The DEC instruction does not affect the carry flag!
LD A, (IX+509) ;+ Fetch copy of NCNUMB lo to accumulator.
DEC (IX+$09) ; decrement actual NCNUMB lo
AND A ;+ Was it originally zero?

Y JR NC, GETNB_END ; Forward, if not 255, to GETNB-END
JR NZ,GETNB_END ;+ Forward, if not now 255, to GETNB-END
DEC (IX+30R) ; Decrement NCNUMB hi

GETNB_END OR $01 ; Reset the zero flag signaling failure to

; the calling routine.

RET ; Return.

; The branch was here to read the data into the network buffer.
; First send a response byte for the header if this is not a broadcast.

GET NBUFF CALL SEND RESP ; routine sends response byte if not a broadcast

LD A, ($5BC6) ; Fetch received system variable NTLEN

AND A ; test for zero.

JR Z,STORE_LEN ; forward, if empty, to STORE-LEN

PUSH IX ; transfer channel base address to

POP HL ; the HL register.

LD DE, $0011 ; prepare an offset of seventeen.

ADD HL, DE ; and add to address start of the data buffer.

PUSH HL ; (*) Preserve the start of network buffer.

LD E,A ; Transfer block length to E, value 1-255.

CALL INPAK ; routine INPAK reads in the data.

LD HL, ($5BC6) ;+ load two system variables NTLEN/NTDCS at
once.

LD B, L ;+ count of bytes NTLEN to B.

LD E,H ;+ checksum NTDCS to E.

POP HL ; (*) Restore start of buffer.

RET NZ ; Return failure if network was inactive.
H LD A, ($5BC6) ; Fetch count of data bytes from sysvar NTLEN
HE LD B,A ; transfer to B. (Beyond reach of IY)
HE LD A, ($5BC7) ; Fetch network data checksum from NTDCS

;7: The checksum is verified in

the opposite way in which it was derived.

;;; CHKS4 SUB (HL) ; Subtract the addressed value.

Y INC HL ; Increment data pointer.

HH DJIJNZ CHKS4 ; Back, for all bytes, to CHKS4
CALL CHKSO ;+ general purpose checksum adding routine.
CP E ;+ compare with expected.

RET NZ ; Return failure if result does not agree.

LD A, ($5BC1) ; Fetch station from system variable NTDEST
AND A ; Check for zero - a broadcast
CALL SEND RESP ; routine SEND-RESP sends response for data

; 1f not a broadcast.

STORE_LEN LD A, ($5BC6) ; Fetch the verified length from sysvar NTLEN

’

LD (IX+$10),A ; and insert value in channel variable NCIBL.

Note the next could be a once-called subroutine to increment NCNUMB.

SUBINC INC (IX+509) ; Increment NCNUMB lo
JR NZ,GETBF_ END ; Forward, if no wraparound, to GETBF-END
INC (IX+$0A) ; Increment the high byte NCNUMB hi
GETBF _END CP A ; Set the zero flag.
RET ; Return with zero flag set indicating success.

THE NEW 'CHECKSUM' ROUTINES

This routine saves Jjust a few bytes by making a subroutine of repetitive
code. It checksums the header or buffer data. The header data is always
seven bytes in length. The second entry point is used for the variable
length buffer data.

CHKS7 LD B, $07 ; 7 header bytes to check.
CHKSO XOR A ; Initialize checksum.
CHKSL ADD A, (HL) ; Add a byte.
INC HL ; Address next.
DJNZ CHKSL ; loop back for B bytes.
CP (HL) ; compare with final value which could be sum
RET ; return.

THE 'NETWORK STATE' ROUTINE

This routine waits for the network to become inactive so that it may be
claimed by this SPECTRUM. So that two waiting Spectrums do not claim the
network at the same time a random count is used.

NET STATE LD A,R ; Fetch a random 7-bit value from the Refresh
; register
OR $CO ; OR with %11000000 giving range 192 - 255.
LD B,A ; transfer to B for count.
CALL CHK REST ; routine CHK-REST
JR C,NET STATE ; back to NET-STATE if network is busy.

RET ; return.

; THE 'CHECK-RESTING' ROUTINE

; This subroutine checks that the network is inactive for a period

; determined by the B register which will $80 if called from below or a
; random value if called from the above routine.

CHK REST CALL TEST BRK ; routine TEST-BRK will return here if BREAK is
; not pressed.

MAKESURE PUSH BC ; timing
POP BC ; timing
IN A, (SF7) ; Read the network port
RRCA ; Test bit O.
RET C ; Return if network is claimed by other
; machines.
DJNZ MAKESURE ; back to MAKESURE for a random count.
RET ; Return.

; THE 'WAIT SCOUT' ROUTINE

; This routine is called once from NCHAN IN to identify a SCOUT when this
; station is expecting to receive a network packet.

WT SCOUT CALL TEST BRK ; routine TEST-BRK allows user to abort.
LD HL, $01C2 ; An even timing value.
CLAIMED LD B, $80 ; The non-random count for CHK REST
CALL CHK REST ; routine CHK-REST
JR NC,WT SYNC ; forward, if network resting, to WT-SYNC
DEC HL ; decrement counter
DEC HL ; decrement counter
LD A,H ; Test for
OR L ; zZero.
JR NZ, CLAIMED ; back, if not, to CLAIMED

; If operation has timed out, then return failure unless expecting a
; broadcast in which case the subroutine waits indefinitely.

H LD A, (IX+507) ; fetch value of channel variable NCIRIS
s AND A ; test for broadcast.

CALL TST BR ;+ test for a broadcast

JR Z,CLAIMED ; back, if so, to CLAIMED

RET ; Return signaling failure.

; The branch was here when the network was found to be at rest.

WT SYNC IN A, (SE7) ; read the port.
RRCA ; rotate 'net input' to carry.

’

’

JR C, SCOUT_END ;

This is a clever twist.

LD A, $TF ;
IN A, (SFE) ;
OR SFE ;
IN A, (SFE) ;
RRA ;
CALL NC,TEST_BRK ;
DEC HL ;
LD A,H ;
OR L ;
JR NZ,WT SYNC ;
; LD A, (IX+507) ;
; AND A ;
CALL TST BR
JR Z,WT SYNC ;
RET ;
THE 'SCOUT END' BRANCH

forward, if scout found,
Read port $7FFE the row
Now read port SFEFE the
If both SHIFT and SPACE
routine TEST-BRK errors

decrement the counter.

Test for
Zero.
back, 1f not, to WT-SYNC

to SCOUT-END ->
with SPACE

row with SHIFT

then carry is reset.

if BREAK was pressed.

load station number from NCIRIS

test for a broadcast.

back, if zero,

Return failure NZ

;+ New routine to test for a broadcast.

to WT-SYNC

The scout is only read by the machine that sent it and as long as it can

be read back then the sending

machine is happy. This

uses the scout leader to synchronize its timing.

set outer counter for 9

decrement counter.

(4)
(4)

«)
An inner delay counter.
self loop to DELAY-SC

loop back to LP-SCOUT

receiving machine

bits.

set success condition

RETURN after nine bits have been timed.

10" sending its SCOUT.

<-- values of the eight bits -->

SCOUT END LD L,$09 ;

LP_SCOUT DEC L ;
SCF ;
RET 7 ;
LD B, SOE ;

DELAY SC DJNZ DELAY SC ;
JR LP_ SCOUT ;

; Illustration: Network Station '

; active o' '0' 'O0" '0!

;- = = = = = et ——————

; | | | | |

; |

; | 7 6 5 4

; |

; |

; inactive | | | | |

; —————————— + + + + +

,- A A A <___>< ______________

; resting ? \/

'1'
+

'O' '1' 'O'

|
|
|
|
|
|
+

active

inactive

; send send 8 bits of the |
; SCOuT global station number Network claimed.
; leader
; THE 'SEND SCOUT' ROUTINE
; In order to claim the network for writing, the SPECTRUM sends out a leader
; followed by the eight inverted bits of the global station number which
; should be unique to each machine.
SEND_SC CALL NET STATE ; routine NET-STATE repeatedly examines the
; network until it is satisfied that the
; network is at rest.
LD C,SF7 ; The comms port number.
LD HL, $0009 ; H is the leader value, L is the count of
; the SCOUT bits.
LD A, ($5BBC) ; Fetch the global station number from NTSTAT
LD E,A ; Transfer to E.
IN A, (SF7) ; Test that the network is still inactive.
RRCA ; rotate 'net input' to carry.
JR C,SEND_SC ; back, if network has become active, to SEND-SC
; Now output the nine values starting with the zero leader in H.
ALL BITS OUT (C),H ; output bit 0 'net output'’
LD D,H ; (4) copy state to D for later.
LD H,$00 ; set output byte to zero.
RLC E ; rotate a bit from 'global station' to carry.
RL H ; pick it up in bit O.
LD B, $08 ; set timing counter
S SC DEL DJNZ S _SC DEL ; self loop back to S-SC-DEL
IN A, (SF7) ; read the network.
AND $01 ; 1solate the 'net input' bit.
; Note. network is activated with a zero bit.
; Received bit is therefore opposite state.
CPp D ; compare with expected state.
JR Z,SEND_SC ; back, if not inverted, to SEND-SC
; to start process again.
DEC L ; decrement the bit counter.
JR NZ,ALL BITS ; back, if SCOUT not complete, to ALL-BITS
LD A,S$01 ;; set the output bit.
ouT (SF7),A ;7 Make the network inactive.
LD B, SOE ; Wait for a delay
END S DEL DJNZ END S DEL ; self loop to END-S-DEL

RET

Return.

; THE 'INPAK' ROUTINE

; This routine reads into the network buffer at address HL a pack of bytes
; the count of which is in E.
; The value of E will be -
; a) 1 when reading the Network Response byte.
; b) 8 when reading an eight-byte header into the system variables.
; c) The value of NTLEN, from within the above header, when reading data.
INPAK LD B, SFF ; Set a time-out counter.
N ACTIVE 1IN A, (SE7) ; Read the network port.
RRA ; rotate 'net input' bit to carry.
JR C, INPAK 2 ; forward, if set, to INPAK-2
DJIJNZ N _ACTIVE ; loop back, 255 times, to N-ACTIVE
INC B ; Indicate network inactive by resetting zero.
RET ; Return. (NZ)
INPAK 2 LD B,E ; Set B to count the number of bytes.

; The byte reading loop.

INPAK L LD E, $80 ; prepare a receiving byte with a marker bit.
LD A, SCE ; Make A %11001110 (wait,cts and comms data low)
OuT (SEF) , A ; Enable the network.
NOP ; (4) Wait 48 clock cycles.
NOP ;o (0 4)
INC IX ; (10)
DEC IX ; (10)
INC IX ; (10)
DEC IX ; (10)
UNTIL MK LD A, $00 ; (7)) Timing.
IN A, (SF7) ; (10) Read net input to bit 0.
RRA ; (4) rotate to carry.
RR E ; (8) and pick up in E.
JP NC, UNTIL MK ; (10) JUMP, back if no marker bit, to UNTIL-MK
LD (HL) ,E ; store the received byte.
INC HL ; Address next location.
DJNZ INPAK L ; back to INPAK-L
CPp A ; Set zero flag to signal success.
RET ; Return.
; THE 'SEND RESPONSE BYTE' ROUTINE
; When a header or a data block is successfully received then this routine is
; used to send a response byte to acknowledge the successful receipt of the
; data over the network.
SEND RESP LD HL, $5BC1 ; Address station number NTDEST
XOR A ; set accumulator to zero

CP (HL) ; compare with NTDEST

RET Z ; return if a broadcast.

DEC HL ; Address $5BCO NTRESP
LD E,$01 ; Load 1 to the byte count.
LD (HL) ,E ; Insert the value 1

; THE 'OUTPAK' ROUTINE

; This routine sends a packet of bytes, up to 255 in length, over the network.
; The start of the data is in HL and the number of bytes is held in E.

OUTPAK XOR A ; clear bit O
ouT (SF7),A ; send leader to port.
LD B,S$04 ; (4) set timing wvalue.
DEL 0 1 DJNzZ DEL 0 1 ; (12/7) back to DEL-0-1 for leader of
; Now enter a loop to send E bytes each with a set start bit and a reset
; stop bit.
OUTPAK L LD A, (HL) ; (6) Fetch a byte to be sent.
CPL ; (4) complement.
SCF ; (4) Set an initial start bit
RLA ; (4) C <= 76543210 <- C
LD B, $0A ; (6) Set count to ten bits
UNT MARK OUT (SF7),A ; Output bit 0, to net.
RRA ; C -> 76543210 -> C ; Rotate next bit to
; ; bit O.
AND A ; clear carry flag to feed in final stop bit.
DEC B ; decrement bit counter.
LD D, $00 ; (7)) timing
JP Nz, UNT MARK ; JUMP back for 10 bits to UNT-MARK

; The last bit sent will be a reset stop bit.

INC HL ; increment buffer address

DEC E ; decrement the byte count.

PUSH HL ; (11) timing.

POP HL ; (11) timing.

JPp Nz,OUTPAK L ; JUMP, if E not zero, to OUTPAK-L
LD A,s$01 ; switch off network.

ouT (SF7) ,A ;

RET ; Return.

; THE 'FORMAT' COMMAND

; by James Smith.

; This sets the local network station number which defaulted to 1 at
; switch-on. It can also be used to set the baud rate and printer width.
; FORMAT "n",2 set this station to station 2 (acceptable range 1 - 64).

; FORMAT "b",1200 set baud rate for "b" and "t" RS232 transfers.
; FORMAT "t", 80 set printer width of the "t" channel.

; This is a CLASS-00 command so it is only executed in runtime when the two
; parameters will be on the calculator stack.

FORMAT CALL FIND INT2 ; routine FIND-INT2 gets number to BC

PUSH BC ; save on machine stack.

CALL EXPT SPEC ; gets channel specifier in A
AND SDF ; Make it upper-case.

POP BC ; retrieve numeric parameter.
CPp 'B' ; channel "B" BAUD rate °?

JR Z, FORMAT B ; forward, if so, to FORMAT B

; After the 16 bit BAUD rate, only 8-bit values are allowed for width/station.

INC B ; Test the high-order
DEC B ; byte for zero.
JP NZ,REPORT B ; ERROR

; 'Integer out of range'

CP 'T! ; Text width ?

JP Z,FORMAT T ; Jump back, if so, to FORMAT T

CP 'N' ; Network ?

JP NZ, REPORT C ; back, if unknown letter, to report XXXXX

; 'Nonsense in BASIC'

FORMAT N LD A,C ; number should be 1-64
DEC A ’
CP $40 ; compare to 64
JP NC, REPORT Q ;
INC A ; correct for earlier DEC
LD ($5BBC) , A ; set NTSTAT
RET ; Return.
; Note. these 5 bytes fave been moved to space between restarts. (JS)
; FORMAT T LD A,C ; get TAB width
: LD ($5BB8) , A ; set it
; RET ; Return.

; THE 'SET BAUD RATE' ROUTINE

; by James Smith.
; The BAUD rate is calculated as follows:

; BAUD = (3500000/ (26*baud rate)) - 2
FORMAT B CALL STACK BC ; put value on calculator stack.
RST 28H ; FP-CALC
DEFB $34 ;;stk-data
DEFB $35 ; ;Exponent $85, Bytes:1 constant = 26
DEFB $50 ;850 ($00,%00,$00)
DEFB $04 ;imultiply
DEFB $34 ;7stk-data

DEFB $80 ; ;Exponent $96, Bytes: 3 constant = 3500000

; THE 'CAT'

DEFB $46,$55,$9F, $80
DEFB $01
DEFB $05
DEFB $38
CALL FP TO BC
DEC BC
DEC BC
LD ($5BBA) , BC
RET
COMMAND

; ($55,89F, $80,500)

rr

; ;exchange
;;divide
;;end-calc

get delay into BC

subtract value
two.

set BAUD system variable

Return.

; This CAT command lists the streams to the screen and really grows on you.
; It was inspired by Andrew Pennell's "Stream Lister" which appears in the
; book "master your zx microdrive" published by Melbourne House.

CAT

LOOP

NO_ BLANK

CALL

LD
LD
CALL

LD

CALL

LD
CPL
LD

LD
CPL
LD

CALL
CALL

LD
LD

CALL

LD
LD

AND
PUSH
PUSH
JR

LD
RST

CALL
LD
RST

CL_ALL

DE, CAT1
BC, CAT2-CAT1
PR_STRING

BC, 45

TEST ROOM

STACK_BC
PRINT FP

DE,CAT3
BC, CAT4-CAT3

PR STRING

A, SFD
HL, $5B10

A
AF
HL
NZ,NO_ BLANK

A,$0D
10H

STACK_ A
A, $0D
10H

’

clear 24 lines and leave upper screen open.
Point to start of banner text.

Set the length.

routine PR _STRING outputs counted string.
decimal adjustment to equate to command line.

routine TEST ROOM returns free RAM in HL.

The value is negated and must be transferred
to BC registers.

stack the 16 bit value.
print the free memory.

address the remaining text setting inverse 0
set the length of the string.

print the rest of the banner.

The starting stream. (decimal 253).
The relevant system variables location.

test for zero

save the stream

save the address in STRMS area
skip forward if not stream zero.

print a carriage return as a separator
if it is zero

CALL
LD
RST
POP

LD
INC
LD
INC
LD
OR
JR
LD
ADD
LD
RST
PR CR POP
INC
CP
JR

RET

CAT3
DEFB
DEFB
DEFB

PRINT FP
A, 6
10H

Z,PR_CR
IX, ($5BAF)
IX,BC

A, (IX+$03)
10H

AF

A

$10

NZ, LOOP

$06
$14,500
$0D

CHANS

Return.

The 'comma control'
The control codes for INVERSE O
The carriage return character.

; THE 'AUTO-LIST' SUBROUTINE
; This produces an automatic listing in the upper screen.
AUTO LIST LD ($5B3F), SP ; save stack pointer in LIST_ SP

LD

CALL

A SET
CALL

LD

CALL

RES

SET

LD
LD

AND
SBC
ADD
JR
PUSH

CALL

LD

(IY+$02),510

CL _ALL

0, (IY+S502)
SIG L SCR

B, (IY+$31)
CL_LINE

0, (IY+502)
0, (IY+$30)

HL, ($5B49)
DE, ($5B6C)

A
HL, DE

HL, DE
C,AUTO L 2
DE

LINE ADDR

DE, $02C0

’

update TV _FLAG set bit 3
routine CL-ALL clears 24 lines.

update TV_FLAG - signal lower screen in use
set 0, (iy+$02) as a call.

fetch lower screen DF S7Z to B.

routine CL-LINE clears lower display
preserving B.

update TV_FLAG - signal main screen in use
update FLAGS2 - signal it will be necessary
to clear the main screen.

fetch E PPC current edit line to HL.

fetch S TOP to DE, the current top line
(initially zero)

prepare for true subtraction.

subtract and

Add back.

to AUTO-L-2 if S TOP is higher than E PPC
to set S TOP to E PPC

save the top line number.
routine LINE-ADDR gets address of E PPC.

prepare known number of characters in

EX DE, HL ;
SBC HL, DE ;

EX (SP) , HL ;

CALL LINE ADDR ;

POP BC ;
AUTO L 1 PUSH BC ;

CALL NEXT ONE ;

POP BC ;
ADD HL,BC ;
JR C,AUTO L 3 ;
EX DE, HL ;
LD D, (HL) ;
INC HL ;
1D E, (HL) ;
DEC HL ;
LD ($5B6C) , DE ;
JR AUTO L 1 ;

; the jump was to here if S TOP

AUTO L 2 LD ($5B6C) , HL ;

the default upper screen.

transfer offset to HL, program address to DE.
subtract high value from low to obtain the
negated result used in addition.

swap result with top line number on stack.

routine LINE-ADDR gets address of that
top line in HL and next line in DE.

restore the result to balance the stack.
save the result.

routine NEXT-ONE gets address in HL of the
line after auto-line (in DE).

restore result.
compute back.
forward, if line 'should' appear, to AUTO-L-3

transfer the address of next line to HL.
get line

number

in DE.

Adjust back to start.

update system variable S TOP.

back, until estimate reached, to AUTO-L-1

was greater than E PPC

make S TOP the same as E_PPC.

; continue here with valid starting point from above or good estimate

; from computation
AUTO L 3 LD HL, ($5B6C) ;

CALL LINE ADDR H

JR Z,AUTO L 4 ;
EX DE, HL ;
AUTO L 4 CALL LIST ALL ;

; The return will be to here if

fetch S TOP line number to HL.

routine LINE-ADDR gets address in HL.
Address of next in DE.

forward, if line exists, to AUTO-L-4
else use address of next line.
routine LIST-ALL quits when screen full >>>

no scrolling occurred

JP PO N AUTO ;+ to code similar to below.

H RES 4, (IY+$02) ;
H RET ;

; THE 'LLIST' COMMAND

; List Program to any stream.

update TV _FLAG - signal no auto listing.
return.

; As the manual points out, this is not standard BASIC.
; A short form of LIST #3. The listing goes to stream 3 - default printer.
; This always was a nonsense for compatibility with the ZX81 but now one is

; unable to assume that stream 3 will be used for a printer.
; This will be replaced with an extra UDG.

LLIST LD A,S$03 ; the usual stream for a Printer

JR LIST 1 ; forward to LIST-1

; THE 'LIST' COMMAND

; List Program to any stream.
; Note. While a starting line can be specified it is not possible to specify
; an end line. Just listing a line makes it the current edit line.
LIST LD A,S$02 ; default is stream 2 - the upper screen.
LIST 1 LD (TY+$02),$00 ; the TV FLAG is initialized with bit 0 reset
; indicating upper screen in use.

HEH CALL SYNTAX 7 ; routine SYNTAX-Z - checking syntax ?
P CALL NZ,CHAN SLCT ; routine CHAN-OPEN if in run-time.

CALL CHN O SYN ;+ Routine opens channel in runtime.
I RST 18H ; GET-CHAR

CALL STR ALTER ; routine STR-ALTER will alter if '#'.

JR C,LIST 4 ; forward, if not a hash, to LIST-4
- RST 18H ; GET-CHAR
Iy CP $3B ; is character a ';' ?
HE JR Z,LIST 2 ; skip, if so, to LIST-2
P CP $2¢C ; is character a ',' ?

CALL EXPT_SEP ;+ NEW routine to check for ';' or ','.

JR NZ,LIST 3 ; forward, if neither separator, to LIST-3
; we have, say, LIST #15, and a number must follow the separator.
LIST 2 RST 20H ; NEXT-CHAR

CALL EXPT 1NUM ; routine EXPT-1INUM checks for numeric

; expression and stacks it in run-time.
JR LIST 5 ; forward to LIST-5

; the branch was here with just LIST #3 etc.
LIST 3 CALL USE_ZERO ; routine USE-ZERO defaults first line.

JR LIST 5 ; forward to LIST-5

; the branch was here with LIST

LIST 4 CALL FETCH NUM ; routine FETCH-NUM checks if a number
; follows else uses zero.

LIST 5 CALL CHECK_END ; routine CHECK-END quits if syntax OK >>

’

Continue in runtime.

CALL
L LD
] AND
. LD
L LD

LD

CALL

This routine is called from

LIST ALL LD

LIST ALL2 CALL

’

RST

BIT
JR

FIND LINE

A,B
S3F

H,B
L,C
($5B49) , HL

LINE ADDR

E,$01

OUT LINE

10H

4, (IY+$02)

Z,LIST ALLZ2

;+ routine FIND-LINE fetches the number from the
;+ calculator stack and validates in run-time.

; fetch high byte of line number and

; make less than $40 so that NEXT-ONE

; (from LINE-ADDR) doesn't lose context.

; Note. this is not satisfactory and the typo
; LIST 20000 will list an entirely different
; section than LIST 2000. Such typos are not
; available for checking if they are direct

; commands.

; transfer the modified
; line number to HL.

; update E PPC to the new line number.

; routine LINE-ADDR gets the address of the
; line.

AUTO-LIST

; signal current line not yet printed

; routine OUT-LINE outputs a BASIC line

; using PRINT-OUT and makes an early return
; when no more lines to print. >>>

; PRINT-A prints the carriage return (in A)
; test TV _FLAG - automatic listing ?

; back, if not, to LIST-ALL-2
; (loop exit is wvia OUT-LINE)

Continue here if an automatic listing required.

LD
SUB
JR

XOR

RET

A, ($5B6B)
(IY+$4F)

NZ,LIST ALLZ2

E

; fetch DF SZ lower display file size.
; subtract S POSN hi the current line number.
; back to LIST-ALL-2 if upper screen not full.

; A contains zero, E contains one if the

; current edit line has not been printed

; or zero if it has (from OUT-LINE) .

; return if the screen is full and the line
; has been printed.

Continue with automatic listings if the screen is full and the current
edit line is missing. OUT-LINE will scroll automatically.

PUSH
PUSH
LD

CALL

POP

POP
JR

HL
DE
HL, $5B6C

LN_FETCH
DE

HL
LIST ALL2

; save the pointer address.
; save the E flag.
; fetch S TOP the rough estimate.

; routine LN-FETCH updates S TOP with
; the number of the next line.

; restore the E flag.
; restore the address of the next line.
; back to LIST-ALL-2.

; THE

oUT

OUT _

oUT

OUT _

OUT _

'PRINT A WHOLE BASIC LINE'

SUBROUTINE

This routine prints a whole BASIC line and it is called from LIST-ALL to

output the line to current channel and from ED-EDIT to

to the edit buffer.

LINE LD

CALL

LD
JR

LD
RL

LINE1l LD
LD
CP
POP
RET

PUSH

CALL

INC
INC
INC
RES
LD

AND
JR

RST

BC, ($5B49)

CP_LINES

D, S3E
Z,0UT LINE1

DE, $0000
E

(IY+$2D) ,E
A, (HL)

$40

BC

NC

BC
OUT NUM 2
HL
HL

HL
IY+$01)

0, (
A,D
A

Z,0UT LINE3

10H

'sprint' the line

fetch E PPC the current line which may be
unchecked and not exist.

routine CP-LINES finds match or line after.

prepare cursor '>' in D.
to OUT-LINEl if matched or line after.

put zero in D, to suppress line cursor.
pick up carry in E if line before current
leave E zero if same or after.

save flag in BREG which is spare.

get high byte of line number.

is it too high ($2F is maximum possible) ?
drop the return address and

make an early return if so >>>

save return address

routine OUT-NUM-2 to print addressed number
with leading space.

skip low number byte.
and the two
length bytes.

update FLAGS - signal leading space required.

fetch the cursor.
test for zero.
forward, if zero, to OUT-LINE3

PRINT-A prints '>' the current line cursor.

this entry point is called from ED-COPY

LINE2 SET

LINE3 PUSH
EX
RES

LD
RES

BIT
CALL
JR
SET
LINE4 LD
AND
SBC
JR

LD
CALL

0, (IY+$01)

DE
DE, HL
2, (IY+$30)

HL, $5B3B
2, (HL)

5, (IY+$37)
TST INP M
7,0UT LINE4
2, (HL)

HL, ($5B5F)

A

HL, DE

NZ,OUT LINES

A, $3F
OUT FLASH

’

’

;+ bit 5, (1y+$37)

’

update FLAGS - suppress leading space.

a return value.
in DE.
signal NOT in QUOTES.

save flag E for
save HL address
update FLAGS2 -

point to FLAGS.
signal 'K' mode. (starts before keyword)
test FLAGX - input mode ?

as a 3-byte call.

to OUT-LINE4

forward, if not,

signal 'L' mode. (used for input)

fetch X PTR - possibly the error pointer
Address.

clear the carry flag.

test if an error address has been reached.

forward, if not, to OUT-LINES

load A with '?' the error marker.
routine OUT-FLASH to print flashing marker.

OUT_LINES CALL OUT_CURS ; routine OUT-CURS will print the cursor if
; this is the right position.
EX DE, HL ; restore address pointer to HL.
LD A, (HL) ; fetch the addressed character.
CALL NUMBER ; routine NUMBER skips a hidden floating
; point number if present.
INC HL ; now increment the pointer.
CP S0D ; 1s character end-of-line ?
JR Z,0UT_LINE6 ; forward, if so, to OUT-LINE6
; as line is complete
EX DE, HL ; save the pointer in DE.
CALL OUT_CHAR ; routine OUT-CHAR to output character/token.
JR OUT_ LINE4 ; back to OUT-LINE4 until entire line is done.
OUT LINE6 POP DE ; bring back the flag E, zero if current line
; printed else value one if still to print.
RET ; return - with A holding $0D
; THE 'CHANNEL LETTER' SUBROUTINE
IN CHAN K LD HL, ($5B51) ; fetch address of current channel CURCHL
JR NUMBER_4 ; forward to pick up channel letter.
; THE 'NUMBER' SUBROUTINE
; This subroutine is called from two processes. while outputting BASIC lines
; and while searching statements within a BASIC line. During both, this
; routine will pass over an invisible number indicator and the five bytes

; floating-point number that follows it.

Note that this causes floating

; point numbers to be stripped from the BASIC line when it is fetched to the

; edit buffer by OUT LINE.

The number marker also appears after the

; arguments of a DEF FN statement and may mask old 5-byte string parameters.
NUMBER CP SOE ; character fourteen ?
RET NZ ; return if not.
INC HL ; skip the character
NUMBER 5 INC HL ; and five bytes
NUMBER 4 INC HL ; following.
NUMBER_3 INC HL ;
INC HL ;
INC HL ;
LD A, (HL) ; fetch the following character
CP $4B ;+ default comparison - is it letter 'K' ?
RET ; for return value.
; THE 'PRINT A FLASHING CHARACTER' SUBROUTINE
; This subroutine is called from OUT-LINE to print a flashing error

; marker '?'

or from the next routine to print a flashing cursor e.g. 'L'.

However, this only gets called from OUT-LINE when printing the edit line
or the input buffer to the lower screen, so a direct call to PRINT OUT
even though out-line outputs to other streams.

In fact the alternate set is used for the whole routine.

can be used,

OUT FLASH EXX

’

’

THE

LD
PUSH

RES
SET
LD
LD
LD
PUSH
LD

CALL

EX

SET

POP
LD

POP
LD

EXX

RET

HL, ($5B8F)
HL

7,H
7,L
($5B8F) , HL
HL, $5B91
D, (HL)

DE

(HL), $00

PRINT OUT

DE, HL
7, (HL)

HL
(IY+$57),H

HL
($5B8F) , HL

’

Switch in alternate set

fetch L = ATTR T, H = MASK-T
preserve original value and masks.

reset flash mask bit so active.
make attribute FLASH.
update system variables ATTR T and MASK-T

Address P_FLAG

fetch value to D

and preserve original value.
clear inverse, over, ink/paper 9

Routine PRINT-OUT outputs character without
the need to vector via RST 10.

;+ Note. NEW transfer attribute byte to HL.

;+ Make it flash.

pop the original P_FLAG to H.
and restore system variable P _FLAG.

restore original attribute and mask
and restore system variables ATTR T/MASK T

Switch back to main set

Return

'PRINT THE CURSOR'

SUBROUTINE

This routine is called before any character is output while outputting

a BASIC line or the input buffer.
the screen,
input buffer or edit buffer to the lower screen.

This includes listing to a printer or

copying a BASIC line to the edit buffer and printing the

It is only in the

latter two cases that it has any relevance and in the last case it
performs another very important function also.

OUT CURS LD

’

’

AND
SBC
RET

the value
then this

LD
RLC
JR

ADD

JR

of MODE,
value 'E' or

HL, ($5B5B)
A

HL, DE

NZ

A, ($5B41)
A
z,0UT C 1

A, $43

OUT C 2

maintained

fetch K CUR the current cursor address
prepare for true subtraction.

test against pointer address in DE and
return 1if not at exact position.

by KEY-INPUT, is tested and if non-zero

will take precedence.

fetch MODE O0='KLC', 1='E', 2='G'.
double the value and set flags.
forward, if still zero, to OUT-C-1 ('KLC').
Add 'C' - will become 'E' if originally 1
or 'G' if originally 2.

forward to OUT-C-2 to print.

; If mode was zero then, while printing a BASIC line, bit 2 of flags has been

; set if 'THEN' or ':' was encountered as a main character and reset
; otherwise. This is now used to determine if the 'K' cursor is to be printed
; but this transient state is also now transferred permanently to bit 3

; of FLAGS to let the interrupt routine know how to decode the next key.

OUT C 1 LD HL, $5B3B ; Address FLAGS
RES 3, (HL) ; signal 'K' mode initially.
LD A, $4B ; prepare letter 'K'.
BIT 2, (HL) ; test FLAGS - was the

; previous main character ':' or 'THEN' ?
JR Z,0U0T _C 2 ; forward, if so to print, at OUT-C-2

SET 3, (HL) ; signal 'L' mode to the interrupt routine.
; Note. transient bit has been made permanent.

INC A ; Augment character from 'K' to 'L'.

BIT 3, (IY+$30) ; test FLAGS2 - consider caps lock ?
; which is maintained by KEY-INPUT.

JR Z,0U0T C 2 ; forward, if not set to print, at OUT-C-2
LD A, S$43 ; alter character 'L' to 'C'.
- PUSH DE ; save address pointer but OK as OUT-FLASH
Pi ; uses alternate set without RST 10.
OUT C 2 JR OUT _FLASH ;+ routine OUT-FLASH to print.
P POP DE ; restore and
HE RET ; return. (replace CALL,RET with a JR)

; THE 'LN FETCH' SUBROUTINE

; These two subroutines are called while editing.

; The first entry point is from ED-DOWN with HL addressing E PPC to fetch the
; next line number.

; Also from AUTO-LIST with HL addressing S _TOP just to update S _TOP with the

; value of the next line number. It gets fetched but is discarded.
; These routines never get called while the editor is being used for input.
LN FETCH LD E, (HL) ; fetch low byte
INC HL ; address next
LD D, (HL) ; fetch high byte.
PUSH HL ; save system variable hi pointer.
EX DE, HL ; line number to HL,
INC HL ; increment as a starting point.
CALL LINE ADDR ; routine LINE-ADDR gets address in HL.
CALL LINE NO ; routine LINE-NO gets line number in DE.
POP HL ; restore system variable hi pointer.

; This entry point is from the ED-UP with HL addressing E PPC hi

;:: L191C: BIT 5, (IY+S$37) ; test FLAGX - input mode ?

return if not edit mode.
Note.

LN STORE LD (HL) ,D save high byte of line number.
DEC HL address lower
LD (HL) ,E save low byte of line number.

; THE

; This routine entered at OUT-SP-NO is used to compute then output the first

above already checked by ED-UP/ED-DOWN.

'OUTPUT NUMBERS IN BASIC LINE'

return.

ROUTINE

; three digits of a 4-digit BASIC line printing a space if necessary.

; The line number,

; holds a subtraction value -1000,

or residual part,

is held in HL and the
-100 or -10.

BC register

; Note. for example line number 200 is output by
; space (out char), 2(out code), 0(out char) final number always out-code.
OUT sp 2 LD AE will be space if OUT-CODE not yet called.
or $FF if spaces are suppressed.
else $30 ('0").
(from the first instruction at OUT-CODE)

AND A test bit 7 of A.

RET M return if S$FF, as leading spaces not
required. This is set when printing line
number and statement in MAIN-5.

JR OUT_CHAR forward to exit via OUT-CHAR.

; -> the single entry point.

OUT SP NO XOR A

initialize digit to O

OUT SP_1 ADD HL,BC add negative number to HL.
INC A increment digit
JR C,0UT _SPp 1 back to OUT-SP-1 until no carry from
the addition.
SBC HL, BC cancel the last addition
DEC A and decrement the digit.
JR Z,0UT _SP_ 2 back to OUT-SP-2 if it is zero.
JP OUT_CODE jump back to exit via OUT-CODE. ->
; THE 'OUTPUT CHARACTERS IN A BASIC LINE' SUBROUTINE
; This subroutine
OUT CHAR CALL NUMERIC routine NUMERIC tests if it is a digit ?
JR NC,OUT CH 3 ; to OUT-CH-3 to print digit without
; changing mode. Will be 'K' mode if digits
; are at beginning of edit line.
CP $21 ; less than quote character ?
JR C,0UT CH 3 ; to OUT-CH-3 to output controls and space.
RES 2, (IY+$01) ; initialize FLAGS to 'K' mode and leave

unchanged i1if this character would precede

; a keyword.

CP SCB ; 1s character 'THEN' token ?
JR Z,0UT CH 3 ; forward, if so, to OUT-CH-3
CP $3A ; 1s character ':' ?

JR NZ,OUT CH 1 ; forward, if not, to OUT-CH-1

; to change mode back to 'L'.

HE BIT 5, (IY+$37) ; FLAGX - Input Mode ?2?
CALL TST INP M ;+ bit 5, (iy+$37) as a 3-byte call.
JR NZ,OUT_CH_2 ; forward, if in INPUT, to OUT-CH-2

; Note. this check should seemingly be at

; the start. Commands seem inappropriate in
; INPUT mode and are rejected by the syntax
; checker anyway.

; unless INPUT LINE is being used.

BIT 2, (IY+$30) ; test FLAGS2 - is the ':' within quotes ?

JR Z,0UT CH 3 ; forward, if not, to OUT-CH-3

JR OUT CH 2 ; forward to OUT-CH-2 as ':' is within quotes
OUT CH 1 CP $22 ; 1s it the quote character '""' ?

JR NZ,O0UT CH 2 ; forward, with others, to OUT-CH-

; to set 'L' mode.

PUSH AF ; save character.
LD A, ($5B6A) ; fetch FLAGS2.
XOR $04 ; toggle the quotes flag - BIT 2, FLAGS2
LD ($5B6A) , A ; update FLAGS2
POP AF ; and restore character.
OUT CH 2 SET 2, (IY+501) ; update FLAGS - signal L mode if the cursor

; 1s next.

OUT CH 3 RST 10H ; PRINT-A vectors the character to
; channel 'S', 'K', 'R' or 'P'.
RET ; return.

; THE 'LINE ADDRESS' SUBROUTINE

; This routine is used often to get the address, in HL, of a BASIC line
; number supplied in HL, or failing that the address of the following line
; and the address of the previous line in DE.
LINE ADDR PUSH HL ; save line number in HL register
LD HL, ($5B53) ; fetch start of program from PROG
LD D,H ; transfer address to
LD E,L ; the DE register pair.
LINE AD 1 POP BC ; restore the line number to BC
CALL CP_LINES ; routine CP-LINES compares with that

; addressed by HL

RET NC ; return if line has been passed or matched.
; if NZ, address of previous is in DE

PUSH BC ; save the current line number

CALL NEXT ONE ; routine NEXT-ONE finds address of next
; line number in DE, previous in HL.

EX DE, HL ; switch so next in HL
JR LINE AD 1 ; back, for another comparison, to LINE-AD-1

; THE 'COMPARE LINE NUMBERS' SUBROUTINE

; This routine compares a line number supplied in BC with an addressed
; line number pointed to by HL.

Cp_LINES LD A, (HL) ; Load the high byte of line number and
CP B ; compare with that of supplied line number.
RET NZ ; return if yet to match (carry will be set).
INC HL ; address low byte of
LD A, (HL) ; number and pick up in A.
DEC HL ; step back to first position.
CP C ; now compare.
RET ; zero set if exact match.

; carry set if yet to match.

; no carry indicates a match or
; next available BASIC line or
; program end marker.

; THE 'FIND EACH STATEMENT' SUBROUTINE

; The single entry point EACH-STMT is used to
; 1) To find the D'th statement in a line.

; 2) To find a token in held E.

;75 L1988: INC HL ; not used
s INC HL ; not used
s INC HL ; not used
; -> entry point.
EACH STMT LD ($5B5D) , HL ; Save HL in CH _ADD
LD C,$00 ; Initialize the quotes flag
EACH S 1 DEC D ; Decrease the statement count
RET Z ; Return if zero
RST 20H ; NEXT-CHAR
CP E ; Is it the search token ?
JR NZ,EACH S 3 ; Forward, if not, to EACH-S-3
AND A ; clear carry
RET ; return signaling success.
EACH S 2 INC HL ; next address
LD A, (HL) ; next character
EACH S 3 CALL NUMBER ; routine NUMBER skips if number marker
LD ($5B5D) , HL ; save character address in CH_ADD

CP $22 ; is it quotes character '"' ?

JR NZ,EACH S 4 ; forward, if not, to EACH-S-4

DEC C ; toggle bit 0 of C
EACH S 4 CP $3A ; 1s character ':'

JR Z,EACH S 5 ; forward, if so, to EACH-S-5

CP SCB ; 1s character 'THEN'

JR NZ,EACH S 6 ; forward, if not, to EACH-S-6
EACH S 5 BIT 0,C ; is it within quotes ?

JR Z,EACH s 1 ; back, if not, to EACH-S-1
EACH S 6 CP $0D ; end of line ?

JR NZ,EACH S 2 ; back, if not, to EACH-S-2

DEC D ; decrease the statement counter

; which should be zero else
; 'Statement Lost'.

SCF ; set carry flag - signal not found
RET ; return
; Storage of variables. For full details - see chapter 24.

; ZX Spectrum BASIC Programming by Steven Vickers 1982.

; It is bits 7-5 of the first character of a variable that allow
; the six types to be distinguished. Bits 4-0 are the reduced letter.

; So any variable name is higher that $3F and can be distinguished
; also from the variables area end-marker $80.
; 76543210 meaning brief outline of format.
; 010 string variable. 2 byte length + contents.
; 110 string array. 2 byte length + contents.
; 100 array of numbers. 2 byte length + contents.
; 011 simple numeric variable. 5 bytes.
; 101 variable length named numeric. 5 bytes.
; 111 for-next loop variable. 18 bytes.
; 10000000 the variables area end-marker.
; Note. any of the above seven will serve as a program end-marker.
; THE 'NEXT ONE' SUBROUTINE
; This versatile routine is used to find the address of the next line
; in the program area or the next variable in the variables area.
; The reason one routine is made to handle two apparently unrelated tasks
; is that it can be called indiscriminately when merging a line or a
; variable.
NEXT ONE PUSH HL ; save the pointer address.
LD A, (HL) ; get first byte.
CP $40 ; compare with upper limit for line numbers.
JR C,NEXT O 3 ; forward to NEXT-0-3 if within BASIC area.
; The continuation here is for the next variable.
BIT 5,A ; is it a string or an array variable ?

JR Z,NEXT O 4 ; forward to NEXT-0-4 to compute length.

ADD
Jp

CCF

NEXT O 1 1D
JR

LD

; now deal
NEXT O 2 RLA
INC

LD
JR

JR

; this bran

NEXT O 3 INC

A,A ; test bit 6 for single-character variables.
M,NEXT O 1 ; forward, if so, to NEXT-0-1
; clear the carry for long-named variables.
; it remains set for for-next loop variables.
BC, $0005 ; set BC to 5 for floating point number
NC,NEXT O 2 ; forward to NEXT-0-2 if not a for/next
; variable.
C,$12 ; set BC to eighteen locations.
; value, limit, step, line and statement.
with long-named variables
; test if character inverted. carry will also
; be set for single character variables
HL ; address next location.
A, (HL) ; and load character.
NC,NEXT O 2 ; back to NEXT-0-2 if not inverted bit.
; forward immediately with single character
; variable names.
NEXT O 5 ; forward to NEXT-0-5 to add length of

ch is for

HL

; floating point number (s etc.).

line numbers.

; increment pointer to low byte of line no.

; strings and arrays rejoin here
NEXT O 4 INC HL ; increment to address the length low byte.
LD C, (HL) ; transfer to C and
INC HL ; point to high byte of length.
LD B, (HL) ; transfer that to B
INC HL ; point to start of BASIC/variable contents.
; the three types of numeric variables rejoin here
NEXT O 5 ADD HL,BC ; add the length to give address of next
; line/variable in HL.
POP DE ; restore previous address to DE.
; THE 'DIFFERENCE' SUBROUTINE
; This routine terminates the above routine and is also called from the
; start of the next routine to calculate the length to reclaim.
DIFFER AND A ; prepare for true subtraction.
SBC HL, DE ; subtract the two pointers.
LD B,H ; transfer result
LD C,L ; to BC register pair.
ADD HL, DE ; add back
EX DE, HL ; and switch pointers
RET ; return values are the length of area in BC,

; low pointer (previous) in HIL,
; high pointer (next) in DE.

; THE 'NEXT ONE/RECLAIM 2' ROUTINE

; On three occasions the two subroutines are called in succession so this
; 5-byte routine by James Smith combines the two calls.
NXT 1 RC2 CALL NEXT ONE ;+

JR RECLAIM 2 ;+ forward to reclaim space

; THE 'RECLAIM ROOM' SUBROUTINE

RECLAIM 1 CALL DIFFER ; routine DIFFER immediately above
RECLAIM 2 PUSH BC ;

LD A,B ;

CPL ;

LD B, A ;

LD A,C ;

CPL ;

LD C,A ;

INC BC ;

CALL POINTERS ; routine POINTERS

EX DE, HL ;

POP HL ;

ADD HL, DE ;

PUSH DE ;

LDIR ; copy bytes

POP HL ;

RET ; Return.

; THE 'READ EDIT LINE NUMBER' SUBROUTINE

; This routine reads a line number in the editing area returning the number
; in the BC register or zero if no digits exist before commands.

; It is called from LINE-SCAN to check the syntax of the digits.

; It is called from MAIN-3 to extract the line number in preparation for

; inclusion of the line in the BASIC program area.

; Interestingly, the calculator stack is moved from its normal place at the
; end of dynamic memory to an adequate area within the system variables area.
; This ensures that in a low memory situation, that valid line numbers can

; be extracted without raising an error and that memory can be reclaimed by
; by deleting lines. If the stack was in its normal place, then a situation
; arises whereby the Spectrum becomes locked with no means of reclaiming

; space.

E_LINE NO CALL L EL DHL ;+ NEW routine with below code.

HE LD HL, ($5B59) ; load HL from system variable E LINE.

1ri DEC HL ; decrease so that NEXT CHAR can be used

i ; without skipping the first digit.

LD ($5B5D) , HL ; store in the system variable CH ADD.
RST 20H ; NEXT-CHAR skips any noise and white-space
; to point exactly at the first digit.
LD HL, $5B92 ; use MEM-0 as a temporary calculator stack
; an overhead of three locations are needed.
LD ($5B65) , HL ; set new STKEND.
CALL INT TO_FP ; routine INT-TO-FP will read digits till
; a non-digit found.
CALL FP_TO BC ; routine FP-TO-BC will retrieve number
; from stack at MEMBOT.
JR C,REPORT Ce ; forward to E-L-1 if overflow i.e. > 65535.
; 'Nonsense in BASIC'
LD HL, SD8FO ; load HL with the wvalue -9999
ADD HL, BC ; add to line number in BC
; a line in the range 0 - 9999 has been entered.
JP NC, SET _STK ; Jump back to SET-STK to set the calculator
; stack back to its normal place and exit
; from there.
;7 E L 1 JP C,REPORT C ; to REPORT-C 'Nonsense in BASIC' if over.
REPORT Ce RST 30H ; ERROR-1
DEFB $OB ; '"Nonsense in BASIC'
HE JP SET STK ; Jump back to SET-STK

THE 'REPORT AND LINE NUMBER PRINTING' SUBROUTINE

Entry point OUT-NUM-1 is used by the Error Reporting code to print

the line number and later
If the statement was part
dummy line number so that
This routine is also used

the statement number held in BC.

of a direct command then -2 is used as a
zero will be printed in the report.

to print the exponent of E-format numbers.

Entry point OUT-NUM-2 is used from OUT-LINE to output the line number
addressed by HL with leading spaces if necessary.

OUT_NUM 0 LD

OUT NUM 1 PUSH

’

PUSH
XOR

BIT
JR

LD
LD

LD
JR

Entry point

B, $00

DE
HL

A
7,B
NZ,OUT NUM 4

H,B
L,C

4

E, SFF
OUT NUM 3

from OUT-LINE -

;+ New entry point to print C

’

save the
registers.

set A to zero.

is the line number minus two ?
forward, if so, to OUT-NUM-4

to print zero for a direct command.

transfer the
number to HL.

signal 'no leading zeros'.
forward to continue at OUT-NUM-3

HL addresses line number.

OUT_NUM 2 PUSH DE ; save flags

LD D, (HL) ; high byte to D

INC HL ; address next

LD E, (HL) ; low byte to E

PUSH HL ; save pointer

EX DE, HL ; transfer number to HL

LD E, $20 ; signal 'output leading spaces'
OUT NUM 3 LD BC, $FC18 ; value -1000

CALL OUT_SP _NO ; routine OUT-SP-NO outputs space or number

LD BC, SFFOC ; value -100

CALL OUT _SP NO ; routine OUT-SP-NO

LD C,SF6 ; value -10 (B is still SFF)

CALL OUT_SP NO ; routine OUT-SP-NO

LD A,L ; remainder to A.
OUT NUM 4 CALL OUT_ CODE ; routine OUT-CODE for final digit.

; else report code zero wouldn't get printed.

POP HL ; Restore the
POP DE ; registers.
RET ; return.

,-***

;** Part 7. BASIC LINE AND COMMAND INTERPRETATION **

;***

; THE 'OFFSET' TABLE

; The BASIC interpreter has found a command code $CE - S$FF

; which is then reduced to range $00 - $31 and added to the base address
; of this table to give the address of an offset which, when added to

; the offset therein, gives the location in the following parameter table
; where a list of class codes, separators and addresses relevant to the
; command exists.

offst_tbl DEFB P DEF FN -
DEFB P _CAT -
DEFB P _FORMAT -
DEFB P _MOVE -
DEFB P ERASE -
DEFB P _OPEN -
DEFB P CLOSE -
DEFB P MERGE -
DEFB P _VERIFY -
DEFB P BEEP -
DEFB P CIRCLE -
DEFB P INK -
DEFB P _PAPER
DEFB P FLASH -
DEFB P BRIGHT
DEFB P _INVERSE
DEFB P _OVER
DEFB P OUT -
DEFB P _LPRINT
DEFB P LLIST
DEFB P _STOP

; Bl offset to Address: P-DEF-FN
; CB offset to Address: P-CAT

; BC offset to Address: P-FORMAT
; BF offset to Address: P-MOVE

; C4 offset to Address: P-ERASE
; AF offset to Address: P-OPEN

; B4 offset to Address: P-CLOSE
; 93 offset to Address: P-MERGE
; 91 offset to Address: P-VERIFY
; 92 offset to Address: P-BEEP

; 95 offset to Address: P-CIRCLE
; 98 offset to Address: P-INK

; 98 offset to Address: P-PAPER
; 98 offset to Address: P-FLASH
; 98 offset to Address: P-BRIGHT
; 98 offset to Address: P-INVERSE
; 98 offset to Address: P-OVER

; 98 offset to Address: P-0OUT

; 7TF offset to Address: P-LPRINT
; 81 offset to Address: P-LLIST
; 2E offset to Address: P-STOP

Uy Uy Uy Ur Ur O Oy > O O Oy Uy U Uy Uy Oy Uy O O A
~

; TH

P LE

P GO

DEFB P _READ
DEFB P _DATA -
DEFB P RESTORE
DEFB P _NEW -
DEFB P BORDER
DEFB P_CONT

DEFB P _DIM -
DEFB P _REM -
DEFB P_FOR -
DEFB P GO _TO -
DEFB P GO SUB -
DEFB P _INPUT -
DEFB P_LOAD -
DEFB P LIST -
DEFB P LET -
DEFB P PAUSE -
DEFB P _NEXT -
DEFB P _POKE -
DEFB P_PRINT -
DEFB P_PLOT -
DEFB P _RUN -
DEFB P _SAVE -
DEFB P_RANDOM -
DEFB P _IF -
DEFB P CLS -
DEFB P _DRAW -
DEFB P CLEAR -
DEFB P RETURN -
DEFB P _COPY -

; 6C offset to Address: P-READ

; O0E offset to Address: P-DATA

; 70 offset to Address: P-RESTORE
; 48 offset to Address: P-NEW

; 94 offset to Address: P-BORDER
; 56 offset to Address: P-CONT

; 3F offset to Address: P-DIM

; 41 offset to Address: P-REM

; 2B offset to Address: P-FOR

; 17 offset to Address: P-GO-TO
; 1F offset to Address: P-GO-SUB
; 37 offset to Address: P-INPUT
; 77 offset to Address: P-LOAD

; 44 offset to Address: P-LIST

; OF offset to Address: P-LET

; 59 offset to Address: P-PAUSE
; 2B offset to Address: P-NEXT

; 43 offset to Address: P-POKE

; 2D offset to Address: P-PRINT
; 51 offset to Address: P-PLOT

; 3A offset to Address: P-RUN

; 6D offset to Address: P-SAVE

; 42 offset to Address: P-RANDOM
; 0D offset to Address: P-IF

; 49 offset to Address: P-CLS

; 5C offset to Address: P-DRAW

; 44 offset to Address: P-CLEAR
; 15 offset to Address: P-RETURN
; 5D offset to Address: P-COPY

Uy Uy Uy Uy Ur Uy Oy Oy > O D O O U U Uy U Uy Oy Oy O O O D U Oy Uy Uy

E 'PARAMETER OR SYNTAX' TABLE

For each command there exists a variable list of parameters.

If the character is greater than a space it is a required separator.

If less, then it is a command class in the range 00 - O0OB.

Note that classes 00, 03 and 05 will fetch the addresses from this table.
Some classes e.g. 07 and 0B have the same address in all invocations

and the command is re-computed from the low-byte of the parameter address.
Some e.g. 02 are only called once so a call to the command is made from
within the class routine rather than holding the address within the table.
Some class routines check syntax entirely and some leave this task for the
command itself.

Others for example CIRCLE (x,y,z) check the first part (x,y) using the
class routine and the final part (,z) within the command.

The last few commands appear to have been added in a rush but their syntax
is rather simple e.g. MOVE "M1",6 "M2"

T DEFB $01 ; Class-01 - A variable is required.
DEFB $3D ; Separator: '='
DEFB $02 ; Class-02 - An expression, numeric or string,
; must follow.
TO DEFB $06 ; Class-06 - A numeric expression must follow.
DEFB $00 ; Class-00 - No further operands.
DEFW GO _TO ; Address: GO-TO
DEFB $06 ; Class-06 - A numeric expression must follow.
DEFB S$CB ; Separator: 'THEN'
DEFB $05 ; Class-05 - Variable syntax checked

; by routine.
DEFW IF ; Address: IF

P _GO_SUB

P_STOP

P RETURN

P_FOR

P NEXT

P_PRINT

P _INPUT

P DIM

P_REM

P _NEW

P_RUN

P LIST

P_POKE

P_RANDOM

P_CONT

DEFB
DEFB
DEFW

DEFB
DEFW

DEFB
DEFW

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFW
DEFB

DEFB
DEFW

DEFB

DEFW

DEFB

DEFW

DEFB

DEFW

DEFB

DEFW

DEFB
DEFW

DEFB

DEFW

DEFB

DEFW

DEFB

DEFB
DEFW

DEFB

DEFW

DEFB
DEFW

S06
$00
GO_SUB

$00
STOP

$00
RETURN

$04
$3D
$06
$cCcC
$06
$05
FOR
$04

$00
NEXT

$05
PRINT
$05
INPUT
$05
DIM
$05
REM

$00
NEW

$03
RUN
$05
LIST
$08

$00
POKE

$03
RANDOMIZE

$00
CONTINUE

Class-06 - A numeric expression must follow.
Class-00 - No further operands.
Address: GO-SUB

Class-00 - No further operands.
Address: STOP

Class-00 - No further operands.
Address: RETURN

Class-04 - A single character variable must
follow.

Separator: '="
Class-06 - A numeric expression must follow.
Separator: 'TO!

Class-06 - A numeric expression must follow.
Class-05 - Variable syntax checked

by routine.

Address: FOR

Class-04 - A single character variable must
follow.

Class-00 - No further operands.

Address: NEXT

Class-05 - Variable syntax checked entirely
by routine.
Address: PRINT

Class-05 - Variable syntax checked entirely
by routine.
Address: INPUT

Class-05 - Variable syntax checked entirely
by routine.
Address: DIM

Class-05 - Variable syntax checked entirely
by routine.
Address: REM

Class-00 - No further operands.
Address: NEW

Class-03 - A numeric expression may follow
else default to zero.
Address: RUN

Class-05 - Variable syntax checked entirely
by routine.
Address: LIST

Class-08 - Two comma-separated numeric
expressions required.

Class-00 - No further operands.
Address: POKE

Class-03 - A numeric expression may follow
else default to zero.
Address: RANDOMIZE

Class-00 - No further operands.
Address: CONTINUE

P _CLEAR

rorr

P CLS

P_PLOT

P PAUSE

P_READ

P DATA

P RESTORE

P DRAW

P _COPY

P _LPRINT

P LLIST

P_SAVE

P _LOAD

P _VERIFY

P MERGE

P BEEP

DEFB

DEFB
DEFW

DEFB
DEFW

DEFB

DEFB

DEFW

DEFB

DEFB

DEFW

DEFB

DEFW

DEFB

DEFW

DEFB

DEFW

DEFB

DEFB

DEFW

DEFB
DEFW

DEFB

DEFW

DEFB

DEFW

DEFB

DEFB

DEFB

DEFB

DEFB

DEFB

$03

$05
CLEAR

$00
CLS

$09
$00
PLOT
$06
$00
PAUSE
$05
READ
$05
DATA
$03

RESTORE

$09

$05
DRAW

$00
COPY

$05
LPRINT
$05
LLIST

0]}

SOB

SOB

SOB

$08

$00

Class-03 - A numeric expression may follow
else default to zero.

;+ Variable syntax checked by routine.

Address: CLEAR

Class-00 - No further operands.
Address: CLS

Class-09 - Two comma-separated numeric
expressions required with optional colour
items.

Class-00 - No further operands.

Address: PLOT

Class-06 - A numeric expression must follow.
Class-00 - No further operands.
Address: PAUSE

Class-05 - Variable syntax checked entirely
by routine.
Address: READ

Class-05 - Variable syntax checked entirely
by routine.
Address: DATA

Class-03 - A numeric expression may follow
else default to zero.
Address: RESTORE

Class-09 - Two comma-separated numeric
expressions required with optional colour
items.

Class-05 - Variable syntax checked

by routine.

Address: DRAW

Class-00 - No further operands.
Address: COPY

Class-05 - Variable syntax checked entirely
by routine.
Address: LPRINT

Class-05 - Variable syntax checked entirely
by routine.
Address: LLIST

Class-0B - Offset address converted to tape
command.

Class-0B - Offset address converted to tape
command.

Class-0B - Offset address converted to tape
command.

Class-0B - Offset address converted to tape
command.

Class-08 - Two comma-separated numeric
expressions required.
Class-00 - No further operands.

DEFW BEEP ; Address: BEEP
P CIRCLE DEFB $09 ; Class-09 - Two comma-separated numeric
; expressions required with optional colour
; iltems.
DEFB $05 ; Class-05 - Variable syntax checked
; by routine.
DEFW CIRCLE ; Address: CIRCLE
P INK DEFB $07 ;7 Class-07 - Offset address is converted to
; colour code.
P PAPER DEFB $07 ; Class-07 - Offset address is converted to
; colour code.
P _FLASH DEFB $07 ; Class-07 - Offset address is converted to
; colour code.
P BRIGHT DEFB $07 ;7 Class-07 - Offset address is converted to
; colour code.
P _INVERSE DEFB $07 ; Class-07 - Offset address is converted to
; colour code.
P OVER DEFB $07 ; Class-07 - Offset address is converted to
; colour code.
P _OUT DEFB $08 ; Class-08 - Two comma-separated numeric
; expressions required.
DEFB $00 ; Class-00 - No further operands.
DEFW OUT ; Address: OUT
P BORDER DEFB $06 ; Class-06 - A numeric expression must follow.
DEFB $00 ; Class-00 - No further operands.
DEFW BORDER ; Address: BORDER
P DEF _FN DEFB $05 ; Class-05 - Variable syntax checked entirely
; by routine.
DEFW DEF FN ; Address: DEF-FN
P OPEN DEFB $06 ; Class-06 - A numeric expression must follow.
H DEFB $2C ; Separator: v
DEFB $0C ;+ Class-0C - NEW either ';' or ',
DEFB S$O0A ; Class-0A - A string expression must follow.
HE DEFB $00 ; Class-00 - Was No further operands.
DEFB $05 ;+ Class-05 - New Variable syntax.
DEFW OPEN ; Address: OPEN
P CLOSE DEFB $06 ; Class-06 - A numeric expression must follow.
DEFB $00 ; Class-00 - No further operands.
DEFW CLOSE ; Address: CLOSE
P FORMAT DEFB SOA ; Class-0A - A string expression must follow.
DEFB $0C ; Class-0C - NEW either ';' or ','
DEFB $06 ; Class-06 - A numeric expression must follow.
DEFB $00 ; Class-00 - No further operands.
DEFW FORMAT ; Address: FORMAT
; Since the commands MOVE ERASE and CAT will not be used then the syntax
; can be removed and they can all use the CAT error-generating routine.
P_MOVE

rrr

rrr

DEFB
DEFB

SOA
$2C

; Class-0A - A string expression must follow.
; Separator: !

A DEFB S$O0A ; Class-0A - A string expression must follow.

HEH DEFB $00 ; Class-00 - No further operands.

e DEFW CAT ETC ; Address: CAT-ETC

P _ERASE

HEH DEFB S$OA ; Class-0A - A string expression must follow.
DEFB $00 ; Class-00 - No further operands.
DEFW REPORT O ; Address: REPORT O - Invalid stream

P CAT DEFB $00 ; Class-00 - No further operands.
DEFW CAT ; Address: CAT -

; THE 'LINE SCAN' ROUTINE

; The Main parser (BASIC interpreter).

; This routine is called once from MAIN-2 when the BASIC line is to be entered
; or re-entered into the Program area and the syntax requires checking.
LINE SCAN RES 7, (IY+S$01) ; update FLAGS - signal checking syntax

CALL E LINE NO ; routine E-LINE-NO >>

; fetches the line number if in range.

XOR A ; clear the accumulator.
LD ($5B47) ,A ; set statement number SUBPPC to zero.
DEC A ; set accumulator to S$FF.
LD ($5B3A) ,A ; set ERR NR to 'OK' - 1.
JR STMT L 1 ; forward to continue at STMT-L-1.

; THE 'STATEMENT' LOOP

STMT_LOOP RST 20H ; NEXT-CHAR

; -> the entry point from above or LINE-RUN

STMT L 1 CALL SET WORK ; routine SET-WORK clears workspace etc.
INC (IY+$0D) ; increment statement number SUBPPC
JP M, REPORT C ; back, if over 127, to REPORT-C

; '"Nonsense in BASIC'
RST 18H ; GET-CHAR

LD B,S$00 ; set B to zero for later indexing.
; early so any other reason ?°?

CP $0D ; 1s character carriage return ?
; 1.e. an empty statement.
JR Z,LINE_END ; forward, if so, to LINE-END
CP S3A ; is it statement end marker ':' ?
; i1.e. another type of empty statement.
JR Z,STMT LOOP ; back, if so, to STMT-LOOP
LD HL, STMT RET ; address: STMT-RET

PUSH HL ; 1s now pushed as a return address

LD

; advance CH ADD to

RST
LD
SUB
JR

LD

LD

ADD

LD

ADD

JR

C,A

20H
A,C
SCE
C,SEP _RPT C

C,A
HL,offst tbl
HL, BC

C, (HL)

HL, BC

GET PARAM

; THE 'MAIN SCAN' LOOP

SCAN_LOOP LD

HL, ($5B74)

transfer the current character to C.

a position after command and test if it is a command.

NEXT-CHAR to advance pointer

restore current character

subtract 'DEF FN' - first command

jump, if less than a command, to REPORT-C
'Nonsense in BASIC'

put the valid command code back in C.
register B is zero.

address: offst-tbl

index into table with one of 50 commands.
pick up displacement to syntax table entry.
add to address the relevant entry.

forward to continue at GET-PARAM

Fetch Table Address from T ADDR during
subsequent loops.

; -> the initial entry point with HL addressing start of syntax table entry.

GET PARAM LD
INC
LD

i LD
HF PUSH

LD
PUSH

LD
CP
JR
LD
LD
ADD
LD
ADD
PUSH
RST

DEC

RET

A, (HL)
HL
($5B74) , HL

BC, SCAN_LOOP
BC

HL, SCAN LOOP
HL

C,A
$20

NC, SEPARATOR
HL, CLASS TBL
B, $00

HL, BC

C, (HL)

HL, BC

HL

18H

Pick up the parameter.
Address next one.
Save pointer in system variable T ADDR

Address: SCAN-LOOP
is now pushed on stack as looping address.

;+ address: SCAN-LOOP
;+ is now pushed on stack as looping address.

store parameter in C.
is it greater than ' ' ?
forward, if so, to SEPARATOR

address: class-tbl.

prepare to index into the class table. ;;;
index to find displacement to routine.
displacement to BC

add to address the CLASS routine.

push the address on the stack.

GET-CHAR - HL points to place in statement.

reset the zero flag - the initial state
for all class routines.

Make an indirect jump to routine
and then to SCAN-LOOP (also on stack).

; Note. one of the class routines will eventually drop the return address
; off the stack breaking out of the above seemingly endless loop.

; THE 'SEPARATOR' ROUTINE

; This routine is called once to verify that the mandatory separator
; present in the parameter table is also present in the correct

; location following the command. For example, the 'THEN' token after
; the 'IF' token and expression.

SEPARATOR RST 18H

CP C

SEP_RPT C JP Nz,REPORT C
RST 20H
RET

; THE 'STATEMENT RETURN' POINT

; Control returns to this point
; address pushed on the machine

STMT RET CALL TEST BRK
statement.

Pii JR C,STMT R 1
;77 REPORT L RST 30H
PP DEFB $14

STMT R 1 BIT 7, (IY+SO0A)

JR NZ, STMT NEXT
LD HL, ($5B42)
BIT 7,H

JR Z,LINE NEW

GET-CHAR
does 1t match the character in C ?

jump forward, if not, to REPORT-C
'Nonsense in BASIC'.

NEXT-CHAR advance to next character
return.

after every statement by virtue of the
stack.

;+ the BREAK KEY is tested after every

step forward to STMT-R-1 if not pressed.
ERROR-1
Error Report: BREAK into program

test a bit of NSPPC - will be set if SFF -
no jump to be made.

forward, if no jump, to STMT-NEXT

fetch BASIC line number from NEWPPC

test the high order byte.
bit 7 is set if minus two - direct command(s)

forward, if a jump is to be made, to LINE-NEW

; THE 'RUN A DIRECT COMMAND' ROUTINE
; A direct command is to be run or, if continuing from above, the next
; statement in a sequence of direct commands is to be considered.
LINE RUN LD HL, $SFFFE ; The dummy value minus two
LD ($5B45) , HL ; 1s set/reset as line number in PPC.
LD HL, ($5B61) ; point to the start of workspace WORKSP.
DEC HL ; now point to $80 Edit Line end-marker.
LD DE, ($5B59) ; address the start of line using E LINE.
DEC DE ; now location before - for GET-CHAR.
LD A, ($5B44) ; load statement to A from NSPPC.
JR NEXT LINE ; forward to NEXT-LINE.

; THE 'LINE NEW' ROUTINE

; This routine finds the start address of new line.

; The branch was to here if a jump is to made to a new line number and

; statement.

; That is, the previous statement was a GO TO, GO SUB, RUN, RETURN, NEXT
etc..

LINE NEW CALL LINE ADDR ; routine LINE-ADDR gets address of line
; returning zero flag set if line found.
LD A, ($5B44) ; fetch new statement from NSPPC
JR Z,LINE USE ; forward to LINE-USE if line matched.
; continue as must be a direct command.
AND A ; test statement which should be zero
JR NZ,REPORT_N ; forward, if not, to REPORT-N

; 'Statement lost'

H LD B,A ; save statement in B. ?°?

LD A, (HL) ; fetch high byte of line number.

AND $CO ; test if using direct command

; a program line is less than $3F

H LD A,B ; retrieve statement.
H ; (we can assume it is zero).

JR Z,LIN USE O ; forward to LINE-USE if was a program line
; Alternatively, a direct statement has finished correctly.
REPORT 0 RST 30H ; ERROR-1

DEFB SFF ; Error Report: OK

; THE 'REM' COMMAND

; The REM command routine.
; The return address STMT-RET is dropped and the rest of line ignored.

REM POP BC ; drop return address STMT-RET and
; continue ignoring rest of line.

;77 LINE END CALL SYNTAX 7 ; routine SYNTAX Z (UNSTACK_Z77?)
HHE RET Z ; return if checking syntax.
LINE END CALL UNSTACK Z ;+ return early if checking syntax.
LD HL, ($5B55) ; fetch NXTLIN to HL.
LD A, $CO ; test against the
AND (HL) ; system limit $3F.
RET NZ ; return if higher as must be end of program.

; (or direct command)
LIN_USE_O XOR A ; set statement to zero.

; and continue to set up the next following line and then consider this new
one.

; THE

'LINE USE'

BRANCH

; The branch was here from LINE-NEW if BASIC is branching.

; or a continuation from above if dealing with a new sequential line.
; First make statement zero number one leaving others unaffected.
LINE USE CP 501 ; will set carry if zero.
ADC A, S$00 ; add in any carry.
LD D, (HL) ; high byte of line number to D.
INC HL ; advance pointer.
LD E, (HL) ; low byte of line number to E.
LD ($5B45) ,DE ; set system variable PPC.
INC HL ; advance pointer.
LD E, (HL) ; low byte of line length to E.
INC HL ; advance pointer.
LD D, (HL) ; high byte of line length to D.
EX DE, HL ; swap pointer to DE before adding
ADD HL, DE ; to address the end of the line.
INC HL ; advance to start of next line.
; THE 'NEXT LINE' SUBROUTINE
; The pointer will be the next line if continuing from above or to edit line
; end-marker ($80) if from LINE-RUN.
NEXT LINE LD ($5B55) , HL ; store pointer in system variable NXTLIN
EX DE, HL ; bring back pointer to previous or edit line
LD ($5B5D) , HL ; and update CH ADD with character address.
LD D,A ; store statement in D.
LD E,$00 ; set E to zero to suppress token searching
; 1f EACH-STMT is to be called.
LD (IY+S0A), SFF ; set statement NSPPC to S$FF signaling
; no jump to be made.
DEC D ; decrement and test statement
LD (IY+$0D),D ; set SUBPPC to decremented statement number.
JP Z,STMT_ LOOP ; to STMT-LOOP if result zero as statement is
; at start of line and address is known.
INC D ; else restore statement.
CALL EACH STMT ; routine EACH-STMT finds the D'th statement
; address as E does not contain a token.
JR Z,STMT NEXT ; forward to STMT-NEXT if address found.
REPORT N RST 30H ; ERROR-1
DEFB $16 ; 'Statement lost'
; THE NEW 'CHECK FOR NUMBER AND SYNTAX' ROUTINE
; Combines two or three routines into one call.
CHK END 1 RST 20H ;+ NEXT CHAR
CHK_END 2 CALL EXPT 1NUM ;+ Check for 1 number and stack in runtime
; THE 'CHECK END' SUBROUTINE

; This combination of routines is called from 20 places when

; the end of a statement should have been reached and all preceding
; syntax is in order.
CHECK _END CALL SYNTAX 7 ; routine SYNTAX-Z
RET NZ ; return immediately in runtime
POP BC ; drop address of calling routine.
POP BC ; drop address STMT-RET.

; and continue to find next statement.

; THE 'STATEMENT NEXT' ROUTINE

; Acceptable characters at this point are carriage return and ':'.
; If so, go to next statement which in the first case will be on next line.
STMT NEXT RST 18H ; GET-CHAR - ignoring white space etc.

CP $0D ; 1s character carriage return ?

JR Z,LINE END ; back, if so, to LINE-END

CP $3A ; is character a ':' ?

JP Z,STMT_LOOP ; jump back, if so, to STMT-LOOP

JR VAL RPT C ; forward, with any other, to VAL RPT C

; '"Nonsense in BASIC'

; THE 'COMMAND CLASS' TABLE

CLASS TBL DEFB CLASS 00 -
DEFB CLASS 01 -
DEFB CLASS 02 -
DEFB CLASS 03 -
DEFB CLASS 04 -
DEFB CLASS 05 -
DEFB CLASS 06 -
DEFB CLASS 07 -
DEFB CLASS 08 -
DEFB CLASS 09 -
DEFB CLASS OA -
DEFB CLASS 0B -

; offset to Address: CLASS-00
; offset to Address: CLASS-01
; offset to Address: CLASS-02
; offset to Address: CLASS-03
; offset to Address: CLASS-04
; offset to Address: CLASS-05
; offset to Address: CLASS-06
; offset to Address: CLASS-07
; offset to Address: CLASS-08
; offset to Address: CLASS-09
; offset to Address: CLASS-0A
; offset to Address: CLASS-0B

Uy Uy Uy Uy Uy Uy U O D O O
~

DEFB CLASS 0C - $; offset to Address: CLASS 0OC

; THE 'COMMAND CLASSES 00, 03 and 05' ROUTINES

; class-03 e.g. RUN or RUN 20 ; optional operand.

; class-00 e.g. CONTINUE ; no operand.

; class-05 e.g. PRINT ; variable syntax checked by routine.
CLASS 03 CALL FETCH NUM ; routine FETCH-NUM

CLASS 00 CP A ; set zero flag.

; if entering here then all class routines are entered with zero reset.

CLASS 05 POP BC ; drop address SCAN-LOOP.
CALL 7Z,CHECK_END ; 1f zero set then call routine CHECK-END >>>
; as should be no further characters.

; If checking syntax then classes 00 and 03 terminate at the above step.

EX DE, HL ; save HL to DE.

1D HL, ($5B74) ; fetch T ADDR

LD C, (HL) ; fetch low byte of routine

INC HL ; address next.

LD B, (HL) ; fetch high byte of routine.

EX DE, HL ; restore HL from DE

PUSH BC ; push the address

RET ; and make an indirect jump to the command.

; THE 'COMMAND CLASS 01' ROUTINE

; e.g. LET A = 2*3 ; A variable is required.

; This class routine is also called from INPUT and READ to find the
; destination variable for an assignment.

CLASS 01 CALL LOOK_VARS ; routine LOOK-VARS returns carry set if the
; variable is not found in runtime.
VAR A 1 LD (IY+$37),$00 ; Set FLAGX to zero

JR NC,VAR A 2 ; Forward, if found or syntax path, to VAR-A-2

; The variable was not found in runtime.

SET 1, (IY+$37) ; Update FLAGX - signal a new variable.
JR NZ,VAR A 3 ; Forward, if not array subscript, to VAR-A-3
; e.g. LET a$(3,3) = "X"
REPORT_Z RST 30H ; ERROR-1
DEFB $01 ; Error Report: Variable not found.

; The branch was here when the variable was found or if checking syntax.

VAR A 2 CALL Z,STK VAR ; routine STK-VAR considers a subscript/slice.
BIT 6, (IY+S$S01) ; test FLAGS - numeric or string result ?
JR NZ,VAR A 3 ; forward, if numeric, to VAR-A-3.
XOR A ; Default A to array/slice - to be retained.
CALL SYNTAX 7 ; Routine SYNTAX-Z
CALL NZ,STK FETCH ; Routine STK-FETCH is called in runtime

; may overwrite A with 1.

LD HL, $5B71 ; Address the FLAGX system variable.
OR (HL) ; sets bit 0 if simple variable to be reclaimed.
LD (HL) , A ; update bit 0 of FLAGX
EX DE, HL ; bring start of string/subscript to HL
VAR A 3 LD ($5B72),BC ; update STRLEN system variable.
LD ($5B4D) , HL ; update DEST of assigned string.

RET ; Return.

; THE 'COMMAND CLASS 02' ROUTINE

; This is only used in the LET command.
; e.g. LET A = 2*3 ; an expression must follow the separator.
CLASs 02 POP BC ; drop the return address SCAN-LOOP

CALL VAL FET 1 ; routine VAL-FET-1 is called to check

; expression and assign result in runtime.

CALL CHECK END ; routine CHECK-END checks nothing else
; 1s present in statement.

RET ; Return in runtime also.

; THE 'FETCH A VALUE' SUBROUTINE

VAL FET 1 LD A, ($5B3B) ; fetch initial FLAGS system variable to A.
VAL FET 2 PUSH AF ; Save initial flags A briefly
CALL SCANNING ; routine SCANNING evaluates expression.
POP AF ; Restore the initial flags - A.
LD D, (IY+501) ; Fetch post-scanning FLAGS value to D
XOR D ; XOR the before and after flags.
AND $40 ; isolate bit 6 of result.
VAL RPT C JR NZ,REPORT C ; Forward, if not zero, to REPORT-C

; 'Nonsense in BASIC'
BIT 7,D ; Test FLAGS - is syntax being checked ?

JP NZ,LET ; Jump forward, in runtime, to LET
; to make the assignment.

RET ; Return from here when checking syntax.

; THE 'COMMAND CLASS 04' ROUTINE

; e.g. FOR 1 ; a single character variable must follow
CLASS_O4 CALL LOOK VARS ; routine LOOK-VARS
PUSH AF ; preserve flags.
LD A,C ; fetch type - should be 011xxxxx
OR SOF ; combine with 10011111.
INC A ; test if result is now S$FF by incrementing.
JR NZ, REPORT C ; forward, if result not zero, to REPORT-C

; '"Nonsense in BASIC'

POP AF ; else restore flags.

JR

back to VAR-A-1

; This routine is used to get the two coordinates of STRINGS, ATTR and POINT.
; It is also called from PRINT-ITEM to get the two numeric expressions that

; follow the AT (in PRINT AT,

NEXT 2NUM RST

CLASS_08

EXPT 2NUM CALL

CP

JR

RST
; ->
CLA88706

EXPT 1NUM CALL

BIT

REPORT C RST

20H

EXPT 1NUM
s$2C
NzZ,REPORT C

20H

SCANNING
6, (IY+$01)
NZ

30H
SOB

; THE 'COMMAND CLASS OA'

ROUTINE

INPUT AT).

NEXT-CHAR advance past 'AT' or '('.

e.g. POKE 65535,2
two numeric expressions separated by comma

routine EXPT-1NUM is called for first
numeric expression

is character ',' ?

to REPORT-C if not the required separator.
'Nonsense in BASIC'.

NEXT-CHAR

e.g. GO TO a*1000
a numeric expression must follow

routine SCANNING
test FLAGS - Numeric or string result ?
return if result is numeric.

ERROR-1
Error Report: Nonsense in BASIC

; A string expression must follow. These classes only occur in unimplemented
; commands although the routine EXPT EXP is called from SAVE ETC.
; It is used in the FORMAT and OPEN syntax tables.

CLASS_0A

EXPT EXP CALL
BIT
RET

JR

SCANNING
6, (IY+$01)
Z

REPORT C

; THE 'COMMAND CLASS 07'

; Set permanent colours

; e.g. PAPER 6

ROUTINE

routine SCANNING
test FLAGS - Numeric or string result ?
return i1if string result.

back, if numeric, to REPORT-C.

; a single class for a collection of similar commands. Clever.

; Note. these commands should ensure that current channel is 'S'

;77 CLASS 07 BIT 7, (IY+$01) ; test FLAGS - checking syntax only ?
P RES 0, (IY+3502) ; update TV_FLAG - signal main screen in use
Pii CALL NZ,TEMPs ; routine TEMPs is called in runtime.
CLASS 07 LD A, SFE ;
CALL CHN O SYN ;+ ensure control codes go to screen and not a

;+ microdrive file in runtime.
;+ Returns if checking syntax.

POP AF ; drop return address SCAN-LOOP
LD A, ($5B74) ; Fetch T ADDR lo to accumulator.
; points to '$07' entry + 1
; e.g. for INK points to $EC now

; Note if you move alter the syntax table next line may have to be altered.

SUB P INK-$D8 % 256 ; convert $EB to $D8 ('INK') etc.
; (was SUB $13 in standard ROM)

CALL CO TEMP 4 ; routine CO-TEMP-4
CALL CHECK _END ; routine CHECK-END check that nothing else
; appears in the statement and quits if

; checking syntax. >>

; Return to here in runtime. The temporary attributes set up by CO TEMP 4
; are now copied to the permanent attributes to make the change premanent.

LD HL, ($5B8F) ; pick up ATTR T and MASK T

LD ($5B8D) , HL ;7 and transfer to ATTR P and MASK P

LD HL, $5B91 ; point to P FLAG.

LD A, (HL) ; pick up in A

RLCA ; rotate to left

XOR (HL) ; combine with HL

AND SAA ; AND with %10101010

XOR (HL) ; only only the permanent bits affected
LD (HL) , A ; reload into system variable P FLAG.
RET ; Return.

; THE 'COMMAND CLASS 09' ROUTINE

; e.g. PLOT PAPER 0; 128,88 ; two coordinates preceded by optional
; ; embedded colour items.

; Note. this command should ensure that current channel is actually 'S'.

CLASS 09 CALL SYNTAX 7 ; routine SYNTAX 7

JR Zz,CL 09 1 ; forward to CL_09 1 if checking syntax.
- RES 0, (IY+S502) ; update TV _FLAG - signal main screen in use
e CALL TEMPs ; routine TEMPs is called in runtime.

CALL CHAN O FE ;+ ensure control codes go to screen and not

;+ to the network in runtime.

LD HL, $5B90 ; point to MASK T

LD A, (HL) ; fetch mask to accumulator.
OR SF8 ; or with 11111000 paper/bright/flash 8
LD (HL) ,A ; put mask back to MASK T system variable.
RES 6, (IY+$57) ; reset P_FLAG - signal NOT PAPER 9 ?
RST 18H ; GET-CHAR
CL 09 1 CALL CO _TEMP 2 ; routine CO-TEMP-2 deals with any embedded

; colour items.
JR EXPT 2NUM ; exit via EXPT-2NUM to check for x,y.

Note. if either of the numeric expressions contain STR$ then the flag
setting above will be undone when the channel flags are reset during STRS.
e.g.

10 BORDER 3 : PLOT VAL STRS$ 128, VAL STRS 100

credit: John Elliott.

THE 'COMMAND CLASS 0B' ROUTINE

Again a single class for four commands.

This command just jumps back to SAVE-ETC to handle the four tape commands.
The routine itself works out which command has called it by examining the
address in T ADDR lo. Note therefore that the syntax table has to be
located where these and other sequential command addresses are not split
over a page boundary.

CLASS 0B JP SAVE_ETC ; jump way back to SAVE-ETC

’

’

THE NEW 'EXPECT SEPARATOR' ROUTINE

Seven bytes
Returns with zero flag set if character is a separator.

EXPT_SEP RST 18H ; GET_CHAR
CP s2C ; 1s 1t a comma
RET Z ;
CP S3B ; 1s it a semicolon
RET ;

’

THE NEW 'CLASS 0C' SUBROUTINE

CLASS 0C CALL EXPT SEP ; check for a valid separator ';' or ','.

JR NZ, REPORT C ; jump forward, if not, to REPORT-C
; '"Nonsense in BASIC'.

NXT CH RST 20H ; NEXT-CHAR advance to next character

RET ; return.

THE 'FETCH A NUMBER' SUBROUTINE

This routine is called from CLASS-03 when a command may be followed by
an optional numeric expression e.g. RUN. If the end of statement has
been reached then zero is used as the default.

Also called from LIST-4.

; Note. called from SAVE "program" LINE

FETCH NUM CP
JR

CP
JR

$0D
Z,USE_ZERO

$3A
NZ,EXPT 1NUM

is character a carriage return ?
forward, if

is it
back,

L B

so, to USE-ZERO

if not, to EXPT-1NUM
else continue and use zero.

; THE 'USE ZERO' ROUTINE
; This routine is called four times to place the value zero on the
; calculator stack as a default value in runtime.

;77 USE_ZERO CALL SYNTAX 7

ri RET Z
USE_ZERO CALL UNSTACK 7
RST 28H
DEFB SAO
DEFB $38
RET

; THE 'STOP' COMMAND

; Command Syntax: STOP
; One of the shortest and least used commands. As with 'OK' not an error.
; Note. moved to fill a couple of bytes at $0064.

; THE 'IF' COMMAND

; e.g. IF Warp Factor > 8 THEN PRINT "Och!

’

’

;+

’
’

’

’

routine SYNTAX 7 (UNSTACK_77?)

; ;stk-ze
; ;end-ca

Return

;7 FP-CALC

ro
1c

return early if checking syntax.

she'll blow Captain."

; The parser has already checked the expression the result of which is on
; the calculator stack. The presence of the
; checked and CH-ADD points to the command after THEN.

IF POP
CALL
JR

RST
DEFB
DEFB
EX
CALL

Jp

IF 1 JPp

BC
SYNTAX %
z,IF 1

28H

$02

$38

DE, HL
TEST ZERO

C,LINE_ END

STMT L 1

; THE 'FOR' COMMAND

’
’
’

’

’
’
’

’

’

’

’

'THEN' separator has also been

drop return address - STMT-RET
routine SYNTAX-Z
forward, if

to check syntax of PRINT "Och! She'll blow...

; ;delete
; ;end-ca

; ; FP-CALC

1lc

checking syntax, to IF-1

Warp Factor > 8 (1=TRUE O=FALSE)

make HL point to deleted value

routine TEST-ZERO

jump to LINE-END if FALSE (0)

to STMT-L-1,

after

'THEN'

if true (1) to execute command
token.

; e.g.

FOR i 0 TO 1 STEP 0.1
; Using the syntax tables,
; limit value and also for the intervening separators.

; are on the calculator stack.

the parser has already checked for a start and

The two values v, 1
The CLASS-04 routine has also checked the

; variable and the name is in STRLEN lo.
; The routine begins by checking for an optional STEP.

F_ REORDER

CP
JR

RST

CALL
CALL
CALL

JR

CALL
RST

DEFB
DEFB

RST

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

CALL

LD

DEC
LD
SET

LD
ADD

RLCA

JR

LD

CALL

INC

PUSH

RST

$CD
NZ,F_USE_1

20H

EXPT_1NUM
CHECK_END
CHK_END 1

F REORDER

CHECK_END
28H

SAl
$38

28H
$CO
$02
$01
SEO
$01
$38

LET

($5B68) , HL

BC, $0006
HL, BC

C,F LS

C,$0D

MAKE ROOM
HL
HL

28H

’

’

’
’

’

is there a 'STEP' ?
Forward, if not, to F-USE-1
NEXT-CHAR

routine EXPT-1NUM checks for number
routine CHECK-END

;+ above three routines

’

’

’

’

forward to F-REORDER

routine CHECK-END

FP-CALC
stk-one
end-calc

FP-CALC v
st-mem-0 v
delete v
exchange 1,
get-mem-0 1
exchange 1
end-calc

routine LET assigns the initial value v to
the variable.

The system variable MEM is made to point to
the variable instead of its normal location
at MEMBOT.

point to the single-character name.

fetch character.

set bit 7 at variable location.

add six to HL to skip the wvalue and
address where limit should be.

test bit 7 of original variable name.
to F-L-S

forward, if already correct type,

otherwise an additional 13 bytes are needed.
5 for each value, two for line number and

1 byte for looping statement.

routine MAKE-ROOM creates them.

make HL address the limit.

save the limit position.

FP-CALC 1l,s.

; At this point,

; No loop is possible,

F_LOOP

DEFB
DEFB
DEFB

POP
EX
LD

LDIR

LD
EX

LD
INC
LD
LD
INC
INC
LD

CALL

RET

LD
LD
LD
LD
NEG
LD
RST
LD
LD
PUSH
LD

CALL

LD

POP

JR

RST

OR

CP
JR

$02
$02
$38

HL
DE, HL
C,$0A

HL, ($5B45)
DE, HL

(HL) ,E

HL

(HL), D

D, (IY+$0D)
D

HL

(HL) , D

NEXT LOOP

NC

B, (IY+$38)
HL, ($5B45)
($5B42) , HL
A, ($5B47)
D, A

18H

HL, ($5B5D)
E, S$F3

BC

BC, ($5B55)

LOOK_PROG

($5B55) , BC
BC
C,REPORT T
208

$20

B
Z,¥ FOUND

DE points to

; ;delete 1.
; ;delete
;;end-calc

STKEND the start of the two deleted numbers.

; restore variable limit position
; swap pointers
; ten bytes to move

; Copy 'deleted' values to limit and step.

; Load with current line number from PPC
; exchange pointers.

; save the looping line in
; in the next
; two variable locations.

; fetch statement from SUBPPC system variable.
; lncrement the statement.

; increment the variable pointer

; and store the looping statement.

; routine NEXT-LOOP considers an initial
; literation.

; Return to STMT-RET, if a loop is possible, to
; execute the next statement.

so execution continues after the matching 'NEXT'

; get the single-character name from STRLEN lo
; get the current line from PPC

; and store it in NEWPPC

; fetch current statement from SUBPPC

; Negate as counter decrements from zero

; initially and we are in the middle of a line.
; Store result in D.

; get current character address from CH ADD
; The search will be for the token 'NEXT'

; save the variable name in B.

; fetch NXTLIN

; routine LOOK-PROG searches for 'NEXT' token
; setting carry flag if end of program reached
; and updating NEWPPC with line number, BC.

; update NXTLIN

; retrieve the variable name in B.

; forward, if at program end, to REPORT-I
; 'FOR without NEXT'

; NEXT-CHAR fetches character after NEXT
; ensure it is upper-case.

; compare with FOR variable name

; forward, i1f it matches, to F-FOUND

; but if no match i.e. nested FOR/NEXT loops then continue search.

RST 20H ;
JR F LOOP ;

F_FOUND RST 20H ;

LD A,$01 ;
SUB D :
LD ($5B44) ,A :
RET ;

REPORT I RST 30H ;
DEFB S11 ;

; THE 'LOOK PROGRAM' SUBROUTINE

NEXT-CHAR
back to F-LOOP

NEXT-CHAR

subtract the negated counter from 1

to give the statement after the NEXT
set system variable NSPPC

return to STMT-RET to branch to new

line and statement. ->

ERROR-1
Error Report: FOR without NEXT

; Used to find tokens DATA, DEF FN or NEXT.
; This routine searches the program area for one of the above three keywords.
; On entry, HL points to start of search area.

; The token is in E, and D holds a statement count, decremented from zero.

LOOK_PROG LD A, (HL) ;
CcP $3A ;
JR Z,LO0K P 2 ;

; The starting point was PROG-1

LOOK_P 1 INC HL ;

1D A, (HL) ;
AND $CO ;
SCF ;
RET NZ ;
LD B, (HL) ;
INC HL ;
LD C, (HL) ;
1D ($5B42) ,BC ;
INC HL ;
LD C, (HL) ;
INC HL ;
1D B, (HL) ;
PUSH HL ;

ADD HL,BC ;

LD B,H ;
LD C,L ;
POP HL ;
LD D, $00 ;

LOOK_P 2 PUSH BC ;

CALL EACH_STMT ;

fetch current character

is it ':' a statement separator ?
forward, if so, to LOOK-P-2

or is now the end of a line.
increment pointer to address

the high byte of line number

test for program end marker $80 or a
variable

Set Carry Flag

return with carry set if at end of program.
high byte of line number to B

low byte to C.

set system variable NEWPPC.

low byte of line length to C.

high byte to B.

save current address - pointing to BASIC.
add length to current address.

and transfer the result - the next line -
to the BC register.

retrieve the current address.

initialize statement counter to zero.

preserve address of next line

routine EACH-STMT searches current line.

->

POP BC ; retrieve address of next line.
RET NC ; return if match was found. ->
JR LOOK P 1 ; back, for next line, to LOOK-P-1
; THE 'NEXT' COMMAND
; e.g. NEXT i
; The parameter tables have already evaluated the presence of a variable
NEXT BIT 1, (IY+S$37) ; test FLAGX - handling a new variable ?
JP NZ,REPORT 2 ; .jump back, if so, to REPORT-2
; 'Variable not found'
; now test if the found variable is a simple variable uninitialized by a FOR.
LD HL, ($5B4D) ; load address of variable from DEST
BIT 7, (HL) ; 1s 1t correct type ?
JR Z,REPORT 1 ; forward, if not, to REPORT-1
; 'NEXT without FOR'
INC HL ; step past variable name
LD ($5B68) , HL ; and set system variable MEM to point to the

; Now add the

REPORT 1

RST

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

CALL

RET

LD

LD
ADD

LD
INC
LD

INC
LD

EX

Jp

RST
DEFB

three 5-byte numbers - value, limit, step.

step and put result in the value (mem-0).

28H
SEOQ
SE2
SOF
$co
$02
$38

NEXT_ LOOP
C
HL, ($5B68)

DE, $000F
HL, DE

E, (HL)
HL
D, (HL)

HL
H, (HL)

DE, HL

GO _TO 2

30H
$00

’
’
’
’
’
’

’

’

;; FP-CALC
;get-mem-0 V.
;get-mem-2 v,S.
;addition v+s.
; st-mem-0 v+s.
;delete

;end-calc

routine NEXT-LOOP tests against limit.
return 1if no more iterations possible.
find start of variable contents from MEM.

add 3*5 to
address the looping line number

low byte to E
high byte to D

address looping statement
and store in H

exchange - HL = line number, D = statement.

exit via GO-TO-2 to execute another loop.

ERROR-1
Error Report: NEXT without FOR

; THE 'NEXT LOOP' SUBROUTINE
; This routine is called from the FOR command to test for an initial
; iteration and from the NEXT command to test for all subsequent iterations.
; the system variable MEM addresses the variable's contents which, in the
; latter case, have had the step, possibly negative, added to the value.
NEXT LOOP RST 28H ;; FP-CALC
DEFB SE1 ; ;get-mem-1 1
DEFB S$SEO ;7 get-mem-0 1,v.
DEFB S$E2 ; rget-mem-2 1,v,s.
DEFB $36 ;7 less-0 1,v, (1/0) negative step ?
DEFB 3500 ;7 jump-true 1,v, (1/0)
DEFB NEXT 1 - $;:to NEXT-1 if step negative
DEFB $01 ; ;exchange v, 1.
NEXT 1 DEFB $03 ; ;subtract 1-v OR v-1.
DEFB $37 ;;greater-0 (1/0)
DEFB $00 ;; jump-true
DEFB NEXT 2 - § ;;to NEXT-2 if no more iterations.
DEFB $38 ;;end-calc
AND A ; clear carry flag signaling another loop.
RET ; return
NEXT 2 DEFB $38 ;;end-calc
SCF ; set carry flag signaling looping exhausted.
RET ; return
; THE 'READ' COMMAND
; e.g. READ a, b$, c$(1000 TO 3000)
; A list of comma-separated variables is assigned from a list of
; comma-separated expressions.
; As it moves along the first list, the character address CH ADD is stored

; in X PTR while CH ADD is then used to read the second list.

READ 3 RST 20H

; -> Entry point.

READ CALL CLASS 01
CALL SYNTAX 7Z
JR Z,READ 2

; The runtime path continues.
RST 18H

NEXT-CHAR

routine CLASS-01 checks variable.
routine SYNTAX-7Z
to READ-2

forward, if checking syntax,

GET-CHAR fetches character address of variable
within BASIC to HL.

LD

LD

LD
CP
JR

($5B5F) , HL

HL, ($5B57)

A, (HL)
$2C
Z,READ 1

save character position in X PTR.

load HL with Data Address DATADD, which is
the start of the program or the address
after the last expression that was read or
the address preceding the line number of the
last RESTORE command.

fetch character
is it a comma *?
forward, if so, to READ-1

; else all data in this statement has been read so look for next DATA token.

LD
CALL
JR

; else report

REPORT E RST
DEFB

READ 1 CALL

CALL

RST
LD

LD
X_PTR

LD

CALL
READ 2 RST

CP

JR

CALL

E, SE4

LOOK_PROG
NC,READ 1
the error.

30H
$0D

TEMP_ PTRI1

VAL FET 1

18H
($5B57) ,HL

HL, ($5B5F)

(IY+$26),500
TEMP_PTR2
18H
$2cC

7Z,READ 3

CHECK_END

; THE 'DATA' COMMAND

; e.g. DATA 1
; wages
; In runtime

, 2, "text",
- tax, TRUE,

this 'command'

’

prepare token 'DATA'
routine LOOK-PROG finds the token

forward, if 'DATA' found, to READ-1

ERROR-1
Error Report: Out of DATA

routine TEMP-PTR1 advances updating CH ADD
with new DATADD position.

routine VAL-FET-1 assigns wvalue to variable
checking types match and advancing CH ADD.

GET-CHAR fetches adjusted character position
store back in DATADD

fetch original READ statement pointer from

nullify X PTR hi as redundant.

routine TEMP-PTR2 restores the READ character
address to CH_ADD.

GET-CHAR
is it ',' indicating more variables to read ?

back, if so, to READ-3

routine CHECK-END checks that nothing
follows and returns if checking syntax >>

return from here in runtime to STMT-RET.

score-1, a$(location, room, object), FN r(49),
The meaning of life

is passed by but the syntax is checked when such

; a statement is found while parsing a line.

DATA CALL
JR

SYNTAX %
NZ, DATA 2

’

’

routine SYNTAX-Z to check status
forward, if in runtime, to DATA-2

; The syntax path continues.

DATA 1 CALL SCANNING ; routine SCANNING to check syntax of expression
CP $2¢C ; is following character a comma °?
CALL NZ,CHECK END ; 1f not, routine CHECK-END checks that

; statement is complete. Will make an early
; oexit 1f it is. >>>

RST 20H ; NEXT-CHAR advances past comma.
JR DATA 1 ; loop back to DATA-1
DATA 2 LD A, SE4 ; in runtime, set token to 'DATA' and continue

; into the PASS-BY routine.

; THE 'PASS BY' SUBROUTINE

; This routine is used to backtrack to a command token and then forward to

; the next statement in runtime.

; The A register contains the required token - either $E4 (DATA) from above,
; or $SCE (DEF FN) when called.

PASS BY LD B,A ; Give BC enough space to find the token.

CPDR ; Compare decrement and repeat. (Only use).
; Work backwards until keyword is found which
; 1s the start of statement before any quotes.
; HL points to location before keyword.

LD DE, $0200 ; count 1+1 statements, dummy value in E to
; inhibit searching for a token.

JP EACH_STMT ; to EACH-STMT to find next statement

; THE 'RESTORE' COMMAND

; The RESTORE command sets the system variable for the data address to

; point to the location before the supplied line number or first line

; thereafter.

; This alters the position where subsequent READ commands look for data.

; Note. If supplied with inappropriate high numbers the system may crash

; in the LINE-ADDR routine as it will pass the program/variables end-marker
; and then lose control of what it is looking for - variable or line number.
; - observation, Steven Vickers, 1984, Pitman.

RESTORE CALL FIND LINE ;+ routine FIND-INT2 puts integer in BC.
;+ Note. B is now checked against limit $3F
;+ and an error generated if higher.

; this entry point is used from RUN command with BC holding zero

REST RUN LD H,B ; transfer the line
LD L,C ; number to the HL register.

CALL LINE ADDR ; routine LINE-ADDR to fetch the address.

DEC HL ; point to the location before the line.
LD ($5B57) , HL ; update the dynamic system variable DATADD.

RET ; return to STMT-RET (or RUN)

; THE 'RANDOMIZE' COMMAND

; This command sets the SEED for the RND function to a fixed value.
; With the parameter zero, a random start point is used depending on
; how long the computer has been switched on.
RANDOMIZE CALL FIND INT2 ; routine FIND-INT2 puts parameter in BC.
LD A,B ; test this
OR C ; for zero.
JR NZ,RAND 1 ; forward to RAND-1 if not =zero.
LD BC, ($5B78) ; use the lower two bytes at FRAMESI.
RAND 1 LD ($5B76) ,BC ; place in SEED system variable.
RET ; return to STMT-RET

; THE 'CONTINUE' COMMAND

; The CONTINUE command transfers the OLD (but incremented) values of

; line number and statement to the equivalent "NEW VALUE" system variables
; by using the last part of GO TO and exits indirectly to STMT-RET.

CONTINUE LD HL, ($5B6E) ; fetch OLDPPC line number.
LD D, (IY+$306) ; fetch OSPPC statement.
JR GO _TO 2 ; forward to GO-TO-2

; THE 'GO TO' COMMAND

; The GO TO command routine is also called by GO SUB and RUN routines

; to evaluate the parameters of both commands.

; It updates the system variables used to fetch the next line/statement.
; It is at STMT-RET that the actual change in control takes place.

; Unlike some BASICs the line number need not exist.

; Note. the high byte of the line number is incorrectly compared with $FO
; instead of $3F. This leads to commands with operands greater than 32767

; being considered as having been run from the editing area and the

; error report 'Statement Lost' is given instead of 'OK'.

; - Steven Vickers, 1984.

GO_TO CALL FIND LINE ;+ routine FIND-INT2 puts operand in BC
s LD H,B ; transfer line

P LD L, C ; number to HL.

] LD D,$00 ; set statement to 0 - first.

HE LD A,H ; compare high byte only

P CP SFO ; to SFO i.e. 61439 in full.

HHE JR NC, REPORT Bb ; forward, if higher, to REPORT-B

; This call entry point is used to update the system variables e.g. by RETURN.

GO _TO_ 2 LD ($5B42) ,HL ; save line number in NEWPPC
LD (IY+s0Aa),D ; and statement in NSPPC

RET ; to STMT-RET (or GO-SUB command)

; THE 'OUT' COMMAND

; Syntax has been entirely checked and the two comma-separated values are on
; the calculator stack.
ouT CALL TWO PARAM ; routine TWO-PARAM fetches values to BC and A.
ouT (C),A ; perform the operation.
RET ; return to STMT-RET.

; THE 'POKE' COMMAND

; This routine alters a single byte in the 64K address space.

; Happily no check is made as to whether ROM or RAM is addressed.

; Sinclair BASIC requires no poking of the system variables.

POKE CALL TWO PARAM ; routine TWO-PARAM fetches values to BC and A.
LD (BC),A ; load memory location with A.
RET ; return to STMT-RET.

; THE 'FETCH TWO PARAMETERS' SUBROUTINE

; This routine fetches a byte and word from the calculator stack producing an
; error if either is out of range.
TWO_PARAM CALL FP _TO A ; routine FP-TO-A

JR C, REPORT Bb ; forward, with 8-bit overflow, to REPORT-B

; 'Integer out of range'

JR Z,TWO_P 1 ; skip forward, if positive, to TWO-P-1
NEG ; negative numbers are made positive.
TWO P 1 PUSH AF ; save the byte value
CALL FIND INT2 ; routine FIND-INT2 gets 1l6-bit integer to BC
POP AF ; restore the byte value
RET ; return

; THE 'FIND INTEGERS' ROUTINES

; The first of these routines fetches a 8-bit integer (range 0-255) from the
; calculator stack to the accumulator and is used for colours, streams,

; durations and coordinates.

; The second routine fetches 16-bit integers to the BC register pair and is
; used to fetch command and function arguments involving line numbers or

; memory addresses and also array subscripts and tab arguments.

; ->

FIND INT1 CALL FP_TO A ; routine FP-TO-A

JR FIND T 1 ; forward to common exit routine at FIND-I-1

FIND INT2 CALL FP_TO BC ; routine FP-TO-BC

; The common exit routine checks that numbers are positive and do not overflow

FIND I 1 JR C,REPORT Bb ; skip forward, with overflow, to REPORT-Bb
RET Z ; return if BC (or A) 1is positive.
REPORT_Bb RST 30H ; ERROR-1
DEFB $0A ; Error Report: Integer out of range

; THE NEW 'FIND LINE' SUBROUTINE

7+ This new routine is used in place of FIND INT2 to validate the line numbers
;+ that it fetches.

FIND LINE CALL FIND INT2 ;+ Routine gets 16 bit integer in BC.
LD H,B ;
LD L,C ;
LD A,B ;+ Fetch high byte.
CP $40 ;+ Compare with the system limit.
JR NC, REPORT_ Bb ;+ Back, if higher, than 16383 to ERROR Bb

;+ 'Integer out of range'
LD D, $00 ;+ Useful return value.

RET ;+ Return.

; THE NEW 'CLEAR HASH' ROUTINE

; This routine responds to the command 'CLEAR #' by closing the sixteen

; streams in turn. Any pending printer output is flushed but network output
; is discarded. A hash has been found and it remains to check that nothing

; follows.
CLR_HASH RST 20H ;+ NEXT CHAR
CALL CHECK _END ;+ CHECK_END quits if checking syntax >>

; The runtime path.

LD A,16 ;+ Set stream to sixteen
NMI STRMS SET 6, (IY+$3B) ;+ Set T ADDR hi to indicate no Network EOF.
ALL STRMS DEC A ;+ pre—-decrement

PUSH AF ;+ save stream and result flag.

CALL STR DATAl ;+ get the offset

CALL NZ,CLOSE_OK ;+ CLOSE the stream if it's open.

POP AF s+
JR NZ,ALL STRMS ;+ do all sixteen

RET ;+ Return.

; THE 'RUN' COMMAND

; This command runs a program starting at an optional line.
; It performs a 'RESTORE 0' then CLEAR

RUN CALL GO _TO ; routine GO-TO puts line number in
; system variables.

H LD BC, $0000 ; prepare to set DATADD to first line.
LD B,D ;T
1D C,D i+
CALL REST RUN ; routine REST-RUN does the 'restore'.

; Note. BC still holds zero.

JR CLEAR RUN ; forward to CLEAR-RUN to clear variables
; without disturbing RAMTOP and
; exit indirectly to STMT-RET

; THE 'CLEAR' COMMAND

; This command reclaims the space used by the wvariables.

; It also clears the screen and the GO SUB stack.

; With an integer expression, it sets the uppermost memory

; address within the BASIC system.

; "Contrary to the manual, CLEAR doesn't execute a RESTORE"

; Steven Vickers, Pitman Pocket Guide to the Spectrum, 1984.

; Notice also that if an error occurs then the GOSUB stack is not cleared.

CLEAR RST 18H ; GET CHAR
Ccp $23 ; is character a "#' ?
JR Z,CLR_HASH ; back if so.
CALL FETCH NUM ;+ routine FETCH NUM checks for numeric

;+ expression and stacks in run-time defaulting
;+ to zero.

CALL CHECK END ; routine CHECK-END quits if syntax path.

CALL FIND INT2 ; routine FIND-INT2 fetches address to BC.
CLEAR RUN LD A,B ; test for

OR C ; zero.

JR NZ,CLEAR 1 ; skip, if not zero, to CLEAR-1

LD BC, ($5BB2) ; use the existing value of RAMTOP if zero.
CLEAR_l PUSH BC ; save RAMTOP value.

LD DE, ($5B4B) ; fetch VARS
1 LD HL, ($5B59) ; fetch E LINE
HE DEC HL ; adjust to point at variables end-marker.

CALL L _EL DHL ;+ NEW routine with above code.

CALL RECLAIM 1 ; routine RECLAIM-1 reclaims the space used by
; the variables, setting BC to zero.

; Note. A call to REST RUN here would execute a RESTORE as per BASIC manual
; but it is difficult to decide if CLEAR should execute a RESTORE. Vickers
; merely points out that the ROM doesn't.

CALL CLS ; routine CLS to clear screen.
LD HL, ($5B65) ; fetch STKEND the start of free memory.
HE LD DE, $0032 ; allow for another 50 bytes.
LD E, $32 ; allow for another 50 bytes.
ADD HL, DE ; add the overhead to HL.
POP DE ; restore the RAMTOP value.
SBC HL, DE ; if HL is greater than the value then Jjump
JR NC, REPORT M ; forward to REPORT-M
; 'RAMTOP no good'
LD HL, ($5BB4) ; now P-RAMT ($7FFF on 16K RAM machine)
AND A ; exact this time.
SBC HL, DE ; new RAMTOP must be lower or the same.
JR NC, CLEAR_ 2 ; skipa, if in actual RAM, to CLEAR-2
REPORT M RST 30H ; ERROR-1
DEFB $15 ; Error Report: RAMTOP no good
; Now, even 1f RAMTOP has not moved, the GOSUB stack is cleared and
; initialized.
CLEAR 2 EX DE, HL ; transfer RAMTOP value to HL.
LD ($5BB2) , HL ; update system variable RAMTOP.
POP DE ; pop the return address STMT-RET.
POP BC ; pop the Error Address.
LD (HL) , $3E ; now put the GO SUB end-marker at RAMTOP.
DEC HL ; leave a location beneath it.
LD SP, HL ; initialize the machine stack pointer.
PUSH BC ; push the error address.
LD ($5B3D), SP ; make ERR SP point to location.
EX DE, HL ; put STMT-RET in HL.
JP (HL) ; and go there directly.

; THE 'GO SUB' COMMAND

; The GO SUB command diverts BASIC control to a new line number in a very

; similar manner to GO TO but the current line number and current statement
; plus 1 are placed on the GO SUB stack as a RETURN point.

GO_SUB POP DE ; drop the address STMT-RET
LD H, (IY+$0D) ; fetch statement from SUBPPC and
INC H ; increment it
EX (SP) , HL ; swap - error address to HL,
; H (statement) at top of stack,
; L (unimportant) beneath.
INC SP ; adjust to overwrite unimportant byte
LD BC, ($5B45) ; fetch the current line number from PPC
PUSH BC ; and PUSH onto GO SUB stack.
; the empty machine-stack can be rebuilt
PUSH HL ; push the error address.

LD ($5B3D), SP ; make system variable ERR _SP point to it.
PUSH DE ; push the address STMT-RET.

CALL GO_TO ; call routine GO-TO to update the system

; variables NEWPPC and NSPPC.

; then make an indirect exit to STMT-RET via
LD BC, $0014 ; a 20-byte overhead memory check.

; THE 'TEST ROOM' SUBROUTINE

; This routine is used on many occasions when extending a dynamic area
; upwards or the GO SUB stack downwards.

TEST ROOM LD HL, ($5B65) ; fetch STKEND
ADD HL, BC ; add the supplied test wvalue
JR C,REPORT 4 ; forward, if over S$SFFFF, to REPORT-4

; 'Out of memory'

EX DE, HL ; The result was less so transfer to DE

LD HL, $0050 ; test against another 80 bytes

ADD HL, DE ; anyway

JR C,REPORT 4 ; forward, if this passes S$FFFF, to REPORT-4

; 'Out of memory'

SBC HL, SP ; if less than the machine stack pointer

RET C ; then return - OK.
; Register HL contains the negated number of
; free bytes.

REPORT 4 LD L,$03 ; prepare 'Out of memory'

JP ERROR 3 ; jump back to ERROR-3
; Note. this error can't be trapped at $0008

; THE 'FREE MEMORY' USER ROUTINE

; This routine is not used by the ROM but allows users to evaluate
; approximate free memory with PRINT 65536 - USR address.
; Note. It has been moved, for stability, to location ninety three decimal.

; THE 'RETURN' COMMAND

; As with any command, there are two values on the machine stack at the time

; it is invoked. The machine stack is below the GO SUB stack. Both grow
; downwards, the machine stack by two bytes, the GO SUB stack by 3 bytes.

; The highest location is a statement byte followed by a two-byte line number.
RETURN POP BC ; drop the address STMT-RET.
POP HL ; now the error address.
POP DE ; now a possible BASIC return line.
LD A,D ; the high byte $00 - $27 is
CP $3E ; compared with the traditional end-marker $3E.
JR Z,REPORT 7 ; forward, with a match, to REPORT-7

; 'RETURN without GO SUB'

; It was not the end-marker so a single statement byte remains at the base of

; the calculator stack. It can't be popped off.

DEC SP ; adjust stack pointer to create room for two
; bytes.

EX (SP) , HL ; statement to H, error address to base of
; new machine stack.

EX DE, HL ; statement to D, BASIC line number to HL.
LD ($5B3D), SP ; adjust ERR _SP to point to new stack pointer
PUSH BC ; now re-stack the address STMT-RET

Jp GO TO 2 ; back to GO-TO-2

; to update statement and line system variables
; and exit indirectly to the address just pushed
; on the stack.

REPORT 7 PUSH DE ; replace the end-marker.
PUSH HL ; now restore the error address
; as will be required in a few clock cycles.

RST 30H ; ERROR-1
DEFB 506 ; Error Report: RETURN without GOSUB

; Note. 'GO SUB' won't fit in message.

; THE 'PAUSE' COMMAND

; The PAUSE command takes as its parameter the number of interrupts
; for which to wait. PAUSE 50 pauses for about a second in the UK.
; PAUSE 60 waits for the same time in the USA.

; PAUSE 0 pauses indefinitely.

; Both forms can be finished early by pressing a key.
PAUSE CALL FIND_INTZ ; routine FIND-INT2 puts value in BC
PAUSE 1 HALT ; wait for an interrupt.
DEC BC ; decrease the counter.
LD A,B ; test if the
OR C ; result is zero.
JR Z,PAUSE END ; forward, i1f so, to PAUSE-END
LD A,B ; test if
AND C ; now SFFFF
INC A ; that is, initially =zero.
JR NZ, PAUSE 2 ; skip forward, if not, to PAUSE-2
INC BC ; restore counter to zero.
PAUSE 2 BIT 5, (IY+$01) ; test FLAGS - has a new key been pressed ?
JR Z,PAUSE 1 ; back, if not, to PAUSE-1
PAUSE END RES 5, (IY+S$01) ; update FLAGS - signal no new key
RET ; Return.

; THE 'CHECK FOR BREAK' SUBROUTINE

; This routine is called from COPY-LINE, when interrupts are disabled, to
; test if BREAK (SHIFT - SPACE) is being pressed.

; It is also called at STMT-RET after every statement.

BREAK KEY LD A,STF ; Input address: S$7FFE
IN A, (SFE) ; read lower right keys
RRA ; rotate bit 0 - SPACE

RET

DEF FN r$(a$,a) =
'command'

LD
IN
RRA
RET
; THE 'DEF FN'
; e.g.
; this

; line-entry.

DEF_FN

CALL

JR

LD
Jp

COMMAND

SYNTAX %
Z,DEF_FN 1

A, $CE
PASS_BY

’

return if not reset

Input address: SFEFE
read lower left keys
rotate bit 0 - SHIFT

carry will be set if not pressed.
return with no carry if both keys
pressed.

a$(a TO)
is ignored in runtime but has its syntax checked during

routine SYNTAX-7Z

forward, if parsing, to DEF-FN-1

else in runtime load A with 'DEF FN' and

jump back to PASS-BY

; The syntax path continues here.

DEF _FN 1

DEF_FN 2

DEF_FN 3

DEF_FN 4

SET

CALL

JR

RST
CP
JR

RES
CALL

RST

CP
JR

RST
CP
JR

CALL

JR

EX

RST

6, (IY+$01)
ALPHA

NC, REPORT Cd

20H
$24
NZ,DEF_FN 2

6, (IY+$01)
STR_RSLT

20H

$28
NZ, REPORT Cd

20H
$29
Z,DEF_FN 6

ALPHA

NC, REPORT Cd

DE, HL

20H

’

set FLAGS - assume numeric result
call routine ALPHA

forward, if not, to DEF-FN-4
'Nonsense in BASIC'

NEXT-CHAR
is character '$' ?
forward, if not type string, to DEF-FN-2

set FLAGS - signal string result.

get NEXT-CHAR

is character '(' ?
forward, if not, to DEF-FN-7
'Nonsense in BASIC'

NEXT-CHAR
is character
forward, if null arguments,

o2
to DEF-FN-6

routine ALPHA checks that it is the expected

alphabetic character.

Jjump, if not, to REPORT-C
'Nonsense in BASIC'.

save pointer in DE

NEXT-CHAR re-initializes HL from CH ADD
and advances.

CP $24 ; is character a '$' ?

JR NZ,DEF_FN 5 ; forward, if not string argument, to DEF-FN-5
EX DE, HL ; save pointer to '$' in DE
RST 20H ; NEXT-CHAR re-initializes HL and advances
DEF FN 5 EX DE, HL ; bring back pointer.
LD BC, $0006 ; the function requires six hidden bytes for

; each parameter passed.

; The first byte will be S$SOE
; then 5-byte numeric value
; or 5-byte string pointer.

CALL MAKE ROOM ; routine MAKE-ROOM creates space in program
; area.
S INC HL ; adjust HL (set by LDDR)
INC HL ; to point to first location.
LD (HL) , $SOE ; insert the 'hidden' marker.

; Note. these invisible storage locations hold nothing meaningful for the
; moment. They will be used every time the corresponding function is

; evaluated in runtime.

; Now consider the following character fetched earlier.

CP $2C ; is it ',' ? (more than one parameter)
JR NZ,DEF FN 6 ; forward, if not, to DEF-FN-6
RST 20H ; else NEXT-CHAR
JR DEF FN 3 ; and back to DEF-FN-3
DEF FN 6
H CP $29 ; is character the closing '")' ?
HE JR NZ, REPORT Cd ; forward, if not, to DEF-FN-7
- RST 20H ; get NEXT-CHAR
CALL RBRKT NXT 7+ check for right-hand bracket and advances.
CP $3D ; is it '=' 2
JR NZ,REPORT_Cd ; to DEF-FN-7
; 'Nonsense in BASIC'
RST 20H ; address NEXT-CHAR
LD A, ($S5B3B) ; get FLAGS which has been set above
PUSH AF ; and preserve
CALL SCANNING ; routine SCANNING checks syntax of expression
; and also sets flags.
POP AF ; restore previous flags
XOR (IY+$01) ; XOR with FLAGS - bit 6 should be same
; therefore will be reset.
AND $40 ; 1solate bit 6.
;77;; DEF_FN 7 JP NZ,REPORT C ; Jump back to REPORT-C if the expected result

; 1s not the same type.

CALL

CALL

REPORT Cd RST

DEFB

CHECK_END

Z,CHECK_END

30H
SO0B

; 'Nonsense in BASIC'

routine CHECK-END will return early

; routine CHECK-END will return early if
; at end of statement and move onto next
; else produce error report. >>>

; There will be no return to here.

;+ ERROR-1
;+ Error Report: Nonsense in BASIC

; THE 'UNSTACK-Z' SUBROUTINE (6)
; All routines are capable of being run in two modes - syntax checking mode
; and runtime mode. This routine is called often to allow a routine to
; return early if checking syntax.
UNSTACK 7z CALL SYNTAX 7 ; routine SYNTAX-Z sets zero flag if syntax
; 1s being checked.
POP HL ; drop the return address.
RET Z ; return to previous call in chain if checking
; syntax.
JP (HL) ; jump to return address as BASIC program is
; actually running.
; THE 'LPRINT' COMMAND
; A simple form of 'PRINT #3' although it can output to 16 streams.

; Probably

for compatibility with other BASICs particularly ZX81 BASIC.

; An extra UDG might have been better.
LPRINT LD A,S$03 ; the printer channel
JR PRINT 1 ; forward to PRINT-1
; THE 'PRINT' COMMAND
; The Spectrum's main stream output command.
; The default stream is stream 2 which is normally the upper screen
; of the computer. However the stream can be altered in range 0 - 15.
PRINT LD A,S$02 ; the stream for the upper screen.

; The LPRINT

PRINT 1

CALL
CALL
CALL
CALL
CALL

CALL

command joins here.

CHN O SYN
SYNTAX Z
NZ,CHAN SLCT
TEMPs
PRINT 2

CHECK_END

;+ routine opens channel in runtime.

; routine SYNTAX-Z checks if program running
; routine CHAN-OPEN if so (calls TEMPS)

; routine TEMPs sets temporary colours.

; routine PRINT-2 - the actual item

; routine CHECK-END gives error if not at end
; of statement

RET ; and return in runtime >>>

; THE 'PRINT 2' SUBROUTINE

; This subroutine is called from above and also from INPUT.

PRINT 2 RST 18H ; GET-CHAR gets printable character
CALL PR END 7 ; routine PR-END-Z checks if more printing
JR Z, PRINT 4 ; to PRINT-4 if not e.g. just 'PRINT :'

; This tight loop deals with combinations of positional controls and

; print items. An early return can be made from within the loop

; if the end of a print sequence is reached.

PRINT 3 CALL PR _POSN 1 ; routine PR-POSN-1 returns zero if more

; but returns early at this point if
; at end of statement!

JR Z,PRINT 3 ; to PRINT-3 if consecutive positioners
CALL PR ITEM 1 ; routine PR-ITEM-1 deals with strings etc.
CALL PR POSN 1 ; routine PR-POSN-1 for more position codes
JR Z,PRINT 3 ; loop back, if so, to PRINT-3
PRINT 4 CP $29 ; return now if this is ')' from input-item.
; (see INPUT.)
RET Z ; or continue and print carriage return in

; runtime

; THE 'PRINT CARRIAGE RETURN' ROUTINE

; This routine which continues from above prints a carriage return
; in run-time only. It is also called once from PRINT-POSN.

PRINT CR CALL UNSTACK Z ; routine UNSTACK Z quits if checking syntax.
LD A,S$0D ; prepare a carriage return
RST 10H ; PRINT-A outputs to current channel.

N RET ; return.
JP CR_END ;+ NEW test for network before returning.

; THE 'PRINT ITEMS' SUBROUTINE

; This routine deals with print items as in
; PRINT AT 10,0;"The value of A is ";a
; It returns once a single item has been dealt with as it is part
; of a tight loop that considers sequences of positional and print items
PR ITEM 1 RST 18H ; GET-CHAR
CP SAC ; 1s character 'AT' ?
JR NZ,PR ITEM 2 ; forward, if not, to PR-ITEM-2
CALL NEXT 2NUM ; routine NEXT-2NUM check for two comma

; separated numbers placing them on the
; calculator stack in runtime.

CALL UNSTACK Z ; routine UNSTACK Z quits if checking syntax.

CALL STK TO BC ; routine STK-TO-BC get the numbers in B and C.

LD A,S$16 ; prepare the 'at' control.

JR PR AT TAB ; forward to PR-AT-TAB to print the sequence.
PR ITEM 2 CP SAD ; 1s character 'TAB' ?

JR NZ,PR ITEM 3 ; forward, if not, to PR-ITEM-3

RST 20H ; NEXT-CHAR to address next character

CALL EXPT_1NUM ; routine EXPT-1NUM checks for numeric

; expression and stacks it in run-time.

CALL UNSTACK Z ; routine UNSTACK Z quits if checking syntax.
CALL FIND INT2 ; routine FIND-INT2 puts integer in BC.
LD A,$17 ; prepare the 'tab' control.
PR AT TAB RST 10H ; PRINT-A outputs the control
LD A,C ; first value to A
RST 10H ; PRINT-A outputs it.
LD A,B ; second value
RST 10H ; PRINT-A
RET ; return - item finished >>>

; Now consider paper 2; #2; a$

PR ITEM 3 CALL CO TEMP 3 ; routine CO-TEMP-3 will print any colour
RET NC ; items - return if success.

; Now consider a change in the output stream.
; Note. as this is called from IN ITEM it can also effect a change in the
; stream used for INPUT.

CALL STR_ALTER ; routine STR-ALTER considers new stream

RET NC ; return if altered.

CALL SCANNING ; routine SCANNING now to evaluate expression
CALL UNSTACK Z ; routine UNSTACK Z quits if not runtime.

BIT 6, (IY+$S01) ; test FLAGS - Numeric or string result ?

; Note. the next two instructions have been switched so that STK FETCH
; can return zero if BC is zero (used elsewhere).

JP NZ, PRINT FP ; to PRINT-FP to print if numeric >>>
CALL STK FETCH ; routine STK-FETCH if string.

; note flags now affected.

; It was a string expression - start in DE, length in BC
; Now enter a loop to print it

PR_STRING LD A,B
OR C
DEC BC
RET 7
LD A, (DE)
INC DE
RST 10H
JR PR_STRING

’

; THE 'END OF PRINTING' SUBROUTINE

this tests if the

length is zero and sets flag accordingly.
this doesn't but decrements counter.
return if zero.

fetch character.
address next location.

PRINT-A.

loop back to PR-STRING.

; This subroutine returns zero if no further printing is required
; in the current statement.
; The first terminator is found in escaped input items only,
; the others in print items.
PR END Z CP $29 ; is character a ")' ?
RET Z ; return if so - e.g. INPUT (p$); a$
PR_ST END CP $0D ; is it a carriage return ?
RET Z ; return also - e.g. PRINT a
CP $3A ; 1s character a ':' ?
RET ; return - zero flag will be set with match.

; THE 'PRINT POSITION' ROUTINE

e.g. PRINT a

; This routine considers a single positional character ';', ',', '"!'

PR POSN 1 RST 18H

cp $3B
JR Z,PR_POSN 3
cp $2C
JR NZ,PR_POSN 2

CALL SYNTAX Z

JR Z,PR_POSN 3
LD A, S$06
RST 10H
JR PR_POSN_ 3
; check for newline.
PR _POSN 2 CP $27
RET NZ

CALL PRINT CR

’

GET-CHAR

is it ';' 2

i.e. print from last position.

forward, if so, to PR-POSN-3

i.e. do nothing.

is it ',"' 2

i.e. print at next tabstop.

forward to PR-POSN-2 if anything else.
routine SYNTAX-Z

forward to PR-POSN-3 if checking syntax.

prepare the 'comma' control character.

PRINT-A outputs to current channel in
run-time.

skip to PR-POSN-3.

is character a "'" ? (newline)
return if no match >>>

routine PRINT-CR outputs a carriage return

; in runtime only.

PR _POSN 3 RST 20H ; NEXT-CHAR to A.
CALL PR _END 7 ; routine PR-END-Z checks if at end.
JR NZ,PR_POSN 4 ; skip forward, if not, to PR-POSN-4
POP BC ; drop return address if at end.

PR POSN 4 CP A ; reset the zero flag.
RET ; and return to loop or quit.

; THE 'ALTER STREAM' SUBROUTINE

; This routine is called from PRINT ITEMS above, and also LIST as in LIST #15

STR_ALTER RST 18H ;+ GET CHAR
CP $23 ; 1s character '#' ?
SCF ; set carry flag.
RET NZ ; return if no match.
RST 20H ; NEXT-CHAR
CALL EXPT_ 1NUM ; routine EXPT-1INUM gets stream number
AND A ; prepare to exit early with carry reset
CALL UNSTACK Z ; routine UNSTACK Z exits early if parsing
CHAN CHK CALL FIND_INTl ; routine FIND-INT1 gets number off stack
CP $10 ; stream must be range 0 - 15 decimal.
JP NC, REPORT O ; jJump back, if not, to REPORT-O

; '"Invalid stream'.

CALL CHAN SLCT ; Routine CHAN-OPEN
AND A ; Clear carry - signal item dealt with.
RET ; Return.

; THE 'INPUT' COMMAND

; This command inputs by default from the stream 1. On the standard

; Spectrum this is selected before CLS-LOWER so the channel that is

; in force is the system 'K' channel and can only be overridden by the user
; using INPUT #1.

INPUT CALL SYNTAX 7 ; routine SYNTAX-Z to check if in runtime.
JR Z,INPUT 1 ; forward, if checking syntax, to INPUT-1
LD A,S$01 ; select stream 1 which is reserved for INPUT.
CALL CHAN_ SLCT ; routine CHAN-OPEN opens the channel.
CALL 1IN CHAN K ;+ routine IN-CHAN-K tests if keyboard in use.
HE CALL CLS_LOWER ; routine CLS-LOWER wrongly clears lower screen.
CALL Z7,CLS_LOWER ;+ routine CLS-LOWER clears the lower screen

;+ and sets DF _SZ to two and TV _FLAG to $01
;+ but only if channel 1 is the keyboard.

INPUT 1 LD (IY+$02),501 ; update TV_FLAG - signal lower screen in use
; ensuring that the correct set of system

’

; variables are updated and that the border
; colour is used.

Note. The Complete Spectrum ROM Disassembly incorrectly names DF-SZ as the
system variable that is updated above and if, you make this unnecessary
alteration then there will be two blank lines between the lower screen and
the upper screen areas which will also scroll wrongly.

CALL IN ITEM 1 ; routine IN-ITEM-1 to handle the input.

CALL CHECK END ; routine CHECK-END will make an early exit
; 1f checking syntax. >>>

keyboard input has been made and it remains to adjust the upper
screen in case the lower two lines have been extended upwards.

1D BC, ($5B88) ; fetch S POSN current line/column of
; the upper screen.
LD A, ($5B6B) ; fetch DF SZ the display file size of
; the lower screen.
CP B ; test that lower screen does not overlap.
JR C, INPUT_ 2 ; forward, if not, to INPUT-2

the two screens overlap so adjust upper screen.

LD C,$21 ; set column of upper screen to leftmost.
LD B,A ; and line to one above lower screen.
; continue forward to update upper screen
; print position.

INPUT 2 LD ($5B88) ,BC ; set S POSN update upper screen line/column.
LD A,$19 ; subtract from twenty five
SUB B ; the new line number.
LD ($5B8C) , A ; and place result in SCR CT - scroll count.
RES 0, (IY+S$02) ; update TV _FLAG - signal main screen in use.
CALL CL_SET ; routine CL-SET sets the print position

; system variables for the upper screen.

JP CLS LOWER ; Jump back to CLS-LOWER and make

; an indirect exit >>.

; THE 'INPUT ITEM' SUBROUTINE

This subroutine deals with the input items and print items from the current
input channel which was defaulted to 'K' above.

IN ITEM 1 CALL PR POSN 1 ; routine PR-POSN-1 deals with a single

; position item at each call.
JR Z,IN ITEM 1 ; back to IN-ITEM-1 until no more in a
; sequence.

CP $28 ; is character ' (' ?
JR NZ,IN_ITEM_Z ; forward, i1f not, to IN-ITEM-2

any variables within brackets will be treated as part, or all, of the
prompt instead of being used as destination variables.

RST 20H ; NEXT-CHAR

CALL PRINT 2 ; routine PRINT-2 to output the dynamic
; prompt.

RST 18H ; GET-CHAR

CP 329 ; 1s character a matching '")' ?

’

JR
RST

CALL

Jp

Nz,REPORT Cy
20H

RBRKT NXT

IN NEXT 2

Consider INPUT LINE

IN ITEM 2 CP

REPORT Cy

’

JR

RST
CALL

SET

BIT

Jp

JR

RST
DEFB

SCA
NZ,IN ITEM 3

20H
CLASS 01

7, (IY+$37)
6, (IY+$01)

Nz,REPORT C

Z,IN PROMPT

30H
SOB

’

’

forward, if not,

NEXT-CHAR

to REPORT-Cy

;+ check for right-hand bracket and advance.

’

Jjump forward to IN-NEXT-2

is the character the token 'LINE' ?
forward, if not, to IN-ITEM-3

NEXT-CHAR - variable must come next.
routine CLASS-01 returns destination
address of variable to be assigned.
or generates an error if no variable
at this position.

update FLAGX - signal handling INPUT LINE

test FLAGS - numeric or string result ?
jump back to REPORT-C if not string
'Nonsense in BASIC'.
forward, if string, to IN-PROMPT
to set up workspace.

;+ ERROR-1
;+ Error Report: Nonsense in BASIC

the jump was here for other variables.
Note. the character '#' will cause a jump to IN NEXT 1

IN ITEM 3 CALL

’

JPp

CALL

RES

The two paths converge here.

IN PROMPT CALL

Jp
Continue in
CALL
LD
RES
SET

LD

LD

ALPHA

NC, IN NEXT 1
CLASS 01

7, (IY+S$37)

SYNTAX_Z
Z,IN NEXT 2
runtime.
SET_WORK
HL, $5B71

6, (HL)

5, (HL)

BC, $0001

C,s01

;+ initialize space required to one for the CR.

routine ALPHA checks if character is
a suitable variable name.

jump forward, if not, to IN-NEXT-1

routine CLASS-01 returns destination

address of variable to be assigned.
update FLAGX - signal not INPUT LINE.

routine SYNTAX-Z

forward to IN-NEXT-2 if checking syntax.

routine SET-WORK clears workspace.

point to system variable FLAGX
signal string result.
signal in Input Mode for editor.

initialize space required to one for the CR.

BIT 7, (HL) ;

JR NZ,IN PR 2 ;

’

test FLAGX - INPUT LINE in use *?

forward, if so, to IN-PR-2
as that is all the space that is required.

; If not INPUT LINE then the result can be numeric or string.

LD A, ($5B3B) ;
AND $40 ;
JR NZ,IN PR 1 ;
LD c,$03 ;
IN PR 1 OR (HL) ;
LD (HL) , A ;
IN PR 2 CALL BC_SPACEO ;
LD (HL) , SOD ;
HA LD A,C ;
- RRCA ;
Ha RRCA ;
P JR NC,IN PR 3 ;
BIT 1,C ;

JR Zz,IN PR 3 ;
LD A, $22 ;
LD (DE) , A ;
DEC HL ;
LD (HL) , A ;
IN PR 3 LD ($5B5B) , HL ;
BIT 7, (IY+$37) ;
JR NZ,IN VAR 3 ;
; prepare to parse the numeric
RST 18H ;
PP LD HL, ($5B5D) ;
PUSH HL ;
LD HL, ($5B3D) ;
PUSH HL ;
IN VAR 1 LD HL, IN VAR 1 ;
PUSH HL ;
BIT 4, (IY+$30) ;
JR Z,IN VAR 2 ;
; Now update the error pointer
LD ($5B3D), SP ;
IN VAR 2 LD HL, (S5B61) ;
CALL REMOVE FP ;

’

load accumulator from FLAGS

mask to test BIT 6 of FLAGS and clear
the other bits in A.

numeric result expected ?

forward, if so, to IN-PR-1

increase space to three bytes for the
pair of surrounding quotes.

if numeric result, set bit 6 of FLAGX.
and update system variable

BC SPACES opens 1 or 3 bytes in workspace
insert carriage return at last new location.

fetch the length, one or three.
lose bit 0.

test if quotes required.
forward, if not, to IN-PR-3

+ test i1if quotes required.
+ skip forward, if not, to IN PR 3

load the '"' character
place quote in first new location at DE.
decrease HL - from carriage return.

and place a quote in second location.

set keyboard cursor K CUR to HL

test FLAGX - is this INPUT LINE °?
forward, if so, to IN-VAR-3 as input will

be accepted without checking its syntax.

or string input if not INPUT LINE.

+

fetch CH ADD

and save on stack.

fetch ERR_SP

and save on stack

address: IN-VAR-1 - this address

is saved on stack to handle errors.

test FLAGS2 - is K channel in use ?
forward, if not keyboard, to IN-VAR-2

so that user is able to alter until correct.

set ERR SP to point to IN-VAR-1 on stack.
set HL to WORKSP - start of workspace.

routine REMOVE-FP removes floating point
forms when looping in the error condition.

; If we

LD

CALL

CALL

pass

RES
CALL

; Proceed if

JR

(IY+$00), SFF

SET_ER FF

EDITOR

; set ERR NR to 'OK' cancelling the error.
; but X PTR causes flashing error marker
; to be displayed at each call to the editor.

;+ NEW 3-byte call.

; routine EDITOR allows input to be entered
; or corrected i1if this is second time around.

to next then there are no system errors

7, (IY+501)
IN ASSIGN

syntax passed.

IN VAR 4

; update FLAGS - signal checking syntax

; routine IN-ASSIGN checks syntax using

; the VAL-FET-2 and powerful SCANNING routines.
; any syntax error and its back to IN-VAR-1.

; but with the flashing error marker showing

; where the error is.

; Note. the syntax of string input has to be

; checked as the user may have removed the

; bounding quotes or escaped them as with

; "hat" + "stand" for example.

; jump forward to IN-VAR-4

; The jump was to here when using INPUT LINE.

IN VAR 3

CALL

EDITOR

; routine EDITOR is called for input

; When ENTER received rejoin other route but with no syntax check.

; Paths for INPUT and INPUT LINE converge here.

IN VAR 4

rrr

LD
LD

CALL

JR

(IY+$22),500
(IY+$22) ,A
IN CHAN K

NZ,IN VAR 5

; set K CUR hi to a low value
;+ set K CUR hi to a low value so that cursor
;+ no longer appears in the input line. (A=13)

; routine IN-CHAN-K tests if keyboard in use.

; forward to IN-VAR-5 if using another input
; channel.

; continue here if using the keyboard.

CALL

LD

CALL

ED_COPY

BC, ($5B82)

CL_SET

; routine ED-COPY overprints the edit line
; to the lower screen. The only visible

; affect is that the cursor disappears.

; 1f you're inputting more than one item in
; a statement then that becomes apparent.

; fetch line and column from ECHO E

; routine CL-SET sets S-POSNL to those
; values.

; if using another input channel rejoin here.

IN VAR 5

LD
RES

HL, $5B71
5, (HL)

; point HL to FLAGX
; signal not in input mode

BIT 7, (HL)
RES 7, (HL)

JR NZ,IN VAR 6
POP HL
POP HL
LD ($5B3D) , HL
POP HL
LD ($5B5SF) , HL

SET 7, (IY+S$01)
CALL 1IN ASSIGN

LD HL, ($5B5F)

P LD (IY+$26),500
LD (IY+$26),A
LD ($5B5D) , HL
JR IN NEXT 2

’

’

is this INPUT LINE ?
cancel the bit anyway.
forward to IN-VAR-6 if INPUT LINE.

drop the looping address

drop the address of previous

error handler.

set ERR SP to point to it.

drop original CH _ADD which points to
INPUT command in BASIC line.

save in X PTR while input is assigned.
update FLAGS - Signal running program
routine IN-ASSIGN is called again
this time the wvariable will be assigned
the input value without error.

Note. the previous example now
becomes "hatstand"

fetch stored CH _ADD value from X PTR.
set X PTR hi so that it is no longer relevant.

7+ set X PTR hi so that it is irrelevant. (A=13)

’
’

’

put restored value back in CH ADD
forward to IN-NEXT-2 to see if anything
more in the INPUT list.

the jump was to here with INPUT LINE only

IN VAR 6 LD HL, ($5B63)
LD DE, ($5B61)
SCF
SBC HL,DE
LD B,H
LD C,L

CALL STK STO_s

CALL LET

JR IN NEXT 2

STKBOT points to the end of the input.
WORKSP points to the beginning.
prepare for true subtraction.

subtract to get length

transfer it to

the BC register pair.

routine STK-STO-$ stores parameters on
the calculator stack.

routine LET assigns it to destination.

forward to IN-NEXT-2 as print items
not allowed with INPUT LINE.

Note. that "hat" + "stand" will, for
example, be unchanged.

The jump was to here when ALPHA found more items while looking for
a variable name. The routine
which allows the stream to be

IN NEXT 1 CALL PR ITEM 1

IN NEXT 2 CALL PR POSN 1

’

Jp Z,IN ITEM 1

This subroutine is called

’

’

PR ITEM 1 is called for the first time
altered if the character is '#'.

routine PR-ITEM-1 considers further items.
routine PR-POSN-1 handles a position item.

jump back to IN-ITEM-1 if the zero flag
indicates more items are present.

Return.

twice from the INPUT command when normal

; keyboard input is assigned. On the first occasion syntax is checked
; using SCANNING. The final call with the syntax flag reset is to make
; the assignment.

IN ASSIGN LD HL, ($5B61) ; fetch WORKSP start of input
LD ($5B5D) , HL ; set CH ADD to first character
RST 18H ; GET-CHAR ignoring any leading white-space.
CP SE2 ; 1s it 'STOP'
JR Z,IN_STOP ; forward, if so, to IN-STOP
LD A, ($5B71) ; load accumulator from FLAGX
CALL VAL FET 2 ; routine VAL-FET-2 makes assignment

; or goes through the motions if checking
; syntax. SCANNING is used.

RST 18H ; GET-CHAR
CP $0D ; 1s character a carriage return ?
RET Z ; return with a match.

; either syntax is OK
; or assignment has been made.

; if another character was found then raise an error.
; User doesn't see report but the flashing error marker
; appears in the lower screen.
REPORT Cb RST 30H ; ERROR-1
DEFB S$0B ; Error Report: Nonsense in BASIC
;77 IN STOP CALL SYNTAX Z ; routine SYNTAX-Z (UNSTACK 7Z?)
HH RET 7 ; return if checking syntax
IN STOP CALL UNSTACK Z ;+ return if checking syntax.
;+ as user wouldn't see error report.
;+ but generate visible error report
;+ on second invocation.
REPORT H RST 30H ; ERROR-1
DEFB $10 ; Error Report: STOP in INPUT

; THE 'TEST FOR CHANNEL K' SUBROUTINE

; This subroutine is called once from the INPUT command to check if

; the input routine in use is the one for the keyboard.

; It returns with the zero flag set for the keyboard and reset for the

; network and RS232.

; Note. this routine, essentially the same as set out here, has been moved
; to a position before the NUMBER routine with which it is now combined.
;77 IN _CHAN K LD HL, ($5B51) ; fetch address of current channel CURCHL
i INC HL ;

S INC HL ; advance past

HE INC HL ; input and

HE INC HL ; output streams

. LD A, (HL) ; fetch the channel identifier.

HE CP $4B ; test for 'K'

- RET ; return with zero set if keyboard is use.

; THE 'COLOUR ITEM' ROUTINES

; These routines have 3 entry points -

; 1) CO-TEMP-2 to handle a series of embedded Graphic colour items.
; 2) CO-TEMP-3 to handle a single embedded print colour item.

; 3) CO TEMP-4 to handle a colour command such as FLASH 1

; "Due to a bug, if you bring in a peripheral channel and later use a colour
; statement, colour controls will be sent to it by mistake."
; - Steven Vickers, Pitman Pocket Guide, 1984.

; To be fair, this only applies if the last channel was other than 'K', 'S'
; or 'P', which are all that were supported by this ROM, but if that last

; channel was a microdrive file, network channel etc. then

; PAPER 6; CLS will not turn the screen yellow and

; CIRCLE INK 2; 128,88,50 will not draw a red circle.

; This bug does not apply to embedded PRINT items as it is quite permissible

; to mix stream altering commands and colour items.

; The fix therefore would be to ensure that CLASS-07 and CLASS-09 make

; channel 'S' the current channel when not checking syntax.

;777 CO _TEMP 1 RST 20H ; NEXT-CHAR

; -> Entry point from CLASS-09. Embedded Graphic colour items.

; e.g. PLOT INK 2; PAPER 8; 128,88

; Loops till all colour items output, finally addressing the coordinates.

CO_TEMP 2 CALL CO_TEMP 3 ; routine CO-TEMP-3 to output colour control.
RET C ; return if nothing more to output. ->
CALL CLASS 0C ;+ New routine to check for ';' or ',' and

;+ advance CH ADD if so else produce error.

JR CO_TEMP 2 ;+ back, if no error to CO_TEMP 2
Hr RST 18H ; GET-CHAR
H CP $2¢C ; is it ', ' separator ?
HE JR Z,CO_TEMP 1 ; back, if so, to CO-TEMP-1
P CP $3B ; 1s it ';' separator ?
P JR Z,CO TEMP 1 ; back, if so, to CO-TEMP-1
i JR REPORT Cb ; to REPORT-C (REPORT-Cb is within range)
I ; 'Nonsense in BASIC'

; -> this routine evaluates and outputs a colour control and parameter.

; It is called from above and also from PR-ITEM-3 to handle a single embedded
; print item e.g. PRINT PAPER 6; "Hi". In the latter case, the looping for

; multiple items is within the PR-ITEM routine.

; It is quite permissible to send these to any stream.
CO TEMP 3 CP $D9 ; compare addressed character to 'INK'
RET C ; return if less.
CP SDF ; compare with 'OUT'
CCF ; Complement Carry Flag
RET C ; return if greater than 'OVER' (S$SDE).
; The token expects one parameter so advance CH ADD

PUSH AF ; save the colour token e.g. 'PAPER'.

RST 20H ; NEXT-CHAR advances address.
POP AF ; restore token and continue.
; -> This entry point used by CLASS-07. e.g. the command PAPER 6.
CO_TEMP_4 SUB $C9 ; reduce to control character $10 (INK)
; through $15 (OVER) and clears CARRY flag.
PUSH AF ; save control and carry flag.
CALL EXPT_ 1NUM ; routine EXPT-1NUM stacks addressed parameter
; on the calculator stack.
POP AF ; restore control and clear carry flag.
HE AND A ; clear carry for success (already clear).
CALL UNSTACK Z ; routine UNSTACK Z returns if checking syntax.
; In runtime, output the two control characters. There is no need to
; assimilate the two codes first.
HE PUSH AF ; save again
RST 10H ;+ outputs the control altering output address.
CALL FIND INT1 ; routine FIND-INT1 fetches parameter to A.
HE LD D,A ; transfer now to D
s POP AF ; restore control.
H RST 10H ; PRINT-A outputs the control to current
; channel.
s LD A,D ; transfer parameter to A.
RST 10H ; PRINT-A outputs parameter restoring channel.
RET ; return. ->
; {f1l}{br}{ paper J{ ink } The temporary colour attributes
; system variable.
; ATTR T | | | | | | | |
; | | | | | | | |
; 23695 | | | | | | | |
; 6 5 2 1 0
; {f1} {br}{ paper }{ ink } The temporary mask used for
; transparent colours. Any bit
; MASK T | | | | | | | | that is 1 shows that the
; | | | | | | | | corresponding attribute is
; 23696 | | | | | | | | taken not from ATTR-T but from
; 6 5 2 1 0 what is already on the screen.
; {paper9 }{ ink9 }{ invl }{ overl} The print flags. Even bits are
; temporary flags. The odd bits
; P FLAG | | | | | | | | are the permanent flags.

; 23697 | | | | | | | | |

; This is an exit branch from PO-1-OPER, PO-2-OPER

: A holds control $10 (INK) to $15 (OVER)

; D holds parameter 0-9 for ink/paper 0,1 or 8 for bright/flash,
; 0 or 1 for over/inverse.

; First consider INK and PAPER.

CO_TEMP_5 SUB $11 ; reduce range S$FF-504
LD E, $00 ;+ Set E to zero.
P ADC A, $00 ; add in carry if INK
ADC A,E ;+ add in carry if INK
JR Z,CO_TEMP 7 ; forward to CO-TEMP-7 with INK and PAPER.

; Now consider FLASH and BRIGHT.

SUB $02 ; reduce range SFF-$502
HE ADC A, S$00 ; add carry if FLASH
ADC AE ;+ add carry if FLASH
JR Z,CO_TEMP C ; forward to CO-TEMP-C with FLASH and BRIGHT.

; Now consider remaining INVERSE and OVER.

INC E ;+ now make E=1
e CP 501 ; is it 'INVERSE' ?
CP E ; is it 'INVERSE' ?
LD A,D ; fetch parameter for INVERSE/OVER
- LD B, $01 ; prepare OVER mask setting bit O.
LD B,E ; prepare OVER mask setting bit 0.
JR NZ,CO_TEMP_6 ; forward to CO-TEMP-6 if OVER

; Deal with INVERSE.

RLCA ; shift bit O
RLCA ; to bit 2
LD B, $04 ; set bit 2 of mask for INVERSE.

; The OVER path rejoins here.

CO _TEMP_ 6 LD C,A ; save the A
LD A,D ; re-fetch parameter
CP $02 ; is it less than 2
JR NC, REPORT K ; to REPORT-K if not 0 or 1.

; '"Invalid colour'.

LD A,C ; restore A
LD HL, $5B91 ; address system variable P _FLAG
JR CO_CHANGE ; forward to exit via routine CO-CHANGE

; the branch was here with INK and PAPER and carry set for INK.

CO_TEMP_ 7 LD A,D ; fetch parameter
LD B, $07 ; set ink mask 00000111
JR C,CO_TEMP_8 ; forward to CO-TEMP-8 with INK

RLCA ; shift bits 0-2

RLCA ; to
RLCA ; bits 3-5
LD B, $38 ; set PAPER mask 00111000

; the INK path rejoins here.

CO TEMP 8 LD C,A ; value to C
LD A,D ; fetch parameter
CP S0A ; 1s it less than 10 decimal ?
JR C,CO_TEMP_ 9 ; forward, if so, to CO-TEMP-9

; INK 10 etc. is not allowed.

REPORT K RST 30H ; ERROR-1
DEFB $13 ; Error Report: Invalid colour

CO_TEMP_9 LD HL, $5B8F ; Address system variable ATTR T initially.
CP 508 ; compare with 8
JR C,CO_TEMP_ B ; forward to CO-TEMP-B with 0-7.
LD A, (HL) ; fetch temporary attribute as no change.
JR Z,CO_TEMP A ; forward to CO-TEMP-A with INK/PAPER 8

; it is either ink 9 or paper 9 (contrasting)
OR B ; or with mask to make white
CPL ; make black and change other to dark
AND $24 ; 00100100
JR Z,CO _TEMP A ; forward to CO-TEMP-A if black and

; originally light.

LD A,B ; else just use the mask (white)
CO _TEMP A LD C,A ; save A in C
CO_TEMP B LD A,C ; load colour to A
CALL CO_CHANGE ; routine CO-CHANGE addressing ATTR-T
LD A, $07 ; put 7 in accumulator
CP D ; compare with parameter
SBC A,A ; $00 if 0-7, SFF if 8
CALL CO_CHANGE ; routine CO-CHANGE addressing MASK-T

; mask returned in A.

; now consider P-FLAG.
RLCA ; 01110000 or 00001110
RLCA ; 11100000 or 00011100
AND $50 ; 01000000 or 00010000 (AND 01010000)
LD B,A ; transfer to mask
LD A,s$08 ; load A with 8
CP D ; compare with parameter
SBC A,A ; SFF if was 9, $00 if 0-8

; continue while addressing P-FLAG
; setting bit 4 if ink 9
; setting bit 6 if paper 9

; THE 'COLOUR CHANGE' ROUTINES

; This routine addresses a system variable ATTR T, MASK T or P-FLAG in HL.

; colour value in A, mask in B.

CO_CHANGE XOR (HL) ; 1lmpress bits specified
AND B ; by mask
XOR (HL) ; on system variable.
LD (HL) , A ; update system variable.
INC HL ; address next location.
LD A,B ; put current value of mask in A
RET ; return.

; the branch was here with FLASH and BRIGHT

CO_TEMP_C SBC A,A ; set zero flag for BRIGHT.
LD A,D ; fetch original parameter 0,1 or 8
RRCA ; rotate bit 0 to bit 7
LD B, $80 ; mask for FLASH - %10000000
JR Nz,CO_TEMP D ; forward, if FLASH, to CO-TEMP-D
RRCA ; rotate bit 7 to bit 6
LD B, $40 ; mask for BRIGHT - %01000000
CO_TEMP D LD C,A ; store value in C
LD A,D ; fetch parameter
CP $08 ; compare with 8
JR Z,CO_TEMP E ; forward, if eight, to CO-TEMP-E
CP 502 ; test if 0 or 1
JR NC, REPORT K ; back, if not, to REPORT-K

; '"Invalid colour'

CO_TEMP_E LD A,C ; value to A
LD HL, $S5B8F ; address ATTR T
CALL CO_CHANGE ; routine CO-CHANGE addressing ATTR T
LD A,C ; fetch wvalue
RRCA ; for flash8/bright8 complete the
RRCA ; rotations to put set bit in
RRCA ; bit 7 (flash) bit 6 (bright)
JR CO_CHANGE ; back to CO-CHANGE addressing MASK T

; and indirect return.

; THE 'BORDER' COMMAND

; Command syntax example: BORDER 7

; This command routine sets the border to one of the eight colours.

; The colours used for the lower screen are based on this.

; This is a CLASS 0 command so syntax is checked by the tables and this
; routine is only invoked in runtime.

BORDER CALL FIND INT1 ; routine FIND-INT1
CP 508 ; must be in range 0 (black) to 7 (white)
JR NC, REPORT K ; back, if not, to REPORT-K

; '"Invalid colour'.

ouT (SFE) ,A ; outputting to port effects an immediate
; change.

RLCA ; shift the colour to

RLCA ; the paper bits setting the

RLCA ; ink colour black.

BIT 5,A ; 1is the paper number light coloured ?

; i.e. in the range green to white.

JR NZ, BORDER 1 ; skip, 1if so, to BORDER-1
XOR $07 ; make the ink white.

BORDER 1 LD ($5B48) ,A ; update BORDCR with new paper/ink
RET ; return.

; THE 'PIXEL ADDRESS' ROUTINE

PIXEL ADD LD A, SAF ; load with 175 decimal.
SUB B ; subtract the y value.
JR C,REPORT Bz ; jump forward to REPORT-Bc if greater.

; 'Integer out of range'

; the high byte is derived from Y only.
; the first 3 bits are always 010
; the next 2 bits denote in which third of the screen the byte is.

; the last 3 bits denote in which of the 8 scan lines within a third
; the byte is located. There are 24 discrete values.

LD B,A ; the line number from top of screen to B.
H AND A ; clear carry (already clear)

RRA ; 0xXXXXXXX

SCF ; set carry flag

RRA ; 10xxXXXX

AND A ; clear carry flag

RRA ; 010xxxxx

XOR B ;

AND SF8 ; keep the top 5 bits 11111000

XOR B ; 010xxbbb

LD H,A ; transfer high byte to H.

; The low byte of the address is derived from both X and Y.

LD A,C ; the x value 0-255.
RLCA ;
RLCA ;
RLCA ;
XOR B ; the y value
AND $C7 ; apply mask 11000111
XOR B ; restore unmasked bits xxyyyxxx
RLCA ; rotate to XYYYXKXXX
RLCA ; required position. VY YXXXKX
LD L,A ; low byte to L.

; Finally form the pixel position in A.
LD A,C ; x value to A
AND $07 ; mod 8
RET ; return

; THE 'POINT' SUBROUTINE

The point subroutine is called from s_point via the SCANNING functions

table.

Error B unless 0<=x<=255 and 0<=y<=175.

In accordance with the BASIC manual,

POINT SUB CALL BC POSTVE
CALL PIXEL_ADD
LD B, A
INC B
LD A, (HL)
POINT LP RLCA
DJNZ POINT LP
AND $01
JP STACK_ A
; THE 'PLOT' COMMAND

; TH

PLOT

PLOT

Command Syntax example:

CALL BC_POSTVE
CALL PLOT SUB
Jp TEMPs

E 'PLOT' SUBROUTINE

’

PLOT

’

’

’

’

’

parameters must now be positive.
routine BC POSTVE but with check on signs.

routine PIXEL-ADD finds address of pixel
producing an error if y is > 175.

pixel position to B, 0-7.
increment to give rotation count 1-8.

fetch byte from screen.

rotate and loop back
to POINT-LP until required pixel at right.

test to give zero or one.

jump forward to STACK-A to save result.

128,88

routine BC_ POSTVE

routine PLOT-SUB

;2to TEMPs to impose the permanent attributes

onto the temporary ones as they may have been
disturbed by embedded colour items 2?7

A screen byte holds 8 pixels so it is necessary to rotate a mask
into the correct position to leave the other 7 pixels unaffected.
However all 64 pixels in the character cell take any embedded colour

items.

A pixel can be reset
and over switches off).

(inverse 1),
With both switches on,

toggled (over 1), or set (with inverse

the byte is simply put

back on the screen although the colours may change.

_SUB LD

CALL

LD
INC
LD
_ LOOP RRCA
DJINZ

LD
LD

LD
BIT
JR

($5B7D) , BC
PIXEL ADD
B, A

B

A, $FE
PLOT_LOOP
B,A
A, (HL)

C, (IY+$57)
0,C

NZ,PL_TST IN

’

store new x/y values in COORDS

routine PIXEL-ADD gets address in HL,
count from left 0-7 in B.

transfer count to B.
increase 1-8.
11111110 4in A.

rotate mask.
to PLOT-LOOP until B circular rotations.

load mask to B
fetch screen byte to A

P _FLAG to C
is it to be OVER 1 ?
forward, if so, to PL-TST-IN

; was OVER 0.
AND

PL TST IN BIT
JR

XOR
CPL

PLOT END LD
Jp

B

2,C
NZ, PLOT END

B
(HL) , A

PO_ATTR

30H
SOA

combine with mask to blank pixel.

is it inverse 1 ?
forward, if so, to PLOT-END

switch the pixel
restore other 7 bits

load byte to the screen.
exit via PO-ATTR to set colours for cell.

ERROR-1
Error Report: Integer out of range

; THE 'CALCULATOR STACK TO BC REGISTERS' ROUTINE

STK _TO_BC CALL

LD
PUSH

CALL
LD
POP
LD
LD

RET

STK_TO A

B,A
BC

STK_TO A

E,C
BC

D, C
C,A

’

’

’

routine STK-TO-A

routine STK-TO-A

Return.

; THE 'CALCULATOR STACK TO ACCUMULATOR' ROUTINE

; This routine puts the last value on the calculator stack into the
; accumulator deleting the last value.

STK_TO A CALL

JR

LD
RET
LD

RET

; THE 'CIRCLE'

FP_TO A

C,REPORT Bz
c,s01
z

C,SFF

COMMAND

routine FP-TO-A compresses last value into
accumulator. e.g. PI would become 3.
zero flag set if positive.

forward, if >= 255, to REPORT-Bc
'Integer out of range'

prepare a positive sign byte.
return if FP-TO-BC indicated positive.

prepare negative sign byte and

return.

; Syntax has been partly checked using the class for the DRAW command.

CIRCLE RST 18H ; GET-CHAR
CPp $2C ; Is character the required comma *?
Jp NzZ,REPORT C ; Jump, if not, to REPORT-C
- RST 20H ; NEXT-CHAR
P CALL EXPT 1NUM ; Routine EXPT-1NUM fetches the radius.
HH CALL CHECK END ; Routine CHECK-END will return here
CALL CHK END 1 ; above 3 routines combined.
; Continue in runtime.
RST 28H ;; FP-CALC
DEFB $2A ; ;abs ; make radius positive
DEFB $3D ;s re-stack ; in full floating point form
DEFB $38 ;;end-calc
LD A, (HL) ; Fetch first floating point exponent byte
CP $81 ; Compare to exponent for one
JR NC,C R GRE 1 ; Forward to C-R-GRE-1 if circle radius 1is

; greater than a half.

; If the diameter is no greater than one then delete the radius and plot
; the single point.

RST 28H ;; FP-CALC
DEFB $02 ;;delete ; delete the radius from stack.
DEFB $38 ; ;end-calc
JR PLOT ; Back to PLOT to just plot x,y.
; Continue if the radius is greater than 1.
C R GRE 1 RST 28H ;; FP-CALC X, ¥, T
DEFB S$A3 ;;stk-pi/2 X, y, r, pi/2.
DEFB $38 ;;end-calc X, Yy, r, pi/2.
; Cleverly multiply by four to form the circumference.
LD (HL) , $83 ; bump exponent x, vy, r, 2*PI
RST 28H ;; FP-CALC X, y, r, 2*PI
DEFB S$C5 ;7 st-mem-5 store 2*PI in mem-5
DEFB $02 ;;delete X, YV, T.
DEFB $38 ; ;end-calc X, YV, T.
CALL CD_ PRMSI ; routine CD_PRMS1 forms circle parameters.
PUSH BC ;
RST 28H ;; FP-CALC
DEFB $31 ;;duplicate
DEFB S$E1 ;;get-mem-1
DEFB $04 ;omultiply
DEFB $38 ;;end-calc
LD A, (HL) ;
CP $80 ;

JR NC,C_ARC GE1 ; to C-ARC-GE1

RST

DEFB
DEFB
DEFB

POP
i Jp
JR

C ARC_GE1 RST
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

INC
CALL
LD
PUSH
CALL
POP
LD
LD
POP
Jp

28H
$02
$02
$38

BC
PLOT
PLOT

28H
Sc2
$01
$CO
$02
$03
$01
SEO
SOF
SCOo
$01
$31
SEOQ
$01
$31
SEO
SAQ
$C1
$02
$38

(IY+$62)
FIND INT1
L,A

HL

FIND INT1
HL

H,A
($5B7D) , HL
BC
DRW_STEPS

; THE 'DRAW' COMMAND

’
’
’

’

’

’

’
’
’

’

FP-CALC
delete
delete
end-calc

JUMP to PLOT

;+ use relative jump to PLOT

’
’
’
’
’
’

’

’
’
’

’

’
’
’
’
’
’

’

’

’

’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’

’

FP-CALC
st-mem-2
exchange
st-mem-0
delete
subtract
exchange
get-mem-0
addition
st-mem-0
exchange
duplicate
get-mem-0
exchange
duplicate
get-mem-0
stk-zero
st-mem-1
delete
end-calc

MEM-2-1st
routine FIND-INT1

routine FIND-INT1

COORDS

to DRW-STEPS

; The DRAW command is rather more sophisticated than anything contemplated

; for the 7ZX80 and ZX81 and,
; At this stage,

with a third parameter, it can draw an arc.
syntax has been partly checked by the class routines and

; the 'x, y' parameters have been verified.
DRAW RST 18H ; GET-CHAR
CP $2¢C ; 1s character the optional ',' ?
JR Zz,DR 3 PRMS ; forward, if so, to DR 3 PRMS
CALL CHECK END ; routine CHECK-END checks that nothing follows.
JP LINE DRAW ; jump forward, in runtime, to LINE-DRAW

; The branch was here when a comma indicated a third parameter was expected.

DR 3 PRMS CALL CHK END 1 ; following three routines combined.
HE RST 20H ; NEXT-CHAR advances.
HHE CALL EXPT 1NUM ; routine EXPT-1NUM checks for numeric
- CALL CHECK END ; routine CHECK-END

RST 28H ;; FP-CALC X, Y, Z.

DEFB $C5 ;7 st-mem-5 X, YV, Z.

DEFB $A2 ;;stk-half X, vy, z, 1/2.

DEFB $04 ;imultiply X, YV, 2/2.

DEFB S$1F ;;sin

DEFB $31 ;;duplicate

DEFB $30 ;;not

DEFB $30 ;;not

DEFB $00 ;7 jump-true

DEFB DR _SIN NZ - $;;to DR_SIN Nz

DEFB $02 ;;delete

DEFB $38 ;;end-calc

JP LINE DRAW ; to LINE-DRAW
DR_SIN NZ DEFB S$CO ;7 st-mem-0

DEFB $02 ; ;delete

DEFB $C1 ;;st-mem-1

DEFB 502 ;;delete

DEFB $31 ;;duplicate

DEFB $2A ; ;abs

DEFB SE1 ;;get-mem-1

DEFB $01 ; ;exchange

DEFB S$E1 ; rget-mem-1

DEFB $2A ;;abs

DEFB S$OF ;;addition

DEFB SEO ;7 get-mem-0

DEFB $05 ;;division

DEFB $2A ; ;abs

DEFB S$EO ;s get-mem-0

DEFB $01 ; ;exchange

DEFB $3D ;s re-stack

DEFB $38 ;;end-calc

LD A, (HL) ;

CP $81 ;

JR NC, DR_PRMS ; to DR-PRMS

RST 28H ;; FP-CALC

DEFB $02 ; ;delete

DEFB $02 ;;delete

DEFB $38 ;;end-calc

JP LINE DRAW ; to LINE DRAW
DR PRMS CALL CD PRMSI ; routine CD PRMS1 forms draw parameters.

PUSH BC ;

RST

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

LD
CP
POP
JR

PUSH

28H
$02
SE1
$01
$05
scil
$02
$01
$31
SE1
$04
SC2
$02
$01
$31
SE1
$04
SE2
SE5
SEO
$03
SA2
$04
$31
S1F
$C5H
$02
$20
$co
$02
Sc2
$02
scil
SES
$04
SEO
SE2
$04
SOF
SE1
S$01
s$cil
$02
SEO
$04
SE2
SE5
$04
$03
$c2
S2A
SE1
S2A
SOF
$02
$38

A, (DE)

$81

BC

C,LINE DRAW

BC

’
’
’
’
’
’
’
’
’
’
’
’
’
’

’

’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’

’

’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’

’

;; FP-CALC
; ;delete
;;get-mem-1
; ;exchange
; ;division
;;st-mem-1
; ;delete

; ;exchange
; ;duplicate
;s get-mem-1

;multiply

; 7 st-mem-2
; ;delete
; ;exchange

;duplicate
;get-mem-1

;;multiply
;s get-mem-2

;get-mem-5

; 5 get-mem-0
; ;subtract
; ;stk-half
;;multiply

;duplicate

;2sin
; 7 st-mem-5
; ;delete

; COS

; 7 st-mem-0
; ;delete
;7 st-mem-2

;delete

; ;7 st-mem-1

;get-mem-5

;;multiply

; ;get—-mem-0
;s get-mem-2
;;multiply

; ;addition

;;get-mem-1
; ;exchange

;;st-mem-1

; ;delete

; ;get-mem-0
;;multiply

; ;get-mem-2
; 5 get-mem-5
;;multiply

;subtract

; 7 st-mem-2
; ;abs
; ;get-mem-1

;abs

; ;addition
; ;delete
; rend-calc

JUMP to LINE-DRAW

DRW_STEPS

ARC_LOOP

ARC_ START

RST
DEFB
DEFB

LD
CALL

RST

DEFB
DEFB
DEFB
DEFB

LD
CALL

RST

DEFB
DEFB
DEFB
DEFB
DEFB

POP

DEC
JR

JR

RST

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

PUSH

RST

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

28H
$01
$38

A, ($5B7D)
STACK A

28H
$co
SOF
$01
$38

A, ($5B7E)
STACK A

28H
$C5
SOF
SEO
SES
$38

BC

B
Z,ARC_END

ARC_START

28H
SE1
$31
SE3
$04
SE2
SE4
$04
$03
$C1
$02
SE4
$04
SE2
SE3
$04
SOF
$C2
$02
$38

BC

28H
$CO
$02
SE1
$OF
$31
$38

’
’

’

’

’

’
’
’
’

’

’

’

’
’
’

’

’

’

’

’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’

’

’
’
’
’
’
’

’

;; FP-CALC
; ;exchange
; ;end-calc

COORDS-x
routine STACK-A

;; FP-CALC
; 7 st-mem-0
; ;addition

;exchange

; rend-calc

COORDS-y
routine STACK-A

;; FP-CALC
; ;7 st-mem-5

;addition

; 5 get-mem-0

;get-mem-5

; ;end-calc

to ARC-END

to ARC-START

;; FP-CALC

;s get-mem-1
; ;duplicate
; s get-mem-3
;;multiply

;5 get-mem-2
;s get-mem-4
;;multiply

; ; subtract

;;st-mem-1

; ;delete

; ;get-mem-4
;;multiply

;s get-mem-2
; 5 get-mem-3

;multiply

; ;addition
; 7 St-mem-2
; rdelete

;end-calc

;; FP-CALC
; 7 st-mem-0
; rdelete
;;get—-mem-1
;;addition

;duplicate

; ;end-calc

ARC_END

LINE DRAW

; THE

CD_PRMS1

LD
CALL

RST

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

LD
CALL

RST
DEFB
DEFB

CALL

POP
DJINZ

RST

DEFB
DEFB
DEFB
DEFB

LD
CALL

RST

DEFB
DEFB
DEFB

LD
CALL

RST
DEFB
DEFB

JR

CALL
JP

RST
DEFB
DEFB

A, ($5B7D)
STACK A

28H
$03
SEO
SE2
SOF
$CO
$01
SEO
$38

A, ($5B7E)
STACK A

28H
$03
$38

DRAW LINE

BC
ARC_LOOP

28H
$02
$02
$01
$38

A, ($5B7D)
STACK A

28H
$03
$01
$38

A, ($5B7E)
STACK A

28H
$03
$38

DRAW LINE

DRAW LINE
TEMPs

28H
$31
$28

’

’

’
’
’
’
’
’
’
’

’

’

’

’
’

’

’

’

’
’
’
’

’

’

’

’
’
’

’

’

’

’
’

’

’

’

’

’
’

’

COORDS-x
routine S

; ; FP-CALC
;5 subtract
; ;get-mem-0
;s get-mem-2
; ;addition
; 7 st-mem-0
; ;exchange

;get-mem-0

; rend-calc

COORDS-y
routine S

;; FP-CALC
; 7 subtract

;end-calc

TACK-A

TACK-A

routine DRAW-LINE

to ARC-LOOP

;; FP-CALC

;delete

; sdelete
; ;exchange
; ;end-calc

COORDS-x
routine S

;; FP-CALC
; ;subtract
; ;exchange
; ;end-calc

COORDS-y
routine S

;; FP-CALC
; ;subtract
; ;end-calc

TACK-A

TACK-A

routine DRAW-LINE

routine DRAW LINE

; ?2to TEMPs

;; FP-CALC

;duplicate
;sqr

'CIRCLE AND DRAW INITIAL PARAMETERS'

SUBROUTINE

DEFB $34

DEFB $32

DEFB $00

DEFB $01

DEFB $05

DEFB SE5

DEFB $01

DEFB $05

DEFB S$2A

DEFB $38

CALL FP TO A

JR C,USE 252

AND SFC

ADD A, $04

JR NC, DRAW SAVE
USE 252 LD A, SFC
DRAW SAVE PUSH AF

CALL STACK A

RST 28H

DEFB SE5

DEFB $01

DEFB $05

DEFB $31

DEFB S1F

DEFB $C4

DEFB $02

DEFB $31

DEFB SA2

DEFB $04

DEFB S$1F

DEFB S$C1

DEFB $01

DEFB S$CO

DEFB $02

DEFB $31

DEFB $04

DEFB $31

DEFB SOF

DEFB S$Al

DEFB $03

DEFB S$1B

DEFB S$C3

DEFB $02

DEFB $38

POP BC

RET
; THE 'DRAW LINE' SUBROUTINE
; B=Y C=X D=signY E=signX
DRAW LINE CALL STK TO BC

1D A,

C

; ;stk-data

; ;Exponent: $82,
;; (+00,+00,+00)
; ;exchange
;;division

; ;get-mem-5

; ;exchange
;;division

; ;abs
;;end-calc

; routine FP-TO-A
; to USE-252

; to DRAW-SAVE

; routine STACK-A

;; FP-CALC
; ;get-mem-5
; ;exchange
;;division
;;duplicate
;;sin

;7 st-mem-4
;;delete
;;duplicate
;;stk-half
;omultiply
;;sin

;7 st-mem-1
; ;exchange
;7 st-mem-0
; ;delete

; ;duplicate
;smultiply
;;duplicate
;;addition
;;stk-one

; ;subtract
; rnegate

;7 st-mem-3
; ;delete
;;end-calc

; routine STK-TO-BC

; load X to accumulator.

Bytes:

1

; Y is

DL X GE Y

DL LARGER

D L _LOOP

D L _DIAG

D L STEP

D L PLOT

CP
JR

B

NC,DL X GE_Y

greater than X

LD

PUSH
XOR
LD

JR

OR
RET

LD
LD
PUSH
LD

LD
LD
RRA

ADD
JR

CP
JR

SUB
LD
EXX
POP
PUSH
JR

LD
PUSH
EXX
POP

LD
LD
ADD
LD
LD
INC
ADD
JR

JR

DEC
LD
CALL
EXX
LD

L,C

E,A

DL LARGER

C,D_L DIAG

H
C,D L HR VT

H
C,A

BC

BC
D L STEP

L
,D_L_RANGE
7,REPORT Bc
A

C,A

PLOT SUB

A,C

compare to Y.
forward,

load L with X
B is Y
save signs.

set E to zero.

to DL-LARGER

check if x is
return if so

load L with Y
load B with X
save signs.

set D to zero.

if X greater or equal,

to DL-X-GE-Y

zero

load H with larger

to A also

to D-L-DIAG

to D-L-HR-VT

to D-L-STEP

COORDS

to D-L-RANGE

to REPORT-Bc

LET S = INT (M/2)

'Integer out of range'

routine PLOT-SUB

DJNZ D L _LOOP ; to D-L-LOOP

POP DE ;
RET ;
D L RANGE JR Z,D L PLOT ; to D-L-PLOT
REPORT Bc RST 30H ; ERROR-1
DEFB $0A ; Error Report: Integer out of range

,-***********************************

;** Part 8. EXPRESSION EVALUATION **

ek khkhkhkhkhkhkhhkhkhkhhkhkhhkhhkkhkhkhkhkhkhrhkkhhrhkhhkhkhk*x*x
’

’

It is a this stage of the ROM that the Spectrum ceases altogether to be
just a colourful novelty. One remarkable feature is that in all previous
commands when the Spectrum is expecting a number or a string then an
expression of the same type can be substituted ad infinitum.

This is the routine that evaluates that expression.

This is what causes 2 + 2 to give the answer 4.

That is quite easy to understand. However you don't have to make it much
more complex to start a remarkable juggling act.

e.g. PRINT 2 * (VAL "2+2" + TAN 3)

In fact, provided there is enough free RAM, the Spectrum can evaluate

an expression of unlimited complexity.

Apart from a couple of minor glitches, which you can now correct, the
system is remarkably robust.

THE 'SCANNING' SUBROUTINE

Scan expression or sub-expression
The routine begins and ends with a RST 18H instruction.

SCANNING RST 18H ; GET-CHAR

LD B,S$00 ; Priority marker zero is pushed on stack to
; signify the end of expression when it is
; popped off again.

PUSH BC ; Stack the marker byte and proceed to consider
; the first character of the expression.

S_LOOP_1

’

’

’

LD C,A ; place the search character in C.
LD HL, SCAN_FUNC-1 ; Address: scan-func
CALL INDEXER 0 ; routine INDEXER is called to see if it is
; part of a limited range '+', '(', 'ATTR' etc.
LD A,C ; fetch the character back
JP NC, S ALPHNUM ; jJump forward to S-ALPHNUM if not in complex

; operators and functions to consider in the
; first instance a digit or a variable and

; then anything else. >>>
LD B, $00 ; but here if it was found in table so
LD C, (HL) ; fetch offset from table and make B zero.
ADD HL,BC ; add the offset to position found

JP (HL) ; jump to the routine e.g. S-BIN

; making an indirect exit from there.

; PRINT """Hooray!"" he cried.”
S QUOTE S CALL CH ADD 1 ; routine CH-ADD+1 points to next character
; and fetches that character.
INC BC ; increase length counter.
CP S0D ; 1s it carriage return ?
; inside a quote.
JR Z,REPORT Cs ; jump forward, if so, to REPORT-C
; 'Nonsense in BASIC'.
CP $22 ; 1s it a quote '"' ?
JR NZ,S QUOTE S ; back, if not, to S-QUOTE-S
CALL CH ADD 1 ; routine CH-ADD+1
CP $22 ; compare with possible adjacent quote
RET ; return. with zero set if two together.
; This subroutine is used to get two coordinate expressions for the three
; functions SCREENS$, ATTR and POINT that have two fixed parameters and
; therefore require surrounding braces.
S 2 COORD RST 20H ; NEXT-CHAR
CP $28 ; 1s character the opening '(' ?
JR NZ, REPORT Cs ; forward, if not, to S-RPORT-C
; 'Nonsense in BASIC'.
CALL NEXT 2NUM ; routine NEXT-2NUM gets two comma-separated
; numeric expressions. Note. this could cause
; many more recursive calls to SCANNING but
; the parent function will be evaluated fully
; before rejoining the main juggling act.
HE RST 18H ; GET-CHAR was exit route for SCANNING
TST RBRKT CP $29 ; 1s it the closing '")' ?
S RPORT C JR NZ,REPORT Cs ; Jump forward, if not, to REPORT-Cs

; THE 'SYNTAX 7' SUBROUTINE

; This routine is called on a number of occasions to check if syntax is being
; checked or if the program is being run. To test the flag inline would use
; four bytes of code, but a call instruction only uses 3 bytes of code.
SYNTAX 7Z BIT 7, (IY+S01) ; test FLAGS - checking syntax only ?

RET ; return.

; This function returns the code of a bit-mapped character at screen

; position at line C, column B. It is unable to detect the mosaic characters
; which are not bit-mapped but detects the ASCII 32 - 127 range.

; The bit-mapped UDGs are ignored which is curious as it requires only a

; few extra bytes of code. As usual, anything to do with CHARS is weird.

; If no match is found a null string is returned.

; No actual check on ranges is performed - that's up to the BASIC programmer.
; No real harm can come from SCREENS (255,255) although the BASIC manual

; says that invalid values will be trapped.

; Interestingly, in the Pitman pocket guide, 1984, Vickers says that the
; range checking will be performed.

S SCRNs S CALL STK TO LC ; NEW routine STK-TO-LC.
LD HL, ($5B36) ; fetch address of CHARS.
P LD DE, $0100 ; fetch offset to chr$ 32
H ADD HL, DE ; and find start of bitmaps.
HEH ; Note. not inc h. ?°?
INC H ;+ increment high byte to address bitmaps.
LD A,C ; transfer line to A.
RRCA ; multiply
RRCA ; by
RRCA ; thirty-two.
AND SEO ; AND with 11100000
XOR B ; combine with column $00 - $1F
LD E,A ; to give the low byte of top line
LD A,C ; column to A range 00000000 to 00011111
AND $18 ; AND with 00011000
XOR $40 ; XOR with 01000000 (high byte screen start)
LD D,A ; register DE now holds start address of cell.
LD B, $60 ; there are 96 characters in ASCII set.
S_SCRN_LP PUSH BC ; save count
PUSH DE ; save screen start address
PUSH HL ; save bitmap start
LD A, (DE) ; first byte of screen to A
XOR (HL) ; XOR with corresponding character byte
JR Z,S_SC MTCH ; forward to S-SC-MTCH if they match

; if inverse result would be S$FF
; if any other then mismatch

INC A ; set to $00 if inverse
JR NZ,S SCR_NXT ; forward to S-SCR-NXT if a mismatch
DEC A ; restore SFF
; a match has been found so seven more to test.
S SC _MTCH LD C,A ; load C with inverse mask $00 or S$FF
LD B, S$07 ; count seven more bytes
S _SC_ROWS INC D ; lncrement screen address.
INC HL ; increment bitmap address.
LD A, (DE) ; byte to A
XOR (HL) ; will give $00 or SFF (inverse)
XOR C ; XOR with inverse mask
JR Nz,S SCR _NXT ; forward to S-SCR-NXT if no match.
DJNZ S SC ROWS ; back to S-SC-ROWS until all eight matched.

; continue if a match of all eight bytes was found

POP BC ; discard the

POP BC ; saved
POP BC ; pointers
LD A, $80 ; the endpoint of character set
SUB B ; subtract the counter
; to give the code 32-127
HE LD BC,$0001 ; make one space in workspace.
CALL BC_ SPACEl ; BC _SPACES creates the 1 space sliding
; the calculator stack upwards.
LD (DE) , A ; start is addressed by DE, so insert code
JR S _SCR_STO ; forward to S-SCR-STO
; the jump was here if no match and more bitmaps to test.
S _SCR_NXT POP HL ; restore the last bitmap start
LD DE, $0008 ; and prepare to add 8.
ADD HL, DE ; now addresses next character bitmap.
POP DE ; restore screen address
POP BC ; and character counter in B
DJNZ S SCRN LP ; back to S-SCRN-LP if more characters.
LD C,B ; B is now zero, so BC now zero.
S _SCR_STO RET ; (WAS to STK-STO-$) to store the string in

; workspace or a string with zero length.
; (value of DE doesn't matter in last case)

; Note. this exit seems correct but the general-purpose routine S-STRING
; that calls this one will also stack any of its string results so this
; leads to a double storing of the result in this case.

; The instruction at S SCR STO should just be a RET. (Done! SEP-2002)
; credit: Stephen Kelly and others, 1982.

; This function subroutine returns the attributes of a screen location -
; a numeric result.
; Again it's up to the BASIC programmer to supply valid values of line/column.
S ATTR S CALL STK TO LC ; NEW routine STK-TO-BC fetches line to C,
; and column to B.
LD A,C ; line to A $00 - $17 (max 00010111)
RRCA ; rotate
RRCA ; bits
RRCA ; right.
LD C,A ; store in C as an intermediate value.
AND SEO ; pick up bits 11100000 (was 00011100)
XOR B ; combine with column $00 - S$1F
LD L,A ; low byte is now correct.
LD A,C ; bring back intermediate result from C
AND $03 ; mask to give correct third of
; screen $00 - $02
XOR $58 ; combine with base address.
LD H,A ; high byte correct.
LD A, (HL) ; pick up the colour attribute.

JP STACK A ; Jjump forward to STACK-A to store result

; and make an indirect exit.

REPORT Cs RST 30H ; ERROR 1

DEFB S$0B ; Error Report: Nonsense in BASIC

; THE 'SCANNING FUNCTION' TABLE

This table is used by INDEXER routine to find the offsets to

four operators and eight functions. e.g. S$A8 is the token 'FN'.

This table is used in the first instance for the first character of an
expression or by a recursive call to SCANNING for the first character of
any sub-expression. It eliminates functions that have no argument or
functions that can have more than one argument and therefore require
braces. By eliminating and dealing with these now it can later take a
simplistic approach to all other functions and assume that they have

one argument.

Similarly by eliminating BIN and '.' now it is later able to assume that
all numbers begin with a digit and that the presence of a number or
variable can be detected by a call to ALPHANUM.

By default all expressions are positive and the spurious '+' is eliminated
now as in print +2. This should not be confused with the operator '+'.
Note. this does allow a degree of nonsense to be accepted as in

PRINT +"3 is the greatest.".

An acquired programming skill is the ability to include brackets where
they are not necessary.

A bracket at the start of a sub-expression may be spurious or necessary
to denote that the contained expression is to be evaluated as an entity.
In either case this is dealt with by recursive calls to SCANNING.

An expression that begins with a quote requires special treatment.

SCAN FUNC DEFB $22, S QUOTE -$-1 ; $1C offset to S-QUOTE
DEFB ' (', S_BRACKET -$-1 ; $4F offset to S-BRACKET
DEFB '.', S DECIMAL -$-1 ; $F2 offset to S-DECIMAL

; TH

; —>

DEFB '+', S U PLUS -$-1 ; $12 offset to S-U-PLUS

DEFB S$A8, S FN -$-1 ; $56 offset to S-FN
DEFB $A5, S RND -$-1 ; $57 offset to S-RND
DEFB S$SA7, S PI -$-1 ; $84 offset to S-PI

DEFB S$A6, S INKEYs -$-1 ; S$8F offset to S—-INKEY$
DEFB $C4, S DECIMAL -$-1 ; $E6 offset to S-BIN
DEFB $AA, S SCREENs -$-1 ; $BF offset to S-SCREENS

DEFB S$AB, S_ATTR -$-1 ; $C7 offset to S-ATTR
DEFB $A9, S_POINT -$-1 ; SCE offset to S-POINT
DEFB $00 ; zero end marker

E 'SCANNING FUNCTION' ROUTINES

These are the 11 subroutines accessed by the above table.

Addresses S-BIN and S-DECIMAL are the same

The 1-byte offset limits their location to within 255 bytes of their
entry in the above table.

S_U_PLUS

JP S NEXT 1 ;+ forward to similar code.

RST 20H ; NEXT-CHAR just ignore
Jp S _LOOP 1 ; back to S-LOOP-1

’

S_QUOTE

->

RST
INC
PUSH
LD

CALL

JR

S Q AGAIN CALL

’

JR

but if just
CALL
JR

In runtime,

CALL

POP
PUSH

S Q COPY LD

S_Q PRMS

INC
LD
INC

CP
JR

LD
INC

CP
JR

18H

HL,

HIL,

BC, $0000
S_QUOTE_S
NZ,S Q PRMS

S_QUOTE_S

Z,5_Q AGAIN

an isolated quote

SYNTAX Z

Z,5_Q PRMS

GET-CHAR

address next character (first in quotes)
save start of quoted text.

initialize length of string to zero.

routine S-QUOTE-S
forward to S-Q-PRMS if

routine S-QUOTE-S copies string until a
quote is encountered

back to S-Q-AGAIN if two quotes WERE

together.

then that terminates the string.
routine SYNTAX-Z

if checking syntax, to

forward, S-Q0-PRMS

build the string expression result.

BC_SPACES

HL
DE

A, (HL)
HL
(DE) ,A
DE

$22
NZ,S_Q COPY

A, (HL)
HL

$22
Z,S_Q_COPY

routine BC_SPACES creates the space for true
copy of string in workspace.

re-fetch start of quoted text.
stack DE the start of string in workspace.

fetch a character from source.
advance the source address.
place in destination.

advance the destination address.

was 1t a
back, if not,

'"'" Just copied ?
to S-Q-COPY

fetch adjacent character from source.
advance the source address.

is this '"' ? - i.e. two quotes together ?
to S-Q-COPY if so including just one of the
pair of quotes.

If not two adjacent quotes then the terminating quote has just been copied.

DEC
POP

S _STRING LD

RES
BIT

CALL

JR

BC
DE

HL, $5B3B
6, (HL)
7, (HL)

NZ,STK_STO s

S_INKs_EN

decrease the count by 1.
restore start of string in workspace.

Address the FLAGS system variable.
signal a string result.
is syntax being checked ?

routine STK-STO-$ is called in runtime.

Jjump forward to S-CONT-2

; —>

S_BRACKET RST 20H ; NEXT-CHAR
CALL SCANNING ; routine SCANNING is called recursively.
N CP 329 ; 1s it the closing '")' ?
HHE JR NZ,REPORT Cs ; .jump back, if not, to REPORT-C
CALL TST RBRKT ; test for a right bracket ")'
RST 20H ; NEXT-CHAR
JR S INKs EN ; Jjump forward to S-CONT-2 ===
; =>
S_FN JP S_FN_SBRN ; jump forward to S-FN-SBRN.
;5 =>
S_RND CALL SYNTAX Z ; routine SYNTAX-7Z
JR Z,S_RND END ; forward to S-RND-END if checking syntax.
LD BC, ($5B76) ; fetch system variable SEED
CALL STACK BC ; routine STACK-BC places on calculator stack
RST 28H ;; FP-CALC ;S.
DEFB $Al ;;stk-one ;s,1.
DEFB S$SOF ;;addition ;s+1l.
DEFB $34 ; 1stk-data ;
DEFB $37 ; ;Exponent: $87,
;;Bytes: 1
DEFB $16 ;5 (+00,+00,+00) ;s+1,75.
DEFB $04 ;imultiply ; (s+1)*75 = v
DEFB $34 ;;stk-data PV
DEFB $80 ;;Bytes: 3
DEFB $41 ; ;Exponent $91
DEFB $00,500,5%80 ;5 (+00) ;v,65537.
DEFB $32 ; ;n—-mod-m ;remainder, result.
DEFB $02 ;;delete ;remainder.
DEFB $Al ;s stk-one ;remainder, 1.
DEFB $03 ;;subtract ;remainder - 1. = rnd
DEFB $31 ;;duplicate ;rnd, rnd.
DEFB $38 ;;end-calc
CALL FP TO BC ; routine FP-TO-BC
LD ($5B76) ,BC ; store in SEED for next starting point.
LD A, (HL) ; fetch exponent
AND A ; 1s it zero ?
JR Z,S _RND END ; forward if so to S-RND-END
SUB $10 ; reduce exponent by 2716
LD (HL) , A ; place back
S_RND END JR S_PI END ; forward to S-PI-END

; the number PI 3.14159...

S PI CALL SYNTAX 7Z ; routine SYNTAX-Z
JR Z,S PI END ; to S-PI-END if checking syntax.
RST 28H ;; FP-CALC
DEFB S$A3 ;;stk-pi/2 pi/2.
DEFB $38 ;;end-calc
INC (HL) ; increment the exponent leaving PI

; on the calculator stack.

S PI END
JR S AT NUM ;+ forward to similar code ending at S NUMERIC
HHE RST 20H ; NEXT-CHAR
;i JP S_NUMERIC ; Jjump forward to S-NUMERIC
;>
S _INKEYs LD BC, $105A ; Priority $10, operation code $1A ('read-in')
; +$40 for string result, numeric operand.
; Set this up now in case we need to use the
; calculator.
RST 20H ; NEXT-CHAR
Cp $23 ;oTHE 2
JP Z,S_PUSH PO ; To S-PUSH-PO if so to use the calculator
; single operation to read from network/RS232.
; else read a key from the keyboard.
D HL, $5B3B ; fetch FLAGS
RES 6, (HL) ; signal string result.
BIT 7, (HL) ; checking syntax ?
JR Z,S _INKs EN ; forward, if so, to S-INKS$S-EN
CALL KEY SCAN ; routine KEY-SCAN key in E, shift in D.
LD C,$00 ; prepare the length of an empty string
JR NZ,S IKs STK ; forward, if no key returned, to S-IK$-STK
; to store empty string.
CALL K TEST ; routine K-TEST get main code in A
JR NC,S IKs STK ; forward, if invalid, to S-IK$-STK
; to stack null string.
DEC D ; D i1s expected to be FLAGS so set bit 3 S$FF
; 'L' Mode so no keywords.
Y LD E,A ; main key to E
; C 1is MODE 0 'KLC' from above still.
CALL K DECODEZ2 ; routine K DECODE but skip first.
HE PUSH AF ; save the code
H LD BC,$0001 ; make room for one character
CALL BC SPACEl ; routine BC SPACEl creates a single space.

A POP AF ; bring the code back

’

S_IKs_STK

S_INKs_EN

’

->

S_SCREENSs

’

->

S_POINT

LD
LD

LD
CALL

JPp

CALL

CALL

RST
JPp

CALL

CALL

RST
JR

CALL

CALL

JR

RST
JR

(DE) ,A ; put the key in workspace

C,s$01 ; set C length to one (BC=1)

B,S$00 ; set high byte of length to zero

STK _STO_s ; routine STK-STO-3S

S_CONT 2 ; to S-CONT-2 ===>

S_2 COORD ; routine S-2-COORD

NZ,S SCRNs_S ; routine S-SCRN$-S in runtime.

20H ; NEXT-CHAR

S _STRING ; Back to S-STRING to stack runtime result
S 2 COORD ; routine S-2-COORD

NZ,S ATTR S ; routine S-ATTR-S in runtime.

20H ; NEXT-CHAR

S_NUMERIC ; forward to S-NUMERIC

S 2 COORD ; routine S-2-COORD

NZ, POINT SUB ; routine POINT-SUB in runtime.

S AT NUM ;+ back to similar sequence ending at S NUMERIC
20H ; NEXT-CHAR

S_NUMERIC ; forward to S-NUMERIC

==> The branch was here if not in table of exceptions.

S_ALPHNUM CALL ALPHANUM ; routine ALPHANUM checks if a variable or

else

JR

CP
JR

; a digit follows.

NC, S NEGATE ; forward, if not, to S-NEGATE

; to consider a '-' character then functions.
$41 ; compare with 'A'
NC, S LETTER ; forward, if alpha, to S-LETTER ->

must have been numeric so continue into that routine.

This important routine is called during runtime and from LINE-SCAN
when a BASIC line is checked for syntax. It is this routine that

ts, during syntax checking, the invisible floating point numbers
after the numeric expression. During runtime it just picks these

inser

numbers up.

->

It also handles BIN format numbers.

S _DECIMAL CALL SYNTAX Z ; routine SYNTAX-Z

JR

NZ,S STK DEC ; to S-STK-DEC in runtime

’

’

this route

CALL

RST

LD
CALL
INC
LD
INC

EX

CALL

LD
LD
AND
SBC
LD
LDIR
EX
DEC

CALL

JR

LD
LD
AND
SBC
LD
LDIR
EX
DEC
RET

DEC_TO FP
18H

BC, $0006
MAKE ROOM
HL
(HL) , $OE
HL

DE, HL
GET 5

HL, ($5B65)
C,$05

A

HL, BC
($5B65) , HL

DE, HL
HL

TEMP_ PTR1

S_NUMERIC

HL, ($5B65)
BC, $0005

A

HL, BC
($5B65) , HL

DE, HL
HL

’

is taken when checking syntax.

routine DEC-TO-FP to evaluate number
GET-CHAR to fetch HL

six locations are required
routine MAKE-ROOM

insert number marker at first location.
address next location to receive the 5 bytes.

make DE destination.

;+ NEW subroutine below embodies following

Ne Ne Ne Ne Ne Ne Ne N

~e

+ 4+ + + + + +

STKEND points to end of stack.

result is five locations lower
prepare for true subtraction

point to start of value.

update STKEND as we are taking number.
Copy five bytes to program location
transfer pointer to HL

adjust

routine TEMP-PTR1 sets CH-ADD.

to S-NUMERIC to record nature of result

STKEND points to end of stack.

There are five bytes to copy.

Clear carry flag.

Reduce HL by five.

update STKEND as we are taking number.
Copy five bytes to location

transfer pointer to HL

adjust

Return

S _DECIMAL branches here in runtime to pick up prepared number.

S_STK DEC RST

S_SD_SKIP INC

S_NUMERIC

’

’

’

’

LD

CP

JR

INC

CALL

LD

SET

JR
JR

18H

HL
A, (HL)
SOE

NZ,S_SD_SKIP

HL

STACK_NUM
($5B5D) , HL
6, (IY+$01)

S_CONT 1
S_CONT 2

’

’

GET-CHAR positions HL at digit.

advance pointer

until we find

chr 14d - the number indicator

loop back, until match found, to S-SD-SKIP
it has to be here.

point to first byte of number
routine STACK-NUM stacks it.
update system variable CH ADD

update FLAGS - Signal numeric result
forward to S-CONT-1

;+ forward now directly to S-CONT-2

end of functions accessed from scanning functions table.

S _LETTER CALL LOOK VARS ; routine LOOK-VARS
JP C,REPORT 2 ; jump back to REPORT-2 if not found
; 'Variable not found'
; but a variable is always 'found' if syntax
; 1s being checked.
CALL Z,STK VAR ; routine STK-VAR considers a subscript/slice
LD A, ($S5B3B) ; fetch FLAGS value
CP $CO ; compare 11000000
I s JR C,S_CONT 1 ; step forward to S-CONT-1 if string ===>
JR C,S_CONT 2 i+ step forward to S-CONT-2 if string ===>
; The variable is a simple numeric variable.
INC HL ; advance pointer past last letter.
CALL STACK NUM ; routine STACK-NUM
S CONT_ 1 JR S _CONT_ 2 ; forward to S-CONT-2 ===>
; -> the scanning branch was here if not alphanumeric.
; All the remaining functions will be evaluated by a single call to the
; calculator. The correct priority for the operation has to be placed in
; the B register and the operation code, calculator literal in the C register.
; the operation code has bit 7 set if result is numeric and bit 6 is
; set if operand is numeric. so
; $SCO0 = numeric result, numeric operand. e.g. 'sin'
; $80 = numeric result, string operand. e.g. 'code'
; $40 = string result, numeric operand. e.g. 'str$'
; $00 = string result, string operand. e.g. 'vals'
S NEGATE LD BC, $09DB ; prepare priority 09, operation code $CO +
; 'negate' ($1B) - bits 6 and 7 set for numeric
; result and numeric operand.
CP $2D ; is the character '-' ?
JR Z,S_PUSH PO ; forward, if so, to S-PUSH-PO
LD BC,$1018 ; prepare priority $10, operation code 'val$' -
; bits 6 and 7 reset for string result and
; string operand.
CP SAE ; 1s it 'VALS' ?
JR Z,S_PUSH PO ; forward, if so, to S-PUSH-PO
SUB SAF ; subtract token 'CODE' wvalue to reduce
; functions 'CODE' to 'NOT' although the
; upper range is, as yet, unchecked.
; valid range would be $00 - $14.
JR C,REPORT Cw ; forward, with anything else, to REPORT-C
; 'Nonsense in BASIC'
LD BC, $04F0 ; prepare priority $04, operation $CO +

'not' ($30)

’

’

CP
JR

JR

LD
ADD

LD
CP
JR

all the rest
and 'chrs$'.

RES

S_NO_TO s CP

’

’

JR

RES

$14
7,5 PUSH PO

NC, REPORT Cw

B, $10
A, $DC

C,A
$DF
NC,S _NO_TO s

'cos' through

6,C

SEE
C,S PUSH PO

7,C

is it 'NOT'
forward, if so, to S-PUSH-PO

forward, if higher, to REPORT-C
'Nonsense in BASIC'

priority $10 for all the rest
make range $DC - SEF
$CO + 'code' ($1C) through 'chr$' ($2F)

transfer 'function' to C

compare to 'sin' ?

forward to S-NO-TO-$ with 'sin' through
'chr$' as operand is numeric.

'chr$' give a numeric result except 'str$'

signal string operand for 'code', 'val' and
'len'.

compare 'str$'
forward to S-PUSH-PO if lower as result
is numeric.

reset bit 7 of op code for 'str$', 'chrs$'
as result is string.

>> This is where they were all headed for.

Push the Priority and Operand.

S_PUSH_PO PUSH BC

S_

S_

S_

JR

H RST
;7 Jp

CONT 2 RST

CONT 3 CP
JR

BIT
JR

if a string
CALL

CONT 4 RST
JR

S_NEXT 1

20H
S_LooP 1

’

’

push the priority and calculator operation
code.

;+ forward to similar looping code.

’

’

NEXT-CHAR
jump back to S-LOOP-1 to go round the loop

were many branches forward to here

18H

$28
Nz,S OPERTR

6, (IY+$01)
NZ,S_LOOP

preceded ' ('
SLICING

20H
S_CONT_3

the branch was here when

GET-CHAR

is it "(' 2

forward, if not, to S-OPERTR >

test FLAGS - numeric or string result ?

forward to S-LOOP if numeric to evaluate >

slice it.

routine SLICING

NEXT-CHAR
back to S-CONT-3

possibility of an operator ' (' has been excluded.

S_OPERTR

’

’

’

rs

rs

rs

LD
LD
LD
CALL

JR

B, S$00

C,A

HL, tbl ofops-1
INDEXER O

NC,S LOOP

’

’

’

prepare to index.

possible operator to C

Address: tbl-of-ops

routine INDEXER does look up sets B to zero.

forward to S-LOOP if not in table

but if found in table the priority has to be looked up.

LD

LD

ADD
LD

C, (HL)
HL, TBL PRI-$C3

HL, BC
B, (HL)

The juggling act.

S_LOOP POP

’

LD
CP
JR

DE
A,D

B

C,S TIGHTER

’

The last priority was greater

AND

JPp

PUSH

The 'USR'
of result.

LD
LD
CP
JR

BIT

JR

LD

S_STK_LST PUSH

A

Z,GET CHAR

BC

function is special

HL, $5B3B

AE

SED

NZ,S STK_LST

6, (HL)

NZ,S STK_LST

E,$99

DE

operation code to C (B is still zero)
address theoretical base of table.

index into table.
priority to B.

fetch last priority and operation code.
priority to A

compare with this one

forward, with carry, to S-TIGHTER

to execute the operation before this one as
it has a higher priority.

or equal this one.
if it is zero then so is this

jump, if zero, to exit via GET-CHAR
pointing CH ADD at next character.

This may be the character after the
expression or, if exiting a recursive call,
the next part of the expression to be
evaluated.

save the current priority/operation as it
must have lower precedence than the one
now in DE.

in that it is 'overloaded' to give two types

Address the FLAGS system variable.
new operation to A register

is it $CO + 'usr-no' ($2D) *?
forward, if not, to S-STK-LST

is a string result expected ?

(from the lower priority operand we've
just pushed on stack)

forward, if numeric, to S-STK-LST

as the operand bits match.

reset bit 6 and substitute $19 'usr-$'
for a string operand.

now stack this priority/operation code.

CALL SYNTAX Z ; routine SYNTAX-Z

JR Z,S SYNTEST ; forward, if checking syntax, to S-SYNTEST
LD AE ; fetch the operation code.
AND $3F ; mask off the result/operand bits to leave
; a calculator literal.
LD B,A ; transfer naked 'literal' to B register
; Now use the calculator to perform the single operation - the operand is on
; the calculator stack.
; Note. although the calculator is performing a single operation most
; functions e.g. TAN are written using other functions and literals and
; these in turn are written using further strings of calculator literals so
; another level of magical recursion joins the juggling act for a while as
; the calculator, too, is calling itself.
RST 28H ;; FP-CALC operand.
DEFB $3B ;;fp-calc-2
DEFB $38 ;;end-calc result.
JR S_RUNTEST ; forward to S-RUNTEST
; The branch was here if checking syntax only.
S _SYNTEST LD AE ; fetch the operation code to the accumulator.
XOR (IY+301) ; XOR with the FLAGS system variable.
AND $40 ; bit 6 will be zero now if operand
; matched expected result.
JR Z,S_RUNTEST ; skip forward, if results match.
REPORT Cw RST 30H ; ERROR-1
DEFB $0B ; Error Report: Nonsense in BASIC
;i S_RPRT_CZ Jp NzZ,REPORT C ; to REPORT-C if mismatch
; else continue to set flags for next operation.
; The branch is to here in runtime after a successful operation.
S _RUNTEST POP DE ; fetch the last operation from stack
LD HL, $5B3B ; address FLAGS system variable.
SET 6, (HL) ; set default FLAGS result to numeric.
BIT 7,E ; test the operational result.
JR NZ,S LOOPEND ; forward, if numeric, to S-LOOPEND
RES 6, (HL) ; reset bit 6 of FLAGS to show string result.
S_LOOPEND POP BC ; fetch the previous priority/operation
JR S _LOOP ; back to S-LOOP
; to perform these.
; The branch was here when a stacked priority/operator had higher priority
; than the current one.
S _TIGHTER PUSH DE ; save higher priority/operator on stack again.

LD A,C ; fetch the lower priority/operation code.

BIT 6, (IY+S01) ; test FLAGS - numeric or string result ?

JR NZ,S NEXT ; forward, if numeric, to S-NEXT
; If this is lower priority, yet has a string result, then it must be a
; comparison. Since these can only be evaluated in context and were
; defaulted to numeric at the operator look-up stage, they must be changed
; to their string equivalents.
AND S3F ; mask to give the true calculator literal.
ADD A, $08 ; augment numeric literals to their string
; equivalents.
; 'no-&-no' => 'str-&-no'

; 'no-l-eql' => 'str-l-eql'’
; 'no-gr-eq' => 'str-gr-eq'

; 'nos-negl' => 'strs-neql'
; 'no-grtr' => 'str-grtr'
; 'no-less' => 'str-less'
; 'nos-eqgl' => 'strs-eql'

; 'addition' => 'strs-add'

LD C,A ; put modified comparison operator back.
CP $10 ; is it now 'str-&-no' ?
JR NZ,S NOT AND ; skip forward, if not, to S-NOT-AND
SET 6,C ; set numeric operand bit.
JR S _NEXT ; forward to S-NEXT
; The short branch was to here when string operators had been compared.

S _NOT AND JR C,REPORT Cw ; back, if less than '&', to S-RPORT-C2
; '"Nonsense in BASIC'

; e.g. with a$ * bs

CP $17 ; 1s it 'strs-add' ?
JR Z,S_NEXT ; forward, if so, to S-NEXT
; as already set for a string result.

SET 7,C ; set numeric (Boolean) result for all others.
S _NEXT PUSH BC now save this priority/operation on stack.
S NEXT 1 RST 20H NEXT-CHAR advances the character address.

JP S _LOOP_1 jump back to S-LOOP-1

; THE 'OPERATORS' TABLE

; This table is used to look up the calculator literals associated with the
; operator character. The thirteen calculator operations $03 - $0F have
; bits 6 and 7 set to signify a numeric result. Some of these codes and bits
; may be altered later if the context suggests a string comparison or
; operation was intended. That is '+', '=', '>', '<', '<=', '>=' or '<>',
tbl ofops DEFB '+', SCF ; $CO + 'addition'

DEFB '-', $C3 ; 3CO0 + 'subtract'

DEFB '*', scC4 ; SCO + 'multiply'

DEFB '/', SC5 ; SCO0 + 'division'

DEFB '~', S$C6 ; $CO0 + 'to-power'

DEFB '=', SCE ; $CO0 + 'nos-eql'

DEFB '>', SCC ; $CO0 + 'no-grtr'

DEFB '<', S$CD ; SCO + 'no-less'

DEFB S$C7, S$C9 ;=" $CO0 + 'no-l-eql'
DEFB $C8, S$CA ;o '>=" $CO0 + 'no-gr-eql'
DEFB S$C9, S$CB PR $CO0 + 'nos-neql'
DEFB $C5, $C7 ; 'OR' SCO0 + 'or'
DEFB $Co6, $C8 ; '"AND' S$CO + 'mo-&-no'
DEFB $00 ; zero end-marker.
; THE 'PRIORITIES' TABLE
; This table is indexed with the operation code obtained from the above

; table, $C3 - SCF, to obtain the priority for the respective operation.

TBL PRI DEFB $06 ;o opcode $C3
DEFB $08 ;oTE opcode $C4
DEFB $08 VA opcode $C5
DEFB S$0A ;T opcode S$C6
DEFB $02 ; 'OR' opcode $C7
DEFB $03 ; '"AND' opcode $C8
DEFB $05 ; '<=' opcode $C9
DEFB $05 ; '>=' opcode $CA
DEFB $05 ; '<>'" opcode SCB
DEFB $05 ;> opcode S$CC
DEFB $05 ;<! opcode $CD
DEFB $05 ;=" opcode S$CE
DEFB $06 PR opcode SCF

; This routine deals with user-defined functions.

; The definition can be anywhere in the program area but these are best

; placed near the start of the program as we shall see.

; The evaluation process is quite complex as the Spectrum has to parse two
; statements at the same time. Syntax of both has been checked previously
; and hidden locations have been created immediately after each argument

; of the DEF FN statement. Each of the arguments of the FN function is
; evaluated by SCANNING and placed in the hidden locations. Then the

; expression to the right of the DEF FN '=' is evaluated by SCANNING and for
; any variables encountered, a search is made in the DEF FN variable list

; in the program area before searching in the normal variables area.

; Recursion is not allowed: i.e. the definition of a function should not use
; the same function, either directly or indirectly (through another
function) .

; You'll normally get error 4, ('Out of memory'), although sometimes the

; system will crash. - Vickers, Pitman 1984.

; As the definition is just an expression, there would seem to be no means

; of breaking out of such recursion.

; However, by the clever use of string expressions and VAL, such recursion

; is possible.

; e.g. DEF FN a(n) = VAL "n+FN a(n-1)+0" ((n<l) * 10 + 1 TO)

; will evaluate the full 1ll-character expression for all values where n is

; greater than zero but just the 11th character, "0", when n drops to zero

; thereby ending the recursion producing the correct result.

; Recursive string functions are possible using VALS instead of VAL and the
; null string as the final addend.

; - from a turn of the century newsgroup discussion initiated by Mike Wynne.

S _FN_SBRN CALL SYNTAX Z ; routine SYNTAX-Z

JR NZ,SF_RUN ; forward to SF-RUN in runtime

RST 20H ; NEXT-CHAR
CALL ALPHA ; routine ALPHA check for letters [A-Za-z]
JR NC, REPORT Cw ; jump back, if not, to REPORT-C

; '"Nonsense in BASIC'

RST 20H ; NEXT-CHAR
Cp $24 ; is it 's$' o2
PUSH AF ; (*) save the flags
JR NZ,SF _BRKT 1 ; forward, with numeric function, to SF-BRKT-1
RST 20H ; NEXT-CHAR advances past the '$'.
SF_BRKT 1 CP $28 ; is character a ' (' ?
SF RPT C JR NZ,REPORT Cw ; forward, if not, to SF-RPRT-C

; '"Nonsense in BASIC'

RST 20H ; NEXT-CHAR

Cp $29 ;ois it ") ' 2

JR Z,SF _FLAG 6 ; forward, if no arguments, to SF-FLAG-6
SF_ARGMTS CALL SCANNING ; routine SCANNING checks each argument which

; may be an expression and ends with RST 18H.

HH RST 18H ; GET-CHAR
CP s2C ; is it a '," ?
JR NZ,SF BRKT 2 ; forward if not to SF-BRKT-2 to test bracket
RST 20H ; NEXT-CHAR if a comma was found
JR SF_ARGMTS ; back to SF-ARGMTS to parse all arguments.
SF_BRKT 2
HE CP $29 ; 1s character the closing '")' ?
H JP NZ,REPORT C ; Report 'Nonsense in basic' if not.
CALL TST_RBRKT ;+ routine to test for right hand bracket.

; at this point any optional arguments have had their syntax checked.

SF_FLAG_6 RST 20H ; NEXT-CHAR

S LD HL, $5B3B ; address system variable FLAGS

HE RES 6, (HL) ; signal a string result
CALL STR_RSLT ;+ set default result to string as 3 byte call.
POP AF ; (*) restore test result against 'S$'.
JP Z,S CONT 2 ;+ to S CONT 2 if string

JPp S_NUMERIC ;+ else to S NUMERIC.

’

SF_RUN

SF_ARGMT1

SF_FND_DF

REPORT P

SF_CP_DEF

’

’

;s JR
] SET
;; SF_SYN EN JP

Z,SF_SYN EN ;
6, (HL) ;
S_CONT 2 ;

skip forward to SF-SYN-EN if string function.
signal a numeric result.
jump back to S-CONT-2 to continue scanning.

The branch was here in runtime.

RST
AND
LD
RST
SUB
LD
JR
RST
RST
PUSH
LD
DEC
LD
PUSH
CALL

POP
JR

RST
DEFB

PUSH

CALL

AND

CP

JR

the letters

CALL

SUB
CP

JR

the letters

SF_NOT_FD POP

DEC
LD

PUSH

CALL

20H ;
SDF ;
B,A ;
20H ;
$24 ;
C,A ;
NZ,SF ARGMT1 ;
20H ;
20H ;
HL ;
HL, ($5B53) ;
HL ;
DE, $SO0CE ;
BC ;
LOOK_PROG ;

BC ;
NC,SF_CP_DEF ;

30H ;
$18 ;

HL ;
FN_SKPOVR ;
SDF ;
B ;
Nz, SF _NOT FD ;
match so test the

FN_SKPOVR ;

$24 ;
C ;

Z,SF_VALUES ;
matched but one
HL ;
HL ;
DE, $0200 ;

BC ;

EACH STMT ;

NEXT-CHAR fetches name
AND 11101111 - reset bit 5
save in B

- upper-case.

NEXT-CHAR
subtract '$'

save result in C
forward if not '$' to SF-ARGMT1
NEXT-CHAR advances to bracket

NEXT-CHAR advances to start of argument
save address

fetch start of program area from PROG

the search starting point is the previous
location.

search is for token 'DEF FN'
statement count in D.
save C the string test,

in E,
and B the letter.
routine LOOK-PROG will search for token.

restore BC.
forward to SF-CP-DEF if a match was found.

ERROR-1

Error Report: FN without DEF

save address of DEF FN

routine FN-SKPOVR skips over white-space etc.
without disturbing CH-ADD.

make fetched character upper-case.
compare with FN name
forward to SF-NOT-FD if no match.

type.

routine FN-SKPOVR skips white-space
subtract '$' from fetched character

compare with saved result of same operation

on FN name.
forward to SF-VALUES with a match.

was string and the other numeric.

restore search point.

make location before

the search is to be for the end of the
current definition - 2 statements forward.
save the letter/type

routine EACH-STMT steps past the rejected

; definition.

POP BC ; restore letter/type
JR SF_FND DF ; back to SF-FND-DF to continue search
; Success!

; the branch was here with matching letter and numeric/string type.

SF _VALUES AND A ; test A (will be zero if string '$' - 'S$')
CALL Z,FN_SKPOVR ; routine FN-SKPOVR advances HL past 'S$'.
POP DE ; discard pointer to 'DEF FN'.
POP DE ; restore pointer to first FN argument.
LD ($5B5D) , DE ; save address in CH ADD
CALL FN_SKPOVR ; routine FN-SKPOVR advances HL past the '('
PUSH HL ; save start address in DEF EN ***
CP $29 ; 1is character a '")' ?
JR Z,SF R BR 2 ; forward, if no arguments, to SF-R-BR-2
SF_ ARG _LP INC HL ; point to next character.
LD A, (HL) ; fetch it to A.
CP SOE ; 1s it the number marker ?
LD D, $40 ; signal numeric in D.
JR Z,SF ARG VL ; forward, if numeric, to SF-ARG-VL
DEC HL ; back to letter
CALL FN_SKPOVR ; routine FN-SKPOVR skips any white-space
INC HL ; advance past the expected 'S$' to
; the 'hidden' marker.
LD D, $00 ; signal a string result.
SF ARG VL INC HL ; now address first of 5-byte location.
PUSH HL ; save address in DEF FN statement
PUSH DE ; save D - result type
CALL SCANNING ; routine SCANNING evaluates expression in

; the FN statement setting FLAGS and leaving
; result as last value on calculator stack.

POP AF ; restore saved result type to A

XOR (IY+3501) ; XOR with FLAGS

AND 340 ; AND with %01000000 to test bit 6

JR NZ, REPORT Q ; forward, with type mismatch, to REPORT-Q

; 'Parameter error'

HE POP HL ; pop the start address in DEF FN statement

S EX DE, HL ; transfer to DE ?? pop straight into de ?
POP DE ;+ pop the start address in DEF FN to DE.
CALL GET_5 ;+ NEW subroutine above embodies following

HE LD HL, ($5B65) ; set HL to STKEND - location after value

HE LD BC, $0005 ; five bytes to move

H SBC HL, BC ; decrease HL by 5 to point to start.

Y LD ($5B65) , HL ; set STKEND thus 'removing' value from stack.

s LDIR ; copy value into DEF FN statement

HE EX DE, HL ; set HL to location after value in DEF FN
I DEC HL ; step back one
CALL FN_SKPOVR ; routine FN-SKPOVR gets next valid character
CP $29 ; is it '")' end of arguments ?
JR Z,SF R BR 2 ; forward, if so, to SF-R-BR-2

; a comma separator has been encountered in the DEF FN argument list.

PUSH HL ; save position in DEF FN statement
RST 18H ; GET-CHAR from FN statement

CP $2¢C ; is character the corresponding ',' ?
JR NZ,REPORT_Q ; forward, if not, to REPORT-Q

; 'Parameter error'

RST 20H ; NEXT-CHAR in FN statement advances to next
; argument.

POP HL ; restore DEF FN pointer

CALL FN_SKPOVR ; routine FN-SKPOVR advances to corresponding
; argument.

JR SF_ARG LP ; back to SF-ARG-LP looping until all

; arguments are passed into the DEF FN
; hidden locations.

; the branch was here when all arguments passed.

SF R BR 2 PUSH HL ; save location of ')' in DEF FN
RST 18H ; GET-CHAR gets next character in FN
CP $29 ; 1s it a '")' also ?
JR Z,SF _VALUE ; forward, if so, to SF-VALUE
REPORT_Q RST 30H ; ERROR-1
DEFB $19 ; Error Report: Parameter error
SF _VALUE POP DE ; restore location of ')' in DEF FN to DE.
EX DE, HL ; now to HL, FN ')' pointer to DE.
LD ($5B5D) , HL ; initialize CH ADD to this value.

; At this point the start of the DEF FN argument list is on the machine stack.
; We also have to consider that this defined function may form part of the

; definition of another defined function (though not itself).

; As this defined function may be part of a hierarchy of defined functions

; currently being evaluated by recursive calls to SCANNING, then we have to

; preserve the original value of DEFADD and not assume that it is zero.

LD HL, ($S5BOB) ; get original DEFADD address
EX (SP) , HL ; swap with DEF FN address on stack ***
LD ($5B0OB) , HL ; set DEFADD to point to this argument list

; during scanning.
PUSH DE ; save FN ')' pointer.
RST 20H ; NEXT-CHAR advances past ')' in define

RST 20H ; NEXT-CHAR advances past '=' to expression

CALL SCANNING ; routine SCANNING evaluates but searches
; initially for variables at DEFADD

POP HL ; pop the FN ')' pointer
LD ($5B5D) , HL ; set CH ADD to this
POP HL ; pop the original DEFADD value
LD ($5B0OB) , HL ; and re-insert into DEFADD system variable.
JP S _CONT 4 ;+ back to similar code.
H RST 20H ; NEXT-CHAR advances to character after ')'
P JP S _CONT 2 ; Jump back to S-CONT-2

; THE 'DEF FN SKIPOVER' SUBROUTINE

; Used to parse DEF FN

; e.g. DEF FN s S (x) = Db $ (TO x) : REM exaggerated
; This routine is used 10 times to advance along a DEF FN statement skipping
; spaces and colour control codes. It is similar to NEXT-CHAR which is, at
; the same time, used to skip along the corresponding FN function, except
; that the latter has to deal with AT and TAB characters in string
; expressions. These cannot occur in a program area so this routine is
; simpler, as both colour controls and their parameters collate to less than
; the space character.
FN SKPOVR INC HL ; increase pointer.

LD A, (HL) ; fetch the addressed character.

CP $21 ; compare with space + 1

JR C,FN_SKPOVR ; back to FN-SKPOVR if space or less.

RET ; return pointing to a significant character.

; THE 'SEARCH VARIABLES AREA' SUBROUTINE

LOOK_VARS SET 6, (IY+S01) ; update FLAGS - presume numeric result
RST 18H ; GET-CHAR
CALL ALPHA ; routine ALPHA tests for [A-Za-z]
JP NC, REPORT C ; jump back, if not, to REPORT-C

; 'Nonsense in BASIC'

; The first character in BASIC is alphabetic

PUSH HL ; save pointer to first character ~1

AND S1F ; mask lower bits, 1 - 26 decimal 000xxxxx
LD C,A ; store in C as descriptor.

RST 20H ; NEXT-CHAR points to second character.

PUSH HL ; save pointer to second character ~2

CP $28 ; is it '(' - an array °?

JR Z,V_RUN SYN ; forward, if so, to V-RUN/SYN. with 000xxxxx
SET 6,C ; preset bit 6 signaling string 010xxxxX

CP 524 ; 1s character a 'S$' ?

JR Z,V_STR_VAR ;
SET 5,C ;

CALL ALPHANUM ;

JR NC,V_TEST FN ;

; It is more than one character

forward, if so, to V-STR-VAR
signal simple numeric 01lxxxxx

routine ALPHANUM sets carry i1f second
character is also alphanumeric.

forward to V-TEST-FN if just one character

but re-test current character so that 6 reset

; Subsequent characters have the character reduced to 1-26 or 33-58 if lower

; case. Deceptively clever.

V_CHAR CALL ALPHANUM ;
JR NC,V_RUN_SYN ;
RES 6,C ;
RST 20H ;
JR V_CHAR ;

; The jump was here when second

V_STR_VAR RST 20H ;
HE RES 6, (IY+S$S01) ;

CALL STR RSLT o+
V_TEST FN LD A, ($5B0C) ;

AND A ;

JR Z,V_RUN_SYN ;

; Note.
CALL SYNTAX 7 ;

JR NZ,STK_F_ARG ;

routine ALPHANUM
to V_RUN SYN when no more

make long named type 001

NEXT-CHAR
loop back to V-CHAR

character was '$'.

NEXT-CHAR advances past 'S$'
update FLAGS - signal string result.

load A with DEFADD_hi

and test for zero.

forward to V_RUN SYN if a defined function
is not being evaluated.

routine SYNTAX-7Z

JUMP to STK-F-ARG in runtime and then
back to this point if no variable found.

; All paths converge here with bits 5 and 6 describing variable.

V_RUN_SYN LD B,C ;
CALL SYNTAX Z ;
JR NZ,V_RUN ;

; If checking syntax the letter

LD A,C :
AND SEO ;
SET 7,A ;
LD C,A ;
JR V_SYNTAX ;

save flags in B
routine SYNTAX-7Z
to V-RUN to look for the variable in runtime

is not returned

copy letter/flags to A

AND with 11100000 to get rid of the letter
use spare bit to signal checking syntax.

and transfer back to C.

forward to V-SYNTAX

; In runtime search for the variable.

V_RUN LD HL, (S5B4B) ;

V_EACH LD A, (HL) ;

set HL to start of variables from VARS

get first variable letter

AND

JR
CP
JR
RLA
ADD
JP
JR
; This leaves

POP
PUSH

PUSH
V_MATCHES INC

V_SPACES LD
INC
CP
JR

OR
CP
JR

; the last letter won't match.

OR

CP
JR

; but if they
LD
CALL
JR

V_GET_PTR POP

V_NEXT PUSH
CALL

EX
POP

JR

STE

Z,V_80 BYTE

C
NZ,V_NEXT

AR

P,V_FOUND 2

C,V_FOUND 2

AND with %01111111
ignoring bit 7 which distinguishes
arrays or for/next variables.

forward, if zero, to V-80-BYTE
as must be 10000000 the variables end-marker.

compare with supplied value.
forward, with no match, to V-NEXT

destructively test
bits 5 and 6 of A
Jjumping if bit 5 reset or 6 set

to V-FOUND-2 strings and arrays

to V-FOUND-2 simple and for next

long name variables. x01xxxxx

DE ; pop pointer to BASIC 2nd. character.

DE ; save it again

HL ; save variable first letter pointer

HL ; address next letter in VARS area

A, (DE) ; pick up character from BASIC area

DE ; and advance character address

$20 ; 1s character a space °?

Z,V_SPACES ; back to V-SPACES until non-space

$20 ; convert character to reduced lower case.33-58
(HL) ; compare with addressed variables letter

Z,V_MATCHES

$80

(HL)
NZ,V_GET PTR

loop back to V-MATCHES if a match on an
intermediate letter.

now set bit 7 as last character of long names
is inverted.

compare again

forward to V-GET-PTR if no match

match check that this is also last letter in prog area

A, (DE)
ALPHANUM
NC,V_FOUND 1
HL

BC

NEXT_ONE

DE, HL
BC

V_EACH

’

fetch next BASIC character

routine ALPHANUM sets carry if not alphanum
forward to V-FOUND-1 with a full match.

pop saved pointer to 1lst BASIC character.
save flags

routine NEXT-ONE gets next variable in DE

transfer VARS address to HL.
restore the flags

loop back to V-EACH
to compare each variable

V_80 BYTE SET 7,B ; signals not found in runtime.

; the branch was here when checking syntax

V_SYNTAX POP DE ; discard the pointer to 2nd. character v2
; in BASIC line/workspace.
; Note HL addresses 2nd BASIC character also

RST 18H ; GET-CHAR gets character after variable name.

CP $28 ; ois it ' (' 2
; from a string array e.g. as$(

HHE JR Z,V_PASS ; forward, with string array, to V-PASS
H ; Note. could go straight to V-END ?
JR Z,V_END ;+ forward, with string array, to V-END
SET 5,B ; signal not an array
JR V_END ; forward to V-END
; the jump was here when a long name matched and HL pointing to last character
; in variables area.
V_FOUND 1 POP DE ; discard pointer to first var letter
; the jump was here with all other matches HL points to first wvar char.
V_FOUND 2 POP DE ; discard pointer to 2nd BASIC char v2
POP DE ; drop pointer to 1lst BASIC char vl
PUSH HL ; save pointer to last letter in VARS
RST 18H ; GET-CHAR
;77 V_PASS CALL ALPHANUM ; Routine ALPHANUM
HE JR NC,V_END ; Forward, if not, to V-END
; but it never will be as we advanced past long-named variables earlier.
HE RST 20H ; NEXT-CHAR
P JR V_PASS ; Back to V-PASS
V_END POP HL ; Pop the pointer to last or only letter in
; the VARS area.
RL B ; Rotate the B register left, bit 7 to carry.
BIT 6,B ; Test the array indicator bit.
RET ; Return.

; THE 'STACK FUNCTION ARGUMENT' SECTION

; This branch is taken from LOOK-VARS when a defined function is currently
; being evaluated.

; Scanning is evaluating the expression after the '=' and the variable

; found could be in the argument list to the left of the '=' or in the

; normal place after the program. Preference will be given to the former.

; The variable name to be matched is in C.

STK_F_ARG LD
LD
cp

SFA_VRSYN JR

; but proceed

SFA LOOP LD
OR
LD
INC
LD
CP
JR

HL, ($5BOB)
A, (HL)
$29

Z,V_RUN_SYN

set HL to DEFADD

load the first character

is it ")' ?

JUMP back to V-RUN/SYN, if so, as there are
no arguments.

to search argument list of defined function first if not empty.

A, (HL)

$60

B,A

HL

A, (HL)

SOE
Z,SFA CP VR

fetch character again.

or with 01100000 presume a simple variable.
save result in B.

address next location.

pick up byte.

is it the number marker ?

forward, if so, to SFA-CP-VR

; it was a string. White-space may be present but syntax has been checked.

DEC
CALL
INC
RES

SFA CP VR LD
CP
JR
A INC
HH INC
H INC
A INC
A INC
CALL
CALL

CP
JR

CALL

JR

SFA MATCH BIT
JR

INC
i CALL

CALL

EX

HL
FN_SKPOVR
HL

5,B

A,B
C
7,SFA_MATCH
HL

HL

HL

HL
HL

NUMBER_5
FN_SKPOVR

$29
Z,SFA VRSYN

FN_SKPOVR
SFA_LOOP

5,C

NZ, SFA_END
HL

DE, ($5B65)
MOVE_FP
DE, HL
($5B65) , HL
STACK_NUM

DE, HL

point back to letter.

routine FN-SKPOVR skips to the '$'
now address the hidden marker.
signal a string variable.

transfer found variable letter to A.
compare with expected.
forward to SFA-MATCH with a match.

step
past
the
five
bytes.

;+ new entry point to increment HL by 5.

routine FN-SKPOVR skips to next character
is it ")' ?

Jjump back, if so, to V-RUN/SYN

to look in the normal variables area.

routine FN-SKPOVR skips past the ','
all syntax has been checked and these
things can be taken as read.

back, until bracket encountered, to SFA-LOOP

test if numeric
forward, if so, to SFA-END
as will be stacked by scanning.

point to start of string descriptor

set DE to STKEND

routine MOVE-FP puts parameters on stack.
new free location to HL.

use it to set STKEND system variable.

;+ subroutine embodies 3 of above instructions

;+ HL must address STKEND

SFA_END POP DE ; discard

’

’
’
’

’

’

POP DE ; pointers.

XOR A ; clear carry flag.
INC A ; and zero flag.
RET ; Return.

This is called to evaluate a complex structure that has been found, in
runtime, by LOOK-VARS in the variables area.

In this case HL points to the initial letter, bits 7-5

of which indicate the type of variable.

010 - simple string, 110 - string array, 100 - array of numbers.

It is called from CLASS-01 when assigning to a string or array including
a slice.
It is called from SCANNING to isolate the required part of the structure.

An important part of the runtime process is to check that the number of
dimensions of the variable match the number of subscripts supplied in the
BASIC line.

If checking syntax,

the B register, which counts dimensions is set to zero (256) to allow

the loop to continue till all subscripts are checked. While doing this it
is reading dimension sizes from some arbitrary area of memory. Although
these are meaningless it is of no concern as the limit is never checked by
int-exp during syntax checking.

The routine is also called from the syntax path of DIM command to check the
syntax of both string and numeric arrays definitions except that bit 6 of C
is reset so both are checked as numeric arrays. This ruse avoids a terminal
slice being accepted as part of the DIM command.

All that is being checked is that there are a valid set of comma-separated
expressions before a terminal ')', although, as above, it will still go
through the motions of checking dummy dimension sizes.

STK VAR XOR A ; clear A
LD B,A ; and B, the syntax dimension counter (256)
BIT 7,C ; checking syntax ?
JR NZ,SV_COUNT ; forward, if so, to SV-COUNT

’

runtime evaluation.

BIT 7, (HL) ; will be reset if a simple string.
JR Nz, SV_ARRAYS ; forward to SV-ARRAYS otherwise
INC A ; set A to 1, simple string.
SV_SIMPLE INC HL ; address length low
LD C, (HL) ; place in C
INC HL ; address length high
LD B, (HL) ; place in B
INC HL ; address start of string
EX DE, HL ; DE = start now.
CALL STK STO_s ; routine STK-STO-$ stacks string parameters

; DE start in variables area,
; BC length, A=1 indicates a simple string

the only thing now is to consider if a slice is required.

’

RST 18H
JPp SV_SLICEqgq

’

’

GET-CHAR puts character at CH ADD in A
jump forward to SV-SLICE? to test for ' ('

the branch was here with string and numeric arrays in runtime.

SV_ARRAYS INC HL

’

INC HL

INC HL

1D B, (HL)

BIT 6,C

JR Z,SV_PTR
DEC B

JR 7,SV_SIMPLE

step past

the total length

to address Number of dimensions.
transfer to B overwriting zero.

a numeric array °?

forward to SV-PTR with numeric arrays

ignore the final element of a string array
the fixed string size.

back to SV-SIMPLES if result is zero as has
been created with DIM a$(10) for instance
and can be treated as a simple string.

proceed with multi-dimensioned string arrays in runtime.

EX DE, HL

RST 18H

CP $28

JR NZ, REPORT 3
EX DE, HL

runtime numeric arrays path

SV_PTR EX DE, HL

JR SV_COUNT

’

save pointer to dimensions in DE

GET-CHAR looks at the BASIC line
is character '(' ?

forward, if not, to REPORT-3
'Subscript wrong'

dimensions pointer to HL to synchronize
with next instruction.

rejoins here.

save dimension pointer in DE

forward to SV-COUNT with true no of dims
in B. As there is no initial comma the
loop is entered at the midpoint.

the dimension counting loop

SV_COMMA PUSH HL

’

RST 18H

POP HL

CP $2C

JR Z,SV_LOOP

which is entered at mid-point.

’

save counter
GET-CHAR
pop counter

is character ',' ?
forward, if so, to SV-LOOP

in runtime the variable definition indicates a comma should appear here

BIT 7,C
JR 7, REPORT 3

proceed if checking syntax of

BIT 6,C
JR Nz, SV_CLOSE

an array of numbers.

’

’

checking syntax ?
forward, if not, to REPORT-3
'Subscript wrong'

an array?

array of strings °?
forward, if so, to SV-CLOSE

H CP $29 ; 1s character ")' ? XXXXX

HFE JR Nz,SV_RPT C ; forward, if not, to SV-RPT-C

RBRKT NXT CALL TST RBRKT ;+ test for a right hand bracket.
RST 20H ; NEXT-CHAR moves CH-ADD past the statement
RET ; return ->

; the branch was here with an array of strings.

SV_CLOSE CP $29 ; as above ')' could follow the expression
JR Z,SV_DIM ; forward, if so, to SV-DIM
CP SccC ; is it 'TO' 2
JR NZ,SV_RPT C ; to SV-RPT-C with anything else

; '"Nonsense in BASIC'

; now backtrack CH ADD to set up for slicing routine.
; Note. in a BASIC line we can safely backtrack to a colour parameter.
SV_CH ADD RST 18H ; GET-CHAR
DEC HL ; backtrack HL
LD ($5B5D) , HL ; to set CH ADD up for slicing routine
JR SV_SLICE ; forward to SV-SLICE and make a return

; when all slicing complete.

; -> the mid-point entry point of the loop
SV_COUNT LD HL, $0000 ; initialize data pointer to zero.
SV_LOOP PUSH HL ; save the data pointer.

RST 20H ; NEXT-CHAR in BASIC area points to an

; expression.

POP HL ; restore the data pointer.
LD A,C ; transfer name/type to A.
CP $Co ; 1s it 11000000 ?

; Note. the letter component is absent if
; syntax checking.

JR NZ,SV_MULT ; forward to SV-MULT if not an array of
; strings.

; proceed to check string arrays during syntax.
RST 18H ; GET-CHAR
CP $29 ; ')'" end of subscripts ?
JR Z,SV_DIM ; forward to SV-DIM to consider further slice
CP SCC ; is it 'TO' 2
JR Z,SV_CH ADD ; back to SV-CH-ADD to consider a slice.

; (no need to repeat get-char at L29EO0)

; if neither, then an expression is required so rejoin runtime loop ?7?
; registers HL and DE only point to somewhere meaningful in runtime so
; comments apply to that situation.
SV_MULT PUSH BC ; save dimension number.

PUSH HL ; push data pointer/rubbish.

; DE points to current dimension.

EX
INC
LD
INC
LD

;i CALL

EX
EX

CALL
JR
DEC
CALL

ADD
POP

* K K

POP
DJINZ

BIT

SV_RPT C JP

DE, HL
HL

E, (HL)

HL

D, (HL)
DEDEplusl

(SP), HL
DE, HL

INT EXP1
C,REPORT 3
BC

GET HLxDE

HL, BC
DE

BC
SV_COMMA

7,C

Nz, REPORT Cw

; but in runtime the number of

PUSH
BIT
JR

HL
6,C
Nz, SV_ELEMs

; a runtime numeric array subsc

LD
LD

RST
CP
JR

B,D
C,E

18H
$29
Z, SV_NUMBER

; else more subscripts in

REPORT 3 RST
DEFB

; continue if
SV_NUMBER RST
POP

LD
CALL

30H
$02

routine DE, (DE+1l) gets next dimension in DE
and HL points to it.

dim pointer to stack, data pointer to HL (*)
data pointer to DE, dim size to HL.

routine INT-EXP1l checks integer expression
and gets result in BC in runtime.

to REPORT-3 if > HL

'Subscript wrong'

adjust returned result from 1-x to 0-x
routine GET-HL*DE multiplies data pointer by
dimension size.

add the integer returned by expression.

pop the dimension pointer.

pop dimension counter.

back to SV-COMMA if more dimensions

Note. during syntax checking, unless there
are more than 256 subscripts, the branch
back to SV-COMMA is always taken.

are we checking syntax ?
then we've got a joker here.

forward, if so, to SL-RPT-C
'Nonsense in BASIC'
more than 256 subscripts in BASIC line.

subscripts are at least the same as dims

save data pointer.
is it a string array ?
forward, if so, to SV-ELEMS$

ript.

register DE has advanced past all dimensions
and points to start of data in variable.
transfer it to BC.

GET-CHAR checks BASIC line
must be a '")' ?
skip, if so, to SV-NUMBER

line than the variable definition.

ERROR-1
Error Report: Subscript wrong

subscripts matched the numeric array.

20H

HL
DE, $0005
GET HLxDE

’

NEXT-CHAR moves CH ADD to next statement
- finished parsing.

pop the data pointer.
each numeric element is 5 bytes.
routine GET-HL*DE multiplies.

ADD

RET

HL, BC

’

’

’

now add to start of data in the variable.

return with HL pointing at the numeric
array subscript. ->

the branch was here for string subscripts when the number of subscripts
in the BASIC line was one less than in variable definition.

SV_ELEMs

SV_SLICE

’

SV_DIM

’

EX
INC
LD
INC
LD

CALL

EX
CALL

POP
ADD
INC
LD
LD
EX
CALL

DE, HL
HL
E, (HL)
HL
D, (HL)

DEDEplusl

(SP), HL
GET HLxDE

BC

HL, BC

HL

B,D

C,E

DE, HL
STK ST 0

routine DE, (DE+1l) gets next dimension in DE
the length of strings in this array.

start pointer to stack, data pointer to HL.
routine GET-HL*DE multiplies by element
size.

the start of data pointer is added

in - now points to location before.

point to start of required string.

transfer the length (final dimension size)
from DE to BC.

put start in DE.

routine STK-ST-0 stores the string parameters

with A=0 indicating a slice or subscript.

now check that there were no more subscripts in the BASIC line.

RST
CP
JR

CP

JR

CALL

but a slice

RST

SV_SLICEg CP

STR_RSLT

JR

RES
RET

18H
$29
Z,SV_DIM

$2C

NZ, REPORT 3

SLICING

GET-CHAR

is it ")' 2

forward to SV-DIM to consider a separate
subscript or/and a slice.

a comma is allowed if the final subscript
is to be sliced e.g. a$(2,3,4 TO 6).

to REPORT-3 with anything else

'Subscript wrong'

routine SLICING slices the string.

of a simple string can itself be sliced.

20H

$28
%,SV_SLICE

6, (IY+$01)

’

NEXT-CHAR

is character ' (' ?
loop back if so to SV-SLICE

update FLAGS - signal string result
and return.

The above section deals with the flexible syntax allowed.

DIM a$(3,3,10)

can be considered as two dimensional array of ten-character

strings or a 3-dimensional array of characters.

as$(1,1)
a$(1,1,1)
a$(l,1)

(1 TO 6)

will return a 1l0-character string as will a$(1,1,1 TO 10)
will return a single character.

is the same as a$(l,1,1 TO 6)

A slice can itself be sliced ad infinitum

; bs () () () () () () (2 TO 10) (2 TO 9) (3) is the same as b$(5)

; THE 'STRING SLICING' SUBROUTINE

; The syntax of string slicing is very natural and it is as well to reflect
; on the permutations possible.

; a$() and a$(TO) indicate the entire string although Jjust a$ would do

; and would avoid coming here.

; h$(16) indicates the single character at position 16.

; a$(TO 32) indicates the first 32 characters.
; a$ (257 TO) indicates all except the first 256 characters.
; a$ (19000 TO 19999) indicates the thousand characters at position 19000.

; Also a$(9 TO 5) returns a null string not an error.

; This enables a$(2 TO) to return a null string if the passed string is
; of length zero or 1.

; A string expression in brackets can be sliced. e.g. (STRS$S PI) (3 TO)

; We arrived here from SCANNING with CH-ADD pointing to the initial ' ('
; or from above.

SLICING CALL SYNTAX 7Z ; routine SYNTAX-Z

CALL NZ,STK FETCH ; routine STK-FETCH fetches parameters of
; string at runtime, start in DE, length
; in BC. This could be an array subscript.

RST 20H ; NEXT-CHAR
CP $29 ; is 1t ")' 2 e.g. as()
JR Z,SL_STORE ; forward to SL-STORE to store entire string.
PUSH DE else save start address of string
XOR A clear accumulator to use as a running flag.
PUSH AF and save on stack before any branching.
PUSH BC save length of string to be sliced.
LD DE, $0001 default the start point to position 1.
RST 18H GET-CHAR
POP HL pop length to HL as default end point
and limit.
CP sCccC is it 'TO' ? e.g. as$(TO 10000)
JR Z,SL_SECOND to SL-SECOND to evaluate second parameter.
POP AF pop the running flag.
CALL INT_EXP2 routine INT-EXP2 fetches first parameter.
PUSH AF save flag (will be $FF if parameter>limit)
LD D,B transfer the start
LD E,C to DE overwriting 0001.
PUSH HL save original length.
RST 18H GET-CHAR
POP HL pop the limit length.
CP SCC is it 'TO' after a start ?
JR Z,SL_SECOND to SL-SECOND to evaluate second parameter

1 CP $29 ; is it ") ' 2 e.g. as$(365)

;77 SL_RPT C JP NZ,REPORT C ; Jjump to REPORT-C with anything else
CALL TST_ RBRKT ;+ test for a right-hand bracket.
LD H,D ; copy start
LD L,E ; to end - just a one character slice.
JR SL _DEFINE ; forward to SL-DEFINE.
SL_SECOND PUSH HL ; save limit length.
RST 20H ; NEXT-CHAR
POP HL ; pop the length.
CP $29 ; 1s character '")' ? e.g. as(7 TO)
JR Z,SL_DEFINE ; to SL-DEFINE using length as end point.
POP AF ; else restore flag.
CALL INT_EXP2 ; routine INT-EXP2 gets second expression.
PUSH AF ; save the running flag.
RST 18H ; GET-CHAR
LD H,B ; transfer second parameter
LD L, C ; to HL. e.g. as$(42 to 99)
H CP 329 ; 1s character a '")' ?
Y JR NZ,SL RPT C ; back, if not, to SL-RPT-C
CALL TST_ RBRKT ;+ Test for a right-hand bracket.

; we now have start in DE and an end in HL.

SL _DEFINE POP AF ; pop the running flag.
EX (SP) , HL ; put end point on stack, start address to HL
ADD HL, DE ; add address of string to the start point.
DEC HL ; point to first character of slice.
EX (SP) , HL ; start address to stack, end point to HL (*)
AND A ; prepare to subtract.
SBC HL, DE ; subtract start point from end point.
LD BC, $0000 ; default the length result to zero.
JR C,SL_OVER ; forward to SL-OVER if start > end.
INC HL ; increment the length for inclusive byte.
AND A ; now test the running flag.
Jp M,REPORT_3 ; Jjump back to REPORT-3 if SFF.

; 'Subscript wrong'

LD B,H ; transfer the length

LD C,L ; to BC.
SL_OVER POP DE ; restore start address from machine stack ***
H RES 6, (IY+S01) ; update FLAGS - signal string result for the
I ; syntax path.

CALL STR RSLT ;+

;77 SL_STORE CALL SYNTAX 7 ; routine SYNTAX 7 (UNSTACK_77?)

H RET Z ; return if checking syntax.

SL STORE CALL UNSTACK 7 ;+ return early if checking syntax.

’

’

Continue to store the string in runtime.

other than from above, this routine is called from STK-VAR to stack
a known string array element.

STK ST 0 XOR A ; clear to signal a sliced string or element.

this routine is called from chr$, scrn$ etc. to store a simple string

result.

’

;; STK STO_ s RES 6, (IY+$01) ; update FLAGS - signal string result.

STK_STO s CALL STR RSLT P+

’

; and continue to store parameters of string.

THE 'STACK STORE' SUBROUTINE

This subroutine puts five registers AEDCB on the calculator stack.

STK_STORE PUSH BC ; preserve two registers
CALL TEST 5 SP ; routine TEST-5-SP checks room
POP BC ; fetch the saved registers.
LD HL, ($5B65) ; make HL point to first empty location STKEND
LD (HL) , A ; place the 5 registers.
INC HL ;
LD (HL) ,E ;
INC HL ;
LD (HL), D ;
INC HL ;
LD (HL),C ;
INC HL ;
LD (HL) , B ;
INC HL ;
LD ($5B65) , HL ; update system variable STKEND.
RET ; and return.

THE 'INTEGER EXPRESSION EVALUATION' ROUTINE

This clever routine is used to check and evaluate an integer expression
which is returned in BC, setting A to $FF, if greater than a limit supplied
in HL. It is used to check array subscripts, parameters of a string slice
and the arguments of the DIM command. In the latter case, the limit check
is not required and H is set to S$FF. When checking optional string slice

parameters, it is entered at the second entry point so as not to disturb

the running flag A, which may be $00 or S$FF from a previous invocation.

INT EXP1 XOR A ; set result flag to zero.

-> The entry point is here if A is used as a running flag.

INT EXP2 PUSH DE preserve DE register throughout.

PUSH HL save the supplied limit.

PUSH AF save the flag.

CALL EXPT 1NUM routine EXPT-1NUM evaluates expression
at CH_ADD returning if numeric result,
with value on calculator stack.

POP AF pop the flag.

CALL SYNTAX 7Z routine SYNTAX-Z

JR Z,1 RESTORE forward, if checking syntax to I-RESTORE
so avoiding a comparison with supplied limit.

; The runtime path.

PUSH AF save the flag.

CALL FIND INT2 routine FIND-INT2 fetches value from
calculator stack to BC producing an error
if too high.

POP DE pop the flag to D.

LD A,B test value for zero and reject

OR C as arrays and strings begin at 1.

SCF set carry flag.

JR Z,1 CARRY forward, if zero, to I-CARRY

POP HL restore the limit.

PUSH HL and save.

AND A prepare to subtract.

SBC HL, BC subtract value from limit.

I CARRY LD A,D move flag to accumulator $00 or S$FF.
SBC A, $00 will set to $FF if carry set.
I RESTORE POP HL restore the limit.
POP DE and DE register.
RET return.
; LD DE, (DE+1) Subroutine
; This routine just loads the DE register with the contents of the two
; locations following the location addressed by DE.
; It is used to step along the 16-bit dimension sizes in array definitions.
; Note. Such code is made into subroutines to make programs easier to
; write and it would use less space to include the five instructions in-line.
; However, there are so many exchanges going on at the places this is invoked
; that to implement it in-line would make the code hard to follow.

; It probably had a zippier label though as the intention is to simplify the

; program. No

; DEDEplusl EX

INC
LD
INC
LD
RET

te. this will probably have to go.

DE, HL
HL
E, (HL)
HL
D, (HL)

; HL=HL*DE Subroutine

; This routine calls the mathematical routine to multiply HL by DE in runtime.
; It is called from STK-VAR and from DIM. In the latter case syntax is not

; being checked so the entry point could have been at the second CALL

; instruction to save a few clock-cycles.

; Note. UNSTACK Z can't be used at start as HL would be corrupted :-)

GET HLxDE CALL SYNTAX 7 ; routine SYNTAX-Z.
RET Z ; return if checking syntax.
CALL HL HLxDE ; routine HL-HL*DE.
JP C,REPORT 4 ; jump back to REPORT-4 if over 65535.

; 'Out of memory'

RET ; else return with 16-bit result in HL.

; THE 'LET' COMMAND

; Sinclair BASIC adheres to the ANSI-78 standard and a LET is required in

; assignments e.g. LET a = 1 : LET h$ = "hat".

; Long names may contain spaces but not colour controls (when assigned).

; a substring can appear to the left of the equals sign.

; An earlier mathematician Lewis Carroll may have been pleased that

; 10 LET Babies cannot manage crocodiles = Babies are illogical AND

; Nobody is despised who can manage a crocodile AND Illogical persons

; are despised

; does not give the 'Nonsense..' error if the three variables exist.

; I digress.

LET LD HL, ($5B4D) ; fetch system variable DEST to HL.
BIT 1, (IY+$37) ; test FLAGX - handling a new variable ?
JR Z,L EXISTS ; forward, if not, to L-EXISTS

; continue for a new variable. DEST points to start in BASIC line.

; from the CLASS routines.
LD BC, $0005 ; assume numeric and assign an initial 5 bytes

L EACH CH INC BC ; increase byte count for each relevant
; character

L NO _SP INC HL ; increase pointer.
LD A, (HL) ; fetch character.
CP $20 ; 1s it a space ?
JR Z,L NO_SP ; back to L-NO-SP is so.
JR NC,L TEST CH ; forward to L-TEST-CH if higher.
CP $10 ; is it $00 - SOF 2
JR C,L_SPACES ; forward, if so, to L-SPACES
CP S16 ; 1s it $16 - S1F ?
JR NC, L SPACES ; forward, if so, to L-SPACES

; it was $10 - $15 so step over a colour code.

INC HL ; increase pointer.

JR L NO_SP ; loop back to L-NO-SP.
; the branch was to here if higher than space.
L TEST CH CALL ALPHANUM ; routine ALPHANUM sets carry if alphanumeric
JR C,L EACH CH ; loop back, if so, for more to L-EACH-CH
CP $24 ; is it 's' 2
JP Z,L NEWs ; Jump forward if so, to L-NEWS$

; with a new string.

L SPACES LD A,C ; save length lo in A.

CALL MK RM EL ;+ MAKE ROOM at E LINE -1
Iy LD HL, ($5B59) ; fetch E LINE to HL.
HH DEC HL ; point to location before, the wvariables
HE CALL MAKE ROOM ; routine MAKE-ROOM creates BC spaces
S INC HL ; advance to first new location.

INC HL ; then to second.

EX DE, HL ; set DE to second location.

PUSH DE ; save this pointer.

LD HL, ($5B4D) ; reload HL with DEST.

DEC DE ; point to first.

SUB $06 ; subtract six from length lo.

LD B,A ; save count in B.

JR Z,L SINGLE ; forward to L-SINGLE if it was just

; one character.

; Register HL points to start of variable name after 'LET' in BASIC line.

L CHAR INC HL ; increase pointer.
LD A, (HL) ; pick up character.
CP $21 ; 1s it space or higher ?
JR C,L CHAR ; back to L-CHAR with space and less.
OR $20 ; make variable lower-case.
INC DE ; increase destination pointer.
LD (DE) , A ; and load to edit line.
DJNZ L CHAR ; loop back to L-CHAR until B is =zero.
OR $80 ; invert the last character.
LD (DE) , A ; and overwrite that in edit line.
; now consider first character which has bit 6 set
LD A, $CO ; set A 11000000 is XOR mask for a long name.
; %101 is XOR/or result
; single character numerics rejoin here with %00000000 in mask.
; %011 will be XOR/or result
L SINGLE LD HL, ($5B4D) ; fetch DEST - HL addresses first character.
XOR (HL) ; apply variable type indicator mask (above).
OR $20 ; make lowercase - set bit 5.
POP HL ; restore pointer to 2nd character.
CALL L FIRST ; routine L-FIRST puts A in first character.

; and returns with HL holding
; new E LINE-1 the $80 vars end-marker.

L NUMERIC PUSH HL ; save the pointer.

; the value of variable is deleted but remains after calculator stack.
RST 28H ;; FP-CALC
DEFB 502 ; ;delete ; delete variable value
DEFB $38 ;;end-calc

; Register DE (STKEND) points to start of wvalue.

POP HL ; restore the pointer.
LD BC, $0005 ; start of number is five bytes before.
AND A ; prepare for true subtraction.
SBC HL, BC ; HL points to start of value.
JR L ENTER ; forward to L-ENTER ==>

; the jump was to here if the variable already existed.

L EXISTS BIT 6, (IY+S$S01) ; test FLAGS - numeric or string result ?
JR Z,L DELETEs ; skip forward to L-DELETES —F=>

; 1f string result.

; A numeric variable could be simple or an array element.

; They are treated the same and the old value is overwritten.
LD DE, $0006 ; six bytes forward points to loc past value.
ADD HL, DE ; add to start of number.
JR L NUMERIC ; back to L-NUMERIC to overwrite value.

; -*-> the branch was here if a string existed.

;;; L DELETEs LD HL, ($5B4D) ; fetch DEST to HL.

; (still set from first instruction)

L DELETEs LD BC, ($5B72) ; fetch STRLEN to BC.

BIT 0, (IY+$37) ; test FLAGX - handling a complete simple

; string ?

JR NZ,L ADDs ; forward, if so, to L-ADDS
; must be a string array or a slice in workspace.
; Note. LET a$(3 TO 6) = h$ will assign "hat " if h$ = "hat"
; and "hats" if h$ = "hatstand".
; This is known as Procrustian lengthening and shortening after a
; character Procrustes in Greek legend who made travelers sleep in his bed,

; cutting off their feet or stretching them so they fitted the bed perfectly.
; The bloke was hatstand and slain by Theseus.

LD A,B ; test if length

OR C ; 1s zero and

RET Z ; return if zero.

PUSH HL ; save pointer to start.

CALL BC_SPACES ; BC _SPACES creates room.

PUSH DE ; save pointer to first new location.

PUSH BC ; and length (*)

LD
LD
INC
LD
LDDR
PUSH
CALL
POP
EX
AND
SBC
ADD
JR

LD
LD

L LENGTH EX
EX

Pi OR
Pi JR
HHE LDIR
CALL
L IN W S POP

POP
POP

; ==> branch

L ENTER EX

COND MV LD
OR
RET
PUSH

LDIR

POP
RET

HL

STK_FETCH

HL
(SP), HL

A

HL, BC

HL, BC

NC,L LENGT

B, H
c,L

14

(SP), HL
DE, HL

A,B
C

Z,L_IN W_S
COND_MV

BC

DE
HL

here from

DE, HL

HL

H ;

set DE to point to last location.

set HL to next location.
place a space there.

block copy bytes filling area with spaces.
save pointer to start.

routine STK-FETCH start to DE,
length to BC.

restore the pointer.

(*) length to HL, pointer to stack.
prepare for true subtraction.
subtract old length from new.

and add back.

forward if it fits to L-LENGTH.

otherwise set
length to old length.
"hatstand" becomes "hats"

(*) length to stack, pointer to HL.
pointer to DE, start of string to HL.

is the length zero ?
forward, if so, to L-IN-W/S

leaving the prepared spaces.
else copy bytes overwriting some spaces.

;+ a Conditional (NZ) ldir routine

pop the new length. (*)

pop pointer to new area.

pop pointer to variable in assignment.
and continue copying from workspace
to variables area.

L-NUMERIC

’

exchange pointers HL=STKEND DE=end of wvars.
test the length

and make a

return if zero (strings only).

save start of destination.

block copy bytes.

address the start.
Return.

; the branch was here from L-DELETES$ if an existing simple string.
; register HL addresses start of string in variables area.

L ADDs DEC
DEC
DEC
LD

HL
HL
HL
A, (HL)

point to high byte of length.
to low byte.

to letter.

fetch masked letter to A.

; the jump was here with a new

L NEWs

L STRING

L _FIRST

PUSH
PUSH

CALL

POP
POP
INC
INC
INC

Jp

LD

LD
AND

PUSH

CALL

EX
ADD
PUSH
DEC
LD

INC
INC
INC

CALL

LD
DEC
CALL

LD
POP
PUSH
INC

LDDR

EX
INC
POP
LD
DEC
LD

POP

DEC

HL
BC

L STRING

BC
HL
BC
BC
BC

RECLAIM 2

A, SDF

HL, ($5B4D)
(HL)

AF

STK _FETCH

DE, HL
HL, BC

BC

HL
($5B4D) , HL

BC
BC
BC

MK_RM EL

HL, ($5B59)
HL
MAKE ROOM

HL, ($5B4D)
BC
BC
BC

DE, HL

’

save the pointer on stack.
save new length.

routine L-STRING adds new string at end
of variables area.
if no room we still have old one.

restore length.

restore start.

increase

length by three

to include character and length bytes.

Jjump to indirect exit via RECLAIM-2
deleting old version and adjusting pointers.

string variable.

indicator mask %11011111 for

$010xxxxx will be result
address DEST first character.
combine mask with character.

save first character and mask.

routine STK-FETCH fetches parameters of
the string. Start in DE, length in BC.

transfer start to HL.

add to length.

save the length.

point to end of string.

save pointer in DEST.

(updated by POINTERS if in workspace)
extra byte for letter.

two bytes

for the length of string.

;+ MAKE ROOM at E LINE -1

address E _LINE.

now end of VARS area.

routine MAKE-ROOM makes room for string.
updating pointers including DEST.

pick up pointer to end of string from DEST.
restore length from stack.

and save again on stack.

add a byte.

copy bytes from end to start.

HL addresses length low
increase to address high byte
restore length to BC

insert high byte

address low byte location
insert that byte

restore character and mask

address variable name

LD (HL) , A ; and insert character.

L EL DHL LD HL, ($5B59) ; load HL with E LINE.
DEC HL ; now end of VARS area.
RET ; return

; THE 'STACK FETCH' SUBROUTINE

STK

FETCH LD HL, ($5B65) ; STKEND
DEC HL ;
LD B, (HL) ;
DEC HL ;
LD C, (HL) ;
DEC HL ;
LD D, (HL) ;
DEC HL ;
LD E, (HL) ;
DEC HL ;
LD A, (HL) ;
LD ($5B65) , HL ; STKEND
RET ;

; THE 'DIM' COMMAND

DIM

e.g. DIM a(2,3,4,7): DIM a$(32) : DIM b$(20,2,768) : DIM c$(20000)
the only limit to dimensions is memory so, for example,

DIM a(2,2,2,2,2,2,2,2,2,2,2,2,2) 1is possible and creates a multi-
dimensional array of zeros. String arrays are initialized to spaces.
It is not possible to erase an array, but it can be re-dimensioned to
a minimal size of 1, after use, to free up memory.

CALL LOOK VARS ; routine LOOK-VARS

D RPORT C JP NZ, REPORT C ; jump to REPORT-C if a long-name variable.

’

; DIM lottery numbers (49) doesn't work.

CALL SYNTAX 7 ; routine SYNTAX-Z
JR NZ,D RUN ; forward, in runtime, to D-RUN
RES 6,C ; signal 'numeric' array even if of type string

; as this simplifies the syntax checking.

CALL STK VAR ; routine STK-VAR checks syntax.
CALL CHECK END ; routine CHECK-END performs early exit ->

the branch was here in runtime.

D RUN JR C,D LETTER ; skip to D-LETTER if variable did not exist.

; else reclaim the old one.

PUSH BC ; save type in C.

CALL NEXT ONE ; routine NEXT-ONE find following variable
; or position of $80 end-marker.

CALL RECLAIM 2 ; routine RECLAIM-2 reclaims the

; space between.

CALL NXT 1 RC2 ;+ routine combines above 2 routines.

POP BC ; pop the type.
D LETTER SET 7,C ; signal array.
LD B, $00 ; initialize dimensions to zero and
PUSH BC ; save with the type.
LD HL, $0001 ; make elements one character presuming string
BIT 6,C ; is it a string ?
JR NZ,D SIZE ; forward, if so, to D-SIZE
LD L, $05 ; make elements 5 bytes as is numeric.
D SIZE EX DE, HL ; save the element size in DE.

; now enter a loop to parse each of the integers in the list.

D NO LOOP RST 20H ; NEXT-CHAR
LD H, SFF ; disable limit check by setting HL high
CALL INT EXP1 ; routine INT-EXP1
JP C,REPORT 3 ; to REPORT-3 if > 65280 and then some

; 'Subscript wrong'

POP HL ; pop dimension counter, array type
PUSH BC ; save dimension size *Ax
INC H ; increment the dimension counter
PUSH HL ; save the dimension counter
LD H,B ; transfer size
LD L,C ; to HL
CALL GET_ HLxDE ; routine GET-HL*DE multiplies dimension by
; running total of size required initially
; 1 or 5.
EX DE, HL ; save running total in DE
RST 18H ; GET-CHAR
CP $2C ; is it ', 2
JR Z,D_NO_LOOP ; loop back to D-NO-LOOP until all dimensions

; have been considered

; when loop complete continue.

P CP $29 ; is it ") ' 2

i JR NZ,D RPORT C ; to D-RPORT-C with anything else

H RST 20H ; NEXT-CHAR advances to next statement/CR
CALL RBRKT NXT ;+ Test for a right hand bracket and advance.
POP BC ; pop dimension counter/type
LD A,C ; type to A

; now calculate space required for array variable

LD L,B ; dimensions to L since these require 16 bits
; then this value will be doubled
LD H, $00 ; set high byte to zero
; another four bytes are required for letter(l), total length(2), number of

; dimensions (1) but since we have yet to double allow for two.

INC HL ; lncrement
INC HL ; increment

ADD HL, HL ; now double giving 4 + dimensions * 2
ADD HL, DE ; add to space required for array contents

Jp C,REPORT_4 ; to REPORT-4 if > 65535
; 'Out of memory'

PUSH DE ; save data space

PUSH BC ; save dimensions/type

PUSH HL ; save total space

LD B,H ; total space

LD C,L ; to BC

CALL MK RM EL ;+ MAKE ROOM at E LINE -1
H LD HL, ($5B59) ; address E LINE - first location after
HE DEC HL ; point to location before - the $80 end-marker
1r: CALL MAKE ROOM ; routine MAKE-ROOM creates the space if
HEH INC HL ; point to first new location and

LD (HL) , A ; store letter/type

POP BC ; pop total space

DEC BC ; exclude name

DEC BC ; exclude the 1l6-bit

DEC BC ; counter itself

INC HL ; point to next location the 16-bit counter

LD (HL) ,C ; insert low byte

INC HL ; address next

LD (HL), B ; insert high byte

POP BC ; pop the number of dimensions.

LD A,B ; dimensions to A

INC HL ; address next

LD (HL) , A ; and insert "No. of dims"

LD H,D ; transfer DE space + 1 from make-room

LD L,E ; to HL

DEC DE ; set DE to next location down.

LD (HL), $00 ; presume numeric and insert a zero

BIT 6,C ; test bit 6 of C. numeric or string ?

JR Z,DIM CLEAR ; skip to DIM-CLEAR if numeric

LD (HL), $20 ; place a space character in HL
DIM CLEAR POP BC ; pop the data length

LDDR ; LDDR sets to zeros or spaces

; The number of dimensions is still in A.
; A loop is now entered to insert the size of each dimension that was pushed
; during the D-NO-LOOP working downwards from position before start of data.

DIM SIZES POP BC ; pop a dimension size KAk
LD (HL) ,B ; insert high byte at position
DEC HL ; next location down
LD (HL) ,C ; insert low byte
DEC HL ; next location down
DEC A ; decrement dimension counter
JR Nz,DIM SIZES ; back to DIM-SIZES until all done.

RET ; return.

; THE 'ALPHANUM'

SUBROUTINE

; This routine checks that the character in A is alphanumeric returning,
with carry set.

; if so,

ALPHANUM CALL NUMERIC

Routine NUMERIC resets carry if a number.

CCF Complement Carry Flag.
RET C Return if numeric else continue into next
routine.
; This routine checks that the character in A is alphabetic setting the carry

; flag if it is.

ALPHA

CP
CCF
RET

CP
RET

CP
CCF
RET

CP
RET

$41

NC

$5B

$61
NC

S7TB

less than 'A' ?
Complement Carry Flag
return i1if less.

less than 'Z2'+1 ?
is within first range

less than 'a' ?
Complement Carry Flag
return if less.

less than 'z'+1l ?
carry set if within a-z.

; THE 'DECIMAL TO FLOATING POINT'

; This routine finds the floating point number represented by an expression
; beginning with BIN, '.
; Note that BIN need not have any 'O's or 'l's after it.

or a digit.

; BIN is really just a notational symbol and not a function.
DEC_TO FP CP $C4 '"BIN' token ?
JR NZ,NOT BIN forward, if not, to NOT-BIN
LD DE, $0000 initialize 16 bit buffer register.
BIN DIGIT RST 20H NEXT-CHAR
SUB $31 'l
ADC A,S$00 will be zero if '1l' or '0'
carry will be set if was '0'
JR NzZ,BIN END forward to BIN-END if result not zero
EX DE, HL buffer to HL
CCF Carry now set if originally '1'
ADC HL, HL shift the carry into HL
JP C,REPORT 6 to REPORT-6 if overflow - too many digits
after first 'l'. There can be an unlimited
number of leading zeros.
'Number too big' - raise an error
EX DE, HL save the buffer
JR BIN DIGIT back to BIN-DIGIT for more digits
BIN END LD B,D transfer 16 bit buffer
LD C,E to BC register pair.
JR STACK BC JUMP to STACK-BC to put on calculator stack

’

continue here with .1,

NOT BIN CP

JR

CALL

CP

JR

RST
CALL

JR

JR

a leading decimal point has

DECIMAL RST

CALL

DEC_RPT C JP

’

since there

RST
DEFB
DEFB

S2E
Z,DECIMAL

INT TO FP
S2FE
NZ,E FORMAT

20H
NUMERIC

C,E_FORMAT

DEC_STO 1

20H
NUMERIC

C,REPORT_C

42,

.14, 5., 2.3 E -4

'.'" - leading decimal point ?
skip, if so, to DECIMAL

routine INT-TO-FP to evaluate all digits
This number 'x' is placed on stack.
'.' - mid decimal point ?

to E-FORMAT if not to consider that format

NEXT-CHAR
routine NUMERIC returns carry reset if 0-9

to E-FORMAT if not a digit e.g. '1.'

to DEC-STO-1 to add the decimal part to 'x'

been found in a number.

’

’

’

’

NEXT-CHAR
routine NUMERIC will reset carry if digit

to REPORT-C if just a '.'
raise 'Nonsense in BASIC'

is no leading zero put one on the calculator stack.

28H
$A0
$38

’

’

’

;; FP-CALC

;stk-zero ; O.
;end-calc

If rejoining from earlier there will be a value 'x' on stack.
If continuing from above the value zero will be stacked.

Now store 1

in mem-0.

Note. At each pass of the digit loop this will be divided by ten.

DEC_STO 1 RST

DEFB
DEFB
DEFB
DEFB

NXT DGT 1 RST

’

’

CALL

JR

28H
$Al
$CO
$02
$38

18H
STK_DIGIT

C,E_FORMAT

’
’
’
’

’

’

’

’

;; FP-CALC

; ; stk-one ;x or 0,1.
;;st-mem-0 ;x or O,1.
; ;delete ;x or O.

; rend-calc

GET-CHAR
routine STK-DIGIT stacks single digit 'd’

exit to E-FORMAT when digits exhausted >

Note. by switching division and multiply .5 will evaluate as 5/10 instead

of 5 * .1.

RST

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

28H
SEO
SA4
$05
$04
$CO
$04

’
’
’

’

The values 5/10 and 1/2 are therefore equal.

;; FP-CALC ;x or 0,d. first pass.
;get-mem-0 ;x or 0,d,1.

;stk-ten ;x or 0,d,1,10.

;division ;obsolete

;imultiply ;x or 0,d,10.

’

’

; st-mem-0 ;x or 0,d,10.
;multiply ;obsolete

DEFB $05 ;+division ;x or 0,d/10.

DEFB S$OF ;;addition ;x or 0 + d/10.

DEFB $38 ; ;end-calc last value.

RST 20H ; NEXT-CHAR moves to next character

JR NXT DGT 1 ; back to NXT-DGT-1
; Although only the first pass is shown, it can be seen that at each pass
; the new less significant digit is divided by an increasingly larger
; factor (100, 1000, 10000) before being added to the previous
; last value to form a new last value.
; Finally see if an exponent has been input.
E FORMAT CP $45 ; is character 'E' ?

JR Z,SIGN_FLAG ; forward, if so, to SIGN-FLAG
CP $65 ; 'e' is acceptable as well.
RET NZ ; return as no exponent.
SIGN_FLAG LD B, SFF ; initialize temporary sign byte to S$FF
RST 20H ; NEXT-CHAR
CP $2B ; is character '+' ?
JR Z,SIGN_DONE ; to SIGN-DONE
CP $2D ; 1s character '-' ?
JR Nz,ST E PART ; to ST-E-PART as no sign
INC B ; set sign to zero
; now consider digits of exponent.
; Note. incidentally this is the only occasion in Spectrum BASIC when an
; expression may not be used when a number is expected.

SIGN DONE RST 20H
ST E PART CALL NUMERIC

JR C,DEC_RPT C

PUSH BC
CALL INT TO FP

CALL FP TO A

POP BC
JPp C,REPORT 6
AND A
Jp M, REPORT 6
INC B

’

NEXT-CHAR
routine NUMERIC

back, if not, to DEC-RPT-C
'Nonsense in BASIC'.

save sign (in B)
routine INT-TO-FP places exponent on stack
routine FP-TO-A transfers it to A

restore sign
to REPORT-6 if overflow (over 255)
raise 'Number too big'.

set flags

to REPORT-6 if over '127'.

raise 'Number too big'.

127 is still way too high and it is
impossible to enter an exponent greater
than 39 from the keyboard. The error gets
raised later in E-TO-FP so two different
error messages depending how high A is.

SFF to $00 or $00 to $01 - expendable now.

JR Z,E_FP_JUMP ; forward to E-FP-JUMP if exponent positive
NEG ; Negate the exponent.
E FP JUMP JR E TO_FP ; JUMP forward to E-TO-FP to assign to
; last value x on stack x * 10 to power A
; a relative jump would have done.
; THE 'NUMERIC' SUBROUTINE
; This routine checks that the ASCII character in A is numeric
; returning, if so, with carry reset.
NUMERIC CP $30 ; '0!
RET C ; return if less than zero character.
CP $3A ; The upper test is '9'
CCF ; Complement Carry Flag
RET ; Return - carry clear if character '0' - '9'

; THE 'STACK BC

STK_BC_IY LD IY,$5B3A ;+
s+

JR STACK_BC ;+

; THE 'STACK DIGIT' SUBROUTINE

; This subroutine is called from

; on the calculator stack.

STK DIGIT CALL NUMERIC ;
RET C ;
SUB $30 ;

; THE 'STACK A' SUBROUTINE

STACK A LD C,A ;
LD B, S00 ;

; THE 'STACK BC' SUBROUTINE

;77 STACK BC LD

STACK_BC XOR
LD
LD
LD
LD

CALL

and SET IY' ROUTINE

IY, $5B3A

STK_STORE

’

re-initialize the IY register to access the
system variables. (14 clock cycles)
forward to stack the result of USR function.

INT-TO-FP and DEC-TO-FP to stack a digit
routine NUMERIC
return if not numeric character

convert from ASCII to digit

transfer to C
and make B zero

re-initialize ERR _NR

Clear accumulator to signal small integer
Place in E for the sign byte.

LSB to D

MSB to C

last byte not used

routine STK-STORE stacks number AEDCB

; and sets carry.

; Note. HL now points to new STKEND. The requirement is that it should point
; to the 'result' and DE should point at STKEND as this is the terminating

; routine for some calculator functions. This can be done by simply entering
; and leaving the calculator but that uses many clock cycles if only two
; bytes.

AND A ;+ Clear carry.

Jp STK_PNTRS ;+ set HL to result and DE to STKEND also

;+ the carry flag is unaffected.

HE RST 28H ;; FP-CALC

H DEFB $38 ;;end-calc make HL = STKEND-5 and DE = STKEND
i AND A ; clear the carry flag.

H RET ; Return.

; THE '"INTEGER TO FLOATING POINT' SUBROUTINE

; This routine places one or more digits found in a BASIC line
; on the calculator stack multiplying the previous value by ten each time
; before adding in the new digit to form a last value on calculator stack.
INT TO_FP PUSH AF ; save first character

RST 28H ;; FP-CALC

DEFB S$AO ;stk-zero ; v=0. initial wvalue

DEFB $38 ;;end-calc

POP AF ; fetch first character back.
NXT DGT 2 CALL STK DIGIT ; routine STK-DIGIT puts 0-9 on stack

RET C ; will return when character is not numeric >

RST 28H ;; FP-CALC ; v, d.

DEFB $01 ; ;exchange ; d, v.

DEFB S$A4 ;;stk-ten ; d, v, 10.

DEFB $04 ;ymultiply ; d, v*10.

DEFB S$OF ;;addition ; d + v¥10 = newvalue

DEFB $38 ;;end-calc ; V.

CALL CH ADD 1 ; routine CH-ADD+1l get next character

JR NXT DGT 2 ; back to NXT-DGT-2 to process as a digit

e kAhkhkk kA kA Ak kA kA kA hkk Ak Ak hk Ak kA hkhx %k
’

;** Part 9. ARITHMETIC ROUTINES **

,-*********************************

; THE 'E-FORMAT TO FLOATING POINT' SUBROUTINE

; This subroutine is used by the PRINT-FP routine and the decimal to FP

; routines to stack a number expressed in exponent format.

; Note. Though not used by the ROM as such, it has also been set up as a

; unary calculator literal but this will not work as the accumulator is not

; available from within the calculator.

; On entry, there is a value x on the calculator stack and an exponent of ten
; in A. The required value is x + 10 ~ A

E TO FP RLCA ; this will set the X.

E SAVE

E_LOOP

E _DIVSN

E_FETCH

’

RRCA

JR

CPL
INC

PUSH

LD

CALL

RST
DEFB
DEFB
POP
now enter a
SRL
JR
PUSH
RST
DEFB
DEFB
DEFB

DEFB

DEFB
DEFB

DEFB

DEFB

DEFB
DEFB

POP

NC,E_SAVE

A
AF
HL, $5B92

FP 0 1

28H
SA4
$38
AF
loop
A
NC,E_TST END
AF
28H
sC1
SEO
$00

E DIVSN - $

$04
$33

E FETCH - $
$05

SE1
$38

AF

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

carry 1if bit 7 is set

to E-SAVE

if positive.

make negative positive
without altering carry.

save positive exp and sign in

address MEM-0

routine FP-

0/1

places an integer zero,

;; FP-CALC
; ;stk-ten
; ;end-calc

pop the exponent.

0>76543210>C

if no
else a one in mem-0 as a sign

carry

carry,
flag

x, 10.

forward to E-TST-END if no bit

save shifted exponent.

; ; FP-CALC
;;st-mem-1
; ;get-mem-0

; jump-true

;7 to E-DIVSN

;;multiply

; jump

; ;Lo E-FETCH
; ;division

; ;get-mem-1
; ;end-calc

restore shifted exponent

the loop branched to here with no carry

E_TST _END JR

PUSH

RST

DEFB
DEFB
DEFB

POP
JR

7Z,E_END
AF

28H
$31
$04
$38

AF
E_LOOP

’

’

’
’
’

’

’

’

forward to E-END
re-save shifted exponent
;; FP-CALC

; ;duplicate
;ymultiply

;end-calc

restore shifted exponent
back to E-LOOP

if A emptied

until all bits

x, 10.

x, 10, (0/1).

x*10.

x/10.

x/10 or x*10,
new x, 10.

of bits

new x,

new x, 100.

done.

10, 10.

10.

’

’

although only the first pass is shown it can be seen that for each set bit
representing a power of two, x is multiplied or divided by the
corresponding power of ten.

E_END RST 28H ;; FP-CALC final x, factor.
DEFB $02 ;;delete final x.
DEFB $38 ; ;end-calc X.
RET ; return

THE 'FETCH INTEGER' SUBROUTINE

This routine is called by the mathematical routines - FP-TO-BC, PRINT-FP,
mult, re-stack and negate to fetch an integer from address HL. Register
HL points to the stack, or a location in MEM, and no 'deletion' occurs.

If the number is negative then a similar process to that used in INT-STORE
is used to restore the twos-complement number to normal in DE and a sign
in C. The contents of the B register are not affected.

INT FETCH INC HL ; skip zero indicator.
LD C, (HL) ; fetch sign to C
INC HL ; address low byte
LD A, (HL) ; fetch to A
XOR C ; two's complement
SUB cC ;

LD E,A ; place in E

INC HL ; address high byte
LD A, (HL) ; fetch to A

ADC A,C ; two's complement
XOR C ;

LD D,A ; place in D

RET ; return

THE 'Store a positive integer' ROUTINE

This entry point is not used in this ROM but would store any integer as
a positive number.

p-int-sto
L2D8C: LD C,$00 ; make sign byte positive and continue

THE 'STORE INTEGER' SUBROUTINE

This routine stores an integer in DE at address HL.

It is called from mult, truncate, negate and sgn.

The sign byte $00 +ve or S$FF -ve is in C.

If negative, the number is stored in 2's complement form so that it is
ready to be added.

INT STORE PUSH HL ; Preserve HL throughout.
LD (HL), $00 ; first byte zero shows integer not exponent
INC HL ;

LD (HL) ,C ; then store the sign byte

’

INC HL ;

THE 'FLOATING POINT TO BC REGISTER' ROUTINE

; e.g. +1 -1
LD AVE ; fetch low byte 00000001 00000001
XOR C ; XOR sign 00000000 or 11111111
; gives 00000001 or 11111110
SUB C ; sub sign 00000000 or 11111111
; gilves 00000001>0 or 11111111>C
LD (HL) ,A ; store 2's complement.
INC HL ;
LD A,D ; high byte 00000000 00000000
ADC A,C ; sign 00000000<0 11111111<C
; gives 00000000 or 00000000
XOR C ; XOR sign 00000000 11111111
LD (HL) ,A ; store 2's complement.
INC HL ;
H LD (HL), $00 ; The last byte always zero for integers.
XOR A ;+ Set A to zero.
LD (HL) , A ;+ Make fifth byte zero.
POP HL ; Restore the original HL result pointer.
LD (HL) ,A ;+ Make first byte zero.
RET ; Return.

This routine gets a floating point number e.g. 127.4 from the calculator

stack to the BC register.

Begin by using two bytes of instruction to make HL address the last 5-byte

number on the calculator stack.

Note. at the expense of one byte a call to STK PNTRS would be quicker.

FP TO BC
HE RST 28H ;; FP-CALC set HL to
- DEFB $38 ;;end-calc point to 'last wvalue'.
CALL STK PNTRS ;+ set HL to STKEND -5
LD A, (HL) ; get first of the 5 bytes
AND A ; and test for zero.
JR Z,FP _DELETE ; forward, if a small integer, to FP-DELETE

’

The floating point value is first rounded up and then converted to integer.

RST 28H ;; FP-CALC X.
DEFB $A2 ;;stk-half x. 1/2.
DEFB S$OF ;;addition x + 1/2.
DEFB $27 ;rint int(x + .5)
DEFB $38 ;;end-calc
; Now delete but leave DE pointing at integer.
FP_DELETE RST 28H ;; FP-CALC
DEFB $02 ;:delete
DEFB $38 ;;end-calc
PUSH HL ; preserve pointer to 'last value'.
PUSH DE ; preserve pointer to STKEND.
EX DE, HL ; make HL point to old exponent/zero indicator
LD B, (HL) ; indicator to B

CALL INT FETCH ; Routine INT-FETCH

; gets int in DE sign byte to C
; but meaningless values if a large integer.

XOR A ; Clear A
SUB B ; Subtract indicator byte setting the carry flag
; if not a small integer.

BIT 7,C ; Test a bit of the sign byte setting zero flag
; if integer is positive.

LD B,D ; transfer integer
LD C,E ; to BC
LD A,E ; low byte to A also as a useful return value.
POP DE ; Retrieve pointer to new STKEND
POP HL ; Retrieve pointer to new 'last value'
RET ; Return.
; if carry is set, then the number was too big to fit into BC.
; LOG(2"R)
; This routine is used when printing floating point numbers to calculate
; the number of digits before the decimal point.
; first convert a one-byte signed integer to its five byte form.
LOG_2powA LD D,A ; store a copy of A in D the LSB.
RLA ; test sign bit of A.
SBC A,A ; now SFF if negative or $00 if positive.
LD E,A ; sign byte to E the stack sign byte.
LD C,A ; and also to C the MSB.
XOR A ; clear A to indicate an integer.
LD B,A ; and B the unused fifth byte.
CALL STK STORE ; routine STK-STORE stacks number AEDCB

; So 00 00 XX 00 00 (positive) or 00 FF XX FF 00 (negative).
; i.e. integer indicator, sign byte, low, high, unused.

; now multiply the exponent by log to the base 10 of two.

RST 28H ;; FP-CALC

DEFB $34 ; ;stk-data .30103 (log 2)
DEFB S$EF ; ;Exponent: $7F, Bytes: 4

DEFB $1A, $20,$9A,3%85 ;;

DEFB $04 ;omultiply

DEFB $27 ;;int

DEFB $38 ; ;end-calc

; THE 'FLOATING POINT TO A' SUBROUTINE

; This routine collects a floating point number from the stack into the

; accumulator returning carry set if not in range 0 - 255.

; Not all the calling routines raise an error with overflow so no attempt
; is made to produce an error report here.

FP_TO A CALL FP _TO BC ; routine FP-TO-BC returns with C in A also.

RET C ; return with carry set if > 65535, overflow

PUSH AF ; save the value and flags
DEC B ; and test that
INC B ; the high byte is zero.
JR Z,FP_A END ; forward FP-A-END if zero
; else there has been 8-bit overflow so set the carry flag.
POP AF ; retrieve the value
SCF ; set carry flag to show overflow
RET ; and return.
FP A END POP AF ; restore value and success flag and
RET ; return.

; THE 'PRINT A FLOATING POINT NUMBER' SUBROUTINE

; Not a trivial task.
; Begin by considering whether to print a leading sign for negative numbers.
PRINT FP RST 28H ;» FP-CALC

DEFB $31 ;;duplicate

DEFB $36 ;:1less-0

DEFB $00 ;7 jump-true

DEFB PF NEGTVE - $;;to PEF-NEGTVE

DEFB $31 ;;duplicate
DEFB $37 ;;greater-0
DEFB $00 ;; jump-true

DEFB PF _POSTVE - $;;to PF-POSTVE

; must be zero itself
DEFB $02 ;;delete
DEFB $38 ;;end-calc
LD A, $30 ; prepare the character '0'
RST 10H ; PRINT-A
RET ; Return. ->
PF NEGTVE DEFB $2A ;;abs
DEFB $38 ;;end-calc
LD A,S$2D ; the character '-'
RST 10H ; PRINT-A
; and continue to print the now positive number.
RST 28H ;; FP-CALC
PF_POSTVE DEFB SA0Q ;;stk-zero x,0. begin by
DEFB S$C3 ;7 st-mem-3 x,0 clearing a temporary

DEFB $C4 ;s st-mem-4 x,0. output buffer to
DEFB $C5 ;7 st-mem-5 x,0 fifteen zeros.
DEFB $02 ;;delete X.
DEFB $38 ;;end-calc b4
EXX ; in case called from 'str$' then save the
PUSH HL ; pointer to whatever comes after
EXX ; str$ as H'L' will be used.
; now enter a loop?
PF LOOP RST 28H ;; FP-CALC
DEFB $31 ;;duplicate X, X.
DEFB $27 ;;int X,1int x.
DEFB $C2 ;7 st-mem-2 X,int x.
DEFB $03 ;;subtract x-int x. fractional part.
DEFB S$E2 ; ;get-mem-2 Xx-int x, int x.
DEFB 501 ; ;exchange int x, x-int x.
DEFB $C2 ;7 st-mem-2 int x, x-int x.
DEFB $02 ;;delete int x.
DEFB $38 ;;end-calc int x.

; mem-2 holds the fractional part.

; HL points to last value int x
LD A, (HL) ; fetch exponent of int x.
AND A ; test
JR NZ, PF_LARGE ; forward to PF-LARGE if a large integer
; > 65535
; continue with small positive integer components in range 0 - 65535
; if original number was say .999 then this integer component is zero.
CALL INT FETCH ; routine INT-FETCH gets x in DE

; (but x is not deleted)

LD B,S$10 ; set B, bit counter, to 1lod
LD A,D ; Register A equals D from above call. ;;;
AND A ; test if high byte is zero
JR NZ, PF _SAVE ; forward to PF-SAVE if 16-bit integer.
; and continue with integer in range 0 - 255.
OR E ; test the low byte for zero
; 1.e. originally just point something or other.
JR Z,PF SMALL ; forward if so to PF-SMALL
LD D,E ; transfer E to D
LD B, $08 ; and reduce the bit counter to 8.
PF SAVE PUSH DE ; save the part before decimal point.
EXX ;
POP DE ; and pop in into D'E'
EXX ;
JR PF BITS ; forward to PF-BITS

; The branch was here when 'int x' was found to be zero as in say 0.5.

; The zero has been fetched from the calculator stack but not deleted and

; this should occur now. This omission leaves the stack unbalanced and while
; that causes no problems with a simple PRINT statement, it will if str$ is
; being used in an expression e.g. "2" + STRS$ 0.5 gives the result "0.5"
; instead of the expected result "20.5" as the number zero is read as the
; null string by the concatenate routine.
; credit: Tony Stratton, 1982.
; A DEFB $02 - 'delete' is required immediately on using the calculator.
PF SMALL RST 28H ;; FP-CALC int x = 0.

DEFB $02 ;tdelete .

DEFB S$E2 ; ;get-mem-2 x-int x.

DEFB $38 ;;end-calc

LD A, (HL) ; fetch exponent of positive fractional number

SUB STE ; subtract

CALL LOG 2powA ; routine LOG(27A) calculates leading digits.

LD D,A ; transfer count to D

LD A, ($5BAC) ; fetch total MEM-5-1

SUB D ;

LD ($S5BAC) , A ; MEM-5-1

LD A,D ;

CALL E _TO FP ; routine E-TO-FP

RST 28H ;; FP-CALC

DEFB $31 ;;duplicate

DEFB $27 ;;int

DEFB $C1 ;7 st-mem-1

DEFB $03 ; ;subtract

DEFB S$E1 ;s get-mem-1

DEFB $38 ;;end-calc

CALL FP TO A ; routine FP-TO-A

PUSH HL ; save HL

LD ($5BAl) , A ; MEM-3-1

DEC A ;

RLA ;

SBC A,A ;

INC A ;

LD HL, $5BAB ; address MEM-5-1 leading digit counter

LD (HL) ,A ; store counter

INC HL ; address MEM-5-2 total digits

ADD A, (HL) ; add counter to contents

LD (HL) , A ; and store updated value

POP HL ; restore HL

JR PF FRACTN ; JUMP forward to PF-FRACTN

PF_LARGE

Note.

instruction could be replaced with a JR instruction,
which is useful if you wish to correct the unbalanced stack error
'DEFB 02 delete'’

above,

by inserting a

the branch was here with a large positive integer > 65535 e.qg.

while it would be pedantic to comment on every occasion a JP

this applies to the
at L2E25, and maintain main addresses.

123456789

the accumulator holds the exponent.

SUB

$80

’

make exponent positive

CP
JR

CALL
SUB
LD
LD
ADD
LD
LD
NEG

CALL

JR

PF MEDIUM EX

’
’

’

the branch was here to handle
and integer in D'E',

CALL
EXX
SET
LD
EXX
SUB
LD

S1cC
C,PF_MEDIUM

LOG_ 2powA
$07

B,A

HL, $5BAC
A, (HL)
(HL) , A
A,B

E_TO FP

PF_LOOP

DE, HL
FETCH_TWO

7,D
A, L
$80
B,A

compare to 28
to PF-MEDIUM if integer <= 2727

routine LOG (2"A)

address MEM-5-1 the leading digits counter.
add A to contents

store updated value.

negate

routine E-TO-FP

back to PF-LOOP

routine FETCH-TWO

bits in DE with 8 or 16 in B if small int

6 nibbles will accommodate 065535 but routine does

32-bit numbers as well from above

PF BITS SLA

RL
EXX
RL
RL
EXX

LD
LD

PF BYTES LD

’

’

ADC

DAA

LD
DEC
DEC
JR

DJINZ

E
D

E
D

HL, $5BAA
C,$05

A, (HL)
A

(
A

(HL) , A

HL

C
NZ,PF_BYTES

PF_BITS

C<xxxxxxxx<0
C<xxxxxxxx<C

C<xxXXXXXXLC
C<xxXXXXXXLC

set HL to mem-4-5th last byte of buffer
set byte count to 5 - 10 nibbles

fetch 0 or prev value
shift left add in carry C<xxxxXXXx<C
Decimal Adjust Accumulator.
if greater than 9 then the left hand
nibble is incremented. If greater than
99 then adjusted and carry set.
so if we'd built up 7 and a carry came in
0000 0111 < C
0000 1111
daa 1 0101 which is 15 in BCD
put back
work down thru mem 4
decrease the 5 counter.
back to PF-BYTES until the ten nibbles rolled
back to PF-BITS until 8 or 16

(or 32) done

at most 9 digits for 32-bit number will have been loaded with digits

each of the 9 nibbles in mem 4 is placed into ten bytes in mem-3 and mem 4
unless the nibble is zero as the buffer is already zero.

or in the case of mem-5 will become zero as a result of RLD instruction)

(

XOR A ; clear to accept

LD HL, $5BA6 ; address MEM-4-0 byte destination.
LD DE, $5BA1 ; address MEM-3-0 nibble source.
LD B, $09 ; the count is 9 (not ten) as the first

; nibble is known to be blank.

RLD ; shift RH nibble to left in (HL)
; A (HL)
; 0000 0000 < 0000 3210
; 0000 0000 3210 0000
; A picks up the blank nibble

LD C, SFF ; set a flag to indicate when a significant
; digit has been encountered.

PF DIGITS RLD ; pick up leftmost nibble from (HL)
; A (HL)
; 0000 0000 < 7654 3210
; 0000 7654 3210 0000

JR NZ, PF _INSERT ; to PF-INSERT if non-zero value picked up.
DEC cC ; test

INC C ; flag

JR NZ,PF _TEST 2 ; skip forward to PF-TEST-2 if flag still S$FF

; indicating this is a leading zero.

; but if the zero is a significant digit e.g. 10 then include in digit totals.

; the path for non-zero digits rejoins here.
PF _INSERT LD (DE) , A ; insert digit at destination
INC DE ; increase the destination pointer
INC (IY+$71) ; increment MEM-5-1st digit counter
INC (IY+S72) ; increment MEM-5-2nd leading digit counter
LD C,S$00 ; set flag to zero indicating that any
; subsequent zeros are significant and not
; leading.
PF TEST 2 BIT 0,B ; test if the nibble count is even
JR Z,PF _ALL 9 ; skip to PF-ALL-9 if so to deal with the

; other nibble in the same byte
INC HL ; point, if not, to next source byte.

PF ALL 9 DJNZ PF DIGITS ; decrement the nibble count, back to PF-DIGITS
; if all nine not done.

; For 8-bit integers there will be at most 3 digits.
; For 16-bit integers there will be at most 5 digits.

; but for larger integers there could be nine leading digits.
; If nine digits complete then the last one is rounded up as the number will
; be printed using E-format notation

LD A, ($5BAB) ; fetch digit count from MEM-5-1st

SUB $09 ; subtract 9 - max possible

JR C, PF_MORE ; forward if less to PF-MORE

DEC (IY+S$S71) ; decrement digit counter MEM-5-1st to 8

LD A, S$04 ; load A with the wvalue 4.

CP (IY+S6F) ; compare with MEM-4-4th - the ninth digit

JR PF_ROUND ; forward to PF-ROUND

; now delete
PF MORE RST 28H

DEFB $02

DEFB S$E2

DEFB $38
PF FRACTN EX DE, HL

CALL FETCH TWO

EXX

LD A, $80

SUB L

LD L, $00

SET 7,D

EXX

CALL SHIFT FP
PF_FRN LP LD A, (IY+$71)

CP $08

JR C,PF_FR DGT

EXX

RL D

EXX

JR PF_ROUND
PF_FR DGT LD BC, $0200
PF_FR_EXX LD AE

CALL CA 10xA C

D E,A

D A,D

CALL CA 10xA C

LD D, A

PUSH BC

EXX

POP BC

DJNZ PF FR EXX

LD HL, $5BA1

1D A,C

LD C, (IY+$71)

ADD HL, BC

LD (HL) , A

INC (IY+S71)

JR PF_FRN LP
; 1) with 9 digits but 8 in
; e.g.
; 999999999 is printed
; 100000001 is printed
; 100000009 is printed
PF ROUND PUSH AF

LD HL, $5BA1

’

to consider rounding.

int x from calculator stack and fetch fractional part.

’

’

FP-CALC

;;delete
;s get-mem-2
;;end-calc

mem-5-1 and A holding 4,

int x.
X - int x = f.
f.

routine FETCH-TWO

routine SHIFT-FP

MEM-5-1st

to PF-FR-DGT

to PF-ROUND

routine CA-10*A+C

routine CA-10*A+C

to PF-FR-EXX

MEM-3

MEM-5-1st

MEM-5-1st
to PF-FRN-LP

as 1E+9
as 1E+8
as 1.0000001E+8

’

’

save A and flags

carry set if rounding up.

address MEM-3 start of digits

LD
LD
ADD
LD

POP

PF_RND LP DEC

LD
ADC
LD
AND
JR

CP
CCF
JR

PF_R BACK DJNZ

’

’

if B counts down to zero then
and the first 8 locations all

INC

LD

INC

PF COUNT LD

’

’

now balance

RST
DEFB
DEFB

note if used from str$ then other values may
we can also restore the next literal pointer

C, (IY+$71)
B, $00

HL, BC

B,C

AF

HL

A, (HL)

A, $00

(HL) ,A

A
Zz,PF R BACK
SOA

NC, PF_COUNT

PF_RND LP

B
(HL),B

(IY+S$72)

(IY+$71),B

the calculator stack by deleting

28H
$02
$38

machine stack.

EXX
POP
EXX

LD

LD
LD
CP
JR

CP
JR

PF_NOT E AND

CALL

PF_E_SBRN XOR

SUB
JPp

HL

BC, ($5BAB)

HL, $5BAl
A,B

$09

C,PF _NOT E

$FC
C,PF_E_FRMT

A
Z,0UT_CODE
A
B
M, PF_OUT_LP

MEM-5-1st No.
prepare to add

of digits to C

address last digit + 1
No. of digits to B counter

restore A and carry flag from comparison.

address digit at rounding position.

fetch it

add carry from the comparison
put back result even if $O0A.

test A

skip to PF-R-BACK if ZERO?

compare to 'ten' - overflow
complement carry flag so that set if ten.
forward to PF-COUNT with 1 - 9.

loop back to PF-RND-LP

we've rounded right back as in 999999995.

hold S$SOA.

make B hold 1 also.

load first location with digit 1.

make MEM-5-2nd
and proceed to

MEM-5-1st

FP-CALC

; ;delete
;;end-calc

hold 1.
initialize total digits to 1.

it

be on the calculator stack.
from its position on the

restore next literal pointer.

set C to MEM-5-1st digit counter.
set B to MEM-5-2nd leading digit counter.
set HL to start of digits at MEM-3-1

to PF-NOT-E

to PF-E-FRMT

test for zero leading digits as in .123

routine OUT-CODE prints a zero e.g. 0.123

skip forward to PF-OUT-LP if originally +ve

LD
JR

PF_OUT LP LD
AND
JR

LD
INC
DEC
PF_OUT DT CALL
DJNZ

PF_DC_OUT LD
AND
RET

INC
LD

PF_DEC_0S RST
LD
DJNZ

LD
JR

B, A
PF_DC_OUT

OUT_CODE
PF_OUT LP

,C

N

B
A, $2E

10H
A, $30
PF DEC 0S

B,C
PF_OUT LP

else negative count now +ve
forward to PF-DC-OUT ->

fetch total digit count
test for zero
forward, if so, to PF-OUT-DT

fetch digit
address next digit
decrease total digit counter

routine OUT-CODE outputs it.
loop back to PF-OUT-LP until B leading
digits output.

fetch total digits and
test if also zero
return if so -——>

increment B
prepare the character '.'

PRINT-A outputs the character '.' or '0'
prepare the character '0’

(for cases like .000012345678)

loop back to PF-DEC-0$ for B times.

load B with now trailing digit counter.
back to PF-OUT-LP

; the branch was here for E-format printing e.g. 123456789 => 1.2345679%e+8

PF_E_FRMT LD
DEC
LD

CALL

LD
RST

LD
LD
AND
JPp

NEG
LD

LD
JR

PF_E POS LD

PF_E SIGN RST

D,B
D

B, $01

PF _E SBRN

A, $45
10H

c,D
A,C
A
P,PF_E POS
c,A

A, $2D
PF_E SIGN

A, $2B

10H

counter to D
decrement
load B with 1.

routine PF-E-SBRN above

prepare character 'e'
PRINT-A

exponent to C

and to A

test exponent

to PF-E-POS if positive

negate
positive exponent to C
prepare character '-'

skip to PF-E-SIGN

prepare character '+'

PRINT-A outputs the sign

Pii LD B, $00 ; make the high byte zero.

JP OUT NUM 0 ;+ exit via OUT-NUM-0 to print exponent in BC

; THE 'CA = 10 x A + C' SUBROUTINE

; This subroutine is called twice from PRINT FP when printing floating-point
; numbers. It returns 10 * A + C in registers C and A (16 bytes)
CA 10xA C PUSH DE ; preserve DE.

LD L,A ; transfer A to L

LD H,S$00 ; zero high byte.

LD E,L ; copy HL

LD D,H ; to DE.

ADD HL, HL ; double (*2)

ADD HL, HL ; double (*4)

ADD HL, DE ; add DE (*5)

ADD HL, HL ; double (*10)

LD E,C ; copy C to E (D is 0)

ADD HL, DE ; and add to give required result.

LD C,H ; transfer to

LD A,L ; destination registers.

POP DE ; restore DE

RET ; return with result.
; THE 'PREPARE TO ADD' SUBROUTINE
; This routine is called twice by addition to prepare the two numbers. The
; exponent is picked up in A and the location made zero. Then the sign bit
; is tested before being set to the implied state. Negative numbers are twos
; complemented.
PREP ADD LD A, (HL) ; pick up exponent

LD (HL) , $00 ; make location zero

AND A ; test if number is zero

RET Z ; return if zero.

INC HL ; address mantissa

BIT 7, (HL) ; test the sign bit

SET 7, (HL) ; set it to implied state

DEC HL ; point to exponent

RET Z ; return if positive number.

PUSH BC ; preserve BC

LD BC, $0005 ; length of number

ADD HL, BC ; point HL past end

LD B,C ; set B to 5 counter

LD C,A ; store exponent in C

SCF ; set carry flag
NEG BYTE DEC HL ; work from LSB to MSB

LD A, (HL) ; fetch byte

CPL ; complement

ADC A, $00 ; add in initial carry or from prev operation

LD (HL) ,A ; put back

DJIJNZ NEG BYTE ; loop to NEG-BYTE till all 5 done

LD A,C ; stored exponent to A

POP BC ; restore original BC

RET ; return

; THE 'FETCH TWO

; This routine
; to fetch two
; HL addresses
; For arithmet
; the second 1

FETCH TWO PUSH
PUSH

LD
INC

LD
LD

INC

LD
LD
PUSH
INC
LD
INC
LD
EX
LD
LD
PUSH
INC
LD
INC
LD
PUSH
EXX
POP
POP
POP
EXX
INC
LD
INC
LD

POP
POP

RET

; THE 'SHIFT FP'

SHIFT FP AND
RET

CP

NUMBERS' SUBROUTINE

is called twice when printing floating point numbers and also
numbers by the addition, multiply and division routines.

the first number,

DE addresses the second number.

ic only, A holds the sign of the result which is stored in

ocation.

HL

D, (HL)

E, (HL)
DE

DE
HL
BC

HL
D, (HL)
HL
E, (HL)
AF

HL

SUBROUTINE

$21

’

’

’

save pointer to first number, result if math.

save result sign.

store the sign at correct location in
destination 5 bytes for arithmetic only.

restore possible result sign.
and pointer to possible result.

return.

JR NC, ADDEND 0 ; to ADDEND-0

PUSH BC ;
LD B,A ;

ONE_ SHIFT EXX ;

SRA L ;

RR D ;

RR E ;

EXX ;

RR D ;

RR E ;

DJNZ ONE SHIFT ; to ONE-SHIFT
POP BC ;

RET NC ;

CALL ADD BACK ; routine ADD-BACK
RET NZ ;

ADDEND 0 EXX ;
XOR A ;

ZEROS 4 5 LD L,S
LD D, A ;
LD E, L
EXX ;
LD DE, $0000 ;
RET ;

; THE 'ADD BACK' SUBROUTINE

; Called twice to increment D'E'DE as a pseudo 32-bit register.

ADD BACK INC E ;

RET NZ ;
INC D ;
RET NZ ;
EXX ;
INC E ;
JR NZ,ALL ADDED ; to ALL-ADDED
INC D ;

ALL ADDED EXX ;
RET ;

; THE 'SUBTRACTION' OPERATION

; (offset: $03 'subtract')

; Subtraction is done by switching the sign byte/bit of the second number,
; which may be integer of floating point, and continuing into addition.

subtract EX DE, HL ; address second number with HL
CALL negate ; routine NEGATE switches sign
EX DE, HL ; address first number again

; and continue.

’

’

’

' OPERATION

'addition')
HL points to first number, DE

THE 'ADDITION

(offset: SOF

If they are both integers,

addition LD

’

’

’

’

OR

JR
Continue if

PUSH

INC
PUSH

INC
LD
INC
LD
INC

INC
INC

LD
INC
LD
INC
LD

POP
EX

Now perform

ADD

EX

ADC

RRCA
ADC
JR

SBC

A, (DE)
(HL)

NZ, FULL ADDN ;

to second.

then go for the easy route.

fetch first byte of second

combine with first byte of first

forward to FULL-ADDN if at least one was
in floating point form.

both were both small integers.

DE

HL
HL

HL
E, (HL)
HL
D, (HL)
HL

HL
HL

A, (HL)

HL
C, (HL)
HL
B, (HL)

HL
DE, HL

’

save pointer to second number for new STKEND.

address sign byte of first number and
push the pointer.

address low byte

to E

address high byte
to D

address unused byte

address known zero indicator of 1lst number
address sign byte

sign to A, $00 or S$FF

address low byte
to C
address high byte
to B

pop result sign pointer
integer to HL

the actual addition.

HL, BC

DE, HL

A, (HL)

A,$00

NZ,ADDN_ OFLW ;

add to the other one in BC
setting carry if overflow.

save result in DE bringing back sign pointer
if pos/pos A=01 with overflow else 00

if neg/neg A=FF with overflow else FE

if mixture A=00 with overflow else FF

bit 0 to (C)

both acceptable signs now zero

forward, if not, to ADDN-OFLW

restore a negative result sign

THE 'INT -65536 FIX'

credit: Dr.

Note. the following is a modification of Dr. Ian Logan's suggested fix

for the -65536 problem.

At this point, the BC register pair is expendable

and this solution is optimized for speed by avoiding the machine stack.

LD C,A ;+ Make a copy of the sign byte in C.

INC A ;+ Make any SFF in A into $00.

OR E ;+ Test all three

OR D ;+ bytes now for zero.

LD A,C ;+ Restore true sign byte of integer.
JR NZ,ADD STORE ;+ forward, if not -65536, to ADD STORE

; The number, in the registers, is -65536 i.e. 00 FF 00 00 00 and must be
; made 91 80 00 00 00 on the calculator stack. At this stage only the
; fifth byte on the calculator stack is as required.

DEC HL ;+ Point to the first byte.
LD (HL), $91 ;+ Enter exponent $91 in first byte.
INC HL ;++ Point to the second byte
AND $80 ;++ set A to $80

ADD STORE LD (HL) , A ; insert second byte
INC HL ;
LD (HL) ,E ; insert third byte
INC HL ;
LD (HL),D ; insert fourth byte
DEC HL ; back to third.
DEC HL ; back to second.
DEC HL ; point to result.
POP DE ; restore value of STKEND
RET ; Return.

; The branch was here when simple register addition overflowed.

ADDN OFLW DEC HL H

POP DE ;
FULL ADDN CALL RE_ST TWO ; routine RE-ST-TWO
EXX ;
PUSH HL ;
EXX ;
PUSH DE ;
PUSH HL ;
CALL PREP_ADD ; routine PREP-ADD
LD B,A ;
EX DE, HL ;
CALL PREP_ADD ; routine PREP-ADD
LD C,A ;
CP B ;
JR NC, SHIFT LEN ; to SHIFT-LEN
LD A,B ;
D B,C ;
EX DE, HL ;

SHIFT LEN PUSH AF ;

SUB B ;

CALL FETCH TWO ; routine FETCH-TWO
CALL SHIFT FP ; routine SHIFT-FP
POP AF ;

POP HL ;

LD (HL) , A ;

PUSH HL ;

LD L,B ;

LD H,C ;

ADD HL, DE ;

EXX 7

EX DE, HL ;

ADC HL,BC ;

EX DE, HL ;

LD AH ;

ADC AL ;

LD L,A ;

RRA ;

XOR L ;

EXX ;

EX DE, HL 7

POP HL ;

RRA ;

JR NC, TEST NEG ; to TEST-NEG

LD A, 501 ;

CALL SHIFT FP ; routine SHIFT-FP
INC (HL) ;

JR Z,ADD REP 6 ; to ADD-REP-6

TEST NEG EXX ;

LD A,L ;
AND $80 ;

EXX ;

INC HL ;

LD (HL) , A ;

DEC HL ;

JR Z,GO_NC MLT ; to GO-NC-MLT
LD AE ;

NEG ; Negate

CCF ; Complement Carry Flag
LD E,A ;

1D A,D ;

CPL ;

ADC A, S$00 ;

LD D,A ;

EXX ;

D AE ;

CPL ;

ADC A,$00 ;

1D E,A ;

1D A,D ;

CPL ;

ADC A,$00 ;

JR NC, END_ COMPL ; to END-COMPL
RRA ;

EXX ;

INC (HL) ;

ADD REP 6 JP Z,REPORT_6 ; to REPORT-6
; '"Number too big'

EXX ;
END COMPL LD D,A ;

EXX ;
GO NC MLT XOR A ;

JP TEST NORM ; to TEST-NORM
; THE 'HL = HL * DE' SUBROUTINE
; This routine is used, in the first instance, by the multiply calculator
; literal to perform an integer multiplication in preference to

; 32-bit multiplication

to which it will resort if this overflows.

; It is also used by STK-VAR to calculate array subscripts and by DIM to

; calculate the space required for multi-dimensional arrays.
HL HLxDE PUSH BC ; preserve BC throughout
LD B,S$10 ; set B to 16
LD A,H ; save H in A high byte
LD C,L ; save L in C low byte
LD HL, $0000 ; initialize result to zero
; now enter a loop.
HL LOOP ADD HL, HL ; double result
JR C,HL END ; to HL-END if overflow
RL C ; shift AC left into carry
RLA ;
JR NC, HL AGAIN ; to HL-AGAIN to skip addition if no carry
ADD HL, DE ; add in DE
JR C,HL END ; to HL-END if overflow
HL AGAIN DJNZ HL_ LOOP ; back to HL-LOOP for all 16 bits
HL END POP BC ; restore preserved BC
RET ; return with carry reset if successful
; and result in HL.
'PREPARE TO MULTIPLY OR DIVIDE' SUBROUTINE

; THE

This routine is called in succession from multiply and divide to prepare
two mantissas by setting the leftmost bit that is used for the sign.

On the first call A holds zero and picks up the sign bit. On the second
call the two bits are XORed to form the result sign - minus * minus giving
plus etc. If either number is zero then this is flagged.

HL addresses the exponent.

PREP M D CALL TEST ZERO ; routine TEST-ZERO preserves accumulator.
RET C ; return carry set if zero
INC HL ; address first byte of mantissa
XOR (HL) ; pick up the first or XOR with first.
SET 7, (HL) ; now set to give true 32-bit mantissa
DEC HL ; point to exponent
RET ; return with carry reset

; THE '"MULTIPLICATION' OPERATION

; (offset: $04 'multiply')

; Begin by trying integer multiplication as used on the Sinclair ZX80.

; If that overflows then use floating point multiplication.

multiply LD A, (DE) ; fetch exponent byte of second number.
OR (HL) ; combine with that of first number.
JR NZ,MULT LONG ; forward, if either not integer, to MULT-LONG
PUSH DE ; save pointer to second number - new STKEND.
PUSH HL ; save pointer to first number - result pointer.
PUSH DE ; save pointer to second number on stack again.
CALL INT FETCH ; routine INT-FETCH integer to DE, sign to C.
EX DE, HL ; transfer first integer from DE to HL
EX (SP) ,HL ; integer to stack and second pointer to HL.
LD B,C ; place first sign byte in B.
CALL INT_ FETCH ; routine INT-FETCH integer to DE, sign to C

; and B preserved.

; Now manipulate sign bytes so that minus times a minus gives a plus result.
LD A,B ; fetch first sign byte $00 or SFF.
XOR C ; XOR with second sign byte. 500 or SFF.
LD C,A ; transfer sign of result to C.
POP HL ; pop first integer off the machine stack.
CALL HL HLxDE ; routine HL-HL*DE multiplies the two integers.
EX DE, HL ; transfer the result to DE.
POP HL ; restore the result pointer to HL.
JR C,MULT OFLW ; forward, with overflow, to MULT-OFLW

; Note. these next 5 bytes ensure that -zero (00 FF 00 00 00) is replaced

; by zero (00 00 00 00 00). They are required in the case of say,
; 0 * -1 which gives the result -0. This would be printed as -1E-38.
; Note. Contrary to the view expressed in The Complete Spectrum ROM

; Disassembly, these 5 bytes should not be deleted.

LD A,D ; test 3rd

OR E ; and 4th bytes for zero.

JR NZ,MULT RSLT ; skip forward, if not, to MULT-RSLT

LD C,A ; make 2nd byte, possibly $FF, zero also.
MULT RSLT JP INT STO 3 ;+ jump to similar code.
H CALL INT STORE ; routine INT-STORE stores result at HL.
H POP DE ; retrieve the new pointer to STKEND.
Y RET ; Return.

; The branch was here when simple register-based multiplication overflowed.

MULT OFLW POP DE ;

MULT LONG CALL RE_ST TWO ; routine RE-ST-TWO
XOR A ;
CALL PREP M D ; routine PREP-M/D
RET C ;
EXX ;
PUSH HL ;
EXX ;
PUSH DE ;
EX DE, HL ;
CALL PREP M D ; routine PREP-M/D
EX DE, HL ;
JR C,ZERO_RSLT ; to ZERO-RSLT
PUSH HL ;
CALL FETCH TWO ; routine FETCH-TWO
LD A,B ;
AND A ;
SBC HL,HL ;
EXX ;
PUSH HL ;
SBC HL,HL ;
EXX ;
LD B, $21 ;
JR STRT MLT ; to STRT-MLT

MLT LOOP JR NC,NO _ADD ; to NO-ADD

ADD HL, DE ;

EXX ;
ADC HL, DE ;
EXX ;
NO_ ADD EXX ;
RR H ;
RR L ;
EXX ;
RR H ;
RR L ;

STRT MLT EXX ;

RR B ;
RR C ;
EXX ;
RR C ;
RRA ;
DJNz MLT LOOP ; to MLT-LOOP
EX DE, HL ;
EXX ;
EX DE, HL ;
EXX ;
POP BC ;
POP HL ;
LD A,B ;
ADD A,C ;
JR NZ,MAKE EXPT ; to MAKE-EXPT

AND A ;

MAKE EXPT

DIVN EXPT

OFLW1 CLR

OFLW2 CLR

TEST NORM

NEAR ZERO

ZERO RSLT

SKIP ZERO

NORMALIZE

SHIFT ONE

DEC
CCF

RLA
CCF
RRA
JPp

JR

AND

INC
JR

JR

EXX
BIT
EXX
JR

LD
EXX
LD
EXX

JR

LD
AND

LD
JR

XOR

EXX
AND
CALL
RLCA
LD
JR

INC
LD
DEC
JR

EXX
BIT
EXX
JR

RLCA
RL
RL
EXX

P,OFLW1 CLR

NC, REPORT 6

A

A
NZ,OFLW2 CLR

C,OFLW2_CLR

7,D
NZ,REPORT 6
(HL) , A

A,B

NC, NORMALIZE

A, (HL)
A
A, $80

Z,SKIP_ZERO
A

D

ZEROS 4 5

(HL) ,A
C,OFLOW_CLR

HL
(HL) , A

HL
OFLOW_CLR

B, $20

7,D

NZ,NORML NOW

Complement Carry Flag

Complement Carry

to OFLW1-CLR

to REPORT-6

'Number too big'

to OFLW2-CLR

to OFLW2-CLR

to REPORT-6

to NORMALISE

to SKIP-ZERO

routine ZEROS-4/5

to OFLOW-CLR

to OFLOW-CLR

to NORML-NOW

RL E

RL D

EXX

DEC (HL)

JR Z,NEAR ZERO

DJNZ SHIFT ONE

JR ZERO_RSLT

NORML NOW RLA

JR NC,OFLOW_CLR

CALL ADD BACK

JR NZ, OFLOW CLR
EXX

LD D, $80

EXX

INC (HL)

JR 7, REPORT 6

OFLOW CLR PUSH HL

INC HL
EXX

PUSH DE

EXX

POP BC

1D A,B
RLA

RL (HL)
RRA

1D (HL) , A
INC HL

LD (HL), C
INC HL

1D (HL), D
INC HL

LD (HL) ,E
POP HL

POP DE

EXX

POP HL

EXX

RET

REPORT 6 RST 30H

’

’

DEFB $05

THE 'DIVISION' OPERATION

(offset: $05 'division')

division CALL RE_ST TWO

EX DE, HL
XOR A

’

’

’

to NEAR-ZERO
to SHIFT-ONE

to ZERO-RSLT

to OFLOW-CLR

routine ADD-BACK
to OFLOW-CLR

to REPORT-6

ERROR-1
Error Report: Number too big

routine RE-ST-TWO

CALL PREP M D ; routine PREP-M/D

JR C,REPORT_6 ; to REPORT-6

EX DE, HL ;

CALL PREP M D ; routine PREP-M/D
RET c ;

EXX ;

PUSH HL ;

EXX 7

PUSH DE ;

PUSH HL ;

CALL FETCH TWO ; routine FETCH-TWO
EXX ;

PUSH HL ;

LD H,B ;

LD L,C ;

EXX 7

LD H,C ;

LD L,B ;

XOR A ;

LD B, $DF 7

JR DIV _START ; to DIV-START

DIV _LOOP RLA ;

RL cC ;
EXX ;
RL C ;
RL B ;
EXX ;

div_34th ADD HL, HL ;

EXX ;
ADC HL,HL ;
EXX ;
JR C, SUBN_ONLY ; to SUBN-ONLY

DIV _START SBC HL, DE ;

EXX ;
SBC HL,DE ;
EXX ;
JR NC,NO RSTORE ; to NO-RSTORE

ADD HL, DE ;

EXX ;
ADC HL, DE ;
EXX ;
AND A ;
JR COUNT_ONE ; to COUNT-ONE

SUBN_ONLY AND A ;
SBC HL,DE ;
EXX ;
SBC HL,DE ;
EXX ;

NO_RSTORE SCF ; Set Carry Flag

COUNT ONE INC B ;

JPp

PUSH

JR

LD
LD

EXX

LD
LD

POP

RR

POP

RR

EXX
POP
POP

LD

SUB

JPp

; so that,
; would be

for example,

M, DIV _LOOP
AF

Z,DIV_START

o ™
Q »

O =
(@

'"truncate')

to DIV-LOOP

to DIV-START

jump back to DIVN-EXPT

ZERO'

; THE 'INTEGER TRUNCATION TOWARDS

; (offset: $3A
; This routine returns the integer of the
the result for PI would be 3 and the result for -PI

SUBROUTINE

'last value'

truncated towards zero

(and not -4 as returned by the BASIC INT function).

truncate LD A, (HL) ; Fetch the first byte.
AND A ; Test for zero which indicates an integer.
RET Z ; return if a small integer.
CP $81 ; compare exponent to +1
JR NC, T GR ZERO ; forward, if 1 or more, to T-GR-ZERO
; The number is smaller than plus or minus one and can be made zero.
LD (HL), $00 ; insert zero in first byte.
LD A,$20 ; prepare to reset all 32 bits of 'mantissa'
JR NIL BYTES ; forward to NIL-BYTES
T GR_ZERO CP $91 ; compare exponent to +16

; Note. the next section is designed to convert 91 80 00 00 00 to the
; integer 00 FF 00 00 00

; been perfectly all right if left alone.
; simply to omit the 28 bytes
Ian Logan 1983.

; credit:

A JR

Nz,T SMALL

[below]

’

to T-SMALL

"This is a pity since the number would have
The remedy would seem to be
from the program."

INC
INC
INC
LD
AND
DEC
OR
DEC
JR

LD
XOR

T FIRST DEC
JR

LD
INC
LD
DEC
LD
JR

T SMALL JR

’

’

The number is a small integer

PUSH
The exponent

CPL
ADD

INC
LD
INC
LD

DEC
DEC

LD
BIT

JR

DEC

T NUMERIC SET

Now see if 8 bits can be right-shifted at once

LD
SUB
ADD
JR

LD
LD
SUB

HL
HL
HL
A, $80
(HL)
HL
(HL)
HL
NZ,T FIRST

NZ, T EXPNENT
(HL) ,A

HL

(HL) , SFF

HL

A,$18
NIL BYTES

NC, X LARGE

DE

($81 to $90)

A, 591
HL
D, (HL)
HL
E, (HL)

HL
HL

C,$00
7,D
Z,T NUMERIC

C

7,D

,$08

QP ww

,B
,T_TEST

W o =
v O
o
o

’

is converted to a shift count -

to T-FIRST

to T-EXPNENT

to NIL-BYTES

forward if more than 16-bit integer to X-LARGE

+/- 1-65535 and can be held in two bytes.

Preserve the STKEND pointer.
one to sixteen.

Complement - range $T7TF - $70
Add to give shift count $10 - $01

Point to first mantissa byte.
Load to high-order byte.

Point to next byte of mantissa.
Load to low-order byte.

Restore pointer
to position at first byte.

prepare a positive sign byte.
test sign bit of mantissa byte.
to T-NUMERIC

skip, if positive,

make SFF - negative sign byte.

put back the 'implied' bit.

(1f number < 256)

prepare 8 in B

subtract from shift counter in A.
and add back.

forward, if number > 255, to T-TEST
Transfer MSB to LSB

Make MSB zero.

subtract 8 from the shift counter.

T_

T_

T_

’

TEST JR Z,T STORE ; forward, if no more shifts, to T-STORE

LD B,A ; Transfer count to B.
SHIFT SRL D ; 0 => 76543210 -> C

RR E ; C -> 76543210 -> C

DJNZ T SHIFT ; back for count to T-SHIFT
STORE JP INT STO 3 ;+ jJump to similar code.
K CALL INT STORE ; routine INT-STORE stores integer DE at HL.
H POP DE ; Restore the STKEND value from the stack.
- RET ; Return.

The next instruction is made redundant by Dr. Logan's fix.

;; T _EXPNENT LD A, (HL) ; This instruction i1s never reached.

The branch was here when the number was a large number e.g. 1000000.567
The accumulator holds the exponent.

X LARGE SUB SA0 ; Subtract +32 decimal from the exponent.
RET P ; Return if the result is positive as 32 bits
; of the mantissa relate to the integer part.
; The radix point is somewhere to the right of
; the mantissa.
NEG ; else negate to form number of rightmost bits
; to be blanked.
; For instance, disregarding the sign bit, the number 3.5 is held as
; exponent $82 mantissa .11100000 00000000 00000000 00000000.
; We need to reset $82 - $AO0 = $E2, which negated = $1E (thirty) bits to
; form the integer of 3.5.
NIL BYTES PUSH DE ; Save pointer to STKEND.
EX DE, HL ; Register HL now points to STKEND
DEC HL ; Now at last byte of mantissa.
LD B,A ; Transfer the bit count to register B,
; Now look into the possibility of blanking eight bits at a time.
SRL B ; Divide
SRL B ; by
SRL B ; eight.
JR Z,BITS ZERO ; forward, if zero, to BITS-ZERO
BYTE ZERO LD (HL) , $00 ; set eight bits to zero.
DEC HL ; point to more significant byte of mantissa.
DJNZ BYTE ZERO ; loop back for all to BYTE-ZERO
BITS ZERO AND $07 ; mask the remaining bits from original count.
JR Z,IX END ; forward, if none, to IX-END

LD B,A ; transfer bit count to B counter.

LD A, SFF ; form an initial mask %11111111

LESS MASK SLA A ;1 <= 76543210 <- 0 slide mask leftwards.
DJNZ LESS MASK ; loop back, for bit count, to LESS-MASK
AND (HL) ; lose the unwanted rightmost bits.
LD (HL) ,A ; and place in the mantissa byte.

IX END EX DE, HL ; Restore the result pointer.
POP DE ; Restore STKEND wvalue from stack.
RET ; Return.

THE 'STORAGE OF NUMBERS IN 5 BYTE FORM'

Both integers and floating-point numbers can be stored in five bytes.
Zero is a special case stored as 5 zeros.

For integers the form is

Byte 1 - zero,

Byte 2 - sign byte, $00 +ve, S$FF -ve.
Byte 3 - Low byte of integer.

Byte 4 - High byte

Byte 5 - unused but always zero.

It seems unusual to store the low byte first but it is just as easy either
way. Statistically it just increases the chances of trailing zeros which
is an advantage elsewhere in saving ROM code.

zero sign low high unused
So +1 is 00000000 00000000 00000001 00000000 00000000

and -1 is 00000000 11111111 11111111 11111111 00000000

much of the arithmetic found in BASIC lines can be done using numbers
in this form using the Z80's 16 bit register operation ADD.
(multiplication is done by a sequence of additions).

Storing -ve integers in two's complement form, means that they are ready for
addition and you might like to add the numbers above to prove that the
answer 1s zero. If, as in this case, the carry is set then that denotes that
the result is positive. This only applies when the signs don't match.

With positive numbers a carry denotes the result is out of integer range.
With negative numbers a carry denotes the result is within range.

The exception to the last rule is when the result is -65536

Floating point form is an alternative method of storing numbers which can
be used for integers and larger (or fractional) numbers.

In this form 1 is stored as
10000001 00000000 00000000 00000000 00000000

When a small integer is converted to a floating point number the last two
bytes are always blank so they are omitted in the following steps

first make exponent +1 +16d (bit 7 of the exponent is set if positive)

10010001 00000000 00000001
10010000 00000000 00000010 <= now shift left and decrement exponent

10000010 01000000 00000000 <= wuntil a 1 abuts the imaginary point
10000001 10000000 00000000 to the left of the mantissa.

; however since the leftmost bit of the mantissa is always set then it can
; be used to denote the sign of the mantissa and put back when needed by the
; PREP routines which gives

; 10000001 00000000 00000000

; THE 'RE-STACK TWO "SMALL" INTEGERS' SUBROUTINE

; This routine is called to re-stack two numbers in full floating point form
; e.g. from mult when integer multiplication has overflowed.
RE ST TWO CALL RESTK SUB ; routine RESTK-SUB below and continue

; into the routine to do the other one.

RESTK SUB EX DE, HL ; swap pointers and continue into same routine.

; THE 'RE-STACK ONE "SMALL" INTEGER' SUBROUTINE

; (offset: $3D 're-stack')
; This routine re-stacks an integer, usually on the calculator stack, in full
; floating point form. HL points to the first byte.

re stack LD A, (HL) ; Fetch Exponent byte to A
AND A ; test it
RET NZ ; return if first byte is not zero as number

; is already in floating-point form.
PUSH DE ; preserve DE.
CALL INT FETCH ; routine INT-FETCH integer to DE, sign to C.

; Note. the above routine returns HL pointing to 4th byte.

XOR A ; clear the accumulator.
; Note. The fifth byte of an integer is always zero for neatness so the next
; step is, I imagine, unnecessary.
HE INC HL ; point to 5th.
H LD (HL) , A ; and blank.
HEH DEC HL ; point to 4th.
LD (HL) ,A ; blank the 4th byte.
LD B, $91 ; set exponent byte +ve $81.

; and imaginary radix point 16 bits to right
; of first bit.

; we could skip to normalize now but it's quicker to avoid normalizing
; through an empty D.

LD A,D ; fetch the high order byte D
AND A ; 1s it zero ?
JR NZ,RS_ NRMLSE ; skip, if not, to RS-NRMLSE
; Check if the number is zero in which case no modification is required.
; However, by updating first three bytes we convert minus zero to plus
; zero although I'm not sure if it can arise. It is eliminated in mult.
OR E ; Fetch low byte E to A and test for zero.
LD B,D ; set B, the exponent, to O

JR Z,RS_STORE ; forward, i1f value is zero, to RS-STORE

; Move the significant bits eight places to the left.

LD D,E ; transfer E to D

LD E,B ; set E to O

LD B, $89 ; reduce the initial exponent by eight.
RS NRMLSE EX DE, HL ; integer to HL, addr of 4th byte to DE.
RSTK_LOOP DEC B ; decrease exponent

ADD HL, HL ; shift HL left

JR NC, RSTK LOOP ;7 loop back to RSTK-LOOP

; until a set bit pops into carry

RRC C ; Now rotate the sign byte $00 or S$FF
; into carry to give a sign bit.

RR H ; rotate the sign bit to left of H

RR L ; rotate any carry into L

EX DE, HL ; address 4th byte, normalized int to DE
RS STORE DEC HL ; address 3rd byte

LD (HL) , E ; place E

DEC HL ; address 2nd byte

LD (HL),D ; place D

DEC HL ; address 1lst byte

LD (HL) , B ; store the exponent
; Register HL now points at result.

POP DE ; restore initial DE.

RET ; return.

,-**

;** Part 10. FLOATING-POINT CALCULATOR **

ekAhkhk kA Ak Ak kA kA kA kA kh kA hkhkk Ak h kA h Ak hkrhkhhrkhrk%k
’

; As a general rule the calculator avoids using the IY register.

; Exceptions are val, val$ and strs.

; So an assembly language programmer who has disabled interrupts to use IY

; for other purposes can still use the calculator for mathematical purposes.

; THE 'TABLE OF CONSTANTS'

; These five constants are now held in full five byte integer or
; floating-point form as it makes it much easier to pass them to the
; calculator stack when required.

;;; used 11 times

;77 stk-zero 00 00 00 00 00
;75 L32C5: DEFB $00 ;;Bytes: 1

i DEFB $BO ; ;Exponent $00

P DEFB $00 ;; (+00,+00,+00)

;;; used 19 times

;5 stk-one 00 00 01 00 00
;55 L32C8: DEFB $40 ;:Bytes: 2
Y DEFB $BO ; ;Exponent $00

i DEFB $00,$01 ;7 (+00,+00)

used 9 times

;75 stk-half 80 00 00 00 00
;:; L32CC: DEFB $30 ; ;Exponent: $80, Bytes: 1
ii: DEFB $00 ;7 (+00,+00,+00)
;75 used 4 times.
;i; stk-pi/2 81 49 OF DA A2
;7 L32CE: DEFB SF1 ; ;Exponent: $81, Bytes: 4
i DEFB $49,$0F, $DA, SA2 ;;
;77 used 3 times.
;77 stk-ten 00 00 0A 00 00
;;; L32D3: DEFB $40 ; ;Bytes: 2
P DEFB $BO ; ;Exponent $00
ii: DEFB $00,S0A 77 (+00,+00)
TAB CNST DEFB $00 ;+ the value zero.
DEFB $00 it
DEFB $00 it
DEFB $00 Pt
DEFB $00 ;T
DEFB $00 ;+ the integer value 1.
DEFB $00 it
DEFB $01 it
DEFB $00 Pt
DEFB $00 Pt
DEFB $80 ;+ the floating point value a half.
DEFB $00 Pt
DEFB $00 Pt
DEFB $00 it
DEFB $00 it
DEFB $81 ;+ the floating point value pi/2
DEFB $49 Pt
DEFB $OF Pt
DEFB S$DA it
DEFB $A2 it
DEFB $00 ;+ the integer value ten.
DEFB $00 it
DEFB $O0A it
DEFB $00 Pt
DEFB $00 7t
; THE 'TABLE OF ADDRESSES'
; Starts with binary operations which have two operands and one result.
; Three pseudo binary operations first.
tbl addrs DEFW jump true ; $00 Address: $368F - jump-true
DEFW exchange ; $01 Address: $343C - exchange
DEFW delete ; $02 Address: $33A1 - delete
; True binary operations.
DEFW subtract ; $03 Address: $300F - subtract
DEFW multiply ; $04 Address: $30CA - multiply
DEFW division ; $05 Address: S$31AF - division
DEFW to_power ; $06 Address: $3851 - to-power

’

DEFW

DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW

DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW

or

no_v_no
multcmp
multcmp
multcmp
multcmp
multcmp
multcmp
addition

str v no
multcmp
multcmp
multcmp
multcmp
multcmp
multcmp
strs_add

Unary follow.

DEFW
DEFW
DEFW
DEFW

DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW

End of true

DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW

val s
usr_ str
read in
negate

code
val
len
sin
cos
tan
asn
acs
atn
1n
exp
int
sqr
sgn
abs
peek
in
usr no
str s
chrs
not

unary.

MOVE_FP
n_mod m
JUMP

stk data
dec jr nz
less O
greater 0
end calc
get argt
truncate
fp calc 2
E TO FP
re stack

$07

$08
$09
SOA
0]}
$0C
$S0D
SOE
SOF

$10
S$11
$12
$13
$14
$15
$16
$17

$18
$19
S1A
$1B

sic
S1D
S1E
S1F
$20
$21
$22
$23
524
$25
$26
527
$28
$29
S2A
$2B
$2C
$2D
S2E
S2F
330

$31
$32
$33
$34
$35
$36
$37
$38
$39
$3A
$3B
$3C
$3D

Address:

Address:
Address:
Address:
Address:
Address:
Address:
Address:
Address:

Address:
Address:
Address:
Address:
Address:
Address:
Address:
Address:

Address:
Address:
Address:
Address:

Address:
Address:
Address:
Address:
Address:
Address:
Address:
Address:
Address:
Address:
Address:
Address:
Address:
Address:
Address:
Address:
Address:
Address:
Address:
Address:
Address:

Address:
Address:
Address:
Address:
Address:
Address:
Address:
Address:
Address:
Address:
Address:
Address:
Address:

$351B

$3524
$353B
$353B
$353B
$S353B
S353B
$353B
$3014

$352D
$353B
$353B
$353B
$353B
$353B
$S353B
$359C

$35DE
$34BC
$3645
$346E

$3669
$35DE
33674
$37B5
$37AA
$37DA
$3833
$3843
$S37E2
$3713
$36C4
S36AF
$384A
$3492
$346A
$34AC
$34A5
$34B3
S361F
$35C9
$3501

$33C0
$36A0
$3686
$33C6
$367A
$3506
$34F9
$369B
$3783
$3214
$33A2
$2D4AF
$3297

or

no-&-no
no-l-eqgl
no-gr-eql
nos-neqgl
no-grtr
no-less
nos-eql
addition

str-&-no
str-l-eqgl
str-gr-eql
strs—-neqgl
str-grtr
str-less
strs-eql
strs—-add

vals$
usr-93
read-in
negate

code
val
len
sin
cos
tan
asn
acs
atn
1n
exp
int
sqr
sgn
abs
peek
in
usr-no
str$
chrs
not

duplicate
n-mod-m
Jjump
stk-data
dec-jr-nz
less-0
greater-0
end-calc
get-argt
truncate
fp-calc-2
e-to-fp
re-stack

The following are just the next available slots for the 128 compound

literals which are in range $80 - S$FF.
DEFW seriesg x ; Address: $3449 - series-xx $80 - S$OF.
DEFW stk _con x ; Address: $341B - stk-const-xx SAQ0 - S$BF.
DEFW sto mem x ; Address: $342D - st-mem-xx $CO - SDF.
DEFW get mem x ; Address: $340F - get-mem-xx SE0 - SFF.
Aside: 3E - 3F are therefore unused calculator literals.

If the literal has to be also usable as a function then bits 6 and 7 are
used to show type of arguments and result.

; THE 'CALCULATE' SUBROUTINE

CALCULATE CALL STK PNTRS ; routine STK-PNTRS is called to set up the

; calculator stack pointers for a default
; unary operation. HL = last value on stack.
; DE = STKEND first location after stack.

the calculate routine is called at this point by the series generator...

GEN_ENT 1 LD A,B ; fetch the Z80 B register to A
LD ($5B67) ,A ; and store value in system variable BREG.
; this will be the counter for dec-jr-nz
; or if used from fp-calc2 the calculator
; instruction.
; and again later at this point
GEN_ENT 2 EXX ; switch sets
EX (SP),HL ; and store the address of next instruction,
; the return address, in H'L'.
; If this is a recursive call the H'L'
; of the previous invocation goes on stack.
; c.f. end-calc.
EXX ; switch back to main set
; this is the re-entry looping point when handling a string of literals.
RE _ENTRY LD ($5B65), DE ; save end of stack in system variable STKEND
EXX ; switch to alt
LD A, (HL) ; get next literal
INC HL ; lncrease pointer'
; single operation jumps back to here
SCAN ENT PUSH HL ; save pointer on stack
AND A ; now test the literal
Jp P,FIRST 3D ; forward to FIRST-3D if in range $00 - $3D

; anything with bit 7 set will be one of
; 128 compound literals.

compound literals have the following format.

bit 7 set indicates compound.

bits 6-5 the subgroup 0-3.

bits 4-0 the embedded parameter $00 - $1F.

The subgroup 0-3 needs to be manipulated to form the next available four
address places after the simple literals in the address table.

FIRST 3D

DOUBLE_A

ENT TABLE

’

’

’

LD
AND
RRCA
RRCA
RRCA
RRCA
ADD

LD
LD
AND
JR

A, $7C

L,A
A,D
S1F
ENT TABLE

save literal in D

and with 01100000 to isolate subgroup
rotate bits

4 places to right

not five as we need offset * 2
00000xx0

add ($3E * 2) to give correct offset.
alter above if you add more literals.
store in L for later indexing.

bring back compound literal

use mask to isolate parameter bits
forward to ENT-TABLE

the branch was here with simple literals.

CP
JR

it is

EXX

i LD
I LD
L LD
. ADD

CALL

EXX

RLCA
LD

LD
LD
ADD
LD
INC
LD
LD
EX
PUSH
EXX

Avoid

LD

THE 'DELETE’

(offset: $02

using

$18
NC, DOUBLE_A

BC, $SFFFB
D, H

E,L

HL, BC

STK_PTRS2

L,A

DE, tbl addrs
H,$00
HL, DE

E, (HL)

HL

D, (HL)
HL,RE_ENTRY
(SP) , HL

DE

’

’

the IY register.

BC, ($5B66)

OPERATION

'delete')

A simple return but when

used

compare with first unary operations.
to DOUBLE-A with unary operations

binary so adjust pointers.

the value -5
transfer HL,

the last value, to DE.
subtract 5 making HL point to second value.
Routine to perform the above.

switch to alternate set of registers.

double the literal
and store in L for indexing

Address: tbl-addrs

prepare to index

add to point to address of routine
low byte of address to E

high byte of address to D

Address: RE-ENTRY

goes to stack and address of
goes to HL'

'next literal'

now stack the address of the routine

switch back to 'main' set

STKEND hi

nothing much goes to C but BREG to B
and continue into next ret instruction
which has a dual identity

as a calculator literal this

deletes the last value from the calculator stack.
On entry, as always with binary operations,

HL = first number, DE = second number

On exit, HL = result, DE = STKEND.

So nothing to do

delete RET ; return - indirect jump if from above.

’

’

’

THE 'SINGLE OPERATION' ROUTINE

(offset: $3B 'fp calc2')
This single operation is used, in the first instance, to evaluate most
of the mathematical and string functions found in BASIC expressions.

fp calc_ 2 POP AF ; drop return address.
LD A, ($5B67) ; load accumulator from system variable BREG
; value will be literal e.g. 'tan'
EXX ; switch to alt
JR SCAN_ENT ; back to SCAN-ENT

’

’

; next literal will be end-calc at L2758

THE 'TEST FIVE SPACES' SUBROUTINE

This routine is called from MOVE-FP, STK-CONST and STK-STORE to test that
there is enough space between the calculator stack and the machine stack
for another five-byte value.

TEST 5 SP PUSH DE ; preserve.
PUSH HL ; registers
LD BC, $0005 ; an overhead of eighty five bytes
CALL TEST_ ROOM ; routine TEST ROOM checks space for 5 bytes.
POP HL ; (balance)
POP DE ;
RET ; then return - OK.

THE 'STACK NUMBER' SUBROUTINE

This routine is called to stack a hidden floating point number found in

; a BASIC line. It is also called to stack a numeric variable value, and
; from BEEP, to stack an entry in the semi-tone table. It is not part of the
; calculator suite of routines. On entry, HL points to the number to be
; stacked.
STACK _NUM LD DE, ($5B65) ; Load destination from STKEND system variable.
CALL MOVE FP ; Routine MOVE-FP puts on calculator stack
; with a memory check.
LD ($5B65),DE ; Set STKEND to next free location.
RET ; Return.

’

THE 'DUPLICATE' OPERATION

(offset: $31 'duplicate')

This simple routine is a 5-byte LDIR instruction
that incorporates a memory check.
When used as a calculator literal it duplicates the last value on the

’

calculator stack.

Unary so on entry HL points to last value, DE to STKEND

duplicate

MOVE FP CALL TEST 5 SP ;

BLK MV LDIR ;
RET ;

’

THE 'STACK LITERALS' OPERATION

(offset: $34 'stk data')
When a calculator subroutine needs to put a value on the calculator
stack that is not a regular constant this routine is called with a
variable number of following data bytes that convey to the routine

the integer or floating point

stk data LD H,D ;
LD L, E ;
STK _CONST CALL TEST 5 SP ;
EXX ;
PUSH HL ;
EXX ;
EX (SP),HL ;
I PUSH BC ;
LD A, (HL) ;
AND $CO ;
RLCA ;
RLCA ;
LD C,A ;
INC C ;
LD A, (HL) ;
AND $3F ;
JR Nz, FORM EXP ;

routine TEST-5-SP test free memory
and sets B to zero.

copy the five bytes.

return with DE addressing new STKEND
and HL addressing new last value.

form as succinctly as is possible.

transfer STKEND
to HL for result.

routine TEST-5-SP tests that room exists
and sets BC to $05.

switch to alternate set
save the pointer to next literal on stack
switch back to main set

pointer to HL, destination to stack.
save BC - value 5 from test room ?°?.

fetch the byte following 'stk-data'

isolate bits 7 and 6

rotate

to bits 1 and 0 range $00 - $03.

transfer to C

and increment to give the number of bytes
to read. $01 - $04

reload the first byte

mask off bits 5 - 0 to give possible exponent.
Forward to FORM-EXP if it was possible to
include the exponent and count in one byte.

else byte is just a byte count and reduced exponent comes next.

INC HL ;
LD A, (HL) ;
FORM EXP ADD A, $50 ;
LD (DE) , A ;
LD A, $05 ;
SUB C ;
INC HL ;
INC DE ;
H LD B, $00 ;
LDIR ;
P POP BC ;
EX (SP), HL ;

address next byte and
pick up the exponent (-$50).

now add $50 to form actual exponent
and load into first destination byte.
load accumulator with $05 and
subtract C to give count of trailing
zeros plus one.

increment source

increment destination

prepare to copy (B=0, fr testb5sp)

copy C bytes
restore 5 counter to BC ?7?.

put HL on stack as next literal pointer

; and the stack value - result pointer -

; to HL.

EXX ; switch to alternate set.

POP HL ; restore next literal pointer from stack
; to H'L'.

EXX ; switch back to main set.

LD B,A ; zero count to B

XOR A ; clear accumulator

STK ZEROS DEC B ; decrement B counter
RET Z ; return if zero. >>

; DE points to new STKEND
; HL to new number.

LD (DE) ,A ; else load zero to destination
INC DE ; increase destination
JR STK_ZEROS ; loop back to STK-ZEROS until done.

; THE REDUNDANT 'SKIP CONSTANTS' SUBROUTINE

; This routine traversed variable-length entries in the table of constants,
; stacking intermediate, unwanted constants onto a dummy calculator stack,

; in the first five bytes of ROM. The destination DE normally points to the
; end of the calculator stack which might be in the normal place or in the

; system variables area during E-LINE-NO; INT-TO-FP; stk-ten. In any case,
; it would be simpler all round if the routine just shoved unwanted values

; where it is going to stick the wanted value. The instruction LD DE, $0000
; can be removed.

;77 SKIP-CONS
;77 L33F7: AND A ; test if initially zero.

;77 SKIP-NEXT

;5 L33F8: RET Z ; return if zero. >>

;i PUSH AF ; save count.

- PUSH DE ; and normal STKEND

Y LD DE, $0000 ; dummy value for STKEND at start of ROM
H ; Note. not a fault but this has to be

I ; moved elsewhere when running in RAM.

A ; e.g. with Expandor Systems 'Soft ROM'.
I ; Better still, write to the normal place.
i CALL STK CONST ; routine STK-CONST works through variable
H ; length records.

e POP DE ; restore real STKEND

HE POP AF ; restore count

H DEC A ; decrease

i JR SKIP_NEXT ; loop back to SKIP-NEXT

; THE 'LOCATE MEMORY' SUBROUTINE

; This routine, when supplied with a base address in HL and an index in A,

; will calculate the address of the A'th entry, where each entry occupies

; five bytes. It is used for reading the semi-tone table and addressing

; floating-point numbers in the calculator's memory area.

HE It is not possible to use this routine for the table of constants as these

H six values are held in compressed format.

LOC_ MEM LD C,A ; store the original number $00-S1F.

RLCA ; X2 - double.

RLCA ; X4 - guadruple.

ADD A,C ; X5 - now add original to multiply by five.

LD C,A ; place the result in the low byte.

LD B,S$00 ; set high byte to zero.

ADD HL, BC ; add to form address of start of number in HL.
RET ; return.

; THE 'GET FROM MEMORY AREA' OPERATION

Literals $EO to SFF
A holds $00-S$S1F offset.
The calculator stack increases by 5 bytes.

get mem x LD HL, ($5B68) ; MEM is base address of the memory cells.
INDEX_5 PUSH DE ; save STKEND

CALL LOC_MEM ; routine LOC-MEM so that HL = first byte

CALL MOVE FP ; routine MOVE-FP moves 5 bytes with necessary

; memory check.
; DE now points to new STKEND.

POP HL ; original STKEND is now RESULT pointer.
RET ; return.

; THE 'STACK A CONSTANT' OPERATION

Offsets $AO0 to $A4

This routine allows a one-byte instruction to stack up to 32 constants
held in short form in a table of constants. In fact only 5 constants are
required. On entry the A register holds the literal ANDed with 1F.

It isn't very efficient and it would have been better to hold the
numbers in full, five byte form and stack them in a similar manner

to that used for semi-tone table wvalues.

_con x LD HL, TAB CNST ; Address table of five byte expanded constants
JR INDEX 5 ; back to common code in routine above.
stk-con-x
L341B: LD H,D ; save STKEND - required for result
D L,E ;
EXX ; sSwap
PUSH HL ; save pointer to next literal
LD HL, TAB CNST ; Address: stk-zero - start of table of
; constants
EXX ;
CALL SKIP_CONS ; routine SKIP-CONS
CALL STK CONST ; routine STK-CONST
EXX ;
POP HL ; restore pointer to next literal.
EXX ;
RET ; return.

; THE 'STORE IN MEMORY' OPERATION

; Offsets $CO to S$DF

; Although 32 memory storage locations can be addressed, only six
; SCO0 to $C5 are required by the ROM and only the thirty bytes (6*5)

; required for these are allocated. Spectrum programmers who wish to

; use the floating point routines from assembly language may wish to

; alter the system variable MEM to point to 160 bytes of RAM to have

; use the full range available.

; A holds the derived offset $00-$1F.

; This is a unary operation, so on entry HL points to the last value and DE

; points to STKEND.

sto mem x PUSH HL ; save the result pointer.
EX DE, HL ; transfer to DE.
LD HL, ($5B68) ; fetch MEM the base of memory area.
CALL LOC MEM ; routine LOC-MEM sets HL to the destination.
EX DE, HL ; swap - HL is start, DE is destination.
;i CALL MOVE FP ; routine MOVE-FP.
H ; Note. a short 1d bc,5; 1dir
H ; the embedded memory check is not required
HEH ; so these instructions would be faster.
LD C,$05 ;+ Set number of bytes to five, B is zero.
LDIR ;+ Block copy the bytes avoiding RAM check.
EX DE, HL ; DE = STKEND
POP HL ; restore original result pointer
RET ; return.

; THE 'EXCHANGE' SUBROUTINE

; (offset: $01 'exchange')

; This routine swaps the last two values on the calculator stack.
; On entry, as always with binary operations,
; HL=first number, DE=second number

; On exit, HL=result, DE=STKEND.
exchange LD B, $05 ; there are five bytes to be swapped

; Start of loop.

SWAP BYTE LD A, (DE) ; Each byte of second
H LD C, (HL) ; Each byte of first
HEH EX DE, HL ; Swap pointers

D C,A i+

1D A, (HL) i+

LD (DE) ,A ; Store each byte of first

LD (HL) ,C ; Store each byte of second

INC HL ; Advance both

INC DE ; pointers.

DJIJNZ SWAP BYTE ; Loop back to SWAP-BYTE until all 5 done.
S EX DE, HL ; Even up the exchanges so that DE addresses
H ; system variable STKEND.

RET ; Return.

; THE 'SERIES GENERATOR' ROUTINE

; (offset: $86 'series-06")

; (offset: $88 'series-08"')

; (offset: $8C 'series-0C')

; The Spectrum uses Chebyshev polynomials to generate approximations for
; SIN, ATN, LN and EXP. These are named after the Russian mathematician

; Pafnuty Chebyshev, born in 1821, who did much pioneering work on numerical

; series. As far as calculators are concerned, Chebyshev polynomials have an
; advantage over other series, for example the Taylor series, as they can

; reach an approximation in just six iterations for SIN, eight for EXP and

; twelve for LN and ATN. The mechanics of the routine are interesting but

; for full treatment of how these are generated with demonstrations in

; Sinclair BASIC see "The Complete Spectrum ROM Disassembly" by Dr Ian Logan
; and Dr Frank O'Hara, published 1983 by Melbourne House.

seriesg x LD B,A ; parameter $00 - S$1F to B counter

CALL GEN_ENT 1 ; routine GEN-ENT-1 is called.
; A recursive call to a special entry point
; in the calculator that puts the B register
; in the system variable BREG. The return
; address is the next location and where
; the calculator will expect its first
; instruction - now pointed to by HL'.
; The previous pointer to the series of
; five-byte numbers goes on the machine stack.

; The initialization phase.
DEFB $31 ;;duplicate X, X
DEFB S$OF ;;addition x+x
DEFB S$CO ; ;st-mem-0 xX+x
DEFB $02 ;;delete .
DEFB S$AO ;istk-zero 0
DEFB S$C2 ;;st-mem-2 0
; A loop is now entered to perform the algebraic calculation for each of
; the numbers in the series
G_LOOP DEFB $31 ;;duplicate v, V.
DEFB S$SEO ;7 get-mem-0 v,Vv,x+2
DEFB $04 ;omultiply v, V*x+2
DEFB S$E2 ; rget-mem-2 V,V*x+2,v
DEFB S$C1 ;7 st-mem-1
DEFB $03 ;;subtract
DEFB $38 ;;end-calc
; The previous pointer is fetched from the machine stack to H'L' where it
; addresses one of the numbers of the series following the series literal.
CALL stk data ; routine STK-DATA is called directly to
; push a value and advance H'L'.
CALL GEN_ENT 2 ; routine GEN-ENT-2 recursively re-enters
; the calculator without disturbing
; system variable BREG
; H'L' value goes on the machine stack and is
; then loaded as usual with the next address.
DEFB SOF ;saddition
DEFB $01 ; ;exchange
DEFB S$C2 ;7 st-mem-2
DEFB $02 ;;delete
DEFB $35 ;;dec-jr-nz
DEFB G_LOOP - S ;;back to G-LOOP
; When the counted loop is complete the final subtraction yields the result

; for example SIN X.

DEFB S$SE1 ;;get-mem-1

DEFB $03 ;;subtract
DEFB $38 ;;end-calc

RET ; return with H'L' pointing to location
; after last number in series.

; THE 'ABSOLUTE MAGNITUDE' FUNCTION

; (offset: S$2A 'abs')

; This calculator literal finds the absolute value of the last value,
; integer or floating point, on the calculator stack.
abs LD B, SFF ; signal abs

JR NEG_ TEST ; forward to NEG-TEST

; THE 'UNARY MINUS' OPERATION

; (offset: $1B 'negate')

; e.g. LET balance = -2

; Unary, so on entry HL points to last value, DE to STKEND.

negate CALL TEST_ ZERO ; call routine TEST-ZERO and
RET C ; return if so leaving zero unchanged.
LD B, $00 ; signal negate required before joining

; common code.

NEG TEST LD A, (HL) ; load first byte and
AND A ; test for zero which indicates a small integer.
JR Z,INT CASE ; forward, if so, to INT-CASE

; for the FLOATING POINT CASE a single bit denotes the sign.

INC HL ; address the first byte of mantissa.
LD A,B ; action flag $FF=abs, $00=neg.
AND $80 ; now $80 $00
OR (HL) ; sets bit 7 for abs
RLA ; sets carry for abs and if number negative
CCF ; complement carry flag
RRA ; and rotate back in altering sign
LD (HL) ,A ; put the altered adjusted number back
DEC HL ; HL points to result
RET ; return with DE unchanged
; for integer numbers an entire byte denotes the sign.
INT CASE PUSH DE ; save STKEND.
PUSH HL ; save pointer to the last value/result.
CALL INT_FETCH ; routine INT-FETCH puts integer in DE

; and the sign in C.

POP HL ; restore the result pointer.
LD A,B ; SFF=abs, $00=neg
OR C ; SFF for abs, no change neg

CPL ; $00 for abs, switched for neg

JR INT STO 2 ;+ Forward to similar code.
H LD C,A ; transfer result to sign byte.
H CALL INT_STORE ; routine INT-STORE to re-write the integer.
I POP DE ; restore STKEND.
HE RET ; return.
; THE 'SIGNUM' FUNCTION
; (offset: $29 'sgn')
; This routine replaces the last value on the calculator stack,
; which may be in floating point or integer form, with the integer wvalues
; zero if zero, with one if positive and with -minus one if negative.
sgn CALL TEST ZERO ; call routine TEST-ZERO and
RET C ; exit if zero as no change is required.
PUSH DE ; save pointer to STKEND.
LD DE, $0001 ; the result will be 1.
INC HL ; skip over the exponent.
RL (HL) ; rotate the sign bit into the carry flag.
DEC HL ; step back to point to the result.
SBC A,A ; byte will be SFF if negative, $00 if positive.
INT STO 2 LD C,A ; store the sign byte in the C register.

INT STO 3 CAL

L INT STORE

routine INT-STORE to overwrite the last
value with 0001 and sign.

POP DE ; restore STKEND.
RET ; return.
; THE 'IN' FUNCTION
; (offset: $2C 'in')
; This function reads a byte from an input port.
in CALL FIND INT2 ; Routine FIND-INT2 puts port address in BC.
; All 16 bits are put on the address line.
IN A, (C) ; Read the port.
JR IN PK STK ; exit to STACK-A (via IN-PK-STK to save a byte
; of instruction code).
; THE 'PEEK' FUNCTION
; (offset: $2B 'peek')
; This function returns the contents of a memory address.
; The entire address space can be examined including the ROM.
peek CALL FIND INT2 ; routine FIND-INT2 puts the address in BC.
LD A, (BC) ; load the contents into A register.
IN PK STK JP STACK A ; exit via STACK-A to put the value on the

; THE

'USR' FUNCTION

’

calculator stack.

; Note.
; program has altered it.
usr_no CALL FIND INT2
LD HL, STK_BC IY
PUSH HL
PUSH BC
RET
; THE 'USR STRING' FUNCTION
; (offset: $19 'usr-$')

(offset:

$2d

'usr-no')

The USR function followed by a number 0-65535 is the method by which

the Spectrum invokes machine code programs.

This function returns the

contents of the BC register pair.

The user function with a one-character string argument,

that STACK-BC re-initializes the IY register if a user-written

routine FIND-INT2 to fetch the
supplied address into BC.

NEW address: STK BC IY is

pushed onto the machine stack.

then the address of the machine code
routine.

make an indirect jump to the routine
and, hopefully, to STACK-BC also.

calculates the

address of the User Defined Graphic character that is in the string.

As an alternative,

the ASCII equivalent,

upper or lower case,

may be supplied. This provides a user-friendly method of redefining
the 21 User Definable Graphics e.g.

POKE USR

"a‘

character 144.

Note.

the curious double check on the range.

', BIN 10000000 will put a dot in the top left corner of the

only is necessary. With anything less the second check only is required.
It is highly likely that the first check was written by Steven Vickers.

usr_str

USR_RANGE

’

’

’

’

CALL

DEC
LD
OR
JR

LD

CALL

CALL
JR

SUB
JR

CP
JR

INC

DEC
ADD
ADD
ADD
CP
JR

STK_FETCH
BC

A,B

C

NZ, REPORT A
A, (DE)
EXPT_SPEC

ALPHA
C,USR RANGE

$90
C,REPORT A

$15
NC,REPORT_A

A

14

A
A
AI
A
$

o

14

A8
NC, REPORT_ A

routine STK-FETCH fetches the string
parameters.

decrease BC by

one to test

the length.

to REPORT-A if not a single character.

fetch the character

;+ fetch a single char

’

L} L}

routine ALPHA sets carry if 'A-Z' or 'a-z

forward, if ASCII, to USR-RANGE

make UDGs range 0-20d

to REPORT-A if too low. usr " ".

e.qg.
Note. this test is not necessary.
to REPORT-A if higher than 20.

make range 1-21d to match LSBs of ASCII

make range of bits 0-4 start at zero
multiply by eight

and lose any set bits

range now 0 - 25*8

compare to 21*8

to REPORT-A if originally higher
than 'U','u' or graphics U.

With 26 UDGs the first check

LD
ADD
LD
JR

INC

USR_STACK JP

THE 'TEST FOR ZERO'

BC, ($5B7B)
A,C

C,A

NC, USR_STACK

B

STACK_BC

30H
$09

SUBROUTINE

fetch the UDG system variable value.
add the offset to character

and store back in register C.
forward to USR-STACK if no overflow.

increment high byte.

jump back and exit via STACK-BC to store

ERROR-1
Error Report: Invalid argument

Test i1f top value on calculator stack is zero. The carry flag is set if
the last value is zero but no registers are altered. All five bytes will
be zero but only the first four bytes need be tested.

On entry,

TEST ZERO PUSH

’

’

’

PUSH

LD

LD
INC
OR
INC
OR
INC
OR

LD

POP
POP
RET

SCF
RET

THE 'GREATER THAN ZERO'

(offset: $37

HL
BC

B, A

A, (HL)
HL
(HL)
HL
(HL)
HL
(HL)

A,B
BC
HL

NZ

'greater-0"')

HL points to the exponent the first byte of the value.

preserve HL which is used to address.
preserve BC which is used as a store.

preserve A in B.

load first byte to accumulator
advance.

OR with second byte and clear carry.
advance.

OR with third byte.

advance.

OR with fourth byte setting zero flag.

restore A without affecting flags.
restore the saved
registers.

return if not zero and with carry reset.

set the carry flag.
return with carry set if zero.

OPERATOR

Test 1f the last value on the calculator stack is greater than zero.
This routine is also called directly from the end-tests of the comparison

routine.

greater 0 CALL

RET

LD
JR

TEST ZERO
C

A, $FF
SIGN_TO C

’

routine TEST-ZERO
return if was zero as this
is also the Boolean 'false' value.

prepare XOR mask for sign bit

forward to SIGN-TO-C

to put sign in carry

(carry will become set if sign is positive)
and then overwrite location with 1 or O

as appropriate.

; THE 'NOT' FUNCTION

; (offset: $30 'not')
This overwrites the last value with 1 if it was zero else with zero

’

’

’

not

if it was any other value.

e.g. NOT O returns 1, NOT 1 returns 0, NOT -3 returns O.

The subroutine is also called directly from the end-tests of the comparison

operator.
CALL TEST ZERO ; routine TEST-ZERO sets carry if zero
JR FP 0 1 ; to FP-0/1 to overwrite operand with

; 1 if carry is set else to overwrite with zero.

; THE 'LESS THAN ZERO' OPERATION

; (offset: $36 'less-0')
Destructively test if last value on calculator stack is less than zero.

’

’

Bit 7 of the second byte will be set if it is.

This will either be the

first bit of a 32-bit mantissa or part of the sign byte if an integer.

less O XOR A ; set XOR mask to zero
; (carry will become set if sign is negative).

transfer sign of mantissa to Carry Flag.

SIGN TO C INC HL ; address 2nd byte.
XOR (HL) ; bit 7 of HL will be set if number is negative.
DEC HL ; address 1lst byte again.
RLCA ; rotate bit 7 of A to carry.

; THE 'ZERO OR ONE' SUBROUTINE

’

’

This routine places an integer value of zero or one at the addressed

location of the calculator stack or MEM area.
carry 1is set on entry else zero.

The value one is written if

FP 0 1 PUSH HL ; save pointer to the first byte
LD A,S$00 ; load accumulator with zero - without
; disturbing flags.
LD (HL) ,A ; zero to first byte
INC HL ; address next
LD (HL) , A ; zero to 2nd byte
INC HL ; address low byte of integer
RLA ; carry to bit 0 of A
LD (HL) ,A ; load one or zero to low byte.
RRA ; restore zero to accumulator.
INC HL ; address high byte of integer.
LD (HL) , A ; put a zero there.
INC HL ; address fifth byte.
LD (HL) , A ; put a zero there for neatness.
POP HL ; restore pointer to the first byte.
RET ; return.

; THE 'OR' OPERATOR

; (offset: $07 'or')

no

’

’

’

st

The Boolean OR

e.g. 0 OR O
-3 OR 0

0 OR -3
-3 OR 2

operator. e.g. X OR Y
The result is zero if both values are zero else a non-zero value.

returns O.
returns -3.
returns 1.
returns 1.

A binary operation.

On entry HL points to first

EX DE, HL
CALL TEST ZERO
EX DE, HL

RET C

SCF

JR FP 0 1

operand (X) and DE to second operand (Y).

; make HL point to second number

; routine TEST-ZERO

; restore pointers

; return if result was zero - first operand,
; now the last value, is the result.

; set carry flag

; back to FP-0/1 to overwrite the first operand
; with the value 1.

THE 'NUMBER AND NUMBER' OPERATION

(offset: $08 'no-
The Boolean AND

e.g. -3 AND
-3 AND

0 and

0 and

&-no')
operator.

2 returns
0 returns
-2 returns
0 returns

O O O |

Compare with OR routine above.

~_V_no EX DE, HL
CALL TEST_ ZERO
EX DE, HL
RET NC
AND A
JR FP 0 1

; make HL address second operand.
; routine TEST-ZERO sets carry if zero.

; restore pointers.
; return if second non-zero, first is result.

; else clear carry.
; back to FP-0/1 to overwrite first operand
; with zero for return value.

UMBER' OPERATION

THE 'STRING AND N

(offset: $10 'str
e.g. "You Win"

or the null string if false.

r v.no EX DE,
CALL TES
EX DE,
RET NC

-&-no'")

AND score>99
HL

T ZERO

HL

will return the string if condition is true

; make HL point to the number.
; routine TEST-ZERO.
; Restore the two pointers.

; Return if number was not zero - the string
; 1s the result.

’

’

If the number was zero (false) then the null string must be returned by
altering the length of the string on the calculator stack to zero.

- PUSH DE ; save pointer to the now obsolete number
i ; (which will become the new STKEND)
DEC DE ; point to the 5th byte of string descriptor.
XOR A ; clear the accumulator.
LD (DE) ,A ; place zero in high byte of length.
DEC DE ; address low byte of length.
LD (DE) , A ; place zero there - now the null string.
;7 POP DE ; restore pointer - new STKEND.
INC DE ;+ Restore DE using two increments which
INC DE ;+ 1is quicker than using the machine stack.
RET ; return.

THE 'COMPARISON' OPERATIONS
offset: $0A 'no-gr-eql')
offset: $0B 'nos-negl')
offset: $0C 'no-grtr')
offset: $0D 'no-less')
offset: $OE 'nos-eql')
offset: $11 'str-l-eql')
offset: $12 'str-gr-eql')
offset: $13 'strs-neql')
offset: $14 'str-grtr')
offset: $15 'str-less')
offset: $16 'strs-eql')

o~~~ o~~~ o~~~ o~ —~

True binary operations.

A single entry point is used to evaluate six numeric and six string
comparisons. On entry, the calculator literal is in the B register and
the two numeric values, or the two string parameters, are on the
calculator stack.

The individual bits of the literal are manipulated to group similar
operations although the SUB 8 instruction does nothing useful and merely
alters the string test bit.

Numbers are compared by subtracting one from the other, strings are
compared by comparing every character until a mismatch, or the end of one
or both, is reached.

Numeric Comparisons.

The 'x>y' example is the easiest as it employs straight-thru logic.

Number y is subtracted from x and the result tested for greater-0 yielding
a final value 1 (true) or 0 (false).

For 'x<y' the same logic is used but the two values are first swapped on the
calculator stack.

For 'x=y' NOT is applied to the subtraction result yielding true if the
difference was zero and false with anything else.

The first three numeric comparisons are just the opposite of the last three
so the same processing steps are used and then a final NOT is applied.

NO
literal Test No [sub 8] ExOrNot 1st RRCA exch sub °? End-Tests
no-l-eql x<=y 09 00001001 dec 00001000 00000100 =---- x-y ? =--- >0? NOT
no-gr-eql x>=y 0OA 00001010 dec 00001001 10000100c swap y-x ? --- >0? NOT
nos-neql xX<>y 0B 00001011 dec 00001010 00000101 =---- x-y ? NOT --- NOT

; no-grtr x>y 0c 00001100 - 00001100 00000110 ---- x-y ? =—--= >07? --—-
; no-less X<y 0D 00001101 - 00001101 10000110c swap y-x ? --- >0? ---
; nos-eql X=y OE 00001110 - 00001110 00000111 ---- x-y NOT --- ---
; comp -> C/F

; str-l-egl x$<=y$ 11 00010001 dec 00010000 00001000 =---- xSy$ 0O !or >0? NOT
; str-gr-eql x$>=y$ 12 00010010 dec 00010001 10001000c swap yx 0 !or >0? NOT
; strs-negl x$<>y$ 13 00010011 dec 00010010 00001001 ---- xy O !or >0? NOT
; str-grtr x$>y$ 14 00010100 - 00010100 00001010 =---- xSy$ 0 'or >0? ---
; str-less x$<y$ 15 00010101 - 00010101 10001010c swap yx 0 lor >07? ---
; strs-eql x$=y$ 16 00010110 - 00010110 00001011 ---- xSy$ 0 'or >07? ---

; String comparisons are a little different in that the egl/neqgl carry flag
; from the 2nd RRCA 1is, as before, fed into the first of the end tests but

; along the way it gets modified by the comparison process. The result on the
; stack always starts off as zero and the carry fed in determines if NOT is
; applied to it. So the only time the greater-0 test is applied is if the
; stack holds zero which is not very efficient as the test will always yield
; zero. The most likely explanation is that there were once separate end tests
; for numbers and strings.
multcmp LD A,B ; transfer literal to accumulator.
HE SUB $08 ; subtract eight - which is not useful.
BIT 2,A ; ilsolate '>', '<', '=',
JR NzZ,EX OR NOT ; skip to EX-OR-NOT with these.
DEC A ; else make $00-$02, $08-S50A to match bits 0-2.
EX OR_NOT RRCA ; the first RRCA sets carry for a swap.
JR NC,NU OR_STR ; forward to NU-OR-STR with other 8 cases
; for the other 4 cases the two values on the calculator stack are exchanged.
PUSH AF ; save A and carry.
PUSH HL ; save HL - pointer to first operand.

; (DE points to second operand).

CALL exchange ; routine exchange swaps the two values.
; (HL = second operand, DE = STKEND)

POP DE ; DE = first operand
EX DE, HL ; as we were.
POP AF ; restore A and carry.
NU OR_STR RRCA ;+ causes 'eqgl'/'negl' to set carry.
PUSH AF ;+ save carry flag.

; Note. it would be better if the 2nd RRCA preceded the string test.
; It would save two duplicate bytes and if we also got rid of that sub 8

; at the beginning we wouldn't have to alter which bit we test.
BIT 2,A ; test if a string comparison.
JR NZ, STRINGS ; forward, if so, to STRINGS
; continue with numeric comparisons.
I RRCA ; 2nd RRCA causes egl/neqgl to set carry.

i PUSH AF ; save A and carry

CALL
JR

i RRCA
ri PUSH
STRINGS CALL
PUSH
PUSH

CALL

POP

subtract
END TESTS

AF
STK_FETCH
DE
BC
STK_FETCH

HL

; routine subtract leaves result on stack.
; forward to END-TESTS

; 2nd RRCA causes egl/negl to set carry.
; save A and carry.

; routine STK-FETCH gets 2nd string params
; save start2 *.
; and the length.

; routine STK-FETCH gets lst string
; parameters - start in DE, length in BC.
; restore length of second to HL.

; A loop is now entered to compare, by subtraction, each corresponding

; character of the strings.

For each successful match, the pointers are

; incremented and the lengths decreased and the branch taken back to here.
; If both string remainders become null at the same time, then an exact
; match exists.

BYTE COMP LD
OR

EX
LD

JR
OR

SECND_LOW POP
JR

; the true condition -

POP
CCF

JR

; the branch was here with

BOTH NULL POP
JR

’

; the branch was here when

A, H
L

S

(SP) , HL
A,B

NZ, SEC_PLUS
C

BC
Z,BOTH NULL

AF

STR TEST

AF
STR_TEST

; to be tested.

SEC_PLUS OR
JR

C
7Z,FRST_LESS

; test if the second string
; 1s the null string and hold flags.

; put length2 on stack, bring start2 to HL *.
; hi byte of lengthl to A

; forward to SEC-PLUS if second not null.
; test length of first string.
; pop the second length off stack.

; forward to BOTH-NULL if first string is also
; of zero length.

first is longer than second (SECND-LESS)

; restore carry (set if egl/neql)

; complement carry flag.

; Note. equality becomes false.

; Inequality is true. By swapping or applying
; a terminal 'not', all comparisons have been
; manipulated so that this is success path.

; forward to leave via STR-TEST

a match
; restore carry - set for eql/neql

; forward to STR-TEST

2nd string not null and low byte of first is yet

; test the length of first string.
; forward to FRST-LESS if length is zero.

; both strings have at least one character left.

LD

A, (DE)

; fetch character of first string.

SUB (HL) ; subtract with that of 2nd string.
JR C,FRST_LESS ; forward to FRST-LESS if carry set

JR NZ, SECND LOW ; back to SECND-LOW and then STR-TEST
; 1f not exact match.

DEC BC ; decrease length of 1lst string.
INC DE ; increment 1lst string pointer.
INC HL ; increment 2nd string pointer.
EX (SP),HL ; swap with length on stack
DEC HL ; decrement 2nd string length
JR BYTE COMP ; back to BYTE-COMP
; the false condition.
FRST LESS POP BC ; discard length
POP AF ; pop A
AND A ; clear the carry for false result.
; exact match and x$>y$ rejoin here
STR TEST PUSH AF ; save A and carry
RST 28H ;; FP-CALC
DEFB S$AO ;stk-zero an initial false value.
DEFB $38 ;;end-calc
; both numeric and string paths converge here.
END TESTS POP AF ; pop carry - will be set if egl/neql
PUSH AF ; save 1t again.
CALL C,not ; routine NOT sets true(l) if equal (0)

; or, for strings, applies true result.

POP AF ; pop carry and
PUSH AF ; save A
CALL NC,greater O ; routine GREATER-0 tests numeric subtraction
; result but also needlessly tests the string
; value for zero - it must be.
POP AF ; pop A
RRCA ; the third RRCA - test for '<=', '>=' or '<>'.
CALL NC,not ; 1f comparison then apply a terminal NOT
RET ; return.

; THE 'STRING CONCATENATION' OPERATION

; (offset: $17 'strs-add')

; This literal combines two strings into one e.g. LET a$ = bS$ + c$
; The two parameters of the two strings to be combined are on the stack.
strs add CALL STK FETCH ; routine STK-FETCH fetches string parameters
; and deletes calculator stack entry.
PUSH DE ; save start address.

PUSH BC ; and length.

CALL

POP
PUSH

PUSH
PUSH

ADD
LD
LD

CALL

CALL

POP
POP

P LDIR

CALL

OTHER STR POP

’

POP
] LD
- OR
I JR
i LDIR

CALL

STK FETCH

HL
HL

DE
BC

HL, BC
B, H
c,L

BC SPACES
STK _STO_s
BC

HL

A,B
C

Z,0THER STR
COND_ MV

BC
HL

A,B
C
7, STK_PNTRS

COND_MV

’

’

routine STK-FETCH for the first string

re-fetch first length
and save again

save start of second string
and its length.

add the two lengths.
transfer result to BC

routine BC_SPACES creates room in workspace.
DE points to start of space.

routine STK-STO-$ stores parameters
of new string updating STKEND.

length of first
address of start

test for

zero length.

to OTHER-STR if null string

copy the first string to workspace.

A three-byte call to ldir saves a byte.

now second length
and start of string

test this one

for zero length

skip forward to STK-PNTRS if so as complete.
else copy the bytes.

A three-byte call to 1ldir saves a byte.

Continue into next routine which sets the calculator stack pointers.

THE

'SET STACK POINTERS'

SUBROUTINE

Register DE is set to STKEND and HL,

locations below this.
This routine is used when it is inconvenient to save these values at the
time the calculator stack is manipulated due to other activity on the

machine stack.

This routine is also used to terminate the VAL and READ-IN

the result pointer, is set to five

routines for

the same reason and to initialize the calculator stack at the start of
the CALCULATE routine.

STK_PNTRS LD

] LD
;i PUSH
- ADD
H POP

STK_PTRS2 LD

LD

DEC
DEC
DEC

HL, ($5B65)

DE, SFFFB
HL

HL, DE

DE

D,H
E,L
HL
HL
HL

fetch STKEND value from system variable.
the value -5

push STKEND value.

subtract 5 from HL.

pop STKEND to DE.

transfer to DE

Make HL 5 locations lower.

DEC HL ;
DEC HL ;
RET ; return.
; THE 'CHRS$' FUNCTION
; (offset: $2f 'chr$')
; This function returns a single character string that is a result of
; converting a number in the range 0-255 to a string e.g. CHRS$ 65 = "A".
chrs CALL FP TO A ; routine FP-TO-A puts the number in A.
JR C,REPORT Bd ; forward to REPORT-Bd if overflow
JR NZ, REPORT Bd ; forward to REPORT-Bd if negative
HE PUSH AF ; save the argument.
HE LD BC, $0001 ; one space required.
CALL BC SPACEl ; BC SPACEl makes DE point to start
s POP AF ; restore the number.
LD (DE) , A ; and store in workspace
JR str STK ;+ forward to similar code.
Pi CALL STK STO s ; routine STK-STO-$ stacks descriptor.
H EX DE, HL ; make DE point to STKEND.
HE RET ; return.
REPORT Bd RST 30H ; ERROR-1
DEFB $0A ; Error Report: Integer out of range
; THE 'VAL and VALS' FUNCTIONS
; (offset: $1d 'val')
; (offset: $18 'val$')

’

’

’

val

val s

VAL treats

e.g. VAL "2.3" = 2.3,

the characters in a string as a numeric expression.

VAL "2+4" = 6, VAL ("2" + "4") = 24.

VALS treats the characters in a string as a string expression.

e.g. VALS

RST
LD
PUSH
LD
ADD
SBC

PUSH

CALL

PUSH
INC

(zS$+"(2)™)

STK _FETCH

DE
BC

= as$(2)

if z$ happens to be "as$".

; fetch value of system variable CH ADD

; and save on the machine stack.

; fetch the literal (either $1D or $18).

; add $SE3 to form $00 (setting carry) or S$FB.
; now form SFF bit 6 numeric result

; or $00 bit 6 string result.

; save this mask on the stack

; routine STK-FETCH fetches the string operand
; from the calculator stack.

; save the address of the start of the string.
; increment the length for a carriage return.

CALL

POP
LD

PUSH
LDIR

EX

DEC

LD

RES

CALL

RST

CP

JR

POP

POP

XOR
AND

V_RPORT C JP

LD
SET

CALL

POP
LD

V_ST PTRS JR

BC_SPACES

HL
($5B5D) , DE

DE
DE, HL

HL

(HL), $OD

7, (IY+501)
SCANNING

18H

S0D
NZ,V_RPORT C
HL

AF

(IY+$01)

$40

NZ, REPORT C

($5B5D) , HL
7, (IY+$S01)

SCANNING
HL
($5B5D) , HL

STK_PNTRS

; THE 'STR$' FUNCTION

; (offset: $2e
This function produces a string comprising the characters that would appear
if the numeric argument were printed.

’

rrr

rorr

str_

e.g. STRS

strs LD
RST

S CALL

LD
PUSH

LD
PUSH

(1/10)

'strs$')

BC, $0001
30H

BC_SPACE1

($5B5B) , HL
HL

HL, ($5B51)
HL

produces

’

’

BC SPACES creates the space in workspace.

restore start of string to HL.
load CH ADD with start DE in workspace.

save the start in workspace

copy string from program or variables or
workspace to the workspace area.

end of string + 1 to HL

decrement HL to point to end of new area.
insert a carriage return at end.

update FLAGS - signal checking syntax.
routine SCANNING evaluates string
expression and result.

GET-CHAR fetches next character. 27?7

is next char the expected carriage return ?
forward, if not, to V-RPORT-C

'Nonsense in BASIC'.

restore start of string in workspace.
restore expected result flag (bit 6).

XOR with FLAGS now updated by SCANNING.

test bit 6 - should be zero if result types
match.

.jump back to REPORT-C with a result mismatch.

set CH _ADD to the start of the string again.
update FLAGS - signal running program.

routine SCANNING evaluates the string
in full leaving result on calculator stack.

restore saved character address in program.
and reset the system variable CH_ADD.

back to exit via STK-PNTRS.

resetting the calculator stack pointers

HL and DE from STKEND as it wasn't possible
to preserve them during this routine.

"O.l".

create an initial byte in workspace
using BC SPACES restart.

;+ create an initial byte in workspace.

’

’

’

set system variable K CUR to new location.
and save start on machine stack also.

fetch value of system variable CURCHL
and save that too.

str STK

LD
CALL
CALL
POP

CALL

POP
LD

AND
SBC
LD
LD
CALL
EX
RET

'READ-IN'

Sla

A, SFF

; THE
; (offset:
This is the calculator literal used by the INKEYS$ function when a
is encountered after the keyword.

CHAN SLCT
PRINT FP
HL
CHAN_FLAG
DE

HL, ($S5B5B)
A

HL, DE

B,H

C,L
STK_STO s
DE, HL
SUBROUTINE
'read-in"'")

select system channel 'R'.

routine CHAN-OPEN opens it.

routine PRINT-FP outputs the number to
workspace updating K-CUR.

restore current channel.
routine CHAN-FLAG resets flags.

fetch saved start of string to DE.
load HL with end of string from K CUR.

prepare for true subtraction.

subtract start from end to give length.
transfer the length to

the BC register pair.

routine STK-STO-$ stores string parameters
on the calculator stack.

Make DE point to STKEND.
return.

l#l
It appears to provide for the reading

of data through different streams from those available on the standard

; Spectrum.
; INKEYS # does not interact correctly with the keyboard, #0 or #1, and
; its uses are for other channels - Steven Vickers, Pitman Pocket Book.
read in
LD HL, ($5B51) ; fetch current channel CURCHL
PUSH HL ; save it
e CALL FIND INT1 ; routine FIND-INT1 fetches stream to A
H CP $10 ; compare with 16 decimal.
N JP NC, REPORT B ; JUMP to REPORT-B if not in range 0 - 15.
- CALL CHAN SLCT ; routine CHAN-OPEN opens channel
CALL CHAN CHK ;+ natural routine opens, if valid, else errors
;+ with 'Invalid stream' instead of 'Integer
;+ out of range'
CALL 1IN CHAN K ;+ keyboard ?
JR NzZ,READ IT ;+ Forward if not
HALT ;+ Read the keyboard.
READ IT CALL INPUT AD ; routine INPUT-AD - the channel must have an
; input stream or else error here from stream
; stub.
LD BC, $0000 ; initialize length of string to zero
JR NC,R I STORE ; forward to R-I-STORE if no key detected.
Y INC C ; increase length to one.
CALL BC SPACEl ; NEW routine BC SPACEl creates space for one
; character in workspace.
LD (DE) , A ; the character is inserted.

R I STORE CALL STK STO s ; routine STK-STO-$ stacks the string

’

’
’

’

; parameters.
POP HL ; Restore current channel address

CALL CHAN FLAG ; Routine CHAN-FLAG resets current channel
; system variable and flags.

JR V_ST PTRS ; Jump back indirectly to STK PNTRS

THE 'CODE' FUNCTION

(offset: $Slc 'code')
Returns the ASCII code of a character or first character of a string
e.g. CODE "Aardvark" = 65, CODE "" = 0.

code CALL STK FETCH ; routine STK-FETCH to fetch and delete the

; string parameters.
; DE points to the start, BC holds the length.

LD A,B ; test length
OR C ; of the string.
JR Z,STK_CODE ; skip to STK-CODE with zero if the null string.
LD A, (DE) ; else fetch the first character.
STK _CODE JP STACK A ; jump back to STACK-A (with memory check)

’

’
’
’

’

THE 'LEN' FUNCTION

(offset: $le 'len')
Returns the length of a string.
In Sinclair BASIC, workable strings can be more than twenty thousand
characters long so a sixteen-bit register is required to store the length.

len CALL STK FETCH ; Routine STK-FETCH to fetch and delete the

; string parameters from the calculator stack.
; Register BC now holds the length of string.

Jp STACK BC ; Jump back to STACK-BC to save result on the
; calculator stack (with memory check).

THE 'DECREASE THE COUNTER' SUBROUTINE

(offset: $35 'dec-jr-nz')
The calculator has an instruction that decrements a single-byte
pseudo-register and makes consequential relative jumps just like
the 7Z80's DJNZ instruction.

dec_jr nz EXX ; switch in set that addresses code
PUSH HL ; save pointer to offset byte
LD HL, $5B67 ; address BREG in system variables
DEC (HL) ; decrement it
POP HL ; restore pointer
JR NZ, JUMP 2 ; forward, if not zero, to JUMP 2
INC HL ; step past the jump length.

EXX ; switch in the main set.

’
’

’

’

’

RET

return.

Note. as a general rule the calculator avoids using the IY register
otherwise the cumbersome 4 instructions in the middle could be replaced by

dec (IY+$2d)

THE 'JUMP' SUBROUTINE

(offset: $33

This enables the calculator
chip's JR instruction.

JUMP EXX

JUMP_ 2 LD

’

’

’

LD
RLA
SBC
LD
ADD

EXX
RET

THE 'JUMP-TRUE'

(offset: $00

'jump')

'Jjump-true')

SUBROUTINE

- three bytes instead of six.

to perform relative jumps just like the Z80

switch in pointer set

the jump byte 0-127 forward, 128-255 back.

transfer to accumulator.

if backward jump, carry is set.

will be S$FF if backward or $00 if forward.

transfer to high byte.

advance calculator pointer forward or back.

switch back.
return.

This enables the calculator to perform conditional relative Jjumps dependent
on whether the last test gave a true result.

jump_ true INC

’

’

’

’

’

INC
LD

DEC
DEC

AND
JR

EXX
INC
EXX
RET

THE 'END-CALC'

(offset: $38

DE
DE
A, (DE)
DE
DE

A
NZ, JUMP

HL

'end-calc')

SUBROUTINE

Collect the
third byte
of the test
result and
backtrack.

Is result 0 or 1 ?
Back to JUMP if true (1).

else switch in the pointer set.
Step past the jump length.
Switch in the main set.

Return.

The end-calc literal terminates a mini-program written in the Spectrum's
internal language.
Note. this short 5-byte routine has been moved to space between the
restarts to exploit spare space.

THE 'MODULUS'

(offset: $32

SUBROUTINE

'n-mod-m"')

(nl,n2 -- r,q)
Similar to FORTH's

On the Spectrum,

'divide mod' /MOD
this is only used internally by the RND function and could

; have been implemented inline. On the ZX81, this calculator routine was also
; used by PRINT-FP.

n_mod m RST 28H ;; FP-CALC 17, 3.
DEFB $CO ;7 st-mem-0 17, 3.
DEFB $02 ; ;delete 17.

DEFB $31 ;;duplicate 17, 17.
DEFB S$EO ; ;get-mem-0 17, 17, 3.
DEFB $05 ;;division 17, 17/3.
DEFB $27 ;;int 17, 5.
DEFB S$SEO ;7 get-mem-0 17, 5, 3.
DEFB $01 ; ;exchange 17, 3, 5.
DEFB $CO ;;st-mem-0 17, 3, 5.
DEFB $04 ;imultiply 17, 15.
DEFB 503 ;;subtract 2.

DEFB S$EO ;7 get-mem-0 2, 5.
DEFB $38 ;;end-calc 2, 5.

RET ; return.

; THE '"INT' FUNCTION

; (offset $27: 'int')

; This function returns the integer of x, which is just the same as truncate
; for positive numbers. The truncate literal truncates negative numbers
; upwards so that -3.4 gives -3 whereas the BASIC INT function has to
; truncate negative numbers down so that INT -3.4 is -4.
; It is best to work through using, say, +-3.4 as examples.
int RST 28H ;; FP-CALC X. (= 3.4 or -3.4).
DEFB $31 ; ;duplicate X, X.
DEFB $36 ;1 1less-0 x, (1/0)
DEFB $00 ;7 jump-true x, (1/0)
DEFB X NEG - S ;s to X-NEG
DEFB $3A ;;truncate trunc 3.4 = 3.
DEFB $38 ;;end-calc 3.
RET ; return with + int x on stack.
X NEG DEFB $31 ;;duplicate -3.4, -3.4.
DEFB $3A ;;truncate -3.4, -3.
DEFB $CO ;;st-mem-0 -3.4, -3.
DEFB $03 ;;subtract -.4
DEFB S$SEO ;7 get-mem-0 -.4, -3.
DEFB $01 ; ;exchange -3, —-.4.
DEFB $30 ;;not -3, (0).
DEFB $00 ;7 jump-true -3.
DEFB EXIT - $;rto EXIT -3.
DEFB $Al ;;stk-one -3, 1.
DEFB $03 ; ;subtract -4.
EXIT DEFB $38 ;;end-calc -4.

RET ; return.

; THE 'EXP' FUNCTION
; (offset $26: 'exp')
; The exponential function EXP x is equal to e”x, where e is the mathematical

; name for a number approximated to 2.718281828.
; ERROR 6 if argument is more than about 88.

exp

REPORT 6b

N_NEGTV

RST

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB

CALL
JR

JR

ADD
JR

RST
DEFB

SUB
JR

NEG

28H
$3D
$34
SF1

$38, $AA,$3B,$29

$04
$31
$27
SC3
$03
$31
SOF
$Al
$03

$88

$13

$36

$58

$65,5$66

$9D
$78,%65,540
SA2
$60,$32,%C9
SE7

$21,8F7,SAF, $24

SEB

S2F, $B0, $BO, $14

SEE

$S7E, $BB, $94, $58

SF1

S3A,87E, $F8, SCF

SE3

$38
FP_TO A
NZ,N NEGTV

C,REPORT_6b

A, (HL)
NC, RESULT_OK

30H
$05

C,RSLT_ ZERO

(HL)
NC,RSLT ZERO

’
’

’

’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’

’

’

’

;; FP-CALC
; ;re—-stack
; ;stk-data

;Exponent: $81,

’

;;multiply
; ;duplicate
;;int

; st-mem-3

; ;7 subtract
; ;duplicate
; ;addition

; stk-one

; ;subtract

; 7 series-08
; ;Exponent: $63,

; (+00,+00,+00)
;Exponent: $68,

;7 (+00,+00)

;Exponent: $6D,
; (+00)

; ; Exponent: $72,
;7 (+00)
; ;Exponent: $77,

’

; ;Exponent: $7B,

;Exponent: $7E,
;Exponent: $81,

’

;get-mem-3
;end-calc

Bytes: 4
Bytes: 1
Bytes: 2
Bytes: 3
Bytes: 3
Bytes: 4
Bytes: 4
Bytes: 4
Bytes: 4

routine FP-TO-A

to N-NEGTV

to REPORT-6Db

'Number too big'

to RESULT-OK

ERROR-1
Error Report:

to RSLT-ZERO

to RSLT-ZERO

Negate

Number too big

RESULT OK

RSLT ZERO

LD
RET

RST

DEFB
DEFB
DEFB

RET

; THE 'NATURAL

28H
$02
$A0
$38

’

’
’
’

’

’

return.

;; FP-CALC
; ;delete

;7 stk-zero
; rend-calc

return.

LOGARITHM' FUNCTION

(to the base e).

Invalid argument

; (offset $25: 'ln'")
; Function to calculate the natural logarithm
; e.g. LN EXP 5.3 = 5.3
; Error A if the argument is 0 or negative.
1n RST 28H ;; FP-CALC
DEFB $3D ;;re-stack
DEFB $31 ;;duplicate
DEFB $37 ; ;greater-0
DEFB $00 ;7 jump-true
DEFB VALID - $;;to VALID
INV_ARG DEFB $38 ;;end-calc
REPORT Ab RST 30H ; ERROR-1
DEFB $09 ; Error Report:
VALID
HE DEFB S$AO ;stk-zero
H DEFB $02 ;;delete
DEFB $38 ;;end-calc
LD A, (HL) ;
LD (HL), $80 ;
CALL STACK A ; routine STACK-A
RST 28H ;; FP-CALC
DEFB $34 ;;stk-data
DEFB $38 ; ;Exponent: $88, Bytes:
DEFB $00 ;; (+00,+00,+00)
DEFB $03 ;;subtract
DEFB $01 ; ;exchange
DEFB $31 ; ;duplicate
DEFB $34 ;;stk-data
DEFB SFO ; ;Exponent: $80, Bytes:
DEFB $4C, $CC, $CC, $CD ;;
DEFB $03 ; ;subtract
DEFB $37 ; ;greater-0
DEFB $00 ;; jump-true
DEFB GRE v 8 - $;;to GRE.8
DEFB $01 ; ;exchange
DEFB S$Al ; ;stk-one
DEFB $03 ; ;subtract
DEFB $01 ; ;exchange

This is unnecessary

1

4

DEFB $38 ;;end-calc

INC (HL) ;
RST 28H ;; FP-CALC

GRE v 8 DEFB $01 ; ;exchange
DEFB $34 ;7 stk-data
DEFB SFO ; ;Exponent: $80, Bytes: 4
DEFB $31,$72,$17,8F8 ;;
DEFB $04 ;omultiply
DEFB $01 ; ;exchange
DEFB S$SA2 ;;stk-half
DEFB $03 ; ;subtract
DEFB S$A2 ;;stk-half
DEFB $03 ;;subtract
DEFB $31 ; ;duplicate
DEFB $34 ;7 stk-data
DEFB $32 ; ;Exponent: $82, Bytes: 1
DEFB $20 ;7 (+00,+00,+00)
DEFB $04 ;smultiply
DEFB $A2 ;;stk-half
DEFB $03 ; ;subtract
DEFB $8C ;;series-0C
DEFB $11 ; ;Exponent: $61, Bytes: 1
DEFB S$AC ;; (+00,4+00,4+00)
DEFB $14 ; ;Exponent: $64, Bytes: 1
DEFB $09 ;7 (+00,+00,+00)
DEFB $56 ; ;Exponent: $66, Bytes: 2
DEFB $DA, $A5 7+ (+00,+00)
DEFB $59 ; ;Exponent: $69, Bytes: 2
DEFB $30,$C5 ;7 (+00,+00)
DEFB $5C ; ;Exponent: $6C, Bytes: 2
DEFB $90, $AA 77 (+00,+00)
DEFB S$9E ; ;Exponent: $6E, Bytes: 3
DEFB $70,S$6F, S$61l ;7 (+00)
DEFB S$Al ; ;Exponent: $71, Bytes: 3
DEFB S$CB, $DA, $96 ;7 (+00)
DEFB S$A4 ; ;Exponent: $74, Bytes: 3
DEFB $31,$9F, $B4 ;5 (+00)
DEFB S$E7 ; ;Exponent: $77, Bytes: 4
DEFB $AQ, $FE, $5C, $FC ;;
DEFB SEA ; ;Exponent: $7A, Bytes: 4
DEFB $1B,$43,3CA,$36 ;;
DEFB S$ED ; ;Exponent: $7D, Bytes: 4
DEFB $A7,$9C,$7E,$5E ;;
DEFB S$FO ; ;Exponent: $80, Bytes: 4

DEFB S6E,$23,$80,593 ;;

DEFB $04 ;omultiply
DEFB S$OF ;;addition
DEFB $38 ;;end-calc
RET ; return.

; THE 'TRIGONOMETRIC' FUNCTIONS

; Trigonometry is rocket science. It is also used by carpenters and pyramid
; builders. Some uses can be quite abstract but the principles can be seen
; in simple right-angled triangles. Triangles have some special properties -

1) The sum of the three angles is always PI radians (180 degrees).
Very helpful if you know two angles and wish to find the third.

2) In any right-angled triangle the sum of the squares of the two shorter
sides is equal to the square of the longest side opposite the right-

Very useful if you know the length of two sides and wish to know the
length of the third side.

3) Functions sine, cosine and tangent enable one to calculate the length
of an unknown side, of a right-angled triangle, when the length of one
other side and an angle is known.

4) Functions arcsin, arccosine and arctan enable one to calculate an unknown
angle of a right-angled triangle when the length of two of the sides is
known.

THE 'REDUCE ARGUMENT' SUBROUTINE

(offset $39: 'get-argt')

This routine performs two functions on the angle, in radians, that forms
the argument to the sine and cosine functions.

First it ensures that the angle 'wraps round'. That if a ship turns through
an angle of, say, 3*PI radians (540 degrees) then the net effect is to turn
through an angle of PI radians (180 degrees).

Secondly it converts the angle in radians to a fraction of a right angle,
depending within which quadrant the angle lies, with the periodicity
resembling that of the desired sine value.

The result lies in the range -1 to +1.

90 deg.
(pi/2)
IT +1 I
|
sin+ '\ | /| sin+
cos- [N A cos+
tan- N |/ tan+
| \1/) |
180 deg. (pi) 0 -|--==+-—-—=|-=- 0 (0) 0 degrees
| VAR |
sin- I/ 1\ sin-
cos- I/ 1 N\ | cos+
tan+ |/ | \ | tan-
|
ITT -1 IV
(3pi/2)
270 deg
get _argt RST 28H ;; FP-CALC X.
DEFB $3D ;s re-stack
DEFB $34 ;;stk-data
DEFB SEE ; ;Exponent: S$7E,
;;Bytes: 4
DEFB $22,$F9,$83,$6E ;; X, 1/(2*PI)
DEFB $04 ;smultiply X/ (2*PI) = fraction
DEFB $31 ;;duplicate
DEFB S$A2 ;;stk-half
DEFB S$OF ;;addition
DEFB $27 ;s int

DEFB $03 ;;subtract now range -.5 to .5

’

’

DEFB $31

DEFB S$OF
DEFB $31
DEFB S$OF

quadrant I (0 to +1)

DEFB $31
DEFB $2A
DEFB S$Al
DEFB $03
DEFB $31
DEFB $37
DEFB $CO
DEFB $00

DEFB ZPLUS -

$

’

’

’

’

; ;duplicate

;;addition now range -1 to 1.
; ;duplicate
; ;addition now range -2 to +2.

and quadrant IV (-1 to 0) are now correct.
quadrant II ranges +1 to +2.
quadrant III ranges -2 to -1.

’
’
’
’
’

’

’

’

’

; ;duplicate Y, Y.

; ;abs Y, abs(Y). range 1 to 2
;stk-one Y, abs(Y), 1.

; ; Subtract Y, abs (Y)- range 0 to 1
; ;duplicate Y, Z, Z.

; ;greater-0 Y, Z, (1/0).

; 7 st-mem-0 store as possible sign
; for cosine function.

; jump-true

;;to ZPLUS with quadrants II and III.

else the angle lies in quadrant I or IV and value Y is already correct.

DEFB $02
DEFB $38
RET

’

’

’

;delete Y. delete the test value.
;end-calc Y.
return. with Q1 and Q4 >>>

The branch was here with quadrants ITI (0 to 1) and III (1 to O0).
Y will hold -2 to -1 if this is quadrant IITI.

ZPLUS DEFB $Al ; ;stk-one Y, Z2, 1
DEFB $03 ; ;subtract Y, Z-1. 03 =0 to -1
DEFB $01 ; ;exchange Z-1, Y.
DEFB $36 ;5 1less-0 z-1, (1/0)
DEFB $00 ;7 jump-true z-1.
DEFB YNEG - $;;to YNEG
;71f angle in quadrant III
; else angle is within quadrant II (-1 to 0)
DEFB S$1B ; ;negate range +1 to O.
YNEG DEFB $38 ;;end-calc quadrants II and III correct.
RET ; return.

’

’
’

’

THE 'COSINE' FUNCTION

(offset $20: 'cos')

Cosines are calculated as the sine of the opposite angle rectifying the
sign depending on the quadrant rules.

/1

h /vyl
/ 1o

/x|

/====

Ccos

a

The cosine of angle x is the adjacent side (a) divided by the hypotenuse 1.
However if we examine angle y then a/h is the sine of that angle.

Since angle x plus angle y equals a right-angle, we can find angle y by
subtracting angle x from pi/2.

However it's just as easy to reduce the argument first and subtract the
reduced argument from the value 1 (a reduced right-angle).

It's even easier to subtract 1 from the angle and rectify the sign.

In fact, after reducing the argument, the absolute value of the argument

is used and rectified using the test result stored in mem-0 by 'get-argt'
for that purpose.

RST 28H ;; FP-CALC angle in radians.
DEFB $39 ;;get-argt X reduce -1 to +1
DEFB $2A ; ;abs ABS X. 0 to 1
DEFB S$Al ; ;stk-one ABS X, 1.
DEFB $03 ;;subtract now opposite angle

H although sign is -ve.
DEFB S$EO ; ;get-mem-0 fetch the sign indicator
DEFB $00 ;; jump-true
DEFB C_ENT - S ;;fwd to C-ENT

;;forward to common code if in QII or QIII.

DEFB $1B ; ;negate else make sign +ve.
DEFB $33 i 7 jump
DEFB C_ENT - $;;fwd to C-ENT

;7 with quadrants I and IV.

; THE 'SINE' FUNCTION

; (offset S1F: 'sin')

’

’

This is a fundamental transcendental function from which others such as cos
and tan are directly, or indirectly, derived.
It uses the series generator to produce Chebyshev polynomials.

/1
1/ |
/=
/a |
/====
Yy

The 'get-argt' function is designed to modify the angle and its sign
in line with the desired sine value and afterwards it can launch straight
into common code.

sin RST 28H ;; FP-CALC angle in radians

DEFB $39 ;;get-argt reduce - sign now correct.
C_ENT DEFB $31 ; ;duplicate

DEFB $31 ;;duplicate

DEFB $04 ;ymultiply

DEFB $31 ;;duplicate

DEFB S$OF ;;addition

DEFB S$Al ; ;stk-one

DEFB $03 ;;subtract

DEFB $86 ;;series-06

DEFB $14 ; ;Exponent: $64, Bytes: 1

DEFB S$E6 ;7 (+00,+00,+00)

DEFB $5C ; ;Exponent: $6C, Bytes: 2
DEFB S$1F, $OB 75 (+00,+00)

DEFB S$SA3 ; ;Exponent: $73, Bytes: 3
DEFB $8F, $38, SEE ;: (+00)

DEFB S$E9 ; ;Exponent: $79, Bytes: 4
DEFB $15,5$63,$BB, $23 ;;

DEFB SEE ; ;Exponent: $7E, Bytes: 4
DEFB $92,$0D, $CD, $ED ;;

DEFB SF1 ; ;Exponent: $81, Bytes: 4
DEFB $23,$5D,$1B, SEA ;;

DEFB $04 ;imultiply

DEFB $38 ; ;end-calc

RET ; return.

; THE 'TANGENT' FUNCTION

; (offset $21: 'tan')

; Evaluates tangent x as sin(x) / cos(x).
; /|

; h / |

; / 1o

; /x|

; /====

7 a

; the tangent of angle x is the ratio of the length of the opposite side
; divided by the length of the adjacent side. As the opposite length can

; be calculates using sin(x) and the adjacent length using cos(x) then
; the tangent can be defined in terms of the previous two functions.
; Error 6 if the argument, in radians, is too close to one like pi/2

; which has an infinite tangent. e.g. PRINT TAN (PI/2) evaluates as 1/0.
; Similarly PRINT TAN (3*PI/2), TAN (5*PI/2) etc.

tan RST 28H ;; FP-CALC X.
DEFB $31 ; ;duplicate X, X.
DEFB S$1F ;;sin X, Sin Xx.
DEFB 3501 ; ;exchange sin x, X.
DEFB $20 ;;COSs sin x, cos X.
DEFB $05 ;;division sin x/cos x (= tan x).
DEFB $38 ; ;end-calc tan x.
RET ; return.

; THE 'ARCTAN' FUNCTION

; (Offset $24: 'atn')

; the inverse tangent function with the result in radians.
; This is a fundamental transcendental function from which others such as asn
; and acs are directly, or indirectly, derived.
; It uses the series generator to produce Chebyshev polynomials.
atn CALL re stack ; routine re-stack
LD A, (HL) ; fetch exponent byte.
CP $81 ; compare to that for 'one'

JR C, SMALL ; forward, if less, to SMALL

SMALL

CASES

’

RST

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB

RST
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB

RET

28H
SAl
$1B
$01
$05
$31
$36
SA3
$01
$00
CASES - $

$1B
$33
CASES - $

28H
$A0

$01
$31
$31
$04
$31
SOF
SAl
$03

$8C

$10

SB2

$13

SOE

$55

$SE4, $8D

$58

$39, $BC

$S5B

$98, SFD

SOE

$00,$36,875

SAQ

$SDB, SE8, SB4

$63

$42,8C4

SE6
$B5,$09,$36, SBE
SE9
$36,$73,%1B, $5D
SEC

$D8, SDE, $63, SBE
SFO
$61,$A1, $B3, S0C

$04
SOF
$38

THE

'ARCSIN'

FUNCTION

’
’
’
’
’
’
’
’
’
’

’

’
’

’

’

’

’
’
’
’
’
’
’

’

’

’
’

’

’
’

’

’

’
’
’
’
’

’

’

’

’
’

’

’

;; FP-CALC
; ; stk-one

; rnegate

; ;exchange
; ;division
; ;duplicate
;;less-0
;;stk-pi/2
; ;exchange
;5 jump-true

;to CASES

; rnegate
;7 jump

;to CASES

;; FP-CALC
; 7 stk-zero

; ;exchange
; ;duplicate
; ;duplicate
;;multiply

;duplicate

; ;addition
; ; stk-one
; ;7 subtract

; ;series-0C

; Exponent:
; Exponent:

; Exponent:

;7 (+00,+00)
; Exponent:
;7 (+00,+00)

; Exponent:

;7 (+00,+00)

; Exponent:

;7 (+00)
; s Exponent:
;7 (+00)
; Exponent:
;7 (+00,+00)
; » Exponent:

’

; s Exponent:

; Exponent:

’

; s Exponent:

’

;;multiply
; ;addition

;end-calc

return.

$60,

;; (+00,+00,+00)

$63,

;; (+00,+00,+00)

$65,
$68,
$6B,
$6E,
$70,
$73,
$76,
$79,
$7c,

$80,

Bytes:
Bytes:
Bytes:
Bytes:
Bytes:
Bytes:
Bytes:
Bytes:
Bytes:
Bytes:
Bytes:

Bytes:

; (Offset $22: 'asn')

; the inverse sine function with result in radians.

; derived from arctan function above.

; Error A unless the argument is between -1 and +1 inclusive.

; uses an adaptation of the formula asn(x) = atn(x/sqr(l-x*x))

; /1

; 1/

; /o Ix

; /a |

; /====

; y

; e.g. we know the opposite side (x) and hypotenuse (1)

; and we wish to find angle a in radians.

; we can derive length y by Pythagoras and then use ATN instead.
; since y*y + x*x = 1*1 (Pythagoras Theorem) then

; y=sgr (1-x*x) - no need to multiply 1 by itself.
; so, asn(a) = atn(x/y)

; or more fully,

; asn(a) = atn(x/sqgr (1-x*x))

; Close but no cigar.

; While PRINT ATN (x/SQR (l-x*x)) gives the same results as PRINT ASN x,

; it leads to division by zero when x is 1 or -1.

; To overcome this, 1 is added to y giving half the required angle and the
; result is then doubled.

; That is PRINT ATN (x/(SQR (l1-x*x) +1)) *2

; A value higher than 1 gives the required error as attempting to find the
; square root of a negative number generates an error in Sinclair BASIC.
asn RST 28H ;; FP-CALC X.

DEFB $31 ;;duplicate X, X.

DEFB $31 ;;duplicate X, X, X.

DEFB $04 ;imultiply X, X*X.

DEFB S$Al ; ;stk-one X, x*x, 1.

DEFB 3503 ; ;subtract X, x*x-1.

DEFB $1B ; ;negate x, l-x*x.

DEFB $28 ;7sar X, sgr(l-x*x) =y

DEFB $Al ; ;s stk-one x, vy, 1.

DEFB S$OF ;;addition x, y+1.

DEFB $05 ;:;division x/y+1.

DEFB $24 ;;atn a/2 (half the angle)

DEFB $31 ;;duplicate a/2, a/2.

DEFB S$OF ;;addition a.

DEFB $38 ;;end-calc a.

RET ; return.

; THE 'ARCCOS' FUNCTION

; (Offset $23: 'acs')

; the inverse cosine function with the result in radians.

; Error A unless the argument is between -1 and +1.

; Result in range 0 to pi.

; Derived from asn above which is in turn derived from the preceding atn.
; It could have been derived directly from atn using

; acs(x) = atn(sqgr (l-x*x)/x).

; However, as sine and cosine are horizontal translations of each other,

acs

uses acs(x) = pi/2 - asn(x)

e.g. the arccosine of a known x value will give the required angle b in
radians.

We know, from above, how to calculate the angle a using asn(x).

Since the three angles of any triangle add up to 180 degrees, or pi radians,
and the largest angle in this case is a right-angle (pi/2 radians), then

we can calculate angle b as pi/2 (both angles) minus asn(x) (angle a).

/1
1 /b
/=
/a |
/====
Y
RST 28H ;; FP-CALC X.
DEFB $22 ;;asn asn (x) .
DEFB $A3 ;istk-pi/2 asn(x), pi/2.
DEFB $03 ; ;subtract asn(x) - pi/2.
DEFB $1B ; ;negate pi/2 -asn(x) = acs(x).
DEFB $38 ;;end-calc acs (x) .
RET ; return.

; THE NEW 'SQUARE ROOT' FUNCTION

; (Offset $28: 'sqgr')

sqr

’

"If I have seen further, it is by standing on the shoulders of giants" -
Sir Isaac Newton, Cambridge 1676.

The sgr function has been re-written to use the Newton-Raphson method.
Although the method is centuries old, this one, appropriately, is based
on a FORTH word written by Steven Vickers in the Jupiter Ace manual.
Whereas that algorithm always used an initial guess of one, this one
manipulates the exponent byte to obtain a better guess.

First test for zero and return zero, i1f so, as the result.

If the argument is negative, then produce an error.

RST 28H ;; FP-CALC X

DEFB $3D ;;re-stack X. (in f.p. form)
DEFB S$C3 ;7 st-mem-3 X. (seed for guess)
DEFB $38 ;;end-calc

The HL register now addresses the exponent byte

LD A, (HL) ; fetch exponent to A

AND A ; test for zero.

RET Z ; return if so - with zero on calculator stack.
INC HL ; address the byte with the sign bit.

BIT 7, (HL) ; test the sign bit

Jp NZ, REPORT Ab ; REPORT A: 'Invalid argument'

This guess 1s based on a Usenet discussion.
Halve the exponent to achieve a good guess. (accurate with .25 16 64 etc.)

LD HL, $5BA1 ; Address system variable mem-3
LD A, (HL) ; fetch exponent of mem-3
XOR $80 ; toggle sign of exponent of mem-3

SRA A ;
INC A ;
JR Z,ASIS ;
Jp P,ASIS ;
DEC A ;
ASIS XOR $80 ;
LD (HL) , A ;
; Now re-enter the calculator.
RST 28H ;
SLOOP DEFB $31 ;
DEFB SE3 ;
DEFB $C4 ;
DEFB $05 ;
DEFB S$E3 ;
DEFB SOF ;
DEFB SA2 ;
DEFB $04 ;
DEFB S$C3 ;
DEFB SE4 ;
DEFB $03 ;
DEFB S$2A ;
DEFB $37 ;
DEFB $00 ;
DEFB SLOOP - $;
DEFB $02 ;
DEFB S$E3 ;
DEFB $38 ;
RET ;

; (Offset $28

'SQUARE ROOT'

: 'sqgr')

shift right,

forward with

leave increment if value >

bit 7 unchanged.

say .25

-> .5

.5

restore to shift only.

restore sign.

and put back

; FP-CALC

;duplicate
;get-mem-3
; st-mem-4
;div
;get-mem-3
;addition
;stk-half
;multiply
; st-mem-3
;get-mem-4
;subtract
;abs
;greater-0
;jump-true

;to sloop
;delete

;get-mem-3
;end-calc

'halved!'

exponent.

X, X.
X, X,guess

X, X,guess
x,x/guess.
x,x/guess, guess
X, x/guess+guess
X, x/guess+guess, .
x, (x/guess+guess)
X, newguess

X, newguess, oldguess
X, newguess-oldguess
x,difference.

x, (0/1) .

X.

5
*.5

retrieve final guess.
sqgr x.

return with square root on stack

FUNCTION

; This is the old 7-byte method of calculating square roots which has been

; re-introduced at various stages during the development of this ROM due to
; lack of space.

;77 SQr RST 28H ;; FP-CALC

Pl DEFB $31 ;;duplicate

HE DEFB 500 ;7 jump-true

HE DEFB LAST - $;;to LAST

P DEFB SA2 ;;stk-half

HE DEFB $38 ;;end-calc

; THE 'EXPONENTIATION' OPERATION

; (Offset $06: 'to-power')

; This raises the first number X to the power of the second number Y.
; As with the ZX80,

; 0~0=1.

; 0~ +n = 0.

; 0 » -n = arithmetic overflow.

to power RST 28H ;; FP-CALC X, Y.
DEFB $01 ; ;exchange Y, X.
DEFB $31 ; ;duplicate Y, X, X.
DEFB $30 ;;not Y, X, (1/0)
DEFB $00 ;7 jump-true
DEFB XISO - $;;to XISO if X is zero.

; else X is non-zero. Function 'ln' will catch a negative value of X.
DEFB $25 ;7 1n Y, LN X.
DEFB $04 ;omultiply Y * LN X.
DEFB $38 ;rend-calc
JP exp ; jump back to EXP routine ->

; these routines form the three simple results when the number is zero.
; begin by deleting the known zero to leave Y the power factor.
XISO0 DEFB $02 ;;delete Y.
DEFB $31 ;;duplicate Y, Y.
DEFB $30 ;;not Y, (1/0)
DEFB $00 ;7 jump-true
DEFB ONE S ; ;to ONE if Y is zero.
DEFB S$AOQ ;;stk-zero Y, O.
DEFB $01 ; ;exchange 0, Y.
DEFB $37 ; ;greater-0 0, (1/0).
DEFB $00 ;7 jump-true 0.
DEFB LAST - $;;to LAST if Y was any positive
H number.
; else force division by zero thereby raising an Arithmetic overflow error.
; There are some one and two-byte alternatives but perhaps the most formal
; might have been to use end-calc; rst 08; defb 05.
DEFB S$Al ; ;stk-one 0, 1.
DEFB $01 ; ;exchange 1, 0.
DEFB $05 ;:division 1/0 ouch!
ONE DEFB $02 ;;delete .
DEFB $Al ; ;stk-one 1.
LAST DEFB $38 ;rend-calc last value is 1 or O.
RET ; return. Whew!
; THE 'SPARE LOCATIONS' PART 3

DEFB

ORG $3D00

SFF,

SFF, SFF

’

’

THE 'ZX SPECTRUM CHARACTER SET'

$20 - Character: ' '

char set DEFB 300000000
LINE ZERO DEFB %00000000

’

’

’

’

’

DEFB %00000000
DEFB %00000000
DEFB %00000000
DEFB %00000000
DEFB %00000000
DEFB %00000000

$21 - Character: '!'!

DEFB %00000000
DEFB %00010000
DEFB %00010000
DEFB %00010000
DEFB %00010000
DEFB %00000000
DEFB %00010000
DEFB %00000000

$22 - Character: '"!'

DEFB %00000000
DEFB %00100100
DEFB %00100100
DEFB %00000000
DEFB %00000000
DEFB %00000000
DEFB %00000000
DEFB %00000000

$23 - Character: '#'

DEFB %00000000
DEFB %00100100
DEFB %01111110
DEFB %00100100
DEFB %00100100
DEFB %01111110
DEFB %00100100
DEFB %00000000

$24 - Character: '$!

DEFB %00000000
DEFB %00001000
DEFB %00111110
DEFB %00101000
DEFB %00111110
DEFB %00001010
DEFB %00111110
DEFB %00001000

$25 - Character: '$'

DEFB %00000000
DEFB %01100010

CHRS (32)

CHRS (33)

CHRS (34)

CHRS (35)

CHRS (36)

CHRS (37)

DEFB %01100100
DEFB %00001000
DEFB %00010000
DEFB %00100110
DEFB %01000110
DEFB %00000000

; $26 - Character: '&' CHRS (38)

DEFB %00000000
DEFB %00010000
DEFB %00101000
DEFB %00010000
DEFB %00101010
DEFB %01000100
DEFB %00111010
DEFB %00000000

; $27 - Character: '"! CHRS (39)

DEFB %00000000
DEFB %00001000
DEFB %00010000
DEFB %00000000
DEFB %00000000
DEFB %00000000
DEFB %00000000
DEFB %00000000

; $28 - Character: '/(' CHRS (40)

DEFB %00000000
DEFB %00000100
DEFB %00001000
DEFB %00001000
DEFB %00001000
DEFB %00001000
DEFB %00000100
DEFB %00000000

; $29 - Character: '")' CHRS (41)

DEFB %00000000
DEFB %00100000
DEFB %00010000
DEFB %00010000
DEFB %00010000
DEFB %00010000
DEFB %00100000
DEFB %00000000

; $2A - Character: '*! CHRS (42)

DEFB %00000000
DEFB %00000000
DEFB %00010100
DEFB %00001000
DEFB %00111110
DEFB %00001000
DEFB %00010100
DEFB %00000000

; $2B - Character: '+' CHRS (43)

DEFB %00000000
DEFB %00000000
DEFB %00001000
DEFB %00001000
DEFB %00111110
DEFB %00001000
DEFB %00001000
DEFB %00000000

; $2C - Character: ',' CHRS (44)

DEFB %00000000
DEFB %00000000
DEFB %00000000
DEFB %00000000
DEFB %00000000
DEFB %00001000
DEFB %00001000
DEFB %00010000

; $2D - Character: '-' CHRS (45)

DEFB %00000000
DEFB %00000000
DEFB %00000000
DEFB %00000000
DEFB %00111110
DEFB %00000000
DEFB %00000000
DEFB %00000000

; $2E - Character: '.' CHRS (46)

DEFB %00000000
DEFB %00000000
DEFB %00000000
DEFB %00000000
DEFB %00000000
DEFB %00011000
DEFB %00011000
DEFB %00000000

; S2F - Character: '/' CHRS (47)

DEFB %00000000
DEFB %00000000
DEFB %00000010
DEFB %00000100
DEFB %00001000
DEFB %00010000
DEFB %00100000
DEFB %00000000

; $30 - Character: '0' CHRS (48)

DEFB %00000000
DEFB %00111100
DEFB %01000110
DEFB %01001010
DEFB %01010010
DEFB %01100010
DEFB %00111100
DEFB %00000000

; $31 - Character: '1' CHRS (49)

DEFB %00000000
DEFB %00011000
DEFB %00101000
DEFB %00001000
DEFB %00001000
DEFB %00001000
DEFB %00111110
DEFB %00000000

; $32 - Character: '2' CHRS (50)

DEFB %00000000
DEFB %00111100
DEFB %01000010
DEFB %00000010
DEFB %00111100
DEFB %01000000
DEFB %01111110
DEFB %00000000

; $33 - Character: '3! CHRS (51)

DEFB %00000000
DEFB %00111100
DEFB %01000010
DEFB %00001100
DEFB %00000010
DEFB %01000010
DEFB %00111100
DEFB %00000000

; $34 - Character: '4' CHRS (52)

DEFB %00000000
DEFB %00001000
DEFB %00011000
DEFB %00101000
DEFB %01001000
DEFB %01111110
DEFB %00001000
DEFB %00000000

; $35 - Character: '5' CHRS (53)

DEFB %00000000
DEFB %01111110
DEFB %01000000
DEFB %01111100
DEFB %00000010
DEFB %01000010
DEFB %00111100
DEFB %00000000

; $36 - Character: '6' CHRS (54)

DEFB %00000000
DEFB %00111100
DEFB %01000000
DEFB %01111100
DEFB %01000010
DEFB %01000010
DEFB %00111100

DEFB %00000000
; $37 - Character: '7' CHRS (55)

DEFB %00000000
DEFB %01111110
DEFB %00000010
DEFB %00000100
DEFB %00001000
DEFB %00010000
DEFB %00010000
DEFB %00000000

; $38 - Character: '8' CHRS (56)

DEFB %00000000
DEFB %00111100
DEFB %01000010
DEFB %00111100
DEFB %01000010
DEFB %01000010
DEFB %00111100
DEFB %00000000

; $39 - Character: '9' CHRS (57)

DEFB %00000000
DEFB %00111100
DEFB %01000010
DEFB %01000010
DEFB %00111110
DEFB %00000010
DEFB %00111100
DEFB %00000000

; $3A - Character: ':' CHRS (58)

DEFB %00000000
DEFB %00000000
DEFB %00000000
DEFB %00010000
DEFB %00000000
DEFB %00000000
DEFB %00010000
DEFB %00000000

; $3B - Character: ';' CHRS (59)

DEFB %00000000
DEFB %00000000
DEFB %00010000
DEFB %00000000
DEFB %00000000
DEFB %00010000
DEFB %00010000
DEFB %00100000

; $3C - Character: '<! CHRS (60)

DEFB %00000000
DEFB %00000000
DEFB %00000100
DEFB %00001000
DEFB %00010000

’

’

’

’

DEFB %00001000
DEFB %00000100
DEFB %00000000

$3D - Character: '='

DEFB %00000000
DEFB %00000000
DEFB %00000000
DEFB %00111110
DEFB %00000000
DEFB %00111110
DEFB %00000000
DEFB %00000000

$3E - Character: '>'

DEFB %00000000
DEFB %00000000
DEFB %00010000
DEFB %00001000
DEFB %00000100
DEFB %00001000
DEFB %00010000
DEFB %00000000

$3F - Character: '?'

DEFB %00000000
DEFB %00111100
DEFB %01000010
DEFB %00000100
DEFB %00001000
DEFB %00000000
DEFB %00001000
DEFB %00000000

$40 - Character: '@’

DEFB %00000000
DEFB %00111100
DEFB %01001010
DEFB %01010110
DEFB %01011110
DEFB %01000000
DEFB %00111100
DEFB %00000000

$41 - Character: 'A'

DEFB %00000000
DEFB %00111100
DEFB %01000010
DEFB %01000010
DEFB %01111110
DEFB %01000010
DEFB %01000010
DEFB %00000000

$42 - Character: 'B'

DEFB %00000000
DEFB %01111100
DEFB %01000010

CHRS (61)

CHRS (62)

CHRS (63)

CHRS (64)

CHRS (65)

CHRS (66)

DEFB %01111100
DEFB %01000010
DEFB %01000010
DEFB %01111100
DEFB %00000000

; $43 - Character: 'C' CHRS (67)

DEFB %00000000
DEFB %00111100
DEFB %01000010
DEFB %01000000
DEFB %01000000
DEFB %01000010
DEFB %00111100
DEFB %00000000

; $44 - Character: 'D' CHRS (68)

DEFB %00000000
DEFB %01111000
DEFB %01000100
DEFB %01000010
DEFB %01000010
DEFB %01000100
DEFB %01111000
DEFB %00000000

; $45 - Character: 'E' CHRS (69)

DEFB %00000000
DEFB %01111110
DEFB %01000000
DEFB %01111100
DEFB %01000000
DEFB %01000000
DEFB %01111110
DEFB %00000000

; $46 - Character: 'F! CHRS (70)

DEFB %00000000
DEFB %01111110
DEFB %01000000
DEFB %01111100
DEFB %01000000
DEFB %01000000
DEFB %01000000
DEFB %00000000

; $47 - Character: 'G' CHRS (71)

DEFB %00000000
DEFB %00111100
DEFB %01000010
DEFB %01000000
DEFB %01001110
DEFB %01000010
DEFB %00111100
DEFB %00000000

; $48 - Character: 'H' CHRS (72)

DEFB %00000000

DEFB %01000010
DEFB %01000010
DEFB %01111110
DEFB %01000010
DEFB %01000010
DEFB %01000010
DEFB %00000000

; $49 - Character: 'I' CHRS (73)

DEFB %00000000
DEFB %00111110
DEFB %00001000
DEFB %00001000
DEFB %00001000
DEFB %00001000
DEFB %00111110
DEFB %00000000

; $4A - Character: 'J' CHRS (74)

DEFB %00000000
DEFB %00000010
DEFB %00000010
DEFB %00000010
DEFB %01000010
DEFB %01000010
DEFB %00111100
DEFB %00000000

; $4B - Character: 'K' CHRS (75)

DEFB %00000000
DEFB %01000100
DEFB %01001000
DEFB %01110000
DEFB %01001000
DEFB %01000100
DEFB %01000010
DEFB %00000000

; $4C - Character: 'L' CHRS (76)

DEFB %00000000
DEFB %01000000
DEFB %01000000
DEFB %01000000
DEFB %01000000
DEFB %01000000
DEFB %01111110
DEFB %00000000

; $4D - Character: 'M' CHRS (77)

DEFB %00000000
DEFB %01000010
DEFB %01100110
DEFB %01011010
DEFB %01000010
DEFB %01000010
DEFB %01000010
DEFB %00000000

; S4E - Character: 'N' CHRS (78)

DEFB %00000000
DEFB %01000010
DEFB %01100010
DEFB %01010010
DEFB %01001010
DEFB %01000110
DEFB %01000010
DEFB %00000000

; S$4F - Character: '0O! CHRS (79)

DEFB %00000000
DEFB %00111100
DEFB %01000010
DEFB %01000010
DEFB %01000010
DEFB %01000010
DEFB %00111100
DEFB %00000000

; $50 - Character: 'P' CHRS (80)

DEFB %00000000
DEFB %01111100
DEFB %01000010
DEFB %01000010
DEFB %01111100
DEFB %01000000
DEFB %01000000
DEFB %00000000

; $51 - Character: 'Q' CHRS (81)

DEFB %00000000
DEFB %00111100
DEFB %01000010
DEFB %01000010
DEFB %01010010
DEFB %01001010
DEFB %00111100
DEFB %00000000

; $52 - Character: 'R’ CHRS (82)

DEFB %00000000
DEFB %01111100
DEFB %01000010
DEFB %01000010
DEFB %01111100
DEFB %01000100
DEFB %01000010
DEFB %00000000

; $53 - Character: 'S' CHRS (83)

DEFB %00000000
DEFB %00111100
DEFB %01000000
DEFB %00111100
DEFB %00000010
DEFB %01000010
DEFB %00111100
DEFB %00000000

; $54 - Character: 'T' CHRS (84)

DEFB %00000000
DEFB %11111110
DEFB %00010000
DEFB %00010000
DEFB %00010000
DEFB %00010000
DEFB %00010000
DEFB %00000000

; $55 - Character: 'U' CHRS (85)

DEFB %00000000
DEFB %01000010
DEFB %01000010
DEFB %01000010
DEFB %01000010
DEFB %01000010
DEFB %00111100
DEFB %00000000

; $56 - Character: 'V!' CHRS (86)

DEFB %00000000
DEFB %01000010
DEFB %01000010
DEFB %01000010
DEFB %01000010
DEFB %00100100
DEFB %00011000
DEFB %00000000

; $57 - Character: 'W' CHRS (87)

DEFB %00000000
DEFB %01000010
DEFB %01000010
DEFB %01000010
DEFB %01000010
DEFB %01011010
DEFB %00100100
DEFB %00000000

; $58 - Character: 'X' CHRS (88)

DEFB %00000000
DEFB %01000010
DEFB %00100100
DEFB %00011000
DEFB %00011000
DEFB %00100100
DEFB %01000010
DEFB %00000000

; $59 - Character: 'Y' CHRS (89)

DEFB %00000000
DEFB %10000010
DEFB %01000100
DEFB %00101000
DEFB %00010000
DEFB %00010000

DEFB %00010000
DEFB %00000000

; $5A - Character: 'Z' CHRS (90)

DEFB %00000000
DEFB %01111110
DEFB %00000100
DEFB %00001000
DEFB %00010000
DEFB %00100000
DEFB %01111110
DEFB %00000000

; $5B - Character: '[! CHRS (91)

DEFB %00000000
DEFB %00001110
DEFB %00001000
DEFB %00001000
DEFB %00001000
DEFB %00001000
DEFB %00001110
DEFB %00000000

; $5C - Character: "\' CHRS (92)

DEFB %00000000
DEFB %00000000
DEFB %01000000
DEFB %00100000
DEFB %00010000
DEFB %00001000
DEFB %00000100
DEFB %00000000

; $5D - Character: ']' CHRS (93)

DEFB %00000000
DEFB %01110000
DEFB %00010000
DEFB %00010000
DEFB %00010000
DEFB %00010000
DEFB %01110000
DEFB %00000000

; S5E - Character: '™! CHRS (94)

DEFB %00000000
DEFB %00010000
DEFB %00111000
DEFB %01010100
DEFB %00010000
DEFB %00010000
DEFB %00010000
DEFB %00000000

; S5F - Character: ' ' CHRS (95)

DEFB %00000000
DEFB %00000000
DEFB %00000000
DEFB %00000000

DEFB %00000000
DEFB %00000000
DEFB %00000000
DEFB %11111111

; $60 - Character: 'ukp' CHRS (96)

DEFB %00000000
DEFB %00011100
DEFB %00100010
DEFB %01111000
DEFB %00100000
DEFB %00100000
DEFB %01111110
DEFB %00000000

; $61 - Character: 'a' CHRS (97)

DEFB %00000000
DEFB %00000000
DEFB %00111000
DEFB %00000100
DEFB %00111100
DEFB %01000100
DEFB %00111100
DEFB %00000000

; $62 - Character: 'b' CHRS (98)

DEFB %00000000
DEFB %00100000
DEFB %00100000
DEFB %00111100
DEFB %00100010
DEFB %00100010
DEFB %00111100
DEFB %00000000

; $63 - Character: 'c' CHRS (99)

DEFB %00000000
DEFB %00000000
DEFB %00011100
DEFB %00100000
DEFB %00100000
DEFB %00100000
DEFB %00011100
DEFB %00000000

; $64 - Character: 'd' CHRS (100)

DEFB %00000000
DEFB %00000100
DEFB %00000100
DEFB %00111100
DEFB %01000100
DEFB %01000100
DEFB %00111100
DEFB %00000000

; $65 - Character: 'e! CHRS (101)

DEFB %00000000
DEFB %00000000

DEFB %00111000
DEFB %01000100
DEFB %01111000
DEFB %01000000
DEFB %00111100
DEFB %00000000

; $66 - Character: 'f' CHRS (102)

DEFB %00000000
DEFB %00001100
DEFB %00010000
DEFB %00011000
DEFB %00010000
DEFB %00010000
DEFB %00010000
DEFB %00000000

; $67 - Character: 'g' CHRS (103)

DEFB %00000000
DEFB %00000000
DEFB %00111100
DEFB %01000100
DEFB %01000100
DEFB %00111100
DEFB %00000100
DEFB %00111000

; $68 - Character: 'h' CHRS (104)

DEFB %00000000
DEFB %01000000
DEFB %01000000
DEFB %01111000
DEFB %01000100
DEFB %01000100
DEFB %01000100
DEFB %00000000

; $69 - Character: 'i' CHRS (105)

DEFB %00000000
DEFB %00010000
DEFB %00000000
DEFB %00110000
DEFB %00010000
DEFB %00010000
DEFB %00111000
DEFB %00000000

; $6A - Character: 'j' CHRS (106)

DEFB %00000000
DEFB %00000100
DEFB %00000000
DEFB %00000100
DEFB %00000100
DEFB %00000100
DEFB %00100100
DEFB %00011000

; $6B - Character: 'k' CHRS (107)

DEFB %00000000
DEFB %00100000
DEFB %00101000
DEFB %00110000
DEFB %00110000
DEFB %00101000
DEFB %00100100
DEFB %00000000

; $6C - Character: 'l' CHRS$ (108)

DEFB %00000000
DEFB %00010000
DEFB %00010000
DEFB %00010000
DEFB %00010000
DEFB %00010000
DEFB %00001100
DEFB %00000000

; $6D - Character: 'm' CHRS (109)

DEFB %00000000
DEFB %00000000
DEFB %01101000
DEFB %01010100
DEFB %01010100
DEFB %01010100
DEFB %01010100
DEFB %00000000

; $6E - Character: 'n' CHRS (110)

DEFB %00000000
DEFB %00000000
DEFB %01111000
DEFB %01000100
DEFB %01000100
DEFB %01000100
DEFB %01000100
DEFB %00000000

; S$6F - Character: 'o' CHRS (111)

DEFB %00000000
DEFB %00000000
DEFB %00111000
DEFB %01000100
DEFB %01000100
DEFB %01000100
DEFB %00111000
DEFB %00000000

; $70 - Character: 'p' CHRS$ (112)

DEFB %00000000
DEFB %00000000
DEFB %01111000
DEFB %01000100
DEFB %01000100
DEFB %01111000
DEFB %01000000
DEFB %01000000

; $71 - Character: 'q' CHRS (113)

DEFB %00000000
DEFB %00000000
DEFB %00111100
DEFB %01000100
DEFB %01000100
DEFB %00111100
DEFB %00000100
DEFB %00000110

; $72 - Character: 'r! CHRS (114)

DEFB %00000000
DEFB %00000000
DEFB %00011100
DEFB %00100000
DEFB %00100000
DEFB %00100000
DEFB %00100000
DEFB %00000000

; 873 - Character: 's' CHRS (115)

DEFB %00000000
DEFB %00000000
DEFB %00111000
DEFB %01000000
DEFB %00111000
DEFB %00000100
DEFB %01111000
DEFB %00000000

; 874 - Character: 't' CHRS (116)

DEFB %00000000
DEFB %00010000
DEFB %00111000
DEFB %00010000
DEFB %00010000
DEFB %00010000
DEFB %00001100
DEFB %00000000

; $75 - Character: 'u' CHRS (117)

DEFB %00000000
DEFB %00000000
DEFB %01000100
DEFB %01000100
DEFB %01000100
DEFB %01000100
DEFB %00111000
DEFB %00000000

; $76 - Character: 'v' CHRS (118)

DEFB %00000000
DEFB %00000000
DEFB %01000100
DEFB %01000100
DEFB %00101000
DEFB %00101000
DEFB %00010000

DEFB %00000000
; $77 - Character: 'w' CHRS (119)

DEFB %00000000
DEFB %00000000
DEFB %01000100
DEFB %01010100
DEFB %01010100
DEFB %01010100
DEFB %00101000
DEFB %00000000

; $78 - Character: 'x' CHRS (120)

DEFB %00000000
DEFB %00000000
DEFB %01000100
DEFB %00101000
DEFB %00010000
DEFB %00101000
DEFB %01000100
DEFB %00000000

; $79 - Character: 'y' CHRS (121)

DEFB %00000000
DEFB %00000000
DEFB %01000100
DEFB %01000100
DEFB %01000100
DEFB %00111100
DEFB %00000100
DEFB %00111000

; $7A - Character: 'z' CHRS (122)

DEFB %00000000
DEFB %00000000
DEFB %01111100
DEFB %00001000
DEFB %00010000
DEFB %00100000
DEFB %01111100
DEFB %00000000

; $7B - Character: '{' CHRS (123)

DEFB %00000000
DEFB %00001110
DEFB %00001000
DEFB %00110000
DEFB %00001000
DEFB %00001000
DEFB %00001110
DEFB %00000000

; $7C - Character: '|' CHRS (124)

DEFB %00000000
DEFB %00001000
DEFB %00001000
DEFB %00001000
DEFB %00001000

’

’

’

DEFB %00001000
DEFB %00001000
DEFB %00000000

$7D - Character: '}'! CHRS (125)

DEFB %00000000
DEFB %01110000
DEFB %00010000
DEFB %00001100
DEFB %00010000
DEFB %00010000
DEFB %01110000
DEFB %00000000

S$7E - Character: '~! CHRS (126)

DEFB %00000000
DEFB %00010100
DEFB %00101000
DEFB %00000000
DEFB %00000000
DEFB %00000000
DEFB %00000000
DEFB %00000000

S7F - Character: '(c)' CHRS (127)

DEFB %00111100
DEFB %01000010
DEFB %10011001
DEFB %10100001
DEFB %10100001
DEFB %10011001
DEFB %01000010
DEFB %00111100

#end ; generic cross-assembler directive

; Acknowledgements

; Sean Irvine for default list of section headings

; Dr. Ian Logan for labels and functional disassembly.

; Dr. Frank O'Hara for labels and functional disassembly.

; Gianluca Carri for labels and functional disassembly.

; Credits

; Alex Pallero Gonzales for corrections.

; Mike Dailly for comments.

; Alvin Albrecht for comments.

; Andy Styles for full relocatability implementation and testing.
; Andrew Owen for ZASM compatibility and format improvements.
; Philip Kendall for help with Newton Raphson square root theory.
; James Smith for optimizing some ROM routines to save space

and the FORMAT routine.

THE 'SYSTEM VARIABLES'

5B00 (IY-$3A) 23296 KSTATE O SFF (free) else raw key value.
5B01 (IY-$39) 23297 KSTATE 1 The 5-counter

KSTATE 2
KSTATE 3

KSTATE 4
KSTATE 5
KSTATE 6
KSTATE_ 7

LASTK
REPDEL
REPPER
DEFADD
DEFADD hi
KDATA
TVDATA
TVDATA

STRMS_FD
STRMS FD_hi
STRMS_FE
STRMS FE_hi
STRMS_FF
STRMS_FF_hi
STRMS 00
STRMS_ 00 hi
STRMS_01
STRMS 01 hi
STRMS_02
STRMS_02 hi
STRMS 03
STRMS 03 hi
STRMS_04
STRMS 04 _hi
STRMS 05
STRMS_05 hi
STRMS_06
STRMS 06 _hi
STRMS_07
STRMS_07 hi
STRMS_08
STRMS 08 hi
STRMS_09
STRMS 09 hi
STRMS_0A
STRMS_OA hi
STRMS_OB
STRMS 0B _hi
STRMS_0C
STRMS_0C_hi
STRMS_0D
STRMS_0D_hi
STRMS_OE
STRMS_OE_hi
STRMS OF
STRMS OF hi

CHARS
CHARS hi
RASP

PIP

(IY+501)

Initially REPDEL value then REPPER
This location holds the decoded key.

The second key map is arranged
exactly as the first above and it is
in fact this map that is considered
first by the Keyboard routines.

Value of last key read from keyboard.

0 - Set to suppress a leading space.
1 - Set if ZX Printer is in use.

5B3C (IY+$02)

23356

TV_FLAG

5B3D (IY+S$03)
5B3E (IY+$04)
5B3F (IY+$05)
5B40 (IY+$06)
5B41 (IY+S$S07)
5B42 (IY+$08)
5B43 (IY+S$009)
5B44 (IY+S$S0A)
5B45 (IY+S$0B)
5B46 (IY+S0C)
5B47 (IY+S$S0D)
5B48 (IY+S$SO0E)
5B49 (IY+$O0F)
5B4A (IY+$10)
5B4B (IY+$11)
5B4C (IY+$12)
5B4D (IY+S$13)
5B4E (IY+$14)
5B4F (IY+$15)
5B50 (IY+S$16)
5B51 (IY+S$S17)
5B52 (IY+$18)
5B53 (IY+$19)
5B54 (IY+S$S1A)
5B55 (IY+S$1B)
5B56 (IY+S$1C)
5B57 (IY+$1D)
5B58 (IY+S$S1E)
5B59 (IY+S$S1F)
5B5A (IY+$20)
5B5B (IY+S$21)
5B5C (IY+$22)
5B5D (IY+$23)
5B5E (IY+S$24)
5B5F (IY+$25)
5B60 (IY+$26)
5B61 (IY+S$27)
5B62 (IY+$28)
5B63 (IY+$29)
5B64 (IY+S$2A)
5B65 (IY+S$2B)
5B66 (IY+$2C)

5B67 (IY+$2D)
5B68 (IY+S$2E)
5B69 (IY+S$S2F)

ERR_SP
ERR SP hi
LIST SP
LIST SP_hi
MODE
NEWPPC
NEWPPC_hi
NSPPC

PPC

PPC_hi
SUBPPC
BORDCR
E_PPC
E_PPC hi

CHANS hi
CURCHL
CURCHL_hi
PROG
PROG_hi
NXTLIN
NXTLIN hi
DATADD
DATADD hi
E_LINE
E_LINE hi
K_CUR

K _CUR hi
CH_ADD

CH ADD hi
X_PTR
X_PTR hi
WORKSP
WORKSP_hi
STKBOT
STKBOT hi
STKEND
STKEND_ hi

- Set if 'L' mode, temporary value.

- Set if 'L' mode, reset for 'K' perm.
Unused by 48K BASIC.

- Set in a new key has been pressed.

- Set if scanning result is numeric.

- Reset if checking syntax.

~N o 0O W N
|

0 - Set if lower screen in use.

1 - unused.

2 - unused.

3 - Set if edit key has been pressed.
4 - Set if an automatic listing.

5 - Set if lower screen to be cleared.
6 - unused.

7 - unused.

Values 0, 1 or 2

5B6A

(IY+$30)

23402

FLAGS2

(IY+$31
(IY+$32
(IY+$33
(IY+$34
(IY+S$S35
(IY+$36

— o~

OLDPPC
OLDPPC_hi
0SPPC

(IY+$37)

IY+S$38
IY+$39
IY+S3A
IY+S$3B
IY+$3C
IY+$3D
IY+S$S3E
IY+S$3F
IY+$40
IY+$41
IY+$42
IY+$43
IY+$S44
IY+$45
I1Y+$S46
IY+S47
IY+S48
IY+$49
IY+S$S4A
IY+$4B
IY+$4C
IY+$4D
IY+S$S4E
IY+S$4F
IY+S$50
IY+S$S51
IY+S$S52
IY+S$53
IY+$54
IY+$55
IY+$56
IY+$57

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
— o = = — e e e e — e e e e e e e e e e e e v — — ~— — — ~— ~—

STRLEN
STRLEN hi
T ADDR

T ADDR hi
SEED
SEED_hi
FRAMES1
FRAMES?2
FRAMES3
UDG
UDG_hi
COORDS_x
COORDS_y
P _POSN (unused)
PR CC (unused)
PR CC (unused)
ECHO E
ECHO E hi
DF CC

DF CC_hi
DFCCL
DFCCL_hi
S _POSN

S _POSN hi
SPOSNL
SPOSNL_hi
SCR_CT
ATTR P
MASK P
ATTR T
MASK T

P _FLAG

(IY+$58
(IY+$59
(IY+S5A
(IY+S5B
(IY+$S5C
(IY+$5D

— e

oy U WDN PO

~ o Ul Wb O

Set if main screen to be cleared.
Not used - held state of ZX buffer.
Set if a ':' is within quotes.

Set if Caps Lock on.

Set if "K" channel is use.

unused.

unused.

unused.

Set if handling a simple string.
Set if handling a new variable.
unused.

unused.

unused.

Set if in input mode.

unused.

Set if handling INPUT LINE.

NMI_ADD
NMI_ADD hi
RAMTOP
RAMTOP hi
P_RAMT
P_RAMT hi

5B98 (IY+S$S5E)
5B99 (IY+S$5F)
5BOA (IY+$60)
5B9B (IY+S$61)
5BOC (IY+$62)
5B9D (IY+$63)
5BOE (IY+$64)
5BO9F (IY+$65)
5BA0 (IY+$66)
5BAl (IY+$67)
5BA2 (IY+$68)
5BA3 (IY+$69)
5BA4 (IY+$S6A)
5BA5 (IY+$6B)
5BA6 (IY+$6C)
5BA7 (IY+$6D)
5BA8 (IY+$6E)
5BAS (IY+$S6F)
5BAA (IY+$70)
5BAB (IY+$71)
5BAC (IY+$72)
5BAD (IY+$73)
SBAE (IY+$74)
5BAF (IY+$75)
5BBO (IY+$76)
5BB1 (IY+$77)
5BB2 (IY+S$78)
5BB3 (IY+$79)
5BB4 (IY+$7A)
5BB5 (IY+$7B)
5BB6 (IY+$7C)
5BB7 (IY+$7D)
5BB8 (IY+S7E)
5BBO (IY+$7F)
5BBA
5BBB
5BBC
5BBD
5BBE
5BBF
5BCO
5BC1
5BC2
5BC3
5BC4
5BC5
5BC6
5BC7
5BCS8

25-AUG-2002

FLAGS3
WIDTH
WIDTH
MAXTY
BAUD lo
BAUD_ hi
NTSTAT
TOBORD
SER_FL
SER_FL
NTRESP
NTDEST
NTSRCE
NTNUMB lo
NTNUMB_hi
NTTYPE
NTLEN
NTDCS
NTHCS

unused - holds FF to show no Interfacel
RS232 Printer column variable

Printer width as set by FORMAT "t"
unused

Two Byte number determining the BAUD
rate. BAUD=(3500000/ (26*baud rate))-2
Own Network station number

Border colour used during I/O

2-byte workspace used by RS232

holds second character if first is one
Store for the network response code.
Destination station number.

Source station number.

Network block number - two bytes

as received over the network

Header type code as received.

Data block length 0-255.

Data block checksum.

Header block checksum.

All references to System Variables changed from $5C to $5B.

Changed byte in CHAN-OPEN from $5C to $5B.

The COPY command re-written so as not to clear the ZX Printer Buffer.
Channel "P" removed from INITIAL CHANNEL DATA

Reduced number of bytes copied during initialization from 21 to 16.
Stream 3 entry removed from INITIAL STREAM DATA

Reduced number of bytes copied during initialization from 14 to 12.

Reduced offset in expression within CLOSE from 14 to 12.

Modify CLOSE routine to error if stream offset is already closed (zero).

Add new Error report 'Stream is closed' to error message table.

Modify DE offset in CLOSE from $A3E2 to $A4E4 to reflect new STRMS location
and fewer system streams.

Substantially alter CLOSE-2 so that IX used to access letter and offset saved
in DE. Start of channel saved in IX.
(Noticed for the first time pointer to letter was previously saved in DE).

Create new INITIAL P CHANNEL DATA (8 bytes) for channel creation. Contains
usual 5 bytes plus + 2-byte length + P_POSN (column position). The output
address PR CC can't be held as this would vary as channels are deleted.

26-AUG-2002

Modify OPEN-1 so that a stream associated with "P" can't be re-attached.

Modify OPEN-K so that LD E,$01 becomes LD DE, $0001.

Modify OPEN-S so that LD E,$06 becomes LD DE, $0006.

Completely re-write OPEN-P (which was no more sophisticated) so that it
creates a 264 byte "P" channel at end of CHANS area.

Remove line in OPEN-END that set high byte of offset to zero.??

Remove call to CLEAR-PRB during initialization.

Remove call to COPY-BUFF at MAIN-4 [* This will have to be re-visited]

Modify print routine so that FLAGS2 is not updated when a ZX buffer used.

Modify PR-ALL-6 so that address can cross a 256-byte page boundary.

Modify CLEAR-PRB so that FLAGS2 not cleared when buffer cleared.

Modify CLEAR-PRB so that superfluous PR CC reference removed.

Modify CLEAR PRB so that address of buffer is calculated from CURCHL.

Modify COPY-LINE so that CLEAR-PRB only invoked when outputting to a channel
and BREAK is pressed.

Realising that CLEAR-PRB can only be used as such, go back to OPEN-P and
clear the buffer bytes directly.

Modify COPY BUFF so that address of buffer is calculated from CURCHL.

Remove "LD HL,$5B00" from start of CL-SET. Still works for ZX path.

Modify PO-STORE so that IX from CURCHL used to update P _POSN (channel var).
Substantially modify PO-FETCH so that the print address within the channel
buffer is formed from the column position P_POSN.

27-RAUG-2002
Write routine CLOSE-P so that channel reclaimed.
Although not intended as such, this routine turns out to be generic.
Adapt routine REST-STRM (from Interface 1) so that all other streams that
have offsets beyond a closed stream have their offsets reduced by the
reclaimed amount.
Boot using VBSpec and test that channels open and close OK.
Switch to RealSpec to test printing. Crash due to A not being preserved
during new PO-FETCH. Trace and rectify using debugger and notice all OK.
Switch to DOS Z80 emulator for final paper output tests. Brilliant as always.
Re-locate FREE-MEM routine to spare space between restarts as address was
moving around as code was added and removed.
Free memory has increased from 41472 to 41733
ROM space has reduced alarmingly. Only 1040 bytes spare.
Embark on a spree to remove redundant code.
Routines 7ZX81 name routine, REC-EDIT and P-INT-STO commented out.

28-AUG-2002

Table of constants expanded to five bytes.

SKIP-CONS commented out - no longer writes to ROM.

First two instructions of get-mem swapped to provide entry point from
the stk-con-x routine which is now just 5 bytes.

To inhibit all writes to ROM, limit scroll routine to 23 lines (not 24).
Interrupt routine re-written to avoid IY register use. (saves one byte)

Applied fixes to KEYBOARD so that keywords don't repeat and only valid keys
return a graphic key code i.e. only A-U.

Generally, comment out unnecessary stack saves, double loads etc.

Since labels have no relation to address, change them to use legalized

’

disassembly labels.

31-AUG-2002
Square Root function rewritten to use the Newton-Raphson method.
Can be improved further by finding a better initial guess than 1.

01-SEP-2002
Use better initial guess than 'l' for Newton Raphson SQR function.

Works even better when integers are immediately re-stacked as floating point
numbers.

03-SEP-2002
More fixes - allow SAVE "program" LINE without number as per BASIC manual.
ROM space pruning - use UNSTACK 7Z to full potential.

04-SEP-2002
For consistency, use the words "CONTINUE" and "GO SUB" in error messages
instead of the ZX81 tokens used in the production ZX Spectrum ROM.
This was a mistake as both messages were at the maximum length. Reverted.
The INT -65536 bug fixed as per Dr. Ian Logan's guidelines ensuring that the
3rd, 4th and 5th bytes were zero.

05-SEP-2002
All quirks, features and bugs removed. Details as follows.

Source: Understanding Your Spectrum by Dr. Ian Logan

(12 bugs listed in appendix)

i. The 'division' error - is a misnomer. The inaccuracy mentioned occurs
in the DEC_TO_FP routine and by switching the multiply and division
operations then 0.5 is given the floating point form 80 00 00 00 00.
The suggested fix is ignored.

ii. The '-65536"' error e.g. PRINT INT -65536 gives -1.

Dr. Ian Logan's fix applied (with mods) and other code sections removed
as suggested.

iii. The 'program name' routine removed along with REC EDIT and P _INT STO.

iv. The 'CHRS 9' error corrected by calling PO ABLE in preference to a
terminal jump to CL SET/PO_STORE.

v. The 'scroll?' and 'Start tape' errors corrected by new routine CONS_ IN.
Later KEY INPUT modified to recognize prompt (2 extra bytes).
vi. The current cursor error corrected by updating E PPC with valid line

number while it is in the registers at an earlier stage.

vii. The 'leading space error' resembles more a successful attempt to
maximise the text that will fit within a 32 character display and has
not been corrected. Ignored. (On second thoughts, this needs fixing)

viii.The 'K-mode' error has been corrected by preventing keywords repeating
when held down.

ix. The 'CHR$ 8' error has been corrected as suggested by Dr. Frank O'Hara.

X. The 'SCREENS$' error has been corrected by substituting the suggested RET
instruction.
xi. The 'STRS$' error has been corrected by removing the extra zero from

the calculator stack as suggested.

xii. The 'CLOSE' error has been corrected by checking the status of the
stream and issuing a new error message if it is already closed.
The suggested fix - adding a zero end-marker to the Close Stream Look-up
Table - is ignored.

Source: The Complete Spectrum ROM Disassembly. by Dr. Ian Logan and
Dr. Frank O'Hara (various additional features listed).

1) The NMI bug has been corrected and the logic changed as suggested on
Page 2. The new default set-up is to produce a new informative message.
2) Simple strings are not excluded when saving DATA - on Page 22.
e.g. 10 LET a$ = "dodo" : SAVE "animal" DATA a$ ()

These are now rejected as they won't load back in.
(credit: First fixed by Dr. Ian Logan in the Interface 1 ROM).

3) There is no end-marker for the CLOSE STREAM LOOK UP table nor should
there be. Ignored.

Source: ZX Spectrum BASIC programming by Steven Vickers. (discrepancies)

1) Line number should be optional in SAVE "some name" LINE - Page 133.
Fixed.

2) CLEAR does a RESTORE (Page 124).
Error in BASIC manual rather than ROM - ignored. Difficult to decide.

3) "Notice that the numbers in a DRAW statement can be negative, although
those in a PLOT statement can't" - Page 92
Fixed. 0<=x<=255. 0<=y<=175 else Error B.

4) Similarly the POINT (x,y) function allowed negative coordinates.
Fixed. Error B unless 0<=x<=255. 0<=y<=175. Page 153.

5) The ATTR (y,x) function allows negative and invalid coordinates.
Fixed. Error B unless 0<=x<=31 and 0<=y<=23. Page 152.

o) The SCREENS (y,x) function allows negative and invalid parameters.

Fixed. Error B unless 0<=x<=31 and 0<=y<=23. Page 154.

Source: The Pitman Pocket Guide to the Sinclair Spectrum by Steven Vickers.
(discrepancies not previously mentioned.)

1) RESTORE. "Don't specify numbers > 9999, as the program may crash."
To be pedantic > 16383 - see below. Page 25.
2) 'Statement lost' can occur with RUN, GO TO and GO SUB when the line
number is between 32768 and 61439. Page 67.

Fixed by new routine which checks SAVE LINE, LIST, LLIST, RUN, GO TO,
GO SUB and RESTORE for invalid line numbers.

3) Due to a bug, if you bring in a peripheral channel and later use a
colour statement, colour controls will be sent to it by mistake Page 59.
Fixed by ensuring that the screen is first selected.

4) EDITING KEYS TABLE Page 58.
When inputting from the network or RS232 or microdrive file,
code 6 (comma separator): inserted in buffer.
("This is a bug. It should work like CHRS$ 14"). Fixed.

Source: www.nonowt.com "Bugs in the ROM"

(many already covered. Some are Programming Guides rather than errors.)

1) The Monopolizing of IY Error.
Although not strictly an error, the manual does not mention the
restriction as did the ZX81 manual. Also some effort has gone into
ensuring that the calculator avoids IY mathematically and it is restored
following a USR function.
Fixed - the interrupt routine uses HL to access system variables.
Saves a few bytes too.

2) The PR CC error (credit: Dilwyn Jones 1983).
Fixed - No ZX printer system variables remain. The print position is
recalculated every time from a single new channel variable.

3) The CLEAR PRINTER BUFFER Bug.
Fixed - COPY no longer clears the buffer at the end of the statement or
when BREAK pressed.

4) The Main-4 COPY-BUFF Error.
Partly fixed as routine is no longer called but unprinted output is not
yet flushed. (To revisit at end) (Done.)

5) The MAIN-4 HALT instruction not corrected as not really an error.

The fault was with programmers and also with the Interface 1.
The NMI fix provides a clean means of exit should the situation arise.
i.e. Should a programmer forget to enable interrupts before returning
to BASIC. However I have to admit I don't know why it is there. If you
press BREAK it ensures the message remains a while longer.

6) The WRITE TO ROM at $0000 by SKIP CONS has been avoided by improving
the way constants are stored and indexed.
The WRITE TO ROM by the SCROLL routine (credit: P.Giblin) has been
avoided, as suggested, by ensuring that the full 24 lines are never
scrolled.

7) The unimplemented e-to-fp calculator instruction could be removed by

’

assigning $3C to 're-stack'. Five calculator routines would require
alteration. This would gain two extra bytes of ROM space but has not
yet been done.

8) The INKEYS$#0 Error. This could apply to any stream although streams 0
and 1 read from the keyboard by default. If the selected stream has
been attached to the keyboard then the null string is almost always
returned. The read in routine correctly cancels any keypress as we are
not interested in what was pressed, perhaps, half an hour ago. However
there is hardly anytime for an interrupt to occur before the channel
is read. Fixed by testing for channel 'K' and executing a HALT if so.
INKEYS#0 is not the same as INKEYS as the latter always reads the
keyboard directly whereas using streams has to take REPDEL and REPPER
into account e.g. 10 PRINT ; CODE INKEYS$#0 ; " "; : GO TO 10

Miscellaneous BUGS and features.

1) In graphics mode, keys V, W, X, Y and Z give inappropriate keywords.
Fixed by not storing key if higher than 'U’'.

2) USR-$ contains a double check on number of UDGs. First check removed.
It would be required if there were 26 UDGs and so it may be put back.

4) A typo like LIST 40000 was silently changed to LIST 7232. As an error
is now given, the modifying code (AND $3F) has been removed.

3) ZX81 keywords were used in Spectrum error messages. Fixed in error.

Not possible to add a space to GOSUB without exceeding 32 characters.

06-SEP-2002

RST 30H vacated by making BC_SPACES a subroutine.

The ERROR restart is moved to $0030 to avoid paging in Interface 1 while,
at the same time, allowing access to its hardware.

RST O08H made a User Restart with a JP to three unused system variables
starting at the old P-POSN. This idea later scotched.

The NMI handler is located in the other 5 bytes.

Routine PO_ATTR has an EX DE,HL instruction added to return the attribute
address in DE. (see next)

Routine OUT_FLASH rewritten to print the character and then set the FLASH
bit of the attribute address.

Routine CL ATTR rearranged to perform attribute calculation last - providing
a new subroutine CL_ATTR2 which is called twice where a similar sequence
of instructions used to be.

07-SEP-2002
ROM usage reduced by reducing absolute jumps. etc.
The same RASP routine was used in two places and this has been made a
subroutine.
Note. there is now one MORE spare byte than in the standard ZX Spectrum.
There are 1172 unused bytes.
16 spare bytes moved to area before Cassette Interface to make addresses
04D8 and 056A the same as standard ROM as these are trapped by emulators
to SAVE and LOAD to tape.
240 spare bytes moved to area surrounding $1708 to prevent Interface 1 paging.

08-SEP-2002

There are now 20 more bytes of free ROM space than in the standard Spectrum
and that is despite writing an optimized TEST 5 SP routine.

Optimized STACK BC so IY not initialized every time. Result pointer set by

a faster method.

Optimized sto mem x so that memory not checked when removing a value from the
calculator stack.

09-SEP-2002
Optimize FP_TO BC and all routines that call it - FP TO A etc. by setting HL
to the initial value by a faster method.

Optimize FP_TO A too. Anything involving the calculator stack has to be
optimal.

10-SEP-2002

Noticed EX AF,AF' is little used outside the cassette interface and in some
places it would be faster than PUSH/POP AF. Not very many.

Corrected error introduced by pruning in GET HLXDE.

11-SEP-2002
remove redundant code from -65536 fix and optimize to avoid machine stack.
Spare locations = 1207 bytes

12-SEP-2002
Put back the five bytes before MULT RSLT and document so I don't remove again.
Concentrate on testing this stage.

13-SEP-2002
superfluous instruction removed from PIXEL ADD
50 more bytes of spare ROM space than standard ROM.

14-SEP-2002
THE OPEN P routine made generic and called OPEN ALL. It is only necessary
to set IX to the channel data before calling it.

15-SEP-2002

Add RS232 and Network channels. i.e. "B", "T" and "N".

Less than fourteen bytes spare.

Requires some tidying up. Stuff like OPEN #7,"N:64" requires implementation.
Also a few flag setting routines. Looks promising though.

It is possible to use PRINT, LIST, INPUT and INKEYS$S with new channels but
not SAVE, LOAD, MERGE and VERIFY. Yet.

The microdrives don't stand a chance but this was all the adverts ever
promised. Only one machine on the network requires a mass storage device.
Commands MOVE, ERASE, CAT and FORMAT are not implemented.

The FORMAT command would be useful for altering the BAUD rate and setting
the network station number.

16-SEP-2002
Some problems when breaking into INPUT. Debugging code is in lower case.
Document to help trace what's happening.

17-SEP-2002

Discover minor bug in the Interface 1 (and Discovery Disk Interface) at the
end of GET NBLK but my own bug eludes me. (BREAK message not being cleared)
Find the bug in this ROM. Hurrah! I need to reset bit 3 of TV FLAG before
entering the editor.

18-SEP-2002

Complete the documentation of text channel.

I've worked out where the new string syntax should be enforced. e.g. OPEN "N2"
In the CLASS-0A routine. The runtime path would populate D STR1. A lot easier
than what I was contemplating and the effect is global. i.e. on all CLASS 0OA
strings.

19-SEP-2002
Alter 'sqgr' so that IY not used. Improve comments. Start FILE DESC.

20-SEP-2002
Clarify documentation and increase ROM space.

21-SEP-2002

Removed the 'SUB 08' from multi comparisons calculator routine.
Re-arranged space between restarts.

FREE memory is now PRINT 65536 - USR 93.

22-SEP-2002

Documented 'truncate'. Found a redundant byte and managed to save another.
Incorporate the network SEND NEOF routine. Also flush ZX Printer buffer.
Use 2 as default Iris instead of 0 (broadcast). Input gives a satisfying
'End of File' report now.

23-SEP-2002
Test flags before branching in ED-KEYS saves 8 bytes.

24-SEP-2002

Modify KEY-INPUT so it recognizes the prompt situation. Get rid of temporary
routine CONS_IN. Incorporate FILE SPEC into CLASS 0A.

3 ROM bytes spare. Some syntax improvements to do. For instance

OPEN #7,"printer" now passes through which it shouldn't.

OPEN #7,"n:64" etc. now works.

25-SEP-2002

Pressed ahead and made syntax rock-solid. OPEN works fine. Did the FORMAT
command while in the mood. Well there are now 53 bytes over the 16K limit.
Always amazing. Found some nice similarities in the T CHAN/TV_DATA code.

The only way I could get under 16K was to go back to the old sgr routine :-(
This was, however, merely an indulgence as I believe this was once in
the 7ZX81 until the exact same situation arose as has occured now.

Unless there are bugs, I doubt there will be any more updates for months.
The only outstanding task is to SAVE/LOAD programs using the new channels.

I stuck the 2-byte STOP command between the restarts eventually. I still
have 5-byte and 3-byte unused sections in there. Mail me if you can think of
a use for them - geoff{at}wearmouth{dot}demon{dot}co{dot}uk

Somewhat belatedly PEEK 9 gives release number - currently 31.

26-SEP-2002
Corrected errors in proposed syntax.

01-0CT-2002
Abandoned Interface 1 compatible SAVE/LOAD syntax
The "new" syntax will be OPEN #7,"n:2" : SAVE #7; "prognam" : CLOSE #7

02-0CT-2002

Implemented SAVE/LOAD/MERGE/VERIFY from network and RS232 (both untested).
Changed Error message for error code R: to just 'Loading error'

Fixed Graphics mode bug caused by ROM space pruning (credit: Andrew Owen) .

03-0CT-2002
Saving and Listing to RS232 seems to work OK but not Loading.
This update contains a partial fix.

06-0CT-2002
This version has 10 spare ROM bytes.

08-0CT-2002
This has about 20 spare bytes and isolates $1708.

13-0CT-2002
Improve documentation.
Apply ROM space saving techniques from James Smith.

17-0CT-2002
Apply more ROM space saving techniques from James Smith.

’

MAKE ROOM now increments HL which was almost always the next instruction.
Trying to get enough room to bring back the fast square roots and tidy up.

18-0CT-2002
Isolate location $1708 again.

27-0CT-2002
Add the FORMAT routines of James Smith.
About seven bytes overdrawn.

28-0CT-2002
reduce object code to 16384 bytes using techniques provided by James.

09-NOV-2002
Simplify K-DECODE to solve repeating key problem. (Reported by Andrew Owen)
Rectify CLOSE A to support 13 ZX printer buffers.

10-NOV-2002

Change FORMAT command to use FORMAT "channel specifier"; number
Created new class routine CLASS 0C to allow choice of separators.
Make OPEN a CLASS-05 routine and allow OPEN #3,"p" and

OPEN #8,"n",6 with full syntax checking

This creates almost enough room to bring back the fast square roots.

11-NOV-2002
Exploit the new CLASS 0C and EXPT SEP routines to conserve ROM space.

13-NOV-2002
Optimize Newton Raphson square roots but use old ones for now, as although
the new ones fit, they leave little room for development. 59 bytes spare.

15-NOV-2002

At the suggestion of James Smith, now that everything is in one ROM, use

the PO _SAVE routine for recursive printing of spaces in the text channel TAB
and comma control routines. So create new routine PO _SV SP as the preceding
instruction loads A with a space. What James can save I can squander.
Rejoice in FORMAT "k",<pip> to set the keyboard beep. On second thoughts...

Output from the RealSpec emulator SERIAL.BIN file.
10 OPEN #4,"t"
20 LIST #4
30 PRINT #4,,"Hi"
40 PRINT #4;TAB 17;"There"
50 CLOSE #4

17-NOV-2002
PO RIGHT shortened. FORMAT K removed :-)

22-NOv-2002
'exchange' shortened, Some new routines to modularize common code.
100 bytes free

24-NOV-2002

Added verification from RS232 and Network.

ED-RIGHT feature fixed. Reported by Andrew Owen.

Emulator tape support abandoned. Just snapshots (.SNA) and not those from a
normal Spectrum.

27-NOV-2002
Fixed a ZX Printer 'feature' revealed by the new VBSpec emulator

30-NOV-2002
ZX Printer location $0F24 made standard for new SPIN emulator (fast mode).

01-DEC-2002
Add 'CLEAR #' command to clear all streams.

Any ZX Spectrum buffers are flushed first which is interesting in the new
paperless ZX environment.

03-DEC-2002

Woohoo! a CAT command. The Spectrum should have had this as standard.
This version catalogs the streams to the screen.

Not a lot of detail but give me the space. Ten bytes free.

04-DEC-2002
Banner above the CAT

07-DEC-2002
CAT with free memory report. Looks good.

Once you've used this, it is difficult to give it up.
I wonder...

08-DEC-2002
OPEN #7,"n" is now rejected, as previously, without a station but there is
no room for a 'Missing station number' report.

10-DEC-2002
Minor improvements. ERASE gives error and not CAT.

14-DEC-2002
More tweaks and document flags. Enter test phase.

15-DEC-2002
Enough room for the fast square roots. Even 'ln' has been optimized.

22-DEC-2002
Tidy and format code.

23-DEC-2002
Trim COPY-BUFF by one byte and clean up.

25-DEC-2002
Fix bug in standard ROM at start of INPUT. Stream 1 is designated as the
user's input stream as per original designer's comments.

26-DEC-2002

Allow OPEN #0,"n";2 so that commands can be accepted from another Spectrum
as per Steven Vickers's remarks in the Pitman Pocket Guide.

The network now sends the buffer on receipt of a carriage return.

Scrapped the FREE MEMORY TEST - CAT will do just fine.

28-DEC-2002
The NMI service routine now closes stream 1 in a proper fashion without
incurring a memory leak.

29-DEC-2002

Correct a pathing error in the revised scrolling routine.

Tidy up initialization of BAUD rate. More testing.

Correct stack corruption in DISP _MSG. Loads from network with messages now.
Continue testing LOAD and SAVE.

Commands LOAD, MERGE, VERIFY and SAVE all work ok from streams.

01-JAN-2003
Free up some spare space. TAG important labels.

09-JAN-2003
Remove RST 18H after scanning because it's there. Freed bytes not used.
Tidy up CO TEMP some of which had been made obsolete earlier.

10-JAN-2003
Found a natural subroutine to check for a right-hand bracket.

23-JAN-2003

Correct letter in BCHAN DAT.

Correct label in BCHAN OUT - Saves and Loads OK to RS232 "B" in WinZ80.
Note. this only works if the Interfacel hardware is selected - the Interface
ROM paging has been avoided for this reason.

02-FEB-2003

Network header checksum created (accidentally omitted) one less byte of RAM.
Cleaner NMI handler written performs a warm reset regaining standard memory.
Restores all initial channels without memory leaks.

Reclaims any dynamic buffers attached to them.

It then performs a warm reset by joining at the initialization of CHARS.
This code which appears clumsy in the standard Spectrum finally makes sense.
Then invokes MAIN G directly. Tested WinZ8O0.

Also ROM tested in new Spectaculator 4.0 and ZX Printer routines work fine.
Also NMI Warm Reset tested with SPIN emulator - F5 key - works great.

23-FEB-2002

Fixed INKEYS$#0 Error. Credit Toni Baker.

Although Vickers says that this is intended for channels other than the
keyboard, it should really give some functionality when used with any device.
The returned key value is of little use and subject to the values of REPPER
and REPDEL and not the same as INKEYS$ which always reads the keyboard
directly.

