
 HH HH PPPPPPPP 44 TTTTTTTTTT
HH HH PP PP 44 TT
HH HH PP PP 44 44 TT
HHHHHHHHHH PPPPPPPP 444444444 TT
HH HH PP 44 TT
HH HH PP 44 TT
HH HH PP 44 TT

HISOFT PASCAL 4 TM V1.6

 C O N T E N T S

0 PRELIMINARIES

0.0 Getting Started
0.1 Scope of this Manual
0.2 Compiling and Running
0.3 Strong TYPEing

1 SYNTAX and SEMANTICS

1.1 IDENTIFIER
1.2 UNSIGNED INTEGER
1.3 UNSIGNED NUMBER
1.4 UNSIGNED CONSTANT
1.5 CONSTANT
1.6 SIMPLE TYPE
1.7 TYPE
1.7.1 ARRAYs and SETs
1.7.2 POINTERS
1.7.4 RECORDs
1.8 FIELD LIST
1.9 VARIABLE
1.10 FACTOR
1.11 TERM
1.12 SIMPLE EXPRESSION
1.13 EXPRESSION
1.14 PARAMETER LIST
1.15 STATEMENT
1.16 BLOCK
1.17 PROGRAM

2 PREDEFINED IDENTIFIERS

2.1 CONSTANTS
2.2 TYPES
2.3 PROCEDURES and FUNCTIONS
2.3.1 Input and Output Procedures
2.3.1.1 WRITE
2.3.1.2 WRITELN
2.3.1.3 PAGE
2.3.1.4 READ
2.3.1.5 READLN
2.3.2 Input Functions
2.3.2.1 EOLN
2.3.2.2 INCH
2.3.3 Transfer Functions
2.3.3.1 TRUNC(X)
2.3.3.2 ROUND(X)
2.3.3.3 ENTIER(X)
2.3.3.4 ORD(X)
2.3.3.5 CHR(X)
2.3.4 Arithmetic Functions
2.3.4.1 ABS(X)
2.3.4.2 SQR(X)
2.3.4.3 SQRT(X)
2.3.4.4 FRAC(X)
2.3.4.5 SIN(X)
2.3.4.6 COS(X)
2.3.4.7 TAN(X)
2.3.4.8 ARCTAN(X)
2.3.4.9 EXP(X)
2.3.4.10 LN(X)
2.3.5 Further Predefined Procedures
2.3.5.1 NEW(p)
2.3.5.2 MARK(v1)
2.3.5.3 RELEASE(v1)
2.3.5.4 INLINE(C1,C2,...)
2.3.5.5 USER(V)
2.3.5.6 HALT
2.3.5.7 POKE(X,V)
2.3.5.8 TOUT(NAME,START,SIZE)
2.3.5.9 TIN(NAME,START)
2.3.5.10 OUT(P,C)
2.3.6 Further Predefined Functions
2.3.6.1 RANDOM
2.3.6.2 SUCC(X)
2.3.6.3 PRED(X)
2.3.6.4 ODD(X)
2.3.6.5 ADDR(V)
2.3.6.6 PEEK(X,T)
2.3.6.7 SIZE(V)
2.3.6.8 INP(P)

3 COMMENTS and COMPILER OPTIONS

3.1 Comments
3.2 Compiler options

4 THE INTEGRAL EDITOR

4.1 Introduction to the Editor
4.2 The Editor Commands
4.2.1 Text Insertion
4.2.2 Text Listing
4.2.3 Text Editing
4.2.4 Tape Commands
4.2.5 Compiling and Running from the Editor
4.2.6 Other Commands
4.3 An Example of the Use of the Editor

Appendix 1 ERRORS

A.1.1 Error numbers generated by the compiler
A.1.2 Runtime Error Messages

Appendix 2 RESERVED WORDS and PREDEFINED IDENTIFIERS

A.2.1 Reserved Words
A.2.2 Special Symbols
A.2.3 Predefined Identifiers

Appendix 3 DATA REPRESENTATION and STORAGE

A.3.1 Data Representation
A.3.1.1 Integers
A.3.1.2 Character, Booleans and other Scalars
A.3.1.3 Reals
A.3.1.4 Records and Arrays
A.3.1.5 Sets
A.3.1.6 Pointers
A.3.2 Variable storage at Runtime

Appendix 4 ZX Spectrum SOUND, SOME EXAMPLE HP4T PROGRAMS

0 PRELIMINARIES.

0.0 Getting Started

Hisoft Pascal 4T (HP4T) is a fast, easy-to-use and powerful
version of the Pascal language as specified in the Pascal
User Manual and Report (Jensen/Wirth Second Edition).
Omissions from the specification are as follows:
FILEs are not implemented although variables may be
stored on tape.
A RECORD type may not have a VARIANT part.
PROCEDUREs and FUNCTIONs are not valid as parameters.
Many extra functions and procedures are included to reflect
the changing environment in which compilers are used; among
these are POKE,PEEK,TIN,TOUT and ADDR.

The compiler occupies approximately 12K of storage while the
runtimes take up roughly 4K. Both are supplied on cassette
tape in the tape format used by the runtimes. All interfacing
between HP4T and the host machine takes place through vectors
conveniently placed at the start of the runtimes - this makes
it easy for the user to write his own customised I/O routines
if necessary.

WRITE(CHR(16)) directs output to the printer (if available)
 or if output was going to the printer then
 it returns to the screen.

A simple loader is also supplied in the package so that the
user can load, from tape, data which has been recorded in
HP4T format.

When the compiler has been successfully loaded it will execute
automatically and produce the message:
 Top of RAM?
You should respond to this by either entering a positive
decimal number up to 65536 (followed by ENTER) or by hitting
ENTER.
If you enter a number then this is taken to represent the
highest RAM location + 1 otherwise the first non-RAM location
is automatically computed. The compilers's stack is set to
this value and thus you can reserve high memory locations
(perhaps for extensions to the compiler) by deliberately
giving a value less than the true top of RAM. In the ZX
Spectrum version the 'true' top of RAM is taken to be start of
the user-defined graphics area (UDG in the Sinclair manual).

You will then be prompted with:
 Top of RAM for 'T'
Here you can enter a decimal number or default to the 'Top of
RAM' value previously specified. What you enter will be taken
as the stack when the resultant object code is executed after
using the editor 'T' command (See Section 4 for details). You
will need to define a runtime stack different from the top of
RAM if, for example, you have written extensions to the
runtimes and wish to place them safely in high memory
locations.

Finally you will be asked:
 Table size?
What you enter here specifies the amount of memory to be
allocated to the compiler's symbol table.
Again, either enter a positive decimal number followed by
ENTER or simply ENTER by itself in which case a default
value of (available RAM divided by 16) will be taken as the
symbol table size. In nearly all cases the default value
provides more than enough space for symbols. The symbol table
may not extend above machine address #8000*(32768 decimal).
If you specify so large value that this happens then you will
be prompted again for 'Top of RAM' etc.

You may, optionally, include an 'E' before the number after
this prompt - if you do so then the internal line editor will
not be retained for use by the compiler. So do this if you
wish to use your own editor with the compiler.

At this point the compiler and integral editor (if retained)
will be relocated at the end of the symbol table and execution
transferred to the supported editor.

0.1 Scope of this manual.

Section 1 gives the syntax and the semantics expected by the
compiler.
Section 2 details the various predefined identifiers that are
available within Hisoft Pascal 4, from CONSTants to FUNCTIONs.
Section 3 contains information on the various compiler options
available and also on the format of comments.
Section 4 shows how to use the line editor which is an
integral part of HP4T.
Appendix 1 details the error messages generated both by the
compiler and the runtimes.
Appendix 2 lists the predefined identifiers and reserved words.
Appendix 3 gives details on the internal representation of
data within Hisoft Pascal 4 - useful for programmers who wish
to get their hands dirty.
Appendix 4 gives some example Pascal programs.

0.2 Compiling and Running.

For details of how to create, amend, compile and run an HP4T
program using the integral line editor see Section 4 of this
manual. For information on what to do if you are using your
own editor see the HP4T Alteration Guide.

Once it has been invoked the compiler generates a listing of
the form:
 xxxx nnnn text of source line
where:
 xxxx is the address where the code generated by this
 line begins.
 nnnn is the line number with leading zeroes suppressed.

If a line contains more than 80 characters then the compiler
inserts new-line characters so that the length of a line is
never more than 80 characters.

The listing may be directed to a printer, if requiered, by the
use of option 'P' if supported (see Section 3).

You may pause the listing at any stage by pressing CS;
subsequently use EDIT to return to the editor or any key to
restart the listing.

If an error is detected during the compilation then the
message '*ERROR*' will be displayed followed by an up-arrow
('^') which points after the symbol which generated the error,
and an error number (see Appendix 1). The listing will pause;
hit 'E' to return to EDITOR to edit the line displayed, 'P'
to return to the editor and edit the previous line (if it
exists) or any other key to continue the compilation.

If the program terminates incorrectly (e.g. without 'END.')
then the message 'No more text' will be displayed and control
returned to the editor.

If the compiler runs out of table space then the message
'No Table Space' will be displayed and control returned to the
editor. Normally the programmer will then save the program on
tape, re-load the compiler and specify a larger 'Table size'
(see Section 0.0).

If the compilation terminates correctly but contained errors
then the number of errors detected will be displayed and the
object code deleted. If the compilation is successful then the
message 'Run?' will be displayed; if you desire an immediate
run of the program then respond with 'Y', otherwise control
will be returned to the editor.

During a run of the object code various runtime error messages
may be generated (see Appendix 1). You may suspend a run by
using CS; subsequently use EDIT to abort the run or any other
key to resume the run.

0.3 Strong TYPEing.

Different languages have different ways of ensuring that the
user does not use an element of data in a manner which is
inconsistent with its definition.

At the one end of the scale there is machine code where no
checks whatever are made on the TYPE of variable being
referenced.Next we have a language like the Byte 'Tiny Pascal'
in which character, integer and Boolean data may be freely
mixed without generating errors. Further up the scale comes
BASIC which distinguishes between numbers and strings and,
sometimes, between integers and reals (perhaps using the '%'
sign to denote integers). Then comes Pascal which goes as far
as allowing distinct user-enumerated types. At the top of the
scale (at present) is a language like ADA in which one can
define different, incompatible numeric types.

There are basically two approaches used by Pascal
implementations to strength of typing; structural equivalence
or name equivalence. Hisoft Pascal 4 uses name equivalence
for RECORDs and ARRAYs. The consequences of this are clarified
in Section 1 - let suffice to give an example here; say two
variables are defined as follows:
 VAR A:ARRAY['A'..'C']OF INTEGER;
 B:ARRAY['A'..'C']OF INTEGER;
then one might be tempted to think that one could write A:=B;
but this would generate an error (*ERROR* 10) under Hisoft
Pascal 4 since two separate 'TYPE records' have been created
by the above definitions. In other words, the user has not
taken the decision that A and B should represent the same
type of data. She/He could do this by:
 VAR A,B:ARRAY['A'..'C'] OF INTEGER;
and now the user can freely assign A to B and vice versa since
only one 'TYPE record' has been created.

Although on the surface this name equivalence approach may
seem a little complicated, in general it leads to fewer
programming errors since it requires more initial thought from
the programmer.

1 SYNTAX AND SEMANTICS.

This section details the syntax and the semantics of Hisoft
Pascal 4 - unless otherwise stated the implementation is as
specified in the Pascal User Manual and Report Second Edition
(Jensen/Wirth).

1.1 IDENTIFIER.

 --- letter <----
 I I
 I I
->------> letter ------------------------------------>-
 I I
 I I
 --- digit <-----
Only the first 10 characters of an identifier are treated as
significant.
Identifiers may contain lower or upper case letters. Lower
case is not converted to upper case so that the identifiers
HELLO, HELlo and hello are all different. Reserved words and
predefinded identifiers may only be entered in upper case.

1.2 UNSIGNED INTEGER.

 -------<--------
 I I
 I I
----------------> digit ----------------------------->-

1.3 UNSIGNED NUMBER.

 ---------------------->---------------------
 I I
 I I
 I -------->------ -> + -- I
 I I I I I I
-> unsign.integ.----> . -> digit -> E -------> unsign.integ.->
 I I I I I I
 I -----<---- -> - -- I
 I I
 I -----------<----------- I
 I I I I
 ------> # ------> hexadecimal digit ------------>-----------
Integers have an absolute value less than or equal to 32767 in
PASCAL 4. Larger whole numbers are treated as reals.

The mantissa of reals is 23 bits in length. The accuracy
attained is therefore about 7 significant figures. Note that
accuracy is lost if the result of a calculation is much less
than the absolute values of its argument e.g. 2.00002 - 2 does
not yield 0.00002. This is due to the inaccuracy involved in
representing decimal fractions as binary fractions. It does
not occur when integers of moderate size are represented as
reals e.g. 200002 - 200000 = 2 exacly.
The largest real available is 3.4E38 while the smallest is
5.9E-39.
There is no point in using more than 7 digits in the mantissa
when specifying reals since extra digits are ignored except
for their place value.
When accuracy is important avoid leading zeroes since these
count as one of the digits. Thus 0.000123456 is represented
less accurately than 1.23456E-4.
Hexadecimal numbers are available for programmers to specify
memory addresses for assembly language linkage inter alia.
Note that there must be at least one hexadecimal digit present
after the '#', otherwise an error (*ERROR* 51) will be
generated.

1.4 UNSIGNED CONSTANT.

->--------------> constant identifier -----------------
 I I
 I-----------> unsigned number ----------->I
 I I
 I-----------> NIL ----------------------->I
 I I
 I -------<-------- I
 I I I I
 -----> ' -----> character ------> ' -------
Note that strings may not contain more than 255 characters.
String types are ARRAY[1..N] OF CHAR where N is an integer
between 1 and 255 inclusive. Literal strings should not
contain end-of-line characters (CHR(13)) - if they do then an
'*ERROR* 68' is generated.

The characters available are the full expanded set of ASCII
values with 256 elements. To maintain compatibility with
Standard Pascal the null character is not represented as ";
instead CHR(0) should be used.

1.5 CONSTANT.

 --> + --- ---> constant identifier ---
 I I I I
->------------------ ------------>-
 I I I I I I I
 I --> - --- ---> unsigned number ------- I I
 I I I
 I I I
 I --------<------- I I
 I I I I I
 I-------> ' --------> character ------> ' ------- I
 I I
 I I
 --------> CHR ----> (----> constant ---->) -------
The non-standard CHR construct is provided here so that
constants may be used for control characters. In this case
the constant in parentheses must be of type integer.
E.g. CONST bs=CHR(10);
 cr=CHR(13);

1.6 SIMPLE TYPE.

->------------------> type identifier ------------------>-
 I I
 I I
 I---------> (-------> identifier ------->) --->I
 I I I I
 I -------> , ------- I
 I I
 I I
 -----> constant -----> .. -----> constant --------
Scalar enumerated types (identifier, identifier,) may
not have more than 256 elements.

1.7 TYPE.

->---------------------> simple type ----------------------->-
 I I
 I I
 I--------------------> ^ -----> type identifier ----->I
 v I I
 I I I
 I<-- PACKED <-- I
 I I
 I I
 I--> ARRAY -> [--> simple type -->] -> OF -> type ->I
 I I I I
 I ------ , <------ I
 I I
 I I
 I------> SET -------> OF -------> simple type ------->I
 I I
 I I
 -------> RECORD ------> field list -------> END -------
The reserved word PACKED is accepted but ignored since packing
already takes place for arrays of characters etc. The only
case in which the packing of arrays would be advantageous is
with an array of Booleans - but this is more naturally
expressed as a set when packing is required.

1.7.1 ARRAYs and SETs.

The base type of a set may have up to 256 elements. This
enables SETs of CHAR to be declared together with SETs of any
user enumerated type. Note, however, that only subranges of
integers can be used as base types. All subsets of integers
are treated as sets of 0..255.

Full arrays of arrays, arrays of sets, records of sets etc.
are supported.

Two ARRAY types are only treated as equivalent if their
definition stems from the same use of the reserved word ARRAY.
Thus the following types are not eqiuvalent:
TYPE
 tablea = ARRAY[1..100] OF INTEGER;
 tableb = ARRAY[1..100] OF INTEGER;
So a variable of type tablea may not be assigned to a variable
of type tableb. This enables mistakes to be detected such as
assigning two tables representing different data. The above
restriction does not hold for the special case of arrays of a
string type, since arrays of this type are always used to
represent similar data.

1.7.2 Pointers.

Hisoft Pascal 4 allows the creation of dynamic variables
through the use of the Standard Procedure NEW (see Section 2).
A dynamic variable, unlike a static variable which has memory
space allocated for it throughout the block in which it is
declared, cannot be referenced directly through an identifier
since it does not have an identifier; instead a pointer
variable is used. This pointer variable, which is a static
variable, contains the address of the dynamic variable and the
dynamic variable itself is accessed by including a '^' after
the pointer variable. Examples of the use of pointer types can
be studied in Appendix 4.
There are some restrictions on the use of pointers within
Hisoft Pascal 4. These are as follows:
Pointers to types that have not been declared are not allowed.
This does not prevent the construction of linked list
structures since type definitions may contain pointers to
themselves e.g.
TYPE
 item = RECORD
 value : INTEGER ;
 next : ^item
 END;
 link = ^item;
Pointers to pointers are not allowed.

Pointers to the same type are regarded as equivalent e.g.
VAR
 first : link;
 current : ^item;
The variables first and current are equivalent (i.e.
structural equivalence is used) and may be assigned to each
other or compared.
The predefined constant NIL is supported and when this is
assigned to a pointer variable then the pointer variable is
deemed to contain no address.

1.7.4 RECORDs.

The implementation of RECORDs, structured variables composed
of a fixed number of constituents called fields, within Hisoft
Pascal 4 is as Standard Pascal except that the variant part of
the field list is not supported.

Two RECORD types are only treated as equivalent if their
declaration stems from the same occurrence of the reserved
word RECORD see Section 1.7.1 above.

The WITH statement may be used to access the different fields
within a record in a more compact form.

See Appendix 4 for an example of the use of WITH and RECORDs
in general.

1.8 FIELD LIST.

 ----------------------- ; <-----------------
 I I
 I ------- , <------- I
 I I I I
->----------> identifier ---> : ---> type -------------->-
 I I
 I I
 ----------------------->--------------------
Used in conjunction with RECORDs see Section 1.7.4 above and
Appendix 4 for an example.

1.9 VARIABLE

 --> variable identifier -->-<------------<-----------------
 I I I
 I I I
->-----> field identifier -------> [--> expression -->] -->I
 I I I I
 I ------ , <------ I
 I I
 I I
 I--> , --> field identifier -->I
 I I
 I I
 I------------> ^ --------------I
 I
 v
Two kinds of variables are supported within Hisoft Pascal 4;
static and dynamic variables. Static variables are explicitly
declared through VAR and memory is allocated for them during
the entire execution of the block in which they were declared.

Dynamic variables, however, are created dynamically during
program execution by the procedure NEW. They are not declared
explicitly and cannot be referenced by an identifier. They
are referenced indirectly by a static variable of type
pointer, which contains the address of the dynamic variable.
See section 1.7.2 and Section 2 for more details of the use
of dynamic variables and Appendix 4 for an example.

When specifying elements of multi-dimensional arrays the
programmer is not forced to use the same form of index
specification in the reference as was used in the declaration.

1.10 FACTOR.

->----------------------> unsigned constant ---------------->-
 I I
 I I
 I---------------------> variable ----------------------->I
 I I
 I I
 I--> function identifier ---> (--> expression -->) --->I
 I I I I I
 I I -----> , ------- I
 I I I
 I -------------------------------->I
 I I
 I--------> (---------> expression --------->) -------->I
 I I
 I I
 I---> NOT ---------------> factor ---------------------->I
 I I
 I I
 I -------------------->-------------------- I
 I I I I
 ----> [---> expression ---> .. --> expression ---->] ---
 I I I I
 I ------------>---------- I
 I I
 ------------------> , -------------------
See EXPRESSION in Section 1.13 and FUNCTION in Section 3 for
more details.

1.11 TERM.

---> factor -->-
 I I I I I I
 I
 I + / DIV MOD AND
 I
 I I I I I I
 -- factor <----------------------------
he lowerbound of a set is always zero and the set size is
always the maximum of the base type of the set. Thus a
SET OF CHAR always occupies 32 bytes (a possible 256 elements
- one bit for each element). Similarly a SET OF 0..10 is
equivalent to SET OF 0..255.

1.12 SIMPLE EXPRESSION.

 --> + ---
 I I
->----------------> term ----------------------------------->-
 I I I I I I
 --> - --- I
 I + - CR
 I
 I I I I
 -- term <--------------------
The same comments made in Section 1.11 concerning sets apply
to simple expressions.

1.13 EXPRESSION.

 simple
--> expression --->-
 I I I I I I I I
 I
 = <> < > <= >= IN I
 I
 I I I I I I I I
 --------------------------------> simple --
 expression
When using IN, the set attributes are the full range of the
type of the simple expression with the exception of integer
arguments for which the attributes are taken as if [0..255]
had been encountered.

The above syntax applies when comparing strings of the same
length, pointers and all scalar types. Sets may be compared
using >=, <=, <> or =. Pointers may only be compared using =
and <>.

1.14 PARAMETER LIST.

 ----------------------------->-----------------------------
 I I
 I -> VAR - ----- , <------ I
 I I I I I I
--> (-----------> identifier -> : -> type identifier ->) ->-
 I I
 I I
 ----------------> ; --------------------
A type identifier must be used following the colon - otherwise
ERROR 44 will result.

Variable parameters as well as value parameters are fully
supported.

Procedures and functions are not valid as parameters.

1.15 STATEMENT.

Refer to the syntax diagram on page below.

Assignment statements:

See section 1.7 for information on which assignment statements
are illegal.

CASE statements:

An entirely null case list is not allowed i.e. CASE OF END;
will generate an error (*ERROR* 13).

The ELSE clause, which is an alternative to END, is executed
if the selector ('expression' overleaf) is not found in one of
the case lists ('constant' overleaf).

If the END terminator is used and the selector is not found
then the control is passed to the statement following the END.

FOR statements:

The control variable of a FOR statement may only be an
unstructured variable, not a parameter. This is half way
between Jensen/Wirth and draft ISO standard definitions.

GOTO statements:

It is only possible to GOTO a label which is present in the
same block as the GOTO statement and at the same level.

Labels must be declared (using the Reserved Word LABEL) in the
block in which they are used; a label consists of at least one
and up to four digits. When a label is used to mark a
statement it must appear at the beginning of the statement and
be followed by a colon - ':'.

STATEMENT.

 --> unsigned integer --> : ---
 I I
 I -------------------------
 I I
>--------> variable identifier ---> := ---> expression ----->>
 I I I I
 I --> function identifier --- I
 I ------ , < ------ I
 I I I I
 I---> procedure identifier ---> (---> expression --->) -->I
 I I I
 I ------------------------------->I
 I I
 I---> BEGIN -----> statement ---------> END --------------->I
 I I I I
 I ------- ; <----- I
 I -------------------->I
 I I I
 I> IF > expression > THEN > statement --> ELSE > statement >I
 I I
 I I
 I -------------->------------- I
 I I I I
 I> CASE > expression > OF > constant > : > statement > END >I
 I I I I I
 I I--- , <---- I I
 I I I I
 I ------------- ; <----------I I
 I I I
 I --------------------- I
 I I I
 I ---> ELSE --> statement -->I
 I I
 I---> WHILE ---> expression ---> DO ---> statement -------->I
 I I
 I---> REPEAT ---> statement ---> UNTIL ----> expression --->I
 I I I I
 I ------ ; <------ I
 I I
 I-> FOR -> variable identifier -> := -> expression -> TO - I
 I I I I
 I I I I
 I ----------- DOWNTO <----------- I I
 I I I I
 I I<----------------------------------- I
 I I I
 I --> expression --> DO --> statement -->I
 I I
 I---> WITH ---> variable ---> DO ---> statement ----------->I
 I I I I
 I ------ , <----- I
 I I
 I---> GOTO ---> unsigned integer -------------------------->I
 I I
 ------------------------------>-----------------------------I
 I
 v

1.16 BLOCK.

>---> LABEL ---------> unsigned integer ----------------------
 I ^ I
 I<---- ; <-------------------- , ----------------------------
 I
 I
 I---> CONST ---> identifier ---> = ---> constant ------------
 I I I
 I ^ I
 I<------------------------------ ; <-------------------------
 I
 I
 I---> TYPE ----> identifier ---> = ---> type ----------------
 I I I
 I ^ I
 I------------------------------- ; <-------------------------
 I
 I
 I---> VAR -----> identifier ---> : ---> type ----------------
 I I I I
 I I<------ , <----- I
 I I I
 I<------------------------------ ; <-------------------------
 I
 I
 I---> PROCEDURE ---> identifier ---> parameter list ------->I
 I I I
 I ------------------ I
 I I I
 I ---> ; ---> FORWARD --->I
 I I
 I I
 I> FUNCTION > identifier > parameter list > : > type ident.->
 I I
 I I
 I<------ ; <------ block <------ ; <-------------------------
 I
 I
 ----> BEGIN ---> statement ---> END ----------------------->-
 I I
 ------ ; <------
Note that, when a file variable is declared, then it may be
followed, optionally, by a constant with a value between 1 and
255 inclusive enclosed in square brackets. This constant
specifies the buffer size used for this file, in 128 character
units. For example if you require the file file1 to have a
buffer size of 2K (2048 characters) then the declaration
should look like:
 VAR file1 : FILE OF CHAR[16];
or
 CONST filesize = 16;
 VAR file1 : TEXT[filesize];

Forward References.

As in the Pascal User Manual and Report (Section 11.C.1)
procedures and functions may be referenced before they are
declared through use of the Reserved Word FORWARD e.g.

PROCEDURE a(y:t) ; FORWARD; (*procedure a declared to be*)
PROCEDURE b(x:t); (*forward of this statement*)
 BEGIN

 a(p); (*procedure a referenced.*)

 END;
PROCEDURE a; (*actual declaration of procedure a.*)
 BEGIN

 b(g);

 END;
Note that the parameters and result type of the procedure a
are declared along with FORWARD and are not repeated in the
main declaration of the procedure. Remember, FORWARD is a
Reserved Word.

1.17 PROGRAM.

--> PROGRAM --> identifier --> ; --> block --> END -->-
Since files are not implemented there are no formal
parameters of the program.

2 PREDEFINED IDENTIFIERS.

2.1 CONSTANTS.

MAXINT The largest integer available i.e. 32767.
TRUE, FALSE The constants of type Boolean.

2.2 TYPES.

INTEGER See Section 1.3.
REAL See Section 1.3.
CHAR The full extended ASCII character set of 256
 elements.
BOOLEAN (TRUE,FALSE). This type is used in logical
 operations including the results of
 comparisons.

2.3 PROCEDURES AND FUNCTIONS.

2.3.1 Input and Output Procedures.

2.3.1.1 WRITE
 The procedure WRITE is used to output data to
 the screen or printer.
 When the expression to be written is simply of
 type character then WRITE(e) passes the 8 bit
 value represented by the value of the
 expression e to the screen or printer as
 appropriate.
 Note:
 CHR(8) (CTRL H) gives a destructive backspace
 on the screen.
 CHR(12) (CTRL L) clears the screen or gives a
 new page on the printer.
 CHR(13) (CTRL M) performs a carriage return
 and line feed.
 CHR(16) (CTRL P) will normally direct output
 to the printer if the screen is in use or vice
 versa.
Generally though:
 WRITE(P1,P2,.......Pn); is equivalent to:
 BEGIN WRITE(P1); WRITE(P2);; WRITE(Pn) END;
The write parameters P1,P2,.......Pn can have one of the
following forms:
 <e> or <e:m> or <e:m:n> or <e:m:H>
where e,m and n are expressions and H is a literal constant.
We have 5 cases to examine:
1] e is of type integer: and either <e> or <e:m> is used.
The value of the integer expression e is converted to a
character string with a trailing space. The length of the
string can be increased (with leading spaces) by the use of
m which specifies the total number of characters to be output.
If m is not sufficient for e to be written or m is not present
then e is written out in full, with a trailing space, and m is
ignored. Note that, if m is specified to be the length of e
without the trailing space then no trailing space will be
output.
2] e is of type integer and the form <e:m:H> is used.
In this case e is output in hexadecimal. If m=1 or m=2 then
the value (e MOD 16^m) is output in a width of exactly m
characters. If m=3 or m=4 then the full value of e is output
in hexadecimal in a width of 4 characters. If m>4 then leading
spaces are inserted before the full hexadecimal value of e as
necessary. Leading zeroes will be inserted where applicable.
Examples:

 WRITE(1025:m:H);
 m=1 outputs: 1
 m=2 outputs: 01
 m=3 outputs: 0401
 m=4 outputs: 0401
 m=5 outputs: _0401
3] e is of type real. The forms <e> <e:m> or <e:m:n> may be
used.
The value of e is converted to a character string representing
a real number. The format of the representation is determined
by n.
If n is not present then the number is output in scientific
notation, with a mantissa and an exponent. If the number is
negative the a minus sign is output prior to the mantissa,
otherwise a space is output. The number is always output to at
least one decimal place up to a maximum of 5 decimal places
and the exponent is always signed (either with a plus or minus
sign). This means that the minimum width of the scientific
representation is 8 characters; if the field width m is less
than 8 then the full width of 12 characters will always be
output. If m>=8 then one or more decimal places will be output
up to a maximum of 5 decimal places (m=12). For m>12 leading
spaces are inserted before the number. Examples:
WRITE(-1.23E 10:M);
 m=7 gives: -1.23000E+10
 m=8 gives: -1.2E+10
 m=9 gives: -1.23E+10
 m=10 gives: -1.230E+10
 m=11 gives: -1.2300E+10
 m=12 gives: -1.23000E+10
 m=13 gives: _-1.23000E+10
If the form <e:m:n:> is used then a fixed-point representation
of the number e will be written with n specifying the number
of decimal places to be output. No leading spaces will be
output unless the field width m is sufficiently large. If n is
zero then e is output as an integer. If e is too large to be
output in the specified field width then it is output in
scientific format with a field width of m (see above).
Examples:
 WRITE(1E2:6:2) gives: 100.00
 WRITE(1E2:8:2) gives: __100.00
 WRITE(23.455:6:1) gives: __23.5
 WRITE(23.455:4:2) gives: _2.34550E+01
 WRITE(23.455:4:0) gives: __23
4] e is of type character or type string.
Either <e> or <e:m> may be used and the character or string of
characters will be output in a minimum field width of 1 (for
characters) or the length of the string (for string types).
Leading spaces are inserted for m is sufficiently large.
5] e is of type Boolean.
Either <e> or <e:m> may be used and 'TRUE' or 'FALSE' will be
output depending on the Boolean value of e , using a minimum
field width of 4 or 5 respectively.

2.3.1.2 WRITELN
 WRITELN output gives a newline. This is
 equivalent to WRITE(CHR(13)). Note that
 a linefeed is included.
 WRITELN(P1,P2,.......P3); is equivalent to:
 BEGIN WRITE(P1,P2,.......P3); WRITELN END;

2.3.1.3 PAGE
 The procedure PAGE is equivalent to
 WRITE(CHR(12)); and causes the video screen to
 be cleared or the printer to advance to the
 top of a new page.

2.3.1.4 READ
 The procedure READ is used to access data
 from the keyboard. It does this through a
 buffer held within the runtimes - this buffer
 is initially empty (except for an end-of-line
 marker). We can consider that any accesses to
 this buffer take place through a text window
 over the buffer through which we can see one
 character at a time. If this text window is
 positioned over an end-of-line marker then
 before the read operation is terminated a new
 line of text will be read into the buffer from
 the keyboard. While reading in this line all
 various control codes detailed in Section 0.0
 will be recognised. Now:
 READ(V1,V2,.......Vn); is equivalent to:
 BEGIN READ(V1); READ (V2);; READ(Vn) END;
 where V1, V2 etc. may be of type character,
 string, integer or real.
 The statement READ(V); has different effects
 depending on the type of V. There are 4 cases
 to consider:
 1] V is of type character.
 In this case READ(V) simply reads a character
 from the input buffer and assigns it to V. If
 the text window on the buffer is positioned on
 a line marker (a CHR(13) character) then the
 function EOLN will return the value TRUE and
 a new line of text is read in from the
 keyboard. When a read operation is
 subsequently performed then the text window
 will be positioned at the start of the new
 line.
 Important note: Note that EOLN is TRUE at the
 start of the program. This means that if the
 first READ is of type character then a CHR(13)
 value will be returned followed by the reading
 in of a new line from the keyboard; a
 subsequent read of type character will return
 the first character from this new line,
 assuming it is not blank. See also the
 procedure READLN bellow.
 2] V is of type string.
 A string of characters may be read using READ
 and in this case a series of characters will
 be read until the number of characters defined
 by the string has been read or EOLN = TRUE. If
 the string is not filled by the read (i.e. if
 end-of line is reached before the whole string
 has been assigned) then the end of the string
 is filled with null (CHR(0)) characters - this
 enables the programmer to evaluate the length
 of the string that was read.
 The note concerning in 1] above also applies here.
 3] V is of type integer.
 In this case a series of characters which
 represent an integer as defined in Section 1.3
 is read. All preceding blanks and end-of line
 markers are skipped (this means that integers
 may be read immediately cf. the note in 1]
 above).
 If the integer read has an absolute value
 greater than MAXINT (32767) then the runtime
 error 'Number too large' will be issued and
 execution terminated.
 If the first character read, after spaces and
 end-of-line characters have been skipped, is

 not a digit or a sign ('+' or '-') then a
 runtime error 'Number expected' will be
 reported and the program aborted.
 4] V is of type real.
 Here, a series of characters representing a
 real number according to the syntax of Section
 1.3 will be read.
 All leading spaces and end-of-line markers are
 skipped and, as for integers above, the first
 character afterwards must be a digit or a sign.
 If the number read is too large or too small
 (see Section 1.3) then an 'Overflow' error
 will be reported, if 'E' is present without a
 following sign or digit then 'Exponent
 expected' error will be generated and if a
 decimal point is present without a subsequent
 digit then a 'Number expected' error will be
 given.
 Reals, like integers, may be read immediately;
 see 1] and 3] above.

2.3.1.5 READLN
 READLN(V1,V2,.......Vn); is equivalent to:
 BEGIN READ(V1,V2,.......Vn);
 READLN END;
 READLN simply read in a new buffer from the
 keyboard; while typing in the buffer you may
 use the various control functions detailed in
 Section 0.0. Thus EOLN becomes FALSE after the
 execution of READLN unless the next line is
 blank.
 READLN may be used to skip the blank line
 which is present at the beginning of the
 execution of the object code i.e. it has the
 effect of reading in a new buffer. This will
 be usefull if you wish to read a component of
 type character at the beginning of a program
 but it is not necessary if you are reading an
 integer or a real (since end-of-line markers
 are skipped) or if you are reading characters
 from subsequent lines.

2.3.2 Input Functions.

2.3.2.1 EOLN
 The function EOLN is a Boolean function which
 returns the value TRUE if the next char to be
 read would be an end-of-line character
 (chr(13)). Otherwise the function returns the
 value FALSE.

2.3.2.2 INCH
 The function INCH causes the keyboard of the
 computer to be scanned and, if a key has been
 pressed, returns the character represented by
 the key pressed. If no key has been pressed,
 then CHR(0) is returned. The function
 therefore returns a result of type character.

2.3.3 Transfer Functions.

2.3.3.1 TRUNC(X)
 The parameter X must be of type real or
 integer and the value returned by TRUNC is the
 greatest integer less than or equal to X if X
 is positive or the least integer greater than
 or equal to X if X is negative. Examples:
 TRUNC(-1.5) returns -1
 TRUNC(1.9) returns 1

2.3.3.2 ROUND(X)
 X must be of type real or integer and the
 function returns 'nearest' integer to X
 according to standard rounding rules).
 Examples:
 ROUND(-6.5) returns -6
 ROUND(-6.51) returns -7
 ROUND(11.7) returns 12
 ROUND(23.5) returns 24

2.3.3.3 ENTIER(X)
 X must be of type real or integer - ENTIER
 returns the greatest integer less than or
 equal to X, for all X. Examples:
 ENTIER(-6.5) returns -7
 ENTIER(11.7) returns 11
 Note: ENTIER is not a Standard Pascal function
 but is the equivalent of BASIC's INT. It is
 useful when writing fast routines for many
 mathematical applications.

2.3.3.4 ORD(X)
 X may be of any scalar type except real.The
 value returned is an integer representing the
 ordinal number of the value of X within the
 set defining the type of X.
 If X is of type integer then ORD(X)=X; this
 should normally be avoided.
 Examples:
 ORD('a') returns 97
 ORD('@') returns 64

2.3.3.5 CHR(X)
 X must be of type integer. CHR returns a
 character value corresponding to the ASCII
 value of X. Examples:
 CHR(49) returns '1'
 CHR(91) returns 'I'

2.3.4 Arithmetic Functions.

In all the functions within this sub-section the parameter X
must be of type real or integer.

2.3.4.1 ABS(X)
 Returns the absolute value of X (e.g.ABS(-4.5)
 gives 4.5). The result is of the same type as
 X.

2.3.4.2 SQR(X)
 Returns the value X*X i.e. the square of X.
 The result is of the same type as X.

2.3.4.3 SQRT(X)
 Returns the square root of X - the returned
 value is always of type real. A 'Maths Call
 Error' is generated if the argument X is
 negative.

2.3.4.4 FRAC(X)
 Returns the fractional part of X:
 FRAC(X) = X - ENTIER(X).
 As with ENTIER this function is useful for
 writing many fast mathematical routines.
 Examples:
 FRAC(1.5) returns 0.5
 FRAC(-12.56) returns 0.44

2.3.4.5 SIN(X)
 Returns the sine of X where X is in radians.
 The result is always of type real.

2.3.4.6 COS(X)
 Returns the cosine of X where X is in radians.
 The result is of type real.

2.3.4.7 TAN(X)
 Returns the tangent of X where X is in radians.
 The result is always of type real.

2.3.4.8 ARCTAN(X)
 Returns the angle, in radians, whose tangent is
 equal to the number X. The result is of type
 real.

2.3.4.9 EXP(X)
 Returns the value e^X where e=2.71828. The
 result is always of type real.

2.3.4.10 LN(X)
 Returns the natural logarithm (i.e. to the
 base e) of X. The result is of type real.
 If X <= 0 then a 'Maths Call Error' will be
 generated.

2.3.5 Further Predefined Procedures.

2.3.5.1 NEW(p)
 The procedure NEW(p) allocates space for a
 dynamic variable. The variable p is a pointer
 variable and after NEW(p) has been executed p
 contains the address of the newly allocated
 dynamic variable. The type of the dynamic
 variable is the same as the type of the
 pointer variable p and this can be of any

 type.
 To access the dynamic variable p^ is used -
 see Appendix 4 for an example of the use of
 pointers to reference dynamic variables.
 To re-allocate space used for dynamic
 variables use the procedures MARK and RELEASE
 (see below).

2.3.5.2 MARK(v1)
 This procedure saves the state of the dynamic
 variable heap to be saved in the pointer
 variable v1. The state of the heap may be
 restored to that when the procedure MARK was
 executed by using the procedure RELEASE (see
 bellow).
 The type of variable to which v1 points is
 irrelevant, since v1 should only be used with
 MARK and RELEASE never NEW.
 For an example program using MARK and RELEASE
 see Appendix 4.

2.3.5.3 RELEASE(v1)
 This procedure frees space on the heap for use
 of dynamic variables. The state of the heap is
 restored to its state when MARK(v1) was
 executed - thus effectively destroying all
 dynamic variables created since the execution
 of the MARK procedure. As such it should be
 used with great care.
 See above and Appendix 4 for more details.

2.3.5.4 INLINE(C1,C2,C3,.......)
 This procedure allows Z80 machine code to be
 inserted within the Pascal program; the values
 (C1 MOD 256, C2 MOD 256, C3 MOD 256,)
 are inserted in the object program at the
 current location counter address held by the
 compiler. C1, C2, C3 etc. are integer
 constants of which there can be any number.
 Refer to Appendix 4 for an example of the use
 of INLINE.

2.3.5.5 USER(V)
 USER is a procedure with one integer argument
 V. The procedure causes a call to be made to
 the memory address given by V. Since Hisoft
 Pascal 4 holds integers in two's complement
 form (see Appendix 3) then in order to refer
 to addresses greater than #7FFF (32767)
 negative values of V must be used. For example
 #C000 is -16384 and so USER(-16384); would
 invoke as a call to the memory address #C000.
 However, when using a constant to refer to a
 memory address, it is more convenient to use
 hexadecimal.
 The routine called should finish with a Z80
 RET instruction (#C9) and must preserve the IX
 register.

2.3.5.6 HALT
 This procedure causes program execution to
 stop with the message 'Halt at the PC=XXXX'
 where XXXX is the hexadecimal memory address
 of the location where the HALT was issued.
 Together with a compilation listing, HALT may
 be used to determine which of two or more
 paths through a program are maked. This will
 normally be used during de-bugging.

2.3.5.7 POKE(X,V)
 POKE stores the expression V in the computer's
 memory address X. X is of type integer and V
 can be of any type except SET. See Section
 2.3.5.5 above for a discussion of the use of
 integers to represent memory addresses.
 Examples:
 POKE(#6000,'A') places #41 at location #6000.
 POKE(-16384,3.6E3) places 00 0E 80 70 (in
 hexadecimal) at location #C000.

2.3.5.8 TOUT (NAME,START,SIZE)
 TOUT is the procedure which is used to save
 variables on tape. The first parameter is of
 type ARRAY[1..8] OF CHAR and is the name of
 the file to be saved. SIZE bytes of memory
 are dumped starting at the address START.
 Both these parameters are of type INTEGER.
 E.g. to save the variable V to tape under the
 name 'VAR ' use:
 TOUT('VAR ',ADDR(V),SIZE(V))
 The use of actual memory addresses gives the
 user far more flexibility than just the ability
 to save arrays. For example if a system has
 a memory mapped screen, entire screenfuls may
 be saved directly. See Appendix 4 for an
 example of the use of TOUT.

2.3.5.9 TIN(NAME,START)
 This procedure is used to load, from tape,
 variable etc. that have been saved using TOUT.
 NAME is of type ARRAY[1..8] of CHAR and START
 is of type INTEGER. The tape is searched for a
 file called NAME which is then loaded at
 memory address START. The number of bytes to
 load is taken from the tape (saved on the tape
 by TOUT).
 E.g. to load the variable saved in the example
 in Section 2.3.5.8 above use:
 TIN('VAR '),ADDR(V))
 Because source files are recorded by the
 editor using the same format as that used by
 TIN and TOUT, TIN may be used to load text
 files into ARRAYs of CHAR for processing (see
 the HP4T Alteration Guide).
 See Appendix 4 for an example of the use of
 TIN.

2.3.5.10 OUT(P,C)
 This procedure is used to directly access the
 Z80's output ports without using the procedure
 INLINE. The value of the integer parameter P
 is loaded in to the BC register, then the
 character parameter C is loaded in to the A
 register and the assembly instruction
 OUT (C),A is executed.
 E.g. OUT(1,'A') outputs the character 'A' to
 the Z80 port 1.

2.3.6 Further Predefined Functions.

2.3.6.1 RANDOM
 This returns a pseudo-random number between
 0 and 255 inclusive. Although this routine is
 very fast it gives poor results when used
 repeatedly within loops that do not contain
 I/O operations.
 If the user requires better results than this
 function yields then he/she should write a
 routine (either in Pascal or machine code)
 tailored to the particular application.

2.3.6.2 SUCC(X)
 X may be of any scalar type except real and
 SUCC(X) returns the successor of X. Examples:
 SUCC('A') returns 'B'
 SUCC('5') returns '6'

2.3.6.3 PRED(X)
 X may be of any scalar type except real; the
 result of the function is the predecessor of
 X. Examples:
 PRED('j') returns 'i'
 PRED(TRUE) returns FALSE

2.3.6.4 ODD(X)
 X must be of type integer, ODD returns a
 Boolean result which is TRUE if X is odd and
 FALSE if X is even.

2.3.6.5 ADDR(V)
 This function takes a variable identifier of
 any type as a parameter and returns an integer
 result which is the memory address of the
 variable identifier V. For information on how
 variables are held, at runtime, within Hisoft
 Pascal 4 see Appendix 3. For an example of the
 use of ADDR see Appendix 4.

2.3.6.6 PEEK(X,T)
 The first parameter of this function is of
 type integer and is used to specify a memory
 address (see Section 2.3.5.5). The second
 argument is a type : this is the result
 type of the function.
 PEEK is used to retrieve data from the memory
 of the computer and the result may be of any
 type.
 In all PEEK and POKE (the opposite of PEEK)
 operations data is moved in Hisoft Pascal 4's
 own internal representation detailed in
 Appendix 3. For example: if the memory from
 #5000 onwards contains the values:
 50 61 73 63 61 6C (in hexadecimal) then:
 WRITE(PEEK(#5000,ARRAY[1..6] OF CHAR)) gives
 'Pascal'
 WRITE(PEEK(#5000,CHAR)) gives 'P'
 WRITE(PEEK(#5000,INTEGER)) gives 24912
 WRITE(PEEK(#5000,REAL)) gives 2.46227E+29
 see Appendix 3 for more details on the
 representation of types within Hisoft Pascal 4.

2.3.6.7 SIZE(V)
 The parameter of this function is a variable.
 The integer result is the amount of storage
 taken up by that variable, in bytes.

2.3.6.8 INP(P)
 INP is used to access the Z80's ports directly
 without using the procedure INLINE. The value
 of the integer parameter P is loaded into the
 BC register and the character result of the
 function is obtained by executing the assembly
 language instruction IN A,(C).

3 COMMENTS AND COMPILER OPTIONS.

3.1 Comments.

A comment may occur between any two reserved words, numbers,
identifiers or special symbols - see Appendix 2. A comment
starts with a '{' character or the '(*' character pair. Unless
the next character is a '$' all characters are ignored until
the next '}' character or '*)' character pair. If a '$' was
found then the compiler looks for a series of compiler options
(see below) after which characters are skipped until a '}' or
'*)' is found.

3.2 Compiler Options.

The syntax for specifying compiler options is:
 ---> + ---
 I I
---> $ -----> letter ---------------------------------->-
 I I I I
 I ---> - --- I
 I I
 ----------------- , <-------------------
The following options are available:

Option L:

Controls the listing of the program text and object code
address by the compiler.
If L+ then a full listing is given.
If L- then lines are only listed when an error is detected.
DEFAULT: L+

Option O:

Controls whether certain overflow checks are made. Integer
multiply and divide and all real arithmetic operations are
always checked for overflow.
If O+ then checks are made on integer addition and subtraction
If O- then the above checks are not made.
DEFAULT: O+

Option C:

Controls whether or not keyboard checks are made during object
code program execution.
If C+ then if EDIT is pressed then execution will return to with
a HALT message - see Section 2.3.5.6.
This check is made at the beginning of all loops, procedures
and functions. Thus the user may use this facility to detect
which loop etc. is not terminating correctly during the
debugging process. It should certainly be disabled if you wish
the object program to run quickly.
If C- then the above check is not made.
DEFAULT: C+

Option S:

Controls whether or not stack checks are made.
If S+ then, at the begining of each procedure and function
call, a check is made to see if the stack will probably
overflow in this block. If the runtime stack overflows the
dynamic variable heap or the program then the message
'Out of RAM at PC=XXXX' is displayed and execution aborted.
Naturally this is not foolproof; if a procedure has a large
amount of stack usage within itself then the program may
'crash'. Alternatively, if a function contains very little
stack usage while utilizing recursion then it is possible
for the function to be halted unnecessarily.
If S- then no stack checks are performed.
DEFAULT: S+

Option A:

Controls whether checks are made to ensure that array indices
are within the bounds specified in the array's declaration.
If A+ and an array index is too high or too low then the
message 'Index too high' or 'Index too low' will be displayed
and the program execution halted.
If A- then no such checks are made.
DEFAULT: A+

Option I:

When using 16 bit 2's complement integer arithmetic, overflow
occurs when performing a >, <, >=, or <= operation if the
arguments differ by more than MAXINT (32767). If this occurs
then the result of the comparison will be incorrect. This will
not normally present any difficulties; however, should the
user wish to compare such numbers, the use of I+ ensures that
the results of the comparison will be correct. The equivalent
situation may arise with real arithmetic in which case an
overflow error will be issued if the arguments differ by more
than approximately 3.4E38 ; this cannot be avoided.
If I- then no check for the result of the above comparisons
is made.
DEFAULT: I-

Option P:

If the P option is used the device to which the compilation
listing is sent is changed i.e. if the video screen was being
used the printer is used and vice versa. Note that this option
is not followed by a '+' or '-'.
DEFAULT: The video screen is used.

Option F:

This option letter must be followed by a space and then an
eight character filename. If the filename has less than eight
characters it should be padded with spaces.
The presence of this option causes inclusion of Pascal source
text from the specified file from the end of the current line
- useful if the programmer wishes to build up a 'library' of
much-used procedures and functions on tape and then include
them in particular programs.
The program should be saved using the built-in editor's 'P'
command. On most systems the list option L- should be used
- otherwise the compiler will not compile fast enough.
Example: (*$L-,F MATRIX include the text from a tape file
MATRIX*);
When writing very large programs there may not be enough
room in the computer's memory for the source and object code
to be present at the same time. It is however possible to
compile such programs by saving them to tape and using the
'F' option - then only 128 bytes of the source are in RAM
at any one time, leaving much more room for the object code.
This option may not be nested and is not implemented in the
ZX Spectrum version. (*In the HP4S ZX Spectrum version this
option is implemented. The Pascal source text, which is to be
included, should be saved using the built-in editor's command,
instead of 'P'.*)
The compiler options may be used selectively. Thus debugged
sections of code may be speeded up and compacted by turning
the relevant checks off whilst retaining checks on untested
pieces of code.

4 THE INTEGRAL EDITOR.

4.1 Introduction to the Editor.

The ZX SPECTRUM keyword entry scheme is not supported (we see
this as a positive advantage), instead all text must be
inserted using the normal alphanumeric keys. Using SYMBOL
SHIFT and key (except I) will always reach the ASCII symbol
associated with that key and not the keyword e.g.
SYMBOL SHIFT T gives '>' and SYMBOL SHIFT G gives '}'. You
must not use the single symbols <=, <> and >=; instead these
should be entered as a combination of the symbols <, > and =.
The editor comes up in upper case mode, this may be toggled in
the normal way using CAPS SHIFT and 2.

The editor supplied with all versions of Hisoft Pascal 4T is
a simple, line-based editor designed to work with all Z80
operating systems while maintaining ease of use and the
ability to edit programs quickly and efficiently.
Text is held in memory in a compacted form; the number of
leading spaces in a line is held as one character at the
beginning of the line and all HP4T Reserved Words are
tokenised into one character. This leads to a typical
reduction in text size of 25%.
The editor is entered automatically when HP4T is loaded from
tape and displays the message:
Copyright Hisoft 1982
All rights reserved
followed by the editor prompt '>'.
In response to the prompt you may enter a command line of the
following format:
 C N1, N2, S1, S2
followed by a ENTER where:
C is the command to be executed (see Section 4.2 below).
N1 is a number in the range 1 - 32767 inclusive.
N2 is a number in the range 1 - 32767 inclusive.
S1 is a string of characters with a maximum length of 20.
S2 is a string of characters with a maximum length of 20.
The comma is used to separate the various arguments (although
this can be changed - see the 'S' command) and spaces are
ignored, except within the strings. None of the arguments are
mandatory although some of the commands (e.g. the 'D'elete
command) will not proceed without N1 and N2 being specified.
The editor remembers the previous numbers and strings that you
entered and uses these former values, where applicable, if you
do not specify a particular argument within the command line.
The values of N1 and N2 are initially set to 10 and the
strings are initially empty. If you enter an illegal command
line such as F-1,100,HELLO then the line will be ignored and
the message 'Pardon?' displayed - you should then retype the
line correctly e.g. F1,100,HELLO. This error message will also
be displayed if the length of S2 exceeds 20; if the length of
S1 is greater than 20 then any excess characters are ignored.
Commands may be entered in upper or lower case.
While entering a command line, all the relevant control
functions described in Section 0.0 may be used e.g. CS+5 to
delete to the beginning of the line.

Command: L <n,m>

This lists the current text to the display device from line
number n to line number m inclusive. The default value for n
is always 1 and the default value for m is always 32767 i.e.
default values are not taken from previously entered arguments.
To list the entire textfile simply use 'L' without any
arguments. Screen lines are formatted with a left hand margin
so that the line number is clearly displayed. The number of
screen lines listed on the display device may be controlled
through use of the 'K' command - after listing a certain
number of lines the list will pause (if not yet at line
number m), hit control function EDIT to return to the main
editor loop or any other key to continue the listing.

Command: K n

'K' sets the number of screen lines to be listed to the display
device before the display is paused as described in 'L' above.
The value (n MOD 256) is computed and stored. For example use
K5 if you wish a subsequent 'L'ist to produce five screen lines
at a time.

4.2.3 Text Editing.

Once some text has been created there will inevitably be a
need to edit some lines. Various commands are provided to
enable lines to be amended, deleted, moved and renumbered:

Command: D <n,m>

All lines from n to m inclusive are deleted from the textfile.
If m<n or less than two arguments are specified then no action
will be taken; this is to help prevent careless mistakes.
A single line may be deleted by making m=n ; this can also be
accomplished by simply typing the line number followed by
ENTER.

Command: M n,m

This causes the text at line n to be entered at line m
deleting any text that already exists there. Note that line n
is left alone. So this command allows you to 'M'ove a line of
text to another position within the textfile. If line number n
does not exists then no action is taken.

Command: N <n,m>

Use of the 'N' command causes the textfile to be renumbered
with a first line number of n and in line number steps of m.
Both n and m must be present and if the renumbering would
cause any line number to exceed 32767 then the original
numbering is retained.

Command: F n,m,f,s

The text existing within the line range n<x<m is searched for
an occurrence of the string f - the 'find' string. If such an
occurrence is found then the relevant text line is displayed
and the Edit mode is entered - see below. You may then use
commands within the Edit mode to search for subsequent
occurrences of the string f within the defined line range or
to substitute the string s (the 'substitute' string) for the
current occurrence of f and then search for the next
occurrence of f; see below for more details.
Note that the line range and the two strings may have been set
up previously by any other command so that it may only be
necessary to enter 'F' to initiate the search - see the
example in Section 4.3 for clarification.

Command: V

The 'V' command takes no arguments and simply displays the current
default values of the line range, the Find string and the
Substitute string. The current default line range is shown
first followed by the two strings (which may be empty) on
separate lines. It should be remembered that certain
editor commands (like 'D' and 'N') do not use these
default values but must have values specified on the
command line.

Command: E n

Edit the line with line number n. If n does not exist then no
action is taken; othervise the line is copied into a buffer
and displayed on the screen (with the line number), the line
number is displayed again underneath the line and the Edit
mode is entered. All subsequent editing takes place within the
buffer and not in the text itself; thus the original line can
be recovered at any time. In this mode a pointer is imagined
moving through the line (starting at the first character) and
various sub-commands are supported which allow you to edit the
line. The sub-commands are:

 ' ' (space) - increment the text pointer by one i.e.
 point to the next character in the line. You cannot
 step beyond the end of the line.

 DELETE (or BACKSPACE) - decrement the text pointer by
 one to point at the previous character in the line.
 You cannot step backwards beyond the first character
 in the line.

 CS+8 (control function) - step the text pointer forwards
 to the next tab position but not beyond the end of the
 line.

 ENTER - end the edit of this line keeping all the
 changes made.

 Q - quit the edit of this line i.e. leave the edit
 ignoring all the changes made and leaving the line as
 it was before the edit was initiated.

 R - reload the edit buffer from the text i.e. forget
 all changes made on this line and restore the line as
 it was originally.

 L - list the rest of the line being edited i.e. the
 remainder of the line beyond the current pointer
 position. You remain in the Edit mode with the pointer
 re-positioned at the start of the line.

 K - kill (delete) the character at the current pointer
 position.

 Z - delete all characters from (and including) the
 current pointer position to the end of the line.

 F - find the next occurrence of the 'find' string
 previously defined within a command line (see the 'F'
 command above). This sub-command will automatically
 exit the edit on the current line (keeping the changes)
 if it does not find another occurrence of the 'find'
 string in the current line. If an occurrence of the
 'find' string is detected in a subsequent line (within
 the previously specified line range) then the Edit
 mode will be entered for the line in which the string
 is found. Note that the text pointer is always
 positioned at the start of the line after a successful
 search.

 S - substitute the previously defined 'substitute'
 string for the currently found occurence of the 'find'
 string and then perform the sub-command 'F' i.e. search
 for the next occurence of the 'find' string. This,
 together with the above 'F' sub-command, is used to
 step through the textfile optionally replacing
 occurrences of the 'find' string with the 'substitute'
 string - see Section 4.3 for an example.

 I - insert characters at the current pointer position.
 You will remain in this sub-mode until you press
 ENTER - this will return you to the main Edit mode
 with the pointer positioned after the last character
 that you inserted. Using DELETE (or BACKSPACE) within
 this sub-mode will cause the character to the left of
 the pointer to be deleted from the buffer while the
 use of CS+8 (control function) will advance the pointer
 to the next tab position, inserting spaces.

 X - this advances the pointer to the end of the line
 and automatically enters the insert sub-mode detailed
 above.

 C - change sub-mode. This allows you to overwrite the
 character at the current pointer position and then
 advances the pointer by one. You remain in the change
 sub-mode until you press ENTER whence you are taken
 back to the Edit mode with the pointer positioned
 after the last character you changed. DELETE (or
 BACKSPACE) within this sub-mode simply decrements the
 pointer by one i.e. moves it left while CS+8 has no
 effect.

4.2.4 Tape Commands.

Text may be saved to tape or loaded from tape using the
commands 'P' and 'G':

Command: P n,m,s

The line range defined by n<x<m is saved to tape in HP4T
format under the filename specified by the string s. Remember
that these arguments may have been set by a previous command.
Before entering this command make sure that your tape recorder
is switched on and in RECORD mode. While the text is being
saved the message 'Busy..' is displayed.

Command: G,,s

The tape is searched for a file in HP4T tape format and with
a filename of s. While the search is taking place the message
'Busy..' will be displayed. If a valid HP4T tape file is found
but has the wrong filename then the message 'Found' followed
by the filename that was found on the tape is displayed and
the search continued. Once the correct filename is found then
'Found' will appear on the list device and the file will be
loaded into memory. If an error is detected during the load
then 'Checksum error' is shown and the load aborted. If this
happens you must rewind the tape, press PLAY and type 'G'
again.

If the string s is empty then the first HP4T file on the tape
will be loaded, regardless of its filename.

While searching of the tape is going on you may abort the load
by holding EDIT down; this will interrupt the load and return to
the main editor loop.

Note that if any textfile is already present then the textfile
that is loaded from tape will be appended to the existing file
and the whole file will be renumbered starting with line 1 in
steps of 1.

Command: W n,m,s

The line range n<x<m is saved to tape under the filename
specified by the string s, in a format which can be loaded
with the compiler option F (inclusion of Pascal source text).
Before entering this command make sure that your tape recorder
is switched on and is in RECORD mode.
To write out a section of a program use:
 W50,120,PLOT ;write out the PLOT procedure.
To 'include' the section in another program:
 100 END;
 110
 120 (*$F PLOT 'include' the PLOT procedure here.*)
 130
 140 PROCEDURE MORE; (*the rest of program.*)
 150

4.2.5 Compiling and Running from the Editor.
__

Command: C n

This causes the text starting at line number n to be compiled.
If you do not specify a line number then the text will be
compiled from the first existing line. For further details see
Section 0.2.

Command: R

The previously compiled object code will be executed, but only
if the source has not been expanded in the meantime - see
Section 0.2 for more detail.

Command: T n

This is the 'T'ranslate command. The current source is
compiled from line n (or from the start if n is omited) and,
if the compilation is successful, you will be prompted with
'Ok?': if you answer 'Y' to this prompt then the object code
produced by the compilation will be moved to the end of the
runtimes (destroying the compiler) and then the runtimes and
the object code will be dumped out to tape with a filename
equal to that previously defined for the 'find' string. You
may then, at a later stage, load this file into memory, using
the HP4T loader, whereupon it will automatically execute the
object program. Note that the object code is located at and
moved to the end of the runtimes so that, after a 'T'ranslate
you will need to reload the compiler - however this should
present no problems since you are only likely to 'T'ranslate a
program when it is fully working.

If you decide not to continue with the dump to tape then
simply type any character other than 'Y' to the 'Ok?' prompt;
control is returned to the editor which will still function
perfectly since the object code was not moved.

4.2.6 Other Commands.

Command: B

This simply returns control to the operating system. For
details of how to re-enter the compiler refer to the HP4T
Alteration Guide and your Implementation Note.

Command: O n,m

Remember that text is held in memory in a tokenised form with
leading spaces shortened into a one character count and all
HP4T Reserved Words reduced to a one character token. However
if you have somehow got some text in memory, perhaps from
another editor, which is not tokenised then you can use the
'O' command to tokenise it for you. Text is read into a buffer
in an expanded form and then put back into the file in a
tokenised form - this may of course take a little time to
perform. A line range must be specified, or the previously
entered values will be assumed.

Command: X

The 'X' command displays, in hexadecimal, the current end address
of the compiler.

Command: S,,d

This command allows you to change the delimiter which is taken
as separating the arguments in the command line. On entry to
the editor the comma ',' is taken as the delimiter; this may
be changed by the use of the 'S' command to the first
character of the specified string d. Remember that once you
have defined a new delimiter it must be used (even within the
'S' command) until another one is specified.

Note that the separator may not be a space.

4.3 An Example of the use of the Editor.
__

Let us assume that you have typed in the following program
(using I10,10):

 10 PROGRAM BUBBLESORT
 20 CONST
 30 Size = 2000;
 40 VAR
 50 Numbers : ARRAY [1..Size] OF INTEGER;
 60 I, Temp : INTEGER;
 70 BEGIN
 80 FOR I:=1 TO Size DO Number[I] := RANDOM;
 90 REPEAT
100 FOR I:=1 TO Size DO
110 Noswaps := TRUE;
120 IF Number[I] > Number[I+1] THEN
130 BEGIN
140 Temp := Number[I];
150 Number[I] := Number[I+1];
160 Number[I+1] := Temp;
170 Noswaps := FALSE
180 END
190 UNTIL Noswaps
200 END.

This program has a number of errors which are as follows:
Line 10 Missing semi-colon.
Line 30 Not really an error but say we want a size of 100.
Line 100 Size should be Size-1.
Line 110 This should be at line 95 instead.
Line 190 Noswapss should be Noswaps.
Also the variable Numbers has been declared but all references
are to Number. Finally the BOLEAN variable Noswaps has not
been declared.
To put all this right we can proceed as follows:
F60,200,Number,Numbers and then use sub-command 'S' repeatedly.
E10 then the sequence X ; ENTER ENTER
E30 then __________ K C 1 ENTER ENTER
F100,100,Size,Size-1 followed by the sub-command 'S'.
M110,95 .
110 followed by ENTER.
E190 then X DELETE ENTER ENTER
65 Noswaps : BOOLEAN; .
N10,10 to renumber in steps of 10.
You are strongly recommended to work through the above example
actually using the editor - you may find it a little
cumbersome at first if you have been used to screen editors
but it should not take long to adapt.

Appendix 1 ERRORS.

A.1.1 Error numbers generated by the compiler.
__

 1. Number too large.
 2. Semi-colon expected.
 3. Undeclared identifier.
 4. Identifier expected.
 5. Use '=' not ':=' in a constant declaration.
 6. '=' expected.
 7. This identifier cannot begin a statement.
 8. ':=' expected.
 9. ')' expected.
10. Wrong type.
11. '.' expected.
12. Factor expected.
13. Constant expected.
14. This identifier is not a constant.
15. 'THEN' expected.
16. 'DO' expected.
17. 'TO' or 'DOWNTO' expected.
18. '(' expected.
19. Cannot write this type of expression.
20. 'OF' expected.
21. ',' expected.
22. ':' expected.
23. 'PROGRAM' expected.
24. Variable expected since parameter is a variable parameter.
25. 'BEGIN' expected.
26. Variable expected in call to READ.
27. Cannot compare expression of this type.
28. Should be either type INTEGER or REAL.
29. Cannot read this type of variable.
30. This identifier is not a type.
31. Exponent expected in real number.
32. Scalar expression (not numeric) expected.
33. Null strings not allowed (use CHR(0)).
34. '(*' expected.
35. '*)' expected.
36. Array index type must be scalar.
37. '..' expected.
38. ']' or ',' expected in ARRAY declaration.
39. Lowerbound greater than upperbound.
40. Set too large (more than 256 possible elements).
41. Function result must be type identifier.
42. ',' or ']' expected in set.
43. '..' or ',' or ']' expected in set.
44. Type of parameter must be a type identifier.
45. Null set cannot be the first factor in a
 non-assignment statement.
46. Scalar (including real) expected.
47. Scalar (not including real) expected.
48. Sets incompatible.
49. '<' and '>' cannot be used to compare sets.
50. 'FORWARD','LABEL','CONST','VAR','TYPE' or
 'BEGIN' expected.
51. Hexadecimal digit expected.
52. Cannot POKE sets.
53. Array too large (>64K).
54. 'END' or ';' expected in RECORD definition.
55. Field identifier expected.
56. Variable expected after 'WITH'.
57. Variable in WITH must be of RECORD type.
58. Field identifier has not had associated WITH statement.
59. Unsigned integer expected after 'LABEL'.

60. " " " " 'GOTO'.
61. This label is at the wrong level.
62. Undeclared label.
63. The parameter of SIZE should be a variable.
64. Can only use equality tests for pointers.
65.
66.
67. The only write parameter for integers with two ':'-s
 is e:m:H.
68. Strings may not contain end-of-line characters.
69. The parameter of NEW,MARK or RELEASE should be a
 variable of pointer type.
70. The parameter of ADDR should be a variable.

A.1.2 Runtime error messages.

When a runtime error is detected then one of the following
messages will be displayed, followed by ' at PC=XXXX', where
XXXX is the memory location at which the error occurred. Often
the source of the error will be obvious; if not, consult the
compilation listing to see where in the program the error
occurred, using XXXX to cross reference. Ocasionally this
does not give the correct result.
 1. Halt
 2. Overflow
 3. Out of RAM
 4. / by zero also generated by DIV.
 5. Index too low
 6. Index too high
 7. Maths Call Error
 8. Number too large
 9. Number expected
10. Line too long
11. Exponent expected
Runtime errors result in the program execution being halted.

Appendix 2 RESERVED WORDS AND PREDEFINED IDENTIFIERS.
__

A.2.1 Reserved Words.

AND ARRAY BEGIN CASE CONST DIV DO DOWNTO
ELSE END FOR FORWARD FUNCTION GOTO IF
IN LABEL MOD NIL NOT OF OR
PACKED PROCEDURE PROGRAM RECORD REPEAT SET THEN
TO TYPE UNTIL VAR WHILE WITH

A.2.2 Special Symbols.

The following symbols are used by Hisoft Pascal 4 and have a
reserved meaning:
+ - * /
= <> < <= >= >
() []
{ } (* *)
^ := . , ; :
' ..

A.2.3 Predefined Identifiers.

The following entities may be thought of a declared in a block
sorrounding the whole program and they are therefore available
throughout the program unless re-defined by the programmer
within an inner block.
For further information see Section 2.
CONST MAXINT = 32767;
TYPE BOOLEAN = (FALSE,TRUE);
 CHAR (*The expanded ASCII character set*)
 INTEGER = -MAXINT..MAXINT;
 REAL (*A subset of the real numbers. See Section 1.3.*)
PROCEDURE WRITE; WRITELN; READ; READLN; PAGE; HALT; USER;
 POKE; INLINE; OUT; NEW; MARK; RELEASE; TIN; TOUT;
FUNCTION ABS; SQR; ODD; RANDOM; ORD; SUCC; PRED; INCH; EOLN;
 PEEK; CHR; SQRT; ENTIER; ROUND; TRUNC; FRAC; SIN;
 COS; TAN; ARCTAN; EXP; LN; ADDR; SIZE; INP;

Appendix 3 DATA REPRESENTATION AND STORAGE.
__

A.3.1 Data Representation.

The following discussion datails how data is represented
internally by Hisoft Pascal 4.

A.3.1.1 Integers.

Integers occupy 2 bytes of storage each, in 2's complement
form. Examples:
 1 = #0001
 256 = #0100
 -256 = #FF00
The standard Z80 register used by the compiler to hold
integers is HL.

A.3.1.2 Characters. Booleans and other Scalars.

These occupy 1 byte of storage each, in pure, unsigned binary.
Characters: 8 bit, extended ASCII is used.
 'E' = #45
 '[' = #5B
Booleans
 ORD(TRUE)=1 so TRUE is represented by 1.
 ORD(FALSE)=0 so FALSE is represented by 0.
The standard Z80 register used by the compiler for the above
is A.

A.3.1.3 Reals.

The (mantissa,exponent) form is used similar to that used in
standard scientific notation - only using binary instead of
denary. Examples
 0 1
 2 = 2 * 10 or 1.0 * 2
 2

 0 0
 1 = 1 * 10 or 1.0 * 2
 2

 1 -1
 -12.5 = -1.25 * 10 or -25 * 2

 -1
 = -11001 * 2
 2

 3
 = -1.1001 * 2 when normalized.
 2

 0.1
 -1 1 1 2
0.1 = 1.0 * 10 or ----- = ------ = ------
 10 1010 101
 2 2
so now we need to do some binary long division..
 0.0001100

 101 I 0.10000000000000000
 101

 110
 101

 1000
 101 at this point we see
 --- that the fraction recurs
 0.1
 2
 = ------- = 0.0001100
 101 2
 2
 -4
 1.1001100 * 2 answer.

So how do we use the above results to represent these numbers
in the computer? Well, firstly we reserve 4 bytes of storage
for each real in the following format:
sign normalized mantissa exponent data
 23 22 0 7 0 bit
^-----------v-----------^ ^----------------v----------------^
 H L E D register
sign: the sign of the mantissa; 1=negative, 0=positive.
normalized mantissa: the mantissa normalized to the form
 1.XXXXXX with the top bit (bit 22)
 always 1 except when representing
 zero (HL=DE=0).
exponent: the exponent in binary 2's complement form.
Thus:
 2 = 0 1000000 00000000 00000000 00000001 (#40,#00,#00,#01)
 1 = 0 1000000 00000000 00000000 00000000 (#40,#00,#00,#00)
-12.5 = 1 1100100 00000000 00000000 00000011 (#E4,#00,#00,#03)
 0.1 = 0 1100110 01100110 01100110 11111100 (#66,#66,#66,#FC)
So, remembering that HL and DE are used to hold real numbers,
then we would have to load the registers in the following way
to represent each of the above numbers:
 2 = LD HL,#4000
 LD DE,#0100
 1 = LD HL,#4000
 LD DE,#0000
 -12.5 = LD HL,#E400
 LD DE,#0300
 0.1 = LD HL,#6666
 LD DE,#FC66
The last example shows why calculations involving binary
fractions can be inaccurate; 0.1 cannot be accurately
represented as a binary fraction, to a finite number of
decimal places.
N.B. reals are stored in memory in order ED LH

A.3.1.4 Records and Arrays.

Records use the same amount of storage as the total of their
components.
Arrays: if n=number of elements in the array and
 s=size of each element then
 the number of bytes occupied by the array is n*s.
 e.g. an ARRAY[1..10] OF INTEGER requires 10*2 = 20 bytes
 an ARRAY[2..12,1..10] OF CHAR has 11*10=110 elements
 and so requires 110 bytes.

A.3.1.5 Sets.

Sets are stored as bit strings and so if the base type has
n elements then the number of bytes used is: (n-1) DIV 8 + 1.
Examples:
 a SET OF CHAR requires (256-1) DIV 8 + 1 = 32 bytes.
a SET OF (blue,green,yellow) requires (3-1) DIV 8 + 1 = 1 byte.

A.3.1.6 Pointers.

Pointers occupy 2 bytes which contain the address (in Intel
format i.e. low byte first) of the variable to which they
point.

A.3.2 Variable Storage at Runtime.

There are 3 cases where the user needs information on how
variables are stored at runtime:
a. Global variables - declared in the main program block.
b. Local variables - declared in an inner block.
c. Parameters and - passed to and from procedures and
 returned values. functions.
These individual cases are discussed below and an example
of how to use this information may be found in Appendix 4.

Global variables

Global variables are allocated from the top of the runtime
stack downwards e.g. if the runtime stack is at #B000 and
the main program variables are:
VAR i:INTEGER;
 ch:CHAR;
 x:REAL;
then:
i (which occupies 2 bytes - see the previous section) will be
stored at locations #B000-2 and #B000-1 i.e. at #AFFE and
#AFFF.
ch (1 byte) will be stored at location #AFFE-1, i.e. at #AFFD.
x (4 bytes) will be placed at #AFF9, #AFFA, #AFFB and AFFC.

Local variables

Local variables cannot be accessed via the stack very easily so,
instead, the IX register is set up at the beginning of each
inner block so that (IX-4) points to the start of the block's
local variables e.g.
PROCEDURE test;
VAR i,j:INTEGER;
then:
i (integer - so 2 bytes) will be placed at IX-4-2 and IX-4-1
i.e. IX-6 and IX-5.
j will be placed at IX-8 and IX-7.

Parameters and returned values

Values paraemters are treated like local variables and, like
these variables, the earlier parameter is declared the higher
address it has in memory. However, unlike variables, the
lowest (not the highest) address is fixed and this is fixed at
(IX+2) e.g.
PROCEDURE test(i:REAL; j:INTEGER);
then:
j (allocated first) is at IX+2 and IX+3.
i is at IX+4, IX+5, IX+6, and IX+7.
Variable parameters are treated just like value parameters
except that they are always allocated 2 bytes and these 2
bytes contain the address of the variable e.g.
PROCEDURE test(i:INTEGER; VAR x:REAL);
then:
the reference to x is placed at IX+2 and IX+3; these locations
contain the address where x is stored. The value of i is at
IX+4 and IX+5.
Returned values of functions are placed above the first
parameter in memory e.g.
FUNCTION test(i:INTEGER) : REAL;
then i is at IX+2 and IX+3 and space is reserved for the
returned value at IX+4, IX+5, IX+6 and IX+7.

Appendix 4

ZX SPECTRUM SOUND

The following two procedures (defined in the order given bellow) are required to
produce sound with HP4T.
(*This procedure uses machine code to pick up its parameters
and then passes them to the BEEP routine within the SPECTRUM
ROM.*)
PROCEDURE BEEPER (A, B : INTEGER);
 BEGIN
 INLINE(#DD, #6E, 2, #DD, #66, 3, (*LD L,(IX+2) : LD H,(IX+3)*)
 #DD, #5E, 4, #DD, #56, 5, (*LD E,(IX+4) : LD D,(IX+5)*)
 #CD, #B5, 3, #F3) (*CALL #3B5 : DI *)
 END;
(*This procedure traps a frequency of zero which it converts
into a period of silence. For non-zero frequencies the
frequency and length of the note are approximately converted
to the values required by the SPECTRUM ROM routine and this is
then called via BEEPER.*)
PROCEDURE BEEP (Freq : INTEGER; Length : REAL);
VAR I : INTEGER;
 BEGIN
 IF Freq=0 THEN FOR I:=1 TO ENTIER(12000*Length) DO
 ELSE BEEPER(ENTIER(Freq*Length),ENTIER(437500/Freq-30.125))
 FOR I:= 1 TO 100 DO (*short delay between notes*)
 END;
Example of the use of BEEP:
BEEP (262, 0.5); (*sounds middle C for 0.5 seconds*)
BEEP (0, 1); (*followed by a one second silence.*)

SOME EXAMPLE HP4T PROGRAMS.

(*Program to illustrate the use of TIN and TOUT. The program
constructs a very simple telephone directory on tape and then
reads it back. You should write any searching required.*)
PROGRAM TAPE;
CONST
 Size = 10; (*Note that 'Size' is in upper
 and lower case - not 'SIZE'.*)
TYPE
 Entry = RECORD
 Name : ARRAY [1..10] OF CHAR;
 Number : ARRAY [1..10] OF CHAR
 END;
VAR
 Directory : ARRAY [1..Size] OF Entry;
 I : INTEGER;
BEGIN (*Set up the directory..*)
 FOR I:= 1 TO Size DO
 BEGIN
 WITH Directory[I] DO
 BEGIN
 WRITE('Name please');
 READLN;
 READ(Name);
 WRITELN;
 WRITE('Number please');
 READLN;
 READ(Number);
 WRITELN
 END
 END;
(*To dump the directory to tape use..*)
 TOUT('Director',ADDR(Directory),SIZE(Directory))
(*Now to read the array back to the following..*)
 TIN('Director',ADDR(Directory))
(*And now you can process the directory as you wish.....*)
END.

 10 (*Program to list lines of a file in reverse order.
 20 Shows use of pointers, records, MARK and RELEASE.*)
 30
 40 PROGRAM ReverseLine;
 50
 60 TYPE elem=RECORD (*Create linked-list structure*)
 70 next: ^elem;
 80 ch: CHAR
 90 END;
100 link=^elem;
110
120 VAR prev,cur,heap: link; (*all pointers to 'elem'*)
130
140 BEGIN
150 REPEAT (*do this many times*)
160 MARK(heap); (*assign top of heap to 'heap'*)
170 prev:=NIL; (*points to no variable yet.*)
180 WHILE NOT EOLN DO
190 BEGIN
200 NEW(cur); (*create a new dynamic record*)
210 READ(cur^.ch); (*and assign its field to one
220 character from file.*)
230 cur^.next:=prev; (*this field's pointer adresses*)
240 prev:=cur (*previous record.*)
250 END;
260
270 (*Write out the line backwards by scanning the records
280 set up backwards.*)
290
300 cur:=prev;
310 WHILE cur <> NIL DO (*NIL is first*)
320 BEGIN
330 WRITE(cur^.ch); (*WRITE this field i.e. character*)
340 cur:=cur^.next (*Adress previous field.*)
350 END;
360 WRITELN;
370 RELEASE(heap); (*Release dynamic variable space.*)
380 READLN (*Wait for another line*)
390 UNTIL FALSE (*Use EDIT to exit*)
400 END.

 10 (*Program to show the use of recursion*)
 20
 30 PROGRAM FACTOR;
 40
 50 (*This program calculates the factorial of a number input
 60 from the keyboard 1) using recursion and 2) using an
 70 iterative method.*)
 80 TYPE
 90 POSINT = 0..MAXINT;
100
110 VAR
120 METHOD : CHAR;
130 NUMBER : POSINT;
140
150 (*Recursive algorithm.*)
160
170 FUNCTION RFAC(N : POSINT) : INTEGER;
180
190 VAR F : POSINT;
200
210 BEGIN
220 IF N>1 THEN F:= N * RFAC(N-1) (*RFAC invoked N times*)
230 ELSE F:= 1;
240 RFAC := F
250 END;
260
270 (*Iterative solution*)
280
290 FUNCTION IFAC(N : POSINT) : INTEGER;
300
310 VAR I,F: POSINT;
320 BEGIN
330 F := 1;
340 FOR I := 2 TO N DO F := F*I; (*Simple Loop*)
350 IFAC := F
360 END;
370
380 BEGIN
390 REPEAT
400 WRITE('Give method (I or R) and number ');
410 READLN;
420 READ(METHOD,NUMBER);
430 IF METHOD = 'R'
440 THEN WRITELN(NUMBER,'! = ',RFAC(NUMBER))
450 ELSE WRITELN(NUMBER,'! = ',IFAC(NUMBER))
460 UNTIL NUMBER=0
470 END.

 10 (*Program to show how to 'get your hands dirty'!
 20 i.e. how to modify Pascal variables using machine code.
 30 Demonstrates PEEK, POKE, ADDR and INLINE.*)
 40
 50 PROGRAM divmult2;
 60
 70 VAR r:REAL;
 80
 90 FUNCTION divby2(x:REAL):REAL; (*Function to divide
100 by 2.... quickly*)
110 VAR i:INTEGER;
120 BEGIN
130 i:= ADDR(x)+1; (*Point to the exponent of x*)
140 POKE(i,PRED(PEEK(i,CHAR))); (*Decrement the exponent of x.
150 see Appendix 3.1.3.*)
160 divby2:=x
170 END;
180
190 FUNCTION multby2(x:REAL):REAL; (*Function to multiply by
200 by 2.... quickly*)
210 BEGIN
220 INLINE(#DD,#34,3); (*INC (IX+3) - the exponent
230 of x - see Appendix 3.2.*)
240 multby2:=x
250 END;
260
270 BEGIN
280 REPEAT
290 WRITE('Enter the number r ');
300 READ(r); (*No need for READLN - see
310 Section 2.3.1.4*)
320
330 WRITELN('r divided by two is',divby2(r):7:2);
340 WRITELN('r multiplied by two is',multby2(r):7:2)
350 UNTIL r=0
360 END.

