
; ***
; ** An Assembly File to generate a 16K Custom ROM for the ZX Spectrum **
; ***

; THE 16K "SEA CHANGE" ZX MINIMAL ROM

; -------------------------
; Last updated: 23-FEB-2003
; -------------------------

; Mission Statement
; -----------------
; To produce a user-friendly operating system for a colour computer to exploit
; the hardware available in the early 1980s. Apart from a few sensible
; alphabetical restrictions, there should be no other limitations other than
; available memory. All the computer's unused memory should be placed at the
; disposal of the user after each statement has executed. Whenever the
; interpreter is expecting a number or a string, then an expression of the
; same type can be substituted ad infinitum.

; This is a "Concept Computer" and the ROM may not recognize the format of
; programs saved from a conventional ZX Spectrum whether they have been saved
; as tapes or snapshots.
; This implementation does not try to maintain common routine addresses such
; as $09F4. Nor are the System Variables compatible with the BASIC manual.
; With the exception of those programs written in BASIC, third-party software
; is unlikely to run on this platform.

; This program is a re-arrangement of other people's code, including the
; open standard "Sinclair Network Standard" and remains the copyright of
; Amstrad PLC and Sinclair Research Ltd.

; TASM cross-assembler directives.
; (comment out, perhaps, for other assemblers - see Notes at end.)

#define DEFB .BYTE
#define DEFW .WORD
#define DEFM .TEXT
#define ORG .ORG
#define EQU .EQU
#define equ .EQU

ORG 0000

;***
;** Part 1. RESTART ROUTINES AND TABLES **
;***

; -----------
; THE 'START'
; -----------
; At switch on, the Z80 chip is in Interrupt Mode 0.
; It needs to be placed in Interrupt Mode 1.
; This location can also be 'called' to reset the machine.
; Typically with PRINT USR 0.

L0000

START DI ; Disable Interrupts.
 XOR A ; Signal coming from START.
 LD DE,$FFFF ; Set pointer to top of possible physical RAM.
 JP START_NEW ; Jump forward to common code at START_NEW.

; -----------------------
; THE OLD 'ERROR' RESTART
; -----------------------
; Note. The ERROR restart is to be moved to L0030.
; An instruction fetch on address $0008 may page in a peripheral ROM such as
; the Sinclair Interface 1 or Disciple Disk Interface. This would now be
; disastrous as none of the routines it uses in this ROM are where they used
; to be. Also the network and RS232 are now controlled from this ROM.
; The shadow ROM could also paged by an instruction fetch on address $1708.
; Since this restart is unused, just stick a return here. Leave room for an
; error report but for now use location nine for release number.
; The command PRINT PEEK 9 gives release number.

L0008

RESTART8 RET ;+ Disabled.

 DEFB 74 ;+ unused - but for now has release number.

 DEFB $FF, $FF, $FF ;+ unused
 DEFB $FF, $FF, $FF ;+ unused

; -----------------------------
; THE 'PRINT CHARACTER' RESTART
; -----------------------------
; The A register holds the code of the character that is to be sent to
; the output stream of the current channel. The alternate register set is
; used to output a character in the A register so there is no need to
; preserve any of the current main registers (HL, DE, BC).
; This restart is used 21 times.

L0010

PRINT_A JP PRINT_A_2 ; Jump forward to continue at PRINT_A_2.

; ---

;;; DEFB $FF, $FF, $FF ; was unused.
;;; DEFB $FF, $FF ; was unused.

; This 5-byte routine is part of the new FORMAT command and has been moved
; here to exploit spare space. (JS)

FORMAT_T LD A,C ;+ Get user-supplied TAB width
 LD ($5BB8),A ;+ Set it
 RET ;+ Return.

; -------------------------------
; THE 'COLLECT CHARACTER' RESTART
; -------------------------------
; The contents of the location currently addressed by CH_ADD are fetched.
; A return is made if the value represents a character that has
; relevance to the BASIC parser. Otherwise CH_ADD is incremented and the
; tests repeated. CH_ADD will be addressing somewhere -
; 1) in the BASIC program area during line execution.
; 2) in workspace if evaluating, for example, a string expression.
; 3) in the edit buffer if parsing a direct command or a new BASIC line.
; 4) in workspace if accepting input but not that from INPUT LINE.

L0018

GET_CHAR LD HL,($5B5D) ; Fetch the address from CH_ADD.
 LD A,(HL) ; Use it to pick up the current character.

TEST_CHAR CALL SKIP_OVER ; Routine SKIP_OVER tests if the character is
 ; relevant.
 RET NC ; Return if it is significant.

; ------------------------------------
; THE 'COLLECT NEXT CHARACTER' RESTART
; ------------------------------------
; As the BASIC commands and expressions are interpreted, this routine is
; called repeatedly to step along the line. It is used 83 times.

L0020

NEXT_CHAR CALL CH_ADD__1 ; Routine CH_ADD+1 fetches the next immediate
 ; character.

 JR TEST_CHAR ; Jump back to TEST_CHAR until a valid
 ; character is found.

; ---

; ------------------
; THE 'STOP' COMMAND
; ------------------
; Command Syntax: STOP
; One of the shortest and least used commands. As with 'OK' not an error.
; This has been moved here as two bytes were unused.

STOP RST 30H ; ERROR_1
 DEFB $08 ; Error Report: STOP statement

;;; DEFB $FF,$FF ; was unused
 DEFB $FF ; unused.

; -----------------------
; THE 'CALCULATE' RESTART
; -----------------------
; This restart enters the Spectrum's internal, floating-point,
; stack-based, FORTH-like language.
; It is further used recursively from within the calculator.
; It is used on 77 occasions.

L0028

FP_CALC JP CALCULATE ; Jump forward to the CALCULATE routine.

; ---

;;; DEFB $ff, $ff, $ff ; Spare - note that on the ZX81, space being a
;;; DEFB $ff, $ff ; little cramped, these same locations were
;;; ; used for the five-byte 'end-calc' operator.
;;; ; Note. This idea may be re-visited!

; -------------------------
; THE 'END_CALC' SUBROUTINE
; -------------------------
; (offset: $38 'end-calc')
; The end-calc literal terminates a mini-program written in the Spectrum's
; internal language.

end_calc POP AF ;+ Drop the calculator return address RE_ENTRY
 EXX ;+ Switch to the other set.

 EX (SP),HL ;+ Transfer H'L' to machine stack for the
 ;+ return address.
 ;+ When exiting recursion, then the previous
 ;+ pointer is transferred to H'L'.

 EXX ;+ Switch back to main set.
 RET ;+ Return.

; ---------------------------
; THE 'RST 30H' ERROR RESTART
; ---------------------------
; This restart is to be used for error handling without paging in Interface1
; while, at the same time, allowing access to its hardware.
; The error pointer is made to point to the position of the error to enable
; the editor to highlight the error position if it occurred during syntax
; checking. It is used at 37 places in the program although not all errors
; pass through here.

L0030

ERROR_1 LD HL,($5B5D) ;+ Fetch the character address from CH_ADD.
 LD ($5B5F),HL ;+ Copy it to the error pointer X_PTR.

 JR ERROR_2 ;+ Forward to continue at ERROR_2.

; --------------------------------
; THE 'MASKABLE INTERRUPT' ROUTINE
; --------------------------------
; This routine increments the Spectrum's three-byte FRAMES counter
; fifty times a second (sixty times a second in the USA).
; Both this routine and the called KEYBOARD subroutine use
; the IY register to access system variables and flags so a user-written
; program must disable interrupts to make use of the IY register.

L0038 ; Note Interrupts are automatically disabled.

MASK_INT PUSH AF ; Save the registers that will be used.
 PUSH HL ;

;;; LD HL,($5B78) ; Fetch the first two bytes at FRAMES1.
;;; INC HL ; Increment lowest two bytes of counter.
;;; LD ($5B78),HL ; Place back in FRAMES1.
;;; LD A,H ; Test if the result was zero.
;;; OR L ;
;;; JR NZ,KEY_INT ; Forward, if not, to KEY_INT
;;;
;;; INC (IY+$40) ; otherwise increment FRAMES3 the third byte.

; Note. the above code has been replaced with this neater and shorter
; sequence which also avoids using the IY register.

 LD HL,$5B78 ;+ Address FRAMES
 INC (HL) ;+ Increment low byte of counter.
 JR NZ,KEY_INT ;+ Forward, if not back to zero, to KEY_INT.

 INC L ;+ Increment address using 4 clock cycles.
 INC (HL) ;+ Increment middle counter.
 JR NZ,KEY_INT ;+ Forward, if not back to zero, to KEY_INT.

 INC L ;+ All the FRAMES addresses have same high byte.
 INC (HL) ;+ Increment last counter.

; Now save the rest of the main registers and read and decode the keyboard.

KEY_INT PUSH BC ; Save the other main registers.
 PUSH DE ;

 CALL KEYBOARD ; Routine KEYBOARD executes a stage in the
 ; process of reading a key-press.
 ; Only registers HL, DE, BC and AF can be used.

 POP DE ; Restore all four registers.
 POP BC ;

 POP HL ;
 POP AF ;

 EI ; Enable Interrupts.
 RET ; Return.

; ---------------------
; THE 'ERROR_2' ROUTINE
; ---------------------
; A continuation of the code at ERROR_1.
; The error code is stored and, after clearing down the calculator stack, an
; indirect jump is made to the Error Stack Pointer to handle the error.

ERROR_2 POP HL ; Drop the return address - the location after
 ; the error restart.
 LD L,(HL) ; Fetch the error code that follows.

; Note. this entry point is used when out of memory at REPORT_4.
; The L register has been loaded with the report code but X_PTR is not
; updated.

ERROR_3 LD (IY+$00),L ; Store it in the system variable ERR_NR.
 LD SP,($5B3D) ; ERR_SP points to an error handler on the
 ; machine stack. There may be a hierarchy
 ; of routines.
 ; To MAIN_4 initially at base.
 ; or REPORT_G on line entry.
 ; or ED_ERROR when editing.
 ; or ED_FULL during ed-enter.
 ; or IN_VAR_1 during runtime input etc.

 JP SET_STK ; Jump to SET_STK to clear the calculator
 ; stack and reset MEM to usual place in the
 ; systems variables area and then indirectly to
 ; one of the addresses above.

; -----
; SPARE
; -----

 DEFB $FF, $FF, $FF, ;+ Spare
 DEFB $FF, $FF, $FF, ;+
 DEFB $FF, $FF, $FF, ;+

L0066

; ------------------------------------
; THE 'NON-MASKABLE INTERRUPT' ROUTINE
; ------------------------------------
; There was no NMI switch on the standard Spectrum.
; There was however a well-developed NMI routine, reproduced here with one
; major difference. On the original Spectrum the branch to the address held
; in the NMIADD System Variables was taken if the address was zero and not,

; as expected, if the address was non-zero.
;
; Sinclair Research said that, since they had never advertised the NMI, they
; had no plans to fix the error "until the opportunity arose". In fact, the
; location NMIADD was later used by Interface 1 for other purposes.
; On later Amstrad Spectrums, and the Brazilian Spectrum, the logic of this
; routine was reversed but not as at first intended.
;
; The original functionality is resurrected in full here. The clue is the
; rather clumsy initialization of CHARS in the code at RAM_SET . The
; NMIADD System variable now holds the address NMI_PTR by default and the
; code there provides for a Warm Reset which re-initializes the system
; without losing the BASIC program.
;
; In all probability the NMI button would have been on the advertized
; RS232/Network board.
;
; Software houses who didn't want their programs broken into could presumably
; set NMIADD to zero to defeat hackers.

NMI PUSH AF ; Save the
 PUSH HL ; registers.
 LD HL,($5BB0) ; Fetch the system variable NMIADD.
 LD A,H ; Test address
 OR L ; for zero.

;;; JR NZ,NMI_2 ;- Skip to NO_NMI if both bytes default N Z!

 JR Z,NMI_2 ;+ Skip to NO_NMI if both bytes default ZERO.

 JP (HL) ; else jump to routine.

NMI_2 POP HL ; Restore the
 POP AF ; registers.

NMI_END RETN ; Return to previous interrupt state.

; ---------------------------
; THE 'CH ADD + 1' SUBROUTINE
; ---------------------------
; This subroutine is called from RST 20, and three times from elsewhere
; to fetch the next immediate character following the current valid character
; address and update the associated system variable.
; The entry point TEMP_PTR1 is used from the SCANNING routine.
; Both TEMP_PTR1 and TEMP_PTR2 are used by the READ command routine.

CH_ADD__1 LD HL,($5B5D) ; fetch address from CH_ADD.

TEMP_PTR1 INC HL ; increase the character address by one.

TEMP_PTR2
 LD A,(HL) ; load character to A from HL.

TEMP_PTR3 LD ($5B5D),HL ; update CH_ADD with character address.

 RET ; and return.

; --------------------------
; THE 'SKIP OVER' SUBROUTINE
; --------------------------
; This subroutine is called once from RST 18 to skip over white-space and
; other characters irrelevant to the parsing of a BASIC line etc.
; Initially the A register holds the character to be considered and HL holds
; its address which will not be within quoted text when a BASIC line is

; parsed.
; Although the 'tab' and 'at' characters will not appear in a BASIC line,
; they could be present in a string expression, and in other situations.
; Note. although white-space is usually placed in a program to indent loops
; and make it more readable, it can also be used for the opposite effect and
; spaces may appear in variable names although the parser never sees them.
; It is this routine that helps make the variables 'Anum bEr5 3BUS' and
; 'a number 53 bus' appear the same to the parser.

SKIP_OVER CP $21 ; test if higher than space.
 RET NC ; return with carry clear if higher.

 CP $0D ; carriage return ?
 RET Z ; return, if so, also with carry clear.

 ; all other characters have no relevance
 ; to the parser and must be returned with
 ; carry set.

 CP $10 ; test if 0-15d
 RET C ; return, if so, with carry set.

 CP $18 ; test if 24-32d
 CCF ; complement carry flag.
 RET C ; return, if so, with carry set.

 ; now leaves 16d-23d

 INC HL ; all above have at least one extra character
 ; to be stepped over.

 CP $16 ; controls 22d ('at') and 23d ('tab') have two.
 JR C,SKIPS ; forward to SKIPS with ink, paper, flash,
 ; bright, inverse or over controls.
 ; Note. the high byte of tab is for RS232 only.

 INC HL ; step over the second character of 'at'/'tab'.

SKIPS SCF ; set the carry flag

 JR TEMP_PTR3 ;+ back to similar code above.

;;; LD ($5B5D),HL ; update the CH_ADD system variable.
;;; RET ; return with carry set.

; ------------------
; THE 'TOKEN' TABLES
; ------------------
; The tokenized characters 134d (RND) to 255d (COPY) are expanded using
; this table. The last byte of a token is inverted to denote the end of
; the word. The first is an inverted step-over byte.

TKN_TABLE DEFB '?'+$80
 DEFM "RN"
 DEFB 'D'+$80
 DEFM "INKEY"
 DEFB '$'+$80
 DEFB 'P','I'+$80
 DEFB 'F','N'+$80
 DEFM "POIN"
 DEFB 'T'+$80
 DEFM "SCREEN"
 DEFB '$'+$80

 DEFM "ATT"
 DEFB 'R'+$80
 DEFB 'A','T'+$80
 DEFM "TA"
 DEFB 'B'+$80
 DEFM "VAL"
 DEFB '$'+$80
 DEFM "COD"
 DEFB 'E'+$80
 DEFM "VA"
 DEFB 'L'+$80
 DEFM "LE"
 DEFB 'N'+$80
 DEFM "SI"
 DEFB 'N'+$80
 DEFM "CO"
 DEFB 'S'+$80
 DEFM "TA"
 DEFB 'N'+$80
 DEFM "AS"
 DEFB 'N'+$80
 DEFM "AC"
 DEFB 'S'+$80
 DEFM "AT"
 DEFB 'N'+$80
 DEFB 'L','N'+$80
 DEFM "EX"
 DEFB 'P'+$80
 DEFM "IN"
 DEFB 'T'+$80
 DEFM "SQ"
 DEFB 'R'+$80
 DEFM "SG"
 DEFB 'N'+$80
 DEFM "AB"
 DEFB 'S'+$80
 DEFM "PEE"
 DEFB 'K'+$80
 DEFB 'I','N'+$80
 DEFM "US"
 DEFB 'R'+$80
 DEFM "STR"
 DEFB '$'+$80
 DEFM "CHR"
 DEFB '$'+$80
 DEFM "NO"
 DEFB 'T'+$80
 DEFM "BI"
 DEFB 'N'+$80

; The previous 32 function-type words are printed without a leading space
; The following have a leading space if they begin with a letter

 DEFB 'O','R'+$80
 DEFM "AN"
 DEFB 'D'+$80
 DEFB $3C,'='+$80 ; <=
 DEFB $3E,'='+$80 ; >=
 DEFB $3C,$3E+$80 ; <>
 DEFM "LIN"
 DEFB 'E'+$80
 DEFM "THE"
 DEFB 'N'+$80
 DEFB 'T','O'+$80

 DEFM "STE"
 DEFB 'P'+$80
 DEFM "DEF F"
 DEFB 'N'+$80
 DEFM "CA"
 DEFB 'T'+$80
 DEFM "FORMA"
 DEFB 'T'+$80
 DEFM "MOV"
 DEFB 'E'+$80
 DEFM "ERAS"
 DEFB 'E'+$80
 DEFM "OPEN "
 DEFB '#'+$80
 DEFM "CLOSE "
 DEFB '#'+$80
 DEFM "MERG"
 DEFB 'E'+$80
 DEFM "VERIF"
 DEFB 'Y'+$80
 DEFM "BEE"
 DEFB 'P'+$80
 DEFM "CIRCL"
 DEFB 'E'+$80
 DEFM "IN"
 DEFB 'K'+$80
 DEFM "PAPE"
 DEFB 'R'+$80
 DEFM "FLAS"
 DEFB 'H'+$80
 DEFM "BRIGH"
 DEFB 'T'+$80
 DEFM "INVERS"
 DEFB 'E'+$80
 DEFM "OVE"
 DEFB 'R'+$80
 DEFM "OU"
 DEFB 'T'+$80
 DEFM "LPRIN"
 DEFB 'T'+$80
 DEFM "LLIS"
 DEFB 'T'+$80
 DEFM "STO"
 DEFB 'P'+$80
 DEFM "REA"
 DEFB 'D'+$80
 DEFM "DAT"
 DEFB 'A'+$80
 DEFM "RESTOR"
 DEFB 'E'+$80
 DEFM "NE"
 DEFB 'W'+$80
 DEFM "BORDE"
 DEFB 'R'+$80
 DEFM "CONTINU"
 DEFB 'E'+$80
 DEFM "DI"
 DEFB 'M'+$80
 DEFM "RE"
 DEFB 'M'+$80
 DEFM "FO"
 DEFB 'R'+$80
 DEFM "GO T"
 DEFB 'O'+$80

 DEFM "GO SU"
 DEFB 'B'+$80
 DEFM "INPU"
 DEFB 'T'+$80
 DEFM "LOA"
 DEFB 'D'+$80
 DEFM "LIS"
 DEFB 'T'+$80
 DEFM "LE"
 DEFB 'T'+$80
 DEFM "PAUS"
 DEFB 'E'+$80
 DEFM "NEX"
 DEFB 'T'+$80
 DEFM "POK"
 DEFB 'E'+$80
 DEFM "PRIN"
 DEFB 'T'+$80
 DEFM "PLO"
 DEFB 'T'+$80
 DEFM "RU"
 DEFB 'N'+$80
 DEFM "SAV"
 DEFB 'E'+$80
 DEFM "RANDOMIZ"
 DEFB 'E'+$80
 DEFB 'I','F'+$80
 DEFM "CL"
 DEFB 'S'+$80
 DEFM "DRA"
 DEFB 'W'+$80
 DEFM "CLEA"
 DEFB 'R'+$80
 DEFM "RETUR"
 DEFB 'N'+$80
 DEFM "COP"
 DEFB 'Y'+$80

; ----------------
; THE 'KEY' TABLES
; ----------------
; These six look-up tables are used by the keyboard reading routine
; to decode the key values.
;
; The first table contains the maps for the 39 keys of the standard
; 40-key Spectrum keyboard. The remaining key [SHIFT $27] is read directly.
; The keys consist of the 26 upper-case alphabetic characters, the 10 digit
; keys and the space, ENTER and symbol shift key.
; Unshifted alphabetic keys have $20 added to the value.
; The keywords for the main alphabetic keys are obtained by adding $A5 to
; the values obtained from this table.

MAIN_KEYS DEFB $42 ; B
 DEFB $48 ; H
 DEFB $59 ; Y
 DEFB $36 ; 6
 DEFB $35 ; 5
 DEFB $54 ; T
 DEFB $47 ; G
 DEFB $56 ; V
 DEFB $4E ; N
 DEFB $4A ; J
 DEFB $55 ; U
 DEFB $37 ; 7

 DEFB $34 ; 4
 DEFB $52 ; R
 DEFB $46 ; F
 DEFB $43 ; C
 DEFB $4D ; M
 DEFB $4B ; K
 DEFB $49 ; I
 DEFB $38 ; 8
 DEFB $33 ; 3
 DEFB $45 ; E
 DEFB $44 ; D
 DEFB $58 ; X
 DEFB $0E ; SYMBOL SHIFT
 DEFB $4C ; L
 DEFB $4F ; O
 DEFB $39 ; 9
 DEFB $32 ; 2
 DEFB $57 ; W
 DEFB $53 ; S
 DEFB $5A ; Z
 DEFB $20 ; SPACE
 DEFB $0D ; ENTER
 DEFB $50 ; P
 DEFB $30 ; 0
 DEFB $31 ; 1
 DEFB $51 ; Q
 DEFB $41 ; A

; The 26 unshifted extended mode keys for the alphabetic characters.
; The green keywords on the original keyboard.
E_UNSHIFT DEFB $E3 ; READ
 DEFB $C4 ; BIN
 DEFB $E0 ; LPRINT
 DEFB $E4 ; DATA
 DEFB $B4 ; TAN
 DEFB $BC ; SGN
 DEFB $BD ; ABS
 DEFB $BB ; SQR
 DEFB $AF ; CODE
 DEFB $B0 ; VAL
 DEFB $B1 ; LEN
 DEFB $C0 ; USR
 DEFB $A7 ; PI
 DEFB $A6 ; INKEY$
 DEFB $BE ; PEEK
 DEFB $AD ; TAB
 DEFB $B2 ; SIN
 DEFB $BA ; INT
 DEFB $E5 ; RESTORE
 DEFB $A5 ; RND
 DEFB $C2 ; CHR$
 DEFB $E1 ; LLIST
 DEFB $B3 ; COS
 DEFB $B9 ; EXP
 DEFB $C1 ; STR$
 DEFB $B8 ; LN

; The 26 shifted extended mode keys for the alphabetic characters.
; The red keywords below keys on the original keyboard.
EXT_SHIFT DEFB $7E ; ~
 DEFB $DC ; BRIGHT
 DEFB $DA ; PAPER

 DEFB $5C ; \
 DEFB $B7 ; ATN
 DEFB $7B ; {
 DEFB $7D ; }
 DEFB $D8 ; CIRCLE
 DEFB $BF ; IN
 DEFB $AE ; VAL$
 DEFB $AA ; SCREEN$
 DEFB $AB ; ATTR
 DEFB $DD ; INVERSE
 DEFB $DE ; OVER
 DEFB $DF ; OUT
 DEFB $7F ; (Copyright character)
 DEFB $B5 ; ASN
 DEFB $D6 ; VERIFY
 DEFB $7C ; |
 DEFB $D5 ; MERGE
 DEFB $5D ;]
 DEFB $DB ; FLASH
 DEFB $B6 ; ACS
 DEFB $D9 ; INK
 DEFB $5B ; [
 DEFB $D7 ; BEEP

; The ten control codes assigned to the top line of digits when the shift
; key is pressed.
CTL_CODES DEFB $0C ; DELETE
 DEFB $07 ; EDIT
 DEFB $06 ; CAPS LOCK
 DEFB $04 ; TRUE VIDEO
 DEFB $05 ; INVERSE VIDEO
 DEFB $08 ; CURSOR LEFT
 DEFB $0A ; CURSOR DOWN
 DEFB $0B ; CURSOR UP
 DEFB $09 ; CURSOR RIGHT
 DEFB $0F ; GRAPHICS

; The 26 red symbols assigned to the alphabetic characters of the keyboard.
; The ten single-character digit symbols are converted without the aid of
; a table using subtraction and minor manipulation.
SYM_CODES DEFB $E2 ; STOP
 DEFB $2A ; *
 DEFB $3F ; ?
 DEFB $CD ; STEP
 DEFB $C8 ; >=
 DEFB $CC ; TO
 DEFB $CB ; THEN
 DEFB $5E ; ^
 DEFB $AC ; AT
 DEFB $2D ; -
 DEFB $2B ; +
 DEFB $3D ; =
 DEFB $2E ; .
 DEFB $2C ; ,
 DEFB $3B ; ;
 DEFB $22 ; "
 DEFB $C7 ; <=
 DEFB $3C ; <
 DEFB $C3 ; NOT
 DEFB $3E ; >
 DEFB $C5 ; OR
 DEFB $2F ; /

 DEFB $C9 ; <>
 DEFB $60 ; pound
 DEFB $C6 ; AND
 DEFB $3A ; :

; The ten keywords assigned to the digits in extended mode.
; The remaining red keywords below the keys.
E_DIGITS DEFB $D0 ; FORMAT
 DEFB $CE ; DEF FN
 DEFB $A8 ; FN
 DEFB $CA ; LINE
 DEFB $D3 ; OPEN #
 DEFB $D4 ; CLOSE #
 DEFB $D1 ; MOVE
 DEFB $D2 ; ERASE
 DEFB $A9 ; POINT
 DEFB $CF ; CAT

;*******************************
;** Part 2. KEYBOARD ROUTINES **
;*******************************

; Using shift keys and a combination of modes the Spectrum 40-key keyboard
; can be mapped to 256 input characters

; ---
;
; 0 1 2 3 4 -Bits- 4 3 2 1 0
; PORT PORT
;
; F7FE [1] [2] [3] [4] [5] | [6] [7] [8] [9] [0] EFFE
; ^ | v
; FBFE [Q] [W] [E] [R] [T] | [Y] [U] [I] [O] [P] DFFE
; ^ | v
; FDFE [A] [S] [D] [F] [G] | [H] [J] [K] [L] [ENT] BFFE
; ^ | v
; FEFE [SHI] [Z] [X] [C] [V] | [B] [N] [M] [sym] [SPC] 7FFE
; ^ $27 $18 v
; Start End
; 00100111 00011000
;
; ---
; The above map may help in reading.
; The neat arrangement of ports means that the B register need only be
; rotated left to work up the left hand side and then down the right
; hand side of the keyboard. When the reset bit drops into the carry
; then all 8 half-rows have been read. Shift is the first key to be
; read. The lower six bits of the shifts are unambiguous.

; -------------------------------
; THE 'KEYBOARD SCANNING' ROUTINE
; -------------------------------
; From keyboard and s-inkey$
; Returns 1 or 2 keys in DE, most significant shift first if any
; key values 0-39 else 255

KEY_SCAN LD L,$2F ; initial key value
 ; valid values are obtained by subtracting
 ; eight five times.
 LD DE,$FFFF ; a buffer to receive 2 keys.

 LD BC,$FEFE ; the commencing port address
 ; B holds 11111110 initially and is also

 ; used to count the 8 half-rows
KEY_LINE IN A,(C) ; read the port to A - bits will be reset
 ; if a key is pressed else set.
 CPL ; complement - pressed key-bits are now set
 AND $1F ; apply 00011111 mask to pick up the
 ; relevant set bits.

 JR Z,KEY_DONE ; forward to KEY_DONE if zero and therefore
 ; no keys pressed in row at all.

 LD H,A ; transfer row bits to H
 LD A,L ; load the initial key value to A

KEY_3KEYS INC D ; now test the key buffer
 RET NZ ; if we have collected 2 keys already
 ; then too many so quit.

KEY_BITS SUB $08 ; subtract 8 from the key value
 ; cycling through key values (top = $27)
 ; e.g. 2F> 27>1F>17>0F>07
 ; 2E> 26>1E>16>0E>06
 SRL H ; shift key bits right into carry.
 JR NC,KEY_BITS ; back, if not pressed, to KEY_BITS
 ; but if pressed we have a value (0_39d)

 LD D,E ; transfer a possible previous key to D
 LD E,A ; transfer the new key to E
 JR NZ,KEY_3KEYS ; back to KEY_3KEYS if there were more
 ; set bits - H was not yet zero.

KEY_DONE DEC L ; cycles 2F>2E>2D>2C>2B>2A>29>28 for
 ; each half-row.
 RLC B ; form next port address e.g. FEFE > FDFE
 JR C,KEY_LINE ; back to KEY_LINE if still more rows to do.

 LD A,D ; now test if D is still FF ?
 INC A ; if it is zero we have at most 1 key
 ; range now $01-$28 (1-40d)
 RET Z ; return if one key or no key.

 CP $28 ; is it capsshift (was $27) ?
 RET Z ; return if so.

 CP $19 ; is it symbol shift (was $18) ?
 RET Z ; return also

 LD A,E ; now test E
 LD E,D ; but first switch
 LD D,A ; the two keys.
 CP $18 ; is it symbol shift ?
 RET ; return (with zero set if it was).
 ; but with symbol shift now in D

; ----------------------
; THE 'KEYBOARD' ROUTINE
; ----------------------
; Called from the interrupt 50 times a second.
;

KEYBOARD CALL KEY_SCAN ; routine KEY_SCAN

 RET NZ ; return if invalid combinations

; Decrease the counters within the two key-state maps

; as this could cause one to become free.
; If the keyboard has not been pressed during the last five interrupts
; then both sets will be free.

 LD HL,$5B00 ; point to KSTATE_0

K_ST_LOOP BIT 7,(HL) ; is it free ? (i.e. $FF)
 JR NZ,K_CH_SET ; forward, if so, to K_CH_SET

 INC HL ; address the 5-counter
 DEC (HL) ; decrease the counter
 DEC HL ; step back

 JR NZ,K_CH_SET ; forward, if not at end of count, to K_CH_SET

 LD (HL),$FF ; else mark this particular map free.

K_CH_SET LD A,L ; make a copy of the low address byte.

;;; LD HL,$5B04 ;- point to KSTATE_4 (Note. ld l,$04 would do)

 LD L,$04 ;+ point low order byte to KSTATE_4

 CP L ; have both sets been considered ?
 JR NZ,K_ST_LOOP ; back to K_ST_LOOP to consider this 2nd set

; Now the raw key (0-38d) is converted to a main key (uppercase).

 CALL K_TEST ; routine K_TEST to get main key in A

 RET NC ; return if just a single shift

 LD HL,$5B00 ; point to KSTATE_0
 CP (HL) ; does the main key code match ?
 JR Z,K_REPEAT ; forward, if so, to K_REPEAT

; If not consider the second key map for a repeat.

;;; EX DE,HL ; save KSTATE_0 in DE
;;; LD HL,$5B04 ; point to KSTATE_4

 LD L,$04 ;+ point to KSTATE_4
 CP (HL) ; does the main key code match ?
 JR Z,K_REPEAT ; forward, if so, to K_REPEAT

; Having excluded a repeating key we can now consider a new key.
; The second set is always examined before the first.

 BIT 7,(HL) ; is the key map free ?
 JR NZ,K_NEW ; forward, if so, to K_NEW

;;; EX DE,HL ; bring back KSTATE_0

 LD L,$00 ;+ bring back KSTATE_0

 BIT 7,(HL) ; is it free ?

 RET Z ; return if not.
 ; as we have a key but nowhere to put it yet.

; Continue or jump to here if one of the buffers was free.

K_NEW LD E,A ; store key in E

 LD (HL),A ; place in free location
 INC HL ; advance to the interrupt counter
 LD (HL),$05 ; and initialize counter to 5
 INC HL ; advance to the delay
 LD A,($5B09) ; pick up the system variable REPDEL
 LD (HL),A ; and insert that for first repeat delay.
 INC HL ; advance to last location of state map.

;;; LD C,(IY+$07) ; pick up MODE (3 bytes)
;;; LD D,(IY+$01) ; pick up FLAGS (3 bytes)

 PUSH HL ; save state map location
 ; Note. could now have used, to avoid IY,
 ; ld l,$41; ld c,(hl); ld l,$3B; ld d,(hl).
 ; six and two threes of course.

 LD L,$41 ;+ Avoid IY usage
 LD C,(HL) ;+ Load C register with system variable MODE.
 LD L,$3B ;+
 LD D,(HL) ;+ Load D register with system variable FLAGS.

 CALL K_DECODE ; routine K_DECODE

 POP HL ; restore map pointer
 LD (HL),A ; put the decoded key in last location of map.

K_END LD ($5B08),A ; update LASTK system variable.

;;; SET 5,(IY+$01) ;- update FLAGS - signal a new key.

 LD L,$3B ;+ HL now addresses FLAGS
 SET 5,(HL) ;+ signal new key.

 RET ; return to interrupt routine.

; -----------------------
; THE 'REPEAT KEY' BRANCH
; -----------------------
; A possible repeat has been identified. HL addresses the raw key.
; The last location of the key map holds the decoded key from the first
; context. This could be a keyword and, with the exception of NOT, a repeat
; is syntactically incorrect and not really desirable.
; credit: Chris Thornton 1983.

K_REPEAT INC HL ; increment the map pointer to second location.
 LD (HL),$05 ; maintain interrupt counter at 5.
 INC HL ; now point to third location.
 DEC (HL) ; decrease the REPDEL value which is used to
 ; time the delay of a repeat key.

 RET NZ ; return if not yet zero.

 LD A,($5B0A) ; Fetch the system variable value REPPER.
 LD (HL),A ; For subsequent repeats REPPER will be used.

 INC HL ; Advance
 ;
 LD A,(HL) ; Pick up the key decoded possibly in another
 ; context.
 ; Note. should compare with $A5 (RND) and make
 ; a simple return if this is a keyword.
 ; e.g. cp $a5; ret nc; (3 extra bytes)

 CP $A5 ;+ Is repeat a keyword ?

 RET NC ;+ Ignore if a keyword.

 JR K_END ; Back, to accept key, at K_END

; ----------------------
; THE 'KEY_TEST' ROUTINE
; ----------------------
; This is also called from s-inkey$
; Begin by testing for a shift with no other.

K_TEST LD B,D ; Load most significant key to B - will be $FF
 ; if not shift.
 LD D,$00 ; Reset D to index into main table.
 LD A,E ; Load least significant key from E.
 CP $27 ; Is it higher than 39d ? i.e. FF
 RET NC ; return with just a shift (in B now).

 CP $18 ; is it symbol shift ?
 JR NZ,K_MAIN ; forward, if not, to K_MAIN

; but we could have just symbol shift and no other

 BIT 7,B ; is other key $FF (i.e. not shift)
 RET NZ ; return with solitary symbol shift.

K_MAIN LD HL,MAIN_KEYS ; address: MAIN_KEYS
 ADD HL,DE ; add offset 0-38
 LD A,(HL) ; pick up main key value
 SCF ; set carry flag

 RET ; return (B has other key still)

; ----------------------------------
; THE 'KEYBOARD DECODING' SUBROUTINE
; ----------------------------------
; This is also called from s-inkey$

K_DECODE LD A,E ; pick up the stored main key

K_DECODE2 CP $3A ; an arbitrary point between digits and letters
 JR C,K_DIGIT ; forward to K_DIGIT with digits, space, enter.

 DEC C ; decrease MODE (0='KLC', 1='E', 2='G')

 JP M,K_KLC_LET ; to K_KLC_LET if was zero

 JR Z,K_E_LET ; to K_E_LET if was 1 for extended letters.

; Proceed with graphic codes.
; Note. should not augment the keycode if code > 'U' ($55).
; (s-inkey$ never gets into graphics mode.)

 CP 'V' ;+ compare with non graphic keys
 JR C,ADDIT ;+ skip forward if this key has a UDG.

 XOR A ;+ set key value to zero.
 RET ;+ return with 'no key'.

ADDIT ADD A,$4F ; add offset to augment 'A' to graphics A say.
 RET ; return.
 ; Note. (but [GRAPH] V gave RND, etc).

; ---

; the jump was to here with extended mode with uppercase A-Z.

K_E_LET LD HL,E_UNSHIFT-$41; base address of E_UNSHIFT.

 INC B ; test B is it empty i.e. not a shift.

 JR Z,K_LOOK_UP ; forward, if neither shift, to K_LOOK_UP

 LD HL,EXT_SHIFT-$41; Address: EXT_SHIFT base

K_LOOK_UP LD D,$00 ; prepare to index.
 ADD HL,DE ; add the main key value.
 LD A,(HL) ; pick up other mode value.

 RET ; return.

; ---

; the jump was here with mode = 0

K_KLC_LET LD HL,SYM_CODES-$41; prepare base of sym-codes
 BIT 0,B ; shift=$27 sym-shift=$18
 JR Z,K_LOOK_UP ; back to K_LOOK_UP with symbol-shift

 BIT 3,D ; test FLAGS is it 'K' mode (from OUT_CURS)
 JR Z,K_TOKENS ; skip, if so, to K_TOKENS

;;; BIT 3,(IY+$30) ;- test FLAGS2 - consider CAPS LOCK ?

 LD HL,$5B6A ;+ Address sysvar FLAGS2 using HL not IY
 BIT 3,(HL) ;+ test FLAGS2 - consider CAPS LOCK ?

 RET NZ ; return, if so, with main code.

 INC B ; is shift being pressed ?

 RET NZ ; return if shift pressed.

 ADD A,$20 ; else convert the code to lower case.

 RET ; return.

; ---

; the jump was here for tokens

K_TOKENS ADD A,$A5 ; add offset to main code so that 'A'
 ; becomes 'NEW' etc.

 RET ; return.

; ---

; the jump was here with digits, space, enter and symbol shift (< $xx)

K_DIGIT CP $30 ; is it '0' or higher ?
 RET C ; return with space, enter and symbol-shift

 DEC C ; test MODE (was 0='KLC', 1='E', 2='G')
 JP M,K_KLC_DGT ; jump to K_KLC_DGT if was 0.

 JR NZ,K_GRA_DGT ; forward to K_GRA_DGT if mode was 2.

; continue with extended digits 0-9.

 LD HL,E_DIGITS-$30 ; base of E_DIGITS
 BIT 5,B ; test - shift=$27 sym-shift=$18
 JR Z,K_LOOK_UP ; back to K_LOOK_UP if sym-shift

 CP $38 ; is character '8' ?
 JR NC,K_8_and_9 ; to K_8_&_9 if greater than '7'

 SUB $20 ; reduce to ink range $10-$17
 INC B ; shift ?
 RET Z ; return if not.

 ADD A,$08 ; add 8 to give paper range $18 - $1F
 RET ; return

; ---

K_8_and_9 SUB $36 ; reduce to 02 and 03 bright codes
 INC B ; test if shift pressed.
 RET Z ; return if not.

 ADD A,$FE ; subtract 2 setting carry to give 0 and 1
 ; flash codes.
 RET ; Return.

; ---

; graphics mode with digits

K_GRA_DGT LD HL,CTL_CODES-$30; base address of CTL_CODES

 CP $39 ; is key '9' ?
 JR Z,K_LOOK_UP ; back to K_LOOK_UP - changed to $0F, GRAPHICS.

 CP $30 ; is key '0' ?
 JR Z,K_LOOK_UP ; back to K_LOOK_UP - changed to $0C, delete.

; for keys '0' - '7' we assign a mosaic character depending on shift.

 AND $07 ; convert character to number. 0 - 7.
 ADD A,$80 ; add offset - they start at $80

 INC B ; destructively test for shift
 RET Z ; and return if not pressed.

 XOR $0F ; toggle accumulator bits -gives range $88-$8F.
 RET ; return.

; ---

; now digits in 'KLC' mode

K_KLC_DGT INC B ; return with digit codes if neither
 RET Z ; shift key pressed.

 BIT 5,B ; test for caps shift.

 LD HL,CTL_CODES-$30; prepare base of table CTL_CODES.

 JR NZ,K_LOOK_UP ; back to K_LOOK_UP if shift pressed.

; must have been symbol shift

 SUB $10 ; for ASCII most will now be correct
 ; on a standard typewriter.

 CP $22 ; but '@' is not - see below.
 JR Z,K_at_CHAR ; forward, if so, to K_@_CHAR

 CP $20 ; character '_' is the other one that fails
 RET NZ ; return if not.

 LD A,$5F ; substitute ASCII '_'
 RET ; return.

; ---

K_at_CHAR LD A,$40 ; substitute ASCII '@'
 RET ; return.

; --
; The Spectrum Input character keys. One or two are abbreviated.
; From $00 Flash 0 to $FF COPY. The routine above has decoded all these.

; | 00 Fl0| 01 Fl1| 02 Br0| 03 Br1| 04 In0| 05 In1| 06 CAP| 07 EDT|
; | 08 LFT| 09 RIG| 0A DWN| 0B UP | 0C DEL| 0D ENT| 0E SYM| 0F GRA|
; | 10 Ik0| 11 Ik1| 12 Ik2| 13 Ik3| 14 Ik4| 15 Ik5| 16 Ik6| 17 Ik7|
; | 18 Pa0| 19 Pa1| 1A Pa2| 1B Pa3| 1C Pa4| 1D Pa5| 1E Pa6| 1F Pa7|
; | 20 SP | 21 ! | 22 " | 23 # | 24 $ | 25 % | 26 & | 27 ' |
; | 28 (| 29) | 2A * | 2B + | 2C , | 2D - | 2E . | 2F / |
; | 30 0 | 31 1 | 32 2 | 33 3 | 34 4 | 35 5 | 36 6 | 37 7 |
; | 38 8 | 39 9 | 3A : | 3B ; | 3C < | 3D = | 3E > | 3F ? |
; | 40 @ | 41 A | 42 B | 43 C | 44 D | 45 E | 46 F | 47 G |
; | 48 H | 49 I | 4A J | 4B K | 4C L | 4D M | 4E N | 4F O |
; | 50 P | 51 Q | 52 R | 53 S | 54 T | 55 U | 56 V | 57 W |
; | 58 X | 59 Y | 5A Z | 5B [| 5C \ | 5D] | 5E ^ | 5F _ |
; | 60 ukp| 61 a | 62 b | 63 c | 64 d | 65 e | 66 f | 67 g |
; | 68 h | 69 i | 6A j | 6B k | 6C l | 6D m | 6E n | 6F o |
; | 70 p | 71 q | 72 r | 73 s | 74 t | 75 u | 76 v | 77 w |
; | 78 x | 79 y | 7A z | 7B { | 7C | | 7D } | 7E ~ | 7F (c)|
; | 80 128| 81 129| 82 130| 83 131| 84 132| 85 133| 86 134| 87 135|
; | 88 136| 89 137| 8A 138| 8B 139| 8C 140| 8D 141| 8E 142| 8F 143|
; | 90 [A]| 91 [B]| 92 [C]| 93 [D]| 94 [E]| 95 [F]| 96 [G]| 97 [H]|
; | 98 [I]| 99 [J]| 9A [K]| 9B [L]| 9C [M]| 9D [N]| 9E [O]| 9F [P]|
; | A0 [Q]| A1 [R]| A2 [S]| A3 [T]| A4 [U]| A5 RND| A6 IK$| A7 PI |
; | A8 FN | A9 PNT| AA SC$| AB ATT| AC AT | AD TAB| AE VL$| AF COD|
; | B0 VAL| B1 LEN| B2 SIN| B3 COS| B4 TAN| B5 ASN| B6 ACS| B7 ATN|
; | B8 LN | B9 EXP| BA INT| BB SQR| BC SGN| BD ABS| BE PEK| BF IN |
; | C0 USR| C1 ST$| C2 CH$| C3 NOT| C4 BIN| C5 OR | C6 AND| C7 <= |
; | C8 >= | C9 <> | CA LIN| CB THN| CC TO | CD STP| CE DEF| CF CAT|
; | D0 FMT| D1 MOV| D2 ERS| D3 OPN| D4 CLO| D5 MRG| D6 VFY| D7 BEP|
; | D8 CIR| D9 INK| DA PAP| DB FLA| DC BRI| DD INV| DE OVR| DF OUT|
; | E0 LPR| E1 LLI| E2 STP| E3 REA| E4 DAT| E5 RES| E6 NEW| E7 BDR|
; | E8 CON| E9 DIM| EA REM| EB FOR| EC GTO| ED GSB| EE INP| EF LOA|
; | F0 LIS| F1 LET| F2 PAU| F3 NXT| F4 POK| F5 PRI| F6 PLO| F7 RUN|
; | F8 SAV| F9 RAN| FA IF | FB CLS| FC DRW| FD CLR| FE RET| FF CPY|

; Note that for simplicity, Sinclair have located all the control codes
; below the space character.
; ASCII DEL, $7F, has been made a copyright symbol.
; Also $60, '`', not used in BASIC but used in other languages, has been
; allocated the local currency symbol for the relevant country -
; ukp in most Spectrums.

; --

;**********************************
;** Part 3. LOUDSPEAKER ROUTINES **
;**********************************

; Documented by Alvin Albrecht.

; -----------------------
; THE 'BEEPER' SUBROUTINE
; -----------------------
; Outputs a square wave of given duration and frequency
; to the loudspeaker.
; Enter with: DE = #cycles - 1
; HL = tone period as described next
;
; The tone period is measured in T states and consists of
; three parts: a coarse part (H register), a medium part
; (bits 7..2 of L) and a fine part (bits 1..0 of L) which
; contribute to the waveform timing as follows:
;
; coarse medium fine
; duration of low = 118 + 1024*H + 16*(L>>2) + 4*(L&0x3)
; duration of hi = 118 + 1024*H + 16*(L>>2) + 4*(L&0x3)
; Tp = tone period = 236 + 2048*H + 32*(L>>2) + 8*(L&0x3)
; = 236 + 2048*H + 8*L = 236 + 8*HL
;
; As an example, to output five seconds of middle C (261.624 Hz):
; (a) Tone period = 1/261.624 = 3.822ms
; (b) Tone period in T-States = 3.822ms*fCPU = 13378
; where fCPU = clock frequency of the CPU = 3.5MHz
; (c) Find H and L for desired tone period:
; HL = (Tp - 236) / 8 = (13378 - 236) / 8 = 1643 = 0x066B
; (d) Tone duration in cycles = 5s/3.822ms = 1308 cycles
; DE = 1308 - 1 = 0x051B
;
; The resulting waveform has a duty ratio of exactly 50%.
;
;
BEEPER DI ; Disable Interrupts so they don't disturb
 ; timing
 LD A,L ;
 SRL L ;
 SRL L ; L = medium part of tone period
 CPL ;
 AND $03 ; A = 3 - fine part of tone period
 LD C,A ;
 LD B,$00 ;
 LD IX,BE_IX_p_3 ; Address: BE_IX+3
 ADD IX,BC ; IX holds address of entry into the loop
 ; the loop will contain 0-3 NOPs, implementing
 ; the fine part of the tone period.
 LD A,($5B48) ; BORDCR
 AND $38 ; bits 5..3 contain border colour
 RRCA ; border colour bits moved to 2..0
 RRCA ; to match border bits on port #FE
 RRCA ;
 OR $08 ; bit 3 set (tape output bit on port #FE)
 ; for loud sound output
BE_IX_p_3 NOP ;(4) optionally executed NOPs for small
 ; adjustments to tone period
BE_IX_p_2 NOP ;(4)

BE_IX_p_1 NOP ;(4)

BE_IX_p_0 INC B ;(4)
 INC C ;(4)

BE_H_L_LP DEC C ;(4) timing loop for duration of
 JR NZ,BE_H_L_LP ;(12/7) high or low pulse of waveform

 LD C,$3F ;(7)
 DEC B ;(4)
 JP NZ,BE_H_L_LP ;(10) JUMP to BE_H&L_LP

 XOR $10 ;(7) toggle output beep bit
 OUT ($FE),A ;(11) output pulse
 LD B,H ;(4) B = coarse part of tone period
 LD C,A ;(4) save port #FE output byte
 BIT 4,A ;(8) if new output bit is high, go
 JR NZ,BE_AGAIN ;(2/7) to BE_AGAIN

 LD A,D ;(4) one cycle of waveform has completed
 OR E ;(4) (low->low). if cycle countdown = 0
 JR Z,BE_END ;(12/7) go to BE_END

 LD A,C ;(4) restore output byte for port #FE
 LD C,L ;(4) C = medium part of tone period
 DEC DE ;(6) decrement cycle count
 JP (IX) ;(8) do another cycle

BE_AGAIN LD C,L ;(4) C = medium part of tone period
 INC C ;(4) adds 16 cycles to make duration of high
= duration of low
 JP (IX) ;(8) do high pulse of tone

BE_END EI ; Enable Interrupts
 RET ;

; ------------------
; THE 'BEEP' COMMAND
; ------------------
; BASIC interface to BEEPER subroutine.
; Invoked in BASIC with:
; BEEP dur, pitch
; where dur = duration in seconds
; pitch = # of semitones above/below middle C
;
; Enter with: pitch on top of calculator stack
; duration next on calculator stack
;

BEEP RST 28H ;; FP_CALC
 DEFB $31 ;;duplicate ; duplicate pitch
 DEFB $27 ;;int ; convert to
integer
 DEFB $C0 ;;st-mem-0 ; store integer
pitch to memory 0
 DEFB $03 ;;subtract ; calculate
fractional part of pitch = fp_pitch - int_pitch
 DEFB $34 ;;stk-data ; push constant
 DEFB $EC ;;Exponent: $7C, Bytes: 4 ; constant =
0.05762265
 DEFB $6C,$98,$1F,$F5 ;;($6C,$98,$1F,$F5)
 DEFB $04 ;;multiply ; compute:

 DEFB $A1 ;;stk-one ; 1 + 0.05762265 *
fraction_part(pitch)
 DEFB $0F ;;addition
 DEFB $38 ;;end-calc ; leave on calc
stack

 LD HL,$5B92 ; MEM-0: number stored here is in 16 bit
 ; integer format (pitch)
 ; 0, 0/FF (pos/neg), LSB, MSB, 0
 ; LSB/MSB is stored in two's complement
 ; In the following, the pitch is checked if
 ; it is in the range -128<=p<=127
 LD A,(HL) ; First byte must be zero, otherwise
 AND A ; error in integer conversion
 JR NZ,REPORT_B ; to REPORT_B
 ; 'Integer out of range'

 INC HL ;
 LD C,(HL) ; C = pos/neg flag = 0/FF
 INC HL ;
 LD B,(HL) ; B = LSB, two's complement
 LD A,B ;
 RLA ;
 SBC A,A ; A = 0/FF if B is pos/neg
 CP C ; must be the same as C if the pitch
 ; is -128<=p<=127
 JR NZ,REPORT_B ; if no, error REPORT_B
 ; 'Integer out of range'

 INC HL ; if -128<=p<=127, MSB will be 0/FF if B is
 ; pos/neg
 CP (HL) ; verify this
 JR NZ,REPORT_B ; if no, error REPORT_B
 ; 'Integer out of range'

; Now we know -128<=p<=127

 LD A,B ; A = pitch + 60
 ADD A,$3C ; if -60<=pitch<=67,
 JP P,BE_I_OK ; goto BE_I_OK

 JP PO,REPORT_B ; if pitch <= 67 goto REPORT_B
 ; lower bound of pitch set at -60

 ; and A=pitch+60 -> 0<=A<=187

BE_I_OK LD B,$FA ; 6 octaves below middle C

BE_OCTAVE INC B ; increment octave
 SUB $0C ; 12 semitones = one octave
 JR NC,BE_OCTAVE ; to BE_OCTAVE

 ADD A,$0C ; A = # semitones above C (0-11)
 PUSH BC ; B = octave displacement from middle C,
 ; 2's complement: -5<=B<=10
 LD HL,semi_tone ; Address: semi-tone
 CALL LOC_MEM ; routine LOC_MEM
 ; HL = 5*A + $046E
 CALL STACK_NUM ; routine STACK_NUM
 ; read FP value (freq) from semitone table
 ; (HL) and push onto calc stack

 RST 28H ;; FP_CALC
 DEFB $04 ;;multiply mult freq by 1 + 0.0576 *

fraction_part(pitch) stacked earlier
 ;; thus taking into account fractional
part of pitch.
 ;; the number 0.0576*frequency is the
distance in Hz to the next
 ;; note (verify with the frequencies
recorded in the semitone
 ;; table below) so that the
fraction_part of the pitch does
 ;; indeed represent a fractional
distance to the next note.
 DEFB $38 ;;end-calc HL points to first byte of fp num on
stack = middle frequency to generate

 POP AF ; A = octave displacement from middle C, 2's
 ; complement: -5<=A<=10
 ADD A,(HL) ; increase exponent by A
 ; (equivalent to multiplying by 2^A)
 LD (HL),A ;

 RST 28H ;; FP_CALC
 DEFB $C0 ;;st-mem-0 store frequency in memory 0
 DEFB $02 ;;delete remove from calc stack
 DEFB $31 ;;duplicate duplicate duration (seconds)
 DEFB $38 ;;end-calc

 CALL FIND_INT1 ; routine FIND_INT1 ; FP duration to A
 CP $0B ; if dur > 10 seconds,
 JR NC,REPORT_B ; goto REPORT_B
 ; 'Integer out of range'

 ;;; following calculation finds the tone period for HL and the cycle
count
 ;;; DE expected in the BEEPER subroutine. From the example in the
BEEPER comments,
 ;;;
 ;;; ((fCPU / f) - 236) / 8 = fCPU/8/f - 236/8 = 437500/f -29.5
 ;;; duration * frequency - 1
 ;;;
 ;;; the different constant (30.125) used in the calculation of HL
 ;;; w. This is probably an error.

 RST 28H ;; FP_CALC
 DEFB $E0 ;;get-mem-0 ; push frequency
 DEFB $04 ;;multiply ; result1: #cycles =
duration * frequency
 DEFB $E0 ;;get-mem-0 ; push frequency
 DEFB $34 ;;stk-data ; push constant
 DEFB $80 ;;Exponent $93, Bytes: 3 ; constant = 437500
 DEFB $43,$55,$9F,$80 ;;($55,$9F,$80,$00)
 DEFB $01 ;;exchange ; frequency on top
 DEFB $05 ;;division ; 437500 / frequency
 DEFB $34 ;;stk-data ; push constant
 DEFB $35 ;;Exponent: $85, Bytes: 1 ; constant = 30.125
 DEFB $71 ;;($71,$00,$00,$00)
 DEFB $03 ;;subtract ; result2:
tone_period(HL) = 437500 / freq - 30.125
 DEFB $38 ;;end-calc

 CALL FIND_INT2 ; routine FIND_INT2
 PUSH BC ; BC = tone_period(HL)
 CALL FIND_INT2 ; routine FIND_INT2, BC = #cycles to generate
 POP HL ; HL = tone period
 LD D,B ;

 LD E,C ; DE = #cycles
 LD A,D ;
 OR E ;
 RET Z ; if duration = 0, skip BEEP and avoid 65536
 ; cycle boondoggle that would occur next
 DEC DE ; DE = #cycles - 1
 JP BEEPER ; jump back to BEEPER

; ---

REPORT_B RST 30H ; ERROR_1
 DEFB $0A ; Error Report: Integer out of range

; ---------------------
; THE 'SEMI-TONE' TABLE
; ---------------------
;
; Holds frequencies corresponding to semitones in middle octave.
; To move n octaves higher or lower, frequencies are multiplied by 2^n.

semi_tone DEFB $89, $02, $D0, $12, $86; 261.625565290 C
 DEFB $89, $0A, $97, $60, $75; 277.182631135 C#
 DEFB $89, $12, $D5, $17, $1F; 293.664768100 D
 DEFB $89, $1B, $90, $41, $02; 311.126983881 D#
 DEFB $89, $24, $D0, $53, $CA; 329.627557039 E
 DEFB $89, $2E, $9D, $36, $B1; 349.228231549 F
 DEFB $89, $38, $FF, $49, $3E; 369.994422674 F#
 DEFB $89, $43, $FF, $6A, $73; 391.995436072 G
 DEFB $89, $4F, $A7, $00, $54; 415.304697513 G#
 DEFB $89, $5C, $00, $00, $00; 440.000000000 A
 DEFB $89, $69, $14, $F6, $24; 466.163761616 A#
 DEFB $89, $76, $F1, $10, $05; 493.883301378 B

;**
;** Part 4. CASSETTE HANDLING ROUTINES **
;**

; These routines begin with the service routines followed by a single
; command entry point.
; The first of these service routines is a curiosity.

; -----------------------
; THE 'ZX81 NAME' ROUTINE
; -----------------------
; This routine fetches a filename in ZX81 format and is not used by the
; cassette handling routines in this ROM.

;;; zx81-name
;;; L04AA: CALL SCANNING ; routine SCANNING to evaluate expression.
;;; LD A,($5B3B) ; fetch system variable FLAGS.
;;; ADD A,A ; test bit 7 - syntax, bit 6 - result type.
;;; JP M,Report_C ; to REPORT-C if not string result
;;; ; 'Nonsense in BASIC'.

;;; POP HL ; drop return address.
;;; RET NC ; return early if checking syntax.

;;; PUSH HL ; re-save return address.
;;; CALL STK_FETCH ; routine STK-FETCH fetches string parameters.
;;; LD H,D ; transfer start of filename
;;; LD L,E ; to the HL register.
;;; DEC C ; adjust to point to last character and
;;; RET M ; return if the null string.

;;; ; or multiple of 256!

;;; ADD HL,BC ; find last character of the filename.
;;; ; and also clear carry.
;;; SET 7,(HL) ; invert it.
;;; RET ; return.

; ===
;
; PORT 254 ($FE)
;
; spk mic { border }
; ___ ___ ___ ___ ___ ___ ___ ___
; PORT | | | | | | | | |
; 254 | | | | | | | | |
; $FE |___|___|___|___|___|___|___|___|
; 7 6 5 4 3 2 1 0
;

; ---
; THE NEW 'STACK TO LINE COLUMN' SUBROUTINE
; ---
; This new subroutine is used by S_ATTR and S_SCRNS essentially to call the
; routine below but, in addition, it produces a runtime error if the column
; is greater than 31 or the line is greater than 23.
; Both parameters must be positive as specified by the BASIC manual.

STK_TO_LC CALL BC_POSTVE ;

 LD A,B ;
 CP $17 ;
 JR NC,REPORT_B ;

 LD A,C ;
 CP $1F ;

 JR NC,REPORT_B ;

 RET ;

 DEFB 0,0,0,0 ; ballast 1

; ---------------------------
; THE 'SAVE BYTES' SUBROUTINE
; ---------------------------
; This routine saves a section of data. It is called from SA_CTRL to save the
; seventeen bytes of header data. It is also the exit route from that routine
; when it is set up to save the actual data.
; On entry -
; DE holds the length of data.
; IX points to the start.
; The accumulator is set to $00 for a header, $FF for data.

TAG1
L04C2:

SA_BYTES LD HL,SA_LD_RET ; address: SA/LD_RET
 PUSH HL ; is pushed as common exit route.

 LD HL,$1F80 ; a timing constant H=$1F, L=$80
 ; inner and outer loop counters
 ; a five second lead-in is used for a header.

 BIT 7,A ; test one bit of accumulator. (AND A ?)

 JR Z,SA_FLAG ; skip to SA-FLAG if a header is being saved.

; else is data bytes and a shorter lead-in is used.

 LD HL,$0C98 ; another timing value H=$0C, L=$98.
 ; a two second lead-in is used for the data.

SA_FLAG EX AF,AF' ; save flag
 INC DE ; increase length by one.
 DEC IX ; decrease start.

 DI ; disable interrupts

 LD A,$02 ; select red for border, microphone bit on.
 LD B,A ; also does as an initial slight counter value.

; Note. the next location is trapped by emulators, see Z80.doc, in order to
; save bytes to a real tape recorder. The address should be $04D8
; However saving on emulators is not supported.

TAG2
L04D8:

SA_LEADER DJNZ SA_LEADER ; self loop to SA-LEADER for delay.
 ; after initial loop, count is $A4 (or $A3)

 OUT ($FE),A ; output byte $02/$0D to tape port.

 XOR $0F ; switch from RED (mic on) to CYAN (mic off).

 LD B,$A4 ; hold count. also timed instruction.

 DEC L ; originally $80 or $98.
 ; but subsequently cycles 256 times.
 JR NZ,SA_LEADER ; back to SA-LEADER until L is zero.

; the outer loop is counted by H

 DEC B ; decrement count
 DEC H ; originally twelve or thirty-one.
 JP P,SA_LEADER ; back to SA-LEADER until H becomes $FF

; now send a sync pulse. At this stage mic is off and A holds value
; for mic on.
; A sync pulse is much shorter than the steady pulses of the lead-in.

 LD B,$2F ; another short timed delay.

SA_SYNC_1 DJNZ SA_SYNC_1 ; self loop to SA-SYNC-1

 OUT ($FE),A ; switch to mic on and red colour.
 LD A,$0D ; prepare mic off - cyan
 LD B,$37 ; another short timed delay.

SA_SYNC_2 DJNZ SA_SYNC_2 ; self loop to SA-SYNC-2

 OUT ($FE),A ; output mic off, cyan border.
 LD BC,$3B0E ; B=$3B time(*), C=$0E, YELLOW, MIC OFF.

;

 EX AF,AF' ; restore saved flag

 ; which is 1st byte to be saved.

 LD L,A ; and transfer to L.
 ; the initial parity is A, $FF or $00.

 JP SA_START ; JUMP forward to SA-START ->
 ; the mid entry point of loop.

; -------------------------
; During the save loop a parity byte is maintained in H.
; the save loop begins by testing if reduced length is zero and if so
; the final parity byte is saved reducing count to $FFFF.

SA_LOOP LD A,D ; fetch high byte
 OR E ; test against low byte.
 JR Z,SA_PARITY ; forward to SA-PARITY if zero.

 LD L,(IX+$00) ; load currently addressed byte to L.

SA_LOOP_P LD A,H ; fetch parity byte.
 XOR L ; exclusive or with new byte.

; -> the mid entry point of loop.

SA_START LD H,A ; put parity byte in H.
 LD A,$01 ; prepare blue, mic=on.
 SCF ; set carry flag ready to rotate in.
 JP SA_8_BITS ; JUMP forward to SA-8-BITS -8->

; ---

SA_PARITY LD L,H ; transfer the running parity byte to L and
 JR SA_LOOP_P ; back to SA-LOOP-P
 ; to output that byte before quitting normally.

; ---

; The entry point to save yellow part of bit.
; A bit consists of a period with mic on and blue border followed by
; a period of mic off with yellow border.
; Note. since the DJNZ instruction does not affect flags, the zero flag is
; used to indicate which of the two passes is in effect and the carry
; maintains the state of the bit to be saved.

SA_BIT_2 LD A,C ; fetch 'mic on and yellow' which is
 ; held permanently in C.
 BIT 7,B ; set the zero flag. B holds $3E.

; The entry point to save 1 entire bit. For first bit B holds $3B(*).
; Carry is set if saved bit is 1. zero is reset NZ on entry.

SA_BIT_1 DJNZ SA_BIT_1 ; self loop for delay to SA-BIT-1

 JR NC,SA_OUT ; forward to SA-OUT if bit is 0.

; but if bit is 1 then the mic state is held for longer.

 LD B,$42 ; set timed delay. (66 decimal)

SA_SET DJNZ SA_SET ; self loop to SA-SET
 ; (roughly an extra 66*13 clock cycles)

SA_OUT OUT ($FE),A ; blue and mic on OR yellow and mic off.

 LD B,$3E ; set up delay
 JR NZ,SA_BIT_2 ; back to SA-BIT-2 if zero reset NZ (first pass)

; proceed when the blue and yellow bands have been output.

 DEC B ; change value $3E to $3D.
 XOR A ; clear carry flag (ready to rotate in).
 INC A ; reset zero flag i.e. NZ.

; -8->

SA_8_BITS RL L ; rotate left through carry
 ; C<76543210<C
 JP NZ,SA_BIT_1 ; JUMP back to SA-BIT-1
 ; until all 8 bits done.

; when the initial set carry is passed out again then a byte is complete.

 DEC DE ; decrease length
 INC IX ; increase byte pointer
 LD B,$31 ; set up timing.

 LD A,$7F ; test the space key and
 IN A,($FE) ; return to common exit (to restore border)
 RRA ; if a space is pressed
 RET NC ; return to SA/LD-RET. - - >

; now test if byte counter has reached $FFFF.

 LD A,D ; fetch high byte
 INC A ; increment.
 JP NZ,SA_LOOP ; JUMP to SA-LOOP if more bytes.

 LD B,$3B ; a final delay.

SA_DELAY DJNZ SA_DELAY ; self loop to SA-DELAY

 RET ; return - - >

; ------------------------------
; THE 'SAVE/LOAD RETURN' ROUTINE
; ------------------------------
; The address of this routine is pushed on the stack prior to any load/save
; operation and it handles normal completion with the restoration of the
; border and also abnormal termination when the break key or, to be more
; precise, the space key is pressed during a tape operation.
;
; - - >

SA_LD_RET PUSH AF ; preserve accumulator throughout.

;;; LD A,($5B48) ; fetch border colour from BORDCR.
;;; AND $38 ; mask off paper bits.
;;; RRCA ; rotate
;;; RRCA ; to the
;;; RRCA ; range 0-7.
;;; OUT ($FE),A ; change the border colour.

 CALL BORD_REST ;+ Use new routine to restore border colour.

 LD A,$7F ; read from port address $7FFE the
 IN A,($FE) ; row with the space key at outside.

 RRA ; test for space key pressed.

;;; EI ; enable interrupts
 JR C,SA_LD_END ; forward, if not, to SA/LD-END

REPORT_Da RST 30H ; ERROR-1
 DEFB $0C ; Error Report: BREAK - CONT repeats

; ---

SA_LD_END POP AF ; restore the accumulator.
 RET ; return.

 DEFB 0,0,0,0,0,0,0,0 ; ballast 2

; ---------------------------
; THE 'LOAD BYTES' SUBROUTINE
; ---------------------------
; This routine is used to load bytes and on entry A is set to $00 for a
; header or to $FF for data. IX points to the start of receiving location
; and DE holds the length of bytes to be loaded.
; If, on entry the carry flag is set then data is loaded, if reset then it
; is to be verified only.

TAG3
L0556:

LD_BYTES INC D ; reset the zero flag without disturbing carry.
 EX AF,AF' ; preserve entry flags.
 DEC D ; restore high byte of length.

 DI ; disable interrupts

 LD A,$0F ; make the border white and mic off. ******
 OUT ($FE),A ; output to port.

 LD HL,SA_LD_RET ; Address: SA/LD-RET
 PUSH HL ; is saved on stack as terminating routine.

; the reading of the EAR bit (D6) will always be preceded by a test of the
; space key (D0), so store the initial post-test state.

 IN A,($FE) ; read the ear state - bit 6.
 RRA ; rotate to bit 5.
 AND $20 ; isolate this bit.
 OR $02 ; combine with red border colour.
 LD C,A ; and store initial state long-term in C.

; Note. the next locations is trapped by emulators, see Z80.doc in order to
; load bytes from a tape recorder. No longer supported. Was L056A

TAG4
L056A: CP A ; set the zero flag.

;

LD_BREAK RET NZ ; return if at any time space is pressed.

LD_START CALL LD_EDGE_1 ; routine LD-EDGE-1
 JR NC,LD_BREAK ; back to LD-BREAK with time out and no
 ; edge present on tape.

; but continue when a transition is found on tape.

 LD HL,$0415 ; set up 16-bit outer loop counter for
 ; approx 1 second delay.

LD_WAIT DJNZ LD_WAIT ; self loop to LD-WAIT (for 256 times)

 DEC HL ; decrease outer loop counter.
 LD A,H ; test for
 OR L ; zero.
 JR NZ,LD_WAIT ; back, if not zero, to LD-WAIT

; continue after delay with H holding zero and B also.
; sample 256 edges to check that we are in the middle of a lead-in section.

 CALL LD_EDGE_2 ; routine LD-EDGE-2
 JR NC,LD_BREAK ; back, if no edges at all, to LD-BREAK

LD_LEADER LD B,$9C ; set timing value.
 CALL LD_EDGE_2 ; routine LD-EDGE-2
 JR NC,LD_BREAK ; back, if time-out, to LD-BREAK

 LD A,$C6 ; two edges must be spaced apart.
 CP B ; compare
 JR NC,LD_START ; back to LD-START
 ; if too close together for a lead-in.

 INC H ; proceed to test 256 edged sample.
 JR NZ,LD_LEADER ; back, while more to do, to LD-LEADER

; Note. H is zero again.
; sample indicates we are in the middle of a two or five second lead-in.
; Now test every edge looking for the terminal sync signal.

LD_SYNC LD B,$C9 ; initial timing value in B.
 CALL LD_EDGE_1 ; routine LD-EDGE-1
 JR NC,LD_BREAK ; back, with time-out, to LD-BREAK

 LD A,B ; fetch augmented timing value from B.
 CP $D4 ; compare
 JR NC,LD_SYNC ; back, if gap too big, to LD-SYNC
 ; it is a normal lead-in edge gap.

; but a short gap will be the sync pulse.
; in which case another edge should appear before B rises to $FF

 CALL LD_EDGE_1 ; routine LD-EDGE-1
 RET NC ; return with time-out.

; proceed when the sync at the end of the lead-in is found.
; We are about to load data so change the border colours.

 LD A,C ; fetch long-term mask from C
 XOR $03 ; and make blue/yellow.
 LD C,A ; store the new long-term byte.

;; LD H,$00 ; set up parity byte as zero.

 LD B,$B0 ; timing.
 JR LD_MARKER ; forward to LD-MARKER
 ; the loop mid-entry point with the alternate
 ; zero flag reset to indicate first byte
 ; is discarded.

; ---

; ---

; The loading loop loads each byte and is entered at the mid point.

LD_LOOP EX AF,AF' ; restore entry flags and type in A.
 JR NZ,LD_FLAG ; forward to LD-FLAG if awaiting initial flag
 ; which is to be discarded.

 JR NC,LD_VERIFY ; forward, if not to be loaded, to LD-VERIFY

 LD (IX+$00),L ; place loaded byte at memory location.

 JR LD_NEXT ; forward to LD-NEXT

; ---

LD_FLAG RL C ; preserve carry (verify) flag in long-term
 ; state byte. Bit 7 can be lost.

 XOR L ; compare type in A with first byte in L.
 RET NZ ; return if no match e.g. CODE vs. DATA.

; Continue when expected data type matches first byte received.

 LD A,C ; fetch byte with stored carry
 RRA ; rotate it to carry flag again
 LD C,A ; restore long-term port state.

 INC DE ; increment length ??
 JR LD_DEC ; forward to LD-DEC.
 ; but why not to location after ?
 ; Timing.

; ---

; For verification the byte read from tape is compared with that in memory.

LD_VERIFY LD A,(IX+$00) ; fetch byte from memory.
 XOR L ; compare with that on tape
 RET NZ ; return if not zero.

; Note. the report 'Verification has failed' could be added.

LD_NEXT INC IX ; Increment the byte pointer.

LD_DEC DEC DE ; decrement length.

 EX AF,AF' ; store the flags.
 LD B,$B2 ; timing.

; when starting to read 8 bits the receiving byte is marked with bit at right.
; when this is rotated out again then 8 bits have been read.

LD_MARKER LD L,$01 ; initialize as %00000001

LD_8_BITS CALL LD_EDGE_2 ; routine LD-EDGE-2 increments B relative to
 ; gap between 2 edges.
 RET NC ; return with time-out.

 LD A,$CB ; the comparison byte.
 CP B ; compare to incremented value of B.
 ; if B is higher then bit on tape was set.
 ; if <= then bit on tape is reset.

 RL L ; rotate the carry bit into L.

 LD B,$B0 ; reset the B timer byte.
 JP NC,LD_8_BITS ; JUMP back to LD-8-BITS

; when the carry flag is set, then the marker bit has been passed out and
; the received byte is complete.

 LD A,H ; fetch the running parity byte.
 XOR L ; include the new byte.
 LD H,A ; and store back in parity register.

 LD A,D ; check length of
 OR E ; expected bytes.
 JR NZ,LD_LOOP ; back, while there are more, to LD-LOOP

; When all bytes loaded then parity byte should be zero.

 LD A,H ; fetch the adjusted parity byte.
 CP $01 ; set carry if zero.
 RET ; return
 ; If no carry then error as checksum disagrees.

; -------------------------
; Check signal being loaded
; -------------------------
; An edge is a transition from one mic state to another.
; More specifically a change in bit 6 of value input from port $FE.
; Graphically it is a change of border colour, say, blue to yellow.
; The first entry point looks for two adjacent edges. The second entry point
; is used to find a single edge.
; The B register holds a count, up to 256, within which the edge (or edges)
; must be found. The gap between two edges will be more for a '1' than a '0'
; so the value of B denotes the state of the bit (two edges) read from tape.

; ->

LD_EDGE_2 CALL LD_EDGE_1 ; call routine LD-EDGE-1 below.
 RET NC ; return if space pressed or time-out.
 ; else continue and look for another adjacent
 ; edge which together represent a bit on the
 ; tape.

; ->
; this entry point is used to find a single edge from above but also
; when detecting a read-in signal on the tape.

LD_EDGE_1 LD A,$16 ; a delay value of twenty two.

LD_DELAY DEC A ; decrement counter
 JR NZ,LD_DELAY ; loop back to LD-DELAY 22 times.

 AND A ; clear carry.

LD_SAMPLE INC B ; increment the time-out counter.
 RET Z ; return with failure when $FF passed.

 LD A,$7F ; prepare to read keyboard and EAR port
 IN A,($FE) ; row $7FFE. bit 6 is EAR, bit 0 is SPACE key.
 RRA ; test outer key the space. (bit 6 moves to 5)
 RET NC ; return if space pressed. >>>

 XOR C ; compare with initial long-term state.
 AND $20 ; isolate bit 5
 JR Z,LD_SAMPLE ; back to LD-SAMPLE if no edge.

; but an edge, a transition of the EAR bit, has been found so switch the
; long-term comparison byte containing both border colour and EAR bit.

 LD A,C ; fetch comparison value.
 CPL ; switch the bits
 LD C,A ; and put back in C for long-term.

 AND $07 ; isolate new colour bits.
 OR $08 ; set bit 3 - MIC off.
 OUT ($FE),A ; send to port to effect the change of colour.

 SCF ; set carry flag signaling edge found within
 ; time allowed.
 RET ; return.

; --
; THE 'SAVE, LOAD, VERIFY AND MERGE' COMMAND
; --
; This is the single entry point for the four tape commands.
; The routine first determines in what context it has been called by
; examining the low byte of the Syntax table entry which was stored in T_ADDR.
; Subtracting $EO (the original arrangement) gives a value of
; $00 - SAVE
; $01 - LOAD
; $02 - VERIFY
; $03 - MERGE
; Note. as the Syntax table is in ROM then bit 7 of T_ADDR_hi must be reset
; This bit can be used to indicate a non-tape operation.
; As with all commands, the address STMT-RET is on the stack.

SAVE_ETC POP AF ; discard the address STMT-RET.

; Now reduce the low byte of the Syntax table entry to give command.

 LD HL,$5B74 ; Address T_ADDR
 LD A,(HL) ; fetch value.
 SUB P_SAVE +1 % 256 ; subtract the known offset.
 LD (HL),A ; and put back for future reference.

;;; LD A,($5B74) ; fetch the low order address byte of T_ADDR.
;;; SUB P_SAVE +1 % 256 ; subtract the known offset.
;;; LD ($5B74),A ; and put back for future reference.
;;; CALL SYNTAX_Z ; checking syntax
;;; JR Z,SA_STRM ;

 LD A,$FD ; select system channel 'K'
 CALL CHN_O_SYN ; and set as a default for tape message.

;;; CALL CHAN_SLCT ; routine CHAN-OPEN

SA_STRM CALL STR_ALTER ;+ Allow for SAVE #8;

 JR C,SA_EXP ;+ forward if no stream specified.

; If a stream has been specified then check for a separator and set bit
; of T_ADDR_hi to show Tape is not being used as medium.
; e.g. SAVE #7,"marsupials" LOAD #15; "" SCREEN$

 CALL CLASS_0C ;+ check for a separator

 SET 7,(IY+$3B) ;+ flag extended command by setting T_ADDR_hi

SA_EXP CALL EXPT_EXP ; routine EXPT-EXP checks that a CLASS_0A
 ; string expression follows and stacks the
 ; parameters in run-time.

 CALL SYNTAX_Z ; routine SYNTAX-Z
 JR Z,SA_DATA ; forward, if checking syntax, to SA-DATA

; In runtime create the workspace which is addressed by IX register.

 LD BC,$0011 ; presume seventeen bytes for a SAVE header.

 LD A,($5B74) ; fetch command from T_ADDR_lo.
 AND A ; test for zero, the SAVE command.

 JR Z,SA_SPACE ; forward, if so, to SA-SPACE

 LD C,$22 ; else double length to thirty four.

SA_SPACE CALL BC_SPACES ; BC_SPACES creates 17/34 bytes in workspace.

 PUSH DE ; transfer the start of the new space to the
 POP IX ; available index register.

; Ten spaces are required for the default filename but it is simpler to
; overwrite the first file-type indicator byte as well.

 LD B,$0B ; set counter to eleven.
 LD A,$20 ; prepare a space.

SA_BLANK LD (DE),A ; set workspace location to space.
 INC DE ; next location.
 DJNZ SA_BLANK ; loop back to SA-BLANK till all eleven done.

 LD (IX+$01),$FF ; set first byte of ten character filename
 ; to $FF as a default to signal a null string.

; Now have $FF $20 $20...

 CALL STK_FETCH ; routine STK-FETCH fetches the filename
 ; parameters from the calculator stack.
 ; length of string in BC.
 ; start of string in DE.

 LD HL,$FFF6 ; prepare the value minus ten.
 DEC BC ; decrement length.
 ; ten becomes nine, zero becomes $FFFF.
 ADD HL,BC ; trial addition.
 INC BC ; restore the true length.
 JR NC,SA_NAME ; forward, if length 1 - 10 to SA-NAME

; The filename is more than ten characters in length or the null string.

 LD A,($5B74) ; fetch command from T_ADDR.
 AND A ; test for zero, the SAVE command.
;;; JR NZ,SA_NULL ; forward, if not SAVE, to SA-NULL

 JP Z,REPORT_F ; forward, if command is SAVE, to report
 ; 'Invalid file name'

; This could be a null filename or one greater than ten characters in length
; neither of which is acceptable for the SAVE command.

; The first ten characters of any other command parameter are acceptable.

;;; REPORT_Fa RST 30H ; ERROR-1
;;; DEFB $0E ; Error Report: Invalid file name

; continue with LOAD, MERGE, VERIFY and also SAVE within ten character limit.

SA_NULL LD A,B ; test length of filename
 OR C ; for zero.
 JR Z,SA_DATA ; forward, if zero, to SA-DATA
 ; using $FF indicator followed by spaces.

 LD BC,$000A ; else trim length to ten.

; other paths rejoin here with BC holding length in range 1 - 10.

SA_NAME PUSH IX ; push start of file descriptor.
 POP HL ; and pop into HL.

 INC HL ; HL now addresses first byte of filename.
 EX DE,HL ; transfer destination address to DE, start
 ; of string in command to HL.
 LDIR ; copy up to ten bytes
 ; if less than ten then trailing spaces follow.

; the case for the null string rejoins here.

SA_DATA RST 18H ; GET-CHAR
 CP $E4 ; is character after filename the token 'DATA' ?
 JR NZ,SA_SCREEN ; forward, if not, to SA_SCREEN
 ; to consider SCREEN$

; continue to consider DATA.

 LD A,($5B74) ; fetch command from T_ADDR
 CP $03 ; is it 'VERIFY' ?

; VERIFY "d" DATA is not allowed.

 JR Z,REPORT_Ca ; forward, if so, to REPORT-Ca.
 ; 'Nonsense in BASIC'

; continue with SAVE, LOAD, MERGE of DATA.

 RST 20H ; NEXT-CHAR points to the array variable.
 CALL LOOK_VARS ; routine LOOK-VARS searches variables area
 ; returning with carry reset if found or
 ; checking syntax.
 ; CH_ADD points to opening bracket.
 SET 7,C ; this converts a simple string to a
 ; string array. The test for an array or string
 ; comes later.
 JR NC,SA_V_OLD ; forward, if variable found, to SA-V-OLD

; This is the runtime path only.

 LD HL,$0000 ; set destination to zero as not fixed.
 LD A,($5B74) ; fetch command from T_ADDR
 DEC A ; test for 1 - LOAD
 JR Z,SA_V_NEW ; forward, with LOAD DATA, to SA-V-NEW
 ; to load a new array.

; otherwise the variable was not found in run-time with SAVE/MERGE.

REPORT_2a RST 30H ; ERROR-1
 DEFB $01 ; Error Report: Variable not found

; continue with SAVE and LOAD of DATA

SA_V_OLD JR NZ,REPORT_Ca ; forward, if not an array, to REPORT_Ca
 ; 'Nonsense in BASIC'

 CALL SYNTAX_Z ; routine SYNTAX-Z
 JR Z,SA_DATA_1 ; forward, if checking syntax, to SA-DATA-1

; In runtime exclude a simple string by examining the VARS letter.
; Note. the standard ROM allows these to be saved but errors when they are
; subsequently loaded.
; credit: Dr. Ian Logan in The Complete Spectrum ROM Disassembly.
; solution: also by Dr. Ian Logan, in the Interface 1 ROM.

 BIT 7,(HL) ;+ test VARS letter - is it a simple string ?
 JR Z,REPORT_Ca ;+ back, if so, to REPORT_Ca

; Now transfer the array's details to the tape descriptor.

 INC HL ; step past single letter array variable name.
 LD A,(HL) ; fetch low byte of array length.
 LD (IX+$0B),A ; place in descriptor.
 INC HL ; point to high byte of array length.
 LD A,(HL) ; and transfer that
 LD (IX+$0C),A ; to descriptor.
 INC HL ; increase pointer within variable.

; The two runtime paths converge here. There is no syntax path error.

SA_V_NEW LD (IX+$0E),C ; place the character array letter, formed
 ; earlier, in the header.

 LD A,$01 ; default the array type to numeric.
 BIT 6,C ; test the result from the LOOK-VARS routine.
 JR Z,SA_V_TYPE ; forward, if numeric, to SA-V-TYPE

 INC A ; set type to 2 - a string array.

SA_V_TYPE LD (IX+$00),A ; place type 0, 1 or 2 in descriptor.

; The syntax path rejoins here.

SA_DATA_1 EX DE,HL ; save var pointer in DE

; Note. LOOK_VARS left CH_ADD pointing at '(' in, say, SAVE "name" DATA a().

 RST 20H ; NEXT-CHAR

;;; CP $29 ; is character ')' ?
;;; JR NZ,SA_V_OLD ; back, if not, to SA-V-OLD
;;; RST 20H ; NEXT-CHAR advances character address.

 CALL RBRKT_NXT ;+ check for right hand bracket and advances.

 CALL CHECK_END ; routine CHECK-END errors if not at end of
 ; the statement.

 EX DE,HL ; bring back variables data pointer.
 JR RJ_SA_ALL ; jump forward to SA-ALL.

; ---

;
; ---

TST_COM_0 XOR A ; default comparison
TST_COM CP (IY+$3A) ; compare A to T_ADDR_lo
 RET NZ ; return if not.

REPORT_Ca RST 30H ; ERROR-1
 DEFB $0B ; 'Nonsense in BASIC'

; the branch was here to consider a 'SCREEN$', the display file.

SA_SCREEN CP $AA ; is character the token 'SCREEN$' ?
 JR NZ,SA_CODE ; forward, if not, to SA_CODE

;;; LD A,($5B74) ; fetch command from T_ADDR_lo
;;; CP $03 ; is it 'MERGE' ?
;;; JR NZ,SA_SCR_OK ; skip forward, if not, to SA_SCR_OK
;;; RST 30H ; ERROR-1
;;; DEFB $0B ; 'Nonsense in BASIC'

 LD A,$03 ;+ Produce an error
 CALL TST_COM ;+ if command is 'MERGE'

; ---

; continue with SAVE/LOAD/VERIFY SCREEN$.

SA_SCR_OK RST 20H ; NEXT-CHAR advances past command
 CALL CHECK_END ; routine CHECK-END errors if not at end of
 ; statement.

; continue in runtime.

 LD HL,$4000 ;+ set start to display file start.

;;; LD (IX+$0B),$00 ; set descriptor length
 LD (IX+$0B),L ;+ set descriptor length
 LD (IX+$0C),$1B ; to $1b00 to include bitmaps and attributes.

;;; LD HL,$4000 ; set start to display file start.
 LD (IX+$0D),L ; place start in
 LD (IX+$0E),H ; the descriptor.
 JR SA_TYPE_3 ; forward to SA-TYPE-3

; ---

; the branch was here to consider CODE.

SA_CODE CP $AF ; is character the token 'CODE' ?
 JR NZ,SA_LINE ; forward, if not, to SA_LINE
 ; to consider an auto-started BASIC program.

;;; LD A,($5B74) ; fetch command from T_ADDR
;;; CP $03 ; is it MERGE ?
;;; JR Z,REPORT_Ca ; back, if so, to REPORT-Ca.

 LD A,$03 ;+ Produce an error
 CALL TST_COM ;+ if command is 'MERGE'

 RST 20H ; NEXT-CHAR advances character address.
 CALL PR_ST_END ; routine PR-ST-END checks if a carriage
 ; return or ':' follows.

 JR NZ,SA_CODE_1 ; forward, if there are parameters, to SA-CODE-1

;;; LD A,($5B74) ; else fetch the command from T_ADDR.
;;; AND A ; test for zero - SAVE without a specification.
;;; JR Z,REPORT_Ca ; back, if so, to REPORT-Ca.

 CALL TST_COM_0 ;+ Test that command is not zero - SAVE

; For LOAD and VERIFY put a zero on the stack to signal use the address that
; the code was saved from.

 CALL USE_ZERO ; routine USE-ZERO stacks a zero in runtime.
 JR SA_CODE_2 ; forward to SA-CODE-2

; ---

; if there are more characters after CODE expect start and possibly length.

SA_CODE_1 CALL EXPT_1NUM ; routine EXPT-1NUM checks for numeric
 ; expression and stacks it in run-time.

 RST 18H ; GET-CHAR was the last instruction.
 CP $2C ; does a comma follow ?
 JR Z,SA_CODE_3 ; forward, if so, to SA-CODE-3

; else allow saved code to be loaded to a specified address.

;;; LD A,($5B74) ; fetch command from T_ADDR.
;;; AND A ; is the command SAVE which requires length ?
;;; JR Z,REPORT_Ca ; back, if so, to REPORT-Ca

 CALL TST_COM_0 ;+ Test that command is not zero - SAVE

; the command 'LOAD CODE' may rejoin here with zero handled as start.

SA_CODE_2 CALL USE_ZERO ; routine USE-ZERO stacks zero for length
 ; if not checking syntax.
 JR SA_CODE_4 ; forward to SA_CODE_4

; ---
; the branch was here with SAVE CODE start,

SA_CODE_3 RST 20H ; NEXT-CHAR advances character address.
 CALL EXPT_1NUM ; routine EXPT_1NUM checks for an expression
 ; and stacks in run-time.

; paths converge here and nothing must follow.

SA_CODE_4 CALL CHECK_END ; routine CHECK-END errors with extraneous
 ; characters and quits if checking syntax.

; in runtime there are two 16-bit parameters on the calculator stack.

 CALL FIND_INT2 ; routine FIND-INT2 gets length.
 LD (IX+$0B),C ; place length
 LD (IX+$0C),B ; in descriptor.

 CALL FIND_INT2 ; routine FIND-INT2 gets start.

 LD (IX+$0D),C ; place start
 LD (IX+$0E),B ; in descriptor.
 LD H,B ; transfer the
 LD L,C ; start to HL also.

SA_TYPE_3 LD (IX+$00),$03 ; place type 3 - 'CODE' in descriptor.

RJ_SA_ALL JR SA_ALL ; forward to SA-ALL.

; ---
; the branch was here with BASIC to consider an optional auto-start line
; number e.g.
; SAVE "some name" LINE
; SAVE "fruitbats" LINE 200

SA_LINE CP $CA ; is character the token 'LINE' ?
 JR Z,SA_LINE_1 ; forward, if so, to SA-LINE-1

; else all possibilities have been considered and nothing must follow.

 CALL CHECK_END ; routine CHECK-END

; continue in run-time to save BASIC without auto-start.

;;; LD (IX+$0E),$80 ; place a high line number in descriptor

 LD B,$80 ; set B to $80 as a disabling value.

 JR SA_TYPE_0 ; forward, to save program, to SA-TYPE-0

; ---

; the branch was here to consider auto-start.
; Note. both the BASIC manual and the Pocket Book state that the line number
; may be omitted

SA_LINE_1 LD A,($5B74) ; fetch command from T_ADDR
 AND A ; test for SAVE.
 JR NZ,REPORT_Ca ; jump forward, with anything else, to REPORT-C
 ; 'Nonsense in BASIC'

;

 RST 20H ; NEXT-CHAR
;;; CALL EXPT_1NUM ; routine EXPT_1NUM checks for numeric
;;; ; expression and stacks in run-time.
 CALL FETCH_NUM ;+ routine FETCH_NUM checks for numeric
 ;+ expression and stacks in run-time defaulting
 ;+ to zero.
 CALL CHECK_END ; routine CHECK-END quits if syntax path.

 CALL FIND_LINE ; New routine FIND-LINE fetches a valid line
 ; number expression to BC.

 LD (IX+$0D),C ; place the valid auto-start

SA_TYPE_0 LD (IX+$0E),B ; line number in the descriptor.

; continue to save program and any variables.
; Note. label has been moved back.

sa_type_0 LD (IX+$00),$00 ; place type zero - program in descriptor.
 LD HL,($5B59) ; fetch E_LINE to HL.
 LD DE,($5B53) ; fetch PROG to DE.
 SCF ; set carry flag to calculate from end of
 ; variables E_LINE -1.
 SBC HL,DE ; subtract to give total length.

 LD (IX+$0B),L ; place total length

 LD (IX+$0C),H ; in descriptor.
 LD HL,($5B4B) ; load HL from system variable VARS
 SBC HL,DE ; subtract to give program length only.
 LD (IX+$0F),L ; place length of program
 LD (IX+$10),H ; in the descriptor.
 EX DE,HL ; Transfer start to HL, length to DE.

SA_ALL LD A,($5B74) ; fetch command from system variable T_ADDR_lo
 AND A ; test for zero - SAVE.

 JP Z,SA_CONTRL ; jump forward, with SAVE, to SA-CONTRL ->

; -----------------------------------
; THE 'LOAD, MERGE and VERIFY' BRANCH
; -----------------------------------
; continue with LOAD, MERGE and VERIFY.

 PUSH HL ; (*) save start.
 LD BC,$0011 ; prepare to add seventeen
 ADD IX,BC ; to point IX at second descriptor.

LD_LOOK_H PUSH IX ; save IX
 LD DE,$0011 ; seventeen bytes
 XOR A ; reset zero flag
 SCF ; set carry flag to signal load the bytes.

 CALL LD_BYTES2 ; routine LD-BYTES loads a header from tape
 ; to second descriptor.
 POP IX ; restore IX.
 JR NC,LD_LOOK_H ; loop back, until header found, to LD-LOOK-H

;;; LD A,$FE ; select system channel 'S'
;;; CALL CHAN_SLCT ; routine CHAN-OPEN opens system channel.

 LD (IY+$52),$03 ; set SCR_CT to 3 lines.

 LD C,$80 ; C has bit 7 set to indicate type mismatch as
 ; a default startpoint.

 LD A,(IX+$00) ; fetch loaded header type to A
 CP (IX-$11) ; compare with expected type 0 - 3 placed in
 ; header by this ROM.
 JR NZ,LD_TYPE ; forward, with mismatch, to LD-TYPE

 LD C,$F6 ; set C to minus ten - will count characters
 ; up to zero.

LD_TYPE CP $04 ; check if type is in acceptable range 0 - 3.
 JR NC,LD_LOOK_H ; back, with 4 and above, to LD-LOOK-H

LD_TYPE_M LD DE,type_msgs ; address base of last 4 tape messages

;;; PUSH BC ; save BC
;;; CALL PO_MSG ; routine PO-MSG outputs relevant message.

 CALL DISP_MSG ;+ routine DISP_MSG outputs relevant message.

;;; POP BC ; restore BC

 PUSH IX ; transfer IX,
 POP DE ; the 2nd descriptor, to DE.

 LD HL,$FFF0 ; prepare minus seventeen.
 ADD HL,DE ; add to point HL back to 1st descriptor.

 LD B,$0A ; the count will be ten characters for the
 ; filename.

; Check if user has typed something like LOAD "".

 LD A,(HL) ; fetch first character of filename and test
 INC A ; for the value $FF.
 JR NZ,LD_NAME ; forward, if not the $FF wildcard, to LD-NAME

; but if it is the wildcard, then add ten to C, which holds minus ten for a
; type match or -128 for a type mismatch. Although characters have to be
; counted, bit 7 of C will not alter from the state set here.

 LD A,C ; transfer $F6 or $80 to A
 ADD A,B ; add $0A
 LD C,A ; place result, $00 or $8A, in C.

; At this point we have either a type mismatch, a wildcard match or ten
; characters to be counted. The characters must be shown on the screen.

LD_NAME INC DE ; Address the next input character.
 LD A,(DE) ; Fetch character
 CP (HL) ; Compare to expected
 INC HL ; Address next expected character
 JR NZ,LD_CH_PR ; Forward, with mismatch, to LD-CH-PR

 INC C ; Increment C - the matched character count.

LD_CH_PR
 AND A ;+ clear carry for 1 character.
 CALL DISP_MSG ;+ call directly as screen is known
;;; RST 10H ; PRINT-A prints the character.

 DJNZ LD_NAME ; loop back, for ten characters, to LD-NAME

; if ten characters matched, and the types previously matched, then C will
; now hold zero.

 BIT 7,C ; test if all characters matched
 JR NZ,LD_LOOK_H ; back, if not, to LD-LOOK-H

; else, if name matched, print a terminal carriage return.

 LD A,$0D ; prepare carriage return. ?????
;;; RST 10H ; PRINT-A outputs it.
 CALL DISP_MSG ;+ Call print directly.

; The various control routines for LOAD, VERIFY and MERGE are now executed
; during the one-second gap following the header on tape.

 POP HL ; (*) restore START

 LD A,(IX+$00) ; Fetch the validated incoming type.
 CP $03 ; compare with type for CODE.
 JR Z,VR_CONTRL ; forward, if it is CODE, to VR-CONTRL
 ; to load or verify CODE data.

; type is a PROGRAM or an ARRAY.

 LD A,($5B74) ; fetch command from T_ADDR
 DEC A ; was it LOAD ?

 JR Z,LD_CONTRL ; JUMP forward, if so, to LD-CONTRL
 ; to load BASIC or variables.

 CP $02 ; was command MERGE ?

 JP Z,ME_CONTRL ; jump forward, if so, to ME-CONTRL

; else continue into VERIFY control routine to verify.

; ----------------------------
; THE 'VERIFY CONTROL' ROUTINE
; ----------------------------
; There are two branches to this routine.
; 1) From above to verify a program or array
; 2) from earlier with no carry to LOAD or verify CODE.

VR_CONTRL PUSH HL ; save pointer to data.

 LD L,(IX-$06) ; fetch length of old data
 LD H,(IX-$05) ; to HL.
 LD E,(IX+$0B) ; fetch length of new data
 LD D,(IX+$0C) ; to DE.

 LD A,H ; check length of old
 OR L ; for zero.

 JR Z,VR_CONT_1 ; forward to VR-CONT-1 if length is unspecified
 ; e.g. LOAD "x" CODE

; as opposed to, say, LOAD 'x' CODE 32768,300.

 SBC HL,DE ; subtract the new length from the old length.
 JR C,REPORT_R ; forward to REPORT-R if the length on tape is
 ; larger than that specified in command.
 ; 'Loading error'

 JR Z,VR_CONT_1 ; forward, if lengths match, to VR-CONT-1

; a length on tape shorter than expected is only allowed for CODE XX

 LD A,(IX+$00) ; Fetch type from tape.
 CP $03 ; Is it CODE ?
 JR NZ,REPORT_R ; forward, if not, to REPORT-R
 ; 'Loading error'

VR_CONT_1 POP HL ; pop the pointer to the data
 LD A,H ; test for zero
 OR L ; e.g. LOAD 'x' CODE
 JR NZ,VR_CONT_2 ; forward, if destination given, to VR-CONT-2

 LD L,(IX+$0D) ; else use the destination in the header
 LD H,(IX+$0E) ; and load code at address saved from.

VR_CONT_2 PUSH HL ; push the pointer to the start of data block.
 POP IX ; transfer to IX.

 LD A,($5B74) ; fetch the reduced command from T_ADDR

 CP $02 ; is it VERIFY ?

;;; SCF ; prepare a set carry flag
;;; JR NZ,VR_CONT_3 ; skip, if not, to VR-CONT-3

 JR Z,LD_BLOCK ;+ skip, if VERIFY, to LD_BLOCK

 ;+ with carry clear.

;;; AND A ; clear carry flag for VERIFY

; ---
; THE NEW 'LOAD BLOCK' WITH CARRY SET ROUTINE
; ---
; This saves some bytes by consolidating the most popular conditions.

LD_BLCK_C SCF ;+ Set carry flag so that data is loaded.

; Continue to use, for verification, the same routine used to LOAD data.

;;; VR_CONT_3 LD A,$FF ; signal data block to be loaded

; -----------------------------
; THE 'LOAD DATA BLOCK' ROUTINE
; -----------------------------
; This routine is called from 3 places other than above to load a data block.
; In all cases the accumulator is first set to $FF so the routine could be
; called at the previous instruction.

;;; LD_BLOCK CALL LD_BYTES ; routine LD-BYTES

LD_BLOCK LD A,$FF ;+ signal data block to be loaded, not header.

 CALL LD_BYTES2 ; routine LD-BYTES

 RET C ; return if successful.

REPORT_R RST 30H ; ERROR-1 1a
 DEFB $1A ; Error Report: Loading error

; --------------------------
; THE 'LOAD CONTROL' ROUTINE
; --------------------------
; This branch is taken when the command is LOAD with type 0, 1 or 2.

LD_CONTRL LD E,(IX+$0B) ; fetch length of found data block
 LD D,(IX+$0C) ; from 2nd descriptor.
 PUSH HL ; save destination.
 LD A,H ; test for zero which indicates
 OR L ; an array - types 1 or 2.

 JR NZ,LD_CONT_1 ; forward, if not, to LD-CONT-1

 INC DE ; increase array length
 INC DE ; for letter name
 INC DE ; and 16-bit length.
 EX DE,HL ; transfer adjusted length to HL.
 JR LD_CONT_2 ; forward to LD-CONT-2

; ---

; The branch was here with type PROGRAM.

LD_CONT_1 LD L,(IX-$06) ; fetch length from
 LD H,(IX-$05) ; the first header.
 EX DE,HL ;
 SCF ; set carry flag
 SBC HL,DE ;
 JR C,LD_DATA ; to LD-DATA

LD_CONT_2 LD DE,$0005 ; allow an overhead of five bytes.

 ADD HL,DE ; add in the difference in data lengths.
 LD B,H ; transfer to
 LD C,L ; the BC register pair

 CALL TEST_ROOM ; routine TEST-ROOM fails if not enough room.

LD_DATA POP HL ; pop destination
 LD A,(IX+$00) ; fetch type 0, 1 or 2.
 AND A ; test for PROGRAM and variables.
 JR Z,LD_PROG ; forward, if so, to LD-PROG

; the type is a numeric or string array.

 LD A,H ; test the destination for zero which
 OR L ; indicates variable does not already exist.

 JR Z,LD_DATA_1 ; forward, if so, to LD-DATA-1

; else the destination is the first dimension within the array structure

 DEC HL ; address high byte of total array length
 LD B,(HL) ; transfer to B.
 DEC HL ; address low byte of total array length.
 LD C,(HL) ; transfer to C.

 DEC HL ; point to letter of variable.
 INC BC ; adjust length to
 INC BC ; include these
 INC BC ; three bytes also.

 LD ($5B5F),IX ; save header pointer in X_PTR which is
 ; updated by the POINTERS routine.

 CALL RECLAIM_2 ; routine RECLAIM-2 reclaims the old variable
 ; sliding workspace including the two headers
 ; downwards.

 LD IX,($5B5F) ; reload IX from X_PTR which will have been
 ; adjusted down by the POINTERS routine.

;;; LD_DATA_1 LD HL,($5B59) ; address E_LINE
;;; DEC HL ; now point to the $80 variables end-marker.

LD_DATA_1 CALL L_EL_DHL ; instead of prev 2 lines.

 LD C,(IX+$0B) ; fetch new data length
 LD B,(IX+$0C) ; from 2nd header.

 PUSH BC ; * save it.
 INC BC ; adjust the
 INC BC ; length to include the letter name
 INC BC ; and two total length bytes.

 LD A,(IX-$03) ; fetch letter name from old header.

;;; PUSH AF ; preserve accumulator though not corrupted.

 CALL MAKE_ROOM ; routine MAKE-ROOM creates space for variable
 ; sliding workspace up. IX no longer addresses
 ; anywhere meaningful.
;;; INC HL ; point to the first new location.

;;; POP AF ; fetch back the letter name.

 LD (HL),A ; place in first new location.
 POP DE ; * pop the data length.

 INC HL ; address 2nd location
 LD (HL),E ; store low byte of length.
 INC HL ; address next.
 LD (HL),D ; store high byte.
 INC HL ; address start of data.

TX_BLK_C PUSH HL ; transfer the address

LD_BLK_R POP IX ; to IX register pair.

;;; SCF ; set carry flag indicating load not verify.

;;; LD A,$FF ; signal data not header.

 JR LD_BLCK_C ;+ JUMP back to LD-BLOCK

; ---

; The branch is here when a PROGRAM, as opposed to an ARRAY, is to be loaded.

LD_PROG EX DE,HL ; transfer data destination to DE.

 CALL L_EL_DHL ;+ instead of next 2 lines?
;;; LD HL,($5B59) ; address E_LINE
;;; DEC HL ; now address variables end-marker.

 LD ($5B5F),IX ; place the IX header pointer in X_PTR
 LD C,(IX+$0B) ; get new length
 LD B,(IX+$0C) ; from 2nd header
 PUSH BC ; and save it.

 CALL RECLAIM_1 ; routine RECLAIM-1 reclaims program and vars.
 ; adjusting X-PTR.

 POP BC ; restore the new length.
 PUSH HL ; * save start
 PUSH BC ; ** and length.

 CALL MAKE_ROOM ; routine MAKE-ROOM creates the space.

 LD IX,($5B5F) ; reload IX from adjusted X_PTR

;;; INC HL ; point to start of new area.
 LD C,(IX+$0F) ; fetch length of BASIC on tape
 LD B,(IX+$10) ; from 2nd descriptor
 ADD HL,BC ; add to address the start of variables.
 LD ($5B4B),HL ; set the system variable VARS

 LD H,(IX+$0E) ; fetch high byte of autostart line number.

; Note. although the line number is checked at SAVE time, this check is
; still relevant as by default auto-start is inhibited.

 LD A,H ; transfer to A
 AND $C0 ; test if greater than $3F.
 JR NZ,LD_PROG_1 ; forward, if so, to LD-PROG-1
 ; with no autostart.

 LD L,(IX+$0D) ; fetch the low byte.
 LD ($5B42),HL ; set system variable NEWPPC to line number
;;; LD (IY+$0A),$00 ; set statement NSPPC to zero.

 LD (IY+$0A),A ; set statement NSPPC to zero.

LD_PROG_1 POP DE ; ** pop the length

;;; POP IX ; * and start.
;;; SCF ; set carry flag
;;; LD A,$FF ; signal data as opposed to a header.
;;; JP LD_BLCK_C ; jump back to LD-BLOCK

 JR LD_BLK_R ;+ NEW relative jump back to LD-BLOCK routine
 ;+ at the instruction POP IX

; ---------------------------
; THE 'MERGE CONTROL' ROUTINE
; ---------------------------
; The branch was here to merge a program and its variables or an array.
;

ME_CONTRL LD C,(IX+$0B) ; fetch length
 LD B,(IX+$0C) ; of data block on tape.
 PUSH BC ; save it.
 INC BC ; add one for the end-marker.

 CALL BC_SPACES ; routine BC_SPACES creates room in workspace.
 ; HL addresses last new location.

 LD (HL),$80 ; place end-marker at end.
 EX DE,HL ; transfer first location to HL.
 POP DE ; restore length to DE.

 PUSH HL ; save address of first location.

;;; PUSH HL ; and transfer first location
;;; POP IX ; to IX register.

;;; SCF ; set carry flag to load data on tape.
;;; LD A,$FF ; signal data not a header.

 CALL TX_BLK_C ;+ routine LD-BLOCK loads to workspace.

 POP HL ; restore first location in workspace to HL.
 LD DE,($5B53) ; set DE from system variable PROG.

; now enter a loop to merge the data block in workspace with the program and
; variables.

ME_NEW_LP LD A,(HL) ; fetch next byte from workspace.
 AND $C0 ; compare with $3F.

 JR NZ,ME_VAR_LP ; forward to ME-VAR-LP if a variable or
 ; end-marker.

; Continue when HL, the WORKSPACE pointer, still addresses a BASIC line
number.

ME_OLD_LP LD A,(DE) ; fetch high byte from PROGRAM area.
 INC DE ; increment the PROGRAM address.

 CP (HL) ; compare with line number in WORKSPACE.
 INC HL ; increment WORKSPACE address.

 JR NZ,ME_OLD_L1 ; forward to ME-OLD-L1 if high bytes don't match

 LD A,(DE) ; fetch the low byte of PROGRAM line number.
 CP (HL) ; compare with low byte in WORKSPACE.

ME_OLD_L1 DEC DE ; point to start of
 DEC HL ; respective lines again.

 JR NC,ME_NEW_L2 ; forward to ME-NEW-L2 if line number in
 ; WORKSPACE is less than or equal to current
 ; PROGRAM line as has to be added to program.

 PUSH HL ; else save workspace pointer.

 EX DE,HL ; transfer prog pointer to HL

 CALL NEXT_ONE ; routine NEXT-ONE finds next line in DE.

 POP HL ; restore workspace pointer

 JR ME_OLD_LP ; back to ME-OLD-LP until destination position
 ; in program area found.

; ---

; the branch was here with an insertion or replacement point.

ME_NEW_L2 CALL ME_ENTER ; routine ME-ENTER enters the line

 JR ME_NEW_LP ; loop back to ME-NEW-LP.

; ---

; the branch was here when the location in workspace held a variable.
; New variables are easier than program lines as they are merely added at
; the end of the VARIABLES area.

ME_VAR_LP LD A,(HL) ; fetch first byte of workspace variable.
 LD C,A ; copy to C also.
 CP $80 ; is it the workspace VARIABLES end-marker ?
 RET Z ; return, if so, as MERGE is complete. >>>>>

 PUSH HL ; save workspace area pointer.
 LD HL,($5B4B) ; load HL with VARS - start of variables area.

ME_OLD_VP LD A,(HL) ; fetch first byte.
 CP $80 ; is it the VARIABLES end-marker ?
 JR Z,ME_VAR_L2 ; forward, if so, to ME-VAR-L2
 ; to add variable at end of variables area.

 CP C ; compare with variable in workspace area.
 JR Z,ME_OLD_V2 ; forward, with a match, to ME-OLD-V2
 ; to replace.

; else entire variables area has to be searched.

ME_OLD_V1 PUSH BC ; save character in C.

 CALL NEXT_ONE ; routine NEXT-ONE gets following variable
 ; address in DE.

 POP BC ; restore character in C
 EX DE,HL ; transfer next address to HL.

 JR ME_OLD_VP ; loop back to ME-OLD-VP

; ---

; the branch was here when first characters of name matched.

ME_OLD_V2 AND $E0 ; keep bits 11100000
 CP $A0 ; compare 10100000 - a long-named variable.

 JR NZ,ME_VAR_L1 ; forward to ME-VAR-L1 if just one-character.

; but long-named variables have to be matched character by character.

 POP DE ; fetch workspace 1st character pointer
 PUSH DE ; and save it on the stack again.
 PUSH HL ; save variables area pointer on stack.

ME_OLD_V3 INC HL ; address next character in vars area.
 INC DE ; address next character in workspace area.
 LD A,(DE) ; fetch workspace character.
 CP (HL) ; compare to variables character.
 JR NZ,ME_OLD_V4 ; forward, with a mismatch, to ME-OLD-V4

 RLA ; test if it is the terminal inverted character.
 JR NC,ME_OLD_V3 ; loop back, if more to test, to ME-OLD-V3

; otherwise the long name matches in its entirety.

 POP HL ; restore pointr to first character of variable

 JR ME_VAR_L1 ; forward to ME-VAR-L1

; ---

; the branch is here when two characters don't match

ME_OLD_V4 POP HL ; restore the prog/vars pointer.
 JR ME_OLD_V1 ; back to ME-OLD-V1 to resume search.

; ---
; branch here when variable is to replace an existing one

ME_VAR_L1 LD A,$FF ; indicate a replacement.

; this entry point is when A holds $80 indicating a new variable.

ME_VAR_L2 POP DE ; pop workspace pointer.
 EX DE,HL ; now make HL workspace pointer, DE vars pointer
 INC A ; zero flag set if replacement.
 SCF ; set carry flag indicating a variable not a
 ; program line.

 CALL ME_ENTER ; routine ME-ENTER copies variable in.

 JR ME_VAR_LP ; loop back to ME-VAR-LP

; ---
; THE 'MERGE A LINE OR VARIABLE' SUBROUTINE
; ---
; A BASIC line or variable is inserted at the current point. If the line
; number or variable names match (zero flag set) then a replacement takes
; place.

ME_ENTER JR NZ,ME_ENT_1 ; forward, for insertion only, to ME-ENT-1

; but the program line or variable matches so old one is reclaimed.

 EX AF,AF' ; save carry - prog/var flag

 LD ($5B5F),HL ; preserve workspace pointer in dynamic X_PTR

 EX DE,HL ; transfer program dest pointer to HL.

;;; CALL NEXT_ONE ; routine NEXT-ONE finds the following location
;;; ; in program or variables area.
;;; CALL RECLAIM_2 ; routine RECLAIM-2 reclaims the space between.

 CALL NXT_1_RC2 ;+ routine combines above 2 routines.

 EX DE,HL ; transfer program dest pointer back to DE.

 LD HL,($5B5F) ; fetch adjusted workspace pointer from X_PTR

 EX AF,AF' ; restore carry - program/variable flag.

; now the new line or variable is entered.

ME_ENT_1 EX AF,AF' ; save or re-save carry - prog/var flag.

 PUSH DE ; save dest pointer in prog/vars area.
 CALL NEXT_ONE ; routine NEXT-ONE finds next in workspace.
 ; gets next in DE, difference in BC.
 ; prev addr in HL

 LD ($5B5F),HL ; store pointer in X_PTR

 LD HL,($5B53) ; load HL from system variable PROG
 EX (SP),HL ; swap with prog/vars pointer on stack.
 PUSH BC ; ** save length of new program line/variable.

 EX AF,AF' ; fetch back carry - prog/var flag.

 JR C,ME_ENT_2 ; skip, if handling a variable, to ME-ENT-2

 CALL MK_RM_DHL ;+ MAKE_ROOM decrementing HL first

;;; DEC HL ; address location before pointer
;;; CALL MAKE_ROOM ; routine MAKE-ROOM creates room for BASIC line

 INC HL ; address next. (keep this one)

 JR ME_ENT_3b ; forward to ME-ENT-3

; ---

ME_ENT_2 CALL MAKE_ROOM ; routine MAKE-ROOM creates room for variable.

;;; me_ent_3 INC HL ; address next?

ME_ENT_3b POP BC ; ** pop length

 EX DE,HL ;+ DE now holds first new location

; Note. HL is now used instead of DE

 POP HL ; * pop value for PROG which may have been
 ; altered by POINTERS if first line.

 LD ($5B53),HL ; set PROG back to original value.

 LD HL,($5B5F) ; fetch adjusted workspace pointer from X_PTR

 PUSH BC ; save the length.
 PUSH HL ; and save the workspace pointer.
;;; EX DE,HL ; make workspace pointer the source,
;;; ; prog/vars pointer the destination.

 LDIR ; copy bytes of line or variable into new area.

 POP HL ; restore workspace pointer.
 POP BC ; restore length.

 PUSH DE ; save new prog/vars pointer.

 CALL RECLAIM_2 ; routine RECLAIM-2 reclaims the space used by
 ; the line or variable in workspace block as no
 ; longer required and space could be useful
 ; for adding more lines.

 POP DE ; restore the prog/vars pointer.

 RET ; return.

; --------------------------
; THE 'SAVE CONTROL' ROUTINE
; --------------------------
; A branch from the main SAVE-ETC routine at SAVE-ALL.
; First the header data is saved. Then, after a wait of 1 second
; the data itself is saved.
; For tape,
; HL points to start of data.
; IX points to start of descriptor.
; For RS232 and network,
; HL points to the start of the data
; IX points to start of descriptor.
; If saving to tape then channel 'K' will be open for messages.

SA_CONTRL PUSH HL ; save start of data.

;;; LD A,$FD ; select system channel 'K'
;;; CALL CHAN_SLCT ; routine CHAN-OPEN

 CALL IN_CHAN_K ; is tape being used ?
 JR NZ,SA_CBN ; skip the prompt message if not.

;;; XOR A ; Clear to address table directly
 LD DE,tape_msgs ; Address: tape-msgs
 CALL PO_MSG_0 ; Routine PO-MSG -
 ; 'Start tape then press any key.'

;;; SET 5,(IY+$02) ; Update TV_FLAG - signal lower screen requires
;;; ; clearing.

 SET 3,(IY+$01) ;+ Set 'L' key mode for prompt situation.

 CALL WAIT_KEY ; routine WAIT_KEY

SA_CBN PUSH IX ; Save pointer to descriptor.
 LD DE,$0011 ; There are seventeen bytes to save.
 XOR A ; Set A to zero - to signal a header block.

 CALL SA_BYTES2 ; routine SA-BYTES saves block

 POP IX ; restore descriptor pointer.

 LD B,$32 ; wait for a second - 50 interrupts.

SA_1_SEC HALT ; wait for an interrupt
 DJNZ SA_1_SEC ; back to SA-1-SEC until pause complete.

 LD E,(IX+$0B) ; fetch length of bytes from the
 LD D,(IX+$0C) ; descriptor.

;;; LD A,$FF ; signal data bytes. (dec a)

 DEC A ;+ signal data bytes.

 POP IX ; retrieve pointer to start

;;; JP SA_BYTES ; jump back to SA-BYTES

SA_BYTES2 BIT 7,(IY+$3B) ;+ are extended streams being used. T_ADDR_hi
 JP Z,SA_BYTES ;+ back to tape routine if not

 LD HL,SA_LD_RET ; address: SA/LD_RET Duplication.
 PUSH HL ; is pushed as common exit route.

; --
; THE NEW 'SAVE BYTES TO NETWORK/RS232' SUBROUTINE
; --
; This can also, for amusement, be used to save a small program to the
; Screen e.g. SAVE #2, "ABC"
; DE holds the length of data.
; IX points to the start.
; Begin by transferring the start of data from IX to HL as the extended
; streams will use the IX register. RST 10 preserves the main registers.

SA_BYT_NB PUSH IX ; Transfer start to
 POP HL ; the HL register.

SA_BYT_LP LD A,D ; Test for zero length.
 OR E ;
 RET Z ; Return if so. >>

 LD A,(HL) ; Fetch a byte to the accumulator.
 INC HL ; Increment address.
 DEC DE ; decrement byte count.

 RST 10H ; Restart outputs a byte to current channel.

 JR SA_BYT_LP ; loop back to save another byte to SA_BYT_LP

; -----------------
;
; -----------------

LD_BYTES2 BIT 7,(IY+$3B) ; Test T_ADDR_hi
 JP Z,LD_BYTES ; jump to tape routines

 LD HL,SA_LD_RET ; Address: SA/LD-RET
 PUSH HL ; is saved on stack as terminating routine.

 EX AF,AF' ; preserve carry

; --
; THE NEW 'LOAD BYTES FROM NETWORK/RS232' SUBROUTINE

; --
; IX points to start
; DE holds length
; The alternate CARRY is set if data is to be loaded.

LD_BYT_NB PUSH IX ; transfer the destination start address
 POP HL ; to the HL register pair.

LD_BYT_LP CALL INPUT_AD ; input a byte from the current channel

 JR NC,LD_BYT_LP ; repeat until byte is acceptable. XXXXXXXXXX

 EX AF,AF' ; fetch the carry flag.
 JR C,LD_BYT_1 ; forward, with carry, to LOAD byte.

 EX AF,AF' ; preserve carry.
;;; XOR (HL) ; verify against byte in memory.
 CP (HL) ; compare

 RET NZ ; return if verification failed with NC also.

 JR LD_BYT_2 ; skip forward for next byte.

LD_BYT_1 EX AF,AF' ; preserve carry flag bring back new byte.
 LD (HL),A ; insert byte from network or RS232.

LD_BYT_2 INC HL ; increment memory pointer.
 DEC DE ; decrement the byte count.
 LD A,D ; Test for zero.
 OR E ;
 JR NZ,LD_BYT_LP ; back if not zero for more.

 SCF ; signal success.

 RET ; Return.

; ---------------------------
; THE NEW 'DISP_MSG' ROUTINE
; ---------------------------
; If, on entry, carry is set then this routine prints a message without
; disturbing the current channel. If the carry flag is reset then the
; single character in A is output.

DISP_MSG
 PUSH HL ; Preserve Main registers.
 PUSH BC ;
 PUSH DE ;

 LD HL,($5B51) ; fetch the current channel.
 PUSH HL ; and save it

 PUSH DE ; preserve message pointer
 PUSH AF ; preserve type and carry flag

 CALL CHAN_O_FE ; select system channel for 'S'

 POP AF ; bring back the type
 POP DE ; and the message pointer

 JR NC,DISP_1 ; forward with no carry to output a single char

 CALL PO_MSG ; output message to upper screen

 LD A,':' ; follow the type message with ': '
 RST 10H ;
 LD A,' ' ;
DISP_1 RST 10H ; else print the character

 POP HL ; restore channel.
 CALL CHAN_FLAG ; routine CHAN_FLAG updates CURCHL and flags.

 POP DE ; Restore main registers.
 POP BC ;
 POP HL ;

 RET ; Return.

; ---

; Arrangement of the two tape cassette headers in workspace.
; Originally IX addresses first location and only one header is required
; when saving.
;
; OLD NEW PROG DATA DATA CODE
; HEADER HEADER num chr NOTES.
; ------ ------ ---- ---- ---- ---- -----------------------------
; IX-$11 IX+$00 0 1 2 3 Type.
; IX-$10 IX+$01 x x x x F ($FF if filename is null).
; IX-$0F IX+$02 x x x x i
; IX-$0E IX+$03 x x x x l
; IX-$0D IX+$04 x x x x e
; IX-$0C IX+$05 x x x x n
; IX-$0B IX+$06 x x x x a
; IX-$0A IX+$07 x x x x m
; IX-$09 IX+$08 x x x x e
; IX-$08 IX+$09 x x x x .
; IX-$07 IX+$0A x x x x (terminal spaces).
;
; IX-$06 IX+$0B lo lo lo lo Total length
; IX-$05 IX+$0C hi hi hi hi of datablock.
; IX-$04 IX+$0D Auto - - Start Various
; IX-$03 IX+$0E Start a-z a-z addr/0 ($80 if no autostart).
; IX-$02 IX+$0F lo - - - Length of Program
; IX-$01 IX+$10 hi - - - only i.e. without variables.
;
;
; Arrangement of 9-byte Interface1 Network/RS232 header when saving loading.
; Note. This has not been adopted by this ROM.
;
; $5BE6 HD_00 0 1 2 3 Type.
;
; $5BE7 HD_0B lo lo lo lo Total length
; $5BE8 HD_0C hi hi hi hi of datablock
; $5BE9 HD_0D -- -- -- lo/00 Start
; $5BEA HD_0E -- -- -- hi/00 Address.
; $5BEB HD_0F lo a-z a-z -- Length
; $5BEC HD_10 hi -- -- -- of program.
; $5BED HD_11 Auto -- -- -- Auto start line
; $5BEE HD_12 Start -- -- -- number. $FFFF if none.

; ------------------------------
; THE 'CANNED CASSETTE' MESSAGES
; ------------------------------
; The last-character-inverted Cassette messages.
; Starts with normal initial step-over byte.

tape_msgs DEFB $80
 DEFM "Start tape, then press a key"

type_msgs DEFB '.'+$80
 DEFB $0D
 DEFM "Progra"
 DEFB 'm'+$80
 DEFB $0D
 DEFM "Number arra"
 DEFB 'y'+$80
 DEFB $0D
 DEFM "Char arra"
 DEFB 'y'+$80
 DEFB $0D
 DEFM "Byte"
 DEFB 's'+$80

;**
;** Part 5. SCREEN AND PRINTER HANDLING ROUTINES **
;**

; --------------------------
; THE 'PRINT OUTPUT' ROUTINE
; --------------------------
; This is the routine most often used by the RST 10 restart although the
; subroutine is on two occasions called directly when it is known that
; output will definitely be to the lower screen.

PRINT_OUT CALL PO_FETCH ; routine PO-FETCH fetches print position
 ; to HL register pair.
 CP $20 ; is character a space or higher ?
 JR NC,PO_Q_ABLE ; jump forward, if so, to PO-ABLE

 CP $06 ; is character in range 00-05 ?
 JR C,PO_QUEST ; forward, if so, to PO-QUEST

 CP $18 ; is character in range 24d - 31d ?
 JR NC,PO_QUEST ; forward, if so, to PO-QUEST

 LD HL,ctlchrtab-6 ; address - the base address of control
 ; character table - where zero would be.

 LD E,A ; control character 06 - 23d
 LD D,$00 ; is transferred to DE.

 ADD HL,DE ; index into table.

 LD E,(HL) ; fetch the offset to routine.
 ADD HL,DE ; add to make HL the address.
 PUSH HL ; push the address of routine.

 JP PO_FETCH ; Jump forward to PO-FETCH,
 ; as the screen/printer position has been
 ; disturbed, and then indirectly to the
 ; routine on the stack.

; -----------------------------
; THE 'CONTROL CHARACTER' TABLE
; -----------------------------
; For control characters in the range 6 - 23d the following table
; is indexed to provide an offset to the handling routine that
; follows the table.

ctlchrtab DEFB PO_COMMA - $; 06d offset to Address: PO-COMMA
 DEFB PO_QUEST - $; 07d offset to Address: PO-QUEST
 DEFB PO_BACK_1 - $; 08d offset to Address: PO-BACK-1
 DEFB PO_RIGHT - $; 09d offset to Address: PO-RIGHT
 DEFB PO_QUEST - $; 10d offset to Address: PO-QUEST
 DEFB PO_QUEST - $; 11d offset to Address: PO-QUEST
 DEFB PO_QUEST - $; 12d offset to Address: PO-QUEST
 DEFB PO_ENTER - $; 13d offset to Address: PO-ENTER
 DEFB PO_QUEST - $; 14d offset to Address: PO-QUEST
 DEFB PO_QUEST - $; 15d offset to Address: PO-QUEST
 DEFB PO_1_OPER - $; 16d offset to Address: PO-1-OPER
 DEFB PO_1_OPER - $; 17d offset to Address: PO-1-OPER
 DEFB PO_1_OPER - $; 18d offset to Address: PO-1-OPER
 DEFB PO_1_OPER - $; 19d offset to Address: PO-1-OPER
 DEFB PO_1_OPER - $; 20d offset to Address: PO-1-OPER
 DEFB PO_1_OPER - $; 21d offset to Address: PO-1-OPER
 DEFB PO_2_OPER - $; 22d offset to Address: PO-2-OPER
 DEFB PO_2_OPER - $; 23d offset to Address: PO-2-OPER

; -------------------------
; THE 'CURSOR LEFT' ROUTINE
; -------------------------
; Backspace and up a line if that action is from the left of screen.
; For the ZX printer backspace up to first column but not beyond.

PO_BACK_1 INC C ; Move left one column.
 LD A,$22 ; Value $21 is leftmost column.
 CP C ; Have we passed ?
 JR NZ,PO_BACK_3 ; Forward, if not, to PO-BACK-3
 ; to store the new position.

 BIT 1,(IY+$01) ; Test FLAGS - is printer in use ?
 JR NZ,PO_BACK_2 ; Forward, if so, to PO-BACK-2
 ; as it is not possible to move left.

 INC B ; Move up one screen line
 LD C,$02 ; The rightmost column position.

;;; LD A,$18 ; Note. This should be $19 (not $18)
;;; ; Credit: Dr. Frank O'Hara, 1982

 LD A,$19 ;+ Test against the top line plus one.

 CP B ; Has position moved past top of screen ?
 JR NZ,PO_BACK_3 ; Forward, if not, to PO-BACK-3
 ; to store the new position.

 DEC B ; else back to $18.

PO_BACK_2 LD C,$21 ; the leftmost column position.

PO_BACK_3 JR PO_ENTEND ;+ Forward, indirectly, to CL-SET and PO-STORE
 ; to store new position in system variables.

;;; JP CL_SET ; a 3-byte direct jump.

; --------------------------
; THE 'CURSOR RIGHT' ROUTINE
; --------------------------
; This moves the print position to the right leaving a trail in the
; current background colour.
; "However the programmer has failed to store the new print position

; so CHR$ 9 will only work if the next print position is at a newly
; defined place.
; e.g. PRINT PAPER 2; CHR$ 9; AT 4,0;
; does work but is not very helpful"
; - Dr. Ian Logan, Understanding Your Spectrum, 1982.

;;; PO_RIGHT LD A,($5B91) ; fetch P_FLAG value
;;; PUSH AF ; and preserve the original value on the stack.
;;; LD (IY+$57),$01 ; temporarily set P_FLAG 'OVER 1'.
;;; LD A,$20 ; prepare a space.
;;; CALL PO_CHAR ; routine PO-CHAR to print it.
;;; POP AF ; restore the original P_FLAG value.
;;; LD ($5B91),A ; and restore system variable P_FLAG
;;; RET ; return without need to update column position.

PO_RIGHT LD HL,$5B91 ;+ Address system variable P_FLAG
 LD D,(HL) ;+ Fetch the System Variable value and
 LD (HL),1 ;+ Set to OVER 1

 CALL PO_SV_SP ;+ Routine prints a space

 LD (HL),D ;+ and place in P_FLAG
 RET ;+ Return

; -----------------------------------
; THE 'PRINT CARRIAGE RETURN' ROUTINE
; -----------------------------------
; A carriage return is 'printed' to screen or printer buffer.

PO_ENTER BIT 1,(IY+$01) ; test FLAGS - is printer in use ?

 JP NZ,COPY_BUFF ; to COPY-BUFF if so, to flush buffer and reset
 ; the print position.

; Continue if writing to screen.

 LD C,$21 ; the leftmost screen column position.

 CALL PO_SCR ; routine PO-SCR handles any scrolling required.

 DEC B ; adjust to next screen line.

PO_ENTEND JP CL_SET ; jump forward to CL-SET to store new position.

; ----------------------------
; THE 'PRINT COMMA' SUBROUTINE
; ----------------------------
; The comma control character. The 32 column screen has two 16 character
; tabstops. The routine is only reached via the control character table.
; If it was called from elsewhere then the call to PO-FETCH would be needed.

;;; CALL PO_FETCH ; routine PO-FETCH - seems unnecessary.

PO_COMMA LD A,C ; the column position. $21-$01
 DEC A ; move right. $20-$00
 DEC A ; and again $1F-$00 or $FF if trailing
 AND $10 ; will be $00 or $10.
 JR PO_FILL ; forward to PO-FILL

; ------------------------------------
; THE 'PRINT QUESTION MARK' SUBROUTINE
; ------------------------------------
; This routine prints a question mark which is commonly used to print an

; unassigned control character in range 0-31d. There are a surprising number
; yet to be assigned.

PO_QUEST LD A,$3F ; prepare the character '?'.

PO_Q_ABLE JR PO_ABLE ; forward to PO-ABLE.

; ---
; THE 'CONTROL CHARACTERS WITH OPERANDS' ROUTINES
; ---
; Certain control characters are followed by 1 or 2 operands.
; The entry points from control character table are PO-2-OPER and PO-1-OPER.
; The routines alter the output address of the current channel so that
; subsequent RST $10 instructions take the appropriate action
; before finally resetting the output address back to PRINT-OUT.

PO_TV_2 LD DE,PO_CONT ; address: PO-CONT will be next output routine

PO_TV_3 LD ($5B0F),A ; store first operand in TVDATA-hi
 JR PO_CHANGE ; forward to PO-CHANGE >>

; ---

; -> This initial entry point deals with two operands - AT or TAB.

PO_2_OPER LD DE,PO_TV_2 ; address: PO-TV-2 will be next output routine
 JR PO_TV_1 ; forward to PO-TV-1

; ---

; -> This initial entry point deals with one operand INK to OVER.

PO_1_OPER LD DE,PO_CONT ; address: PO-CONT will be next output routine

PO_TV_1 LD ($5B0E),A ; store control code in TVDATA-lo

PO_CHANGE LD HL,($5B51) ; use CURCHL to find current output channel.

PO_CH_2 LD (HL),E ; make it
 INC HL ; the supplied
 LD (HL),D ; address from DE.

 RET ; return.

; ---

PO_NORM LD DE,PRINT_OUT ; prepare to make PRINT_OUT normal.
 JR PO_CHANGE ;

; ---

PO_CONT
;;; LD DE,PRINT_OUT ; Address: PRINT-OUT
;;; CALL PO_CHANGE ; routine PO-CHANGE to restore normal channel.
 CALL PO_NORM ;+ routine embodies above two instructions.

; Now that all the sequence of codes have been received they can be handled.
; The accumulator holds the final parameter and any previous codes are in
; the system variable TVDATA.

 LD HL,($5B0E) ; TVDATA gives control code and possible
 ; subsequent character
 LD D,A ; save current code.
 LD A,L ; fetch the stored control code

 CP $16 ; was it one operand - INK to OVER ?

 JP C,CO_TEMP_5 ; jump forward, if so, to CO-TEMP-5

; Consider the two control codes with two operands.

 JR NZ,PO_TAB ; forward, if not 22 decimal, to PO-TAB (23)

; else must have been 22 decimal - 'AT'.

 LD B,H ; line to H (0-23d)
 LD C,D ; column to C (0-31d)
 LD A,$1F ; prepare the value 31d
 SUB C ; reverse the column number.
 JR C,PO_AT_ERR ; forward, if greater than 31, to PO-AT-ERR
 ; 'Integer out of range'

 ADD A,$02 ; transform to system range $02-$21
 LD C,A ; and place in the column register.

; Now consider the line parameter.

 BIT 1,(IY+$01) ; test FLAGS - is printer in use ?
 JR NZ,PO_ENTEND ; forward, if so, ignoring line to PO-AT-SET

 LD A,$16 ; prepare 22 decimal
 SUB B ; subtract line number to reverse legal values
 ; 0 - 22 becomes 22 - 0.

PO_AT_ERR JP C,REPORT_Bb ; jump, if higher than 22, to REPORT-B
 ; 'Integer out of range'

 INC A ; adjust for the system range $01-$17
 LD B,A ; place in the line register

 INC B ; adjust to system range $02-$18
 BIT 0,(IY+$02) ; test TV_FLAG - Lower screen in use ?
 JP NZ,PO_SCR ; forward, if so, to PO-SCR
 ; to test for scrolling.

 CP (IY+$31) ; for upper screen, compare against DF_SZ

;;; JP C,REPORT_5 ; to REPORT-5 if too low
;;; ; 'Out of screen'
;;; JP CL_SET ; to CL_SET if valid.

PO_AT_SET JR NC,PO_ENTEND ;+ print position is valid so exit via CL-SET

REPORT_5a RST 30H ;+ ERROR-1
 DEFB $04 ;+ Error Report: Out of screen

; ---

; The branch was here when dealing with TAB.
; Note. In BASIC, TAB is followed by a 16-bit number and was initially
; designed to work with any output device.

PO_TAB LD A,H ; transfer parameter to A losing the current
 ; contents - the high byte of the TAB parameter.

PO_FILL CALL PO_FETCH ; routine PO-FETCH, HL = addr, BC = line/column.
 ; column 1 (right), $21 (left)

 ADD A,C ; add operand to current column

 DEC A ; range 0 - 31+
 AND $1F ; make range mod 32 that is 0 - 31.
 RET Z ; return if result is zero.

 LD D,A ; Counter to D
 SET 0,(IY+$01) ; update FLAGS - signal suppress leading space.

PO_SPACE CALL PO_SV_SP ;+ call instruction before PO_SAVE - ld a,$20

;;; LD A,$20 ; space character.
;;; CALL PO_SAVE ; routine PO-SAVE prints the character
 ; using alternate set (normal output routine)

 DEC D ; decrement the spaces counter.
 JR NZ,PO_SPACE ; back to PO-SPACE until done.

 RET ; Return.

; ----------------------
; Printable character(s)
; ----------------------
; This routine prints printable characters and continues into
; the position store routine

PO_ABLE CALL PO_ANY ; routine PO-ANY
 ; and continue into position store routine.

; ----------------------------
; THE 'POSITION STORE' ROUTINE
; ----------------------------
; This routine updates the system variables associated with the main screen,
; the lower screen/input buffer or the ZX printer.

PO_STORE BIT 1,(IY+$01) ; Test FLAGS - is printer in use ?
 JR NZ,PO_ST_PR ; Forward, if so, to PO-ST-PR

 BIT 0,(IY+$02) ; Test TV_FLAG - is lower screen in use ?
 JR NZ,PO_ST_E ; Forward, if so, to PO-ST-E

; This section deals with the upper screen.

 LD ($5B88),BC ; Update S_POSN - line/column upper screen
 LD ($5B84),HL ; Update DF_CC - upper display file address

 RET ; Return.

; ---

; This section deals with the lower screen.

PO_ST_E LD ($5B8A),BC ; Update SPOSNL line/column lower screen
 LD ($5B82),BC ; Update ECHO_E line/column input buffer
 LD ($5B86),HL ; Update DFCCL lower screen memory address
 RET ; Return.

; ---

; This section deals with the ZX Printer.
; Now just update the column number $00 - $21 within the channel.

PO_ST_PR LD IX,($5B51) ;+ set IX to CURCHL

 LD (IX+$07),C ;+ Update P_POSN column position printer

 RET ; Return.

; ----------------------------
; THE 'POSITION FETCH' ROUTINE
; ----------------------------
; This routine fetches the line/column and display file address of the upper
; and lower screen or, if the printer is in use, the column position and
; absolute memory address.
; Note. that PR-CC is no longer used. The output address is calculated
; by this routine every time from the new channel variable P_POSN.
; The output address now alters whenever a channel is reclaimed.

PO_FETCH BIT 1,(IY+$01) ; Test FLAGS - is printer in use ?
 JR NZ,PO_F_PR ; Forward, if so, to PO-F-PR

; assume upper screen in use and thus optimize for path that requires speed.

 LD BC,($5B88) ; Fetch line/column from S_POSN
 LD HL,($5B84) ; Fetch DF_CC display file address

 BIT 0,(IY+$02) ; Test TV_FLAG - lower screen in use ?
 RET Z ; Return if upper screen in use.

; Overwrite registers with values for lower screen.

 LD BC,($5B8A) ; Fetch line/column from SPOSNL
 LD HL,($5B86) ; Fetch display file address from DFCCL
 RET ; Return.

; ---

; This section deals with the ZX Printer.
; The column is obtained from the location within the channel.
; The output address HL is derived from this column number.

PO_F_PR LD HL,($5B51) ;+ set HL to start of Channel from CURCHL
 LD BC,$0007 ;+ offset to column number.
 ADD HL,BC ;+ add to address P_POSN
 LD C,(HL) ;+ Fetch column from P_POSN.
 INC HL ;+ Start of 256 buffer.

 LD B,A ;+ copy character to B.

 LD A,$21 ;+ Reverse the column number
 SUB C ;+ Now $00 (left) $1F (right)
 ADD A,L ;+ add to low byte possibly setting carry flag.
 LD L,A ;+ place back in low byte.

 LD A,B ;+ copy character back to A

 RET NC ;+ return if address is correct.

 INC H ;+ else increase by 256 bytes.

 RET ;+ Return.

; ---------------------------------
; THE 'PRINT ANY CHARACTER' ROUTINE
; ---------------------------------
; This routine is used to print any character in range 32d - 255d
; It is only called from PO-ABLE which continues into PO-STORE
; On entry, HL contains the output address and BC the line column or just
; the column in the case of the ZX Printer.

PO_ANY CP $80 ; ASCII ?
 JR C,PO_CHAR ; to PO-CHAR if so.

 CP $90 ; test if a block graphic character.
 JR NC,PO_T_UDG ; to PO-T&UDG to print tokens and UDGs

; The 16 2*2 mosaic characters 128-143 decimal are formed from
; bits 0-3 of the character.

 LD B,A ; save character

 CALL PO_GR_1 ; routine PO-GR-1 to construct top half
 ; then bottom half.

 CALL PO_FETCH ; routine PO-FETCH re-fetches print position.

 LD DE,$5B92 ; MEM-0 is location of 8 bytes of character

 JR PR_ALL ; forward to PR-ALL
 ; to print to screen or printer.

; ---

PO_GR_1 LD HL,$5B92 ; address MEM-0 - a temporary buffer in
 ; systems variables which is normally used
 ; by the calculator.
 CALL PO_GR_2 ; routine PO-GR-2 to construct top half
 ; and continue into routine to construct
 ; bottom half.

PO_GR_2 RR B ; rotate bit 0/2 to carry
 SBC A,A ; result $00 or $FF
 AND $0F ; mask off right hand side
 LD C,A ; store part in C
 RR B ; rotate bit 1/3 of original chr to carry
 SBC A,A ; result $00 or $FF
 AND $F0 ; mask off left hand side
 OR C ; combine with stored pattern
 LD C,$04 ; four bytes for top/bottom half

PO_GR_3 LD (HL),A ; store bit patterns in temporary buffer
 INC HL ; next address
 DEC C ; jump back to
 JR NZ,PO_GR_3 ; to PO-GR-3 until byte is stored 4 times

 RET ; return

; ---

; Tokens and User defined graphics are now separated.

PO_T_UDG SUB $A5 ; subtract the 'RND' character
 JR NC,PO_T ; forward, if a token, to PO-T

 ADD A,$15 ; add 21d to restore to 0 - 20
 PUSH BC ; save current print position
 LD BC,($5B7B) ; fetch UDG to address bit patterns
 JR PO_CHAR_2 ; forward to common code at PO-CHAR-2
 ; to lay down a bit patterned character

; ---

; Tokens

PO_T CALL PO_TOKENS ; routine PO-TOKENS prints tokens

;;; JP PO_FETCH ; an absolut jump to PO_FETCH

 JR PO_FETCH ;+ exit via a JUMP to PO-FETCH as this routine
 ;+ must continue into PO-STORE.
 ;+ A JR instruction could be used. (Done)

; ---

; This point is used to print ASCII characters 32d - 127d.

PO_CHAR PUSH BC ; Preserve print position
 LD BC,($5B36) ; Fetch font pointer from address CHARS

; This common code is used to transfer the character bytes to memory.

PO_CHAR_2 EX DE,HL ; transfer destination address to DE

 LD HL,$5B3B ; point to FLAGS
 RES 0,(HL) ; update FLAGS - allow for leading space

 CP $20 ; is output character a space ?
 JR NZ,PO_CHAR_3 ; skip forward, if not, to PO-CHAR-3

 SET 0,(HL) ; update FLAGS - signal no leading space.

PO_CHAR_3 LD H,$00 ; set high byte to 0
 LD L,A ; character to A, 0-21 UDG or 32-127 ASCII.

 ADD HL,HL ; multiply
 ADD HL,HL ; by
 ADD HL,HL ; eight.

 ADD HL,BC ; HL now points to first byte of character.

 POP BC ; retrieve the source address from CHARS or UDG.

 EX DE,HL ; transfer the character bitmap address to DE.

; ----------------------------------
; THE 'PRINT ALL CHARACTERS' ROUTINE
; ----------------------------------
; This entry point entered from above to print ASCII and UDGs but also from
; earlier to print the mosaic characters.
; HL = screen or printer destination
; DE = character bitmap source
; BC = line/column

PR_ALL LD A,C ; transfer the column to A
 DEC A ; move to the right

 LD A,$21 ; pre-load with leftmost position
 PUSH DE ;+ Save character source before any branching.
 JR NZ,PR_ALL_1 ; forward, if not zero, to PR-ALL-1

; If zero then move down a line, but B is of no significance if printer
; is in use

 DEC B ; down one line
 LD C,A ; load C with $21

 BIT 1,(IY+$01) ; test FLAGS - is printer in use

;;; JR Z,PR_ALL_1 ; forward, if not, to PR-ALL-1

; This is the printer-only path but we can trickle through.

;;; PUSH DE ; save source address

;;; CALL COPY_BUFF ; Routine COPY-BUFF outputs line to printer
 CALL NZ,COPY_BUFF ;+ Routine COPY-BUFF conditionally outputs line
 ;+ to printer leaving A=$00 and C=$21 and
 ;+ the zero flag reset - NZ.

;;; POP DE ; Restore the character source address
;;; LD A,C ; the new column number ($21) to A from C.

; This is the screen-only path but we can trickle through as A!=C.

PR_ALL_1
 CP C ; this test is really for screen - new line ?
;;; PUSH DE ; save source

 CALL Z,PO_SCR ; routine PO-SCR considers scrolling.

 POP DE ; restore source address.

; The following applies to screen and printer.

PR_ALL_1a PUSH BC ; save line/column
 PUSH HL ; and destination

 LD A,($5B91) ; fetch P_FLAG to accumulator
 LD B,$FF ; prepare an OVER mask in B.
 RRA ; carry is set if temporary bit is OVER 1
 JR C,PR_ALL_2 ; forward, if OVER 1, to PR-ALL-2

 INC B ; set OVER mask to 0

PR_ALL_2 RRA ; skip bit 1 of P_FLAG
 RRA ; bit 2 is temporary INVERSE
 SBC A,A ; will be FF for INVERSE 1 else zero
 LD C,A ; transfer the INVERSE mask to C

 LD A,$08 ; prepare to count 8 bytes
 AND A ; clear carry to signal screen in use.

 BIT 1,(IY+$01) ; test FLAGS - is screen in use ?
 JR Z,PR_ALL_3 ; forward, if screen, to PR-ALL-3

;;; SET 1,(IY+$30) ; update FLAGS2 - signal printer buffer has
;;; ; been used.

 SCF ; set the carry flag to signal printer in use.

PR_ALL_3 EX DE,HL ; now HL=source, DE=destination

PR_ALL_4 EX AF,AF' ; Save the printer/screen Carry flag

 LD A,(DE) ; Fetch the existing destination byte
 AND B ; consider OVER
 XOR (HL) ; now XOR with source
 XOR C ; now with INVERSE MASK

 LD (DE),A ; update screen/printer location.

 EX AF,AF' ; restore discriminating flag

 JR C,PR_ALL_6 ; forward, if printer, to PR-ALL-6

; Continue with screen printing.

 INC D ; increment D - gives next screen pixel line

PR_ALL_5 INC HL ; address next character source byte
 DEC A ; the byte count is decremented
 JR NZ,PR_ALL_4 ; back to PR-ALL-4 for all 8 bytes

 EX DE,HL ; transfer destination to HL
 DEC H ; bring back to last updated screen position
 ; from the 'ninth' line.

 BIT 1,(IY+$01) ; test FLAGS - is printer in use ?

 CALL Z,PO_ATTR ; if not, call routine PO-ATTR to update the
 ; corresponding colour attribute.
 ; (the address of which is now retained in DE)

 POP HL ; restore original screen/printer position
 POP BC ; and the line and column

 DEC C ; move column to right
 INC HL ; increase screen/printer position

 RET ; return and continue into PO-STORE
 ; within PO-ABLE

; Note. that DE has been made to retain the attribute byte.

; ---

; This branch is used to update the ZX printer position by 32 places
; Note. The high byte of the address D now increments if a page boundary
; is crossed as this ROM supports up to thirteen ZX Printer buffers.

PR_ALL_6 EX AF,AF' ; save the flag
 LD A,$20 ; load A with 32 decimal
 ADD A,E ; add this to E
 LD E,A ; and store result in E
 JR NC,PR_ALL_7 ;+ skip forward if no wrap.

 INC D ;+ increment the high byte of channel address.

PR_ALL_7 EX AF,AF' ; fetch the flag
 JR PR_ALL_5 ; back to PR-ALL-5

; -----------------------------------
; THE 'UPDATE ATTRIBUTE CELL' ROUTINE
; -----------------------------------
; This routine is entered with the HL register holding the last screen
; address to be updated by PRINT or PLOT.
; The Spectrum screen arrangement leads to the L register holding the correct
; value for the attribute file and it is only necessary to manipulate H to
; form the correct colour attribute address.

;;; PO_ATTR LD A,H ; fetch high byte $40 - $57
;;; RRCA ; shift
;;; RRCA ; bits 3 and 4
;;; RRCA ; to right.
;;; AND $03 ; range is now 0 - 2
;;; OR $58 ; form correct high byte for third of screen
;;; LD H,A ; HL is now correct

PO_ATTR CALL CL_ATTR2 ;+ NEW subroutine with above code.

 LD DE,($5B8F) ; make D hold ATTR_T, E hold MASK-T
 LD A,(HL) ; fetch existing attribute from attribute file
 XOR E ; apply masks
 AND D ;
 XOR E ;
 BIT 6,(IY+$57) ; test P_FLAG - is this PAPER 9 ??
 JR Z,PO_ATTR_1 ; skip, if not, to PO-ATTR-1

 AND $C7 ; set paper
 BIT 2,A ; to contrast with ink
 JR NZ,PO_ATTR_1 ; skip to PO-ATTR-1

 XOR $38 ;

PO_ATTR_1 BIT 4,(IY+$57) ; test P_FLAG - is this INK 9 ??
 JR Z,PO_ATTR_2 ; skip, if not, to PO-ATTR-2

 AND $F8 ; make the ink colour contrast with paper.
 BIT 5,A ; Is paper light ?

 JR NZ,PO_ATTR_2 ; forward, if so, to PO-ATTR-2

 XOR $07 ; toggle ink colour.

PO_ATTR_2 LD (HL),A ; write the new attribute to the attribute file

 EX DE,HL ;+ Note. NEW - return the attribute byte in DE.

 RET ; return.

; ---------------------------------
; THE 'MESSAGE PRINTING' SUBROUTINE
; ---------------------------------
; This entry point is used to print tape, boot-up, scroll? and error messages.
; On entry the DE register points to an initial step-over byte or the
; inverted end-marker of the previous entry in the table.
; Register A contains the message number, often zero to print first message.
; (HL has nothing important usually P_FLAG)

PO_MSG_0 XOR A ;+ NEW entry point to print first message.
PO_MSG_1 SET 5,(IY+$02) ;+ update TV_FLAG - signal lower screen will
 ;+ require clearing.

; -> Normal Entry Point.

PO_MSG PUSH HL ; put hi-byte zero on stack to suppress
 LD H,$00 ; trailing spaces
 EX (SP),HL ; ld h,0; push hl would have done ?.
 JR PO_TABLE ; forward to PO-TABLE.

; ---

; This entry point prints the BASIC keywords, '<>' etc. from alt set

PO_TOKENS LD DE,TKN_TABLE ; address: TKN-TABLE
 PUSH AF ; stack the token number to control
 ; trailing spaces - see later *

; ->

PO_TABLE CALL PO_SEARCH ; routine PO-SEARCH will set carry for

 ; all messages and function words.

 JR C,PO_EACH ; forward to PO-EACH if not a command, '<>' etc.

;;; LD A,$20 ; prepare leading space
 BIT 0,(IY+$01) ; test FLAGS - leading space if not set

;;; CALL Z,PO_SAVE ; routine PO-SAVE to print the space in A.

 CALL Z,PO_SV_SP ; routine PO-SV_SP to print a space without
 ; disturbing registers.

PO_EACH LD A,(DE) ; Fetch character from the table.
 AND $7F ; Cancel any inverted bit.

 CALL PO_SAVE ; Routine PO-SAVE to print using the alternate
 ; set of registers.

 LD A,(DE) ; Re-fetch character from table.
 INC DE ; Address next character in the table.

 ADD A,A ; Was character inverted ?
 ; (this also doubles character e.g. $41 -> $82)
 JR NC,PO_EACH ; back, if not, to PO-EACH

 POP DE ; * re-fetch trailing space byte to D

 CP $48 ; was the last character '$' ?
 JR Z,PO_TR_SP ; forward, if so, to PO-TR-SP
 ; to consider a trailing space.

 CP $82 ; was it < 'A' i.e. '#','>','=' from tokens
 ; or ' ','.' (from tape) or '?' from scroll

 RET C ; Return if so as no trailing space required.

PO_TR_SP LD A,D ; The trailing space flag (zero if an error msg)

 CP $03 ; Test against RND, INKEY$ and PI which have no
 ; parameters and therefore no trailing space.

 RET C ; Return if no trailing space.

PO_SV_SP LD A,$20 ; Prepare the space character and continue to
 ; print and make an indirect return.

; -----------------------------------
; THE 'RECURSIVE PRINTING' SUBROUTINE
; -----------------------------------
; This routine which is part of PRINT-OUT allows RST $10 to be used
; recursively to print tokens and the spaces associated with them.
; It is called on three occasions when the value of DE must be preserved.

PO_SAVE PUSH DE ; Save DE value.
 EXX ; Switch in main set

 RST 10H ; PRINT-A prints using this alternate set.

 EXX ; Switch back to this alternate set.
 POP DE ; Restore the initial DE value.

 RET ; Return.

; --------------------------

; THE 'TABLE SEARCH' ROUTINE
; --------------------------
; This subroutine searches a message or the token table for the
; message number held in A. DE holds the address of the table.

PO_SEARCH PUSH AF ; save the original message/token number

 EX DE,HL ; transfer table address, DE to HL
 INC A ; adjust for initial step-over byte

PO_STEP BIT 7,(HL) ; is character inverted ?
 INC HL ; address next
 JR Z,PO_STEP ; back, if not inverted, to PO-STEP

; The start of a new message token.

 DEC A ; decrease message counter
 JR NZ,PO_STEP ; back, if not zero, to PO-STEP

; Register HL now addresses the first character of the required message.

 EX DE,HL ; transfer address to DE

 POP AF ; restore original message/token number

 CP $20 ; compare to thirty two
 RET C ; return for all messages and function tokens.

; Note. there are thirty error messages, originally twenty eight.

 LD A,(DE) ; test first character of token
 SUB $41 ; against character 'A'

 RET ; Return - with carry set if it is less
 ; i.e. '<>', '<=', '>='

; --------------------------------
; THE 'TEST FOR SCROLL' SUBROUTINE
; --------------------------------
; This test routine is called when printing carriage return, when considering
; PRINT AT and from the general PRINT ALL characters routine to test if
; scrolling is required, prompting the user if necessary.
; This is therefore using the alternate set.
; The B register holds the current line.
; The current channel could be the upper screen 'S' in which case the
; 'scroll?' prompt is printed or from the lower screen 'K' in which case
; no prompt is given.

PO_SCR
;;; BIT 1,(IY+$01) ; test FLAGS - is printer in use ?
;;; RET NZ ; return immediately if so.

; Continue if handling upper or lower screen.

 LD DE,CL_SET ; set DE to address: CL-SET
 PUSH DE ; and push for the return address.

 LD A,B ; transfer the line to A.
 BIT 0,(IY+$02) ; test TV_FLAG - lower screen in use ?
 JP NZ,PO_SCR_4 ; jump forward, if so, to PO-SCR-4

 CP (IY+$31) ; greater than DF_SZ display file size ?
REP_5 JR C,REPORT_5b ; forward, if less, to REPORT-5

 ; 'Out of screen'

 RET NZ ; return (via CL-SET) if greater

 BIT 4,(IY+$02) ; test TV_FLAG - Automatic listing ?
 JR Z,PO_SCR_2 ; forward, if not, to PO-SCR-2

 LD E,(IY+$2D) ; fetch BREG - the count of scroll lines to E.
 DEC E ; decrease
 JR Z,PO_SCR_3 ; forward, if zero to scroll, at PO-SCR-3.

;;; LD A,$00 ; explicit - select channel zero.
;;; CALL CHAN_SLCT ; routine CHAN-OPEN opens it invoking TEMPS.

 CALL CHAN_ZERO ;+ routine CHAN-OPEN opens it invoking TEMPS.

 LD SP,($5B3F) ; set stack pointer to LIST_SP

PO_N_AUTO RES 4,(IY+$02) ; Update TV_FLAG - signal auto listing finished.

 RET ; return, ignoring pushed value CL-SET, to MAIN
 ; or EDITOR without updating print position >>

; ---

REPORT_5b RST 30H ; ERROR-1
 DEFB $04 ; Error Report: Out of screen

; ---

; Continue here if not an automatic listing.

PO_SCR_2 DEC (IY+$52) ; decrease the scroll count - SCR_CT
 JR NZ,PO_SCR_3 ; forward, if not zero, to scroll at PO-SCR-3

; If scroll count is zero, produce prompt, so that user can see the scrolled
; output and BREAK if desired.

 LD A,$18 ; prepare 24 decimal.
 SUB B ; subtract the current line.
 LD ($5B8C),A ; update the scroll count - SCR_CT

; Although printing to lower screen will

 LD HL,($5B8F) ; L=ATTR_T, H=MASK_T
 PUSH HL ; save on stack

 LD A,($5B91) ; P_FLAG
 PUSH AF ; save on stack to prevent lower screen
 ; attributes (BORDCR etc.) being applied.

 LD A,$FD ; select system channel 'K'

 CALL CHAN_SLCT ; routine CHAN-OPEN opens it and invokes TEMPS.

;;; XOR A ; clear to address message directly
 LD DE,scrl_mssg ; make DE address: scrl-mssg

 CALL PO_MSG_0 ; routine PO-MSG prints 'scroll?' to the lower
 ; screen.

;;; SET 5,(IY+$02) ; set TV_FLAG - signal lower screen requires
 ; clearing

 LD HL,$5B3B ; make HL address FLAGS
 SET 3,(HL) ; signal 'L' mode.
 RES 5,(HL) ; signal 'no new key'.

 EXX ; switch to main set.
 ; as calling chr input from alternative set.

 CALL WAIT_KEY ; routine WAIT_KEY waits for new key

 EXX ; switch back to alternate set.

 CP $20 ; space is considered as BREAK
 JR Z,REPORT_D ; forward, if so, to REPORT-D
 ; 'BREAK - CONT repeats'

 CP $E2 ; is character 'STOP' ?
 JR Z,REPORT_D ; forward, if so, to REPORT-D
 ; 'BREAK - CONT repeats'

 OR $20 ; convert to lower-case
 CP $6E ; is character 'n' ?
 JR Z,REPORT_D ; forward, if so, to REPORT-D
 ; 'BREAK - CONT repeats'

; Scrolling is required.

;;; LD A,$FE ; select system channel 'S'
;;; CALL CHAN_SLCT ;

 CALL CHAN_O_FE ;+ Routine CHAN-OPEN opens it but applies
 ;+ ATTR_P to ATTR_T nullifying any embedded
 ;+ colour items in the current print statement.

 POP AF ; Restore original P_FLAG
 LD ($5B91),A ; and save in P_FLAG.
 POP HL ; Restore original ATTR_T, MASK_T
 LD ($5B8F),HL ; and reset ATTR_T, MASK-T as 'scroll?' has
 ; been printed.

PO_SCR_3 CALL CL_SC_ALL ; routine CL-SC-ALL to scroll whole display

 LD B,(IY+$31) ; fetch DF_SZ to B
 INC B ; increase to address last line of display

;;; LD C,$21 ; set C to $21 (was $21 from above routine)

 PUSH BC ; save the line and column in BC.

 CALL CL_ADDR ; routine CL_ADDR finds display address.

;;; LD A,H ; now find the corresponding attribute byte
;;; RRCA ; (this code sequence is used twice
;;; RRCA ; elsewhere and is a candidate for
;;; RRCA ; a subroutine.)
;;; AND $03 ;
;;; OR $58 ;
;;; LD H,A ;

 CALL CL_ATTR2 ;+ Note. A NEW routine with the above code.

 LD DE,$5AE0 ; start of last 'line' of attribute area

 LD A,(DE) ; get attribute for last line
 LD C,(HL) ; get attribute for base line of upper part

 LD B,$20 ; there are thirty two attribute bytes to copy

 EX DE,HL ; swap the pointers.

PO_SCR_3A LD (DE),A ; exchange the two
 LD (HL),C ; attributes.
 INC DE ; address next source location.
 INC HL ; address next destination location.
 DJNZ PO_SCR_3A ; loop back to PO-SCR-3A
 ; for all adjacent attribute cells.

 POP BC ; restore the line/column.

 RET ; return via CL-SET (was pushed on stack).

; --------------------
; THE 'SCROLL?' PROMPT
; --------------------
; The message 'scroll?' appears here with last byte inverted.

scrl_mssg DEFB $80 ; initial step-over byte.
 DEFM "scroll"
 DEFB '?'+$80

; ---

REPORT_D RST 30H ; ERROR-1
 DEFB $0C ; Error Report: BREAK - CONT repeats

; ---

; Continue here if using lower display - A holds line number.

PO_SCR_4 CP $02 ; is line number less than 2 ?
 JR C,REPORT_5b ; back, if so, to REPORT-5
 ; 'Out of Screen'

 ADD A,(IY+$31) ; add DF_SZ
 SUB $19 ; subtract twenty five.
 RET NC ; return if scrolling is unnecessary

 NEG ; Negate to give number of scrolls required.

 PUSH BC ; (*) save line/column
 ; to prevent corruption by input AT

 LD B,A ; transfer count to B

;;; LD HL,($5B8F) ; fetch current ATTR_T, MASK_T to HL.
;;; PUSH HL ; and save
;;; LD HL,($5B91) ; fetch P_FLAG
;;; PUSH HL ; and save.

;;; CALL TEMPs ; routine TEMPs sets to BORDCR etc.

 LD A,B ; transfer scroll number to A.

PO_SCR_4A PUSH AF ; save scroll number.

; Now increment the lower screen display file size DF_SZ.
; Retain the old value in the B register as scroll count

 LD HL,$5B6B ; address DF_SZ
 LD B,(HL) ; fetch old value
 LD A,B ; transfer to A
 INC A ; and increment
 LD (HL),A ; then put back.

;;; LD HL,$5B89 ; address S_POSN_hi - line

 LD L,$89 ; address S_POSN_hi - line
 CP (HL) ; compare DF_SZ to the line number.
 JR C,PO_SCR_4B ; forward, if less, to PO-SCR-4B
 ; to scroll the lower screen only.

 INC (HL) ; else increment S_POSN_hi the upper line value

;;; LD B,$18 ; set count to whole display ??
;;; ; Note. should be $17 (not $18) and the top
;;; ; line will be scrolled into the ROM which
;;; ; is harmless on the standard set up.
;;; ; credit: P. Giblin 1984.
 LD B,$17 ;+

PO_SCR_4B CALL CL_SCROLL ; routine CL-SCROLL scrolls bottom B lines up.

 POP AF ; restore the scroll counter.

 DEC A ; decrease counter.
 JR NZ,PO_SCR_4A ; back to PO-SCR-4A until done

;;; POP HL ; restore original P_FLAG.
;;; LD (IY+$57),L ; and overwrite system variable P_FLAG.

;;; POP HL ; restore original ATTR_T/MASK_T.
;;; LD ($5B8F),HL ; and update system variables.

 LD BC,($5B88) ; fetch upper display line/column S_POSN to BC.

 RES 0,(IY+$02) ; signal to TV_FLAG - main screen in use.

 CALL CL_SET ; call routine CL-SET for upper display.

 POP BC ; (*) restore lower line/column

SIG_L_SCR SET 0,(IY+$02) ; signal to TV_FLAG - lower screen in use.

 RET ; return via CL-SET for lower display.

; ---
; THE 'SET TEMPORARY COLOUR ATTRIBUTES' ROUTINE
; ---
; This subroutine is called several times to copy the permanent colour items
; to the temporary ones.

TEMPS XOR A ; clear the accumulator
 LD HL,($5B8D) ; fetch L = ATTR_P and H = MASK_P

 BIT 0,(IY+$02) ; test TV_FLAG - is lower screen in use ?
 JR Z,TEMPS_1 ; skip, if not lower screen, to TEMPS-1

 LD H,A ; set H (MASK_P) to 00000000. (All bits show)
 LD L,(IY+$0E) ; fetch BORDCR to L which is used for lower
 ; screen.

TEMPS_1 LD ($5B8F),HL ; update system variables ATTR_T and MASK_T

; For the print flag the permanent values are odd bits, temporary even bits.
; For the lower screen the temporary mask bits are reset. The ink colour
; has already been chosen to contrast with the border colour and attributes
; like OVER 1 are never allowed as it would confuse. For the upper screen
; then ink 9, paper 9, inverse 1, over 1 are the same as permanent values.

 LD HL,$5B91 ; address the print flag P_FLAG.
 JR NZ,TEMPS_2 ; skip, if lower screen using zero, to TEMPS-2

 LD A,(HL) ; else pick up flag bits.
 RRCA ; rotate permanent bits to temporary bits.

TEMPS_2 XOR (HL) ;
 AND $55 ; mask %01010101
 XOR (HL) ; permanent bits now as original

 LD (HL),A ; apply the updated temporary bits.

 RET ; return.

; -----------------
; THE 'CLS' COMMAND
; -----------------
; This command clears the display.
; The routine is also called during initialization and by the CLEAR command.
; If it's difficult to write it should be difficult to read.

CLS CALL CL_ALL ; Routine CL-ALL clears the entire display and
 ; sets the attributes to the permanent ones
 ; from ATTR-P.

; Having cleared all 24 lines of the display area, continue into the
; subroutine that clears the lower display area. Note that at the moment
; the attributes for the lower lines are the same as upper ones and have
; to be changed to match the BORDER colour.

; --------------------------
; THE 'CLS-LOWER' SUBROUTINE
; --------------------------
; This routine is called from INPUT, and from the MAIN execution loop.
; This is very much a housekeeping routine which clears between 2 and 23
; lines of the display, setting attributes and correcting situations where
; errors have occurred while the normal input and output routines have been
; temporarily diverted to deal with, say colour control codes.

CLS_LOWER LD HL,$5B3C ; address System Variable TV_FLAG.
 RES 5,(HL) ; TV_FLAG - signal do not clear lower screen.
 SET 0,(HL) ; TV_FLAG - signal lower screen in use.

;;; CALL TEMPs ; routine TEMPs applies permanent attributes,
 ; in this case BORDCR to ATTR_T.
 ; Note. this seems unnecessary and is repeated
 ; within CL-LINE.

 LD B,(IY+$31) ; fetch lower screen display file size DF_SZ

 CALL CL_LINE ; routine CL-LINE clears lines to bottom of the
 ; display and sets attributes from BORDCR while
 ; preserving the B register.

 LD HL,$5AC0 ; set initial attribute address to the leftmost
 ; cell of second line up.

 LD A,($5B8D) ; fetch permanent attribute from ATTR_P.

 DEC B ; decrement lower screen display file size.

 JR CLS_3 ; forward to enter the backfill loop at CLS-3
 ; where B is decremented again.

; ---

; The backfill loop is entered at midpoint and ensures, if more than 2
; lines have been cleared, that any other lines take the permanent screen
; attributes.

CLS_1 LD C,$20 ; set counter to 32 character cells per line

CLS_2 DEC HL ; decrease attribute address.
 LD (HL),A ; and place attributes in next line up.
 DEC C ; decrease the 32 counter.
 JR NZ,CLS_2 ; loop back to CLS-2 until all 32 cells done.

CLS_3 DJNZ CLS_1 ; decrease B counter and back to CLS-1
 ; if not zero.

 LD (IY+$31),$02 ; now set DF_SZ lower screen to 2

; This entry point is also called from CL-ALL below to
; reset the system channel input and output addresses to normal should they
; have been left in an unstable state while outputting or inputting colour
; control codes.

CL_CHAN LD A,$FD ; select system channel 'K'

 CALL CHAN_SLCT ; routine CHAN-OPEN opens it.

;;; LD HL,($5B51) ; fetch CURCHL to HL to address current channel
;;; LD DE,PRINT_OUT ; set address to 'PRINT-OUT' for first pass.
;;; AND A ; clear carry for first pass.

 CALL PO_NORM ;+ routine embodies above two instructions.

;;; CL_CHAN_A LD (HL),E ; Insert the output address on the first
pass
;;; INC HL ; or the input address on the second pass.
;;; LD (HL),D ;
;;; INC HL ;

 LD DE,KEY_INPUT ; fetch address 'KEY-INPUT' for second pass

 CALL KEY_CH2 ;+ inserts values

;;; CCF ; complement carry flag - will set on pass 1.
;;; JR C,CL_CHAN_A ; back to CL-CHAN-A if first pass else done.

 LD BC,$1721 ; line 23 for lower screen

 JR CL_SET ; exit via CL-SET to set column
 ; for lower display

; ------------------------------------
; THE 'CLEAR WHOLE DISPLAY' SUBROUTINE
; ------------------------------------
; This subroutine called from CLS, AUTO-LIST and MAIN-3, clears 24 lines of
; the display and resets the relevant system variables. This routine also

; recovers from an error situation where, for instance, an invalid colour or
; position control code has left the output routine addressing PO-TV-2
; or PO-CONT.

CL_ALL LD HL,$0000 ; Initialize plot coordinates.
 LD ($5B7D),HL ; Set system variable COORDS to 0,0.

 RES 0,(IY+$30) ; update FLAGS2 - signal main screen is clear.

 CALL CL_CHAN ; routine CL-CHAN makes channel 'K' 'normal'.

;;; LD A,$FE ; select system channel 'S'

 CALL CHAN_O_FE ;+ routine CHAN-OPEN opens it calling TEMPS.

;;; CALL TEMPs ; routine TEMPs applies permanent attributes,
 ; in this case ATTR_P, to ATTR_T.
 ; Note. this seems unnecessary.

 LD B,$18 ; There are 24 text lines to clear.

 CALL CL_LINE ; routine CL-LINE clears 24 text lines and sets
 ; attributes from ATTR-P.
 ; This routine preserves B and sets C to $21.

;;; LD HL,($5B51) ; fetch CURCHL make HL address output routine.

;;; LD DE,PRINT_OUT ; address: PRINT-OUT
;;; LD (HL),E ; is made
;;; INC HL ; the normal
;;; LD (HL),D ; output address.
 CALL PO_NORM ;+ make PRINT_OUT normal.

 LD (IY+$52),$01 ; set SCR_CT - scroll count - to default.

; Note. BC already contains $1821.

;;; LD BC,$1821 ; reset column and line to 0,0
 ; and continue into CL-SET, below, exiting
 ; via PO-STORE (for the upper screen).

; --------------------
; THE 'CL-SET' ROUTINE
; --------------------
; This important subroutine is used to calculate the character output
; address for screens or printer based on the line/column for screens
; or the column for printer.

CL_SET BIT 1,(IY+$01) ; test FLAGS - is printer in use ?
 JR NZ,CL_SET_2 ; forward, if so, to CL-SET-2

 LD A,B ; transfer line to A.
 BIT 0,(IY+$02) ; test TV_FLAG - lower screen in use ?
 JR Z,CL_SET_1 ; skip, if handling upper part, to CL-SET-1

 ADD A,(IY+$31) ; add DF_SZ for lower screen
 SUB $18 ; and adjust.

CL_SET_1 PUSH BC ; save the line/column.
 LD B,A ; transfer line to B
 ; (adjusted if lower screen)

 CALL CL_ADDR ; routine CL-ADDR calculates HL address at left
 ; of screen.

 POP BC ; restore the line/column.

CL_SET_2 LD A,$21 ; the column $01-$21 is reversed
 SUB C ; to range $00 - $20
 LD E,A ; now transfer to DE
 LD D,$00 ; prepare for addition
 ADD HL,DE ; and add to base address

 JP PO_STORE ; exit via PO-STORE
 ; to update the relevant system variables.

; --------------------------
; THE 'SCROLLING' SUBROUTINE
; --------------------------
; The routine CL-SC-ALL is called once from PO to scroll all the display
; and from the routine CL-SCROLL, once, to scroll part of the display.

CL_SC_ALL LD B,$17 ; scroll 23 lines, after 'scroll?'.

CL_SCROLL CALL CL_ADDR ; routine CL-ADDR gets screen address in HL.
 LD C,$08 ; there are 8 pixel lines to scroll.

CL_SCR_1 PUSH BC ; save counters.
 PUSH HL ; and initial address.

 LD A,B ; get line count.
 AND $07 ; will set zero if all third to be scrolled.
 LD A,B ; re-fetch the line count.
 JR NZ,CL_SCR_3 ; forward, if partial scroll, to CL-SCR-3

; Register HL points to top line of the third which must be copied to bottom
; line of the previous third.
; (so HL = $4800 or $5000)

CL_SCR_2 EX DE,HL ; transfer HL to DE.
 LD HL,$F8E0 ; subtract $08 from H and add $E0 to L -
 ADD HL,DE ; to make destination bottom line of previous
 ; third.
 EX DE,HL ; restore the source to HL and destination to DE
 LD BC,$0020 ; thirty-two bytes are to be copied.

 DEC A ; decrement the line count.

 LDIR ; copy a pixel line to previous third.

CL_SCR_3 EX DE,HL ; save source in DE.
 LD HL,$FFE0 ; load the value -32.
 ADD HL,DE ; add to form destination in HL.
 EX DE,HL ; switch source and destination

 LD B,A ; save the count in B.
 AND $07 ; mask to find count applicable to current
 RRCA ; third and
 RRCA ; multiply by
 RRCA ; thirty two (same as 5 RLCAs)

 LD C,A ; transfer byte count to C ($E0 at most)
 LD A,B ; store line count to A
 LD B,$00 ; make B zero

 LDIR ; copy bytes (BC=0, H incremented, L=0)

 LD B,$07 ; set B to 7, C is zero.
 ADD HL,BC ; add 7 to H to address next third.

 AND $F8 ; has last third been done ?
 JR NZ,CL_SCR_2 ; back, if not, to CL-SCR-2.

 POP HL ; restore topmost address.
 INC H ; next pixel line down.
 POP BC ; restore counts.
 DEC C ; reduce pixel line count.
 JR NZ,CL_SCR_1 ; back, if all eight not done, to CL-SCR-1

 CALL CL_ATTR ; routine CL-ATTR gets address in attributes
 ; from current 'ninth line' and count in BC.

 LD HL,$FFE0 ; set HL to the 16-bit value -32.
 ADD HL,DE ; and add to form destination address.
 EX DE,HL ; swap source and destination addresses.

 LDIR ; copy bytes scrolling the linear attributes.

 LD B,$01 ; continue to clear the bottom line.

; ------------------------------
; THE 'CLEAR TEXT LINES' ROUTINE
; ------------------------------
; This subroutine, called from CL-ALL, CLS-LOWER and AUTO-LIST and above,
; clears text lines at bottom of display.
; The B register holds on entry the number of lines to be cleared 1-24.

CL_LINE PUSH BC ; save line count

 CALL CL_ADDR ; routine CL-ADDR gets top address

 LD C,$08 ; there are eight pixel lines to a text line.

CL_LINE_1 PUSH BC ; save pixel line count
 PUSH HL ; and save the screen address
 LD A,B ; transfer the line to A (1-24).

CL_LINE_2 AND $07 ; mask 0-7 to consider thirds at a time
 RRCA ; multiply
 RRCA ; by 32 (same as five RLCA instructions)
 RRCA ; now 32 - 256(0)
 LD C,A ; store result in C
 LD A,B ; save line in A (1-24)
 LD B,$00 ; set high byte to 0, prepare for ldir.
 DEC C ; decrement count 31-255.
 LD D,H ; copy HL
 LD E,L ; to DE.

;;; LD (HL),0 ; blank the first byte.

 LD (HL),B ;+ blank the first byte. [was LD (HL),0]

 INC DE ; make DE point to next byte.

 LDIR ; block move will clear lines.

 LD DE,$0701 ; now address next third adjusting
 ADD HL,DE ; register E to address left hand side.
 DEC A ; decrease the line count.
 AND $F8 ; will be 16, 8 or 0 (AND $18 will do).
 LD B,A ; transfer count to B.
 JR NZ,CL_LINE_2 ; back to CL-LINE-2 if 16 or 8 to do
 ; the next third.

 POP HL ; restore start address.
 INC H ; address next line down.
 POP BC ; fetch counts.
 DEC C ; decrement pixel line count
 JR NZ,CL_LINE_1 ; back to CL-LINE-1 till all done.

 CALL CL_ATTR ; routine CL_ATTR gets attribute address
 ; in DE and HL and B * 32 in BC.

;;; LD H,D ; transfer the address
;;; LD L,E ; to HL.

 INC DE ; make DE point to next location.

 LD A,($5B8D) ; fetch ATTR_P - permanent attributes
 BIT 0,(IY+$02) ; test TV_FLAG - lower screen in use ?
 JR Z,CL_LINE_3 ; skip, if not, to CL-LINE-3

 LD A,($5B48) ; else lower screen uses BORDCR as attribute.

CL_LINE_3 LD (HL),A ; put attribute in first byte.
 DEC BC ; decrement the counter.

 LDIR ; copy bytes to set all attributes.

 POP BC ; restore the line $01-$24.
 LD C,$21 ; make column $21. (No use WAS made of this)
 RET ; return to the calling routine.

; -------------------------------
; THE 'ATTRIBUTE ADDRESS' ROUTINE
; -------------------------------
; This subroutine is called from CL-LINE or CL-SCROLL with the HL register
; pointing to the 'ninth' line and H needs to be decremented before or after
; the division. Had it been done first then either present code or that used
; at the start of PO-ATTR could have been used.
; The Spectrum screen arrangement leads to the L register already holding
; the correct value for the attribute file and it is only necessary
; to manipulate H to form the correct colour attribute address.

;;; CL_ATTR LD A,H ; fetch H to A - $48, $50, or $58.
;;; RRCA ; divide by
;;; RRCA ; eight.
;;; RRCA ; $09, $0A or $0B.
;;; DEC A ; $08, $09 or $0A.
;;; OR $50 ; $58, $59 or $5A.
;;; LD H,A ; save high byte of attributes.

CL_ATTR EX DE,HL ; transfer attribute address to DE

 LD H,C ; set H to zero - from last LDIR.
 LD L,B ; load L with the line from B.
 ADD HL,HL ; multiply
 ADD HL,HL ; by
 ADD HL,HL ; thirty two
 ADD HL,HL ; to give count of attribute
 ADD HL,HL ; cells to the end of display.

 LD B,H ; transfer the result
 LD C,L ; to register BC.

 EX DE,HL ; restore attribute address to HL
 DEC H ; decrease from ninth line to eighth.

CL_ATTR2 LD A,H ; fetch H to A - $47, $4F, or $57.

 RRCA ; divide by ???
 RRCA ; eight.
 RRCA ; $08, $09 or $0A.
 AND $03 ; $00, $01 or $02.
 OR $58 ; $58, $59 or $5A.
 LD H,A ; save high byte of attributes.

 LD D,H ;
 LD E,L ;

 RET ; return.

; -------------------------------
; THE 'SCREEN ADDRESS' SUBROUTINE
; -------------------------------
; This subroutine is called from four places to calculate the address
; of the start of a screen character line which is supplied in B.

CL_ADDR LD A,$18 ; reverse the line number
 SUB B ; to range $00 - $17.
 LD D,A ; save line in D for later.

 RRCA ; multiply
 RRCA ; by
 RRCA ; thirty-two.

 AND $E0 ; mask off low bits to make
 LD L,A ; register L a multiple of 32.

 LD A,D ; bring back the line to A.

 AND $18 ; mask to form $00, $08 or $10.

 OR $40 ; add $40 - the base address of screen.

 LD H,A ; HL now has the correct address.

 RET ; return.

; ----------------------------------
; THE NEW 'CHANNEL SPECIFIER' SUBROUTINE
; ----------------------------------
; 10 bytes.
; This subroutine checks for a single character ALPHA.
; It is also now used by the usr_$ function to exploit similarities in
; the functional specification.

EXPT_SPEC CALL STK_FETCH ; routine STK-FETCH to fetch and delete the
 ; string parameters.
 ; DE points to the start, BC holds the length.

 LD A,C ;
 DEC A ;
 OR B ;

 LD A,(DE) ; fetch character

 RET Z ; return with single character.

REPORT_Ae RST 30H ; ERROR-1
 DEFB $09 ; 'Invalid argument'

; ----------------------------
; THE NEW 'BC POSITIVE' SUBROUTINE
; ----------------------------
;

BC_POSTVE CALL STK_TO_BC ;

 LD A,D ; fetch sign $01 or $FF (negative)
 OR E ; combine both signs - $FF if either negative.
 INC A ;

 RET NZ ; Return if both positive.

REPORT_By RST 30H ; ERROR-1
 DEFB $0A ; Error Report: Integer out of range

;
; Text for banner of CAT command
;

CAT1
 DEFB $14,$01 ; Control codes for INVERSE 1
 DEFB $CF ; The ' CAT ' token.
 DEFB $06 ; The 'comma control'
 DEFM "Free " ; Text.
CAT2

 DEFB 0,0 ; ballast

; ------------------
; THE 'COPY' COMMAND
; ------------------
; This command copies the top 176 lines to the ZX Printer
; It is popular to call this from machine code at point
; L0EAF with B holding 192 (and interrupts disabled) for a full-screen
; copy. This particularly applies to 16K Spectrums as time-critical
; machine code routines cannot be written in the first 16K of RAM as
; it is shared with the ULA which has precedence over the Z80 chip.

COPY DI ; disable interrupts as this is time-critical.

 LD B,$B0 ; top 176 lines.
 LD HL,$4000 ; address start of the display file.

; now enter a loop to handle each pixel line.

COPY_1 PUSH HL ; save the screen address.
 PUSH BC ; and the line counter.

 CALL COPY_LINE ; routine COPY-LINE outputs one line.

 POP BC ; restore the line counter.
 POP HL ; and display address.
 INC H ; next line down screen within 'thirds'.
 LD A,H ; high byte to A.
 AND $07 ; result will be zero if we have left third.
 JR NZ,COPY_2 ; forward to COPY-2 if not to continue loop.

 LD A,L ; consider low byte first.
 ADD A,$20 ; increase by 32 - sets carry if back to zero.
 LD L,A ; will be next group of 8.
 CCF ; complement - carry set if more lines in

 ; the previous third.
 SBC A,A ; will be FF, if more, else 00.
 AND $F8 ; will be F8 (-8) or 00.
 ADD A,H ; that is subtract 8, if more to do in third.
 LD H,A ; and reset address.

COPY_2 DJNZ COPY_1 ; back to COPY-1 for all lines.

COPY_END LD A,$04 ;+ output value 4 to port
 OUT ($FB),A ;+ to stop the slowed printer motor.
 EI ;+ enable interrupts.

 RET ;+ return

; ----------------------------
; THE 'COPY BUFFER' SUBROUTINE
; ----------------------------
; This routine is used to copy 8 text lines from the printer buffer
; to the ZX Printer. These text lines are mapped linearly so HL does
; not need to be adjusted at the end of each line.
; The routine is invoked in two situations.
; 1) From PO-ENTER when a carriage return is received.
; 2) From PR-ALL when the column count C is reduced to zero.

COPY_BUFF DI ; Disable Interrupts

;;; LD HL,$5B00 ; the old way.

 LD HL,($5B51) ;+ Address of Current Channel.
 LD DE,$08 ;+ The offset to the 256 byte channel buffer.
 ADD HL,DE ;+

;;; LD B,$08 ; set count to 8 lines of 32 bytes.

 LD B,E ; set count to 8 lines of 32 bytes.

COPY_3 PUSH BC ; save counter.

 CALL COPY_LINE ; routine COPY-LINE outputs 32 bytes

 POP BC ; restore counter.
 DJNZ COPY_3 ; loop back to COPY-3 for all 8 lines.
 ; then stop motor and clear buffer.

;;; COPY_4 LD A,$04 ; output value 4 to port
;;; OUT ($FB),A ; to stop the slowed printer motor.
;;; EI ; enable interrupts.

COPY_4 CALL COPY_END ;+

; -------------------------------------
; THE 'CLEAR PRINTER BUFFER' SUBROUTINE
; -------------------------------------
; This routine clears an arbitrary 256 bytes of memory.
; Note. The routine seems designed to clear a buffer that follows the
; system variables.
; The routine should check a flag or HL address and simply return if COPY
; is in use.
; As a consequence of this omission the buffer was needlessly
; cleared when COPY was used and the screen/printer position was set to
; the start of the buffer and the line number to 0 (B)
; giving an 'Out of Screen' error.

CLEAR_PRB LD HL,($5B51) ;+ address of Current Channel.

 LD DE,$08 ;+ the offset to buffer.
 ADD HL,DE ;+ now points to start of 256 byte buffer.

;;; LD HL,$5B00 ; The old way.
;;; LD (IY+$46),L ; update PR_CC_lo - set to zero - superfluous.

;;; XOR A ; clear the accumulator.
 LD B,D ; set count to 256 bytes.

PRB_BYTES LD (HL),D ; set addressed location to zero.
 INC HL ; address next byte - Note. not INC L.
 DJNZ PRB_BYTES ; back to PRB-BYTES. repeat for 256 bytes.

;;; RES 1,(IY+$30) ; set FLAGS2 - signal printer buffer is clear.

 LD C,$21 ; set the column position.

;;; JP CL_SET ;

 DEC H ;+ Set pointer to start of buffer.
 JP PO_STORE ;+ exit to PO-STORE to store C only.

; Note. The correct value of HL is required for when COPY_BUFF is called at
; the start of PR_ALL.

; --------------------------
; THE 'COPY LINE' SUBROUTINE
; --------------------------
; This routine is called from COPY and COPY-BUFF to output a line of 32
; bytes to the ZX Printer.
; Output to port $FB -
; bit 7 set - activate stylus.
; bit 7 low - deactivate stylus.
; bit 2 set - stops printer.
; bit 2 reset - starts printer
; bit 1 set - slows printer.
; bit 1 reset - normal speed.
;
; The slowing of the printer ensures that the two stylii, attached to the
; motor-driven rubber belt, come to rest off the paper.

COPY_LINE LD A,B ; Fetch the counter 1-8 or 1-176
 CP $03 ; Is it 01 or 02 ?.
 SBC A,A ; Result is $FF if so else $00.
 AND $02 ; Result is 02 now else 00.
 ; Bit 1 set slows the printer.
 OUT ($FB),A ; Slow the printer for the last two lines.

 LD D,A ; Save the mask to control the printer later.

COPY_L_1 CALL BREAK_KEY ; Call BREAK-KEY to read keyboard immediately.

 JR C,COPY_L_2 ; Forward, if 'break' not pressed, to COPY-L-2

;;; LD A,$04 ; Stop the
;;; OUT ($FB),A ; printer motor.
;;; EI ; Enable interrupts.

 CALL COPY_END ;+ Routine stops the motor and performs EI.

;;; CALL CLEAR_PRB ; Call routine CLEAR-PRB.

; Now see if it is part of the fixed screen that is being copied.

 LD A,H ;+ Fetch high byte of address being copied.
 CP $58 ;+ Is address less than attribute file ?

 CALL NC,CLEAR_PRB ;+ If not call routine CLEAR-PRB.
 ;+ Note. should not be cleared if COPY in use.

REPORT_Dc RST 30H ; ERROR-1
 DEFB $0C ; Error Report: BREAK - CONT repeats

; ---

COPY_L_2 IN A,($FB) ; Test now to see if
 ADD A,A ; a printer is attached.
 RET M ; return if not - but continue with parent
 ; command.

 JR NC,COPY_L_1 ; back, if stylus not in position, to COPY-L-1

 LD C,$20 ; set count to 32 bytes.

COPY_L_3 LD E,(HL) ; fetch a byte from line.
 INC HL ; address next location. Note. not INC L.
 LD B,$08 ; count the bits.

COPY_L_4 RL D ; prepare mask to receive bit.
 RL E ; rotate leftmost print bit to carry
 RR D ; and back to bit 7 of D restoring bit 1

COPY_L_5 IN A,($FB) ; read the port.
 RRA ; bit 0 to carry.
 JR NC,COPY_L_5 ; back, if stylus not in position, to COPY-L-5

TAG5 LD A,D ; transfer command bits to A.
L0F24: OUT ($FB),A ; and output to port.
 DJNZ COPY_L_4 ; loop back, for all 8 bits, to COPY-L-4

 DEC C ; decrease the byte count.
 JR NZ,COPY_L_3 ; back, until 256 bits done, to COPY-L-3

 RET ; return to calling routine COPY/COPY-BUFF.

; --------------------
; THE 'EDITOR' ROUTINE
; --------------------
; The editor is called to prepare or edit a BASIC line.
; It is also called from INPUT to input a numeric or string expression or
; to input characters sent by a network station or serial device.
; The behaviour and options are quite different in the various modes
; and distinguished by bit 5 of FLAGX.
;
; This is a compact and highly versatile routine.

EDITOR LD HL,($5B3D) ; fetch ERR_SP
 PUSH HL ; save on stack

ED_AGAIN LD HL,ED_ERROR ; address: ED-ERROR
 PUSH HL ; save address on stack and
 LD ($5B3D),SP ; make ERR_SP point to it.

; Note. While in editing/input mode should an error occur then RST 08 will
; update X_PTR to the location reached by CH_ADD and jump to ED-ERROR
; where the error will be cancelled and the loop begin again from ED-AGAIN

; above. The position of the error will be apparent when the lower screen is
; reprinted. If no error then the re-iteration is to ED-LOOP below when
; input is arriving from the keyboard.

ED_LOOP CALL WAIT_KEY ; routine WAIT-KEY gets key possibly changing
 ; the mode.
 PUSH AF ; save the key.

; Do we need to always click?

 LD HL,$00C8 ; Give a short click.
;;; LD D,$00 ;
 LD D,H ;+
 LD E,(IY-$01) ; Use PIP value for duration.
 CALL BEEPER ; routine BEEPER gives click - effective
 ; with rubber keyboard.

 POP AF ; get saved key value.

 LD HL,ED_LOOP ; address: ED-LOOP is loaded to HL.
 PUSH HL ; and pushed onto stack.

; At this point there is a looping return address on the stack, an error
; handler and an input stream set up to supply characters.
; The character that has been received can now be processed.

 CP $18 ; range 24 to 255 ?
 JR NC,ADD_CHAR ; forward, if so, to ADD-CHAR.

;;; CP $07 ; lower than 7 ?

 CP $06 ;+ lower than 6 ?

 JR C,ADD_CHAR ; forward to ADD-CHAR also.
 ; Note. This is a 'bug' and chr$ 6, the comma
 ; control character, should have had an
 ; entry in the ED-KEYS table.
 ; Steven Vickers, 1984, Pitman.

 LD BC,$0002 ; Prepare early for ink/paper etc.

 CP $10 ; less than 16 decimal ?
 JR C,ED_KEYS ; forward to ED-KEYS ,if editing control in the
 ; range 6 to 15, as dealt with by a table.
;;; LD BC,$0002 ; prepare for ink/paper etc.

 LD D,A ; save character in D
 CP $16 ; is it ink/paper/bright etc. ?
 JR C,ED_CONTR ; forward, if so, to ED-CONTR

 ; leaves 22d AT and 23d TAB
 ; which can't be entered via KEY-INPUT.
 ; so this code is never normally executed
 ; when the keyboard is used for input.

 INC BC ; if it was AT/TAB - 3 locations required
 BIT 7,(IY+$37) ; test FLAGX - Is this INPUT LINE ?
 JP Z,ED_IGNORE ; jump to ED-IGNORE if not, else

 CALL WAIT_KEY ; routine WAIT-KEY - input address is KEY-NEXT
 ; but is reset to KEY-INPUT
 LD E,A ; save first in E

ED_CONTR CALL WAIT_KEY ; routine WAIT-KEY for control.

 ; input address will be key-next.

 PUSH DE ; saved code/parameters
 LD HL,($5B5B) ; fetch address of keyboard cursor from K_CUR

 RES 0,(IY+$07) ; allow MODE 'L' or 'G' cancelling 'E'

 CALL MAKE_ROOM ; routine MAKE-ROOM makes 2/3 spaces at cursor

 POP BC ; restore code/parameters
;;; INC HL ; Address the first location
 LD (HL),B ; place code (ink etc.)
 INC HL ; address next
 LD (HL),C ; place possible parameter. If only one
 ; then DE points to this location also.
 JR ADD_CH_1 ; forward to ADD-CH-1

; -------------------------
; THE 'ADD CHAR' SUBROUTINE
; -------------------------
; This is the branch used to add normal non-control characters
; with ED-LOOP as the stacked return address.
;
; It is also the OUTPUT service routine for system channel 'R'.

ADD_CHAR RES 0,(IY+$07) ; allow MODE 'L' or 'G' cancelling 'E'

 LD HL,($5B5B) ; fetch address of keyboard cursor from K_CUR

 LD BC,$0001 ; one space required
 CALL MAKE_ROOM ; create space at K_CUR.

;;; CALL ONE_SPACE ; routine ONE_SPACE creates one space.

; Either a continuation of above or from ED-CONTR with ED-LOOP on stack.

ADD_CH_1 LD (DE),A ; load current character to last new location.
 INC DE ; address next
 LD ($5B5B),DE ; and update K_CUR system variable.

 RET ; return - either a simple return
 ; from ADD-CHAR or to ED-LOOP on stack.

; ---------------------
; THE 'ED KEYS' SECTION
; ---------------------
; A branch of the editing loop to deal with control characters using a
; look-up table. On entry BC now holds $0002.

ED_KEYS LD E,A ; character to E.
;;; LD D,$00 ; prepare to add.
 LD D,B ; prepare to add.

;;; LD HL,ED_KEYS_T -7 ; base address of editing keys table.

 LD HL,ED_KEYS_T -6 ;+ NEW base address of editing keys table.

 ADD HL,DE ; add E
 LD E,(HL) ; fetch one-byte offset to E.
 ADD HL,DE ; add offset for address of handling routine.
 PUSH HL ; push the routine address on the machine stack.

 LD HL,($5B5B) ; load address of the cursor from K_CUR.

; New. carry results of next test into the routine to save performing
; the tests separately within the routines.

TST_INP_M BIT 5,(IY+$37) ;+ Test FLAGX - INPUT mode ?

 RET ; Make an indirect jump forward to routine.

; Note Zero flag determines mode, BC holds $0002.

; ------------------------
; THE 'EDITING KEYS' TABLE
; ------------------------
; For each code in the range $07 to $0F this table contains a single offset
; byte to the routine that services that code.
; Note. for the correct handling of comma-separated items, over the network,
; there should be an entry for CHR$6 with offset to ED-SYMBOL. Done.

ED_KEYS_T DEFB ED_SYMBOL-$;+ 06d offset to Address: ED-SYMBOL
 DEFB ED_EDIT -$; 07d offset to Address: ED-EDIT
 DEFB ED_LEFT -$; 08d offset to Address: ED-LEFT
 DEFB ED_RIGHT -$; 09d offset to Address: ED-RIGHT
 DEFB ED_DOWN -$; 10d offset to Address: ED-DOWN
 DEFB ED_UP -$; 11d offset to Address: ED-UP
 DEFB ED_DELETE-$; 12d offset to Address: ED-DELETE
 DEFB ED_ENTER -$; 13d offset to Address: ED-ENTER
 DEFB ED_SYMBOL-$; 14d offset to Address: ED-SYMBOL
 DEFB ED_GRAPH -$; 15d offset to Address: ED-GRAPH

; -------------------------
; THE 'EDIT KEY' SUBROUTINE
; -------------------------
; The user has pressed SHIFT 1 to bring edit line down to bottom of screen.
; Alternatively the user wishes to clear the input buffer and start again.
; Alternatively ...

ED_EDIT LD HL,($5B49) ; fetch E_PPC the last line number entered.
 ; Note. may not exist and may follow program.

;;; BIT 5,(IY+$37) ; test FLAGX - INPUT mode ?

 JR NZ,CLEAR_SP ; jump forward, if INPUT mode, to CLEAR-SP

 CALL LINE_ADDR ; routine LINE-ADDR to find address of line
 ; or following line if it doesn't exist.
 ; in DE.
 CALL LINE_NO ; routine LINE-NO will get line number from
 ; address or number of previous line if at the
 ; end-marker.
 LD A,D ; If there is no program then DE will
 OR E ; contain zero so test for this.

 JR Z,CLEAR_SP ; jump forward, if so, to CLEAR-SP

; Note. at this point we have a validated line number, not just an
; approximation and it would be best to update E_PPC with the true
; cursor line value which would enable the line cursor to be suppressed
; in all situations - see shortly.

 LD ($5B49),DE ;+ make E_PPC number the true line number.

 PUSH HL ; save address of line.
 INC HL ; address low byte of length.
 LD C,(HL) ; transfer to C
 INC HL ; next to high byte

 LD B,(HL) ; transfer to B.
 LD HL,$000A ; an overhead of ten bytes
 ADD HL,BC ; is added to length.
 LD B,H ; transfer adjusted value
 LD C,L ; to BC register.

 CALL TEST_ROOM ; routine TEST-ROOM checks free memory.

 CALL CLEAR_SP ; routine CLEAR-SP clears editing area.

 LD HL,($5B51) ; address CURCHL
 EX (SP),HL ; swap with line address on stack
 PUSH HL ; save line address underneath

 LD A,$FF ; select system channel 'R'
 CALL CHAN_SLCT ; routine CHAN-OPEN opens it

 POP HL ; drop line address
 DEC HL ; make it point to first byte of line num.
 DEC (IY+$0F) ; decrease E_PPC_lo to suppress line cursor.
 ; Note. ineffective when E_PPC is one
 ; greater than last line of program perhaps
 ; as a result of a delete.
 ; credit: Paul Harrison 1982.
 ; fixed above

 CALL OUT_LINE ; routine OUT-LINE outputs the BASIC line
 ; to the editing area.
 INC (IY+$0F) ; restore E_PPC_lo to the previous value.

 LD HL,($5B59) ; address E_LINE in editing area.

 INC HL ; advance
 INC HL ; past space
 INC HL ; and digit characters
 INC HL ; of line number.

 LD ($5B5B),HL ; update K_CUR to address start of BASIC.

REST_CHAN POP HL ; restore the address of CURCHL.

 JP CHAN_FLAG ;+ routine CHAN-FLAG sets flags for it.

;;; CALL CHAN_FLAG ; routine CHAN-FLAG sets flags for it.
;;; RET ; RETURN to ED-LOOP.

; ----------------------------
; THE 'CLEAR SPACE' SUBROUTINE
; ----------------------------
; The editing area or workspace is cleared depending on context.
; This is called from ED-EDIT to clear workspace if edit key is
; used during input, to clear editing area if no program exists
; and to clear editing area prior to copying the edit line to it.
; It is also used by the error routine to clear the respective
; area depending on FLAGX.

CLEAR_SP PUSH HL ; preserve HL throughout.

 CALL SET_HL ; routine SET-HL
 ; if in edit HL = WORKSP-1, DE = E_LINE
 ; if in input HL = STKBOT, DE = WORKSP
 DEC HL ; adjust

 CALL RECLAIM_1 ; routine RECLAIM-1 reclaims space setting BC

 ; to zero.

 LD ($5B5B),HL ; set K_CUR to start of empty area.

;;; LD (IY+$07),$00 ; set MODE to 'KLC'

 LD (IY+$07),B ;+ set MODE to 'KLC'

 POP HL ; restore HL.
 RET ; return.

; ------------------------------------
; THE 'CURSOR DOWN EDITING' SUBROUTINE
; ------------------------------------
; The BASIC lines are displayed at the top of the screen and the user
; wishes to move the cursor down one line in edit mode.
; With INPUT LINE, this key must be used instead of entering STOP.

;;; ED_DOWN BIT 5,(IY+$37) ; test FLAGX - Input Mode ?

ED_DOWN JR NZ,ED_STOP ; skip, if INPUT mode, to ED-STOP

 LD HL,$5B49 ; address E_PPC - 'current line'
 CALL LN_FETCH ; routine LN-FETCH fetches number of next
 ; line or same if at end of program.
 JR ED_LIST ; forward to ED-LIST to produce an
 ; automatic listing.

; ---

ED_STOP LD (IY+$00),$10 ; set ERR_NR to 'STOP in INPUT' code
 JR ED_ENTER ; forward to ED-ENTER to produce error.

; ------------------------------------
; THE 'CURSOR LEFT EDITING' SUBROUTINE
; ------------------------------------
; This acts on the cursor in the lower section of the screen in both
; editing and input mode.

ED_LEFT CALL ED_EDGE ; routine ED-EDGE moves left if possible
 JR ED_CUR ; forward to ED-CUR to update K-CUR
 ; and return to ED-LOOP.

; -------------------------------------
; THE 'CURSOR RIGHT EDITING' SUBROUTINE
; -------------------------------------
; This acts on the cursor in the lower screen in both editing and input
; mode and moves it to the right.
; Note. The new code, suggested by Andrew Owen, avoids placing the cursor
; between a control code and its parameter.

ED_RIGHT LD A,(HL) ; fetch addressed character.

 CP $0D ; is it carriage return ?
 RET Z ; return if so to ED-LOOP

 INC HL ; address next character

 CP $15 ;+ OVER or higher
 JR NC,ED_CUR ;+

 CP $0F ;+
 JR C,ED_CUR ;+

 INC HL ;+ Step over a control code parameter.

ED_CUR LD ($5B5B),HL ; update K_CUR system variable

 RET ; return to ED-LOOP

; -------------------------------
; THE 'EDITING DELETE' SUBROUTINE
; -------------------------------
; This acts on the lower screen and deletes the character to left of
; cursor. If control characters are present these are deleted first
; leaving the naked parameter (0-7) which appears as a '?' except in the
; case of chr$ 6 which is the comma control character. It is not mandatory
; to delete these second characters.
; Note. the second method would delete both controls and their parameters.

ED_DELETE CALL ED_EDGE ; routine ED-EDGE moves cursor to left

 LD BC,$0001 ; of character to be deleted.
 JP RECLAIM_2 ; to RECLAIM-2 reclaim the one character.

;;; EX DE,HL ;
;;; JP RECLAIM_1 ;

; -------------------------------
; THE 'EDITING IGNORE' SUBROUTINE
; -------------------------------
; Since AT and TAB cannot be entered this point is never reached
; from the keyboard. If inputting from a tape device or network then
; the control and two following characters are ignored and processing
; continues as if a carriage return had been received.
; Here, perhaps, another Spectrum has said print #15; AT 0,0; "This is yellow"
; and this one is interpreting input #7; a$.

ED_IGNORE CALL WAIT_KEY ; routine WAIT-KEY to ignore code.
 CALL WAIT_KEY ; routine WAIT-KEY to ignore next code.

; ----------------------------------
; THE 'EDITING ENTER KEY' SUBROUTINE
; ----------------------------------
; The ENTER key has been pressed to have BASIC line or INPUT accepted.

ED_ENTER POP HL ; discard address ED-LOOP
 POP HL ; drop address ED-ERROR

ED_END POP HL ; the previous value of ERR_SP
 LD ($5B3D),HL ; is restored to ERR_SP system variable
 BIT 7,(IY+$00) ; is ERR_NR $FF ?
 RET NZ ; return if 'OK'

 LD SP,HL ; else put error routine on stack
 RET ; and make an indirect jump to it.

; ------------------------------------
; THE 'ED-EDGE' SUBROUTINE
; ------------------------------------
; This routine moves the cursor left. The complication is that it must
; not position the cursor between control codes and their parameters.
; It is further complicated in that it deals with TAB and AT characters
; which are never present from the keyboard.
; The method is to advance from the beginning of the line each time,
; jumping one, two, or three characters as necessary saving the original
; position at each jump in DE. Once it arrives at the cursor then the next

; legitimate leftmost position is in DE.

ED_EDGE SCF ; carry flag must be set to call the nested
 CALL SET_DE ; subroutine SET-DE.
 ; if input then DE=WORKSP
 ; if editing then DE=E_LINE
 SBC HL,DE ; subtract address from start of line
 ADD HL,DE ; and add back.
 INC HL ; adjust for carry.
 POP BC ; drop return address
 RET C ; return to ED-LOOP if already at left
 ; of line.

 PUSH BC ; resave return address - ED-LOOP.
 LD B,H ; transfer HL - cursor address
 LD C,L ; to BC register pair.
 ; at this point DE addresses start of line.

ED_EDGE_1 LD H,D ; transfer DE - leftmost pointer
 LD L,E ; to HL
 INC HL ; address next leftmost character to
 ; advance position each time.
 LD A,(DE) ; pick up previous in A
 AND $F0 ; lose the low bits
 CP $10 ; is it INK to TAB $10-$1F ?
 ; that is, is it followed by a parameter ?
 JR NZ,ED_EDGE_2 ; forward, if not, to ED-EDGE-2
 ; HL has been incremented once

 INC HL ; address next as at least one parameter.

; In fact since 'tab' and 'at' cannot be entered the next section seems
; superfluous.
; The test will always fail and the jump to ED-EDGE-2 will be taken.
;
; However, as Vickers later revealed these can be encountered with the
; RS232 and Network.

 LD A,(DE) ; reload leftmost character
 SUB $17 ; decimal 23 ('tab')
 ADC A,$00 ; will be 0 for 'tab' and 'at'.
 JR NZ,ED_EDGE_2 ; forward, if not, to ED-EDGE-2
 ; HL has been incremented twice

 INC HL ; increment a third time for 'at'/'tab'

ED_EDGE_2 AND A ; prepare for true subtraction
 SBC HL,BC ; subtract cursor address from pointer
 ADD HL,BC ; and add back
 ; Note when HL matches the cursor position BC,
 ; there is no carry and the previous
 ; position is in DE.
 EX DE,HL ; transfer result to DE if looping again.
 ; transfer DE to HL to be used as K-CUR
 ; if exiting loop.
 JR C,ED_EDGE_1 ; back to ED-EDGE-1 if cursor not matched.

 RET ; return.

; ----------------------------------
; THE 'CURSOR UP EDITING' SUBROUTINE
; ----------------------------------
; The main screen displays part of the BASIC program and the user wishes
; to move up one line scrolling if necessary.

; This has no alternative use in INPUT mode.

;;; ED_UP BIT 5,(IY+$37) ; test FLAGX - INPUT mode ?

ED_UP RET NZ ; return if in INPUT mode - to ED-LOOP.

 LD HL,($5B49) ; get current line from E_PPC

 CALL LINE_ADDR ; routine LINE-ADDR gets address

 EX DE,HL ; and previous in DE

 CALL LINE_NO ; routine LINE-NO gets prev line number

 LD HL,$5B4A ; set HL to E_PPC_hi as next routine stores
 ; top first.
 CALL LN_STORE ; routine LN-STORE loads DE value to HL
 ; high byte first - E_PPC_lo takes E

; this branch is also taken from ED_DOWN.

ED_LIST CALL AUTO_LIST ; routine AUTO-LIST lists to upper screen
 ; including adjusted current line.
;;; LD A,$00 ;- explicit - select lower screen again

CHAN_ZERO XOR A ;+ select lower screen again.
 JP CHAN_SLCT ; exit via CHAN-OPEN to ED-LOOP

; -------------------------------
; THE 'symbol and graphics' CODES
; -------------------------------
; These will not be encountered with the keyboard but would be handled
; otherwise as follows.
; As noted earlier, Vickers says there should have been an entry in
; the KEYS table for chr$ 6 which also pointed here.
; If, for simplicity, two Spectrums were both using #15 as a directional
; channel connected to each other:-
; then, when the other Spectrum has said PRINT #15; 24, 7
; INPUT #15; x ; y would then treat the comma control as a newline and the
; control would skip to INPUT y.
; On the standard Spectrum, it was possible to get round the missing chr$ 6
; handler by sending multiple print items separated by a newline '.
; Otherwise the expression "24,7" would be assigned to the first variable x
; raising 'Nonsense in BASIC'.

; chr$14 would have the same functionality.

; This is chr$ 14.
ED_SYMBOL BIT 7,(IY+$37) ; test FLAGX - is this INPUT LINE ?
 JR Z,ED_ENTER ; back, if not, to ED-ENTER
 ; to treat as if enter had been pressed
 ; else continue and add code to buffer.

; Next is chr$ 15
; Note that ADD-CHAR precedes the table so we can't offset to it directly.

ED_GRAPH JP ADD_CHAR ; jump back to ADD-CHAR

; ----------------------
; THE 'ED_ERROR' ROUTINE
; ----------------------
; If an error occurs while editing, or inputting, then ERR_SP
; points to the stack location holding address ED_ERROR.
; Note. this is specifically designed to deal with a BREAK into network input.

ED_ERROR BIT 4,(IY+$30) ; test FLAGS2 - is K channel in use ?
 JR Z,ED_END ; back, if not, to ED-END

; but as long as we're editing lines or inputting from the keyboard, then
; we've run out of memory so give a short rasp.

;;; LD (IY+$00),$FF ; reset ERR_NR to 'OK'.
;;; LD D,$00 ; prepare for beeper.
;;; LD E,(IY-$02) ; use RASP value.
;;; LD HL,$1A90 ; set a duration.
;;; CALL BEEPER ; routine BEEPER emits a warning rasp.

 CALL ED_RASP ;+ call the above code in new subroutine.

 JP ED_AGAIN ; to ED-AGAIN to re-stack the address of
 ; this routine and make ERR_SP point to it.

; ----------------------------
; THE 'KEYBOARD INPUT' ROUTINE
; ----------------------------
; This is the service routine for the input stream of the keyboard channel
'K'.

KEY_INPUT BIT 3,(IY+$02) ; test TV_FLAG - has a key been pressed in
 ; editor ?

 CALL NZ,ED_COPY ; routine ED-COPY, if so, to reprint the lower
 ; screen at every keystroke/mode change.

 AND A ; clear carry flag - required exit condition.

;;; BIT 5,(IY+$01) ; test FLAGS - has a new key been pressed ?

 LD HL,$5B3B ;+ Address system variable FLAGS
 BIT 5,(HL) ;+ test FLAGS - has a new key been pressed ?

 RET Z ; return if no key has been pressed. >>

; Continue if the interrupt routine has supplied a key.

 LD A,($5B08) ; system variable LASTK will hold last key -
 ; from the interrupt routine.

;;; RES 5,(IY+$01) ; update FLAGS - reset the new key flag.
 RES 5,(HL) ; +update FLAGS - reset the new key flag.

;;; PUSH AF ; Save the input character.

; Now test if screen is to be cleared. after scroll?, Start tape, the
; copyright message or an error message.

 BIT 5,(IY+$02) ; test TV_FLAG - clear lower screen ?

 JR Z,KEY_CMP ;+ forward if not

 BIT 3,(HL) ;+ is FLAGS set - L mode

 PUSH AF ;+ Now save the input character.

;;; CALL NZ,CLS_LOWER ;
 CALL CLS_LOWER ;+ routine CLS-LOWER.

 POP AF ; restore the character code and test result.

 JR NZ,KEY_DONE2 ;+ forward as single key required.

KEY_CMP CP $20 ; if space or higher then
 JR NC,KEY_DONE2 ; forward to KEY-DONE2 and return with carry
 ; set to signal key-found.

 CP $10 ; with 16d INK and higher skip
 JR NC,KEY_CONTR ; forward to KEY-CONTR.

 CP $06 ; for 6 - 15d
 JR NC,KEY_M_CL ; skip forward to KEY-M-CL to handle Modes
 ; and CapsLock.

; that only leaves 0-5, the flash bright inverse switches.

 LD B,A ; save character in B
 AND $01 ; isolate the embedded parameter (0/1).
 LD C,A ; and store in C
 LD A,B ; re-fetch copy (0-5)
 RRA ; halve it 0, 1 or 2.
 ADD A,$12 ; add 18d gives 'flash', 'bright'
 ; and 'inverse'.
 JR KEY_DATA ; forward to KEY-DATA with the
 ; parameter (0/1) in C.

; ---

; Now separate capslock 06 from modes 7-15.

KEY_M_CL JR NZ,KEY_MODE ; forward to KEY-MODE if not 06 (capslock)

 LD HL,$5B6A ; point to FLAGS2
 LD A,$08 ; value 00001000
 XOR (HL) ; toggle BIT 3 of FLAGS2 the capslock bit
 LD (HL),A ; and store result in FLAGS2 again.
 JR KEY_FLAG ; forward to KEY-FLAG to signal no-key.

; ---

KEY_MODE CP $0E ; compare with chr 14d
 RET C ; return with carry set "key found" for
 ; codes 7 - 13d leaving 14d and 15d
 ; which are converted to mode codes.

 SUB $0D ; subtract 13d leaving 1 and 2
 ; 1 is 'E' mode, 2 is 'G' mode.
 LD HL,$5B41 ; address the MODE system variable.
 CP (HL) ; compare with existing value before
 LD (HL),A ; inserting the new value.
 JR NZ,KEY_FLAG ; forward to KEY-FLAG if it has changed.

;;; LD (HL),$00 ; else make MODE zero - KLC mode XXXX

 LD (HL),$00 ;+ else make MODE zero - KLC mode (D=0,fr CLS)
 ; Note. while in Extended/Graphics mode,
 ; the Extended Mode/Graphics key is pressed
 ; again to get out.

KEY_FLAG CP A ; clear carry and reset zero flags -
 ; no actual key returned.

SIG_KSTAT SET 3,(IY+$02) ; update TV_FLAG - show key state has changed
 RET ; make the return.

; ---

; now deal with colour controls - 16-23 ink, 24-31 paper

KEY_CONTR LD B,A ; make a copy of character.
 AND $07 ; mask to leave bits 0-7
 LD C,A ; and store in C.
 LD A,$10 ; initialize to 16d - INK.
 BIT 3,B ; was it paper ?
 JR NZ,KEY_DATA ; forward to KEY-DATA with INK 16d and
 ; colour in C.

 INC A ; else change from INK to PAPER (17d)

KEY_DATA LD (IY-$2D),C ; put the colour (0-7)/state(0/1) in KDATA
 LD DE,KEY_NEXT ; address: KEY-NEXT will be next input stream
 JR KEY_CHAN ; forward to KEY-CHAN to change it ...

; ---

; ... so that INPUT_AD directs control to here at next call to WAIT-KEY

KEY_NEXT LD A,($5B0D) ; pick up the parameter stored in KDATA.
 LD DE,KEY_INPUT ; address: KEY-INPUT will be next input stream
 ; continue to restore default channel and
 ; make a return with the control code.

KEY_CHAN LD HL,($5B4F) ; address start of CHANNELS area using CHANS
 ; system variable.
 INC HL ; step over the
KEY_CH2 INC HL ; output address
 LD (HL),E ; and update the input
 INC HL ; routine address for
 LD (HL),D ; the next call to WAIT-KEY.

KEY_DONE2 SCF ; set carry flag to show a key has been found

 RET ; Return.

; ----------------------------------
; THE 'LOWER SCREEN COPYING' ROUTINE
; ----------------------------------
; This subroutine is called whenever the line in the editing area or
; input workspace is required to be printed to the lower screen.
; It is by calling this routine after any change that the cursor, for
; instance, appears to move to the left.
; Remember the edit line will contain characters and tokens
; e.g. "1000 LET a=1" is 8 characters.
; It may also contain embedded colour control codes.

ED_COPY CALL TEMPS ;.routine TEMPS sets temporary attributes.

 RES 3,(IY+$02) ; update TV_FLAG - signal no change in mode
 RES 5,(IY+$02) ; update TV_FLAG - signal don't clear lower
 ; screen.
 LD HL,($5B8A) ; fetch SPOSNL
 PUSH HL ; and save on stack.

 LD HL,($5B3D) ; fetch ERR_SP
 PUSH HL ; and save also

 LD HL,ED_FULL ; address: ED-FULL
 PUSH HL ; is pushed as the error routine

 LD ($5B3D),SP ; and ERR_SP made to point to it.

 LD HL,($5B82) ; fetch ECHO_E
 PUSH HL ; and push also

 SCF ; set carry flag to control SET-DE
 CALL SET_DE ; call routine SET-DE
 ; if in input DE = WORKSP
 ; if in edit DE = E_LINE
 EX DE,HL ; start address to HL

 CALL OUT_LINE2 ; routine OUT-LINE2 outputs entire line up to
 ; carriage return including initial
 ; characterized line number when present.
 EX DE,HL ; transfer new address to DE
 CALL OUT_CURS ; routine OUT-CURS considers a
 ; terminating cursor.

 LD HL,($5B8A) ; fetch updated SPOSNL
 EX (SP),HL ; exchange with ECHO_E on stack
 EX DE,HL ; transfer ECHO_E to DE

 CALL TEMPS ;.routine TEMPS to re-set attributes if altered.

; the lower screen was not cleared, at the outset, so if deleting then old
; text from a previous print may follow this line and requires blanking.

ED_BLANK LD A,($5B8B) ; fetch SPOSNL_hi is current line
 SUB D ; compare with old
 JR C,ED_C_DONE ; forward to ED-C-DONE if no blanking

 JR NZ,ED_SPACES ; forward to ED-SPACES if line has changed

 LD A,E ; old column to A
 SUB (IY+$50) ; subtract new in SPOSNL_lo
 JR NC,ED_C_DONE ; forward to ED-C-DONE if no backfilling.

ED_SPACES LD A,$20 ; prepare a space.
 PUSH DE ; save old line/column.

 CALL PRINT_OUT ; routine PRINT-OUT prints a space over
 ; any text from previous print.
 ; Note. Since the blanking only occurs when
 ; using PRINT_OUT to print to the lower screen,
 ; there is no need to vector via a RST 10
 ; and we can use this alternate set.

 POP DE ; restore the old line column.
 JR ED_BLANK ; back to ED-BLANK until all old text blanked.

; -------------------------------
; THE 'EDITOR-FULL' ERROR ROUTINE
; -------------------------------
; This is the error routine addressed by ERR_SP. This is not for the out of
; memory situation as we're just printing. The pitch and duration are exactly
; the same as used by ED-ERROR from which this has been augmented. The
; situation is that the lower screen is full and a rasp is given to suggest
; that to continue would perhaps not be the best idea you've had that day.

;;; ED_FULL LD D,$00 ; prepare to moan.
;;; LD E,(IY-$02) ; fetch RASP value.

;;; LD HL,$1A90 ; set duration.

;;; CALL BEEPER ; routine BEEPER.

;;; LD (IY+$00),$FF ; clear ERR_NR.

ED_FULL CALL ED_RASP ;+ call the above code in new subroutine.

 LD DE,($5B8A) ; fetch SPOSNL.
 JR ED_C_END ; forward to ED-C-END

; ----------------------------
; THE NEW 'ED_RASP' SUBROUTINE
; ----------------------------

ED_RASP LD D,$00 ;+ prepare to moan.
 LD E,(IY-$02) ;+ fetch RASP value.

 LD HL,$1A90 ;+ set duration.

 CALL BEEPER ;+ routine BEEPER.

SET_ER_FF LD (IY+$00),$FF ;+ clear ERR_NR.

 RET ;+

; -------

; the exit point from line printing continues here.

ED_C_DONE POP DE ; fetch new line/column.
 POP HL ; fetch the error address.

; the error path rejoins here.

ED_C_END POP HL ; restore the old value of ERR_SP.
 LD ($5B3D),HL ; update the system variable ERR_SP

 POP BC ; old value of SPOSN_L
 PUSH DE ; save new value

 CALL CL_SET ; routine CL-SET and PO-STORE update ECHO_E
 ; and SPOSN_L from BC (and sets D to zero)

 POP HL ; restore new value
 LD ($5B82),HL ; and overwrite ECHO_E

;;; LD (IY+$26),$00 ; make error pointer X_PTR_hi out of bounds

 LD (IY+$26),D ;+ make error pointer X_PTR_hi out of bounds

 RET ; return

; ---
; Point to first and last locations of work space
; ---
; These two nested routines ensure that the appropriate pointers are
; selected for the editing area or workspace. The routines that call
; these routines are designed to work on either area.

; this routine is called once

SET_HL LD HL,($5B61) ; fetch WORKSP to HL.
 DEC HL ; point to last location of editing area.
 AND A ; clear carry to limit exit points to first
 ; or last.

; this routine is called with carry set and exits at a conditional return.

SET_DE LD DE,($5B59) ; fetch E_LINE to DE
;;; BIT 5,(IY+$37) ; test FLAGX - Input Mode ?
 CALL TST_INP_M ;+ bit 5,(iy+$37) as a 3-byte call.
 RET Z ; return now if in editing mode

 LD DE,($5B61) ; fetch WORKSP to DE
 RET C ; return if carry set (entry = set-de)

 LD HL,($5B63) ; fetch STKBOT to HL as well
 RET ; and return (entry = set-hl (in input))

; -----------------------------------
; THE 'REMOVE FLOATING POINT' ROUTINE
; -----------------------------------
; When a BASIC LINE or the INPUT BUFFER is parsed any numbers will have
; an invisible chr 14d inserted after them and the 5-byte integer or
; floating point form inserted after that. Similar invisible value holders
; are also created after the numeric and string variables in a DEF FN list.
; This routine removes these 'compiled' numbers starting at a point in the
; edit line or input workspace.

REMOVE_FP LD A,(HL) ; fetch character
 CP $0E ; is it the CHR$ 14 number marker ?
 LD BC,$0006 ; prepare to strip six bytes

 CALL Z,RECLAIM_2 ; routine RECLAIM-2 reclaims bytes if CHR$ 14.

 LD A,(HL) ; reload next (or same) character
 INC HL ; and advance address
 CP $0D ; end of the line or the input buffer ?
 JR NZ,REMOVE_FP ; back to REMOVE-FP until entire line done.

 RET ; return.

; *********************************
; ** Part 6. EXECUTIVE ROUTINES **
; *********************************

; The memory.
;
; +---------+-----------+------------+-----------+-+--
; | BASIC | Display | Attributes | System |
; | ROM | File | File | Variables |
; +---------+-----------+------------+-----------+-+--
; ^ ^ ^ ^ ^
; $0000 $4000 $5800 $5B00 $5BC8 = CHANS
;
;
; --+----------+---+---------+-----------+---+------------+--+---+--
; | Channel |$80| BASIC | Variables |$80| Edit Line |NL|$80|
; | Info | | Program | Area | | or Command | | |
; --+----------+---+---------+-----------+---+------------+--+---+--
; ^ ^ ^ ^ ^
; CHANS PROG VARS E_LINE WORKSP
;

;
; ---5--> <---2--- <--3---
; --+-------+--+------------+-------+-------+---------+--------+-+---+------+
; | INPUT |NL| Temporary | Calc. | Spare | Machine | GO SUB |?|$3E| UDGs |
; | data | | Work Space | Stack | | Stack | Stack | | | |
; --+-------+--+------------+-------+-------+---------+--------+-+---+------+
; ^ ^ ^ ^ ^ ^ ^
; WORKSP STKBOT STKEND sp RAMTOP UDG P_RAMT
;

; -----------------
; THE 'NEW' COMMAND
; -----------------
; The NEW command is about to set all RAM below RAMTOP to zero and then
; re-initialize the system. All RAM above RAMTOP should, and will be,
; preserved.
; There is nowhere to store values in RAM or on the stack which becomes
; inoperable. Similarly PUSH and CALL instructions cannot be used to store
; values or section common code. The alternate register set is the only place
; available to store 3 persistent 16-bit system variables.

NEW DI ; Disable Interrupts - machine stack will be
 ; cleared.
 LD A,$FF ; Flag coming from NEW.
 LD DE,($5BB2) ; Fetch RAMTOP as top value.
 EXX ; Switch in alternate set.
 LD BC,($5BB4) ; Fetch P-RAMT differs on 16K/48K machines.
 LD DE,($5B38) ; Fetch RASP/PIP.
 LD HL,($5B7B) ; Fetch UDG differs on 16K/48K machines.
 EXX ; Switch back to main set and continue into...

; ----------------------
; THE 'START-NEW' BRANCH
; ----------------------
; This branch is taken from above and from RST 00h.
; The common code tests RAM and sets it to zero re-initializing all the
; non-zero system variables and channel information. The A register flags
; if coming from START or NEW.

START_NEW LD B,A ; Save the flag to control later branching.

 LD A,$07 ; Select a white border
 OUT ($FE),A ; and set it now by writing to a port.

 LD A,$3F ; Load the accumulator with last page in ROM.
 LD I,A ; Set the I register - this remains constant
 ; and can't be in the range $40 - $7F as 'snow'
 ; appears on the screen.

;;; NOP ; These seem unnecessary.
;;; NOP ;
;;; NOP ; Ho Ho Hum.
;;; NOP ;
;;; NOP ; Reset the network probably.
;;; NOP ;

; -----------------------
; THE 'RAM CHECK' SECTION
; -----------------------
; Typically, a Spectrum will have 16K or 48K of RAM and this code will test
; it all until it finds an unpopulated location or, less likely, a faulty
; location. Usually it stops when it reaches the top $FFFF, or in the case
; of NEW the supplied top value. The entire screen turns black with
; sometimes red stripes on black paper just visible.

ram_check LD H,D ; Transfer the top value to the HL register
 LD L,E ; pair.

RAM_FILL LD (HL),$02 ; Load memory with $02 - red ink on black paper.
 DEC HL ; Decrement memory address.
 CP H ; Have we reached ROM - $3F ?
 JR NZ,RAM_FILL ; Back, if not, to RAM-FILL

RAM_READ AND A ; Clear carry - prepare to subtract.
 SBC HL,DE ; subtract and add back setting
 ADD HL,DE ; carry when back at start.
 INC HL ; and increment for next iteration.
 JR NC,RAM_DONE ; forward to RAM-DONE if we've got back to
 ; starting point with no errors.

 DEC (HL) ; decrement to 1.
 JR Z,RAM_DONE ; forward to RAM-DONE if faulty.

 DEC (HL) ; decrement to zero.
 JR Z,RAM_READ ; back to RAM-READ if zero flag was set.

RAM_DONE DEC HL ; step back to last valid location.
 EXX ; regardless of state, set up possibly
 ; stored system variables in case from NEW.
 LD ($5BB4),BC ; insert P-RAMT.
 LD ($5B38),DE ; insert RASP/PIP.
 LD ($5B7B),HL ; insert UDG.
 EXX ; switch in main set.
 INC B ; now test if we arrived here from NEW.
 JR Z,RAM_SET ; forward to RAM-SET if we did.

; this section applies to START only.

 LD ($5BB4),HL ; set P-RAMT to the highest working RAM
 ; address.
 LD DE,$3EAF ; address of last byte of 'U' bitmap in ROM.
 LD BC,$00A8 ; there are 21 user defined graphics.
 EX DE,HL ; switch pointers and make the UDGs a
 LDDR ; copy of the standard characters A - U.
 EX DE,HL ; switch the pointer to HL.
 INC HL ; update to start of 'A' in RAM.
 LD ($5B7B),HL ; make UDG system variable address the first
 ; bitmap.
 DEC HL ; point at RAMTOP again.

;;; LD BC,$0040 ; without disturbing HL, set the values of
;;; LD ($5B38),BC ; the PIP and RASP system variables.
;;; ; Note. PIP is already zero.

 INC A ;+ increment from $3F to $40.
 LD ($5B38),A ;+ set RASP only to sixty four.

; the NEW command path rejoins here.

RAM_SET LD ($5BB2),HL ; set system variable RAMTOP to HL.

; the NMI_ADD system variable points here by default to provide a Warm Reset.

NMI_PTR LD HL,$3C00 ; "A seemingly strange place to set CHARS"
 LD ($5B36),HL ; Note. but it all makes sense now - see L0066.

 LD HL,($5BB2) ; fetch RAMTOP to HL.

 LD (HL),$3E ; top of user ram holds GO SUB end marker
 ; an impossible line number - see RETURN.
 ; no significance in the number $3E. On the
 ; ZX80 and ZX81 $3F was used.

 DEC HL ; followed by empty byte (not important).
 LD SP,HL ; set up the machine stack pointer.
 DEC HL ;
 DEC HL ;
 LD ($5B3D),HL ; ERR_SP is where the error pointer is
 ; at moment empty - will take address MAIN-4
 ; at the call preceding that address,
 ; although interrupts and calls will make use
 ; of this location in meantime.

 IM 1 ; select interrupt mode 1.
 LD IY,$5B3A ; set IY to ERR_NR. IY can reach all standard
 ; system variables but shadow ROM system
 ; variables will be mostly out of range.

 EI ; enable interrupts now that we have a stack.

; At this point check to see if the NMI has been activated.

 LD A,($5B50) ;+ fetch high byte of CHANS_hi
 AND A ;+ is it unitialized?
 JR Z,SET_CHANS ;+ forward if so as from NEW/START

; else the NMI was activated and we don't want to lose the program.

 LD A,$03 ;+ prepare to reset streams 2,1 and 0.

 CALL NMI_STRMS ;+ reset the streams - reclaiming any dynamic
 ;+ buffers without incurring memory leaks.

 LD A,$1D ;+ prepare the NMI error code.
 JP MAIN_G ;+ forward to report NMI.

; ---

SET_CHANS

;;; LD HL,$5BB6 ; the old address of the channels

 LD HL,$5BC9 ;+ the address of the channels - now following
 ;+ the system variables NTHCS.

 LD ($5B4F),HL ; set the CHANS system variable.

 LD DE,INIT_CHAN ; address: init-chan in ROM.

;;; LD BC,$0015 ; there were 21 bytes of initial data.

 LD C,$10 ;+ there are [16] bytes of initial data in ROM.

 EX DE,HL ; swap the pointers.
 LDIR ; copy the bytes to RAM.

 EX DE,HL ; swap pointers. HL points to program area.
 DEC HL ; decrement address.
 LD ($5B57),HL ; set DATADD to location before program area.
 INC HL ; increment again.

 LD ($5B53),HL ; set PROG the location where BASIC starts.

 LD ($5B4B),HL ; set VARS to same location with a
 LD (HL),$80 ; variables end-marker.
 INC HL ; advance address.
 LD ($5B59),HL ; set E_LINE, where the edit line
 ; will be created.

 ; Note. it is not strictly necessary to
 ; execute the next fifteen bytes of code
 ; as this will be done by the call to SET-MIN.
 ; --
;;; So let's test this theory
;;; LD (HL),$0D ; initially just has a carriage return
;;; INC HL ; followed by
;;; LD (HL),$80 ; an end-marker.
;;; INC HL ; address the next location.
;;; LD ($5B61),HL ; set WORKSP - empty workspace.
;;; LD ($5B63),HL ; set STKBOT - bottom of the empty stack.
;;; LD ($5B65),HL ; set STKEND to the end of the empty stack.
 ; --
 LD A,$38 ; the colour system is set to white paper,
 ; black ink, no flash or bright.
 LD ($5B8D),A ; set ATTR_P permanent colour attributes.
;;; LD ($5B8F),A ; set ATTR_T temporary colour attributes.
 LD ($5B48),A ; set BORDCR the border colour/lower screen
 ; attributes.

 LD HL,$0523 ; The keyboard repeat and delay values are
 LD ($5B09),HL ; loaded to REPDEL and REPPER.

; Now initialize BAUD and NTSTAT for RS232 and Network.

 LD HL,$5BB6 ;+ address FLAGS3 - unused but 0 could mislead
 DEC (HL) ;+ so set to $FF

; Use new WIDTH to control printer width

 INC L ;+ skip WIDTH lo
 INC L ;+ address WIDTH hi
 LD (HL),$50 ;+ set width to 80 characters.

 INC L ;+ skip MAXIY - the last IY addressable loc.
 INC L ;+ address BAUD lo
 LD (HL),$0C ;+ set default BAUD rate (9600).

 INC L ;+ skip BAUD hi
 INC L ;+ address NTSTAT - own station number.
 INC (HL) ;+ Default Global Station Number to 1.

 LD HL,NMI_PTR ;+ initialize the NMI vector above.
 LD ($5BB0),HL ;+ set the NMI_ADD

; Back to normal.

 DEC (IY-$3A) ; set KSTATE-0 to $FF - keyboard map available.
 DEC (IY-$36) ; set KSTATE-4 to $FF - keyboard map available.

 LD HL,INIT_STRM ; set source to ROM Address: init-strm
 LD DE,$5B10 ; set destination to system variable STRMS-FD

;;; LD BC,$000E ; copy the 14 bytes of initial 7 streams

 LD C,$0C ;+ copy the [12] bytes of initial [6] streams

 LDIR ; data from ROM to RAM.

;;; SET 1,(IY+$01) ; update FLAGS - signal printer in use.
;;; CALL CLEAR_PRB ; call routine CLEAR-PRB to initialize system
;;; ; variables associated with printer.
;;; ; The buffer is clear.

 LD (IY+$31),$02 ; set DF_SZ the lower screen display size to
 ; two lines

 CALL CLS ; call routine CLS to set up system
 ; variables associated with screen and clear
 ; the screen and set attributes.

;;; XOR A ; clear accumulator so that we can address

 LD DE,COPYRIGHT-1 ; the message table directly.
 CALL PO_MSG_0 ; routine PO-MSG puts
 ; '(c) 1982 Sinclair Research Ltd'
 ; at bottom of display.
;;; SET 5,(IY+$02) ; update TV_FLAG - signal lower screen will
;;; ; require clearing.

 JR MAIN_1 ; forward to MAIN-1

; -------------------------
; THE 'MAIN EXECUTION' LOOP
; -------------------------
; This is the Main Execution Loop within which control remains after
; initialization. It is entered for the first time at MAIN-1 and thereafter
; each iteration begins with an Automatic Listing. An 'automatic Listing' is
; one that appears without involving the LIST command, for example, when the
; user presses [ENTER] after an Error Report.

MAIN_EXEC LD (IY+$31),$02 ; set DF_SZ lower screen display file size to
 ; two lines.
 CALL AUTO_LIST ; routine AUTO-LIST

; The Initial Entry Point.

MAIN_1 CALL SET_MIN ; routine SET-MIN clears work areas.

;;; MAIN_2 LD A,$00 ;- explicit - select stream zero.

MAIN_2
 CALL CHAN_ZERO ;+ routine CHAN_ZERO opens channel zero

MAIN_2b res 3,(iy+$02) ;+ Gotcha! Signal no change in Mode.

 CALL EDITOR ; routine EDITOR is called.
 ; Note the above routine is where the Spectrum
 ; waits for user-interaction. Perhaps the
 ; most common input at this stage is LOAD "".

 CALL LINE_SCAN ; routine LINE-SCAN scans the User's input.

 BIT 7,(IY+$00) ; test ERR_NR - will be $FF if syntax is OK.
 JR NZ,MAIN_3 ; forward, if correct, to MAIN-3.

; Note. Now test if channel 'K' is in use

 BIT 4,(IY+$30) ; test FLAGS2 - K channel in use ?
 JR Z,MAIN_4 ; forward, if not, to MAIN-4

; Channel 'K' was in use so X_PTR will have been set.

 LD HL,($5B59) ; an editing error so address E_LINE.

 CALL REMOVE_FP ; routine REMOVE-FP removes the hidden
 ; floating-point forms.

;;; LD (IY+$00),$FF ; system variable ERR_NR is reset to 'OK'.

 CALL SET_ER_FF ;+ NEW 3-byte call

 JR MAIN_2b ; back to MAIN-2 to allow user to correct.

; ---

; The branch was here if syntax has passed test.

;;; MAIN_3 LD HL,($5B59) ; fetch the edit line address from E_LINE.
;;; LD ($5B5D),HL ; system variable CH_ADD is set to first
;;; ; character of edit line.
;;; ; Note. the above two instructions are a
;;; ; little inadequate.
;;; ; They are repeated with a subtle difference
;;; ; at the start of the next subroutine and
are
;;; ; therefore not required above.

MAIN_3 CALL E_LINE_NO ; routine E-LINE-NO will fetch any line
 ; number to BC if this is a program line.

 LD A,B ; test if the number of
 OR C ; the line is non-zero.
 JP NZ,MAIN_ADD ; jump forward to MAIN-ADD if so to add the
 ; line to the BASIC program.

; Has the user just pressed the ENTER key ?

 RST 18H ; GET-CHAR gets character addressed by CH_ADD.
 CP $0D ; is it a carriage return ?
 JR Z,MAIN_EXEC ; back, if so, to MAIN-EXEC
 ; for an automatic listing.

; This must be a direct command.

 BIT 0,(IY+$30) ; test FLAGS2 - clear the main screen ?

 CALL NZ,CL_ALL ; routine CL-ALL, if so, e.g. after listing.

 CALL CLS_LOWER ; routine CLS-LOWER anyway.

 LD A,$19 ; compute scroll count as twenty five
 SUB (IY+$4F) ; minus the value of S_POSN_hi.
 LD ($5B8C),A ; update SCR_CT system variable.

 SET 7,(IY+$01) ; update FLAGS - signal running program.

;;; LD (IY+$00),$FF ; set ERR_NR to 'OK'.
 CALL SET_ER_FF ;+ NEW 3-byte call

 LD (IY+$0A),$01 ; set NSPPC to one for first statement.

 CALL LINE_RUN ; call routine LINE-RUN to run the line.
 ; sysvar ERR_SP therefore addresses MAIN-4

; Examples of direct commands are RUN, CLS, LOAD "", PRINT USR 40000,
; LPRINT "A"; etc.
; Also, OPEN #0,"n";2 which allows another Spectrum to take control of this
; one.
; If a user written machine-code program disables interrupts then it
; must enable them to pass the next step. We also jumped to here if the
; keyboard was not being used.

MAIN_4 HALT ; wait for interrupt the only routine that can
 ; set bit 5 of FLAGS.
 RES 5,(IY+$01) ; reset bit 5 of FLAGS - signal no new key.

;;; BIT 1,(IY+$30) ; test FLAGS2 - is printer buffer clear ?
;;; CALL NZ,COPY_BUFF ; call routine COPY-BUFF if not empty.
;;; ; Note. the programmer has neglected
;;; ; to set bit 1 of FLAGS first.

 LD A,($5B3A) ; fetch ERR_NR
 INC A ; increment to give true code.

; Now deal with a runtime error as opposed to an editing error.
; However if the error code is now zero then the OK message will be printed.

MAIN_G PUSH AF ; save the error number.

;;; LD HL,$0000 ; prepare to clear some system variables.
;;; LD (IY+$37),H ; clear all the bits of FLAGX.
;;; LD (IY+$26),H ; blank X_PTR_hi to suppress error marker.
;;; LD ($5B0B),HL ; blank DEFADD to signal that no defined
;;; ; function is currently being evaluated.

 XOR A ; Set accumulator to zero
 LD (IY+$37),A ; clear all the bits of FLAGX.
 LD (IY+$26),A ; blank X_PTR_hi to suppress error marker.
 LD (IY+$2E),A ; blank DEFADD_hi to signal inactive.

;;; LD HL,$0001 ; prepare stream data.

;;; LD ($5B16),HL ; ensure STRMS-00 is the keyboard.
;;; ; and not the network as would have been set
;;; ; by OPEN #0, "n" ; 2

 CALL SET_MIN ; routine SET-MIN clears workspace etc.

;;; RES 5,(IY+$37) ; update FLAGX - signal in EDIT not INPUT mode.
;;; ; Note. all the bits were reset earlier.

 CALL CLS_LOWER ; call routine CLS-LOWER.

;;; SET 5,(IY+$02) ; update TV_FLAG - signal lower screen
;;; ; requires clearing.

 POP AF ; bring back the true error number

 LD B,A ; and make a copy in B.
 CP $0A ; is it a print-ready digit ?

 JR C,MAIN_5 ; forward, if so, to MAIN-5

 ADD A,$07 ; add ASCII offset to letters.

MAIN_5 CALL OUT_CODE ; call routine OUT-CODE to print the code.

 LD A,$20 ; followed by a space.

 RST 10H ; PRINT-A

 LD A,B ; fetch stored report code.
 LD DE,rpt_mesgs ; address: rpt-mesgs.

 CALL PO_MSG_1 ; call routine PO-MSG to print the message.

;;; XOR A ; clear accumulator to directly
;;; LD DE,comma_sp -1 ; address the comma and space message.
;;; CALL PO_MSG_0 ; routine PO-MSG prints ', ' although it would
;;; ; be more succinct to use RST $10.

 LD A,',' ;+ comma
 RST 10H ;+ print
 LD A,' ' ;+ space
 RST 10H ;+ print

 LD BC,($5B45) ; fetch PPC the current line number.
 CALL OUT_NUM_1 ; routine OUT-NUM-1 will print that

 LD A,$3A ; then a ':' character.
 RST 10H ; PRINT-A

 LD C,(IY+$0D) ; then SUBPPC for statement

;;; LD B,$00 ; limited to 127
 CALL OUT_NUM_0 ; routine OUT-NUM-0 prints C.

 CALL CLEAR_SP ; routine CLEAR-SP clears editing area which
 ; probably contained 'RUN'. (B = 0)

 LD A,($5B3A) ; fetch ERR_NR again
 INC A ; test for no error originally $FF.
 JR Z,MAIN_9 ; forward, if no error, to MAIN-9

 CP $09 ; is code Report 9 STOP ?
 JR Z,MAIN_6 ; forward, if so, to MAIN-6

 CP $15 ; is code Report L BREAK ?
 JR NZ,MAIN_7 ; forward, if so, to MAIN-7

; Stop or Break was encountered so consider CONTINUE.

MAIN_6 INC (IY+$0D) ; increment SUBPPC to next statement.

;;; MAIN_7 LD BC,$0003 ; prepare to copy 3 system variables to

MAIN_7 LD C,$03 ;+ prepare to copy 3 system variables to

 LD DE,$5B70 ; ...address OSPPC - statement for CONTINUE.
 ; also updating OLDPPC line number below.

 LD HL,$5B44 ; set source top to NSPPC next statement.
 BIT 7,(HL) ; did BREAK occur before the jump ?
 ; e.g. between GO TO and next statement.
 JR Z,MAIN_8 ; skip forward to MAIN-8, if not, as set-up
 ; is correct.

 ADD HL,BC ; set source to SUBPPC number of current
 ; statement/line which will be repeated.

MAIN_8 LDDR ; copy PPC to OLDPPC and SUBPPC to OSPCC
 ; or NSPPC to OLDPPC and NEWPPC to OSPCC

MAIN_9 LD (IY+$0A),$FF ; update NSPPC - signal 'no jump'.

 RES 3,(IY+$01) ; update FLAGS - signal use 'K' mode for
 ; the first character in the editor and

 JP MAIN_2 ; jump back to MAIN-2.

; ----------------------------
; THE 'CANNED REPORT MESSAGES'
; ----------------------------
; The 30 Error reports with the last byte inverted.
; The first entry is a dummy entry. The last, which begins with $7F, the
; Spectrum character for copyright symbol, is placed here for convenience
; as is the preceding comma and space.
; The report line must accommodate a 4-digit line number and a 3-digit
; statement number which limits the length of the message text to twenty
; characters.
; e.g. "B RETURN without GOSUB, 1000:127" [32 characters]

rpt_mesgs DEFB $80
 DEFB 'O','K'+$80 ; 0
 DEFM 'NEXT without FO"
 DEFB 'R'+$80 ; 1
 DEFM "Variable not foun"
 DEFB 'd'+$80 ; 2
 DEFM "Subscript wron"
 DEFB 'g'+$80 ; 3
 DEFM "Out of memor"
 DEFB 'y'+$80 ; 4
 DEFM "Out of scree"
 DEFB 'n'+$80 ; 5
 DEFM "Number too bi"
 DEFB 'g'+$80 ; 6
 DEFM "RETURN without GOSU" ;
 DEFB 'B'+$80 ; 7
 DEFM "End of fil"
 DEFB 'e'+$80 ; 8
 DEFM "STOP statemen"
 DEFB 't'+$80 ; 9
 DEFM "Invalid argumen"
 DEFB 't'+$80 ; A
 DEFM "Integer out of rang"
 DEFB 'e'+$80 ; B
 DEFM "Nonsense in BASI"
 DEFB 'C'+$80 ; C
 DEFM "BREAK - CONT repeat"
 DEFB 's'+$80 ; D
 DEFM "Out of DAT"
 DEFB 'A'+$80 ; E
 DEFM "Invalid file nam"
 DEFB 'e'+$80 ; F
 DEFM "No room for lin"
 DEFB 'e'+$80 ; G
 DEFM "STOP in INPU"
 DEFB 'T'+$80 ; H
 DEFM "FOR without NEX"
 DEFB 'T'+$80 ; I
 DEFM "Invalid I/O devic"
 DEFB 'e'+$80 ; J
 DEFM "Invalid colou"
 DEFB 'r'+$80 ; K
 DEFM "BREAK into progra"
 DEFB 'm'+$80 ; L

 DEFM "RAMTOP no goo"
 DEFB 'd'+$80 ; M
 DEFM "Statement los"
 DEFB 't'+$80 ; N
 DEFM "Invalid strea"
 DEFB 'm'+$80 ; O
 DEFM "FN without DE"
 DEFB 'F'+$80 ; P
 DEFM "Parameter erro"
 DEFB 'r'+$80 ; Q
 DEFM "Loading erro"
 DEFB 'r'+$80 ; R

 DEFM "Stream close" ;+
 DEFB 'd'+$80 ;+ S
 DEFM "NM" ;+
 DEFB 'I'+$80 ;+ T
 DEFM "Net R/W erro" ;+
 DEFB 'r'+$80 ;+ U

;;; comma_sp DEFB ',',' '+$80 ; used in report line.

COPYRIGHT DEFB $7F ; copyright
 DEFM " 1982 Sinclair Research Ltd"
 DEFB '.'+$80 ;+ just differentiate

; ----------------------
; THE 'REPORT_G' ROUTINE
; ----------------------
; Note ERR_SP points here during line entry which allows the normal
; 'Out of Memory' report to be augmented to the more precise 'No room for
; line' report. Since this can only occur as a result of a direct command,
; there is no need to record the X-PTR via the error restart.

; No room for line
REPORT_G LD A,$10 ; i.e. 'G' -$30 -$07

;;; LD BC,$0000 ; this seems unnecessary.

 JP MAIN_G ; jump back to MAIN-G

; ----------------------
; THE 'MAIN_ADD' SECTION
; ----------------------
; Note this is not a subroutine but a branch of the main execution loop.
; System variable ERR_SP still points to editing error handler.
; A new line is added to the BASIC program at the appropriate place.
; An existing line with same number is deleted first.
; Entering an existing line number deletes that line.
; Entering a non-existent line allows the subsequent line to be edited next.

MAIN_ADD LD ($5B49),BC ; set E_PPC to extracted line number.
 RST 18H ;;;;
;;; LD HL,($5B5D) ; fetch CH_ADD - points to location after the
 ; initial digits (set in E_LINE_NO).
 EX DE,HL ; save start of BASIC in DE.

 LD HL,REPORT_G ; Address: REPORT-G
 PUSH HL ; is pushed on stack and addressed by ERR_SP.
 ; the only error that can occur is
 ; 'Out of memory'.

 LD HL,($5B61) ; fetch WORKSP - end of line.

 SCF ; prepare for true subtraction.
 SBC HL,DE ; find length of BASIC and
 PUSH HL ; save it on stack.
 LD H,B ; transfer line number
 LD L,C ; to HL register.
 CALL LINE_ADDR ; routine LINE-ADDR will see if
 ; a line with the same number exists.
 JR NZ,MAIN_ADD1 ; forward if no existing line to MAIN-ADD1.

;;; CALL NEXT_ONE ; routine NEXT-ONE finds the existing line.
;;; CALL RECLAIM_2 ; routine RECLAIM-2 reclaims it.

 CALL NXT_1_RC2 ;+ routine combines above 2 routines.

MAIN_ADD1 POP BC ; retrieve the length of the new line.
 LD A,C ; and test if a carriage return only
 DEC A ; i.e. one byte long.
 OR B ; result would be zero.
 JR Z,MAIN_ADD2 ; forward, if so, to MAIN-ADD2

 PUSH BC ; save the length again.
 INC BC ; adjust for inclusion
 INC BC ; of line number (two bytes)
 INC BC ; and line length
 INC BC ; (two bytes).
;;; DEC HL ; HL points to location before the destination

 LD DE,($5B53) ; fetch the address of PROG
 PUSH DE ; and save it on the stack

 CALL MK_RM_DHL ;+ MAKE_ROOM decrementing HL first

;;; CALL MAKE_ROOM ; routine MAKE-ROOM creates BC spaces in
 ; program area and updates pointers.
 POP HL ; restore old program pointer.
 LD ($5B53),HL ; and put back in PROG as it may have been
 ; altered by the POINTERS routine.

 POP BC ; retrieve BASIC length
 PUSH BC ; and save again.

 INC DE ; points to end of new area.
 LD HL,($5B61) ; set HL to WORKSP - location after edit line.
 DEC HL ; decrement to address end marker.
 DEC HL ; decrement to address the carriage return.

 LDDR ; copy the BASIC line back to initial command.

 LD HL,($5B49) ; fetch E_PPC - line number.
 EX DE,HL ; swap it to DE, HL points to last of
 ; four locations.
 POP BC ; retrieve length of line.
 LD (HL),B ; high byte last.
 DEC HL ;
 LD (HL),C ; then low byte of length.
 DEC HL ;
 LD (HL),E ; then low byte of line number.
 DEC HL ;
 LD (HL),D ; then high byte range $0 - $27 (1-9999).

MAIN_ADD2 POP AF ; drop the address of Report G

 JP MAIN_EXEC ; and back to MAIN-EXEC producing a listing
 ; and to reset ERR_SP in EDITOR.

; ---------------------------------
; THE 'INITIAL CHANNEL' INFORMATION
; ---------------------------------
; This initial channel information is copied from ROM to RAM, during
; initialization. It's new location is after the system variables and is
; addressed by the system variable CHANS which means that it can slide up and
; down in memory. The table is never searched, by this ROM, and the last
; character, which could be anything other than a comma, provides a
; convenient resting place for DATADD.

INIT_CHAN DEFW PRINT_OUT ; PRINT-OUT
 DEFW KEY_INPUT ; KEY-INPUT
 DEFB $4B ; 'K'
 DEFW PRINT_OUT ; PRINT-OUT
 DEFW REPORT_J ; REPORT-J
 DEFB $53 ; 'S'
 DEFW ADD_CHAR ; ADD-CHAR
 DEFW REPORT_J ; RAW_INPUT
 DEFB $52 ; 'R'

;;; DEFW PRINT_OUT ; PRINT-OUT
;;; DEFW REPORT_J ; REPORT-J
;;; DEFB $50 ; 'P'

 DEFB $80 ; End Marker

REPORT_J RST 30H ; ERROR-1
 DEFB $12 ; Error Report: Invalid I/O device

; -------------------------
; THE 'INITIAL STREAM' DATA
; -------------------------
; This is the initial stream data for the seven streams $FD - $03 that is
; copied from ROM to the STRMS system variables area during initialization.
; There are reserved locations there for another 12 streams. Each location
; contains an offset to the second byte of a channel. The first byte of a
; channel can't be used as that would result in an offset of zero for some
; and zero is used to denote that a stream is closed.

INIT_STRM DEFB $01, $00 ; stream $FD offset to channel 'K'
 DEFB $06, $00 ; stream $FE offset to channel 'S'
 DEFB $0B, $00 ; stream $FF offset to channel 'R'

 DEFB $01, $00 ; stream $00 offset to channel 'K'
 DEFB $01, $00 ; stream $01 offset to channel 'K'
 DEFB $06, $00 ; stream $02 offset to channel 'S'

;;; DEFB $10, $00 ; stream $03 offset to channel 'P'

; ------------------------------
; THE 'INPUT CONTROL' SUBROUTINE
; ------------------------------
;

WAIT_KEY BIT 5,(IY+$02) ; test TV_FLAG - clear lower screen ?
 JR NZ,WAIT_KEY1 ; forward, if so, to WAIT-KEY1

 SET 3,(IY+$02) ; update TV_FLAG - signal reprint the edit
 ; line to the lower screen. SIG_KSTAT.

WAIT_KEY1 CALL INPUT_AD ; routine INPUT-AD is called.

 RET C ; return with acceptable keys.

 JR Z,WAIT_KEY1 ; back to WAIT-KEY1 if no key is pressed
 ; or it has been handled within INPUT-AD.

; Note. When inputting from the keyboard all characters are returned with
; above conditions so this path is never normally taken.
; It is taken when 'Iris' closes her channel.

REPORT_8 RST 30H ; ERROR-1
 DEFB $07 ; Error Report: End of file

; ---------------------------
; THE 'INPUT ADDRESS' ROUTINE
; ---------------------------
; This routine fetches the address of the input stream from the current
; channel area using the system variable CURCHL.

INPUT_AD EXX ; switch in alternate set.
 PUSH HL ; save HL register

 LD HL,($5B51) ; fetch address of CURCHL - current channel.
 INC HL ; step over output routine
 INC HL ; to point to low byte of input routine.
 JR CALL_SUB ; forward to CALL-SUB.

; ----------------------
; THE 'OUT CODE' ROUTINE
; ----------------------
; This routine is called on five occasions to print the ASCII equivalent of
; a value 0-9.

OUT_CODE LD E,$30 ; add 48 decimal to give the ASCII character
 ADD A,E ; '0' to '9' and continue into the main output
 ; routine.

; -------------------------
; THE 'MAIN OUTPUT' ROUTINE
; -------------------------
; The PRINT-A-2 is a continuation of the RST 10 restart that outputs any
; character. The routine prints to the current channel and the printing of
; control codes may alter that channel to divert subsequent RST 10
; instructions to temporary routines. The normal channel is PRINT_OUT.

PRINT_A_2 EXX ; switch in alternate set
 PUSH HL ; save HL register
 LD HL,($5B51) ; fetch CURCHL the current channel.

; input-ad rejoins here also.

CALL_SUB LD E,(HL) ; put the low byte in E.
 INC HL ; advance address.
 LD D,(HL) ; put the high byte to D.
 EX DE,HL ; transfer the stream to HL.

 CALL CALL_JUMP ; use routine CALL-JUMP in effect CALL (HL).

 POP HL ; restore saved HL register.
 EXX ; switch back to the main set and
 RET ; return.

; ---

; Note. the most popular channel number could be placed here e.g. LD A,$FE

; -------------------------------
; THE 'OPEN CHANNEL 0xFE' ROUTINE
; -------------------------------

CHAN_O_FE LD A,$FE ;
 JR CHAN_SLCT ;

; ---------------------------------
; THE 'OPEN CHANNEL SYNTAX' ROUTINE
; ---------------------------------

CHN_O_SYN CALL UNSTACK_Z ;+ Return if Checking Syntax.

; --------------------------
; THE 'CHANNEL SELECT' ROUTINE
; --------------------------
; This subroutine is used by the ROM to select a channel 'K', 'S', 'R' or 'P'.
; This is either for its own use or in response to a user's request, for
; example, when '#' is encountered with output - PRINT, LIST etc.
; or with input - INPUT, INKEY$ etc.
; It is entered with a system stream $FD - $FF, or a user stream $00 - $0F
; in the accumulator.

CHAN_SLCT ADD A,A ; double the stream ($FF will become $FE etc.)
 ADD A,$16 ; add the offset to stream 0 from $5B00
 LD L,A ; result to L
 LD H,$5B ; now form the address in STRMS area.
 LD E,(HL) ; fetch low byte of CHANS offset
 INC HL ; address next
 LD D,(HL) ; fetch high byte of offset
 LD A,D ; test that the stream is open.
 OR E ; zero if closed.
 JP Z,REPORT_O ; forward if closed to report
 ; 'Invalid stream'

;;; JR NZ,CHAN_OP_1 ; forward to CHAN-OP-1 if open.
;;; REPORT_Oa RST 30H ; ERROR-1
;;; DEFB $17 ; Error Report: Invalid stream

; continue here if stream was open. Note that the offset is from CHANS
; to the second byte of the channel.

CHAN_OP_1 DEC DE ; reduce offset so it points to the channel.
 LD HL,($5B4F) ; fetch CHANS the location of the base of
 ; the channel information area
 ADD HL,DE ; and add the offset to address the channel.
 ; and continue to set flags.

; ------------------------------
; THE 'CHANNEL FLAGS' SUBROUTINE
; ------------------------------
; This subroutine is used from ED-EDIT, str$ and read-in to reset the
; current channel when it has been temporarily altered.

CHAN_FLAG RES 4,(IY+$30) ; update FLAGS2 - signal K channel not in use.
 ; Note. provide a default for
 ; channel 'R','S' and 'P'.
 LD ($5B51),HL ; set CURCHL system variable to the
 ; address in HL
;;; INC HL ; advance past
;;; INC HL ; output routine.
;;; INC HL ; advance past

;;; INC HL ; input routine.
;;; LD C,(HL) ; pick up the letter.

 CALL IN_CHAN_K ;+ routine gets channel letter in A.

 LD HL,CHN_CD_LU-1 ; address: chn-cd-lu

 CALL INDEXER_0 ; routine INDEXER finds offset to a
 ; flag-setting routine.

 RET NC ; but if the letter wasn't found in the
 ; table just return now. - channel 'R'.

;;; LD D,$00 ; prepare to add.
;;; LD E,(HL) ; offset to E
;;; ADD HL,DE ; add offset to location of offset to form
;;; ; address of routine

CALL_JUMP JP (HL) ; jump to the routine

; Footnote. calling any location that holds JP (HL) is the equivalent to
; a pseudo Z80 instruction CALL (HL). The ROM uses the instruction above.

; --------------------------------
; THE 'CHANNEL CODE LOOK-UP' TABLE
; --------------------------------
; This table is used by the routine above to find one of the three
; flag setting routines below it.
; A zero end-marker is required as channel 'R' is not present.

CHN_CD_LU DEFB 'K', CHAN_K-$-1 ; offset $06 to CHAN-K
 DEFB 'S', CHAN_S-$-1 ; offset $12 to CHAN-S
 DEFB 'P', CHAN_P-$-1 ; offset $1B to CHAN-P

 DEFB $00 ; end marker.

; ----------------------------
; THE 'CHANNEL K FLAG' ROUTINE
; ----------------------------
; routine to set flags for lower screen/keyboard channel.

CHAN_K
;;; SET 0,(IY+$02) ; update TV_FLAG - signal lower screen in use

 CALL SIG_L_SCR ;+ set 0,(iy+$02) as a 3-byte call.

 RES 5,(IY+$01) ; update FLAGS - signal no new key ??

 SET 4,(IY+$30) ; update FLAGS2 - signal K channel in use

 JR CHAN_S_1 ; forward to CHAN-S-1 for indirect exit

; ----------------------------
; THE 'CHANNEL S FLAG' ROUTINE
; ----------------------------
; routine to set flags for upper screen channel.

CHAN_S RES 0,(IY+$02) ; TV_FLAG - signal main screen in use

CHAN_S_1 RES 1,(IY+$01) ; update FLAGS - signal printer not in use

 JP TEMPS ; jump back to TEMPS and exit via that
 ; routine after setting temporary attributes.

; ----------------------------
; THE 'CHANNEL P FLAG' ROUTINE
; ----------------------------
; This routine sets a flag so that subsequent print related commands
; print to printer or update the relevant system variables.
; This status remains in force until reset by the routine above.

CHAN_P SET 1,(IY+$01) ; update FLAGS - signal printer in use

 RET ; return

; --------------------------
; THE 'ONE SPACE' SUBROUTINE
; --------------------------
; This routine WAS called once only to create a single space
;;; ONE_SPACE LD BC,$0001 ; create space for a single character.

MK_RM_EL LD HL,($5B59) ; fetch E_LINE to HL.

MK_RM_DHL DEC HL ; point to location before.

; -----------------------
; THE 'MAKE ROOM' ROUTINE
; -----------------------
; This entry point is used to create BC spaces in various areas such as
; program area, variables area, workspace etc..
; The entire free RAM is available to each BASIC statement.
; On entry, HL addresses where the first location is to be created.
; Afterwards, HL will address this location.
; Note. It used to point to the location before this.

MAKE_ROOM PUSH HL ; save the address pointer.

 CALL TEST_ROOM ; routine TEST-ROOM checks if room
 ; exists and generates an error if not.
 POP HL ; restore the address pointer.

 CALL POINTERS ; routine POINTERS updates the
 ; dynamic memory location pointers.
 ; DE now holds the old value of STKEND.

 LD HL,($5B65) ; fetch new STKEND the top destination.

 EX DE,HL ; HL now addresses the top of the area to
 ; be moved up - old STKEND.
 LDDR ; the program, variables, etc are moved up.

 INC HL ;+ New - as suggested by James Smith.

 RET ; return with new area ready to be populated.

; Note. HL now points to first location of new area, and DE to last of new
; locations.

; -------------------------
; THE 'POINTERS' SUBROUTINE
; -------------------------
; This routine is called by MAKE-ROOM to adjust upwards and by RECLAIM to
; adjust downwards the pointers within dynamic memory.
; The fourteen pointers to dynamic memory, starting with VARS and ending
; with STKEND, are updated adding BC if they are higher than the position
; in HL.

; The system variables are in no particular order except that STKEND, the
; first free location after dynamic memory must be the last encountered.

POINTERS PUSH AF ; preserve accumulator.
 PUSH HL ; put pos pointer on stack.

 LD HL,$5B4B ; address VARS the first of the
 LD A,$0E ; fourteen variables to consider.

PTR_NEXT LD E,(HL) ; fetch the low byte of the system variable.
 INC HL ; advance address.
 LD D,(HL) ; fetch high byte of the system variable.
 EX (SP),HL ; swap pointer on stack with the variable
 ; pointer.
 AND A ; prepare to subtract.
 SBC HL,DE ; subtract variable address
 ADD HL,DE ; and add back
 EX (SP),HL ; swap pos with system variable pointer
 JR NC,PTR_DONE ; forward, if var before pos, to PTR-DONE

 PUSH DE ; save system variable address.
 EX DE,HL ; transfer to HL
 ADD HL,BC ; add the offset
 EX DE,HL ; back to DE
 LD (HL),D ; load high byte
 DEC HL ; move back
 LD (HL),E ; load low byte
 INC HL ; advance to high byte
 POP DE ; restore old system variable address.

PTR_DONE INC HL ; address next system variable.
 DEC A ; decrease counter.
 JR NZ,PTR_NEXT ; back, if more, to PTR-NEXT

 EX DE,HL ; transfer old value of STKEND to HL.
 ; Note. this has always been updated.
 POP DE ; pop the address of the position.

 POP AF ; pop preserved accumulator.
 AND A ; clear carry flag preparing to subtract.

 SBC HL,DE ; subtract position from old STKEND
 LD B,H ; to give number of data bytes
 LD C,L ; to be moved.
 INC BC ; increment as we also copy byte at old STKEND.
 ADD HL,DE ; recompute old STKEND.
 EX DE,HL ; transfer to DE.

 RET ; return.

; ------------------------------------
; THE 'COLLECT LINE NUMBER' SUBROUTINE
; ------------------------------------
; This routine extracts a line number, at an address that has previously
; been found using LINE-ADDR, and it is entered at LINE-NO. If it encounters
; the program 'end-marker' then the previous line is used and if that
; should also be unacceptable then zero is used as it must be a direct
; command. The program end-marker is the variables end-marker $80, or
; if variables exist, then the first character of any variable name.
; Note. any two zero bytes in ROM will do for a line zero.

;;; LINE_ZERO DEFB $00, $00 ; dummy line number used for direct commands
;;; ; Note. space character is now used instead.

LINE_NO_A EX DE,HL ; fetch the previous line to HL and set
 LD DE,LINE_ZERO ; set DE to word zero pointer should HL also
 ; fail.

; -> The Entry Point.

LINE_NO LD A,(HL) ; fetch the high byte - max $2F
 AND $C0 ; mask off the invalid bits.
 JR NZ,LINE_NO_A ; to LINE-NO-A if an end-marker.

 LD D,(HL) ; reload the high byte.
 INC HL ; advance address.
 LD E,(HL) ; pick up the low byte.
 RET ; return from here.

; ----------------------------------
; THE 'CREATE BC SPACES' SUBROUTINES
; ----------------------------------
;+ This was formerly a restart but is now called as a subroutine
;+ to free up the RST 30 for error handling.

BC_SPACE1 LD C,1 ;+ Creates one space - the most popular option.

BC_SPACE0 LD B,0 ;+ Only C need be specified.

BC_SPACES PUSH BC ; save number of spaces.
 LD HL,($5B61) ; fetch WORKSP.
 PUSH HL ; save address of workspace.

RESERVE LD HL,($5B63) ; STKBOT first location of calculator stack

 CALL MK_RM_DHL ;+ routine MAKE_ROOM adjusting HL

;;; DEC HL ; make one less than new location
;;; CALL MAKE_ROOM ; routine MAKE-ROOM creates the room.
;;; INC HL ; address the first new location

 INC HL ; advance to second
 POP BC ; restore old WORKSP
 LD ($5B61),BC ; system variable WORKSP was perhaps
 ; changed by POINTERS routine.
 POP BC ; restore count for return value.
 EX DE,HL ; switch. DE = location after first new space
 INC HL ; HL now location after new space

 RET ; Return.

; ----------------------------
; THE 'SET MINIMUM' SUBROUTINE
; ----------------------------
; This routine sets the editing area, workspace and calculator stack
; to their minimum configurations as at initialization and indeed this
; routine could have been relied on to perform that task.
; This routine uses HL only and returns with that register holding
; WORKSP/STKBOT/STKEND though no use is made of this. The routines also
; resets MEM to its usual place in the systems variable area should it
; have been relocated to a FOR-NEXT variable. The main entry point
; SET-MIN is called at the start of the MAIN-EXEC loop and prior to
; displaying an error.
; Although not intended as such, this routine used to clear up any imbalance
; in the calculator stack.

SET_MIN LD HL,($5B59) ; fetch E_LINE

 LD (HL),$0D ; insert carriage return
 LD ($5B5B),HL ; make K_CUR keyboard cursor point there.
 INC HL ; next location
 LD (HL),$80 ; holds end-marker $80
 INC HL ; next location becomes
 LD ($5B61),HL ; start of WORKSP

; This entry point is used prior to input and prior to the execution,
; or parsing, of each statement.

SET_WORK LD HL,($5B61) ; fetch WORKSP value
 LD ($5B63),HL ; and place in STKBOT

; This entry point is used to move the stack back to its normal place
; after temporary relocation during line entry and also from ERROR-3

SET_STK LD HL,($5B63) ; fetch STKBOT value
 LD ($5B65),HL ; and place in STKEND.

;;; PUSH HL ; perhaps an obsolete entry point.

 LD HL,$5B92 ; normal location of MEM-0
 LD ($5B68),HL ; is restored to system variable MEM.

;;; POP HL ; saved value not required.

 RET ; return.

; ----------------------
; THE 'REC-EDIT' ROUTINE
; ----------------------
; This is legacy code from the ZX80/ZX81 and it is not used in this ROM.
; That task, in fact, is performed here by the dual-area routine CLEAR-SP.

;;; REC-EDIT
;;; L16D4: LD DE,($5B59) ; fetch start of edit line from E_LINE.
;;; JP RECLAIM_1 ; jump forward to RECLAIM-1.

; -------------------------------
; THE 'TABLE INDEXING' SUBROUTINE
; -------------------------------
; This routine is used to search two-byte hash tables for a character held
; in C, returning the address of the following offset byte. If it is known
; that the character is in the table e.g. for priorities, then the table
; requires no zero end-marker. If this is not known at the outset then a
; zero end-marker is required and carry is set to signal success.

; -> The Entry Point.

INDEXER_0 LD C,A ;+ Replaces 4 similar instructions
 LD B,$00 ;+ A useful return value.

INDEXER_1 INC HL ; Address the next pair of values.

INDEXER LD A,(HL) ; Fetch the first byte of pair
 AND A ; Is it the end-marker ?
;;; RET Z ; Return, if so, with carry reset.
 JR NZ,INDEXER_2 ;
 LD A,C ;
 RET ;

INDEXER_2 CP C ; Is it the required character ?
 INC HL ; Address next location.

 JR NZ,INDEXER_1 ; Back, if no match, to INDEXER-1

 LD C,(HL) ;
 ADD HL,BC ;

 SCF ; Set the carry flag.

 RET ; Return with carry set.

; --------------------------------
; The Channel and Streams Routines
; --------------------------------
; A channel is an input/output route to a hardware device
; and is identified to the system by a single letter e.g. 'K' for
; the keyboard. A channel can have an input and output route
; associated with it in which case it is bi-directional like
; the keyboard. Others like the upper screen 'S' are output
; only and the input routine usually points to a report message.
; Channels 'K' and 'S' are system channels and it would be inappropriate
; to close the associated streams so a mechanism is provided to
; re-attach them. When the re-attachment is no longer required, then
; closing these streams resets them as at initialization.

; --------------------------
; THE 'CLOSE STREAM' COMMAND
; --------------------------
; This command allows streams to be closed after use.
; Any temporary memory areas used by the stream would be reclaimed and
; finally flags set or reset if necessary.
; Any attempt to CLOSE streams $00 to $04, without first opening the stream,
; will lead to either a system restart or the production of a strange report.
; credit: Martin Wren-Hilton 1982.

CLOSE CALL STR_DATA ; routine STR-DATA fetches parameter
 ; from calculator stack and gets the
 ; existing STRMS data pointer address in HL
 ; and stream offset from CHANS in BC.

; Note. this offset could be zero if the stream is already closed. A check
; for this should occur now and an error should be generated, for example,
; Report S 'Stream is closed'.

 JR NZ,CLOSE_OK ;+ Continue if stream is open.

REPORT_S RST 30H ;+ ERROR-1
 DEFB $1B ;+ 'Stream is closed'

CLOSE_OK CALL CLOSE_2 ; routine CLOSE-2 will perform any actions
 ; peculiar to that stream without disturbing
 ; data pointer to STRMS entry in HL.

 LD BC,$0000 ; the stream is to be blanked.

;;; LD DE,$A3E2 ;

 LD DE,$A4E4 ;+ the number of bytes from stream 4 to $10000

 EX DE,HL ; transfer the offset to HL and the STRMS data
 ; pointer to the DE register.
 ADD HL,DE ; add the offset to the data pointer.

 JR C,CLOSE_1 ; forward, if a non-system stream, to CLOSE_1

; proceed with a negative result offset now 12 (was 14).

;;; LD BC,INIT_STRM +14; prepare the address of the byte after streams.

 LD BC,INIT_STRM +12;+ prepare the address of the byte after the
 ;+ initial stream data in ROM.

 ADD HL,BC ; index into the ROM data table with negative
 ; value.
 LD C,(HL) ; Read low-order byte from ROM to C
 INC HL ; address next ROM location.
 LD B,(HL) ; Read high-order byte from ROM to B.

; For streams 0 - 2 just enter the initial data back into the STRMS entry
; Streams 0 - 2 can't be closed as they are shared by the operating system.
; For streams 3 - 15, the BC register holds zero, and the entry is blanked.

CLOSE_1 EX DE,HL ; Transfer address of stream to HL.
 LD (HL),C ; place zero (or low byte).
 INC HL ; next address.
 LD (HL),B ; place zero (or high byte).
 RET ; return.

; ------------------------
; THE 'CLOSE-2' SUBROUTINE
; ------------------------
; This routine finds the offset to a special closing routine,
; in this ROM and within 256 bytes of the close stream look up table that
; reclaims any buffers associated with a stream.
; IN: HL=address in STRMS BC=offset from CHANS to 2nd byte of channel

CLOSE_2 PUSH HL ; * save address of stream data pointer
 ; in STRMS on the machine stack.
 LD HL,($5B4F) ; fetch CHANS address to HL
 ADD HL,BC ; add the offset to address the second byte

 DEC HL ; point to first byte.

 LD ($5B51),HL ;+ Update system variable CURCHL
 ;+ While we have the channel in the register,
 ;+ make it 'current; as we may have to flush.

 PUSH HL ;+ copy to IX register.
 POP IX ;+

 LD D,B ;+ Save offset in DE.
 LD E,C ;+

 LD A,(IX+$04) ;+ pick up the channel letter in A.

 LD HL,CL_STR_LU-1 ; address: cl-str-lu in ROM.

 CALL INDEXER_0 ; routine INDEXER uses the code to get
 ; the 8-bit offset from the current point to
 ; the address of the Closing Routine in ROM.

;;; LD C,(HL) ; transfer the offset to C.
;;; LD B,$00 ; prepare to add.
;;; ADD HL,BC ; add offset to point to the address of the
;;; ; routine that closes the stream.

 JP (HL) ; jump to that routine.

; ---

 DEFB 0,0,0,0 ;+ ballast
TAG6: DEFB 0,0,0,0 ;+ ballast

; --------------------------------
; THE 'CLOSE STREAM LOOK UP' TABLE
; --------------------------------
; This table contains an entry for a letter found in the CHANS area
; followed by an 8-bit displacement, from that byte's address in the
; table to the routine that performs any ancillary actions associated
; with closing the stream of that channel.
; The table doesn't require a zero end-marker as the letter has been
; picked up from a channel that has an open stream.

CL_STR_LU DEFB 'K', CLOSE_E-$-1; offset to CLOSE_E
 DEFB 'S', CLOSE_E-$-1; offset to CLOSE_E
 DEFB 'P', CLOSE_P-$-1;+ offset to CLOSE_P
 DEFB 'B', CLOSE_A-$-1;+ offset to CLOSE_A
 DEFB 'T', CLOSE_A-$-1;+ offset to CLOSE_A
 DEFB 'N', CLOSE_N-$-1;+ offset to CLOSE_N

; ------------------------------
; THE 'CLOSE PRINTER STREAM' SUBROUTINE
; ------------------------------
; The last data block must be sent as an EOF record.

CLOSE_P CALL COPY_BUFF ; send EOF record.
 JR CLOSE_A ; skip forward to generic CLOSE_A routine.

; ------------------------------
; THE 'CLOSE NETWORK' SUBROUTINE
; ------------------------------
; The last data block must be sent as an EOF record except when T_ADDR_hi
; indicates that 'CLEAR #' has been used. In this case the network buffer
; is simply closed losing its contents.

CLOSE_N BIT 6,(IY+$3B) ; Test T_ADDR_hi

 CALL Z,SEND_NEOF ; send EOF record.

; --------------------------
; THE 'CLOSE ALL' SUBROUTINE
; --------------------------
;+ Initially, removed the 264 byte "P" channel and the ZX printer buffer.
;+ In fact this routine is generic and will remove any channel.

CLOSE_A PUSH DE ; Save CHANS offset.
 PUSH IX ;
 POP HL ; HL addresses the start of the channel.

 LD C,(IX+$05) ;
 LD B,(IX+$06) ; BC contains length.

 PUSH BC ; Preserve bytes to reclaim.

 CALL RECLAIM_2 ; Routine RECLAIM-2

 POP BC ; Restore reclaimed byte count.

; Any open streams that point to channels beyond that deleted (offset =DE)
; will have to have offsets reduced by the amount reclaimed (length = BC)
; This is similar to REST-STRM in Interface 1

 LD A,$10 ; 16 user streams

 LD HL,$5B16 ; Start of user streams in sysvars.

NEXT_STRM LD ($5B5F),HL ; Save current pointer in X_PTR

 LD E,(HL) ; Fetch displacement for current stream.
 INC HL ;
 LD D,(HL) ;

 POP HL ; restore chans offset
 PUSH HL ; push the value again.

 AND A ; clear carry

 SBC HL,DE ; compare by subtraction.

 JR NC,UPD_POINT ; forward if before deleted channel to do a
 ; dummy update as provides easier pathing.

 EX DE,HL ; transfer current displacement to HL.
 AND A ; clear carry.

 SBC HL,BC ; reduce displacement by amount deleted.

 EX DE,HL ; transfer new displacement to DE.

UPD_POINT LD HL,($5B5F) ; Fetch STRMS pointer from X_PTR

 LD (HL),E ;
 INC HL ;
 LD (HL),D ;
 INC HL ;

 DEC A ; Decrement stream counter.
 JR NZ,NEXT_STRM ; loop back till all sixteen tested.

 POP HL ; balance stack

; Note. as long as X_PTR points to somewhere harmless it need not be set to
; a zero value. Interface 1 mistakenly sets the low byte anyway.

; --------------------------
; THE 'CLOSE END' SUBROUTINE
; --------------------------
; The close stream routines have no ancillary actions to perform with regard
; to 'K' and 'S'.

CLOSE_E POP HL ; * now just restore the stream data pointer

 RET ; in STRMS and return.

; ----------------------------
; THE 'STREAM DATA' SUBROUTINE
; ----------------------------
; This routine finds the data entry in the STRMS area for the specified
; stream which is passed on the calculator stack. It returns with HL
; pointing to this system variable and BC holding a displacement from
; the CHANS area to the second byte of the stream's channel. If BC holds
; zero, then that signifies that the stream is closed.

STR_DATA CALL FIND_INT1 ; Routine FIND-INT1 fetches parameter to A
 ; setting B to zero.

 CP $10 ; Is it less than 16d ?
 JR C,STR_DATA1 ; Skip forward, if so, to STR-DATA1

; Note. the unimplemented ERASE and MOVE commands also now point here.

REPORT_O RST 30H ; ERROR-1
 DEFB $17 ; Error Report: Invalid stream

; ---

STR_DATA1 ADD A,$03 ; add the offset for the three system streams.
 ; range 00 - 15d becomes 3 - 18d.
 RLCA ; double the offset as there are two bytes per
 ; stream - now 06 - 36d
 LD HL,$5B10 ; address STRMS - the start of the streams
 ; data area in the system variables.
 LD C,A ; transfer the low byte to C.

 LD B,$00 ; prepare to add offset.

 ADD HL,BC ; add to address the data entry in STRMS.

; the data entry itself contains an offset from CHANS to the address of the
; stream

 LD C,(HL) ; Fetch low byte of displacement to C.
 INC HL ; Address next.
 LD B,(HL) ; Fetch high byte of displacement to B.
 DEC HL ; Step back to leave HL pointing to STRMS
 ; data entry.

 LD A,B ;+ Test for zero now
 OR C ;+ as a common return condition.

 RET ; Return with CHANS displacement in BC
 ; and address of stream data entry in HL.

; --------------------
; THE 'OPEN #' COMMAND
; --------------------
; This command has been changed from CLASS_03 to CLASS_05
; Command syntax example: OPEN #6,"p" and OPEN #7,"n";64

OPEN LD A,$FF ; set all bits of A as station indicator.
 EX AF,AF' ; preserve as an invalid network station.

 CALL EXPT_SEP ; is next character a separator ?
 JR NZ,CHK_O_END ; forward if not to check end - no station.

; If there was a separator then the network station comes next.

;;; RST 20H ; NEXT_CHAR
;;; CALL EXPT_1NUM ; routine EXPT-1NUM checks for number
;;; CALL CHECK_END ; as in OPEN #9,"n",64

 CALL CHK_END_1 ;+ above three routines combined.

; It is runtime so the network station is on the stack.

 CALL FIND_INT1 ;+ routine FIND-INT1 fetches parameter to A.

 EX AF,AF' ;+ preserve in alternate register

; It is simpler to pass through check than jump over it.

CHK_O_END CALL CHECK_END ; finish if checking syntax.

; In runtime, the channel code entry is on the calculator stack with the next
; value containing the stream identifier. They have to be swapped.

 RST 28H ;; FP-CALC ;s,c.
 DEFB $01 ;;exchange ;c,s.
 DEFB $38 ;;end-calc

 CALL STR_DATA ; routine STR-DATA fetches the stream off
 ; the stack and returns with the CHANS
 ; displacement in BC and HL addressing
 ; the STRMS data entry. The zero flag will be
 ; set if the stream is closed.

;;; LD A,B ; test for zero which
;;; OR C ; indicates the stream is closed.

 JR Z,OPEN_1 ; skip forward, if closed, to OPEN-1

; If it is an open system channel, then it can be re-attached.

 EX DE,HL ; save STRMS address in DE.
 LD HL,($5B4F) ; fetch CHANS.
 ADD HL,BC ; add the offset to address the second
 ; byte of the channel.

;;; INC HL ;
;;; INC HL ;
;;; INC HL ;
;;; LD A,(HL) ;

 CALL NUMBER_3 ;+ add 3 to hl and fetch A comparing to 'K'.

; A new channel can replace an existing one only if the existing channel
; is not associated with a dynamic buffer. Otherwise the buffer would be
; left hanging. The channel to be replaced is checked against a list of
; those that are not dynamic.
; Note. If the channel is dynamic then it must be closed and then opened.
; This manual closure may involve re-instating an initial channel.

 EX DE,HL ; bring back the STRMS pointer.

;;; CP $4B ; is it 'K' ?
 JR Z,OPEN_1 ; forward, if so, to OPEN-1

;;; CP $53 ; is it 'S' ?
;;; JR Z,OPEN_1 ; forward, if so, to OPEN-1

 CP $53 ; is it 'S' ? (was 'P')
 JR NZ,REPORT_O ; back, if not, to REPORT-O
 ; 'Invalid stream'.

; Continue if one of the upper-case letters was found and rejoin here from
; above if the stream was already closed.

OPEN_1 CALL OPEN_2 ; routine OPEN-2 opens the stream.

; It now remains to update the STRMS variable.

 JP PO_CH_2 ;+ jump to similar code to that below. (JS)

;;; LD (HL),E ; insert or overwrite the low byte.
;;; INC HL ; address high byte in STRMS.
;;; LD (HL),D ; insert or overwrite the high byte.
;;; RET ; return.

; -----------------------
; THE 'OPEN_2' SUBROUTINE
; -----------------------
; As well as creating buffers, this routine also sets flags.
; Note. that on the original Spectrum the network station was passed in
; after the "N" channel identifier. This made syntax checking easy but if
; the station identifier was numeric it is a departure from the rule that
; any number can be replaced by a numeric expression. The station identifier
; could have been a character.

OPEN_2 PUSH HL ; * save the STRMS data entry pointer throughout

 CALL EXPT_SPEC ;+ NEW routine fetches a one character specifier
 ;+ to A

;;; CALL STK_FETCH ; routine STK-FETCH now fetches the paremeters.
;;; LD A,B ; test that it is not
;;; OR C ; the null string.
;;; JR NZ,OPEN_3 ; skip forward to OPEN-3 with 1 character or
;;; ; more!!!!
;;; REPORT_F RST 30H ; ERROR-1
;;; DEFB $0E ; Error Report: Invalid file name
;;; OPEN_3 PUSH BC ; Save the length of the string.
;;; LD A,(DE) ; Pick up the first character.

 AND $DF ; Make it upper-case.

;;; LD C,A ; Place channel specifier in C.
 LD HL,OP_STR_LU-1 ; Address: op-str-lu is addressed.

 CALL INDEXER_0 ; Routine INDEXER will search for the letter.

 JR NC,REPORT_F ; Forward, if not found, to REPORT-F
 ; 'Invalid filename'

;;; LD C,(HL) ; Fetch the displacement to opening routine.
;;; LD B,$00 ; prepare to add.
;;; ADD HL,BC ; Now form address of the opening routine.
;;; POP BC ; Restore the length of the string.

 JP (HL) ; Jump forward to the relevant routine.

; -------------------------------
; THE 'OPEN STREAM LOOK-UP' TABLE
; -------------------------------
; The open stream look-up table consists of matched pairs.
; The channel letter is followed by an 8-bit displacement to the
; associated stream-opening routine in this ROM.
; The table requires a zero end-marker as the letter has been
; provided by the user and not the operating system.
; Note. The table has been re-arranged so that those without buffers
; come last providing two look-up tables in one.

OP_STR_LU
 DEFB 'P', OPEN_P-$-1 ; offset to OPEN-P

 DEFB 'N', OPEN_N-$-1 ;+ offset to OPEN_N
 DEFB 'B', OPEN_B-$-1 ;+ offset to OPEN-B
 DEFB 'T', OPEN_T-$-1 ;+ offset to OPEN-T

NOBUF_LU DEFB 'K', OPEN_K-$-1 ; offset to OPEN-K
 DEFB 'S', OPEN_S-$-1 ; offset to OPEN-S

 DEFB $00 ; end-marker.

; --------------------------------
; THE 'STREAM OPENING' SUBROUTINES
; --------------------------------
; Note. That was then, this is now.
; These routines would have opened any buffers associated with the stream
; before jumping forward to OPEN-END with the displacement value in E
; and perhaps a modified value in BC. The strange pathing does seem to
; provide for flexibility in this respect.

; -----------------------
; THE 'OPEN-K' SUBROUTINE
; -----------------------
; Open Keyboard channel.
; Note. the full 16-bit offset is now supplied in DE.

;;; OPEN_K LD E,$01 ; offset to channel 'K'.

OPEN_K LD DE,$0001 ;+ 01 is offset to 2nd byte of channel 'K'.
 JR OPEN_END ; forward to OPEN-END

; -----------------------
; THE 'OPEN-S' SUBROUTINE
; -----------------------
; Open Screen channel.
; Note. the full 16-bit offset is now supplied in DE.

;;; OPEN_S LD E,$06 ; offset to channel 'K'.

OPEN_S LD DE,$0006 ;+ 06 is offset to 2nd byte of channel 'S'
 JR OPEN_END ; forward to OPEN-END

; -----------------------
; THE 'OPEN-P' SUBROUTINE
; -----------------------
; Open Printer channel.

OPEN_P LD IX,PCHAN_DAT ;+ point to the channel data.

 JR OPEN_ALL ;+ forward to generic opening routine.

; -----------------------
; THE 'OPEN-B' SUBROUTINE
; -----------------------
; Open B RS232 channel

OPEN_B LD IX,BCHAN_DAT ;+ point to the channel data.

 JR OPEN_ALL ;+ forward to generic opening routine.

; -----------------------
; THE 'OPEN-T' SUBROUTINE
; -----------------------
; Open T RS232 channel

OPEN_T LD IX,TCHAN_DAT ;+ point to the channel data.

 JR OPEN_ALL ;+ forward to generic opening routine.

; --
; THE 'OPEN PERMANENT "N" CHANNEL' ROUTINE
; --
; e.g. OPEN #9,"N";2

OPEN_N LD IX,NCHAN_DAT ;+

; ----------------------
; THE 'OPEN_ALL' ROUTINE
; ----------------------
;+ Generic Channel Opening Routine.
;+ DE still points to string

OPEN_ALL LD HL,($5B53) ; Set pointer from PROG
 LD C,(IX+$05) ; length lo.
 LD B,(IX+$06) ; length hi.

 CALL MK_RM_DHL ;+ routine MAKE_ROOM decrementing HL first.

; HL points to the 1st location, DE to last new location, BC is zero

;;; INC HL ; HL points to start of new channel

 PUSH HL ; (*) Save channel pointer.

 EX DE,HL ; Transfer HL to DE.

 PUSH IX ; Transfer ROM data pointer
 POP HL ; to HL.

 LD C,(IX-$01) ; Find number of bytes in ROM

 LDIR ; Block copy the channel data.

; Note. a call to clear the ZX Printer buffer is required here.
; but can be done directly.

 LD A,(IX+$04) ;

 CP 'P' ;
 JR Z,P_BLANK ; Forward, if printer, to P_BLANK

 CP 'N' ; is it network ?
 JR NZ,OFFSET ;

 EX AF,AF' ; save device letter, bring back station.

 CP $41 ; compare to 64
 JP NC,REPORT_B ; forward, if over, to report
 ; 'Integer out of range'

 LD (DE),A ; set channel variable NCIRIS
 INC DE ; address own station number.

 LD A,($5BBC) ; fetch global station number from sysvar NTSTAT
 LD (DE),A ; update channel variable NCSELF
 EX AF,AF' ; save again.

 INC DE ; point to next location

; Note. the network buffer does not have to be cleared. As long as we set
; the other channel variables to zero that is sufficient so use the same
; routine as is used for the ZX Printer buffer which does all but 4.

P_BLANK LD H,D ;
 LD L,E ;
 INC DE ;

 LD (HL),B ; Blank first location
 DEC C ; set count to 255 decimal or whatever.

 LDIR ;

; now calculate offset from CHANS

OFFSET LD HL,($5B4F) ; Address CHANS

 POP DE ; (*) Restore the channel pointer

 EX DE,HL ;
 INC HL ; the second byte is used.
 AND A ; prepare to subtract
 SBC HL,DE ; result is in HL
 EX DE,HL ; transfer offset to DE

;;; POP BC ; Restore length of string.

 CP 'N'
 JR Z,OPEN_END2 ; skip the length test

; ----------------------
; THE 'OPEN END' ROUTINE
; ----------------------

;;; OPEN_END DEC BC ; the stored length of 'K','S','P' or whatever
;;; ; is now tested.
;;; LD A,B ; test now if initial or residual length
;;; OR C ; is one character.
; OPEN_IFN JP NZ,REPORT_F ; back, if not, to REPORT-Fb
;;; ; 'Invalid file name'
;;; LD D,A ; load D with zero to form the displacement.

; It used to go like that and now it goes like this...

OPEN_END EX AF,AF' ; station number - should be $FF
 INC A ; test for $FF

OPEN_END2 POP HL ; * restore the saved STRMS pointer.

 RET Z ; return to update STRMS entry thereby
 ; signaling stream is open.

; A parameter has been supplied for a channel that does not require one
; e.g. OPEN #6,"t",78

REPORT_F RST 30H ; ERROR-1
 DEFB $0E ; Error Report: Invalid file name

; ----------------------

; THE '"P" CHANNEL DATA'
; ----------------------
; The eight bytes "P" channel descriptor.

 DEFB $08 ;+ length of channel data

PCHAN_DAT DEFW PRINT_OUT ;+ PRINT-OUT
 DEFW REPORT_J ;+ REPORT-J
 DEFB 'P' ;+ Letter as in standard ROM
 DEFW $0108 ;+ Length of channel including printer buffer.
 DEFB $21 ;+ P_POSN (IX+$07)

; ----------------------
; THE '"B" CHANNEL DATA'
; ----------------------
; The seven bytes "B" channel descriptor. Maybe stick the 2-byte buffer here.

 DEFB $07 ;+ length of channel data

BCHAN_DAT DEFW BCHAN_OUT ;+ BCHAN_OUT
 DEFW BCHAN_IN ;+ BCHAN_IN
 DEFB 'B' ;+ Letter
 DEFW $0007 ;+ Length of channel

; ----------------------
; THE '"T" CHANNEL DATA'
; ----------------------
; The seven bytes "T" channel descriptor.

 DEFB $07 ;+ length of channel data

TCHAN_DAT DEFW TCHAN_OUT ;+ TCHAN_OUT
 DEFW TCHAN_IN ;+ TCHAN_IN
 DEFB 'T' ;+ Letter
 DEFW $0007 ;+ Length of channel

; ----------------------
; THE '"N" CHANNEL DATA'
; ----------------------
; The seven bytes "N" channel descriptor.

 DEFB $07 ;+ length of data

NCHAN_DAT DEFW NCHAN_OUT ;+ NCHAN-OUT
 DEFW NCHAN_IN ;+ NCHAN_IN
 DEFB $4E ;+ character "N"
 DEFW $0110 ;+ length

; The other channel variables for network are defaulted to zero. They are -
;
; 1 NCIRIS IX+$07 ; The destination station number.
; 1 NCSELF IX+$08 ; This SPECTRUM's station number.
; 2 NCNUMB IX+$09 ; The block number.
; 1 NCTYPE IX+$0B ; The packet type code ... 0 data, 1 EOF.
; 1 NCOBL IX+$0C ; The number of bytes in the data block.
; 1 NCDCS IX+$0D ; The data checksum.
; 1 NCHCS IX+$0E ; The header checksum.
; 1 NCCUR IX+$0F ; The position of the last character taken from
; ; the buffer.
; 1 NCIBL IX+$10 ; The number of bytes in the input buffer.
; 255 NCB IX+$11 ; A 255 byte data buffer.

; **************************
; ** THE RS232 ROUTINES **
; **************************
;
; ---------------------------------------
; THE '"T" CHANNEL INPUT SERVICE' ROUTINE
; ---------------------------------------
; The text channel input is limited to 7 bits so use the binary channel input
; and reset the most significant bit.

TCHAN_IN CALL BCHAN_IN ; routine BCHAN-IN

 RES 7,A ; reset the MSB.

 RET ; Return.

; ---------------------------------------
; THE '"B" CHANNEL INPUT SERVICE' ROUTINE
; ---------------------------------------
; For serial input a two-byte buffer SER_FL is used.
; Sometimes 16 bits are received at a time so the second byte is stored
; here.

BCHAN_IN LD HL,$5BBE ; Point to the SER_FL system variable.
 LD A,(HL) ; Fetch a byte.
 AND A ; Test for zero which signals no stored byte.

 JR Z,REC_BYTE ; Forward, if so, to REC-BYTE.

 LD (HL),$00 ; else signal taking the stored byte.
 INC HL ; Point to the stored byte.
 LD A,(HL) ; Load it to the accumulator.
 SCF ; Signal success by setting carry.

 RET ; Return.

; ---

REC_BYTE CALL TEST_BRK ; Routine TEST-BRK tests the BREAK keys.

 DI ; Disable Interrupts

 LD A,($5BBD) ; Fetch I/O colour from IOBORD system variable.
 OUT ($FE),A ; Change the border to show activity.

; The value for

 LD DE,($5BBA) ; fetch value from BAUD system variable.
 LD HL,$0320 ; set counter to 800 decimal.

 LD B,D ; copy BAUD value
 LD C,E ; to BC register.

 SRL B ; 0 -> 76543210 -> C Halve the value
 RR C ; C -> 76543210 -> C

 LD A,$FE ; Make CTS (Clear To Send) high.
 OUT ($EF),A ;

; The other device, VTX modem, BBC computer, PC, Spectrum etc. will now send
; the data.

READ_RS IN A,($F7) ; bit 7 is TXdata serial data

 RLCA ; rotate into carry.
 JR NC,TST_AGAIN ; forward to TST-AGAIN if TXdata low

 IN A,($F7) ; repeat the test 3 times
 RLCA ;
 JR NC,TST_AGAIN ; forward to TST-AGAIN

 IN A,($F7) ;
 RLCA ;
 JR NC,TST_AGAIN ; forward to TST-AGAIN

 IN A,($F7) ;
 RLCA ;
 JR C,START_BIT ; forward, if high for four tests, to START-BIT

TST_AGAIN DEC HL ; decrement the 800 counter.
 LD A,H ; test for
 OR L ; zero.
 JR NZ,READ_RS ; back, if not, to READ-RS

 PUSH AF ; (*) Save the zero failure flag

 LD A,$EE ; make CTS (Clear To Send) line low.
 OUT ($EF),A ;

 JR WAIT_1 ; forward to WAIT-1

; ---

; The branch was here when TXdata was high for 4 tests.

START_BIT LD H,B ; Load HL with halved BAUD value.
 LD L,C ;

 LD B,$80 ; Load B with start bit.

 DEC HL ; reduce counter by the time for the 4 tests.
 DEC HL ;
 DEC HL ;

SERIAL_IN ADD HL,DE ; Add the BAUD value.
 NOP ; (4) timing value.

BD_DELAY DEC HL ; (6) Delay for 26 * BAUD
 LD A,H ; (4)
 OR L ; (4)
 JR NZ,BD_DELAY ; (12) back to BD-DELAY

 ADD A,$00 ; (7) wait
 IN A,($F7) ; Read a bit
 RLCA ; rotate bit 7 to carry.
 RR B ; pick up carry in B.
 JR NC,SERIAL_IN ; loop back, if no start bit, to SERIAL-IN

; After looping eight times, the start bit will pass through and B will
; contain a received byte.

 LD A,$EE ; Send CTS line low.
 OUT ($EF),A ;

 LD A,B ; transfer received byte to A.
 CPL ; complement.
 SCF ; signal success.

 PUSH AF ; (*) push success flag

; The success and failure (time out) paths converge here with HL holding zero.

WAIT_1 ADD HL,DE ; transfer DE (BAUD) to HL.

WAIT_2 DEC HL ; (6) Delay for stop bit.
 LD A,L ; (4)
 OR H ; (4)
 JR NZ,WAIT_2 ; (12/7) back to WAIT-2

; Register HL is now zero.

 ADD HL,DE ; HL = 0 + BAUD
 ADD HL,DE ; HL = 2 * BAUD
 ADD HL,DE ; HL = 3 * BAUD

; The device at the other end of the cable may send a second byte even though
; CTS is low.

T_FURTHER DEC HL ; decrement counter.
 LD A,L ; Test for
 OR H ; zero.
 JR Z,END_RS_IN ; forward, if no 2nd byte, to END-RS-IN

 IN A,($F7) ; Read TXdata.
 RLCA ; test bit.
 JR NC,T_FURTHER ; back, if none, to T-FURTHER

; As with first byte, TXdata must be high for four tests

 IN A,($F7) ;
 RLCA ;
 JR NC,T_FURTHER ; back to T-FURTHER

 IN A,($F7) ;
 RLCA ;
 JR NC,T_FURTHER ; back to T-FURTHER

 IN A,($F7) ;
 RLCA ;
 JR NC,T_FURTHER ; back to T-FURTHER

; A second byte is on its way and is received exactly as before.

 LD H,D ;
 LD L,E ;
 SRL H ;
 RR L ;
 LD B,$80 ;
 DEC HL ;
 DEC HL ;
 DEC HL ;

SER_IN_2 ADD HL,DE ;
 NOP ; timing

BD_DELAY2 DEC HL ;
 LD A,H ;
 OR L ;
 JR NZ,BD_DELAY2 ; back to BD-DELAY2

 ADD A,$00 ;

 IN A,($F7) ;
 RLCA ;
 RR B ;
 JR NC,SER_IN_2 ; back to SER-IN-2

; The start bit has been pushed out and B contains the second received byte.

 LD HL,$5BBE ; Address the SER_FL system variable.
 LD (HL),$01 ; signal there is a byte in next location
 INC HL ; address that location
 LD A,B ; transfer byte to A.
 CPL ; complement.
 LD (HL),A ; and insert in second byte of serial flag.

END_RS_IN CALL BORD_REST ; routine BORD-REST restores the normal border.

 POP AF ; restore byte and flags
 ; (either 0 and NC or received byte and carry).

;;; EI ; Enable Interrupts

 RET ; Return.

; --------------------------------
; THE '"T" CHANNEL OUTPUT' ROUTINE
; --------------------------------
; The text channel output routine is able to list programs and, when printing,
; takes correct action with TAB values etc. I think.
; Note. The "t" channel can be tested on the RealSpec emulator as follows -
; 1) Assemble this file and note down addresses of BCHAN_IN and BCHAN_OUT
; 2) Select this ROM [F3] and serial interface [ALT F3]
; 3) Select output to a file.
; 3) Arrow down to bottom and supply IO addresses e.g. I 184E 19B0
; 4) Session "t" channel output will appear in file SERIAL.BIN

TCHAN_OUT CP $A5 ; Compare to 'RND' - first token
 JR C,NOT_TOKEN ; Forward, if less, to NOT-TOKEN

 SUB $A5 ; Reduce token to range $00-$5A

 JP PO_TOKENS ; Routine PO_TOKENS recursively prints tokens

;;; RET ; Return.

; ---

NOT_TOKEN LD HL,$5B3B ; Address the FLAGS system variable.
 RES 0,(HL) ; update FLAGS - allow for leading space.
 CP $20 ; compare character to space
 JR NZ,NOT_LEAD ; forward, if not, to NOT-LEAD

 SET 0,(HL) ; update FLAGS - signal suppress leading space.

; The mosaic graphics and UDGs are output as '?' as also is (c) copyright.

NOT_LEAD CP $7F ; compare to copyright symbol. (DEL in ASCII)
 JR C,NOT_GRAPH ; forward, if less, to NOT-GRAPH

 LD A,$3F ; Output CHR$(127) and graphics as '?'

NOT_GRAPH CP $20 ; compare against space.
 JR C,CTRL_CODE ; forward, if less, to CTRL_CODE

 PUSH AF ; preserve character.

 INC (IY+$7D) ; increment width WIDTH_lo
 LD A,($5BB8) ; load A with limit WIDTH_hi
 CP (IY+$7D) ; compare to width WIDTH_lo
 JR NC,EMIT_CH ; forward, if width less or equal, to EMIT-CH

 CALL TAB_SETZ ; routine TAB-SETZ sets iy+$7D to zero and
 ; emits CR/LF.

;;; LD (IY+$7D),$01 ; set WIDTH_lo to one - for current character.
 INC (IY+$7D) ;+ set WIDTH_lo to one - for current character.

EMIT_CH POP AF ; restore the unprinted character.
 JR BCH_OUT ; jump, indirectly, to BCHAN-OUT

; ---

; The branch was here with control codes.

CTRL_CODE CP $0D ; is character a carriage return ?
 JR NZ,NOT_CR ; forward, if not, to NOT-CR

TAB_SETZ LD (IY+$7D),$00 ; set width WIDTH_lo to zero.

 LD A,$0D ; output a CR carriage return.
 CALL BCHAN_OUT ; routine BCHAN-OUT

 LD A,$0A ; output a LF line feed.
BCH_OUT JR BCHAN_OUT ; jump to BCHAN-OUT

; ---

NOT_CR CP $06 ; is character a comma control ?
 JR NZ,NOT_COMMA ; forward, if not, to NOT_COMMA

 LD BC,($5BB7) ; load BC with width and limit from WIDTH
 LD E,$00 ; set the space counter to zero.

SPC_COUNT INC E ; increment space counter.
 INC C ; increment width.
 LD A,C ; load A with width.
 CP B ; and compare to limit.
 JR Z,CMM_LP2 ; forward, if at limit, to CMM-LP2

CMM_LOOP SUB $08 ; subtract 8 - the tab stop.
 JR Z,CMM_LP2 ; forward, when zero, to CMM-LP2

 JR NC,CMM_LOOP ; back, if higher than 8, to CMM-LOOP

; The result is less than zero so back to space count.

 JR SPC_COUNT ; back to SPC-COUNT

; The count in E is the spaces to advance to next multiple of eight.

CMM_LP2 CALL PO_SV_SP ;+

;;; PUSH DE ; save counter.
;;; LD A,$20 ; prepare a space.
;;; CALL TCHAN_OUT ; routine TCHAN-OUT outputs recursively.
;;; POP DE ; restore counter.

 DEC E ; decrement
 RET Z ; return when zero.

 JR CMM_LP2 ; loop back, if not, to CMM-LP2

; ---

NOT_COMMA CP $16 ; compare to twenty two ('AT')
 JR Z,TAB_PROC ; forward, if so, to TAB-PROC

 CP $17 ; compare to twenty three ('TAB')
 JR Z,TAB_PROC ; forward, also, to TAB-PROC

 CP $10 ; compare to sixteen (INK)
 RET C ; return if less.

; Now store code in TVDATA and alter the current channel to TAB_SERV2

 LD DE,TAB_SERV2 ; Service routine for ink, paper etc.

 JR STORE_COD ; forward to STORE-COD

; ---

TAB_PROC LD DE,TAB_SERV ; addr: TAB-SERV

STORE_COD JP PO_TV_1 ; jump to similar code for tv output.

;;; STORE_COD LD ($5B0E),A ; store control code in TVDATA_lo
;;; ALTER_OUT LD HL,($5B51) ; Fetch current channel from CURCHL
;;; LD (HL),E ; Update the low byte of output address.
;;; INC HL ;
;;; LD (HL),D ; Now update the high byte.
;;; RET ; Return.

; -------------------------
; THE 'TAB SERVICE ROUTINE'
; -------------------------
; This deals with TAB and AT control codes.

TAB_SERV LD DE,TAB_SERV2 ; addr: TAB-SERV2

 JP PO_TV_3 ;+ use existing PO routine

;;; LD ($5B0F),A ; store second byte in TVDATA_hi
;;; JR ALTER_OUT ; back to ALTER-OUT

; ---------------------------
; THE 'TAB SERVICE 2' ROUTINE
; ---------------------------
; Once all the control sequence has been received this routine sorts them.

TAB_SERV2 LD DE,TCHAN_OUT ; prepare normal address TCHAN-OUT

 CALL PO_CHANGE ;+ routine PO_CHANGE restores it.

 LD D,A ; save final character in D.

 LD A,($5B0E) ; fetch first character from TVDATA_lo

 CP $16 ; is it the AT control code ?
 JR Z,TST_WIDTH ; forward, with AT, to TST-WIDTH ????

 CP $17 ; is it the TAB control code ?
 CCF ; if less, e.g. INK the carry is set so reset
 ; the carry for return condition.
 RET NZ ; return if INK - INVERSE and ignore.

; Continue with TAB.

 LD A,($5B0F) ; fetch low byte 0 - 255 from TVDATA_hi
 LD D,A ; and store in D, ignoring high byte.

; The TAB parameter, which is 16 bit is therefore taken mod 256 as only the
; low byte is used. For AT the column value is used and the line is ignored.

TST_WIDTH LD A,($5BB8) ; fetch limit (max width, default 80) to A.
 CP D ; compare to column/tab value.

 JR Z,TAB_MOD ; forward, if a match, to TAB-MOD ???

 JR NC,TABZERO ; forward if column less than limit to TABZERO

; The column/tab value is higher than the maximum width so calculate

TAB_MOD LD B,A ; Transfer maximum width to B.
 LD A,D ; Transfer column/tab value to A.
 SUB B ; subtract a full line of characters.
 LD D,A ; and load result back to column/tab.
 JR TST_WIDTH ; loop back to TST-WIDTH

; ---

; The branch was here when the column/tab value was less than the width.

TABZERO LD A,D ; Transfer column/tab to A.
 OR A ; Test for zero.
 JR Z,TAB_SETZ ; Back, if so, to TAB-SETZ
 ; to output a carriage return and linefeed.

TABLOOP LD A,($5BB7) ; Fetch current print position from WIDTH_lo
 CP D ; Compare to column/tab value.

 RET Z ; Return when positions equal.
>>

 CALL PO_SV_SP ;+

;;; PUSH DE ; Preserve the column/tab value.
;;; LD A,$20 ; Prepare a space.
;;; CALL TCHAN_OUT ; Routine TCHAN-OUT outputs a space.
;;; POP DE ; Restore the column/tab value.

 JR TABLOOP ; Back to TABLOOP

; --------------------------------
; THE '"B" CHANNEL OUTPUT' ROUTINE
; --------------------------------
; The bits of a byte are sent inverted. They are fixed in length and heralded
; by a start bit and followed by two stop bits.

BCHAN_OUT LD B,$0B ; Set bit count to eleven - 1 + 8 + 2.

 CPL ; Invert the bits in the character.

 LD C,A ; Copy character to C.

 LD A,($5BBD) ; select I/O border colour from IOBORD
 OUT ($FE),A ; change the border colour.

 LD A,$EF ; 11101111
 OUT ($EF),A ; Make CTS (Clear To Send) low.

 CPL ; reset bit 0, 00010000

 OUT ($F7),A ; Make RXdata low

 LD HL,($5BBA) ; fetch value from BAUD system variable
 LD D,H ; Copy to DE.
 LD E,L ;

BD_DEL_1 DEC DE ; (6) Wait 26 * BAUD cycles.
 LD A,D ; (4)
 OR E ; (4)
 JR NZ,BD_DEL_1 ; (12) back to BD-DEL-1

TEST_DTR CALL TEST_BRK ; routine TEST-BRK allows user to stop.

 IN A,($EF) ; Read the communication port.
 AND $08 ; isolate DTR (Data Terminal Ready) bit.
 JR Z,TEST_DTR ; back, until DTR found high, to TEST-DTR

 SCF ; Set carry flag as start bit.

 DI ; Disable Interrupts.

; The bit sending loop.

SER_OUT_L ADC A,$00 ; 76543210 <- C
 OUT ($F7),A ; Send rxdata, start bit

 LD D,H ; transfer BAUD to DE.
 LD E,L ;

BD_DEL_2 DEC DE ; (6) Wait for 26 * BAUD
 LD A,D ; (4)
 OR E ; (4)
 JR NZ,BD_DEL_2 ; (12) back to BD-DEL-2

 DEC DE ; (6)
 XOR A ; clear rxdata bit
 SRL C ; shift a bit of output byte to carry.
 DJNZ SER_OUT_L ; back for 11 bits to SER-OUT-L

; Note. the last two bits will have been sent reset as C is exhausted.

;;; EI ; Enable Interrupts.
;;; LD A,$01 ; set rxdata bit (inc a)

 INC A ; set rxdata bit.

 LD C,$EF ; prepare port address.
 LD B,$EE ; prepare mask %11101110

 OUT ($F7),A ; Send rxdata high.
 OUT (C),B ; Send CTS and comms data low - switch off
RS232.

BD_DEL_3 DEC HL ; (6) The final 26 * BAUD delay.
 LD A,L ; (4)
 OR H ; (4)
 JR NZ,BD_DEL_3 ; (12) back to BD-DEL-3

; -------------------------------
; THE 'BORDER RESTORE' SUBROUTINE
; -------------------------------
; This routine could also be used by the tape routines
; It restores the border colour to normal after it has been altered to show
; communication activity. Since interrupts are usually enabled at the same
; time, that instruction has been incorporated here to conserve ROM space.

BORD_REST PUSH AF ; Preserve accumulator throughout.

 LD A,($5B48) ; Fetch border colour from BORDCR.
 AND $38 ; Mask off paper bits.
 RRCA ; Rotate
 RRCA ; to the
 RRCA ; range 0-7.

 OUT ($FE),A ; Change the border colour.

 POP AF ; Restore flags.

 EI ;+ Enable Interrupts.

 RET ; Return.

; ---------------------------
; THE 'TEST BREAK' SUBROUTINE
; ---------------------------
; Note. this could also be called at statement return STMT_RET.

TEST_BRK CALL BREAK_KEY ; Call the standard ROM routine.
 RET C ; return if BREAK not pressed.

 CALL BORD_REST ; else restore the border colour to normal.

REPORT_Lb RST 30H ; ERROR-1
 DEFB $14 ; Error Report: BREAK into program

; **************************
; ** THE NETWORK ROUTINES **
; **************************

; "Spectrum" is the Latin word for a rainbow.
; "Iris" is the Greek word for a rainbow.
; By convention, "Spectrum" refers to this computer and "Iris" refers to the
; other computer which could be a ZX Spectrum or Sinclair QL.

; While Sinclair Research were secretive about the microdrive internals,
; there were no such restrictions on the Sinclair Network which remains an
; open standard. It was also adopted by the Disciple Disk Interface.

; "Indeed the linking of one microcomputer to another should be encouraged
; and the establishment of a Sinclair Network Standard may prove an
; important step forward"
; - Dr. Ian Logan, Interface 1 ROM co-author, 1983.

; ---------------------------------------
; THE '"N" CHANNEL INPUT SERVICE' ROUTINE
; ---------------------------------------

; The address of this network input service routine is contained in the
; channel information area and accessed by the INPUT_AD routine when the
; current channel has been made the "N" channel.
; The routine inputs a single byte from the network and if the 255-byte
; network buffer is empty, this may involve receiving a packet from the
; network.

NCHAN_IN LD IX,($5B51) ; Set index register from system variable CURCHL

 LD A,(IX+$0C) ; Fetch number of output buffer bytes from NCOBL
 ; This should be zero when reading.

 AND A ; Test for zero.
 JR Z,TEST_BUFF ; Forward, if so, to TEST-BUFF.

 RST 30H ; ERROR-1
 DEFB $1D ; 'Net R/W error'
 ; Should be -
 ; 'Reading a 'write' file' 22 chars

; ---

TEST_BUFF LD A,(IX+$10) ; Fetch number of input buffer bytes from NCIBL
 AND A ; test for zero.
 JR Z,TST_N_EOF ; forward, if so, to TST-N-EOF

 LD E,(IX+$0F) ; Fetch position of last character taken NCCUR
 DEC A ; Decrement the total count.
 SUB E ; Subtract the taken count - will set the carry
 ; flag if at end.

 JR C,TST_N_EOF ; Forward, if so, to TST-N-EOF

 LD D,$00 ; Prepare to index.
 INC E ; Increment the position
 LD (IX+$0F),E ; and update the channel variable NCCUR.

 ADD IX,DE ; Index into the buffer at that position.
 LD A,(IX+$10) ; Read the byte from the buffer.
 SCF ; Signal success.

 RET ; Return.

; ---

TST_N_EOF LD A,(IX+$0B) ; Fetch packet type from NCTYPE - 0 data, 1 EOF.

 AND A ; Test for data.
 JR Z,GET_N_BUF ; Forward, if so, to GET-N-BUF ->

; Note. Iris has closed her channel.

 RET ; Return (NC and NZ)
 ; Note. causes error 'End of file'

; ---

; ->

GET_N_BUF LD A,($5BBD) ; fetch I/O border colour from IOBORD
 OUT ($FE),A ; and change the colour to show activity.

 DI ; Disable Interrupts.

TRY_AGAIN CALL WT_SCOUT ; routine WT-SCOUT waits for the scout leader.

 JR NC,TIME_OUT ; forward, if none, to TIME-OUT

 CALL GET_NBLK ; routine GET-NBLK gets the header and data.

 JR NZ,TIME_OUT ; forward, if error, to TIME-OUT

;;; EI ; Enable Interrupts

 CALL BORD_REST ; routine BORD-REST restores the border.

 LD (IX+$0F),$00 ; Set cursor position NCCUR to zero.

 LD A,($5BC5) ; Fetch header type code from NTTYPE - data/EOF.

 LD (IX+$0B),A ; update the channel variable NCTYPE

 JR TEST_BUFF ; back to TEST-BUFF to read the first byte.

; ---

;;; TIME_OUT LD A,(IX+$07) ; Fetch the destination station number NCIRIS
;;; AND A ; test for zero - a broadcast.

TIME_OUT CALL TST_BR ;+ New routine to test for a broadcast.

 JR Z,TRY_AGAIN ; back, if a broadcast, to TRY-AGAIN
 ; Note. a broadcast will not time out.

 JR BORD_REST ; back to exit via BORD_REST restoring border.

;;; EI ; enable interrupts
;;; CALL BORD_REST ; routine BORD-REST restores border preserving
;;; ; the AF registers and enabling interrupts.
;;; AND $00 ; signal failure. (NZ NC already set)
;;; RET ; Return.

; --------------------------------
; THE '"N" CHANNEL OUTPUT' ROUTINE
; --------------------------------
; The address of this network output service routine is contained in the
; channel information area and accessed by the RST 10H output restart
; routine when the current channel has been made the "N" channel.
; The routine outputs a single byte to the network and if the 255-byte
; network buffer is full, this may involve sending a packet to the
; network.

NCHAN_OUT LD IX,($5B51) ; Set index register from system variable CURCHL

 LD B,A ; Copy the character to B.

 LD A,(IX+$10) ; Fetch number of input buffer bytes from NCIBL
 ; should be zero if channel is used for writing.
 AND A ; test for zero bytes.

 LD A,B ; bring the character back.

 JR Z,TEST_OUT ; forward, if zero bytes, to TEST-OUT

 RST 30H ; ERROR-1
 DEFB $1D ; 'Net R/W error'

 ; Should be -
 ; 'Writing to a 'read' file' 24 chars

; ---

TEST_OUT LD E,(IX+$0C) ; fetch number of output buffer bytes from NCOBL
 INC E ; increment the count. 1-255
 JR NZ,ST_BF_LEN ; forward, if not full, to ST-BF-LEN

; The buffer is full and must be sent to the network.

 PUSH AF ; preserve character yet to be output

 XOR A ; Set A to 0 to signal data and not EOF.

 CALL S_PACK_1 ; routine S-PACK-1 sends the 255-byte buffer.

; The character can now be placed in the empty buffer at position 1.

 POP AF ; restore the output character.

 LD E,$01 ; set buffer position to 1.

ST_BF_LEN LD (IX+$0C),E ; Update the byte count channel variable NCOBL
 LD D,$00 ; Prepare to index.
 ADD IX,DE ; Index into the network buffer.
 LD (IX+$10),A ; and store the byte at the offset.

 RET ; Return.

; ----------------------------
; THE NEW 'NETWORK CR' ROUTINE
; ----------------------------
; This routine is an extra check after outputting a carriage return.

CR_END CALL IN_CHAN_K ;+ routine fetches the current channel letter.

 CP 'N' ;+ Is it the network.

 RET NZ ;+ Return if not.

; --------------------------------------
; THE 'SEND CR BLOCK TO NETWORK' ROUTINE
; --------------------------------------
; This should be sent as part of PRINT_CR to flush.

SEND_NCR LD C,$00 ; a data block signal.

 JR SEND_END ; forward to send the packet.

; ---------------------------------------
; THE 'SEND EOF BLOCK TO NETWORK' ROUTINE
; ---------------------------------------
; This should be sent as part of CLOSE to flush.

SEND_NEOF LD C,$01 ;+ An EOF signal

SEND_END LD IX,($5B51) ; Set IX to current channel from CURCHL
 LD A,(IX+$0C) ; Load A from NCOBL the number of characters in
 ; the output buffer.
 AND A ; Test for zero.
 RET Z ; Return with zero.

 LD A,C ; Signal an EOF packet if 1.

; ----------------------
; THE 'S-PACK-1' ROUTINE
; ----------------------
;

S_PACK_1 CALL SEND_PACK ; routine SEND-PACK sends a packet

 RET NZ ; Return if not a broadcast.

; -----------------------------
; THE 'BROADCAST DELAY' ROUTINE
; -----------------------------
; This routine ensures that there is a gap between packets when broadcasting.

BR_DELAY LD DE,$1500 ; Set a delay counter.

DL_LOOP DEC DE ; decrement.
 LD A,E ; Test for zero.
 OR D ;
 JR NZ,DL_LOOP ; back, if not, to DL-LOOP

 RET ; Return.

; -----------------------
; THE 'SEND-PACK' ROUTINE
; -----------------------
; This routine checksums, and then outputs to the network, an 8-byte
; header and a corresponding data block.

SEND_PACK LD (IX+$0B),A ; Update the channel variable NCTYPE with the
 ; packet type - 0 data, 1 EOF.

 LD B,(IX+$0C) ; Load counter with number of output characters
 ; from NCOBL channel variable.

 LD A,($5BBD) ; Fetch I/O border colour from IOBORD
 OUT ($FE),A ; Change border to show communication activity.

 PUSH IX ; Transfer the channel base address
 POP DE ; to the DE register pair.

 LD HL,$0011 ; prepare the offset seventeen.
 ADD HL,DE ; and add to point to the first data byte.

;;; XOR A ; Initialize the data checksum to zero.
;;; CHKS1 ADD A,(HL) ; add a data byte.
;;; INC HL ; increment buffer pointer.
;;; DJNZ CHKS1 ; back, for count of characters, to CHKS1

 CALL CHKS0 ;+ New general purpose checksum routine.

 LD (IX+$0D),A ; insert the checksum in NCDCS channel variable.

 LD HL,$0007 ; prepare the offset seven

 ADD HL,DE ; and add to address NCIRIS first header byte.

 PUSH HL ; (*)save the header pointer.

;;; LD B,$07 ; Set byte counter to seven.
;;; XOR A ; Initialize the header checksum to zero.
;;; CHKS2 ADD A,(HL) ; add the addressed byte.

;;; INC HL ; increment the pointer.
;;; DJNZ CHKS2 ; loop back to CHKS2

 CALL CHKS7 ; routine checksums seven bytes

 LD (HL),A ; insert the checksum into NCHCS channel var.

 DI ; Disable Interrupts

SENDSCOUT CALL SEND_SC ; routine SEND-SC

 POP HL ; (*) restore the header pointer - NCIRIS.
 PUSH HL ; (*) and preserve again.

 LD E,$08 ; There are eight bytes in a network header.

 CALL OUT_BLK_N ; routine OUT-BLK-N sends HEADER and receives
 ; the response code.

 JR NZ,SENDSCOUT ; back, with no response, to SENDSCOUT

 PUSH IX ; transfer base address of channel
 POP HL ; to the HL register.

 LD DE,$0011 ; prepare an offset of seventeen.
 ADD HL,DE ; add to address the first byte of buffer data.

 LD E,(IX+$0C) ; Fetch count of output characters from NCOBL
 LD A,E ; copy value to A.
 AND A ; test for zero.
 JR Z,INC_BLKN ; forward, if zero, to INC-BLKN

 LD B,$20 ; Set a delay value for a gap between the
 ; physical 8-byte header and data.

SP_DL_1 DJNZ SP_DL_1 ; self loop to SP-DL-1

 CALL OUT_BLK_N ; routine OUT-BLK-N sends the DATA and receives
 ; the response byte.

 JR NZ,SENDSCOUT ; back, with no response, to SENDSCOUT

;;; INC_BLKN INC (IX+$09) ; increment the channel variable NCNUMB_lo
;;; JR NZ,SP_N_END ; forward, if not '256' to SP-N-END
;;; INC (IX+$0A) ; increment the channel variable NCNUMB_hi

INC_BLKN CALL SUBINC ;+ an existing subroutine that does above.

SP_N_END POP HL ; (*) restore the pointer to NCIRIS

 CALL BORD_REST ; routine BORD-REST restores border.

;;; EI ; enable interrupts.

 LD (IX+$0C),0 ;+++ SET the number of output bytes to zero.

TST_BR LD A,(IX+$07) ; fetch station of other machine from NCIRIS
 AND A ; test for zero - a broadcast.

 RET ; Return - with zero flag set for broadcast.

; -----------------------
; THE 'OUT-BLK-N' ROUTINE

; -----------------------
; This routine sends a single block of data, which could be a header or
; buffer block, and validates the response from IRIS.

OUT_BLK_N CALL OUTPAK ; routine OUTPAK sends the data block returning
 ; with DE holding zero.

;;; LD A,(IX+$07) ; fetch the other station number from NCIRIS
;;; AND A ; test for zero.

 CALL TST_BR ;+ New routine to test for a broadcast.

 RET Z ; Return if a broadcast, no response required.

 LD HL,$5BC0 ; Make HL address system variable NTRESP

;;; LD (HL),$00 ; and insert a zero.
;;; LD E,$01 ; set byte count to 1.

 LD (HL),E ;+ and insert a zero.
 INC E ;+ set byte count to 1.

 CALL INPAK ; routine INPAK reads one byte from network.

 RET NZ ; return, signaling failure, if no activity.

 LD A,($5BC0) ; Fetch updated value of NTRESP.
 DEC A ; test for $01.
 RET ; Return, with zero flag set for success.

; ---
; THE 'HEADER AND DATA BLOCK RECEIVING' ROUTINE
; ---
; This subroutine is called once from NCHAN_IN to read in the next header
; and data block from the network, when the buffer is empty.
; An eight byte header is sent from the network channel of the sending
; computer but received into eight system variables.

GET_NBLK LD HL,$5BC1 ; Address system variable NTDEST
 LD E,$08 ; Set byte count to eight.

 CALL INPAK ; Routine INPAK reads in a header.

 RET NZ ; Return, signaling failure, if inactive.

;;; LD HL,$5BC1 ; Address system variable NTDEST again.

 LD L,$C1 ;+ Address system variable NTDEST again

;;; XOR A ; Initialize checksum to zero.
;;; LD B,$07 ; Set byte count to seven.
;;; CHKS3 ADD A,(HL) ; Add the addressed byte.
;;; INC HL ; Point to next header byte.
;;; DJNZ CHKS3 ; Back, for all seven bytes, to CHKS3
;;; CP (HL) ; Compare with eighth byte.

 CALL CHKS7 ; routine to checksum seven bytes.

 RET NZ ; Return if checksum disagrees.

; The header has been successfully received and it can be examined to see
; what type of data this is.

;;; LD A,($5BC1) ; Fetch the value of NTDEST the received sysvar

 LD L,$C1 ;+ Set HL to NTDEST the received system variable
 LD A,(HL) ;+ Fetch value to A.

 INC L ;+ Set HL to $5BC2 NTSRCE before branching.

 AND A ; test for zero.
 JR Z,BRCAST ; forward, if so, to BRCAST

 CP (IX+$08) ; Compare the destination with NCSELF - this
 ; station's number.
 RET NZ ; Return if data not intended for this Spectrum.

; The header indicates the data is for SELF.

;;; LD A,($5BC2) ; Fetch value of received system variable NTSRCE
;;; ; the sending station.

 LD A,(HL) ;+ Fetch the sender from $5BCF NTSRC.

 CP (IX+$07) ; Compare to channel variable NCIRIS.
 RET NZ ; Return if not the expected sender.

; The header indicates that both the sender and recipient (SELF) are correct.

 JR TEST_BLKN ; Forward to TEST-BLKN

; ---

; The branch was here when the header indicated a broadcast.

BRCAST
;;; LD A,(IX+$07) ; Check the station number of NCIRIS.
;;; OR A ; Test for zero - a broadcast.

 CALL TST_BR ;+ New routine to test for a broadcast.

 RET NZ ; Return, with failure, if not.

; The two paths converge here.

TEST_BLKN LD HL,($5BC3) ; Fetch, from received system variable NTNUMB,
 ; the number of the block.

 LD E,(IX+$09) ; Fetch bytes of expected block NCNUMB_lo and
 LD D,(IX+$0A) ; NCNUMB_hi, to DE, from channel variables.

 AND A ; prepare for true subtraction.
 SBC HL,DE ; subtract the two block numbers.
 JR Z,GET_NBUFF ; forward, if they match, to GET-NBUFF

 DEC HL ; Decrement HL in case the previously received
 LD A,H ; block is being resent because the sender
 OR L ; missed our response byte.
 RET NZ ; Return if this is not the previous block.

 CALL GET_NBUFF ; Routine GET-NBUFF gets the buffer data and
 ; resends the response byte also incrementing
 ; the block count.

; Note. the next check is new.

 RET NZ ;+ Return if, say, the checksum disagrees the
 ;+ second time around.

; Cancel the increment and return failure so that we try for the expected
; data again.
; Note. The DEC instruction does not affect the carry flag!

 LD A,(IX+$09) ;+ Fetch copy of NCNUMB_lo to accumulator.

 DEC (IX+$09) ; decrement actual NCNUMB_lo

 AND A ;+ Was it originally zero?

;;; JR NC,GETNB_END ; Forward, if not 255, to GETNB-END

 JR NZ,GETNB_END ;+ Forward, if not now 255, to GETNB-END

 DEC (IX+$0A) ; Decrement NCNUMB_hi

GETNB_END OR $01 ; Reset the zero flag signaling failure to
 ; the calling routine.

 RET ; Return.

; ---

; The branch was here to read the data into the network buffer.
; First send a response byte for the header if this is not a broadcast.

GET_NBUFF CALL SEND_RESP ; routine sends response byte if not a broadcast

 LD A,($5BC6) ; Fetch received system variable NTLEN
 AND A ; test for zero.
 JR Z,STORE_LEN ; forward, if empty, to STORE-LEN

 PUSH IX ; transfer channel base address to
 POP HL ; the HL register.

 LD DE,$0011 ; prepare an offset of seventeen.
 ADD HL,DE ; and add to address start of the data buffer.
 PUSH HL ; (*) Preserve the start of network buffer.
 LD E,A ; Transfer block length to E, value 1-255.

 CALL INPAK ; routine INPAK reads in the data.

 LD HL,($5BC6) ;+ load two system variables NTLEN/NTDCS at
once.
 LD B,L ;+ count of bytes NTLEN to B.
 LD E,H ;+ checksum NTDCS to E.

 POP HL ; (*) Restore start of buffer.
 RET NZ ; Return failure if network was inactive.

;;; LD A,($5BC6) ; Fetch count of data bytes from sysvar NTLEN
;;; LD B,A ; transfer to B. (Beyond reach of IY)
;;; LD A,($5BC7) ; Fetch network data checksum from NTDCS
;;; The checksum is verified in the opposite way in which it was derived.
;;; CHKS4 SUB (HL) ; Subtract the addressed value.
;;; INC HL ; Increment data pointer.
;;; DJNZ CHKS4 ; Back, for all bytes, to CHKS4

 CALL CHKS0 ;+ general purpose checksum adding routine.
 CP E ;+ compare with expected.

 RET NZ ; Return failure if result does not agree.

;;; LD A,($5BC1) ; Fetch station from system variable NTDEST
;;; AND A ; Check for zero - a broadcast

 CALL SEND_RESP ; routine SEND-RESP sends response for data
 ; if not a broadcast.

STORE_LEN LD A,($5BC6) ; Fetch the verified length from sysvar NTLEN
 LD (IX+$10),A ; and insert value in channel variable NCIBL.

; Note the next could be a once-called subroutine to increment NCNUMB.

SUBINC INC (IX+$09) ; Increment NCNUMB_lo

 JR NZ,GETBF_END ; Forward, if no wraparound, to GETBF-END

 INC (IX+$0A) ; Increment the high byte NCNUMB_hi

GETBF_END CP A ; Set the zero flag.

 RET ; Return with zero flag set indicating success.

; -----------------------
; THE NEW 'CHECKSUM' ROUTINES
; -----------------------
; This routine saves just a few bytes by making a subroutine of repetitive
; code. It checksums the header or buffer data. The header data is always
; seven bytes in length. The second entry point is used for the variable
; length buffer data.

CHKS7 LD B,$07 ; 7 header bytes to check.

CHKS0 XOR A ; Initialize checksum.

CHKSL ADD A,(HL) ; Add a byte.
 INC HL ; Address next.
 DJNZ CHKSL ; loop back for B bytes.

 CP (HL) ; compare with final value which could be sum

 RET ; return.

; ---------------------------
; THE 'NETWORK STATE' ROUTINE
; ---------------------------
; This routine waits for the network to become inactive so that it may be
; claimed by this SPECTRUM. So that two waiting Spectrums do not claim the
; network at the same time a random count is used.

NET_STATE LD A,R ; Fetch a random 7-bit value from the Refresh
 ; register

 OR $C0 ; OR with %11000000 giving range 192 - 255.
 LD B,A ; transfer to B for count.

 CALL CHK_REST ; routine CHK-REST

 JR C,NET_STATE ; back to NET-STATE if network is busy.

 RET ; return.

; ---------------------------
; THE 'CHECK-RESTING' ROUTINE
; ---------------------------
; This subroutine checks that the network is inactive for a period
; determined by the B register which will $80 if called from below or a
; random value if called from the above routine.

CHK_REST CALL TEST_BRK ; routine TEST-BRK will return here if BREAK is
 ; not pressed.

MAKESURE PUSH BC ; timing
 POP BC ; timing

 IN A,($F7) ; Read the network port
 RRCA ; Test bit 0.
 RET C ; Return if network is claimed by other
 ; machines.

 DJNZ MAKESURE ; back to MAKESURE for a random count.

 RET ; Return.

; ------------------------
; THE 'WAIT SCOUT' ROUTINE
; ------------------------
; This routine is called once from NCHAN_IN to identify a SCOUT when this
; station is expecting to receive a network packet.

WT_SCOUT CALL TEST_BRK ; routine TEST-BRK allows user to abort.

 LD HL,$01C2 ; An even timing value.

CLAIMED LD B,$80 ; The non-random count for CHK REST

 CALL CHK_REST ; routine CHK-REST

 JR NC,WT_SYNC ; forward, if network resting, to WT-SYNC

 DEC HL ; decrement counter
 DEC HL ; decrement counter
 LD A,H ; Test for
 OR L ; zero.
 JR NZ,CLAIMED ; back, if not, to CLAIMED

; If operation has timed out, then return failure unless expecting a
; broadcast in which case the subroutine waits indefinitely.

;;; LD A,(IX+$07) ; fetch value of channel variable NCIRIS
;;; AND A ; test for broadcast.

 CALL TST_BR ;+ test for a broadcast

 JR Z,CLAIMED ; back, if so, to CLAIMED

 RET ; Return signaling failure.

; ---

; The branch was here when the network was found to be at rest.

WT_SYNC IN A,($F7) ; read the port.
 RRCA ; rotate 'net input' to carry.

 JR C,SCOUT_END ; forward, if scout found, to SCOUT-END ->

; This is a clever twist.

 LD A,$7F ; Read port $7FFE the row with SPACE
 IN A,($FE) ;
 OR $FE ; Now read port $FEFE the row with SHIFT
 IN A,($FE) ;
 RRA ; If both SHIFT and SPACE then carry is reset.

 CALL NC,TEST_BRK ; routine TEST-BRK errors if BREAK was pressed.

 DEC HL ; decrement the counter.
 LD A,H ; Test for
 OR L ; zero.
 JR NZ,WT_SYNC ; back, if not, to WT-SYNC

;;; LD A,(IX+$07) ; load station number from NCIRIS
;;; AND A ; test for a broadcast.

 CALL TST_BR ;+ New routine to test for a broadcast.

 JR Z,WT_SYNC ; back, if zero, to WT-SYNC

 RET ; Return failure - NZ

; ----------------------
; THE 'SCOUT END' BRANCH
; ----------------------
; The scout is only read by the machine that sent it and as long as it can
; be read back then the sending machine is happy. This receiving machine
; uses the scout leader to synchronize its timing.

SCOUT_END LD L,$09 ; set outer counter for 9 bits.

LP_SCOUT DEC L ; (4) decrement counter.
 SCF ; (4) set success condition

 RET Z ; () RETURN after nine bits have been timed.

 LD B,$0E ; An inner delay counter.

DELAY_SC DJNZ DELAY_SC ; self loop to DELAY-SC

 JR LP_SCOUT ; loop back to LP-SCOUT

; ---
;
; Illustration: Network Station '10' sending its SCOUT.
;
; <-- values of the eight bits -->
;
; active '0' '0' '0' '0' '1' '0' '1' '0' active
; - - - - - - +---+---+---+---+---+ +---+ +---+ - - - - - - - - - - - -
; | | | | | | | | | |
; | | | | | |
; | 7 6 5 4 | 3 | 2 | 1 | 0 |
; | | | | | |
; | | | | | |
; inactive | | | | | | | | | | inactive
; ------------+ + + + + +---+ +---+ +------------------------
;
; ^ ^ ^ <---><-------------- ------------->^
; resting ? \/ \/ |

; send send 8 bits of the |
; SCOUT global station number Network claimed.
; leader
;

; ------------------------
; THE 'SEND SCOUT' ROUTINE
; ------------------------
; In order to claim the network for writing, the SPECTRUM sends out a leader
; followed by the eight inverted bits of the global station number which
; should be unique to each machine.

SEND_SC CALL NET_STATE ; routine NET-STATE repeatedly examines the
 ; network until it is satisfied that the
 ; network is at rest.

 LD C,$F7 ; The comms port number.
 LD HL,$0009 ; H is the leader value, L is the count of
 ; the SCOUT bits.

 LD A,($5BBC) ; Fetch the global station number from NTSTAT
 LD E,A ; Transfer to E.

 IN A,($F7) ; Test that the network is still inactive.
 RRCA ; rotate 'net input' to carry.
 JR C,SEND_SC ; back, if network has become active, to SEND-SC

; Now output the nine values starting with the zero leader in H.

ALL_BITS OUT (C),H ; output bit 0 'net output'

 LD D,H ; (4) copy state to D for later.
 LD H,$00 ; set output byte to zero.
 RLC E ; rotate a bit from 'global station' to carry.
 RL H ; pick it up in bit 0.

 LD B,$08 ; set timing counter

S_SC_DEL DJNZ S_SC_DEL ; self loop back to S-SC-DEL

 IN A,($F7) ; read the network.
 AND $01 ; isolate the 'net input' bit.
 ; Note. network is activated with a zero bit.
 ; Received bit is therefore opposite state.
 CP D ; compare with expected state.
 JR Z,SEND_SC ; back, if not inverted, to SEND-SC
 ; to start process again.

 DEC L ; decrement the bit counter.
 JR NZ,ALL_BITS ; back, if SCOUT not complete, to ALL-BITS

 LD A,$01 ;; set the output bit.
 OUT ($F7),A ;; Make the network inactive.

 LD B,$0E ; Wait for a delay

END_S_DEL DJNZ END_S_DEL ; self loop to END-S-DEL

 RET ; Return.

; -------------------

; THE 'INPAK' ROUTINE
; -------------------
; This routine reads into the network buffer at address HL a pack of bytes
; the count of which is in E.
; The value of E will be -
; a) 1 when reading the Network Response byte.
; b) 8 when reading an eight-byte header into the system variables.
; c) The value of NTLEN, from within the above header, when reading data.

INPAK LD B,$FF ; Set a time-out counter.

N_ACTIVE IN A,($F7) ; Read the network port.
 RRA ; rotate 'net input' bit to carry.

 JR C,INPAK_2 ; forward, if set, to INPAK-2

 DJNZ N_ACTIVE ; loop back, 255 times, to N-ACTIVE

 INC B ; Indicate network inactive by resetting zero.

 RET ; Return. (NZ)

; ---

INPAK_2 LD B,E ; Set B to count the number of bytes.

; The byte reading loop.

INPAK_L LD E,$80 ; prepare a receiving byte with a marker bit.

 LD A,$CE ; Make A %11001110 (wait,cts and comms data low)
 OUT ($EF),A ; Enable the network.

 NOP ; (4) Wait 48 clock cycles.
 NOP ; (4)
 INC IX ; (10)
 DEC IX ; (10)
 INC IX ; (10)
 DEC IX ; (10)

UNTIL_MK LD A,$00 ; (7) Timing.
 IN A,($F7) ; (10) Read net input to bit 0.
 RRA ; (4) rotate to carry.
 RR E ; (8) and pick up in E.
 JP NC,UNTIL_MK ; (10) JUMP, back if no marker bit, to UNTIL-MK

 LD (HL),E ; store the received byte.
 INC HL ; Address next location.
 DJNZ INPAK_L ; back to INPAK-L

 CP A ; Set zero flag to signal success.
 RET ; Return.

; --------------------------------
; THE 'SEND RESPONSE BYTE' ROUTINE
; --------------------------------
; When a header or a data block is successfully received then this routine is
; used to send a response byte to acknowledge the successful receipt of the
; data over the network.

SEND_RESP LD HL,$5BC1 ; Address station number NTDEST
 XOR A ; set accumulator to zero
 CP (HL) ; compare with NTDEST

 RET Z ; return if a broadcast.

 DEC HL ; Address $5BC0 NTRESP
 LD E,$01 ; Load 1 to the byte count.
 LD (HL),E ; Insert the value 1

; --------------------
; THE 'OUTPAK' ROUTINE
; --------------------
; This routine sends a packet of bytes, up to 255 in length, over the network.
; The start of the data is in HL and the number of bytes is held in E.

OUTPAK XOR A ; clear bit 0
 OUT ($F7),A ; send leader to port.
 LD B,$04 ; (4) set timing value.

DEL_0_1 DJNZ DEL_0_1 ; (12/7) back to DEL-0-1 for leader of

; Now enter a loop to send E bytes each with a set start bit and a reset
; stop bit.

OUTPAK_L LD A,(HL) ; (6) Fetch a byte to be sent.
 CPL ; (4) complement.
 SCF ; (4) Set an initial start bit
 RLA ; (4) C <- 76543210 <- C
 LD B,$0A ; (6) Set count to ten bits

UNT_MARK OUT ($F7),A ; Output bit 0, to net.
 RRA ; C -> 76543210 -> C ; Rotate next bit to
 ; ; bit 0.
 AND A ; clear carry flag to feed in final stop bit.
 DEC B ; decrement bit counter.
 LD D,$00 ; (7) timing
 JP NZ,UNT_MARK ; JUMP back for 10 bits to UNT-MARK

; The last bit sent will be a reset stop bit.

 INC HL ; increment buffer address
 DEC E ; decrement the byte count.
 PUSH HL ; (11) timing.
 POP HL ; (11) timing.
 JP NZ,OUTPAK_L ; JUMP, if E not zero, to OUTPAK-L

 LD A,$01 ; switch off network.
 OUT ($F7),A ;
 RET ; Return.

; --------------------
; THE 'FORMAT' COMMAND
; --------------------
; by James Smith.
; This sets the local network station number which defaulted to 1 at
; switch-on. It can also be used to set the baud rate and printer width.
; FORMAT "n",2 set this station to station 2 (acceptable range 1 - 64).
; FORMAT "b",1200 set baud rate for "b" and "t" RS232 transfers.
; FORMAT "t",80 set printer width of the "t" channel.
;
; This is a CLASS-00 command so it is only executed in runtime when the two
; parameters will be on the calculator stack.

FORMAT CALL FIND_INT2 ; routine FIND-INT2 gets number to BC

 PUSH BC ; save on machine stack.

 CALL EXPT_SPEC ; gets channel specifier in A

 AND $DF ; Make it upper-case.

 POP BC ; retrieve numeric parameter.

 CP 'B' ; channel "B" BAUD rate ?
 JR Z,FORMAT_B ; forward, if so, to FORMAT_B

; After the 16 bit BAUD rate, only 8-bit values are allowed for width/station.

 INC B ; Test the high-order
 DEC B ; byte for zero.

 JP NZ,REPORT_B ; ERROR
 ; 'Integer out of range'

 CP 'T' ; Text width ?
 JP Z,FORMAT_T ; jump back, if so, to FORMAT_T

 CP 'N' ; Network ?
 JP NZ,REPORT_C ; back, if unknown letter, to report XXXXX
 ; 'Nonsense in BASIC'

FORMAT_N LD A,C ; number should be 1-64
 DEC A ;

 CP $40 ; compare to 64
 JP NC,REPORT_Q ;

 INC A ; correct for earlier DEC

 LD ($5BBC),A ; set NTSTAT

 RET ; Return.

; ---

; Note. these 5 bytes fave been moved to space between restarts. (JS)

; FORMAT_T LD A,C ; get TAB width
; LD ($5BB8),A ; set it
; RET ; Return.

; ---------------------------
; THE 'SET BAUD RATE' ROUTINE
; ---------------------------
; by James Smith.
; The BAUD rate is calculated as follows:
; BAUD = (3500000/(26*baud rate)) - 2
;

FORMAT_B CALL STACK_BC ; put value on calculator stack.

 RST 28H ; FP-CALC
 DEFB $34 ;;stk-data
 DEFB $35 ;;Exponent $85, Bytes:1 constant = 26
 DEFB $50 ;;$50 ($00,$00,$00)
 DEFB $04 ;;multiply
 DEFB $34 ;;stk-data
 DEFB $80 ;;Exponent $96, Bytes: 3 constant = 3500000

 DEFB $46,$55,$9F,$80 ;;($55,$9F,$80,$00)
 DEFB $01 ;;exchange
 DEFB $05 ;;divide
 DEFB $38 ;;end-calc

 CALL FP_TO_BC ; get delay into BC

 DEC BC ; subtract value
 DEC BC ; two.

 LD ($5BBA),BC ; set BAUD system variable

 RET ; Return.

; -----------------
; THE 'CAT' COMMAND
; -----------------
; This CAT command lists the streams to the screen and really grows on you.
; It was inspired by Andrew Pennell's "Stream Lister" which appears in the
; book "master your zx microdrive" published by Melbourne House.

CAT
 CALL CL_ALL ; clear 24 lines and leave upper screen open.

 LD DE,CAT1 ; Point to start of banner text.
 LD BC,CAT2-CAT1 ; Set the length.
 CALL PR_STRING ; routine PR_STRING outputs counted string.

 LD BC,45 ; decimal adjustment to equate to command line.

 CALL TEST_ROOM ; routine TEST_ROOM returns free RAM in HL.

 LD A,H ; The value is negated and must be transferred
 CPL ; to BC registers.
 LD B,A ;

 LD A,L ;
 CPL ;
 LD C,A ;

 CALL STACK_BC ; stack the 16 bit value.
 CALL PRINT_FP ; print the free memory.

 LD DE,CAT3 ; address the remaining text setting inverse 0
 LD BC,CAT4-CAT3 ; set the length of the string.

 CALL PR_STRING ; print the rest of the banner.

 LD A,$FD ; The starting stream. (decimal 253).
 LD HL,$5B10 ; The relevant system variables location.

LOOP AND A ; test for zero
 PUSH AF ; save the stream
 PUSH HL ; save the address in STRMS area
 JR NZ,NO_BLANK ; skip forward if not stream zero.

 LD A,$0D ; print a carriage return as a separator
 RST 10H ; if it is zero

NO_BLANK CALL STACK_A ;
 LD A,$0D ;
 RST 10H ;

 CALL PRINT_FP ;
 LD A,6 ;
 RST 10H ;
 POP HL ;

 LD C,(HL) ;
 INC L ;
 LD B,(HL) ;
 INC L ;
 LD A,B ;
 OR C ;
 JR Z,PR_CR ;
 LD IX,($5B4F) ; CHANS
 ADD IX,BC ;
 LD A,(IX+$03) ;
 RST 10H ;
PR_CR POP AF ;
 INC A ;
 CP $10 ;
 JR NZ,LOOP ;

 RET ; Return.

CAT3
 DEFB $06 ; The 'comma control'
 DEFB $14,$00 ; The control codes for INVERSE 0
 DEFB $0D ; The carriage return character.
CAT4

; --------------------------
; THE 'AUTO-LIST' SUBROUTINE
; --------------------------
; This produces an automatic listing in the upper screen.

AUTO_LIST LD ($5B3F),SP ; save stack pointer in LIST_SP
 LD (IY+$02),$10 ; update TV_FLAG set bit 3

 CALL CL_ALL ; routine CL-ALL clears 24 lines.

;;; SET 0,(IY+$02) ; update TV_FLAG - signal lower screen in use
 CALL SIG_L_SCR ; set 0,(iy+$02) as a call.

 LD B,(IY+$31) ; fetch lower screen DF_SZ to B.

 CALL CL_LINE ; routine CL-LINE clears lower display
 ; preserving B.

 RES 0,(IY+$02) ; update TV_FLAG - signal main screen in use
 SET 0,(IY+$30) ; update FLAGS2 - signal it will be necessary
 ; to clear the main screen.
 LD HL,($5B49) ; fetch E_PPC current edit line to HL.
 LD DE,($5B6C) ; fetch S_TOP to DE, the current top line
 ; (initially zero)
 AND A ; prepare for true subtraction.
 SBC HL,DE ; subtract and
 ADD HL,DE ; Add back.
 JR C,AUTO_L_2 ; to AUTO-L-2 if S_TOP is higher than E_PPC
 ; to set S_TOP to E_PPC

 PUSH DE ; save the top line number.

 CALL LINE_ADDR ; routine LINE-ADDR gets address of E_PPC.

 LD DE,$02C0 ; prepare known number of characters in

 ; the default upper screen.

 EX DE,HL ; transfer offset to HL, program address to DE.
 SBC HL,DE ; subtract high value from low to obtain the
 ; negated result used in addition.
 EX (SP),HL ; swap result with top line number on stack.

 CALL LINE_ADDR ; routine LINE-ADDR gets address of that
 ; top line in HL and next line in DE.

 POP BC ; restore the result to balance the stack.

AUTO_L_1 PUSH BC ; save the result.

 CALL NEXT_ONE ; routine NEXT-ONE gets address in HL of the
 ; line after auto-line (in DE).

 POP BC ; restore result.
 ADD HL,BC ; compute back.
 JR C,AUTO_L_3 ; forward, if line 'should' appear, to AUTO-L-3

 EX DE,HL ; transfer the address of next line to HL.
 LD D,(HL) ; get line
 INC HL ; number
 LD E,(HL) ; in DE.
 DEC HL ; Adjust back to start.
 LD ($5B6C),DE ; update system variable S_TOP.

 JR AUTO_L_1 ; back, until estimate reached, to AUTO-L-1

; ---

; the jump was to here if S_TOP was greater than E_PPC

AUTO_L_2 LD ($5B6C),HL ; make S_TOP the same as E_PPC.

; continue here with valid starting point from above or good estimate
; from computation

AUTO_L_3 LD HL,($5B6C) ; fetch S_TOP line number to HL.

 CALL LINE_ADDR ; routine LINE-ADDR gets address in HL.
 ; Address of next in DE.

 JR Z,AUTO_L_4 ; forward, if line exists, to AUTO-L-4

 EX DE,HL ; else use address of next line.

AUTO_L_4 CALL LIST_ALL ; routine LIST-ALL quits when screen full >>>

; The return will be to here if no scrolling occurred

 JP PO_N_AUTO ;+ to code similar to below.

;;; RES 4,(IY+$02) ; update TV_FLAG - signal no auto listing.
;;; RET ; return.

; -------------------
; THE 'LLIST' COMMAND
; -------------------
; List Program to any stream.
; As the manual points out, this is not standard BASIC.
; A short form of LIST #3. The listing goes to stream 3 - default printer.
; This always was a nonsense for compatibility with the ZX81 but now one is

; unable to assume that stream 3 will be used for a printer.
; This will be replaced with an extra UDG.

LLIST LD A,$03 ; the usual stream for a Printer

 JR LIST_1 ; forward to LIST-1

; ------------------
; THE 'LIST' COMMAND
; ------------------
; List Program to any stream.
; Note. While a starting line can be specified it is not possible to specify
; an end line. Just listing a line makes it the current edit line.

LIST LD A,$02 ; default is stream 2 - the upper screen.

LIST_1 LD (IY+$02),$00 ; the TV_FLAG is initialized with bit 0 reset
 ; indicating upper screen in use.
;;; CALL SYNTAX_Z ; routine SYNTAX-Z - checking syntax ?
;;; CALL NZ,CHAN_SLCT ; routine CHAN-OPEN if in run-time.

 CALL CHN_O_SYN ;+ Routine opens channel in runtime.

;;; RST 18H ; GET-CHAR

 CALL STR_ALTER ; routine STR-ALTER will alter if '#'.

 JR C,LIST_4 ; forward, if not a hash, to LIST-4

;;; RST 18H ; GET-CHAR
;;; CP $3B ; is character a ';' ?
;;; JR Z,LIST_2 ; skip, if so, to LIST-2
;;; CP $2C ; is character a ',' ?

 CALL EXPT_SEP ;+ NEW routine to check for ';' or ','.

 JR NZ,LIST_3 ; forward, if neither separator, to LIST-3

; we have, say, LIST #15, and a number must follow the separator.

LIST_2 RST 20H ; NEXT-CHAR

 CALL EXPT_1NUM ; routine EXPT-1NUM checks for numeric
 ; expression and stacks it in run-time.

 JR LIST_5 ; forward to LIST-5

; ---

; the branch was here with just LIST #3 etc.

LIST_3 CALL USE_ZERO ; routine USE-ZERO defaults first line.

 JR LIST_5 ; forward to LIST-5

; ---

; the branch was here with LIST

LIST_4 CALL FETCH_NUM ; routine FETCH-NUM checks if a number
 ; follows else uses zero.

LIST_5 CALL CHECK_END ; routine CHECK-END quits if syntax OK >>

; Continue in runtime.

 CALL FIND_LINE ;+ routine FIND-LINE fetches the number from the
 ;+ calculator stack and validates in run-time.

;;; LD A,B ; fetch high byte of line number and
;;; AND $3F ; make less than $40 so that NEXT-ONE
;;; ; (from LINE-ADDR) doesn't lose context.
;;; ; Note. this is not satisfactory and the typo
;;; ; LIST 20000 will list an entirely different
;;; ; section than LIST 2000. Such typos are not
;;; ; available for checking if they are direct
;;; ; commands.

;;; LD H,B ; transfer the modified
;;; LD L,C ; line number to HL.

 LD ($5B49),HL ; update E_PPC to the new line number.

 CALL LINE_ADDR ; routine LINE-ADDR gets the address of the
 ; line.

; This routine is called from AUTO-LIST

LIST_ALL LD E,$01 ; signal current line not yet printed

LIST_ALL2 CALL OUT_LINE ; routine OUT-LINE outputs a BASIC line
 ; using PRINT-OUT and makes an early return
 ; when no more lines to print. >>>

 RST 10H ; PRINT-A prints the carriage return (in A)

 BIT 4,(IY+$02) ; test TV_FLAG - automatic listing ?
 JR Z,LIST_ALL2 ; back, if not, to LIST-ALL-2
 ; (loop exit is via OUT-LINE)

; Continue here if an automatic listing required.

 LD A,($5B6B) ; fetch DF_SZ lower display file size.
 SUB (IY+$4F) ; subtract S_POSN_hi the current line number.
 JR NZ,LIST_ALL2 ; back to LIST-ALL-2 if upper screen not full.

 XOR E ; A contains zero, E contains one if the
 ; current edit line has not been printed
 ; or zero if it has (from OUT-LINE).
 RET Z ; return if the screen is full and the line
 ; has been printed.

; Continue with automatic listings if the screen is full and the current
; edit line is missing. OUT-LINE will scroll automatically.

 PUSH HL ; save the pointer address.
 PUSH DE ; save the E flag.
 LD HL,$5B6C ; fetch S_TOP the rough estimate.

 CALL LN_FETCH ; routine LN-FETCH updates S_TOP with
 ; the number of the next line.

 POP DE ; restore the E flag.
 POP HL ; restore the address of the next line.
 JR LIST_ALL2 ; back to LIST-ALL-2.

; ---

; THE 'PRINT A WHOLE BASIC LINE' SUBROUTINE
; ---
; This routine prints a whole BASIC line and it is called from LIST-ALL to
; output the line to current channel and from ED-EDIT to 'sprint' the line
; to the edit buffer.

OUT_LINE LD BC,($5B49) ; fetch E_PPC the current line which may be
 ; unchecked and not exist.

 CALL CP_LINES ; routine CP-LINES finds match or line after.

 LD D,$3E ; prepare cursor '>' in D.
 JR Z,OUT_LINE1 ; to OUT-LINE1 if matched or line after.

 LD DE,$0000 ; put zero in D, to suppress line cursor.
 RL E ; pick up carry in E if line before current
 ; leave E zero if same or after.

OUT_LINE1 LD (IY+$2D),E ; save flag in BREG which is spare.
 LD A,(HL) ; get high byte of line number.
 CP $40 ; is it too high ($2F is maximum possible) ?
 POP BC ; drop the return address and
 RET NC ; make an early return if so >>>

 PUSH BC ; save return address

 CALL OUT_NUM_2 ; routine OUT-NUM-2 to print addressed number
 ; with leading space.

 INC HL ; skip low number byte.
 INC HL ; and the two
 INC HL ; length bytes.
 RES 0,(IY+$01) ; update FLAGS - signal leading space required.
 LD A,D ; fetch the cursor.
 AND A ; test for zero.
 JR Z,OUT_LINE3 ; forward, if zero, to OUT-LINE3

 RST 10H ; PRINT-A prints '>' the current line cursor.

; this entry point is called from ED-COPY

OUT_LINE2 SET 0,(IY+$01) ; update FLAGS - suppress leading space.

OUT_LINE3 PUSH DE ; save flag E for a return value.
 EX DE,HL ; save HL address in DE.
 RES 2,(IY+$30) ; update FLAGS2 - signal NOT in QUOTES.

 LD HL,$5B3B ; point to FLAGS.
 RES 2,(HL) ; signal 'K' mode. (starts before keyword)

;;; BIT 5,(IY+$37) ; test FLAGX - input mode ?
 CALL TST_INP_M ;+ bit 5,(iy+$37) as a 3-byte call.
 JR Z,OUT_LINE4 ; forward, if not, to OUT-LINE4

 SET 2,(HL) ; signal 'L' mode. (used for input)

OUT_LINE4 LD HL,($5B5F) ; fetch X_PTR - possibly the error pointer
 ; Address.
 AND A ; clear the carry flag.
 SBC HL,DE ; test if an error address has been reached.
 JR NZ,OUT_LINE5 ; forward, if not, to OUT-LINE5

 LD A,$3F ; load A with '?' the error marker.
 CALL OUT_FLASH ; routine OUT-FLASH to print flashing marker.

OUT_LINE5 CALL OUT_CURS ; routine OUT-CURS will print the cursor if
 ; this is the right position.
 EX DE,HL ; restore address pointer to HL.
 LD A,(HL) ; fetch the addressed character.

 CALL NUMBER ; routine NUMBER skips a hidden floating
 ; point number if present.

 INC HL ; now increment the pointer.
 CP $0D ; is character end-of-line ?

 JR Z,OUT_LINE6 ; forward, if so, to OUT-LINE6
 ; as line is complete

 EX DE,HL ; save the pointer in DE.
 CALL OUT_CHAR ; routine OUT-CHAR to output character/token.

 JR OUT_LINE4 ; back to OUT-LINE4 until entire line is done.

; ---

OUT_LINE6 POP DE ; bring back the flag E, zero if current line
 ; printed else value one if still to print.

 RET ; return - with A holding $0D

; -------------------------------
; THE 'CHANNEL LETTER' SUBROUTINE
; -------------------------------
;

IN_CHAN_K LD HL,($5B51) ; fetch address of current channel CURCHL
 JR NUMBER_4 ; forward to pick up channel letter.

; -----------------------
; THE 'NUMBER' SUBROUTINE
; -----------------------
; This subroutine is called from two processes. while outputting BASIC lines
; and while searching statements within a BASIC line. During both, this
; routine will pass over an invisible number indicator and the five bytes
; floating-point number that follows it. Note that this causes floating
; point numbers to be stripped from the BASIC line when it is fetched to the
; edit buffer by OUT_LINE. The number marker also appears after the
; arguments of a DEF FN statement and may mask old 5-byte string parameters.

NUMBER CP $0E ; character fourteen ?
 RET NZ ; return if not.

 INC HL ; skip the character
NUMBER_5 INC HL ; and five bytes
NUMBER_4 INC HL ; following.
NUMBER_3 INC HL ;
 INC HL ;
 INC HL ;
 LD A,(HL) ; fetch the following character
 CP $4B ;+ default comparison - is it letter 'K' ?
 RET ; for return value.

; ---
; THE 'PRINT A FLASHING CHARACTER' SUBROUTINE
; ---
; This subroutine is called from OUT-LINE to print a flashing error
; marker '?' or from the next routine to print a flashing cursor e.g. 'L'.

; However, this only gets called from OUT-LINE when printing the edit line
; or the input buffer to the lower screen, so a direct call to PRINT_OUT
; can be used, even though out-line outputs to other streams.
; In fact the alternate set is used for the whole routine.

OUT_FLASH EXX ; Switch in alternate set

;;; LD HL,($5B8F) ; fetch L = ATTR_T, H = MASK-T
;;; PUSH HL ; preserve original value and masks.

;;; RES 7,H ; reset flash mask bit so active.
;;; SET 7,L ; make attribute FLASH.
;;; LD ($5B8F),HL ; update system variables ATTR_T and MASK-T

;;; LD HL,$5B91 ; Address P_FLAG
;;; LD D,(HL) ; fetch value to D
;;; PUSH DE ; and preserve original value.
;;; LD (HL),$00 ; clear inverse, over, ink/paper 9

 CALL PRINT_OUT ; Routine PRINT-OUT outputs character without
 ; the need to vector via RST 10.

 EX DE,HL ;+ Note. NEW transfer attribute byte to HL.

 SET 7,(HL) ;+ Make it flash.

;;; POP HL ; pop the original P_FLAG to H.
;;; LD (IY+$57),H ; and restore system variable P_FLAG.

;;; POP HL ; restore original attribute and mask
;;; LD ($5B8F),HL ; and restore system variables ATTR_T/MASK_T

 EXX ; Switch back to main set

 RET ; Return

; ---------------------------------
; THE 'PRINT THE CURSOR' SUBROUTINE
; ---------------------------------
; This routine is called before any character is output while outputting
; a BASIC line or the input buffer. This includes listing to a printer or
; the screen, copying a BASIC line to the edit buffer and printing the
; input buffer or edit buffer to the lower screen. It is only in the
; latter two cases that it has any relevance and in the last case it
; performs another very important function also.

OUT_CURS LD HL,($5B5B) ; fetch K_CUR the current cursor address
 AND A ; prepare for true subtraction.
 SBC HL,DE ; test against pointer address in DE and
 RET NZ ; return if not at exact position.

; the value of MODE, maintained by KEY-INPUT, is tested and if non-zero
; then this value 'E' or 'G' will take precedence.

 LD A,($5B41) ; fetch MODE 0='KLC', 1='E', 2='G'.
 RLC A ; double the value and set flags.
 JR Z,OUT_C_1 ; forward, if still zero, to OUT-C-1 ('KLC').

 ADD A,$43 ; Add 'C' - will become 'E' if originally 1
 ; or 'G' if originally 2.

 JR OUT_C_2 ; forward to OUT-C-2 to print.

; ---

; If mode was zero then, while printing a BASIC line, bit 2 of flags has been
; set if 'THEN' or ':' was encountered as a main character and reset
; otherwise. This is now used to determine if the 'K' cursor is to be printed
; but this transient state is also now transferred permanently to bit 3
; of FLAGS to let the interrupt routine know how to decode the next key.

OUT_C_1 LD HL,$5B3B ; Address FLAGS
 RES 3,(HL) ; signal 'K' mode initially.
 LD A,$4B ; prepare letter 'K'.

 BIT 2,(HL) ; test FLAGS - was the
 ; previous main character ':' or 'THEN' ?

 JR Z,OUT_C_2 ; forward, if so to print, at OUT-C-2

 SET 3,(HL) ; signal 'L' mode to the interrupt routine.
 ; Note. transient bit has been made permanent.

 INC A ; Augment character from 'K' to 'L'.

 BIT 3,(IY+$30) ; test FLAGS2 - consider caps lock ?
 ; which is maintained by KEY-INPUT.

 JR Z,OUT_C_2 ; forward, if not set to print, at OUT-C-2

 LD A,$43 ; alter character 'L' to 'C'.

;;; PUSH DE ; save address pointer but OK as OUT-FLASH
;;; ; uses alternate set without RST 10.

OUT_C_2 JR OUT_FLASH ;+ routine OUT-FLASH to print.

;;; POP DE ; restore and

;;; RET ; return. (replace CALL,RET with a JR)

; -------------------------
; THE 'LN_FETCH' SUBROUTINE
; -------------------------
; These two subroutines are called while editing.
; The first entry point is from ED-DOWN with HL addressing E_PPC to fetch the
; next line number.
; Also from AUTO-LIST with HL addressing S_TOP just to update S_TOP with the
; value of the next line number. It gets fetched but is discarded.
;
; These routines never get called while the editor is being used for input.

LN_FETCH LD E,(HL) ; fetch low byte
 INC HL ; address next
 LD D,(HL) ; fetch high byte.
 PUSH HL ; save system variable hi pointer.
 EX DE,HL ; line number to HL,
 INC HL ; increment as a starting point.

 CALL LINE_ADDR ; routine LINE-ADDR gets address in HL.

 CALL LINE_NO ; routine LINE-NO gets line number in DE.

 POP HL ; restore system variable hi pointer.

; This entry point is from the ED-UP with HL addressing E_PPC_hi

;;; L191C: BIT 5,(IY+$37) ; test FLAGX - input mode ?

;;; RET NZ ; return if not edit mode.
;;; ; Note. above already checked by ED-UP/ED-DOWN.

LN_STORE LD (HL),D ; save high byte of line number.
 DEC HL ; address lower
 LD (HL),E ; save low byte of line number.

 RET ; return.

; --
; THE 'OUTPUT NUMBERS IN BASIC LINE' ROUTINE
; --
; This routine entered at OUT-SP-NO is used to compute then output the first
; three digits of a 4-digit BASIC line printing a space if necessary.
; The line number, or residual part, is held in HL and the BC register
; holds a subtraction value -1000, -100 or -10.
; Note. for example line number 200 is output by
; space(out_char), 2(out_code), 0(out_char) final number always out-code.

OUT_SP_2 LD A,E ; will be space if OUT-CODE not yet called.
 ; or $FF if spaces are suppressed.
 ; else $30 ('0').
 ; (from the first instruction at OUT-CODE)
 AND A ; test bit 7 of A.
 RET M ; return if $FF, as leading spaces not
 ; required. This is set when printing line
 ; number and statement in MAIN-5.

 JR OUT_CHAR ; forward to exit via OUT-CHAR.

; ---

; -> the single entry point.

OUT_SP_NO XOR A ; initialize digit to 0

OUT_SP_1 ADD HL,BC ; add negative number to HL.
 INC A ; increment digit
 JR C,OUT_SP_1 ; back to OUT-SP-1 until no carry from
 ; the addition.

 SBC HL,BC ; cancel the last addition
 DEC A ; and decrement the digit.
 JR Z,OUT_SP_2 ; back to OUT-SP-2 if it is zero.

 JP OUT_CODE ; jump back to exit via OUT-CODE. ->

; --
; THE 'OUTPUT CHARACTERS IN A BASIC LINE' SUBROUTINE
; --
; This subroutine ...

OUT_CHAR CALL NUMERIC ; routine NUMERIC tests if it is a digit ?

 JR NC,OUT_CH_3 ; to OUT-CH-3 to print digit without
 ; changing mode. Will be 'K' mode if digits
 ; are at beginning of edit line.

 CP $21 ; less than quote character ?
 JR C,OUT_CH_3 ; to OUT-CH-3 to output controls and space.

 RES 2,(IY+$01) ; initialize FLAGS to 'K' mode and leave
 ; unchanged if this character would precede

 ; a keyword.

 CP $CB ; is character 'THEN' token ?
 JR Z,OUT_CH_3 ; forward, if so, to OUT-CH-3

 CP $3A ; is character ':' ?
 JR NZ,OUT_CH_1 ; forward, if not, to OUT-CH-1
 ; to change mode back to 'L'.

;;; BIT 5,(IY+$37) ; FLAGX - Input Mode ??
 CALL TST_INP_M ;+ bit 5,(iy+$37) as a 3-byte call.
 JR NZ,OUT_CH_2 ; forward, if in INPUT, to OUT-CH-2
 ; Note. this check should seemingly be at
 ; the start. Commands seem inappropriate in
 ; INPUT mode and are rejected by the syntax
 ; checker anyway.
 ; unless INPUT LINE is being used.

 BIT 2,(IY+$30) ; test FLAGS2 - is the ':' within quotes ?

 JR Z,OUT_CH_3 ; forward, if not, to OUT-CH-3

 JR OUT_CH_2 ; forward to OUT-CH-2 as ':' is within quotes

; ---

OUT_CH_1 CP $22 ; is it the quote character '"' ?
 JR NZ,OUT_CH_2 ; forward, with others, to OUT-CH-2
 ; to set 'L' mode.

 PUSH AF ; save character.
 LD A,($5B6A) ; fetch FLAGS2.
 XOR $04 ; toggle the quotes flag - BIT 2, FLAGS2
 LD ($5B6A),A ; update FLAGS2
 POP AF ; and restore character.

OUT_CH_2 SET 2,(IY+$01) ; update FLAGS - signal L mode if the cursor
 ; is next.

OUT_CH_3 RST 10H ; PRINT-A vectors the character to
 ; channel 'S', 'K', 'R' or 'P'.
 RET ; return.

; -----------------------------
; THE 'LINE ADDRESS' SUBROUTINE
; -----------------------------
; This routine is used often to get the address, in HL, of a BASIC line
; number supplied in HL, or failing that the address of the following line
; and the address of the previous line in DE.

LINE_ADDR PUSH HL ; save line number in HL register
 LD HL,($5B53) ; fetch start of program from PROG
 LD D,H ; transfer address to
 LD E,L ; the DE register pair.

LINE_AD_1 POP BC ; restore the line number to BC

 CALL CP_LINES ; routine CP-LINES compares with that
 ; addressed by HL

 RET NC ; return if line has been passed or matched.
 ; if NZ, address of previous is in DE

 PUSH BC ; save the current line number

 CALL NEXT_ONE ; routine NEXT-ONE finds address of next
 ; line number in DE, previous in HL.

 EX DE,HL ; switch so next in HL
 JR LINE_AD_1 ; back, for another comparison, to LINE-AD-1

; -------------------------------------
; THE 'COMPARE LINE NUMBERS' SUBROUTINE
; -------------------------------------
; This routine compares a line number supplied in BC with an addressed
; line number pointed to by HL.

CP_LINES LD A,(HL) ; Load the high byte of line number and
 CP B ; compare with that of supplied line number.
 RET NZ ; return if yet to match (carry will be set).

 INC HL ; address low byte of
 LD A,(HL) ; number and pick up in A.
 DEC HL ; step back to first position.
 CP C ; now compare.
 RET ; zero set if exact match.
 ; carry set if yet to match.
 ; no carry indicates a match or
 ; next available BASIC line or
 ; program end marker.

; ------------------------------------
; THE 'FIND EACH STATEMENT' SUBROUTINE
; ------------------------------------
; The single entry point EACH-STMT is used to
; 1) To find the D'th statement in a line.
; 2) To find a token in held E.

;;; L1988: INC HL ; not used
;;; INC HL ; not used
;;; INC HL ; not used

; -> entry point.

EACH_STMT LD ($5B5D),HL ; Save HL in CH_ADD
 LD C,$00 ; Initialize the quotes flag

EACH_S_1 DEC D ; Decrease the statement count
 RET Z ; Return if zero

 RST 20H ; NEXT-CHAR
 CP E ; Is it the search token ?
 JR NZ,EACH_S_3 ; Forward, if not, to EACH-S-3

 AND A ; clear carry

 RET ; return signaling success.

; ---

EACH_S_2 INC HL ; next address
 LD A,(HL) ; next character

EACH_S_3 CALL NUMBER ; routine NUMBER skips if number marker

 LD ($5B5D),HL ; save character address in CH_ADD
 CP $22 ; is it quotes character '"' ?

 JR NZ,EACH_S_4 ; forward, if not, to EACH-S-4

 DEC C ; toggle bit 0 of C

EACH_S_4 CP $3A ; is character ':'
 JR Z,EACH_S_5 ; forward, if so, to EACH-S-5

 CP $CB ; is character 'THEN'
 JR NZ,EACH_S_6 ; forward, if not, to EACH-S-6

EACH_S_5 BIT 0,C ; is it within quotes ?
 JR Z,EACH_S_1 ; back, if not, to EACH-S-1

EACH_S_6 CP $0D ; end of line ?
 JR NZ,EACH_S_2 ; back, if not, to EACH-S-2

 DEC D ; decrease the statement counter
 ; which should be zero else
 ; 'Statement Lost'.
 SCF ; set carry flag - signal not found

 RET ; return

; ---
; Storage of variables. For full details - see chapter 24.
; ZX Spectrum BASIC Programming by Steven Vickers 1982.
;
; It is bits 7-5 of the first character of a variable that allow
; the six types to be distinguished. Bits 4-0 are the reduced letter.
; So any variable name is higher that $3F and can be distinguished
; also from the variables area end-marker $80.
;
; 76543210 meaning brief outline of format.
; -------- ------------------------ -----------------------
; 010 string variable. 2 byte length + contents.
; 110 string array. 2 byte length + contents.
; 100 array of numbers. 2 byte length + contents.
; 011 simple numeric variable. 5 bytes.
; 101 variable length named numeric. 5 bytes.
; 111 for-next loop variable. 18 bytes.
; 10000000 the variables area end-marker.
;
; Note. any of the above seven will serve as a program end-marker.
;
; ---

; -------------------------
; THE 'NEXT ONE' SUBROUTINE
; -------------------------
; This versatile routine is used to find the address of the next line
; in the program area or the next variable in the variables area.
; The reason one routine is made to handle two apparently unrelated tasks
; is that it can be called indiscriminately when merging a line or a
; variable.

NEXT_ONE PUSH HL ; save the pointer address.
 LD A,(HL) ; get first byte.
 CP $40 ; compare with upper limit for line numbers.
 JR C,NEXT_O_3 ; forward to NEXT-O-3 if within BASIC area.

; The continuation here is for the next variable.

 BIT 5,A ; is it a string or an array variable ?
 JR Z,NEXT_O_4 ; forward to NEXT-O-4 to compute length.

 ADD A,A ; test bit 6 for single-character variables.
 JP M,NEXT_O_1 ; forward, if so, to NEXT-O-1

 CCF ; clear the carry for long-named variables.
 ; it remains set for for-next loop variables.

NEXT_O_1 LD BC,$0005 ; set BC to 5 for floating point number
 JR NC,NEXT_O_2 ; forward to NEXT-O-2 if not a for/next
 ; variable.

 LD C,$12 ; set BC to eighteen locations.
 ; value, limit, step, line and statement.

; now deal with long-named variables

NEXT_O_2 RLA ; test if character inverted. carry will also
 ; be set for single character variables
 INC HL ; address next location.
 LD A,(HL) ; and load character.
 JR NC,NEXT_O_2 ; back to NEXT-O-2 if not inverted bit.
 ; forward immediately with single character
 ; variable names.

 JR NEXT_O_5 ; forward to NEXT-O-5 to add length of
 ; floating point number(s etc.).

; ---

; this branch is for line numbers.

NEXT_O_3 INC HL ; increment pointer to low byte of line no.

; strings and arrays rejoin here

NEXT_O_4 INC HL ; increment to address the length low byte.
 LD C,(HL) ; transfer to C and
 INC HL ; point to high byte of length.
 LD B,(HL) ; transfer that to B
 INC HL ; point to start of BASIC/variable contents.

; the three types of numeric variables rejoin here

NEXT_O_5 ADD HL,BC ; add the length to give address of next
 ; line/variable in HL.
 POP DE ; restore previous address to DE.

; ---------------------------
; THE 'DIFFERENCE' SUBROUTINE
; ---------------------------
; This routine terminates the above routine and is also called from the
; start of the next routine to calculate the length to reclaim.

DIFFER AND A ; prepare for true subtraction.
 SBC HL,DE ; subtract the two pointers.
 LD B,H ; transfer result
 LD C,L ; to BC register pair.
 ADD HL,DE ; add back
 EX DE,HL ; and switch pointers

 RET ; return values are the length of area in BC,
 ; low pointer (previous) in HL,
 ; high pointer (next) in DE.

; --------------------------------
; THE 'NEXT_ONE/RECLAIM_2' ROUTINE
; --------------------------------
; On three occasions the two subroutines are called in succession so this
; 5-byte routine by James Smith combines the two calls.

NXT_1_RC2 CALL NEXT_ONE ;+
 JR RECLAIM_2 ;+ forward to reclaim space

; -----------------------------
; THE 'RECLAIM ROOM' SUBROUTINE
; -----------------------------
;

RECLAIM_1 CALL DIFFER ; routine DIFFER immediately above

RECLAIM_2 PUSH BC ;

 LD A,B ;
 CPL ;
 LD B,A ;
 LD A,C ;
 CPL ;
 LD C,A ;
 INC BC ;

 CALL POINTERS ; routine POINTERS

 EX DE,HL ;
 POP HL ;

 ADD HL,DE ;

 PUSH DE ;
 LDIR ; copy bytes

 POP HL ;

 RET ; Return.

; --------------------------------------
; THE 'READ EDIT LINE NUMBER' SUBROUTINE
; --------------------------------------
; This routine reads a line number in the editing area returning the number
; in the BC register or zero if no digits exist before commands.
; It is called from LINE-SCAN to check the syntax of the digits.
; It is called from MAIN-3 to extract the line number in preparation for
; inclusion of the line in the BASIC program area.
;
; Interestingly, the calculator stack is moved from its normal place at the
; end of dynamic memory to an adequate area within the system variables area.
; This ensures that in a low memory situation, that valid line numbers can
; be extracted without raising an error and that memory can be reclaimed by
; by deleting lines. If the stack was in its normal place, then a situation
; arises whereby the Spectrum becomes locked with no means of reclaiming
; space.

E_LINE_NO CALL L_EL_DHL ;+ NEW routine with below code.

;;; LD HL,($5B59) ; load HL from system variable E_LINE.
;;; DEC HL ; decrease so that NEXT_CHAR can be used
;;; ; without skipping the first digit.

 LD ($5B5D),HL ; store in the system variable CH_ADD.

 RST 20H ; NEXT-CHAR skips any noise and white-space
 ; to point exactly at the first digit.

 LD HL,$5B92 ; use MEM-0 as a temporary calculator stack
 ; an overhead of three locations are needed.
 LD ($5B65),HL ; set new STKEND.

 CALL INT_TO_FP ; routine INT-TO-FP will read digits till
 ; a non-digit found.
 CALL FP_TO_BC ; routine FP-TO-BC will retrieve number
 ; from stack at MEMBOT.
 JR C,REPORT_Ce ; forward to E-L-1 if overflow i.e. > 65535.
 ; 'Nonsense in BASIC'

 LD HL,$D8F0 ; load HL with the value -9999
 ADD HL,BC ; add to line number in BC

; a line in the range 0 - 9999 has been entered.

 JP NC,SET_STK ; jump back to SET-STK to set the calculator
 ; stack back to its normal place and exit
 ; from there.

;;; E_L_1 JP C,REPORT_C ; to REPORT-C 'Nonsense in BASIC' if over.

REPORT_Ce RST 30H ; ERROR-1
 DEFB $0B ; 'Nonsense in BASIC'

;;; JP SET_STK ; jump back to SET-STK

; --
; THE 'REPORT AND LINE NUMBER PRINTING' SUBROUTINE
; --
; Entry point OUT-NUM-1 is used by the Error Reporting code to print
; the line number and later the statement number held in BC.
; If the statement was part of a direct command then -2 is used as a
; dummy line number so that zero will be printed in the report.
; This routine is also used to print the exponent of E-format numbers.
;
; Entry point OUT-NUM-2 is used from OUT-LINE to output the line number
; addressed by HL with leading spaces if necessary.

OUT_NUM_0 LD B,$00 ;+ New entry point to print C

OUT_NUM_1 PUSH DE ; save the
 PUSH HL ; registers.

 XOR A ; set A to zero.
 BIT 7,B ; is the line number minus two ?
 JR NZ,OUT_NUM_4 ; forward, if so, to OUT-NUM-4
 ; to print zero for a direct command.

 LD H,B ; transfer the
 LD L,C ; number to HL.

 LD E,$FF ; signal 'no leading zeros'.
 JR OUT_NUM_3 ; forward to continue at OUT-NUM-3

; ---

; Entry point from OUT-LINE - HL addresses line number.

OUT_NUM_2 PUSH DE ; save flags
 LD D,(HL) ; high byte to D
 INC HL ; address next
 LD E,(HL) ; low byte to E
 PUSH HL ; save pointer
 EX DE,HL ; transfer number to HL
 LD E,$20 ; signal 'output leading spaces'

OUT_NUM_3 LD BC,$FC18 ; value -1000
 CALL OUT_SP_NO ; routine OUT-SP-NO outputs space or number

 LD BC,$FF9C ; value -100
 CALL OUT_SP_NO ; routine OUT-SP-NO

 LD C,$F6 ; value -10 (B is still $FF)
 CALL OUT_SP_NO ; routine OUT-SP-NO

 LD A,L ; remainder to A.

OUT_NUM_4 CALL OUT_CODE ; routine OUT-CODE for final digit.
 ; else report code zero wouldn't get printed.

 POP HL ; Restore the
 POP DE ; registers.

 RET ; return.

;***
;** Part 7. BASIC LINE AND COMMAND INTERPRETATION **
;***

; ------------------
; THE 'OFFSET' TABLE
; ------------------
; The BASIC interpreter has found a command code $CE - $FF
; which is then reduced to range $00 - $31 and added to the base address
; of this table to give the address of an offset which, when added to
; the offset therein, gives the location in the following parameter table
; where a list of class codes, separators and addresses relevant to the
; command exists.

offst_tbl DEFB P_DEF_FN - $; B1 offset to Address: P-DEF-FN
 DEFB P_CAT - $; CB offset to Address: P-CAT
 DEFB P_FORMAT - $; BC offset to Address: P-FORMAT
 DEFB P_MOVE - $; BF offset to Address: P-MOVE
 DEFB P_ERASE - $; C4 offset to Address: P-ERASE
 DEFB P_OPEN - $; AF offset to Address: P-OPEN
 DEFB P_CLOSE - $; B4 offset to Address: P-CLOSE
 DEFB P_MERGE - $; 93 offset to Address: P-MERGE
 DEFB P_VERIFY - $; 91 offset to Address: P-VERIFY
 DEFB P_BEEP - $; 92 offset to Address: P-BEEP
 DEFB P_CIRCLE - $; 95 offset to Address: P-CIRCLE
 DEFB P_INK - $; 98 offset to Address: P-INK
 DEFB P_PAPER - $; 98 offset to Address: P-PAPER
 DEFB P_FLASH - $; 98 offset to Address: P-FLASH
 DEFB P_BRIGHT - $; 98 offset to Address: P-BRIGHT
 DEFB P_INVERSE - $; 98 offset to Address: P-INVERSE
 DEFB P_OVER - $; 98 offset to Address: P-OVER
 DEFB P_OUT - $; 98 offset to Address: P-OUT
 DEFB P_LPRINT - $; 7F offset to Address: P-LPRINT
 DEFB P_LLIST - $; 81 offset to Address: P-LLIST
 DEFB P_STOP - $; 2E offset to Address: P-STOP

 DEFB P_READ - $; 6C offset to Address: P-READ
 DEFB P_DATA - $; 6E offset to Address: P-DATA
 DEFB P_RESTORE - $; 70 offset to Address: P-RESTORE
 DEFB P_NEW - $; 48 offset to Address: P-NEW
 DEFB P_BORDER - $; 94 offset to Address: P-BORDER
 DEFB P_CONT - $; 56 offset to Address: P-CONT
 DEFB P_DIM - $; 3F offset to Address: P-DIM
 DEFB P_REM - $; 41 offset to Address: P-REM
 DEFB P_FOR - $; 2B offset to Address: P-FOR
 DEFB P_GO_TO - $; 17 offset to Address: P-GO-TO
 DEFB P_GO_SUB - $; 1F offset to Address: P-GO-SUB
 DEFB P_INPUT - $; 37 offset to Address: P-INPUT
 DEFB P_LOAD - $; 77 offset to Address: P-LOAD
 DEFB P_LIST - $; 44 offset to Address: P-LIST
 DEFB P_LET - $; 0F offset to Address: P-LET
 DEFB P_PAUSE - $; 59 offset to Address: P-PAUSE
 DEFB P_NEXT - $; 2B offset to Address: P-NEXT
 DEFB P_POKE - $; 43 offset to Address: P-POKE
 DEFB P_PRINT - $; 2D offset to Address: P-PRINT
 DEFB P_PLOT - $; 51 offset to Address: P-PLOT
 DEFB P_RUN - $; 3A offset to Address: P-RUN
 DEFB P_SAVE - $; 6D offset to Address: P-SAVE
 DEFB P_RANDOM - $; 42 offset to Address: P-RANDOM
 DEFB P_IF - $; 0D offset to Address: P-IF
 DEFB P_CLS - $; 49 offset to Address: P-CLS
 DEFB P_DRAW - $; 5C offset to Address: P-DRAW
 DEFB P_CLEAR - $; 44 offset to Address: P-CLEAR
 DEFB P_RETURN - $; 15 offset to Address: P-RETURN
 DEFB P_COPY - $; 5D offset to Address: P-COPY

; -------------------------------
; THE 'PARAMETER OR SYNTAX' TABLE
; -------------------------------
; For each command there exists a variable list of parameters.
; If the character is greater than a space it is a required separator.
; If less, then it is a command class in the range 00 - 0B.
; Note that classes 00, 03 and 05 will fetch the addresses from this table.
; Some classes e.g. 07 and 0B have the same address in all invocations
; and the command is re-computed from the low-byte of the parameter address.
; Some e.g. 02 are only called once so a call to the command is made from
; within the class routine rather than holding the address within the table.
; Some class routines check syntax entirely and some leave this task for the
; command itself.
; Others for example CIRCLE (x,y,z) check the first part (x,y) using the
; class routine and the final part (,z) within the command.
; The last few commands appear to have been added in a rush but their syntax
; is rather simple e.g. MOVE "M1","M2"

P_LET DEFB $01 ; Class-01 - A variable is required.
 DEFB $3D ; Separator: '='
 DEFB $02 ; Class-02 - An expression, numeric or string,
 ; must follow.

P_GO_TO DEFB $06 ; Class-06 - A numeric expression must follow.
 DEFB $00 ; Class-00 - No further operands.
 DEFW GO_TO ; Address: GO-TO

P_IF DEFB $06 ; Class-06 - A numeric expression must follow.
 DEFB $CB ; Separator: 'THEN'
 DEFB $05 ; Class-05 - Variable syntax checked
 ; by routine.
 DEFW IF ; Address: IF

P_GO_SUB DEFB $06 ; Class-06 - A numeric expression must follow.
 DEFB $00 ; Class-00 - No further operands.
 DEFW GO_SUB ; Address: GO-SUB

P_STOP DEFB $00 ; Class-00 - No further operands.
 DEFW STOP ; Address: STOP

P_RETURN DEFB $00 ; Class-00 - No further operands.
 DEFW RETURN ; Address: RETURN

P_FOR DEFB $04 ; Class-04 - A single character variable must
 ; follow.
 DEFB $3D ; Separator: '='
 DEFB $06 ; Class-06 - A numeric expression must follow.
 DEFB $CC ; Separator: 'TO'
 DEFB $06 ; Class-06 - A numeric expression must follow.
 DEFB $05 ; Class-05 - Variable syntax checked
 ; by routine.
 DEFW FOR ; Address: FOR

P_NEXT DEFB $04 ; Class-04 - A single character variable must
 ; follow.
 DEFB $00 ; Class-00 - No further operands.
 DEFW NEXT ; Address: NEXT

P_PRINT DEFB $05 ; Class-05 - Variable syntax checked entirely
 ; by routine.
 DEFW PRINT ; Address: PRINT

P_INPUT DEFB $05 ; Class-05 - Variable syntax checked entirely
 ; by routine.
 DEFW INPUT ; Address: INPUT

P_DIM DEFB $05 ; Class-05 - Variable syntax checked entirely
 ; by routine.
 DEFW DIM ; Address: DIM

P_REM DEFB $05 ; Class-05 - Variable syntax checked entirely
 ; by routine.
 DEFW REM ; Address: REM

P_NEW DEFB $00 ; Class-00 - No further operands.
 DEFW NEW ; Address: NEW

P_RUN DEFB $03 ; Class-03 - A numeric expression may follow
 ; else default to zero.
 DEFW RUN ; Address: RUN

P_LIST DEFB $05 ; Class-05 - Variable syntax checked entirely
 ; by routine.
 DEFW LIST ; Address: LIST

P_POKE DEFB $08 ; Class-08 - Two comma-separated numeric
 ; expressions required.
 DEFB $00 ; Class-00 - No further operands.
 DEFW POKE ; Address: POKE

P_RANDOM DEFB $03 ; Class-03 - A numeric expression may follow
 ; else default to zero.
 DEFW RANDOMIZE ; Address: RANDOMIZE

P_CONT DEFB $00 ; Class-00 - No further operands.
 DEFW CONTINUE ; Address: CONTINUE

P_CLEAR
;;; DEFB $03 ; Class-03 - A numeric expression may follow
;;; ; else default to zero.
 DEFB $05 ;+ Variable syntax checked by routine.
 DEFW CLEAR ; Address: CLEAR

P_CLS DEFB $00 ; Class-00 - No further operands.
 DEFW CLS ; Address: CLS

P_PLOT DEFB $09 ; Class-09 - Two comma-separated numeric
 ; expressions required with optional colour
 ; items.
 DEFB $00 ; Class-00 - No further operands.
 DEFW PLOT ; Address: PLOT

P_PAUSE DEFB $06 ; Class-06 - A numeric expression must follow.
 DEFB $00 ; Class-00 - No further operands.
 DEFW PAUSE ; Address: PAUSE

P_READ DEFB $05 ; Class-05 - Variable syntax checked entirely
 ; by routine.
 DEFW READ ; Address: READ

P_DATA DEFB $05 ; Class-05 - Variable syntax checked entirely
 ; by routine.
 DEFW DATA ; Address: DATA

P_RESTORE DEFB $03 ; Class-03 - A numeric expression may follow
 ; else default to zero.
 DEFW RESTORE ; Address: RESTORE

P_DRAW DEFB $09 ; Class-09 - Two comma-separated numeric
 ; expressions required with optional colour
 ; items.
 DEFB $05 ; Class-05 - Variable syntax checked
 ; by routine.
 DEFW DRAW ; Address: DRAW

P_COPY DEFB $00 ; Class-00 - No further operands.
 DEFW COPY ; Address: COPY

P_LPRINT DEFB $05 ; Class-05 - Variable syntax checked entirely
 ; by routine.
 DEFW LPRINT ; Address: LPRINT

P_LLIST DEFB $05 ; Class-05 - Variable syntax checked entirely
 ; by routine.
 DEFW LLIST ; Address: LLIST

P_SAVE DEFB $0B ; Class-0B - Offset address converted to tape
 ; command.

P_LOAD DEFB $0B ; Class-0B - Offset address converted to tape
 ; command.

P_VERIFY DEFB $0B ; Class-0B - Offset address converted to tape
 ; command.

P_MERGE DEFB $0B ; Class-0B - Offset address converted to tape
 ; command.

P_BEEP DEFB $08 ; Class-08 - Two comma-separated numeric
 ; expressions required.
 DEFB $00 ; Class-00 - No further operands.

 DEFW BEEP ; Address: BEEP

P_CIRCLE DEFB $09 ; Class-09 - Two comma-separated numeric
 ; expressions required with optional colour
 ; items.
 DEFB $05 ; Class-05 - Variable syntax checked
 ; by routine.
 DEFW CIRCLE ; Address: CIRCLE

P_INK DEFB $07 ; Class-07 - Offset address is converted to
 ; colour code.

P_PAPER DEFB $07 ; Class-07 - Offset address is converted to
 ; colour code.

P_FLASH DEFB $07 ; Class-07 - Offset address is converted to
 ; colour code.

P_BRIGHT DEFB $07 ; Class-07 - Offset address is converted to
 ; colour code.

P_INVERSE DEFB $07 ; Class-07 - Offset address is converted to
 ; colour code.

P_OVER DEFB $07 ; Class-07 - Offset address is converted to
 ; colour code.

P_OUT DEFB $08 ; Class-08 - Two comma-separated numeric
 ; expressions required.
 DEFB $00 ; Class-00 - No further operands.
 DEFW OUT ; Address: OUT

P_BORDER DEFB $06 ; Class-06 - A numeric expression must follow.
 DEFB $00 ; Class-00 - No further operands.
 DEFW BORDER ; Address: BORDER

P_DEF_FN DEFB $05 ; Class-05 - Variable syntax checked entirely
 ; by routine.
 DEFW DEF_FN ; Address: DEF-FN

P_OPEN DEFB $06 ; Class-06 - A numeric expression must follow.
;;; DEFB $2C ; Separator: ','
 DEFB $0C ;+ Class-0C - NEW either ';' or ','
 DEFB $0A ; Class-0A - A string expression must follow.
;;; DEFB $00 ; Class-00 - Was No further operands.
 DEFB $05 ;+ Class-05 - New Variable syntax.
 DEFW OPEN ; Address: OPEN

P_CLOSE DEFB $06 ; Class-06 - A numeric expression must follow.
 DEFB $00 ; Class-00 - No further operands.
 DEFW CLOSE ; Address: CLOSE

P_FORMAT DEFB $0A ; Class-0A - A string expression must follow.
 DEFB $0C ; Class-0C - NEW either ';' or ','
 DEFB $06 ; Class-06 - A numeric expression must follow.
 DEFB $00 ; Class-00 - No further operands.
 DEFW FORMAT ; Address: FORMAT

; Since the commands MOVE ERASE and CAT will not be used then the syntax
; can be removed and they can all use the CAT error-generating routine.

P_MOVE
;;; DEFB $0A ; Class-0A - A string expression must follow.
;;; DEFB $2C ; Separator: ','

;;; DEFB $0A ; Class-0A - A string expression must follow.
;;; DEFB $00 ; Class-00 - No further operands.
;;; DEFW CAT_ETC ; Address: CAT-ETC

P_ERASE
;;; DEFB $0A ; Class-0A - A string expression must follow.

 DEFB $00 ; Class-00 - No further operands.
 DEFW REPORT_O ; Address: REPORT_O - Invalid stream

P_CAT DEFB $00 ; Class-00 - No further operands.
 DEFW CAT ; Address: CAT -

; -----------------------
; THE 'LINE SCAN' ROUTINE
; -----------------------
; The Main parser (BASIC interpreter).
; This routine is called once from MAIN-2 when the BASIC line is to be entered
; or re-entered into the Program area and the syntax requires checking.

LINE_SCAN RES 7,(IY+$01) ; update FLAGS - signal checking syntax

 CALL E_LINE_NO ; routine E-LINE-NO >>
 ; fetches the line number if in range.

 XOR A ; clear the accumulator.
 LD ($5B47),A ; set statement number SUBPPC to zero.
 DEC A ; set accumulator to $FF.
 LD ($5B3A),A ; set ERR_NR to 'OK' - 1.

 JR STMT_L_1 ; forward to continue at STMT-L-1.

; --------------------
; THE 'STATEMENT' LOOP
; --------------------
;
;

STMT_LOOP RST 20H ; NEXT-CHAR

; -> the entry point from above or LINE-RUN

STMT_L_1 CALL SET_WORK ; routine SET-WORK clears workspace etc.

 INC (IY+$0D) ; increment statement number SUBPPC
 JP M,REPORT_C ; back, if over 127, to REPORT-C
 ; 'Nonsense in BASIC'

 RST 18H ; GET-CHAR

 LD B,$00 ; set B to zero for later indexing.
 ; early so any other reason ??

 CP $0D ; is character carriage return ?
 ; i.e. an empty statement.
 JR Z,LINE_END ; forward, if so, to LINE-END

 CP $3A ; is it statement end marker ':' ?
 ; i.e. another type of empty statement.
 JR Z,STMT_LOOP ; back, if so, to STMT-LOOP

 LD HL,STMT_RET ; address: STMT-RET
 PUSH HL ; is now pushed as a return address

 LD C,A ; transfer the current character to C.

; advance CH_ADD to a position after command and test if it is a command.

 RST 20H ; NEXT-CHAR to advance pointer
 LD A,C ; restore current character
 SUB $CE ; subtract 'DEF FN' - first command
 JR C,SEP_RPT_C ; jump, if less than a command, to REPORT-C
 ; 'Nonsense in BASIC'

 LD C,A ; put the valid command code back in C.
 ; register B is zero.
 LD HL,offst_tbl ; address: offst-tbl
 ADD HL,BC ; index into table with one of 50 commands.
 LD C,(HL) ; pick up displacement to syntax table entry.
 ADD HL,BC ; add to address the relevant entry.

 JR GET_PARAM ; forward to continue at GET-PARAM

; --------------------
; THE 'MAIN SCAN' LOOP
; --------------------
;

SCAN_LOOP LD HL,($5B74) ; Fetch Table Address from T_ADDR during
 ; subsequent loops.

; -> the initial entry point with HL addressing start of syntax table entry.

GET_PARAM LD A,(HL) ; Pick up the parameter.
 INC HL ; Address next one.
 LD ($5B74),HL ; Save pointer in system variable T_ADDR

;;; LD BC,SCAN_LOOP ; Address: SCAN-LOOP
;;; PUSH BC ; is now pushed on stack as looping address.

 LD HL,SCAN_LOOP ;+ address: SCAN-LOOP
 PUSH HL ;+ is now pushed on stack as looping address.

 LD C,A ; store parameter in C.
 CP $20 ; is it greater than ' ' ?
 JR NC,SEPARATOR ; forward, if so, to SEPARATOR

 LD HL,CLASS_TBL ; address: class-tbl.

 LD B,$00 ; prepare to index into the class table. ;;;

 ADD HL,BC ; index to find displacement to routine.
 LD C,(HL) ; displacement to BC
 ADD HL,BC ; add to address the CLASS routine.
 PUSH HL ; push the address on the stack.

 RST 18H ; GET-CHAR - HL points to place in statement.

 DEC B ; reset the zero flag - the initial state
 ; for all class routines.

 RET ; Make an indirect jump to routine
 ; and then to SCAN-LOOP (also on stack).

; Note. one of the class routines will eventually drop the return address
; off the stack breaking out of the above seemingly endless loop.

; -----------------------
; THE 'SEPARATOR' ROUTINE
; -----------------------
; This routine is called once to verify that the mandatory separator
; present in the parameter table is also present in the correct
; location following the command. For example, the 'THEN' token after
; the 'IF' token and expression.

SEPARATOR RST 18H ; GET-CHAR
 CP C ; does it match the character in C ?

SEP_RPT_C JP NZ,REPORT_C ; jump forward, if not, to REPORT-C
 ; 'Nonsense in BASIC'.

 RST 20H ; NEXT-CHAR advance to next character
 RET ; return.

; ----------------------------
; THE 'STATEMENT RETURN' POINT
; ----------------------------
; Control returns to this point after every statement by virtue of the
; address pushed on the machine stack.

STMT_RET CALL TEST_BRK ;+ the BREAK KEY is tested after every
statement.

;;; JR C,STMT_R_1 ; step forward to STMT-R-1 if not pressed.
;;; REPORT_L RST 30H ; ERROR-1
;;; DEFB $14 ; Error Report: BREAK into program

; ---

STMT_R_1 BIT 7,(IY+$0A) ; test a bit of NSPPC - will be set if $FF -
 ; no jump to be made.
 JR NZ,STMT_NEXT ; forward, if no jump, to STMT-NEXT

 LD HL,($5B42) ; fetch BASIC line number from NEWPPC

 BIT 7,H ; test the high order byte.
 ; bit 7 is set if minus two - direct command(s)

 JR Z,LINE_NEW ; forward, if a jump is to be made, to LINE-NEW

; ----------------------------------
; THE 'RUN A DIRECT COMMAND' ROUTINE
; ----------------------------------
; A direct command is to be run or, if continuing from above, the next
; statement in a sequence of direct commands is to be considered.

LINE_RUN LD HL,$FFFE ; The dummy value minus two
 LD ($5B45),HL ; is set/reset as line number in PPC.

 LD HL,($5B61) ; point to the start of workspace WORKSP.
 DEC HL ; now point to $80 Edit Line end-marker.
 LD DE,($5B59) ; address the start of line using E_LINE.

 DEC DE ; now location before - for GET-CHAR.

 LD A,($5B44) ; load statement to A from NSPPC.

 JR NEXT_LINE ; forward to NEXT-LINE.

; ----------------------
; THE 'LINE NEW' ROUTINE

; ----------------------
; This routine finds the start address of new line.
; The branch was to here if a jump is to made to a new line number and
; statement.
; That is, the previous statement was a GO TO, GO SUB, RUN, RETURN, NEXT
etc..

LINE_NEW CALL LINE_ADDR ; routine LINE-ADDR gets address of line
 ; returning zero flag set if line found.
 LD A,($5B44) ; fetch new statement from NSPPC
 JR Z,LINE_USE ; forward to LINE-USE if line matched.

; continue as must be a direct command.

 AND A ; test statement which should be zero
 JR NZ,REPORT_N ; forward, if not, to REPORT-N
 ; 'Statement lost'

;

;;; LD B,A ; save statement in B. ??
 LD A,(HL) ; fetch high byte of line number.
 AND $C0 ; test if using direct command
 ; a program line is less than $3F
;;; LD A,B ; retrieve statement.
;;; ; (we can assume it is zero).
 JR Z,LIN_USE_0 ; forward to LINE-USE if was a program line

; Alternatively, a direct statement has finished correctly.

REPORT_0 RST 30H ; ERROR-1
 DEFB $FF ; Error Report: OK

; -----------------
; THE 'REM' COMMAND
; -----------------
; The REM command routine.
; The return address STMT-RET is dropped and the rest of line ignored.

REM POP BC ; drop return address STMT-RET and
 ; continue ignoring rest of line.

; ------------
; End of line?
; ------------
;
;

;;; LINE_END CALL SYNTAX_Z ; routine SYNTAX_Z (UNSTACK_Z?)
;;; RET Z ; return if checking syntax.

LINE_END CALL UNSTACK_Z ;+ return early if checking syntax.

 LD HL,($5B55) ; fetch NXTLIN to HL.
 LD A,$C0 ; test against the
 AND (HL) ; system limit $3F.
 RET NZ ; return if higher as must be end of program.
 ; (or direct command)

LIN_USE_0 XOR A ; set statement to zero.

; and continue to set up the next following line and then consider this new
one.

; ---------------------
; THE 'LINE USE' BRANCH
; ---------------------
; The branch was here from LINE-NEW if BASIC is branching.
; or a continuation from above if dealing with a new sequential line.
; First make statement zero number one leaving others unaffected.

LINE_USE CP $01 ; will set carry if zero.
 ADC A,$00 ; add in any carry.

 LD D,(HL) ; high byte of line number to D.
 INC HL ; advance pointer.
 LD E,(HL) ; low byte of line number to E.
 LD ($5B45),DE ; set system variable PPC.

 INC HL ; advance pointer.
 LD E,(HL) ; low byte of line length to E.
 INC HL ; advance pointer.
 LD D,(HL) ; high byte of line length to D.

 EX DE,HL ; swap pointer to DE before adding
 ADD HL,DE ; to address the end of the line.
 INC HL ; advance to start of next line.

; --------------------------
; THE 'NEXT LINE' SUBROUTINE
; --------------------------
; The pointer will be the next line if continuing from above or to edit line
; end-marker ($80) if from LINE-RUN.

NEXT_LINE LD ($5B55),HL ; store pointer in system variable NXTLIN

 EX DE,HL ; bring back pointer to previous or edit line
 LD ($5B5D),HL ; and update CH_ADD with character address.

 LD D,A ; store statement in D.
 LD E,$00 ; set E to zero to suppress token searching
 ; if EACH-STMT is to be called.
 LD (IY+$0A),$FF ; set statement NSPPC to $FF signaling
 ; no jump to be made.
 DEC D ; decrement and test statement
 LD (IY+$0D),D ; set SUBPPC to decremented statement number.
 JP Z,STMT_LOOP ; to STMT-LOOP if result zero as statement is
 ; at start of line and address is known.

 INC D ; else restore statement.
 CALL EACH_STMT ; routine EACH-STMT finds the D'th statement
 ; address as E does not contain a token.
 JR Z,STMT_NEXT ; forward to STMT-NEXT if address found.

REPORT_N RST 30H ; ERROR-1
 DEFB $16 ; 'Statement lost'

; ---
; THE NEW 'CHECK FOR NUMBER AND SYNTAX' ROUTINE
; ---
; Combines two or three routines into one call.

CHK_END_1 RST 20H ;+ NEXT_CHAR

CHK_END_2 CALL EXPT_1NUM ;+ Check for 1 number and stack in runtime

; --------------------------
; THE 'CHECK END' SUBROUTINE

; --------------------------
; This combination of routines is called from 20 places when
; the end of a statement should have been reached and all preceding
; syntax is in order.

CHECK_END CALL SYNTAX_Z ; routine SYNTAX-Z
 RET NZ ; return immediately in runtime

 POP BC ; drop address of calling routine.
 POP BC ; drop address STMT-RET.
 ; and continue to find next statement.

; ----------------------------
; THE 'STATEMENT NEXT' ROUTINE
; ----------------------------
; Acceptable characters at this point are carriage return and ':'.
; If so, go to next statement which in the first case will be on next line.

STMT_NEXT RST 18H ; GET-CHAR - ignoring white space etc.

 CP $0D ; is character carriage return ?
 JR Z,LINE_END ; back, if so, to LINE-END

 CP $3A ; is character a ':' ?
 JP Z,STMT_LOOP ; jump back, if so, to STMT-LOOP

 JR VAL_RPT_C ; forward, with any other, to VAL_RPT_C
 ; 'Nonsense in BASIC'

; -------------------------
; THE 'COMMAND CLASS' TABLE
; -------------------------
;

CLASS_TBL DEFB CLASS_00 - $; offset to Address: CLASS-00
 DEFB CLASS_01 - $; offset to Address: CLASS-01
 DEFB CLASS_02 - $; offset to Address: CLASS-02
 DEFB CLASS_03 - $; offset to Address: CLASS-03
 DEFB CLASS_04 - $; offset to Address: CLASS-04
 DEFB CLASS_05 - $; offset to Address: CLASS-05
 DEFB CLASS_06 - $; offset to Address: CLASS-06
 DEFB CLASS_07 - $; offset to Address: CLASS-07
 DEFB CLASS_08 - $; offset to Address: CLASS-08
 DEFB CLASS_09 - $; offset to Address: CLASS-09
 DEFB CLASS_0A - $; offset to Address: CLASS-0A
 DEFB CLASS_0B - $; offset to Address: CLASS-0B

 DEFB CLASS_0C - $; offset to Address: CLASS_0C

; --
; THE 'COMMAND CLASSES 00, 03 and 05' ROUTINES
; --
; class-03 e.g. RUN or RUN 20 ; optional operand.
; class-00 e.g. CONTINUE ; no operand.
; class-05 e.g. PRINT ; variable syntax checked by routine.

CLASS_03 CALL FETCH_NUM ; routine FETCH-NUM

CLASS_00 CP A ; set zero flag.

; if entering here then all class routines are entered with zero reset.

CLASS_05 POP BC ; drop address SCAN-LOOP.
 CALL Z,CHECK_END ; if zero set then call routine CHECK-END >>>
 ; as should be no further characters.

; If checking syntax then classes 00 and 03 terminate at the above step.

 EX DE,HL ; save HL to DE.
 LD HL,($5B74) ; fetch T_ADDR
 LD C,(HL) ; fetch low byte of routine
 INC HL ; address next.
 LD B,(HL) ; fetch high byte of routine.
 EX DE,HL ; restore HL from DE
 PUSH BC ; push the address

 RET ; and make an indirect jump to the command.

; ------------------------------
; THE 'COMMAND CLASS 01' ROUTINE
; ------------------------------
; e.g. LET A = 2*3 ; A variable is required.

; This class routine is also called from INPUT and READ to find the
; destination variable for an assignment.

CLASS_01 CALL LOOK_VARS ; routine LOOK-VARS returns carry set if the
 ; variable is not found in runtime.

VAR_A_1 LD (IY+$37),$00 ; Set FLAGX to zero
 JR NC,VAR_A_2 ; Forward, if found or syntax path, to VAR-A-2

; The variable was not found in runtime.

 SET 1,(IY+$37) ; Update FLAGX - signal a new variable.

 JR NZ,VAR_A_3 ; Forward, if not array subscript, to VAR-A-3
 ; e.g. LET a$(3,3) = "X"

REPORT_2 RST 30H ; ERROR-1
 DEFB $01 ; Error Report: Variable not found.

; ---

; The branch was here when the variable was found or if checking syntax.

VAR_A_2 CALL Z,STK_VAR ; routine STK-VAR considers a subscript/slice.
 BIT 6,(IY+$01) ; test FLAGS - numeric or string result ?
 JR NZ,VAR_A_3 ; forward, if numeric, to VAR-A-3.

 XOR A ; Default A to array/slice - to be retained.

 CALL SYNTAX_Z ; Routine SYNTAX-Z
 CALL NZ,STK_FETCH ; Routine STK-FETCH is called in runtime
 ; may overwrite A with 1.

 LD HL,$5B71 ; Address the FLAGX system variable.
 OR (HL) ; sets bit 0 if simple variable to be reclaimed.
 LD (HL),A ; update bit 0 of FLAGX
 EX DE,HL ; bring start of string/subscript to HL

VAR_A_3 LD ($5B72),BC ; update STRLEN system variable.
 LD ($5B4D),HL ; update DEST of assigned string.
 RET ; Return.

; ------------------------------
; THE 'COMMAND CLASS 02' ROUTINE
; ------------------------------
; This is only used in the LET command.
;
; e.g. LET A = 2*3 ; an expression must follow the separator.

CLASS_02 POP BC ; drop the return address SCAN-LOOP

 CALL VAL_FET_1 ; routine VAL-FET-1 is called to check
 ; expression and assign result in runtime.

 CALL CHECK_END ; routine CHECK-END checks nothing else
 ; is present in statement.

 RET ; Return in runtime also.

; ------------------------------
; THE 'FETCH A VALUE' SUBROUTINE
; ------------------------------
;
;

VAL_FET_1 LD A,($5B3B) ; fetch initial FLAGS system variable to A.

VAL_FET_2 PUSH AF ; Save initial flags A briefly

 CALL SCANNING ; routine SCANNING evaluates expression.

 POP AF ; Restore the initial flags - A.

 LD D,(IY+$01) ; Fetch post-scanning FLAGS value to D
 XOR D ; XOR the before and after flags.
 AND $40 ; isolate bit 6 of result.

VAL_RPT_C JR NZ,REPORT_C ; Forward, if not zero, to REPORT-C
 ; 'Nonsense in BASIC'

 BIT 7,D ; Test FLAGS - is syntax being checked ?

 JP NZ,LET ; Jump forward, in runtime, to LET
 ; to make the assignment.

 RET ; Return from here when checking syntax.

; ------------------------------
; THE 'COMMAND CLASS 04' ROUTINE
; ------------------------------
; e.g. FOR i ; a single character variable must follow

CLASS_04 CALL LOOK_VARS ; routine LOOK-VARS

 PUSH AF ; preserve flags.

 LD A,C ; fetch type - should be 011xxxxx
 OR $9F ; combine with 10011111.
 INC A ; test if result is now $FF by incrementing.

 JR NZ,REPORT_C ; forward, if result not zero, to REPORT-C
 ; 'Nonsense in BASIC'

 POP AF ; else restore flags.

 JR VAR_A_1 ; back to VAR-A-1

; --------------------------------
; Expect numeric/string expression
; --------------------------------
; This routine is used to get the two coordinates of STRING$, ATTR and POINT.
; It is also called from PRINT-ITEM to get the two numeric expressions that
; follow the AT (in PRINT AT, INPUT AT).

NEXT_2NUM RST 20H ; NEXT-CHAR advance past 'AT' or '('.

CLASS_08 ; e.g. POKE 65535,2
 ; two numeric expressions separated by comma

EXPT_2NUM CALL EXPT_1NUM ; routine EXPT-1NUM is called for first
 ; numeric expression
 CP $2C ; is character ',' ?
 JR NZ,REPORT_C ; to REPORT-C if not the required separator.
 ; 'Nonsense in BASIC'.

 RST 20H ; NEXT-CHAR

; ->

CLASS_06 ; e.g. GO TO a*1000
 ; a numeric expression must follow

EXPT_1NUM CALL SCANNING ; routine SCANNING

 BIT 6,(IY+$01) ; test FLAGS - Numeric or string result ?

 RET NZ ; return if result is numeric.

REPORT_C RST 30H ; ERROR-1
 DEFB $0B ; Error Report: Nonsense in BASIC

; ------------------------------
; THE 'COMMAND CLASS 0A' ROUTINE
; ------------------------------
;
; A string expression must follow. These classes only occur in unimplemented
; commands although the routine EXPT_EXP is called from SAVE_ETC.
; It is used in the FORMAT and OPEN syntax tables.

CLASS_0A

EXPT_EXP CALL SCANNING ; routine SCANNING

 BIT 6,(IY+$01) ; test FLAGS - Numeric or string result ?

 RET Z ; return if string result.

 JR REPORT_C ; back, if numeric, to REPORT-C.

; ------------------------------
; THE 'COMMAND CLASS 07' ROUTINE
; ------------------------------
; Set permanent colours
; e.g. PAPER 6
; a single class for a collection of similar commands. Clever.

;
; Note. these commands should ensure that current channel is 'S'

;;; CLASS_07 BIT 7,(IY+$01) ; test FLAGS - checking syntax only ?
;;; RES 0,(IY+$02) ; update TV_FLAG - signal main screen in use
;;; CALL NZ,TEMPs ; routine TEMPs is called in runtime.

CLASS_07 LD A,$FE ;
 CALL CHN_O_SYN ;+ ensure control codes go to screen and not a
 ;+ microdrive file in runtime.
 ;+ Returns if checking syntax.

 POP AF ; drop return address SCAN-LOOP

 LD A,($5B74) ; Fetch T_ADDR_lo to accumulator.
 ; points to '$07' entry + 1
 ; e.g. for INK points to $EC now

; Note if you move alter the syntax table next line may have to be altered.

 SUB P_INK-$D8 % 256 ; convert $EB to $D8 ('INK') etc.
 ; (was SUB $13 in standard ROM)

 CALL CO_TEMP_4 ; routine CO-TEMP-4

 CALL CHECK_END ; routine CHECK-END check that nothing else
 ; appears in the statement and quits if
 ; checking syntax. >>

; Return to here in runtime. The temporary attributes set up by CO_TEMP_4
; are now copied to the permanent attributes to make the change premanent.

 LD HL,($5B8F) ; pick up ATTR_T and MASK_T

 LD ($5B8D),HL ; and transfer to ATTR_P and MASK_P

 LD HL,$5B91 ; point to P_FLAG.
 LD A,(HL) ; pick up in A
 RLCA ; rotate to left
 XOR (HL) ; combine with HL
 AND $AA ; AND with %10101010
 XOR (HL) ; only only the permanent bits affected

 LD (HL),A ; reload into system variable P_FLAG.

 RET ; Return.

; ------------------------------
; THE 'COMMAND CLASS 09' ROUTINE
; ------------------------------
; e.g. PLOT PAPER 0; 128,88 ; two coordinates preceded by optional
; ; embedded colour items.
;
; Note. this command should ensure that current channel is actually 'S'.

CLASS_09 CALL SYNTAX_Z ; routine SYNTAX_Z
 JR Z,CL_09_1 ; forward to CL_09_1 if checking syntax.

;;; RES 0,(IY+$02) ; update TV_FLAG - signal main screen in use
;;; CALL TEMPs ; routine TEMPs is called in runtime.

 CALL CHAN_O_FE ;+ ensure control codes go to screen and not
 ;+ to the network in runtime.

 LD HL,$5B90 ; point to MASK_T
 LD A,(HL) ; fetch mask to accumulator.
 OR $F8 ; or with 11111000 paper/bright/flash 8
 LD (HL),A ; put mask back to MASK_T system variable.
 RES 6,(IY+$57) ; reset P_FLAG - signal NOT PAPER 9 ?

 RST 18H ; GET-CHAR

CL_09_1 CALL CO_TEMP_2 ; routine CO-TEMP-2 deals with any embedded
 ; colour items.

 JR EXPT_2NUM ; exit via EXPT-2NUM to check for x,y.

; Note. if either of the numeric expressions contain STR$ then the flag
; setting above will be undone when the channel flags are reset during STR$.
; e.g.
; 10 BORDER 3 : PLOT VAL STR$ 128, VAL STR$ 100
; credit: John Elliott.

; ------------------------------
; THE 'COMMAND CLASS 0B' ROUTINE
; ------------------------------
; Again a single class for four commands.
; This command just jumps back to SAVE-ETC to handle the four tape commands.
; The routine itself works out which command has called it by examining the
; address in T_ADDR_lo. Note therefore that the syntax table has to be
; located where these and other sequential command addresses are not split
; over a page boundary.

CLASS_0B JP SAVE_ETC ; jump way back to SAVE-ETC

; ----------------------------------
; THE NEW 'EXPECT SEPARATOR' ROUTINE
; ----------------------------------
; Seven bytes
; Returns with zero flag set if character is a separator.

EXPT_SEP RST 18H ; GET_CHAR

 CP $2C ; is it a comma
 RET Z ;
 CP $3B ; is it a semicolon
 RET ;

; -----------------------------
; THE NEW 'CLASS 0C' SUBROUTINE
; -----------------------------

CLASS_0C CALL EXPT_SEP ; check for a valid separator ';' or ','.

 JR NZ,REPORT_C ; jump forward, if not, to REPORT-C
 ; 'Nonsense in BASIC'.

NXT_CH RST 20H ; NEXT-CHAR advance to next character
 RET ; return.

; -------------------------------
; THE 'FETCH A NUMBER' SUBROUTINE
; -------------------------------
; This routine is called from CLASS-03 when a command may be followed by
; an optional numeric expression e.g. RUN. If the end of statement has
; been reached then zero is used as the default.
; Also called from LIST-4.

; Note. called from SAVE "program" LINE

FETCH_NUM CP $0D ; is character a carriage return ?
 JR Z,USE_ZERO ; forward, if so, to USE-ZERO

 CP $3A ; is it ':' ?
 JR NZ,EXPT_1NUM ; back, if not, to EXPT-1NUM
 ; else continue and use zero.

; ----------------------
; THE 'USE ZERO' ROUTINE
; ----------------------
; This routine is called four times to place the value zero on the
; calculator stack as a default value in runtime.

;;; USE_ZERO CALL SYNTAX_Z ; routine SYNTAX_Z (UNSTACK_Z?)
;;; RET Z ;

USE_ZERO CALL UNSTACK_Z ;+ return early if checking syntax.

 RST 28H ;; FP-CALC .
 DEFB $A0 ;;stk-zero 0.
 DEFB $38 ;;end-calc 0.

 RET ; Return.

; ------------------
; THE 'STOP' COMMAND
; ------------------
; Command Syntax: STOP
; One of the shortest and least used commands. As with 'OK' not an error.
; Note. moved to fill a couple of bytes at $0064.

; ----------------
; THE 'IF' COMMAND
; ----------------
; e.g. IF Warp Factor > 8 THEN PRINT "Och! she'll blow Captain."
; The parser has already checked the expression the result of which is on
; the calculator stack. The presence of the 'THEN' separator has also been
; checked and CH-ADD points to the command after THEN.

IF POP BC ; drop return address - STMT-RET
 CALL SYNTAX_Z ; routine SYNTAX-Z
 JR Z,IF_1 ; forward, if checking syntax, to IF-1
 ; to check syntax of PRINT "Och! She'll blow..."

 RST 28H ;; FP-CALC Warp Factor > 8 (1=TRUE 0=FALSE)
 DEFB $02 ;;delete .
 DEFB $38 ;;end-calc

 EX DE,HL ; make HL point to deleted value

 CALL TEST_ZERO ; routine TEST-ZERO

 JP C,LINE_END ; jump to LINE-END if FALSE (0)

IF_1 JP STMT_L_1 ; to STMT-L-1, if true (1) to execute command
 ; after 'THEN' token.

; -----------------
; THE 'FOR' COMMAND

; -----------------
; e.g. FOR i = 0 TO 1 STEP 0.1
; Using the syntax tables, the parser has already checked for a start and
; limit value and also for the intervening separators. The two values v,l
; are on the calculator stack. The CLASS-04 routine has also checked the
; variable and the name is in STRLEN_lo.
; The routine begins by checking for an optional STEP.

FOR CP $CD ; is there a 'STEP' ?
 JR NZ,F_USE_1 ; Forward, if not, to F-USE-1

;;; RST 20H ; NEXT-CHAR
;;; CALL EXPT_1NUM ; routine EXPT-1NUM checks for number
;;; CALL CHECK_END ; routine CHECK-END

 CALL CHK_END_1 ;+ above three routines

 JR F_REORDER ; forward to F-REORDER

; ---

F_USE_1 CALL CHECK_END ; routine CHECK-END

 RST 28H ;; FP-CALC v,l.
 DEFB $A1 ;;stk-one v,l,1=s.
 DEFB $38 ;;end-calc

F_REORDER RST 28H ;; FP-CALC v,l,s.
 DEFB $C0 ;;st-mem-0 v,l,s.
 DEFB $02 ;;delete v,l.
 DEFB $01 ;;exchange l,v.
 DEFB $E0 ;;get-mem-0 l,v,s.
 DEFB $01 ;;exchange l,s,v.
 DEFB $38 ;;end-calc

 CALL LET ; routine LET assigns the initial value v to
 ; the variable.

 LD ($5B68),HL ; The system variable MEM is made to point to
 ; the variable instead of its normal location
 ; at MEMBOT.
 DEC HL ; point to the single-character name.
 LD A,(HL) ; fetch character.
 SET 7,(HL) ; set bit 7 at variable location.

 LD BC,$0006 ; add six to HL to skip the value and
 ADD HL,BC ; address where limit should be.

 RLCA ; test bit 7 of original variable name.

 JR C,F_L_S ; forward, if already correct type, to F-L-S

 LD C,$0D ; otherwise an additional 13 bytes are needed.
 ; 5 for each value, two for line number and
 ; 1 byte for looping statement.

 CALL MAKE_ROOM ; routine MAKE-ROOM creates them.

;;; INC HL ; make HL address the limit.

F_L_S PUSH HL ; save the limit position.

 RST 28H ;; FP-CALC l,s.

 DEFB $02 ;;delete l.
 DEFB $02 ;;delete .
 DEFB $38 ;;end-calc .

; At this point, DE points to STKEND the start of the two deleted numbers.

 POP HL ; restore variable limit position
 EX DE,HL ; swap pointers
 LD C,$0A ; ten bytes to move

 LDIR ; Copy 'deleted' values to limit and step.

 LD HL,($5B45) ; Load with current line number from PPC
 EX DE,HL ; exchange pointers.

 LD (HL),E ; save the looping line in
 INC HL ; in the next
 LD (HL),D ; two variable locations.

 LD D,(IY+$0D) ; fetch statement from SUBPPC system variable.
 INC D ; increment the statement.
 INC HL ; increment the variable pointer
 LD (HL),D ; and store the looping statement.

 CALL NEXT_LOOP ; routine NEXT-LOOP considers an initial
 ; iteration.

 RET NC ; Return to STMT-RET, if a loop is possible, to
 ; execute the next statement.

; No loop is possible, so execution continues after the matching 'NEXT'

 LD B,(IY+$38) ; get the single-character name from STRLEN_lo
 LD HL,($5B45) ; get the current line from PPC
 LD ($5B42),HL ; and store it in NEWPPC
 LD A,($5B47) ; fetch current statement from SUBPPC
 NEG ; Negate as counter decrements from zero
 ; initially and we are in the middle of a line.
 LD D,A ; Store result in D.

 RST 18H ;;;;
;;; LD HL,($5B5D) ; get current character address from CH_ADD
 LD E,$F3 ; The search will be for the token 'NEXT'

F_LOOP PUSH BC ; save the variable name in B.

 LD BC,($5B55) ; fetch NXTLIN

 CALL LOOK_PROG ; routine LOOK-PROG searches for 'NEXT' token
 ; setting carry flag if end of program reached
 ; and updating NEWPPC with line number, BC.

 LD ($5B55),BC ; update NXTLIN

 POP BC ; retrieve the variable name in B.

 JR C,REPORT_I ; forward, if at program end, to REPORT-I
 ; 'FOR without NEXT'

 RST 20H ; NEXT-CHAR fetches character after NEXT
 OR $20 ; ensure it is upper-case.
 CP B ; compare with FOR variable name
 JR Z,F_FOUND ; forward, if it matches, to F-FOUND

; but if no match i.e. nested FOR/NEXT loops then continue search.

 RST 20H ; NEXT-CHAR
 JR F_LOOP ; back to F-LOOP

; ---

F_FOUND RST 20H ; NEXT-CHAR
 LD A,$01 ; subtract the negated counter from 1
 SUB D ; to give the statement after the NEXT
 LD ($5B44),A ; set system variable NSPPC
 RET ; return to STMT-RET to branch to new
 ; line and statement. ->
; ---

REPORT_I RST 30H ; ERROR-1
 DEFB $11 ; Error Report: FOR without NEXT

; -----------------------------
; THE 'LOOK PROGRAM' SUBROUTINE
; -----------------------------
; Used to find tokens DATA, DEF FN or NEXT.
; This routine searches the program area for one of the above three keywords.
; On entry, HL points to start of search area.
; The token is in E, and D holds a statement count, decremented from zero.

LOOK_PROG LD A,(HL) ; fetch current character
 CP $3A ; is it ':' a statement separator ?
 JR Z,LOOK_P_2 ; forward, if so, to LOOK-P-2

; The starting point was PROG-1 or is now the end of a line.

LOOK_P_1 INC HL ; increment pointer to address
 LD A,(HL) ; the high byte of line number
 AND $C0 ; test for program end marker $80 or a
 ; variable
 SCF ; Set Carry Flag
 RET NZ ; return with carry set if at end of program. ->

 LD B,(HL) ; high byte of line number to B
 INC HL ;
 LD C,(HL) ; low byte to C.

 LD ($5B42),BC ; set system variable NEWPPC.

 INC HL ;
 LD C,(HL) ; low byte of line length to C.
 INC HL ;
 LD B,(HL) ; high byte to B.

 PUSH HL ; save current address - pointing to BASIC.

 ADD HL,BC ; add length to current address.
 LD B,H ; and transfer the result - the next line -
 LD C,L ; to the BC register.

 POP HL ; retrieve the current address.

 LD D,$00 ; initialize statement counter to zero.

LOOK_P_2 PUSH BC ; preserve address of next line

 CALL EACH_STMT ; routine EACH-STMT searches current line.

 POP BC ; retrieve address of next line.

 RET NC ; return if match was found. ->

 JR LOOK_P_1 ; back, for next line, to LOOK-P-1

; ------------------
; THE 'NEXT' COMMAND
; ------------------
; e.g. NEXT i
; The parameter tables have already evaluated the presence of a variable

NEXT BIT 1,(IY+$37) ; test FLAGX - handling a new variable ?

 JP NZ,REPORT_2 ;.jump back, if so, to REPORT-2
 ; 'Variable not found'

; now test if the found variable is a simple variable uninitialized by a FOR.

 LD HL,($5B4D) ; load address of variable from DEST
 BIT 7,(HL) ; is it correct type ?
 JR Z,REPORT_1 ; forward, if not, to REPORT-1
 ; 'NEXT without FOR'

 INC HL ; step past variable name
 LD ($5B68),HL ; and set system variable MEM to point to the
 ; three 5-byte numbers - value, limit, step.

; Now add the step and put result in the value (mem-0).

 RST 28H ;; FP-CALC .
 DEFB $E0 ;;get-mem-0 v.
 DEFB $E2 ;;get-mem-2 v,s.
 DEFB $0F ;;addition v+s.
 DEFB $C0 ;;st-mem-0 v+s.
 DEFB $02 ;;delete .
 DEFB $38 ;;end-calc .

 CALL NEXT_LOOP ; routine NEXT-LOOP tests against limit.

 RET C ; return if no more iterations possible.

 LD HL,($5B68) ; find start of variable contents from MEM.

 LD DE,$000F ; add 3*5 to
 ADD HL,DE ; address the looping line number

 LD E,(HL) ; low byte to E
 INC HL ;
 LD D,(HL) ; high byte to D

 INC HL ; address looping statement
 LD H,(HL) ; and store in H

 EX DE,HL ; exchange - HL = line number, D = statement.

 JP GO_TO_2 ; exit via GO-TO-2 to execute another loop.

; ---

REPORT_1 RST 30H ; ERROR-1
 DEFB $00 ; Error Report: NEXT without FOR

; --------------------------
; THE 'NEXT LOOP' SUBROUTINE
; --------------------------
; This routine is called from the FOR command to test for an initial
; iteration and from the NEXT command to test for all subsequent iterations.
; the system variable MEM addresses the variable's contents which, in the
; latter case, have had the step, possibly negative, added to the value.

NEXT_LOOP RST 28H ;; FP-CALC
 DEFB $E1 ;;get-mem-1 l.
 DEFB $E0 ;;get-mem-0 l,v.
 DEFB $E2 ;;get-mem-2 l,v,s.
 DEFB $36 ;;less-0 l,v,(1/0) negative step ?
 DEFB $00 ;;jump-true l,v,(1/0)

 DEFB NEXT_1 - $;;to NEXT-1 if step negative

 DEFB $01 ;;exchange v,l.

NEXT_1 DEFB $03 ;;subtract l-v OR v-l.
 DEFB $37 ;;greater-0 (1/0)
 DEFB $00 ;;jump-true .

 DEFB NEXT_2 - $;;to NEXT-2 if no more iterations.

 DEFB $38 ;;end-calc .

 AND A ; clear carry flag signaling another loop.

 RET ; return

; ---

NEXT_2 DEFB $38 ;;end-calc .

 SCF ; set carry flag signaling looping exhausted.

 RET ; return

; ------------------
; THE 'READ' COMMAND
; ------------------
; e.g. READ a, b$, c$(1000 TO 3000)
; A list of comma-separated variables is assigned from a list of
; comma-separated expressions.
; As it moves along the first list, the character address CH_ADD is stored
; in X_PTR while CH_ADD is then used to read the second list.

READ_3 RST 20H ; NEXT-CHAR

; -> Entry point.

READ CALL CLASS_01 ; routine CLASS-01 checks variable.

 CALL SYNTAX_Z ; routine SYNTAX-Z

 JR Z,READ_2 ; forward, if checking syntax, to READ-2

; The runtime path continues.

 RST 18H ; GET-CHAR fetches character address of variable
 ; within BASIC to HL.

 LD ($5B5F),HL ; save character position in X_PTR.

 LD HL,($5B57) ; load HL with Data Address DATADD, which is
 ; the start of the program or the address
 ; after the last expression that was read or
 ; the address preceding the line number of the
 ; last RESTORE command.

 LD A,(HL) ; fetch character
 CP $2C ; is it a comma ?
 JR Z,READ_1 ; forward, if so, to READ-1

; else all data in this statement has been read so look for next DATA token.

 LD E,$E4 ; prepare token 'DATA'

 CALL LOOK_PROG ; routine LOOK-PROG finds the token

 JR NC,READ_1 ; forward, if 'DATA' found, to READ-1

; else report the error.

REPORT_E RST 30H ; ERROR-1
 DEFB $0D ; Error Report: Out of DATA

; ---

READ_1 CALL TEMP_PTR1 ; routine TEMP-PTR1 advances updating CH_ADD
 ; with new DATADD position.

 CALL VAL_FET_1 ; routine VAL-FET-1 assigns value to variable
 ; checking types match and advancing CH_ADD.

 RST 18H ; GET-CHAR fetches adjusted character position

 LD ($5B57),HL ; store back in DATADD

 LD HL,($5B5F) ; fetch original READ statement pointer from
X_PTR

 LD (IY+$26),$00 ; nullify X_PTR_hi as redundant.

 CALL TEMP_PTR2 ; routine TEMP-PTR2 restores the READ character
 ; address to CH_ADD.

READ_2 RST 18H ; GET-CHAR
 CP $2C ; is it ',' indicating more variables to read ?
 JR Z,READ_3 ; back, if so, to READ-3

 CALL CHECK_END ; routine CHECK-END checks that nothing
 ; follows and returns if checking syntax >>

 RET ; return from here in runtime to STMT-RET.

; ------------------
; THE 'DATA' COMMAND
; ------------------
; e.g. DATA 1, 2, "text", score-1, a$(location, room, object), FN r(49),
; wages - tax, TRUE, The meaning of life
; In runtime this 'command' is passed by but the syntax is checked when such
; a statement is found while parsing a line.

DATA CALL SYNTAX_Z ; routine SYNTAX-Z to check status
 JR NZ,DATA_2 ; forward, if in runtime, to DATA-2

; The syntax path continues.

DATA_1 CALL SCANNING ; routine SCANNING to check syntax of expression

 CP $2C ; is following character a comma ?

 CALL NZ,CHECK_END ; if not, routine CHECK-END checks that
 ; statement is complete. Will make an early
 ; exit if it is. >>>

 RST 20H ; NEXT-CHAR advances past comma.

 JR DATA_1 ; loop back to DATA-1

; ---

DATA_2 LD A,$E4 ; in runtime, set token to 'DATA' and continue
 ; into the PASS-BY routine.

; ------------------------
; THE 'PASS BY' SUBROUTINE
; ------------------------
; This routine is used to backtrack to a command token and then forward to
; the next statement in runtime.
; The A register contains the required token - either $E4 (DATA) from above,
; or $CE (DEF FN) when called.

PASS_BY LD B,A ; Give BC enough space to find the token.

 CPDR ; Compare decrement and repeat. (Only use).
 ; Work backwards until keyword is found which
 ; is the start of statement before any quotes.
 ; HL points to location before keyword.

 LD DE,$0200 ; count 1+1 statements, dummy value in E to
 ; inhibit searching for a token.

 JP EACH_STMT ; to EACH-STMT to find next statement

; ---------------------
; THE 'RESTORE' COMMAND
; ---------------------
; The RESTORE command sets the system variable for the data address to
; point to the location before the supplied line number or first line
; thereafter.
; This alters the position where subsequent READ commands look for data.
; Note. If supplied with inappropriate high numbers the system may crash
; in the LINE-ADDR routine as it will pass the program/variables end-marker
; and then lose control of what it is looking for - variable or line number.
; - observation, Steven Vickers, 1984, Pitman.

RESTORE CALL FIND_LINE ;+ routine FIND-INT2 puts integer in BC.
 ;+ Note. B is now checked against limit $3F
 ;+ and an error generated if higher.

; this entry point is used from RUN command with BC holding zero

REST_RUN LD H,B ; transfer the line
 LD L,C ; number to the HL register.

 CALL LINE_ADDR ; routine LINE-ADDR to fetch the address.

 DEC HL ; point to the location before the line.
 LD ($5B57),HL ; update the dynamic system variable DATADD.

 RET ; return to STMT-RET (or RUN)

; -----------------------
; THE 'RANDOMIZE' COMMAND
; -----------------------
; This command sets the SEED for the RND function to a fixed value.
; With the parameter zero, a random start point is used depending on
; how long the computer has been switched on.

RANDOMIZE CALL FIND_INT2 ; routine FIND-INT2 puts parameter in BC.

 LD A,B ; test this
 OR C ; for zero.
 JR NZ,RAND_1 ; forward to RAND-1 if not zero.

 LD BC,($5B78) ; use the lower two bytes at FRAMES1.

RAND_1 LD ($5B76),BC ; place in SEED system variable.

 RET ; return to STMT-RET

; ----------------------
; THE 'CONTINUE' COMMAND
; ----------------------
; The CONTINUE command transfers the OLD (but incremented) values of
; line number and statement to the equivalent "NEW VALUE" system variables
; by using the last part of GO TO and exits indirectly to STMT-RET.

CONTINUE LD HL,($5B6E) ; fetch OLDPPC line number.
 LD D,(IY+$36) ; fetch OSPPC statement.

 JR GO_TO_2 ; forward to GO-TO-2

; -------------------
; THE 'GO TO' COMMAND
; -------------------
; The GO TO command routine is also called by GO SUB and RUN routines
; to evaluate the parameters of both commands.
; It updates the system variables used to fetch the next line/statement.
; It is at STMT-RET that the actual change in control takes place.
; Unlike some BASICs the line number need not exist.
; Note. the high byte of the line number is incorrectly compared with $F0
; instead of $3F. This leads to commands with operands greater than 32767
; being considered as having been run from the editing area and the
; error report 'Statement Lost' is given instead of 'OK'.
; - Steven Vickers, 1984.

GO_TO CALL FIND_LINE ;+ routine FIND-INT2 puts operand in BC

;;; LD H,B ; transfer line
;;; LD L,C ; number to HL.
;;; LD D,$00 ; set statement to 0 - first.

;;; LD A,H ; compare high byte only
;;; CP $F0 ; to $F0 i.e. 61439 in full.
;;; JR NC,REPORT_Bb ; forward, if higher, to REPORT-B

; This call entry point is used to update the system variables e.g. by RETURN.

GO_TO_2 LD ($5B42),HL ; save line number in NEWPPC
 LD (IY+$0A),D ; and statement in NSPPC

 RET ; to STMT-RET (or GO-SUB command)

; -----------------
; THE 'OUT' COMMAND
; -----------------
; Syntax has been entirely checked and the two comma-separated values are on
; the calculator stack.

OUT CALL TWO_PARAM ; routine TWO-PARAM fetches values to BC and A.

 OUT (C),A ; perform the operation.

 RET ; return to STMT-RET.

; ------------------
; THE 'POKE' COMMAND
; ------------------
; This routine alters a single byte in the 64K address space.
; Happily no check is made as to whether ROM or RAM is addressed.
; Sinclair BASIC requires no poking of the system variables.

POKE CALL TWO_PARAM ; routine TWO-PARAM fetches values to BC and A.

 LD (BC),A ; load memory location with A.

 RET ; return to STMT-RET.

; -------------------------------------
; THE 'FETCH TWO PARAMETERS' SUBROUTINE
; -------------------------------------
; This routine fetches a byte and word from the calculator stack producing an
; error if either is out of range.

TWO_PARAM CALL FP_TO_A ; routine FP-TO-A
 JR C,REPORT_Bb ; forward, with 8-bit overflow, to REPORT-B
 ; 'Integer out of range'

 JR Z,TWO_P_1 ; skip forward, if positive, to TWO-P-1

 NEG ; negative numbers are made positive.

TWO_P_1 PUSH AF ; save the byte value

 CALL FIND_INT2 ; routine FIND-INT2 gets 16-bit integer to BC

 POP AF ; restore the byte value

 RET ; return

; ----------------------------
; THE 'FIND INTEGERS' ROUTINES
; ----------------------------
; The first of these routines fetches a 8-bit integer (range 0-255) from the
; calculator stack to the accumulator and is used for colours, streams,
; durations and coordinates.
; The second routine fetches 16-bit integers to the BC register pair and is
; used to fetch command and function arguments involving line numbers or
; memory addresses and also array subscripts and tab arguments.

; ->

FIND_INT1 CALL FP_TO_A ; routine FP-TO-A

 JR FIND_I_1 ; forward to common exit routine at FIND-I-1

; ---

; ->

FIND_INT2 CALL FP_TO_BC ; routine FP-TO-BC

; The common exit routine checks that numbers are positive and do not overflow

FIND_I_1 JR C,REPORT_Bb ; skip forward, with overflow, to REPORT-Bb

 RET Z ; return if BC (or A) is positive.

REPORT_Bb RST 30H ; ERROR-1
 DEFB $0A ; Error Report: Integer out of range

; ------------------------------
; THE NEW 'FIND LINE' SUBROUTINE
; ------------------------------
;+ This new routine is used in place of FIND_INT2 to validate the line numbers
;+ that it fetches.

FIND_LINE CALL FIND_INT2 ;+ Routine gets 16 bit integer in BC.

 LD H,B ;
 LD L,C ;

 LD A,B ;+ Fetch high byte.

 CP $40 ;+ Compare with the system limit.

 JR NC,REPORT_Bb ;+ Back, if higher, than 16383 to ERROR_Bb
 ;+ 'Integer out of range'

 LD D,$00 ;+ Useful return value.

 RET ;+ Return.

; ----------------------------
; THE NEW 'CLEAR HASH' ROUTINE
; ----------------------------
; This routine responds to the command 'CLEAR #' by closing the sixteen
; streams in turn. Any pending printer output is flushed but network output
; is discarded. A hash has been found and it remains to check that nothing
; follows.

CLR_HASH RST 20H ;+ NEXT_CHAR
 CALL CHECK_END ;+ CHECK_END quits if checking syntax >>

; The runtime path.

 LD A,16 ;+ Set stream to sixteen

NMI_STRMS SET 6,(IY+$3B) ;+ Set T_ADDR_hi to indicate no Network EOF.

ALL_STRMS DEC A ;+ pre-decrement
 PUSH AF ;+ save stream and result flag.

 CALL STR_DATA1 ;+ get the offset

 CALL NZ,CLOSE_OK ;+ CLOSE the stream if it's open.

 POP AF ;+

 JR NZ,ALL_STRMS ;+ do all sixteen

 RET ;+ Return.

; -----------------
; THE 'RUN' COMMAND
; -----------------
; This command runs a program starting at an optional line.
; It performs a 'RESTORE 0' then CLEAR

RUN CALL GO_TO ; routine GO-TO puts line number in
 ; system variables.

;;; LD BC,$0000 ; prepare to set DATADD to first line.
 LD B,D ;+
 LD C,D ;+

 CALL REST_RUN ; routine REST-RUN does the 'restore'.
 ; Note. BC still holds zero.

 JR CLEAR_RUN ; forward to CLEAR-RUN to clear variables
 ; without disturbing RAMTOP and
 ; exit indirectly to STMT-RET

; -------------------
; THE 'CLEAR' COMMAND
; -------------------
; This command reclaims the space used by the variables.
; It also clears the screen and the GO SUB stack.
; With an integer expression, it sets the uppermost memory
; address within the BASIC system.
; "Contrary to the manual, CLEAR doesn't execute a RESTORE" -
; Steven Vickers, Pitman Pocket Guide to the Spectrum, 1984.
; Notice also that if an error occurs then the GOSUB stack is not cleared.

CLEAR RST 18H ; GET_CHAR
 CP $23 ; is character a '#' ?
 JR Z,CLR_HASH ; back if so.

 CALL FETCH_NUM ;+ routine FETCH_NUM checks for numeric
 ;+ expression and stacks in run-time defaulting
 ;+ to zero.
 CALL CHECK_END ; routine CHECK-END quits if syntax path.

 CALL FIND_INT2 ; routine FIND-INT2 fetches address to BC.

CLEAR_RUN LD A,B ; test for
 OR C ; zero.
 JR NZ,CLEAR_1 ; skip, if not zero, to CLEAR-1

 LD BC,($5BB2) ; use the existing value of RAMTOP if zero.

CLEAR_1 PUSH BC ; save RAMTOP value.

 LD DE,($5B4B) ; fetch VARS

;;; LD HL,($5B59) ; fetch E_LINE
;;; DEC HL ; adjust to point at variables end-marker.

 CALL L_EL_DHL ;+ NEW routine with above code.

 CALL RECLAIM_1 ; routine RECLAIM-1 reclaims the space used by
 ; the variables, setting BC to zero.

; Note. A call to REST_RUN here would execute a RESTORE as per BASIC manual
; but it is difficult to decide if CLEAR should execute a RESTORE. Vickers
; merely points out that the ROM doesn't.

 CALL CLS ; routine CLS to clear screen.

 LD HL,($5B65) ; fetch STKEND the start of free memory.
;;; LD DE,$0032 ; allow for another 50 bytes.
 LD E,$32 ; allow for another 50 bytes.
 ADD HL,DE ; add the overhead to HL.

 POP DE ; restore the RAMTOP value.
 SBC HL,DE ; if HL is greater than the value then jump
 JR NC,REPORT_M ; forward to REPORT-M
 ; 'RAMTOP no good'

 LD HL,($5BB4) ; now P-RAMT ($7FFF on 16K RAM machine)
 AND A ; exact this time.
 SBC HL,DE ; new RAMTOP must be lower or the same.
 JR NC,CLEAR_2 ; skipa, if in actual RAM, to CLEAR-2

REPORT_M RST 30H ; ERROR-1
 DEFB $15 ; Error Report: RAMTOP no good

; Now, even if RAMTOP has not moved, the GOSUB stack is cleared and
; initialized.

CLEAR_2 EX DE,HL ; transfer RAMTOP value to HL.
 LD ($5BB2),HL ; update system variable RAMTOP.
 POP DE ; pop the return address STMT-RET.
 POP BC ; pop the Error Address.
 LD (HL),$3E ; now put the GO SUB end-marker at RAMTOP.
 DEC HL ; leave a location beneath it.
 LD SP,HL ; initialize the machine stack pointer.

 PUSH BC ; push the error address.

 LD ($5B3D),SP ; make ERR_SP point to location.
 EX DE,HL ; put STMT-RET in HL.

 JP (HL) ; and go there directly.

; --------------------
; THE 'GO SUB' COMMAND
; --------------------
; The GO SUB command diverts BASIC control to a new line number in a very
; similar manner to GO TO but the current line number and current statement
; plus 1 are placed on the GO SUB stack as a RETURN point.

GO_SUB POP DE ; drop the address STMT-RET
 LD H,(IY+$0D) ; fetch statement from SUBPPC and
 INC H ; increment it
 EX (SP),HL ; swap - error address to HL,
 ; H (statement) at top of stack,
 ; L (unimportant) beneath.
 INC SP ; adjust to overwrite unimportant byte
 LD BC,($5B45) ; fetch the current line number from PPC
 PUSH BC ; and PUSH onto GO SUB stack.
 ; the empty machine-stack can be rebuilt
 PUSH HL ; push the error address.

 LD ($5B3D),SP ; make system variable ERR_SP point to it.
 PUSH DE ; push the address STMT-RET.

 CALL GO_TO ; call routine GO-TO to update the system
 ; variables NEWPPC and NSPPC.
 ; then make an indirect exit to STMT-RET via
 LD BC,$0014 ; a 20-byte overhead memory check.

; --------------------------
; THE 'TEST ROOM' SUBROUTINE
; --------------------------
; This routine is used on many occasions when extending a dynamic area
; upwards or the GO SUB stack downwards.

TEST_ROOM LD HL,($5B65) ; fetch STKEND
 ADD HL,BC ; add the supplied test value
 JR C,REPORT_4 ; forward, if over $FFFF, to REPORT-4
 ; 'Out of memory'

 EX DE,HL ; The result was less so transfer to DE
 LD HL,$0050 ; test against another 80 bytes
 ADD HL,DE ; anyway
 JR C,REPORT_4 ; forward, if this passes $FFFF, to REPORT-4
 ; 'Out of memory'

 SBC HL,SP ; if less than the machine stack pointer
 RET C ; then return - OK.
 ; Register HL contains the negated number of
 ; free bytes.

REPORT_4 LD L,$03 ; prepare 'Out of memory'

 JP ERROR_3 ; jump back to ERROR-3
 ; Note. this error can't be trapped at $0008

; ------------------------------
; THE 'FREE MEMORY' USER ROUTINE
; ------------------------------
; This routine is not used by the ROM but allows users to evaluate
; approximate free memory with PRINT 65536 - USR address.
; Note. It has been moved, for stability, to location ninety three decimal.

; --------------------
; THE 'RETURN' COMMAND
; --------------------
; As with any command, there are two values on the machine stack at the time
; it is invoked. The machine stack is below the GO SUB stack. Both grow
; downwards, the machine stack by two bytes, the GO SUB stack by 3 bytes.
; The highest location is a statement byte followed by a two-byte line number.

RETURN POP BC ; drop the address STMT-RET.
 POP HL ; now the error address.
 POP DE ; now a possible BASIC return line.
 LD A,D ; the high byte $00 - $27 is
 CP $3E ; compared with the traditional end-marker $3E.
 JR Z,REPORT_7 ; forward, with a match, to REPORT-7
 ; 'RETURN without GO SUB'

; It was not the end-marker so a single statement byte remains at the base of
; the calculator stack. It can't be popped off.

 DEC SP ; adjust stack pointer to create room for two
 ; bytes.

 EX (SP),HL ; statement to H, error address to base of
 ; new machine stack.
 EX DE,HL ; statement to D, BASIC line number to HL.
 LD ($5B3D),SP ; adjust ERR_SP to point to new stack pointer

 PUSH BC ; now re-stack the address STMT-RET

 JP GO_TO_2 ; back to GO-TO-2
 ; to update statement and line system variables
 ; and exit indirectly to the address just pushed
 ; on the stack.

; ---

REPORT_7 PUSH DE ; replace the end-marker.
 PUSH HL ; now restore the error address
 ; as will be required in a few clock cycles.

 RST 30H ; ERROR-1
 DEFB $06 ; Error Report: RETURN without GOSUB

; Note. 'GO SUB' won't fit in message.

; -------------------
; THE 'PAUSE' COMMAND
; -------------------
; The PAUSE command takes as its parameter the number of interrupts
; for which to wait. PAUSE 50 pauses for about a second in the UK.
; PAUSE 60 waits for the same time in the USA.
; PAUSE 0 pauses indefinitely.
; Both forms can be finished early by pressing a key.

PAUSE CALL FIND_INT2 ; routine FIND-INT2 puts value in BC

PAUSE_1 HALT ; wait for an interrupt.
 DEC BC ; decrease the counter.
 LD A,B ; test if the
 OR C ; result is zero.
 JR Z,PAUSE_END ; forward, if so, to PAUSE-END

 LD A,B ; test if
 AND C ; now $FFFF
 INC A ; that is, initially zero.
 JR NZ,PAUSE_2 ; skip forward, if not, to PAUSE-2

 INC BC ; restore counter to zero.

PAUSE_2 BIT 5,(IY+$01) ; test FLAGS - has a new key been pressed ?
 JR Z,PAUSE_1 ; back, if not, to PAUSE-1

PAUSE_END RES 5,(IY+$01) ; update FLAGS - signal no new key

 RET ; Return.

; --------------------------------
; THE 'CHECK FOR BREAK' SUBROUTINE
; --------------------------------
; This routine is called from COPY-LINE, when interrupts are disabled, to
; test if BREAK (SHIFT - SPACE) is being pressed.
; It is also called at STMT-RET after every statement.

BREAK_KEY LD A,$7F ; Input address: $7FFE
 IN A,($FE) ; read lower right keys
 RRA ; rotate bit 0 - SPACE

 RET C ; return if not reset

 LD A,$FE ; Input address: $FEFE
 IN A,($FE) ; read lower left keys
 RRA ; rotate bit 0 - SHIFT

 RET ; carry will be set if not pressed.
 ; return with no carry if both keys
 ; pressed.

; --------------------
; THE 'DEF FN' COMMAND
; --------------------
; e.g. DEF FN r$(a$,a) = a$(a TO)
; this 'command' is ignored in runtime but has its syntax checked during
; line-entry.

DEF_FN CALL SYNTAX_Z ; routine SYNTAX-Z

 JR Z,DEF_FN_1 ; forward, if parsing, to DEF-FN-1

 LD A,$CE ; else in runtime load A with 'DEF FN' and
 JP PASS_BY ; jump back to PASS-BY

; ---

; The syntax path continues here.

DEF_FN_1 SET 6,(IY+$01) ; set FLAGS - assume numeric result

 CALL ALPHA ; call routine ALPHA

 JR NC,REPORT_Cd ; forward, if not, to DEF-FN-4
 ; 'Nonsense in BASIC'

 RST 20H ; NEXT-CHAR
 CP $24 ; is character '$' ?
 JR NZ,DEF_FN_2 ; forward, if not type string, to DEF-FN-2

;;; RES 6,(IY+$01) ; set FLAGS - signal string result.
 CALL STR_RSLT ;+

 RST 20H ; get NEXT-CHAR

DEF_FN_2 CP $28 ; is character '(' ?
 JR NZ,REPORT_Cd ; forward, if not, to DEF-FN-7
 ; 'Nonsense in BASIC'

 RST 20H ; NEXT-CHAR
 CP $29 ; is character ')' ?
 JR Z,DEF_FN_6 ; forward, if null arguments, to DEF-FN-6

DEF_FN_3 CALL ALPHA ; routine ALPHA checks that it is the expected
 ; alphabetic character.

DEF_FN_4 JR NC,REPORT_Cd ; jump, if not, to REPORT-C
 ; 'Nonsense in BASIC'.

 EX DE,HL ; save pointer in DE

 RST 20H ; NEXT-CHAR re-initializes HL from CH_ADD
 ; and advances.

 CP $24 ; is character a '$' ?
 JR NZ,DEF_FN_5 ; forward, if not string argument, to DEF-FN-5

 EX DE,HL ; save pointer to '$' in DE

 RST 20H ; NEXT-CHAR re-initializes HL and advances

DEF_FN_5 EX DE,HL ; bring back pointer.

 LD BC,$0006 ; the function requires six hidden bytes for
 ; each parameter passed.
 ; The first byte will be $0E
 ; then 5-byte numeric value
 ; or 5-byte string pointer.

 CALL MAKE_ROOM ; routine MAKE-ROOM creates space in program
 ; area.
;;; INC HL ; adjust HL (set by LDDR)
 INC HL ; to point to first location.
 LD (HL),$0E ; insert the 'hidden' marker.

; Note. these invisible storage locations hold nothing meaningful for the
; moment. They will be used every time the corresponding function is
; evaluated in runtime.
; Now consider the following character fetched earlier.

 CP $2C ; is it ',' ? (more than one parameter)
 JR NZ,DEF_FN_6 ; forward, if not, to DEF-FN-6

 RST 20H ; else NEXT-CHAR
 JR DEF_FN_3 ; and back to DEF-FN-3

; ---

DEF_FN_6
;;; CP $29 ; is character the closing ')' ?
;;; JR NZ,REPORT_Cd ; forward, if not, to DEF-FN-7
;;; RST 20H ; get NEXT-CHAR

 CALL RBRKT_NXT ;+ check for right-hand bracket and advances.

 CP $3D ; is it '=' ?
 JR NZ,REPORT_Cd ; to DEF-FN-7
 ; 'Nonsense in BASIC'

 RST 20H ; address NEXT-CHAR
 LD A,($5B3B) ; get FLAGS which has been set above

 PUSH AF ; and preserve

 CALL SCANNING ; routine SCANNING checks syntax of expression
 ; and also sets flags.

 POP AF ; restore previous flags

 XOR (IY+$01) ; XOR with FLAGS - bit 6 should be same
 ; therefore will be reset.
 AND $40 ; isolate bit 6.

;;; DEF_FN_7 JP NZ,REPORT_C ; jump back to REPORT-C if the expected result
 ; is not the same type.

 ; 'Nonsense in BASIC'

;;; CALL CHECK_END ; routine CHECK-END will return early

 CALL Z,CHECK_END ; routine CHECK-END will return early if
 ; at end of statement and move onto next
 ; else produce error report. >>>

 ; There will be no return to here.

REPORT_Cd RST 30H ;+ ERROR-1
 DEFB $0B ;+ Error Report: Nonsense in BASIC

; --------------------------
; THE 'UNSTACK-Z' SUBROUTINE (6)
; --------------------------
; All routines are capable of being run in two modes - syntax checking mode
; and runtime mode. This routine is called often to allow a routine to
; return early if checking syntax.

UNSTACK_Z CALL SYNTAX_Z ; routine SYNTAX-Z sets zero flag if syntax
 ; is being checked.

 POP HL ; drop the return address.
 RET Z ; return to previous call in chain if checking
 ; syntax.

 JP (HL) ; jump to return address as BASIC program is
 ; actually running.

; --------------------
; THE 'LPRINT' COMMAND
; --------------------
; A simple form of 'PRINT #3' although it can output to 16 streams.
; Probably for compatibility with other BASICs particularly ZX81 BASIC.
; An extra UDG might have been better.

LPRINT LD A,$03 ; the printer channel
 JR PRINT_1 ; forward to PRINT-1

; -------------------
; THE 'PRINT' COMMAND
; -------------------
; The Spectrum's main stream output command.
; The default stream is stream 2 which is normally the upper screen
; of the computer. However the stream can be altered in range 0 - 15.

PRINT LD A,$02 ; the stream for the upper screen.

; The LPRINT command joins here.

PRINT_1 CALL CHN_O_SYN ;+ routine opens channel in runtime.

;;; CALL SYNTAX_Z ; routine SYNTAX-Z checks if program running
;;; CALL NZ,CHAN_SLCT ; routine CHAN-OPEN if so (calls TEMPS)
;;; CALL TEMPs ; routine TEMPs sets temporary colours.

 CALL PRINT_2 ; routine PRINT-2 - the actual item

 CALL CHECK_END ; routine CHECK-END gives error if not at end
 ; of statement

 RET ; and return in runtime >>>

; ------------------------
; THE 'PRINT 2' SUBROUTINE
; ------------------------
; This subroutine is called from above and also from INPUT.

PRINT_2 RST 18H ; GET-CHAR gets printable character
 CALL PR_END_Z ; routine PR-END-Z checks if more printing

 JR Z,PRINT_4 ; to PRINT-4 if not e.g. just 'PRINT :'

; This tight loop deals with combinations of positional controls and
; print items. An early return can be made from within the loop
; if the end of a print sequence is reached.

PRINT_3 CALL PR_POSN_1 ; routine PR-POSN-1 returns zero if more
 ; but returns early at this point if
 ; at end of statement!
 ;
 JR Z,PRINT_3 ; to PRINT-3 if consecutive positioners

 CALL PR_ITEM_1 ; routine PR-ITEM-1 deals with strings etc.
 CALL PR_POSN_1 ; routine PR-POSN-1 for more position codes
 JR Z,PRINT_3 ; loop back, if so, to PRINT-3

PRINT_4 CP $29 ; return now if this is ')' from input-item.
 ; (see INPUT.)
 RET Z ; or continue and print carriage return in
 ; runtime

; -----------------------------------
; THE 'PRINT CARRIAGE RETURN' ROUTINE
; -----------------------------------
; This routine which continues from above prints a carriage return
; in run-time only. It is also called once from PRINT-POSN.

PRINT_CR CALL UNSTACK_Z ; routine UNSTACK_Z quits if checking syntax.

 LD A,$0D ; prepare a carriage return

 RST 10H ; PRINT-A outputs to current channel.

;;; RET ; return.

 JP CR_END ;+ NEW test for network before returning.

; ----------------------------
; THE 'PRINT ITEMS' SUBROUTINE
; ----------------------------
; This routine deals with print items as in
; PRINT AT 10,0;"The value of A is ";a
; It returns once a single item has been dealt with as it is part
; of a tight loop that considers sequences of positional and print items

PR_ITEM_1 RST 18H ; GET-CHAR
 CP $AC ; is character 'AT' ?
 JR NZ,PR_ITEM_2 ; forward, if not, to PR-ITEM-2

 CALL NEXT_2NUM ; routine NEXT-2NUM check for two comma
 ; separated numbers placing them on the
 ; calculator stack in runtime.

 CALL UNSTACK_Z ; routine UNSTACK_Z quits if checking syntax.

 CALL STK_TO_BC ; routine STK-TO-BC get the numbers in B and C.
 LD A,$16 ; prepare the 'at' control.
 JR PR_AT_TAB ; forward to PR-AT-TAB to print the sequence.

; ---

PR_ITEM_2 CP $AD ; is character 'TAB' ?
 JR NZ,PR_ITEM_3 ; forward, if not, to PR-ITEM-3

 RST 20H ; NEXT-CHAR to address next character
 CALL EXPT_1NUM ; routine EXPT-1NUM checks for numeric
 ; expression and stacks it in run-time.

 CALL UNSTACK_Z ; routine UNSTACK_Z quits if checking syntax.

 CALL FIND_INT2 ; routine FIND-INT2 puts integer in BC.
 LD A,$17 ; prepare the 'tab' control.

PR_AT_TAB RST 10H ; PRINT-A outputs the control

 LD A,C ; first value to A
 RST 10H ; PRINT-A outputs it.

 LD A,B ; second value
 RST 10H ; PRINT-A

 RET ; return - item finished >>>

; ---

; Now consider paper 2; #2; a$

PR_ITEM_3 CALL CO_TEMP_3 ; routine CO-TEMP-3 will print any colour
 RET NC ; items - return if success.

; Now consider a change in the output stream.
; Note. as this is called from IN_ITEM it can also effect a change in the
; stream used for INPUT.

 CALL STR_ALTER ; routine STR-ALTER considers new stream
 RET NC ; return if altered.

 CALL SCANNING ; routine SCANNING now to evaluate expression

 CALL UNSTACK_Z ; routine UNSTACK_Z quits if not runtime.

 BIT 6,(IY+$01) ; test FLAGS - Numeric or string result ?

; Note. the next two instructions have been switched so that STK_FETCH
; can return zero if BC is zero (used elsewhere).

 JP NZ,PRINT_FP ; to PRINT-FP to print if numeric >>>

 CALL STK_FETCH ; routine STK-FETCH if string.
 ; note flags now affected.

; It was a string expression - start in DE, length in BC
; Now enter a loop to print it

PR_STRING LD A,B ; this tests if the
 OR C ; length is zero and sets flag accordingly.
 DEC BC ; this doesn't but decrements counter.
 RET Z ; return if zero.

 LD A,(DE) ; fetch character.
 INC DE ; address next location.

 RST 10H ; PRINT-A.

 JR PR_STRING ; loop back to PR-STRING.

; --------------------------------
; THE 'END OF PRINTING' SUBROUTINE
; --------------------------------
; This subroutine returns zero if no further printing is required
; in the current statement.
; The first terminator is found in escaped input items only,
; the others in print_items.

PR_END_Z CP $29 ; is character a ')' ?
 RET Z ; return if so - e.g. INPUT (p$); a$

PR_ST_END CP $0D ; is it a carriage return ?
 RET Z ; return also - e.g. PRINT a

 CP $3A ; is character a ':' ?
 RET ; return - zero flag will be set with match.
 ; e.g. PRINT a :

; ----------------------------
; THE 'PRINT POSITION' ROUTINE
; ----------------------------
; This routine considers a single positional character ';', ',', '''

PR_POSN_1 RST 18H ; GET-CHAR
 CP $3B ; is it ';' ?
 ; i.e. print from last position.
 JR Z,PR_POSN_3 ; forward, if so, to PR-POSN-3
 ; i.e. do nothing.

 CP $2C ; is it ',' ?
 ; i.e. print at next tabstop.
 JR NZ,PR_POSN_2 ; forward to PR-POSN-2 if anything else.

 CALL SYNTAX_Z ; routine SYNTAX-Z

 JR Z,PR_POSN_3 ; forward to PR-POSN-3 if checking syntax.

 LD A,$06 ; prepare the 'comma' control character.

 RST 10H ; PRINT-A outputs to current channel in
 ; run-time.

 JR PR_POSN_3 ; skip to PR-POSN-3.

; ---

; check for newline.

PR_POSN_2 CP $27 ; is character a "'" ? (newline)
 RET NZ ; return if no match >>>

 CALL PRINT_CR ; routine PRINT-CR outputs a carriage return

 ; in runtime only.

PR_POSN_3 RST 20H ; NEXT-CHAR to A.
 CALL PR_END_Z ; routine PR-END-Z checks if at end.
 JR NZ,PR_POSN_4 ; skip forward, if not, to PR-POSN-4

 POP BC ; drop return address if at end.

PR_POSN_4 CP A ; reset the zero flag.
 RET ; and return to loop or quit.

; -----------------------------
; THE 'ALTER STREAM' SUBROUTINE
; -----------------------------
; This routine is called from PRINT ITEMS above, and also LIST as in LIST #15

STR_ALTER RST 18H ;+ GET_CHAR
 CP $23 ; is character '#' ?
 SCF ; set carry flag.
 RET NZ ; return if no match.

 RST 20H ; NEXT-CHAR
 CALL EXPT_1NUM ; routine EXPT-1NUM gets stream number
 AND A ; prepare to exit early with carry reset

 CALL UNSTACK_Z ; routine UNSTACK_Z exits early if parsing

CHAN_CHK CALL FIND_INT1 ; routine FIND-INT1 gets number off stack

 CP $10 ; stream must be range 0 - 15 decimal.
 JP NC,REPORT_O ; jump back, if not, to REPORT-O
 ; 'Invalid stream'.

 CALL CHAN_SLCT ; Routine CHAN-OPEN

 AND A ; Clear carry - signal item dealt with.

 RET ; Return.

; -------------------
; THE 'INPUT' COMMAND
; -------------------
; This command inputs by default from the stream 1. On the standard
; Spectrum this is selected before CLS-LOWER so the channel that is
; in force is the system 'K' channel and can only be overridden by the user
; using INPUT #1.

INPUT CALL SYNTAX_Z ; routine SYNTAX-Z to check if in runtime.
 JR Z,INPUT_1 ; forward, if checking syntax, to INPUT-1

 LD A,$01 ; select stream 1 which is reserved for INPUT.
 CALL CHAN_SLCT ; routine CHAN-OPEN opens the channel.

 CALL IN_CHAN_K ;+ routine IN-CHAN-K tests if keyboard in use.

;;; CALL CLS_LOWER ; routine CLS-LOWER wrongly clears lower screen.

 CALL Z,CLS_LOWER ;+ routine CLS-LOWER clears the lower screen
 ;+ and sets DF_SZ to two and TV_FLAG to $01
 ;+ but only if channel 1 is the keyboard.

INPUT_1 LD (IY+$02),$01 ; update TV_FLAG - signal lower screen in use
 ; ensuring that the correct set of system

 ; variables are updated and that the border
 ; colour is used.

; Note. The Complete Spectrum ROM Disassembly incorrectly names DF-SZ as the
; system variable that is updated above and if, you make this unnecessary
; alteration then there will be two blank lines between the lower screen and
; the upper screen areas which will also scroll wrongly.

 CALL IN_ITEM_1 ; routine IN-ITEM-1 to handle the input.

 CALL CHECK_END ; routine CHECK-END will make an early exit
 ; if checking syntax. >>>

; keyboard input has been made and it remains to adjust the upper
; screen in case the lower two lines have been extended upwards.

 LD BC,($5B88) ; fetch S_POSN current line/column of
 ; the upper screen.
 LD A,($5B6B) ; fetch DF_SZ the display file size of
 ; the lower screen.
 CP B ; test that lower screen does not overlap.
 JR C,INPUT_2 ; forward, if not, to INPUT-2

; the two screens overlap so adjust upper screen.

 LD C,$21 ; set column of upper screen to leftmost.
 LD B,A ; and line to one above lower screen.
 ; continue forward to update upper screen
 ; print position.

INPUT_2 LD ($5B88),BC ; set S_POSN update upper screen line/column.
 LD A,$19 ; subtract from twenty five
 SUB B ; the new line number.
 LD ($5B8C),A ; and place result in SCR_CT - scroll count.
 RES 0,(IY+$02) ; update TV_FLAG - signal main screen in use.
 CALL CL_SET ; routine CL-SET sets the print position
 ; system variables for the upper screen.
 JP CLS_LOWER ; jump back to CLS-LOWER and make
 ; an indirect exit >>.

; ---------------------------
; THE 'INPUT ITEM' SUBROUTINE
; ---------------------------
; This subroutine deals with the input items and print items from the current
; input channel which was defaulted to 'K' above.

IN_ITEM_1 CALL PR_POSN_1 ; routine PR-POSN-1 deals with a single
 ; position item at each call.
 JR Z,IN_ITEM_1 ; back to IN-ITEM-1 until no more in a
 ; sequence.

 CP $28 ; is character '(' ?
 JR NZ,IN_ITEM_2 ; forward, if not, to IN-ITEM-2

; any variables within brackets will be treated as part, or all, of the
; prompt instead of being used as destination variables.

 RST 20H ; NEXT-CHAR
 CALL PRINT_2 ; routine PRINT-2 to output the dynamic
 ; prompt.

 RST 18H ; GET-CHAR

;;; CP $29 ; is character a matching ')' ?

;;; JR NZ,REPORT_Cy ; forward, if not, to REPORT-Cy
;;; RST 20H ; NEXT-CHAR

 CALL RBRKT_NXT ;+ check for right-hand bracket and advance.

 JP IN_NEXT_2 ; jump forward to IN-NEXT-2

; ---

; Consider INPUT LINE

IN_ITEM_2 CP $CA ; is the character the token 'LINE' ?
 JR NZ,IN_ITEM_3 ; forward, if not, to IN-ITEM-3

 RST 20H ; NEXT-CHAR - variable must come next.
 CALL CLASS_01 ; routine CLASS-01 returns destination
 ; address of variable to be assigned.
 ; or generates an error if no variable
 ; at this position.

 SET 7,(IY+$37) ; update FLAGX - signal handling INPUT LINE

 BIT 6,(IY+$01) ; test FLAGS - numeric or string result ?

;;; JP NZ,REPORT_C ; jump back to REPORT-C if not string
;;; ; 'Nonsense in BASIC'.

 JR Z,IN_PROMPT ; forward, if string, to IN-PROMPT
 ; to set up workspace.

REPORT_Cy RST 30H ;+ ERROR-1
 DEFB $0B ;+ Error Report: Nonsense in BASIC

; ---

; the jump was here for other variables.
; Note. the character '#' will cause a jump to IN_NEXT_1

IN_ITEM_3 CALL ALPHA ; routine ALPHA checks if character is
 ; a suitable variable name.

 JP NC,IN_NEXT_1 ; jump forward, if not, to IN-NEXT-1

 CALL CLASS_01 ; routine CLASS-01 returns destination
 ; address of variable to be assigned.
 RES 7,(IY+$37) ; update FLAGX - signal not INPUT LINE.

; The two paths converge here.

IN_PROMPT CALL SYNTAX_Z ; routine SYNTAX-Z

 JP Z,IN_NEXT_2 ; forward to IN-NEXT-2 if checking syntax.

; Continue in runtime.

 CALL SET_WORK ; routine SET-WORK clears workspace.

 LD HL,$5B71 ; point to system variable FLAGX
 RES 6,(HL) ; signal string result.
 SET 5,(HL) ; signal in Input Mode for editor.

;;; LD BC,$0001 ; initialize space required to one for the CR.

 LD C,$01 ;+ initialize space required to one for the CR.

 BIT 7,(HL) ; test FLAGX - INPUT LINE in use ?

 JR NZ,IN_PR_2 ; forward, if so, to IN-PR-2
 ; as that is all the space that is required.

; If not INPUT LINE then the result can be numeric or string.

 LD A,($5B3B) ; load accumulator from FLAGS
 AND $40 ; mask to test BIT 6 of FLAGS and clear
 ; the other bits in A.
 ; numeric result expected ?
 JR NZ,IN_PR_1 ; forward, if so, to IN-PR-1

 LD C,$03 ; increase space to three bytes for the
 ; pair of surrounding quotes.

IN_PR_1 OR (HL) ; if numeric result, set bit 6 of FLAGX.
 LD (HL),A ; and update system variable

IN_PR_2 CALL BC_SPACE0 ; BC_SPACES opens 1 or 3 bytes in workspace
 LD (HL),$0D ; insert carriage return at last new location.

;;; LD A,C ; fetch the length, one or three.
;;; RRCA ; lose bit 0.
;;; RRCA ; test if quotes required.
;;; JR NC,IN_PR_3 ; forward, if not, to IN-PR-3

 BIT 1,C ;+ test if quotes required.
 JR Z,IN_PR_3 ;+ skip forward, if not, to IN_PR_3

 LD A,$22 ; load the '"' character
 LD (DE),A ; place quote in first new location at DE.
 DEC HL ; decrease HL - from carriage return.
 LD (HL),A ; and place a quote in second location.

IN_PR_3 LD ($5B5B),HL ; set keyboard cursor K_CUR to HL

 BIT 7,(IY+$37) ; test FLAGX - is this INPUT LINE ?
 JR NZ,IN_VAR_3 ; forward, if so, to IN-VAR-3 as input will
 ; be accepted without checking its syntax.

; prepare to parse the numeric or string input if not INPUT LINE.

 RST 18H ;+
;;; LD HL,($5B5D) ; fetch CH_ADD
 PUSH HL ; and save on stack.
 LD HL,($5B3D) ; fetch ERR_SP
 PUSH HL ; and save on stack

IN_VAR_1 LD HL,IN_VAR_1 ; address: IN-VAR-1 - this address
 PUSH HL ; is saved on stack to handle errors.

 BIT 4,(IY+$30) ; test FLAGS2 - is K channel in use ?
 JR Z,IN_VAR_2 ; forward, if not keyboard, to IN-VAR-2

; Now update the error pointer so that user is able to alter until correct.

 LD ($5B3D),SP ; set ERR_SP to point to IN-VAR-1 on stack.

IN_VAR_2 LD HL,($5B61) ; set HL to WORKSP - start of workspace.

 CALL REMOVE_FP ; routine REMOVE-FP removes floating point
 ; forms when looping in the error condition.

;;; LD (IY+$00),$FF ; set ERR_NR to 'OK' cancelling the error.
;;; ; but X_PTR causes flashing error marker
;;; ; to be displayed at each call to the editor.

 CALL SET_ER_FF ;+ NEW 3-byte call.

 CALL EDITOR ; routine EDITOR allows input to be entered
 ; or corrected if this is second time around.

; If we pass to next then there are no system errors

 RES 7,(IY+$01) ; update FLAGS - signal checking syntax
 CALL IN_ASSIGN ; routine IN-ASSIGN checks syntax using
 ; the VAL-FET-2 and powerful SCANNING routines.
 ; any syntax error and its back to IN-VAR-1.
 ; but with the flashing error marker showing
 ; where the error is.
 ; Note. the syntax of string input has to be
 ; checked as the user may have removed the
 ; bounding quotes or escaped them as with
 ; "hat" + "stand" for example.
; Proceed if syntax passed.

 JR IN_VAR_4 ; jump forward to IN-VAR-4

; ---

; The jump was to here when using INPUT LINE.

IN_VAR_3 CALL EDITOR ; routine EDITOR is called for input

; When ENTER received rejoin other route but with no syntax check.

; Paths for INPUT and INPUT LINE converge here.

IN_VAR_4
;;; LD (IY+$22),$00 ; set K_CUR_hi to a low value
 LD (IY+$22),A ;+ set K_CUR_hi to a low value so that cursor
 ;+ no longer appears in the input line. (A=13)

 CALL IN_CHAN_K ; routine IN-CHAN-K tests if keyboard in use.

 JR NZ,IN_VAR_5 ; forward to IN-VAR-5 if using another input
 ; channel.

; continue here if using the keyboard.

 CALL ED_COPY ; routine ED-COPY overprints the edit line
 ; to the lower screen. The only visible
 ; affect is that the cursor disappears.
 ; if you're inputting more than one item in
 ; a statement then that becomes apparent.

 LD BC,($5B82) ; fetch line and column from ECHO_E

 CALL CL_SET ; routine CL-SET sets S-POSNL to those
 ; values.

; if using another input channel rejoin here.

IN_VAR_5 LD HL,$5B71 ; point HL to FLAGX
 RES 5,(HL) ; signal not in input mode

 BIT 7,(HL) ; is this INPUT LINE ?
 RES 7,(HL) ; cancel the bit anyway.
 JR NZ,IN_VAR_6 ; forward to IN-VAR-6 if INPUT LINE.

 POP HL ; drop the looping address
 POP HL ; drop the address of previous
 ; error handler.
 LD ($5B3D),HL ; set ERR_SP to point to it.
 POP HL ; drop original CH_ADD which points to
 ; INPUT command in BASIC line.
 LD ($5B5F),HL ; save in X_PTR while input is assigned.
 SET 7,(IY+$01) ; update FLAGS - Signal running program
 CALL IN_ASSIGN ; routine IN-ASSIGN is called again
 ; this time the variable will be assigned
 ; the input value without error.
 ; Note. the previous example now
 ; becomes "hatstand"

 LD HL,($5B5F) ; fetch stored CH_ADD value from X_PTR.
;;; LD (IY+$26),$00 ; set X_PTR_hi so that it is no longer relevant.
 LD (IY+$26),A ;+ set X_PTR_hi so that it is irrelevant. (A=13)
 LD ($5B5D),HL ; put restored value back in CH_ADD
 JR IN_NEXT_2 ; forward to IN-NEXT-2 to see if anything
 ; more in the INPUT list.

; ---

; the jump was to here with INPUT LINE only

IN_VAR_6 LD HL,($5B63) ; STKBOT points to the end of the input.
 LD DE,($5B61) ; WORKSP points to the beginning.
 SCF ; prepare for true subtraction.
 SBC HL,DE ; subtract to get length
 LD B,H ; transfer it to
 LD C,L ; the BC register pair.
 CALL STK_STO_s ; routine STK-STO-$ stores parameters on
 ; the calculator stack.

 CALL LET ; routine LET assigns it to destination.

 JR IN_NEXT_2 ; forward to IN-NEXT-2 as print items
 ; not allowed with INPUT LINE.
 ; Note. that "hat" + "stand" will, for
 ; example, be unchanged.

; ---

; The jump was to here when ALPHA found more items while looking for
; a variable name. The routine PR_ITEM_1 is called for the first time
; which allows the stream to be altered if the character is '#'.

IN_NEXT_1 CALL PR_ITEM_1 ; routine PR-ITEM-1 considers further items.

IN_NEXT_2 CALL PR_POSN_1 ; routine PR-POSN-1 handles a position item.

 JP Z,IN_ITEM_1 ; jump back to IN-ITEM-1 if the zero flag
 ; indicates more items are present.

 RET ; Return.

; ---------------------------
; INPUT ASSIGNMENT Subroutine
; ---------------------------
; This subroutine is called twice from the INPUT command when normal

; keyboard input is assigned. On the first occasion syntax is checked
; using SCANNING. The final call with the syntax flag reset is to make
; the assignment.

IN_ASSIGN LD HL,($5B61) ; fetch WORKSP start of input
 LD ($5B5D),HL ; set CH_ADD to first character

 RST 18H ; GET-CHAR ignoring any leading white-space.
 CP $E2 ; is it 'STOP'
 JR Z,IN_STOP ; forward, if so, to IN-STOP

 LD A,($5B71) ; load accumulator from FLAGX

 CALL VAL_FET_2 ; routine VAL-FET-2 makes assignment
 ; or goes through the motions if checking
 ; syntax. SCANNING is used.

 RST 18H ; GET-CHAR
 CP $0D ; is character a carriage return ?
 RET Z ; return with a match.
 ; either syntax is OK
 ; or assignment has been made.

; if another character was found then raise an error.
; User doesn't see report but the flashing error marker
; appears in the lower screen.

REPORT_Cb RST 30H ; ERROR-1
 DEFB $0B ; Error Report: Nonsense in BASIC
; ---

;;; IN_STOP CALL SYNTAX_Z ; routine SYNTAX-Z (UNSTACK_Z?)
;;; RET Z ; return if checking syntax

IN_STOP CALL UNSTACK_Z ;+ return if checking syntax.
 ;+ as user wouldn't see error report.
 ;+ but generate visible error report
 ;+ on second invocation.

REPORT_H RST 30H ; ERROR-1
 DEFB $10 ; Error Report: STOP in INPUT

; -----------------------------------
; THE 'TEST FOR CHANNEL K' SUBROUTINE
; -----------------------------------
; This subroutine is called once from the INPUT command to check if
; the input routine in use is the one for the keyboard.
; It returns with the zero flag set for the keyboard and reset for the
; network and RS232.
; Note. this routine, essentially the same as set out here, has been moved
; to a position before the NUMBER routine with which it is now combined.

;;; IN_CHAN_K LD HL,($5B51) ; fetch address of current channel CURCHL
;;; INC HL ;
;;; INC HL ; advance past
;;; INC HL ; input and
;;; INC HL ; output streams
;;; LD A,(HL) ; fetch the channel identifier.
;;; CP $4B ; test for 'K'
;;; RET ; return with zero set if keyboard is use.

; --------------------------
; THE 'COLOUR ITEM' ROUTINES
; --------------------------

;
; These routines have 3 entry points -
; 1) CO-TEMP-2 to handle a series of embedded Graphic colour items.
; 2) CO-TEMP-3 to handle a single embedded print colour item.
; 3) CO TEMP-4 to handle a colour command such as FLASH 1
;
; "Due to a bug, if you bring in a peripheral channel and later use a colour
; statement, colour controls will be sent to it by mistake."
; - Steven Vickers, Pitman Pocket Guide, 1984.
;
; To be fair, this only applies if the last channel was other than 'K', 'S'
; or 'P', which are all that were supported by this ROM, but if that last
; channel was a microdrive file, network channel etc. then
; PAPER 6; CLS will not turn the screen yellow and
; CIRCLE INK 2; 128,88,50 will not draw a red circle.
;
; This bug does not apply to embedded PRINT items as it is quite permissible
; to mix stream altering commands and colour items.
; The fix therefore would be to ensure that CLASS-07 and CLASS-09 make
; channel 'S' the current channel when not checking syntax.
;
; ---

;;; CO_TEMP_1 RST 20H ; NEXT-CHAR

; -> Entry point from CLASS-09. Embedded Graphic colour items.
; e.g. PLOT INK 2; PAPER 8; 128,88
; Loops till all colour items output, finally addressing the coordinates.

CO_TEMP_2 CALL CO_TEMP_3 ; routine CO-TEMP-3 to output colour control.
 RET C ; return if nothing more to output. ->

 CALL CLASS_0C ;+ New routine to check for ';' or ',' and
 ;+ advance CH_ADD if so else produce error.

 JR CO_TEMP_2 ;+ back, if no error to CO_TEMP_2

;;; RST 18H ; GET-CHAR
;;; CP $2C ; is it ',' separator ?
;;; JR Z,CO_TEMP_1 ; back, if so, to CO-TEMP-1
;;; CP $3B ; is it ';' separator ?
;;; JR Z,CO_TEMP_1 ; back, if so, to CO-TEMP-1
;;; JR REPORT_Cb ; to REPORT-C (REPORT-Cb is within range)
;;; ; 'Nonsense in BASIC'

; -------------------
; CO-TEMP-3
; -------------------
; -> this routine evaluates and outputs a colour control and parameter.
; It is called from above and also from PR-ITEM-3 to handle a single embedded
; print item e.g. PRINT PAPER 6; "Hi". In the latter case, the looping for
; multiple items is within the PR-ITEM routine.
; It is quite permissible to send these to any stream.

CO_TEMP_3 CP $D9 ; compare addressed character to 'INK'
 RET C ; return if less.

 CP $DF ; compare with 'OUT'
 CCF ; Complement Carry Flag
 RET C ; return if greater than 'OVER' ($DE).

; The token expects one parameter so advance CH_ADD

 PUSH AF ; save the colour token e.g. 'PAPER'.

 RST 20H ; NEXT-CHAR advances address.

 POP AF ; restore token and continue.

; -> This entry point used by CLASS-07. e.g. the command PAPER 6.

CO_TEMP_4 SUB $C9 ; reduce to control character $10 (INK)
 ; through $15 (OVER) and clears CARRY flag.

 PUSH AF ; save control and carry flag.

 CALL EXPT_1NUM ; routine EXPT-1NUM stacks addressed parameter
 ; on the calculator stack.

 POP AF ; restore control and clear carry flag.

;;; AND A ; clear carry for success (already clear).

 CALL UNSTACK_Z ; routine UNSTACK_Z returns if checking syntax.

; In runtime, output the two control characters. There is no need to
; assimilate the two codes first.

;;; PUSH AF ; save again

 RST 10H ;+ outputs the control altering output address.

 CALL FIND_INT1 ; routine FIND-INT1 fetches parameter to A.

;;; LD D,A ; transfer now to D

;;; POP AF ; restore control.

;;; RST 10H ; PRINT-A outputs the control to current
 ; channel.
;;; LD A,D ; transfer parameter to A.

 RST 10H ; PRINT-A outputs parameter restoring channel.

 RET ; return. ->

; ---
;
; {fl}{br}{ paper }{ ink } The temporary colour attributes
; ___ ___ ___ ___ ___ ___ ___ ___ system variable.
; ATTR_T | | | | | | | | |
; | | | | | | | | |
; 23695 |___|___|___|___|___|___|___|___|
; 7 6 5 4 3 2 1 0
;
;
; {fl}{br}{ paper }{ ink } The temporary mask used for
; ___ ___ ___ ___ ___ ___ ___ ___ transparent colours. Any bit
; MASK_T | | | | | | | | | that is 1 shows that the
; | | | | | | | | | corresponding attribute is
; 23696 |___|___|___|___|___|___|___|___| taken not from ATTR-T but from
; 7 6 5 4 3 2 1 0 what is already on the screen.
;
;
; {paper9 }{ ink9 }{ inv1 }{ over1} The print flags. Even bits are
; ___ ___ ___ ___ ___ ___ ___ ___ temporary flags. The odd bits
; P_FLAG | | | | | | | | | are the permanent flags.
; | p | t | p | t | p | t | p | t |

; 23697 |___|___|___|___|___|___|___|___|
; 7 6 5 4 3 2 1 0
;
; ---

; ------------------------------------
; The colour system variable handler.
; ------------------------------------
; This is an exit branch from PO-1-OPER, PO-2-OPER
; A holds control $10 (INK) to $15 (OVER)
; D holds parameter 0-9 for ink/paper 0,1 or 8 for bright/flash,
; 0 or 1 for over/inverse.

; First consider INK and PAPER.

CO_TEMP_5 SUB $11 ; reduce range $FF-$04
 LD E,$00 ;+ Set E to zero.
;;; ADC A,$00 ; add in carry if INK
 ADC A,E ;+ add in carry if INK
 JR Z,CO_TEMP_7 ; forward to CO-TEMP-7 with INK and PAPER.

; Now consider FLASH and BRIGHT.

 SUB $02 ; reduce range $FF-$02
;;; ADC A,$00 ; add carry if FLASH
 ADC A,E ;+ add carry if FLASH
 JR Z,CO_TEMP_C ; forward to CO-TEMP-C with FLASH and BRIGHT.

; Now consider remaining INVERSE and OVER.

 INC E ;+ now make E=1
;;; CP $01 ; is it 'INVERSE' ?
 CP E ; is it 'INVERSE' ?
 LD A,D ; fetch parameter for INVERSE/OVER
;;; LD B,$01 ; prepare OVER mask setting bit 0.
 LD B,E ; prepare OVER mask setting bit 0.
 JR NZ,CO_TEMP_6 ; forward to CO-TEMP-6 if OVER

; Deal with INVERSE.

 RLCA ; shift bit 0
 RLCA ; to bit 2
 LD B,$04 ; set bit 2 of mask for INVERSE.

; The OVER path rejoins here.

CO_TEMP_6 LD C,A ; save the A
 LD A,D ; re-fetch parameter
 CP $02 ; is it less than 2
 JR NC,REPORT_K ; to REPORT-K if not 0 or 1.
 ; 'Invalid colour'.

 LD A,C ; restore A
 LD HL,$5B91 ; address system variable P_FLAG
 JR CO_CHANGE ; forward to exit via routine CO-CHANGE

; ---

; the branch was here with INK and PAPER and carry set for INK.

CO_TEMP_7 LD A,D ; fetch parameter
 LD B,$07 ; set ink mask 00000111
 JR C,CO_TEMP_8 ; forward to CO-TEMP-8 with INK

 RLCA ; shift bits 0-2
 RLCA ; to
 RLCA ; bits 3-5
 LD B,$38 ; set PAPER mask 00111000

; the INK path rejoins here.

CO_TEMP_8 LD C,A ; value to C
 LD A,D ; fetch parameter
 CP $0A ; is it less than 10 decimal ?
 JR C,CO_TEMP_9 ; forward, if so, to CO-TEMP-9

; INK 10 etc. is not allowed.

REPORT_K RST 30H ; ERROR-1
 DEFB $13 ; Error Report: Invalid colour

; ---

CO_TEMP_9 LD HL,$5B8F ; Address system variable ATTR_T initially.
 CP $08 ; compare with 8
 JR C,CO_TEMP_B ; forward to CO-TEMP-B with 0-7.

 LD A,(HL) ; fetch temporary attribute as no change.
 JR Z,CO_TEMP_A ; forward to CO-TEMP-A with INK/PAPER 8

; it is either ink 9 or paper 9 (contrasting)

 OR B ; or with mask to make white
 CPL ; make black and change other to dark
 AND $24 ; 00100100
 JR Z,CO_TEMP_A ; forward to CO-TEMP-A if black and
 ; originally light.

 LD A,B ; else just use the mask (white)

CO_TEMP_A LD C,A ; save A in C

CO_TEMP_B LD A,C ; load colour to A
 CALL CO_CHANGE ; routine CO-CHANGE addressing ATTR-T

 LD A,$07 ; put 7 in accumulator
 CP D ; compare with parameter
 SBC A,A ; $00 if 0-7, $FF if 8
 CALL CO_CHANGE ; routine CO-CHANGE addressing MASK-T
 ; mask returned in A.

; now consider P-FLAG.

 RLCA ; 01110000 or 00001110
 RLCA ; 11100000 or 00011100
 AND $50 ; 01000000 or 00010000 (AND 01010000)
 LD B,A ; transfer to mask
 LD A,$08 ; load A with 8
 CP D ; compare with parameter
 SBC A,A ; $FF if was 9, $00 if 0-8
 ; continue while addressing P-FLAG
 ; setting bit 4 if ink 9
 ; setting bit 6 if paper 9

; ----------------------------
; THE 'COLOUR CHANGE' ROUTINES
; ----------------------------
; This routine addresses a system variable ATTR_T, MASK_T or P-FLAG in HL.

; colour value in A, mask in B.

CO_CHANGE XOR (HL) ; impress bits specified
 AND B ; by mask
 XOR (HL) ; on system variable.
 LD (HL),A ; update system variable.
 INC HL ; address next location.
 LD A,B ; put current value of mask in A
 RET ; return.

; ---
;
; ---

; the branch was here with FLASH and BRIGHT

CO_TEMP_C SBC A,A ; set zero flag for BRIGHT.
 LD A,D ; fetch original parameter 0,1 or 8
 RRCA ; rotate bit 0 to bit 7
 LD B,$80 ; mask for FLASH - %10000000
 JR NZ,CO_TEMP_D ; forward, if FLASH, to CO-TEMP-D

 RRCA ; rotate bit 7 to bit 6
 LD B,$40 ; mask for BRIGHT - %01000000

CO_TEMP_D LD C,A ; store value in C
 LD A,D ; fetch parameter
 CP $08 ; compare with 8
 JR Z,CO_TEMP_E ; forward, if eight, to CO-TEMP-E

 CP $02 ; test if 0 or 1
 JR NC,REPORT_K ; back, if not, to REPORT-K
 ; 'Invalid colour'

CO_TEMP_E LD A,C ; value to A
 LD HL,$5B8F ; address ATTR_T
 CALL CO_CHANGE ; routine CO-CHANGE addressing ATTR_T
 LD A,C ; fetch value
 RRCA ; for flash8/bright8 complete the
 RRCA ; rotations to put set bit in
 RRCA ; bit 7 (flash) bit 6 (bright)
 JR CO_CHANGE ; back to CO-CHANGE addressing MASK_T
 ; and indirect return.

; --------------------
; THE 'BORDER' COMMAND
; --------------------
; Command syntax example: BORDER 7
; This command routine sets the border to one of the eight colours.
; The colours used for the lower screen are based on this.
; This is a CLASS_0 command so syntax is checked by the tables and this
; routine is only invoked in runtime.

BORDER CALL FIND_INT1 ; routine FIND-INT1
 CP $08 ; must be in range 0 (black) to 7 (white)
 JR NC,REPORT_K ; back, if not, to REPORT-K
 ; 'Invalid colour'.

 OUT ($FE),A ; outputting to port effects an immediate
 ; change.
 RLCA ; shift the colour to
 RLCA ; the paper bits setting the
 RLCA ; ink colour black.
 BIT 5,A ; is the paper number light coloured ?

 ; i.e. in the range green to white.

 JR NZ,BORDER_1 ; skip, if so, to BORDER-1

 XOR $07 ; make the ink white.

BORDER_1 LD ($5B48),A ; update BORDCR with new paper/ink

 RET ; return.

; ---------------------------
; THE 'PIXEL ADDRESS' ROUTINE
; ---------------------------
;
;

PIXEL_ADD LD A,$AF ; load with 175 decimal.
 SUB B ; subtract the y value.
 JR C,REPORT_Bz ; jump forward to REPORT-Bc if greater.
 ; 'Integer out of range'

; the high byte is derived from Y only.
; the first 3 bits are always 010
; the next 2 bits denote in which third of the screen the byte is.
; the last 3 bits denote in which of the 8 scan lines within a third
; the byte is located. There are 24 discrete values.

 LD B,A ; the line number from top of screen to B.

;;; AND A ; clear carry (already clear)

 RRA ; 0xxxxxxx
 SCF ; set carry flag
 RRA ; 10xxxxxx
 AND A ; clear carry flag
 RRA ; 010xxxxx

 XOR B ;
 AND $F8 ; keep the top 5 bits 11111000
 XOR B ; 010xxbbb
 LD H,A ; transfer high byte to H.

; The low byte of the address is derived from both X and Y.

 LD A,C ; the x value 0-255.
 RLCA ;
 RLCA ;
 RLCA ;
 XOR B ; the y value
 AND $C7 ; apply mask 11000111
 XOR B ; restore unmasked bits xxyyyxxx
 RLCA ; rotate to xyyyxxxx
 RLCA ; required position. yyyxxxxx
 LD L,A ; low byte to L.

; Finally form the pixel position in A.

 LD A,C ; x value to A
 AND $07 ; mod 8
 RET ; return

; ----------------------
; THE 'POINT' SUBROUTINE

; ----------------------
; The point subroutine is called from s_point via the SCANNING functions
; table.
; Error B unless 0<=x<=255 and 0<=y<=175.
; In accordance with the BASIC manual, parameters must now be positive.

POINT_SUB CALL BC_POSTVE ; routine BC_POSTVE but with check on signs.

 CALL PIXEL_ADD ; routine PIXEL-ADD finds address of pixel
 ; producing an error if y is > 175.

 LD B,A ; pixel position to B, 0-7.
 INC B ; increment to give rotation count 1-8.
 LD A,(HL) ; fetch byte from screen.

POINT_LP RLCA ; rotate and loop back
 DJNZ POINT_LP ; to POINT-LP until required pixel at right.

 AND $01 ; test to give zero or one.
 JP STACK_A ; jump forward to STACK-A to save result.

; ------------------
; THE 'PLOT' COMMAND
; ------------------
; Command Syntax example: PLOT 128,88
;

PLOT CALL BC_POSTVE ; routine BC_POSTVE

;;; CALL PLOT_SUB ; routine PLOT-SUB

;;; JP TEMPs ;?to TEMPs to impose the permanent attributes
;;; ; onto the temporary ones as they may have been
;;; ; disturbed by embedded colour items ??

; ---------------------
; THE 'PLOT' SUBROUTINE
; ---------------------
; A screen byte holds 8 pixels so it is necessary to rotate a mask
; into the correct position to leave the other 7 pixels unaffected.
; However all 64 pixels in the character cell take any embedded colour
; items.
; A pixel can be reset (inverse 1), toggled (over 1), or set (with inverse
; and over switches off). With both switches on, the byte is simply put
; back on the screen although the colours may change.

PLOT_SUB LD ($5B7D),BC ; store new x/y values in COORDS

 CALL PIXEL_ADD ; routine PIXEL-ADD gets address in HL,
 ; count from left 0-7 in B.

 LD B,A ; transfer count to B.
 INC B ; increase 1-8.
 LD A,$FE ; 11111110 in A.

PLOT_LOOP RRCA ; rotate mask.
 DJNZ PLOT_LOOP ; to PLOT-LOOP until B circular rotations.

 LD B,A ; load mask to B
 LD A,(HL) ; fetch screen byte to A

 LD C,(IY+$57) ; P_FLAG to C
 BIT 0,C ; is it to be OVER 1 ?
 JR NZ,PL_TST_IN ; forward, if so, to PL-TST-IN

; was OVER 0.

 AND B ; combine with mask to blank pixel.

PL_TST_IN BIT 2,C ; is it inverse 1 ?
 JR NZ,PLOT_END ; forward, if so, to PLOT-END

 XOR B ; switch the pixel
 CPL ; restore other 7 bits

PLOT_END LD (HL),A ; load byte to the screen.
 JP PO_ATTR ; exit via PO-ATTR to set colours for cell.

; ---

REPORT_Bz RST 30H ; ERROR-1
 DEFB $0A ; Error Report: Integer out of range

; --
; THE 'CALCULATOR STACK TO BC REGISTERS' ROUTINE
; --
;
;

STK_TO_BC CALL STK_TO_A ; routine STK-TO-A

 LD B,A ;
 PUSH BC ;

 CALL STK_TO_A ; routine STK-TO-A

 LD E,C ;
 POP BC ;
 LD D,C ;
 LD C,A ;

 RET ; Return.

; ---
; THE 'CALCULATOR STACK TO ACCUMULATOR' ROUTINE
; ---
; This routine puts the last value on the calculator stack into the
; accumulator deleting the last value.

STK_TO_A CALL FP_TO_A ; routine FP-TO-A compresses last value into
 ; accumulator. e.g. PI would become 3.
 ; zero flag set if positive.

 JR C,REPORT_Bz ; forward, if >= 255, to REPORT-Bc
 ; 'Integer out of range'

 LD C,$01 ; prepare a positive sign byte.
 RET Z ; return if FP-TO-BC indicated positive.

 LD C,$FF ; prepare negative sign byte and

 RET ; return.

; --------------------
; THE 'CIRCLE' COMMAND
; --------------------

; Syntax has been partly checked using the class for the DRAW command.

CIRCLE RST 18H ; GET-CHAR
 CP $2C ; Is character the required comma ?
 JP NZ,REPORT_C ; Jump, if not, to REPORT-C

;;; RST 20H ; NEXT-CHAR
;;; CALL EXPT_1NUM ; Routine EXPT-1NUM fetches the radius.
;;; CALL CHECK_END ; Routine CHECK-END will return here

 CALL CHK_END_1 ; above 3 routines combined.

; Continue in runtime.

 RST 28H ;; FP-CALC
 DEFB $2A ;;abs ; make radius positive
 DEFB $3D ;;re-stack ; in full floating point form
 DEFB $38 ;;end-calc

 LD A,(HL) ; Fetch first floating point exponent byte
 CP $81 ; Compare to exponent for one
 JR NC,C_R_GRE_1 ; Forward to C-R-GRE-1 if circle radius is
 ; greater than a half.

; If the diameter is no greater than one then delete the radius and plot
; the single point.

 RST 28H ;; FP-CALC
 DEFB $02 ;;delete ; delete the radius from stack.
 DEFB $38 ;;end-calc

 JR PLOT ; Back to PLOT to just plot x,y.

; ---

; Continue if the radius is greater than 1.

C_R_GRE_1 RST 28H ;; FP-CALC x, y, r
 DEFB $A3 ;;stk-pi/2 x, y, r, pi/2.
 DEFB $38 ;;end-calc x, y, r, pi/2.

; Cleverly multiply by four to form the circumference.

 LD (HL),$83 ; bump exponent x, y, r, 2*PI

 RST 28H ;; FP-CALC x, y, r, 2*PI
 DEFB $C5 ;;st-mem-5 store 2*PI in mem-5
 DEFB $02 ;;delete x, y, r.
 DEFB $38 ;;end-calc x, y, r.

 CALL CD_PRMS1 ; routine CD_PRMS1 forms circle parameters.

 PUSH BC ;

 RST 28H ;; FP-CALC
 DEFB $31 ;;duplicate
 DEFB $E1 ;;get-mem-1
 DEFB $04 ;;multiply
 DEFB $38 ;;end-calc

 LD A,(HL) ;
 CP $80 ;
 JR NC,C_ARC_GE1 ; to C-ARC-GE1

 RST 28H ;; FP-CALC
 DEFB $02 ;;delete
 DEFB $02 ;;delete
 DEFB $38 ;;end-calc

 POP BC ;
;;; JP PLOT ; JUMP to PLOT
 JR PLOT ;+ use relative jump to PLOT

; ---

C_ARC_GE1 RST 28H ;; FP-CALC
 DEFB $C2 ;;st-mem-2
 DEFB $01 ;;exchange
 DEFB $C0 ;;st-mem-0
 DEFB $02 ;;delete
 DEFB $03 ;;subtract
 DEFB $01 ;;exchange
 DEFB $E0 ;;get-mem-0
 DEFB $0F ;;addition
 DEFB $C0 ;;st-mem-0
 DEFB $01 ;;exchange
 DEFB $31 ;;duplicate
 DEFB $E0 ;;get-mem-0
 DEFB $01 ;;exchange
 DEFB $31 ;;duplicate
 DEFB $E0 ;;get-mem-0
 DEFB $A0 ;;stk-zero
 DEFB $C1 ;;st-mem-1
 DEFB $02 ;;delete
 DEFB $38 ;;end-calc

 INC (IY+$62) ; MEM-2-1st
 CALL FIND_INT1 ; routine FIND-INT1
 LD L,A ;
 PUSH HL ;
 CALL FIND_INT1 ; routine FIND-INT1
 POP HL ;
 LD H,A ;
 LD ($5B7D),HL ; COORDS
 POP BC ;
 JP DRW_STEPS ; to DRW-STEPS

; ------------------
; THE 'DRAW' COMMAND
; ------------------
; The DRAW command is rather more sophisticated than anything contemplated
; for the ZX80 and ZX81 and, with a third parameter, it can draw an arc.
; At this stage, syntax has been partly checked by the class routines and
; the 'x, y' parameters have been verified.

DRAW RST 18H ; GET-CHAR
 CP $2C ; is character the optional ',' ?
 JR Z,DR_3_PRMS ; forward, if so, to DR_3_PRMS

 CALL CHECK_END ; routine CHECK-END checks that nothing follows.

 JP LINE_DRAW ; jump forward, in runtime, to LINE-DRAW

; ---

; The branch was here when a comma indicated a third parameter was expected.

DR_3_PRMS CALL CHK_END_1 ; following three routines combined.

;;; RST 20H ; NEXT-CHAR advances.
;;; CALL EXPT_1NUM ; routine EXPT-1NUM checks for numeric
;;; CALL CHECK_END ; routine CHECK-END

 RST 28H ;; FP-CALC x, y, z.
 DEFB $C5 ;;st-mem-5 x, y, z.
 DEFB $A2 ;;stk-half x, y, z, 1/2.
 DEFB $04 ;;multiply x, y, z/2.
 DEFB $1F ;;sin
 DEFB $31 ;;duplicate
 DEFB $30 ;;not
 DEFB $30 ;;not
 DEFB $00 ;;jump-true

 DEFB DR_SIN_NZ - $;;to DR_SIN_NZ

 DEFB $02 ;;delete
 DEFB $38 ;;end-calc

 JP LINE_DRAW ; to LINE-DRAW

; ---

DR_SIN_NZ DEFB $C0 ;;st-mem-0
 DEFB $02 ;;delete
 DEFB $C1 ;;st-mem-1
 DEFB $02 ;;delete
 DEFB $31 ;;duplicate
 DEFB $2A ;;abs
 DEFB $E1 ;;get-mem-1
 DEFB $01 ;;exchange
 DEFB $E1 ;;get-mem-1
 DEFB $2A ;;abs
 DEFB $0F ;;addition
 DEFB $E0 ;;get-mem-0
 DEFB $05 ;;division
 DEFB $2A ;;abs
 DEFB $E0 ;;get-mem-0
 DEFB $01 ;;exchange
 DEFB $3D ;;re-stack
 DEFB $38 ;;end-calc

 LD A,(HL) ;
 CP $81 ;
 JR NC,DR_PRMS ; to DR-PRMS

 RST 28H ;; FP-CALC
 DEFB $02 ;;delete
 DEFB $02 ;;delete
 DEFB $38 ;;end-calc

 JP LINE_DRAW ; to LINE_DRAW

; ---

DR_PRMS CALL CD_PRMS1 ; routine CD_PRMS1 forms draw parameters.

 PUSH BC ;

 RST 28H ;; FP-CALC
 DEFB $02 ;;delete
 DEFB $E1 ;;get-mem-1
 DEFB $01 ;;exchange
 DEFB $05 ;;division
 DEFB $C1 ;;st-mem-1
 DEFB $02 ;;delete
 DEFB $01 ;;exchange
 DEFB $31 ;;duplicate
 DEFB $E1 ;;get-mem-1
 DEFB $04 ;;multiply
 DEFB $C2 ;;st-mem-2
 DEFB $02 ;;delete
 DEFB $01 ;;exchange
 DEFB $31 ;;duplicate
 DEFB $E1 ;;get-mem-1
 DEFB $04 ;;multiply
 DEFB $E2 ;;get-mem-2
 DEFB $E5 ;;get-mem-5
 DEFB $E0 ;;get-mem-0
 DEFB $03 ;;subtract
 DEFB $A2 ;;stk-half
 DEFB $04 ;;multiply
 DEFB $31 ;;duplicate
 DEFB $1F ;;sin
 DEFB $C5 ;;st-mem-5
 DEFB $02 ;;delete
 DEFB $20 ;;cos
 DEFB $C0 ;;st-mem-0
 DEFB $02 ;;delete
 DEFB $C2 ;;st-mem-2
 DEFB $02 ;;delete
 DEFB $C1 ;;st-mem-1
 DEFB $E5 ;;get-mem-5
 DEFB $04 ;;multiply
 DEFB $E0 ;;get-mem-0
 DEFB $E2 ;;get-mem-2
 DEFB $04 ;;multiply
 DEFB $0F ;;addition
 DEFB $E1 ;;get-mem-1
 DEFB $01 ;;exchange
 DEFB $C1 ;;st-mem-1
 DEFB $02 ;;delete
 DEFB $E0 ;;get-mem-0
 DEFB $04 ;;multiply
 DEFB $E2 ;;get-mem-2
 DEFB $E5 ;;get-mem-5
 DEFB $04 ;;multiply
 DEFB $03 ;;subtract
 DEFB $C2 ;;st-mem-2
 DEFB $2A ;;abs
 DEFB $E1 ;;get-mem-1
 DEFB $2A ;;abs
 DEFB $0F ;;addition
 DEFB $02 ;;delete
 DEFB $38 ;;end-calc

 LD A,(DE) ;
 CP $81 ;
 POP BC ;
 JR C,LINE_DRAW ; JUMP to LINE-DRAW

 PUSH BC ;

 RST 28H ;; FP-CALC
 DEFB $01 ;;exchange
 DEFB $38 ;;end-calc

 LD A,($5B7D) ; COORDS-x
 CALL STACK_A ; routine STACK-A

 RST 28H ;; FP-CALC
 DEFB $C0 ;;st-mem-0
 DEFB $0F ;;addition
 DEFB $01 ;;exchange
 DEFB $38 ;;end-calc

 LD A,($5B7E) ; COORDS-y
 CALL STACK_A ; routine STACK-A

 RST 28H ;; FP-CALC
 DEFB $C5 ;;st-mem-5
 DEFB $0F ;;addition
 DEFB $E0 ;;get-mem-0
 DEFB $E5 ;;get-mem-5
 DEFB $38 ;;end-calc

 POP BC ;

DRW_STEPS DEC B ;
 JR Z,ARC_END ; to ARC-END

 JR ARC_START ; to ARC-START

; ---

ARC_LOOP RST 28H ;; FP-CALC
 DEFB $E1 ;;get-mem-1
 DEFB $31 ;;duplicate
 DEFB $E3 ;;get-mem-3
 DEFB $04 ;;multiply
 DEFB $E2 ;;get-mem-2
 DEFB $E4 ;;get-mem-4
 DEFB $04 ;;multiply
 DEFB $03 ;;subtract
 DEFB $C1 ;;st-mem-1
 DEFB $02 ;;delete
 DEFB $E4 ;;get-mem-4
 DEFB $04 ;;multiply
 DEFB $E2 ;;get-mem-2
 DEFB $E3 ;;get-mem-3
 DEFB $04 ;;multiply
 DEFB $0F ;;addition
 DEFB $C2 ;;st-mem-2
 DEFB $02 ;;delete
 DEFB $38 ;;end-calc

ARC_START PUSH BC ;

 RST 28H ;; FP-CALC
 DEFB $C0 ;;st-mem-0
 DEFB $02 ;;delete
 DEFB $E1 ;;get-mem-1
 DEFB $0F ;;addition
 DEFB $31 ;;duplicate
 DEFB $38 ;;end-calc

 LD A,($5B7D) ; COORDS-x
 CALL STACK_A ; routine STACK-A

 RST 28H ;; FP-CALC
 DEFB $03 ;;subtract
 DEFB $E0 ;;get-mem-0
 DEFB $E2 ;;get-mem-2
 DEFB $0F ;;addition
 DEFB $C0 ;;st-mem-0
 DEFB $01 ;;exchange
 DEFB $E0 ;;get-mem-0
 DEFB $38 ;;end-calc

 LD A,($5B7E) ; COORDS-y
 CALL STACK_A ; routine STACK-A

 RST 28H ;; FP-CALC
 DEFB $03 ;;subtract
 DEFB $38 ;;end-calc

 CALL DRAW_LINE ; routine DRAW-LINE

 POP BC ;
 DJNZ ARC_LOOP ; to ARC-LOOP

ARC_END RST 28H ;; FP-CALC
 DEFB $02 ;;delete
 DEFB $02 ;;delete
 DEFB $01 ;;exchange
 DEFB $38 ;;end-calc

 LD A,($5B7D) ; COORDS-x
 CALL STACK_A ; routine STACK-A

 RST 28H ;; FP-CALC
 DEFB $03 ;;subtract
 DEFB $01 ;;exchange
 DEFB $38 ;;end-calc

 LD A,($5B7E) ; COORDS-y
 CALL STACK_A ; routine STACK-A

 RST 28H ;; FP-CALC
 DEFB $03 ;;subtract
 DEFB $38 ;;end-calc

LINE_DRAW
 JR DRAW_LINE ; routine DRAW-LINE

;;; CALL DRAW_LINE ; routine DRAW_LINE
;;; JP TEMPs ;?to TEMPs

; ---
; THE 'CIRCLE AND DRAW INITIAL PARAMETERS' SUBROUTINE
; ---
;
;

CD_PRMS1 RST 28H ;; FP-CALC
 DEFB $31 ;;duplicate
 DEFB $28 ;;sqr

 DEFB $34 ;;stk-data
 DEFB $32 ;;Exponent: $82, Bytes: 1
 DEFB $00 ;;(+00,+00,+00)
 DEFB $01 ;;exchange
 DEFB $05 ;;division
 DEFB $E5 ;;get-mem-5
 DEFB $01 ;;exchange
 DEFB $05 ;;division
 DEFB $2A ;;abs
 DEFB $38 ;;end-calc

 CALL FP_TO_A ; routine FP-TO-A
 JR C,USE_252 ; to USE-252

 AND $FC ;
 ADD A,$04 ;
 JR NC,DRAW_SAVE ; to DRAW-SAVE

USE_252 LD A,$FC ;

DRAW_SAVE PUSH AF ;

 CALL STACK_A ; routine STACK-A

 RST 28H ;; FP-CALC
 DEFB $E5 ;;get-mem-5
 DEFB $01 ;;exchange
 DEFB $05 ;;division
 DEFB $31 ;;duplicate
 DEFB $1F ;;sin
 DEFB $C4 ;;st-mem-4
 DEFB $02 ;;delete
 DEFB $31 ;;duplicate
 DEFB $A2 ;;stk-half
 DEFB $04 ;;multiply
 DEFB $1F ;;sin
 DEFB $C1 ;;st-mem-1
 DEFB $01 ;;exchange
 DEFB $C0 ;;st-mem-0
 DEFB $02 ;;delete
 DEFB $31 ;;duplicate
 DEFB $04 ;;multiply
 DEFB $31 ;;duplicate
 DEFB $0F ;;addition
 DEFB $A1 ;;stk-one
 DEFB $03 ;;subtract
 DEFB $1B ;;negate
 DEFB $C3 ;;st-mem-3
 DEFB $02 ;;delete
 DEFB $38 ;;end-calc

 POP BC ;

 RET ;

; --------------------------
; THE 'DRAW LINE' SUBROUTINE
; --------------------------
; B=Y C=X D=signY E=signX
;

DRAW_LINE CALL STK_TO_BC ; routine STK-TO-BC

 LD A,C ; load X to accumulator.

 CP B ; compare to Y.
 JR NC,DL_X_GE_Y ; forward, if X greater or equal, to DL-X-GE-Y

; Y is greater than X

 LD L,C ; load L with X
 ; B is Y
 PUSH DE ; save signs.
 XOR A ;
 LD E,A ; set E to zero.

 JR DL_LARGER ; to DL-LARGER

; ---

DL_X_GE_Y OR C ; check if x is zero
 RET Z ; return if so

 LD L,B ; load L with Y
 LD B,C ; load B with X
 PUSH DE ; save signs.
 LD D,$00 ; set D to zero.

DL_LARGER LD H,B ; load H with larger
 LD A,B ; to A also
 RRA ; LET S = INT (M/2)

D_L_LOOP ADD A,L ;
 JR C,D_L_DIAG ; to D-L-DIAG

 CP H ;
 JR C,D_L_HR_VT ; to D-L-HR-VT

D_L_DIAG SUB H ;
 LD C,A ;
 EXX ;
 POP BC ;
 PUSH BC ;
 JR D_L_STEP ; to D-L-STEP

; ---

D_L_HR_VT LD C,A ;
 PUSH DE ;
 EXX ;
 POP BC ;

D_L_STEP LD HL,($5B7D) ; COORDS
 LD A,B ;
 ADD A,H ;
 LD B,A ;
 LD A,C ;
 INC A ;
 ADD A,L ;
 JR C,D_L_RANGE ; to D-L-RANGE

 JR Z,REPORT_Bc ; to REPORT-Bc
 ; 'Integer out of range'

D_L_PLOT DEC A ;
 LD C,A ;
 CALL PLOT_SUB ; routine PLOT-SUB
 EXX ;
 LD A,C ;

 DJNZ D_L_LOOP ; to D-L-LOOP

 POP DE ;
 RET ;

; ---

D_L_RANGE JR Z,D_L_PLOT ; to D-L-PLOT

REPORT_Bc RST 30H ; ERROR-1
 DEFB $0A ; Error Report: Integer out of range

;***********************************
;** Part 8. EXPRESSION EVALUATION **
;***********************************
;
; It is a this stage of the ROM that the Spectrum ceases altogether to be
; just a colourful novelty. One remarkable feature is that in all previous
; commands when the Spectrum is expecting a number or a string then an
; expression of the same type can be substituted ad infinitum.
; This is the routine that evaluates that expression.
; This is what causes 2 + 2 to give the answer 4.
; That is quite easy to understand. However you don't have to make it much
; more complex to start a remarkable juggling act.
; e.g. PRINT 2 * (VAL "2+2" + TAN 3)
; In fact, provided there is enough free RAM, the Spectrum can evaluate
; an expression of unlimited complexity.
; Apart from a couple of minor glitches, which you can now correct, the
; system is remarkably robust.

; -------------------------
; THE 'SCANNING' SUBROUTINE
; -------------------------
; Scan expression or sub-expression
; The routine begins and ends with a RST 18H instruction.

SCANNING RST 18H ; GET-CHAR
 LD B,$00 ; Priority marker zero is pushed on stack to
 ; signify the end of expression when it is
 ; popped off again.

 PUSH BC ; Stack the marker byte and proceed to consider
 ; the first character of the expression.

S_LOOP_1
;;; LD C,A ; place the search character in C.
 LD HL,SCAN_FUNC-1 ; Address: scan-func
 CALL INDEXER_0 ; routine INDEXER is called to see if it is
 ; part of a limited range '+', '(', 'ATTR' etc.

;;; LD A,C ; fetch the character back
 JP NC,S_ALPHNUM ; jump forward to S-ALPHNUM if not in complex
 ; operators and functions to consider in the
 ; first instance a digit or a variable and
 ; then anything else. >>>

;;; LD B,$00 ; but here if it was found in table so
;;; LD C,(HL) ; fetch offset from table and make B zero.
;;; ADD HL,BC ; add the offset to position found

 JP (HL) ; jump to the routine e.g. S-BIN

 ; making an indirect exit from there.

; ---
; The four service subroutines for routines in the scanning function table
; ---

; PRINT """Hooray!"" he cried."

S_QUOTE_S CALL CH_ADD__1 ; routine CH-ADD+1 points to next character
 ; and fetches that character.
 INC BC ; increase length counter.
 CP $0D ; is it carriage return ?
 ; inside a quote.
 JR Z,REPORT_Cs ; jump forward, if so, to REPORT-C
 ; 'Nonsense in BASIC'.

 CP $22 ; is it a quote '"' ?
 JR NZ,S_QUOTE_S ; back, if not, to S-QUOTE-S

 CALL CH_ADD__1 ; routine CH-ADD+1
 CP $22 ; compare with possible adjacent quote
 RET ; return. with zero set if two together.

; ---

; This subroutine is used to get two coordinate expressions for the three
; functions SCREEN$, ATTR and POINT that have two fixed parameters and
; therefore require surrounding braces.

S_2_COORD RST 20H ; NEXT-CHAR

 CP $28 ; is character the opening '(' ?
 JR NZ,REPORT_Cs ; forward, if not, to S-RPORT-C
 ; 'Nonsense in BASIC'.

 CALL NEXT_2NUM ; routine NEXT-2NUM gets two comma-separated
 ; numeric expressions. Note. this could cause
 ; many more recursive calls to SCANNING but
 ; the parent function will be evaluated fully
 ; before rejoining the main juggling act.

;;; RST 18H ; GET-CHAR was exit route for SCANNING

TST_RBRKT CP $29 ; is it the closing ')' ?

S_RPORT_C JR NZ,REPORT_Cs ; jump forward, if not, to REPORT-Cs

; -------------------------
; THE 'SYNTAX_Z' SUBROUTINE
; -------------------------
; This routine is called on a number of occasions to check if syntax is being
; checked or if the program is being run. To test the flag inline would use
; four bytes of code, but a call instruction only uses 3 bytes of code.

SYNTAX_Z BIT 7,(IY+$01) ; test FLAGS - checking syntax only ?
 RET ; return.

; ----------------
; Scanning SCREEN$
; ----------------

; This function returns the code of a bit-mapped character at screen
; position at line C, column B. It is unable to detect the mosaic characters
; which are not bit-mapped but detects the ASCII 32 - 127 range.
; The bit-mapped UDGs are ignored which is curious as it requires only a
; few extra bytes of code. As usual, anything to do with CHARS is weird.
; If no match is found a null string is returned.
; No actual check on ranges is performed - that's up to the BASIC programmer.
; No real harm can come from SCREEN$(255,255) although the BASIC manual
; says that invalid values will be trapped.
; Interestingly, in the Pitman pocket guide, 1984, Vickers says that the
; range checking will be performed.

S_SCRNs_S CALL STK_TO_LC ; NEW routine STK-TO-LC.

 LD HL,($5B36) ; fetch address of CHARS.

;;; LD DE,$0100 ; fetch offset to chr$ 32
;;; ADD HL,DE ; and find start of bitmaps.
;;; ; Note. not inc h. ??

 INC H ;+ increment high byte to address bitmaps.

 LD A,C ; transfer line to A.
 RRCA ; multiply
 RRCA ; by
 RRCA ; thirty-two.
 AND $E0 ; AND with 11100000
 XOR B ; combine with column $00 - $1F
 LD E,A ; to give the low byte of top line
 LD A,C ; column to A range 00000000 to 00011111
 AND $18 ; AND with 00011000
 XOR $40 ; XOR with 01000000 (high byte screen start)
 LD D,A ; register DE now holds start address of cell.
 LD B,$60 ; there are 96 characters in ASCII set.

S_SCRN_LP PUSH BC ; save count
 PUSH DE ; save screen start address
 PUSH HL ; save bitmap start
 LD A,(DE) ; first byte of screen to A
 XOR (HL) ; XOR with corresponding character byte
 JR Z,S_SC_MTCH ; forward to S-SC-MTCH if they match
 ; if inverse result would be $FF
 ; if any other then mismatch

 INC A ; set to $00 if inverse
 JR NZ,S_SCR_NXT ; forward to S-SCR-NXT if a mismatch

 DEC A ; restore $FF

; a match has been found so seven more to test.

S_SC_MTCH LD C,A ; load C with inverse mask $00 or $FF
 LD B,$07 ; count seven more bytes

S_SC_ROWS INC D ; increment screen address.
 INC HL ; increment bitmap address.
 LD A,(DE) ; byte to A
 XOR (HL) ; will give $00 or $FF (inverse)
 XOR C ; XOR with inverse mask
 JR NZ,S_SCR_NXT ; forward to S-SCR-NXT if no match.

 DJNZ S_SC_ROWS ; back to S-SC-ROWS until all eight matched.

; continue if a match of all eight bytes was found

 POP BC ; discard the
 POP BC ; saved
 POP BC ; pointers
 LD A,$80 ; the endpoint of character set
 SUB B ; subtract the counter
 ; to give the code 32-127
;;; LD BC,$0001 ; make one space in workspace.

 CALL BC_SPACE1 ; BC_SPACES creates the 1 space sliding
 ; the calculator stack upwards.
 LD (DE),A ; start is addressed by DE, so insert code
 JR S_SCR_STO ; forward to S-SCR-STO

; ---

; the jump was here if no match and more bitmaps to test.

S_SCR_NXT POP HL ; restore the last bitmap start
 LD DE,$0008 ; and prepare to add 8.
 ADD HL,DE ; now addresses next character bitmap.
 POP DE ; restore screen address
 POP BC ; and character counter in B
 DJNZ S_SCRN_LP ; back to S-SCRN-LP if more characters.

 LD C,B ; B is now zero, so BC now zero.

S_SCR_STO RET ; (WAS to STK-STO-$) to store the string in
 ; workspace or a string with zero length.
 ; (value of DE doesn't matter in last case)

; Note. this exit seems correct but the general-purpose routine S-STRING
; that calls this one will also stack any of its string results so this
; leads to a double storing of the result in this case.
; The instruction at S_SCR_STO should just be a RET. (Done! SEP-2002)
; credit: Stephen Kelly and others, 1982.

; -------------
; Scanning ATTR
; -------------
; This function subroutine returns the attributes of a screen location -
; a numeric result.
; Again it's up to the BASIC programmer to supply valid values of line/column.

S_ATTR_S CALL STK_TO_LC ; NEW routine STK-TO-BC fetches line to C,
 ; and column to B.
 LD A,C ; line to A $00 - $17 (max 00010111)
 RRCA ; rotate
 RRCA ; bits
 RRCA ; right.
 LD C,A ; store in C as an intermediate value.

 AND $E0 ; pick up bits 11100000 (was 00011100)
 XOR B ; combine with column $00 - $1F
 LD L,A ; low byte is now correct.

 LD A,C ; bring back intermediate result from C
 AND $03 ; mask to give correct third of
 ; screen $00 - $02
 XOR $58 ; combine with base address.
 LD H,A ; high byte correct.
 LD A,(HL) ; pick up the colour attribute.

 JP STACK_A ; jump forward to STACK-A to store result

 ; and make an indirect exit.

; ---

REPORT_Cs RST 30H ; ERROR_1
 DEFB $0B ; Error Report: Nonsense in BASIC

; -----------------------------
; THE 'SCANNING FUNCTION' TABLE
; -----------------------------
; This table is used by INDEXER routine to find the offsets to
; four operators and eight functions. e.g. $A8 is the token 'FN'.
; This table is used in the first instance for the first character of an
; expression or by a recursive call to SCANNING for the first character of
; any sub-expression. It eliminates functions that have no argument or
; functions that can have more than one argument and therefore require
; braces. By eliminating and dealing with these now it can later take a
; simplistic approach to all other functions and assume that they have
; one argument.
; Similarly by eliminating BIN and '.' now it is later able to assume that
; all numbers begin with a digit and that the presence of a number or
; variable can be detected by a call to ALPHANUM.
; By default all expressions are positive and the spurious '+' is eliminated
; now as in print +2. This should not be confused with the operator '+'.
; Note. this does allow a degree of nonsense to be accepted as in
; PRINT +"3 is the greatest.".
; An acquired programming skill is the ability to include brackets where
; they are not necessary.
; A bracket at the start of a sub-expression may be spurious or necessary
; to denote that the contained expression is to be evaluated as an entity.
; In either case this is dealt with by recursive calls to SCANNING.
; An expression that begins with a quote requires special treatment.

SCAN_FUNC DEFB $22, S_QUOTE -$-1 ; $1C offset to S-QUOTE
 DEFB '(', S_BRACKET -$-1 ; $4F offset to S-BRACKET
 DEFB '.', S_DECIMAL -$-1 ; $F2 offset to S-DECIMAL
 DEFB '+', S_U_PLUS -$-1 ; $12 offset to S-U-PLUS

 DEFB $A8, S_FN -$-1 ; $56 offset to S-FN
 DEFB $A5, S_RND -$-1 ; $57 offset to S-RND
 DEFB $A7, S_PI -$-1 ; $84 offset to S-PI
 DEFB $A6, S_INKEYs -$-1 ; $8F offset to S-INKEY$
 DEFB $C4, S_DECIMAL -$-1 ; $E6 offset to S-BIN
 DEFB $AA, S_SCREENs -$-1 ; $BF offset to S-SCREEN$
 DEFB $AB, S_ATTR -$-1 ; $C7 offset to S-ATTR
 DEFB $A9, S_POINT -$-1 ; $CE offset to S-POINT

 DEFB $00 ; zero end marker

; --------------------------------
; THE 'SCANNING FUNCTION' ROUTINES
; --------------------------------
; These are the 11 subroutines accessed by the above table.
; Addresses S-BIN and S-DECIMAL are the same
; The 1-byte offset limits their location to within 255 bytes of their
; entry in the above table.

; ->
S_U_PLUS

 JP S_NEXT_1 ;+ forward to similar code.

;;; RST 20H ; NEXT-CHAR just ignore
;;; JP S_LOOP_1 ; back to S-LOOP-1

; ---

; ->
S_QUOTE RST 18H ; GET-CHAR
 INC HL ; address next character (first in quotes)
 PUSH HL ; save start of quoted text.
 LD BC,$0000 ; initialize length of string to zero.

 CALL S_QUOTE_S ; routine S-QUOTE-S

 JR NZ,S_Q_PRMS ; forward to S-Q-PRMS if

S_Q_AGAIN CALL S_QUOTE_S ; routine S-QUOTE-S copies string until a
 ; quote is encountered

 JR Z,S_Q_AGAIN ; back to S-Q-AGAIN if two quotes WERE
 ; together.

; but if just an isolated quote then that terminates the string.

 CALL SYNTAX_Z ; routine SYNTAX-Z

 JR Z,S_Q_PRMS ; forward, if checking syntax, to S-Q-PRMS

; In runtime, build the string expression result.

 CALL BC_SPACES ; routine BC_SPACES creates the space for true
 ; copy of string in workspace.

 POP HL ; re-fetch start of quoted text.
 PUSH DE ; stack DE the start of string in workspace.

S_Q_COPY LD A,(HL) ; fetch a character from source.
 INC HL ; advance the source address.
 LD (DE),A ; place in destination.
 INC DE ; advance the destination address.

 CP $22 ; was it a '"' just copied ?
 JR NZ,S_Q_COPY ; back, if not, to S-Q-COPY

 LD A,(HL) ; fetch adjacent character from source.
 INC HL ; advance the source address.

 CP $22 ; is this '"' ? - i.e. two quotes together ?
 JR Z,S_Q_COPY ; to S-Q-COPY if so including just one of the
 ; pair of quotes.

; If not two adjacent quotes then the terminating quote has just been copied.

S_Q_PRMS DEC BC ; decrease the count by 1.
 POP DE ; restore start of string in workspace.

S_STRING LD HL,$5B3B ; Address the FLAGS system variable.
 RES 6,(HL) ; signal a string result.
 BIT 7,(HL) ; is syntax being checked ?

 CALL NZ,STK_STO_s ; routine STK-STO-$ is called in runtime.

 JR S_INKs_EN ; jump forward to S-CONT-2 ===>

; ---

; ->
S_BRACKET RST 20H ; NEXT-CHAR

 CALL SCANNING ; routine SCANNING is called recursively.

;;; CP $29 ; is it the closing ')' ?
;;; JR NZ,REPORT_Cs ;.jump back, if not, to REPORT-C

 CALL TST_RBRKT ; test for a right bracket ')'

 RST 20H ; NEXT-CHAR
 JR S_INKs_EN ; jump forward to S-CONT-2 ===>

; ---

; ->
S_FN JP S_FN_SBRN ; jump forward to S-FN-SBRN.

; ---

; ->
S_RND CALL SYNTAX_Z ; routine SYNTAX-Z

 JR Z,S_RND_END ; forward to S-RND-END if checking syntax.

 LD BC,($5B76) ; fetch system variable SEED

 CALL STACK_BC ; routine STACK-BC places on calculator stack

 RST 28H ;; FP-CALC ;s.
 DEFB $A1 ;;stk-one ;s,1.
 DEFB $0F ;;addition ;s+1.
 DEFB $34 ;;stk-data ;
 DEFB $37 ;;Exponent: $87,
 ;;Bytes: 1
 DEFB $16 ;;(+00,+00,+00) ;s+1,75.
 DEFB $04 ;;multiply ;(s+1)*75 = v
 DEFB $34 ;;stk-data ;v.
 DEFB $80 ;;Bytes: 3
 DEFB $41 ;;Exponent $91
 DEFB $00,$00,$80 ;;(+00) ;v,65537.
 DEFB $32 ;;n-mod-m ;remainder, result.
 DEFB $02 ;;delete ;remainder.
 DEFB $A1 ;;stk-one ;remainder, 1.
 DEFB $03 ;;subtract ;remainder - 1. = rnd
 DEFB $31 ;;duplicate ;rnd,rnd.
 DEFB $38 ;;end-calc

 CALL FP_TO_BC ; routine FP-TO-BC

 LD ($5B76),BC ; store in SEED for next starting point.

 LD A,(HL) ; fetch exponent
 AND A ; is it zero ?
 JR Z,S_RND_END ; forward if so to S-RND-END

 SUB $10 ; reduce exponent by 2^16
 LD (HL),A ; place back

S_RND_END JR S_PI_END ; forward to S-PI-END

; ---

; the number PI 3.14159...

; ->
S_PI CALL SYNTAX_Z ; routine SYNTAX-Z
 JR Z,S_PI_END ; to S-PI-END if checking syntax.

 RST 28H ;; FP-CALC
 DEFB $A3 ;;stk-pi/2 pi/2.
 DEFB $38 ;;end-calc

 INC (HL) ; increment the exponent leaving PI
 ; on the calculator stack.

S_PI_END
 JR S_AT_NUM ;+ forward to similar code ending at S_NUMERIC

;;; RST 20H ; NEXT-CHAR
;;; JP S_NUMERIC ; jump forward to S-NUMERIC

; ---

; ->
S_INKEYs LD BC,$105A ; Priority $10, operation code $1A ('read-in')
 ; +$40 for string result, numeric operand.
 ; Set this up now in case we need to use the
 ; calculator.
 RST 20H ; NEXT-CHAR
 CP $23 ; '#' ?
 JP Z,S_PUSH_PO ; To S-PUSH-PO if so to use the calculator
 ; single operation to read from network/RS232.

; else read a key from the keyboard.

 LD HL,$5B3B ; fetch FLAGS
 RES 6,(HL) ; signal string result.
 BIT 7,(HL) ; checking syntax ?
 JR Z,S_INKs_EN ; forward, if so, to S-INK$-EN

 CALL KEY_SCAN ; routine KEY-SCAN key in E, shift in D.

 LD C,$00 ; prepare the length of an empty string
 JR NZ,S_IKs_STK ; forward, if no key returned, to S-IK$-STK
 ; to store empty string.

 CALL K_TEST ; routine K-TEST get main code in A

 JR NC,S_IKs_STK ; forward, if invalid, to S-IK$-STK
 ; to stack null string.

 DEC D ; D is expected to be FLAGS so set bit 3 $FF
 ; 'L' Mode so no keywords.

;;; LD E,A ; main key to E
 ; C is MODE 0 'KLC' from above still.

 CALL K_DECODE2 ; routine K_DECODE but skip first.

;;; PUSH AF ; save the code

;;; LD BC,$0001 ; make room for one character

 CALL BC_SPACE1 ; routine BC_SPACE1 creates a single space.

;;; POP AF ; bring the code back

 LD (DE),A ; put the key in workspace
;;; LD C,$01 ; set C length to one (BC=1)

S_IKs_STK LD B,$00 ; set high byte of length to zero
 CALL STK_STO_s ; routine STK-STO-$

S_INKs_EN JP S_CONT_2 ; to S-CONT-2 ===>

; ---

; ->
S_SCREENs CALL S_2_COORD ; routine S-2-COORD

 CALL NZ,S_SCRNs_S ; routine S-SCRN$-S in runtime.

 RST 20H ; NEXT-CHAR
 JP S_STRING ; Back to S-STRING to stack runtime result

; ---

; ->
S_ATTR CALL S_2_COORD ; routine S-2-COORD

 CALL NZ,S_ATTR_S ; routine S-ATTR-S in runtime.

S_AT_NUM RST 20H ; NEXT-CHAR
 JR S_NUMERIC ; forward to S-NUMERIC

; ---

; ->
S_POINT CALL S_2_COORD ; routine S-2-COORD

 CALL NZ,POINT_SUB ; routine POINT-SUB in runtime.

 JR S_AT_NUM ;+ back to similar sequence ending at S_NUMERIC

;;; RST 20H ; NEXT-CHAR
;;; JR S_NUMERIC ; forward to S-NUMERIC

; -----------------------------

; ==> The branch was here if not in table of exceptions.

S_ALPHNUM CALL ALPHANUM ; routine ALPHANUM checks if a variable or
 ; a digit follows.

 JR NC,S_NEGATE ; forward, if not, to S-NEGATE
 ; to consider a '-' character then functions.

 CP $41 ; compare with 'A'
 JR NC,S_LETTER ; forward, if alpha, to S-LETTER ->

; else must have been numeric so continue into that routine.

; This important routine is called during runtime and from LINE-SCAN
; when a BASIC line is checked for syntax. It is this routine that
; inserts, during syntax checking, the invisible floating point numbers
; after the numeric expression. During runtime it just picks these
; numbers up. It also handles BIN format numbers.

; ->
S_DECIMAL CALL SYNTAX_Z ; routine SYNTAX-Z
 JR NZ,S_STK_DEC ; to S-STK-DEC in runtime

; this route is taken when checking syntax.

 CALL DEC_TO_FP ; routine DEC-TO-FP to evaluate number

 RST 18H ; GET-CHAR to fetch HL

 LD BC,$0006 ; six locations are required
 CALL MAKE_ROOM ; routine MAKE-ROOM
;;; INC HL ;
 LD (HL),$0E ; insert number marker at first location.
 INC HL ; address next location to receive the 5 bytes.

 EX DE,HL ; make DE destination.

 CALL GET_5 ;+ NEW subroutine below embodies following

;;; LD HL,($5B65) ; STKEND points to end of stack.
;;; LD C,$05 ; result is five locations lower
;;; AND A ; prepare for true subtraction
;;; SBC HL,BC ; point to start of value.
;;; LD ($5B65),HL ; update STKEND as we are taking number.
;;; LDIR ; Copy five bytes to program location
;;; EX DE,HL ; transfer pointer to HL
;;; DEC HL ; adjust

 CALL TEMP_PTR1 ; routine TEMP-PTR1 sets CH-ADD.

 JR S_NUMERIC ; to S-NUMERIC to record nature of result

; ---

GET_5 LD HL,($5B65) ;+ STKEND points to end of stack.
 LD BC,$0005 ;+ There are five bytes to copy.
 AND A ;+ Clear carry flag.
 SBC HL,BC ;+ Reduce HL by five.
 LD ($5B65),HL ;+ update STKEND as we are taking number.
 LDIR ;+ Copy five bytes to location
 EX DE,HL ;+ transfer pointer to HL
 DEC HL ;+ adjust
 RET ;+ Return
; ---

; S_DECIMAL branches here in runtime to pick up prepared number.

S_STK_DEC RST 18H ; GET-CHAR positions HL at digit.

S_SD_SKIP INC HL ; advance pointer
 LD A,(HL) ; until we find
 CP $0E ; chr 14d - the number indicator
 JR NZ,S_SD_SKIP ; loop back, until match found, to S-SD-SKIP
 ; it has to be here.

 INC HL ; point to first byte of number

 CALL STACK_NUM ; routine STACK-NUM stacks it.

 LD ($5B5D),HL ; update system variable CH_ADD

S_NUMERIC SET 6,(IY+$01) ; update FLAGS - Signal numeric result
;;; JR S_CONT_1 ; forward to S-CONT-1 ===>
 JR S_CONT_2 ;+ forward now directly to S-CONT-2

; end of functions accessed from scanning functions table.

; --------------------------
; Scanning variable routines
; --------------------------
;
;

S_LETTER CALL LOOK_VARS ; routine LOOK-VARS

 JP C,REPORT_2 ; jump back to REPORT-2 if not found
 ; 'Variable not found'
 ; but a variable is always 'found' if syntax
 ; is being checked.

 CALL Z,STK_VAR ; routine STK-VAR considers a subscript/slice
 LD A,($5B3B) ; fetch FLAGS value
 CP $C0 ; compare 11000000
;;; JR C,S_CONT_1 ; step forward to S-CONT-1 if string ===>
 JR C,S_CONT_2 ;+ step forward to S-CONT-2 if string ===>

; The variable is a simple numeric variable.

 INC HL ; advance pointer past last letter.

 CALL STACK_NUM ; routine STACK-NUM

S_CONT_1 JR S_CONT_2 ; forward to S-CONT-2 ===>

; --
; -> the scanning branch was here if not alphanumeric.
; All the remaining functions will be evaluated by a single call to the
; calculator. The correct priority for the operation has to be placed in
; the B register and the operation code, calculator literal in the C register.
; the operation code has bit 7 set if result is numeric and bit 6 is
; set if operand is numeric. so
; $C0 = numeric result, numeric operand. e.g. 'sin'
; $80 = numeric result, string operand. e.g. 'code'
; $40 = string result, numeric operand. e.g. 'str$'
; $00 = string result, string operand. e.g. 'val$'

S_NEGATE LD BC,$09DB ; prepare priority 09, operation code $C0 +
 ; 'negate' ($1B) - bits 6 and 7 set for numeric
 ; result and numeric operand.

 CP $2D ; is the character '-' ?
 JR Z,S_PUSH_PO ; forward, if so, to S-PUSH-PO

 LD BC,$1018 ; prepare priority $10, operation code 'val$' -
 ; bits 6 and 7 reset for string result and
 ; string operand.

 CP $AE ; is it 'VAL$' ?
 JR Z,S_PUSH_PO ; forward, if so, to S-PUSH-PO

 SUB $AF ; subtract token 'CODE' value to reduce
 ; functions 'CODE' to 'NOT' although the
 ; upper range is, as yet, unchecked.
 ; valid range would be $00 - $14.

 JR C,REPORT_Cw ; forward, with anything else, to REPORT-C
 ; 'Nonsense in BASIC'

 LD BC,$04F0 ; prepare priority $04, operation $C0 +
 ; 'not' ($30)

 CP $14 ; is it 'NOT'
 JR Z,S_PUSH_PO ; forward, if so, to S-PUSH-PO

 JR NC,REPORT_Cw ; forward, if higher, to REPORT-C
 ; 'Nonsense in BASIC'

 LD B,$10 ; priority $10 for all the rest
 ADD A,$DC ; make range $DC - $EF
 ; $C0 + 'code' ($1C) through 'chr$' ($2F)

 LD C,A ; transfer 'function' to C
 CP $DF ; compare to 'sin' ?
 JR NC,S_NO_TO_s ; forward to S-NO-TO-$ with 'sin' through
 ; 'chr$' as operand is numeric.

; all the rest 'cos' through 'chr$' give a numeric result except 'str$'
; and 'chr$'.

 RES 6,C ; signal string operand for 'code', 'val' and
 ; 'len'.

S_NO_TO_s CP $EE ; compare 'str$'
 JR C,S_PUSH_PO ; forward to S-PUSH-PO if lower as result
 ; is numeric.

 RES 7,C ; reset bit 7 of op code for 'str$', 'chr$'
 ; as result is string.

; >> This is where they were all headed for.
; Push the Priority and Operand.

S_PUSH_PO PUSH BC ; push the priority and calculator operation
 ; code.

 JR S_NEXT_1 ;+ forward to similar looping code.

;;; RST 20H ; NEXT-CHAR
;;; JP S_LOOP_1 ; jump back to S-LOOP-1 to go round the loop

; --------------------------------

; ===> there were many branches forward to here

S_CONT_2 RST 18H ; GET-CHAR

S_CONT_3 CP $28 ; is it '(' ?
 JR NZ,S_OPERTR ; forward, if not, to S-OPERTR >

 BIT 6,(IY+$01) ; test FLAGS - numeric or string result ?
 JR NZ,S_LOOP ; forward to S-LOOP if numeric to evaluate >

; if a string preceded '(' then slice it.

 CALL SLICING ; routine SLICING

S_CONT_4 RST 20H ; NEXT-CHAR
 JR S_CONT_3 ; back to S-CONT-3

; ---------------------------

; the branch was here when possibility of an operator '(' has been excluded.

S_OPERTR
;;; LD B,$00 ; prepare to index.
;;; LD C,A ; possible operator to C
 LD HL,tbl_ofops-1 ; Address: tbl-of-ops

 CALL INDEXER_0 ; routine INDEXER does look up sets B to zero.

 JR NC,S_LOOP ; forward to S-LOOP if not in table

; but if found in table the priority has to be looked up.

;;; LD C,(HL) ; operation code to C (B is still zero)

 LD HL,TBL_PRI-$C3 ; address theoretical base of table.

 ADD HL,BC ; index into table.
 LD B,(HL) ; priority to B.

; -----------------------
; Scanning Operation loop
; -----------------------
; The juggling act.

S_LOOP POP DE ; fetch last priority and operation code.
 LD A,D ; priority to A
 CP B ; compare with this one
 JR C,S_TIGHTER ; forward, with carry, to S-TIGHTER
 ; to execute the operation before this one as
 ; it has a higher priority.

; The last priority was greater or equal this one.

 AND A ; if it is zero then so is this

 JP Z,GET_CHAR ; jump, if zero, to exit via GET-CHAR
 ; pointing CH_ADD at next character.
 ; This may be the character after the
 ; expression or, if exiting a recursive call,
 ; the next part of the expression to be
 ; evaluated.

 PUSH BC ; save the current priority/operation as it
 ; must have lower precedence than the one
 ; now in DE.

; The 'USR' function is special in that it is 'overloaded' to give two types
; of result.

 LD HL,$5B3B ; Address the FLAGS system variable.
 LD A,E ; new operation to A register
 CP $ED ; is it $C0 + 'usr-no' ($2D) ?
 JR NZ,S_STK_LST ; forward, if not, to S-STK-LST

 BIT 6,(HL) ; is a string result expected ?
 ; (from the lower priority operand we've
 ; just pushed on stack)
 JR NZ,S_STK_LST ; forward, if numeric, to S-STK-LST
 ; as the operand bits match.

 LD E,$99 ; reset bit 6 and substitute $19 'usr-$'
 ; for a string operand.

S_STK_LST PUSH DE ; now stack this priority/operation code.

 CALL SYNTAX_Z ; routine SYNTAX-Z

 JR Z,S_SYNTEST ; forward, if checking syntax, to S-SYNTEST

 LD A,E ; fetch the operation code.
 AND $3F ; mask off the result/operand bits to leave
 ; a calculator literal.
 LD B,A ; transfer naked 'literal' to B register

; Now use the calculator to perform the single operation - the operand is on
; the calculator stack.
; Note. although the calculator is performing a single operation most
; functions e.g. TAN are written using other functions and literals and
; these in turn are written using further strings of calculator literals so
; another level of magical recursion joins the juggling act for a while as
; the calculator, too, is calling itself.

 RST 28H ;; FP-CALC operand.
 DEFB $3B ;;fp-calc-2
 DEFB $38 ;;end-calc result.

 JR S_RUNTEST ; forward to S-RUNTEST

; ---

; The branch was here if checking syntax only.

S_SYNTEST LD A,E ; fetch the operation code to the accumulator.
 XOR (IY+$01) ; XOR with the FLAGS system variable.
 AND $40 ; bit 6 will be zero now if operand
 ; matched expected result.

 JR Z,S_RUNTEST ; skip forward, if results match.

REPORT_Cw RST 30H ; ERROR-1
 DEFB $0B ; Error Report: Nonsense in BASIC

;;; S_RPRT_C2 JP NZ,REPORT_C ; to REPORT-C if mismatch

; else continue to set flags for next operation.
; The branch is to here in runtime after a successful operation.

S_RUNTEST POP DE ; fetch the last operation from stack
 LD HL,$5B3B ; address FLAGS system variable.
 SET 6,(HL) ; set default FLAGS result to numeric.
 BIT 7,E ; test the operational result.
 JR NZ,S_LOOPEND ; forward, if numeric, to S-LOOPEND

 RES 6,(HL) ; reset bit 6 of FLAGS to show string result.

S_LOOPEND POP BC ; fetch the previous priority/operation

 JR S_LOOP ; back to S-LOOP
 ; to perform these.

; ---

; The branch was here when a stacked priority/operator had higher priority
; than the current one.

S_TIGHTER PUSH DE ; save higher priority/operator on stack again.
 LD A,C ; fetch the lower priority/operation code.

 BIT 6,(IY+$01) ; test FLAGS - numeric or string result ?
 JR NZ,S_NEXT ; forward, if numeric, to S-NEXT

; If this is lower priority, yet has a string result, then it must be a
; comparison. Since these can only be evaluated in context and were
; defaulted to numeric at the operator look-up stage, they must be changed
; to their string equivalents.

 AND $3F ; mask to give the true calculator literal.
 ADD A,$08 ; augment numeric literals to their string
 ; equivalents.
 ; 'no-&-no' => 'str-&-no'
 ; 'no-l-eql' => 'str-l-eql'
 ; 'no-gr-eq' => 'str-gr-eq'
 ; 'nos-neql' => 'strs-neql'
 ; 'no-grtr' => 'str-grtr'
 ; 'no-less' => 'str-less'
 ; 'nos-eql' => 'strs-eql'
 ; 'addition' => 'strs-add'

 LD C,A ; put modified comparison operator back.
 CP $10 ; is it now 'str-&-no' ?
 JR NZ,S_NOT_AND ; skip forward, if not, to S-NOT-AND

 SET 6,C ; set numeric operand bit.
 JR S_NEXT ; forward to S-NEXT

; ---

; The short branch was to here when string operators had been compared.

S_NOT_AND JR C,REPORT_Cw ; back, if less than '&', to S-RPORT-C2
 ; 'Nonsense in BASIC'
 ; e.g. with a$ * b$

 CP $17 ; is it 'strs-add' ?
 JR Z,S_NEXT ; forward, if so, to S-NEXT
 ; as already set for a string result.

 SET 7,C ; set numeric (Boolean) result for all others.

S_NEXT PUSH BC ; now save this priority/operation on stack.

S_NEXT_1 RST 20H ; NEXT-CHAR advances the character address.

 JP S_LOOP_1 ; jump back to S-LOOP-1

; ---------------------
; THE 'OPERATORS' TABLE
; ---------------------
; This table is used to look up the calculator literals associated with the
; operator character. The thirteen calculator operations $03 - $0F have
; bits 6 and 7 set to signify a numeric result. Some of these codes and bits
; may be altered later if the context suggests a string comparison or
; operation was intended. That is '+', '=', '>', '<', '<=', '>=' or '<>'.

tbl_ofops DEFB '+', $CF ; $C0 + 'addition'
 DEFB '-', $C3 ; $C0 + 'subtract'
 DEFB '*', $C4 ; $C0 + 'multiply'
 DEFB '/', $C5 ; $C0 + 'division'
 DEFB '^', $C6 ; $C0 + 'to-power'
 DEFB '=', $CE ; $C0 + 'nos-eql'
 DEFB '>', $CC ; $C0 + 'no-grtr'
 DEFB '<', $CD ; $C0 + 'no-less'

 DEFB $C7, $C9 ; '<=' $C0 + 'no-l-eql'
 DEFB $C8, $CA ; '>=' $C0 + 'no-gr-eql'
 DEFB $C9, $CB ; '<>' $C0 + 'nos-neql'
 DEFB $C5, $C7 ; 'OR' $C0 + 'or'
 DEFB $C6, $C8 ; 'AND' $C0 + 'no-&-no'

 DEFB $00 ; zero end-marker.

; ----------------------
; THE 'PRIORITIES' TABLE
; ----------------------
; This table is indexed with the operation code obtained from the above
; table, $C3 - $CF, to obtain the priority for the respective operation.

TBL_PRI DEFB $06 ; '-' opcode $C3
 DEFB $08 ; '*' opcode $C4
 DEFB $08 ; '/' opcode $C5
 DEFB $0A ; '^' opcode $C6
 DEFB $02 ; 'OR' opcode $C7
 DEFB $03 ; 'AND' opcode $C8
 DEFB $05 ; '<=' opcode $C9
 DEFB $05 ; '>=' opcode $CA
 DEFB $05 ; '<>' opcode $CB
 DEFB $05 ; '>' opcode $CC
 DEFB $05 ; '<' opcode $CD
 DEFB $05 ; '=' opcode $CE
 DEFB $06 ; '+' opcode $CF

; ----------------------
; Scanning function (FN)
; ----------------------
; This routine deals with user-defined functions.
; The definition can be anywhere in the program area but these are best
; placed near the start of the program as we shall see.
; The evaluation process is quite complex as the Spectrum has to parse two
; statements at the same time. Syntax of both has been checked previously
; and hidden locations have been created immediately after each argument
; of the DEF FN statement. Each of the arguments of the FN function is
; evaluated by SCANNING and placed in the hidden locations. Then the
; expression to the right of the DEF FN '=' is evaluated by SCANNING and for
; any variables encountered, a search is made in the DEF FN variable list
; in the program area before searching in the normal variables area.
;
; Recursion is not allowed: i.e. the definition of a function should not use
; the same function, either directly or indirectly (through another
function).
; You'll normally get error 4, ('Out of memory'), although sometimes the
; system will crash. - Vickers, Pitman 1984.
;
; As the definition is just an expression, there would seem to be no means
; of breaking out of such recursion.
; However, by the clever use of string expressions and VAL, such recursion
; is possible.
; e.g. DEF FN a(n) = VAL "n+FN a(n-1)+0" ((n<1) * 10 + 1 TO)
; will evaluate the full 11-character expression for all values where n is
; greater than zero but just the 11th character, "0", when n drops to zero
; thereby ending the recursion producing the correct result.
; Recursive string functions are possible using VAL$ instead of VAL and the
; null string as the final addend.
; - from a turn of the century newsgroup discussion initiated by Mike Wynne.

S_FN_SBRN CALL SYNTAX_Z ; routine SYNTAX-Z

 JR NZ,SF_RUN ; forward to SF-RUN in runtime

 RST 20H ; NEXT-CHAR
 CALL ALPHA ; routine ALPHA check for letters [A-Za-z]
 JR NC,REPORT_Cw ; jump back, if not, to REPORT-C
 ; 'Nonsense in BASIC'

 RST 20H ; NEXT-CHAR
 CP $24 ; is it '$' ?

 PUSH AF ; (*) save the flags

 JR NZ,SF_BRKT_1 ; forward, with numeric function, to SF-BRKT-1

 RST 20H ; NEXT-CHAR advances past the '$'.

SF_BRKT_1 CP $28 ; is character a '(' ?

SF_RPT_C JR NZ,REPORT_Cw ; forward, if not, to SF-RPRT-C
 ; 'Nonsense in BASIC'

 RST 20H ; NEXT-CHAR
 CP $29 ; is it ')' ?
 JR Z,SF_FLAG_6 ; forward, if no arguments, to SF-FLAG-6

SF_ARGMTS CALL SCANNING ; routine SCANNING checks each argument which
 ; may be an expression and ends with RST 18H.

;;; RST 18H ; GET-CHAR

 CP $2C ; is it a ',' ?
 JR NZ,SF_BRKT_2 ; forward if not to SF-BRKT-2 to test bracket

 RST 20H ; NEXT-CHAR if a comma was found
 JR SF_ARGMTS ; back to SF-ARGMTS to parse all arguments.

; ---

SF_BRKT_2
;;; CP $29 ; is character the closing ')' ?
;;; JP NZ,REPORT_C ; Report 'Nonsense in basic' if not.

 CALL TST_RBRKT ;+ routine to test for right hand bracket.

; at this point any optional arguments have had their syntax checked.

SF_FLAG_6 RST 20H ; NEXT-CHAR

;;; LD HL,$5B3B ; address system variable FLAGS
;;; RES 6,(HL) ; signal a string result

 CALL STR_RSLT ;+ set default result to string as 3 byte call.

 POP AF ; (*) restore test result against '$'.

 JP Z,S_CONT_2 ;+ to S_CONT_2 if string
 JP S_NUMERIC ;+ else to S_NUMERIC.

;;; JR Z,SF_SYN_EN ; skip forward to SF-SYN-EN if string function.
;;; SET 6,(HL) ; signal a numeric result.
;;; SF_SYN_EN JP S_CONT_2 ; jump back to S-CONT-2 to continue scanning.

; ---

; The branch was here in runtime.

SF_RUN RST 20H ; NEXT-CHAR fetches name
 AND $DF ; AND 11101111 - reset bit 5 - upper-case.
 LD B,A ; save in B

 RST 20H ; NEXT-CHAR
 SUB $24 ; subtract '$'
 LD C,A ; save result in C
 JR NZ,SF_ARGMT1 ; forward if not '$' to SF-ARGMT1

 RST 20H ; NEXT-CHAR advances to bracket

SF_ARGMT1 RST 20H ; NEXT-CHAR advances to start of argument
 PUSH HL ; save address
 LD HL,($5B53) ; fetch start of program area from PROG
 DEC HL ; the search starting point is the previous
 ; location.

SF_FND_DF LD DE,$00CE ; search is for token 'DEF FN' in E,
 ; statement count in D.
 PUSH BC ; save C the string test, and B the letter.

 CALL LOOK_PROG ; routine LOOK-PROG will search for token.

 POP BC ; restore BC.
 JR NC,SF_CP_DEF ; forward to SF-CP-DEF if a match was found.

REPORT_P RST 30H ; ERROR-1
 DEFB $18 ; Error Report: FN without DEF

SF_CP_DEF PUSH HL ; save address of DEF FN

 CALL FN_SKPOVR ; routine FN-SKPOVR skips over white-space etc.
 ; without disturbing CH-ADD.

 AND $DF ; make fetched character upper-case.
 CP B ; compare with FN name
 JR NZ,SF_NOT_FD ; forward to SF-NOT-FD if no match.

; the letters match so test the type.

 CALL FN_SKPOVR ; routine FN-SKPOVR skips white-space

 SUB $24 ; subtract '$' from fetched character
 CP C ; compare with saved result of same operation
 ; on FN name.
 JR Z,SF_VALUES ; forward to SF-VALUES with a match.

; the letters matched but one was string and the other numeric.

SF_NOT_FD POP HL ; restore search point.
 DEC HL ; make location before
 LD DE,$0200 ; the search is to be for the end of the
 ; current definition - 2 statements forward.
 PUSH BC ; save the letter/type

 CALL EACH_STMT ; routine EACH-STMT steps past the rejected

 ; definition.

 POP BC ; restore letter/type
 JR SF_FND_DF ; back to SF-FND-DF to continue search

; ---

; Success!
; the branch was here with matching letter and numeric/string type.

SF_VALUES AND A ; test A (will be zero if string '$' - '$')

 CALL Z,FN_SKPOVR ; routine FN-SKPOVR advances HL past '$'.

 POP DE ; discard pointer to 'DEF FN'.
 POP DE ; restore pointer to first FN argument.
 LD ($5B5D),DE ; save address in CH_ADD

 CALL FN_SKPOVR ; routine FN-SKPOVR advances HL past the '('

 PUSH HL ; save start address in DEF FN ***
 CP $29 ; is character a ')' ?
 JR Z,SF_R_BR_2 ; forward, if no arguments, to SF-R-BR-2

SF_ARG_LP INC HL ; point to next character.
 LD A,(HL) ; fetch it to A.
 CP $0E ; is it the number marker ?
 LD D,$40 ; signal numeric in D.
 JR Z,SF_ARG_VL ; forward, if numeric, to SF-ARG-VL

 DEC HL ; back to letter

 CALL FN_SKPOVR ; routine FN-SKPOVR skips any white-space

 INC HL ; advance past the expected '$' to
 ; the 'hidden' marker.
 LD D,$00 ; signal a string result.

SF_ARG_VL INC HL ; now address first of 5-byte location.
 PUSH HL ; save address in DEF FN statement
 PUSH DE ; save D - result type

 CALL SCANNING ; routine SCANNING evaluates expression in
 ; the FN statement setting FLAGS and leaving
 ; result as last value on calculator stack.

 POP AF ; restore saved result type to A

 XOR (IY+$01) ; XOR with FLAGS
 AND $40 ; AND with %01000000 to test bit 6
 JR NZ,REPORT_Q ; forward, with type mismatch, to REPORT-Q
 ; 'Parameter error'

;;; POP HL ; pop the start address in DEF FN statement
;;; EX DE,HL ; transfer to DE ?? pop straight into de ?

 POP DE ;+ pop the start address in DEF FN to DE.

 CALL GET_5 ;+ NEW subroutine above embodies following

;;; LD HL,($5B65) ; set HL to STKEND - location after value
;;; LD BC,$0005 ; five bytes to move
;;; SBC HL,BC ; decrease HL by 5 to point to start.
;;; LD ($5B65),HL ; set STKEND thus 'removing' value from stack.

;;; LDIR ; copy value into DEF FN statement
;;; EX DE,HL ; set HL to location after value in DEF FN
;;; DEC HL ; step back one

 CALL FN_SKPOVR ; routine FN-SKPOVR gets next valid character
 CP $29 ; is it ')' end of arguments ?
 JR Z,SF_R_BR_2 ; forward, if so, to SF-R-BR-2

; a comma separator has been encountered in the DEF FN argument list.

 PUSH HL ; save position in DEF FN statement

 RST 18H ; GET-CHAR from FN statement
 CP $2C ; is character the corresponding ',' ?
 JR NZ,REPORT_Q ; forward, if not, to REPORT-Q
 ; 'Parameter error'

 RST 20H ; NEXT-CHAR in FN statement advances to next
 ; argument.

 POP HL ; restore DEF FN pointer
 CALL FN_SKPOVR ; routine FN-SKPOVR advances to corresponding
 ; argument.

 JR SF_ARG_LP ; back to SF-ARG-LP looping until all
 ; arguments are passed into the DEF FN
 ; hidden locations.

; ---

; the branch was here when all arguments passed.

SF_R_BR_2 PUSH HL ; save location of ')' in DEF FN

 RST 18H ; GET-CHAR gets next character in FN
 CP $29 ; is it a ')' also ?
 JR Z,SF_VALUE ; forward, if so, to SF-VALUE

REPORT_Q RST 30H ; ERROR-1
 DEFB $19 ; Error Report: Parameter error

SF_VALUE POP DE ; restore location of ')' in DEF FN to DE.
 EX DE,HL ; now to HL, FN ')' pointer to DE.
 LD ($5B5D),HL ; initialize CH_ADD to this value.

; At this point the start of the DEF FN argument list is on the machine stack.
; We also have to consider that this defined function may form part of the
; definition of another defined function (though not itself).
; As this defined function may be part of a hierarchy of defined functions
; currently being evaluated by recursive calls to SCANNING, then we have to
; preserve the original value of DEFADD and not assume that it is zero.

 LD HL,($5B0B) ; get original DEFADD address
 EX (SP),HL ; swap with DEF FN address on stack ***
 LD ($5B0B),HL ; set DEFADD to point to this argument list
 ; during scanning.

 PUSH DE ; save FN ')' pointer.

 RST 20H ; NEXT-CHAR advances past ')' in define

 RST 20H ; NEXT-CHAR advances past '=' to expression

 CALL SCANNING ; routine SCANNING evaluates but searches
 ; initially for variables at DEFADD

 POP HL ; pop the FN ')' pointer
 LD ($5B5D),HL ; set CH_ADD to this
 POP HL ; pop the original DEFADD value
 LD ($5B0B),HL ; and re-insert into DEFADD system variable.

 JP S_CONT_4 ;+ back to similar code.

;;; RST 20H ; NEXT-CHAR advances to character after ')'
;;; JP S_CONT_2 ; jump back to S-CONT-2

; --------------------------------
; THE 'DEF FN SKIPOVER' SUBROUTINE
; --------------------------------
; Used to parse DEF FN
;
; e.g. DEF FN s $ (x) = b $ (TO x) : REM exaggerated
;
; This routine is used 10 times to advance along a DEF FN statement skipping
; spaces and colour control codes. It is similar to NEXT-CHAR which is, at
; the same time, used to skip along the corresponding FN function, except
; that the latter has to deal with AT and TAB characters in string
; expressions. These cannot occur in a program area so this routine is
; simpler, as both colour controls and their parameters collate to less than
; the space character.

FN_SKPOVR INC HL ; increase pointer.
 LD A,(HL) ; fetch the addressed character.

 CP $21 ; compare with space + 1
 JR C,FN_SKPOVR ; back to FN-SKPOVR if space or less.

 RET ; return pointing to a significant character.

; --------------------------------------
; THE 'SEARCH VARIABLES AREA' SUBROUTINE
; --------------------------------------
;
;

LOOK_VARS SET 6,(IY+$01) ; update FLAGS - presume numeric result

 RST 18H ; GET-CHAR

 CALL ALPHA ; routine ALPHA tests for [A-Za-z]

 JP NC,REPORT_C ; jump back, if not, to REPORT-C
 ; 'Nonsense in BASIC'

; The first character in BASIC is alphabetic

 PUSH HL ; save pointer to first character ^1
 AND $1F ; mask lower bits, 1 - 26 decimal 000xxxxx
 LD C,A ; store in C as descriptor.

 RST 20H ; NEXT-CHAR points to second character.
 PUSH HL ; save pointer to second character ^2
 CP $28 ; is it '(' - an array ?
 JR Z,V_RUN_SYN ; forward, if so, to V-RUN/SYN. with 000xxxxx

 SET 6,C ; preset bit 6 signaling string 010xxxxx
 CP $24 ; is character a '$' ?

 JR Z,V_STR_VAR ; forward, if so, to V-STR-VAR

 SET 5,C ; signal simple numeric 011xxxxx

 CALL ALPHANUM ; routine ALPHANUM sets carry if second
 ; character is also alphanumeric.

 JR NC,V_TEST_FN ; forward to V-TEST-FN if just one character

; It is more than one character but re-test current character so that 6 reset
; Subsequent characters have the character reduced to 1-26 or 33-58 if lower
; case. Deceptively clever.

V_CHAR CALL ALPHANUM ; routine ALPHANUM
 JR NC,V_RUN_SYN ; to V_RUN_SYN when no more

 RES 6,C ; make long named type 001

 RST 20H ; NEXT-CHAR
 JR V_CHAR ; loop back to V-CHAR

; ---

; The jump was here when second character was '$'.

V_STR_VAR RST 20H ; NEXT-CHAR advances past '$'
;;; RES 6,(IY+$01) ; update FLAGS - signal string result.
 CALL STR_RSLT ;+

V_TEST_FN LD A,($5B0C) ; load A with DEFADD_hi
 AND A ; and test for zero.
 JR Z,V_RUN_SYN ; forward to V_RUN_SYN if a defined function
 ; is not being evaluated.

; Note.

 CALL SYNTAX_Z ; routine SYNTAX-Z

 JR NZ,STK_F_ARG ; JUMP to STK-F-ARG in runtime and then
 ; back to this point if no variable found.

; All paths converge here with bits 5 and 6 describing variable.

V_RUN_SYN LD B,C ; save flags in B
 CALL SYNTAX_Z ; routine SYNTAX-Z
 JR NZ,V_RUN ; to V-RUN to look for the variable in runtime

; If checking syntax the letter is not returned

 LD A,C ; copy letter/flags to A
 AND $E0 ; AND with 11100000 to get rid of the letter
 SET 7,A ; use spare bit to signal checking syntax.
 LD C,A ; and transfer back to C.

 JR V_SYNTAX ; forward to V-SYNTAX

; ---

; In runtime search for the variable.

V_RUN LD HL,($5B4B) ; set HL to start of variables from VARS

V_EACH LD A,(HL) ; get first variable letter

 AND $7F ; AND with %01111111
 ; ignoring bit 7 which distinguishes
 ; arrays or for/next variables.

 JR Z,V_80_BYTE ; forward, if zero, to V-80-BYTE
 ; as must be 10000000 the variables end-marker.

 CP C ; compare with supplied value.
 JR NZ,V_NEXT ; forward, with no match, to V-NEXT

 RLA ; destructively test
 ADD A,A ; bits 5 and 6 of A
 ; jumping if bit 5 reset or 6 set

 JP P,V_FOUND_2 ; to V-FOUND-2 strings and arrays

 JR C,V_FOUND_2 ; to V-FOUND-2 simple and for next

; This leaves long name variables. x01xxxxx

 POP DE ; pop pointer to BASIC 2nd. character.
 PUSH DE ; save it again

 PUSH HL ; save variable first letter pointer

V_MATCHES INC HL ; address next letter in VARS area

V_SPACES LD A,(DE) ; pick up character from BASIC area
 INC DE ; and advance character address
 CP $20 ; is character a space ?
 JR Z,V_SPACES ; back to V-SPACES until non-space

 OR $20 ; convert character to reduced lower case.33-58
 CP (HL) ; compare with addressed variables letter
 JR Z,V_MATCHES ; loop back to V-MATCHES if a match on an
 ; intermediate letter.

; the last letter won't match.

 OR $80 ; now set bit 7 as last character of long names
 ; is inverted.
 CP (HL) ; compare again
 JR NZ,V_GET_PTR ; forward to V-GET-PTR if no match

; but if they match check that this is also last letter in prog area

 LD A,(DE) ; fetch next BASIC character

 CALL ALPHANUM ; routine ALPHANUM sets carry if not alphanum

 JR NC,V_FOUND_1 ; forward to V-FOUND-1 with a full match.

V_GET_PTR POP HL ; pop saved pointer to 1st BASIC character.

V_NEXT PUSH BC ; save flags

 CALL NEXT_ONE ; routine NEXT-ONE gets next variable in DE

 EX DE,HL ; transfer VARS address to HL.
 POP BC ; restore the flags

 JR V_EACH ; loop back to V-EACH
 ; to compare each variable

; ---

V_80_BYTE SET 7,B ; signals not found in runtime.

; the branch was here when checking syntax

V_SYNTAX POP DE ; discard the pointer to 2nd. character v2
 ; in BASIC line/workspace.
 ; Note HL addresses 2nd BASIC character also

 RST 18H ; GET-CHAR gets character after variable name.

 CP $28 ; is it '(' ?
 ; from a string array e.g. a$(

;;; JR Z,V_PASS ; forward, with string array, to V-PASS
;;; ; Note. could go straight to V-END ?

 JR Z,V_END ;+ forward, with string array, to V-END

 SET 5,B ; signal not an array
 JR V_END ; forward to V-END

; ---------------------------

; the jump was here when a long name matched and HL pointing to last character
; in variables area.

V_FOUND_1 POP DE ; discard pointer to first var letter

; the jump was here with all other matches HL points to first var char.

V_FOUND_2 POP DE ; discard pointer to 2nd BASIC char v2
 POP DE ; drop pointer to 1st BASIC char v1
 PUSH HL ; save pointer to last letter in VARS

 RST 18H ; GET-CHAR

;;; V_PASS CALL ALPHANUM ; Routine ALPHANUM
;;; JR NC,V_END ; Forward, if not, to V-END

; but it never will be as we advanced past long-named variables earlier.

;;; RST 20H ; NEXT-CHAR
;;; JR V_PASS ; Back to V-PASS

; ---

V_END POP HL ; Pop the pointer to last or only letter in
 ; the VARS area.
 RL B ; Rotate the B register left, bit 7 to carry.

 BIT 6,B ; Test the array indicator bit.

 RET ; Return.

; -------------------------------------
; THE 'STACK FUNCTION ARGUMENT' SECTION
; -------------------------------------
; This branch is taken from LOOK-VARS when a defined function is currently
; being evaluated.
; Scanning is evaluating the expression after the '=' and the variable
; found could be in the argument list to the left of the '=' or in the
; normal place after the program. Preference will be given to the former.

; The variable name to be matched is in C.

STK_F_ARG LD HL,($5B0B) ; set HL to DEFADD
 LD A,(HL) ; load the first character
 CP $29 ; is it ')' ?
SFA_VRSYN JR Z,V_RUN_SYN ; JUMP back to V-RUN/SYN, if so, as there are
 ; no arguments.

; but proceed to search argument list of defined function first if not empty.

SFA_LOOP LD A,(HL) ; fetch character again.
 OR $60 ; or with 01100000 presume a simple variable.
 LD B,A ; save result in B.
 INC HL ; address next location.
 LD A,(HL) ; pick up byte.
 CP $0E ; is it the number marker ?
 JR Z,SFA_CP_VR ; forward, if so, to SFA-CP-VR

; it was a string. White-space may be present but syntax has been checked.

 DEC HL ; point back to letter.
 CALL FN_SKPOVR ; routine FN-SKPOVR skips to the '$'
 INC HL ; now address the hidden marker.
 RES 5,B ; signal a string variable.

SFA_CP_VR LD A,B ; transfer found variable letter to A.
 CP C ; compare with expected.
 JR Z,SFA_MATCH ; forward to SFA-MATCH with a match.

;;; INC HL ; step
;;; INC HL ; past
;;; INC HL ; the
;;; INC HL ; five
;;; INC HL ; bytes.

 CALL NUMBER_5 ;+ new entry point to increment HL by 5.

 CALL FN_SKPOVR ; routine FN-SKPOVR skips to next character
 CP $29 ; is it ')' ?
 JR Z,SFA_VRSYN ; jump back, if so, to V-RUN/SYN
 ; to look in the normal variables area.

 CALL FN_SKPOVR ; routine FN-SKPOVR skips past the ','
 ; all syntax has been checked and these
 ; things can be taken as read.

 JR SFA_LOOP ; back, until bracket encountered, to SFA-LOOP

; ---

SFA_MATCH BIT 5,C ; test if numeric
 JR NZ,SFA_END ; forward, if so, to SFA-END
 ; as will be stacked by scanning.

 INC HL ; point to start of string descriptor

;;; LD DE,($5B65) ; set DE to STKEND
;;; CALL MOVE_FP ; routine MOVE-FP puts parameters on stack.
;;; EX DE,HL ; new free location to HL.
;;; LD ($5B65),HL ; use it to set STKEND system variable.

 CALL STACK_NUM ;+ subroutine embodies 3 of above instructions

 EX DE,HL ;+ HL must address STKEND

SFA_END POP DE ; discard
 POP DE ; pointers.
 XOR A ; clear carry flag.
 INC A ; and zero flag.

 RET ; Return.

; ------------------------
; Stack variable component
; ------------------------
; This is called to evaluate a complex structure that has been found, in
; runtime, by LOOK-VARS in the variables area.
; In this case HL points to the initial letter, bits 7-5
; of which indicate the type of variable.
; 010 - simple string, 110 - string array, 100 - array of numbers.
;
; It is called from CLASS-01 when assigning to a string or array including
; a slice.
; It is called from SCANNING to isolate the required part of the structure.
;
; An important part of the runtime process is to check that the number of
; dimensions of the variable match the number of subscripts supplied in the
; BASIC line.
;
; If checking syntax,
; the B register, which counts dimensions is set to zero (256) to allow
; the loop to continue till all subscripts are checked. While doing this it
; is reading dimension sizes from some arbitrary area of memory. Although
; these are meaningless it is of no concern as the limit is never checked by
; int-exp during syntax checking.
;
; The routine is also called from the syntax path of DIM command to check the
; syntax of both string and numeric arrays definitions except that bit 6 of C
; is reset so both are checked as numeric arrays. This ruse avoids a terminal
; slice being accepted as part of the DIM command.
; All that is being checked is that there are a valid set of comma-separated
; expressions before a terminal ')', although, as above, it will still go
; through the motions of checking dummy dimension sizes.

STK_VAR XOR A ; clear A
 LD B,A ; and B, the syntax dimension counter (256)
 BIT 7,C ; checking syntax ?
 JR NZ,SV_COUNT ; forward, if so, to SV-COUNT

; runtime evaluation.

 BIT 7,(HL) ; will be reset if a simple string.
 JR NZ,SV_ARRAYS ; forward to SV-ARRAYS otherwise

 INC A ; set A to 1, simple string.

SV_SIMPLE INC HL ; address length low
 LD C,(HL) ; place in C
 INC HL ; address length high
 LD B,(HL) ; place in B
 INC HL ; address start of string
 EX DE,HL ; DE = start now.
 CALL STK_STO_s ; routine STK-STO-$ stacks string parameters
 ; DE start in variables area,
 ; BC length, A=1 indicates a simple string

; the only thing now is to consider if a slice is required.

 RST 18H ; GET-CHAR puts character at CH_ADD in A
 JP SV_SLICEq ; jump forward to SV-SLICE? to test for '('

; --

; the branch was here with string and numeric arrays in runtime.

SV_ARRAYS INC HL ; step past
 INC HL ; the total length
 INC HL ; to address Number of dimensions.
 LD B,(HL) ; transfer to B overwriting zero.
 BIT 6,C ; a numeric array ?
 JR Z,SV_PTR ; forward to SV-PTR with numeric arrays

 DEC B ; ignore the final element of a string array
 ; the fixed string size.

 JR Z,SV_SIMPLE ; back to SV-SIMPLE$ if result is zero as has
 ; been created with DIM a$(10) for instance
 ; and can be treated as a simple string.

; proceed with multi-dimensioned string arrays in runtime.

 EX DE,HL ; save pointer to dimensions in DE

 RST 18H ; GET-CHAR looks at the BASIC line
 CP $28 ; is character '(' ?
 JR NZ,REPORT_3 ; forward, if not, to REPORT-3
 ; 'Subscript wrong'

 EX DE,HL ; dimensions pointer to HL to synchronize
 ; with next instruction.

; runtime numeric arrays path rejoins here.

SV_PTR EX DE,HL ; save dimension pointer in DE
 JR SV_COUNT ; forward to SV-COUNT with true no of dims
 ; in B. As there is no initial comma the
 ; loop is entered at the midpoint.

; --
; the dimension counting loop which is entered at mid-point.

SV_COMMA PUSH HL ; save counter

 RST 18H ; GET-CHAR

 POP HL ; pop counter
 CP $2C ; is character ',' ?
 JR Z,SV_LOOP ; forward, if so, to SV-LOOP

; in runtime the variable definition indicates a comma should appear here

 BIT 7,C ; checking syntax ?
 JR Z,REPORT_3 ; forward, if not, to REPORT-3
 ; 'Subscript wrong'

; proceed if checking syntax of an array?

 BIT 6,C ; array of strings ?
 JR NZ,SV_CLOSE ; forward, if so, to SV-CLOSE

; an array of numbers.

;;; CP $29 ; is character ')' ? XXXXX
;;; JR NZ,SV_RPT_C ; forward, if not, to SV-RPT-C

RBRKT_NXT CALL TST_RBRKT ;+ test for a right hand bracket.

 RST 20H ; NEXT-CHAR moves CH-ADD past the statement
 RET ; return ->

; ---

; the branch was here with an array of strings.

SV_CLOSE CP $29 ; as above ')' could follow the expression
 JR Z,SV_DIM ; forward, if so, to SV-DIM

 CP $CC ; is it 'TO' ?
 JR NZ,SV_RPT_C ; to SV-RPT-C with anything else
 ; 'Nonsense in BASIC'

; now backtrack CH_ADD to set up for slicing routine.
; Note. in a BASIC line we can safely backtrack to a colour parameter.

SV_CH_ADD RST 18H ; GET-CHAR
 DEC HL ; backtrack HL
 LD ($5B5D),HL ; to set CH_ADD up for slicing routine
 JR SV_SLICE ; forward to SV-SLICE and make a return
 ; when all slicing complete.

; --

; -> the mid-point entry point of the loop

SV_COUNT LD HL,$0000 ; initialize data pointer to zero.

SV_LOOP PUSH HL ; save the data pointer.

 RST 20H ; NEXT-CHAR in BASIC area points to an
 ; expression.

 POP HL ; restore the data pointer.
 LD A,C ; transfer name/type to A.
 CP $C0 ; is it 11000000 ?
 ; Note. the letter component is absent if
 ; syntax checking.
 JR NZ,SV_MULT ; forward to SV-MULT if not an array of
 ; strings.

; proceed to check string arrays during syntax.

 RST 18H ; GET-CHAR
 CP $29 ; ')' end of subscripts ?
 JR Z,SV_DIM ; forward to SV-DIM to consider further slice

 CP $CC ; is it 'TO' ?
 JR Z,SV_CH_ADD ; back to SV-CH-ADD to consider a slice.
 ; (no need to repeat get-char at L29E0)

; if neither, then an expression is required so rejoin runtime loop ??
; registers HL and DE only point to somewhere meaningful in runtime so
; comments apply to that situation.

SV_MULT PUSH BC ; save dimension number.
 PUSH HL ; push data pointer/rubbish.
 ; DE points to current dimension.

 EX DE,HL ;
 INC HL ;
 LD E,(HL) ;
 INC HL ;
 LD D,(HL) ;

;;; CALL DEDEplus1 ; routine DE,(DE+1) gets next dimension in DE
 ; and HL points to it.
 EX (SP),HL ; dim pointer to stack, data pointer to HL (*)
 EX DE,HL ; data pointer to DE, dim size to HL.

 CALL INT_EXP1 ; routine INT-EXP1 checks integer expression
 ; and gets result in BC in runtime.
 JR C,REPORT_3 ; to REPORT-3 if > HL
 ; 'Subscript wrong'

 DEC BC ; adjust returned result from 1-x to 0-x
 CALL GET_HLxDE ; routine GET-HL*DE multiplies data pointer by
 ; dimension size.
 ADD HL,BC ; add the integer returned by expression.
 POP DE ; pop the dimension pointer.

 POP BC ; pop dimension counter.
 DJNZ SV_COMMA ; back to SV-COMMA if more dimensions
 ; Note. during syntax checking, unless there
 ; are more than 256 subscripts, the branch
 ; back to SV-COMMA is always taken.

 BIT 7,C ; are we checking syntax ?
 ; then we've got a joker here.

SV_RPT_C JP NZ,REPORT_Cw ; forward, if so, to SL-RPT-C
 ; 'Nonsense in BASIC'
 ; more than 256 subscripts in BASIC line.

; but in runtime the number of subscripts are at least the same as dims

 PUSH HL ; save data pointer.
 BIT 6,C ; is it a string array ?
 JR NZ,SV_ELEMs ; forward, if so, to SV-ELEM$

; a runtime numeric array subscript.

 LD B,D ; register DE has advanced past all dimensions
 LD C,E ; and points to start of data in variable.
 ; transfer it to BC.

 RST 18H ; GET-CHAR checks BASIC line
 CP $29 ; must be a ')' ?
 JR Z,SV_NUMBER ; skip, if so, to SV-NUMBER

; else more subscripts in BASIC line than the variable definition.

REPORT_3 RST 30H ; ERROR-1
 DEFB $02 ; Error Report: Subscript wrong

; continue if subscripts matched the numeric array.

SV_NUMBER RST 20H ; NEXT-CHAR moves CH_ADD to next statement
 ; - finished parsing.

 POP HL ; pop the data pointer.
 LD DE,$0005 ; each numeric element is 5 bytes.
 CALL GET_HLxDE ; routine GET-HL*DE multiplies.

 ADD HL,BC ; now add to start of data in the variable.

 RET ; return with HL pointing at the numeric
 ; array subscript. ->

; ---

; the branch was here for string subscripts when the number of subscripts
; in the BASIC line was one less than in variable definition.

SV_ELEMs
 EX DE,HL ;
 INC HL ;
 LD E,(HL) ;
 INC HL ;
 LD D,(HL) ;

;;; CALL DEDEplus1 ; routine DE,(DE+1) gets next dimension in DE
 ; the length of strings in this array.
 EX (SP),HL ; start pointer to stack, data pointer to HL.
 CALL GET_HLxDE ; routine GET-HL*DE multiplies by element
 ; size.
 POP BC ; the start of data pointer is added
 ADD HL,BC ; in - now points to location before.
 INC HL ; point to start of required string.
 LD B,D ; transfer the length (final dimension size)
 LD C,E ; from DE to BC.
 EX DE,HL ; put start in DE.
 CALL STK_ST_0 ; routine STK-ST-0 stores the string parameters
 ; with A=0 indicating a slice or subscript.

; now check that there were no more subscripts in the BASIC line.

 RST 18H ; GET-CHAR
 CP $29 ; is it ')' ?
 JR Z,SV_DIM ; forward to SV-DIM to consider a separate
 ; subscript or/and a slice.

 CP $2C ; a comma is allowed if the final subscript
 ; is to be sliced e.g. a$(2,3,4 TO 6).
 JR NZ,REPORT_3 ; to REPORT-3 with anything else
 ; 'Subscript wrong'

SV_SLICE CALL SLICING ; routine SLICING slices the string.

; but a slice of a simple string can itself be sliced.

SV_DIM RST 20H ; NEXT-CHAR

SV_SLICEq CP $28 ; is character '(' ?
 JR Z,SV_SLICE ; loop back if so to SV-SLICE

STR_RSLT RES 6,(IY+$01) ; update FLAGS - signal string result
 RET ; and return.

; ---

; The above section deals with the flexible syntax allowed.
; DIM a$(3,3,10) can be considered as two dimensional array of ten-character
; strings or a 3-dimensional array of characters.
; a$(1,1) will return a 10-character string as will a$(1,1,1 TO 10)
; a$(1,1,1) will return a single character.
; a$(1,1) (1 TO 6) is the same as a$(1,1,1 TO 6)
; A slice can itself be sliced ad infinitum

; b$ () () () () () () (2 TO 10) (2 TO 9) (3) is the same as b$(5)

; -------------------------------
; THE 'STRING SLICING' SUBROUTINE
; -------------------------------
; The syntax of string slicing is very natural and it is as well to reflect
; on the permutations possible.
; a$() and a$(TO) indicate the entire string although just a$ would do
; and would avoid coming here.
; h$(16) indicates the single character at position 16.
; a$(TO 32) indicates the first 32 characters.
; a$(257 TO) indicates all except the first 256 characters.
; a$(19000 TO 19999) indicates the thousand characters at position 19000.
; Also a$(9 TO 5) returns a null string not an error.
; This enables a$(2 TO) to return a null string if the passed string is
; of length zero or 1.
; A string expression in brackets can be sliced. e.g. (STR$ PI) (3 TO)
; We arrived here from SCANNING with CH-ADD pointing to the initial '('
; or from above.

SLICING CALL SYNTAX_Z ; routine SYNTAX-Z

 CALL NZ,STK_FETCH ; routine STK-FETCH fetches parameters of
 ; string at runtime, start in DE, length
 ; in BC. This could be an array subscript.

 RST 20H ; NEXT-CHAR
 CP $29 ; is it ')' ? e.g. a$()
 JR Z,SL_STORE ; forward to SL-STORE to store entire string.

 PUSH DE ; else save start address of string

 XOR A ; clear accumulator to use as a running flag.

 PUSH AF ; and save on stack before any branching.

 PUSH BC ; save length of string to be sliced.

 LD DE,$0001 ; default the start point to position 1.

 RST 18H ; GET-CHAR

 POP HL ; pop length to HL as default end point
 ; and limit.

 CP $CC ; is it 'TO' ? e.g. a$(TO 10000)
 JR Z,SL_SECOND ; to SL-SECOND to evaluate second parameter.

 POP AF ; pop the running flag.

 CALL INT_EXP2 ; routine INT-EXP2 fetches first parameter.

 PUSH AF ; save flag (will be $FF if parameter>limit)

 LD D,B ; transfer the start
 LD E,C ; to DE overwriting 0001.
 PUSH HL ; save original length.

 RST 18H ; GET-CHAR
 POP HL ; pop the limit length.
 CP $CC ; is it 'TO' after a start ?
 JR Z,SL_SECOND ; to SL-SECOND to evaluate second parameter

;;; CP $29 ; is it ')' ? e.g. a$(365)
;;; SL_RPT_C JP NZ,REPORT_C ; jump to REPORT-C with anything else

 CALL TST_RBRKT ;+ test for a right-hand bracket.

 LD H,D ; copy start
 LD L,E ; to end - just a one character slice.
 JR SL_DEFINE ; forward to SL-DEFINE.

; ---------------------

SL_SECOND PUSH HL ; save limit length.

 RST 20H ; NEXT-CHAR

 POP HL ; pop the length.

 CP $29 ; is character ')' ? e.g. a$(7 TO)
 JR Z,SL_DEFINE ; to SL-DEFINE using length as end point.

 POP AF ; else restore flag.

 CALL INT_EXP2 ; routine INT-EXP2 gets second expression.

 PUSH AF ; save the running flag.

 RST 18H ; GET-CHAR

 LD H,B ; transfer second parameter
 LD L,C ; to HL. e.g. a$(42 to 99)

;;; CP $29 ; is character a ')' ?
;;; JR NZ,SL_RPT_C ; back, if not, to SL-RPT-C

 CALL TST_RBRKT ;+ Test for a right-hand bracket.

; we now have start in DE and an end in HL.

SL_DEFINE POP AF ; pop the running flag.
 EX (SP),HL ; put end point on stack, start address to HL
 ADD HL,DE ; add address of string to the start point.
 DEC HL ; point to first character of slice.
 EX (SP),HL ; start address to stack, end point to HL (*)
 AND A ; prepare to subtract.
 SBC HL,DE ; subtract start point from end point.
 LD BC,$0000 ; default the length result to zero.
 JR C,SL_OVER ; forward to SL-OVER if start > end.

 INC HL ; increment the length for inclusive byte.

 AND A ; now test the running flag.
 JP M,REPORT_3 ; jump back to REPORT-3 if $FF.
 ; 'Subscript wrong'

 LD B,H ; transfer the length
 LD C,L ; to BC.

SL_OVER POP DE ; restore start address from machine stack ***
;;; RES 6,(IY+$01) ; update FLAGS - signal string result for the
;;; ; syntax path.
 CALL STR_RSLT ;+

;;; SL_STORE CALL SYNTAX_Z ; routine SYNTAX_Z (UNSTACK_Z?)

;;; RET Z ; return if checking syntax.

SL_STORE CALL UNSTACK_Z ;+ return early if checking syntax.

; Continue to store the string in runtime.

; ------------------------------------
; other than from above, this routine is called from STK-VAR to stack
; a known string array element.
; ------------------------------------

STK_ST_0 XOR A ; clear to signal a sliced string or element.

; -------------------------
; this routine is called from chr$, scrn$ etc. to store a simple string
result.
; --------------------------

;;; STK_STO_s RES 6,(IY+$01) ; update FLAGS - signal string result.

STK_STO_s CALL STR_RSLT ;+
 ; and continue to store parameters of string.

; ----------------------------
; THE 'STACK STORE' SUBROUTINE
; ----------------------------
; This subroutine puts five registers AEDCB on the calculator stack.

STK_STORE PUSH BC ; preserve two registers

 CALL TEST_5_SP ; routine TEST-5-SP checks room

 POP BC ; fetch the saved registers.

 LD HL,($5B65) ; make HL point to first empty location STKEND

 LD (HL),A ; place the 5 registers.
 INC HL ;
 LD (HL),E ;
 INC HL ;
 LD (HL),D ;
 INC HL ;
 LD (HL),C ;
 INC HL ;
 LD (HL),B ;
 INC HL ;
 LD ($5B65),HL ; update system variable STKEND.

 RET ; and return.

; ---
; THE 'INTEGER EXPRESSION EVALUATION' ROUTINE
; ---
; This clever routine is used to check and evaluate an integer expression
; which is returned in BC, setting A to $FF, if greater than a limit supplied
; in HL. It is used to check array subscripts, parameters of a string slice
; and the arguments of the DIM command. In the latter case, the limit check
; is not required and H is set to $FF. When checking optional string slice
; parameters, it is entered at the second entry point so as not to disturb
; the running flag A, which may be $00 or $FF from a previous invocation.

INT_EXP1 XOR A ; set result flag to zero.

; -> The entry point is here if A is used as a running flag.

INT_EXP2 PUSH DE ; preserve DE register throughout.
 PUSH HL ; save the supplied limit.

 PUSH AF ; save the flag.

 CALL EXPT_1NUM ; routine EXPT-1NUM evaluates expression
 ; at CH_ADD returning if numeric result,
 ; with value on calculator stack.

 POP AF ; pop the flag.

 CALL SYNTAX_Z ; routine SYNTAX-Z
 JR Z,I_RESTORE ; forward, if checking syntax to I-RESTORE
 ; so avoiding a comparison with supplied limit.

; The runtime path.

 PUSH AF ; save the flag.

 CALL FIND_INT2 ; routine FIND-INT2 fetches value from
 ; calculator stack to BC producing an error
 ; if too high.

 POP DE ; pop the flag to D.
 LD A,B ; test value for zero and reject
 OR C ; as arrays and strings begin at 1.
 SCF ; set carry flag.
 JR Z,I_CARRY ; forward, if zero, to I-CARRY

 POP HL ; restore the limit.
 PUSH HL ; and save.
 AND A ; prepare to subtract.
 SBC HL,BC ; subtract value from limit.

I_CARRY LD A,D ; move flag to accumulator $00 or $FF.
 SBC A,$00 ; will set to $FF if carry set.

I_RESTORE POP HL ; restore the limit.
 POP DE ; and DE register.
 RET ; return.

; -----------------------
; LD DE,(DE+1) Subroutine
; -----------------------
; This routine just loads the DE register with the contents of the two
; locations following the location addressed by DE.
; It is used to step along the 16-bit dimension sizes in array definitions.
; Note. Such code is made into subroutines to make programs easier to
; write and it would use less space to include the five instructions in-line.
; However, there are so many exchanges going on at the places this is invoked
; that to implement it in-line would make the code hard to follow.
; It probably had a zippier label though as the intention is to simplify the
; program. Note. this will probably have to go.

; DEDEplus1 EX DE,HL ;
; INC HL ;
; LD E,(HL) ;
; INC HL ;
; LD D,(HL) ;
; RET ;

; -------------------

; HL=HL*DE Subroutine
; -------------------
; This routine calls the mathematical routine to multiply HL by DE in runtime.
; It is called from STK-VAR and from DIM. In the latter case syntax is not
; being checked so the entry point could have been at the second CALL
; instruction to save a few clock-cycles.
; Note. UNSTACK_Z can't be used at start as HL would be corrupted :-)

GET_HLxDE CALL SYNTAX_Z ; routine SYNTAX-Z.
 RET Z ; return if checking syntax.

 CALL HL_HLxDE ; routine HL-HL*DE.

 JP C,REPORT_4 ; jump back to REPORT-4 if over 65535.
 ; 'Out of memory'

 RET ; else return with 16-bit result in HL.

; -----------------
; THE 'LET' COMMAND
; -----------------
; Sinclair BASIC adheres to the ANSI-78 standard and a LET is required in
; assignments e.g. LET a = 1 : LET h$ = "hat".
;
; Long names may contain spaces but not colour controls (when assigned).
; a substring can appear to the left of the equals sign.
;
; An earlier mathematician Lewis Carroll may have been pleased that
;
; 10 LET Babies cannot manage crocodiles = Babies are illogical AND
; Nobody is despised who can manage a crocodile AND Illogical persons
; are despised
;
; does not give the 'Nonsense..' error if the three variables exist.
; I digress.

LET LD HL,($5B4D) ; fetch system variable DEST to HL.

 BIT 1,(IY+$37) ; test FLAGX - handling a new variable ?
 JR Z,L_EXISTS ; forward, if not, to L-EXISTS

; continue for a new variable. DEST points to start in BASIC line.
; from the CLASS routines.

 LD BC,$0005 ; assume numeric and assign an initial 5 bytes

L_EACH_CH INC BC ; increase byte count for each relevant
 ; character

L_NO_SP INC HL ; increase pointer.
 LD A,(HL) ; fetch character.
 CP $20 ; is it a space ?
 JR Z,L_NO_SP ; back to L-NO-SP is so.

 JR NC,L_TEST_CH ; forward to L-TEST-CH if higher.

 CP $10 ; is it $00 - $0F ?
 JR C,L_SPACES ; forward, if so, to L-SPACES

 CP $16 ; is it $16 - $1F ?
 JR NC,L_SPACES ; forward, if so, to L-SPACES

; it was $10 - $15 so step over a colour code.

 INC HL ; increase pointer.
 JR L_NO_SP ; loop back to L-NO-SP.

; ---

; the branch was to here if higher than space.

L_TEST_CH CALL ALPHANUM ; routine ALPHANUM sets carry if alphanumeric
 JR C,L_EACH_CH ; loop back, if so, for more to L-EACH-CH

 CP $24 ; is it '$' ?
 JP Z,L_NEWs ; jump forward if so, to L-NEW$
 ; with a new string.

L_SPACES LD A,C ; save length lo in A.

 CALL MK_RM_EL ;+ MAKE_ROOM at E_LINE -1

;;; LD HL,($5B59) ; fetch E_LINE to HL.
;;; DEC HL ; point to location before, the variables
;;; CALL MAKE_ROOM ; routine MAKE-ROOM creates BC spaces
;;; INC HL ; advance to first new location.

 INC HL ; then to second.
 EX DE,HL ; set DE to second location.
 PUSH DE ; save this pointer.
 LD HL,($5B4D) ; reload HL with DEST.
 DEC DE ; point to first.
 SUB $06 ; subtract six from length_lo.
 LD B,A ; save count in B.
 JR Z,L_SINGLE ; forward to L-SINGLE if it was just
 ; one character.

; Register HL points to start of variable name after 'LET' in BASIC line.

L_CHAR INC HL ; increase pointer.
 LD A,(HL) ; pick up character.
 CP $21 ; is it space or higher ?
 JR C,L_CHAR ; back to L-CHAR with space and less.

 OR $20 ; make variable lower-case.
 INC DE ; increase destination pointer.
 LD (DE),A ; and load to edit line.
 DJNZ L_CHAR ; loop back to L-CHAR until B is zero.

 OR $80 ; invert the last character.
 LD (DE),A ; and overwrite that in edit line.

; now consider first character which has bit 6 set

 LD A,$C0 ; set A 11000000 is XOR mask for a long name.
 ; %101 is XOR/or result

; single character numerics rejoin here with %00000000 in mask.
; %011 will be XOR/or result

L_SINGLE LD HL,($5B4D) ; fetch DEST - HL addresses first character.
 XOR (HL) ; apply variable type indicator mask (above).
 OR $20 ; make lowercase - set bit 5.
 POP HL ; restore pointer to 2nd character.

 CALL L_FIRST ; routine L-FIRST puts A in first character.
 ; and returns with HL holding
 ; new E_LINE-1 the $80 vars end-marker.

L_NUMERIC PUSH HL ; save the pointer.

; the value of variable is deleted but remains after calculator stack.

 RST 28H ;; FP-CALC
 DEFB $02 ;;delete ; delete variable value
 DEFB $38 ;;end-calc

; Register DE (STKEND) points to start of value.

 POP HL ; restore the pointer.
 LD BC,$0005 ; start of number is five bytes before.
 AND A ; prepare for true subtraction.
 SBC HL,BC ; HL points to start of value.
 JR L_ENTER ; forward to L-ENTER ==>

; ---

; the jump was to here if the variable already existed.

L_EXISTS BIT 6,(IY+$01) ; test FLAGS - numeric or string result ?
 JR Z,L_DELETEs ; skip forward to L-DELETE$ -*->
 ; if string result.

; A numeric variable could be simple or an array element.
; They are treated the same and the old value is overwritten.

 LD DE,$0006 ; six bytes forward points to loc past value.
 ADD HL,DE ; add to start of number.
 JR L_NUMERIC ; back to L-NUMERIC to overwrite value.

; ---

; -*-> the branch was here if a string existed.

;;; L_DELETEs LD HL,($5B4D) ; fetch DEST to HL.
 ; (still set from first instruction)

L_DELETEs LD BC,($5B72) ; fetch STRLEN to BC.
 BIT 0,(IY+$37) ; test FLAGX - handling a complete simple
 ; string ?
 JR NZ,L_ADDs ; forward, if so, to L-ADD$

; must be a string array or a slice in workspace.
; Note. LET a$(3 TO 6) = h$ will assign "hat " if h$ = "hat"
; and "hats" if h$ = "hatstand".
;
; This is known as Procrustian lengthening and shortening after a
; character Procrustes in Greek legend who made travelers sleep in his bed,
; cutting off their feet or stretching them so they fitted the bed perfectly.
; The bloke was hatstand and slain by Theseus.

 LD A,B ; test if length
 OR C ; is zero and
 RET Z ; return if zero.

 PUSH HL ; save pointer to start.

 CALL BC_SPACES ; BC_SPACES creates room.

 PUSH DE ; save pointer to first new location.
 PUSH BC ; and length (*)

 LD D,H ; set DE to point to last location.
 LD E,L ;
 INC HL ; set HL to next location.
 LD (HL),$20 ; place a space there.

 LDDR ; block copy bytes filling area with spaces.

 PUSH HL ; save pointer to start.

 CALL STK_FETCH ; routine STK-FETCH start to DE,
 ; length to BC.

 POP HL ; restore the pointer.
 EX (SP),HL ; (*) length to HL, pointer to stack.
 AND A ; prepare for true subtraction.
 SBC HL,BC ; subtract old length from new.
 ADD HL,BC ; and add back.
 JR NC,L_LENGTH ; forward if it fits to L-LENGTH.

 LD B,H ; otherwise set
 LD C,L ; length to old length.
 ; "hatstand" becomes "hats"

L_LENGTH EX (SP),HL ; (*) length to stack, pointer to HL.
 EX DE,HL ; pointer to DE, start of string to HL.

;;; LD A,B ; is the length zero ?
;;; OR C ;
;;; JR Z,L_IN_W_S ; forward, if so, to L-IN-W/S
;;; ; leaving the prepared spaces.
;;; LDIR ; else copy bytes overwriting some spaces.

 CALL COND_MV ;+ a Conditional (NZ) ldir routine

L_IN_W_S POP BC ; pop the new length. (*)
 POP DE ; pop pointer to new area.
 POP HL ; pop pointer to variable in assignment.
 ; and continue copying from workspace
 ; to variables area.

; ==> branch here from L-NUMERIC

L_ENTER EX DE,HL ; exchange pointers HL=STKEND DE=end of vars.

COND_MV LD A,B ; test the length
 OR C ; and make a
 RET Z ; return if zero (strings only).

 PUSH DE ; save start of destination.

 LDIR ; block copy bytes.

 POP HL ; address the start.
 RET ; Return.

; ---

; the branch was here from L-DELETE$ if an existing simple string.
; register HL addresses start of string in variables area.

L_ADDs DEC HL ; point to high byte of length.
 DEC HL ; to low byte.
 DEC HL ; to letter.
 LD A,(HL) ; fetch masked letter to A.

 PUSH HL ; save the pointer on stack.
 PUSH BC ; save new length.

 CALL L_STRING ; routine L-STRING adds new string at end
 ; of variables area.
 ; if no room we still have old one.

 POP BC ; restore length.
 POP HL ; restore start.
 INC BC ; increase
 INC BC ; length by three
 INC BC ; to include character and length bytes.

 JP RECLAIM_2 ; jump to indirect exit via RECLAIM-2
 ; deleting old version and adjusting pointers.

; ---

; the jump was here with a new string variable.

L_NEWs LD A,$DF ; indicator mask %11011111 for
 ; %010xxxxx will be result
 LD HL,($5B4D) ; address DEST first character.
 AND (HL) ; combine mask with character.

L_STRING PUSH AF ; save first character and mask.

 CALL STK_FETCH ; routine STK-FETCH fetches parameters of
 ; the string. Start in DE, length in BC.

 EX DE,HL ; transfer start to HL.
 ADD HL,BC ; add to length.
 PUSH BC ; save the length.
 DEC HL ; point to end of string.
 LD ($5B4D),HL ; save pointer in DEST.
 ; (updated by POINTERS if in workspace)
 INC BC ; extra byte for letter.
 INC BC ; two bytes
 INC BC ; for the length of string.

 CALL MK_RM_EL ;+ MAKE_ROOM at E_LINE -1

;;; LD HL,($5B59) ; address E_LINE.
;;; DEC HL ; now end of VARS area.
;;; CALL MAKE_ROOM ; routine MAKE-ROOM makes room for string.
;;; ; updating pointers including DEST.

 LD HL,($5B4D) ; pick up pointer to end of string from DEST.
 POP BC ; restore length from stack.
 PUSH BC ; and save again on stack.
 INC BC ; add a byte.

 LDDR ; copy bytes from end to start.

 EX DE,HL ; HL addresses length low
 INC HL ; increase to address high byte
 POP BC ; restore length to BC
 LD (HL),B ; insert high byte
 DEC HL ; address low byte location
 LD (HL),C ; insert that byte

 POP AF ; restore character and mask

L_FIRST DEC HL ; address variable name

 LD (HL),A ; and insert character.

L_EL_DHL LD HL,($5B59) ; load HL with E_LINE.
 DEC HL ; now end of VARS area.
 RET ; return

; ----------------------------
; THE 'STACK FETCH' SUBROUTINE
; ----------------------------
;
;

STK_FETCH LD HL,($5B65) ; STKEND
 DEC HL ;
 LD B,(HL) ;
 DEC HL ;
 LD C,(HL) ;
 DEC HL ;
 LD D,(HL) ;
 DEC HL ;
 LD E,(HL) ;
 DEC HL ;
 LD A,(HL) ;
 LD ($5B65),HL ; STKEND
 RET ;

; -----------------
; THE 'DIM' COMMAND
; -----------------
; e.g. DIM a(2,3,4,7): DIM a$(32) : DIM b$(20,2,768) : DIM c$(20000)
; the only limit to dimensions is memory so, for example,
; DIM a(2,2,2,2,2,2,2,2,2,2,2,2,2) is possible and creates a multi-
; dimensional array of zeros. String arrays are initialized to spaces.
; It is not possible to erase an array, but it can be re-dimensioned to
; a minimal size of 1, after use, to free up memory.

DIM CALL LOOK_VARS ; routine LOOK-VARS

D_RPORT_C JP NZ,REPORT_C ; jump to REPORT-C if a long-name variable.
 ; DIM lottery numbers(49) doesn't work.

 CALL SYNTAX_Z ; routine SYNTAX-Z
 JR NZ,D_RUN ; forward, in runtime, to D-RUN

 RES 6,C ; signal 'numeric' array even if of type string
 ; as this simplifies the syntax checking.

 CALL STK_VAR ; routine STK-VAR checks syntax.
 CALL CHECK_END ; routine CHECK-END performs early exit ->

; ---

; the branch was here in runtime.

D_RUN JR C,D_LETTER ; skip to D-LETTER if variable did not exist.
 ; else reclaim the old one.

 PUSH BC ; save type in C.

;;; CALL NEXT_ONE ; routine NEXT-ONE find following variable
;;; ; or position of $80 end-marker.
;;; CALL RECLAIM_2 ; routine RECLAIM-2 reclaims the
;;; ; space between.

 CALL NXT_1_RC2 ;+ routine combines above 2 routines.

 POP BC ; pop the type.

D_LETTER SET 7,C ; signal array.
 LD B,$00 ; initialize dimensions to zero and
 PUSH BC ; save with the type.
 LD HL,$0001 ; make elements one character presuming string
 BIT 6,C ; is it a string ?
 JR NZ,D_SIZE ; forward, if so, to D-SIZE

 LD L,$05 ; make elements 5 bytes as is numeric.

D_SIZE EX DE,HL ; save the element size in DE.

; now enter a loop to parse each of the integers in the list.

D_NO_LOOP RST 20H ; NEXT-CHAR
 LD H,$FF ; disable limit check by setting HL high

 CALL INT_EXP1 ; routine INT-EXP1

 JP C,REPORT_3 ; to REPORT-3 if > 65280 and then some
 ; 'Subscript wrong'

 POP HL ; pop dimension counter, array type
 PUSH BC ; save dimension size ***
 INC H ; increment the dimension counter
 PUSH HL ; save the dimension counter
 LD H,B ; transfer size
 LD L,C ; to HL
 CALL GET_HLxDE ; routine GET-HL*DE multiplies dimension by
 ; running total of size required initially
 ; 1 or 5.
 EX DE,HL ; save running total in DE

 RST 18H ; GET-CHAR
 CP $2C ; is it ',' ?
 JR Z,D_NO_LOOP ; loop back to D-NO-LOOP until all dimensions
 ; have been considered

; when loop complete continue.

;;; CP $29 ; is it ')' ?
;;; JR NZ,D_RPORT_C ; to D-RPORT-C with anything else
;;; RST 20H ; NEXT-CHAR advances to next statement/CR

 CALL RBRKT_NXT ;+ Test for a right hand bracket and advance.

 POP BC ; pop dimension counter/type
 LD A,C ; type to A

; now calculate space required for array variable

 LD L,B ; dimensions to L since these require 16 bits
 ; then this value will be doubled
 LD H,$00 ; set high byte to zero

; another four bytes are required for letter(1), total length(2), number of
; dimensions(1) but since we have yet to double allow for two.

 INC HL ; increment
 INC HL ; increment

 ADD HL,HL ; now double giving 4 + dimensions * 2

 ADD HL,DE ; add to space required for array contents

 JP C,REPORT_4 ; to REPORT-4 if > 65535
 ; 'Out of memory'

 PUSH DE ; save data space
 PUSH BC ; save dimensions/type
 PUSH HL ; save total space
 LD B,H ; total space
 LD C,L ; to BC

 CALL MK_RM_EL ;+ MAKE_ROOM at E_LINE -1

;;; LD HL,($5B59) ; address E_LINE - first location after
;;; DEC HL ; point to location before - the $80 end-marker
;;; CALL MAKE_ROOM ; routine MAKE-ROOM creates the space if
;;; INC HL ; point to first new location and

 LD (HL),A ; store letter/type

 POP BC ; pop total space
 DEC BC ; exclude name
 DEC BC ; exclude the 16-bit
 DEC BC ; counter itself
 INC HL ; point to next location the 16-bit counter
 LD (HL),C ; insert low byte
 INC HL ; address next
 LD (HL),B ; insert high byte

 POP BC ; pop the number of dimensions.
 LD A,B ; dimensions to A
 INC HL ; address next
 LD (HL),A ; and insert "No. of dims"

 LD H,D ; transfer DE space + 1 from make-room
 LD L,E ; to HL
 DEC DE ; set DE to next location down.
 LD (HL),$00 ; presume numeric and insert a zero
 BIT 6,C ; test bit 6 of C. numeric or string ?
 JR Z,DIM_CLEAR ; skip to DIM-CLEAR if numeric

 LD (HL),$20 ; place a space character in HL

DIM_CLEAR POP BC ; pop the data length

 LDDR ; LDDR sets to zeros or spaces

; The number of dimensions is still in A.
; A loop is now entered to insert the size of each dimension that was pushed
; during the D-NO-LOOP working downwards from position before start of data.

DIM_SIZES POP BC ; pop a dimension size ***
 LD (HL),B ; insert high byte at position
 DEC HL ; next location down
 LD (HL),C ; insert low byte
 DEC HL ; next location down
 DEC A ; decrement dimension counter
 JR NZ,DIM_SIZES ; back to DIM-SIZES until all done.

 RET ; return.

; -------------------------

; THE 'ALPHANUM' SUBROUTINE
; -------------------------
; This routine checks that the character in A is alphanumeric returning,
; if so, with carry set.

ALPHANUM CALL NUMERIC ; Routine NUMERIC resets carry if a number.

 CCF ; Complement Carry Flag.
 RET C ; Return if numeric else continue into next
 ; routine.

; This routine checks that the character in A is alphabetic setting the carry
; flag if it is.

ALPHA CP $41 ; less than 'A' ?
 CCF ; Complement Carry Flag
 RET NC ; return if less.

 CP $5B ; less than 'Z'+1 ?
 RET C ; is within first range

 CP $61 ; less than 'a' ?
 CCF ; Complement Carry Flag
 RET NC ; return if less.

 CP $7B ; less than 'z'+1 ?
 RET ; carry set if within a-z.

; --
; THE 'DECIMAL TO FLOATING POINT' SUBROUTINE
; --
; This routine finds the floating point number represented by an expression
; beginning with BIN, '.' or a digit.
; Note that BIN need not have any '0's or '1's after it.
; BIN is really just a notational symbol and not a function.

DEC_TO_FP CP $C4 ; 'BIN' token ?
 JR NZ,NOT_BIN ; forward, if not, to NOT-BIN

 LD DE,$0000 ; initialize 16 bit buffer register.

BIN_DIGIT RST 20H ; NEXT-CHAR
 SUB $31 ; '1'
 ADC A,$00 ; will be zero if '1' or '0'
 ; carry will be set if was '0'
 JR NZ,BIN_END ; forward to BIN-END if result not zero

 EX DE,HL ; buffer to HL
 CCF ; Carry now set if originally '1'
 ADC HL,HL ; shift the carry into HL
 JP C,REPORT_6 ; to REPORT-6 if overflow - too many digits
 ; after first '1'. There can be an unlimited
 ; number of leading zeros.
 ; 'Number too big' - raise an error

 EX DE,HL ; save the buffer
 JR BIN_DIGIT ; back to BIN-DIGIT for more digits

; ---

BIN_END LD B,D ; transfer 16 bit buffer
 LD C,E ; to BC register pair.
 JR STACK_BC ; JUMP to STACK-BC to put on calculator stack

; ---

; continue here with .1, 42, 3.14, 5., 2.3 E -4

NOT_BIN CP $2E ; '.' - leading decimal point ?
 JR Z,DECIMAL ; skip, if so, to DECIMAL

 CALL INT_TO_FP ; routine INT-TO-FP to evaluate all digits
 ; This number 'x' is placed on stack.
 CP $2E ; '.' - mid decimal point ?

 JR NZ,E_FORMAT ; to E-FORMAT if not to consider that format

 RST 20H ; NEXT-CHAR
 CALL NUMERIC ; routine NUMERIC returns carry reset if 0-9

 JR C,E_FORMAT ; to E-FORMAT if not a digit e.g. '1.'

 JR DEC_STO_1 ; to DEC-STO-1 to add the decimal part to 'x'

; ---

; a leading decimal point has been found in a number.

DECIMAL RST 20H ; NEXT-CHAR
 CALL NUMERIC ; routine NUMERIC will reset carry if digit

DEC_RPT_C JP C,REPORT_C ; to REPORT-C if just a '.'
 ; raise 'Nonsense in BASIC'

; since there is no leading zero put one on the calculator stack.

 RST 28H ;; FP-CALC
 DEFB $A0 ;;stk-zero ; 0.
 DEFB $38 ;;end-calc

; If rejoining from earlier there will be a value 'x' on stack.
; If continuing from above the value zero will be stacked.
; Now store 1 in mem-0.
; Note. At each pass of the digit loop this will be divided by ten.

DEC_STO_1 RST 28H ;; FP-CALC
 DEFB $A1 ;;stk-one ;x or 0,1.
 DEFB $C0 ;;st-mem-0 ;x or 0,1.
 DEFB $02 ;;delete ;x or 0.
 DEFB $38 ;;end-calc

NXT_DGT_1 RST 18H ; GET-CHAR

 CALL STK_DIGIT ; routine STK-DIGIT stacks single digit 'd'

 JR C,E_FORMAT ; exit to E-FORMAT when digits exhausted >

; Note. by switching division and multiply .5 will evaluate as 5/10 instead
; of 5 * .1. The values 5/10 and 1/2 are therefore equal.

 RST 28H ;; FP-CALC ;x or 0,d. first pass.
 DEFB $E0 ;;get-mem-0 ;x or 0,d,1.
 DEFB $A4 ;;stk-ten ;x or 0,d,1,10.
;;; DEFB $05 ;;division ;obsolete
 DEFB $04 ;+multiply ;x or 0,d,10.
 DEFB $C0 ;;st-mem-0 ;x or 0,d,10.
;;; DEFB $04 ;;multiply ;obsolete

 DEFB $05 ;+division ;x or 0,d/10.
 DEFB $0F ;;addition ;x or 0 + d/10.
 DEFB $38 ;;end-calc last value.

 RST 20H ; NEXT-CHAR moves to next character
 JR NXT_DGT_1 ; back to NXT-DGT-1

; ---

; Although only the first pass is shown, it can be seen that at each pass
; the new less significant digit is divided by an increasingly larger
; factor (100, 1000, 10000 ...) before being added to the previous
; last value to form a new last value.

; Finally see if an exponent has been input.

E_FORMAT CP $45 ; is character 'E' ?
 JR Z,SIGN_FLAG ; forward, if so, to SIGN-FLAG

 CP $65 ; 'e' is acceptable as well.
 RET NZ ; return as no exponent.

SIGN_FLAG LD B,$FF ; initialize temporary sign byte to $FF

 RST 20H ; NEXT-CHAR
 CP $2B ; is character '+' ?
 JR Z,SIGN_DONE ; to SIGN-DONE

 CP $2D ; is character '-' ?
 JR NZ,ST_E_PART ; to ST-E-PART as no sign

 INC B ; set sign to zero

; now consider digits of exponent.
; Note. incidentally this is the only occasion in Spectrum BASIC when an
; expression may not be used when a number is expected.

SIGN_DONE RST 20H ; NEXT-CHAR

ST_E_PART CALL NUMERIC ; routine NUMERIC

 JR C,DEC_RPT_C ; back, if not, to DEC-RPT-C
 ; 'Nonsense in BASIC'.

 PUSH BC ; save sign (in B)

 CALL INT_TO_FP ; routine INT-TO-FP places exponent on stack

 CALL FP_TO_A ; routine FP-TO-A transfers it to A

 POP BC ; restore sign
 JP C,REPORT_6 ; to REPORT-6 if overflow (over 255)
 ; raise 'Number too big'.

 AND A ; set flags
 JP M,REPORT_6 ; to REPORT-6 if over '127'.
 ; raise 'Number too big'.
 ; 127 is still way too high and it is
 ; impossible to enter an exponent greater
 ; than 39 from the keyboard. The error gets
 ; raised later in E-TO-FP so two different
 ; error messages depending how high A is.

 INC B ; $FF to $00 or $00 to $01 - expendable now.

 JR Z,E_FP_JUMP ; forward to E-FP-JUMP if exponent positive

 NEG ; Negate the exponent.

E_FP_JUMP JR E_TO_FP ; JUMP forward to E-TO-FP to assign to
 ; last value x on stack x * 10 to power A
 ; a relative jump would have done.

; ------------------------
; THE 'NUMERIC' SUBROUTINE
; ------------------------
; This routine checks that the ASCII character in A is numeric
; returning, if so, with carry reset.

NUMERIC CP $30 ; '0'
 RET C ; return if less than zero character.

 CP $3A ; The upper test is '9'
 CCF ; Complement Carry Flag
 RET ; Return - carry clear if character '0' - '9'

; ---------------------------------
; THE 'STACK BC and SET IY' ROUTINE
; ---------------------------------
;

STK_BC_IY LD IY,$5B3A ;+ re-initialize the IY register to access the
 ;+ system variables. (14 clock cycles)
 JR STACK_BC ;+ forward to stack the result of USR function.

; ----------------------------
; THE 'STACK DIGIT' SUBROUTINE
; ----------------------------
; This subroutine is called from INT-TO-FP and DEC-TO-FP to stack a digit
; on the calculator stack.

STK_DIGIT CALL NUMERIC ; routine NUMERIC
 RET C ; return if not numeric character

 SUB $30 ; convert from ASCII to digit

; ------------------------
; THE 'STACK A' SUBROUTINE
; ------------------------
;
;

STACK_A LD C,A ; transfer to C
 LD B,$00 ; and make B zero

; -------------------------
; THE 'STACK BC' SUBROUTINE
; -------------------------
;

;;; STACK_BC LD IY,$5B3A ; re-initialize ERR_NR

STACK_BC XOR A ; Clear accumulator to signal small integer
 LD E,A ; Place in E for the sign byte.
 LD D,C ; LSB to D
 LD C,B ; MSB to C
 LD B,A ; last byte not used

 CALL STK_STORE ; routine STK-STORE stacks number AEDCB

 ; and sets carry.

; Note. HL now points to new STKEND. The requirement is that it should point
; to the 'result' and DE should point at STKEND as this is the terminating
; routine for some calculator functions. This can be done by simply entering
; and leaving the calculator but that uses many clock cycles if only two
; bytes.

 AND A ;+ Clear carry.
 JP STK_PNTRS ;+ set HL to result and DE to STKEND also
 ;+ the carry flag is unaffected.

;;; RST 28H ;; FP-CALC
;;; DEFB $38 ;;end-calc make HL = STKEND-5 and DE = STKEND
;;; AND A ; clear the carry flag.
;;; RET ; Return.

; --
; THE 'INTEGER TO FLOATING POINT' SUBROUTINE
; --
; This routine places one or more digits found in a BASIC line
; on the calculator stack multiplying the previous value by ten each time
; before adding in the new digit to form a last value on calculator stack.

INT_TO_FP PUSH AF ; save first character

 RST 28H ;; FP-CALC
 DEFB $A0 ;;stk-zero ; v=0. initial value
 DEFB $38 ;;end-calc

 POP AF ; fetch first character back.

NXT_DGT_2 CALL STK_DIGIT ; routine STK-DIGIT puts 0-9 on stack

 RET C ; will return when character is not numeric >

 RST 28H ;; FP-CALC ; v, d.
 DEFB $01 ;;exchange ; d, v.
 DEFB $A4 ;;stk-ten ; d, v, 10.
 DEFB $04 ;;multiply ; d, v*10.
 DEFB $0F ;;addition ; d + v*10 = newvalue
 DEFB $38 ;;end-calc ; v.

 CALL CH_ADD__1 ; routine CH-ADD+1 get next character
 JR NXT_DGT_2 ; back to NXT-DGT-2 to process as a digit

;*********************************
;** Part 9. ARITHMETIC ROUTINES **
;*********************************

; ---
; THE 'E-FORMAT TO FLOATING POINT' SUBROUTINE
; ---
; This subroutine is used by the PRINT-FP routine and the decimal to FP
; routines to stack a number expressed in exponent format.
; Note. Though not used by the ROM as such, it has also been set up as a
; unary calculator literal but this will not work as the accumulator is not
; available from within the calculator.

; On entry, there is a value x on the calculator stack and an exponent of ten
; in A. The required value is x + 10 ^ A

E_TO_FP RLCA ; this will set the x.

 RRCA ; carry if bit 7 is set

 JR NC,E_SAVE ; to E-SAVE if positive.

 CPL ; make negative positive
 INC A ; without altering carry.

E_SAVE PUSH AF ; save positive exp and sign in carry

 LD HL,$5B92 ; address MEM-0

 CALL FP_0_1 ; routine FP-0/1
 ; places an integer zero, if no carry,
 ; else a one in mem-0 as a sign flag

 RST 28H ;; FP-CALC
 DEFB $A4 ;;stk-ten x, 10.
 DEFB $38 ;;end-calc

 POP AF ; pop the exponent.

; now enter a loop

E_LOOP SRL A ; 0>76543210>C

 JR NC,E_TST_END ; forward to E-TST-END if no bit

 PUSH AF ; save shifted exponent.

 RST 28H ;; FP-CALC
 DEFB $C1 ;;st-mem-1 x, 10.
 DEFB $E0 ;;get-mem-0 x, 10, (0/1).
 DEFB $00 ;;jump-true

 DEFB E_DIVSN - $;;to E-DIVSN

 DEFB $04 ;;multiply x*10.
 DEFB $33 ;;jump

 DEFB E_FETCH - $;;to E-FETCH

E_DIVSN DEFB $05 ;;division x/10.

E_FETCH DEFB $E1 ;;get-mem-1 x/10 or x*10, 10.
 DEFB $38 ;;end-calc new x, 10.

 POP AF ; restore shifted exponent

; the loop branched to here with no carry

E_TST_END JR Z,E_END ; forward to E-END if A emptied of bits

 PUSH AF ; re-save shifted exponent

 RST 28H ;; FP-CALC
 DEFB $31 ;;duplicate new x, 10, 10.
 DEFB $04 ;;multiply new x, 100.
 DEFB $38 ;;end-calc

 POP AF ; restore shifted exponent
 JR E_LOOP ; back to E-LOOP until all bits done.

; ---

; although only the first pass is shown it can be seen that for each set bit
; representing a power of two, x is multiplied or divided by the
; corresponding power of ten.

E_END RST 28H ;; FP-CALC final x, factor.
 DEFB $02 ;;delete final x.
 DEFB $38 ;;end-calc x.

 RET ; return

; ------------------------------
; THE 'FETCH INTEGER' SUBROUTINE
; ------------------------------
; This routine is called by the mathematical routines - FP-TO-BC, PRINT-FP,
; mult, re-stack and negate to fetch an integer from address HL. Register
; HL points to the stack, or a location in MEM, and no 'deletion' occurs.
; If the number is negative then a similar process to that used in INT-STORE
; is used to restore the twos-complement number to normal in DE and a sign
; in C. The contents of the B register are not affected.

INT_FETCH INC HL ; skip zero indicator.
 LD C,(HL) ; fetch sign to C

 INC HL ; address low byte
 LD A,(HL) ; fetch to A
 XOR C ; two's complement
 SUB C ;
 LD E,A ; place in E

 INC HL ; address high byte
 LD A,(HL) ; fetch to A
 ADC A,C ; two's complement
 XOR C ;
 LD D,A ; place in D

 RET ; return

; --------------------------------------
; THE 'Store a positive integer' ROUTINE
; --------------------------------------
;;; This entry point is not used in this ROM but would store any integer as
;;; a positive number.

;;; p-int-sto
;;; L2D8C: LD C,$00 ; make sign byte positive and continue

; ------------------------------
; THE 'STORE INTEGER' SUBROUTINE
; ------------------------------
; This routine stores an integer in DE at address HL.
; It is called from mult, truncate, negate and sgn.
; The sign byte $00 +ve or $FF -ve is in C.
; If negative, the number is stored in 2's complement form so that it is
; ready to be added.

INT_STORE PUSH HL ; Preserve HL throughout.

;;; LD (HL),$00 ; first byte zero shows integer not exponent

 INC HL ;
 LD (HL),C ; then store the sign byte

 INC HL ;
 ; e.g. +1 -1
 LD A,E ; fetch low byte 00000001 00000001
 XOR C ; XOR sign 00000000 or 11111111
 ; gives 00000001 or 11111110
 SUB C ; sub sign 00000000 or 11111111
 ; gives 00000001>0 or 11111111>C
 LD (HL),A ; store 2's complement.
 INC HL ;
 LD A,D ; high byte 00000000 00000000
 ADC A,C ; sign 00000000<0 11111111<C
 ; gives 00000000 or 00000000
 XOR C ; XOR sign 00000000 11111111
 LD (HL),A ; store 2's complement.

 INC HL ;
;;; LD (HL),$00 ; The last byte always zero for integers.
 XOR A ;+ Set A to zero.
 LD (HL),A ;+ Make fifth byte zero.
 POP HL ; Restore the original HL result pointer.
 LD (HL),A ;+ Make first byte zero.
 RET ; Return.

; ---
; THE 'FLOATING POINT TO BC REGISTER' ROUTINE
; ---
; This routine gets a floating point number e.g. 127.4 from the calculator
; stack to the BC register.
; Begin by using two bytes of instruction to make HL address the last 5-byte
; number on the calculator stack.
; Note. at the expense of one byte a call to STK_PNTRS would be quicker.

FP_TO_BC
;;; RST 28H ;; FP-CALC set HL to
;;; DEFB $38 ;;end-calc point to 'last value'.

 CALL STK_PNTRS ;+ set HL to STKEND -5

 LD A,(HL) ; get first of the 5 bytes
 AND A ; and test for zero.
 JR Z,FP_DELETE ; forward, if a small integer, to FP-DELETE

; The floating point value is first rounded up and then converted to integer.

 RST 28H ;; FP-CALC x.
 DEFB $A2 ;;stk-half x. 1/2.
 DEFB $0F ;;addition x + 1/2.
 DEFB $27 ;;int int(x + .5)
 DEFB $38 ;;end-calc

; Now delete but leave DE pointing at integer.

FP_DELETE RST 28H ;; FP-CALC
 DEFB $02 ;;delete
 DEFB $38 ;;end-calc

 PUSH HL ; preserve pointer to 'last value'.
 PUSH DE ; preserve pointer to STKEND.

 EX DE,HL ; make HL point to old exponent/zero indicator
 LD B,(HL) ; indicator to B

 CALL INT_FETCH ; Routine INT-FETCH

 ; gets int in DE sign byte to C
 ; but meaningless values if a large integer.

 XOR A ; Clear A
 SUB B ; Subtract indicator byte setting the carry flag
 ; if not a small integer.

 BIT 7,C ; Test a bit of the sign byte setting zero flag
 ; if integer is positive.

 LD B,D ; transfer integer
 LD C,E ; to BC
 LD A,E ; low byte to A also as a useful return value.

 POP DE ; Retrieve pointer to new STKEND
 POP HL ; Retrieve pointer to new 'last value'

 RET ; Return.

; if carry is set, then the number was too big to fit into BC.

; ------------
; LOG(2^A)
; ------------
; This routine is used when printing floating point numbers to calculate
; the number of digits before the decimal point.

; first convert a one-byte signed integer to its five byte form.

LOG_2powA LD D,A ; store a copy of A in D the LSB.
 RLA ; test sign bit of A.
 SBC A,A ; now $FF if negative or $00 if positive.
 LD E,A ; sign byte to E the stack sign byte.
 LD C,A ; and also to C the MSB.
 XOR A ; clear A to indicate an integer.
 LD B,A ; and B the unused fifth byte.

 CALL STK_STORE ; routine STK-STORE stacks number AEDCB

; So 00 00 XX 00 00 (positive) or 00 FF XX FF 00 (negative).
; i.e. integer indicator, sign byte, low, high, unused.

; now multiply the exponent by log to the base 10 of two.

 RST 28H ;; FP-CALC

 DEFB $34 ;;stk-data .30103 (log 2)
 DEFB $EF ;;Exponent: $7F, Bytes: 4
 DEFB $1A,$20,$9A,$85 ;;
 DEFB $04 ;;multiply

 DEFB $27 ;;int

 DEFB $38 ;;end-calc

; ------------------------------------
; THE 'FLOATING POINT TO A' SUBROUTINE
; ------------------------------------
; This routine collects a floating point number from the stack into the
; accumulator returning carry set if not in range 0 - 255.
; Not all the calling routines raise an error with overflow so no attempt
; is made to produce an error report here.

FP_TO_A CALL FP_TO_BC ; routine FP-TO-BC returns with C in A also.

 RET C ; return with carry set if > 65535, overflow

 PUSH AF ; save the value and flags

 DEC B ; and test that
 INC B ; the high byte is zero.
 JR Z,FP_A_END ; forward FP-A-END if zero

; else there has been 8-bit overflow so set the carry flag.

 POP AF ; retrieve the value

 SCF ; set carry flag to show overflow
 RET ; and return.

; ---

FP_A_END POP AF ; restore value and success flag and

 RET ; return.

; --
; THE 'PRINT A FLOATING POINT NUMBER' SUBROUTINE
; --
; Not a trivial task.
; Begin by considering whether to print a leading sign for negative numbers.

PRINT_FP RST 28H ;; FP-CALC
 DEFB $31 ;;duplicate
 DEFB $36 ;;less-0
 DEFB $00 ;;jump-true

 DEFB PF_NEGTVE - $;;to PF-NEGTVE

 DEFB $31 ;;duplicate
 DEFB $37 ;;greater-0
 DEFB $00 ;;jump-true

 DEFB PF_POSTVE - $;;to PF-POSTVE

; must be zero itself

 DEFB $02 ;;delete
 DEFB $38 ;;end-calc

 LD A,$30 ; prepare the character '0'

 RST 10H ; PRINT-A
 RET ; Return. ->
; ---

PF_NEGTVE DEFB $2A ;;abs
 DEFB $38 ;;end-calc

 LD A,$2D ; the character '-'

 RST 10H ; PRINT-A

; and continue to print the now positive number.

 RST 28H ;; FP-CALC

PF_POSTVE DEFB $A0 ;;stk-zero x,0. begin by
 DEFB $C3 ;;st-mem-3 x,0. clearing a temporary

 DEFB $C4 ;;st-mem-4 x,0. output buffer to
 DEFB $C5 ;;st-mem-5 x,0. fifteen zeros.
 DEFB $02 ;;delete x.
 DEFB $38 ;;end-calc x.

 EXX ; in case called from 'str$' then save the
 PUSH HL ; pointer to whatever comes after
 EXX ; str$ as H'L' will be used.

; now enter a loop?

PF_LOOP RST 28H ;; FP-CALC
 DEFB $31 ;;duplicate x,x.
 DEFB $27 ;;int x,int x.
 DEFB $C2 ;;st-mem-2 x,int x.
 DEFB $03 ;;subtract x-int x. fractional part.
 DEFB $E2 ;;get-mem-2 x-int x, int x.
 DEFB $01 ;;exchange int x, x-int x.
 DEFB $C2 ;;st-mem-2 int x, x-int x.
 DEFB $02 ;;delete int x.
 DEFB $38 ;;end-calc int x.
 ;
 ; mem-2 holds the fractional part.

; HL points to last value int x

 LD A,(HL) ; fetch exponent of int x.
 AND A ; test
 JR NZ,PF_LARGE ; forward to PF-LARGE if a large integer
 ; > 65535

; continue with small positive integer components in range 0 - 65535
; if original number was say .999 then this integer component is zero.

 CALL INT_FETCH ; routine INT-FETCH gets x in DE
 ; (but x is not deleted)

 LD B,$10 ; set B, bit counter, to 16d

 LD A,D ; Register A equals D from above call. ;;;

 AND A ; test if high byte is zero
 JR NZ,PF_SAVE ; forward to PF-SAVE if 16-bit integer.

; and continue with integer in range 0 - 255.

 OR E ; test the low byte for zero
 ; i.e. originally just point something or other.
 JR Z,PF_SMALL ; forward if so to PF-SMALL

;

 LD D,E ; transfer E to D
 LD B,$08 ; and reduce the bit counter to 8.

PF_SAVE PUSH DE ; save the part before decimal point.
 EXX ;
 POP DE ; and pop in into D'E'
 EXX ;
 JR PF_BITS ; forward to PF-BITS

; ---------------------

; The branch was here when 'int x' was found to be zero as in say 0.5.

; The zero has been fetched from the calculator stack but not deleted and
; this should occur now. This omission leaves the stack unbalanced and while
; that causes no problems with a simple PRINT statement, it will if str$ is
; being used in an expression e.g. "2" + STR$ 0.5 gives the result "0.5"
; instead of the expected result "20.5" as the number zero is read as the
; null string by the concatenate routine.
; credit: Tony Stratton, 1982.
; A DEFB $02 - 'delete' is required immediately on using the calculator.

PF_SMALL RST 28H ;; FP-CALC int x = 0.
 DEFB $02 ;+delete .
 DEFB $E2 ;;get-mem-2 x-int x.
 DEFB $38 ;;end-calc

 LD A,(HL) ; fetch exponent of positive fractional number
 SUB $7E ; subtract

 CALL LOG_2powA ; routine LOG(2^A) calculates leading digits.

 LD D,A ; transfer count to D
 LD A,($5BAC) ; fetch total MEM-5-1
 SUB D ;
 LD ($5BAC),A ; MEM-5-1
 LD A,D ;

 CALL E_TO_FP ; routine E-TO-FP

 RST 28H ;; FP-CALC
 DEFB $31 ;;duplicate
 DEFB $27 ;;int
 DEFB $C1 ;;st-mem-1
 DEFB $03 ;;subtract
 DEFB $E1 ;;get-mem-1
 DEFB $38 ;;end-calc

 CALL FP_TO_A ; routine FP-TO-A

 PUSH HL ; save HL
 LD ($5BA1),A ; MEM-3-1
 DEC A ;
 RLA ;
 SBC A,A ;
 INC A ;

 LD HL,$5BAB ; address MEM-5-1 leading digit counter
 LD (HL),A ; store counter
 INC HL ; address MEM-5-2 total digits
 ADD A,(HL) ; add counter to contents
 LD (HL),A ; and store updated value
 POP HL ; restore HL

 JR PF_FRACTN ; JUMP forward to PF-FRACTN

; ---

; Note. while it would be pedantic to comment on every occasion a JP
; instruction could be replaced with a JR instruction, this applies to the
; above, which is useful if you wish to correct the unbalanced stack error
; by inserting a 'DEFB 02 delete' at L2E25, and maintain main addresses.

; the branch was here with a large positive integer > 65535 e.g. 123456789
; the accumulator holds the exponent.

PF_LARGE SUB $80 ; make exponent positive

 CP $1C ; compare to 28
 JR C,PF_MEDIUM ; to PF-MEDIUM if integer <= 2^27

 CALL LOG_2powA ; routine LOG(2^A)
 SUB $07 ;
 LD B,A ;
 LD HL,$5BAC ; address MEM-5-1 the leading digits counter.
 ADD A,(HL) ; add A to contents
 LD (HL),A ; store updated value.
 LD A,B ;
 NEG ; negate

 CALL E_TO_FP ; routine E-TO-FP

 JR PF_LOOP ; back to PF-LOOP

; ----------------------------

PF_MEDIUM EX DE,HL ;
 CALL FETCH_TWO ; routine FETCH-TWO
 EXX ;
 SET 7,D ;
 LD A,L ;
 EXX ;
 SUB $80 ;
 LD B,A ;

; the branch was here to handle bits in DE with 8 or 16 in B if small int
; and integer in D'E', 6 nibbles will accommodate 065535 but routine does
; 32-bit numbers as well from above

PF_BITS SLA E ; C<xxxxxxxx<0
 RL D ; C<xxxxxxxx<C
 EXX ;
 RL E ; C<xxxxxxxx<C
 RL D ; C<xxxxxxxx<C
 EXX ;

 LD HL,$5BAA ; set HL to mem-4-5th last byte of buffer
 LD C,$05 ; set byte count to 5 - 10 nibbles

PF_BYTES LD A,(HL) ; fetch 0 or prev value
 ADC A,A ; shift left add in carry C<xxxxxxxx<C

 DAA ; Decimal Adjust Accumulator.
 ; if greater than 9 then the left hand
 ; nibble is incremented. If greater than
 ; 99 then adjusted and carry set.
 ; so if we'd built up 7 and a carry came in
 ; 0000 0111 < C
 ; 0000 1111
 ; daa 1 0101 which is 15 in BCD

 LD (HL),A ; put back
 DEC HL ; work down thru mem 4
 DEC C ; decrease the 5 counter.
 JR NZ,PF_BYTES ; back to PF-BYTES until the ten nibbles rolled

 DJNZ PF_BITS ; back to PF-BITS until 8 or 16 (or 32) done

; at most 9 digits for 32-bit number will have been loaded with digits
; each of the 9 nibbles in mem 4 is placed into ten bytes in mem-3 and mem 4
; unless the nibble is zero as the buffer is already zero.
; (or in the case of mem-5 will become zero as a result of RLD instruction)

 XOR A ; clear to accept
 LD HL,$5BA6 ; address MEM-4-0 byte destination.
 LD DE,$5BA1 ; address MEM-3-0 nibble source.
 LD B,$09 ; the count is 9 (not ten) as the first
 ; nibble is known to be blank.

 RLD ; shift RH nibble to left in (HL)
 ; A (HL)
 ; 0000 0000 < 0000 3210
 ; 0000 0000 3210 0000
 ; A picks up the blank nibble

 LD C,$FF ; set a flag to indicate when a significant
 ; digit has been encountered.

PF_DIGITS RLD ; pick up leftmost nibble from (HL)
 ; A (HL)
 ; 0000 0000 < 7654 3210
 ; 0000 7654 3210 0000

 JR NZ,PF_INSERT ; to PF-INSERT if non-zero value picked up.

 DEC C ; test
 INC C ; flag
 JR NZ,PF_TEST_2 ; skip forward to PF-TEST-2 if flag still $FF
 ; indicating this is a leading zero.

; but if the zero is a significant digit e.g. 10 then include in digit totals.
; the path for non-zero digits rejoins here.

PF_INSERT LD (DE),A ; insert digit at destination
 INC DE ; increase the destination pointer
 INC (IY+$71) ; increment MEM-5-1st digit counter
 INC (IY+$72) ; increment MEM-5-2nd leading digit counter
 LD C,$00 ; set flag to zero indicating that any
 ; subsequent zeros are significant and not
 ; leading.

PF_TEST_2 BIT 0,B ; test if the nibble count is even
 JR Z,PF_ALL_9 ; skip to PF-ALL-9 if so to deal with the
 ; other nibble in the same byte

 INC HL ; point, if not, to next source byte.

PF_ALL_9 DJNZ PF_DIGITS ; decrement the nibble count, back to PF-DIGITS
 ; if all nine not done.

; For 8-bit integers there will be at most 3 digits.
; For 16-bit integers there will be at most 5 digits.
; but for larger integers there could be nine leading digits.
; If nine digits complete then the last one is rounded up as the number will
; be printed using E-format notation

 LD A,($5BAB) ; fetch digit count from MEM-5-1st
 SUB $09 ; subtract 9 - max possible
 JR C,PF_MORE ; forward if less to PF-MORE

 DEC (IY+$71) ; decrement digit counter MEM-5-1st to 8
 LD A,$04 ; load A with the value 4.
 CP (IY+$6F) ; compare with MEM-4-4th - the ninth digit
 JR PF_ROUND ; forward to PF-ROUND

 ; to consider rounding.

; ---------------------------------------

; now delete int x from calculator stack and fetch fractional part.

PF_MORE RST 28H ;; FP-CALC int x.
 DEFB $02 ;;delete .
 DEFB $E2 ;;get-mem-2 x - int x = f.
 DEFB $38 ;;end-calc f.

PF_FRACTN EX DE,HL ;
 CALL FETCH_TWO ; routine FETCH-TWO
 EXX ;
 LD A,$80 ;
 SUB L ;
 LD L,$00 ;
 SET 7,D ;
 EXX ;
 CALL SHIFT_FP ; routine SHIFT-FP

PF_FRN_LP LD A,(IY+$71) ; MEM-5-1st
 CP $08 ;
 JR C,PF_FR_DGT ; to PF-FR-DGT

 EXX ;
 RL D ;
 EXX ;
 JR PF_ROUND ; to PF-ROUND

; ---

PF_FR_DGT LD BC,$0200 ;

PF_FR_EXX LD A,E ;
 CALL CA_10xA_C ; routine CA-10*A+C
 LD E,A ;
 LD A,D ;
 CALL CA_10xA_C ; routine CA-10*A+C
 LD D,A ;
 PUSH BC ;
 EXX ;
 POP BC ;
 DJNZ PF_FR_EXX ; to PF-FR-EXX

 LD HL,$5BA1 ; MEM-3
 LD A,C ;
 LD C,(IY+$71) ; MEM-5-1st
 ADD HL,BC ;
 LD (HL),A ;
 INC (IY+$71) ; MEM-5-1st
 JR PF_FRN_LP ; to PF-FRN-LP

; ----------------

; 1) with 9 digits but 8 in mem-5-1 and A holding 4, carry set if rounding up.
; e.g.
; 999999999 is printed as 1E+9
; 100000001 is printed as 1E+8
; 100000009 is printed as 1.0000001E+8

PF_ROUND PUSH AF ; save A and flags

 LD HL,$5BA1 ; address MEM-3 start of digits

 LD C,(IY+$71) ; MEM-5-1st No. of digits to C
 LD B,$00 ; prepare to add
 ADD HL,BC ; address last digit + 1
 LD B,C ; No. of digits to B counter

 POP AF ; restore A and carry flag from comparison.

PF_RND_LP DEC HL ; address digit at rounding position.
 LD A,(HL) ; fetch it
 ADC A,$00 ; add carry from the comparison
 LD (HL),A ; put back result even if $0A.
 AND A ; test A
 JR Z,PF_R_BACK ; skip to PF-R-BACK if ZERO?

 CP $0A ; compare to 'ten' - overflow
 CCF ; complement carry flag so that set if ten.
 JR NC,PF_COUNT ; forward to PF-COUNT with 1 - 9.

PF_R_BACK DJNZ PF_RND_LP ; loop back to PF-RND-LP

; if B counts down to zero then we've rounded right back as in 999999995.
; and the first 8 locations all hold $0A.

 INC B ; make B hold 1 also.

 LD (HL),B ; load first location with digit 1.

 INC (IY+$72) ; make MEM-5-2nd hold 1.
 ; and proceed to initialize total digits to 1.

PF_COUNT LD (IY+$71),B ; MEM-5-1st

; now balance the calculator stack by deleting it

 RST 28H ;; FP-CALC
 DEFB $02 ;;delete
 DEFB $38 ;;end-calc

; note if used from str$ then other values may be on the calculator stack.
; we can also restore the next literal pointer from its position on the
; machine stack.

 EXX ;
 POP HL ; restore next literal pointer.
 EXX ;

 LD BC,($5BAB) ; set C to MEM-5-1st digit counter.
 ; set B to MEM-5-2nd leading digit counter.
 LD HL,$5BA1 ; set HL to start of digits at MEM-3-1
 LD A,B ;
 CP $09 ;
 JR C,PF_NOT_E ; to PF-NOT-E

 CP $FC ;
 JR C,PF_E_FRMT ; to PF-E-FRMT

PF_NOT_E AND A ; test for zero leading digits as in .123

 CALL Z,OUT_CODE ; routine OUT-CODE prints a zero e.g. 0.123

PF_E_SBRN XOR A ;
 SUB B ;
 JP M,PF_OUT_LP ; skip forward to PF-OUT-LP if originally +ve

 LD B,A ; else negative count now +ve
 JR PF_DC_OUT ; forward to PF-DC-OUT ->

; ---

PF_OUT_LP LD A,C ; fetch total digit count
 AND A ; test for zero
 JR Z,PF_OUT_DT ; forward, if so, to PF-OUT-DT

 LD A,(HL) ; fetch digit
 INC HL ; address next digit
 DEC C ; decrease total digit counter

PF_OUT_DT CALL OUT_CODE ; routine OUT-CODE outputs it.
 DJNZ PF_OUT_LP ; loop back to PF-OUT-LP until B leading
 ; digits output.

PF_DC_OUT LD A,C ; fetch total digits and
 AND A ; test if also zero
 RET Z ; return if so -->

;

 INC B ; increment B
 LD A,$2E ; prepare the character '.'

PF_DEC_0S RST 10H ; PRINT-A outputs the character '.' or '0'

 LD A,$30 ; prepare the character '0'
 ; (for cases like .000012345678)
 DJNZ PF_DEC_0S ; loop back to PF-DEC-0$ for B times.

 LD B,C ; load B with now trailing digit counter.
 JR PF_OUT_LP ; back to PF-OUT-LP

; ---------------------------------

; the branch was here for E-format printing e.g. 123456789 => 1.2345679e+8

PF_E_FRMT LD D,B ; counter to D
 DEC D ; decrement
 LD B,$01 ; load B with 1.

 CALL PF_E_SBRN ; routine PF-E-SBRN above

 LD A,$45 ; prepare character 'e'
 RST 10H ; PRINT-A

 LD C,D ; exponent to C
 LD A,C ; and to A
 AND A ; test exponent
 JP P,PF_E_POS ; to PF-E-POS if positive

 NEG ; negate
 LD C,A ; positive exponent to C
 LD A,$2D ; prepare character '-'
 JR PF_E_SIGN ; skip to PF-E-SIGN

; ---

PF_E_POS LD A,$2B ; prepare character '+'

PF_E_SIGN RST 10H ; PRINT-A outputs the sign

;;; LD B,$00 ; make the high byte zero.

 JP OUT_NUM_0 ;+ exit via OUT-NUM-0 to print exponent in BC

; --------------------------------
; THE 'CA = 10 x A + C' SUBROUTINE
; --------------------------------
; This subroutine is called twice from PRINT_FP when printing floating-point
; numbers. It returns 10 * A + C in registers C and A (16 bytes)

CA_10xA_C PUSH DE ; preserve DE.

 LD L,A ; transfer A to L
 LD H,$00 ; zero high byte.
 LD E,L ; copy HL
 LD D,H ; to DE.
 ADD HL,HL ; double (*2)
 ADD HL,HL ; double (*4)
 ADD HL,DE ; add DE (*5)
 ADD HL,HL ; double (*10)
 LD E,C ; copy C to E (D is 0)
 ADD HL,DE ; and add to give required result.
 LD C,H ; transfer to
 LD A,L ; destination registers.

 POP DE ; restore DE
 RET ; return with result.

; -------------------------------
; THE 'PREPARE TO ADD' SUBROUTINE
; -------------------------------
; This routine is called twice by addition to prepare the two numbers. The
; exponent is picked up in A and the location made zero. Then the sign bit
; is tested before being set to the implied state. Negative numbers are twos
; complemented.

PREP_ADD LD A,(HL) ; pick up exponent
 LD (HL),$00 ; make location zero
 AND A ; test if number is zero
 RET Z ; return if zero.

 INC HL ; address mantissa
 BIT 7,(HL) ; test the sign bit
 SET 7,(HL) ; set it to implied state
 DEC HL ; point to exponent
 RET Z ; return if positive number.

 PUSH BC ; preserve BC
 LD BC,$0005 ; length of number
 ADD HL,BC ; point HL past end
 LD B,C ; set B to 5 counter
 LD C,A ; store exponent in C
 SCF ; set carry flag

NEG_BYTE DEC HL ; work from LSB to MSB
 LD A,(HL) ; fetch byte
 CPL ; complement
 ADC A,$00 ; add in initial carry or from prev operation
 LD (HL),A ; put back
 DJNZ NEG_BYTE ; loop to NEG-BYTE till all 5 done

 LD A,C ; stored exponent to A
 POP BC ; restore original BC
 RET ; return

; ----------------------------------
; THE 'FETCH TWO NUMBERS' SUBROUTINE
; ----------------------------------
; This routine is called twice when printing floating point numbers and also
; to fetch two numbers by the addition, multiply and division routines.
; HL addresses the first number, DE addresses the second number.
; For arithmetic only, A holds the sign of the result which is stored in
; the second location.

FETCH_TWO PUSH HL ; save pointer to first number, result if math.

 PUSH AF ; save result sign.

 LD C,(HL) ;
 INC HL ;

 LD B,(HL) ;
 LD (HL),A ; store the sign at correct location in
 ; destination 5 bytes for arithmetic only.
 INC HL ;

 LD A,C ;
 LD C,(HL) ;
 PUSH BC ;
 INC HL ;
 LD C,(HL) ;
 INC HL ;
 LD B,(HL) ;
 EX DE,HL ;
 LD D,A ;
 LD E,(HL) ;
 PUSH DE ;
 INC HL ;
 LD D,(HL) ;
 INC HL ;
 LD E,(HL) ;
 PUSH DE ;
 EXX ;
 POP DE ;
 POP HL ;
 POP BC ;
 EXX ;
 INC HL ;
 LD D,(HL) ;
 INC HL ;
 LD E,(HL) ;

 POP AF ; restore possible result sign.

 POP HL ; and pointer to possible result.

 RET ; return.

; -------------------------
; THE 'SHIFT FP' SUBROUTINE
; -------------------------
;
;

SHIFT_FP AND A ;
 RET Z ;

 CP $21 ;

 JR NC,ADDEND_0 ; to ADDEND-0

 PUSH BC ;
 LD B,A ;

ONE_SHIFT EXX ;
 SRA L ;
 RR D ;
 RR E ;
 EXX ;
 RR D ;
 RR E ;
 DJNZ ONE_SHIFT ; to ONE-SHIFT

 POP BC ;
 RET NC ;

 CALL ADD_BACK ; routine ADD-BACK
 RET NZ ;

ADDEND_0 EXX ;
 XOR A ;

ZEROS_4_5 LD L,$00 ;
 LD D,A ;
 LD E,L ;
 EXX ;
 LD DE,$0000 ;
 RET ;

; -------------------------
; THE 'ADD BACK' SUBROUTINE
; -------------------------
; Called twice to increment D'E'DE as a pseudo 32-bit register.

ADD_BACK INC E ;
 RET NZ ;

 INC D ;
 RET NZ ;

 EXX ;
 INC E ;
 JR NZ,ALL_ADDED ; to ALL-ADDED

 INC D ;

ALL_ADDED EXX ;
 RET ;

; ---------------------------
; THE 'SUBTRACTION' OPERATION
; ---------------------------
; (offset: $03 'subtract')
; Subtraction is done by switching the sign byte/bit of the second number,
; which may be integer of floating point, and continuing into addition.

subtract EX DE,HL ; address second number with HL

 CALL negate ; routine NEGATE switches sign

 EX DE,HL ; address first number again
 ; and continue.

; ------------------------
; THE 'ADDITION' OPERATION
; ------------------------
; (offset: $0F 'addition')
; HL points to first number, DE to second.
; If they are both integers, then go for the easy route.

addition LD A,(DE) ; fetch first byte of second
 OR (HL) ; combine with first byte of first
 JR NZ,FULL_ADDN ; forward to FULL-ADDN if at least one was
 ; in floating point form.

; Continue if both were both small integers.

 PUSH DE ; save pointer to second number for new STKEND.

 INC HL ; address sign byte of first number and
 PUSH HL ; push the pointer.

 INC HL ; address low byte
 LD E,(HL) ; to E
 INC HL ; address high byte
 LD D,(HL) ; to D
 INC HL ; address unused byte

 INC HL ; address known zero indicator of 1st number
 INC HL ; address sign byte

 LD A,(HL) ; sign to A, $00 or $FF

 INC HL ; address low byte
 LD C,(HL) ; to C
 INC HL ; address high byte
 LD B,(HL) ; to B

 POP HL ; pop result sign pointer
 EX DE,HL ; integer to HL

; Now perform the actual addition.

 ADD HL,BC ; add to the other one in BC
 ; setting carry if overflow.

 EX DE,HL ; save result in DE bringing back sign pointer

 ADC A,(HL) ; if pos/pos A=01 with overflow else 00
 ; if neg/neg A=FF with overflow else FE
 ; if mixture A=00 with overflow else FF

 RRCA ; bit 0 to (C)

 ADC A,$00 ; both acceptable signs now zero

 JR NZ,ADDN_OFLW ; forward, if not, to ADDN-OFLW

 SBC A,A ; restore a negative result sign

; --
; THE 'INT -65536 FIX' credit: Dr. Ian Logan, 1983
; --
; Note. the following is a modification of Dr. Ian Logan's suggested fix
; for the -65536 problem. At this point, the BC register pair is expendable
; and this solution is optimized for speed by avoiding the machine stack.

 LD C,A ;+ Make a copy of the sign byte in C.

 INC A ;+ Make any $FF in A into $00.
 OR E ;+ Test all three
 OR D ;+ bytes now for zero.

 LD A,C ;+ Restore true sign byte of integer.

 JR NZ,ADD_STORE ;+ forward, if not -65536, to ADD_STORE

; The number, in the registers, is -65536 i.e. 00 FF 00 00 00 and must be
; made 91 80 00 00 00 on the calculator stack. At this stage only the
; fifth byte on the calculator stack is as required.

 DEC HL ;+ Point to the first byte.
 LD (HL),$91 ;+ Enter exponent $91 in first byte.

 INC HL ;++ Point to the second byte

 AND $80 ;++ set A to $80

; ---

ADD_STORE LD (HL),A ; insert second byte
 INC HL ;
 LD (HL),E ; insert third byte
 INC HL ;
 LD (HL),D ; insert fourth byte

 DEC HL ; back to third.
 DEC HL ; back to second.
 DEC HL ; point to result.

 POP DE ; restore value of STKEND

 RET ; Return.

; ---

; The branch was here when simple register addition overflowed.

ADDN_OFLW DEC HL ;
 POP DE ;

FULL_ADDN CALL RE_ST_TWO ; routine RE-ST-TWO

 EXX ;
 PUSH HL ;
 EXX ;
 PUSH DE ;
 PUSH HL ;
 CALL PREP_ADD ; routine PREP-ADD
 LD B,A ;
 EX DE,HL ;
 CALL PREP_ADD ; routine PREP-ADD
 LD C,A ;
 CP B ;
 JR NC,SHIFT_LEN ; to SHIFT-LEN

 LD A,B ;
 LD B,C ;
 EX DE,HL ;

SHIFT_LEN PUSH AF ;

 SUB B ;
 CALL FETCH_TWO ; routine FETCH-TWO
 CALL SHIFT_FP ; routine SHIFT-FP

 POP AF ;

 POP HL ;
 LD (HL),A ;
 PUSH HL ;
 LD L,B ;
 LD H,C ;
 ADD HL,DE ;
 EXX ;
 EX DE,HL ;
 ADC HL,BC ;
 EX DE,HL ;
 LD A,H ;
 ADC A,L ;
 LD L,A ;
 RRA ;
 XOR L ;
 EXX ;
 EX DE,HL ;
 POP HL ;
 RRA ;
 JR NC,TEST_NEG ; to TEST-NEG

 LD A,$01 ;
 CALL SHIFT_FP ; routine SHIFT-FP
 INC (HL) ;
 JR Z,ADD_REP_6 ; to ADD-REP-6

TEST_NEG EXX ;
 LD A,L ;
 AND $80 ;
 EXX ;
 INC HL ;
 LD (HL),A ;
 DEC HL ;
 JR Z,GO_NC_MLT ; to GO-NC-MLT

 LD A,E ;
 NEG ; Negate
 CCF ; Complement Carry Flag
 LD E,A ;
 LD A,D ;
 CPL ;
 ADC A,$00 ;
 LD D,A ;
 EXX ;
 LD A,E ;
 CPL ;
 ADC A,$00 ;
 LD E,A ;
 LD A,D ;
 CPL ;
 ADC A,$00 ;
 JR NC,END_COMPL ; to END-COMPL

 RRA ;
 EXX ;
 INC (HL) ;

ADD_REP_6 JP Z,REPORT_6 ; to REPORT-6
 ; 'Number too big'

 EXX ;

END_COMPL LD D,A ;
 EXX ;

GO_NC_MLT XOR A ;
 JP TEST_NORM ; to TEST-NORM

; -----------------------------
; THE 'HL = HL * DE' SUBROUTINE
; -----------------------------
; This routine is used, in the first instance, by the multiply calculator
; literal to perform an integer multiplication in preference to
; 32-bit multiplication to which it will resort if this overflows.
;
; It is also used by STK-VAR to calculate array subscripts and by DIM to
; calculate the space required for multi-dimensional arrays.

HL_HLxDE PUSH BC ; preserve BC throughout
 LD B,$10 ; set B to 16
 LD A,H ; save H in A high byte
 LD C,L ; save L in C low byte
 LD HL,$0000 ; initialize result to zero

; now enter a loop.

HL_LOOP ADD HL,HL ; double result
 JR C,HL_END ; to HL-END if overflow

 RL C ; shift AC left into carry
 RLA ;
 JR NC,HL_AGAIN ; to HL-AGAIN to skip addition if no carry

 ADD HL,DE ; add in DE
 JR C,HL_END ; to HL-END if overflow

HL_AGAIN DJNZ HL_LOOP ; back to HL-LOOP for all 16 bits

HL_END POP BC ; restore preserved BC
 RET ; return with carry reset if successful
 ; and result in HL.

; --
; THE 'PREPARE TO MULTIPLY OR DIVIDE' SUBROUTINE
; --
; This routine is called in succession from multiply and divide to prepare
; two mantissas by setting the leftmost bit that is used for the sign.
; On the first call A holds zero and picks up the sign bit. On the second
; call the two bits are XORed to form the result sign - minus * minus giving
; plus etc. If either number is zero then this is flagged.
; HL addresses the exponent.

PREP_M_D CALL TEST_ZERO ; routine TEST-ZERO preserves accumulator.

 RET C ; return carry set if zero

 INC HL ; address first byte of mantissa
 XOR (HL) ; pick up the first or XOR with first.
 SET 7,(HL) ; now set to give true 32-bit mantissa
 DEC HL ; point to exponent
 RET ; return with carry reset

; ------------------------------
; THE 'MULTIPLICATION' OPERATION
; ------------------------------
; (offset: $04 'multiply')
; Begin by trying integer multiplication as used on the Sinclair ZX80.
; If that overflows then use floating point multiplication.

multiply LD A,(DE) ; fetch exponent byte of second number.
 OR (HL) ; combine with that of first number.
 JR NZ,MULT_LONG ; forward, if either not integer, to MULT-LONG

 PUSH DE ; save pointer to second number - new STKEND.
 PUSH HL ; save pointer to first number - result pointer.

 PUSH DE ; save pointer to second number on stack again.

 CALL INT_FETCH ; routine INT-FETCH integer to DE, sign to C.

 EX DE,HL ; transfer first integer from DE to HL
 EX (SP),HL ; integer to stack and second pointer to HL.
 LD B,C ; place first sign byte in B.

 CALL INT_FETCH ; routine INT-FETCH integer to DE, sign to C
 ; and B preserved.

; Now manipulate sign bytes so that minus times a minus gives a plus result.

 LD A,B ; fetch first sign byte $00 or $FF.
 XOR C ; XOR with second sign byte. $00 or $FF.
 LD C,A ; transfer sign of result to C.

 POP HL ; pop first integer off the machine stack.

 CALL HL_HLxDE ; routine HL-HL*DE multiplies the two integers.

 EX DE,HL ; transfer the result to DE.

 POP HL ; restore the result pointer to HL.

 JR C,MULT_OFLW ; forward, with overflow, to MULT-OFLW

; Note. these next 5 bytes ensure that -zero (00 FF 00 00 00) is replaced
; by zero (00 00 00 00 00). They are required in the case of say,
; 0 * -1 which gives the result -0. This would be printed as -1E-38.
; Note. Contrary to the view expressed in The Complete Spectrum ROM
; Disassembly, these 5 bytes should not be deleted.

 LD A,D ; test 3rd
 OR E ; and 4th bytes for zero.

 JR NZ,MULT_RSLT ; skip forward, if not, to MULT-RSLT

 LD C,A ; make 2nd byte, possibly $FF, zero also.

MULT_RSLT JP INT_STO_3 ;+ jump to similar code.

;;; CALL INT_STORE ; routine INT-STORE stores result at HL.
;;; POP DE ; retrieve the new pointer to STKEND.
;;; RET ; Return.

; ---

; The branch was here when simple register-based multiplication overflowed.

MULT_OFLW POP DE ;

MULT_LONG CALL RE_ST_TWO ; routine RE-ST-TWO
 XOR A ;
 CALL PREP_M_D ; routine PREP-M/D
 RET C ;

 EXX ;
 PUSH HL ;
 EXX ;
 PUSH DE ;
 EX DE,HL ;
 CALL PREP_M_D ; routine PREP-M/D
 EX DE,HL ;
 JR C,ZERO_RSLT ; to ZERO-RSLT

 PUSH HL ;
 CALL FETCH_TWO ; routine FETCH-TWO
 LD A,B ;
 AND A ;
 SBC HL,HL ;
 EXX ;
 PUSH HL ;
 SBC HL,HL ;
 EXX ;
 LD B,$21 ;
 JR STRT_MLT ; to STRT-MLT

; ---

MLT_LOOP JR NC,NO_ADD ; to NO-ADD

 ADD HL,DE ;
 EXX ;
 ADC HL,DE ;
 EXX ;

NO_ADD EXX ;
 RR H ;
 RR L ;
 EXX ;
 RR H ;
 RR L ;

STRT_MLT EXX ;
 RR B ;
 RR C ;
 EXX ;
 RR C ;
 RRA ;
 DJNZ MLT_LOOP ; to MLT-LOOP

 EX DE,HL ;
 EXX ;
 EX DE,HL ;
 EXX ;
 POP BC ;
 POP HL ;
 LD A,B ;
 ADD A,C ;
 JR NZ,MAKE_EXPT ; to MAKE-EXPT

 AND A ;

MAKE_EXPT DEC A ;
 CCF ; Complement Carry Flag

DIVN_EXPT RLA ;
 CCF ; Complement Carry Flag
 RRA ;
 JP P,OFLW1_CLR ; to OFLW1-CLR

 JR NC,REPORT_6 ; to REPORT-6
 ; 'Number too big'

 AND A ;

OFLW1_CLR INC A ;
 JR NZ,OFLW2_CLR ; to OFLW2-CLR

 JR C,OFLW2_CLR ; to OFLW2-CLR

 EXX ;
 BIT 7,D ;
 EXX ;
 JR NZ,REPORT_6 ; to REPORT-6

OFLW2_CLR LD (HL),A ;
 EXX ;
 LD A,B ;
 EXX ;

TEST_NORM JR NC,NORMALIZE ; to NORMALISE

 LD A,(HL) ;
 AND A ;

NEAR_ZERO LD A,$80 ;
 JR Z,SKIP_ZERO ; to SKIP-ZERO

ZERO_RSLT XOR A ;

SKIP_ZERO EXX ;
 AND D ;
 CALL ZEROS_4_5 ; routine ZEROS-4/5
 RLCA ;
 LD (HL),A ;
 JR C,OFLOW_CLR ; to OFLOW-CLR

 INC HL ;
 LD (HL),A ;
 DEC HL ;
 JR OFLOW_CLR ; to OFLOW-CLR

; ---

NORMALIZE LD B,$20 ;

SHIFT_ONE EXX ;
 BIT 7,D ;
 EXX ;
 JR NZ,NORML_NOW ; to NORML-NOW

 RLCA ;
 RL E ;
 RL D ;
 EXX ;

 RL E ;
 RL D ;
 EXX ;
 DEC (HL) ;
 JR Z,NEAR_ZERO ; to NEAR-ZERO

 DJNZ SHIFT_ONE ; to SHIFT-ONE

 JR ZERO_RSLT ; to ZERO-RSLT

; ---

NORML_NOW RLA ;
 JR NC,OFLOW_CLR ; to OFLOW-CLR

 CALL ADD_BACK ; routine ADD-BACK
 JR NZ,OFLOW_CLR ; to OFLOW-CLR

 EXX ;
 LD D,$80 ;
 EXX ;
 INC (HL) ;
 JR Z,REPORT_6 ; to REPORT-6

OFLOW_CLR PUSH HL ;
 INC HL ;
 EXX ;
 PUSH DE ;
 EXX ;
 POP BC ;
 LD A,B ;
 RLA ;
 RL (HL) ;
 RRA ;
 LD (HL),A ;
 INC HL ;
 LD (HL),C ;
 INC HL ;
 LD (HL),D ;
 INC HL ;
 LD (HL),E ;
 POP HL ;
 POP DE ;
 EXX ;
 POP HL ;
 EXX ;
 RET ;

; ---

REPORT_6 RST 30H ; ERROR-1
 DEFB $05 ; Error Report: Number too big

; ------------------------
; THE 'DIVISION' OPERATION
; ------------------------
; (offset: $05 'division')
;
;

division CALL RE_ST_TWO ; routine RE-ST-TWO

 EX DE,HL ;
 XOR A ;

 CALL PREP_M_D ; routine PREP-M/D
 JR C,REPORT_6 ; to REPORT-6

 EX DE,HL ;
 CALL PREP_M_D ; routine PREP-M/D
 RET C ;

 EXX ;
 PUSH HL ;
 EXX ;

 PUSH DE ;
 PUSH HL ;
 CALL FETCH_TWO ; routine FETCH-TWO
 EXX ;
 PUSH HL ;
 LD H,B ;
 LD L,C ;
 EXX ;
 LD H,C ;
 LD L,B ;
 XOR A ;
 LD B,$DF ;
 JR DIV_START ; to DIV-START

; ---

DIV_LOOP RLA ;
 RL C ;
 EXX ;
 RL C ;
 RL B ;
 EXX ;

div_34th ADD HL,HL ;
 EXX ;
 ADC HL,HL ;
 EXX ;
 JR C,SUBN_ONLY ; to SUBN-ONLY

DIV_START SBC HL,DE ;
 EXX ;
 SBC HL,DE ;
 EXX ;
 JR NC,NO_RSTORE ; to NO-RSTORE

 ADD HL,DE ;
 EXX ;
 ADC HL,DE ;
 EXX ;
 AND A ;
 JR COUNT_ONE ; to COUNT-ONE

; ---

SUBN_ONLY AND A ;
 SBC HL,DE ;
 EXX ;
 SBC HL,DE ;
 EXX ;

NO_RSTORE SCF ; Set Carry Flag

COUNT_ONE INC B ;

 JP M,DIV_LOOP ; to DIV-LOOP

 PUSH AF ;

 JR Z,DIV_START ; to DIV-START

;
;
;
;

 LD E,A ;
 LD D,C ;
 EXX ;
 LD E,C ;
 LD D,B ;

 POP AF ;

 RR B ;

 POP AF ;

 RR B ;
 EXX ;
 POP BC ;
 POP HL ;
 LD A,B ;
 SUB C ;

 JP DIVN_EXPT ; jump back to DIVN-EXPT

; --
; THE 'INTEGER TRUNCATION TOWARDS ZERO' SUBROUTINE
; --
; (offset: $3A 'truncate')
; This routine returns the integer of the 'last value' truncated towards zero
; so that, for example, the result for PI would be 3 and the result for -PI
; would be -3 (and not -4 as returned by the BASIC INT function).

truncate LD A,(HL) ; Fetch the first byte.
 AND A ; Test for zero which indicates an integer.
 RET Z ; return if a small integer.

 CP $81 ; compare exponent to +1
 JR NC,T_GR_ZERO ; forward, if 1 or more, to T-GR-ZERO

; The number is smaller than plus or minus one and can be made zero.

 LD (HL),$00 ; insert zero in first byte.
 LD A,$20 ; prepare to reset all 32 bits of 'mantissa'
 JR NIL_BYTES ; forward to NIL-BYTES

; ---

T_GR_ZERO CP $91 ; compare exponent to +16

; Note. the next section is designed to convert 91 80 00 00 00 to the
; integer 00 FF 00 00 00 . "This is a pity since the number would have
; been perfectly all right if left alone. The remedy would seem to be
; simply to omit the 28 bytes [below] from the program."
; credit: Dr. Ian Logan 1983.

;;; JR NZ,T_SMALL ; to T-SMALL

;;;
;;; INC HL ;
;;; INC HL ;
;;; INC HL ;
;;; LD A,$80 ;
;;; AND (HL) ;
;;; DEC HL ;
;;; OR (HL) ;
;;; DEC HL ;
;;; JR NZ,T_FIRST ; to T-FIRST

;;; LD A,$80 ;
;;; XOR (HL) ;

;;; T_FIRST DEC HL ;
;;; JR NZ,T_EXPNENT ; to T-EXPNENT

;;; LD (HL),A ;
;;; INC HL ;
;;; LD (HL),$FF ;
;;; DEC HL ;
;;; LD A,$18 ;
;;; JR NIL_BYTES ; to NIL-BYTES

T_SMALL JR NC,X_LARGE ; forward if more than 16-bit integer to X-LARGE

; The number is a small integer +/- 1-65535 and can be held in two bytes.

 PUSH DE ; Preserve the STKEND pointer.

; The exponent ($81 to $90) is converted to a shift count - one to sixteen.

 CPL ; Complement - range $7F - $70
 ADD A,$91 ; Add to give shift count $10 - $01

 INC HL ; Point to first mantissa byte.
 LD D,(HL) ; Load to high-order byte.
 INC HL ; Point to next byte of mantissa.
 LD E,(HL) ; Load to low-order byte.

 DEC HL ; Restore pointer
 DEC HL ; to position at first byte.

 LD C,$00 ; prepare a positive sign byte.
 BIT 7,D ; test sign bit of mantissa byte.

 JR Z,T_NUMERIC ; skip, if positive, to T-NUMERIC

 DEC C ; make $FF - negative sign byte.

T_NUMERIC SET 7,D ; put back the 'implied' bit.

; Now see if 8 bits can be right-shifted at once (if number < 256)

 LD B,$08 ; prepare 8 in B
 SUB B ; subtract from shift counter in A.
 ADD A,B ; and add back.
 JR C,T_TEST ; forward, if number > 255, to T-TEST

 LD E,D ; Transfer MSB to LSB
 LD D,$00 ; Make MSB zero.
 SUB B ; subtract 8 from the shift counter.

T_TEST JR Z,T_STORE ; forward, if no more shifts, to T-STORE

 LD B,A ; Transfer count to B.

T_SHIFT SRL D ; 0 -> 76543210 -> C
 RR E ; C -> 76543210 -> C
 DJNZ T_SHIFT ; back for count to T-SHIFT

T_STORE JP INT_STO_3 ;+ jump to similar code.

;;; CALL INT_STORE ; routine INT-STORE stores integer DE at HL.
;;; POP DE ; Restore the STKEND value from the stack.
;;; RET ; Return.

; ---

; The next instruction is made redundant by Dr. Logan's fix.

;;; T_EXPNENT LD A,(HL) ; This instruction is never reached.

; ---

; The branch was here when the number was a large number e.g. 1000000.567
; The accumulator holds the exponent.

X_LARGE SUB $A0 ; Subtract +32 decimal from the exponent.
 RET P ; Return if the result is positive as 32 bits
 ; of the mantissa relate to the integer part.
 ; The radix point is somewhere to the right of
 ; the mantissa.

 NEG ; else negate to form number of rightmost bits
 ; to be blanked.

; For instance, disregarding the sign bit, the number 3.5 is held as
; exponent $82 mantissa .11100000 00000000 00000000 00000000.
; We need to reset $82 - $A0 = $E2, which negated = $1E (thirty) bits to
; form the integer of 3.5.

NIL_BYTES PUSH DE ; Save pointer to STKEND.

 EX DE,HL ; Register HL now points to STKEND
 DEC HL ; Now at last byte of mantissa.

 LD B,A ; Transfer the bit count to register B,

; Now look into the possibility of blanking eight bits at a time.

 SRL B ; Divide
 SRL B ; by
 SRL B ; eight.

 JR Z,BITS_ZERO ; forward, if zero, to BITS-ZERO

BYTE_ZERO LD (HL),$00 ; set eight bits to zero.
 DEC HL ; point to more significant byte of mantissa.
 DJNZ BYTE_ZERO ; loop back for all to BYTE-ZERO

BITS_ZERO AND $07 ; mask the remaining bits from original count.
 JR Z,IX_END ; forward, if none, to IX-END

 LD B,A ; transfer bit count to B counter.

 LD A,$FF ; form an initial mask %11111111

LESS_MASK SLA A ; 1 <- 76543210 <- 0 slide mask leftwards.
 DJNZ LESS_MASK ; loop back, for bit count, to LESS-MASK

 AND (HL) ; lose the unwanted rightmost bits.
 LD (HL),A ; and place in the mantissa byte.

IX_END EX DE,HL ; Restore the result pointer.

 POP DE ; Restore STKEND value from stack.

 RET ; Return.

; ---------------------------------------
; THE 'STORAGE OF NUMBERS IN 5 BYTE FORM'
; =======================================
; Both integers and floating-point numbers can be stored in five bytes.
; Zero is a special case stored as 5 zeros.
; For integers the form is
; Byte 1 - zero,
; Byte 2 - sign byte, $00 +ve, $FF -ve.
; Byte 3 - Low byte of integer.
; Byte 4 - High byte
; Byte 5 - unused but always zero.
;
; It seems unusual to store the low byte first but it is just as easy either
; way. Statistically it just increases the chances of trailing zeros which
; is an advantage elsewhere in saving ROM code.
;
; zero sign low high unused
; So +1 is 00000000 00000000 00000001 00000000 00000000
;
; and -1 is 00000000 11111111 11111111 11111111 00000000
;
; much of the arithmetic found in BASIC lines can be done using numbers
; in this form using the Z80's 16 bit register operation ADD.
; (multiplication is done by a sequence of additions).
;
; Storing -ve integers in two's complement form, means that they are ready for
; addition and you might like to add the numbers above to prove that the
; answer is zero. If, as in this case, the carry is set then that denotes that
; the result is positive. This only applies when the signs don't match.
; With positive numbers a carry denotes the result is out of integer range.
; With negative numbers a carry denotes the result is within range.
; The exception to the last rule is when the result is -65536
;
; Floating point form is an alternative method of storing numbers which can
; be used for integers and larger (or fractional) numbers.
;
; In this form 1 is stored as
; 10000001 00000000 00000000 00000000 00000000
;
; When a small integer is converted to a floating point number the last two
; bytes are always blank so they are omitted in the following steps
;
; first make exponent +1 +16d (bit 7 of the exponent is set if positive)

; 10010001 00000000 00000001
; 10010000 00000000 00000010 <- now shift left and decrement exponent
; ...
; 10000010 01000000 00000000 <- until a 1 abuts the imaginary point
; 10000001 10000000 00000000 to the left of the mantissa.
;

; however since the leftmost bit of the mantissa is always set then it can
; be used to denote the sign of the mantissa and put back when needed by the
; PREP routines which gives
;
; 10000001 00000000 00000000

; --
; THE 'RE-STACK TWO "SMALL" INTEGERS' SUBROUTINE
; --
; This routine is called to re-stack two numbers in full floating point form
; e.g. from mult when integer multiplication has overflowed.

RE_ST_TWO CALL RESTK_SUB ; routine RESTK-SUB below and continue
 ; into the routine to do the other one.

RESTK_SUB EX DE,HL ; swap pointers and continue into same routine.

; ---
; THE 'RE-STACK ONE "SMALL" INTEGER' SUBROUTINE
; ---
; (offset: $3D 're-stack')
; This routine re-stacks an integer, usually on the calculator stack, in full
; floating point form. HL points to the first byte.

re_stack LD A,(HL) ; Fetch Exponent byte to A
 AND A ; test it
 RET NZ ; return if first byte is not zero as number
 ; is already in floating-point form.

 PUSH DE ; preserve DE.

 CALL INT_FETCH ; routine INT-FETCH integer to DE, sign to C.

; Note. the above routine returns HL pointing to 4th byte.

 XOR A ; clear the accumulator.

; Note. The fifth byte of an integer is always zero for neatness so the next
; step is, I imagine, unnecessary.

;;; INC HL ; point to 5th.
;;; LD (HL),A ; and blank.
;;; DEC HL ; point to 4th.

 LD (HL),A ; blank the 4th byte.

 LD B,$91 ; set exponent byte +ve $81.
 ; and imaginary radix point 16 bits to right
 ; of first bit.

; we could skip to normalize now but it's quicker to avoid normalizing
; through an empty D.

 LD A,D ; fetch the high order byte D
 AND A ; is it zero ?
 JR NZ,RS_NRMLSE ; skip, if not, to RS-NRMLSE

; Check if the number is zero in which case no modification is required.
; However, by updating first three bytes we convert minus zero to plus
; zero although I'm not sure if it can arise. It is eliminated in mult.

 OR E ; Fetch low byte E to A and test for zero.
 LD B,D ; set B, the exponent, to 0
 JR Z,RS_STORE ; forward, if value is zero, to RS-STORE

; Move the significant bits eight places to the left.

 LD D,E ; transfer E to D
 LD E,B ; set E to 0
 LD B,$89 ; reduce the initial exponent by eight.

RS_NRMLSE EX DE,HL ; integer to HL, addr of 4th byte to DE.

RSTK_LOOP DEC B ; decrease exponent
 ADD HL,HL ; shift HL left
 JR NC,RSTK_LOOP ; loop back to RSTK-LOOP
 ; until a set bit pops into carry

 RRC C ; Now rotate the sign byte $00 or $FF
 ; into carry to give a sign bit.

 RR H ; rotate the sign bit to left of H
 RR L ; rotate any carry into L

 EX DE,HL ; address 4th byte, normalized int to DE

RS_STORE DEC HL ; address 3rd byte
 LD (HL),E ; place E
 DEC HL ; address 2nd byte
 LD (HL),D ; place D
 DEC HL ; address 1st byte
 LD (HL),B ; store the exponent

; Register HL now points at result.

 POP DE ; restore initial DE.
 RET ; return.

;**
;** Part 10. FLOATING-POINT CALCULATOR **
;**

; As a general rule the calculator avoids using the IY register.
; Exceptions are val, val$ and str$.
; So an assembly language programmer who has disabled interrupts to use IY
; for other purposes can still use the calculator for mathematical purposes.

; ------------------------
; THE 'TABLE OF CONSTANTS'
; ------------------------
; These five constants are now held in full five byte integer or
; floating-point form as it makes it much easier to pass them to the
; calculator stack when required.

;;; used 11 times
;;; stk-zero 00 00 00 00 00
;;; L32C5: DEFB $00 ;;Bytes: 1
;;; DEFB $B0 ;;Exponent $00
;;; DEFB $00 ;;(+00,+00,+00)

;;; used 19 times
;;; stk-one 00 00 01 00 00
;;; L32C8: DEFB $40 ;;Bytes: 2
;;; DEFB $B0 ;;Exponent $00
;;; DEFB $00,$01 ;;(+00,+00)

;;; used 9 times
;;; stk-half 80 00 00 00 00
;;; L32CC: DEFB $30 ;;Exponent: $80, Bytes: 1
;;; DEFB $00 ;;(+00,+00,+00)

;;; used 4 times.
;;; stk-pi/2 81 49 0F DA A2
;;; L32CE: DEFB $F1 ;;Exponent: $81, Bytes: 4
;;; DEFB $49,$0F,$DA,$A2 ;;

;;; used 3 times.
;;; stk-ten 00 00 0A 00 00
;;; L32D3: DEFB $40 ;;Bytes: 2
;;; DEFB $B0 ;;Exponent $00
;;; DEFB $00,$0A ;;(+00,+00)

TAB_CNST DEFB $00 ;+ the value zero.
 DEFB $00 ;+
 DEFB $00 ;+
 DEFB $00 ;+
 DEFB $00 ;+

 DEFB $00 ;+ the integer value 1.
 DEFB $00 ;+
 DEFB $01 ;+
 DEFB $00 ;+
 DEFB $00 ;+

 DEFB $80 ;+ the floating point value a half.
 DEFB $00 ;+
 DEFB $00 ;+
 DEFB $00 ;+
 DEFB $00 ;+

 DEFB $81 ;+ the floating point value pi/2
 DEFB $49 ;+
 DEFB $0F ;+
 DEFB $DA ;+
 DEFB $A2 ;+

 DEFB $00 ;+ the integer value ten.
 DEFB $00 ;+
 DEFB $0A ;+
 DEFB $00 ;+
 DEFB $00 ;+

; ------------------------
; THE 'TABLE OF ADDRESSES'
; ------------------------
;
; Starts with binary operations which have two operands and one result.
; Three pseudo binary operations first.

tbl_addrs DEFW jump_true ; $00 Address: $368F - jump-true
 DEFW exchange ; $01 Address: $343C - exchange
 DEFW delete ; $02 Address: $33A1 - delete

; True binary operations.

 DEFW subtract ; $03 Address: $300F - subtract
 DEFW multiply ; $04 Address: $30CA - multiply
 DEFW division ; $05 Address: $31AF - division
 DEFW to_power ; $06 Address: $3851 - to-power

 DEFW or ; $07 Address: $351B - or

 DEFW no_v_no ; $08 Address: $3524 - no-&-no
 DEFW multcmp ; $09 Address: $353B - no-l-eql
 DEFW multcmp ; $0A Address: $353B - no-gr-eql
 DEFW multcmp ; $0B Address: $353B - nos-neql
 DEFW multcmp ; $0C Address: $353B - no-grtr
 DEFW multcmp ; $0D Address: $353B - no-less
 DEFW multcmp ; $0E Address: $353B - nos-eql
 DEFW addition ; $0F Address: $3014 - addition

 DEFW str_v_no ; $10 Address: $352D - str-&-no
 DEFW multcmp ; $11 Address: $353B - str-l-eql
 DEFW multcmp ; $12 Address: $353B - str-gr-eql
 DEFW multcmp ; $13 Address: $353B - strs-neql
 DEFW multcmp ; $14 Address: $353B - str-grtr
 DEFW multcmp ; $15 Address: $353B - str-less
 DEFW multcmp ; $16 Address: $353B - strs-eql
 DEFW strs_add ; $17 Address: $359C - strs-add

; Unary follow.

 DEFW val_s ; $18 Address: $35DE - val$
 DEFW usr_str ; $19 Address: $34BC - usr-$
 DEFW read_in ; $1A Address: $3645 - read-in
 DEFW negate ; $1B Address: $346E - negate

 DEFW code ; $1C Address: $3669 - code
 DEFW val ; $1D Address: $35DE - val
 DEFW len ; $1E Address: $3674 - len
 DEFW sin ; $1F Address: $37B5 - sin
 DEFW cos ; $20 Address: $37AA - cos
 DEFW tan ; $21 Address: $37DA - tan
 DEFW asn ; $22 Address: $3833 - asn
 DEFW acs ; $23 Address: $3843 - acs
 DEFW atn ; $24 Address: $37E2 - atn
 DEFW ln ; $25 Address: $3713 - ln
 DEFW exp ; $26 Address: $36C4 - exp
 DEFW int ; $27 Address: $36AF - int
 DEFW sqr ; $28 Address: $384A - sqr
 DEFW sgn ; $29 Address: $3492 - sgn
 DEFW abs ; $2A Address: $346A - abs
 DEFW peek ; $2B Address: $34AC - peek
 DEFW in ; $2C Address: $34A5 - in
 DEFW usr_no ; $2D Address: $34B3 - usr-no
 DEFW str_s ; $2E Address: $361F - str$
 DEFW chrs ; $2F Address: $35C9 - chrs
 DEFW not ; $30 Address: $3501 - not

; End of true unary.

 DEFW MOVE_FP ; $31 Address: $33C0 - duplicate
 DEFW n_mod_m ; $32 Address: $36A0 - n-mod-m
 DEFW JUMP ; $33 Address: $3686 - jump
 DEFW stk_data ; $34 Address: $33C6 - stk-data
 DEFW dec_jr_nz ; $35 Address: $367A - dec-jr-nz
 DEFW less_0 ; $36 Address: $3506 - less-0
 DEFW greater_0 ; $37 Address: $34F9 - greater-0
 DEFW end_calc ; $38 Address: $369B - end-calc
 DEFW get_argt ; $39 Address: $3783 - get-argt
 DEFW truncate ; $3A Address: $3214 - truncate
 DEFW fp_calc_2 ; $3B Address: $33A2 - fp-calc-2
 DEFW E_TO_FP ; $3C Address: $2D4F - e-to-fp
 DEFW re_stack ; $3D Address: $3297 - re-stack

; The following are just the next available slots for the 128 compound
; literals which are in range $80 - $FF.

 DEFW seriesg_x ; Address: $3449 - series-xx $80 - $9F.
 DEFW stk_con_x ; Address: $341B - stk-const-xx $A0 - $BF.
 DEFW sto_mem_x ; Address: $342D - st-mem-xx $C0 - $DF.
 DEFW get_mem_x ; Address: $340F - get-mem-xx $E0 - $FF.

; Aside: 3E - 3F are therefore unused calculator literals.
; If the literal has to be also usable as a function then bits 6 and 7 are
; used to show type of arguments and result.

; --------------------------
; THE 'CALCULATE' SUBROUTINE
; --------------------------
;
;

CALCULATE CALL STK_PNTRS ; routine STK-PNTRS is called to set up the
 ; calculator stack pointers for a default
 ; unary operation. HL = last value on stack.
 ; DE = STKEND first location after stack.

; the calculate routine is called at this point by the series generator...

GEN_ENT_1 LD A,B ; fetch the Z80 B register to A
 LD ($5B67),A ; and store value in system variable BREG.
 ; this will be the counter for dec-jr-nz
 ; or if used from fp-calc2 the calculator
 ; instruction.

; ... and again later at this point

GEN_ENT_2 EXX ; switch sets
 EX (SP),HL ; and store the address of next instruction,
 ; the return address, in H'L'.
 ; If this is a recursive call the H'L'
 ; of the previous invocation goes on stack.
 ; c.f. end-calc.
 EXX ; switch back to main set

; this is the re-entry looping point when handling a string of literals.

RE_ENTRY LD ($5B65),DE ; save end of stack in system variable STKEND
 EXX ; switch to alt
 LD A,(HL) ; get next literal
 INC HL ; increase pointer'

; single operation jumps back to here

SCAN_ENT PUSH HL ; save pointer on stack
 AND A ; now test the literal
 JP P,FIRST_3D ; forward to FIRST-3D if in range $00 - $3D
 ; anything with bit 7 set will be one of
 ; 128 compound literals.

; compound literals have the following format.
; bit 7 set indicates compound.
; bits 6-5 the subgroup 0-3.
; bits 4-0 the embedded parameter $00 - $1F.
; The subgroup 0-3 needs to be manipulated to form the next available four
; address places after the simple literals in the address table.

 LD D,A ; save literal in D
 AND $60 ; and with 01100000 to isolate subgroup
 RRCA ; rotate bits
 RRCA ; 4 places to right
 RRCA ; not five as we need offset * 2
 RRCA ; 00000xx0
 ADD A,$7C ; add ($3E * 2) to give correct offset.
 ; alter above if you add more literals.
 LD L,A ; store in L for later indexing.
 LD A,D ; bring back compound literal
 AND $1F ; use mask to isolate parameter bits
 JR ENT_TABLE ; forward to ENT-TABLE

; ---

; the branch was here with simple literals.

FIRST_3D CP $18 ; compare with first unary operations.
 JR NC,DOUBLE_A ; to DOUBLE-A with unary operations

; it is binary so adjust pointers.

 EXX ;

;;; LD BC,$FFFB ; the value -5
;;; LD D,H ; transfer HL, the last value, to DE.
;;; LD E,L ;
;;; ADD HL,BC ; subtract 5 making HL point to second value.

 CALL STK_PTRS2 ; Routine to perform the above.

 EXX ; switch to alternate set of registers.

DOUBLE_A RLCA ; double the literal
 LD L,A ; and store in L for indexing

ENT_TABLE LD DE,tbl_addrs ; Address: tbl-addrs
 LD H,$00 ; prepare to index
 ADD HL,DE ; add to point to address of routine

 LD E,(HL) ; low byte of address to E
 INC HL ;
 LD D,(HL) ; high byte of address to D

 LD HL,RE_ENTRY ; Address: RE-ENTRY
 EX (SP),HL ; goes to stack and address of 'next literal'
 ; goes to HL'

 PUSH DE ; now stack the address of the routine

 EXX ; switch back to 'main' set

; Avoid using the IY register.

 LD BC,($5B66) ; STKEND_hi
 ; nothing much goes to C but BREG to B
 ; and continue into next ret instruction
 ; which has a dual identity

; ----------------------
; THE 'DELETE' OPERATION
; ----------------------
; (offset: $02 'delete')
; A simple return but when used as a calculator literal this

; deletes the last value from the calculator stack.
; On entry, as always with binary operations,
; HL = first number, DE = second number
; On exit, HL = result, DE = STKEND.
; So nothing to do

delete RET ; return - indirect jump if from above.

; ------------------------------
; THE 'SINGLE OPERATION' ROUTINE
; ------------------------------
; (offset: $3B 'fp_calc2')
; This single operation is used, in the first instance, to evaluate most
; of the mathematical and string functions found in BASIC expressions.

fp_calc_2 POP AF ; drop return address.
 LD A,($5B67) ; load accumulator from system variable BREG
 ; value will be literal e.g. 'tan'
 EXX ; switch to alt
 JR SCAN_ENT ; back to SCAN-ENT
 ; next literal will be end-calc at L2758

; ---------------------------------
; THE 'TEST FIVE SPACES' SUBROUTINE
; ---------------------------------
; This routine is called from MOVE-FP, STK-CONST and STK-STORE to test that
; there is enough space between the calculator stack and the machine stack
; for another five-byte value.

TEST_5_SP PUSH DE ; preserve.
 PUSH HL ; registers
 LD BC,$0005 ; an overhead of eighty five bytes

 CALL TEST_ROOM ; routine TEST_ROOM checks space for 5 bytes.

 POP HL ; (balance)
 POP DE ;
 RET ; then return - OK.

; -----------------------------
; THE 'STACK NUMBER' SUBROUTINE
; -----------------------------
; This routine is called to stack a hidden floating point number found in
; a BASIC line. It is also called to stack a numeric variable value, and
; from BEEP, to stack an entry in the semi-tone table. It is not part of the
; calculator suite of routines. On entry, HL points to the number to be
; stacked.

STACK_NUM LD DE,($5B65) ; Load destination from STKEND system variable.

 CALL MOVE_FP ; Routine MOVE-FP puts on calculator stack
 ; with a memory check.
 LD ($5B65),DE ; Set STKEND to next free location.

 RET ; Return.

; -------------------------
; THE 'DUPLICATE' OPERATION
; -------------------------
; (offset: $31 'duplicate')

; This simple routine is a 5-byte LDIR instruction
; that incorporates a memory check.
; When used as a calculator literal it duplicates the last value on the

; calculator stack.
; Unary so on entry HL points to last value, DE to STKEND

duplicate
MOVE_FP CALL TEST_5_SP ; routine TEST-5-SP test free memory
 ; and sets B to zero.
BLK_MV LDIR ; copy the five bytes.
 RET ; return with DE addressing new STKEND
 ; and HL addressing new last value.

; ------------------------------
; THE 'STACK LITERALS' OPERATION
; ------------------------------
; (offset: $34 'stk_data')
; When a calculator subroutine needs to put a value on the calculator
; stack that is not a regular constant this routine is called with a
; variable number of following data bytes that convey to the routine
; the integer or floating point form as succinctly as is possible.

stk_data LD H,D ; transfer STKEND
 LD L,E ; to HL for result.

STK_CONST CALL TEST_5_SP ; routine TEST-5-SP tests that room exists
 ; and sets BC to $05.

 EXX ; switch to alternate set
 PUSH HL ; save the pointer to next literal on stack
 EXX ; switch back to main set

 EX (SP),HL ; pointer to HL, destination to stack.

;;; PUSH BC ; save BC - value 5 from test room ??.

 LD A,(HL) ; fetch the byte following 'stk-data'
 AND $C0 ; isolate bits 7 and 6
 RLCA ; rotate
 RLCA ; to bits 1 and 0 range $00 - $03.
 LD C,A ; transfer to C
 INC C ; and increment to give the number of bytes
 ; to read. $01 - $04
 LD A,(HL) ; reload the first byte
 AND $3F ; mask off bits 5 - 0 to give possible exponent.
 JR NZ,FORM_EXP ; Forward to FORM-EXP if it was possible to
 ; include the exponent and count in one byte.

; else byte is just a byte count and reduced exponent comes next.

 INC HL ; address next byte and
 LD A,(HL) ; pick up the exponent (-$50).

FORM_EXP ADD A,$50 ; now add $50 to form actual exponent
 LD (DE),A ; and load into first destination byte.
 LD A,$05 ; load accumulator with $05 and
 SUB C ; subtract C to give count of trailing
 ; zeros plus one.
 INC HL ; increment source
 INC DE ; increment destination
;;; LD B,$00 ; prepare to copy (B=0, fr test5sp)

 LDIR ; copy C bytes

;;; POP BC ; restore 5 counter to BC ??.

 EX (SP),HL ; put HL on stack as next literal pointer

 ; and the stack value - result pointer -
 ; to HL.

 EXX ; switch to alternate set.
 POP HL ; restore next literal pointer from stack
 ; to H'L'.
 EXX ; switch back to main set.

 LD B,A ; zero count to B
 XOR A ; clear accumulator

STK_ZEROS DEC B ; decrement B counter
 RET Z ; return if zero. >>
 ; DE points to new STKEND
 ; HL to new number.

 LD (DE),A ; else load zero to destination
 INC DE ; increase destination
 JR STK_ZEROS ; loop back to STK-ZEROS until done.

; ---
; THE REDUNDANT 'SKIP CONSTANTS' SUBROUTINE
; ---
; This routine traversed variable-length entries in the table of constants,
; stacking intermediate, unwanted constants onto a dummy calculator stack,
; in the first five bytes of ROM. The destination DE normally points to the
; end of the calculator stack which might be in the normal place or in the
; system variables area during E-LINE-NO; INT-TO-FP; stk-ten. In any case,
; it would be simpler all round if the routine just shoved unwanted values
; where it is going to stick the wanted value. The instruction LD DE, $0000
; can be removed.

;;; SKIP-CONS
;;; L33F7: AND A ; test if initially zero.

;;; SKIP-NEXT
;;; L33F8: RET Z ; return if zero. >>

;;; PUSH AF ; save count.
;;; PUSH DE ; and normal STKEND

;;; LD DE,$0000 ; dummy value for STKEND at start of ROM
;;; ; Note. not a fault but this has to be
;;; ; moved elsewhere when running in RAM.
;;; ; e.g. with Expandor Systems 'Soft ROM'.
;;; ; Better still, write to the normal place.
;;; CALL STK_CONST ; routine STK-CONST works through variable
;;; ; length records.

;;; POP DE ; restore real STKEND
;;; POP AF ; restore count
;;; DEC A ; decrease
;;; JR SKIP_NEXT ; loop back to SKIP-NEXT

; ------------------------------
; THE 'LOCATE MEMORY' SUBROUTINE
; ------------------------------
; This routine, when supplied with a base address in HL and an index in A,
; will calculate the address of the A'th entry, where each entry occupies
; five bytes. It is used for reading the semi-tone table and addressing
; floating-point numbers in the calculator's memory area.
;;; It is not possible to use this routine for the table of constants as these
;;; six values are held in compressed format.

LOC_MEM LD C,A ; store the original number $00-$1F.
 RLCA ; X2 - double.
 RLCA ; X4 - quadruple.
 ADD A,C ; X5 - now add original to multiply by five.

 LD C,A ; place the result in the low byte.
 LD B,$00 ; set high byte to zero.
 ADD HL,BC ; add to form address of start of number in HL.

 RET ; return.

; ------------------------------------
; THE 'GET FROM MEMORY AREA' OPERATION
; ------------------------------------
; Literals $E0 to $FF
; A holds $00-$1F offset.
; The calculator stack increases by 5 bytes.

get_mem_x LD HL,($5B68) ; MEM is base address of the memory cells.

INDEX_5 PUSH DE ; save STKEND

 CALL LOC_MEM ; routine LOC-MEM so that HL = first byte
 CALL MOVE_FP ; routine MOVE-FP moves 5 bytes with necessary
 ; memory check.
 ; DE now points to new STKEND.

 POP HL ; original STKEND is now RESULT pointer.
 RET ; return.

; --------------------------------
; THE 'STACK A CONSTANT' OPERATION
; --------------------------------
; Offsets $A0 to $A4
; This routine allows a one-byte instruction to stack up to 32 constants
; held in short form in a table of constants. In fact only 5 constants are
; required. On entry the A register holds the literal ANDed with 1F.
;;; It isn't very efficient and it would have been better to hold the
;;; numbers in full, five byte form and stack them in a similar manner
;;; to that used for semi-tone table values.

stk_con_x LD HL,TAB_CNST ; Address table of five byte expanded constants

 JR INDEX_5 ; back to common code in routine above.

;;; stk-con-x
;;; L341B: LD H,D ; save STKEND - required for result
;;; LD L,E ;
;;; EXX ; swap
;;; PUSH HL ; save pointer to next literal
;;; LD HL,TAB_CNST ; Address: stk-zero - start of table of
;;; ; constants
;;; EXX ;
;;; CALL SKIP_CONS ; routine SKIP-CONS
;;; CALL STK_CONST ; routine STK-CONST
;;; EXX ;
;;; POP HL ; restore pointer to next literal.
;;; EXX ;
;;; RET ; return.

; -------------------------------
; THE 'STORE IN MEMORY' OPERATION
; -------------------------------
; Offsets $C0 to $DF

; Although 32 memory storage locations can be addressed, only six
; $C0 to $C5 are required by the ROM and only the thirty bytes (6*5)
; required for these are allocated. Spectrum programmers who wish to
; use the floating point routines from assembly language may wish to
; alter the system variable MEM to point to 160 bytes of RAM to have
; use the full range available.
; A holds the derived offset $00-$1F.
; This is a unary operation, so on entry HL points to the last value and DE
; points to STKEND.

sto_mem_x PUSH HL ; save the result pointer.
 EX DE,HL ; transfer to DE.
 LD HL,($5B68) ; fetch MEM the base of memory area.
 CALL LOC_MEM ; routine LOC-MEM sets HL to the destination.
 EX DE,HL ; swap - HL is start, DE is destination.
;;; CALL MOVE_FP ; routine MOVE-FP.
;;; ; Note. a short ld bc,5; ldir
;;; ; the embedded memory check is not required
;;; ; so these instructions would be faster.

 LD C,$05 ;+ Set number of bytes to five, B is zero.
 LDIR ;+ Block copy the bytes avoiding RAM check.

 EX DE,HL ; DE = STKEND
 POP HL ; restore original result pointer
 RET ; return.

; -------------------------
; THE 'EXCHANGE' SUBROUTINE
; -------------------------
; (offset: $01 'exchange')
; This routine swaps the last two values on the calculator stack.
; On entry, as always with binary operations,
; HL=first number, DE=second number
; On exit, HL=result, DE=STKEND.

exchange LD B,$05 ; there are five bytes to be swapped

; Start of loop.

SWAP_BYTE LD A,(DE) ; Each byte of second
;;; LD C,(HL) ; Each byte of first
;;; EX DE,HL ; Swap pointers
 LD C,A ;+
 LD A,(HL) ;+
 LD (DE),A ; Store each byte of first
 LD (HL),C ; Store each byte of second
 INC HL ; Advance both
 INC DE ; pointers.
 DJNZ SWAP_BYTE ; Loop back to SWAP-BYTE until all 5 done.

;;; EX DE,HL ; Even up the exchanges so that DE addresses
;;; ; system variable STKEND.

 RET ; Return.

; ------------------------------
; THE 'SERIES GENERATOR' ROUTINE
; ------------------------------
; (offset: $86 'series-06')
; (offset: $88 'series-08')
; (offset: $8C 'series-0C')
; The Spectrum uses Chebyshev polynomials to generate approximations for
; SIN, ATN, LN and EXP. These are named after the Russian mathematician

; Pafnuty Chebyshev, born in 1821, who did much pioneering work on numerical
; series. As far as calculators are concerned, Chebyshev polynomials have an
; advantage over other series, for example the Taylor series, as they can
; reach an approximation in just six iterations for SIN, eight for EXP and
; twelve for LN and ATN. The mechanics of the routine are interesting but
; for full treatment of how these are generated with demonstrations in
; Sinclair BASIC see "The Complete Spectrum ROM Disassembly" by Dr Ian Logan
; and Dr Frank O'Hara, published 1983 by Melbourne House.

seriesg_x LD B,A ; parameter $00 - $1F to B counter

 CALL GEN_ENT_1 ; routine GEN-ENT-1 is called.
 ; A recursive call to a special entry point
 ; in the calculator that puts the B register
 ; in the system variable BREG. The return
 ; address is the next location and where
 ; the calculator will expect its first
 ; instruction - now pointed to by HL'.
 ; The previous pointer to the series of
 ; five-byte numbers goes on the machine stack.

; The initialization phase.

 DEFB $31 ;;duplicate x,x
 DEFB $0F ;;addition x+x
 DEFB $C0 ;;st-mem-0 x+x
 DEFB $02 ;;delete .
 DEFB $A0 ;;stk-zero 0
 DEFB $C2 ;;st-mem-2 0

; A loop is now entered to perform the algebraic calculation for each of
; the numbers in the series

G_LOOP DEFB $31 ;;duplicate v,v.
 DEFB $E0 ;;get-mem-0 v,v,x+2
 DEFB $04 ;;multiply v,v*x+2
 DEFB $E2 ;;get-mem-2 v,v*x+2,v
 DEFB $C1 ;;st-mem-1
 DEFB $03 ;;subtract
 DEFB $38 ;;end-calc

; The previous pointer is fetched from the machine stack to H'L' where it
; addresses one of the numbers of the series following the series literal.

 CALL stk_data ; routine STK-DATA is called directly to
 ; push a value and advance H'L'.
 CALL GEN_ENT_2 ; routine GEN-ENT-2 recursively re-enters
 ; the calculator without disturbing
 ; system variable BREG
 ; H'L' value goes on the machine stack and is
 ; then loaded as usual with the next address.

 DEFB $0F ;;addition
 DEFB $01 ;;exchange
 DEFB $C2 ;;st-mem-2
 DEFB $02 ;;delete

 DEFB $35 ;;dec-jr-nz
 DEFB G_LOOP - $;;back to G-LOOP

; When the counted loop is complete the final subtraction yields the result
; for example SIN X.

 DEFB $E1 ;;get-mem-1

 DEFB $03 ;;subtract
 DEFB $38 ;;end-calc

 RET ; return with H'L' pointing to location
 ; after last number in series.

; ---------------------------------
; THE 'ABSOLUTE MAGNITUDE' FUNCTION
; ---------------------------------
; (offset: $2A 'abs')
; This calculator literal finds the absolute value of the last value,
; integer or floating point, on the calculator stack.

abs LD B,$FF ; signal abs
 JR NEG_TEST ; forward to NEG-TEST

; ---------------------------
; THE 'UNARY MINUS' OPERATION
; ---------------------------
; (offset: $1B 'negate')
; e.g. LET balance = -2
; Unary, so on entry HL points to last value, DE to STKEND.

negate CALL TEST_ZERO ; call routine TEST-ZERO and
 RET C ; return if so leaving zero unchanged.

 LD B,$00 ; signal negate required before joining
 ; common code.

NEG_TEST LD A,(HL) ; load first byte and
 AND A ; test for zero which indicates a small integer.
 JR Z,INT_CASE ; forward, if so, to INT-CASE

; for the FLOATING POINT CASE a single bit denotes the sign.

 INC HL ; address the first byte of mantissa.
 LD A,B ; action flag $FF=abs, $00=neg.
 AND $80 ; now $80 $00
 OR (HL) ; sets bit 7 for abs

 RLA ; sets carry for abs and if number negative
 CCF ; complement carry flag
 RRA ; and rotate back in altering sign

 LD (HL),A ; put the altered adjusted number back
 DEC HL ; HL points to result
 RET ; return with DE unchanged

; ---

; for integer numbers an entire byte denotes the sign.

INT_CASE PUSH DE ; save STKEND.

 PUSH HL ; save pointer to the last value/result.

 CALL INT_FETCH ; routine INT-FETCH puts integer in DE
 ; and the sign in C.

 POP HL ; restore the result pointer.

 LD A,B ; $FF=abs, $00=neg
 OR C ; $FF for abs, no change neg
 CPL ; $00 for abs, switched for neg

 JR INT_STO_2 ;+ Forward to similar code.

;;; LD C,A ; transfer result to sign byte.
;;; CALL INT_STORE ; routine INT-STORE to re-write the integer.
;;; POP DE ; restore STKEND.
;;; RET ; return.

; ---------------------
; THE 'SIGNUM' FUNCTION
; ---------------------
; (offset: $29 'sgn')
; This routine replaces the last value on the calculator stack,
; which may be in floating point or integer form, with the integer values
; zero if zero, with one if positive and with -minus one if negative.

sgn CALL TEST_ZERO ; call routine TEST-ZERO and
 RET C ; exit if zero as no change is required.

 PUSH DE ; save pointer to STKEND.

 LD DE,$0001 ; the result will be 1.
 INC HL ; skip over the exponent.
 RL (HL) ; rotate the sign bit into the carry flag.
 DEC HL ; step back to point to the result.
 SBC A,A ; byte will be $FF if negative, $00 if positive.

INT_STO_2 LD C,A ; store the sign byte in the C register.

INT_STO_3 CALL INT_STORE ; routine INT-STORE to overwrite the last
 ; value with 0001 and sign.

 POP DE ; restore STKEND.
 RET ; return.

; -----------------
; THE 'IN' FUNCTION
; -----------------
; (offset: $2C 'in')
; This function reads a byte from an input port.

in CALL FIND_INT2 ; Routine FIND-INT2 puts port address in BC.
 ; All 16 bits are put on the address line.

 IN A,(C) ; Read the port.

 JR IN_PK_STK ; exit to STACK-A (via IN-PK-STK to save a byte
 ; of instruction code).

; -------------------
; THE 'PEEK' FUNCTION
; -------------------
; (offset: $2B 'peek')
; This function returns the contents of a memory address.
; The entire address space can be examined including the ROM.

peek CALL FIND_INT2 ; routine FIND-INT2 puts the address in BC.
 LD A,(BC) ; load the contents into A register.

IN_PK_STK JP STACK_A ; exit via STACK-A to put the value on the
 ; calculator stack.

; ------------------
; THE 'USR' FUNCTION

; ------------------
; (offset: $2d 'usr-no')
; The USR function followed by a number 0-65535 is the method by which
; the Spectrum invokes machine code programs. This function returns the
; contents of the BC register pair.
; Note. that STACK-BC re-initializes the IY register if a user-written
; program has altered it.

usr_no CALL FIND_INT2 ; routine FIND-INT2 to fetch the
 ; supplied address into BC.

 LD HL,STK_BC_IY ; NEW address: STK_BC_IY is
 PUSH HL ; pushed onto the machine stack.
 PUSH BC ; then the address of the machine code
 ; routine.

 RET ; make an indirect jump to the routine
 ; and, hopefully, to STACK-BC also.

; -------------------------
; THE 'USR STRING' FUNCTION
; -------------------------
; (offset: $19 'usr-$')
; The user function with a one-character string argument, calculates the
; address of the User Defined Graphic character that is in the string.
; As an alternative, the ASCII equivalent, upper or lower case,
; may be supplied. This provides a user-friendly method of redefining
; the 21 User Definable Graphics e.g.
; POKE USR "a", BIN 10000000 will put a dot in the top left corner of the
; character 144.
; Note. the curious double check on the range. With 26 UDGs the first check
; only is necessary. With anything less the second check only is required.
; It is highly likely that the first check was written by Steven Vickers.

usr_str
;;; CALL STK_FETCH ; routine STK-FETCH fetches the string
;;; ; parameters.
;;; DEC BC ; decrease BC by
;;; LD A,B ; one to test
;;; OR C ; the length.
;;; JR NZ,REPORT_A ; to REPORT-A if not a single character.
;;;
;;; LD A,(DE) ; fetch the character

 CALL EXPT_SPEC ;+ fetch a single char

 CALL ALPHA ; routine ALPHA sets carry if 'A-Z' or 'a-z'.
 JR C,USR_RANGE ; forward, if ASCII, to USR-RANGE

 SUB $90 ; make UDGs range 0-20d
 JR C,REPORT_A ; to REPORT-A if too low. e.g. usr " ".

;;; CP $15 ; Note. this test is not necessary.
;;; JR NC,REPORT_A ; to REPORT-A if higher than 20.

 INC A ; make range 1-21d to match LSBs of ASCII

USR_RANGE DEC A ; make range of bits 0-4 start at zero
 ADD A,A ; multiply by eight
 ADD A,A ; and lose any set bits
 ADD A,A ; range now 0 - 25*8
 CP $A8 ; compare to 21*8
 JR NC,REPORT_A ; to REPORT-A if originally higher
 ; than 'U','u' or graphics U.

 LD BC,($5B7B) ; fetch the UDG system variable value.
 ADD A,C ; add the offset to character
 LD C,A ; and store back in register C.
 JR NC,USR_STACK ; forward to USR-STACK if no overflow.

 INC B ; increment high byte.

USR_STACK JP STACK_BC ; jump back and exit via STACK-BC to store

; ---

REPORT_A RST 30H ; ERROR-1
 DEFB $09 ; Error Report: Invalid argument

; ------------------------------
; THE 'TEST FOR ZERO' SUBROUTINE
; ------------------------------
; Test if top value on calculator stack is zero. The carry flag is set if
; the last value is zero but no registers are altered. All five bytes will
; be zero but only the first four bytes need be tested.
; On entry, HL points to the exponent the first byte of the value.

TEST_ZERO PUSH HL ; preserve HL which is used to address.
 PUSH BC ; preserve BC which is used as a store.

 LD B,A ; preserve A in B.

 LD A,(HL) ; load first byte to accumulator
 INC HL ; advance.
 OR (HL) ; OR with second byte and clear carry.
 INC HL ; advance.
 OR (HL) ; OR with third byte.
 INC HL ; advance.
 OR (HL) ; OR with fourth byte setting zero flag.

 LD A,B ; restore A without affecting flags.
 POP BC ; restore the saved
 POP HL ; registers.

 RET NZ ; return if not zero and with carry reset.

 SCF ; set the carry flag.
 RET ; return with carry set if zero.

; --------------------------------
; THE 'GREATER THAN ZERO' OPERATOR
; --------------------------------
; (offset: $37 'greater-0')
; Test if the last value on the calculator stack is greater than zero.
; This routine is also called directly from the end-tests of the comparison
; routine.

greater_0 CALL TEST_ZERO ; routine TEST-ZERO
 RET C ; return if was zero as this
 ; is also the Boolean 'false' value.

 LD A,$FF ; prepare XOR mask for sign bit
 JR SIGN_TO_C ; forward to SIGN-TO-C
 ; to put sign in carry
 ; (carry will become set if sign is positive)
 ; and then overwrite location with 1 or 0
 ; as appropriate.

; ------------------
; THE 'NOT' FUNCTION
; ------------------
; (offset: $30 'not')
; This overwrites the last value with 1 if it was zero else with zero
; if it was any other value.
;
; e.g. NOT 0 returns 1, NOT 1 returns 0, NOT -3 returns 0.
;
; The subroutine is also called directly from the end-tests of the comparison
; operator.

not CALL TEST_ZERO ; routine TEST-ZERO sets carry if zero

 JR FP_0_1 ; to FP-0/1 to overwrite operand with
 ; 1 if carry is set else to overwrite with zero.

; ------------------------------
; THE 'LESS THAN ZERO' OPERATION
; ------------------------------
; (offset: $36 'less-0')
; Destructively test if last value on calculator stack is less than zero.
; Bit 7 of the second byte will be set if it is. This will either be the
; first bit of a 32-bit mantissa or part of the sign byte if an integer.

less_0 XOR A ; set XOR mask to zero
 ; (carry will become set if sign is negative).

; transfer sign of mantissa to Carry Flag.

SIGN_TO_C INC HL ; address 2nd byte.
 XOR (HL) ; bit 7 of HL will be set if number is negative.
 DEC HL ; address 1st byte again.
 RLCA ; rotate bit 7 of A to carry.

; ----------------------------
; THE 'ZERO OR ONE' SUBROUTINE
; ----------------------------
; This routine places an integer value of zero or one at the addressed
; location of the calculator stack or MEM area. The value one is written if
; carry is set on entry else zero.

FP_0_1 PUSH HL ; save pointer to the first byte
 LD A,$00 ; load accumulator with zero - without
 ; disturbing flags.
 LD (HL),A ; zero to first byte
 INC HL ; address next
 LD (HL),A ; zero to 2nd byte
 INC HL ; address low byte of integer
 RLA ; carry to bit 0 of A
 LD (HL),A ; load one or zero to low byte.
 RRA ; restore zero to accumulator.
 INC HL ; address high byte of integer.
 LD (HL),A ; put a zero there.
 INC HL ; address fifth byte.
 LD (HL),A ; put a zero there for neatness.

 POP HL ; restore pointer to the first byte.
 RET ; return.

; -----------------
; THE 'OR' OPERATOR
; -----------------
; (offset: $07 'or')

; The Boolean OR operator. e.g. X OR Y
; The result is zero if both values are zero else a non-zero value.
;
; e.g. 0 OR 0 returns 0.
; -3 OR 0 returns -3.
; 0 OR -3 returns 1.
; -3 OR 2 returns 1.
;
; A binary operation.
; On entry HL points to first operand (X) and DE to second operand (Y).

or EX DE,HL ; make HL point to second number

 CALL TEST_ZERO ; routine TEST-ZERO

 EX DE,HL ; restore pointers
 RET C ; return if result was zero - first operand,
 ; now the last value, is the result.

 SCF ; set carry flag
 JR FP_0_1 ; back to FP-0/1 to overwrite the first operand
 ; with the value 1.

; ---------------------------------
; THE 'NUMBER AND NUMBER' OPERATION
; ---------------------------------
; (offset: $08 'no-&-no')
; The Boolean AND operator.
;
; e.g. -3 AND 2 returns -3.
; -3 AND 0 returns 0.
; 0 and -2 returns 0.
; 0 and 0 returns 0.
;
; Compare with OR routine above.

no_v_no EX DE,HL ; make HL address second operand.

 CALL TEST_ZERO ; routine TEST-ZERO sets carry if zero.

 EX DE,HL ; restore pointers.
 RET NC ; return if second non-zero, first is result.

;

 AND A ; else clear carry.
 JR FP_0_1 ; back to FP-0/1 to overwrite first operand
 ; with zero for return value.

; ---------------------------------
; THE 'STRING AND NUMBER' OPERATION
; ---------------------------------
; (offset: $10 'str-&-no')
; e.g. "You Win" AND score>99 will return the string if condition is true
; or the null string if false.

str_v_no EX DE,HL ; make HL point to the number.

 CALL TEST_ZERO ; routine TEST-ZERO.

 EX DE,HL ; Restore the two pointers.
 RET NC ; Return if number was not zero - the string
 ; is the result.

; If the number was zero (false) then the null string must be returned by
; altering the length of the string on the calculator stack to zero.

;;; PUSH DE ; save pointer to the now obsolete number
;;; ; (which will become the new STKEND)

 DEC DE ; point to the 5th byte of string descriptor.
 XOR A ; clear the accumulator.
 LD (DE),A ; place zero in high byte of length.
 DEC DE ; address low byte of length.
 LD (DE),A ; place zero there - now the null string.

;;; POP DE ; restore pointer - new STKEND.

 INC DE ;+ Restore DE using two increments which
 INC DE ;+ is quicker than using the machine stack.

 RET ; return.

; ---------------------------
; THE 'COMPARISON' OPERATIONS
; ---------------------------
; (offset: $0A 'no-gr-eql')
; (offset: $0B 'nos-neql')
; (offset: $0C 'no-grtr')
; (offset: $0D 'no-less')
; (offset: $0E 'nos-eql')
; (offset: $11 'str-l-eql')
; (offset: $12 'str-gr-eql')
; (offset: $13 'strs-neql')
; (offset: $14 'str-grtr')
; (offset: $15 'str-less')
; (offset: $16 'strs-eql')

; True binary operations.
; A single entry point is used to evaluate six numeric and six string
; comparisons. On entry, the calculator literal is in the B register and
; the two numeric values, or the two string parameters, are on the
; calculator stack.
; The individual bits of the literal are manipulated to group similar
; operations although the SUB 8 instruction does nothing useful and merely
; alters the string test bit.
; Numbers are compared by subtracting one from the other, strings are
; compared by comparing every character until a mismatch, or the end of one
; or both, is reached.
;
; Numeric Comparisons.
; --------------------
; The 'x>y' example is the easiest as it employs straight-thru logic.
; Number y is subtracted from x and the result tested for greater-0 yielding
; a final value 1 (true) or 0 (false).
; For 'x<y' the same logic is used but the two values are first swapped on the
; calculator stack.
; For 'x=y' NOT is applied to the subtraction result yielding true if the
; difference was zero and false with anything else.
; The first three numeric comparisons are just the opposite of the last three
; so the same processing steps are used and then a final NOT is applied.
; NO
; literal Test No [sub 8] ExOrNot 1st RRCA exch sub ? End-Tests
; ========= ==== == ======== === ======== ======== ==== === = === === ===
; no-l-eql x<=y 09 00001001 dec 00001000 00000100 ---- x-y ? --- >0? NOT
; no-gr-eql x>=y 0A 00001010 dec 00001001 10000100c swap y-x ? --- >0? NOT
; nos-neql x<>y 0B 00001011 dec 00001010 00000101 ---- x-y ? NOT --- NOT

; no-grtr x>y 0C 00001100 - 00001100 00000110 ---- x-y ? --- >0? ---
; no-less x<y 0D 00001101 - 00001101 10000110c swap y-x ? --- >0? ---
; nos-eql x=y 0E 00001110 - 00001110 00000111 ---- x-y ? NOT --- ---
;
; comp -> C/F
; ==== ===
; str-l-eql x$<=y$ 11 00010001 dec 00010000 00001000 ---- xy 0 !or >0? NOT
; str-gr-eql x$>=y$ 12 00010010 dec 00010001 10001000c swap yx 0 !or >0? NOT
; strs-neql x$<>y$ 13 00010011 dec 00010010 00001001 ---- xy 0 !or >0? NOT
; str-grtr x$>y$ 14 00010100 - 00010100 00001010 ---- xy 0 !or >0? ---
; str-less x$<y$ 15 00010101 - 00010101 10001010c swap yx 0 !or >0? ---
; strs-eql x$=y$ 16 00010110 - 00010110 00001011 ---- xy 0 !or >0? ---
;
; String comparisons are a little different in that the eql/neql carry flag
; from the 2nd RRCA is, as before, fed into the first of the end tests but
; along the way it gets modified by the comparison process. The result on the
; stack always starts off as zero and the carry fed in determines if NOT is
; applied to it. So the only time the greater-0 test is applied is if the
; stack holds zero which is not very efficient as the test will always yield
; zero. The most likely explanation is that there were once separate end tests
; for numbers and strings.

multcmp LD A,B ; transfer literal to accumulator.

;;; SUB $08 ; subtract eight - which is not useful.

 BIT 2,A ; isolate '>', '<', '='.

 JR NZ,EX_OR_NOT ; skip to EX-OR-NOT with these.

 DEC A ; else make $00-$02, $08-$0A to match bits 0-2.

EX_OR_NOT RRCA ; the first RRCA sets carry for a swap.
 JR NC,NU_OR_STR ; forward to NU-OR-STR with other 8 cases

; for the other 4 cases the two values on the calculator stack are exchanged.

 PUSH AF ; save A and carry.
 PUSH HL ; save HL - pointer to first operand.
 ; (DE points to second operand).

 CALL exchange ; routine exchange swaps the two values.
 ; (HL = second operand, DE = STKEND)

 POP DE ; DE = first operand
 EX DE,HL ; as we were.
 POP AF ; restore A and carry.

NU_OR_STR RRCA ;+ causes 'eql'/'neql' to set carry.
 PUSH AF ;+ save carry flag.

; Note. it would be better if the 2nd RRCA preceded the string test.
; It would save two duplicate bytes and if we also got rid of that sub 8
; at the beginning we wouldn't have to alter which bit we test.

 BIT 2,A ; test if a string comparison.
 JR NZ,STRINGS ; forward, if so, to STRINGS

; continue with numeric comparisons.

;;; RRCA ; 2nd RRCA causes eql/neql to set carry.

;;; PUSH AF ; save A and carry

 CALL subtract ; routine subtract leaves result on stack.
 JR END_TESTS ; forward to END-TESTS

; ---

;;; RRCA ; 2nd RRCA causes eql/neql to set carry.

;;; PUSH AF ; save A and carry.

STRINGS CALL STK_FETCH ; routine STK-FETCH gets 2nd string params
 PUSH DE ; save start2 *.
 PUSH BC ; and the length.

 CALL STK_FETCH ; routine STK-FETCH gets 1st string
 ; parameters - start in DE, length in BC.
 POP HL ; restore length of second to HL.

; A loop is now entered to compare, by subtraction, each corresponding
; character of the strings. For each successful match, the pointers are
; incremented and the lengths decreased and the branch taken back to here.
; If both string remainders become null at the same time, then an exact
; match exists.

BYTE_COMP LD A,H ; test if the second string
 OR L ; is the null string and hold flags.

 EX (SP),HL ; put length2 on stack, bring start2 to HL *.
 LD A,B ; hi byte of length1 to A

 JR NZ,SEC_PLUS ; forward to SEC-PLUS if second not null.

 OR C ; test length of first string.

SECND_LOW POP BC ; pop the second length off stack.
 JR Z,BOTH_NULL ; forward to BOTH-NULL if first string is also
 ; of zero length.

; the true condition - first is longer than second (SECND-LESS)

 POP AF ; restore carry (set if eql/neql)
 CCF ; complement carry flag.
 ; Note. equality becomes false.
 ; Inequality is true. By swapping or applying
 ; a terminal 'not', all comparisons have been
 ; manipulated so that this is success path.
 JR STR_TEST ; forward to leave via STR-TEST

; ---
; the branch was here with a match

BOTH_NULL POP AF ; restore carry - set for eql/neql
 JR STR_TEST ; forward to STR-TEST

; ---
; the branch was here when 2nd string not null and low byte of first is yet
; to be tested.

SEC_PLUS OR C ; test the length of first string.
 JR Z,FRST_LESS ; forward to FRST-LESS if length is zero.

; both strings have at least one character left.

 LD A,(DE) ; fetch character of first string.

 SUB (HL) ; subtract with that of 2nd string.
 JR C,FRST_LESS ; forward to FRST-LESS if carry set

 JR NZ,SECND_LOW ; back to SECND-LOW and then STR-TEST
 ; if not exact match.

 DEC BC ; decrease length of 1st string.
 INC DE ; increment 1st string pointer.

 INC HL ; increment 2nd string pointer.
 EX (SP),HL ; swap with length on stack
 DEC HL ; decrement 2nd string length
 JR BYTE_COMP ; back to BYTE-COMP

; ---
; the false condition.

FRST_LESS POP BC ; discard length
 POP AF ; pop A
 AND A ; clear the carry for false result.

; ---
; exact match and x$>y$ rejoin here

STR_TEST PUSH AF ; save A and carry

 RST 28H ;; FP-CALC
 DEFB $A0 ;;stk-zero an initial false value.
 DEFB $38 ;;end-calc

; both numeric and string paths converge here.

END_TESTS POP AF ; pop carry - will be set if eql/neql
 PUSH AF ; save it again.

 CALL C,not ; routine NOT sets true(1) if equal(0)
 ; or, for strings, applies true result.

 POP AF ; pop carry and
 PUSH AF ; save A

 CALL NC,greater_0 ; routine GREATER-0 tests numeric subtraction
 ; result but also needlessly tests the string
 ; value for zero - it must be.

 POP AF ; pop A
 RRCA ; the third RRCA - test for '<=', '>=' or '<>'.

 CALL NC,not ; if comparison then apply a terminal NOT

 RET ; return.

; ------------------------------------
; THE 'STRING CONCATENATION' OPERATION
; ------------------------------------
; (offset: $17 'strs-add')
; This literal combines two strings into one e.g. LET a$ = b$ + c$
; The two parameters of the two strings to be combined are on the stack.

strs_add CALL STK_FETCH ; routine STK-FETCH fetches string parameters
 ; and deletes calculator stack entry.
 PUSH DE ; save start address.
 PUSH BC ; and length.

 CALL STK_FETCH ; routine STK-FETCH for the first string

 POP HL ; re-fetch first length
 PUSH HL ; and save again

 PUSH DE ; save start of second string
 PUSH BC ; and its length.

 ADD HL,BC ; add the two lengths.
 LD B,H ; transfer result to BC
 LD C,L ;

 CALL BC_SPACES ; routine BC_SPACES creates room in workspace.
 ; DE points to start of space.

 CALL STK_STO_s ; routine STK-STO-$ stores parameters
 ; of new string updating STKEND.

 POP BC ; length of first
 POP HL ; address of start

;;; LD A,B ; test for
;;; OR C ; zero length.
;;; JR Z,OTHER_STR ; to OTHER-STR if null string
;;; LDIR ; copy the first string to workspace.

 CALL COND_MV ; A three-byte call to ldir saves a byte.

OTHER_STR POP BC ; now second length
 POP HL ; and start of string

;;; LD A,B ; test this one
;;; OR C ; for zero length
;;; JR Z,STK_PNTRS ; skip forward to STK-PNTRS if so as complete.
;;; LDIR ; else copy the bytes.

 CALL COND_MV ; A three-byte call to ldir saves a byte.

; Continue into next routine which sets the calculator stack pointers.

; -----------------------------------
; THE 'SET STACK POINTERS' SUBROUTINE
; -----------------------------------
; Register DE is set to STKEND and HL, the result pointer, is set to five
; locations below this.
; This routine is used when it is inconvenient to save these values at the
; time the calculator stack is manipulated due to other activity on the
; machine stack.
; This routine is also used to terminate the VAL and READ-IN routines for
; the same reason and to initialize the calculator stack at the start of
; the CALCULATE routine.

STK_PNTRS LD HL,($5B65) ; fetch STKEND value from system variable.

;;; LD DE,$FFFB ; the value -5
;;; PUSH HL ; push STKEND value.
;;; ADD HL,DE ; subtract 5 from HL.
;;; POP DE ; pop STKEND to DE.

STK_PTRS2 LD D,H ; transfer to DE
 LD E,L ;
 DEC HL ; Make HL 5 locations lower.
 DEC HL ;
 DEC HL ;

 DEC HL ;
 DEC HL ;
 RET ; return.

; -------------------
; THE 'CHR$' FUNCTION
; -------------------
; (offset: $2f 'chr$')
; This function returns a single character string that is a result of
; converting a number in the range 0-255 to a string e.g. CHR$ 65 = "A".

chrs CALL FP_TO_A ; routine FP-TO-A puts the number in A.

 JR C,REPORT_Bd ; forward to REPORT-Bd if overflow
 JR NZ,REPORT_Bd ; forward to REPORT-Bd if negative

;;; PUSH AF ; save the argument.

;;; LD BC,$0001 ; one space required.

 CALL BC_SPACE1 ; BC_SPACE1 makes DE point to start

;;; POP AF ; restore the number.

 LD (DE),A ; and store in workspace
 JR str_STK ;+ forward to similar code.

;;; CALL STK_STO_s ; routine STK-STO-$ stacks descriptor.
;;; EX DE,HL ; make DE point to STKEND.
;;; RET ; return.

; ---

REPORT_Bd RST 30H ; ERROR-1
 DEFB $0A ; Error Report: Integer out of range

; ----------------------------
; THE 'VAL and VAL$' FUNCTIONS
; ----------------------------
; (offset: $1d 'val')
; (offset: $18 'val$')
; VAL treats the characters in a string as a numeric expression.
; e.g. VAL "2.3" = 2.3, VAL "2+4" = 6, VAL ("2" + "4") = 24.
;
; VAL$ treats the characters in a string as a string expression.
; e.g. VAL$ (z$+"(2)") = a$(2) if z$ happens to be "a$".

val

val_s RST 18H ;;;
;;; LD HL,($5B5D) ; fetch value of system variable CH_ADD
 PUSH HL ; and save on the machine stack.
 LD A,B ; fetch the literal (either $1D or $18).
 ADD A,$E3 ; add $E3 to form $00 (setting carry) or $FB.
 SBC A,A ; now form $FF bit 6 = numeric result
 ; or $00 bit 6 = string result.
 PUSH AF ; save this mask on the stack

 CALL STK_FETCH ; routine STK-FETCH fetches the string operand
 ; from the calculator stack.

 PUSH DE ; save the address of the start of the string.
 INC BC ; increment the length for a carriage return.

 CALL BC_SPACES ; BC_SPACES creates the space in workspace.

 POP HL ; restore start of string to HL.
 LD ($5B5D),DE ; load CH_ADD with start DE in workspace.

 PUSH DE ; save the start in workspace
 LDIR ; copy string from program or variables or
 ; workspace to the workspace area.
 EX DE,HL ; end of string + 1 to HL
 DEC HL ; decrement HL to point to end of new area.
 LD (HL),$0D ; insert a carriage return at end.
 RES 7,(IY+$01) ; update FLAGS - signal checking syntax.
 CALL SCANNING ; routine SCANNING evaluates string
 ; expression and result.

;;; RST 18H ; GET-CHAR fetches next character. ????

 CP $0D ; is next char the expected carriage return ?
 JR NZ,V_RPORT_C ; forward, if not, to V-RPORT-C
 ; 'Nonsense in BASIC'.

 POP HL ; restore start of string in workspace.

 POP AF ; restore expected result flag (bit 6).

 XOR (IY+$01) ; XOR with FLAGS now updated by SCANNING.
 AND $40 ; test bit 6 - should be zero if result types
 ; match.

V_RPORT_C JP NZ,REPORT_C ;.jump back to REPORT-C with a result mismatch.

 LD ($5B5D),HL ; set CH_ADD to the start of the string again.
 SET 7,(IY+$01) ; update FLAGS - signal running program.

 CALL SCANNING ; routine SCANNING evaluates the string
 ; in full leaving result on calculator stack.

 POP HL ; restore saved character address in program.
 LD ($5B5D),HL ; and reset the system variable CH_ADD.

V_ST_PTRS JR STK_PNTRS ; back to exit via STK-PNTRS.
 ; resetting the calculator stack pointers
 ; HL and DE from STKEND as it wasn't possible
 ; to preserve them during this routine.

; -------------------
; THE 'STR$' FUNCTION
; -------------------
; (offset: $2e 'str$')
; This function produces a string comprising the characters that would appear
; if the numeric argument were printed.
; e.g. STR$ (1/10) produces "0.1".

;;; strs LD BC,$0001 ; create an initial byte in workspace
;;; RST 30H ; using BC_SPACES restart.

str_s CALL BC_SPACE1 ;+ create an initial byte in workspace.

 LD ($5B5B),HL ; set system variable K_CUR to new location.
 PUSH HL ; and save start on machine stack also.

 LD HL,($5B51) ; fetch value of system variable CURCHL
 PUSH HL ; and save that too.

 LD A,$FF ; select system channel 'R'.

 CALL CHAN_SLCT ; routine CHAN-OPEN opens it.
 CALL PRINT_FP ; routine PRINT-FP outputs the number to
 ; workspace updating K-CUR.

 POP HL ; restore current channel.
 CALL CHAN_FLAG ; routine CHAN-FLAG resets flags.

 POP DE ; fetch saved start of string to DE.
 LD HL,($5B5B) ; load HL with end of string from K_CUR.

 AND A ; prepare for true subtraction.
 SBC HL,DE ; subtract start from end to give length.
 LD B,H ; transfer the length to
 LD C,L ; the BC register pair.

str_STK CALL STK_STO_s ; routine STK-STO-$ stores string parameters
 ; on the calculator stack.

 EX DE,HL ; Make DE point to STKEND.
 RET ; return.

; ------------------------
; THE 'READ-IN' SUBROUTINE
; ------------------------
; (offset: $1a 'read-in')
; This is the calculator literal used by the INKEY$ function when a '#'
; is encountered after the keyword. It appears to provide for the reading
; of data through different streams from those available on the standard
; Spectrum.
; INKEY$ # does not interact correctly with the keyboard, #0 or #1, and
; its uses are for other channels - Steven Vickers, Pitman Pocket Book.

read_in
 LD HL,($5B51) ; fetch current channel CURCHL
 PUSH HL ; save it

;;; CALL FIND_INT1 ; routine FIND-INT1 fetches stream to A
;;; CP $10 ; compare with 16 decimal.
;;; JP NC,REPORT_B ; JUMP to REPORT-B if not in range 0 - 15.
;;; CALL CHAN_SLCT ; routine CHAN-OPEN opens channel

 CALL CHAN_CHK ;+ natural routine opens, if valid, else errors
 ;+ with 'Invalid stream' instead of 'Integer
 ;+ out of range'

 CALL IN_CHAN_K ;+ keyboard ?

 JR NZ,READ_IT ;+ Forward if not

 HALT ;+ Read the keyboard.

READ_IT CALL INPUT_AD ; routine INPUT-AD - the channel must have an
 ; input stream or else error here from stream
 ; stub.
 LD BC,$0000 ; initialize length of string to zero
 JR NC,R_I_STORE ; forward to R-I-STORE if no key detected.

;;; INC C ; increase length to one.

 CALL BC_SPACE1 ; NEW routine BC_SPACE1 creates space for one
 ; character in workspace.
 LD (DE),A ; the character is inserted.

R_I_STORE CALL STK_STO_s ; routine STK-STO-$ stacks the string
 ; parameters.

 POP HL ; Restore current channel address

 CALL CHAN_FLAG ; Routine CHAN-FLAG resets current channel
 ; system variable and flags.

 JR V_ST_PTRS ; jump back indirectly to STK_PNTRS

; -------------------
; THE 'CODE' FUNCTION
; -------------------
; (offset: $1c 'code')
; Returns the ASCII code of a character or first character of a string
; e.g. CODE "Aardvark" = 65, CODE "" = 0.

code CALL STK_FETCH ; routine STK-FETCH to fetch and delete the
 ; string parameters.
 ; DE points to the start, BC holds the length.

 LD A,B ; test length
 OR C ; of the string.
 JR Z,STK_CODE ; skip to STK-CODE with zero if the null string.

 LD A,(DE) ; else fetch the first character.

STK_CODE JP STACK_A ; jump back to STACK-A (with memory check)

; ------------------
; THE 'LEN' FUNCTION
; ------------------
; (offset: $1e 'len')
; Returns the length of a string.
; In Sinclair BASIC, workable strings can be more than twenty thousand
; characters long so a sixteen-bit register is required to store the length.

len CALL STK_FETCH ; Routine STK-FETCH to fetch and delete the
 ; string parameters from the calculator stack.
 ; Register BC now holds the length of string.

 JP STACK_BC ; Jump back to STACK-BC to save result on the
 ; calculator stack (with memory check).

; -------------------------------------
; THE 'DECREASE THE COUNTER' SUBROUTINE
; -------------------------------------
; (offset: $35 'dec-jr-nz')
; The calculator has an instruction that decrements a single-byte
; pseudo-register and makes consequential relative jumps just like
; the Z80's DJNZ instruction.

dec_jr_nz EXX ; switch in set that addresses code

 PUSH HL ; save pointer to offset byte
 LD HL,$5B67 ; address BREG in system variables
 DEC (HL) ; decrement it
 POP HL ; restore pointer

 JR NZ,JUMP_2 ; forward, if not zero, to JUMP_2

 INC HL ; step past the jump length.
 EXX ; switch in the main set.

 RET ; return.

; Note. as a general rule the calculator avoids using the IY register
; otherwise the cumbersome 4 instructions in the middle could be replaced by
; dec (IY+$2d) - three bytes instead of six.

; ---------------------
; THE 'JUMP' SUBROUTINE
; ---------------------
; (offset: $33 'jump')
; This enables the calculator to perform relative jumps just like the Z80
; chip's JR instruction.

JUMP EXX ; switch in pointer set

JUMP_2 LD E,(HL) ; the jump byte 0-127 forward, 128-255 back.
 LD A,E ; transfer to accumulator.
 RLA ; if backward jump, carry is set.
 SBC A,A ; will be $FF if backward or $00 if forward.
 LD D,A ; transfer to high byte.
 ADD HL,DE ; advance calculator pointer forward or back.

 EXX ; switch back.
 RET ; return.

; --------------------------
; THE 'JUMP-TRUE' SUBROUTINE
; --------------------------
; (offset: $00 'jump-true')
; This enables the calculator to perform conditional relative jumps dependent
; on whether the last test gave a true result.

jump_true INC DE ; Collect the
 INC DE ; third byte
 LD A,(DE) ; of the test
 DEC DE ; result and
 DEC DE ; backtrack.

 AND A ; Is result 0 or 1 ?
 JR NZ,JUMP ; Back to JUMP if true (1).

 EXX ; else switch in the pointer set.
 INC HL ; Step past the jump length.
 EXX ; Switch in the main set.
 RET ; Return.

; -------------------------
; THE 'END-CALC' SUBROUTINE
; -------------------------
; (offset: $38 'end-calc')
; The end-calc literal terminates a mini-program written in the Spectrum's
; internal language.
; Note. this short 5-byte routine has been moved to space between the
; restarts to exploit spare space.

; ------------------------
; THE 'MODULUS' SUBROUTINE
; ------------------------
; (offset: $32 'n-mod-m')
; (n1,n2 -- r,q)
; Similar to FORTH's 'divide mod' /MOD
; On the Spectrum, this is only used internally by the RND function and could

; have been implemented inline. On the ZX81, this calculator routine was also
; used by PRINT-FP.

n_mod_m RST 28H ;; FP-CALC 17, 3.
 DEFB $C0 ;;st-mem-0 17, 3.
 DEFB $02 ;;delete 17.
 DEFB $31 ;;duplicate 17, 17.
 DEFB $E0 ;;get-mem-0 17, 17, 3.
 DEFB $05 ;;division 17, 17/3.
 DEFB $27 ;;int 17, 5.
 DEFB $E0 ;;get-mem-0 17, 5, 3.
 DEFB $01 ;;exchange 17, 3, 5.
 DEFB $C0 ;;st-mem-0 17, 3, 5.
 DEFB $04 ;;multiply 17, 15.
 DEFB $03 ;;subtract 2.
 DEFB $E0 ;;get-mem-0 2, 5.
 DEFB $38 ;;end-calc 2, 5.

 RET ; return.

; ------------------
; THE 'INT' FUNCTION
; ------------------
; (offset $27: 'int')
; This function returns the integer of x, which is just the same as truncate
; for positive numbers. The truncate literal truncates negative numbers
; upwards so that -3.4 gives -3 whereas the BASIC INT function has to
; truncate negative numbers down so that INT -3.4 is -4.
; It is best to work through using, say, +-3.4 as examples.

int RST 28H ;; FP-CALC x. (= 3.4 or -3.4).
 DEFB $31 ;;duplicate x, x.
 DEFB $36 ;;less-0 x, (1/0)
 DEFB $00 ;;jump-true x, (1/0)
 DEFB X_NEG - $;;to X-NEG

 DEFB $3A ;;truncate trunc 3.4 = 3.
 DEFB $38 ;;end-calc 3.

 RET ; return with + int x on stack.

; ---

X_NEG DEFB $31 ;;duplicate -3.4, -3.4.
 DEFB $3A ;;truncate -3.4, -3.
 DEFB $C0 ;;st-mem-0 -3.4, -3.
 DEFB $03 ;;subtract -.4
 DEFB $E0 ;;get-mem-0 -.4, -3.
 DEFB $01 ;;exchange -3, -.4.
 DEFB $30 ;;not -3, (0).
 DEFB $00 ;;jump-true -3.
 DEFB EXIT - $;;to EXIT -3.

 DEFB $A1 ;;stk-one -3, 1.
 DEFB $03 ;;subtract -4.

EXIT DEFB $38 ;;end-calc -4.

 RET ; return.

; ------------------

; THE 'EXP' FUNCTION
; ------------------
; (offset $26: 'exp')
; The exponential function EXP x is equal to e^x, where e is the mathematical
; name for a number approximated to 2.718281828.
; ERROR 6 if argument is more than about 88.

exp RST 28H ;; FP-CALC
 DEFB $3D ;;re-stack
 DEFB $34 ;;stk-data
 DEFB $F1 ;;Exponent: $81, Bytes: 4
 DEFB $38,$AA,$3B,$29 ;;
 DEFB $04 ;;multiply
 DEFB $31 ;;duplicate
 DEFB $27 ;;int
 DEFB $C3 ;;st-mem-3
 DEFB $03 ;;subtract
 DEFB $31 ;;duplicate
 DEFB $0F ;;addition
 DEFB $A1 ;;stk-one
 DEFB $03 ;;subtract

 DEFB $88 ;;series-08
 DEFB $13 ;;Exponent: $63, Bytes: 1
 DEFB $36 ;;(+00,+00,+00)
 DEFB $58 ;;Exponent: $68, Bytes: 2
 DEFB $65,$66 ;;(+00,+00)
 DEFB $9D ;;Exponent: $6D, Bytes: 3
 DEFB $78,$65,$40 ;;(+00)
 DEFB $A2 ;;Exponent: $72, Bytes: 3
 DEFB $60,$32,$C9 ;;(+00)
 DEFB $E7 ;;Exponent: $77, Bytes: 4
 DEFB $21,$F7,$AF,$24 ;;
 DEFB $EB ;;Exponent: $7B, Bytes: 4
 DEFB $2F,$B0,$B0,$14 ;;
 DEFB $EE ;;Exponent: $7E, Bytes: 4
 DEFB $7E,$BB,$94,$58 ;;
 DEFB $F1 ;;Exponent: $81, Bytes: 4
 DEFB $3A,$7E,$F8,$CF ;;

 DEFB $E3 ;;get-mem-3
 DEFB $38 ;;end-calc

 CALL FP_TO_A ; routine FP-TO-A
 JR NZ,N_NEGTV ; to N-NEGTV

 JR C,REPORT_6b ; to REPORT-6b
 ; 'Number too big'

 ADD A,(HL) ;
 JR NC,RESULT_OK ; to RESULT-OK

REPORT_6b RST 30H ; ERROR-1
 DEFB $05 ; Error Report: Number too big

; ---

N_NEGTV JR C,RSLT_ZERO ; to RSLT-ZERO

 SUB (HL) ;
 JR NC,RSLT_ZERO ; to RSLT-ZERO

 NEG ; Negate

RESULT_OK LD (HL),A ;
 RET ; return.

; ---

RSLT_ZERO RST 28H ;; FP-CALC
 DEFB $02 ;;delete
 DEFB $A0 ;;stk-zero
 DEFB $38 ;;end-calc

 RET ; return.

; --------------------------------
; THE 'NATURAL LOGARITHM' FUNCTION
; --------------------------------
; (offset $25: 'ln')
; Function to calculate the natural logarithm (to the base e).
; e.g. LN EXP 5.3 = 5.3
; Error A if the argument is 0 or negative.

ln RST 28H ;; FP-CALC
 DEFB $3D ;;re-stack
 DEFB $31 ;;duplicate
 DEFB $37 ;;greater-0
 DEFB $00 ;;jump-true
 DEFB VALID - $;;to VALID

INV_ARG DEFB $38 ;;end-calc

REPORT_Ab RST 30H ; ERROR-1
 DEFB $09 ; Error Report: Invalid argument

VALID
;;; DEFB $A0 ;;stk-zero This is unnecessary
;;; DEFB $02 ;;delete
 DEFB $38 ;;end-calc
 LD A,(HL) ;

 LD (HL),$80 ;
 CALL STACK_A ; routine STACK-A

 RST 28H ;; FP-CALC
 DEFB $34 ;;stk-data
 DEFB $38 ;;Exponent: $88, Bytes: 1
 DEFB $00 ;;(+00,+00,+00)
 DEFB $03 ;;subtract
 DEFB $01 ;;exchange
 DEFB $31 ;;duplicate
 DEFB $34 ;;stk-data
 DEFB $F0 ;;Exponent: $80, Bytes: 4
 DEFB $4C,$CC,$CC,$CD ;;
 DEFB $03 ;;subtract
 DEFB $37 ;;greater-0
 DEFB $00 ;;jump-true
 DEFB GRE_v_8 - $;;to GRE.8

 DEFB $01 ;;exchange
 DEFB $A1 ;;stk-one
 DEFB $03 ;;subtract
 DEFB $01 ;;exchange

 DEFB $38 ;;end-calc

 INC (HL) ;

 RST 28H ;; FP-CALC

GRE_v_8 DEFB $01 ;;exchange
 DEFB $34 ;;stk-data
 DEFB $F0 ;;Exponent: $80, Bytes: 4
 DEFB $31,$72,$17,$F8 ;;
 DEFB $04 ;;multiply
 DEFB $01 ;;exchange
 DEFB $A2 ;;stk-half
 DEFB $03 ;;subtract
 DEFB $A2 ;;stk-half
 DEFB $03 ;;subtract
 DEFB $31 ;;duplicate
 DEFB $34 ;;stk-data
 DEFB $32 ;;Exponent: $82, Bytes: 1
 DEFB $20 ;;(+00,+00,+00)
 DEFB $04 ;;multiply
 DEFB $A2 ;;stk-half
 DEFB $03 ;;subtract

 DEFB $8C ;;series-0C
 DEFB $11 ;;Exponent: $61, Bytes: 1
 DEFB $AC ;;(+00,+00,+00)
 DEFB $14 ;;Exponent: $64, Bytes: 1
 DEFB $09 ;;(+00,+00,+00)
 DEFB $56 ;;Exponent: $66, Bytes: 2
 DEFB $DA,$A5 ;;(+00,+00)
 DEFB $59 ;;Exponent: $69, Bytes: 2
 DEFB $30,$C5 ;;(+00,+00)
 DEFB $5C ;;Exponent: $6C, Bytes: 2
 DEFB $90,$AA ;;(+00,+00)
 DEFB $9E ;;Exponent: $6E, Bytes: 3
 DEFB $70,$6F,$61 ;;(+00)
 DEFB $A1 ;;Exponent: $71, Bytes: 3
 DEFB $CB,$DA,$96 ;;(+00)
 DEFB $A4 ;;Exponent: $74, Bytes: 3
 DEFB $31,$9F,$B4 ;;(+00)
 DEFB $E7 ;;Exponent: $77, Bytes: 4
 DEFB $A0,$FE,$5C,$FC ;;
 DEFB $EA ;;Exponent: $7A, Bytes: 4
 DEFB $1B,$43,$CA,$36 ;;
 DEFB $ED ;;Exponent: $7D, Bytes: 4
 DEFB $A7,$9C,$7E,$5E ;;
 DEFB $F0 ;;Exponent: $80, Bytes: 4
 DEFB $6E,$23,$80,$93 ;;

 DEFB $04 ;;multiply
 DEFB $0F ;;addition
 DEFB $38 ;;end-calc

 RET ; return.

; -----------------------------
; THE 'TRIGONOMETRIC' FUNCTIONS
; -----------------------------
; Trigonometry is rocket science. It is also used by carpenters and pyramid
; builders. Some uses can be quite abstract but the principles can be seen
; in simple right-angled triangles. Triangles have some special properties -
;

; 1) The sum of the three angles is always PI radians (180 degrees).
; Very helpful if you know two angles and wish to find the third.
; 2) In any right-angled triangle the sum of the squares of the two shorter
; sides is equal to the square of the longest side opposite the right-
angle.
; Very useful if you know the length of two sides and wish to know the
; length of the third side.
; 3) Functions sine, cosine and tangent enable one to calculate the length
; of an unknown side, of a right-angled triangle, when the length of one
; other side and an angle is known.
; 4) Functions arcsin, arccosine and arctan enable one to calculate an unknown
; angle of a right-angled triangle when the length of two of the sides is
; known.

; --------------------------------
; THE 'REDUCE ARGUMENT' SUBROUTINE
; --------------------------------
; (offset $39: 'get-argt')
;
; This routine performs two functions on the angle, in radians, that forms
; the argument to the sine and cosine functions.
; First it ensures that the angle 'wraps round'. That if a ship turns through
; an angle of, say, 3*PI radians (540 degrees) then the net effect is to turn
; through an angle of PI radians (180 degrees).
; Secondly it converts the angle in radians to a fraction of a right angle,
; depending within which quadrant the angle lies, with the periodicity
; resembling that of the desired sine value.
; The result lies in the range -1 to +1.
;
; 90 deg.
;
; (pi/2)
; II +1 I
; |
; sin+ |\ | /| sin+
; cos- | \ | / | cos+
; tan- | \ | / | tan+
; | \|/) |
; 180 deg. (pi) 0 -|----+----|-- 0 (0) 0 degrees
; | /|\ |
; sin- | / | \ | sin-
; cos- | / | \ | cos+
; tan+ |/ | \| tan-
; |
; III -1 IV
; (3pi/2)
;
; 270 deg.
;

get_argt RST 28H ;; FP-CALC X.
 DEFB $3D ;;re-stack
 DEFB $34 ;;stk-data
 DEFB $EE ;;Exponent: $7E,
 ;;Bytes: 4
 DEFB $22,$F9,$83,$6E ;; X, 1/(2*PI)
 DEFB $04 ;;multiply X/(2*PI) = fraction
 DEFB $31 ;;duplicate
 DEFB $A2 ;;stk-half
 DEFB $0F ;;addition
 DEFB $27 ;;int

 DEFB $03 ;;subtract now range -.5 to .5

 DEFB $31 ;;duplicate
 DEFB $0F ;;addition now range -1 to 1.
 DEFB $31 ;;duplicate
 DEFB $0F ;;addition now range -2 to +2.

; quadrant I (0 to +1) and quadrant IV (-1 to 0) are now correct.
; quadrant II ranges +1 to +2.
; quadrant III ranges -2 to -1.

 DEFB $31 ;;duplicate Y, Y.
 DEFB $2A ;;abs Y, abs(Y). range 1 to 2
 DEFB $A1 ;;stk-one Y, abs(Y), 1.
 DEFB $03 ;;subtract Y, abs(Y)-1. range 0 to 1
 DEFB $31 ;;duplicate Y, Z, Z.
 DEFB $37 ;;greater-0 Y, Z, (1/0).

 DEFB $C0 ;;st-mem-0 store as possible sign
 ;; for cosine function.

 DEFB $00 ;;jump-true
 DEFB ZPLUS - $;;to ZPLUS with quadrants II and III.

; else the angle lies in quadrant I or IV and value Y is already correct.

 DEFB $02 ;;delete Y. delete the test value.
 DEFB $38 ;;end-calc Y.

 RET ; return. with Q1 and Q4 >>>

; ---

; The branch was here with quadrants II (0 to 1) and III (1 to 0).
; Y will hold -2 to -1 if this is quadrant III.

ZPLUS DEFB $A1 ;;stk-one Y, Z, 1.
 DEFB $03 ;;subtract Y, Z-1. Q3 = 0 to -1
 DEFB $01 ;;exchange Z-1, Y.
 DEFB $36 ;;less-0 Z-1, (1/0).
 DEFB $00 ;;jump-true Z-1.
 DEFB YNEG - $;;to YNEG
 ;;if angle in quadrant III

; else angle is within quadrant II (-1 to 0)

 DEFB $1B ;;negate range +1 to 0.

YNEG DEFB $38 ;;end-calc quadrants II and III correct.

 RET ; return.

; ---------------------
; THE 'COSINE' FUNCTION
; ---------------------
; (offset $20: 'cos')
; Cosines are calculated as the sine of the opposite angle rectifying the
; sign depending on the quadrant rules.
;
;
; /|
; h /y|
; / |o
; /x |
; /----|

; a
;
; The cosine of angle x is the adjacent side (a) divided by the hypotenuse 1.
; However if we examine angle y then a/h is the sine of that angle.
; Since angle x plus angle y equals a right-angle, we can find angle y by
; subtracting angle x from pi/2.
; However it's just as easy to reduce the argument first and subtract the
; reduced argument from the value 1 (a reduced right-angle).
; It's even easier to subtract 1 from the angle and rectify the sign.
; In fact, after reducing the argument, the absolute value of the argument
; is used and rectified using the test result stored in mem-0 by 'get-argt'
; for that purpose.
;

cos RST 28H ;; FP-CALC angle in radians.
 DEFB $39 ;;get-argt X reduce -1 to +1

 DEFB $2A ;;abs ABS X. 0 to 1
 DEFB $A1 ;;stk-one ABS X, 1.
 DEFB $03 ;;subtract now opposite angle
 ;; although sign is -ve.

 DEFB $E0 ;;get-mem-0 fetch the sign indicator
 DEFB $00 ;;jump-true
 DEFB C_ENT - $;;fwd to C-ENT
 ;;forward to common code if in QII or QIII.

 DEFB $1B ;;negate else make sign +ve.
 DEFB $33 ;;jump
 DEFB C_ENT - $;;fwd to C-ENT
 ;; with quadrants I and IV.

; -------------------
; THE 'SINE' FUNCTION
; -------------------
; (offset $1F: 'sin')
; This is a fundamental transcendental function from which others such as cos
; and tan are directly, or indirectly, derived.
; It uses the series generator to produce Chebyshev polynomials.
;
;
; /|
; 1 / |
; / |x
; /a |
; /----|
; y
;
; The 'get-argt' function is designed to modify the angle and its sign
; in line with the desired sine value and afterwards it can launch straight
; into common code.

sin RST 28H ;; FP-CALC angle in radians
 DEFB $39 ;;get-argt reduce - sign now correct.

C_ENT DEFB $31 ;;duplicate
 DEFB $31 ;;duplicate
 DEFB $04 ;;multiply
 DEFB $31 ;;duplicate
 DEFB $0F ;;addition
 DEFB $A1 ;;stk-one
 DEFB $03 ;;subtract

 DEFB $86 ;;series-06

 DEFB $14 ;;Exponent: $64, Bytes: 1
 DEFB $E6 ;;(+00,+00,+00)
 DEFB $5C ;;Exponent: $6C, Bytes: 2
 DEFB $1F,$0B ;;(+00,+00)
 DEFB $A3 ;;Exponent: $73, Bytes: 3
 DEFB $8F,$38,$EE ;;(+00)
 DEFB $E9 ;;Exponent: $79, Bytes: 4
 DEFB $15,$63,$BB,$23 ;;
 DEFB $EE ;;Exponent: $7E, Bytes: 4
 DEFB $92,$0D,$CD,$ED ;;
 DEFB $F1 ;;Exponent: $81, Bytes: 4
 DEFB $23,$5D,$1B,$EA ;;
 DEFB $04 ;;multiply
 DEFB $38 ;;end-calc

 RET ; return.

; ----------------------
; THE 'TANGENT' FUNCTION
; ----------------------
; (offset $21: 'tan')
;
; Evaluates tangent x as sin(x) / cos(x).
;
;
; /|
; h / |
; / |o
; /x |
; /----|
; a
;
; the tangent of angle x is the ratio of the length of the opposite side
; divided by the length of the adjacent side. As the opposite length can
; be calculates using sin(x) and the adjacent length using cos(x) then
; the tangent can be defined in terms of the previous two functions.

; Error 6 if the argument, in radians, is too close to one like pi/2
; which has an infinite tangent. e.g. PRINT TAN (PI/2) evaluates as 1/0.
; Similarly PRINT TAN (3*PI/2), TAN (5*PI/2) etc.

tan RST 28H ;; FP-CALC x.
 DEFB $31 ;;duplicate x, x.
 DEFB $1F ;;sin x, sin x.
 DEFB $01 ;;exchange sin x, x.
 DEFB $20 ;;cos sin x, cos x.
 DEFB $05 ;;division sin x/cos x (= tan x).
 DEFB $38 ;;end-calc tan x.

 RET ; return.

; ---------------------
; THE 'ARCTAN' FUNCTION
; ---------------------
; (Offset $24: 'atn')
; the inverse tangent function with the result in radians.
; This is a fundamental transcendental function from which others such as asn
; and acs are directly, or indirectly, derived.
; It uses the series generator to produce Chebyshev polynomials.

atn CALL re_stack ; routine re-stack
 LD A,(HL) ; fetch exponent byte.
 CP $81 ; compare to that for 'one'
 JR C,SMALL ; forward, if less, to SMALL

 RST 28H ;; FP-CALC
 DEFB $A1 ;;stk-one
 DEFB $1B ;;negate
 DEFB $01 ;;exchange
 DEFB $05 ;;division
 DEFB $31 ;;duplicate
 DEFB $36 ;;less-0
 DEFB $A3 ;;stk-pi/2
 DEFB $01 ;;exchange
 DEFB $00 ;;jump-true
 DEFB CASES - $;;to CASES

 DEFB $1B ;;negate
 DEFB $33 ;;jump
 DEFB CASES - $;;to CASES

SMALL RST 28H ;; FP-CALC
 DEFB $A0 ;;stk-zero

CASES DEFB $01 ;;exchange
 DEFB $31 ;;duplicate
 DEFB $31 ;;duplicate
 DEFB $04 ;;multiply
 DEFB $31 ;;duplicate
 DEFB $0F ;;addition
 DEFB $A1 ;;stk-one
 DEFB $03 ;;subtract

 DEFB $8C ;;series-0C
 DEFB $10 ;;Exponent: $60, Bytes: 1
 DEFB $B2 ;;(+00,+00,+00)
 DEFB $13 ;;Exponent: $63, Bytes: 1
 DEFB $0E ;;(+00,+00,+00)
 DEFB $55 ;;Exponent: $65, Bytes: 2
 DEFB $E4,$8D ;;(+00,+00)
 DEFB $58 ;;Exponent: $68, Bytes: 2
 DEFB $39,$BC ;;(+00,+00)
 DEFB $5B ;;Exponent: $6B, Bytes: 2
 DEFB $98,$FD ;;(+00,+00)
 DEFB $9E ;;Exponent: $6E, Bytes: 3
 DEFB $00,$36,$75 ;;(+00)
 DEFB $A0 ;;Exponent: $70, Bytes: 3
 DEFB $DB,$E8,$B4 ;;(+00)
 DEFB $63 ;;Exponent: $73, Bytes: 2
 DEFB $42,$C4 ;;(+00,+00)
 DEFB $E6 ;;Exponent: $76, Bytes: 4
 DEFB $B5,$09,$36,$BE ;;
 DEFB $E9 ;;Exponent: $79, Bytes: 4
 DEFB $36,$73,$1B,$5D ;;
 DEFB $EC ;;Exponent: $7C, Bytes: 4
 DEFB $D8,$DE,$63,$BE ;;
 DEFB $F0 ;;Exponent: $80, Bytes: 4
 DEFB $61,$A1,$B3,$0C ;;

 DEFB $04 ;;multiply
 DEFB $0F ;;addition
 DEFB $38 ;;end-calc

 RET ; return.

; ---------------------
; THE 'ARCSIN' FUNCTION

; ---------------------
; (Offset $22: 'asn')
; the inverse sine function with result in radians.
; derived from arctan function above.
; Error A unless the argument is between -1 and +1 inclusive.
; uses an adaptation of the formula asn(x) = atn(x/sqr(1-x*x))
;
;
; /|
; 1 / |
; / |x
; /a |
; /----|
; y
;
; e.g. we know the opposite side (x) and hypotenuse (1)
; and we wish to find angle a in radians.
; we can derive length y by Pythagoras and then use ATN instead.
; since y*y + x*x = 1*1 (Pythagoras Theorem) then
; y=sqr(1-x*x) - no need to multiply 1 by itself.
; so, asn(a) = atn(x/y)
; or more fully,
; asn(a) = atn(x/sqr(1-x*x))

; Close but no cigar.

; While PRINT ATN (x/SQR (1-x*x)) gives the same results as PRINT ASN x,
; it leads to division by zero when x is 1 or -1.
; To overcome this, 1 is added to y giving half the required angle and the
; result is then doubled.
; That is PRINT ATN (x/(SQR (1-x*x) +1)) *2
; A value higher than 1 gives the required error as attempting to find the
; square root of a negative number generates an error in Sinclair BASIC.

asn RST 28H ;; FP-CALC x.
 DEFB $31 ;;duplicate x, x.
 DEFB $31 ;;duplicate x, x, x.
 DEFB $04 ;;multiply x, x*x.
 DEFB $A1 ;;stk-one x, x*x, 1.
 DEFB $03 ;;subtract x, x*x-1.
 DEFB $1B ;;negate x, 1-x*x.
 DEFB $28 ;;sqr x, sqr(1-x*x) = y
 DEFB $A1 ;;stk-one x, y, 1.
 DEFB $0F ;;addition x, y+1.
 DEFB $05 ;;division x/y+1.
 DEFB $24 ;;atn a/2 (half the angle)
 DEFB $31 ;;duplicate a/2, a/2.
 DEFB $0F ;;addition a.
 DEFB $38 ;;end-calc a.

 RET ; return.

; ---------------------
; THE 'ARCCOS' FUNCTION
; ---------------------
; (Offset $23: 'acs')
; the inverse cosine function with the result in radians.
; Error A unless the argument is between -1 and +1.
; Result in range 0 to pi.
; Derived from asn above which is in turn derived from the preceding atn.
; It could have been derived directly from atn using
; acs(x) = atn(sqr(1-x*x)/x).
; However, as sine and cosine are horizontal translations of each other,

; uses acs(x) = pi/2 - asn(x)

; e.g. the arccosine of a known x value will give the required angle b in
; radians.
; We know, from above, how to calculate the angle a using asn(x).
; Since the three angles of any triangle add up to 180 degrees, or pi radians,
; and the largest angle in this case is a right-angle (pi/2 radians), then
; we can calculate angle b as pi/2 (both angles) minus asn(x) (angle a).
;
;
; /|
; 1 /b|
; / |x
; /a |
; /----|
; y
;

acs RST 28H ;; FP-CALC x.
 DEFB $22 ;;asn asn(x).
 DEFB $A3 ;;stk-pi/2 asn(x), pi/2.
 DEFB $03 ;;subtract asn(x) - pi/2.
 DEFB $1B ;;negate pi/2 -asn(x) = acs(x).
 DEFB $38 ;;end-calc acs(x).

 RET ; return.

; ------------------------------
; THE NEW 'SQUARE ROOT' FUNCTION
; ------------------------------
; (Offset $28: 'sqr')
; "If I have seen further, it is by standing on the shoulders of giants" -
; Sir Isaac Newton, Cambridge 1676.
; The sqr function has been re-written to use the Newton-Raphson method.
; Although the method is centuries old, this one, appropriately, is based
; on a FORTH word written by Steven Vickers in the Jupiter Ace manual.
; Whereas that algorithm always used an initial guess of one, this one
; manipulates the exponent byte to obtain a better guess.
; First test for zero and return zero, if so, as the result.
; If the argument is negative, then produce an error.

sqr RST 28H ;; FP-CALC x
 DEFB $3D ;;re-stack x. (in f.p. form)
 DEFB $C3 ;;st-mem-3 x. (seed for guess)
 DEFB $38 ;;end-calc

; The HL register now addresses the exponent byte

 LD A,(HL) ; fetch exponent to A
 AND A ; test for zero.
 RET Z ; return if so - with zero on calculator stack.

 INC HL ; address the byte with the sign bit.
 BIT 7,(HL) ; test the sign bit

 JP NZ,REPORT_Ab ; REPORT_A: 'Invalid argument'

; This guess is based on a Usenet discussion.
; Halve the exponent to achieve a good guess.(accurate with .25 16 64 etc.)

 LD HL,$5BA1 ; Address system variable mem-3
 LD A,(HL) ; fetch exponent of mem-3
 XOR $80 ; toggle sign of exponent of mem-3

 SRA A ; shift right, bit 7 unchanged.
 INC A ;
 JR Z,ASIS ; forward with say .25 -> .5
 JP P,ASIS ; leave increment if value > .5
 DEC A ; restore to shift only.

ASIS XOR $80 ; restore sign.
 LD (HL),A ; and put back 'halved' exponent.

; Now re-enter the calculator.

 RST 28H ;; FP-CALC x

SLOOP DEFB $31 ;;duplicate x,x.
 DEFB $E3 ;;get-mem-3 x,x,guess
 DEFB $C4 ;;st-mem-4 x,x,guess
 DEFB $05 ;;div x,x/guess.
 DEFB $E3 ;;get-mem-3 x,x/guess,guess
 DEFB $0F ;;addition x,x/guess+guess
 DEFB $A2 ;;stk-half x,x/guess+guess,.5
 DEFB $04 ;;multiply x,(x/guess+guess)*.5
 DEFB $C3 ;;st-mem-3 x,newguess
 DEFB $E4 ;;get-mem-4 x,newguess,oldguess
 DEFB $03 ;;subtract x,newguess-oldguess
 DEFB $2A ;;abs x,difference.
 DEFB $37 ;;greater-0 x,(0/1).
 DEFB $00 ;;jump-true x.

 DEFB SLOOP - $;;to sloop x.

 DEFB $02 ;;delete .
 DEFB $E3 ;;get-mem-3 retrieve final guess.
 DEFB $38 ;;end-calc sqr x.

 RET ; return with square root on stack

; -----------------------------------
; THE OLD SLOW 'SQUARE ROOT' FUNCTION
; -----------------------------------
; (Offset $28: 'sqr')
; This is the old 7-byte method of calculating square roots which has been
; re-introduced at various stages during the development of this ROM due to
; lack of space.

;;; sqr RST 28H ;; FP-CALC
;;; DEFB $31 ;;duplicate
;;; DEFB $30 ;;not
;;; DEFB $00 ;;jump-true
;;; DEFB LAST - $;;to LAST
;;;
;;; DEFB $A2 ;;stk-half
;;; DEFB $38 ;;end-calc

; ------------------------------
; THE 'EXPONENTIATION' OPERATION
; ------------------------------
; (Offset $06: 'to-power')
; This raises the first number X to the power of the second number Y.
; As with the ZX80,
; 0 ^ 0 = 1.
; 0 ^ +n = 0.
; 0 ^ -n = arithmetic overflow.
;

to_power RST 28H ;; FP-CALC X, Y.
 DEFB $01 ;;exchange Y, X.
 DEFB $31 ;;duplicate Y, X, X.
 DEFB $30 ;;not Y, X, (1/0).
 DEFB $00 ;;jump-true
 DEFB XIS0 - $;;to XISO if X is zero.

; else X is non-zero. Function 'ln' will catch a negative value of X.

 DEFB $25 ;;ln Y, LN X.
 DEFB $04 ;;multiply Y * LN X.
 DEFB $38 ;;end-calc

 JP exp ; jump back to EXP routine ->

; ---

; these routines form the three simple results when the number is zero.
; begin by deleting the known zero to leave Y the power factor.

XIS0 DEFB $02 ;;delete Y.
 DEFB $31 ;;duplicate Y, Y.
 DEFB $30 ;;not Y, (1/0).
 DEFB $00 ;;jump-true
 DEFB ONE - $;;to ONE if Y is zero.

 DEFB $A0 ;;stk-zero Y, 0.
 DEFB $01 ;;exchange 0, Y.
 DEFB $37 ;;greater-0 0, (1/0).
 DEFB $00 ;;jump-true 0.
 DEFB LAST - $;;to LAST if Y was any positive
 ;; number.

; else force division by zero thereby raising an Arithmetic overflow error.
; There are some one and two-byte alternatives but perhaps the most formal
; might have been to use end-calc; rst 08; defb 05.

 DEFB $A1 ;;stk-one 0, 1.
 DEFB $01 ;;exchange 1, 0.
 DEFB $05 ;;division 1/0 ouch!

; ---

ONE DEFB $02 ;;delete .
 DEFB $A1 ;;stk-one 1.

LAST DEFB $38 ;;end-calc last value is 1 or 0.

 RET ; return. Whew!

; ----------------------------
; THE 'SPARE LOCATIONS' PART 3
; ----------------------------

TAG7

SPARE DEFB $FF, $FF, $FF ;

ORG $3D00

; -------------------------------
; THE 'ZX SPECTRUM CHARACTER SET'
; -------------------------------

; $20 - Character: ' ' CHR$(32)

char_set DEFB %00000000
LINE_ZERO DEFB %00000000
 DEFB %00000000
 DEFB %00000000
 DEFB %00000000
 DEFB %00000000
 DEFB %00000000
 DEFB %00000000

; $21 - Character: '!' CHR$(33)

 DEFB %00000000
 DEFB %00010000
 DEFB %00010000
 DEFB %00010000
 DEFB %00010000
 DEFB %00000000
 DEFB %00010000
 DEFB %00000000

; $22 - Character: '"' CHR$(34)

 DEFB %00000000
 DEFB %00100100
 DEFB %00100100
 DEFB %00000000
 DEFB %00000000
 DEFB %00000000
 DEFB %00000000
 DEFB %00000000

; $23 - Character: '#' CHR$(35)

 DEFB %00000000
 DEFB %00100100
 DEFB %01111110
 DEFB %00100100
 DEFB %00100100
 DEFB %01111110
 DEFB %00100100
 DEFB %00000000

; $24 - Character: '$' CHR$(36)

 DEFB %00000000
 DEFB %00001000
 DEFB %00111110
 DEFB %00101000
 DEFB %00111110
 DEFB %00001010
 DEFB %00111110
 DEFB %00001000

; $25 - Character: '%' CHR$(37)

 DEFB %00000000
 DEFB %01100010

 DEFB %01100100
 DEFB %00001000
 DEFB %00010000
 DEFB %00100110
 DEFB %01000110
 DEFB %00000000

; $26 - Character: '&' CHR$(38)

 DEFB %00000000
 DEFB %00010000
 DEFB %00101000
 DEFB %00010000
 DEFB %00101010
 DEFB %01000100
 DEFB %00111010
 DEFB %00000000

; $27 - Character: ''' CHR$(39)

 DEFB %00000000
 DEFB %00001000
 DEFB %00010000
 DEFB %00000000
 DEFB %00000000
 DEFB %00000000
 DEFB %00000000
 DEFB %00000000

; $28 - Character: '(' CHR$(40)

 DEFB %00000000
 DEFB %00000100
 DEFB %00001000
 DEFB %00001000
 DEFB %00001000
 DEFB %00001000
 DEFB %00000100
 DEFB %00000000

; $29 - Character: ')' CHR$(41)

 DEFB %00000000
 DEFB %00100000
 DEFB %00010000
 DEFB %00010000
 DEFB %00010000
 DEFB %00010000
 DEFB %00100000
 DEFB %00000000

; $2A - Character: '*' CHR$(42)

 DEFB %00000000
 DEFB %00000000
 DEFB %00010100
 DEFB %00001000
 DEFB %00111110
 DEFB %00001000
 DEFB %00010100
 DEFB %00000000

; $2B - Character: '+' CHR$(43)

 DEFB %00000000
 DEFB %00000000
 DEFB %00001000
 DEFB %00001000
 DEFB %00111110
 DEFB %00001000
 DEFB %00001000
 DEFB %00000000

; $2C - Character: ',' CHR$(44)

 DEFB %00000000
 DEFB %00000000
 DEFB %00000000
 DEFB %00000000
 DEFB %00000000
 DEFB %00001000
 DEFB %00001000
 DEFB %00010000

; $2D - Character: '-' CHR$(45)

 DEFB %00000000
 DEFB %00000000
 DEFB %00000000
 DEFB %00000000
 DEFB %00111110
 DEFB %00000000
 DEFB %00000000
 DEFB %00000000

; $2E - Character: '.' CHR$(46)

 DEFB %00000000
 DEFB %00000000
 DEFB %00000000
 DEFB %00000000
 DEFB %00000000
 DEFB %00011000
 DEFB %00011000
 DEFB %00000000

; $2F - Character: '/' CHR$(47)

 DEFB %00000000
 DEFB %00000000
 DEFB %00000010
 DEFB %00000100
 DEFB %00001000
 DEFB %00010000
 DEFB %00100000
 DEFB %00000000

; $30 - Character: '0' CHR$(48)

 DEFB %00000000
 DEFB %00111100
 DEFB %01000110
 DEFB %01001010
 DEFB %01010010
 DEFB %01100010
 DEFB %00111100
 DEFB %00000000

; $31 - Character: '1' CHR$(49)

 DEFB %00000000
 DEFB %00011000
 DEFB %00101000
 DEFB %00001000
 DEFB %00001000
 DEFB %00001000
 DEFB %00111110
 DEFB %00000000

; $32 - Character: '2' CHR$(50)

 DEFB %00000000
 DEFB %00111100
 DEFB %01000010
 DEFB %00000010
 DEFB %00111100
 DEFB %01000000
 DEFB %01111110
 DEFB %00000000

; $33 - Character: '3' CHR$(51)

 DEFB %00000000
 DEFB %00111100
 DEFB %01000010
 DEFB %00001100
 DEFB %00000010
 DEFB %01000010
 DEFB %00111100
 DEFB %00000000

; $34 - Character: '4' CHR$(52)

 DEFB %00000000
 DEFB %00001000
 DEFB %00011000
 DEFB %00101000
 DEFB %01001000
 DEFB %01111110
 DEFB %00001000
 DEFB %00000000

; $35 - Character: '5' CHR$(53)

 DEFB %00000000
 DEFB %01111110
 DEFB %01000000
 DEFB %01111100
 DEFB %00000010
 DEFB %01000010
 DEFB %00111100
 DEFB %00000000

; $36 - Character: '6' CHR$(54)

 DEFB %00000000
 DEFB %00111100
 DEFB %01000000
 DEFB %01111100
 DEFB %01000010
 DEFB %01000010
 DEFB %00111100

 DEFB %00000000

; $37 - Character: '7' CHR$(55)

 DEFB %00000000
 DEFB %01111110
 DEFB %00000010
 DEFB %00000100
 DEFB %00001000
 DEFB %00010000
 DEFB %00010000
 DEFB %00000000

; $38 - Character: '8' CHR$(56)

 DEFB %00000000
 DEFB %00111100
 DEFB %01000010
 DEFB %00111100
 DEFB %01000010
 DEFB %01000010
 DEFB %00111100
 DEFB %00000000

; $39 - Character: '9' CHR$(57)

 DEFB %00000000
 DEFB %00111100
 DEFB %01000010
 DEFB %01000010
 DEFB %00111110
 DEFB %00000010
 DEFB %00111100
 DEFB %00000000

; $3A - Character: ':' CHR$(58)

 DEFB %00000000
 DEFB %00000000
 DEFB %00000000
 DEFB %00010000
 DEFB %00000000
 DEFB %00000000
 DEFB %00010000
 DEFB %00000000

; $3B - Character: ';' CHR$(59)

 DEFB %00000000
 DEFB %00000000
 DEFB %00010000
 DEFB %00000000
 DEFB %00000000
 DEFB %00010000
 DEFB %00010000
 DEFB %00100000

; $3C - Character: '<' CHR$(60)

 DEFB %00000000
 DEFB %00000000
 DEFB %00000100
 DEFB %00001000
 DEFB %00010000

 DEFB %00001000
 DEFB %00000100
 DEFB %00000000

; $3D - Character: '=' CHR$(61)

 DEFB %00000000
 DEFB %00000000
 DEFB %00000000
 DEFB %00111110
 DEFB %00000000
 DEFB %00111110
 DEFB %00000000
 DEFB %00000000

; $3E - Character: '>' CHR$(62)

 DEFB %00000000
 DEFB %00000000
 DEFB %00010000
 DEFB %00001000
 DEFB %00000100
 DEFB %00001000
 DEFB %00010000
 DEFB %00000000

; $3F - Character: '?' CHR$(63)

 DEFB %00000000
 DEFB %00111100
 DEFB %01000010
 DEFB %00000100
 DEFB %00001000
 DEFB %00000000
 DEFB %00001000
 DEFB %00000000

; $40 - Character: '@' CHR$(64)

 DEFB %00000000
 DEFB %00111100
 DEFB %01001010
 DEFB %01010110
 DEFB %01011110
 DEFB %01000000
 DEFB %00111100
 DEFB %00000000

; $41 - Character: 'A' CHR$(65)

 DEFB %00000000
 DEFB %00111100
 DEFB %01000010
 DEFB %01000010
 DEFB %01111110
 DEFB %01000010
 DEFB %01000010
 DEFB %00000000

; $42 - Character: 'B' CHR$(66)

 DEFB %00000000
 DEFB %01111100
 DEFB %01000010

 DEFB %01111100
 DEFB %01000010
 DEFB %01000010
 DEFB %01111100
 DEFB %00000000

; $43 - Character: 'C' CHR$(67)

 DEFB %00000000
 DEFB %00111100
 DEFB %01000010
 DEFB %01000000
 DEFB %01000000
 DEFB %01000010
 DEFB %00111100
 DEFB %00000000

; $44 - Character: 'D' CHR$(68)

 DEFB %00000000
 DEFB %01111000
 DEFB %01000100
 DEFB %01000010
 DEFB %01000010
 DEFB %01000100
 DEFB %01111000
 DEFB %00000000

; $45 - Character: 'E' CHR$(69)

 DEFB %00000000
 DEFB %01111110
 DEFB %01000000
 DEFB %01111100
 DEFB %01000000
 DEFB %01000000
 DEFB %01111110
 DEFB %00000000

; $46 - Character: 'F' CHR$(70)

 DEFB %00000000
 DEFB %01111110
 DEFB %01000000
 DEFB %01111100
 DEFB %01000000
 DEFB %01000000
 DEFB %01000000
 DEFB %00000000

; $47 - Character: 'G' CHR$(71)

 DEFB %00000000
 DEFB %00111100
 DEFB %01000010
 DEFB %01000000
 DEFB %01001110
 DEFB %01000010
 DEFB %00111100
 DEFB %00000000

; $48 - Character: 'H' CHR$(72)

 DEFB %00000000

 DEFB %01000010
 DEFB %01000010
 DEFB %01111110
 DEFB %01000010
 DEFB %01000010
 DEFB %01000010
 DEFB %00000000

; $49 - Character: 'I' CHR$(73)

 DEFB %00000000
 DEFB %00111110
 DEFB %00001000
 DEFB %00001000
 DEFB %00001000
 DEFB %00001000
 DEFB %00111110
 DEFB %00000000

; $4A - Character: 'J' CHR$(74)

 DEFB %00000000
 DEFB %00000010
 DEFB %00000010
 DEFB %00000010
 DEFB %01000010
 DEFB %01000010
 DEFB %00111100
 DEFB %00000000

; $4B - Character: 'K' CHR$(75)

 DEFB %00000000
 DEFB %01000100
 DEFB %01001000
 DEFB %01110000
 DEFB %01001000
 DEFB %01000100
 DEFB %01000010
 DEFB %00000000

; $4C - Character: 'L' CHR$(76)

 DEFB %00000000
 DEFB %01000000
 DEFB %01000000
 DEFB %01000000
 DEFB %01000000
 DEFB %01000000
 DEFB %01111110
 DEFB %00000000

; $4D - Character: 'M' CHR$(77)

 DEFB %00000000
 DEFB %01000010
 DEFB %01100110
 DEFB %01011010
 DEFB %01000010
 DEFB %01000010
 DEFB %01000010
 DEFB %00000000

; $4E - Character: 'N' CHR$(78)

 DEFB %00000000
 DEFB %01000010
 DEFB %01100010
 DEFB %01010010
 DEFB %01001010
 DEFB %01000110
 DEFB %01000010
 DEFB %00000000

; $4F - Character: 'O' CHR$(79)

 DEFB %00000000
 DEFB %00111100
 DEFB %01000010
 DEFB %01000010
 DEFB %01000010
 DEFB %01000010
 DEFB %00111100
 DEFB %00000000

; $50 - Character: 'P' CHR$(80)

 DEFB %00000000
 DEFB %01111100
 DEFB %01000010
 DEFB %01000010
 DEFB %01111100
 DEFB %01000000
 DEFB %01000000
 DEFB %00000000

; $51 - Character: 'Q' CHR$(81)

 DEFB %00000000
 DEFB %00111100
 DEFB %01000010
 DEFB %01000010
 DEFB %01010010
 DEFB %01001010
 DEFB %00111100
 DEFB %00000000

; $52 - Character: 'R' CHR$(82)

 DEFB %00000000
 DEFB %01111100
 DEFB %01000010
 DEFB %01000010
 DEFB %01111100
 DEFB %01000100
 DEFB %01000010
 DEFB %00000000

; $53 - Character: 'S' CHR$(83)

 DEFB %00000000
 DEFB %00111100
 DEFB %01000000
 DEFB %00111100
 DEFB %00000010
 DEFB %01000010
 DEFB %00111100
 DEFB %00000000

; $54 - Character: 'T' CHR$(84)

 DEFB %00000000
 DEFB %11111110
 DEFB %00010000
 DEFB %00010000
 DEFB %00010000
 DEFB %00010000
 DEFB %00010000
 DEFB %00000000

; $55 - Character: 'U' CHR$(85)

 DEFB %00000000
 DEFB %01000010
 DEFB %01000010
 DEFB %01000010
 DEFB %01000010
 DEFB %01000010
 DEFB %00111100
 DEFB %00000000

; $56 - Character: 'V' CHR$(86)

 DEFB %00000000
 DEFB %01000010
 DEFB %01000010
 DEFB %01000010
 DEFB %01000010
 DEFB %00100100
 DEFB %00011000
 DEFB %00000000

; $57 - Character: 'W' CHR$(87)

 DEFB %00000000
 DEFB %01000010
 DEFB %01000010
 DEFB %01000010
 DEFB %01000010
 DEFB %01011010
 DEFB %00100100
 DEFB %00000000

; $58 - Character: 'X' CHR$(88)

 DEFB %00000000
 DEFB %01000010
 DEFB %00100100
 DEFB %00011000
 DEFB %00011000
 DEFB %00100100
 DEFB %01000010
 DEFB %00000000

; $59 - Character: 'Y' CHR$(89)

 DEFB %00000000
 DEFB %10000010
 DEFB %01000100
 DEFB %00101000
 DEFB %00010000
 DEFB %00010000

 DEFB %00010000
 DEFB %00000000

; $5A - Character: 'Z' CHR$(90)

 DEFB %00000000
 DEFB %01111110
 DEFB %00000100
 DEFB %00001000
 DEFB %00010000
 DEFB %00100000
 DEFB %01111110
 DEFB %00000000

; $5B - Character: '[' CHR$(91)

 DEFB %00000000
 DEFB %00001110
 DEFB %00001000
 DEFB %00001000
 DEFB %00001000
 DEFB %00001000
 DEFB %00001110
 DEFB %00000000

; $5C - Character: '\' CHR$(92)

 DEFB %00000000
 DEFB %00000000
 DEFB %01000000
 DEFB %00100000
 DEFB %00010000
 DEFB %00001000
 DEFB %00000100
 DEFB %00000000

; $5D - Character: ']' CHR$(93)

 DEFB %00000000
 DEFB %01110000
 DEFB %00010000
 DEFB %00010000
 DEFB %00010000
 DEFB %00010000
 DEFB %01110000
 DEFB %00000000

; $5E - Character: '^' CHR$(94)

 DEFB %00000000
 DEFB %00010000
 DEFB %00111000
 DEFB %01010100
 DEFB %00010000
 DEFB %00010000
 DEFB %00010000
 DEFB %00000000

; $5F - Character: '_' CHR$(95)

 DEFB %00000000
 DEFB %00000000
 DEFB %00000000
 DEFB %00000000

 DEFB %00000000
 DEFB %00000000
 DEFB %00000000
 DEFB %11111111

; $60 - Character: 'ukp' CHR$(96)

 DEFB %00000000
 DEFB %00011100
 DEFB %00100010
 DEFB %01111000
 DEFB %00100000
 DEFB %00100000
 DEFB %01111110
 DEFB %00000000

; $61 - Character: 'a' CHR$(97)

 DEFB %00000000
 DEFB %00000000
 DEFB %00111000
 DEFB %00000100
 DEFB %00111100
 DEFB %01000100
 DEFB %00111100
 DEFB %00000000

; $62 - Character: 'b' CHR$(98)

 DEFB %00000000
 DEFB %00100000
 DEFB %00100000
 DEFB %00111100
 DEFB %00100010
 DEFB %00100010
 DEFB %00111100
 DEFB %00000000

; $63 - Character: 'c' CHR$(99)

 DEFB %00000000
 DEFB %00000000
 DEFB %00011100
 DEFB %00100000
 DEFB %00100000
 DEFB %00100000
 DEFB %00011100
 DEFB %00000000

; $64 - Character: 'd' CHR$(100)

 DEFB %00000000
 DEFB %00000100
 DEFB %00000100
 DEFB %00111100
 DEFB %01000100
 DEFB %01000100
 DEFB %00111100
 DEFB %00000000

; $65 - Character: 'e' CHR$(101)

 DEFB %00000000
 DEFB %00000000

 DEFB %00111000
 DEFB %01000100
 DEFB %01111000
 DEFB %01000000
 DEFB %00111100
 DEFB %00000000

; $66 - Character: 'f' CHR$(102)

 DEFB %00000000
 DEFB %00001100
 DEFB %00010000
 DEFB %00011000
 DEFB %00010000
 DEFB %00010000
 DEFB %00010000
 DEFB %00000000

; $67 - Character: 'g' CHR$(103)

 DEFB %00000000
 DEFB %00000000
 DEFB %00111100
 DEFB %01000100
 DEFB %01000100
 DEFB %00111100
 DEFB %00000100
 DEFB %00111000

; $68 - Character: 'h' CHR$(104)

 DEFB %00000000
 DEFB %01000000
 DEFB %01000000
 DEFB %01111000
 DEFB %01000100
 DEFB %01000100
 DEFB %01000100
 DEFB %00000000

; $69 - Character: 'i' CHR$(105)

 DEFB %00000000
 DEFB %00010000
 DEFB %00000000
 DEFB %00110000
 DEFB %00010000
 DEFB %00010000
 DEFB %00111000
 DEFB %00000000

; $6A - Character: 'j' CHR$(106)

 DEFB %00000000
 DEFB %00000100
 DEFB %00000000
 DEFB %00000100
 DEFB %00000100
 DEFB %00000100
 DEFB %00100100
 DEFB %00011000

; $6B - Character: 'k' CHR$(107)

 DEFB %00000000
 DEFB %00100000
 DEFB %00101000
 DEFB %00110000
 DEFB %00110000
 DEFB %00101000
 DEFB %00100100
 DEFB %00000000

; $6C - Character: 'l' CHR$(108)

 DEFB %00000000
 DEFB %00010000
 DEFB %00010000
 DEFB %00010000
 DEFB %00010000
 DEFB %00010000
 DEFB %00001100
 DEFB %00000000

; $6D - Character: 'm' CHR$(109)

 DEFB %00000000
 DEFB %00000000
 DEFB %01101000
 DEFB %01010100
 DEFB %01010100
 DEFB %01010100
 DEFB %01010100
 DEFB %00000000

; $6E - Character: 'n' CHR$(110)

 DEFB %00000000
 DEFB %00000000
 DEFB %01111000
 DEFB %01000100
 DEFB %01000100
 DEFB %01000100
 DEFB %01000100
 DEFB %00000000

; $6F - Character: 'o' CHR$(111)

 DEFB %00000000
 DEFB %00000000
 DEFB %00111000
 DEFB %01000100
 DEFB %01000100
 DEFB %01000100
 DEFB %00111000
 DEFB %00000000

; $70 - Character: 'p' CHR$(112)

 DEFB %00000000
 DEFB %00000000
 DEFB %01111000
 DEFB %01000100
 DEFB %01000100
 DEFB %01111000
 DEFB %01000000
 DEFB %01000000

; $71 - Character: 'q' CHR$(113)

 DEFB %00000000
 DEFB %00000000
 DEFB %00111100
 DEFB %01000100
 DEFB %01000100
 DEFB %00111100
 DEFB %00000100
 DEFB %00000110

; $72 - Character: 'r' CHR$(114)

 DEFB %00000000
 DEFB %00000000
 DEFB %00011100
 DEFB %00100000
 DEFB %00100000
 DEFB %00100000
 DEFB %00100000
 DEFB %00000000

; $73 - Character: 's' CHR$(115)

 DEFB %00000000
 DEFB %00000000
 DEFB %00111000
 DEFB %01000000
 DEFB %00111000
 DEFB %00000100
 DEFB %01111000
 DEFB %00000000

; $74 - Character: 't' CHR$(116)

 DEFB %00000000
 DEFB %00010000
 DEFB %00111000
 DEFB %00010000
 DEFB %00010000
 DEFB %00010000
 DEFB %00001100
 DEFB %00000000

; $75 - Character: 'u' CHR$(117)

 DEFB %00000000
 DEFB %00000000
 DEFB %01000100
 DEFB %01000100
 DEFB %01000100
 DEFB %01000100
 DEFB %00111000
 DEFB %00000000

; $76 - Character: 'v' CHR$(118)

 DEFB %00000000
 DEFB %00000000
 DEFB %01000100
 DEFB %01000100
 DEFB %00101000
 DEFB %00101000
 DEFB %00010000

 DEFB %00000000

; $77 - Character: 'w' CHR$(119)

 DEFB %00000000
 DEFB %00000000
 DEFB %01000100
 DEFB %01010100
 DEFB %01010100
 DEFB %01010100
 DEFB %00101000
 DEFB %00000000

; $78 - Character: 'x' CHR$(120)

 DEFB %00000000
 DEFB %00000000
 DEFB %01000100
 DEFB %00101000
 DEFB %00010000
 DEFB %00101000
 DEFB %01000100
 DEFB %00000000

; $79 - Character: 'y' CHR$(121)

 DEFB %00000000
 DEFB %00000000
 DEFB %01000100
 DEFB %01000100
 DEFB %01000100
 DEFB %00111100
 DEFB %00000100
 DEFB %00111000

; $7A - Character: 'z' CHR$(122)

 DEFB %00000000
 DEFB %00000000
 DEFB %01111100
 DEFB %00001000
 DEFB %00010000
 DEFB %00100000
 DEFB %01111100
 DEFB %00000000

; $7B - Character: '{' CHR$(123)

 DEFB %00000000
 DEFB %00001110
 DEFB %00001000
 DEFB %00110000
 DEFB %00001000
 DEFB %00001000
 DEFB %00001110
 DEFB %00000000

; $7C - Character: '|' CHR$(124)

 DEFB %00000000
 DEFB %00001000
 DEFB %00001000
 DEFB %00001000
 DEFB %00001000

 DEFB %00001000
 DEFB %00001000
 DEFB %00000000

; $7D - Character: '}' CHR$(125)

 DEFB %00000000
 DEFB %01110000
 DEFB %00010000
 DEFB %00001100
 DEFB %00010000
 DEFB %00010000
 DEFB %01110000
 DEFB %00000000

; $7E - Character: '~' CHR$(126)

 DEFB %00000000
 DEFB %00010100
 DEFB %00101000
 DEFB %00000000
 DEFB %00000000
 DEFB %00000000
 DEFB %00000000
 DEFB %00000000

; $7F - Character: '(c)' CHR$(127)

 DEFB %00111100
 DEFB %01000010
 DEFB %10011001
 DEFB %10100001
 DEFB %10100001
 DEFB %10011001
 DEFB %01000010
 DEFB %00111100

#end ; generic cross-assembler directive

; Acknowledgements
; -----------------
; Sean Irvine for default list of section headings
; Dr. Ian Logan for labels and functional disassembly.
; Dr. Frank O'Hara for labels and functional disassembly.
; Gianluca Carri for labels and functional disassembly.
;
; Credits
; -------
; Alex Pallero Gonzales for corrections.
; Mike Dailly for comments.
; Alvin Albrecht for comments.
; Andy Styles for full relocatability implementation and testing.
; Andrew Owen for ZASM compatibility and format improvements.
; Philip Kendall for help with Newton Raphson square root theory.
; James Smith for optimizing some ROM routines to save space
; and the FORMAT routine.
;
; ----------------------
; THE 'SYSTEM VARIABLES'
; ----------------------

; 5B00 (IY-$3A) 23296 KSTATE_0 $FF (free) else raw key value.
; 5B01 (IY-$39) 23297 KSTATE_1 The 5-counter

; 5B02 (IY-$38) 23298 KSTATE_2 Initially REPDEL value then REPPER
; 5B03 (IY-$37) 23299 KSTATE_3 This location holds the decoded key.
; -------------------------------
; 5B04 (IY-$36) 23300 KSTATE_4 The second key map is arranged
; 5B05 (IY-$35) 23301 KSTATE_5 exactly as the first above and it is
; 5B06 (IY-$34) 23302 KSTATE_6 in fact this map that is considered
; 5B07 (IY-$33) 23303 KSTATE_7 first by the Keyboard routines.
; -------------------------------
; 5B08 (IY-$32) 23304 LASTK Value of last key read from keyboard.
; 5B09 (IY-$31) 23305 REPDEL
; 5B0A (IY-$30) 23306 REPPER
; 5B0B (IY-$2F) 23307 DEFADD
; 5B0C (IY-$2E) 23308 DEFADD_hi
; 5B0D (IY-$2D) 23309 KDATA
; 5B0E (IY-$2C) 23310 TVDATA
; 5B0F (IY-$2B) 23311 TVDATA
; -------------------------------
; 5B10 (IY-$2A) 23312 STRMS_FD
; 5B11 (IY-$29) 23313 STRMS_FD_hi
; 5B12 (IY-$28) 23314 STRMS_FE
; 5B13 (IY-$27) 23315 STRMS_FE_hi
; 5B14 (IY-$26) 23316 STRMS_FF
; 5B15 (IY-$25) 23317 STRMS_FF_hi
; 5B16 (IY-$24) 23318 STRMS_00
; 5B17 (IY-$23) 23319 STRMS_00_hi
; 5B18 (IY-$22) 23320 STRMS_01
; 5B19 (IY-$21) 23321 STRMS_01_hi
; 5B1A (IY-$20) 23322 STRMS_02
; 5B1B (IY-$1F) 23323 STRMS_02_hi
; 5B1C (IY-$1E) 23324 STRMS_03
; 5B1D (IY-$1D) 23325 STRMS_03_hi
; 5B1E (IY-$1C) 23326 STRMS_04
; 5B1F (IY-$1B) 23327 STRMS_04_hi
; 5B20 (IY-$1A) 23328 STRMS_05
; 5B21 (IY-$19) 23329 STRMS_05_hi
; 5B22 (IY-$18) 23330 STRMS_06
; 5B23 (IY-$17) 23331 STRMS_06_hi
; 5B24 (IY-$16) 23332 STRMS_07
; 5B25 (IY-$15) 23333 STRMS_07_hi
; 5B26 (IY-$14) 23334 STRMS_08
; 5B27 (IY-$13) 23335 STRMS_08_hi
; 5B28 (IY-$12) 23336 STRMS_09
; 5B29 (IY-$11) 23337 STRMS_09_hi
; 5B2A (IY-$10) 23338 STRMS_0A
; 5B2B (IY-$0F) 23339 STRMS_0A_hi
; 5B2C (IY-$0E) 23340 STRMS_0B
; 5B2D (IY-$0D) 23341 STRMS_0B_hi
; 5B2E (IY-$0C) 23342 STRMS_0C
; 5B2F (IY-$0B) 23343 STRMS_0C_hi
; 5B30 (IY-$0A) 23344 STRMS_0D
; 5B31 (IY-$09) 23345 STRMS_0D_hi
; 5B32 (IY-$08) 23346 STRMS_0E
; 5B33 (IY-$07) 23347 STRMS_0E_hi
; 5B34 (IY-$06) 23348 STRMS_0F
; 5B35 (IY-$05) 23349 STRMS_0F_hi
; -------------------------------
; 5B36 (IY-$04) 23350 CHARS
; 5B37 (IY-$03) 23351 CHARS_hi
; 5B38 (IY-$02) 23352 RASP
; 5B39 (IY-$01) 23353 PIP
; 5B3A (IY+$00) 23354 ERR_NR
; -------------------------------
; 5B3B (IY+$01) 23355 FLAGS 0 - Set to suppress a leading space.
; 1 - Set if ZX Printer is in use.

; 2 - Set if 'L' mode, temporary value.
; 3 - Set if 'L' mode, reset for 'K' perm.
; 4 - Unused by 48K BASIC.
; 5 - Set in a new key has been pressed.
; 6 - Set if scanning result is numeric.
; 7 - Reset if checking syntax.
; -------------------------------
; 5B3C (IY+$02) 23356 TV_FLAG 0 - Set if lower screen in use.
; 1 - unused.
; 2 - unused.
; 3 - Set if edit key has been pressed.
; 4 - Set if an automatic listing.
; 5 - Set if lower screen to be cleared.
; 6 - unused.
; 7 - unused.
; -------------------------------
; 5B3D (IY+$03) 23357 ERR_SP
; 5B3E (IY+$04) 23358 ERR_SP_hi
; 5B3F (IY+$05) 23359 LIST_SP
; 5B40 (IY+$06) 23360 LIST_SP_hi
; 5B41 (IY+$07) 23361 MODE Values 0, 1 or 2
; 5B42 (IY+$08) 23362 NEWPPC
; 5B43 (IY+$09) 23363 NEWPPC_hi
; 5B44 (IY+$0A) 23364 NSPPC
; 5B45 (IY+$0B) 23365 PPC
; 5B46 (IY+$0C) 23366 PPC_hi
; 5B47 (IY+$0D) 23367 SUBPPC
; 5B48 (IY+$0E) 23368 BORDCR
; 5B49 (IY+$0F) 23369 E_PPC
; 5B4A (IY+$10) 23370 E_PPC_hi
; ---------------------------------
; 5B4B (IY+$11) 23371 VARS
; 5B4C (IY+$12) 23372 VARS_hi
; 5B4D (IY+$13) 23373 DEST
; 5B4E (IY+$14) 23374 DEST_hi
; 5B4F (IY+$15) 23375 CHANS
; 5B50 (IY+$16) 23376 CHANS_hi
; 5B51 (IY+$17) 23377 CURCHL
; 5B52 (IY+$18) 23378 CURCHL_hi
; 5B53 (IY+$19) 23379 PROG
; 5B54 (IY+$1A) 23380 PROG_hi
; 5B55 (IY+$1B) 23381 NXTLIN
; 5B56 (IY+$1C) 23382 NXTLIN_hi
; 5B57 (IY+$1D) 23383 DATADD
; 5B58 (IY+$1E) 23384 DATADD_hi
; 5B59 (IY+$1F) 23385 E_LINE
; 5B5A (IY+$20) 23386 E_LINE_hi
; 5B5B (IY+$21) 23387 K_CUR
; 5B5C (IY+$22) 23388 K_CUR_hi
; 5B5D (IY+$23) 23389 CH_ADD
; 5B5E (IY+$24) 23390 CH_ADD_hi
; 5B5F (IY+$25) 23391 X_PTR
; 5B60 (IY+$26) 23392 X_PTR_hi
; 5B61 (IY+$27) 23393 WORKSP
; 5B62 (IY+$28) 23394 WORKSP_hi
; 5B63 (IY+$29) 23395 STKBOT
; 5B64 (IY+$2A) 23396 STKBOT_hi
; 5B65 (IY+$2B) 23397 STKEND
; 5B66 (IY+$2C) 23398 STKEND_hi
; ---------------------------------
; 5B67 (IY+$2D) 23399 BREG
; 5B68 (IY+$2E) 23400 MEM
; 5B69 (IY+$2F) 23401 MEM_hi
; -------------------------------

; 5B6A (IY+$30) 23402 FLAGS2 0 - Set if main screen to be cleared.
; 1 - Not used - held state of ZX buffer.
; 2 - Set if a ':' is within quotes.
; 3 - Set if Caps Lock on.
; 4 - Set if "K" channel is use.
; 5 - unused.
; 6 - unused.
; 7 - unused.
; -------------------------------
; 5B6B (IY+$31) 23403 DF_SZ
; 5B6C (IY+$32) 23404 S_TOP
; 5B6D (IY+$33) 23405 S_TOP_hi
; 5B6E (IY+$34) 23406 OLDPPC
; 5B6F (IY+$35) 23407 OLDPPC_hi
; 5B70 (IY+$36) 23408 OSPPC
; -------------------------------
; 5B71 (IY+$37) 23409 FLAGX 0 - Set if handling a simple string.
; 1 - Set if handling a new variable.
; 2 - unused.
; 3 - unused.
; 4 - unused.
; 5 - Set if in input mode.
; 6 - unused.
; 7 - Set if handling INPUT LINE.
; -------------------------------
; 5B72 (IY+$38) 23410 STRLEN
; 5B73 (IY+$39) 23411 STRLEN_hi
; 5B74 (IY+$3A) 23412 T_ADDR
; 5B75 (IY+$3B) 23413 T_ADDR_hi
; 5B76 (IY+$3C) 23414 SEED
; 5B77 (IY+$3D) 23415 SEED_hi
; 5B78 (IY+$3E) 23416 FRAMES1
; 5B79 (IY+$3F) 23417 FRAMES2
; 5B7A (IY+$40) 23418 FRAMES3
; 5B7B (IY+$41) 23419 UDG
; 5B7C (IY+$42) 23420 UDG_hi
; 5B7D (IY+$43) 23421 COORDS_x
; 5B7E (IY+$44) 23422 COORDS_y
; 5B7F (IY+$45) 23423 P_POSN (unused)
; 5B80 (IY+$46) 23424 PR_CC (unused)
; 5B81 (IY+$47) 23425 PR_CC (unused)
; 5B82 (IY+$48) 23426 ECHO_E
; 5B83 (IY+$49) 23427 ECHO_E_hi
; 5B84 (IY+$4A) 23428 DF_CC
; 5B85 (IY+$4B) 23429 DF_CC_hi
; 5B86 (IY+$4C) 23430 DFCCL
; 5B87 (IY+$4D) 23431 DFCCL_hi
; 5B88 (IY+$4E) 23432 S_POSN
; 5B89 (IY+$4F) 23433 S_POSN_hi
; 5B8A (IY+$50) 23434 SPOSNL
; 5B8B (IY+$51) 23435 SPOSNL_hi
; 5B8C (IY+$52) 23436 SCR_CT
; 5B8D (IY+$53) 23437 ATTR_P
; 5B8E (IY+$54) 23438 MASK_P
; 5B8F (IY+$55) 23439 ATTR_T
; 5B90 (IY+$56) 23440 MASK_T
; 5B91 (IY+$57) 23441 P_FLAG
; -------------------------------
; 5B92 (IY+$58) 23442 MEM_0
; 5B93 (IY+$59) 23443 MEM_0
; 5B94 (IY+$5A) 23444 MEM_0
; 5B95 (IY+$5B) 23445 MEM_0
; 5B96 (IY+$5C) 23446 MEM_0
; 5B97 (IY+$5D) 23447 MEM_1

; 5B98 (IY+$5E) 23448 MEM_1
; 5B99 (IY+$5F) 23449 MEM_1
; 5B9A (IY+$60) 23450 MEM_1
; 5B9B (IY+$61) 23451 MEM_1
; 5B9C (IY+$62) 23452 MEM_2
; 5B9D (IY+$63) 23453 MEM_2
; 5B9E (IY+$64) 23454 MEM_2
; 5B9F (IY+$65) 23455 MEM_2
; 5BA0 (IY+$66) 23456 MEM_2
; 5BA1 (IY+$67) 23457 MEM_3
; 5BA2 (IY+$68) 23458 MEM_3
; 5BA3 (IY+$69) 23459 MEM_3
; 5BA4 (IY+$6A) 23460 MEM_3
; 5BA5 (IY+$6B) 23461 MEM_3
; 5BA6 (IY+$6C) 23462 MEM_4
; 5BA7 (IY+$6D) 23463 MEM_4
; 5BA8 (IY+$6E) 23464 MEM_4
; 5BA9 (IY+$6F) 23465 MEM_4
; 5BAA (IY+$70) 23466 MEM_4
; 5BAB (IY+$71) 23467 MEM_5
; 5BAC (IY+$72) 23468 MEM_5
; 5BAD (IY+$73) 23469 MEM_5
; 5BAE (IY+$74) 23470 MEM_5
; 5BAF (IY+$75) 23471 MEM_5
; -------------------------------
; 5BB0 (IY+$76) 23472 NMI_ADD
; 5BB1 (IY+$77) 23473 NMI_ADD_hi
; 5BB2 (IY+$78) 23474 RAMTOP
; 5BB3 (IY+$79) 23475 RAMTOP_hi
; 5BB4 (IY+$7A) 23476 P_RAMT
; 5BB5 (IY+$7B) 23477 P_RAMT_hi
; ---
; 5BB6 (IY+$7C) 23478 FLAGS3 unused - holds FF to show no Interface1
; 5BB7 (IY+$7D) 23479 WIDTH RS232 Printer column variable
; 5BB8 (IY+$7E) 23480 WIDTH Printer width as set by FORMAT "t"
; 5BB9 (IY+$7F) 23481 MAXIY unused
; 5BBA 23482 BAUD_lo Two Byte number determining the BAUD
; 5BBB 23483 BAUD_hi rate. BAUD=(3500000/(26*baud rate))-2
; 5BBC 23484 NTSTAT Own Network station number
; 5BBD 23485 IOBORD Border colour used during I/O
; 5BBE 23486 SER_FL 2-byte workspace used by RS232
; 5BBF 23487 SER_FL holds second character if first is one
; 5BC0 23488 NTRESP Store for the network response code.
; 5BC1 23489 NTDEST Destination station number.
; 5BC2 23490 NTSRCE Source station number.
; 5BC3 23491 NTNUMB_lo Network block number - two bytes
; 5BC4 23492 NTNUMB_hi as received over the network
; 5BC5 23493 NTTYPE Header type code as received.
; 5BC6 23494 NTLEN Data block length 0-255.
; 5BC7 23495 NTDCS Data block checksum.
; 5BC8 23496 NTHCS Header block checksum.
;
;
; Revision History
; ----------------
;
; 25-AUG-2002
; All references to System Variables changed from $5C to $5B.
; Changed byte in CHAN-OPEN from $5C to $5B.
; The COPY command re-written so as not to clear the ZX Printer Buffer.
; Channel "P" removed from INITIAL CHANNEL DATA
; Reduced number of bytes copied during initialization from 21 to 16.
; Stream 3 entry removed from INITIAL STREAM DATA
; Reduced number of bytes copied during initialization from 14 to 12.

; Reduced offset in expression within CLOSE from 14 to 12.
; Modify CLOSE routine to error if stream offset is already closed (zero).
; Add new Error report 'Stream is closed' to error message table.
; Modify DE offset in CLOSE from $A3E2 to $A4E4 to reflect new STRMS location
; and fewer system streams.
; Substantially alter CLOSE-2 so that IX used to access letter and offset saved
; in DE. Start of channel saved in IX.
; (Noticed for the first time pointer to letter was previously saved in DE).
; Create new INITIAL P CHANNEL DATA (8 bytes) for channel creation. Contains
; usual 5 bytes plus + 2-byte length + P_POSN (column position). The output
; address PR_CC can't be held as this would vary as channels are deleted.
;
; 26-AUG-2002
; Modify OPEN-1 so that a stream associated with "P" can't be re-attached.
; Modify OPEN-K so that LD E,$01 becomes LD DE,$0001.
; Modify OPEN-S so that LD E,$06 becomes LD DE,$0006.
; Completely re-write OPEN-P (which was no more sophisticated) so that it
; creates a 264 byte "P" channel at end of CHANS area.
; Remove line in OPEN-END that set high byte of offset to zero.??
; Remove call to CLEAR-PRB during initialization.
; Remove call to COPY-BUFF at MAIN-4 [* This will have to be re-visited]
; Modify print routine so that FLAGS2 is not updated when a ZX buffer used.
; Modify PR-ALL-6 so that address can cross a 256-byte page boundary.
; Modify CLEAR-PRB so that FLAGS2 not cleared when buffer cleared.
; Modify CLEAR-PRB so that superfluous PR_CC reference removed.
; Modify CLEAR_PRB so that address of buffer is calculated from CURCHL.
; Modify COPY-LINE so that CLEAR-PRB only invoked when outputting to a channel
; and BREAK is pressed.
; Realising that CLEAR-PRB can only be used as such, go back to OPEN-P and
; clear the buffer bytes directly.
; Modify COPY_BUFF so that address of buffer is calculated from CURCHL.
; Remove "LD HL,$5B00" from start of CL-SET. Still works for ZX path.
; Modify PO-STORE so that IX from CURCHL used to update P_POSN (channel var).
; Substantially modify PO-FETCH so that the print address within the channel
; buffer is formed from the column position P_POSN.
;
; 27-AUG-2002
; Write routine CLOSE-P so that channel reclaimed.
; Although not intended as such, this routine turns out to be generic.
; Adapt routine REST-STRM (from Interface 1) so that all other streams that
; have offsets beyond a closed stream have their offsets reduced by the
; reclaimed amount.
; Boot using VBSpec and test that channels open and close OK.
; Switch to RealSpec to test printing. Crash due to A not being preserved
; during new PO-FETCH. Trace and rectify using debugger and notice all OK.
; Switch to DOS Z80 emulator for final paper output tests. Brilliant as always.
; Re-locate FREE-MEM routine to spare space between restarts as address was
; moving around as code was added and removed.
; Free memory has increased from 41472 to 41733
; ROM space has reduced alarmingly. Only 1040 bytes spare.
; Embark on a spree to remove redundant code.
; Routines ZX81 name routine, REC-EDIT and P-INT-STO commented out.

; 28-AUG-2002
; Table of constants expanded to five bytes.
; SKIP-CONS commented out - no longer writes to ROM.
; First two instructions of get-mem swapped to provide entry point from
; the stk-con-x routine which is now just 5 bytes.
; To inhibit all writes to ROM, limit scroll routine to 23 lines (not 24).
; Interrupt routine re-written to avoid IY register use. (saves one byte)
; Applied fixes to KEYBOARD so that keywords don't repeat and only valid keys
; return a graphic key code i.e. only A-U.
; Generally, comment out unnecessary stack saves, double loads etc.
; Since labels have no relation to address, change them to use legalized

; disassembly labels.

; 31-AUG-2002
; Square Root function rewritten to use the Newton-Raphson method.
; Can be improved further by finding a better initial guess than 1.

; 01-SEP-2002
; Use better initial guess than '1' for Newton Raphson SQR function.
; Works even better when integers are immediately re-stacked as floating point
; numbers.

; 03-SEP-2002
; More fixes - allow SAVE "program" LINE without number as per BASIC manual.
; ROM space pruning - use UNSTACK_Z to full potential.

; 04-SEP-2002
; For consistency, use the words "CONTINUE" and "GO SUB" in error messages
; instead of the ZX81 tokens used in the production ZX Spectrum ROM.
; This was a mistake as both messages were at the maximum length. Reverted.
; The INT -65536 bug fixed as per Dr. Ian Logan's guidelines ensuring that the
; 3rd, 4th and 5th bytes were zero.

; 05-SEP-2002
; All quirks, features and bugs removed. Details as follows.

; Source: Understanding Your Spectrum by Dr. Ian Logan
; (12 bugs listed in appendix)
; i. The 'division' error - is a misnomer. The inaccuracy mentioned occurs
; in the DEC_TO_FP routine and by switching the multiply and division
; operations then 0.5 is given the floating point form 80 00 00 00 00.
; The suggested fix is ignored.
; ii. The '-65536' error e.g. PRINT INT -65536 gives -1.
; Dr. Ian Logan's fix applied (with mods) and other code sections removed
; as suggested.
; iii. The 'program name' routine removed along with REC_EDIT and P_INT_STO.
; iv. The 'CHR$ 9' error corrected by calling PO_ABLE in preference to a
; terminal jump to CL_SET/PO_STORE.
; v. The 'scroll?' and 'Start tape' errors corrected by new routine CONS_IN.
; Later KEY_INPUT modified to recognize prompt (2 extra bytes).
; vi. The current cursor error corrected by updating E_PPC with valid line
; number while it is in the registers at an earlier stage.
; vii. The 'leading space error' resembles more a successful attempt to
; maximise the text that will fit within a 32 character display and has
; not been corrected. Ignored. (On second thoughts, this needs fixing)
; viii.The 'K-mode' error has been corrected by preventing keywords repeating
; when held down.
; ix. The 'CHR$ 8' error has been corrected as suggested by Dr. Frank O'Hara.
; x. The 'SCREEN$' error has been corrected by substituting the suggested RET
; instruction.
; xi. The 'STR$' error has been corrected by removing the extra zero from
; the calculator stack as suggested.
; xii. The 'CLOSE' error has been corrected by checking the status of the
; stream and issuing a new error message if it is already closed.
; The suggested fix - adding a zero end-marker to the Close Stream Look-up
; Table - is ignored.
;
; Source: The Complete Spectrum ROM Disassembly. by Dr. Ian Logan and
; Dr. Frank O'Hara (various additional features listed).
; 1) The NMI bug has been corrected and the logic changed as suggested on
; Page 2. The new default set-up is to produce a new informative message.
; 2) Simple strings are not excluded when saving DATA - on Page 22.
; e.g. 10 LET a$ = "dodo" : SAVE "animal" DATA a$()
; These are now rejected as they won't load back in.
; (credit: First fixed by Dr. Ian Logan in the Interface 1 ROM).

; 3) There is no end-marker for the CLOSE STREAM LOOK UP table nor should
; there be. Ignored.
;
; Source: ZX Spectrum BASIC programming by Steven Vickers. (discrepancies)
; 1) Line number should be optional in SAVE "some name" LINE - Page 133.
; Fixed.
; 2) CLEAR does a RESTORE (Page 124).
; Error in BASIC manual rather than ROM - ignored. Difficult to decide.
; 3) "Notice that the numbers in a DRAW statement can be negative, although
; those in a PLOT statement can't" - Page 92
; Fixed. 0<=x<=255. 0<=y<=175 else Error B.
; 4) Similarly the POINT (x,y) function allowed negative coordinates.
; Fixed. Error B unless 0<=x<=255. 0<=y<=175. Page 153.
; 5) The ATTR (y,x) function allows negative and invalid coordinates.
; Fixed. Error B unless 0<=x<=31 and 0<=y<=23. Page 152.
; 6) The SCREEN$ (y,x) function allows negative and invalid parameters.
; Fixed. Error B unless 0<=x<=31 and 0<=y<=23. Page 154.
;
; Source: The Pitman Pocket Guide to the Sinclair Spectrum by Steven Vickers.
; (discrepancies not previously mentioned.)
; 1) RESTORE. "Don't specify numbers > 9999, as the program may crash."
; To be pedantic > 16383 - see below. Page 25.
; 2) 'Statement lost' can occur with RUN, GO TO and GO SUB when the line
; number is between 32768 and 61439. Page 67.
; Fixed by new routine which checks SAVE LINE, LIST, LLIST, RUN, GO TO,
; GO SUB and RESTORE for invalid line numbers.
; 3) Due to a bug, if you bring in a peripheral channel and later use a
; colour statement, colour controls will be sent to it by mistake Page 59.
; Fixed by ensuring that the screen is first selected.
; 4) EDITING KEYS TABLE Page 58.
; When inputting from the network or RS232 or microdrive file,
; code 6 (comma separator): inserted in buffer.
; ("This is a bug. It should work like CHR$ 14"). Fixed.
;
; Source: www.nonowt.com "Bugs in the ROM"
; (many already covered. Some are Programming Guides rather than errors.)
; 1) The Monopolizing of IY Error.
; Although not strictly an error, the manual does not mention the
; restriction as did the ZX81 manual. Also some effort has gone into
; ensuring that the calculator avoids IY mathematically and it is restored
; following a USR function.
; Fixed - the interrupt routine uses HL to access system variables.
; Saves a few bytes too.
; 2) The PR_CC error (credit: Dilwyn Jones 1983).
; Fixed - No ZX printer system variables remain. The print position is
; recalculated every time from a single new channel variable.
; 3) The CLEAR PRINTER BUFFER Bug.
; Fixed - COPY no longer clears the buffer at the end of the statement or
; when BREAK pressed.
; 4) The Main-4 COPY-BUFF Error.
; Partly fixed as routine is no longer called but unprinted output is not
; yet flushed. (To revisit at end) (Done.)
; 5) The MAIN-4 HALT instruction not corrected as not really an error.
; The fault was with programmers and also with the Interface 1.
; The NMI fix provides a clean means of exit should the situation arise.
; i.e. Should a programmer forget to enable interrupts before returning
; to BASIC. However I have to admit I don't know why it is there. If you
; press BREAK it ensures the message remains a while longer.
; 6) The WRITE TO ROM at $0000 by SKIP_CONS has been avoided by improving
; the way constants are stored and indexed.
; The WRITE TO ROM by the SCROLL routine (credit: P.Giblin) has been
; avoided, as suggested, by ensuring that the full 24 lines are never
; scrolled.
; 7) The unimplemented e-to-fp calculator instruction could be removed by

; assigning $3C to 're-stack'. Five calculator routines would require
; alteration. This would gain two extra bytes of ROM space but has not
; yet been done.
; 8) The INKEY$#0 Error. This could apply to any stream although streams 0
; and 1 read from the keyboard by default. If the selected stream has
; been attached to the keyboard then the null string is almost always
; returned. The read_in routine correctly cancels any keypress as we are
; not interested in what was pressed, perhaps, half an hour ago. However
; there is hardly anytime for an interrupt to occur before the channel
; is read. Fixed by testing for channel 'K' and executing a HALT if so.
; INKEY$#0 is not the same as INKEY$ as the latter always reads the
; keyboard directly whereas using streams has to take REPDEL and REPPER
; into account e.g. 10 PRINT ; CODE INKEY$#0 ; " "; : GO TO 10
;
; Miscellaneous BUGS and features.
;
; 1) In graphics mode, keys V, W, X, Y and Z give inappropriate keywords.
; Fixed by not storing key if higher than 'U'.
; 2) USR-$ contains a double check on number of UDGs. First check removed.
; It would be required if there were 26 UDGs and so it may be put back.
; 4) A typo like LIST 40000 was silently changed to LIST 7232. As an error
; is now given, the modifying code (AND $3F) has been removed.
; 3) ZX81 keywords were used in Spectrum error messages. Fixed in error.
; Not possible to add a space to GOSUB without exceeding 32 characters.
;
; ---

; 06-SEP-2002
; RST 30H vacated by making BC_SPACES a subroutine.
; The ERROR restart is moved to $0030 to avoid paging in Interface 1 while,
; at the same time, allowing access to its hardware.
; RST 08H made a User Restart with a JP to three unused system variables
; starting at the old P-POSN. This idea later scotched.
; The NMI handler is located in the other 5 bytes.
; Routine PO_ATTR has an EX DE,HL instruction added to return the attribute
; address in DE. (see next)
; Routine OUT_FLASH rewritten to print the character and then set the FLASH
; bit of the attribute address.
; Routine CL_ATTR rearranged to perform attribute calculation last - providing
; a new subroutine CL_ATTR2 which is called twice where a similar sequence
; of instructions used to be.

; 07-SEP-2002
; ROM usage reduced by reducing absolute jumps. etc.
; The same RASP routine was used in two places and this has been made a
; subroutine.
; Note. there is now one MORE spare byte than in the standard ZX Spectrum.
; There are 1172 unused bytes.
; 16 spare bytes moved to area before Cassette Interface to make addresses
; 04D8 and 056A the same as standard ROM as these are trapped by emulators
; to SAVE and LOAD to tape.
; 240 spare bytes moved to area surrounding $1708 to prevent Interface 1 paging.

; 08-SEP-2002
; There are now 20 more bytes of free ROM space than in the standard Spectrum
; and that is despite writing an optimized TEST_5_SP routine.
; Optimized STACK_BC so IY not initialized every time. Result pointer set by
; a faster method.
; Optimized sto_mem_x so that memory not checked when removing a value from the
; calculator stack.

; 09-SEP-2002
; Optimize FP_TO_BC and all routines that call it - FP_TO_A etc. by setting HL
; to the initial value by a faster method.

; Optimize FP_TO_A too. Anything involving the calculator stack has to be
; optimal.

; 10-SEP-2002
; Noticed EX AF,AF' is little used outside the cassette interface and in some
; places it would be faster than PUSH/POP AF. Not very many.
; Corrected error introduced by pruning in GET_HLxDE.

; 11-SEP-2002
; remove redundant code from -65536 fix and optimize to avoid machine stack.
; Spare locations = 1207 bytes

; 12-SEP-2002
; Put back the five bytes before MULT_RSLT and document so I don't remove again.
; Concentrate on testing this stage.

; 13-SEP-2002
; superfluous instruction removed from PIXEL_ADD
; 50 more bytes of spare ROM space than standard ROM.

; 14-SEP-2002
; THE OPEN_P routine made generic and called OPEN_ALL. It is only necessary
; to set IX to the channel data before calling it.

; 15-SEP-2002
; Add RS232 and Network channels. i.e. "B", "T" and "N".
; Less than fourteen bytes spare.
; Requires some tidying up. Stuff like OPEN #7,"N:64" requires implementation.
; Also a few flag setting routines. Looks promising though.
; It is possible to use PRINT, LIST, INPUT and INKEY$ with new channels but
; not SAVE, LOAD, MERGE and VERIFY. Yet.
; The microdrives don't stand a chance but this was all the adverts ever
; promised. Only one machine on the network requires a mass storage device.
; Commands MOVE, ERASE, CAT and FORMAT are not implemented.
; The FORMAT command would be useful for altering the BAUD rate and setting
; the network station number.

; 16-SEP-2002
; Some problems when breaking into INPUT. Debugging code is in lower case.
; Document to help trace what's happening.

; 17-SEP-2002
; Discover minor bug in the Interface 1 (and Discovery Disk Interface) at the
; end of GET_NBLK but my own bug eludes me. (BREAK message not being cleared)
; Find the bug in this ROM. Hurrah! I need to reset bit 3 of TV_FLAG before
; entering the editor.

; 18-SEP-2002
; Complete the documentation of text channel.
; I've worked out where the new string syntax should be enforced. e.g. OPEN "N2"
; In the CLASS-0A routine. The runtime path would populate D_STR1. A lot easier
; than what I was contemplating and the effect is global. i.e. on all CLASS_0A
; strings.

; 19-SEP-2002
; Alter 'sqr' so that IY not used. Improve comments. Start FILE_DESC.

; 20-SEP-2002
; Clarify documentation and increase ROM space.

; 21-SEP-2002
; Removed the 'SUB 08' from multi comparisons calculator routine.
; Re-arranged space between restarts.
; FREE memory is now PRINT 65536 - USR 93.

; 22-SEP-2002
; Documented 'truncate'. Found a redundant byte and managed to save another.
; Incorporate the network SEND_NEOF routine. Also flush ZX Printer buffer.
; Use 2 as default Iris instead of 0 (broadcast). Input gives a satisfying
; 'End of File' report now.

; 23-SEP-2002
; Test flags before branching in ED-KEYS saves 8 bytes.

; 24-SEP-2002
; Modify KEY-INPUT so it recognizes the prompt situation. Get rid of temporary
; routine CONS_IN. Incorporate FILE_SPEC into CLASS_0A.
; 3 ROM bytes spare. Some syntax improvements to do. For instance
; OPEN #7,"printer" now passes through which it shouldn't.
; OPEN #7,"n:64" etc. now works.

; 25-SEP-2002
; Pressed ahead and made syntax rock-solid. OPEN works fine. Did the FORMAT
; command while in the mood. Well there are now 53 bytes over the 16K limit.
; Always amazing. Found some nice similarities in the T_CHAN/TV_DATA code.
;
; The only way I could get under 16K was to go back to the old sqr routine :-(
; This was, however, merely an indulgence as I believe this was once in
; the ZX81 until the exact same situation arose as has occured now.
;
; Unless there are bugs, I doubt there will be any more updates for months.
;
; The only outstanding task is to SAVE/LOAD programs using the new channels.
;
; I stuck the 2-byte STOP command between the restarts eventually. I still
; have 5-byte and 3-byte unused sections in there. Mail me if you can think of
; a use for them - geoff{at}wearmouth{dot}demon{dot}co{dot}uk
;
; Somewhat belatedly PEEK 9 gives release number - currently 31.

; 26-SEP-2002
; Corrected errors in proposed syntax.

; 01-OCT-2002
; Abandoned Interface 1 compatible SAVE/LOAD syntax
; The "new" syntax will be OPEN #7,"n:2" : SAVE #7; "prognam" : CLOSE #7

; 02-OCT-2002
; Implemented SAVE/LOAD/MERGE/VERIFY from network and RS232 (both untested).
; Changed Error message for error code R: to just 'Loading error'
; Fixed Graphics mode bug caused by ROM space pruning (credit: Andrew Owen).

; 03-OCT-2002
; Saving and Listing to RS232 seems to work OK but not Loading.
; This update contains a partial fix.

; 06-OCT-2002
; This version has 10 spare ROM bytes.

; 08-OCT-2002
; This has about 20 spare bytes and isolates $1708.

; 13-OCT-2002
; Improve documentation.
; Apply ROM space saving techniques from James Smith.

; 17-OCT-2002
; Apply more ROM space saving techniques from James Smith.

; MAKE_ROOM now increments HL which was almost always the next instruction.
; Trying to get enough room to bring back the fast square roots and tidy up.

; 18-OCT-2002
; Isolate location $1708 again.

; 27-OCT-2002
; Add the FORMAT routines of James Smith.
; About seven bytes overdrawn.

; 28-OCT-2002
; reduce object code to 16384 bytes using techniques provided by James.

; 09-NOV-2002
; Simplify K-DECODE to solve repeating key problem. (Reported by Andrew Owen)
; Rectify CLOSE_A to support 13 ZX printer buffers.

; 10-NOV-2002
; Change FORMAT command to use FORMAT "channel specifier"; number
; Created new class routine CLASS_0C to allow choice of separators.
; Make OPEN a CLASS-05 routine and allow OPEN #3,"p" and
; OPEN #8,"n",6 with full syntax checking
; This creates almost enough room to bring back the fast square roots.

; 11-NOV-2002
; Exploit the new CLASS_0C and EXPT_SEP routines to conserve ROM space.

; 13-NOV-2002
; Optimize Newton Raphson square roots but use old ones for now, as although
; the new ones fit, they leave little room for development. 59 bytes spare.

; 15-NOV-2002
; At the suggestion of James Smith, now that everything is in one ROM, use
; the PO_SAVE routine for recursive printing of spaces in the text channel TAB
; and comma control routines. So create new routine PO_SV_SP as the preceding
; instruction loads A with a space. What James can save I can squander.
; Rejoice in FORMAT "k",<pip> to set the keyboard beep. On second thoughts...

; Output from the RealSpec emulator SERIAL.BIN file.
; 10 OPEN #4,"t"
; 20 LIST #4
; 30 PRINT #4,,"Hi"
; 40 PRINT #4;TAB 17;"There"
; 50 CLOSE #4
; Hi
; There
; --
;
; 17-NOV-2002
; PO_RIGHT shortened. FORMAT_K removed :-)
;
; 22-NOV-2002
; 'exchange' shortened, Some new routines to modularize common code.
; 100 bytes free

; 24-NOV-2002
; Added verification from RS232 and Network.
; ED-RIGHT feature fixed. Reported by Andrew Owen.
; Emulator tape support abandoned. Just snapshots (.SNA) and not those from a
; normal Spectrum.

; 27-NOV-2002
; Fixed a ZX Printer 'feature' revealed by the new VBSpec emulator .

; 30-NOV-2002
; ZX Printer location $0F24 made standard for new SPIN emulator (fast mode).

; 01-DEC-2002
; Add 'CLEAR #' command to clear all streams.
; Any ZX Spectrum buffers are flushed first which is interesting in the new
; paperless ZX environment.

; 03-DEC-2002
; Woohoo! a CAT command. The Spectrum should have had this as standard.
; This version catalogs the streams to the screen.
; Not a lot of detail but give me the space. Ten bytes free.

; 04-DEC-2002
; Banner above the CAT

; 07-DEC-2002
; CAT with free memory report. Looks good.
; Once you've used this, it is difficult to give it up.
; I wonder...

; 08-DEC-2002
; OPEN #7,"n" is now rejected, as previously, without a station but there is
; no room for a 'Missing station number' report.

; 10-DEC-2002
; Minor improvements. ERASE gives error and not CAT.

; 14-DEC-2002
; More tweaks and document flags. Enter test phase.

; 15-DEC-2002
; Enough room for the fast square roots. Even 'ln' has been optimized.

; 22-DEC-2002
; Tidy and format code.

; 23-DEC-2002
; Trim COPY-BUFF by one byte and clean up.

; 25-DEC-2002
; Fix bug in standard ROM at start of INPUT. Stream 1 is designated as the
; user's input stream as per original designer's comments.

; 26-DEC-2002
; Allow OPEN #0,"n";2 so that commands can be accepted from another Spectrum
; as per Steven Vickers's remarks in the Pitman Pocket Guide.
; The network now sends the buffer on receipt of a carriage return.
; Scrapped the FREE MEMORY TEST - CAT will do just fine.

; 28-DEC-2002
; The NMI service routine now closes stream 1 in a proper fashion without
; incurring a memory leak.

; 29-DEC-2002
; Correct a pathing error in the revised scrolling routine.
; Tidy up initialization of BAUD rate. More testing.
; Correct stack corruption in DISP_MSG. Loads from network with messages now.
; Continue testing LOAD and SAVE.
; Commands LOAD, MERGE, VERIFY and SAVE all work ok from streams.

; 01-JAN-2003
; Free up some spare space. TAG important labels.

; 09-JAN-2003
; Remove RST 18H after scanning because it's there. Freed bytes not used.
; Tidy up CO_TEMP some of which had been made obsolete earlier.

; 10-JAN-2003
; Found a natural subroutine to check for a right-hand bracket.

; 23-JAN-2003
; Correct letter in BCHAN_DAT.
; Correct label in BCHAN_OUT - Saves and Loads OK to RS232 "B" in WinZ80.
; Note. this only works if the Interface1 hardware is selected - the Interface
; ROM paging has been avoided for this reason.

; 02-FEB-2003
; Network header checksum created (accidentally omitted) one less byte of RAM.
; Cleaner NMI handler written performs a warm reset regaining standard memory.
; Restores all initial channels without memory leaks.
; Reclaims any dynamic buffers attached to them.
; It then performs a warm reset by joining at the initialization of CHARS.
; This code which appears clumsy in the standard Spectrum finally makes sense.
; Then invokes MAIN_G directly. Tested WinZ80.
; Also ROM tested in new Spectaculator 4.0 and ZX Printer routines work fine.
; Also NMI Warm Reset tested with SPIN emulator - F5 key - works great.

; 23-FEB-2002
; Fixed INKEY$#0 Error. Credit Toni Baker.
; Although Vickers says that this is intended for channels other than the
; keyboard, it should really give some functionality when used with any device.
; The returned key value is of little use and subject to the values of REPPER
; and REPDEL and not the same as INKEY$ which always reads the keyboard
; directly.

