[image: image1.png]Adding a "Real" Keyboard
Hardware - ZX81/TS1000

Adding a full size keyboard to a TS1000 / ZX81 is not that dificult. The only requirements are
a soldiering iron, soldier and a keyboard that contains real switches.

A real switch is a physical switch that is soldiered to a board on the keyboard. Newer
keyboards contain a plastic membrane that is used for the switches, this type will not work
Two keyboards that | know will work are a Texas Instruments 99/4a keyboard (care must be
taken here cause they used membranes on some) and an original IBM PC keyboard know

as a clicky. You can tellif a keyboard is a clicky by just pressing the buttons. You will hear
a definate click when you press the key.

Once you have the keyboard you have to open it up to get to the back of the board where the
switches are soldiered. The quick and dity way to wire the keyboard is to use a razor blade
to cut all the existing traces and then to wire the keyboard with the matrix that will work for
the TS1000. The slow and clean way is to see how much of the existing traces you can
reuse before cutting them

Most keyboards that you find that are suitable for modifying to use on a TS1000 will have 2
lot of extra keys. Itis up to you if you want to try and wire these in, but remember a number
of the keys would correspond to using 2 keys on the TS1000, 0 you cantt wire them on a
single switch. Some extra keys you could wire are both shifts and the numeric keyboard (f it
has one).

The TS1000 keyboard matrix is very simple. It is wired as 8 1/2 rows and 5 double columns.
Soldier using thin wire all the 1/2 rows and all the double columns (minimum 80 soldier
connections). Keys are connected as follows:

http://www.ts1000.us/hardware.shtml?what=hardware&show=show-1134426260.htm
[image: image2.png]Tips & Tricks: Hardware

Listed below are a number of Hardware Tips & Tricks contributed by the visitors of our

website. If you would like to contribute something, click here.

Topic Title.

[KEYBOARD | Keyboard Repair

12/13/05

[KEYBOARD _|Adding a "Real" Keyboard

12/13/05

[image: image3.png]s

o

T

B

G

n1

v

sp
1-Q-A-sh-sp-nl-P -0
2-W-S-z-.-L-0-9
S-E-D-X-M-K-I-g
4-R-F-C-N-J-U-7
5-T-G-V-B-H-Y-&

Now we need to wire it to the motherboard. You can use 100" jumper strips as connectors
to the motherboard and soldier you connecting cable to them or you can soldier your new
keyboard directly to the motherboard. The connecting cable should not be too long, | have
had success using a IDE cable that is 14" long.

When looking at the motherboard with the heatsink (big aluminum plate) facing you you will
see the keyboard connectors. There are 2 of them, one is for the 5 double columns, the
other for the 8 1/2 rows. The cable is connected as follows:

HIH_ 8
Hin_ sn
T

i
&
1 ¥
Q

6

1

‘Once you have this wired, cleck for shorted contacts and then you can plug the power in and
give it a test. If you have soldiered it correctly it wll work.

[image: image4.png]‘Timex Sinclair 1000 / 1500 Memory Map

0000 - 8191

+ 8K Sinclair Basic Rom (Disassembly)

8192 - 16383

» 8k Unused Space (See Upgrades for use of this memory area)

16384 - 16509
+ System Variables

Notes* Address Name Contents.

1 1638 ERRNR 1less than the report code. Starts offat 255 (for - 1), s0
PEEK 16384, ifit works at all, gives 255. POKE 16384,n
can be used to force an error halt: 0 <= n <= 14 gives one of
the usual reports, 15 <=n <= 34 or 99 <=n <= 127 gives a
non-standard report, and 35 <= n <= 98 i liable to mess up

the display file
X1 16385 FLAGS Various flags to control the BASIC system.
X2 16386 ERR_SP Address of first item on machine stack (after GOSUB
retums).
2 16388 RAMTOP Address of frst byte above BASIC system area. You can

poke this to make NEW resenve space above that area (see
chapter 26) or to fool CLS into setting up a minimal display
fle. Poking RAMTOP has no effect until one of these two is
executed.

N1 16390 MODE SpecifiedK, L, F or G cursor.
PPC

N2 16391 Line number of statement currently being executed. Poking
this has no lasting eflect except in the last line of the
program.

S1 16393 VERSN 0 ldentifies ZX81 BASIC in saved programs.

S2 16394 E_PPC Number of cument line (with program cursor).

SX2 16396 D_FILE Address of Display File (screen data) in memory.

S2 16398 DF_CC Address of PRINT position in display file. Can be poked so
that PRINT output is sent elsewhere.

SX2 16400 VARS Address of user program variables in memory.

SN2 16402 DEST Address of variable in assignment.

SX2 16404 E_LINE Address of line being editted in memory

SX2 16406 CH_ADD Address of the next character to be interpreted: the

character afer the argument of PEEK, or the NEWLINE at
‘the end of a POKE statement.

[image: image5.png]16427 OLDPPC Line number of which CONT jumps.

1 16429 FLAGX Various flags.

SN2 16430 STRLEN Length of string type destination in assignment

SN2 16432 T_ADDR Address of next item in syntax table (very unlikely to be
useful)

16434 SEED The seed for RND. This is the variable that is set by RAND.

16436 FRAMES Counts the frames displayed on the television. Bit 15 is 1.
Bits 0 to 14 are decremented for each frame set to the
television. This can be used for timing, but PAUSE also
uses it. PAUSE resets to 0 bit 15, & puts in bits 0 to 14 the
length of the pause. When these have been counted down
to zero, the pause stops. ffthe pause stops because ofa
key depression, bit 15 is set to 1 again.

S1 16438 COORDS x-coordinate of last point PLOTted.

S 16439 y-coordinate of last point PLOTed

S1 16440 PR.CC Less significant byte of address of next position for LPRINT

to print as (in PRBUFF).
SX1 16441 S_POSN Column number for PRINT position.

28

88

SX1 16442 Line number for PRINT position.
S1 16443 CDFLAG Various flags. Bit 7 s on (1) during compute & display
mode

$33 16444 PRBUFF Printer bufler (33rd character is NEWLINE)
SN30 16477 MEMBOT Calculators memory area; used to store numbers that

‘cannot conveniently be put on the calculator stack.
S2 16507 notused

* The abbreviations in column 1 have the following meanings:
X The variable should not be poked because the system might crash.

N Poking the variable will have no lasting effect

S The variable is saved by SAVE.

The number in column 1 is the number of bytes in the variable. For two bytes, the firt one.

s the less significant byte - the reverse of what you might expect. So to poke a value vto
atwo-byte variable at address n, use

Note: the values in the following locations that are in parenthesis are not absolute
Iocations. The actual address is stored in the System Variables.

16509 -(D_FILE)

+ Users Basic program

[image: image6.png]Note: the values in the following locations that are in parenthesis are not absolute
Iocations. The actual address is stored in the System Variables.

16509 -(D_FILE)

+ Users Basic program

(D_FILE) - (VARS)
« Display file (Screen)

(VARS) - (E_LINE) -1

« User Variables

(E_LINE) 1

'« $80h - used to show end of VARS section

(E_LINE) - (STKBOT)

« Line being typed and work space

STKBOT) - (STKEND)

« Calculator Stack

(STKEND) - (ERR_SP)

+ Spare space and 280 Machine Stack (sp)

(ERR_SP) - (RAMTOP)

+ Gosub Stack

(RAMTOP) - end of memory
' USR Routines - end of memory equals:

18431 For 2k intemal ram
32767 for 16k Ram Pack
49511 for 32k Ram Pack
65535 for 64k Ram Pack

