

DISCLAIMER

This document was keyed in on December 2003 from a yellowed
twenty years old third generation photocopy after scanning and
OCR-ing proved too error prone. Pictures and title page are
scans.

The original document was followed in layout as near as possible.
Utmost care was taken to copy the contents truly and several
proof readings were performed before the release. However, this
copy may contain errors. Please report, if you find any.

Most typos in the original were copied, corrections were made
when it could confuse the reader.

FORMAT

The original document is typeset in an evenly spaced font.
However, the font used on the typewriter was a serif-less one. In
this copy, an 11 point Courier PS (Post Script) was used � evenly
spaced it is, but it is not a grotesque font. However, serif
fonts are easier to read since they provide a «base line». The
word count per line and the lines per page are as in the original
document. Please note the difference: "0" zero the number, and
"O" the letter, there is no Ø for the zero.

COPYRIGHT

I am not sure, whether copyrights still apply after more than 20
years. It is not my intent to violate any copyright. This
document is not available anymore from the copyright owner or his
agents, but there is still a need and interest for it. This is
why I hand-copied it and make it available free of charge on the
internet.

If the copyright owner or his agent(s) object to this, I will
remove this copy immediately. In the meantime, any user is
advised not to distribute this document too widely or charge for
any copy thereof.

The original author is: David Husband.

The original agent is: Skywave Software, Bournemouth, UK.

About the Copyist

I got my enthusiasm for FORTH from David Husbands FORTH implementation.
When I upgraded to the CP/M operating system, I obtained a fig-FORTH 79
which was in the public domain. When I upgraded again to MS-DOS, I
translated the CP/M Z80 source code for the MS-DOS 8086/80186/80286
processors, assembled it and loaded the result along with the source
code to the Sydex Bulletin Board in Eugene, USA with a 2400 bps modem.

Hans-Rudolf Wernli, CH-3952 Susten
Mail: h.-r.h.wernli@bluewin.ch
Websites: mypage.bluewin.ch/horo/ and mywebpage.netscape.com/hwernli/

27. December 2003

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 1

Table of Contents

1.0 Introduction

1.1 Introduction to ZX81-FORTH

2.0 Installation and System Description

2.1 Installing the EPROM.
2.2 Initial Power-up.
2.3 Warm and Cold Restart.
2.4 System response & errors.

3.0 Visual Editor

3.1 Editor Commands.
3.2 Compilation of code.
3.3 Creating Screens.
3.4 SLOW, FAST and AUTO.

4.0 Mass Storage and Retrieval

4.1 Information Storage.
4.2 Information Retrieval.
4.3 Compiling Screens with Loading.
4.4 Loading Sequential Screens.

5.0 Structure and Command Description

5.1 Stack Structure.
5.2 The dictionary and its use.
5.3 Command format.

6.0 Mathematical commands

7.0 Logical operators & Comparison

7.1 Logical Operators.
7.2 Comparison Operators.

8.0 Number Bases & Stack Manipulation

8.1 Number Bases.
8.2 Stack Manipulation.

ZX81-FORTH Features INDEX Section 0-0

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 2

9.0 Memory Commands & Memory Manipulation

10.0 Data Types and Variables

10.1 Data Types.
10.2 Variable.
10.3 Integer.

11.0 Control Structures

12.0 Character Input/Output

12.1 Character Stack.
12.2 Character Commands.
12.3 Character/Number Stack.
12.4 Character Comparison.
12.4 Keyboard Allocations.

13.0 The Printer

14.0 Defining Words

14.1 Colon / Semi-colon.
14.2 <BUILDS ... DOES>.
14.3 Operating System Words.

15.0 TIME & the System Clock

16.0 Tasking

17.0 CODE Compiler

18.0 Applications

19.0 Final Comments

19.1 Any Problems ?
19.2 Acknowledgements
19.3 Copies

20.0 Memory Map

 Appendix A -- The System Variables

ZX81-FORTH Features INDEX Section 0-0

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 3

1.1 Introduction

The manual is intended as a guide to the use of ZX81-FORTH, and
Assumes that the user will use it in conjunction with a book on
FORTH. We recommend the book "The Complete FORTH" by Alan
Winfield, which is available from most booksellers or in case of
Difficulty from us for £6.95 + £1.00 postage and packing.

Where possible, ZX81-FORTH matches the fig-FORTH commands,
although ZX81-FORTH is not fig-FORTH. It was not possible to
include all the fig-FORTH words because of ROM space limitations.
ZX81-FORTH also contains some non-standard words so that multi-
tasking can be accomplished.

ZX81-FORTH is multi-tasking. This gives the programmer the
ability to write real-time routines as is described in section
14.

ZX81-FORTH is, we believe, an improvement on the fig standard in
some ways by making ZX81-FORTH a compiler directive language
instead of interpretive. Interpretive FORTH contains a series of
addresses for each word, these being linked together by an inner-
interpreter. The inner interpreter consists of an address
threader using about 13 bytes and some other routines taking the
total to about 70 btes. The inner-interpreter requires 170 T
states of execution time (~50uS) on a Z80. This inner-interpreter
is a routine which must run as overhead for every address
interpreted. A compiler directive language contains a series of
calls to subroutines in each command or word. Therefore, the
overhead of the inner interpreter is not necessary. The result is
that compiler directive FORTH is about three times faster than
interpretive FORTH in most programming applications.

Since ZX81-FORTH is not an interpretive language but instead is a
compiler directive language, it should not really be classified
as a TIL (Threaded Interpretive Language), but instead it would
be better to call the language a Threaded Compiler Language.

TX81-FORTH contains most of the standard fig-FORTH words. The
language of FORTH is a structured programming language which
allows the user to manage and manipulate all of the dynamic
memory addressable by the microprocessor. FORTH is also a
language in which the user can link down to machine code routines
and in this respect, FORTH is only a step above assembly level
programming. FORTH is however, a high-level user friendly
language in that it allows the user to create his own command
set. The entire program set written in FORTH is a customised set
of instructions and in this way approaches other high-level
languages.

Introduction to ZX81-FORTH Section 1-1

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 4

In addition to the standard attributes of the FORTH language,
ZX81-FORTH adds extra flexibility with its multi-tasking. Multi-
tasking allows the user to schedule programs to run at any time
in the future. This is a feature available only on much more
expensive systems. With the proper hardware, such as plenty of
I/O, a multi-tasking system can be used as a real-time
controller. This means that the computer can operate at a speed
sufficient enough to control the environment as events occur. A
multi-tasking system could be used to enter data from a real-time
environment. An example would be sampling the breathing cycle of
a patient in a hospital in order to determine his or her
respiratory rate. A multi-tasking system also gives the user the
flexibility of allowing a program to run in the background (it is
possible to run one program in the background while editing
another in the foreground).

FORTH is somewhat harder to learn than BASIC, however the
flexibility gained with FORTH makes it a desirable programming
language for most, if not, all programming tasks.

ZX81-FORTH is also very, very fast. Try this test :

In BASIC this program takes over 5 minutes (in SLOW mode)

10 FOR I = 0 TO 30000
20 NEXT I

The nearest equivalent in ZX81-FORTH takes about 4 seconds in
SLOW, and less than 1 second in AUTO. Try it yourself.

AUTO 30000 0 DO LOOP

That makes ZX81-FORTH, for this example, about 300 times faster
than ZX-81 BASIC !!

Introduction to ZX81-FORTH Section 1-1

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 5

2.1 Installing the EPROM

DAVID HUSBAND sells the ZX81-FORTH ROM as a 'fit it yourself'
conversion or as a ready converted computer. Those with the ready
converted unit should skip this section and go to section 2.2
Initial power up.

Take the cover off the computer. There are five screws in the
bottom of the case. /Three are under the pads; the pads are glued
on and are easily removed.) The case is shown in figure 2.1.

After removing the screws, the two halves of the case are easily
separated. Opening the case will reveal the underside of the
printed circuit board. Remove the top two screws in this board as
is shown in figure 2.2. Next, flip the circuit board over making
sure that the ribbon cable to the keyboard does not pull out.

At this point you should be looking at the various integrated
circuits on the board. Identify the BASIC ROM chip. You can find
a picture of this circuit board in your Sinclair Manual. It is on
either page 119 or page 162. The picture on page 162 is not of
the issue 3 pcb.

Remove the BASIC ROM with great care. If it is soldered in, use a
hot soldering iron and an efficient solder-sucker. Clear the
unused 4 holes because we will use all 28 pins. Replace the BASIC
ROM with the 28-pin I.C. Socket provided, taking care to put it
in carefully. Finally plug in the EPROM supplied, with the
correct orientation.

If the EPROM supplied is a 2564, it will have a couple of its
pins modified to take into account the non-standard signals on
the 28-pin BASIC ROM socket.

If the EPROM supplied is a 2764, it will be mounted on a small
PCB with 24 pins which are a direct replacement for the BASIC
ROM. It may be necessary to replace the IC socket with the one
supplied by us, as the original IC Socket may not be able to take
the header pins of the PCB.

Next, turn the Sinclair circuit board over and secure it with the
two screws you removed previously. Then, replace the cover and
insert the five screws previously removed from the holes in the
cover. At this point ZX81-FORTH will be operational (note that no
BASIC will be available in this configuration.)

Installing the EPROM Section 2-1

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 6

Installing the EPROM Section 2-1

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 7

2.2 Initial Power-up

After completing section 2.1, or having purchased a ready
converted computer, the system is ready for power-up. This
section will describe for you how the various screens in ZX81-
FORTH should look when you first turn the power on. After
inserting the power line on the computer the screen should look
like figure 2.5. If the screen did not come up, insert the power
line again. You could also try a cold restart. This is done by
holding the SHIFT key and the SPACE key down simultaneously for
about half a second.

Here are some possible reasons why your screen did not come up
properly:

 Did you correctly install the 28-pin socket after removing the
BASIC ROM ?

 Did you correctly insert the ZX81-FORTH ROM in the 28-pin
socket ?

 Did you bend any of the circuit board pins over during
installation ?

 Is your RAM Pack attached properly ? If the connections are
not good, the system will not display the video information.
It is best to remove the RAM Pack (if you have a 2k system)
and power-up again.

 Screen upon power-up or COLD restart.
 Figure 2.5

There are two sets of screens in ZX81-FORTH, the first one we
have seen. The second one is a split screen. To display the split
screen, hold down the SHIFT and EDIT keys simultaneously. Now the
screen should appear as shown in Figure 2.6.

Initial Power-up Section 2-2

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 8

 EDITOR SCREEN
 Fig 2.6

You can toggle between the two parts of the screen by using the
SHIFT/EDIT keys.

To ensure that your system is working correctly, type the
following commands:-

VLIST (NEW LINE)

.CPU (NEW LINE)

This will display all of the ZX81-FORTH
words presently in memory.

This identifies the type of processor
which is presently running. (A Z80)

Initial Power-up Section 2-2

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 9

2.3 Warm and Cold Restarts

ZX81-FORTH can be re-initialised from software any time without
having to pull out the power supply lead.

WARM RESTART: WARM (NEW LINE) will execute a warm start.

A warm restart can also be performed by holding BREAK
(SHIFT/SPACE) down for an instant.

A warm restart resets the stack pointer to the absolute bottom.
The system then checks for a catastrophic error such as an over-
write of the system variables. If necessary, a warm restart calls
a cold restart to recover. The editor is reset to the CONSOLE
screen. Finally, if the task flag is off (command TOFF) any
background task is set to a null program and all tasks are
LOCKED.

COLD RESTART: COLD (NEW LINE) A cold restart is performed by
 Holding the BREAK key down for about half a second.

A cold restart configures the entire system and brings up the
original screen, as if the power had just been turned on. All
working memory (RAM > 4000H) is erased. Cold restart also checks
for the amount of RAM attached to the Sinclair and stores this
value in a system variable.

Also a cold restart checks to see if there is RAM or ROM at
address 2000 Hex (8k Decimal). If it finds RAM this is linked
into the system and the dictionary starts at 2000 instead of 4000
Hex. If ROM is found, a header pattern is searched for and if
found, the ROM is regarded as being more dictionary and linked
into the system. An extension ROM will be available, and a
Technical Manual will be issued so that the user can create his
own extension ROM to hold his favourite applications. The user
may notice that there are some un-documented words already in the
dictionary especially to handle the extension ROM.

Warm and Cold Restarts Section 2-3

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 10

2.4 System Response & Errors

ZX81-FORTH prompts the user with an OK after each successful
operation in the execution screen. The operation may be as simple
as putting a number onto the stack, or as complicated as an
entire line of program. As long as no error is found, the system
reports with an OK.

If some error should occur during an operation, an ERROR
statement will be displayed on the screen followed by an error
code. The error codes are as follows:-

ERROR F

* ERROR H

ERROR M

ERROR R

* ERROR S

* ERROR U

This error message is displayed when the user
attempts to forget a FENCEd word. A FENCEd word appears
anywhere in the list of words being forgotten this
error will be displayed.

This error message will be flagged if the user
attempts to enter a token which cannot be interpreted
as a hexadecimal number or is not found in the
Dictionary.

This error message is displayed when the available
usable memory (RAM) is almost full. An error M will
occur when the user program area runs to within 32
bytes of the parameter stack.

Error R stands for redundant. If the user trys to
define a word with the same name which belongs to a
program already in the dictionary, an error R will be
flagged. The word or task you are defining will still
be defined but will have priority over the previous
word in the dictionary and the word or task already
defined will no longer be accessible to the programmer.

This message is displayed if the parameter stack
pointer underflows, something which should never happen
since popping undefined information off the stack is a
no-no.

Error U stands for Undefined word. This message is
displayed when a word is used in a definition and
either does not convert properly into a number or is
not found in the dictionary. (This is only followed by
a warm restart if it is found in the middle of a
definition).

* NOTE: These errors will generate a warm restart after their
display.

System Response & Errors Section 2-4

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 11

3.0 The Editor

ZX81-FORTH uses ASCII characters. This is a deviation from the
Sinclair BASIC. It uses its own, non-standard, character set.
Using ASCII makes the system much more flexible in terms of
communicating with existing computer systems (most of which use
ASCII to communicate to modems and printers).

The visual editor is a screen editor, not a line editor. This
gives the user a great deal of flexibility in writing FORTH
programs.

ZX81-FORTH uses two screen areas, so don't be confused. The first
screen appears when you turn on the power. (See fig 2.5). The
second screen is displayed with the SHIFT/EDIT set of keys. Once
you are in the second screen (Fig 2.6) you can use the top part
of the screen for editing. The lower part is an execution screen.
(This will be called the console.) The two parts are separated by
a black band called the video pad. You can switch between edit
and execution screens using the SHIFT/EDIT keys.

3.1 Editor Commands

Note: If you hold any key down for more than a second, the
depressed key will repeat.

SHIFT/←
SHIFT/↓
SHIFT/↑
SHIFT/→
SHIFT/9
SHIFT/4
SHIFT/0

Moves the cursor one space left.
Moves the cursor one line down.
Moves the cursor one line up.
Moves the cursor one space right.
Inserts a line at the cursor position.
Deletes the lie at the cursor position.
Deletes the character at cursor position.

On the editor screen, pressing NEW LINE moves the cursor down one
line and does not compile that line. Continued typing on a line
will provide immediate wraparound onto the next line should you
type beyond the end of the screen. However, if you go back and
insert characters in full lines, they will not wraparound.
Instead the characters will be lost off the right side of the
screen.

The insertion mode is automatic. Typing a character in the middle
of a line moves all the characters following the cursor to the
right.

The following commands deal with the video pad.

SHIFT/3
SHIFT/2

Takes the cursor line and stores it in the Pad.
Takes the contents of the Pad and puts them at the
cursor position, moving the other lines below,
downwards.

Editor Commands Section 3-1

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 12

3.2 Compilation of Code

The following commands deal with the compilation of code from the
editor screen. There are two ways to write code in ZX81-FORTH.
The first is to enter commands one by one in the console screen.
(The console screen is described in Section 2). The more
desirable method of writing code is to write a series of words in
the editor screen and then either compile the entire screen or
compile the lines one by one. This allows you the freedom to go
back and change things in the editor screen and recompile.

SHIFT/Q Compiles the line of code at the cursor position, and
the compiled line then appears in the execution screen.

A FORTH word may be more than one line long. In this case you
will have to place the cursor on the top line, compile it, and
then move the cursor to compile the rest of the line. Do not
worry about the compiler, it will wait until it finds a semicolon
(;) before it assumes that the end of a FORTH word is reached.

If the line is successfully compiled, an OK will appear at the
end of the line. If the line does not compile properly due to a
programming error, then ERROR will be displayed followed by the
appropriate code. The error codes are explained in Section 2.4.

CPL Compiles the entire editor screen.

Use this command after you have filled the entire editor screen
and wish to compile all the statements. This is also very useful
for compiling screens after they have been downloaded from the
cassette tape.

You do not have to write all of your code in the editor screen
and then compile it. You can compile FORTH code line by line in
either Screen 1 (fig 2.5) or in the execution portion of Screen 2
(fig 2.6). Each word that you type while on the execution screen
is compiled immediately. It is for this reason that using the
editor to hold uncompiled (or source) code is desirable. You can
make changes in the middle of a program before it is too late to
change it.

The editor screen can be turned off in order to make the present
screen only an execution screen.

EOFF Turns the editor screen off.

The editor screen can be turned back on again by using the
SHIFT/EDIT key.

Compilation of Code Section 3-2

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 13

3.3 Creating Screens

Any number of screens can be created using the screen command. A
screen is a portion of the video display in which characters can
be placed. You can have as many screens as you wish and they can
be any rectangular size, ranging from one character by one
character to as large as the screen itself. If a screen is
defined outside the bounds of the video display, the screen will
be defined in RAM outside the bounds of FD00H to FFFFH (Video
RAM).

The definition of a screen is as follows:

a b c d SCREEN name

a = column number of upper left hand corner.
b = row number of upper left hand corner
c = column number of lower right hand corner.
d = row number of lower right hand corner.
name = this can be any screen name desired by the user.

0 0 15 15 SCREEN S1 (NEW LINE) This command will create
a screen starting in row
1, col 1 and continuing
to row 16, col 16.

To display something on this screen, type:

" HELLO THERE " S1 .W (NEW LINE)
OK

Screens are defined in the dictionary, so they can be disabled by
FORGETting them just as you would forget any FORTH word.

FORGET S1 (NEW LINE) would disable screen S1

Every screen has a name and this name serves as an identifier
which must be used with certain commands that deal with different
screens. Some of these words are REV, .W, .C, and will be
discussed in later sections of this manual.

When you power-up, two screens are already defined. The dominant
screen is the console screen or execution screen and it has an
identifier of CO. The editor screen which is enabled by
SHIFT/EDIT has an identifier of ED. To use words which direct
output to different screens use these identifiers.

CO Console screen identifier.
ED Editor screen identifier.

Creating Screens Section 3-3

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 14

3.4 Fast, Slow, Auto

ZX81-FORTH still accepts the SLOW and FAST commands as does
Sinclair's BASIC. In FAST mode, the video display is turned off
until the CPU finishes processing the program. In SLOW mode, the
video display always remains on but only 20% of the processing
time is used to execute the program, the other 80% is used to
update the display.

The individual keys no longer initiate SLOW and FAST commands,
instead you must type them out letter by letter.

ZX81-FORTH also supports the command AUTO. AUTO will interrupt
the video display if the processor requires more than 1/4 second
to execute a program.

It is possible to make any screen reverse video. The word REV
along with the screen identifier is used to toggle the screen
from reverse video to normal or vice versa.

CO REV will make the console screen reverse video.
ED REV will make the editor screen reverse video.

REV Executed after a screen identifier to reverse the
dominant background field. (reverse video or normal video).

Fast, Slow, Auto Section 3-4

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 15

4.1 Storage

ZX81-FORTH allows for the storage of screens or a series of
screens on magnetic cassette tape. The whole editor screen will
be saved, therefore make sure that only the information you want
to save appears on that screen.

Both LOAD and STORE will temporarily stop video output to the
screen. The timing required to store or load screens requires all
of the processor time, and because no interrupts are issued
during the cassette routine, all tasking is suspended.

Storage takes place from the editor screen. (This is the portion
of the video display above the black band as shown in fig.2.6).
Each screen is loaded with an identifying number. You should take
care to remember which number a specific screen is, so that if a
large number of screens are stored on a tape each one will not
have to be viewed to find the information you want.

Simplest cases:

Fill the editor screen with any information which you desire.
After you are finished go to the execution screen (type
SHIFT/EDIT).

Such a screen might look like this:

Remember that there is actually a five second leader on most
cassette tapes which cannot be taped over. Therefore, advance the
tape at least ten seconds before storing information.

STORE Takes a number off the parameter stack, in this case
ten, and stores the editor screen with the number as an
identifier.

You can only store information from the editor screen. You can
not store information from the execution screen (also referred to
as the console screen). This should not be a problem, because for
most large programs, you will be working in the editor screen.

Storage Section 4-1

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 16

4.2 Retrieval

To retrieve information from the tape, the LOAD command is used.
As an example, to retrieve the same screen we just loaded in the
last section, the command is:

10 LOAD (NEW LINE)

LOAD This command takes the number on the parameter stack as
the screen number to be loaded from the tape. The routine will
continue to look for the screen until it is found or until it is
interrupted by hitting the space key.

After typing 10 LOAD, rewind the tape, then press PLAY and wait
for the computer to read the tape. When the screen is read from
the tape, the editor area will contain the same information that
it contained when it was loaded onto the tape.

Typing 0 STORE will ensure that the screen will be the first
loaded no matter what number is specified with LOAD.

Typing 0 LOAD will load the first screen found on the tape
regardless of screen number. Also, all subsequent screens (after
the first screen) can also be loaded using the --> command
described in the next section.

ZX81-FORTH allows any information on the editor screen to be
stored and loaded. The contents of the screen do not have to be
FORTH words or definitions. ZX81 BASIC does not allow this. With
ZX81-FORTH you have a way to store any information that you wish
(letters, etc.).

Retrieval Section 4-2

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 17

4.3 Loading and Compiling Screens

When loading any program from the tape to the editor screen, all
of the code on that screen can be compiled as soon as it is
loaded.

CON The command to turn on the automatic screen compiler.
COFF The command to turn off the automatic screen compiler.

As an example, create a simple program on the editor screen and
store it on tape as screen 1. Now use the following commands:

 CON 1 LOAD (NEW LINE) This will automatically
compile the screen which has been loaded from the tape.

The screen compiler defaults to off on initial power-up, or on a
COLD restart.

Loading and Compiling Screens Section 4-3

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 18

4.4 Sequential Screen Loading

There may be many times when your FORTH program is longer than
one screen. When this happens each screen must be loaded and
compiled before the next screen can be loaded. It is important
that you store your screens in increasing sequential order if you
want to load and compile them in sequence.

To store screens onto the tape in sequential order, you may use
the following command:

<-- This command stores the present editor screen with a
screen number which is one larger than the last screen stored.

In order to load screens sequentially, the command is:

--> This symbol, when placed at the bottom of the editor
screen and compiled, increments the screen count and loads the
next screen.

PAGE

BLK

This is an INTEGER variable which contains the most
recently accessed STOREd or LOADed page number.

This INTEGER contains the address for the address to
which the tape will download and from which the tape
is loaded. The default value is the origin of the
display buffer.

Warning: If you are compiling each screen as it is loaded
sequentially, you must give the compiler enough time to compile
each screen.

1. Stop the tape after each screen has been loaded and is
compiling. When the computer is ready to load another screen
(horizontal lines appear) restart the tape.

2. If large blank spaces are left on the tape when you are
saving sequential screens, there should be enough time to compile
each screen before the next one is to be loaded.

Either of these methods should ensure that the next screen on
tape will not be "played" before the computer is ready to receive
it.

Sequential Screen Loading Section 4-4

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 19

5.1 Stack Structure

FORTH is different from most other computer languages in that it
uses a stack. A stack is a data structure which stores things in
the order in which they are entered. Items can be removed with
the last item first. Here is an example:

Configure your screen so that you are on Screen 1, or the
execution part of Screen 2. Enter three numbers:

0 1 2 (NEW LINE) The stack looks like this:

2 top
1

 0 bottom

To display the top item on the stack, simply type :

 . (NEW LINE)

This will remove 2 from the stack an display it. Typing :

 . (NEW LINE) a second time will display the 1.

All the mathematical operations are also performed on the stack.
To examine this, type the following:

0 2 3 (NEW LINE) The stack looks like :

3
2
0

Now type :

* (NEW LINE) This command takes the top two items off
of the stack, multiples them, and puts the result back on the
stack. The result is :

6
0

If another multiplication were performed, then :

* (NEW LINE) Would leave a :

0 (6 * 0 = 0)

Most of the commands in ZX81-FORTH use a stack. ZX81-FORTH has a
separate 8-bit character stack and a 16-bit number stack, You
will be using the number (or parameter) stack most of the time.
The character stack is discussed in more detail in the section on
character input and output.

Stack Structure Section 5-1

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 20

5.2 Dictionary and its Use

After reading the last section you should have a feel for how the
number stack works. ZX81-FORTH words are stored in another place
in memory, the dictionary. The dictionary grows upwards from
4000H. Every FORTH word is stored in memory with a header. The
header contains the number of characters in the word plus the
characters of the word itself. The number of characters plus the
character themselves are used by the outer-interpreter when a
search of the dictionary is made for a word.

The programmer can create new words in the dictionary using
various compiling words. These words are described in detail in
Section 14.

Here is an example of how a new word would be defined using the
COLON and SEMI-COLON compiling words. (Known as a Colon
Definition). To create a word which takes the average of two
numbers on the stack and displays the result, type :

: AVG + 2 / . ; (NEW LINE) on the execution screen.

or : AVG + 2 / . ; (SHIFT/Q) on the editor screen.

The above program computes averages by adding the two values on
the stack and then pushing 2 on the stack and performing a
divide. The dot (.) then takes the value off the stack and
displays it.

The word AVG can now be used to take the average of two numbers.
Find the average of 86 and 46 by typing :

86 46 AVG (NEW LINE)
66 OK

The answer of 66 is displayed on the screen.

VARIABLEs and INTEGERs (constants) can also be created in the
dictionary. This is covered in Section 10.

Dictionary and its Use Section 5-2

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 21

5.3 Command Format

Many of the descriptions of the ZX81-FORTH words will be of the
following form :

top --> stack stack <-- top
 before COMMAND after
 execution execution

Each word is described by an example. The state of the stack is
shown before and after the word is executed. The words are first
described in a generic format and then an example of each one is
given.

What the symbols mean :

n = 16 bit number (n1, n2, n3 etc.)
d = 32 bit number (d1, d2, d3 etc.) Sometimes nlow and nhigh

 are used to describe how double numbers appear on
 the stack or in the dictionary.

u = unsigned 16 bit number.
 addr = represents an address in memory.

b = byte.
c = character.
f = boolean flag (0= false, 1= true).

Command Format Section 5-3

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 22

6.0 Mathematical Commands

ZX81-FORTH uses integer arithmetic. For some this may be
inconvenient at first. However, one of the commodities a computer
has is speed. Often it is desired that operations be performed as
quickly as possible, perhaps because the calculation is done many
times per second, and integer arithmetic is much faster than
floating point arithmetic. If you need more accuracy in your
values, the values can be scaled by a factor of 100 or 1000.
Scaling by 100 would allow you to include pennies in calculations
based in the pound and pence system.

Most 16 bit arithmetic is signed arithmetic in ZX81-FORTH.
However, most 32 bit, and all 64 bit arithmetic is unsigned. This
may seem to present a problem if you are not keeping track of the
approximate magnitude of your calculations.

Here is the difference between signed and unsigned arithmetic.
Below is listed a chart showing the difference, with the Binary
and Hex formats of the numbers shown. This can be extended to 32
bit and 64 bit numbers.

+-------------+-----------------------+------------+------------+
¦ ¦ ¦ ¦ ¦
¦ UNSIGNED ¦ BINARY ¦ HEX ¦ SIGNED ¦
¦ ¦ ¦ ¦ ¦
+-------------+-----------------------+------------+------------+
¦ ¦ ¦ ¦ ¦
¦ 65535 ¦ 1111111111111111 ¦ FFFF ¦ -1 ¦
¦ 65534 ¦ 1111111111111110 ¦ FFFE ¦ -2 ¦
¦ .. ¦ .. ¦ .. ¦ .. ¦
¦ .. ¦ .. ¦ .. ¦ .. ¦
¦ 32768 ¦ 1000000000000000 ¦ 8000 ¦ -32768 ¦
¦ 32767 ¦ 0111111111111111 ¦ 7FFF ¦ 32767 ¦
¦ .. ¦ .. ¦ .. ¦ .. ¦
¦ .. ¦ .. ¦ .. ¦ .. ¦
¦ 0 ¦ 0000000000000000 ¦ 0000 ¦ 0 ¦
¦ ¦ ¦ ¦ ¦
+-------------+-----------------------+------------+------------+

Table 6.1
Unsigned, Signed, Binary, and Hex Numbers

+ (Addition) Adds the top two stack items n1 and n2
leaving the sum on the stack.

n1 + n
n2

1 1 + . (NEW LINE)
2 OK

Mathematical Commands Section 6-0

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 23

- (Subtraction) Subtracts the top item, n1 from the second
item, n2 and leaves the result on the stack.

n1 - n
n2

2 1 - . (NEW LINE)
1 OK

* (Multiplication) Multiplies the top two items, n1 and n2,
and leaves the product on top of the stack

n1 * n
n2

2 4 * . (NEW LINE)
8 OK

/ (Division) Divides the second item, n2 by the top item,
n1, and leaves the result on top.

n1 / n
n2

6 2 / . (NEW LINE)
3 OK

2* (Multiply by 2) This multiplies the top stack item by
two.

n1 2* n 3 2* . (NEW LINE)
6 OK

2/ (Divide by 2) This divides the top stack item by two.

n1 2/ n 4 2/ . (NEW LINE)
2 OK

ABS (Absolute Value) Leaves the absolute value of the top item
on top of the stack.

n1 ABS n -12 ABS . (NEW LINE)
12 OK

MAX (Maximum) Finds the larger of the two top stack items
and leaves it on top of the stack.

n1 MAX n
n2

9 4 MAX . (NEW LINE)
9 OK

MIN (Minimum) Finds the smaller of the two top stack items
and leaves it on top of the stack.

n1 MIN n
n2

9 4 MIN . (NEW LINE)
4 OK

Mathematical Commands Section 6-0

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 24

MINUS (Unary minus) Changes the sign of the top stack item.

n1 MINUS n 31 MINUS . (NEW LINE)
-31 OK

+- (Swap Sign) Applies the sign of the top item, n1, to the
second item, n2 and leaves the second item
at the top of the stack.

n1 +- n2 (signed)
n2

2 -3 +- . (NEW LINE)
-2 OK

MOD Performs the division, n2/n1, and leaves the
16 bit reminder on the stack.

n1 MOD nr
n2

15 4 MOD . (NEW LINE)
3 OK

/MOD Performs the division, n2/n1, and leaves the
reminder n1 on top, and the quotient, n2, as
the second item.

n1 /MOD n1
n2 n2

5 2 /MOD . (NEW LINE)
1 OK . (NEW LINE)
2 OK

*/MOD Multiplies the second, n2, and third, n3,
items and divides by the first, n1, leaving
the remainder on the top of the stack with
the quotient below it. (Signed arithmetic).

n1 */MOD nr
n2 nq
n3

3 3 2 */MOD . (NEW LINE)
1 OK . (NEW LINE)
4 OK

M* This multiplies two 16 bit numbers, n1 and
n2, and leaves a 32 bit result, d.

n1 *M d
n2

20000 20000 M* D. (NEW LINE)
400000000 OK

M/ This divides a 32 bit number, d, by a 16 bit
number, n, leaving a 16 bit remainder, nr on
top of the stack and a 16 bit quotient, nq,
as the second item.

n M/ nr
d nq

400000001 20000 M/ . (NEW LINE)
1 OK . (NEW LINE)
20000 OK

Mathematical Commands Section 6-0

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 25

MD* This multiplies two 32 bit numbers on the
stack leaving a 64 bit result.

d1 MD* dlow
d2 dhigh

MD/ This divides a 64 bit number by a 32 bit
number, d1, leaving a 32 bit remainder, dr,
and a 32 bit result, dq.

d1 MD/ dr
dlow dq
dhigh

D* This multiplies two signed 32 bit integer
numbers together and leaves a 32 bit signed
result on the stack.

d1 D* d
d2

-30000 25000 D* D. (NEW LINE)
-750000000 OK

D/ This takes a 32 bit unsigned number and
divides it by a 32 bit unsigned number
generating a 32 bit remainder and a 32 bit
quotient.

*/ Multiplies the second item, n2, and the third
item, n3, and then divides by the first, n1,
leaving the result on the stack.

n1 */ n
n2
n3

4 6 3 */ . (NEW LINWE)
8 OK

D+ (32 bit add) This is a double precision add which adds
the top 32 bit numbers found on the stack.

d1 D+ d1
d2

4 6 3 */ . (NEW LINWE)
8 OK

D- (32 bit subtract) Performs a double precision subtraction
of the top 32 bit item from the second
32 bit item.

d1 D- d1
d2

4 6 3 */ . (NEW LINWE)
8 OK

Mathematical Commands Section 6-0

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 26

DABS (32 bit ABS) This operation takes the absolute value of
the 32 bit number on the stack.

d1 DABS d2

DMINUS (32 bit MINUS) Changes the sign on a 32 bit number.

d1 DMINUS d2 40000 DMINUS D. (NEW LINE)
-40000 OK

U* (Unsigned *) This multiplies the two unsigned numbers
found on the stack, leaving an unsigned
result.

u1 U* u
u2

6000 6 U* U. (NEW LINE)
36000 OK

UMOD (Unsigned MOD) The second unsigned 32 bit item, ud2, is
divided by the top number, u1, leaving
the unsigned remainder.

u1 UMOD u
ud2

U/MOD (Unsigned /MOD) The second unsigned 32 bit item, ud2, is
divided by the top number, u1, leaving
the remainder on the top of the stack and
the quotient as the second item.

u1 U/MOD ur
ud2 uq

Mathematical Commands Section 6-0

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 27

7.1 Logical Operators

AND Performs a bitwise AND of the two 16 bit items on
the stack.

13 00001101 (8 bit example)
 7 00000111
AND
 5 00000101 result

OR Performs a bitwise OR of the two 16 bit items on the
stack.

 5 00000101 (8 bit example)
 9 00001001
 OR
13 00001101 result (13= 0D hex)

XOR Performs a bitwise exclusive-or, XOR, of the two 16
bit items on the stack.

 5 00000101 (8 bit example)
 7 00000111
XOR
 2 00000010 result

Logical Operators Section 7-1

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 28

7.2 Comparison Operators

< If the second stack item is less than the first,
the operation leaves a 1, otherwise will leave a
0.

u1 < f
u2

0 2 < . (NEW LINE)
1 OK true

> If the second stack item is greater than the
first, the operation leaves a 1, otherwise will
leave a 0.

u1 > f
u2

0 2 > . (NEW LINE)
0 OK false

0= Tests whether the top item is 0. If it is, then
the operation leaves a 1, otherwise it will leave
a 0.

u1 0= f 13 0= . (NEW LINE)
0 OK false

0> Tests whether the top item is positive. If it is,
then the operation leaves a 1, otherwise it leaves
a 0.

u1 0> f

0< Tests whether the top item is negative. If it is,
then the operation leaves a 1, otherwise it leaves
a 0.

u1 0< f

= Tests whether the top two item are equal. If they
are, then the operation leaves a 1, otherwise it
leaves a 0.

u1 = f
u2

37 DUP = . (NEW LINE)
1 OK true

C= Just like = but it only checks the least
significant byte of the two stack items.

c1 C= f
c2

259 3 C= . (NEW LINE)
1 OK true (259 mod 256 = 3)

Comparison Operators Section 7-2

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 29

D< Checks if the second 32 bit item is larger then
the first 32 bit item. If the operation is true,
then a 1 is left, otherwise a 0 is left. This is
an unsigned comparison.

d1 D< f
d2

D> Checks if the second 32 bit item is smaller then
the first 32 bit item. If the operation is true,
then a 1 is left, otherwise a 0 is left. This is
an unsigned comparison.

d1 D> f
d2

D= Checks if the 32 bit items on the stack are equal.
If they are, a 1 is left, otherwise a 0 is left.

d1 D= f
d2

DMAX Leaves the larger of the two 32 bit items on the
stack. This is an unsigned operator, so -2 will be
greater than 2.

d1 DMAX d
d2

DMIN Leaves the smaller of the two 32 bit items on the
stack. This is an unsigned operator.

d1 DMIN d
d2

D0= Checks whether the 32 bit item on the stack is
equal to zero. If it is, a 1 is left, otherwise a
0 is left.

d1 D0= f

U< This is an unsigned less then comparison of the
two 16 bit items on the stack. If u2 is less than
u1, then a 1 is left, otherwise a 0 is left.

u1 U< f
u2

Comparison Operators Section 7-2

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 30

8.1 Number Bases

FORTH is capable of working in any number base. This is not so
difficult to achieve, however, as the microprocessor can only
work in Binary. This means that a conversion process must be done
to work in Decimal or Hex. Once you have that conversion process,
it is not difficult to extend it over all number bases. FORTH
refers to a variable called BASE during numerical conversion, and
changing base is as simple as changing the contents of the
variable BASE.

The default base on initial power-up is Decimal. (Base 10, 0 to
9)

DECIMAL

HEX

BASE

Sets the current base to decimal.

Sets the current base to hexadecimal. (Base 16)

An INTEGER variable used to contain the current
base of the system.

n1 TO BASE (NEW LINE) Makes the current base n1.

BASE . (NEW LINE) Places the current base on to the stack.
n1 OK

3 TO BASE (NEW LINE) Changes the base to 3.
DECIMAL 532 3 TO BASE . (NEW LINE)
201201 OK (201201 is 532 in base 3)

After DECIMAL and HEX, the most useful number base is BINARY and
a definition of BINARY would be :

: BINARY 2 TO BASE ;

Number Bases Section 8-1

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 31

8.2 Stack Manipulation

. A dot "." prints the top 16 bit item on the output
device (video screen).

1 2 3 . (NEW LINE)
3 OK prints the top item

D. (Double number display) A double number (32 bit
item) is taken off of the top of the stack and
displayed on screen.

U. (Unsigned number display) An unsigned number is
taken off of the top of the stack and displayed on
screen. An unsigned 16 bit number ranges from 0-
65535 whereas a signed 16 bit number ranges from -
32768 to +32767.

S->D This is a 16 to 32 bit sign extension word

n1 S->D d1 45 S->D D. (NEW LINE)
45 OK

D->Q This is a 32 to 64 bit sign extension word

DROP Drops the top stack item.

n1 DROP n2
n2

45 S->D D. (NEW LINE)
45 OK

2DROP Drops the top two stack items, or a double number.

DUP Copies the top stack item.

n1 DUP n1
 n1

?DUP Duplicates the top item only if it is non-zero.

OVER Copies the second stack item to the top.

n1 OVER n2
n2 n1
 n2

Stack Manipulation Section 8-2

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 32

PICK Copies the stack item indexed by the top stack
item, and places it on top of the stack.

n1 PICK n3
n2 n1
n3 n2
 n3 (a 2 PICK is the same as an OVER)

SWAP This word interchanges the top two stack items.

n1 SWAP n2
n2 n1

DSWAP This word interchanges the top two 32 bit stack
items.

d1 SWAP d2
d2 d1

ROT This word rotates the top three stack items. Item
3 goes to the top, and the remaining two items are
pushed down the stack.

n1 ROT n3
n2 n1
n3 n2

Stack Manipulation Section 8-2

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 33

9.0 Memory Commands & Memory Manipulation

FC56H is an address containing the present memory size connected
to the ZX81. To display the memory size type the following :

HEX FC56 @ DECIMAL . (NEW LINE)
16384 OK (This is the memory size of a
 system with a 16k RAM-Pack)

MEM This word places the amount of memory currently
available to the system onto the stack.

DECIMAL MEM . (NEW LINE)
14976 OK (This is the memory available to a
 16k system at power-up)

VLIST This will display all FORTH words currently found
in memory.

SP@ This will put on to the stack the current address
of the stack pointer.

ALLOT This word takes a number from the stack and
reserves that many bytes in the dictionary.

0 VARIABLE V1 22 ALLOT (NEW LINE)
OK (When executed, V1 will now place the
low address on the stack, of a 24 byte block of
RAM in the dictionary which could be used for
arrays or character strings, etc. 22 bytes were
reserved by ALLOT and 2 were reserved by VARIABLE
to give 24 in total.)

@ (SHIFT/E) This fetches the value at the
memory location addressed by the top stack item,
and places it on the stack.

addr @ n1 A practical example might be :

 30 +ORG @ (30 +ORG references the
address of the system variable that stores the
start address of the display buffer, which is
usually FD00H)

! (SHIFT/W) This word stores the second stack
item in the memory address specified by the top
stack item.

n1 !
addr

HEX 32 FD00 ! (NEW LINE)
OK

This puts an "R" in the upper left hand corner of
the video display in a 32k or less system.

Memory Commands & Memory Manipulation Section 9-0

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 34

ZX-FORTH does not guard against you storing values in dangerous
areas, such as the system variables, so be careful to store only
in free memory.

? Fetches and displays the content of the address
on top of the stack.

V1 ? (NEW LINE) (If V1 is a variable, ? will
print ist contents.)

+! Increments the contents of the memory location
addressed by the top stack item, by the second
stack item.

addr +!
n

25 V1 +! (This will add 25 to V1)

C! Stores a one byte item into the location
addressed by the second item on the stack.

C@ Fetches a one byte item from the location
addressed by the stack item and places it onto
the stack.

addr C@ b

COPY This copies one screen of information (512 Bytes)
to the address on top of the stack from the
address found as the second item on the stack.

addr1 COPY
addr2

0 VARIABLE SCR1 510 ALLOT (NEW LINE)
FBUF SCR1 COPY (NEW LINE)

This will store the contents of the editor screen
into a memory buffer called SCR1. To recall that
information all you have to do is type SCR1 FBUF
COPY (NEW LINE)

MOVE This word is used to move blocks of memory around
the system. It will take 3 items from the stack.
The first is the number of words (2 bytes) you
want to move, the second is the destination
address, and the third is the source address. A
routine which will do the same thing as the
example for COPY above is :

FBUF SCR1 256 MOVE (NEW LINE) This takes the
contents of the editor screen and moves it to
SCR1. 256 words is 512 bytes.

Memory Commands & Memory Manipulation Section 9-0

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 35

FILL This word is used to fill areas of memory with a
specified byte. The FILL word takes three items
from the stack. The first is the byte which is to
fill the memory, the second the number of bytes to
be filled, and the third is the starting address
of the area to be filled.

FBUF 512 14 FILL (NEW LINE) Will fill the
edit screen with dots. (Using Sinclair's non-ASCII
character codes.)

BLANKS This word is just like FILL but it fills memory
with 0's and only uses two items from the stack.

FBUF 512 BLANKS Will blank out the editor
screen. (Using Sinclair's non-ASCII character
codes.)

FBUF This is an INTEGER value which contains the base
address of the display buffer. To access the
display buffer all one needs is to is type FBUF
and the address of the display buffer will be
placed on the stack. To change FBUF all you need
to do is put the new buffer address onto the stack
and type TO FBUF.

+ORG Adds the item found on the stack to the address of
the beginning of the system variables and is most
commonly used to access the system variables.

D! Stores a 32 bit number at the address found at
the top of the stack.

addr D!
nlow
nhigh

D@ Fetches the 32 bit number found in the location
addressed by the item on top of the stack.

addr D@ nhigh
 nlow

PAD Execution of this word places the address of a 64
byte scratch-pad on to the stack. This pad may be
used for temporary storage by the user. The PAD
will overlay other parts of ZX81-FORTH if the 64
byte limit is exceeded, so be careful!

Memory Commands & Memory Manipulation Section 9-0

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 36

10.1 Data Types

ZX81-FORTH as you probably realise by now operates on either 16
bit or 32 bit integers. There are operators for both types of
numbers. Integers are one type of data, while another type is
character data. ZX81-FORTH characters are standard ASCII
characters and can be found in Section 12.5. On some systems
floating-point numbers are included. For space reasons, ZX81-
FORTH does not include floating-point arithmetic, but an
extension ROM will be available.

Data Types Section 10-1

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 37

10.2 Variables

VARIABLE is used to create a variable which references a memory
location used to store two bytes of information, usually a value.
When ever the variable so created is executed, the address of
that variable is placed on the stack. An initial value is always
assigned to the variable when it is created, and this value can
be changed at will.

value VARIABLE varname

value = the initial content of the variable.
varname = is a name chosen by the programmer.

0 VARIABLE AVG (NEW LINE)
OK (0 is the initial value and AVG is the name)
AVG @ . (NEW LINE)
0 OK (AVG places the address of AVG on the stack, @ gets the

 contents and . prints it to the screen)

The user can also create 32 bit variables using the word 2VAR.
This creates a 4 byte variable, and behaves the same way as the
other variable.

Variables Section 10-2

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 38

10.3 Integers

INTEGER This word is very much like variable. It creates a
2 byte variable in the dictionary, but instead of placing the
address of the variable on the tack, it laces the actual value.

value INTEGER intname

100 INTEGER INT1 (NEW LINE)
OK (Here we have created an integer variable with

 the initial value of 100)

In ZX81-FORTH, the word INTEGER behaves identically to the word
CONSTANT in other FORTH'S. It has been used to keep variables
because of the space saving such a method allows.

TO Allows the user to change an INTEGER value.

3 TO BASE changes BASE's contents to 3

Integers Section 10-3

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 39

10.4 Arrays

Arrays can be created in FORTH just as they can in BASIC,
FORTRAN, or any other languages. First, space must be allocated
in the dictionary.

0 VARIABLE VAL 22 ALLOT (NEQW LINE) This will
create a variable called VAL. It then gives VAL an initial
value of 0 and reserves 22 additional bytes for it in the
dictionary. This gives VAL the capacity to hold 12 16 bit
numbers (24 bytes).

To access any byte value in the array put the array item you
wish to access on the stack and use the following commands.

2* VAL @ (NEW LINE) This will access the proper
array value by doubling the index, adding it to the address,
and fetching the proper number from that address.

This is not the only way to construct arrays. A more efficient
and elegant way is to use the <BUILDS ... DOES> construct. This
method will be shown in Section 14.2. As data structures,
arrays are of fundamental importance in implementing solutions to
programming problems.

Arrays Section 10-4

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 40

11.0 Control Structures

Unlike other FORTH versions, ZX81-FORTH allows the user to use
the IF .. ELSE .. THEN and the ... DO ... LOOP and the other
statements outside of a colon definition. It does this by
creating a headerless word which executes immediately.

IF .. ELSE .. THEN This is a special structure used to
 create logical branches. IF checks the top entry on the
stack. If the top stack entry is non-zero, (true) the code
between the IF and ELSE is executed. If the top entry is zero,
(false) the code between the ELSE and the THEN is executed. For
example :

1 IF ." TRUE " ELSE ." FALSE " THEN (NEW LINE)
TRUE OK (The words between IF and ELSE is executed.)

0 IF ." TRUE " ELSE ." FALSE " THEN (NEW LINE)
FALSE OK (The words between ELSE and THEN is executed.)

IF .. THEN This is a simpler construct then the IF ..
ELSE .. THEN construct. This statement allows the execution of
code if the value on the stack is non-zero (true). Another
example :

1 IF 1 1 + . THEN (NEW LINE)
2 OK This displays the addition of 1 and 1,

because the test is true, having found a non-zero value on the
stack before the IF. If the initial value were zero the code
would not be executed.

DO .. LOOP The DO LOOP uses the op two indices on the
stack followed by executable code within the DO and LOOP words.

limit initial DO .. code .. LOOP

limit = the upper limit of the loop count.
initial = the lower limit of the loop count.

The index is incremented by one from the initial value to one
less then the limit. The value of the index is accessible via the
word I.

For example :

9 0 DO I . LOOP (NEW LINE)
0 1 2 3 4 5 6 7 8 OK should be displayed. Note that

the upper limit 9 does not get
executed.

Control Structures Section 11-0

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 41

DO ... +LOOP This construct allows the user to
increment or decrement the count by any value and looks like
this :

limit initial DO .. code increment +LOOP

limit = is the upper or lower limit for the loop count.
initial = the value where the count is started.
code = any FORTH word or words.
increment = any positive or negative value.

-5 0 DI I . -1 +LOOP (NEW LINE)
0 -1 -2 -3 -4 OK

LEAVE This terminates the lop at the next LOOP or
+LOOP. It could be used in an IF THEN clause.

For nested loops a second index is available, the index J. For
further nested loops, the NI index can be used.

0 NI corresponds to I
1 NI corresponds to J
2 NI would correspond to the next index and so on.

CASE is most often used in a definition, however it can
also be used interactively on the execution screen. The command
format is as follows :

CASE e0 e1 e2 e3 e4 ; (2 or more statements may be used)

STACK VALUE EXECUTION PRIORITY
 0 e0
 1 e1
 2 e2
 3 e3
 etc. etc.

The statement at e0 is executed when the stack value before the
CASE has a value of 0, e1 hen the stack value is 1, etc. e1 may
be a FORTH definition, or any mathematical expression. To test a
CASE type :

2 3 (NEW LINE)
OK
1 CASE * + ; . (NEW LINE) (this will execute the +)
5 OK

Control Structures Section 11-0

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 42

BEGIN .. code .. AGAIN This statement will execute
any code found between the BEGIN and AGAIN words. When AGAIN is
reached control is transferred to BEGIN and the code is executed
again thus creating an infinite loop.

BEGIN ." HELLO " CR AGAIN (NEW LINE) and will print out
HELLO
HELLO
HELLO
HELLO
..
..

Hello's will continue to be printed to the bottom of the screen,
and then print will continue by scrolling.

On most machines that will be the end of the matter, as the only
way to restart FORTH would be to switch off the machine and
reload, but ZX81-FORTH a SHIFT/SPACE (break) will return you
to the normal keyboard. This because the keyboard is a system
task!!

BEGIN .. ode.. flag UNTIL

code = any FORTH word or words.
flag = a logical operation which leaves a true or false

 value on the stack which is tested by UNTIL. If the
 flag is true, (non-zero) the loop is terminated,
 otherwise the execution flow returns to BEGIN and
 carries on through the loop again. For example :

0 BEGIN 1 + DUP DUP . 9 = UNTIL (NEW LINE)
1 2 3 4 5 6 7 8 9 OK

This routine takes the top stack value, (initially a 0)
increments it by one, duplicates it twice in order to save the
value before displaying it, and then it performs the logical
operation, a comparison to 9. In this case, the 9 is printed out.
This is because the FORTH statements are executed before the
UNTIL checks the top value of the stack against 9.

BEGIN .. WHILE .. REPEAT The construct of this word
is as follows :

BEGIN .. words .. test WHILE .. words REPEAT

words =can be any FORTH word or words.
test = is a logical operator which leaves a true or false

 value for WHILE to test.

For example :
BGIN 1 + DUP DUP . 5 > WHILE ." END " REPEAT (NEW LINE)
0 1 2 3 4 5 6 END OK

Control Structures Section 11-0

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 43

12.1 Character Stack

ZX81-FORTH is unique in that it has both number and character
stacks.

The character stack store bytes of ASCII code and provides a more
efficient and convenient method for storage and manipulation then
a parameter stack on its own. The stack pointer for the character
stack can be found in the system variable located at address FC84
hex. ZX81-FORTH uses the IY register of the CPU to hold the
parameter stack pointer. These stacks are independant of each
other, but in order to make use of the character handling
routines of a system, character strings must maintain a certain
format. A character string consists of two parts : the string of
ASCII characters that reside on the character stack which
actually makes up the string, and a number which sits on the
parameter stack and is a count of how many characters that are
stored in the character string on the character stack.
Manipulating character strings is done through manipulation of
the numbers on the parameter stack which represent the length of
the character strings. For instance, to concantenate two
character strings into a single character string, all one needs
to do is add the two numbers on the parameter stack together to
generate a number which represents one composite character
string. Or simply put, a + concantenates strings.

Character Stack Section 12-1

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 44

12.2 Character Commands

String I/O

."

"

ABORT"

CR

Defines the beginning of a string of characters to be
output to the screen. Any character found between a ."
and a " will be placed into a character string and
output to the console device (the execution screen).
For instance :

: MESS ." THIS IS A MESSAGE " ; Will print THIS IS A
MESSAGE to the console each time MESS is encountered in
a program or typed on the execution screen.

This works just like ." except instead of taking the
character string and outputing it to the console
device, the " will leave the character string on the
character stack to be manipulated either by another
routine or directed to another screen. The length of
the string will be found on the parameter stack
immediately after the " is executed. The parser
expects a space immediately after the first " and does
not count it as a character. Both the ." and " use the
" as delimiter to mark the end of the input character
string. Example :

." THIS IS A STRING " When placed in a definition or
in the execution screen will display the string between
the quotes.

" THIS IS A STRING " This will insert the string
in the character buffer with the number of characters
in the string placed on the parameter stack.

Checks a flag taken from the parameter stack and if the
flag is true (non-zero) then a user defined error
message is placed between the final " in ABORT" and a
warm restart is executed. This command could be useful
for displaying user defined error text in a program.

Example :

1 ABORT" ERROR 10 " (NEW LINE)
ERROR 10 OK

0 ABORT" ERROR 10 " (NEW LINE)
OK

Is used to print a carriage return, line feed on the
console screen.

Character Commands Section 12-2

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 45

SP

CLS

EMIT

KEY

S@

W!

W@

.W

Will print a space on the console screen.

Will clear the console screen.

This word is used to take an ASCII character from the
parameter stack and output it to the console screen.

Calls a routine which will get a value from the
keyboard and put the ASCII value of that key onto the
parameter stack.

This word gets a word from the keyboard (ending with a
pace or CR) and puts that token or string onto the
character stack.

This will take a character string and store it onto the
address found above the character count of the string
on the parameter stack.

" I WILL PUT THIS IN THE PAD " PAD W! will put the
text into PAD. After the string is transferred to PAD,
what the memory image looks like is a single byte
character count followed by the character string. In
other words, after executing the string above, typing a
PAD C@ . will print out the number of characters in
that string. (27 in this case).

Will take an address from the parameter stack and fetch
the character string stored at that address. It places
the character string itself on to the character stack
and the number of characters in the character string
onto the parameter stack.

PAD W@ CO .W (NEW LINE) will print the character
string found in PAD out to the screen console.

Allows output of a string to the console screen, editor
screen, or any other user defined screen. The command
expects to find the string on the character stack with
the number of characters on the parameter stack and
must be preceded by a valid screen identifier.

On the execution screen enter the following :

" THIS IS A STRING " (NEW LINE)

To display this to the console screen (the execution
screen) type :

CO .W (NEW LINE)

Character Commands Section 12-2

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 46

.C

.CN

CDROP

CDUP

.CO

To display this to the editor screen, type :

ED .W (NEW LINE) and to display to any
other user defined screen type:

screen-identifier .W (NEW LINE)

This word follows the same format as .W but it works
like EMIT. It uses two numbers from the parameter
stack, the first is the screen identifier, the second
is the ASCII value of the character that you want to
output on the identified screen.

This word is just like .W except that it always directs
output to the console screen and so it needs no screen
identifier. .CN will then take a character string and
output it to the console. A ." TEXT " is just like a "
TEXT " .CN

This word drops a character string off of the character
stack. It assumes that a character count is on the
parameter stack as usual.

This word will duplicate a character string on the
character stack much the same as DUP does to the
parameter stack.

Is used to take a character string from the character
stack and direct it to the keyboard input buffer just
as though that character string had been typed in on
the keyboard. This is used for a variety of things; one
of which comes to mind is the dynamic self re-
scheduling of tasks. A simple example of how .CO works
is :

" VLIST " .CO (NEW LINE)
OK
VLIST etc. OK will take the character
string VLIST and direct it to the keyboard just if you
had typed it.

Character Commands Section 12-2

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 47

12.3 Character/Number Stack

There are a group of words in ZX81-FORTH which use both the
number/parameter stack and the character stack. These word types
are described in this section. Remember that a character string
always consists of two things; a number on the parameter stack
which describes the length of the character string, and the
character string itself which resides on the character stack.

C>N

N>C

W>

This word removes one character from the character
stack and places that character's ASCII value onto the
parameter stack. It will reduce the character count
which is on the parameter stack by one and place the
ASCII value of the character taken from the character
stack on top of the character count. If the character
string is empty this routine will leave the null
character count at zero and return a 0 ASCII value.

This does just the opposite of C>N. It takes an ASCII
character value off of the parameter stack and places
it onto the character stack. The character count for
the character string that the ASCII character will be
append to, should be under the ASCII value on the
parameter stack. The character count will be
incremented by one to reflect the extra character on
the character stack.

This word is used to format character strings for
output. If you have a character string that is only 5
characters long and you want it to fill up eight spaces
when it is printed, you could do this simply by the
command 8 W>. This will take any character string of
seven characters or less and append enough spaces to
the beginning of it to make it eight characters long.
VLIST uses this to get all the words into columns. A
definition which will convert a number on the parameter
stack to a formatted three character long character
string and print it out could look something like this:

: .F # 3 W> CO .W ;

If you use .F instead of . all your numbers will be
printed out in at least 3 character long strings.

: TBL CLS 11 1 DO 11 1 DO I J * .F LOOP CR LOOP ;

TBL is a definition which will generate a 10 by 10
multiplication table.

Character/Number Stack Section 12-3

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 48

H>A

A>H

>#

#

U#

D#

Is useful when transforming HEX nibbles into ASCII
equivalent characters. H>A takes a number off the
parameter stack in the range 0-15 decimal and converts
it into its appropriate ASCII equivalent and leaves the
character on the parameter stack. A 13 H>A EMIT will
echo a D on the execution screen.

Does just the opposite of H>A, it removes an ASCII
value in the range 0-9, A-F and leaves on the parameter
stack its HEX equivalent.

This is a word that is used to attempt to convert
characters in a character string to a number on the
parameter stack. Let's say that the character string
which represents 100 is found on the character stack,
by executing a ># the character string will be
converted to a 16 bit integer with a value of 100 and
it will be placed onto the parameter stack. This word
leaves a flag of 1 on the parameter stack above the
converted number if the conversion is successful,
otherwise the flag will be 0. If the conversion is
unsuccessful the character the character string will be
left unchanged and can be used to prompt the user for a
correct character string. A definition which would use
the full capabilities of this word follows :

: READ BEGIN ." ? " S@ ># WHILE
CR CO .W ." IS NOT GOOD TRY AGAIN " REPEAT ;

This word will prompt the user for input with a ? and
leave the input number on the stack if the conversion
is good, otherwise it will print out the original
string and ask for further input until a good string is
input.

Does the opposite of >#, it removes a character from
the parameter stack and converts it into a character
string in the current base. The dot "." word uses # and
is defined as : . # CO .W ;

Is just like # but performs unsigned conversion from a
16 bit number to a character string. U. is defined as
: U. U# CO .W ;

Is the double number version of #. D. is then defined
as : D. D# CO .W ;

Character/Number Stack Section 12-3

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 49

12.4 Character Comparison

W=

S=

Expects two numbers from the parameter stack, both
should be addresses of character strings which are to
be compared character by character for equality. If the
two strings which are pointed to ar equal, a 1 will be
placed on the parameter stack; if the two are not
equal, a 0 will be placed on the stack. Both of the
addresses will be removed before the flag is left.

Takes an address off of the parameter stack which
points to a string which is to be compared to the
character string on the character stack. This is much
the same as W= except that here one of the character
strings is on the character stack already. This routine
removes the address but leaves the character string on
the stack intact before it leaves the flag.

Character Comparison Section 12-4

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 50

12.5 Keyboard Allocations

Key Shifted Key Shifted Key Function

1 EDIT Toggles between screens
2 AND Fetches a line from PAD
3 THEN Puts a line into PAD
4 TO Deletes a line from the editor screen
5 ← Moves cursor left
6 ↓ Moves cursor down
7 ↑ Moves cursor up
8 → Moves cursor right
9 GRAPHICS Inserts a line on the editor screen
0 RUBOUT Deletes one character
Q "" Compiles an editor screen
W OR Store word. Displayed as !
E STEP Fetch a word. Displayed as @
R <= [character
T <> _ character
Y >=] character
U $ $ character
I ((character
O)) character
P " " character
A STOP Clears the present screen
S LPRINT % character
D SLOW ' character
F FAST \ character
G LLIST ^ character
H ** # character
J - - character
K + + character
L = = character
NEW LINE FUNCTION Home cursor to top left corner
Z : : character
X ; ; character
C ? ? character
V / / character
B * * character
N < < character
M > > character
. , , character
SPACE BREAK WARM Restart, if held for 1/2

 Second COLD restart.

Keyboard Allocations Section 12-5

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 51

13.0 The Printer

P

PRTR

.P

PRINT

Toggles the printer on or off. If the printer routine
is on, any information that goes to the video display
will also go to the printer. As an example, to get a
listing of all the FORTH words presently in the
dictionary, type :

P VLIST (NEW LINE) This prints to both the
printer and the console.

PRTR is to the printer device as EMIT is to the console
device. By putting an ASCII value onto the parameter
stack you can output that character to the printer by
using PRTR. This works regardless of whether the P
toggle is on or off.

This word is written for the ZX-Printer or any other
compatible printer which is made explicitly for the
ZX81. What it does is look for a character string in
PAD which is 32 characters long or less, and print that
line out on the ZX-Printer. The word will pad the rest
of an empty line out with spaces and print one complete
line out to the printer. It will not do anything with a
user defined printer routine.

" THIS IS A TEST " PAD W! .P (NEW LINE) will print

THIS IS A TEST out to your ZX-Printer.

Is used when you have some other ASCII compatible
device that you want your printer output to be directed
to rather than the ZX-Printer. The routine which you
write to interface into must remove the ASCII value
from off the parameter stack and use it to output to
your printer device. As an example, let us say we have
an RS-232 card attached to our system and we have
written two routines to interface to that card. One of
them is a routine which will return only if the RS-232
card is ready to accept another character for output;
let us call this routine RS_READY. The other routine is
simply the routine which will place the address of the
RS-232 output port onto the stack, we will call this
one RS_ADDRESS. Now we can use these in the following
manner to output characters through the RS-232 port
instead of the defaulted ZX-Printer.

: RS_OUT RS_READY RS_ADDRESS C@ ; This will output
one character taken from off of the parameter stack to
the RS-232 port.

PRINT RS_OUT This reassigns the printer output to the
routine RS_OUT instead of the default routine.

The Printer Section 13-0

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 52

14.1 Colon / Semicolon

FORTH is different from many other languages in that it allows
the user to define his or her own words to extend the language.
The user can completely customise a set of words which can then
be used in any program.

The basic construct of a colon definition is

: wordname program ;

In ZX81-FORTH 'wordname' is compiled into the dictionary as a
word with a specific operation as defined after wordname and
before semi-colon. Try ...

: AVG + 2 / ; (NEW LINE)
OK

Successfully typing the above word will define a word which
adds the top two stack items and divides by two. In other words,
AVG finds the average of two numbers. To execute this word, type:

2 4 AVG . (NEW LINE)
3 OK

The above statement will put 2 on the stack, then put 4 on
the stack, then execute the commands as defined by AVG, and
finally display the top stack item left by AVG. We will now
define a word that takes the average of two sets of numbers by
using AVG and then check to see if the averages are equal. It
will also print an appropriate response.

: EQUAL AVG ROT ROT AVG = IF
." EQUAL " ELSE ." NOT EQUAL"
THEN;

24 24 12 6 EQUAL (NEW LINE)
NOT EQUAL OK

The two ROT commands here are included to put the value
calculated by AVG on the bottom of the stack and the next two
numbers to be averaged on the top.

FORGET

FENCE

 You can forget any word in the dictionary with
FORGET providing it is not protected by the FENCE
value. Simply type :

FORGET word (NEW LINE)

and the word along with any dictionary entries compiled
after 'word' will be removed from the dictionary.

You can protect any word from FORGET by typing :

 FENCE word (NEW LINE)

Colon / Semicolon Section 14-1

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 53

14.2 : word .. <BUILDS ... DOES> .. ;

This is one of the most important and powerful FORTH
structures. With it you can define new defining words. What this
means is that you can create new types of defining words, and
using these words new types of data structures can be produced
and great power can be given to the programmer. The format for
this word is :

: new-defining-word <BUILDS definition code DOES> run-time code ;

defining-word = the name of the new defining word.
definition code = the code which is executed when the

 defining-word is used to create a new word.
run-time code = this code is executed when the new word is

 used as a command word.

It is possible in a <BUILDS DOES> construct to have no
definition code or run-time code. As an example:

: ARRAY <BUILDS 20 ALLOT DOES> ; Here is an example
of the construct with no run-time code. This statement will
allow the user to create arrays of ten words (20 ALLOT sets
aside 20 bytes in the dictionary, enough for ten 16-bit
variables). ARRAY is now a compiling word which is a lot
like VARIABLE except that it reserves 20 bytes in the
dictionary for user variables instead of just two and also
uses no initialiser. An example of how to use ARRAY follows:

ARRAY NUMBER (NEW LINE)

This creates an array called NUMBER which will reserve
twenty bytes for number storage in the dictionary. To access
these twenty bytes we need some way to reference them,
perhaps by placing the address of where they are found in
memory onto the stack. It just so happens that this is
exactly what executing NUMBER will do for us. NUMBER places
the address of the first byte of the twenty bytes ALLOTed to
NUMBER onto the stack.

The program can be expanded as shown below. We will create a one
dimension array and will allow the user to access any number in
the array by placing an index on the stack.

: ARRAY1 <BUILDS 40 ALLOT DOES> SWAP 2* + ;

ARRAY1 is now a defining word which when used will create a
twenty word array. Let's make one called XYZ

ARRAY1 XYZ (NEW LINE)

We have now created in the dictionary an array called XYZ.
We can insert a number, say 123, into the 11th word in this
array by typing:

<BUILDS ... DOES> Section 14-2

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 54

123 11 XYZ ! (NEW LINE)

What has happened up to this point ? First, a 123 was placed
onto the stack. Second, the index 11 was placed on the stack, and
third, XYZ is encountered. XYZ first places the address of memory
in the dictionary where the array is located and then initiates
the execution of the code following DOES>. In this case the top
two stack items are swapped (putting the index on the top and the
address below it). Next, we double the index with 2* because we
are dealing with 16-bit values and address memory in 8-bit bytes.
The next thing we do is add the offset of the index to the
address already on the stack. After this is done, the stack
contains the address of the indexed array member and the value to
be stored there. A store (!) will finally put the value in the
array.

 Another routine could be written to fetch values from
the array and would look something like this :

 11 XYZ @ (NEW LINE)

Self Modifying Data Structures

A remarkable consequence of FORTH's ability to define new
defining words is that we may build 'intelligent' data structures
; for example, arrays that automatically maintain averages, or
lists that re-order themselves whenever any entry is altered.

To take the first of these examples, suppose we have a 10
element array 'READINGS' defined using a word similar to XYZ of
the last example. To compute the arithmetic average of the
contents of this array requires adding together all 10 entries
and dividing by 10. A special definition could easily be written
to do this as follows:

: AVERAGE (take average of array 'READINGS')
 0
 11 0 DO
 I READINGS @ +
 LOOP
 10 / ;

If our FORTH application needed us to calculate an average like
this often and for many different arrays then, to simplify the
overall program, we would define a new defining word *ARRAY with
the averaging function built into the DOES> part of the
definition:

<BUILDS ... DOES> Section 14-2

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 55

: *ARRAY ('special' array with running average)
 <BUILDS
 DUP , (save array size)
 0 , (set 'average' to zero)
 0 DO (step through elements)
 0 , (defining and zeroing)
 LOOP
 DOES>
 DUP DUP @ (get array size)
 SWAP 4 + (point to start of array)
 OVER 0 SWAP
 0 DO (step through array)
 OVER @ + (add up)
 SWAP 2 + SWAP (bump up pointer)
 LOOP
 SWAP DROP SWAP / (divide by array size)
 OVER 2 + ! (store average in element 0)
 2 + SWAP 2 * + ; (calculate address)

Arrays defined by *ARRAY may be used just like those defined by
XYZ, for example :

10 *ARRAY READINGS

10 1 READINGS ! (readings(1)=10)

20 2 READINGS ! (readings(2)=20)

1000 10 READINGS ! (readings(10)=1000)

2 READINGS ? (print contents of readings(2))
20 OK

Which is exactly how we would expect a 10 element array, with
elements numbered from 1 to 10 to behave. But typing :

0 READINGS ? 103 OK

will print the average of the values currently contained in the
array ((10+20+1000)/10 = 103). This average will be calculated
afresh every time the name of the array 'READINGS' is executed
and will always be true however many times we might have altered
the values stored in the array.
For example :

870 10 READINGS ! (alter readings(10) to 870)

50 6 READINGS ! (set readings(6) to 50)

0 READINGS ? (new average is 95)
95 OK

and, of course, all arrays defined by *ARRY will have this
function built in !!

<BUILDS ... DOES> Section 14-2

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 56

14.3 Operating System Words

[_]

(

,

C,

HERE

H

T

HEAD

IMM

'

This word is used to suppress the execution of an
immediate word in a definition. The immediate word
which follows [_] will, if in a definition, be compiled
to execute when the word being defined is executed and
not during the compilation of the word itself.
(Functionally equivalent to the FIG word [COMPILE])

Any words placed in brackets will not be compiled and
will act as comments in your program. Anything entered
up to a ")" will be entered as a comment.

Stores the 16-bit number found on the parameter stack
into the dictionary at the next available location.

This is like , but stores a byte into the dictionary
rather than 2 bytes (16.bits).

This word places the address of the next free
dictionary space onto the stack.

This places the address of the memory location which
contains the address of the next free dictionary space
onto the stack.

Places the address of the memory location which
contains the tail pointer of the dictionary onto the
parameter stack.

Is used in creating new defining words. HEAD creates
the dictionary header of the word and links it into the
dictionary. HEAD generates no code field and thus if a
word is created with HEAD and no attempt is made to
place behind it a code field, execution of that word
will crash the system. (Functionally equivalent to the
FIG word CREATE).

When embedded in a definition, IMM makes that word an
immediate word and that word will execute during
compile time, i.e. in a colon definition. IMM is used
to customise compiler words which generate code of
modify the dictionary without creating a header.
(Functionally equivalent to the FIG word IMMEDIATE).

Attempts to find the word following the character in
the dictionary. When found, the address of that word is
placed onto the stack.

' M* HEX . (NEW LINE) The machine code which
B00 OK makes up M* start at 0B00
 in memory. The ' is
 SHIFT/D on the ZX81.

Operating System Words Section 14-3

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 57

15.0 Time & the System Clock

Computers, as you are no doubt finding, are very useful and
versatile tools which can do a surprising number of things. If
you have been around people who do not know a great deal about
these tools, you may have been asked : "What can your computer
really do ? Can it cook dinner or vacuum the carpet ? What good
is all it if all you can do is stare at it ?" And these are good
questions. Well, of course it can help with balancing the cheque-
book, organising business information, generate mailing lists,
calculating taxes, writing out cheques, playing games, and any
number of other things, but there are a whole lot more things
that a computer cannot do at all well because computers, at least
in their simplest configuration, do not have eyes, hands, and/or
a sense of time. In short, computers cannot be told to do what
humans can do because they do not have the receptors and
manipulators that we humans have. Most small computer systems
also lack the ability to keep track of time.

 It would be possible to give your ZX81 some "sensory"
devices or transducers which would enable it to, in a limited
way, perceive some things in its environment by attaching to it
input ports or A/D converters etc. You could also give it hands,
so to speak, by attaching to it output ports which could control
something in its environment.

 After having given your computer these things, it would
still be necessary to give it a sense of time in order to link it
to the way that the real world does things. For instance, if you
were collecting data in your house by monitoring the temperature
and using that information to control your boiler better, your
computer would, in all probability because of its speed, have the
ability to take a temperature reading once every 1/1000th of a
second. Now it is obvious that gathering this much information
would be useless and wasteful, but if you had a method of
restricting the data-gathering process to read a temperature once
a minute, that data you collected could be analysed more
rationally and the whole project could be given a sense of
orderliness.

 The easiest way to give your computer a sense of time is to
give it a clock that it can look at every time you tell it to and
so enable it to make decisions about what to do and when to do
it. ZX81-FORTH has just such a clock. It is made up of a system
variable that is incremented every 1/50th of a second and counts
from zero to over two years. Both the clock itself (the system
variable that is incremented) and the period (the changeable
limit) are made up of 32-bit integers which can be accessed by
the two words :-

Time & the System Clock Section 15-0

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 58

TIME

PER

Which will place the address of the system variable
which contains the clock count for the system. This
variable is a 32-bit integer value which is incremented
each clock tick (1/50th sec) and continues until it
reaches the limit set by the system variable accessed
by the word PER. Upon power-up, this variable will
default to zero. In order to see the number of ticks
since the computer was switched on type :

 TIME D@ D.

Will place the address of the 32-bit system variable
containing the limiting value to which the system clock
counts. It is through this variable that the system
clock is given its overall period. This variable
defaults to a count that represents 24 hours or one
day.

Two examples of how to use the clock are given here. The word SET
is used to set the clock with the current time and the word RTIME
will enable you to display the time of day.

: READ BEGIN ." ?" S@ ># WHILE CR CO .W ." BAD" REPEAT ;

SET ." HOUR" READ TH ." MIN" READ TM ." SEC" READ TS D+ D+
 TIME D! ." DONE" ;

: RD 60. D/ SWAP DROP ROT ROT ;

: RD1 50. D/ SWAP DROP ROT ROT ;

: CPT TIME D@ RD1 RD RD SWAP DROP ;

: COL # C>N DROP 2 W> " : " + ;

: RTIME CPT COL C>N DROP .CN COL .CN COL .CN DROP ;

: TIME-DIS CLS BEGIN 13 EMIT RTIME AGAIN ;

The word READ is used to input one number to the stack much like
an INPUT would be used in BASIC. The ." ?" outputs a prompt to
the screen. The S@ reads a character from the input buffer (the
keyboard), and the ># attempts a conversion. If it converts to a
number ok, control will then pass out of the READ word and return
with a valid number on the stack. If not the CR CO .W etc., will
echo the rejected character and return to the start of the loop.
The SET word prompts for input with an HOUR? and after a number
has been input it runs TH which manipulates the 16-bit number on
the stack by the number of ticks in an hour and leaves the result
as a double number on the stack. The same is done for the minutes
and seconds leaving three double numbers on the stack which are
than added together with D+'s and deposited in the master clock
variable with the TIME D!. After it is all done it tells you by
saying DONE.

Time & the System Clock Section 15-0

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 59

The RD routine reduces a double number by dividing it by 60.
It leaves the double quotient on the top of the stack and a 16-
bit remainder under it. The CPT routine gets the 32-bit item from
the computer master clock and runs through the RD program to
leave the ticks, seconds, and minutes on the stack. It then
reduces what is left, the hours, to a single number, so CPT
reduces the time to hours, minutes, seconds and ticks on the
stack. COL converts a number to a character string three
characters long with a colon in the first location. RTIME puts
the other routines together and displays the time in the format
HH:MM:SS to the console. TIME-DIS just displays the time over and
over in an infinite loop.

Time & the System Clock Section 15-0

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 60

16.0 Tasking

ZX81-FORTH is fundamentally different from most other small
computer operating systems in that it allows the user to task
programs. Tasking is the act of scheduling a program to execute
at some time in the future. Any program can be scheduled in a
task, you can run approximately ten tasks simultaneously in the
background before the system will slow down so much as to be
useless in editing new programs. (Tasks use valuable processor
time which is usually spent in editing new programs), How much
the system slows down depends on what and how often tasks are
run.

Tasks are set up in this way :

TASK task-name program-name

Where program-name is any word which exists in the dictionary and
task-name becomes the name associated with the task ou are
defining. At this stage the task has been defined, but has not
yet been scheduled to execute.

Scheduling Tasks

The user can schedule a task to run using the IN, EVERY, AT
words. The time interval used can be :

TT Task Ticks (1/50th second)
TS Task Seconds
TM Task Minutes
TH Task Hours
TD Task Days
TW Task Weeks
TY Task Years

IN

EVERY

AT

START

Task identifier used to schedule a task to execute
after the specified time has elapsed.

This word is used by the task scheduler to schedule a
task to execute repetively using the period specified.

Task identifier used in conjunction with the system
clock to calculate the time existing between the
current time and the time specified during scheduling
so that the task will execute IN the appropriate time.

This word directs the task scheduler to clear the task
overflow flag, the task execution flag, and the task
execution queue to allow scheduling to continue.

Tasking Section 16-0

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 61

STOP

RUN

This word will set the task schedule overflow bit which
in effect stops the task's execution and scheduling.

Will increment the task execution queue if the overflow
bit has not been set. The net effect is to schedule the
task to execute the next clock tick if no other higher
priority task is executing.

The format for task scheduling is :

Command number time-type task-name

TASK TASK1 program-name

EVERY 5 TS TASK1

This schedules the task TASK1 to execute every 5
seconds.

IN 10 TM TASK1

This schedules the task TASK1 to run in ten minutes. So
now TASK1 is scheduled to execute every 5 seconds after
ten minutes. The system will automatically start
scheduling this task upon the execution of this
command.

To terminate the execution of a task the STOP command is
used. The format of this command is :

STOP task-name (NEW LINE)

To restart a task you must reschedule it, or if it has
already been scheduled you can use the START command.

Tasks may also be forgotten just as any other FORTH word.
This is possible because every task is a word in the dictionary.
This means that FORGET task-name (NEW LINE) could be used to
stop the task as well, however, the task could not subsequently
be rescheduled because the task definition would no longer exist
in the dictionary.

ZX81-FORTH also allows a task to be run without scheduling
it. This would be useful in debugging a task to ensure that it is
running properly. The command is :

RUN task-name (NEW LINE)

Before we deal with the word START, lets ask a question.
What would happen if your task was extremely long ? That is,
say, the task took longer than one second to execute and yet was
scheduled to execute one per second. In a case like this the task
would be rescheduled before it was completed, and the system

Tasking Section 16-0

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 62

Would eventually lock-up. A single task can be "back-scheduled"
63 times before the system would lock-up.

Now back to START. START clears the task register of "back-
scheduled" tasks and will unlock a lock-up task. This has to be
done for each task at a time and the command format is :

START task-name (NEW LINE)

LOCK

UNLOCK

Prevents all tasks from running. Tasks are still being
scheduled to execute during a LOCK condition, but
whatever program is being executed when LOCK is
executed will gain second to highest priority in the
system (second only to the master 1/50th second task)
and will not be interrupted by any other task.

Allows tasks which have been LOCKed out to begin
executing.

LOCK should be run only for a very short period of time.
This word locks all lower priority tasks from running. If the
LOCK to UNLOCK time was longer than the time the lower priority
task was scheduled to execute in, then the lower priority task
would be queued-up. LOCK does not stop the scheduling of tasks to
be run, it only stops their actual execution. Therefore, the
possibility exists for a task to completely fill it's queue
buffer (63 scheduled operations), and upon INLOCKing the tasks,
the task with the overflowed queue would be blocked from running
and could only be released by a START.

TOFF

TON

This word resets a system flag so that upon the
execution of a WARM restart the following items occur :

- Causes a LOCK of all tasks
- Sets the background task to a null task
- Forces the display to SLOW mode

TOFF is the default state on power-up.

Disables TOFF and allows scheduled tasks to execute
after a WARM restart.

It is also possible to link a short program to run
continuously in the background. A program linked in such a way
will execute any time that there is nothing else going on in the
system and in effect has the lowest priority of any programs in
the system. Programs which are put into the background must not
output any information to the console or request any input from
the keyboard buffer. If a background task does, there is a high
likelihood that the system will not work properly. Background
routines can schedule higher priority tasks to run and can access
any of the system variables just as other routines in the system
can, but the background routine must execute quickly, in the

Tasking Section 16-0

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 63

Order of 1/10th second or less, or the system's overall
performance will deteriorate. Remember, though, that if the
system slows down by 50% it will still be many, many times faster
than the ZX81 BASIC !!

BACK

NUL

Is used to link in a user routine into the background.
BACK program-name (NEW LINE) will make 'program-
name' part of the background activity.

Is a program which does nothing. It is used to swap out
non-empty tasks from the background. BACK NUL will put
the default null task into the background.

Try this :

: A ." THIS IS A TEST " CR ;
TASK B A
: C RUN B ;
BACK C

This program will take A, a program which prints out the
line "THIS IS A TEST" and attach a task B to it. The program
"C", when executed, schedules B to execute immediately. C is then
put in the background so that any time the system is doing
nothing it schedules it to do something, namely execute A. To
stop the message from printing continuously to the screen just
hit SHIFT/SPACE momentarily. This will execute a WARM reset which
automatically resets the background task to NUL.

One of the most useful tasks to run is a set of routines to
print out the stack contents on the bottom line of the screen.
The entire program should be typed on the editor screen. Then
switch to the console screen (SHIFT/EDIT) and type CPL to compile
the entire editor screen.

HEX CLS 16 CO 5 + C!
0 17 1F 17 SCREEN ST ST REV
: SCL 0 C N>C ST .W ;
: STD # 5 W> ST .W ;
: ST4 4 0 DO 4 I - PICK STD LOOP ;
: STE SCL ST4 FA7E SP@ - 2/
" SP = " ST .W STD ;
TASK STK STE
EVERY 1 TS STK DECIMAL

What is happening ? The first line clears the console screen.
The second line creates the reverse video display line at the
bottom of the screen. The screen name is ST (for stack screen).
The SCL word is a screen clear command. STD is a screen display
word. Finally, ST4 is the word which displays the top 4 stack
values. STE stands for stack execute, this being the execution
part of the code. The routine clears the screen (SCL), then
displays the top 4 items (ST4), then gets the stack pointer value
and displays it. Lastly, the final statement is a task which
schedules the word STE as a task called STK, once per second.

Tasking Section 16-0

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 64

The most useful application of multi-tasking are in
conjunction with various types of I/O (Input/Output), where the
power of the computer can be used to control things and events in
the outside world. In fact you could say that the whole future of
computers as controllers is in that sort of role.

Any demonstration of tasking without employing I/O can tend
to be trivial, and an impressive demonstration of tasking can be
carried out using the console screen as follows :

If you set bit 8 of the screen byte it will reverse the
video of that particular part of the screen. The word BYTE will
do this and it also incorporates an offset so that an index can
be applied.

: BYTE DUP FBUF + @ 128 XOR SWAP FBUF + ! ;

: CURSOR1 0 BYTE ; : CURSOR2 2 BYTE ;

: CURSOR3 4 BYTE ; : CURSOR4 6 BYTE ;

: CURSOR5 8 BYTE ; : CURSOR6 10 BYTE ;

TASK TASK1 CURSOR 1 EVERY 25 TT TASK1

TASK TASK2 CURSOR 2 EVERY 25 TT TASK2

TASK TASK3 CURSOR 3 EVERY 25 TT TASK3

TASK TASK4 CURSOR 4 EVERY 25 TT TASK4

TASK TASK5 CURSOR 5 EVERY 25 TT TASK5

TASK TASK6 CURSOR 6 EVERY 25 TT TASK6

This produces a very graphic illustration of the multi-tasking
capabilities if ZX81-FORTH effectively giving a number of
flashing cursors on the top line of the console screen.

Tasking Section 16-0

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 65

17.0 The CODE compiler

This section describes how machine code can be compiled. The
advantages of writing machine code are an increased execution
speed and more compact programs in terms of memory space used.

Machine code is a term referring to the type of numbers the
Z80 microprocessor inside the ZX81 will recognise. In reality, it
will only see combinations of 0's and 1's organised into data and
instruction codes. It would be easier to deal with these numbers
in terms of HEXADECIMAL, which is method by which each group of 4
bits is assigned a character between 0 to 9 and A to F. Now, it
would be very, very difficult to remember what every HEX number
did inside of the Z80, so every operation is represented
symbolically by a mnemonic. In is common practice to write source
code in these mnemonics and then convert the mnemonic to the
proper HEX number either by hand or with the aid of an assembler.

First, the CODE compiler will be described, and then an
example of its use will be given. The code compiler has the
following format :

CODE ... hex code ... ;C

The above example shows the CODE compiler outside of a
definition. It could also be used inside a colon definition. The
CODE compiler places code at the current head pointer in the
dictionary. Inside a definition you can have as many words as you
want before CODE and after ;C. Here is an example :

A machine code routine can be created to add the three
numbers found on the parameter stack and to put the result back
onto the stack. We will use the HL and DE registers for this, but
first a little background information.

ZX81-FORTH supports commands for putting numbers onto the
parameter stack and removing numbers from the parameter stack. To
remove a number from the stack all you have to do is execute a
Restart 2 instruction (D7 hex). This instruction takes the number
off the parameter stack and places it into the HL register pair.
From there on you can use it in a machine level CODE definition.
To take a number from the HL register and place it on the
parameter stack you must execute a Restart 1 instruction (CF
hex). Now let's write the routine :-

E5 PUSH HL ; This saves the contents of HL and DE
D5 PUSH DE ; by placing them on the processor stack
D7 UPOP ; Takes the top stack item and puts it

; into HL
EB EX DE,HL ; swaps the contents of HL and DE
D7 UPOP ; Puts the 2nd item into HL
19 ADD HL,DE ; Adds HL & DE and puts the result in HL
EB EX HL,DE ; Move answer of first add

The CODE compiler Section 17-0

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 66

D7 UPOP ; Get third number from stack
19 ADD HL,DE ; Adds the 3rd number with the sum of

; first two
CF UPUSH ; Puts result back onto stack
D1 POP DE
E1 POP HL ; Restore registers

No return instruction is required as this is automatically
inserted by the outer-interpreter or the ";" at the end of a
colon definition.

In order to enter this code in the dictionary under the word
"3+" the correct programming format would be :

: 3+ CODE E5 D5 D7 EB D7 19 EB D7 19 CF D1 E1 ;C ;

To execute 3+ place 3 numbers on the stack and use the new
word.

1 2 3 3+ . (NEW LINE)
6 OK

3+ adds the three numbers and replaces the sum, 6, onto the
stack. "." prints the top stack item.

It must be understood by the user that the FORTH interpreter
first searches the dictionary for an entry and then, if not
found, treats it as a number. Therefore if the user were to use
the op-code ED the interpreter would find the word "ED" in the
dictionary, as this is the editor screen identifier, and would
enter 0ED as the op-code, and assuming that 0ED is not in the
dictionary as a word, the system will treat it as a number and
compile the CODE correctly.

It also should be mentioned that the user should not use the
EXX and EX AF,AF' op-codes as this will upset the multi-tasking
and video display mechanisms.

The CODE compiler Section 17-0

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 67

18.0 Applications

A definition of the FIG word SP! to reset the stack would
be :

: SP! CODE FD 2A 90 FC ;C ;

A very useful routine follows and it this does the same
thing as the READ A$ statement in BASIC.

: READ ." INPUT REQUEST " S@ ;

This gets a string from the keyboard and places it on the
character stack. To display the result, type :-

CO .W (NEW LINE)

Here is a program to convert degrees Fahrenheit to degrees
Centigrade. First, let us read in a variable :

: READ ." ENTER DEGREES FAHRENHEIT " CR ." ? " S@ ;

Next a word to convert the string to a number:

: INPUT READ ># DROP ;

># converts the top of the character stack to a number. We must
drop a number because the conversion leaves a flag. Next is the
actual conversion routine.

: CEL 32 - 100 * 9 / 5 * 100 / ;

Note that the value must be scaled by 100 before performing the
division. A later division by 100 is needed to bring the result
back to its original scale.

: PRNT ." DEGREES CENTIGRADE " . ;

: CELS BEGIN INPUT CEL PRNT CR CR AGAIN ;

To run the whole program type "CELS" and respond to the prompts.

Applications Section 17-0

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 68

19.1 Any problems ?

We are very anxious to ensure that you are satisfied with
your FORTH software, so we hope you will feel free to contact us
should you have any problems or queries.

We would prefer you to ring us on Bournemouth (0202) 302385
between the hours of 4pm and 5pm, Monday to Friday so as to allow
our work to continue un-interrupted.

If you are using a Memotech Ram-Pack you will need to set the
bit switches to the following position :-

1 and 4 UP, 2 and 3 DOWN

The system will work with any Ram-Pack which is compatible
with the Sinclair 16k or Memotech, i.e. those Ram-Packs that
reflect all the way up to the memory map. If you have a memory
system which employs complete decoding and therefore does not
reflect its addressing up the memory map, it is unlikely that it
will work with this system. It should only be a simple
modification to make it Sinclair Ram-Pack compatible and you
should contact the supplier of the Ram-Pack for details.

Any problems ? Section 19-1

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 69

19.2 Acknowledgements

The FORTH language was originally publicised by the

FORTH Interest Group
P.O. Box 1105
San Carlos
California
CA. 94070 USA

FIG UK can be found at

C/O Honorary Secretary
15 St Albans Mansion
Kensington Court Place
LONDON W8 5QH

Acknowledgements Section 19-2

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 70

19.3 Copies

ZX81-FORTH is the copyright property of David Husband trading as
Skywave Software and all rights are reserved. ZX81-FORTH is
supplied on an "as is" basis, with no warranty, specific or
implied, attaching. No liability will be accepted for
consequential loss or error. Any faulty media will be replaced
free of charge.

This does not however affect any consumer rights under
existing legislation.

Copyright of all software remains with the original authors.
"Skywave Software", "Skywave", and the Skywave logo are
Registered Trademarks.

We would ask you, therefore, not to make, or permit to be
made, copies or give copies to any third party (your friends,
etc.) or sell copies.

We hope you will agree with us when we way that it is only
by Software Vendors, such as ourselves, making a reasonable
return on our efforts, that the quality of the software marketed
will improve and prosper. You must realise that it if piracy is
rife the best software will never be put onto the market and
prices will remain high. We ask your co-operation in ensuring
that this product is not abused in this way.

Copies Section 19-3

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 71

20.0 Memory Map

FFFFH
 +------------------+
 ¦ ¦
 ¦ Video RAM ¦
 ¦ ¦ +-----------------+
FD00H ¦------------------¦ --> --> FD00H ¦ ¦
 ¦ ¦ ¦ Character Stack ¦
 ¦ ¦ ¦ ¦
FA80H ¦------------------¦ FCC0H ¦-----------------¦
 ¦ ¦ ¦ ¦
 ¦ Parameter Stack ¦ ¦ System Variables¦
 ¦ ¦ ¦ FC40H ¦-----------------¦
 ¦ ¦ ¦ ¦ ¦
 ¦ V ¦ ¦ System Editor ¦
 ¦ ¦ PAD ¦ Stack ¦
 ¦ ¦ ¦ FBC0H ¦-----------------¦
 ¦ ¦ ¦ ¦
 ¦ ¦ ¦ Keyboard Input ¦
 ¦ ¦ ¦ Buffer ¦
 ¦ ¦ FB80H ¦-----------------¦
 ¦ ¦ ¦ ¦
 ¦ ¦ ¦ System Execute ¦
8000H ¦------------------¦ ¦ Stack ¦
 ¦ ¦ (FA80H) ¦-----------------¦
 ¦ ¦ moveable ¦ ¦
 ¦ ¦ ¦ Parameter Stack ¦
 ¦ ^ ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ ¦ ¦
 ¦ ¦ ¦ ¦ V ¦
 ¦ ¦ ¦ ¦ ¦
 ¦ Dictionary Space ¦
 ¦ ¦
4000H ¦------------------¦
 ¦ ¦
 ¦ Extension RAM or ¦
 ¦ ROM ¦
 ¦ ¦
2000H ¦------------------¦
 ¦ ¦
 ¦ ¦
 ¦ ZX81-FORTH ROM ¦
 ¦ ¦
0000H +------------------+

Memory Map Section 20-0

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 72

A>H Page 48 D@ Page 35
ABORT" Page 44 D# Page 48
ABS Page 23 ED Page 13
AGAIN Page 42 ELSE Page 40
ALLOT Page 33 EMIT Page 45
AND Page 27 EOF Page 12
AT Page 60 ERROROS Page 10
AUTO Page 14 EVERY Page 60
BACK Page 63 FAST Page 14
BASE Page 30 FBUF Page 35
BEGIN Page 42 FENCE Page 52
BLANKS Page 35 FILL Page 35
BLK Page 18 FORGET Page 52
<BUILDS Page 53 H Page 56
C= Page 28 H>A Page 48
C! Page 34 HEAD Page 56
C, Page 56 HERE Page 56
C@ Page 34 HEX Page 30
C>N Page 47 I Page 41
CASE Page 41 IF Page 40
CDROP Page 46 IMM Page 56
CDUP Page 46 IN Page 60
CLS Page 45 INTEGER Page 48
CO Page 13 J Page 41
CODE Page 65 KEY Page 45
COFF Page 17 LEAVE Page 40
COLD Page 9 LOAD Page 16
COPY Page 34 LOCK Page 62
CON Page 17 LOOP Page 40
CONSTANT Page 38 MAX Page 23
CPL Page 12 MEM Page 32
CR Page 44 MIN Page 23
DMAX Page 29 MINUS Page 24
DMIN Page 29 MOD Page 24
D. Page 31 MOVE Page 34
D= Page 29 MD* Page 25
D0= Page 29 MD/ Page 25
D> Page 29 M* Page 24
D< Page 29 M/ Page 24
D->Q Page 31 N>C Page 47
DABS Page 28 NI Page 41
DECIMAL Page 30 NUL Page 63
DMINUS Page 26 OR Page 27
DO Page 40 OVER Page 31
DOES> Page 53 P Page 51
DROP Page 31 PAD Page 35
DSWAP Page 32 PAGE Page 18
DUP Page 31 PER Page 58
D+ Page 25 PICK Page 32
D- Page 25 PRINT Page 51
D* Page 25 PRTR Page 51
D/ Page 25 REPEAT Page 42
D! Page 35 REV Page 14

Word Index Section 21-0

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 73

ROT Page 32 + Page 22
RUN Page 61 +ORG Page 35
S@ Page 45 +LOOP Page 40
S= Page 49 +- Page 24
SCREEN Page 13 +! Page 34
SLOW Page 14 - Page 23
SP Page 45 * Page 23
SP@ Page 33 */ Page 25
SP! Page 67 */MOD Page 24
START Page 61 / Page 23
STOP Page 61 /MOD Page 24
STORE Page 15 = Page 28
SWAP Page 32 # Page 48
S->D Page 31 > Page 28
T Page 56 ># Page 48
TASK Page 60 --> Page 18
TD Page 60 < Page 28
TH Page 60 <-- Page 18
THEN Page 40 ? Page 34
TIME Page 58 ?DUP Page 31
TM Page 60 @ Page 33
TO Page 38 ! Page 33
TOFF Page 62 . Page 31
TON Page 62 ." Page 44
TS Page 60 .C Page 46
TT Page 60 .CO Page 46
TW Page 60 .CN Page 46
TY Page 60 .CPU Page 8
U# Page 48 .P Page 51
UMOD Page 26 .W Page 45
UNLOCK Page 62 " Page 44
UNTIL Page 42 [_] Page 56
U/MOD Page 26 , Page 56
U. Page 31 ' Page 56
U* Page 26 (Page 56
U< Page 29
VARIABLE Page 37
VLIST Page 33
W= Page 49
W! Page 45
W@ Page 45
W> Page 47
WARM Page 9
WHILE Page 42
XOR Page 27
0= Page 28
0> Page 28
0< Page 28
2DROP Page 31
2VAR Page 37
2* Page 23
2/ Page 23
: Page 52
; Page 52
;C Page 65

Word Index Section 21-0

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 74

APPENDIX A -- The System Variables

System variables can be accessed by using the word +ORG

HEX 0 +ORG U. <NEW LINE>
FC50 OK This gives the start of

 The system variables

PLORG FC50
PGLOC FC52 Page count for SAVE or LOAD
BAKCNT FC54 Background count
MEMSIZ FC56 Memory size
CLKB FC58
CLIN FC60
CLKPER FC68 Period of one day
RMORG FC6C
DSPBUF FC6E Display Buffer Base Address
TSKORG FC70 Task Link Location
FENVAL FC72 Fence Value Location
PRTVCT FC74 Printer Vector
BLKLOC FC76
WBYTE FC78
CNVCT FC7A Number Converter Vector
BKVCT FC7C Background Task Vector
CTOPP FC7E Keyboard Top Pointer
CBOTP FC7F Keyboard Bottom Pointer
VIDGO FC80
VIDRFS FC82
CSPTR FC84 Character Stack Pointer
BASEV FC86 Current Base
TPTR FC88 Tail Pointer
WPTR FC8A Word Pointer
BTPTR FC8C Backup Tail Pointer
BWPTR FC8E Backup Word Pointer
STKO FC90 Stack Base
TSKVCT FC92
CSST FC94 Execution Stack Pointer
ESST FC96 Editor Stack Pointer
SYBASE FC98 System Base Vector
TFLAG FCA5 Task Flag
KBVCT FCA6
EDVCT FCA8
KBDFLG FCAA Keyboard Flags
FLAGS FCAD System Flags
EDBASE FCAE Editor RAM Base Vector
CDBASE FCB6 Console RAM Base Vector
PFLAG FCBE Printer Flags
PARSCT FCBF Token Character Count

Most of these addresses are already used by existing words in the
dictionary. The user alters these locations at his own peril !!

Word Index Section 21-0

Quick Keyboard Reference

Key Shifted Key Shifted Key Function

1 EDIT Toggles between screens
2 AND Fetches a line from PAD
3 THEN Puts a line into PAD
4 TO Deletes a line from the editor screen
5 ← Moves the cursor left
6 ↓ Moves the cursor down
7 ↑ Moves the cursor up
8 → Moves the cursor right
9 GRAPHICS Inserts a line on the editor screen
0 RUBOUT Deletes one character
Q "" Compiles an editor screen line
W OR Store word. Displayed as !
E STEP Fetch word. Displayed as @
R <= [character
T <> _ character
Y >=] character
U $ $ character
I ((character
O)) character
P " " character
A STOP Clears the present screen
S LPRINT % character
D SLOW ' character
F FAST \ character
G LLIST ^ character
H ** # character
J - - character
K + + character
L = = character
NEW LINE FUNCTION Home cursor to top left corner.
Z : : character
X ; ; character
C ? ? character
V / / character
B * * character
N < < character
M > > character
. , , character
SPACE BREAK WARM Restart, if held for 1/2

 Second COLD restart.

	ZX81-FORTH
	Disclaimer
	Contents
	1.1 Introduction
	2.1 Installation
	2.2 Power-up
	2.3 Restarts
	2.4 Errors

	3.0 Editor
	3.1 Commands
	3.2 Compilation
	3.3 Creating Screens
	3.4 Fast, Slow, Auto

	4.1 Storage
	4.2 Retrieval
	4.3 Loading
	4.4 Sequencial Loading

	5.1 Stack
	5.2 Dictionary
	5.3 Command Format

	6.0 Mathematics
	7.1 Logic
	7.2 Comparison

	8.1 Number Bases
	8.2 Stack Manipulation

	9.0 Memory
	10.1 Data Types
	10.2 Variables
	10.3 Integers
	10.4 Arrays

	11.0 Control Structures
	12.1 Character Stack
	12.2 Char. Commands
	12.3 Char./Number Stack
	12.4 Char. Comparison
	12.5 Kybd Allocations

	13.0 Printer
	14.1 Colon / Semicolon
	14.2 <BUILDS DOES>
	14.3 Op Sys Words

	15.0 Time & Sys Clock
	16.0 Tasking
	17.0 Code Compiler
	18.0 Applications
	19.1 Problems?
	19.2 Acknowledgements
	19.3 Copies

	20.0 Memory Map
	Index
	Sys Vars
	Kybd Quick Ref

