UNDERSTANDING
YOUR
ZX81 ROM

SINCLAIR DEVELOPS A 'NEW' 8K ROM:

The original 8K ROM issued by Sinclair Research in March 1981 has
unfortunately been found to contain several errors. The major
problem is errors in calculations:

e.g.
PRINT 0.25 ** 2 gives 3.1423844, which is rather a long way
from the correct answer.

As well, the line POKE 16437, 255 has to be added for safety
after every use of the PAUSE command to prevent the 'white-out'
effect.

These failures in the program of the 8K ROM have resulted in the
issue of a 'new' 8K ROM by Sinclair Research.

This new ROM can be identified by obtaining the following results:
- PRINT 0.25 ** 2 gives the correct answer 0.0625
- PRINT PEEK 54 gives 136

(Both tests are necessary as there are just a few ZX 81s that
contain a hardware add-on to make them count properly, but they do
not contain the 'new' ROM.)

The differences between the 'new' and the 'old' ROMs are:

i) The workspace is cleared in the INPUT command routine
(a house-keeping error)

ii) FRAMES-high, 16437, is loaded with 255 on every return
from PAUSE. (a very good idea.)

iii) A change has been made in the VARIABLE routine at
102F Hex. (the reason for this is not known as yet)

iv) And most importantly the three troublesome 'extra'bytes
at 1733 - 1735 Hex. that lead to the arithmetic error
are simply deleted.

Although it is as yet unconfirmed by Sinclair, it would appear that
the hardware add-on that corrects the arithmetic on some of

the 'old' 8K ROMs works by nullifying the effect of the 'three
bytes'. Probably when the location 1735 is addressed the
instruction fetched is ‘LD H,A' but the instruction passed to the
280 is 'DAA'.

Readers of this book that are using machines fitted with the 'new'
ROM will have to bear the following points in mind:

The addresses of the routines between 0000 and OEE9 are unchanged.
Between OF20 and 1022 they are moved up by 3 bytes.

Between 1046 and 1716 they are moved up by 4 bytes.

Between 1737 and 1DE1 they are moved up by 1 byte.

The character generator remains at 1E0O.

The changes mean that in:

Chapter 4: the references to change are
the CLEAR command routine is at 149A
the 'assignment of a string variable' routine is at 13C8
the FAST command routine is at OF23
the SLOW command routine is at OF2B.

Chapter 6: the references to change are
Floating point handling routine - 158A
The function table - 1915
The floating point calculator - 199D
DIM - 1409 CLEAR - 149A PAUSE - OF32
SLOW - OF2B FAST - OF23

Chapter 7: the change to make is
As SLOW is now at OF2B the value to be entered in location
16534 is changed to 43 decimal. Remember the checksum
will go up by 3.

CONTENTS

Chapter

. Introduction

The Z80 Microprocessor

The Simple Mathematics

The Z80 Machine Code Instruction Set
Demonstration Machine Code Program

An Examination of the 8K Monitor Program

Using Machine Code Routines in BASIC Programs

NO O AN~

Appendices:
i. Extracts from the 8K Monitor Program
The SAVE command routine
The LOAD command routine
The Keyboard Scanning rouinte
The Keyboard Decode routine
ii. Tables of Z80 Machine Code Language Instructions
iii. A Decimal-Hexadecimal Conversion Table
iv. Table of ‘Key Values’

17
21
83
110
126

150

155

Preface

in the spring of 1980 Science of Cambridge (now Sinclair Research)
launched the ZX-80. It was the first of a new type of microcomputer for
the hobbyist. At last there was a very cheap and reliable machine that
together with an ordinary T.V. set and a cassette player formed a power-
ful home microcomputer system.

Although the ZX-80 was highly successful it was possible for Sinclair
Research to put a much improved version on the market by the spring of
1981. This second machine is called the ZX-81.

The ZX-81 is supplied with a 8K ROM that contains the operating
system program and a floating-point BASIC interpreter. The BASIC is
very easy to use and is quite fast enough for most simple programming
tasks. The added feature of ‘syntax checking’ is really quite a remarkable
extra to be found on such a small machine.

However once BASIC has been mastered the attraction of machine
code programming offers to the programmer, the possibility of producing
programs that RUN at great speed, and can be as complicated, for their
size, as any programs written for larger machines.

The main themes of this book are to develop an understanding of the
280 machine code language and to discuss the actual workings of the 8K
monitor program.

It is hoped that readers with only a knowledge of BASIC, will gain the
ability to write short machine code programs for themselves and thereby
derive even greater pleasure from their ZX-81.

4

1. Introduction

1.1 This book can be divided into two major parts.

The first part, chapters 1-4, discuss the Z80 microprocessor and its
machine code instructions.

The second part, chapters 5-7, deals with actual machine code prog-
rams. Chapter 5 containing programs that illustrate the different types of
machine code instructions in the Z80 instruction set. Chapter 6 dis-
cusses the 8K monitor program and chapter 7 gives some suggestions
on how to go about writing a machine code program.

Throughout the book there are many references to the 8K monitor
program. This program being chosen as an example program because it
is the only machine code program that is supplied with the standard
ZX-81.

it is assumed that the readers of this book will already have a fairly
good understanding of the BASIC language as used in the ZX-81. New
terms will be explained as they occur, drawing only on that knowledge of
the BASIC language.

1.2 The standard ZX-81 microcomputer system:

The standard system comprises:

1. The ZX-81 mainboard with 1-16K RAM (or more)

2. The keyboard, (integral with the mainboard unless otherwise
adapted).

3. The T.V. receiver.

4. The cassette player.
This standard system can be shown diagrammatically as;

T.V. RECEIVER . MAINBOARD
Display
Outgut SINCLAIR
21 2] ! OA,D ing
SAVEIn
: gi Zx81
POWER + Keyboard
(OT o) input
CASSETTE
PLAYER KEYBOARD

Diagram 1. The standard ZX-81 microcomputer system

5

Before the power supply is connected to the mainboard, it is really
quite obvious that no work can be performed by the system. However
once the power is connected the Z80 microprocessor starts working —
executing instructions sequentially — at its operating speed of 3.25 mhz.
A simple instruction will take 1.23 microseconds and the longest instruc-
tions no longer than 7.46 microseconds. The microprocessor then con-
tinues to execute between 141,00 and 812,500 machine code instruc-
tions each and every second until the power is turned off.

This book aims to develop an understanding for the reader of just what
the computer system is doing all the time, and why even very simple
tasks sometimes take a lot longer than ‘one eight hundred thousandth’ of
a second to be completed.

This book also introduces the reader to the subject of monitor prog-
rams but let it suffice for the moment to say that it is the monitor program
that is followed by the Z80, unless the BASIC USR command is being
used, and it directs the ZX-81 to;

“Produce” a screen display.

“Scan” the keyboard to detect keystrokes.

“Provide” a system for the LOADing and SAVEing of programs on
cassette tape.

“Give” the user the BASIC language.

2. The Z80 Microprocessor

2.1 The Z80 in outline.

The ZX-81 microcomputer has as its largest and most important ‘siicon’
chip a Z80 microprocessor. The Z80 is so called because it was de-
veloped by Zilog, Inc. of California, U.S.A. This company expanded and
improved an earlier microprocessor, the INTEL 8080. The figure ‘8’ in the
name also implies that it is an eight bit microprocessor.

A microprocessor is a ‘silicon’ chip, and in common with other ‘chips’, it
has input lines (= wires) that carry electrical impulses into the chip,
output lines that carry impulses away, and power and ground
connections.

But a microprocesor is a very specialised chip, that as the name
implies has been designed to perform specifically as a small ‘processor’
or computer.

Internally it is amazingly complicated, but fortunately the internal
structure can be divided into five functional parts. These are the Control
Unit, the Instruction Register, the Program Counter, the 24 User-
registers and the Arithmetic-logic unit.

This simplified view of the internal structure of the Z80 is shown
diagrammatically in diagram 2.

l+5v.

s)
5 | R
—
Address 4 ¢ Control
lines ¢ Unit ,
¢ ——— | 11
” F——— | address
— | lines
Program ——
Clock ———)
Counter [—
. . ———)J
8 &——) | Instruction RegnsterJ
-
Data
lines g ”
—3 User k 8
Registers ker—— }Control
3 k— 1| lines
gontrm _4 Arithmetic- Y
lines — Logic-Unit "J

Diagram 2. The Z80 microprocessor in outline.

7

A Z80 microprocessor only works as a computer because it is a
machine capable of following a ‘stored program’. This program is re-
quired to be in the form of a sequence of machine code language
instructions, that the Z80 can execute, together with any data that is
required. The whole of this program must be present in memory that can
be accessed by the Z80.

The 8K monitor program is such a program, and by being suppliedin a
ROM (read only memory) it is permanently present in memory. indeed
the standard ZX-81 has the monitor program so placed in memory that
when the power to the Z80 is turned on, it is this program that is followed
immediately.

2.2 The Data and Address buses

The Z80 microprocessor cannot work in isolation and it must therefore
have connections to the other parts of the system. These connections
are of three types, viz. the Control lines, the Data lines and the Address
lines.

The Control lines are single tracked (= 1 wire), whereas the Data lines
are usually collected together as an 8 track DATA BUS and the Address
lines as a 16 track ADDRESS BUS.

The Control lines will be discussed in the next section.

The Data bus is used to carry 8 binary digits at a time, in parallel. The
level of the voltage on a particular line signifying whether the line is
carrying a binary 0 or a binary 1. Each binary digit is usually called a ‘bit’
and a collection of 8 bits held together for a particular purpose is called a
‘byte’. The Data bus is therefore said to be able to carry ‘1 byte’ of data at
a time. The term ‘byte’ is commonly used to describe a ‘place’ where 8
bits of data would fit, rather than to an actual ‘byte’ of data.

The Address bus has 16 tracks and is therefore described as being ‘2
bytes’ in width.

It is a fundamental principle of the Z80 that data is held as a byte of 8
binary digits and an address is held always as 2 bytes, that is 16 binary
digits.

The Data bus is used to carry bytes of data to and from the Z80 and it
therefore physically links the Z80 to the RAM chips (random access
memory) and the ROM. The Data bus is also joined to the circuitry of the
keyboard, the T.V. display and the cassette player interfaces.

The Address bus also links the Z80 to the RAM chips and the ROM,
and in the ZX81 there are certain links to the keys of the keyboard.

Diagram 3 shows the Z80 and the main bus system.

8

The 16 bit wide ADDRESS BUS
[N

A
Address <

Address
lines to :‘"95 tc:‘)
ogic ¢l
keyboard <7 g ip
280
RAM ROM
N
X
t 3 t
data from . data to and
keyboard The 8 bit wide DATA BUS fromT.V. and
cassette player

Diagram 3. The Address bus, the Data bus and the Z80.

The Address bus is used to hold the addresses of the location in the
memory of the Z80, whether it be RAM, ROM or something else. As the
Address bus can hold a 16 bit binary number it follows that the range of
addresses that can be present on the Address bus can range from;

binary 0000 0000 0000 0000 — 1111 1111 1111 1111 which has the
decimal equivalent of;

0 - 65535 (location 0 being the first location)

When the Z80 is running, bytes of data are continually being READ
from memory and WRITTEN into the memory.

In order to perform a READ operation, the specific address of the
required location in memory must first be placed on the Address bus,
then the byte of data in that location can be copied and the copy passed
along the Data bus to the Z80.

In order to WRITE a byte of data into the memory, the required address
must first be placed on the Address bus, then the Z80 puts the byte of
data onto the Data bus and the memory chip subsequently collects the
byte of data.

The five functional parts of the internal structure of the Z80 will now be
discussed in turn.

2.3 The Control Unit.

The Control unit of the Z80 can be likened, in a simplistic manner, to the
‘manager of a production line'. it is therefore the responsibility of the
Control unit, the manager, to arrange that materials (data) are brought
into the Z80, that finished products (also data) are sent out to the correct
destination and to ensure that the ‘production’ is timed successfully.

In the case of the Z80 there are a large number of different timing
signals that are generated. Some of these signals are used only within
the Z80 itself, with the rest being put out on the Control Lines.

The Control Lines are those lines that carry ‘signals’ to and from the
Z80. For example there is a control line called ‘READ’ that is used during
the operation of reading data from outside the Z80.

It is important to understand that the Control Unit, like the production
manager, is in no way responsible for deciding which work is to be done,
only for actually doing the work. The Z80 has to follow the ‘program’ as
written by the programmer and the production manager has to follow the
‘program’ as set out by his company directors.

A more detailed discussion on the Control Unit and the Control signals
is beyond the scope of this book.

2.4 The Instruction Register

The term ‘Register’ is used to describe a single byte location within the
Z80 itself. It therefore is an actual place where 8 bits of data can be held.
In the Z80 there are a whole series of registers and the moving of bytes of
data ‘into and out of registers is the most important single feature of
machine code programming.

The Instruction Register is a register within the Z80 that has the
specific purpose of holding a copy of the instruction that is currently being
executed.

As was said earlier, the Z80 microprocessor only works as a computer
because it is a machine capable of following a stored program.

When the Z80 is following such a program, a copy of each instruction in
turn will be placed in the Instruction Register prior to its being decoded
and executed by the Z80.

2.5 The Program Counter

The Program Counter is not a single register but is a pair of registers
within the Z80. It is used for the specific purposes of holding the address
of the location in memory either of the current instruction that is being
‘executed’, or of the next instruction to be ‘fetched’.

When an instruction is to be ‘fetched’, the Control Unit arranges that a
copy of the contents of the location that is addressed by the Program
Counter, is loaded into the Instruction Register. It is also one of the jobs of
the Control Unit to ensure that the value in the Program Counter is then
changed so as to ‘point’ to the location of the next instruction.

10

The actions of the Program Counter are very similar to those of the
BASIC interpreter’s ‘Line number of current statement variable. (16391-
2). This variable holds the line numbers of the ‘current statements’ as the
interpreter goes through the lines of a BASIC program.

2.6 The User-Registers. (Main registers)

There are 24 User-Registers within the Z80. They have been termed
‘User’ registers because they can be filled with specified bytes of data by
the programmer.

The names given to these 24 different registers are not at a first glance
logically arranged. The reason for this state of affairs being thatthe Z80 is
a microprocessor that has evolved from earlier, and less complicated,
models. Certain of the names hark back to the earliest microprocessors
that were ever made, whilst later names have been added in an ‘ad hoc’
fashion. Some names proving to be more appropriate, and informative,
than others.

Ali of the registers, strictly, are single byte registers but they are
commonly used as register pairs.

The following diagram shows the 24 User-registers of the Z80 dis-
played as 12 register pairs, The ‘bit numbers’ are also shown.

Main Set Alternate Set

L2 [= L~ [¢]

76543210 76543210 76543210 76543210

[+ [¢ L+ [v

76543210 76543210 76543210 76543210

[8 | ¢ 1 B c

76543210 76543210 76543210 76

b [E [o | ®

76543210 76543210 76543210 76543210

L OO 0

| v]
L L TR 0

s
15 0

I

76543210 76543210
Diagram 4. The 24 User-Registers of the Z80.

11

Each of these registers will now be discussed briefly:
The Aregister:

This register is the single most important register of the Z80. Itis often
called the ACCUMULATOR, a name that goes back to those models in
which there was only one register that could be used to ‘accumulate’ a
result.

In the Z80 the A register is extensively used for arithmetic and logical
operations, and indeed there are many operations that can only be
performed using the A register.

There is a great number of different ways in which a byte of data can be
entered into the A register by the programmer and hence there are many
machine code language instructions that involve the use of the A
register.

The F register:

This is the FLAG REGISTER and it is often considered to be a
collection of 8 bits rather than a true register.

The concept of flags will be dealt with fully in chapter 4, but simply a
flag is a ‘bit’ that is given the value 0 (RESET) or the value 1 (SET)
depending on the resuit of the operation.

The flag register does have 8 bits but the programmer is really only
concerned with the ‘4 major flags'. These are called the Zero flag, the
Sign flag, the Carry flag and the Parity/overflow flag.

The ‘minor flags’ are used by the Control Unit and cannot directly be
used by the programmer.

The HL register pair:

In early microprocessors the register that was used to hold addresses
was a single byte ‘address register’, and was capable of addressing 256
locations. However when 2-byte address registers were introduced, one
of the registers was called the ‘high address register’ and the other the
‘low address register’. A register pair is capable of addressing 65536
locations.

The ‘H’ and ‘L’ therefore derive their origins from the words ‘high' and
‘low’. It is also interesting to note that the ‘high’ register, being a later
development has lead to the situation whereby an address, is always
given as the ‘low’ byte followed by the ‘high’ byte.

in the Z80 the HL register pair is just one of three register pairs that are
used to hold addresses. However the HL register is the most important.
The HL register pair can also be used to hold 16 bit numbers, rather than
addresses, and there are a certain number of arithmetic operations that
can be performed on these numbers. The registers of this pair can also
be used as single byte registers. However there are relatively few opera-
tions that can be performed on the H register, or the L register, as
compared to the A register.

12

The BC and DE register pairs:

These are the other register pairs that are predominantly used within
the Z80 to hold addresses. It would appear that their names were simply
derived because an ‘A’ register already existed.

Once again the programmer may use the registers as single registers,
and also there are certain instructions that use some of these registers as
counters.

The Alternate register set:

The Z80 is an interesting microprocessor in that it has an alternate
register set for the A, F, H, L, B, C, D & E registers. These alterate
registers are designated for A’, F', H', L', B’, C', D’ & E’ registers.

There are two special instructions in the Z80 instruction set that allow
for the contents of the alternate set of registers to be exchanged with the
contents of the current main set of registers. Once the registers have
been exchanged the Z80 will work with the ‘former alternate set’ believ-
ing it to now be its ‘main set’. The ‘former main set’ will now be treated as
an ‘alternate set'.

The programmer may exchange the register sets, totally or in part, as
often as he wishes in a particular program.

The concept of there being alternate registers may sound to be “ery
simple, but in practice it is far from being so. The problem is that the
programmer has to make sure that he knows which set of registers is
actually being used at a particular moment, as there are no machine
code instructions that only work on one set of registers and not the other.

Consequently there are many programmers that never use any of
registers in the alternate set, and their programs are pertectly successful.
However programs that take full advantage of the alternate set of re-
gisters may run faster than programs that do not. :

In many Z80 systems the use of the alternate set of registers is
restricted, and indeed this is the case in the ZX-81 system running with
the 8K monitor program. This means that a machine code program thatis
to ‘return’ to BASIC must not use some of the alternate registers, how-
ever a self-contained machine code program is quite free to use the full
set of alternate registers.

The IX and IY register pairs:

These two register pairs are used to perform operations using ‘index-
ing’. This is a facility which allows for entries in a list or table to be
manipulated as long as the Index Register pair being used holds the
‘base’ address of the table or list, and the position of the required entry is
known relative to the ‘base’ address.

The Stack Pointer:
The Stack Pointer is a register pair that is used to ‘point’ to a location in
memory in an area called the ‘stack’.

13

All microprocessors in current use require a stack, that is an area of
memory to use as a working space for the storage of addresses or data
on a temporary basis. Such a working area is called a stack because
each entry is stacked next to the previous one.

The Z80 uses a stack that ‘grows downwards’ in memory, so an
analogy might be to a high rise block of appartments in which the first
tenant moves into the top appartment, the next tenant into the one below
and so on downwards. The stack is used on a first-in last-out principle, so
the first tenant to move out will always be the latest tenant to have moved
in.

The stack pointer is used to point to the different locations in the stack
in a very special way. The stack pointer always holds the address of the
last location to have been filled. Therefore when a new entry is to be
made, the Control Unit first arranges for the value of the stack pointer to
be decreased by one (decremented) so as to point to the actual location
that is to be filled. The required data is then moved to this location.

When data is being removed from a stack the stack pointer has to be
increased in value.

To be a little more precise the stack pointer is always decremented
twice when data is added to the stack, and incremented twice after data
has been removed from the stack. This is because all data movements
involving the stack require the handling of two separate bytes of data.

It is an important point that strictly data is not removed from the stack
but only a copy of the data is made, and the data still remains in the
locations until it is overwritten at a later date.

To the programmer the use of the stack is almost a challenge. Once
again there are many programmers that shy away from using the stack to
temporarily hoid data, preferring to use ordinary memory locations in-
stead. Programs that do not use the facility of the stack may not run quite
as fast as those programs that do use the stack because moving data to
and from the stack is very quick.

The I register:

This is the Interrupt Vector register. The Z80 in its normal running state
executes sequentially the instructions in a machine code program. How-
ever this ‘normal’ execution of a program can be ‘interrupted’. In most
Z80 systems the ‘interrupts’ would be generated at the request of such
devices as printers, disk units and clocks. However in the ZX-81 system
‘interrupts’ are only used when forming the T.V. picture.

When a device wishes to interrupt the Z80 it places a signal on the
appropriate control line. The Z80 then responds by stopping its execution
of the normal program and attends to the request of the device.

In the ZX-81 system an ‘interrupt’ will lead to the execution of either the
routine that is located at address 0038, or the routine that is located at
address 0066.

14

However in larger systems many interrupt handling routines may be
needed and the interrupt Vector Register is used to hold the ‘high byte’ of
the address of a ‘table of addresses’ for the different handling routines.
When the | register is used in this way up to 128 different addresses can
be held in a single table.

The R Register:

This is the Memory Refresh Register. This register is just a simple
counter that is incremented every time an instruction or a byte of data is
fetched from the memory. The value held in the register therefore alters
between 0 and 255, over and over again.

In most Z80 systems this register is used to indicate which locations in
memory need to be refreshed (recharged) at a particular time. However
in the ZX-81 system the R register is used to count the number of
characters that go to form a single line of the T.V. display.

2.5 The Arithmetic-Logic Unit:

The Arithmetic-logic Unit, the ALU, is the last of the functional blocks of
the Z80, and it is concerned, as its name implies, which arithmetic and
logical operations.

It is important to realise that the actual operations that can be
performed by the ALU are very limited in scope.

Simply binary addition and subtraction are possible, but not binary
multiplication or division, as these latter operations are very complex in
binary arithmetic. Incrementation (adding 1) and decrementation (sub-
tracting 1) are just special cases of addition and subtraction and are
readily managed. The unit is also able to perform a large number of ‘bit’
operations, by this is meant that it can assess the value of a single bit
from within the byte held in the unit at a particular moment.

All of the above operations are discussed fully in chapter 4.

2.6 The Concept of machine code instructions:

Now that the ‘hardware’ has been discussed it is appropriate to dis-
cuss the actual structure of a machine code program. Machine code
program instructions are usually written in an ‘assembler language’
format, this means that ‘mnemonics’ (words) are given to each instruc-
tion so as to make it easier to read. Otherwise a machine code program
would appear as a simple list of numbers in binary, hexadecimal or
decimal arithmetic.

There is fortunately a great similarity between the structure of a BASIC
program and that of a machine code program.

A BASIC program is made up of a set of BASIC lines, each with a line
number that shows its correct position in the program, and in turn each
BASIC line is made up of an initial command followed, if necessary, by
further data.

15

A machine code program can have its structure described in exactly
the same way. A program is made up of a set of instruction lines, each of
which has allocated to it, an address in memory where the line is to be
placed, and in turn the instruction line is made up of an initial instruction
code followed, if necessary, by further data.

In the ZX-81 BASIC there are only 31 commands but in the Z80
machine code langauge there are over 500 different instructions. Fortu-
nately though, the situation is helped by the instructions being easily
divided into 18 smaller groups.

The Z80 instruction codes are 1-2 bytes in length, and of the 256
different numbers that can be held in a single byte, 252 numbers cor-
respond to 1-BYTE INSTRUCTIONS. The remaining 4 numbers are
used to form 2-BYTE INSTRUCTIONS.

Throughout this book the term ‘instruction code’ is reserved for de-
scribing the 1, or 2, bytes of the actual instruction, and where data has to
be placed after the instruction code, this data will always be described as
‘data’.

The full instruction length of the instructions in the Z80 machine code
langauge is said to be between 1 and 4 bytes, as there are no instructions
that taken together with any required data occupy more than 4 bytes.

Each of the different instructions has its own mnemonic, and these
have been chosen to explain what the instruction is actually doing. E.G. a
simple instruction mnemonic is ‘LD A, B’ which can be expanded to give

load a copy of the contents of the B register into the A register’.

To illustrate the points made in this section the following diagram
shows a few lines of machine code, together with the ‘assembler’ mne-
monics and an attempt using BASIC to show just what the lines achieve.

Indeed practically all machine code programs can be described in a
PSEUDO-BASIC, and to the programmer new to machine code
language programming, the approach can be very heipful.

Machine Code Language BASIC Language
address | Hex.code]| mnemonic |line No. Line
0528 3E78 LDA,+78 1323 LET A=120
052D 5F LDE,A 1325 LET E=A
052E 218204 | LD HL;+0482|1326 LET HL=1154
0531 19 ADDHL,DE 1329 LET HL=HL+DE
0532 19 ADD HL,DE {1332 LET HL=HL+DE
0533....... continues 1333..... continues

Diagram 5. An Introductory Machine Code Program

16

3. The Simple Mathematics

Absolute binary arithmetic

As it has already been said, the Z80 holds numbers which itis manipulat-
ing, either as 1 byte of 8 binary digits, or less commonly, as 2 bytes of 16
binary digits.

By saying that a number is held as an absolute binary number it is
meant that each byte has the binary range of 0000 0000-1111 1111, or
the decimal range of 0-255, and importantly there is no way that such a
number could ever be considered to be negative.

It is important to realise that all numbers held in the Z80 are always
absolute binary numbers. To a certain extent this can be shown by using
the BASIC PEEK command, as this command will return the contents of
any of the memory locations as a decimal number in the range 0-255.

The following program shows this in a very simple way:

1@ SCROLL

20 PRINT PEEK (RND*65535)
30 GOTO 10

RUN

The program prints the PEEK values and it can be seen that they all lie
in the range 0-255 decimal.

It is also important to realise that when operations, such as addition,
take the contents of the byte past 255 then the contents will revert to 0,
instead of going past 255. An operation such as subtraction will cause
the contents of a byte to return to 255 every time 0 is reached.

This behaviour of an absolute binary number can be shown by the
following BASIC programs:

For the addition of ‘255+5'

10 LET A=255
20 LET A=A+255
30 IF A>=256 THEN LET A=A—256
40 PRINT A
For the subtraction of ‘5—8'
10 LET A=5
20 LET A=A-8
30 IF AC@ THEN LET A=A+256
40 PRINT A

In a Z80 system all of the numbers are in ‘absolute binary’, but often the
programmer wishes to place a different interpretation on the value of the
number. The commonest method in use at the present time is called ‘2's
complement arithmetic’, and indeed in the Z80 instruction set there are
several instructions that have been included to help the programmer
handle this form of arithmetic.

17

3.2 2’s Complement Arithmetic

The concept behind ‘2's complement arithmetic’ is very simple, but when
it is actually used in a program the resuits can be very confusing. All
machine code programmers must therefore try to become familiar with
this important form of arithmetic.

Simply the method enables the programmer to designate the numbers
in the binary range 0000 0000 - 0111 1111 to the decimal range of 0 to
+127, and the numbers in the binary range 10000000-1111 1111 tothe
decimal range —128 to —1.

A result of this interpretation is to make ‘bit 7’ (the left-hand most bit)
act as a ‘sign’ bit. This bit will have the value 0 (Reset) for positive
numbers and the value 1 (Set) for the negative numbers.

The following diagram illustrates the method.

BINARY DECIMAL HEX.
01111111 +127 7F
01111110 +126 7E
Positive 3 : |
numbers P : i
0000 0010 +2 02
0000 0001 +1 01
0000 0000 0 00
1111 1111 -1 FF
, 11111110 -2 FE
Negative
Numbers 1 1000 0001 —127 81
1000 0000 -128 80
Sign
bit

Diagram 6. 2's complement arithmetic (1 byte)

Fortunately there is an easy way to find the 2's complement value of
the decimal numbers — 128 to —1, and that is as follows:

a) form the binary number of the absolute decimal number. e.g. to find
the 2's complement of —45, first find the binary equivalent to +45, which
is 0010 1101.

b) form the 1's complement of this number, (simply change all the bits
to their opposite values) e.g. 0010 1101 is changed to 1101 0010.

¢) add 1, (as you have passed zero) e.g. 1101 0010 + 0000 0001 =
1101 0011

The reverse of the above method can be used to convert 2's comple-
ment negative numbers to their decimal equivalents.

18

3.3 Hexadecimal coding

All machine code programmers do find that any attempt to produce more
than just a very few bytes of binary coding is just not practical. Therefore
programmers usually use a form of shorthand for describing binary
numbers and the commonest system to use is ‘Hexadecimal coding'.
(Hex. coding).

In many microcomputer systems the resultant ‘Hex-code’ can be
entered via the monitor program directly into the computer, however the
8K monitor program of the ZX-81 does not have this facility so the
programmer has either to enter his machine code in decimal numbers, or
to write for himself a Hex-loader routine in BASIC.

The principle behind Hex. coding is once again very simple, but it takes
a very long time to become fluent in its use, and even programmers of
some years experience still have trouble.

To obtain the Hex. code for a 8 bit binary number, the number is split
into 2 groups of 4 bits, each group being called a ‘nibble’. A Hex.
character is then assigned to represent each ‘nibble’. Hex. characters
are the decimal numbers 0-9 and the letters A-F.

The following table shows the different Hex. characters;

Binary Decimal Hex. character
0000 0
0001
0010
0011
0100
0101
0110
o111
1000
1001
1010
1011
1100
1101
1110
1111 15

A single binary byte is therefore represented by a pair of Hex.
characters.

PO OCINOMAWN =
MMOOWPOONOAHLWOWN—-O

eg. binary Hex. code
1010 1111 = AF

and
0001 1110 = IE

19

A 2-byte binary number will be represented by 4 Hex. characters.

eg. binary Hex. Code
1000 1000 0000 1011 = 880B

and
0001 000011110101 = 10F5

In the rest of the book 2-byte addresses will be shown as a single group
of 4 Hex. characters.
The following examples show how a 4 Hex. character number can be
converted to a decimal number.
Example Hex. to decimal
Hex. number = 789A
Decimal equivalent = 7" 4096 = 28672
8* 256 = 2048
9* 16= 144
+A* 1= 10

789A = 30874

or if the Hex. characters are taken in pairs:
Hex. 78 = 120; 120 * 256 = 30720
Hex.9A =154;154* 1= 154

= 30874

Appendix iii. is a Decimal-Hex. conversion table and the use of such a
table may be quicker and easier than trying to convert numbers by the
above method.

20

4. The Z80 Machine Code
Instruction Set

4.1 Instructions and data

The stage has now been reached when the actual instructions of the Z80
machine code instruction set can be discussed in turn.

The instructions are divided, in this book, into 18 groups, with each

group containing the instructions that hold a strong resemblance to each
other.

This book follows the convention that distinguishes between the actual

instruction, the initial 1-2 bytes, of the instruction line and the data, up to 2
bytes, that if required is placed after the instruction proper. The total
number of bytes in an instruction line being therefore 1, 2, 3 or 4.

1.

There are six classes of data that may follow instructions. They are:

A single byte constant. (+dd)

i.e. a number in the range Hex. 00-FF, decimal 0-255.

Instructions that are requred to be followed by a single byte constant

have this indicated in their mnemonics by there being a ‘+dd'".

eg. LDA,+dd
This instruction loads the A register with a constant held in
the next byte.

. A 2-byte constant. (+dddd)

i.e. a number in the range Hex. 0000-FFFF, decimal 0-65535.
Instructions that are required to be followed by a 2-byte constant have
this indicated in their mnemonics by there being a ‘+dddd'.
e.g. LDHL,+dddd
This instruction loads the HL register pair with the con-
stants held in the next 2 bytes. The first byte going into L,
and the second going into H.

. A 2-byte address. (addr.)

i.e. a number in the range hex. 0000-FFFF, decimal 0-65535.
Instructions that are required to be followed by 2 bytes of data that will
be used as an address have this indicated in their mnemonics by
there being a ‘addr.’.
e.g. JPaddr.
This instruction causes an absolute jump to the ‘address’
held in the next 2-bytes. (=GOTO) The first byte holds the
low byte of the address and the second byte the high byte
of the address.

21

4. Asingle byte displacement constant. (e)
i.e. a number in the range Hex. 00-FF, decimal —128 to +127, as the
number is always considered to be in 2's complement arithmetic.
Instructions that are required to be followed by a single byte displace-
ment constant have this indicated in their mnemonics by there being a
‘e’.
eg. JRe
This instruction causes a ‘relative jump’, the displacement
constant indicating the size of the jump.
5. Asingle byte indexing displacement constant. (d)
i.e. a number in the range Hex. 00-FF, decimal —128 to +127, as the
number is always considered to be in 2's complement arithmetic.
Instructions that are required to be followed by a sing'e byte indexing
displacement constant have this indicated in their mnemonic by there
beinga ‘d.
e.g. LD A,(IX+d)
This instruction loads the A register with the contents of the location
whose address is formed by the addition of 'd’ to the current value
held in the index register pair, IX.
6. A single byte indexing displacement constant AND a single byte
constant. (d,+dd)
i.e. Two bytes of data each in the range Hex. 00-FF, decimal —128 to
+ 127 for the first byte and 0-255 for the second byte.
Instructions that are required to be followed by two bytes of data for
this purpose have this indicated in their mnemonics by there being a
‘danda‘+dd’.
e.g. LD (IX+d),+dd
This instruction loads the constant ‘+dd’ into the location,
whose address is formed by the addition of ‘d’ to the cur-
rent value held in the index register pair, IX.

4.2 The Instruction Groups

There are many ways in which the hundreds of different machine code
instructions could be split into groups. The method chosen in this book is
to split the instruction into functional groups, so that the reader can study
the instructions in a group and then RUN the BASIC programs from
chapter 5 that demonstrate those instructions.

Group 1. The No operation and Return instructions:

mnemonic instruction Hex.
NOP 00
RET C9

22

it may initially be strange to find that these two instructions should form
the first group. However these instructions can be used alone to make
complete machine code programs that will RUN under the BASIC USR
command.

The NO OPERATION instruction when executed simply results in the
Z80 marking time for 1.23 microseconds. It is used just as ‘padding’ in a
program or to cause short timing delays when they are needed.

The RETURN instruction has exactly the same effect as the BASIC
RETURN command, as it used to make a return from a subroutine. If the
machine code program is being RUN under the USR command then the
final RETURN instruction will cause a return to BASIC.

The actual steps of the execution of the RETURN instruction are to
load the Program Counter register pair with two bytes of data taken from
the stack. The Stack Pointer register pair will have its contents in-
cremented twice because two bytes of data have been removed. The
first byte taken off the stack forms the low address byte and the second
byte forms the high address byte of the Program Counter.

A more detailed discussion of the RETURN instruction is to be found
on page 65.

The BASIC programs that demonstrate these instruction are to be
found on page 83.

Group 2. The instructions for loading registers with constants:
The following instructions are all involved with loading the registers
with single byte constants:

mnemonic instruction Hex.
LD A, +dd 3E dd
LD H,+dd 26dd
LDL,+dd 2E dd
LD B,+dd 06 dd
LD C,+dd OE dd
LD D,+dd 16 dd
LD E,+dd 1E dd

The instruction length of all these instructions is 2 bytes, one byte for
the instruction proper and one byte for the constant.

The effect of all the above instructions is simply to load the specified
register with a copy of the constant.

The following instructions are all involved with loading register pairs
with 2-byte constants:

23

mnemonic instruction Hex
LDHL,+dddd 21 dddd
LDBC,+dddd 01dddd

LD DE,+dddd 11dddd

LD IX,+dddd DD 21 dddd

LD 1Y,+dddd FD 21 dddd

LD SP,+dddd 31 dddd

The instruction length of these instructions will be either 3, or 4 bytes.

The effect of the above instructions is to load the specified register pair
with a copy of the data held in the 2 bytes held after the instruction proper.
The first byte going to the low register, (i.e. L, C, E, X, Y or P) and the
second byte going to the high register. (i.e. H,B, D, l or S).

The instructions in this ‘Group 2’ are some of the most commonly used
instructions in any program.

The loading of single byte constants is used for many different
reasons. The following example, taken from the 8K monitor program
shows just one use of this type of instruction.

An example from the 8K monitor program

In the ‘print a whole BASIC line routine’ it is necessary when

printing the ‘cursor’ to determine whether it should be a ‘F', ‘G’, 'K’

or a ‘L’ (inverted). Instructions that load the B register with the

character codes for ‘inverse F' or ‘inverse K' are used. When

‘inverse G’ or ‘inverse L’ are required, they are obtained by chang-

ing the contents of the B register.

address Hex. code mnemonic comment

0O7A0 06 AB LD B,+AB the ‘inverse F’
and

O7A8 06BO LD B,+BO the ‘inverse K’

The instructions in ‘Group 2’ that load register pairs with 2-byte con-
stants are also very important. The constants can either represent num-
bers in the decimal range O-65535, or represent addresses for any
location in memory.

The HL, BC and DE register pairs are the ‘working’ pairs, whereas the
IX, IY and SP register pairs are used to perform ‘special’ functions.

The loading of constants into the ‘working’ register pairs is very
straightforward, but the use of the indexing register pairs is worth discus-
sing further.

The IX and IY index register pairs are used to ‘index’ along a list, a table
or just a block of code. The actual usage of the 1Y register pair in the 8K
monitor program forms a good illustration of how the IY register pair can
be used.

24

An example from the 8K monitor program.

In the monitor program, at location Hex. 03F8 is an instruction
line that results in the IY register pair being set to Hex. 4000,
decimal 16384.
address Hex. code mnemonic comment
O3F8 FD21 0040 LDIY,+4000 Dec. 16384

The purpose of this line is to set the 1Y register pair to hold the
‘base address of the system variables’. The value of the contents of
the IY register pair thereafter remains unchanged, and the IY
register pair is frequently used to ‘index’ through the system vari-
ables. e.g. the location 16385, Hex. 4001, that holds various flags,
is referred to as ‘IY+1’ where the value ‘1’ is the displacement
constant.

The BASIC programs that demonstrate these instructions are to be
found on page 84.

Group 3. Register copying and exchanging instructions:

There really is a most comprehensive set of instructions for copying
the contents of one register into another. There are also three instruc-
tions for the copying of the contents of register pairs into the Stack
Pointer.

The following table gives the instruction codes for all the instructions
that copy the contents of a single register ‘r' into another specified
register.

r LD LD LD LD LD LD LD

register Ar H,r Lr B,r Cr D,r E,r

A 7F 67 6F 47 4F 57 5F
H 7C 64 6C 44 4C 54 5C
L 7D 65 6D 45 4D 55 5D
B 78 60 68 40 48 50 58
C 79 61 69 41 49 51 59
D 7A 62 6A 42 4A 52 5A
E 7B 63 6B 43 4B 53 58

LD Al ED 57

LD AR ED 5F

LD LA ED - 47

LD RA ED 4F

Table of the 53 single register-to-register copying instructions.

All the instructions in the main part of the table are very commonly
used instructions. They are all single byte instructions and because there
is no requirement for the Z80 to fetch any data from outside the
microprocessor itself, the instructions are all executed very quickly. (1.23
microseconds).

25

The special instructions for handling the contents of the Interrupt
Vector Register and the Refresh Register are not used by the program-
mer in most Z80 systems.

However, both of these specialised registers are used in the 8K
monitor program as detailed next.

An example from the 8K monitor program.

In the ZX-81 system the Interrupt Vector Register is used to form
the high part of the address of the characters in the ‘character
generator'. The ‘character generator’ is the part of the 8K ROM that
holds the details of the shape of each of the characters that can be
displayed on the T.V. screen. The base address of the ‘character
generator’ is Hex. 1E@ @, and therefore the | register is loaded with
Hex. 1E. The actual instruction lines are:

address Hex. code mnemonic comment
@3F2 3E1E LDA,+1E Load A with

a constant.
03F4 ED 47 LDIA Transferitto|l.

Although the ‘LD I,A’ instruction is a rather specialised instruc-
tion, it still is a typical ‘single register-to-register copying
instruction’.

The Refresh Register is also used in the 8K monitor program. Itis
loaded with a copy of the A register in the instruction lines:

address Hex. code mnemonic comment
0041 Load R

& ED 4F LDRA with a copy
02B5 of A

The Refresh Register is then used as a counter for the characters
of a line as they are passed to the T.V. When the register has
counted 32 characters a hardware interrupt is generated.
The three instructions for copying the contents of a register pair into
the Stack Pointer are:

mnemonic instruction Hex.
LD SP,HL F9

LD SP,IX DD F9

LD SP,IY FDF9

The use of these three instructions is specialised but the ‘LD SP,HL’
instruction is used in the ‘initialisation routine’ in the 8K monitor program.
An example from the 8K monitor program.
In the instruction line held at 03EC is the following code:

address Hex. code mnemonic comment
03EC F9 LD SP,HL Set Stack
Pointer.

26

The effect of this line is to set the Stack Pointer so as it points to
an area of the RAM where the stack can be put.
In this ‘Group 3’ there are also three instructions that allow for the
exchanging of the contents between registers. The instructions are:

mnemonic instruction Hex.
EXDE,HL EB
EXX D9
EXAFAF 08

Of the three instructions only the ‘EX DE,HL’ instruction is concerned
with the exchanging of the contents of registers solely within the main set
of registers.

The ‘EX DE,HL’ is a very useful instruction as it allows for the contents
of the two register pairs to be switched over. This is important because
there are certain operations that can be performed on one register pair
and not the other. One example of such a task is the addition of two 186 bit
numbers that can only be performed using the HL register pair. Therefore
if a number presently held in the DE register pair is to form part of a 16 bit
addition,then the register pairs are exchanged, the addition performed
and the registers exchanged back. This technique of ‘exchanging-
performing a task-exchanging again’ is a very commonly used
technique.

An example from the 8K monitor program.

In the ‘Change all pointers’ routine’ it is, in effect, necessary to
add the contents of the BC register pair to the contents of the DE
register pair. Unfortunately there is no instruction to perform this
operation using the DE register pair, but it can be done using the HL
register pair. Hence the following method is used:

address Hex. code mnemonic comment
09CO EB EXDE,HL Exchange.
O9CT e e, The addition.
09C2 EB EX DE,HL Exchange again

which has the effect of: LET DE=DE+BC.
The other two instructions are involved with the handling of the re-
gisters in the alternate register set.
The ‘EXX’ instruction causes a switching over of the H,L,B,D and E
registers with the H',L’,B’,C’,D’ and E' registers.
The 'EX AF,A’F” instruction is simpler in that only the A and F registers
are switched with the A’ and F’ registers.
Using of the alternate registers is always ‘complicated’ programming
and the 8K monitor program uses the alternate registers frequently!
An example from the 8K monitor program.
The A’ and F’ registers are used to hold certain values involved in
the production of the T.V. display in the ‘slow’ mode.

27

The following lines from the ‘slow display routine’ show the
registers being exchanged, output signals being generated and the
registers being exchanged back.

address Hex. code mnemonic comment

a211 28 EXAFAF Exchange
registers.

212

to Output timing

219 signals.

21A @8 EXAF,A'F Exchange
registers back.

The other registers of the alternate register set are used fre-
quently for two specific reasons. When printing a character the
current values held in the registers are ‘preserved’ by exchanging
register sets (but not AF) and again in the Calculator routines the
alternate registers are used to ‘preserve’ values whilst other work is
being done.

The BASIC programs that demonstrate these instructions are to be
found on page 85.

Group 4. Instructions for the loading of registers with data copied from a
memory location.

The Z80 instruction set has many instructions that ‘fetch’ data from the
memory and then ‘load’ that data into a main register.

The address of where the data is to be found must be specified, as
must the name of the register, or register pair, into which the data is to be
placed.

The instructions in this group can be divided into three subgroups that
depend on just how the addressing of the memory is performed.

There is:

(a) ‘absolute addressing’ when the actual address is held as data after
the instruction proper.

(b) ‘indirect addressing’ when the required address is already held in
the HL, BC or DE register pairs.

(c) ‘indexed addressing’ when the address is formed by the addition of
adisplacement value to a ‘base’ address already held in an index register
pair.

28

SUBGROUP A: INSTRUCTIONS USING ‘ABSOLUTE ADDRESSING'
The following instructions form this subgroup:

mnemonic instruction Hex.

LD A,(addr.) 3A addr.

LD HL,(addr.) 2A addr. (usual form)
or
ED 6B addr.
(unusual form)

LD BC,(addr.) ED 4B addr.

LD DE,(addr.) ED 5B addr.

LD iX,(addr.) DD 2A addr.

LD IY,(addr.) FD 2A addr.

LD SP,(addr.) ED 7B addr.

The ‘LD A,(addr.)’ instruction is the only instruction in the whole of the
280 instruction
set that allows for a single byte of data to be copied into a single register.
This instruction ‘load the A register with a byte of data copied from a
memory location’ is really one of the oldest microprocessor instructions.
it existed on the very earliest models. However in the Z80 it is just one of
many instructions that is possible to use.

An example from the 8K monitor program.

As part of the ‘initialisation routine’ it is necessary to assess the
size of the memory available, so as to determine whether the RAM
is large enough to hold a ‘complete display file'.

The instruction line held at 04B7 uses the ‘LD A,(addr.)’ to collect
the value of the high byte of RAMTOP.

This value is then compared to the constant Hex.4D. The result
of this comparison shows whether or not there is 314K available.

address Hex. code mnemonic comment
0487 3A 0540 LDA,(4005) High byte of
RAMTORP.
ABA et eeeeeeveeeen, Test the resuit.

Note carefully how the low byte of the address has to be placed before
the high byte of the address.

The other instructions in this subgroup are very important mstructlons
as they enable two bytes of data to be copied from memory into a register
pair.

The mnemonics for these instructions really are abbreviated, it can be
helpful to consider the mnemonics should be of the form;

e.g.LD BC,(addr). expandsto LD C,(addr.)andLD B,(addr.+1).

The expansion shows that the addressed byte is copied to the low
register of the register pair, and that the following byte is copied into the
high register of the register pair.

29

These instructions are very commonly used in any program and the
following example shows just two of the hundreds of occurences.
An example from the 8K monitor program.

In the ‘initialisation routine’ a testis made to see if the ‘currentine
with the program cursor’ comes before the ‘top program line in the
listing'.

In order to do this test the system variables involved are loaded
into the HL and DE register pairs.

address Hex. code mnemonic comment
@41C 2AGA 40 LD HL,(400A) ‘E-PPC’
41F ED5B234G LDDE,(4023) ‘S-TOP

SUBGROUP B: INSTRUCTIONS USING ‘INDIRECT ADDRESSING'
The instructions in this subgroup use the HL, BC or DE register pairs to
point to the required memory location. There are instructions for loading
the A register that use all these register pairs, but the other main registers
can only be loaded using the HL register pair.
The instructions are:

mnemonic instruction hex.
LD A,(HL) 7E

LD A,(BC) GA

LD A,(DE) 1A

LD H,(HL) 66

LDL,(HL) 6E

LD B,(HL) 46

LD C,(HL) 4E

LD D,(HL) 56

LD E,(HL) 5E

All of the instructions in this subgroup have an instruction length of 1
byte.

It is important to point out that these instructions result in the loading
of just one byte of data into a single register.

These instructions are once again very common instructions and the
example below shows instructions from this subgroup being used twice
to load a register pair with two bytes of data that were held together in the
memory.

An example from the 8K monitor program.

The ‘Change all pointers routine’ is a very frequently used
routine. It is used to increase or decrease the values of the 9 main
pointers. i.e. D-File, DF-CC ... STKEND, which are the system
variables 16396 to 16413.

30

The pointers require to be changed whenever characters are
added, or removed, from the program area.

In order to pick up the pointers in turn, the HL register is set to the
‘base address’ of the list and then stepped along the list. ‘LD E,(HL)’
and ‘LD D,(HL) instructions are used to ‘pick-up’ the required
values.

The following instruction lines show just the ‘pick-up’ part of the
routine.

address Hex. code mnemanic comment

@9AF 210C40 LD HL,+400C Setbase pointer
9B2 3E09 LDA,+G@9 9 variables
9B4 5E LD E,(HL) Lowbyteto E
9B5 23 INC HL Increase pointer
9B6 56 LD D,(HL) High byte to D

(the ‘INC HL' instruction will be explained in more detail on
page 39.)

SUBGROUP C: INSTRUCTIONS USING 'INDEXED ADDRESSING'.
The instructions in this subgroup allow the programmer to load the:
main single registers with a copy of a byte of data specified as being held
in atable, list or just a block of code. The base address already being held
in the IX or 1Y register pairs.
The following diagram shows how the different values of the displace-
ment constant are used to form the addresses of the entries in the table

-~

'IV+7F | TOP
IY+7E

Y +02 Table, List or
‘1Y+01’ Ljust a block of
‘Y+00’ memory

hold; this ‘IY+FF (256 locations)
location’s 1Y+FE'
address

‘lY-zk81'
‘I'Y+80° BOTTOM/

Diagram 7. To show the Y register pair being used to
address a table of 256 locations.

31

The actual instructions in this subgroup are:

mnemonic instruction hex.
LD A,(IX+d) DD 73d
LD H,(IX+d) DDe6d
LD L,(IX+d) DD6Ed
LD B,(IX+d) DD46d
LD C,(IX+d) DD4Ed
LD D,(IX+d) DD56d
LD E,(IX+d) DD5Ed

Note for the lY Instructions change:
IXto Iy and DD to FD
In the 8K monitor program the 1Y register pair always holds the value
Hex. 48@@ which corresponds to the base address of the system vari-
ables. The IX register pair is used in the ‘display’ routine as a store for a
‘return address’ and is therefore not available to the programmer unless
programs contain their own ‘display’ routine.
An example from the 8K monitor program.
The individual system variables are often ‘picked-up’ using the
instructions in this subgroup.
The following instruction line from part of the ‘Clear screen
routine’ is used to ‘pick-up’ the system variable ‘DF-SZ’ which is the
‘number of lines in lower part of screen’ variable, 16418.

address Hex. code mnemonic comment

OAtF FD 46 22 LD B,(lY+22) Load B with
system variable
16418, DF-SZ

The BASIC programs that demonstrate these instructions are to be
found on page 87.

32

Group 5. Instructions for loading locations in memory with data copies
from registers, or with constants.

The instructions in this group perform operations that in general are the
opposite of those described in group 4.

The instructions that form this group allow for the contents of the main
registers to be copied to addressed locations in the memory, or for
constants to be loaded into these locations.

The instructions can again be divided into three subgroups that each
uses its own mode of addressing.

SUBGROUP A: INSTRUCTIONS USING ‘ABSOLUTE ADDRESSING'
The following instructions form this subgroup:

mnemonic instruction Hex.

LD (addr.),A 32 addr.
LD (addr.),HL 22 addr. (usual form)
or
ED 63 addr. (unusual form)
LD (addr.),BC ED 43 addr.
LD (addr.),DE ED 53 addr.
LD (addr.),IX DD 22 addr.
LD (addr.),lY FD 22 addr.
LD (addr.),SP ED 73 addr.

Note that there is no instruction for directly storing a constant in an
absolutely addressed memory location.

Once again the only register that can be copied, as a single register, is
the A register. All of the other instructions involve the moving of two bytes
of data. It is the contents of the LOW register of the register pair that is
copied into the addressed location, and the contents of the HIGH register
that goes into the following location.

The instructions that use ‘absolute addressing’ are very commonly
used and the following example shows the whole of the ‘CLEAR com-
mand routine’.

An example from the 8K monitor program

In the BASIC interpreter there are routines for each of the 31
BASIC commands. The CLEAR command has one of the simplest
routines. When it is called, the routine loads a Hex.80 into the first
location of the VARIABLE area. Then the address of the next
location is stored as the E-LINE, STKBOT and STKEND system
variables using instructions from this subgroup. The effect of these
operations is to ‘empty’ the variable area and the workspace.

33

address Hex. code mnemonic comment

1496 2A 10 40 LD HL,(4010) Pick-up VARS
1499 36 80 LD (HL),+8@ Enter Hex. 80
149B 23 INCHL Move on one
place.
149C 22 1440 LD (4014),HL E-LINE set.
149F 2A 14 40 LD HL,(4014) Restore HL
14A2 22 1A 40 LD (401A),HL STKBOT set.
14A5 221C 40 LD (401C),HL STKEND set.
14A8 C9 RET Return.

The ‘LD (HL),+8@’ instruction is one of the instructions to be
included in subgroup b. (see below). The ‘INC HL' instruction is
dealt with more fully on page 39.

Note that as the routine stands the instruction line containing the
instruction ‘LD HL,(4014)’ is superfluous. It is present because the
later instructions of the routine also form part of the RUN sequence,
which does perform a CLEAR operation whenever it is called.

SUBGROUP B: INSTRUCTIONS USING ‘INDIRECT ADDRESSING'

The instructions in this subgroup allow for a copy of the A register to be
stored in a location addressed by the HL, BC or DE register pairs, and for
the contents of the other main registers to be stored in a location addres-
sed only by the HL register pair. The HL register pair can also pointto a
location that is to be loaded with a singie byte constant.

It is also convenient to include in this subgroup three rather specialised
instructions that allow the contents of HL, IX or IY register pairs to be
exchanged with the last two bytes of data on the stack.

The actual instructions are:

mnemonic instruction Hex.
LD (HL),A 77
LD (BC),A @2
LD (DE),A 12
LD (HL),H 74
LD (HL),L 75
LD (HL),B 70
LD (HL),C 71
LD (HL),D 72
LD (HL),E 73

LD (HL),+dd 36dd
EX (SP),HL E3

EX (SP),IX DDE3
EX (SP),IY FDE3

The instructions of this subgroup are often used to ‘put-back’ values
following some sort of manipulation.

34

An example from the 8K monitor program

In the two earlier examples that use the ‘Change all pointers’
routine (pages 27 and 30) it was shown that the values of the
pointers are ‘picked-up’ in turn, and then manipulated. The follow-
ing instruction lines show how the results are ‘put-back’ using
instructions from the present group under discussion.

address Hex. code mnemonic comment
09C3 72 LD (HL),D Put-back
high byte.
09C4 2B DECHL Decrease
pointer
09C5 73 LD (HL),E Put back
low byte.

The instruction ‘DEC HL’ will be discussed in detail on page 42.

An example showing the use of the ‘LD (HL),+dd’ instruction is to be
found on page 34 .

The three more specialised instructions that use ‘indirect addressing’
all involve the exchanging of the last two bytes on the stack with those
bytes addressed by the HL, IX or IY register pair.

These instructions can be used in many instances, and the following
example shows how the ‘EX (SP),HL’ instruction is used in the 8K
monitor program.

An example from the 8K monitor program

The use of the stack by the BASIC interpreter is rather comp-
licated as part of the stack area is used to hold the ‘return line
numbers’ for the GOSUB-RETURN command and another part of
the stack is used as the ‘normal’ working stack.

When a GOSUB command is executed the appropriate values
are putinto the GOSUB STACK, and when a RETURN command is
executed, these values are collected. However the interpreter must
check for the ‘RETURN without GOSUB’ error condition.

This is done using the ‘EX (SP),HL’ instruction. If there are no line
numbers on the stack to be used as return line numbers then the
high byte taken off the stack will be Hex. 3E.

Therefore the interpreter checks that the high byte on the stack is
not Hex. 3E, if itis then error ‘7’ is signalled.

The actual lines are:

address Hex. code mnemonic comment
@GED9 E3 EX (SP),HL Collect stack
values.
EDA 7C LDAH High byte to
A register

... followed by test against Hex. 3E. Error 7 if equals Hex. 3E.
Proceed to use line number, if not Hex. 3E.

35

SUBGROUP C: INSTRUCTIONS USING ‘INDEXED ADDRESSING'.

The instructions in this subgroup allow the programmer to copy the
contents of the main registers into an indexed addressed location, or to
load a constant into the location.

Theinstructions are: . .
mnemonic instruction Hex.

LD (IX+d), A DD77d
LD (IX+d), H DD74d
LD (IX+d),L DD75d
LD (IX+d),B DD70d
LD (IX+d),C bD71d
LD (IX+d),D bD72d
LD (IX+d),E DD73d
LD (IX+d),+dd DD36ddd

Note for the IY instruction change:

IXtolY and DD to FD

These instructions are used in the ‘opposite’ way to the instructions in
group 4c.

The following example shows how a constant can be loaded into a
location in a table as long as the ‘base address’ has been specified and
the ‘displacement’ is known.

An example from the 8K monitor program

When the power is connected to the ZX-81, the computer enters

‘slow’ mode. The entry into this mode is not at random but arranged

by the following line:

address Hex. code mnemonic
@3FC FD363B40 LD (403B),+40

This line from the ‘initialisation’ routine sets the flags of the
system variable CD-FLAG, 16443, now with Bit 6 set (not bit 7) the
computer will be in ‘slow’ mode until a change is made by the
programmer.

The BASIC programs that demonstrate these instructions are to be
found on page 89.

Group 6: The Addition Instructions.

The instructions in this group are the first instructions for handling
arithmetic operations that are to be discussed. Later groups of instruc-
tions show how the Z80 can handle subtraction, comparison and logical
operations.

The Addition instructions add in absolute binary arithmetic a specified
number to the contents of a single register, a register pair or an indexed
addressed location in memory.

The instructions in this group can be divided into three subgroups, with
each subgroup having instructions with its own mnemonic type.

36

The subgroups are:

(a) The ADD instructions. These are straightforward addition
instructions.

(b) The INC instructions. INCrementation just adds 1 to a specified
number.

(c) The ADC instruction. These instructions are identical to the ADD
instructions except that if the ‘CARRY FLAG'’ is Set then the resuit of the
addition is incremented as well.

Before the instructions in the group are discussed it is appropriate to
describe the ‘CARRY FLAG' in more detail.

The Carry Flag:

In reality the Carry flag is bit @ of the F register. It is used in many
different instances, but as an introduction to its function, the Carry flag
can be considered to often act as an extra bit for the A register.

Normally the A register is described as having 8 bits, numbered @-7.
Bit @ is the right hand bit, the least significant bit, and bit 7 is the left hand
bit, the most significant bit. However it is useful in many instances to
consider the Carry flag as an 8th. bit to the register.

Note however that the Carry flag is just a bit in a different register and
can be considered to be the 8th. bit of practically all the registers and not
just the A register.

In respect of the Addition instructions the following statements can be
made:

i. The ADD instructions ignore the state of the Carry flag before
performing the addition, but Set (give value 1) the flag if the addition
generates an extra binary digit, and Reset (give value @) if not.

i.e. Hex.

60 + 6C = CC Carry willbe RESET
6@ + AC = @C Carry will be SET.

The addition of Hex. 6@ + AC will give @C when restricted to the 8 bits
of a register, but the overflowing of the register leads to CARRY SET.

ii. The INC instructions do not take any notice of the Carry flag, and
the result of an INC operation does not affect the Carry flag.

iii. The ADC instructions include the present state of the Carry flag in
their additions, and leave the Carry flag Reset, or Set, depending on the
final resuit of the ADC operation.

i.e. Hex.

@1 + 60 + 6C = CD Carry willbe RESET
@1 + 6@ = @D Carry willbe SET.
CARRY

FLAG

SET

With the Carry Flag Reset initially the results will be Hex.CC and 8C as
before.

37

SUBGROUP A: THE ADD INSTRUCTIONS;
The instructions are:

mnemonic instruction Hex mnemonic instruction Hex

ADD A, +dd Cédd ADD HL,HL 29
ADDA,A 87 ADDHL,BC 09
ADDAH 84 ADD HL,DE 19
ADDA,L 85 ADDHL,SP 39
ADDA,B 80 ADD IX,IX DD 29
ADDA,C 81 ADD iX,BC DD 09
ADDA,D 82 ADD iX,DE DD 19
ADDA,E 83 ADD IX,SP DD 39

ADDA,HL) 86
ADDA,(IX+d) DD86d

Note for the Y instructions change:
IXto Y and DD to FD

The ADD instructions are really very straightforward instructions, and
are frequently used.

There are many instructions for forming the result of an addition in the
A register, when dealing with single bytes, and the HL register pair when
dealing with 2-byte numbers. However it is never possible to perform an
addition and get the result directly in any of the other registers.

A good example of the use of an ADD instruction is given by the
following example from the ‘Keyboard decode routine’.

An example from the 8K monitor program.

There are 78 different keyboard codes generated by the 78
different keys on the keyboard of a ZX-81. In the ‘keyboard decode
routine’ these codes are arranged so as to be in the range decimal
1-78, Hex. 01-4D. The appropriate characters for these codes are
to be foundin the ‘character table’' at Hex. 007E to 00CB inclusively.

For example the ‘A’ key will give a keyboard code of value '5', and
the fifth character in the ‘character table is decimal 38, Hex. 26,
which is the ZX-81 code for the letter ‘A’

The ‘character table’ at Hex. @@ 7E-@@CB is for the ‘L-mode’. The
table at Hex. @@CC-G0@F2 is for ‘F-mode’ and the table at Hex.
0OF3-@110 is for ‘G-mode’

The ‘keyword table’ is at Hex.0111-G1FB.

address Hex. code Mnemonic comment
@7D5 217D 00 LDHL,+@@7D Setbase
address.
7D8 5F LDE,A Transfer to E.
7D9 19 ADD HL,DE Form new
address.

38

The routine operates with the keyboard code being originally in
the Aregister. The base address is put into the ML register pair and
the keyboard code is added to the base address. The D register
holds zero throughout the routine. (see page 153 for the full ‘Key-
board decode routine).
SUBGROUP B: THE INC INSTRUCTIONS

The instructions in this subgroup are used to add 1 to a specified 8 bit,
or 16 bit number. The addition is in absolute binary arithmetic. The
instructions neither take note of the Carry flag nor let the result of the
addition affect the Carry flag.

The actual instructions are:

mnemonic instruction Hex mnemonic instruction Hex

INCA 3C INC HL 23
INCH 24 INCBC @3
INCL 2C INC DE 13
INCB ¢4 INC SP 33
INCC a@cC INC IX DD 23
INCD 14 INC IY FD 23
INCE 1C

INC (HL) 34

INC (IX+d) DD 34d

INC (1Y +d) FD34d

Examples showing the use of INC instructions can be found on pages
31 and 34.
SUBGROUP C: THE ADC INSTRUCTIONS

The instructions in this subgroup enable the programmer to perform
the addition between 8 bit, and 16 bit numbers, taking into account the
present state of the Carry flag. The result of the addition is unchanged if
the Carry flag is Reset, but incremented if the Carry flag is Set.

All the ADC instructions Set, or Reset, the Carry flag depending on the
result of the final addition.

The actual instructions are:

mnemonic instruction Hex mnemonic instruction Hex

ADC A, +dd CEdd ADC HL,HL ED 6A
ADCAA 8F ADCHL,BC ED4A
ADC AH 8C ADCHLDE EDS5A
ADCA,L 8D ADC HL,SP ED7A
ADCAB 88
ADCA,C 89
ADCAD 8A
ADC AE 8B

ADC A,(HL) 8E
ADCA,(IX+d) DDS8Ed
ADCA,(lY+d) FDS8Ed

39

The ADC instructions are not commonly used codes unless it is
important to consider the ‘carry’ when using ‘multiple precision arith-
metic’. In such a case the ‘carry’ between bytes enables the programmer
to hold numbers in more than two bytes.

The following example from the 8K monitor program however shows
the Carry flag being used in the ‘PRINT command routine’.

An example from the 8K monitor program

In the ‘PRINT command routine’ the characters for ‘comma and
semi-colon’ have to be separated from the other characters. This is
performed by arranging that: for the ‘comma’, the A register holds
Hex. @@ with Carry Reset and for the ‘semi-colon’ that the A register
holds Hex.FF with Carry Set.

The routine then uses the ADC instruction. The effect of this
being that the A register will hold Hex. @@ for both the ‘comma’ and
the ‘semi-colon’.

address Hex code mnemonic Comment
0AD7 CE QG ADCA,+00 Just add the
Carry.

The BASIC programs that demonstrate these instructions are to be
found on page 92..

Group 7. The Subtraction Instructions.

The Subtraction instructions allow the programmer to subtract, using
absolute binary arithmetic, a specified number from the contents of a
single register, a register pair or an indexed addressed location in
memory.

As with the Addition instructions, the Subtraction instructions can be
divided into three subgroups, each with its own mnemonic. '

There are:

(a) The SUB instructions that allow for single byte numbers to be
subtracted from the contents of the A register.

(b) The DEC instructions that allow for the special case of subtracting
1 from a specified byte, or register pair.

(c) The SBC instructions that allow for the subtraction of the present
value of the Carry flag as well as the normal subtraction.

in respect of the Subtraction Instructions the following statements can
be made:

i. The SUB instructions are not affected by the present state of the
Carry flag. However the Carry flag will be Reset if the result of the
subtraction is correct, and Set if the result is incorrect because zero has
been passed.

40

e.g.

in decimal 220 - 205 = 15 with CARRY RESET
inHex. DC-CD =OF

in decimal 208 - 208 = 0 with CARRY RESET
in Hex. D@ - D@ =(0a

indecimal 215-216 = 255 with CARRY SET
in Hex. D7 = D8 =FF

In effect ‘Greater than’ or ‘Equals’ gives RESET and ‘Less than’ gives
SET.

ii. The DEC instructions do not take any notice of the Carry flag and
the result of a DEC operation does not affect the Carry flag.

iii. The SBC instructions include the present state of the Carry flag into
their subtractions. The result of the SBC operation also affects the Carry
flag.

SUBGROUP A. THE SUB INSTRUCTIONS
The instructions in this subgroup are:

mnemonic instruction Hex.
SUB +dd D6 dd

SUBA 97

SUBH 94

SUBL 95

suBB 90

SuBC 91

SUBD 92

SUBE 93

SUB (HL) 96

SUB (IX+d) DD96d
SUB (IY +d) FD96d

The SUB instructions are the normal instructions for performing sub-
traction on single byte numbers, and are therefore commonly used
instructions.

The following example shows the ‘SUB +dd’ instruction.

An example from the 8K monitor program.

In the previous example from the ‘PRINT command routine’
(page 40) it was said that the A register is made to hold: for the
‘comma’ the value Hex. @@ with Carry Reset and for the ‘semi-
colon’ the value Hex. FF with Carry Set.

These results are the direct result of the following line where the
constant value Hex. 1A, decimal 26, is subtracted from the ‘charac-
ter codes’ for ‘comma’ and ‘semi-colon’ held in the A register.

41

Address Hex. code mnemonic comment
@AD5S D6 1A SUB +1A Simply
subtract ‘26’

For a ‘comma’

in decimal 26 — 26 = @ Carry Reset.

iInHex. tA— 1A =00
For a ‘semi-colon’

Indecimal25—26 = 255 Carry Set

InHex. 19— 1A =FF

SUBGROUP B. THE DEC INSTRUCTIONS
The instructions in this subgroup are:

mnemonic instructionHex mnemonic instruction Hex

DECA 3D DECHL 2B
DECH 25 DECBC @B
DECL 2D DECDE 1B
DECB @5 DEC SP 3B
DECC @D DEC IX DD 2B
DECD 15 DECIY FD2B
DECE 1D

DEC (HL) 35
DEC(IX+d) DD35d
DEC (IX+d) FD35d

The DEC instructions are commonly used instructions when dealing
with ‘counters’ and ‘pointers’. The following example shows the DEC HL'
instruction being used four times in quick succession in the ‘Initialisation
routine’ where the HL register pair is being used as an address pointer.

An example from the 8K monitor program

Part of the ‘Initialisation routine’ involves loading the value Hex.

3E into the first location of the stack, (see also example on page 35)

and then setting the Stack Pointer and the system variable ERR-

SP, 16386, to their correct initial values.

Address Hex. code mnemonic comment

@3E5 2A (G4 40 LD HL,(4004) Fetch
‘RAMTOP’

3E8 2B DEC HL Point to 1st loc.

3E9 36 3E LD (HL),+3E ‘return’ marker

3EB 2B DEC HL Miss a location

3EC F9 LD SP,HL Store on SP

3ED 2B DECHL Miss one

3EE 2B DEC HL Miss one

3EF 220240 LD (400@2),HL Store as
‘ERR-SP’

42

SUBGROUP C: THE SBC INSTRUCTIONS

The SBC instructions allow the programmer to perform subtraction
taking into account the value of the Carry flag. There are SBC instruc-
tions for handling both single byte and 2-byte subtractions.

Note that the SBC instructions will not give the correct result of a
subtraction operation unless the Carry flag is initially Reset. This canbe a
problem when dealing with 2-byte subtractions as there are no SUB
instructions for handling 2-byte operations.

The usual way of ‘clearing’ (resetting) the Carry flag is to use the ‘AND

A’ instruction (see page 45).

The instructions in this subgroup are:

mnemonic
SBC A,+dd
SBCAA
SBC AH
SBCA,L
SBCA,B
SBCA,C
SBCA,D
SBCAE
SBC A,(HL)

SBCA,(IX+d) DDSEd
SBCA,(lYy+d) FD9YEd

9F
9C
9D
98
99
9A
9B
9E

instruction Hex mnemonic
DE dd

SBC HL,HL
SBCHL,BC
SBC HL,DE
SBC HL,SP

instruction Hex

ED 62
ED 42
ED 562
ED72

Whereas the ADC instructions are uncommon the SBC instructions
are widely used for many different reasons.
The following example shows the ‘SBC HL,DE’ instruction being used

to compare two 16 bit numbers.

An example from the 8K monitor program

The ‘print a whole BASIC line routine’ is used to print an ex-
panded BASIC line, replacing ‘tokens’ with appropriate ‘words’, i.e.
character code 234 with the word REM. etc. It is also this routine
that adds the ‘inverse S’ that shows a syntax error.

When the ‘syntax checking routine’ finds an error the appropriate
address is stored as system variable 16408, X-PTR.

As the ‘print a whole BASIC line routine’ prints each character, a
check is made to determine whether or not an ‘inverse S’ should be
printed instead. The following lines show how the addresses are
compared using a SBC instruction.

address

@76D
771
774
775

Hex. code
ED 48 18 40
2A 16 40

A7

ED 42

mnemonic

LD BC,(4018)
LD HL,(4016)

AND A
SBC HL,DE

43

comment
Pick-up X-PTR
Pickup CH-ADD
Clear Carry flag
Compare
addresses.

... and print an ‘inverse S’ if the addresses match, this will be
shown by the result being zero.

The BASIC programs that demonstrate these instructions are to
be found on page 94.

Group 8: The Compare Instructions

The number of instructions in this group is very small, but the
instructions are some of the most commonly used instructions in
any machine code program.

The Compare instruction allows the programmer to compare the
current contents of the A register with another byte of data. As usual
this second byte of data can be a constant, the contents of a main
register or the contents of an indexed addressed location in
memory.

The Compare instructions perform a subtraction operation (with-
out Carry) but the result is discarded after being used in the setting
of the flags in the flag register.

The most important flag is the Carry flag and this is affected in the
same manner as with the subtraction instructions. An operation in
which the contents of the A register is ‘Greater than' or ‘Equal’ to the
second byte of data will RESET the Carry flag, whereas an opera-
tion with the contents of the A register being ‘Less than' the second
byte will SET the Carry flag.

The instructions are:

mnemonic instruction Hex.
CP +dd FE dd
CPA BF
CPH BC
CPL BD
cPB B8
CPC B9
CPD BA
CPE BB

CP (HL) BE

CP (IX+d) DDBEd
CP (IY+d) FDBE d

There are also block compare instructions but these are considered on
page 72.
In the monitor program there are literally hundreds of comparisons and

the following example illustrates the ‘CP H’ instruction, where the con-
tents of the A register is compared to the existing contents of the H

register.

44

An example from the 8K monitor program

As part of the initialisation of the ZX-81 there is a check made on
the memory to determine just how much memory is available for
use. This ‘RAM check routine’ tries to load the Hex. value @2 into
every location between Hex. 7FFF and 40@@. When a 16K RAM
pack is fitted there will be a real location available for each attempt,
but when less memory is fitted, the ‘RAM check routine’ will fail to
load the actual location. Following the loading of the memory the
routine continues by reading each location in turn, starting at Hex.
4000, until it finds a location that does not contain the value Hex.
@2. The address of that location becomes RAMTOP.

A ‘CP H' instruction is used in the following lines to test whether
or not the contents of the H register has reached Hex. 3F as the
routine goes down through the memory, entering the value Hex.
02.

address Hex. code mnemonic comment

0002 01 FF7F LD BC,+7FFF SetBC totop of
possible RAM.

3CB 60 LDH,B Transfer BC

3CC 69 LDL,C toHL.

3CD 3F 3E LD A,+3F Load A.

3CF 3602 LD (HL),+02 The Hex. 02.

3D1 2B DECHL Next location.

3D2 BC CPH The comparison

. . and back to @3CF if not ‘equal’.

Note that the BC register is set to Hex. 7FFF in instruction line
3002, as part of the power-on procedures.

The NEW command will use the RAM check routine to check up
to RAMTOP by entering the routine at 33CB rather than 6000 as
the value of RAMTOP may have been altered by the programmer in
the meanwhile.

The BASIC program that demonstrates an instruction from this group
is to be found on page 95.

Group 9: The Logical Instructions
There are instructions for performing the logical operations of AND,
OR and XOR. These operations are performed between the contents of

the A register and a specified byte.

Each subgroup will now be discussed in turn:

SUBGROUP A: THE AND INSTRUCTIONS

The logical operation AND allows the programmer to ‘AND’ the mdu-
vidual bits of the A register with the corresponding bits of a specified byte.
The result of the 8 operations is returned to the programmer in the A

register.

45

The AND operation specifies that the resultant bit of the test between
two bits will be Set only if both of the bits under test are themseives Set.
Otherwise the resultant bit will be Reset.

e.g. 101061010 AA
in binary AND AND
11000000 in Hex. (0/0)
results in results in
10000000 80

The effect of the AND operation can be summarised as being an
operation that KEEPS certain bits in the A register, or MASKS OFF the
other bits, depending on the point of view that is taken.

In the example above the operation of ‘AND + CO’ will result in the
KEEPing only of the Bit 6 & the Bit 7 in the A register; or the MASKing
OFF of Bits @-5 inclusive.

The AND instructions also clear the Carry flag, and hence ‘AND A’ is
often used as the ‘clear carry flag’ instruction.

The instructions in this subgroup are:

mnemonic instruction Hex.
AND +dd E6dd

AND A A7

ANDH A4

AND L A5

ANDB AQ

AND C Al

AND D A2

ANDE A3

AND (HL) A6

AND (IX+d) DD A6d
AND (IY+d) FDA6d

The following example shows the ‘AND +dd’ instruction being used to
MASK OFF two bits.
An example from the 8K monitor program.
The ‘Keyword table’ at 0111 - 01FB holds the expanded forms of
all keywords.
e.g. the keyword LIST is held as:

Hex. 31 inlocation 01AF
Hex. 2E inlocation 01B0
Hex. 38 inlocation 01B1
Hex. B9 inlocation 01B2

where the character code for ‘L' is Hex. 31, for 'l is Hex. 2E, for 'S’ is
Hex. 38, and the character code Hex. B9 is an ‘inverted T' that
marks the end of the word.

46

In the ‘print keyword routine’ are the instructions that find the
appropriate word for a particular keyword code. The letters of the
word are then printed on the T.V. display in the following manner:

Each letter is ‘ANDed’ with Hex. 3F. This removes nothing from
the normal letters but removes the ‘inverting’ from the last letter of
the word.

The letter is then printed.

The letter is fetched again and tested at this point to find out
whether or notitis a ‘last letter’.

The test is performed by ‘doubling’. The double of an ordinary
number will give Carry Reset, whereas the double of an inverse
character will give Carry Set.

The instruction lines are:

address Hex. code mnemonic comment
0959 GA LD A,(BC) Pick-up letter.
95A E6 3F AND +3F Mask-off
bits 6 & 7.
. .. print the character.
95D GA LD A,(BC) Fetch letter
again.
95E @3 INCBC Move pointer
forward.
95F 87 ADD A A Test by doubling

... return to @959 if Carry Reset.

SUBGROUP B: THE OR INSTRUCTIONS

The logical operation OR allows the programmer to ‘OR’ the individual
bits of the A register with the corresponding bits of a specified byte.

The OR operation specifies that the resultant bit of the test between
two bits will be Set only if either of the bits under test are themselves Set.
Otherwise the bit will be Reset.

e.g. 10101010 AA
in binary OR in Hex. OR
11000000 CcO

resuits in results in
11101010 EA

The OR instructions are not very commonly used instructions and indeed
they can usually be avoided completely if it is wished. However there are
certain times when the use of an OR operation is the easiest way of
performing the operation.

Whereas the effect of the AND operation was to MASK OFF certain
bits, the OR operation SETS certain bits.

47

The OR instructions are:

mnemonic instruction Hex.
OR +dd F6 dd
ORA B7
ORH B4
ORL B5
ORB BO
ORC B1
ORD B2
ORE B3

OR (HL) B6

OR (IX+d) pDDB6d
OR (IY+d) FDB6d

The following example shows the ‘OR +dd’ instruction being used to
SET bits 5, 6 and 7 of the A register.

An example from the 8K monitor program.

The ‘keyboard decode routine’ of the 8K monitor program allows
for the keyboard to be scanned eight times. On each scan the
address bus holds a different address so in effect the keyboard is
scanned from ‘eight different directions’, one after another.

There are only five data lines coming from the keyboard and it is
necessary to Set the three unused lines so that their contents are
predictable.

The following line performs this operation:

address Hex. code mnemonic comment

@2C5 F6 EC OR +E@ Setsbits 5,6 &7
so as to make
them predictable

(see page 153 for full ‘'Keyboard decode routine’)

SUBGROUP C: THE XOR INSTRUCTIONS
The logical operation XOR allows the programmer to ‘XOR’ the indi-
vidual bits of the A register with the corresponding bits of a specified byte.
The XOR operation specifies that the resuitant bit of the test between
bits will be Set only if either, but not both, of the bits under test are
themselves Set. Otherwise the bit will be Reset.

eg. 10161010 AA
in binary XOR in Hex. XOR
11000000 Co
results in results in
01101010 6A

48

Once again the instructions in this group are uncommon instructions,
and their use can usually be completely avoided. However the ‘XOR A’
instruction can be useful as it has the effect of clearing the A register in
just a single byte of machine code. It does however also clear the Carry
flag which may not be always helpful.

The actual instructions are:

mnemonic instruction Hex.
XOR +dd EE dd

XORA AF

XORH AC

XORL AD

XORB A8

XORC A9

XORD AA

XORE AB

XOR (HL) AE

XOR (IX+d) DD AEd
XOR (IY +d) FD AEd

Apart from the use of the ‘XOR A' instruction to clear the A register, the
use of the XOR instructions is always complicated programming. The
following example from the monitor program shows how string variables
are marked as string variables.

An example from the 8K monitor program.

A string variable is marked as being a string variable by having bit
7 RESET, bit 6 SET and bit 5 RESET. This is achieved in the
‘Assignment of a string variable routine’ as follows:

The address of the single letter of the name is loaded into the HL
register pair.

Then by using a ‘XOR HL' instruction the character code for the
letter is XORed against Hex. 6@. This has the effect of Resetting bit
7, Setting bit 6 and inverting bit 5 which will always give a Reset
value.

The lines are:
address Hex. code mnemonic comment
13C4 3E 60 LD A,+6@ Load A with
Hex. 6@
13C6 2A 1240 LD HL,4012) Pick-up address
13C9 AE XOR (HL) Change bits.

The BASIC programs that demonstrate these instructions are to be
found on page 96.
Group 10. The Jump Instructions.
In the Z80 instruction set there are 17 instructions that allow the program-
mer to make jumps from one part of his program to another.

49

The instructions can be split into seven subgroups depending on the
type of jump involved.
Each subgroup will now be discussed in turn:

SUBGROUP A: THE ABSOLUTE JUMP INSTRUCTION

The single instruction in this subgroup is the simplest of all the Jump
Instructions. The instruction uses absolute addressing to specify the
address to which the jump is to be made.

The instruction is:

mnemonic instruction Hex.
JP addr. C3 addr.

This instruction is directly equivalent to the BASIC ‘GOTO’ command.

The execution of this command does not take any notice of the present
state of any of the flags and does not affect any of the flags. The result of
the instruction is simply to load the Program Counter register pair with the
specified address.

The instruction is used simply to move from one block of code to
another, past subroutines and tables in particular.

An example from the 8K monitor program.

The first occurrence of an absolute jump instruction comes in the
‘start routine’ at 0005 when a jump is made past various sub-
routines and character tables.

address Hex. code mnemonic comment
0005 C3CB03 JP 03CB Make a jump.
03CB 60 LDH,B Jumps to here.

SUBGROUP B: JUMP INSTRUCTIONS THAT USE INDIRECT
ADDRESSING
There are three instructions that enable jumps to be made to indirect
addressed locations. Surprisingly the register pairs are the HL, IXand IY
register pairs rather than the usual set of HL, BC and DE register pairs.
The instructions are:

mnemonic instruction Hex.
JP (HL) E9

JP (IX) DD ES

JP (1Y) FDE9

The effect of the execution of these instructions is to load the Program
Counter with the specified address. The flags are not affected.
An example from the 8K monitor program.

The 8K monitor program uses the ‘JP (HL)' instruction in its
‘display routine’ in a very interesting way. In this routine bit 15 of the
HL register pair is Set, (by using a SET 7,H instruction) and then a
jump is made to this location. In reality such a jump will take the Z80

50

out of the monitor program but because of a special ‘switch’ in the
circuitry of the ZX-81 the Z80 will start executing NOP instructions
until an ‘interrupt’ occurs. This ‘interrupt’ will always occur after 32
NOP instructions as this is the length of a display line.

address Hex. code mnemonic comment
0044 E9 JP (HL) Start executing
NOP’s.

SUBGROUP C: THE RELATIVE JUMP INSTRUCTION.

The single instruction in this subgroup, the ‘JR e’ instruction allows the
programmer to make jumps to locations that are within 127 locations
forward and 128 locations back from the current position.

The ‘JR e’ instruction is a very useful instruction as it allows the
programmer to make short jumps using just two bytes of code, whereas a
‘JP addr.’ instruction uses three bytes of code.

The following diagram shows how the different values of ‘e’ are used to
specify jumps of varying length. The value of ‘e’ is always considered to

be in 2's complement arithmetic. ‘¢’ values Hex.

TOP
jumps k————— 7F ‘¢'valueof 7Fis the
forward k——— 7E maximum forward jump.
i
)
'
k——— 01
i ———— 00
‘e’ k———— FF
JR FE
k——— FD
|
t
H
) 81
jumps *L g0 ‘e’ valueof80is
backwards maximum backward jump.
memory holding machine
code program
Diagram 8: To show how different values of ‘e’ cause jumps to
different locations.

All programmers use their own ‘rules of thumb’ for calculating the
required values of ‘e’ when they are writing machine code. The author
considers that for forward jumps the value of ‘e’ represents the number of
bytes that are ‘jumped over. Whereas the more difficult backwards
jumps are obtained by counting backwards, in Hex., the ‘e’ location being
called ‘FF’, until the required location has been reached. The Hex. value

51

assigned to this location is then the correct value for ‘e’.

The instruction is:

mnemonic instruction Hex.
JRe 18e

In the monitor program the ‘JR €' instruction is used many times. The
following example comes from the ‘error handling routine’:

An example from the 8K monitor program.

The ‘error handling routine’ begins at 0008 but it then has to jump
past some other subroutines. As the required jump is only over
Hex.46 bytes of code a ‘JR e’ instruction can be used.

address Hex.code mnemonic comment

@@oE 18 46 JR @056 Jump past
Hex.46 bytes

Q@56 and continue
from location
0056.

SUBGROUP D: JUMP INSTRUCTIONS CONDITIONAL ON THE
CARRY FLAG.

There are four instructions that allow the programmer to make jumps
that are conditional on the state of the Carry flag. These instructions are
equivalent to the BASIC lines;

IFC THEN GOTO. . ..
and
IF NOT C THEN GOTO.

Two of the instructions allow for absolute addressed jumps, whilst the
other two instructions allow for relative jumps.

it is sensible at this point to describe the Carry flag in detail before
proceeding further.

The Carry Flag:

This flag is bit @ of the flag register and has already been
mentioned because of its use in arithmetic operations.

The following statements can be made concerning the Carry
flag:
i. ALL ADD and ADC instructions will Set or Reset the Carry flag,
depending on whether or not the result overflows the space allowed
for it.
ii. All SUB, SBC and CP instructions will Reset the Carry flag if the
result is ‘correct’, and Set the flag if zero has been passed.
iii. Al AND, OR and XOR operations Reset the Carry flag.
iv. Rotation instructions (see page 66) affect the Carry flag.

52

v. LD instructions do not affect the Carry flag.

There are two instructions for handling the Carry flag and they

are:

mnemonic
SCF
CCF

instruction Hex.

37
3F

The ‘SET CARRY FLAG!' instruction (SCF) simply Sets the Carry
flag.

The ‘COMPLEMENT CARRY FLAG’ instruction (CCF) changes
the value of the Carry flag from 0 to 1, or vice versa. Note that ‘AND
A' is the usual instruction for clearing the Carry flag.

The actual instructions in this subgroup are:

mnemonic instruction Hex. Comment

JP NC,addr. D2 addr. Jump on Carry flag
Reset.

JP C,addr. DA addr. Jump on Carry flag
Set.

JRNC,e 30e Jump on Carry flag
Reset.

JRC,e 38e Jump on Carry flag
Set.

In any machine code program the instructions that allow for jumps to
be made conditional on the state of the Carry flag are very common. The
following example from the monitor program shows this type of instruc-
tion being used three times in a short machine code routine.

An example from the 8K monitor program.

In the ‘test PRINT AT parameters routine’ the parameters are
tested to see that they are in the correct range. The line parameter
must be less than 22, and the column parameter must be less than
32.

The testing of the parameters is done by the following lines:

address Hex. code mnemonic comment
@8F5 3E 17 LDA,+17 Test line
8F7 90 SUBB parameter
against hex. 17.
8F8 380B JR C,0905 Error B if fails.
8FA FDBE 22 CP (4022) Test v. lower
screen.
8FD DA 3508 JP C,0835 Error 5 if fails.
900 3C INC A Store back
901 47 LDBA in B.

53

902 3E 1F LDA,+1F Test column

904 91 SuBC parameter
against Hex. 1F.

905 DA AD GE JP C,0EAD Error B if fails.

908 C602 ADDA,+@2 Store back in

90 A 4F LDCA C.

The conditional jump instructions are used to make jumps to the
routines that handle the different errors.

SUBGROUP E: JUMP INSTRUCTIONS CONDITIONAL ON THE ZERO
FLAG.

There are again four instructions that allow the programmer to make
jumps that are conditional on the state of the Zero flag. These instruc-
tions are equivalent to the BASIC lines:

IFZTHENGOTO......
and
IFNOTZTHENGOTO......

Two of the instructions allow for absolute addressed jumps, whilst the
other two instructions allow for relative jumps.

It is sensible at this point to describe the Zero flag in detail before
proceeding further.

The Zero Flag:

This flag is bit 6 of the flag register and it is Set if the result of an
operation is zero, and Reset if otherwise.

i.e. For operations in which the result is put into the A register, the
Zero flag will be Set if the A register holds zero, otherwise the Zero
flag will be Reset.

The following statements can be made concerning the Zero flag:
i. ALL ADD, INC, ADC, SuB, DEC, SBC, CP, AND, OR and XOR
instructions using single registers, and ADC and SBC instructions
using register pairs, affect the Zero flag.

ii. Rotation instructions (see page 66) affect the Zero flag.

iii. Bit testing instructions (see page 69) affect the Zero flag.

iv. LD instructions (except ‘LD A,I’ and ‘LD A,R’) do not affect the
Zero flag.

v. Block searching instructions (see page 72) use the Zero flag.
vi. There are no instructions for explicitly handling the Zero flag.

The actual instructions in this subgroup are:

54

mnemonic instruction hex. comment

JP NZ,addr. C2 addr. Jump on Zero flag
Reset.

JP Z,addr CA addr. Jump on Zero flag
Set.

JRNZe 20 e Jump on Zero flag
Reset.

JRZe 28e Jump on Zero flag
Set.

Once again the instructions in this subgroup are very common instruc-
tions. The following example shows the instructions being used in the
‘PRINT command routine’.

An example from the 8K monitor program.

In the ‘PRINT command routine’ the different codes of a BASIC
line are tested to see whether they are NEWLINE characters,
commas or semi-colons, keywords or the word ‘AT’. These tests
are performed by using conditional jump instructions.

The lines involved are:

address Hex.code mnemonic comment
0ACF 7E LD A,(HL) Pick-up code.
ADO FE76 CP +76 Is it NEWLINE?
AD2 CA8408B JP Z,6B84 Jump ifitis.
AD5 D6 1A SUB +1A Make ‘comma
AD7 CEQ@Q ADCA,+00a and semi-colon’
the same.
AD9 2869 JRZ,0B44 Jumpif‘, or';.
ADB FE A7 CP +A7 Test if ‘AT".
ADD 20 1B JRNZ,GAFA Jumpif not ‘AT
ADF Proceed with
‘AT,

SUBGROUP F: JUMP INSTRUCTIONS CONDITIONAL ON THE SIGN
FLAG.

There are two instructions that allow the programmer to make jumps
that are conditional on the state of the Sign flag. Both instructions use
absolute addressing.

These instructions are equivalent to the BASIC lines:

IF S>=0AND S<{=127 THEN GOTO......
and
IF S>=128 AND S<{=255 THENGOTO

It is sensible at this point to describe the Sign flag in detail before

proceeding further.

55

The Sign Flag:

The Sign flag is bit 7 of the flag register and it shows whether a
result is negative or positive with respect to 2's complement arith-
metic. As bit 7 of a single register and bit 15 of a register pair are
sign bits, it follows that the Sign flagis just a copy of the appropriate
sign bit of a register or register pair. The following statements can
be made concerning the Sign flag.

i. All ADD, INC, ADC, SUB, DEC, SBC, CP, AND, OR and XOR
instructions using single registers, and ADC and SBC instructions
using register pairs, affect the Sign flag.

ii. Rotation instructions (see page 66) affect the Sign flag.

iii. LD instructions (except ‘LD A,I’ and ‘LD A,R’) do not affect the
Sign flag.

iv. Block searching instructions (see page 72) use the Sign flag.
v. There are no instructions for explicitly handling the Sign flag.

The actual instructions in this subgroup are:

mnemonic instruction HexComment

JP P,addr. F2 addr. Jump if result
positive.

JP M,addr. FA addr. Jump if result
negative
(minus).

Both these instructions are rather uncommon and their use can usually
be avoided. However the ‘JP M,addr.’ instruction can be used to test bit
6 as in the following example.

An example from the 8K monitor program.

In the ‘next variable or BASIC line routine ‘the different classes of
variables are distinguished from each other by the different config-
urations of bits 5, 6 and 7.

The bit 5 is tested using a ‘BIT 5’ instruction (see page 69).

The bit 7 is tested by ‘doubling’ and looking at the resultant state
of the Carry flag.

The bit 6 is tested by ‘doubling’ and then using the ‘JP M,addr.’
instruction to test the state of the new bit 7.

The code for the initial letter of the variable is held in the A
register, and the following lines perform the test.

address Hex.code mnemonic comment
09FC 87 ADD A A ‘Double’
9FD FA 01 GA JP M,GAG1 Jump if bit 7 Set.

56

SUBGROUP G: JUMP INSTRUCTIONS CONDITIONAL ON THE
OVERFLOW/PARITY FLAG.

There are two instructions that allow the programmer to make jumps
that are conditional on the state of the Overflow/Parity flag. Both instruc-
tions use absolute addressing.

It is sensible at this point to describe the Overflow/Parity flag before
proceeding further.

The Overflow/Parity Flag:

This flag is bit 2 of the flag register and as the name implies itis a
dual purpose flag. Certain groups of instructions use the flag to
denote ‘overflow’ whilst other groups of instructions use the flag to
store the resuit of a ‘parity test’.

The concept of ‘overflow’ does not relate to there being insuffi-
cient room, as is tested by the Carry flag, but rather to the test as to
whether the result of an operation in 2’s complement arithmetic is
giving a correct or incorrect answer.

e.g. Consider: Hex. 14 ADD Hex. 6F where the result will be
Hex. 83. This result is correct when dealing with absolute binary
arithmetic, but itis incorrect in 2's complement arithmetic.

The decimal interpretation of this operation shows the error
condition clearly.

Hex. 14 + 6F = 83 INCORRECT
Decimal 20 + 111 = -125 INCORRECT

This operation will therefore SET the Overflow/Parity flag.

Overflow can also occur in subtraction operations. Consider:
Hex. 83 - 6F = 14 INCORRECT
Decimal -125-111 = 20 INCORRECT
when the Overflow/Parity flag will again be Set. The concept of
‘parity’ refers to the testing of the bits in a byte to determine whether
there is an even, or odd, number of bits Set.

e.g. Consider the byte: 01010101 in which there is an even
number of bits which are Set. (4). Therefore the Overflow/Parity
flag will be SET.

Consider next the byte: 10101110 in which there is an odd
number of bits which are Set. (5). Therefore the Overflow/Parity
flag will be RESET.

The following statements can be made concerning the Overflow/
Parity flag.

i. Al ADD, ADC, SUB, SBC and CP operations are tested for
‘overflow’.

ii. AllAND, OR and XOR operations are tested for ‘parity’.

57

iii. The results of Rotation operations are tested for ‘parity’ (see
page 66).

iv. The INC instruction will Set the flag if the result is Hex.80.

v. The DEC instruction will SET the flag if the result is Hex.7F.

vi. The block instructions (see page 72) use the Overflow/Parity
flag.

vii. There are no instructions for explicitly handling the Overflow/
Parity flag.

The actual instructions in this subgroup are:

mnemonic instruction Hex. Comment

JP P@,addr. E2 addr. Jump if parity
odd, or no
overflow. (flag
Reset)

JP PE,addr. EA addr. Jump if parity
even, or
overflow. (flag
Set)

The two instructions are both rarely used instructions except when

‘par_ity’ is being tested. But in the ZX-81 system there is no parity check
on incoming or outgoing data.

The following example shows the flag being used to test for ‘overflow’.

An example from the 8K monitor program.

In the ‘character code sorting routine’ the different types of
character codes have to be separated. The codes for the simple
characters are in the range Hex.@@ — 3F, whereas the codes for the
editing commands are in the range Hex.7@ — 79.

58

The different types are separated using a ‘JP PE,addr.
instruction.

The lines are:
address Hex.code mnemonic comment
@515 7E LD A,(HL) Pick-up code.
516 FE FO CP +F@ Compare itto
+F0
518 EA 2D @5 JPPE,052D Jumpon
51B..... proceed with simple characters. overflow.

The routine works by comparing the character code, that it has
collected from the main character table, to the constant Hex. FO. All
the codes for simple characters will lead to there being ‘no over-
flow’. e.g. The letter ‘Z' with code. Hex. 3F will give:
3F-FO =4F

or in decimal, 63 —(-16) = 79

which is CORRECT and Resets the flag.
The codes for the editing commands will however give ‘overflow’.
e.g. The code for RUBOUT is Hex.77, and

77-F0@ =87

orin decimal 119 ~(-16)= —121

yvhich is INCORRECT and Sets the flag, and thereby leads to the

jump occurring.

The BASIC programs that demonstrate these instructions are to be
found on page 97.

Group 11: The ‘DJNZ e’ instruction.
This single instruction is one of the most useful instructions in the Z80

instruction set.

The ‘DJNZ e’ instruction is an instruction that Decrements the B
register and does a relative Jump if the resuitant value in the B register is
Not Zero. The instruction has many similarities to the BASIC command

NEXT.

in a BASIC program the FOR command is used to set up a loop
variable and the NEXT command delimits the working part of the loop.
When a ‘DJNZ e’ instruction is used, the B register becomes the loop

59

variable and the ‘DJNZ e’ instruction is itself used as the equivalent of the
NEXT command.

The following example shows these similarities:

BASIC program Machine Code language program

FORI1=1@ TO 1 STEP -1 loop variable LDB,+10
initialised.

LET... the working LD...

LET... part. LD...

NEXT | the delimiter. DJINZ e

Note how the loop in the example uses ‘STEP -1’ this is because the
‘DJNZ e’ instruction is always a Decrementing instruction.

ltis also important to note that the value of ‘e’ is the displacement value
that will take the ‘loop’ back to the start of the ‘working part’ of the
program. Interestingly it is a common mistake to ‘jump back'’ to the loop
variable and hence create an endless machine code loop.

The above example shows the normal use of the ‘DJNZ e’ instruction,
but it is also possible to use it with ‘forward jumps’ but that is indeed
‘complicated programming’ and perhaps is best avoided.

The actual instruction is:

mnemonic instruction Hex.
DJNZ e 10e

This instruction is very commonly used and the following example from
the ‘initialisation routine’ is just one of many possible examples.

An example from the 8K monitor program.

When the ZX-81 is switched on, the ‘initialisation routine’ has to
construct a display file that consists of 25 NEWLINE characters.
(Hex.76, decimal 118). This operation is performed usinga ‘DJNZ e’
instruction.

Initially the HL register pair holds the current D-FILE and then the
B register is loaded with the loop variable Hex.19, decimal 25.

The working part of the loop consists of a ‘LD (HL),+76’ instruc-
tion, that enters the NEWLINE character and a ‘INC HL' that moves
the pointer forward one location.

The ‘DJNZ e’ instruction is then used to decrement the B register
and jump back to repeat the ‘working part’ if the loop variable is not
zero.

The lines involved are as follows:

address Hex.code Label mnemonic comment

0406 @619 LD B,-19 Loop variable.
408 3676 W-Part LD (HL),+76 NEWLINE
40A 23 INC HL Forward one.

408B 10 FB DJNZ W-Part Back to ‘'W-Part’
60

Note in the above lines how a ‘Label’ field has been used to mark
the start of the working part with the label ‘W-Part’, and how the
mnemonic for the ‘DJNZ e’ instruction has been written as ‘DJNZ
W-Part'. The use of labels will be found frequently from now on.

Note also how the value of ‘e’ is given as Hex.FB in location
@40C. The author finds that the best way of checking that this value
of ‘e’ is correct, is to count back from @4GC. The location 3408
being equivalent to ‘FC’, the location 343 A being equivalent to ‘FD’,
and so on untit the start of the correct loop will have the value ‘FF’. In
the example the value of ‘e’ being ‘FB’ is correct as it loops back to
the start of the instruction line labelled W-Part.

A BASIC program that demonstrates the ‘DJNZ e’ instruction is to be
found on page 99.

Group 12: The ‘Stack’ instructions.

The stack is used extensively in most machine code programs and

therefore there are many instructions for handling the data on the stack.
The instructions can be divided into two subgroups. The first subgroup

contains the instructions that can be used by the programmer to handle

data that is stored temporarily on the stack. The second group of instruc-

tions contains those instructions that use the stack themselves.

SUBGROUP A: THE PUSH AND POP INSTRUCTIONS.

These instructions allow the programmer to put, ‘PUSH’, two bytes of
dataonto the stack, and to remove, ‘POP’, two bytes of data off the stack.

The two bytes of data in a PUSH operation must be copied from a
specified register pair, and in a POP operation must be copied into a
specified register pair.

When a PUSH operation is performed the Stack Pointer is first de-
cremented, a copy of the high register byte is made and stored in the
location addressed by the Stack Pointer. Then the Stack Pointer is
decremented a second time and a copy of the low register byte is made
and this byte is likewise stored in the location addressed by the Stack
Pointer. The opposite actions are taken during a POP operation.

The actual instructions in this subgroup are:

mnemonic instruction Hex. mnemonic instruction Hex.
PUSH AF F5 POP AF F1
PUSHHL E5 POP HL E1
PUSH BC C5 POP BC C1
PUSH DE D5 POP DE D1
PUSH IX DDE5 POP IX DDE1
PUSH IY FDE5 POP IY FDE1

Itis important to realise that when two bytes are PUSHed on to the
Stack, that no record is kept in any way that shows where the data

61

came from. Two bytes coming from the HL register pair may therefore
be POPed into the BC register pair or indeed any register pair.

The storing of data on the stack as a temporary measure is
illustrated in the following example.

An example from the 8K monitor program.

in the ‘display routine’ the current values held in the four main
register pairs are saved on the stack, when ‘slow mode’ interrupts
the normal execution of a program. Later the contents of the
registers are restored.

Note how the ‘saving’ is done in a certain order, and how the
‘restoring’ is done in the reverse order so as to get the correct
contents restored.

address Hex.code Label mnemonic comment

0220 F5 Saving PUSHAF Save copies of
221 C5 PUSHBC the main
222 D5 PUSHDE register pairs
223 ES PUSHHL on the stack.

02A4 E1 Restoring POP HL Restore the
2A5 D1 POPDE contents of the
2A6 C1 POPBC main register
2A7 F1 POP AF pairs.

SUBGROUP B: THE CALL, RET AND RST INSTRUCTIONS.

The execution of all these instructions results in either addresses
being put on the stack, or return addresses being removed from the
stack.

The CALL and the RST instructions are directly equivalent to the
BASIC ‘GOSUB’ command, and the RET instructions are equivalent to
the ‘RETURN’ command. There are however several conditional CALL
and RET instructions that have no direct equivalent in BASIC.

Each of these three subgroups will now be discussed in tum.

SUBGROUP A: THE CALL INSTRUCTIONS.

The CALL instructions are used to enter subroutines, therefore the
return address has to be saved. This is done by the high byte of the
Program Counter being copied and saved on the stack and then the low
byte being copied and saved. The Stack Pointer is decremented before
each byte is stored. The Program Counter is then loaded with copies of
the two bytes of data that follow the CALL instruction proper. As usual the
low byte is the first of these bytes of data and the high byte the second
byte of data.

62

There are instructions that allow for the execution of subroutines to be
made conditional on both states of the four major flags.
The actual instructions in this subgroup are:

mnemonic instruction Hex. Comment
CALL addr. CD addr. Unconditional

GOSUB.
CALL C,addr. DC addr. GOSUB,

Carry flag Set.
CALL NC,addr. D4 addr. GOSuUB,

Carry flag Reset.
CALL Z,addr CC addr. GOSUB,

Zero flag Set.
CALL NZ,addr. C4 addr. GOSuUB

Zero flag Reset.
CALL M,addr. FC addr. GOSUB,

Sign flag Set.
CALL P,addr. F4 addr. GOSuUB,

Sign flag Reset.
CALL PE,addr. EC addr. GOSUB, O/P flag Set.
CALL PO,addr. E4 addr. GOSUB,

O/P flag Reset.

In any large machine code program there will be a large number of
subroutines and hence CALL instructions are fairly common instructions.
However conditional CALL instructions are atways fairly uncommon.

The following example shows an interesting feature of the ZX-81
system.

An example from the 8K monitor program.

In a ZX-81 system that has less than 34K of available RAM the
display file is ‘collapsed’. That is to say that an empty display line
will consist of only a NEWLINE character, and partially completed
lines will have a NEWLINE character positioned after the last
defined character of the line.

In a ZX-81 system with more than 34K the display file is usually
fully defined, with 24 lines of 32 characters.

In the ‘build up an edit line routine’ it is necessary to test for the
size of available RAM so that the display file can be expanded to
hold the edit line, if necessary.

The actual lines involved are:

address Hex.code mnemonic comment
04B7 3A 0540 LDA,(4005) High byte of
RAMTOP
4BA FE 4D CP +4D Test for 314K of
RAM
4BC DC 5D GA CALLC,6A5D GOSUBIif less

63 RAM.

SUBGROUP B: THE RST INSTRUCTIONS.

In the Z80 instruction set there are eight RST instructions. These
instructions are in effect CALL instructions but the address of the sub-
routine does not have to be specified as it is predetermined.

e.g. The instruction C7 which has the mnemonic ‘RST 0000’ is a single
byte instruction that has the predetermined address of 8@@@. The in-
struction performs in just one byte the operation that would take three
bytes using a ‘CALL addr.’ instruction.

The eight RST instructions all have predetermined addresses that are
in the range 00G0-0038.

The actual instructions are:

mnemonic instruction Hex. comment

RST 0000 C7 ‘GOSUB G000’
RST 0338 CF ‘GOSUB 00@8’
RST 0610 D7 ‘GOSUB @G 10’
RST@G18 DF ‘GOSUB @18’
RST 00620 E7 ‘GOSUB 0320’
RST 0G28 EF ‘GOSUB @328
RST 0@30 F7 ‘GOSUB @330’
RST 0238 FF ‘GOSUB @@38’

in a Z80 machine code language program that is started at location
@000 it is therefore a normal feature to find that there are several
commonly used subroutines starting at these predetermined addresses.
The 8K monitor program is typical in this matter and the following list
shows the routines called by the different RST instructions.

RST Routine

0000 Start routine.

0008 Error handling routine.

0010 Print character routine.

0018 Collect present character routine.
0020 Collect next character routine.
0028 Calculator routine.

@030 Make room in memory routine.
0038 Display interrupt routine.

The following example shows how the ‘print character routine’ is called
by using ‘RST 06 10"
An example from the 8K monitor program.
The following extract from the ‘print keyword routine’ shows that
the code of the character to be printed has to be present in the A
register before the ‘RST @@ 1@’ instruction can be used.

64

address Hex. code mnemonic comment

@957 AF XOR A Zero Aregister.
958 D7 RST G010 Printa zero -
a space.
959 GA LD A,(BC) Pick-up
character.
95A E6 3F AND +3F mask character.
95C D7 RST 0010 Print the
95D character

SUBGROUP C: THE RET INSTRUCTIONS

This subgroup consists of a simple RET instruction and eight condi-
tional instructions. The main use of all these instructions is to act as an
end marker of a subroutine and cause a return to the main program.

Itis important to realise that a RET instruction does no more than take
areturn address from the stack and put it into the Program Counter. The
first byte copied from the stack forms the low byte of the Program
Counter and the second byte forms the high byte of the Program
Counter. The Stack Pointer is incremented twice during any RET
instruction.

The actual instructions are:

mnemonic instruction Hex. comment

RET Cs The simple RETURN.

RET C D8 gETURN if Carry flag

et.

RET NC D@ RETURN if Carry flag
Reset.

RET Z Ccs RETURN if Zero flag Set.

RET Nz Co RETURN if Zero flag
Reset.

RET M F8 RETURNI if Sign flag Set.

RET P Fo RETURN if Sign flag
Reset.

RET PE E8 RETURN if O/P flag Set.

RET PO EQ@ RETURN if O/P flag
Reset.

It is an important point in machine code programming to appreciate
that a return address that is taken off the stack by a RET instruction, was
not necessarily put on the stack by a corresponding CALL instruction.

The following example shows how a table of addresses is handled so
that a ‘jump’ can be made to a required address read from the table.

65

An example from the 8K monitor program.

In the ‘BASIC line scanning routine’ the different BASIC com-
mands are allocated to one of seven command classes. Therefore
when a certain command is being dealt with, the class number is
determined and a ‘jump’ is made to the appropriate command class
routine. The command class numbers are @—6, and at 3D16 to
@D1C is a table of displacements values. The following routine is
used to access the table, and a RET instruction is used to ‘jump’ to
the required address.

Initially the class number is present in the C register.

address Hex.code mnemonic comment
oDe5 21 120D LDHL,+@D16 Base address.
Da8 0600 LD B,+0a@ Clear B.
DGA Q9 ADDHL,BC Form address.
DeB 4E LD C,(HL) Pick-up value.
DaC @9 ADDHL,BC Form new
address.
D@D E5 PUSHHL Put in on stack.
DOE DF RSTGG18 Collect next
value.
DGF C9 RET ‘Jump’ to
address.
The Command Class Address Table.
oD16 17 gives address @D2D Class @
D17 25 gives address @@DC Class 1
D18 53 gives address @@DB Class 2
D19 OF gives address 0D28 Class 3
D1A 6B gives address @D85 Class 4
D1B 13 gives address @D2E Class 5
D1C 76 gives address @D92 Class 6

The BASIC programs that demonstrate these instructions are to be
found on page 100.

Group 13: The Rotation Instructions.

in the Z80 instruction set there are many instructions that allow the
programmer to rotate the bits in a specified byte.

These instructions can prove to be very useful, especially as rotating a
byte to the ‘left’ has the effect of doubling the value, and rotating a byte to
the 'right’ has the effect of halving the value.

All of the instructions use and affect the Carry flag in some way, and in
some instancesitis bestconsidereda 'bit8 and atothertimesasa‘bit-1'.

66

The different types of rotation are best shown diagrammatically and
the following diagram shows the direction of the rotation and the position
of the Carry flag for each type of rotation.

- ——— — e
RLC & RLCA ~n : Bit 7 goes to Carry.
Rotate left C K- 7¢6€5¢4¢3c2¢1€0 1€~ Bit 7 goes to 0.
with Carry.
Fm———— - e - .
| Bit 7 goes to Carry.
RL & RLA , o
Rotate | C [€-] 7¢6¢5e4e3¢2¢1¢0 < Carry goes to Bit 0.
left.
Bit 0 is Reset.
gh‘f‘t teft.] © € 7€6¢5¢4¢3¢210 - 0 Bit 7 goes to Carry.
RRC&RRCA - = — — & — — — — — —)
Rotate right * Bit 0 goes to Carry.
with Carry. ™)) 736+5+443429150 =¥ C |BitogoestoBit7,
RR&RRA:— ”””” $-----"=a c
ight. Bit 0 goes to Carry.
Rotate right..., . 756954232510 > © |CarygoestoBit .
SRA Bit 0 goes to Carry.
Shift right. 7 6955443424140 -7 ¢C Bit7 ?s unchangerg.
SAL Bit0 to C.
Logical shift 0 L) 4 ¢ |Bit0goestoCarry.
riggt. 4 746+544+3524 140 > Bit 7 o Resat
e m—— - ‘(HLY
- - ~
RLD Aregister T T N
-\ AP ake N L
/
7654 3210 /’ 7654 3210
/ z L The two
AP o o TN special ‘nibble’
o Rt - handling
_ - TN (HLy / N instructions.
RRD A register - \\Y ST
!
7654 3210 7654 3210 !
R~ \~ _ -’ o) / !
~ o \\ -7 - J

-~ — ———

Diagram 9. The Different Types of ‘ROTATION'.

67

The actual instructions are as shown in the table:

Byte RLC RL SLA RRC RR SRA SRL

A 07 17 OF 1F
(RLCA) (RLA) (RRCA) (RRA)
or or or or

CB07 CB17 CB27 CBOF CB1F CB2F CBS3F
H CB04 CB14 CB24 CB@C CBiC CB2C CB3C
L CB@5 CB15 CB25 CBOD CBiD CB2D CB3D
B CBeoo CB1@6 CB20 CBG8 CB18 CB28 CB38
C cB@t CB11 CB2t CB@G9 CB19 CB29 CB39
D CB@2 CB12 CB22 CBGA CB1A CB2A CB3A
E CB@3 CB13 CB23 CB@B CB1B CB2B CB3B
(HL) CB06 CB16 CB26 CBOGE CB1E CB2E CB3E
(IX+d) DDCB DDCB DDCB DDCB DDCB DDCB DDCB
d@6 di16 d26 dGE d1E d2E d3E
(ty+d) FDCB FDCB FDCB FDCB FDCB FDCB FDCB
do6 d16 d26 d@E d1E d2E d3E
RRD ED67
RLD ED 6F

Note that there are four single byte instructions for rotating the A
register.

The following statements can be made about the way the rotation
instructions affect the flags.
i. All the instructions, except ‘RLD' and ‘RRD’ affect the Carry flag.
ii. Allthe two byte instructions affect the Zero flag. The flag being Set if the
resultant byte is zero.
iii. All the two byte instructions affect the O/P flag. The flag being Set if
the parity of the result is even.
iv. All the two byte instructions affect the Sign flag. The flag copies the
sign bit of the resultant byte.
v. The four single byte instructions affect the Carry flag but leave the
other flags unchanged.

There are many different ways in which rotation instructions can prove
to be useful. The following example shows the ‘RL E' instruction being
used.

An example from the 8K monitor program.

In the ‘SAVE command routine’ the program name, and then the
program and variables are passed to the cassette output in the
following way:

Each byte in turn is loaded into the E register. The Carry flag is
Set and the E register rotated left. Bit @ is thereby Set, and the
former bit 7 has been moved to the Carry flag. Bit @, at this stage, is

68

a ‘marker’. The routine then sends signals to the cassette output

that differ depending on whether the Carry flag is Set or Reset.

The Carry flagis then cleared and ajumpis made back tothe ‘RLE’
instruction.

Thereby each of the 8 bits of the E register are pushed into the
Carry flag in turn. The Zero flag is used to count out the 8 bits as it
will be Set when the ‘marker’ bit is rotated into the Carry flag.

The actual lines are:

address Hex.code mnemonic comment
@31E 5E LD E,(HL) Pick-up a byte.
31F 37 SCF SET the Carry
flag, ‘marker’.
320 CB 13 RLE Rotate E.
322 Ccs RET Z RETURN after 8
loops.
...... Differing outputs
...... for Carry Set
...... or Reset.
33B A7 AND A Clear Carry.
33C 16 FD DJNZ @333B A timing delay.
33E 18 ECQ JR 0320 Repeat the loop.

(see page 150 for the full ‘'SAVE’ command routine)

A BASIC program that demonstrates the rotation instructions is to be
found on page 103.

Group 14: The ‘Bit handling’ instructions.
The instructions in this group allow the programmer to test for the state
of a specified bit, to Reset a specified bit or to Set a specified bit.

Once again the group will be divided into three subgroups.

SUBGROUP A: THE BIT INSTRUCTIONS

These instructions are used to test a specified bit. The result of the test
goes to the Zero flag. The flag is SET if the bit tested is RESET, that is
holds value zero. The Zero flag is RESET if the bit tested is SET, that is
holds value 1.

The actual instruction codes are shown in the following table.

69

bit bit bit bit bit bit bit
0o 1 2 3 4 5 6

A register RES 87 8F 97 9F A7 AF B7
cB* SET C7 CF D7 DF E7 EF F7
BIT 47 4F 57 5F 67 6F 77
H register RES 84 8C 94 9C A4 AC B4
cB* SET C4 CC D4 DC E4 EC F4
BIT 44 4C 54 5C 64 6C 74
L register RES 85 8D 95 9D A5 AD B5
cB* SET C5 CD D5 DD E5 ED F5
BIT 45 4D 55 5D 65 6D 75
B register RES 80 88 90 98 A0 A8 B0
cB* SET Cé C8 DO D8 E@ E8 FO
BIT 40 48 50 58 60 68 70
C register RES 81 89 91 99 A1 A9 B1
cB* SET C1 C9 D1 D9 E1 E9 F1
BIT 41 49 51 59 61 69 71
D register RES 82 B8A 92 9A A2 AA B2
CB* . SET C2 CA D2 DA E2 EA F2
BIT 42 4A 52 5A 62 6A 72
E register RES 83 88 93 9B A3 AB B3
cB** SET C3 CB D3 DB E3 EB F3
BIT 43 4B 53 5B 63 6B 73
(HL) RES 86 8E 96 9E A6 AE B6
cB* SET Cé CE D6 DE E6 EE F6
BIT 46 4E 56 S5E 66 6E 76
indexed RES 86 B8E 96 9E A6 AE B6
(IX+d)
DD CBd** SET Cé CE D6 DE E6 EE F6
(IY+d)
FDCBd* BIT 46 4E 56 5E 66 6E 76

Note that all the instructions are preceded by ‘CB’, and the instructions
for indexed addressed bytes are in addition prefixed by ‘DD’ or ‘FD'.

The use of the BIT instructions is interesting as it enables the program-
mer to take advantage of the potential offered to him to save RAM and to
create rapidly executed programs.

By using a BIT instruction it is possible to use single bits as ‘flags’. The
following example shows how this is done.

70

An example from the 8K monitor program.

The system variable 16385 is composed of 8 different flags. Bit @
of this byte is a flag that is used by the ‘PRINT keyword routine’ to
determine whether or not an extra space is required before a
keyword.

e.g. No extra space is required between the line number and the
first command in the line 1@ IF ATHEN GOTO B but an extra space
is required between the ‘A’ and the ‘THEN".

The space between the line number and the first command is
always present, but the space between the ‘A’ and the ‘THEN' is an
extra space that precedes the keyword.

The following lines show the flag being tested.

address Hex. code mnemonic comment
0951 FDCB@140 BIT@,4001) Testthe flag.
955 20 @2 JR NZ,0959 Jump if needed.
957 AF XORA Clear A.
958 D7 RST0G10 PRINT a space.

959........ proceed to print a keyword.
The extra space is printed if the Bit @ of 16385 is originally RESET,
as this leads to the Zero flag being SET and the jump not being made.

SUBGROUP B: THE RES INSTRUCTIONS.
The RES instructions allow the programmer to RESET a specified bit.
If the bit however is already in the RESET state then the effect of the
execution of a RES instruction will do nothing except reaffirm the
situation.
The actual instructions are given in the previous table.
The RES instructions are predominantly used to give a RESET value
to a flag.
The following example shows how the ‘FAST command routine’ uses
a RES instruction.
An example from the 8K monitor program.
In the ZX-81 system bits 6 and 7 of system variable 16443,
CDFLAG, control the operation of the ‘slow’ and ‘fast’ modes.
When the ‘FAST command routine’ is called, both bit 6 and bit 7
have to be Reset.
The following lines show this being done.

address Hex. code mnemonic comment

0F20 CDE70@2 CALL G2E7 GOSUB @2E7
F23 FDCB3BB6 RES®6,(403B) Resetbit6.
F27 C9 RET Finished.

02E7 FDCB3B7E BIT7,(403B) Testbit7.
2EB C8 RETZ Already ‘fast’.

71

2EF FDCB3BBE RES7,403B) Resetbit7.
2F3 C9 RET Return.

SUBGROUP C: THE SET INSTRUCTIONS.

The SET instructions allow the programmer to SET a specified bit. If
the bit is already SET then the effect of the execution of the SET
instruction will do nothing except reaffirm the situation.

The actual instructions are given in the previous table.

The SET instructions are predominantly used to give a SET value to a
bit.

The following example shows how the ‘SLOW command routine’ uses
a SET instruction.

An example from the 8K monitor program.

The entry into the ‘slow’ mode of operation depends on giving a
Set value to the bit 6 of the system variable 16443, COFLAG.

In the ‘SLOW command routine’ this bit is Set and then a jump is
made to the display routine so that a display is produced. If the
system was previously in ‘fast’ mode then the production of a
display will be seen to terminate the ‘fast' mode. If the system was
in ‘slow’ mode then there will be no detectable change.

The lines are:
address Hex. code
0F28 FDCB3BF6 SET6,(483B) Setflagin
CDFLAG.
Fa2C C30702 JP 0207 Produce a
display.

The BASIC program that demonstrates these instructions is to be
found on page 104. ‘

Group 15: Block Transferring Instructions and Block Searching
Instructions.

The Z80 instruction set contains some very useful instructions that allow
the programmer to move blocks of memory or to search blocks of
memory.

In order to use the block moving instructions the base address of the
block must be in the HL register pair, the address of the destination of the
block must be in the DE register pair and the size of the block must be
held by the BC register pair.

In order to search a block of memory for the first occurrence of a
particular value the base address of the block must be in the HL register
pair, the size of the block in the BC register pair and the A register must
contain the ‘particular value’.

The instructions in the group can be further divided into those that are
‘automatic’ and those that are ‘non-automatic’.

72

The automatic instructions are so called because a block is moved, or
searched, directly the instruction is executed. Therefore only a single
instruction is required to move, or search, a block.

The non-automatic instructions only move, or search, one byte for
every occasion that the instruction is executed. These instructions there-
fore require the programmer to create a loop round the instruction if a
number of bytes is to be moved, or searched.

The actual instructions are:

Automatic

mnemonic instruction Hex comment

LDIR EDB@ Block moving ~- incrementing.
LDDR ED B8 Block moving - decrementing.
DPIR EDB1 Block searching — incrementing.
CPDR ED B9 Block searching ~ decrementing.
Non-automatic

mnemonic instruction Hex comment

LDI ED A0 Byte moving — incrementing.
LDD ED A8 Byte moving ~- decrementing.
CPI ED A1 Byte comparing - incrementing.
CPD ED A9 Byte comparing — decrementing.

Each instruction will now be discussed in turn.

LDIR: This instruction moves a byte from ‘(HL)' to ‘(DE)’. The values of
HL and DE are then incremented and the counter BC is decremented.
When the value of BC reaches zero the moving of bytes stops. The O/P
flag will have the Reset value. This instruction can therefore move blocks
of data that contain 1-65536 bytes.

LDDR: This instruction is similar to the LDIR instruction except that the
values of HL and DE are decremented after each byte is moved.

CPIR: This instruction will automatically search a specified block of
memory for the first occurrence of a byte identical to that held in the A
register. As each byte is compared the HL register pair is incremented
and the BC register pair is decremented.

If a first occurrence is found the search operation stops. The Sign flag
is Reset, the Zero flag is Set and the program proceeds with the HL
register pair holding the address of the location that follows the location
holding the matching byte.

if there are no matching bytes in the whole of the block then the BC
register pair will hold zero, the Sign flag is Reset and the O/P flag is
Reset. The program then proceeds to the next instruction.

CPDR: This instruction is similar to CPIR except that the HL register
pair is decremented before each comparison.

LDI: The execution of this instruction will move a single byte from ‘(HL)’

73

to ‘(DE)’, the value of the BC register will be decremented, the value of
the HL and DE register pairs will be incremented.

If the value of the BC register pair becomes zero then the O/P flag will
be Reset, otherwise it will be Set.

LDD: This instruction is similar to LD! except that the HL and DE
register pairs are decremented.

CPI: The execution of this instruction will cause the Zero flag to be Set
if the byte addressed by the HL register pair matches the contents of the
A register. If not the Zero flag is Reset. The HL register pair is in-
cremented and the BC register pair is decremented. The Sign flag is
always Reset and if the contents of BC become zero then the O/P flag is
Reset.

CPD: This instruction is similar to CPI, except that the HL register pair
is decremented.

The use of these instructions is always a little bit complicated, but the
instructions are very powerful and are therefore very important.

In the 8K monitor program these instructions are used only occassion-
ally and the following examples are unfortunately not very straight-
forward.

Examples from the 8K monitor program.

LDDR

Whenever extra space is required in the program area, the
variable area or the display file the whole block of data between
where the space is needed and the STKEND has to be moved up in
the memory.

e.g. when an extra simple variable is added to the end of the
variable area, the block of data from the byte holding Hex. 80 to the
STKEND has to be moved up 6 locations so as to allow room for the
new variable.

The following lines from the ‘make space in memory routine’
shows the ‘LDDR’ instruction being used to perform the moving of
the block of data. Initially BC holds the size of the space to be added
but after the ‘change all pointers’ routine the BC register pair holds
the size of the block.

Before the ‘LDDR'’ is executed the DE register pair will hold the
address of the ‘new STKEND' and the HL register pair will hold the
address of the ‘old STKEND'.

address Hex. code mnemonic comment
09A3 CDAD@9 CALL@9AD ‘Change all
pointers’.
9A6 2A1C 40 LD HL,(481C) ‘New STKEND'.
9A9 EB EX DE,HL Exchange values.
9AA ED B8 LDDR Move the block.

74

LDI

The system variable 16419, S-TOP, holds the line number of the
top line of a display listing. The location 16419 hoiding the ‘low byte’
of the line number and the location 16428 holds the ‘high byte'.

However in the program area the line numbers are held with the
high number byte before the low number byte.

Therefore when a line number, taken from the program area, is
put into system variable 16419 the bytes have to be switched over.
This is done using a ‘LD’ instruction.

Initially the DE register pair holds the address of the location
16419, Hex. 4823, and the HL register pair points to the ‘high byte’
of a program line number. Then the ‘high byte’ is saved temporarily
in the A register and the HL register pair incremented to point to the
‘low byte’ of the program line number. The ‘LDI’ instruction is then
used to move this ‘low byte’ from ‘(HL)’ to ‘(DE)’. The execution of
this instruction increments the HL and the DE register pairs. As DE
now addresses the location 16420 a simple ‘LD (DE),A’ instruction
can be used to move the ‘high byte’ to its required destination.

The lines involved are:

address Hex. code mnemonic comment
044D 7E LDA,(HL) Save ‘low byte’.
44E 23 INC HL Point to
‘high byte'.
44F ED AG LDI Move ‘high byte’
45| 12 LD (DE),A Move ‘low byte’.
CPIR

This instruction is used in the ‘D-FILE handling routine’ to find the
address required by the system variable 16398, DF-CC. This
system variable holds the address of the location where the next
character is to be placed in the display file.

The following lines show how the program goes back through the
display file looking for NEWLINEs and then when it finds the re-
quired line, a ‘CPIR’ instruction is used to go forward along the line.

The contents of the HL register pair is then decremented and
saved as DF-CC.

address Hex. code mnemonic comment
0926 @4 INCB The line number
required.

927 2B DEC HL Go back through
the display tile,
byte by byte.

928 BE CP (HL) A holds Hex.76,
a NEWLINE.

75

929 20 FC JRNZ@927 Jump back.

92B 10 FA DJNZ 3927 Each line found.

92D 23 INCHL Move into line.

92E ED Bt CPIR - Look for
NEWLINE.

930 2B DECHL Back one.

931 220E 40 LD (400E),HL Save as DF-CC.

The BASIC programs that demonstrate these instructions are to be
found on page 105.

Group 16: The Input and Output Instructions.

In the Z80 instruction set there is a comprehensive set of instructions that
allow the programmer to collect data from an outside source (IN) or to
send data to a peripheral device (QUT).

In the ZX-81 system the incoming data comes from either the key-
board or the cassette player, and the outgoing data goes to the ‘logic
chip’ and hence to the T.V. screen and the cassette player.

There are simple, non-automatic and automatic instructions for both
the ‘IN’ and the ‘OUT’ types of instruction.

In all cases the data that is moved is handled as a single byte of 8 bits.
In the case of an ‘IN' instruction the Z80 takes the single byte off the data
bus and puts itinto a specified register. In the case of an ‘OUT instruction
the Z80 puts a copy of the contents of a specified register onto the data
bus.

The Z80 shows that it is executing an ‘IN’ or ‘OUT’ instruction by using
certain of its control signals, and an external device can read these
signals and hence prepare to either place a byte of data on the data bus,
or to read the byte of data presently on the data bus.

The Z80 also places an address on the address bus whilst it is
executing an ‘IN’ or an ‘OUT instruction. This address is determined by
the programmer, and is called the PORT ADDRESS. It is therefore
possible for the external devices to read this address and to sense which
PORT, or device is to perform the sending or the receiving of the data.

In the following tables of the actual instructions the high and low bytes
of the PORT ADDRESS are also shown.

76

Input or High Low

mnemonic instruction Hex Output register P.A. P.A.
INA,(+dd) DBdd A A dd
INA,(C) ED78 A 8 C
IN H,(C) ED 60 H B C
INL,(C) ED68 L B C
INB,(C) ED 40 B B C
INC,(C) ED 48 C B C
IND,(C) ED 50 D B C
INE,(C) ED 58 E B C
INI ED A2 Non-automatic with increment.
INIR ED B2 Automatic with increment.

IND ED AA Non-automatic with decrement.
INDR EDBA Automatic with decrement.

OUT (+dd),A D3dd A A dd
OUT (C),A ED 79 A B C
OUT (C),H ED 61 H B C
OUT (C),L ED 69 L B C
OouT (C),B ED 41 B B C
OouT (C),C ED 49 C B C
OuUT (C),D ED 51 D B C
OUT (C),E ED 59 E B C
OuUTI ED A3 Non-automatic with increment.
OUTIR EDB3 Automatic with increment.

OuUTD ED AB Non-automatic with decrement.
OUTDR ED 8B Automatic with decrement.

The automatic and non-automatic instructions have been included in
the tables but they are not used in the ZX-81 system as their use is
primarily involved with the use of discs.

Examples from the 8K monitor program.

‘IN’

The ‘keyboard scanning routine’ gives a very good example of
how the ‘IN A,(C)’ instruction can be used. ‘

In the ZX-81 system the keys of the keyboard are connected to
the 8 higher lines of the address bus, and the pressing of the
different keys puts different signals on the 5 lower lines of the data
bus.

In order to give a different final value for each key with this
combination it is necessary to scan the keyboard 8 separate times.
On each occasion the values on the 8 higher address lines are
changed.

These values are changed using a ‘RLC B’ instruction, and the
counting of the 8 changes is performed by using a ‘marker’ bit.

77

Initially bit @ is the only bit that is Reset, and after 8 rotations it
enters the Carry flag and thereby causes an ‘exit’ from the loop.
The lines involved are:

address Hex. code mnemonic comment
02BE @1FEFE LD BC,+FEFE Initialise.
2CH1 ED 78 INA(C) st Input. .
2C3 F6 01 OR +01
2C5 F6 E@ OR +E@
......................... develop value
individual to
......................... each key.
2D2 CB0o RLCB Rotate.
2D4 ED 78 INA,(C) 2nd-8th Input.
2D6 38ED JRC,02C5 Back until 8th.

(see page 153 for the full ‘Keyboard scanning routine’)
‘our

One of the nice features of using the ZX-81 is that a display of
broad bands is produced when a program is being loaded from the
cassette player. This ‘echoing’ of the incoming signal is produced
by simply adding an ‘OUT (+FF),A’ instruction to the ‘LOAD com-
mand routine’.

The lines are:

address Hex. code mnemonic comment
@350 3E7F LDA,+7F Initialise.
352 DBFE IN A,(+FE) Collect byte.
354 D3 FF OUT (+FF),A ‘Echo' the byte.
1 11 TR

(see page 151 for the full ‘'LOAD command routine’)
The BASIC programs that demonstrate these instructions are to be
found on page 108.

Group 17: The ‘Interrupt’ instructions.

The Z80 is described as being able to be ‘interrupted’. That is to say that
the microprocessor can be prevented from proceeding with the sequen-
tial execution of the instructions in a particular program by the occurr-
ence of an ‘interrupt’.

There are two control lines that go into the Z80 that when ‘active’ will
stop the microprocessor and force it to deal with the interruption.

The first of these lines is called ‘NMI' or the ‘non-maskable interrupt
line’. When this line is activated the Z80 will stop following its present
program, it will save the contents of the Program Counter on the stack to
be used later as a return address and it will ioad the Program Counter
with the address 8@66. The Z80 will always be interrupted when the NMI

78

line is activated and it will always proceed to execute instructions from
00366 onwards.

In the ZX-81 the production of the display during the ‘slow’ mode uses
the NMi facility. When a display is required the NM! line is activated and
the ‘slow mode display routine’ at @66 is followed. When this routine is
finished the ‘return address’ is collected from the stack and the original
program is continued.

The second control line is called ‘INT’ or the ‘maskable interrupt line’.
The word ‘maskable’ implying that the facility can be turned on and off by
the programmer. When the power is first connected to the Z80 this
interrupt is inactive, or ‘disabled’, and it requires the execution of a ‘El’,
enable interrupt, instruction before the facility is active. There is also a
‘DI, disable interrupt, that can be used at anytime to run off the interrupt
facility. The occurrence of an ‘interrupt’ will also disable the facility.

There are three programmable modes to the use of the maskable
interrupt system. ‘Mode O’ requires that an external device puts a data
byte on the data bus to signify which of the RST addresses is to be put
into the Program Counter. ‘Mode 1’ simply causes the address 3338 to
be put into the Program Counter. ‘Mode 2’ is more complicated and
involves a pointer address being formed by the combination of the
contents of the | register and the byte placed on the data bus by an
external device. This address is then used to index into a vector table and
an address held in the table is the address that goes into the Program
Counter.

The programmer can select by using the ‘IM @', the ‘IM 1’ or the ‘IM 2'
instructions whichever type of interrupt he requires.

The return from an interrupt routine requires a ‘RET’ instruction to be
executed, but there are two special instructions ‘RETN’ and ‘RET!’ that
may be used if desired. These special instructions have the effect of
‘enabling the maskable interrupt’ the moment the return has been
performed. Therefore if the programmer wishes to ‘RETurn from a Non-
maskable interrupt’ with the ‘maskable interrupt’ system activated then a
‘RETN' instruction should be used. Likewise a 'RETurn from a maskable
Interrupt’ with reactivation of the interrupt facility requires a ‘RETI'
instruction rather than a simple ‘RET".

The actual instructions are:

mnemonic instruction Hex. Comment
El FB Enable -

maskable interrupts.
DI F3 Disable ~

maskable interrupts.
M@ ED 46 Mode @
M1 ED 56 Mode 1

79

M2 ED 5E Mode 2

RETI ED 4D Return from
maskable interrupt.
RETN ED 45 Return from non-

maskable interrupt.

Examples from the 8K monitor program.
Throughout the monitor program the maskable interrupt facility is
used in mode 1. This is specified in the ‘initialising routine’.

address Hex. code mnemonic comment
03F6 ED 56 M1 Enter mode 1.

In the ‘display routine’ the maskable interrupt facility is enabled
whenever a line of the display is ready to be sent to the T.V. screen.
The interrupt always occurs at the end of the display line.

address Hex. code comment
0043 FB El Enable interrupt.
44 E9 JP (HL) Start sending
characters.

There are no examples for these instructions in chapter 5.

Group 18: Miscellaneous Instructions.
There are four further instructions in the instruction set.
‘CPL’
This instruction allows the programmer to COMPLEMENT the A
register.

mnemonic instruction Hex. comment
CPL 2F Complements A
register.

The instruction simply changes all of the bits of the A register to their
opposite states. The major flags are not affected.
An example from the 8K monitor program.
In the ‘clear memory routine’ it is necessary to form the 2's
complement of the contents of the BC register pair. This is
performed by the following lines:

address Hex. code mnemonic comment
0A61 78 LDAB Form
A62 2F CPL complement
A63 47 LDB,A for B.
A64 79 LDA,C Form
A65 2F CPL complement
A66 4F LDC,A for C.

80

A67 03 INC BC Add the 1 for
passing zero.

‘NEG’
This instruction allows the programmer to form the 2's complement of
the A register.

mnemonic instruction Hex.
NEG ED 44 2's complement of A

The ‘NEG!’ instruction affects all the flags. The Sign and the Zero flags
are affected by the state of the result. The Carry flag will be Set if the A
register holds zero before the operation and the O/P flag will be Set if the
A register holds Hex.8@ before the operation.

‘HALT

The 'HALT instruction is an interesting instruction as its execution by
the Z80 causes the microprocessor to stop executing any further instruc-
tions until the occurrence of an interrupt.

mnemonic instruction Hex.
HALT 76

It is no coincidence that the code for NEWLINE in the ZX-81 system is
also Hex. 76.

When the characters of a line for the display are being taken out of the
display file the circuitry of the ZX-81 makes the Z80 execute ‘NOP’
instructions. However, when a NEWLINE character is reached, the
circuitry allows the Hex. 76 to pass to the Z80 and be executed as a
"HALT instruction. The Z80 then continues to execute ‘NOP' instructions
whilst in its ‘HALTed’ state until it is interrupted. The interruption coming
when the R register has counted out the 32 characters for the line.

The ‘HALT instruction is also used in the ‘slow mode display routine'.
This routine is itself the NMI interrupt routine and the ‘HALT instruction
forms part of the timing sequence for the ‘slow’ mode.

‘DAA’
This last instruction is a specialised instruction that allows the pro-
grammer to ‘Decimally Adjust the A register’.

mnemonic instruction Hex.
DAA 27

In 'binary coded decimal arithmetic’ (BCD) the decimal digits 0-9 are
represented by the binary 0@00 - 100G 1.
Therefore
the byte 3000 00G0 represents decimal @
the byte @311 100 1 represents decimal 39 and
the byte 1600 1000 represents decimal 88 etc.

81

A byte containing a ‘nibble’ (4 bits) of more than 18@1 is just not
allowed.

The ‘Decimal Adjust the A register’ simply converts bytes that are in
absolute binary arithmetic into BCD.

i.e. if A holds @0@G 1010 a ‘DAA’ operation will give the A register
containing: @383 1 3@00J as this is the BCD representation of decimal 16.

The execution of a‘DAA’ instruction does affect the flags. The Sign flag
and the Zero flag are simply affected by the result in the usual way. The
O/P flag tests the parity of the result. The reaction of the Carry flag is
rather complicated as its value is affected by the state of the ‘Half carry
flag'.

In the 8K mdhitor program the ‘DAA!’ instruction is only used occasion-
ally and there are no easy examples that can be discussed.

A BASIC program that demonstrates the 'HALT’ instruction is to be
found on page 108.

82

5. Demonstration Machine Code
Programs

5.1 An outline of the chapter

This chapter contains 26 simple BASIC programs that illustrate the use
of many of the machine code instructions of the Z80. All of the programs
will RUN on a 1K ZX-81.

The programs are arranged so that the instructions demonstrated
follow the groups described in chapter 4.

All the programs involve POKING machine code instructions into
areas of ‘free’ RAM and then RUNNING the programs by using the USR
command.

The machine code instructions are entered as their decimal values,
but the Hexadecimal equivalents will always be given together with the
mnemonics.

5.2 The Programs

Group 1. The NO OPERATION and RETURN instiuctions

(see also page 22)

The following simple program shows the RETURN instruction being
used as a ‘complete’ machine code program.

Program 1 13 SLOW mnemonic Hex. code
‘RET’ 20 POKE 17152,20 1 RET C9

30 STOP

40 LET A=USR 17152

5@ PRINT

“THE PROGRAM HAS RUN"

Enter the above lines and use RUN. Then use RUN 4@ to execute the
actual machine code program. This program consists of only one
machine code instruction — the RET instruction.

The next program shows the use of the NO OPERATION instruction.

Program 2 16 SLOW mnemonic Hex. code
‘NOP' 20 FORA=0TO98

30 POKE 17152+A,0 NOP @0

40 NEXT A

5@ POKE 17251, 201 RET C9

6@ STOP

70 LET A=USR 17152

80 PRINT

“THE PROGRAM HAS RUN”

83

Enter the above lines and use RUN. Then use RUN 78 to execute the
actual machine code program. This time the program is 10@ bytes in
length, being made up of ‘99 NO OPERATION instructions and a
RETURN'.

These first two programs do not do any useful ‘work’, but they do show
that a machine code program RUN with the USR command requires a
final 'RET" instruction in order to make a return to BASIC.

The reader must understand just how the above BASIC programs
work before reading further.

Group 2. The instruction for loading registers with constants
(see also page 24)
The USR command returns to the programmer the contents of the BC
register pair, as a decimal number. The monitor program however con-
siders the BC register pair to be holding its numbers in absolute binary
arithmetic, and this fact must always be remembered.

The first program shows the simple use of a ‘LD B,+dd' and a ‘LD
C,+dd’ instruction.

Program 3 mnemonic Hex. code
‘LD 10 SLOW
C,+dd 20 LET A=17152

30 POKE A,14 LDC,+dd eE

40 PRINT AT 18,0, “ENTER
A VALUE FOR C (0-255)"

5@ INPUTC

6@ POKEA+1,C C
70 POKE A+2,6 LD B, +dd 06
80 POKE A+3,0 0a
90 POKE A+4,201 RET C9
100 CLS

110 PRINT “C NOW
CONTAINS”; USR 17152
120 RUN

RUN

Note the use of the ‘USR 17152’ in the PRINT line. This is quite
acceptable and can be very helpful.

The second program for this group of instructions shows the ‘LD
BC,+dddd’ instruction.

84

Program 4 mnemonic Hex. code
‘IDBC, 18SLOW
+dddd’ 20 LETA=17152

30 POKE A,1 LDBC,+dddd @1

40 PRINT AT 18,0; “ENTER

A VALUE FOR BC (8-65535)"

5@ INPUT BC

60 LET B=INT (BC/256)

70 LET C=INT (BC-B*256)

80 POKEA+1,C C
90 POKE A+2,B B
100 POKE A+3,201 RET C9
110 CLS

120 PRINT “BC NOW
CONTAINS”; USR 17152
130 RUN

RUN

So as to make the working of the above program a little clearer the
‘assembler’ listing of the 2 instruction line machine code program is given
below.

address Hex. code mnemonic comment
4300 @1CB LD BC,+dddd Load the
constant ‘BC'.
333 C9 RET Return to the
BASIC.

Group 3. Register copying and exchanging instructions

(see also page 25)

The register copying instructions can be demonstrated by loading re-
gisters with constants and then by copying those constants to the B and
C registers for returning to the programmer.

The first program shows the ‘LD C,L’ instruction. In the program a
constant is loaded into the L register and then copied into the C register.
The B register is loaded with the constant @ so as to make the program
less complicated.

85

Program 5 mnemonic Hex. code
‘LDC,L'" 10 SLOW

20 LET A=17152

30 POKE A,46 LDL,+dd 2E

4@ PRINT AT 18,0; “ENTER A

VALUE FOR L (@-255)"

50 INPUT L ’
60 POKE A+1,L L
70 POKE A+2,77 LDCL 4D
80 POKE A+3,6 LD B,+dd @6
90 POKE A+4,0 o
100 POKE A+5,201 RET Cc9
110 CLS

120 PRINT “L WAS LOADED

WITH"; L

130 PRINT

140 PRINT “AND NOW

C CONTAINS”; USR 17152
150 RUN

RUN

The reader is encouraged to use different registers and different
instructions in the above program when the principle of the program has
been understood.

The second program for this group of instructions demonstrates the
important ‘EX DE,HL’ instruction.

in the program the value entered by the programmer takes a ‘tour’
round the main registers before emerging unchanged (hopefully).

Program 6 mnemonic Hex. code
‘EX 10 SLOW
DEHL 20 LETA=17152

30 POKE A,33 LD HL,+dddd 21

40 PRINT AT 18,@; "ENTER A
VALUE FOR HL (@-65535)"
50 INPUT HL

60 LET H=INT (HL/256)

70 LET L=INT (HL-H"256)

80 POKEA+1,L L
90 POKE A+2,H H
100 POKE A+3,235 EX DE,HL

110 POKE A+4,74 LDC,D 4A
120 POKE A+5,67 LDB,E 43
130 POKE A+6,81 LDD,C 51
140 POKE A+7,88 LDEB 58

86

150 POKE A+8,235 EXDE,HL EB

160 POKE A+9,68 LDB,H 44
176 POKE A+10,77 LDC,L 4D
180 POKE A+11,201 RET C9
190 CLS

200 PRINT “HL WAS
LOADED WITH” ; HL

210 PRINT

220@ PRINT “AND NOW

BC CONTAINS” ; USR 17152
23@¢ RUN

RUN

The reader is again encouraged to try different instructions in the
above program.

Group 4. Instructions for the loading of the registers with data copies
from a memory location. (see also page 28).

The instructions in this group allow the programmer to load registers with
copies of the contents of locations that are addressed using absolute,
indirect or indexed modes of addressing.

The first program demonstrates ‘absolute addressing'. In this mode
the address of the location is kept as two bytes of data that follow the
instruction proper.

Initially a chosen location in memory - address 17152, Hex.430@ - is
filled using a POKE command. Than a ‘LD A,(addr.)’ instruction copies
the contents of location 17152 into the A register. Other instructions are
then used and the return made to BASIC.

Program 7 mnemonic Hex. code
‘LD 10 SLOW
A,(addr.)’ 20 PRINT AT 18,; “ENTER A

VALUE FOR LOCATION 17152

(@-255)”

30 INPUT VALUE

40 POKE 17152, VALUE

50LET A=17153

60 POKE A,58 LDA,(addr) 3A
70 POKE A+1,0 a0
80 POKE A+2,67 43
90 POKE A+3,79 LDC,A 4F
100 POKE A+4,6 LD B,+dd @6
110 POKE A+5,0 @o
120 POKE A, +6,201 RET C9
130 CLS

87

140 PRINT “INPUT VALUE

WAS”; VALUE

150 PRINT

16@ PRINT “C REGISTER NOW
CONTAINS”; USR 17153 NOTE: 17153
176 RUN

RUN

The second program demonstrates ‘indirect addressing'. In this mode
the address of the location has to be placed in an ‘addressing register
pair’.

In the following program the HL register pair is loaded with the address
17152, Hex.43@@ and the contents of that location returned to the
programmer.

Program 8 mnemonic Hex. code
‘LD 16 SLOW
C,(HL) 20 PRINT AT 18,0; “ENTERA

VALUE FOR LOCATION

17152 (@-255)"

30 INPUT VALUE

40 POKE 17152, VALUE
50 LET A=17153

60 POKE A,33 LDHL,+dddd 21
70 POKEA+1,0 @o
80 POKE A+2,67 43
90 POKE A+3,78 LD C,(HL) 4E
180 POKE A+4,6 LD B,+dd @6
110 POKE A+5,0 @0
120 POKE A+6,201 RET C9
130 CLS

140 PRINT “INPUT VALUE

WAS”; VALUE

150 PRINT

160 PRINT “C REGISTER NOW
CONTAINS”; USR 17153

170 RUN

RUN

The third program demonstrates ‘indexed addressing'. In this mode a
block of memory is considered to be a table or a list of which the ‘base
address’ is known. The position of the required location must also be
known.

88

in the ZX-81 system, especially in ‘slow’ mode it is not very practical to
change the contents of the IX or the IY register pairs so the following
program uses the monitor program’s base address of Hex. 46@@ and the
location that is ‘indexed addressed’ is in the ‘printer buffer’, which is at
Hex. 4@3C-405C. (16444-16476).

Program 9 mnemonic Hex. code
‘1D 10 SLOW
C.(IY+d)' 20 PRINT AT 18,8; “ENTER A
VALUE FOR LOCATION
16444 (8-255)”"
30 INPUT VALUE
4@ POKE 16444, VALUE
50 LET A=17152
60 POKE A,253 LDC(IY+d) FD
70 POKE A+1,78 4E
80 POKE A+2,60 3C
90 POKE A+3,6 LD B,+dd @6
106 POKE A+4,0 1)
110 POKE A+5,201 RET @a
120 REM
136 CLS
140 PRINT “INPUT VALUE
WAS”; VALUE
150 PRINT
160 PRINT “ENTRY D= "“"“3C” "
IS”;USR 17152 (shifted Qs.)
170 RUN
RUN

The reader is encouraged to change the parameters in lines 2@, 4@
80 and 160, to examine other locations.

Group 5. Instructions for loading locations in memory with data copied
from registers, or with constants. (see also page 33)
The instructions in this group allow the programmer to load memory
locations with data copied from registers and to load addressed locations
with constants.
Once again absolute, indirect and indexed addressing can be used.
The first program shows the ‘LD (addr.),A’ instruction. In the program
the user is asked to enter a ‘VALUE' and an ‘ADDRESS’ and then the
machine code routine will ‘load’ the specified location. A PEEK command
is used to show the user that the operation is successful.

89

Program
10
LD
(addr.), A’

mnemonic
10 SLOW
20 PRINT AT 18,0; ENTER A
VALUE (@-255)"
30 INPUT VALUE
40 CLS
5@ LET A=17152
60 POKE A,62 LD A,+dd
78 POKE A+1, VALUE
80 PRINT AT 18,0; “ENTER
THE ADDRESS OF A
LOCATION (16384-17407)"
90 INPUT ADDRESS
100 CLS
110 LET H=INT
(ADDRESS/256)
120 LET L=INT
(ADDRESS-H*256)
130 POKE A+2,50 LD (addr.),A
140 POKE A+3,L
150 POKE A+4,H
160 POKE A+5,201 RET
170 LET K=USR 17152
180 PRINT “INPUT VALUE
WAS"; VALUE
190 PRINT
200 PRINT “LOCATION";
ADDRESS; "HOLDS";
PEEK ADDRESS
210 RUN
RUN

Hex. code

3E
VALUE

The user of the above program must be careful to choose a value for
‘ADDRESS’ that is sensible. In this particular case locations 17158 to
17300 are definitely ‘free’ locations.

The second program shows ‘indirect addressing’ being used to ad-
dress the required location. A ‘LD (HL),E’ instruction is used to ‘load’ that

location.

Program

mnemonic
10 SLOW
20 PRINT AT 18,0; “ENTER A
VALUE (@-255)”
30 INPUT VALUE
40 CLS

90

Hex. code

50 LET A=17152

60 POKE A,30 LD E,+dd 1E

70 POKE A+1, VALUE VALUE
80 PRINT AT 18,@; “"ENTER

THE ADDRESS OF A

LOCATION (16384-174@7)"
9@ INPUT ADDRESS

100 CLS

110 LET H=INT

(ADDRESS/256)

128 LET L=INT

(ADDRESS-H"256)

130 POKE A+2,33 LDHL,+dddd 21
140 POKE A+3,L L
150 POKE A+4,H H
160 POKE A+5,115 LD (HL),E 73
170 POKE A+6,20 1 RET C9

180 LET K=USR 17152
190 PRINT “INPUT VALUE
WAS"; VALUE

200 PRINT

210 PRINT "LOCATION",
ADDRESS;" HOLDS";
PEEK ADDRESS

220 RUN

RUN

Once again the user must choose the value for ADDRESS' sensibly.
Locations 17159 to 17300 are ‘free’ locations.

The third program for this group uses ‘indexed addressing and de-
monstrates the ‘LD (IY+d),+dd’ instruction. Again the ‘base address’ of
Hex. 4800 is used and the indexed locations all form part of the ‘printer

buffer’.

Program
12

LD
(lY+d),
+dd’

mnemonic Hex. code
10 SLOW
20 PRINT “ENTRY NO.",
"CONTENTS"
30 PRINT
40 FOR1=6@ TO 70
5@ PRINT |, PEEK (16384 +1)
60 NEXT |
70 PRINT AT 18,8; “ENTER A
VALUE (@-255)"
80 INPUT VALUE

91

90 PRINT AT 18,0; “WHICH

LOCATION? (66-70@)"

103 INPUTD

110 IF D<60 OR D>7@ THEN

GOTO 100

120 LETA=17252NOTE: 17252

130 POKE A,253 LD(IY+d),
+dd

140 POKE A+1,54

150 POKE A+2,D

160 POKE A+3, VALUE

173 POKE A+4,201 RET

180 LET K=USR 17252

190 CLS

200 RUN

RUN

36

VALUE

C9

In the above program the user can ‘load' values into a part of the
printer buffer’. Note that in the program the ‘displacement’ value D is in
decimal arithmetic. The locations would more normally be described in
Hex. as 'lY+3C'to 'IY+46;.

Group 6: The addition instructions.
(see also page 36)

There are three subgroups of instructions within this group. The ADD
instructions perform straightforward addition operations in absolute bi-
nary arithmetic. The INC instructions simply increment the byte or bytes
specified. The ADC perform addition together with incrementation if the
Carry flag is Set.

The first BASIC program shows the ‘ADD A, +dd' instruction.

Program
13

ADD
A,+dd’

mnemonic
10 SLOW
20 PRINT AT 18,@; "ENTER
FIRST VALUE (@-255)"
30 INPUT F
40 PRINT AT 18,0; “ENTER
SECOND VALUE (8-255)"
5@ INPUT S
6@ CLS
760 LET A=17152
8@ POKE A,62 LD A, +dd
90 POKE A+1,F
100 POKE A+2,198 ADDA, +dd
110 POKE A+3,S

92

Hex. code

3E

C6

120 POKE A+4,79 LDC,A 4F

130 POKE A+5,6 LD B,+dd @6
140 POKEA+6,0 e
150 POKE A+7,201 RET Co

160 PRINT “ADDITION’;
F;" +";S;"=";USR 17152
170 RUN

RUN

In the above program the first value, F, is loaded into the A register.
The second value becomes the data byte associated with the ‘ADD
A,+dd’ instruction. The program does show the ‘addition in absolute
binary arithmetic’ quite truthfully.

The second program for this group demonstrates the ‘INC BC’ instruc-
tion. Again the operation is performed in absolute binary arithmetic.

Program mnemonic Hex. code
14 10 SLOW
'INCBC’ 20 PRINT AT 18,8; “ENTER
VALUE FOR BC (@-65535)"
30 INPUT BC
40 CLS
50 LET B=INT (BC/256)
6@ LET C=INT (BC-B*256)
70 LET A=17152
80 POKE A1 LDBC,+dddd @1
9@ POKEA+1,C C
100 POKEA+2,B B
110 POKEA+3,3 INCBC @3
120 POKE A+4,201 RET C
130 PRINT “OLD CONTENTS
OFBC=";BC
14@ PRINT
150 PRINT “WHEN
INCREMENTED BC=";
USR 17152
160 RUN
RUN

Try entering a value of 65535.

There is no program to illustrate the ‘ADC’ instruction but an ‘ADC
+dd’ instruction is used in the first program for the next group of
instructions.

93

Group 7: The subtraction instructions.
(see also page 40)
Once again there are three subgroups of instruction in this group.

The SUB instructions perform straightforward subtraction. The DEC
instructions simply decrement the specified byte or bytes. The SBC
instructions perform subtraction and also decrementation if the Carry
flag is Set.

The use of the Carry flag is very important and the first program shows
how:

operations that are

F > S give Carry Reset.

F=S gives Carry Reset and

F < S give Carry Set.

(F is afirst value, S is a second value)

All subtraction operations are in ‘absolute binary arithemtic'.

In the first program, that illustrates the ‘'SUB +dd’ instruction, there is a
change in the method of loading the machine code into the ZX-81.

Line 1@, the first line in the BASIC program is a REM statement that
has 16 characters that are used to reserve space for the machine code
program.

The change is required as in a standard IK ZX-81 there is very little
‘free RAM' available when a large BASIC is entered, and itis a good idea
to reserve space by using a ‘dummy’ REM line.

Program mnemonic Hex. code
15 10 REM 1234567890123456 (16 bytes)
SuB 20 SLOW
+dd’ 30 PRINT AT 18,@; “"ENTER
VALUE ONE (@-255)"

40 INPUTF

50 PRINT AT 18,12;"TWO"

60 INPUT S

70 CLS

80 LET A=16515 Note: 16515

90 POKE A,62 LD A,+dd 3E
100 POKE A+1,F F
110 POKE A+2,214 SUB +dd D6
120 POKE A+3,S S
130 POKE A+4,79 LDCA 4F
140 POKE A+5,6 LD B,+dd @6
150 POKE A+6,0 00
160 POKE A+7,62 LD A, +dd 3E
170 POKE A+8,0 @a
180 POKE A+9,206 ADC A, +dd CE
190 POKE A+10,0 aa

94

200 POKE A+11,50 LD (addr.),A 32
218 POKE A+12,130
(1stcharacter) 82

220 POKE A+13,64 (inline 10@) 40
230 POKE A+14,201 RET C9
240 PRINT “SUBTRACTION";

F;*=".8;“="USR 16515,,

“CARRY"; Note: USR 16515
250 IF NOT PEEK 16514
THEN PRINT “RE™

260 PRINT “SET”

278 RUN

RUN

Try the above program with;

24 —12togive 12 & Carry Reset

24 —24togive 0 & Carry Reset and
24 — 25 to give 255 & Carry SET

In the program F takes the value of the First value entered. S takes the
value of the Second value.

A ‘SUB +dd’ instruction performs the subtraction. The result is then
put into the BC register pair.

The value of the Carry flag is then found by using a ‘ADC+0@@’
instruction, this value is stored in location 16514 and subsequently read
with a PEEK command.

The DEC instructions are so similar to the INC instructions (though
opposite in action) that the following changes to program 14 can be used
if wished.

mnemonic Hex. code
110 POKE A+3,11 DEC.BC oB
150 PRINT “WHEN
DECREMENTED BC=";
USR 17152

There is no program to demonstrate the SBC instructions as they are
commonly used as straighforward subtraction instructions by using ‘AND
A’ before the ‘SBC’ so as to clear the Carry flag.

Group 8; The Compare instructions. (see also page 44)
The Compare instructions in effect perform a simple subtraction opera-
tion, set the state of the flags and then discard the result.

As the compare operation is so similar to subtraction the instructions
can be demonstrated by modifying program 15.

95

Therefore change in program 15:

mnemonic

110 POKE A+2,254 CP +dd
240 PRINT "COMPARISON",

F,u‘u
s -

;S,,"CARRY";

245 LET K=USR 16515
Again try ‘greater than’, ‘equals’ and ‘less than’ comparisons and see
how the state of the Carry flag changes.

Group 9; The Logical instructions. (see also page 45)
The instructions in this group aliow the programmer to perform the logical
operations of AND, OR and XOR.

The first program shows the ‘AND +dd' instruction. In this BASIC
program the‘free RAM' of the ‘printer buffer' is used to hold the machine

code program.

Program 30
16 40
‘AND 50
+dd’ 60

180

mnemonic

SLOW
PRINT AT 18,0; "ENTER
VALUE ONE (@—255)"
INPUTF
PRINT AT 18,12; “TWO"
INPUT S
CLS
LET A=16445
POKE A,62 LDA,+dd
POKE A+1,F
POKE A+2,230 AND +dd
POKE A+3,S
POKE A+4,50 LD (addr.),A
POKE A+5,60 (1st location

of PRBUFF)
POKE A+6,64

POKE A+7, 201 RET
LET K=16445

PRINT “LOGICAL";F;
“AND";S;“IS";PEEK 16444
RUN

Hex. code
FE

Hex.code

3E
E6

32
3C

C9

The above program works in decimal arithmetic, but the logical opera-
tions are performed in binary by the Arithmetic-logic-unit of the Z80.
To demonstrate the OR operation the following changes can be made

to program 16.

96

100 POKE A+2,246 OR +dd Fé
170 PRINT“LOGICAL";F;“"OR"
'S,"IS";PEEK 16444

To demonstrate the XOR operation

100 POKE A+2,238
170 PRINT “LOGICAL";F;
“XOR";S;"IS";PEEK 16444

Group 10; The Jump instructions. (see also page 49)

In this group are the unconditional and the conditional Jump instructions,
and the jumps made can be to an absolute addressed location or to a
‘relative’ addressed location.

The following program shows how the different results of a simple
addition operation set the flags and hence permit or otherwise a jump to
be made.

The program initially asks the user to specify an instruction, and the
following are permitted instructions for this program: ‘

decimal mnemonic Hex.code
24 JRe 1i8e
32 JRNZ,e 20e
40 JRZe 28e
48 JRNC,e 30e
56 JRC,e 38e
The decimal value must be entered.
mnemonic Hex.code
16 SLOW
20 PRINT AT 18,0; “ENTER
Program INSTRUCTION",“E.G.
17 <4@> FOR URZE>"
‘JRe’
30 INPUTB
4@ CLS
5@ PRINT AT 18,8; ENTER
VALUE ONE (@-255)"
6@ INPUTF A
70 PRINT AT 18,12; “TWQ”
80 INPUTS
9@ CLS
100 LET A=16445
110 POKE A1 LD BC,+dddd 01
120 POKE A+1,0 00
130 POKE A+2,0 11}

140 POKE A+3,62 LD A, +dd 3E

97

150 POKE A+4,F E

160 POKE A+5,198 ADDA, +dd Cé
170 POKE A+6,S S

180 POKE A+7,50 LD (addr.)A 32
190 POKE A+8,60 3C
200 POKE A+9,64 40
210 POKEA+10@,B JRe B

220 POKE A+11,1 1

23@ POKE A+12,201 RET C9
240 POKEA+13,3 INCBC @3
250 POKE A+14,201 RET C9

260 LET C=USR 16444

270 PRINTF;“+";S;"="PEEK 16444
280 IF NOT C THEN PRINT

IINO’Y;

290 PRINT “JUMP”

300 RUN

RUN

Note: The user must be careful to enter only valid instructions.
SAVEing the program is advised.

In the above program the BC register pair is initially set to contain zero.
However if a jump is made the value in BC is incremented, and the
incremented value returned to the user.

The above program can be simply changed to give examples of the
‘absolute’ addressing instructions.

The following instructions are then valid:

decimal mnemonic Hex. code
195 JP addr. C3 addr.
194 JP NZ, addr. C2 addr.
202 JP Z, addr. CA addr.
210 JP NC, addr. D2 addr.
218 JP C, addr. DA addr.
226 JP PO, addr. E2 addr.
234 JP PE, addr. EA addr.
242 JP P, addr. F2 addr.
250 JP M, addr. FA addr.

The changes to program 17 are:
20 PRINT AT 18,0;"ENTER
INSTRUCTION", “E.G. <25@>
FOR <JPM,ADDR.> "

98

220 POKE A+11,75 (location A+14)

4B
23¢ POKE A+12,64 40
240 POKEA+13,201 RET C9
250 POKEA+14,3 INCBC 03
255 POKE A+15,201 RET C9

The user can alter the location A+5 if wished.

E.g. changeslines:
160 POKE A+5,214
27@ PRINTF;" ~";S;"=",PEEK
16444
will change the addition operation to subtraction.

Group 11; The ‘DJNZ e’ instruction (see also page 59)
This very commonly used instruction can be considered to be equivalent
to the BASIC NEXT command.

The following very simple program shows a FOR . . . NEXT loop being
used to SUM a series.

10 SLOW

20 PRINT “THE SUM OF THE
SERIES","1,2. . .254,255"
30 PRINT

4@ PRINT “=";

5@ INPUT AS

60 LET SUM=0

780 FORC=255TO 1 STEP
—1

80 LET SUM=SUM+C

9@ NEXTC

100 PRINT SUM

The program includes the line 5@ INPUT A8 as a waiting point for the
user — simply press NEWLINE.

As written the second half of the program takes 9 seconds to produce
the answer 32640.

The following program demonstrates the ‘DJNZ e’ instruction being
used in the equivalent machine code program.

10 SLOW
20 PRINT “THE SUM OF
THE SERIES","1,2...254,255"

30 PRINT
Program 4@ PRINT “=";
18 50 LET A=16444
DIJNZe' 6@ POKEA,33 LD HL,+dddd 21

99

70

80

90
100
110
120
130
140
150
160
170
180
190
200

POKEA+1,0 @o
POKE A+2,0 @o
POKE A+3,85 LDD,L 55
POKE A+4,6 LD B,+dd @6
POKE A+5,255 FF
POKE A+6,88 LDE,B 58
POKE A+7,25 ADD HL,DE 19
POKE A+8,16 DINZe 10
POKE A+9,252 FC
POKE A+10,68 LDB,H 44
POKE A+11,77 LDC.L 4D
POKE A+12,2@1 RET C9

INPUT A3

PRINT USR 16444

As written the above program takes in ‘slow’ mode about a second.
However by changing line 10 to; 16 FAST and running the program
again, it will be seen to be very much quicker.

The above program is worth studying in further detail as it really is the
first functional program in the book.

The ‘assembler’ listing is as follows;

address Hex. code Label

403C 210000 START
03F 55
040 06 FF
@42 58 FOR
043 19
044 16 FC NEXT
046 44
@47 4D
048 C9 END

mnemonic Comment

LD HL,,+0@00@0@ Clear HL for answer.

LDD,L Set D to zero.

LD B,+FF For 255 times.

LDEB Transter to low
register.

ADD HL,DE For part answers.
DJNZ FOR Go back.

LD B,H Transfer to USR.
LDC,L Transfer to USR.
RET Return.

This 13 byte routine can be considered to be a subroutine to be used
on any occasion where there is the need to sum a series of suitable

numbers.

Group 12; The Stack instructions. (see also page 61)
The first subgroup of instructions in this group consist of those instruc-
tions that can be used by the programmer to store data temporarily on the
stack. The second subgroup consists of those instructions that use the
stack themselves to hold ‘return addresses’.

The following program shows the stack being used to hold the value
entered by the user, this value is then ‘popped’ off the stack and returned

to the user.

100

The prog

ram shows how a value can be moved from one register pair

to another by the use of the appropriate ‘PUSH’ and ‘POP’ instructions.

mnemonic Hex. code
10 SLOW
20 PRINT AT 18,0; “ENTER A

VALUE FOR HL (@-65535)"

Program
19
‘PUSH
HL'

The sec
conditional

3@ INPUTHL
40 CLS
5@ LET H=INT (HL/256)
6@ LET L=INT (HL=H*256)
70 PRINT “HL WAS FILLED
WITH";HL
80 PRINT
90 PRINT “BC NOW
CONTAINS”;
100 LET A=16444
110 POKE A,33 LD HL,+dddd 21
126 POKE A+1,L L
13¢ POKE A+2H H
140 POKE A+3,229 PUSH HL ES
150 POKE A+4,193 POP HL C1
160 POKE A+5,201 RET C9
170 PRINT USR 16444
180 RUN
ond program demonstrates the absolute CALL and the
CALL instructions. The program is similar to program 17 that

showed the conditional JP instructions.

The user

is first asked to enter the ‘instruction’, in decimal, and then the

values for an addition operation. The program then shows whether or not
the CALL instruction would be used to run a subroutine.
The following instructions are valid for the program:

decimal
205
220
212
204
196
236
228
252
244

mnemonic Hex

CALL addr. CD addr.
CALL C, addr. DC addr.
CALL NC, addr. D4 addr.
CALL Z, addr. CC addr.

CALL NZ, addr. C4 addr.
CALL PE, addr. EC addr.
CALL PO, addr. E4 addr.
CALL M, addr. FC addr.
CALL P, addr. F4 addr.

The user is well advised to SAVE the program before running it for the

first time.

101

If the subroutine is not called the program will print; ‘NO CALL".
However whenever the subroutine has been called the program will
print the simple addition operation.

mnemonic Hex. code
10 SLOW
20 PRINT AT 18,0; “ENTER
INSTRUCTION", “E.G. <252>
FOR <CALL M,ADDR.>"
Program 3@ INPUTB

20 40 CLS
‘CALL 50 PRINT AT 18,@;"ENTER
addr.’ VALUE ONE (@-255)”"
6@ INPUTF
73 PRINT AT 18,12;"TWO”
80 INPUTS
90 CLS
100 LET A=16445
110 POKE A1 LDBC+dddd @1
120 POKEA+1,0 (r]7)
130 POKE A+2,0 (r]1)
140 POKE A+3,62 LD A,+dd 3E
156 POKE A+4,F F
166 POKE A+5,198 ADDA, +dd C6
176 POKE A+6,S S
18¢ POKE A+7,B CALL xxxxx B
190 POKE A+8,72 (address of) 48
200 POKE A+9,64 (A+11) 40
210 POKE A+10,2@1 RET C9
220 POKEA+11,3 INCBC @3
230 POKE A+12,50 LD (addr),A 32
240 POKE A+13,60 3C
(address of)
250 POKE A+ 14,64 (A-1) 40
263 POKE A+15,201 RET C9

270 LET C=USR 16445

280 IFCTHENPRINTF;" +
".S;"=",PEEK 1644

290 IF NOT C THEN PRINT
“NO CALL"

300 RUN

RUN

102

In the program the result of the addition is stored in location 16444,
from where it is read using a PEEK command if the subroutine was
called. The value returned to the user in BC is used as a flag to show
whether or not the subroutine was called.

it is not possible to demonstrate the RST instructions as they all are
‘preprogrammed’ in the 8K ROM.

The exercise of writing a BASIC program to demonstrate the
conditional RET instructions is left to the reader.

Hint: Try changing program 20. Location A+7 could have a ‘CALL
addr.’ instruction and location A+10 could have a conditional RET
instruction.

Group 13; The Rotation instructions. (see also page 66)
There are seven main types of rotation. The following demonstration
program shows the results of rotations on the C register.
The user is allowed to Reset, or Set, the Carry flag prior to the rotation.
As before the user is initially asked to enter the instruction to be used.
The following instructions are valid

decimal mnemonic Hex. code
1 RLCC CB @1
17 RLC CB 11
33 SLAC cB 21
9 RRCC cB@9
25 RRC CB 19
41 SRAC CB29
57 SRLC CB39
10 SLOW
20 PRINT AT 18,0;
“ENTER
INSTRUCTION",

"E.G1) FORCRLCC™>
Program 30 INPUTB
21 4@ CLS
'‘RLCC 50 PRINT AT 18,0;
“ENTER VALUE FOR
CARRY (@ OR 1)"
60 INPUTC
70 CLS
8@ PRINT AT 18,0;
“"ENTER VALUE FOR
C (@-255)"
9@ INPUTD
100 CLS

103

110 LET A=16445

126 POKEA,6 LD B,+dd a6
130 POKEA+1,0 1 1r)
140 POKEA+2,167-112*C XORAorSCF A7or37
150 POKE A+3,14 LDC gE
160 POKE A+4,D D
170 POKE A+5,2@3 Rotation cB
180 POKEA+6,B B
196 POKE A+7,62 LD A,+dd 3E
200 POKEA+8,0 a0
210 POKE A+9,206 ADC +dd CE
220 POKEA+10,0 1]1)
230 POKEA+11,50 LD (addr),A 32
246 POKE A+12,60 (location of)
3C

25@ POKE A+13,64 (A-1) 40
260 POKE A+14,2G1 RET C9
270 PRINT D;"ROTATES

TO",USR

16445;"CARRY”;

280 LET E=PEEK 16444

290 IF NOT E THEN PRINT
“SET”

300 IF ETHENPRINT
“RESET”

310 RUN

RUN

In the program the result of the rotation is stored in location 16444. The
state of the Carry flag is read using an ‘ADC +dd' instruction as before.

The user is again advised to SAVE the program before using it for the
first time, as the basic1K program does not have any ‘error checking’ on
the input values.

The user might like to try: Instruction=1, Carry=0, C=128 &
Instruction=57, Carry=1, C=1 etc.

Group 14; the ‘Bit handling’ instructions. (see also page 69)
This group contains the BIT, RES and SET instructions. The BIT
instructions allow the programmer to ‘test’ a particular bit in a specified
byte. The RES and SET instructions allow the programmer to Reset or
Set a particular bit.

The following demonstration program shows the BIT type of
instruction being used to convert a decimal number to its binary
equivalent.

104

mnemonic Hex. code

10 SLOW
20 PRINT AT 16,0;"DECIMAL
TO BINARY
CONVERSION”
30 PRINT AT 18,8;“"ENTER
DECIMAL NUMBER
(@-255)”
40 INPUTB
Program 5@ CLS
22 60 PRINT AT 6,6;B;" ”; (3 spaces)
‘BIT 7@ LET A=16444
80 POKEA,1 LDBC,+dddd @1
90 POKEA+1,0 00
100 POKE A+2,0 0o
110 POKE A+3,62 LD A,+dd 3E
120 POKEA+4,B B
130 POKE A+5,203 BIT xxxx CB
140 POKE A+7,200 RET Z cs
150 POKE A+8,3 INCBC @3
160 POKE A+9,201 RET C9

170 FORC=1TO8

180 POKE A+6,135-C*8 (the eight BIT instructions)
190 PRINT USR 16444;

200 NEXTC

2160 RUN

RUN

In the program each bit of the byte containing B is tested in turn. The
value of the BC register pair is then incremented if the bit is Set. The
above program runs very slowly in ‘slow’ mode and would be very much
faster if written totally in machine code.

There are no demonstration programs to show the RES and SET
instructions, but the reader is encouraged to write his own.

Group 15; Block Transferring instructions and Block Searching instruc-
tions (see also page 72)
The instructions in this group are very important. They are however
rather difficult instructions to use, unless the programmer has a clear
understanding of just what he is trying to do.

The first program shows the ‘LDIR’ instruction being used to move a
block of code within the BASIC program area.

105

Enter these lines:

10

90

REM 1234567890 1234567890 123
REM ***COPY THIS MESSAGE***
SLOW

FOR =16514 TO 16536

PRINT CHRS PEEK I;

NEXT |

PRINT

FOR 1=16543 TO 16565

PRINT CHRS PEEK [;

100 NEXTI
RUN
When the above program is RUN the display will show the characters
from lines 1@ and 20.

The addresses of the locations for the ‘start’ of these lines are there-
fore; Line 10, decimal 16514, Hex. 4082, Line 2@, decimal 16543, Hex.
4@ 9F and the length of the lines are; decimal 23, Hex.0 G 17.

With this information known enter the following demonstration prog-
ram which will move the contents of line 2@ to line 1@ using a ‘LDIR’

instruction.

10

mnemonic Hex. code
REM 1234567890 1234567890 123

20 REM ***COPY THIS MESSAGE™*"
Program 3¢ SLOW

23 40 LETA=16444
‘LDIR’ 50 POKEA,33 LDHL,+dddd 21
60 POKE A+1,159 (start of) 9F
70 POKE A+2, 64 (line 20) 40
80 POKEA+3,17 LD DE,+dddd 11
9@ POKE A+4,130 (start of) 82
100 POKE A+5,64 (line 10 40
110 POKE A+6,1 LDBC,+dddd @1
120 POKE A+7,23 17
130 POKE A+8,0 ee
140 POKE A+9,237 LDIR ED
156 POKE A+1@,176 BO
160 POKE A+11,201 RET C9o
170 LET K=USR 16444
180 LIST
RUN

106

When the program is RUN it will be seen that the line 2@ has been
copied into the 23 reserved locations of line 1@.

The ‘assembler’ listing is given below.

address

403C
0@3F
@42

045
047

Hex. code mnemonic
21 9F 40 LD HL,4G9F
118240 LD DE,4@82
011700 LDBC,0G17
EDBO LDIR

C9 RET

comment
Start of line 23.
Start of line 16@.
The number of
characters.
Block move.
Return to
BASIC.

The reader is encouraged to try his own programs using ‘LDIR’,
‘LDDR’, ‘LDl and ‘LDD’.

The second program shows the use of the ‘CPIR’ instruction.

In the program a search is made in the 8Kk ROM for the first occurr-
ences of the numbers 0-255.

Program
24
‘CPIR’

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160

SLOW

LET A=16444

POKE A,62

POKE A+2,1

POKE A+3,0 (the 8K)
POKE A+4,32 (ROM)
POKE A+5,33

POKE A+6,0

POKE A+7,0

POKE A+8,237
POKE A+9,177
POKE A+10,68
POKE A+11,77
POKE A+12,201
FORB=0 TO 255
POKEA+1,B

(match to this byte)

170

LET C=USR 16444

mnemonic Hex. code

LD A,+dd 3E
LD BC,+dddd @1

00
32

LD HL,+dddd 21

CPIR

LDBH
LDC.L
RET

a0
00
ED
B1
44
4D
C9

180 IF NOT C=8192 THEN PRINT B;"OCCURS FIRST

200
210

AT".C-1
190 IFC=8192 THEN PRINT
B;*"DOES NOT OCCUR”

PAUSE 100
NEXT B

107

Note that in line 180 that the location that holds the matching is given
by ‘C-1’, as the HL register pair is incremented before the comparison is
made.

The above program is purposely simple and does not check the flags
in the case of there being ‘no match’.

It is of interest that the value decimal 153, Hex. 99, does just not occur
in the whole of the monitor program.

Group 16; The Input and Output instructions. (see also page 76)

The instructions in this group allow the programmer to accept bytes of
data from an external source, and to send bytes out from the Z80.

The following simple program uses the’OUT (+FF),A’ instruction to
produce a ‘hum’ that can be recorded on a cassette tape.

The program just starts to show how ‘music’ can be produced.

mnemonic Hex. code
10 FAST Note; FAST
20 LETA=16444
Program 3@ POKEA,6 LD B,+dd @6
25 40 POKE A+1,255 FF
‘OuUT 5@ POKE A+2,211 OUT (+FF),A D3
(+FF),A 60 POKE A+3,255 FF
76 POKEA+4,16 DJNZ e 10
8@ POKE A+5,252 FC
90 POKE A+6,201 RET C9

16¢ FORB=1TO 300
110 LET K=USR 16444
120 NEXTB

RUN

Group 17; The ‘Interrupt’ instructions. (see also page 78)
There are no demonstration programs for these as there is no facility for
the user to use the interrupt lines in a standard 1K ZX-81.

Group 18; Miscellaneous instructions. (see also page 80)
The only demonstration program for this group is the following program
that shows the ‘HALT instruction being used in the ‘slow’ mode.

in ‘slow’ mode the NMI is used to split the machine code into blocks. In
the following program a ‘HALT instruction is used, however if the prog-
ram is run in ‘fast’ mode the program will be lost, showing that there are
no interrupts in ‘fast’ mode.

108

mnemonic Hex. code
16 SLOW
20 LETB=3
Program 3@ LET A=16444
26 40 POKEA,118 HALT 76
"HALT 50 POKE A+1,201 RET C9
60 LET K=USR 16444
70 CLS
80 PRINTAT
6-B,5;"INTERRUPT
WORKING”
90 LETB=-B
100 GOTO 60

109

Chapter 6. An Examination of the 8K
monitor Program

6.1 The need for a monitor program.

The first point for discussion is whether or not a microcomputer system,
such as the ZX-81 system, actually needs to have a monitor program at
all. However, it is fairly obvious that when the power is turned on, the Z80
microprocessor will start executing instructions sequentially. In the case
of the Z80 the first instruction is collected from location Hex.0@@0@. But it
is very important to realise that the microprocessor itself cannot in
anyway know whether it is following a sensible machine code program,
or just obeying ‘rubbish’.

This state can be shown quite nicely by trying to use a ZX-81 from
which the 8K ROM has been removed. If this is done, then the user will
find that the screen display fails to appear and that the keyboard is
inactive.

In order therefore for a microcomputer system to work in an organised
manner there must be a monitor program, and for a Z80 microprocessor
system the program must be located from Hex.@@0@ onwards.

The actual size of the monitor program is determined by the number of
features that the manufacturer wishes to include in his microcomputer
system. For example a hand-held games machine may require a monitor
program that occupies less than 2K (512 locations) of memory, whereas
a large microcomputer system may have over 100K of memory holding
its monitor program.

The standard ZX-81 system is at present supplied with an 8K monitor
program. The manufacturer thereby is able to offer a system which can
produce and maintain a T.V. display which has 64 different characters,
scan a keyboard with 78 different keystrokes and give the user the
BASIC language.

In the future it is likely that there will be a range of monitor programs
availablesome of which may be smaller and therefore more elementary,
and some which are larger and offer enhanced facilities.

6.2 A first look at the structure of the 8K monitor
program.
The 8K monitor program can be divided into the following parts.

00a0 The RST routines.
@a7E The character tables.
@207 The display routines.

110

02F6 The SAVE and LOAD command routines.
@3CB The initialisation routine.

0419 The BASIC line editing routines.
0C29 The BASIC command tables.
@CBA The BASIC line scanning routine.
0DAB The BASIC command routines.
OF52 The BASIC expression evaluator.
1586 The floating-point handling routines.
1914 The function table.

199C The fioating-point calculator.

1E00 The character generator.

1FFF end.

The 8K monitor program can therefore be seen to be made up of 14
significant parts. In general the routines involved with the display are
situated near the beginning of the program, the BASIC interpreter in the
middle and the floating-point routines towards the end. The 8K ROM also
holds the ‘formats’ of the 64 display characters in the character generator
that occupies the top V2K.

Before discussing these different parts of the monitor program it is
worth while considering a functional model of the ZX-81.

6.3 A function model of the ZX-81.

When the power is turned on the first routine to be performed is not,
surprisingly, the ‘initialisation routine’. However, after that the ZX-81
enters a loop which is comprised of the ‘keyboard scanning routine’ and
the main ‘display routine’. The computer stays in this program loop until a
key is pressed on the keyboard.

When this occurs an exit is made from the loop and some action is
taken. This action leads to the execution of those routines associated
with the keystroke. The routines may involive ‘editing the display’, ‘enter-
ing a character to the E-line’ or ‘running a BASIC program’.

Once the appropriate routines have been executed the computer
returns to its ‘keyboard and display loop’, where the whole procedure can
be repeated.

The above description applies very well to the ‘fast’ mode of operation
of the ZX-81. However the operation of the ‘slow’ mode is more comp-
licated. The most simple view possible is to consider that when the Z80 is
executing any routine outside the ‘keyboard and display loop’ there are
repeated ‘interrupts’ on the NMI line. Each interrupt leads to the execu-
tion of a ‘display routine’.

The following diagram shows these operations.

111

Diagram 10 A functional model of the ZX-81.

Initialisation
routine.
Y
Produce a
Display file.
¥ —
Keystroke.
‘KEYBOARD AND i. Edit the
DISPLAY LOOP’ display.
ii. Enter a
character to
E-Line.
iii. RUN a
PB?:;ﬁ;a BASIC
: program.
‘SLOW’ mode
will cause
repeated
‘interrupts’
here.

6.4 The different parts of the 8K monitor program.

Each of the 14 parts of the monitor program will now be discussed in turn.
The parts of program that are useful to a programmer writing his own
programs will be given more explanation than the parts that cannot easily
be used.

The RST routines:

The RST locations are used for the following purposes:
0000 Start.

0008 Report handling.

0010 Print a character.

0018 Collect a character from a BASIC line.
0020 Collect next character from a BASIC line.

0028 Jump to floating-point calculator.

0030 Make space in memory.

2038 IM1 interrupt routine for each display line.
&

0066 NM interrupt for ‘slow’ display routine.
RST locations @@@8 and @@ 1@ are worth discussing further.

112

‘RST 0008

When a report is required a ‘RST @@@8’ instruction is used. The value
of the report is required as data in the follovsing byte. The operation of the
report handling facility can be shown using the following BASIC program.

mnemonic Hex. code
10 SLOW
20 POKE 17000,207 RST 00G@8 CF
30 POKE 17001,34 22

40 LETK=USR 17000
5@ PRINT “LINE 5@~

When the above program is RUN it will be seen that “LINE 5@" is never
printed as report ‘Z’ has occurred in line 4@.
The actual lines from the monitor program that are involved are:

address Hex. code mnemonic comment
0008 2A 16 40 LD HL,(4816) Save CH-ADD
ooB 221840 LD (4818),HL in X-PTR
GOE 18 46 JP 0056 Jump.
@56 E1 POP HL Get data byte
address offstack
@57 6E LD L,(HL) Transferto L.
058 FD 7500 LD (400@),L Toreport code.
@58 ED7B0@240 LDSP,(4002) Preparetoclear
stack.
@gs5F ... Clear stack &
return.

A programmer may find it useful therefore to use ‘RST 0008’ in his
programs to define his own type of errors.

‘RST 0010’

When a character is to be printed the most common method used is to
load the A register with the appropriate character code and use a ‘RST
0010’ instruction. The example from the 8K monitor program on page 64
shows this being done.

The actual lines of the RST 0010 routine are:

address Hex. code mnemonic comment
0010 A7 AND A Isita space?
011 C2F107 JP NZ,07F1 No. Printa
character.
014 C3F507 JP O7F5 Yes. Print a
space.

This routine will always print a character in the next place in the Display
File, and it is up to the programmer to ensure that the values of S-POSN,

113

the column number and the line number for the PRINT command, are
correct.

The Character tables:
There are four tables in this part of the 8K monitor program. They are:

007E — 00CB The keyboard character table.
00CC — 00F2 The function character table.
00F3 — 0110 The graphic character table.
0111 — 01FB The command character table.

The following simple BASIC program shows these tables:

1@ SLOW

20 FORA=126 TO 507

30 IFA=204 ORA=243 ORA=273
THEN PRINT ,,,

4@ PRINT CHRS PEEKA;

5@ NEXTA

The program gives the ‘CHRS’ representation of each entry in the
table.

The editing commands however come to be displayed as question
marks, as do the keystrokes that change the operating modes.

The Display routines:
The routines from 0207-02BA are concerned with the productlon ofa
display.

The routine from 0207-0228 is used to determine whether the ‘slow’ or
‘fast’ mode is being used and the routine from 0229-0291 is the ‘main
display routine’.

The following BASIC program can be used to demonstrate this second
routine.

10 PRINT “LINE 10"~

20 FAST

30 LETK=USR553 Hex.0229
RUN

The effect of using ‘USR 553’ is to call the ‘main display routine’ and
hence the display file is displayed in an ‘unfinished’ state. Note that the
report message is not printed. However if a key is pressed then an exit is
made from the routine and the display is completed and displayed.

The main display routine is in itself made up of three major parts:

i. Decrease and test PAUSE counter.
ii. Scan keyboard.
ili. Produce the display.

The reader will therefore see that it is this routine that is used by the
PAUSE command to hold the display for a specified period, and that a

114

PAUSE period is ended by exiting from this routine by making a
keystroke.

The routine at 0292-02B4 is the ‘slow’ mode display controlling
routine, and the routine at 02B5-02BA is the routine that actually starts
the display of a single line of characters.

The ‘keyboard scanning routine' is a very important routine and is to be
found at 02BB-02E6. This routine can be used by the programmer if he
wishes as is demonstrated in the following BASIC program.

mnemonic Hex. code
10 REM 123456
20 PRINT “AFTER NEWLINE
HOLD DOWN AKEY”
30 INPUT A3
40 CLS
50 LETA=16514
. 60 POKE A,205 CALL dddd CD
78 POKE A+1,187 BB
80 POKEA+2,2 @2
9@ POKE A+3,68 LDBH 44
100 POKE A+4,77 LDC,L 4D
110 POKE A+5,201 RET C9
120 FORA=1TO 100
130 NEXTA
140 PRINT “KEY VALUE
="USR 16 514
RUN

Note that the key value returns from the routine in the HL register. (see
appendix iv. on page 162 for the complete ‘Table of Key Values'.

The key values represent the 79 unique codes that are derived from
the scanning of the keyboard. In the keyboard decoding routine at
07BD-07DB these values are first changed to an ordered sequence,
1-78, and the character code obtained by referring to the character
tables. ‘No key pressed’ being detected beforehand. (see also page 38)

In a machine code program it is quite practical to call this routine and
test the resulting contents of the HL pair against the key values, thereby
detecting whether or not specific keys are being pressed. (see page 140)
(see page 153 for a full listing of the ‘Keyboard scanning routine’)

The SAVE and LOAD command routines:

The main part of the save routine is at 02F6-033F, and the LOAD
routine from 0340-03A1.

In the ZX-81 system programs saved on cassette tape must have
program names. These names are to be found on tape before the actual
variables and program. As usual the end of a word, or name, is marked

115

by having the last letter ‘inverted'.

in the case of the SAVE command routine there is the initial pause,
02FC-030A, followed by the sending of the program name, 030B-0312,
and finally the sending of the system variables, the program and the
program variables. Note that the display file is also copied to the tape.

The following lines show some of these features.

in FAST mode enter:

LET A=USR 787

After pressing NEWLINE the program will be SAVEd directly.
LET A=USR 763

and after pressing NEWLINE there will be the familiar 5 second pause
before the SAVEing of the program.

In the case of the LOAD command the program name is read in first,
followed by the program.

The use of the following line shows that this routine can be entered
directly also.

In FAST mode enter:

LET A=USR 839
and the familiar ‘waiting for data’ pattern will appear.

A full listing of the ‘SAVE command routine’ and the ‘LOAD command
routine’ are given in appendix i on page 150.

The Initialisation routine:
The different parts of the Initialisation routine are:

see pages
i The RAM check. 53
ii. The setting of the stack marker. 43, 51
ii. ~ The loading of the | register. 32
iv. The selection of interrupt mode 1. 92
v. Theloading of the IY register pair. 31
vi. The selection of ‘'slow’ mode. 44
vii. ~ The building of the basic display file. 71

as all these different parts of the routine have been used as examples in
Chapter 4 they will not be discussed further.

The BASIC line editing routines:

There are a tremendous number of different routines in this part of the
monitor program.

The following list gives the locations of the more important of them.
However only the routines that are useful to the machine code program-
mer will be discussed further.

@454 Cursor down routine

@482 Build-up an E-line routine

@4C1 Command point routine

052B Editing key sort routine.

@5C4 Editroutine
116

@63E Run BASIC program routine

072C LIST command routine

@745 Print a whole BASIC line routine.
@7BD Keyboard decode routine

@7F1 Print a character routine

@8F5 Test PRINT AT parameters routine
@918 Expand Display File routine

@94B Print keywords routine

@9AD Change all pointers routine

@9F2 Next variable or BASIC line routine
0A2A CLS command routine

@A98 Print a decimal number routine
@GACF PRINT command routine

@BAF PLOT and UNPLOT commands routines
OCOE SCROLL command routine

The routines from this part of the monitor that can easily be used in a
machine program will now be discussed. Simple BASIC programs will
demonstrate the routines being used.

The CLS command routine.
This is a very simple routine to use. In BASIC in order to clear the screen
a line such as: 1@ CLS is used. When the BASIC interpreter executes
this line the only action taken is to call the subroutine at 0A2A.

Hence whenever a machine code program contains the instruction
line: CALL 0A2A the screen will be cleared.

This is shown in the following BASIC program:

mnemonic Hex. code
10 REM 1234
20 PRINT “PRESS NEWLINE
TO CLEAR SCREEN"

3¢ SLOW
40 LET A=16514
5@ POKE A,205 CALL addr. CD
60 POKE A+1,42 2A
78 POKE A+2,10 GA
80 POKE A+3,201 RET C9
90 INPUT AS

100 LETL =USRA

RUN

The print a decimal number routine:

Aithough the 8K monitor program provides floating-point arithmetic there
is still the need to have a routine for printing decimal numbers. This
routine is used to print the contents of the HL register pair as a decimal

117

number using absolute binary arithmetic. The range of numbers printed
is @ to 9999.

The routine is used in the monitor program for the printing of the line
numbers in a listing of a BASIC program.

The following BASIC program demonstrates the routine.

mnemonic Hex. code
10 REM 1234567
20 SLOW
33 PRINT AT 18,0;"ENTER A
VALUE FOR THE HIGH
BYTE (@-39)"
4@ INPUTH
5@ PRINT AT 18,22;"LOW
BYTE”,"(@-255)"
60 INPUTL
70 CLS
80 LETA=16514
90 POKEA,33 LD HL,+dddd 2t
100 POKE A+1,L L
110 POKE A+2,H H
120 POKE A+3,2@5 CALL addr. CD
130 POKE A+4,171 AB
140 POKE A+5,10 0A
150 POKE A+6,201 RET C9
160 PRINT “THAT GAVE";
170 LETL=USRA
180 RUN
RUN

Note how the USR statement cannot this time be included in a PRINT
statement.

The PRINT AT routines:
The BASIC PRINT AT command allows the user of a ZX-81 to move the
PRINT position to a specified location.

e.g. 10 PRINTAT 16,10
will lead to the PRINT position being the eleventh space on the eleventh
line. (do not forget that @,d is the top lefthand space)

When the display file is in a ‘collapsed’ state the use of the PRINT AT
command results in the display line being expanded if it should be
necessary. If the specified space already exists in the Display File then
no expansion is required.

In the 8K monitor program whenever a PRINT AT command is ex-
ecuted, the parameters supplied by the programmer are tested in the
‘test PRINT AT parameters routine’ (see also page 53) and then the

118

‘expand Display File routine’ is called. This second routine tests to see
whether or not the specified PRINT position already exists in the Display
File and if it does not, the Display File is expanded so that it does become

present.

Both of these routines can be used in machine code programs. The
following BASIC program gives a very simple demonstration of the
PRINT position being set by a machine code routine.

10
20

30
40

50
60

70
80
90
100
110
120
130
140

mnemonic
SLOW
PRINT AT 18,8;"ENTER
LINE NUMBER (@-16)”
INPUT L
PRINT AT 18,0;"ENTER
COLUMN"
INPUTC
PRINT AT 18,0;"ENTER
YOUR CHARACTER NOW"
INPUT BS
LET A=16444
POKE A,1 LD BC,dddd
POKE A+1,C
POKE A+2,L
POKE A+3,205 CALL addr.
POKE A+4,245
POKE A+5,8

150 POKE A+6,201 RET
160 LETK=USRA

170 PRINT B3

180 RUN

RUN

Hex. code

a1

L
CD
F5
08
C9

In the above program the user is asked to provide the line and column
parameters, and a character, or string of characters. The machine code
routine then sets the required PRINT position for line 1706.
The PRINT a string routine.

This routine forms part of the ‘PRINT command routine’, and is used in

119

the 8K monitor program whenever a string of characters has to be
printed.

The parameters for handling a string are:

i. The starting address of the string, and

ii. The number of characters of the string.

These parameters are passed to the ‘PRINT a character routine’ for
each of the characters in the string, and this results in each character
being printed at the current PRINT position. Remember thatthe ‘PRINT a
character routine’ increments the PRINT position after the character has
been printed.

The following BASIC program shows a string being printed.

mnemonic Hex. code
10 REM THIS STRING HAS
29 CHARACTERS
20 SLOW
3@ PRINTATS8,0;
40 LET A=16444

50 POKEA,17 LD 11
DE, +dddd
60 POKEA+1,130 82
70 POKE A+2,64 40
80 POKE A+3,1 LD @1
BC,+dddd
90 POKE A+4,29 1D
100 POKEA+5,0 @
11¢ POKE A+6,205 CALL addrCD
120 POKEA+7,107 6B
13¢ POKEA+8,11 eB
140 POKE A+9,201 RET C9
150 LETL=USRA
RUN

In the above program the DE register pair is loaded with the starting
address of the string — decimal 16514, Hex. 4882, and the BC registers
pair is loaded with the number of characters in the string — decimal 29,

Hex. @G1D.)
The PLOT and UNPLOT commands routine.

This routine is used in a very similar way to the 'PRINT AT routine’.

Initially therefore the parameters passed to the routine are tested to
ensure that they are within the correct range.

A test is then made to see if the operation should be a PLOT or an
UNPLOT. This test is performed by comparing the value of T-ADDR, the
system variable that holds the address of the next item in the syntax
table, against the address in that table for the UNPLOT command.

The following lines show the actual test.

120

addre
@BDA

BDD

BEG
BE1

SS Hex. code mnemonic comment
119E0C LD DE,+@C9E UNPLOT
address in table.
3A 30 40 LD A,(T-ADDR) Pick-up
T-ADDR.
93 SUBE Test low bytes.
FAE9@B JP M,0BE9 Jump for PLOT
..... continue with UNPLOT.

The following BASIC program shows how the operations of PLOT and
UNPLOT can be included in a machine code routine.

10
20

30
40

50
60

150
160
170
180
190
200
210
220
RUN

SLOW

mnemonic Hex. code

PRINT AT 18,0,“ENTER X
PIXEL NUMBER (@-63)"

INPUT X
PRINT AT 18,6;'

‘Y PIXEL

NUMBER (10-43)"

INPUTY
PRINT AT 18,8;"ENTER PLOT
OR UNPLOT (P/U)"
INPUT BS
LET A=16444
POKE A1 LDBC,dddd 01
POKE A+1,X X
POKE A+2)Y Y
POKE A+3,62 LDA,dd 3E
POKE A+4,102+CODE .

9B or A0
POKE A+5,50 LD (addr.), A, 32
POKE A+6,48 (T-ADDR) 30
POKE A+7,64 () 40
POKE A+8,2@5 CALL addr. CD
POKE A+9,178 B2
POKE A+18,11 oB
POKE A+11,2081 RET C9
LETK=USRA
RUN

In the above program the user is asked to provide valid parameters for
X and Y, and then to specify PLOT or UNPLOT. The value stored as the
low byte of T-ADDR is then compared to the constant Hex.9E to disting-
uish whether the operation is to be a PLOT or an UNPLOT.

121

The BASIC command tables:
The first table in this part of the monitor program is the table of ‘offsets’
that is used to index into the ‘syntax’ table.

The offset table’ is at 0C29 — 0C47, and the ‘offsets’ for the different
BASIC commands can be shown by using the following BASIC program.

10 SLOW
20 FORA=1TO2
30 PRINT “COMMAND OFFSET",
40 NEXTA
5@ PRINT
60 PRINT
70 LETB=8
80 FORA=225T0O 255
90 PRINT CHRS A;TAB (16-B);
PEEK (2888+A),
100 LETB=-B
116 NEXTA
RUN

The other table in this part of the monitor program is the ‘syntax’ table.

This table gives the command class for each part of the command, the
character code for the required syntactic separator, if one is required,
and the address of the command routine.

e.g. The entry for PLOT is:

@C98 06 The command class.
0C99 1A The separator, a ‘comma’.
@C9A 06 The command class.
@CoB @0 The command class.

@COC AF) The PLOT routine is at

@CoDas8) OBAF which determines
thata PLOT commandline

‘ must have the syntax;

PLOT (expression) (,)
(expression) as in
PLOT 3,0

The following table gives the command routine addresses as can be
obtained from the table.

122

Command routine

Address Command address
@C48 LET (not in table but
itis 131D)
@C4B GOTO 0ES1
0C4F IF @DAB
aCs54 GOsuB GEBS
@C58 STOP @CDC
oCsB RETURN @EDS8
0C5E FOR oDB9
0C66 NEXT OE2E
0C6A PRINT @ACF
oCceD INPUT @EE9
0C71 DIM 1405
0C74 REM @D6A
0C77 NEW 03C3
@C7A RUN GEAF
eC7D LIST 0730
0C80 POKE QE92
0C86 RAND 0E6C
0C89 LOAD @340
eCcsC SAVE 02F6
0C8F CONT @E7C
0C92 CLEAR 1496
0C95 CLS 0A2A
0C98 PLOT 0BAF
0C9E UNPLOT 0BAF
0CA2 SCROLL @COE
@0CA7 PAUSE OF2F
@CAB SLOW 0F28
0CAE FAST 0F20
oCB1 COPY @869
oCB4 LPRINT 0ACB
oCB7 LLIST @72C

The BASIC line scanning routine.

This part of the 8K monitor program is the real BASIC interpreter. It is in
this routine that each BASIC line is scanned and actions determined that
are needed to execute that line.

As a BASIC line is scanned each command is identified. The com-
mand class for that command is obtained from the syntax table and a call
made to the appropriate command class routine.

The different classes are used to show the differing syntactic require-
ments of the commands.

e.g. The STOP command is in class @, as itis a command that cannot

123

be followed by any parameters. Whereas PLOT is put into class 6 on two
occasions, as the PLOT command is required to be followed by two
expressions separated by a ‘comma’.

The BASIC command routines:
Each of the BASIC commands has a command routine in the 8K monitor
program. Most of the routines are to be found in this block of the program.
The addresses for all of the routines are to be found in the table on page
123.

The majority of the routines are too complicated to be discussed, but it
is worth looking at the FAST command routine and the SLOW command
routine as these routines can be used by the machine code programmer.

The FAST command routine:
The full routine is:

address Hex. code mnemonic comment
0F20 CDE702 CALL 02E7 See below.
F23 FDCB3BB6 RES®6,(403B) Resetthe Flag.
F27 C9 RET Finished.
02E7 FDCB3B7E BIT7,(483B) FAST already?
2EB cs8 RETZ Yes
2EC 76 HALT No. So wait
interrupt.
2ED D3 FD OUT (+FD),A Tothelogicchip.
2EF FDCB3BBE RES7,4@3B) Resetthe other
flag.
2F3 C9 RET Finished.

In a machine code program the programmer wishes to change to
FAST mode, or to ensure that he is in FAST mode, then it can be done
simply by using: CALL 0F20.

The SLOW command routine:
The routine is only:

address Hex. code mnemonic comment
0F28 FDCB3BF6 SET6,433B) Setthe flag.
F2C C30702 JP G207 Jump to display
routine.

This routine can be called using: CALL OF28.

The BASIC expression evaluator and the floating-point routines.

These parts of the 8K monitor program are very complicated and
cannot be used by a machine code programmer.

124

The character generator:

The following BASIC program can be used to show the 64 different
characters in the ‘character generator’, each enlarged 64 times.

10 FAST
20 FORA=7680 TO8184 STEP 8
30 PRINT “ADDRESS CONTENTS CHARACTER”
40 PR'NT AT 3,17;“***"".*""'
56 FORB=ATOA+7
60 LETC=PEEKB
70 PRINT B;TAB8;C;TAB 17;"*";
80 LETD=128
96 FORE=0TO7
100 IFC>D—-1THENGOTO 13¢

1160 PRINT " (space)
120 GOTO 15@
13@ PRINT “m”; (graphic space)

14¢ LETC=C-D

15@ LET D=D/2

16@ NEXT E

17@ PRINT * *"

180 NEXTB

199 PRINT AT 12,17; semmesseees”
200 PAUSE 150

210 CLS

220 NEXTA

RUN

125

Chapter 7. Using Machine Code
Routines in BASIC Programs.

7.1 introduction

The main purpose of using machine code routines within a BASIC
program is to produce a final program that runs considerably faster than
the original program.

It is rarely practical to completely replace the whole of a BASIC
program with a single machine code program in the ZX-81 system using
the standard 8K ROM. The main problem being that there is not a
particular subroutine in the 8K monitor program for handling the ‘INPUT
command’. Therefore most programmers write machine code routines
for the slow parts of their programs and return to BASIC whenever an
‘INPUT is required.

The resultant program could therefore be of the form:

1@ REM XXXXXXXXXXXXXXXXXXXXXxX) the machine code.
JXOOOOXXXXXXXXXXXXXXXXXXXXXXX) routines.

20 LET K=USR 16514 Execute the first routine.
3@ INPUT A Return for INPUT.

40 POKE 16530,A Store the INPUT.

50 LET K=USR 16531 Execute the next routine.
RUN

The rest of this chapter takes the reader through the actual stages in
producing ‘machine code routines’.

7.2 The stages involved.

The first stage is the ‘writing of the BASIC program’.

It is usually a very good idea to produce a BASIC program that actually
performs the required task. Of course the program may run very slowly
but at least the programmer has the opportunity to make changes rela-
tively easily.

The second stage is the ‘deciding which part of the program is to be
converted to machine code’.

This stage involves determining which set of BASIC lines are to be
replaced by a: LET K=USR xxxxx and also which parameters are
required by the machine code routine, on entry; and which parameters
are to be returned by the routine.

The third stage is the ‘producing of a listing of the machine code routine
in assembler format'.

126

This stage is usually the most difficult as it involves the conversion of
the original algorithm to one that uses the rather limited number of
registers within the Z80. The programmer also has to consider which
instructions in the Z80 instruction set actually exist, and the ‘construc-
tions’ involved for those operations that are not suported by the Z80.

e.g. There is no instruction — LD B,(addr.) and the usual construction
to perform this would be — LD A,(addr.) LD B,A but this disturbs the A
register. An alternative construction would be — LD BC,(addr.—1) but
this disturbs the C register and a third construction would be — LD
HL,+dddd (address) LD B,(HL) that disturbs the HL register pair.

The fourth and final stage is the ‘assembling of the machine code
routine’.

This stage involves the actual production of the appropriate Hex. code
or decimal code for the routine. The location of the program in the RAM
will usually affect this operation.

A machine code routine that can be placed at any point in the RAM
because it does not contain any absolute addresses is said to be ‘relocat-
able’. However most routines do contain absolute addresses and there-
fore must be ‘located’ in a particular part of the RAM.

The following examples show these stages in detail.

7.3 The first example — The Sum of a Series.

This example was briefly discussed on pages 99 & 100 but the stages
involved in producing the machine code routine were not dealt with in
detail.

The following BASIC program asks the user to enter an integer in the
range 1-255 and then produces: THE SUM OF THE SERIES
0+1+2+... N = xxx.

Stage 1.
The program for this general case is:
20 SLOW
3@ PRINT AT 18,8;“"ENTER A VALUE
FORN (1-255)"
43 INPUTN
5@ CLS
6@ PRINT “THE SUM OF THE SERIES
70 PRINTAT2,2;"@+1+2+...";N;“ =",
80 LET SUM=0
90 FORK=NTO®@ STEP —1
100 LET SUM=SUM+K
110 NEXTK
120 PRINT SUM
130 RUN

127

This program satisfies the requirement of ‘stage 1’ in that a working
BASIC program has been produced.

Notice how the program has been written.

It is obviously going to be desirable to replace lines 8@-110 with
machine code, therefore these lines have been written like a ‘subroutine’
at the end of the program. Note also how the ‘FOR . . .NEXT" loop goes
from ‘255. . .to. . .0’ which will make it very easy to convert it to a DUNZ
instruction.

The more ‘machine code features’ that are included in the BASIC
program, then generally the easier it will be to convert the program to
machine code.

Stage 2.
In this simple example program it is lines 83-110 that are going to be
replaced by a machine code routine.

The variable N, range @-255, is the only parameter required by the
routine, and the variable SUM is the only parameter returned by the
routine. In this case the lines:

80 POKE 16514,N
90 PRINT USR 16515

can be used to replace lines 83-120.

It is useful at this stage to produce a flow diagram of the actual lines
that are to form the machine code routine.

A possible flow diagram is:

comment

Start with N brought in.

Zero the answer.

AFOR ... NEXT loop.
FORK=NTO® STEP -1
NEXT K

Increase the answer.

Finish the subroutine
and return the variable
SUM.

Stage 3.
The first task in this stage is to make a start at allocating ‘registers’ or
‘memory locations’ to the various variables.

The flow chart developed for stage 2 shows that the FOR. . .NEXT
loop box is central to the flow diagram. Hence it would be sensible to
assign a register to the loop counter K.

In this example the B register used in conjunction with a DJNZ instruc-
tion can very easily be used as a loop counter.

The FOR. . .NEXT loop box can now be redrawn as:

128

I Y Jump

Note that the B register has to be initialised to the value of N.

There are many ways of dealing with the variable SUM but probably
the most simple method is to allocate the HL register to this variable.

Initially HL will have to be zeroed, and at the end of the routine the
contents of the HL register will have to be copied into the BC register for
returning as the USR variable.

Note that the BC register pair cannot be used to hold SUM throughout
the routine as the B register has already been used.

The operation of ‘SUM=SUM+K' is not possible directly as there is no
instruction ‘ADD HL,B’ therefore a ‘construction’ has to be considered.
As there is a suitable instruction ‘ADD HL,DE’ it would be quite sensible
to use it and to copy the contents of B into E before the addition operation.
However the D register must be zeroed at the start of the routine.

The last point to be made is that a ‘construction’ must be used for the
initialising of the B register to hold the variable N.

The use of: LD A,addr. and LD B,A is quite appropriate.

The full flow chart now becomes as follows. The mnemonics are also
given:

mnemonics

LD HL, +dddd
LD A,(addr.)
LDB.A
LD D,+dd
Finished
DJINZ

LDEB

reg. = B reg. ADD HL,DE
DJNZe

Stage 3 requires that a listing of the final machine code routine be
given in ‘assembler format’, and therefore the routine becomes:

Label mnemonic

START LD A,(N)
LDB,A
LD HL,+0000
LD D,+00

LOOP LDE,B
ADDHL, DE
DJNZ LOOP
LDB,H
LDC,L

END RET

Stage 4
The variable N is going to be POKEd into location 16514 and the routine
located from 16515 onwards. The ‘assembled’ routine will be:

address.

dec. Hex. Hex. code Dec. code label mnemonic
16514 4082 — — N LD A,(N)
16515 4083 3A 58 START LDA\(N)
16516 4084 82 130

16517 4085 40 64

16519 4087 21 33 LD HL,+0000
16520 4088 00 @

16521 4089 00 0

16522 408A 16 22 LD D,+00
16523 408B 00 1]

16524 408C 58 88 LOOP LDE,B
16525 408D 19 25 ADD HL,DE
16526 408E 10 16 DJNZ LOOP
16527 408F FC 252

16528 4090 44 68 LDB,H
16529 4091 4D 77 LDC,L
16530 4092 C9 201 END RET

130

The tabie shows that the final routine uses 17 locations.
Now comes the moment of truth. Enter the following BASIC lines:

10 REM 1234567890 1234567 The 17 locations.

20 SLOW

3@ PRINT AT 18,0;"ENTER A VALUE
FORN (1-255)”

40 INPUTN

5@ CLS

6@ PRINT “THE SUM OF THE SERIES”

70 PRINTAT2,2;"0+1+2+..."N;“=";

80 POKE 16514,N

9@ PRINT USR 16515

1@ RUN

Do not RUN the program until you have entered the machine code
routine into line 1@.
A useful method of ‘loading machine code’ is as follows:
Enter:
200 FOR A=16515TO 16530
210 INPUTB
220 POKE A,B
230 NEXT A
RUN 200
This routine is RUN and the decimal code entered. In this case it is:
58,130,64,71,33,00,22,0,88,25,16,252,68,77,201.
Note that location 16514 is left to be filled by the BASIC program.
Once the machine code has been entered, delete lines 200-230 and
enter RUN.
Although this program is only very simple, there is an impressive
change in the response times, when compared to the BASIC-only
version.

7.4 The second example — A Moving Ball Program.

This example is a good deal more complicated than the first example but
it has been included as it shows how a complicated program can be
tackled.

Stage 1.

The BASIC program is:
20 SLOW
3@ CLS

4@ GOSUB 100
131

5@ FORA=1TO 16
60 PRINTATA,G;"R"; ATA,18;'m” graphic space
78 NEXT A
8@ GOSUB 100
90 GOTO 140
106 FORA=0TO 18
110 PRINT “m"; graphic space
120 NEXTA
130 RETURN
140 LET LR=1
150 LET UD=1
160 LET X=2
170 LET Y=INT (RND*32+10)
180 PLOT X,Y
190 IF INKEY $="R" THEN RUN
200 IF X=2OR X=35 THENLETLR=—-LR
210 IFY=10 ORY=41 THEN LET UD=-UD
220 UNPLOT X,Y
230 LET X=X-LR
240 LETY=Y-UD
250 GOTO 180
RUN

The lines 20-13@ draw a rectangular playing area. The use of a
temporary line ‘135 STOP’ can be used to show this being done.

Lines 14@ and 15@ initialise the ‘direction’ of the ball. LR is the variable
for ‘Left and Right', +1 is for moving right and — 1 is for moving left. UD is
the variable for ‘Up and Down’, +1 is for moving up and — 1 is for moving
down.

Lines 160 and 17@ give initial values to the X and Y variables used in
the PLOT command. The value for X is fixed but the value for Y is chosen
at random.

Line 190 allows the user to restart the program.

Lines 20@ and 210 test the position of the ball and if it is against an
edge the direction of the ball is reversed.

Line 22@ erases the position that was filled in line 180.

Lines 23@ and 240 give new values for X and Y so that the ball moves.

Stage 2.
The functional flow diagram for this program could be:

132

AN
7

{
SLOW mode

y

CLS

Print

rectangle

Choose Y
parameter

"Choose other
parameters

MOVE BALL

pressed?

Yes

It is possible to write machine code, of quite a simple nature, for all of
the functional blocks of this program with the exception of the ‘Choose Y
parameter’ block. This block uses the BASIC RND command for which
there is no readily useable subroutine. (The RND command produces a5
byte floating-point number).

A suitable plan for the final BASIC program would be:

10 REM xxxxxxxxx etc. The machine code.
20 LET K=USR xxxxx (SLOW mode
(CLS

(Print rectangle
30 POKE xxxxx, INT(RND*32+1@) (Choose Y parameter.
40 LET K=USR Xxxxx (Choose other parameters.
(MOVE BALL
(Is ‘R’ pressed?)

5@ RUN

133

However further consideration should be given to ‘exiting’ from the
program. When a BASIC program is being executed the BREAK key is
tested after each BASIC line has been dealt with, but in a machine code
routine the BREAK key will be inactive unless special provision is inc-
luded in the routine. In this example, therefore, the keys ‘R’ and ‘BREAK’
should be tested.

The flow diagrams for the two machine code routines are as follows:

The first machine code routine: The second machine code routine:

CALL ‘SLOW

CALL LINE

The ‘LINE’ subroutine.

START

No

A=g
A=A+1

PRINT"“®m";

Yes [CALLLINE

)

Start with Y availab

Enter the ball

‘EXIT" if required

Reverse the ball

Reverse the ball

Erase the ball

Update the positior

Update the positiol

134

Stage 3:
The first machine code routine;

Itis usually easiest to start with the subroutines and then return to the
main routine.

The subroutine ‘LINE’ is a very simple printing operation that prints
nineteen identical characters. The use of a DJNZ instruction is most
appropriate. The ‘assembler format' listing for this subroutine is
therefore:

Label mnemonic comment
LINE LD A,+80 An inverse space.
LDB,+13 The nineteen
characters.
NEXT RST@G10 Print a character.
DJNZ NEXT Go back.
RET Finished.

In the main routine the first two CALLs are to routines within the 8K
monitor program and the ‘assembler format’ listing for the routine, except
for the ‘print edges’ block will be:

Label mnemonic
START CALL SLOW
CALLCLS
CALL LINE
EDGES .,
CALL LINE
RET

The conversion of the ‘print edges’ block is a little complicated. How-
ever it can be performed in simple stages.

The method discussed on page 130 for the first example program,
involved drawing a flow diagram where each block corresponded to a
machine code instruction. However there is an alternative method that
involves the production of a routine of BASIC lines, with each line having
a corresponding machine code instruction.

This second method is demonstrated using the three lines of the ‘print
edges’ block.

135

The original lines are:
5@ FORA=1TO 16
60 PRINTATA,0;"R"; ATA,18;"m”
78 NEXTA

As a first step the loop counter should be reversed, as the final
machine code routine will use a DJNZ instruction to operate the looping
operation.

Next the ‘PRINT AT’ command should be split into smaller parts.

The routine will now be:

50 FORB=16TO 1 Note B is used
STEP -1

54 PRINT AT 17-B,0;

58 LET A=128 Note A is used.

62 PRINT CHRS A

66 PRINT AT 17-B,18;
70 LET A=128

74 PRINT CHRS A

78 NEXTB

Note how variable names that are also used as register names are
being employed whenever the register is appropriate.

The ‘PRINT AT command routine’ uses the B register to hold the ‘line
number’ and the C register to hold the ‘column number’ (see page 118),
and this point should now be included. However this will lead to B being
used twice unless the first value for be is saved. The stack is a suitable
place to save the contents of the B register, hence the variable STACK
can be used.

The routine now becomes:

comment
58 FORB=16 TO 1 STEP —1
52 LET STACK=B Save B temporarily.
54 LETB=17-B Re-define B, — Line.
56 LETC=0 Define C, — Column.
58 PRINT ATB,C;
60 LET A=128 Print the ‘inverse space’.
62 PRINT CHRS A
64 LET B=STACK Coliect B.
66 LETB=17-B Re-define B, — Line.
68LETC=18 Define C, — Column.
70 PRINT ATB,C;
72LETA=128 Print the ‘inverse space’.
74 PRINT CHRS A
76 LET B=STACK Restore B.
78 NEXTB Next line.

136

The last stages involve the splitting of the ‘B=17—B’ and the balancing
of the lines involving the stack. This point is very important in machine
code as the moving of data onto or off the stack will change the value of
the stack pointer. in BASIC however there is no such problem.

The result is that the line: 64 LET B=STACK must be followed by a
line: 65 LET STACK=B.

The routine now becomes:

mnemonic that corresponds.
EDGES 50 FORB=16TO1STEP -1 LDB,+dd

51 LET STACK=B PUSHBC

52 LET A=17 LDA,+dd
53LETA=A-B SuBB

54 LET B=A LDB,A

56 LETC=0 LDC,+dd

58 PRINT AT B,C; CALL PRINT AT
60 LET A=128 LDA,+dd

62 PRINT CHRS A RST 0610

64 LET B=STACK POP BC

65 LET STACK=B PUSH BC

66 LET A=17 LDA,+dd

67 LET A=A-B SuB B

68 LET B=A LDB,A

69 LETC=18 LDC,+dd

7@ PRINT AT B,C; CALL PRINT AT
72LETA=128 LDA,+dd

74 PRINT CHRS A RSTGG10

76 LET B=STACK POPBC

78 NEXTB DJNZ LINE 51

The routine now has its ‘one-to-one’ correspondence but it can be
improved by re-writing it using a subroutine. It becomes:

EDGES 50 FORB=16TO1STEP —1 LDB,+dd

51 LET STACK=B PUSH BC
52LETC=0 LD C,+dd

53 GOSUB 7@ CALL SQUARE
54 LET B=STACK POP BC

55 LET STACK=B PUSH BC

56 LETC=18 LDC,+dd

57 GOSUB 70 CALL SQUARE
58 LET B=STACK POP BC

59 NEXT B DJNZ LINE 51
60 STOP

137

SQUARE 70 LETA=17 LD A,+dd

71LETA=A-B suBB

72 LETB=A LDB,A

73 PRINT ATB,C; CALL PRINT AT
74 LETA=128 LD A,+dd

75 PRINT CHRS A RET 0@10

76 RETURN RET

Before the actual listing is given there is just one further point to be
made.

The ‘CALL LINE’ subroutine that forms the bottom line of the rectangu-
lar playing area requires that the PRINT position be moved to the start of
a new line, after the last edge square has been drawn.

This can be produced by using the ‘RET @@ 10’ instruction to PRINT a
NEWLINE character. However it is not totally straightforward as the
value 118, Hex.76, cannot be used in a REM statement. The following
construction is therefore needed.

Label mnemonic
NEWLINE LDA,+75
INCA
RST 0010

The ‘assembler format’ listing for the whole of the first machine code
routine can now be given.

Label mnemonic comment
LINE LDA,+80 Inverse space.
LDB,+13 19 characters.
NEXT RST @010
DJNZ NEXT
RET
SQUARE LDA,+11 Decimal 17.
sSuBB
LDBA
CALL PRINT AT In monitor at @8F5.
LD A,+80
RSTGG10
RET
START CALL SLOW In monitor at @F28.
CALLCLS In monitor at A2A.
CALL LINE
EDGES LDB,+10@ 16 rows, numbers 1 to
ROW PUSHBC 16.

138

LDC,+0a Column@.
CALL SQUARE
POP BC
PUSH BC
LDC,+12 Column 18.
CALL SQUARE
POPBC
DJNZ ROW
NEWLINE LD A,+75
INCA Form Hex.76.
RSTQ@G10
CALL LINE
RET

The above routine may appear initially to be rather awkward but when
assembled into machine code and run, even in ‘slow’ mode the playing
area is produced in 0.4 seconds.

The reader may if he wishes turn to page 148, enter this routine and
see it working, before returning to deal with the second machine code
routine (use 210 FOR B=16514 TO 16567 and LET K=USR 16514).

The flow diagram for this routine, given on page 134 , shows that the first
task is to initialise the variables LR, UD and X.

There are many ways in which variables such as these could be
handled in a machine code routine, but the simplest way is to allocate a
memory location to each variable, and label the locations appropriately.

The ‘assembler format’ listing for this part of the routine could therefore
be:

Label mnemonic comment
ubD —
LR —
X _
Y — Filled from BASIC.
VALUES LDA,+01
LD (UD),A
LD (LR),A
INCA The A register now
holds Hex. @2.
LD (X),A

The next stage is to deal with the ‘PLOT XY’ operation. The example
program on page 121 shows how this operation can be performed.

139

The steps are:

i. Load the BC register pair with X and Y. The X value going to the C
register and the Y value going to the B register.
This will simply be: PLOT LD BC,(X). Note that this instruction will be a
‘register pair’ loading instruction, with X going to C, and Y going to B.
ii. Set the system variable, T-ADDR to ‘PLOT". This will be the same as
onpage 121.

LD A, +9B a suitable constant.

LD (T-ADDR),A
iii. Call the 'PLOT command routine’.

CALL PLOT command routine.

The ‘is R or BREAK pressed?’ operation is also fairly simple.

A call to the ‘keyboard scanning routine’ returns a key value in the HL
register pair. This value has then to be tested to see whether it is a ‘NO
KEY’, an ‘R’ ora ‘BREAK’.

The following BASIC lines show just one possible way of performing
this operation.

comment
10 LETHL=-1 —1is'nokey’,
61435 would be ‘R’.
64895 would be ‘BREAK’.
(these values are given in appendix iv.)

20 LET DE=HL Exchange registers.

3@ LET HL=61435 Set HL to hold key value for ‘R’
40 LET HL=HL-DE Test for ‘R

50 IF HL=0 THEN RETURN ‘RETZ'

60 LET HL=64895 Key value for ‘BREAK'.

70 LET HL=HL-DE Test for ' BREAK'.

80 IF HL=0 THEN RETURN ‘RET Z..

9@ PRINT “NO KEY PRESSED”

The reader might like to try this little program with different values in
line 1@. An ‘ERROR 7’ is obtained when a match is found, otherwise the
‘NO KEY PRESSED’ message is given.

These BASIC lines can now be converted to give an ‘assembler
format’ listing. Note however that ‘AND A’ instructions must be used to
clear the Carry flag before each subtraction.

Label mnemonic comment

KEY TEST CALL KEYBOARD In monitor at 32BB.
EX DE,HL
LD HL,+EFFB Key value for ‘R'.
AND A
SBC HL,DE

140

RETZ

Return if ‘R’ pressed.

LD HL,+FD7F Key value for ' BREAK’
AND A

SBCHL,DE

RET Z Return if ' BREAK’

pressed.

An alternative to the above method would be to signal an ‘ERROR’
when the ‘BREAK key is pressed. This can be done using an 'RST 0008’

instruction.

The testing of the X value can be considered as the following BASIC

lines

10 LETLR=1
20 LET X=12
30 LET A=X

40 IF A=2 THEN GOTO 60
50 IF A<>35 THEN GOTO 8@

60 LET A=LR
70 LETLR=-LR
80 REM CONTINUE

Define LR.

Define X to a suitable value.
LD A,(X)

Test against 2.

Test against 35.

LD A,(LR)

2's complement LR.

The testing of the Y value will be similar, as only the constants and

variables are changed.

Note that as the values of LR and UD change from +1to —1itisthe 2's
complement of LR and UD that have to be found if a match occurs.
The 'assembler format’ listing for the two test routines will be:

Label
X-TEST

LR-REV.

Y-TEST

UD-REV.

mnemonic

LD A,(X)

CP +02
JRZ,LR-REV
CP +23
JRNZ,Y-TEST
LD A,(LR)

CPL

INCA

LD (LR),A

LD ALY)

CP +GA

JR Z,UD-REV.
CP +29
JRNZ,UNPLOT
LD A,(UD)
CPL

INCA

LD (UD),A

141

The UNPLOT operation is the same as the PLOT operation but the
constant loaded into T-ADDR has to be altered.

Label
UNPLOT

mnemonic

LD BC,(X)

LD A,+AQ

LD (T-ADDR),A
Call Plot command
routine.

The final operation is the updating of X and Y. Once again there are
many ways in which this can be done and the following listing shows a
method that uses ‘indirect addressing'.

Label
X-UPDATE

Y-UPDATE

mnemonic
LD HL,+LR
LD BC,+X
LD A,(BC)
SUB (HL)
LD (BC),A
DECHL
INC BC

LD A,(BC)
SUB (HL)
LD (BC),A
JRPLOT

comment
address of LR.
address of X.
collect X.
X=X-LR.
restore X.
move to UD.
moveto.
collect Y.
Y=Y-UD
restore Y
‘GOTO 180’

Note that this being the final part of the routine a ‘JR PLOT’ is now

required.

The whole listing for the second machine code routine can now be

given.

Label
ub

LR

X

Y
VALUES

PLOT

KEY TEST

mnemonic

LDA,+01

LD (UD)A

LD (LR),A

INCA

LD (X),A

LD BC,(X)
LDA,+9B

LD (T-ADDR),A
CALLPLOTec.r.
CALL KEYBOARD

142

comment

)

} 4 locations for
) the variables.

)

Location Hex. 4030.
Location Hex. GBB2.
Location Hex. 32BB.

X-TEST

LR-REV.

Y-TEST

UD-REV

UNPLOT

X-UPDATE

Y-UPDATE

EX DE,HL

LD HL,+EFFB
AND A

SBC HL,DE
RETZ

LD HL,+FD7F
AND A

SBC HL,DE
RETZ

LD A,(X)

CP +02
JRZ,LR-REV.
CP +23
JRNZY-TEST
LD A,(LR)
CPL

INCA

LD (LR),A
LDALY)

CP +0A
JRZ,UD-REV
CP +29
JRNZ,UNPLOT
LD A,(UD)
CPL

INCA

LD (UD),A

LD BC,(X)

LD A,+Ad

LD (T-ADDR),A
CALLPLOTc.r.
LDHL,LR
LDBC,+X

LD A,(BC)
SUB (HL)

LD (BC),A
DECHL
INCBC

LD A,(BC)
SUB (HL)

LD (BC),A
JRPLOT

143

‘R’ key.

‘BREAK’ key.

Lefthand side.
Righthand side.

Reverse the ball.

Bottom of area.
Top of area.

Reverse the ball.

Erase the ball

Really ‘UNPLOT c.r.’

New X value.

New Y value.

Round again.

Stage 4

The ‘assembled’ routine will be:
THE FIRST MACHINE CODE ROUTINE

address.

dec.

16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550

Hex.

4082

4083

4084

4085
4086
4087
4088
4089
408A
4088
408C
408D
408E
408F
4090
4091

4092
4093
4094
4095
4096
4097
4098
4099
409A
4098
409C
409D
409E
409F
40A0
40A1

4GA2
40A3
40A4
40A5
40A6

Hex. Dec. Label
code code
3E 62 LINE
80 128
@6 6
13 19
D7 215 NEXT
10 16
FD 253
C9 2061

3E 62 SQUARE

11 17
90 144
47 M
CD 205
F5 245
o8 8
3E 62
80 128
D7 215
C9 201

CD 205 START

28 40
@F 15
CD 205
2A 42
@A 10
CD 265
82 130
40 64

@6 6 EDGES

10 16
C5 197 ROW
0E 14
@ o
CD 205
8A 138
40 64
C1 193

144

mnemonic
LDA,+80
LDB,+13

RST @010
DJNZ NEXT

RET
LDA,+11

suBB

LDB,A

CALL PRINT AT
LDA,+80
RST 0@ 10

RET
CALL SLOW

CALLCLS

CALL LINE

LD B,+10

PUSH BC

LDC,+00

CALL SQUARE

POP BC

16551
16552
16553
16554
16555
16556
16557
16558
16559
16560

16561
16562
16563
16564
16565
16566
16567

address.
dec.

16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588

40A7
40A8
40A9
40AA
40AB
40AC
40AD
40AE
40AF
4080

40B1
40B2
40B3
40B4
40B5
40B6
40B7

C5 197
GE 14
12 18
CD 205
8A 138
40 64
C1 193
18 16
F@ 240
3E 62

7% 117
3C 60
D7 215
CD 205
82 130
40 64
Cg 201

NEW
LINE

PUSHBC
LDC,+12

CALL SQUARE
POP BC
DJNZ ROW
LDA,+75
INCA

RST @010
CALLLINE

RET

THE SECOND MACHINE CODE ROUTINE

Hex.

40B8
40B9
40BA
40BB
40BC
408D
40BE
40BF
40C0
40C1

40C2
40C3
40C4
40C5
40C6
40C7
40C8
40C9
40CA
40CB
40CC

Hex. Dec.
code code Label
- - ubD
- - LR
- - X

- - Y
3E 62 VALUE
01 1

32 50

B8 184

40 64

32 50

B9 185

40 64

3C 60

32 50

BA 186

40 64

ED 237 PLOT
4B 75

BA 186

40 64

3E 62

145

mnemonic

LDA,+@1

LD (UD),A

LD (LR),A

INCA
LD (X),A

LD BC,(X)

LD A,+9B

16589 40CD 9B 155

16590 40CE 32 50 LD (T-ADDR),A

16591 40CF 30 48

16592 40DC 40 64

16593 40D1 CD 205 CALLPLOT c.r.

16594 40D2 B2 178

16595 40D3 6B M

16596 40D4 CD 205 KEY CALL KEYBOARD
TEST

16597 40D5 BB 187

16598 40D6 @2 2

16599 406D7 EB 235 EX DE,HL

16600 4008 21 33 LD HL,+EFFB

16601 40D9 FB 251

16602 40DA EF 239

16603 40DB A7 167 AND A

16604 46DC ED 237 SBC HL,DE
16605 40DD 52 82

16606 40DE C8 200 RET Z

16607 40DF 21 33 LD HL,+FD7F

16608 40EQG 7F 127
16609 40E1 FD 253

16610 40E2 A7 167 AND A
16611 40E3 ED 237 SBC HL,DE
16612 40E4 52 82

16613 40E5 C8 200 RET Z

16614 40E6 3A 58 X-TEST LD A,(X)
16615 40E7 BA 186
16616 40E8 40 64

16617 40ES FE 254 CP +02

16618 40EA @2 2

16619 40EB 28 40 - JRZLR-REV.
16620 40EC 04 4

16621 40ED FE 254 CP +23

16622 40EE 23 35

16623 40EF 20 32 JR NZ)Y-TEST

16624 40FG 08 8
16625 40F1 3A 58 LR REV LD A.(LR)
16626 40F2 B9 185
16627 40F3 40 64

16628 40F4 2F 47 CPL
16629 40F5 3C 60 INCA
16630 40F6 32 50 LD (LR),A

16631 40F7 B9 185

146

16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675

40F8
40F9
40FA
40FB
40FC
40FD
40FE
40FF
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
410A
4108
410C
410D
410E
410F
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
411A
411B
411C
411D
411E
411F
4120
4121
4122
4123

64
58
187
64
254
10
40

254
41
32

58
184
64
47
60
5@
184
64
237
75
186
64
62
160
50
48
64
205
178
11
33
185
64

186
64
10

150
43

10

Y-TEST

UD REV

UNPLOT

X-UPDATE

Y-UPDATE

147

LD A(Y)

CP +0A

JR Z,UD-REV.
CP +29

JR NZ,UNPLOT
LD A,(UD)

CPL

INC A
LD (UD),A

LD BC,(X)

LD A,+AQ

LD (T-ADDR),A

CALLPLOT c.r.

LD HL,+LR

LD BC,+X

LD A,(BC)
SUB (HL)
LD (BC).A
DEC HL
INC BC
LD A,(BC)

16676 4124 96 150 SUB (HL)
16677 4125 02 2 LD (BC),A
16678 4126 18 24 JR PLOT
16679 4127 AQ 160

The table shows that the routine uses 166 locations (16514-16579
inclusively).
The final program can now be entered. Enter:

10 REM 1234567890 1234567890 123

4567890 1234567890 123456789012345

67890 1234567890 1234567890 1234567 166 locations
8901234567890 1234567890 123456789 reserved.
01234567890 1234567890 1234567890 1

234567890 123456

20 LET K=USR 16533 Location for START.
3@ POKE 16571, INT (RND*32+10) Set.

40 LET K=USR 16572 VALUES.

5@ RUN

Do not RUN this program until you have entered the machine code into
line 10. SAVEIing the program at this stage is advisable.

The machine code loader used on page 131was a rather simple
loader program but for this longer machine code REM statement a better
loader program is desirable.

Enter the following lines:

200 LET A=0

216 FORB=16514TO 16679
220 INPUTC

230 POKE B,C

240 CLS

250 LET A=A+C

260 PRINTC,A

270 NEXTB

RUN 200

This loader program gives a ‘checksum’ which can be compared to the

values given below and hence gives a good indication if the input-data is
correct.

Enter:
Checksum.
62,128,6,19,215,16,253,201,62,17,144, 1123
71,205,245,8,62,128,215,20 1,20 5,40, 2503
15,205,42,10,205,130,64,6,16,197,14, 3407
0,205,138,64,193,197,14,18,205,138, 4579

148

64,193,16,240,62,117,60,215,205,130, 5881

64,201,0,0,0,0,62,1,50,184,64,50,185 6742
64,60,50,186,64,237,75,186,64,62,155, 7945
50,48,64,205,178,11,205,187,2,235,33, 9163
251,239,167,237,82,200,33,127,253, 10752
167,237,82,200,58,186,64,254,2,40 4, 12046
254,35,32,8,58,185,64,47,60,50,185, 13024
64,58,187,64,254,10,4@,4,254,41,32, 14032
8,58,184,64,47,60,50,184,64,237,75, 15063
186,64,62,160,50,48,64,205, 178,11,33 16124
185,64,1,186,64,10,150,2,43,3,10,150, 16992
2,24,160. 17178

Delete lines 200 - 273 and use SAVE “MOVING-BALL PROGRAM”
before proceeding any further.

Now enter RUN. The moving ball should appear, and go round and
round the playing area being reflected off each wall that it hits. Re-
member that the ‘R’ key is active and can be used to restart the balil. Also
the ‘BREAK’ key is active.

The reader might like to add lines to the program so as to create

‘targets’.
e.g. 35PLOT 20,20
36 PLOT 22,22
37 PLOT 25,19
RUN

The reader might also like to increase the size of the playing area by
changing the appropriate values in the machine code program.

7.5AndSoOn...

The machine code routine for the first example was only 17 bytes in
length, whereas the two routines for the second example together used
166 locations, and the 8K monitor program uses 8192!

It is hoped that the reader can now appreciate just how a large
machine code program is written.

The two example programs in this chapter are really only an introduc-
tion to the techniques of machine code programming but by building
upon the suggested techniques it is possible to write very impressive
programs.

Good Luck.

149

Appendix i.

The SAVE command routine.

address code

@2F6
2F9
2FB
2FC
2FF
302
304
306
307
308
309
308
30E
310
31
31321
316
319
31C
31E
31F
320
322
323
324
326
328
329
328
32D
32F
332
334
336
338
339

Hex.

CD A8 @3 CALL

38F9 JR
EB EX
11CB12 LD

CD430F CALL

30 2E JR
10 FE DJNZ
1B DEC
7A LD
B3 OR
20 F4 JR
CD 1E @3 CALL
CB7e BIT
23 INC
28 F8 JR
@940 LD

CD1E@3 CALL
CDFC@1 CALL

18 F8 JR
5E LD
37 SCF
CB13 RL
Cs8 RET
9F SBC
E605 AND
C604 ADD
4F LD
D3FF ouT
0623 LD
10 FE DJNZ
CD430F CALL
3072 JR
06 1E LD
10 FE DJNZ
@D DEC
20EE JR

mnemonic

@3A8
C.02F4
DE,HL
DE, +12CB
@F43
NC,0332
@304

DE

AD

E
NZ,02FF
@31E
7,(HL)

HL
Z,0308
HL, +4009
031E
@1FC
@316
E,(HL)

E

2

AA

+@5
+04
CA
(+FF),A
B,+23
032D
@F43
NC,33A6
B,+1E
0336

C
NZ,0329

150

comment

Check a name is given.
Jump if no name - error 9.

5 second timer.
Test for Break Key.
Break pressed
Delay loop.

Delay loop.

End of delay?

SAVE a byte of the name.
Last byte of name?

Next byte.

Name done?

Start sending system variables
Each byte.

Update routine (see below).
Back for next byte.

Byte into E.

Set the ‘marker’.

Rotate ‘marker’ in.

8 bits done?

A=00 or A=FF.

A=00 or A=05.

A=04 or A=09.

SaveinC.

To the cassette player.
Timing loop.

Test for Break Key.
Error D if Break pressed.
Timing Loop.

Decrease counter.
Bit finished?

33B A7 AND A Timing loop.
33C 10FD DJNZ 033B

33E 18E@ JR @320 Next bit.
@1FC 23 INC HL Next byte.
1iFD EB EX DE,HL Exchange.

iFE 2A1440 LD HL,(4@14) All bytes up to E-Line.
201 37 SCF
202 ED 52 SBC HL,DE Test for end.

204 EB EX DE,HL
205 D@ RET NC (Return to SAVE next byte.
206 E1t POP HL (SAVEing finished so
207... (continue with display.
(or
(Return to LOAD next byte.
(LOADiIng finished so
(continue with display.
The LOAD command routine.
Hex.
address code mnemonic comment
0340 CDA80G3 CALL 03A8 Check if name is given.

343 CB12 RL D

345 CBGA RRC D

347 CD4C03 CALL @34C Start listening to tape.
34A 18FB JR 0347

34C OQEO1 LD C,+01

34E 0600 LD B,+00

356 3E7F LD A,+FF Test Break Key.

352 DBFE IN A,(+FE)

354 D3FF OUT (+FF),A The ‘echo’ to the screen.
356 1F RRA

357 3049 JR NC,83A2 Jump if Break pressed.
359 17 RLA

35A 17 RLA

35B 3828 JR C,0385 Build-up a byte in C, if C is set.
35D 10 F1 DJINZ 0350

35F F1 POP AF

366 BA CcP D

361 D2E503 JP NC,03E5 Re-initialise if needed.

364 62 LD H,D Transfer the ‘address of the
365 6B LD LE program name’ to HL.

366 CD4C03 CALL @34C Start listening.
151

address Hex. code mnemonic

369
36B
36C
36E
36F
371

372
373
375
378
378
37C
37F
380
383
385
386
388
38A
388
38D
38E

@390
391
393
395
396
398
39A
39C
39D
39F
3A1

03A2
3A3
3A4
@3A6
3A7

CB7A BIT
79 LD
2003 JR
BE CcP
20 D6 JR
23 INC
17 RLA
30 F1 JR
FD3415 INC
210940 LD
50 LD
CD4C @3 CALL
71 LD
CDFC@1 CALL
18 F6 JR
D5 PUSH
1E 94 LD
06 1A LD
1D DEC
DBFE IN

17 RLA
cCB7B BIT
78 LD
38 F5 JR
10 F5 DJNZ
D1 POP
20 04 JR
FE 56 CP
30 B2 JR
3F CCF
CB 11 RL
30AD JR
C9 RET
7A LD
A7 AND
28BB JR
CF RST
1@ ‘ecC’

7,D

AC
NZ,8371
(HL)
NZ,0347
HL

NC,0366
(4015)
HL,4009
D,B
@34C
(HL),C
@1FC
@378
DE
E,+94
B,+1A
E
A,(+FE)

7,E

AE
C,0388
@38A

DE
NZ,639C
+56
NC,834E

C
NC,034E

AD

A
Z,0361
00as8

152

comment

Match letters of ‘name’.

Next letter of name.

Start LOADing at 4009.

Start listening to tape.

Put byte in RAM.

Update routine (see SAVE).
Next byte.

Timing loops.

Current signal on tape.

Build-up
Byte in

C register.

Byte finished so return to 3369
or @37F.

Re-initialise if

D is zero.

otherwise error ‘D'

Error ‘D’ — Break key pressed.

Keyboard Scanning Routine
address Hex. code mnemonic comment

@2BB 21 FFFF LD HL,+FFFF Initialise HL.
2BE G@G1FEFE LD BC,+FEFE The first port address.

2C1 ED78 IN A,(C) Read the first line.
2C3 F601 OR +01 Ignore Bit @.

2C5 F6EO OR +EO Ignore Bits 5,6,7.
2C7 57 LD D,A Build-up

2C8 2F CPL the

2C9 FEOG1 CcP +01 Key Value

2CB 9F SBC AA in

2CC B0 OR B HL.

2CD A5 AND L

2CE ©6F LD LA

2CF 7C LD AH

2D@ A2 AND D

2D1 67 LD H,A

2D2 CBa@0 RLC B

2D4 ED78 IN A,(C) Read the other lines.

2D6 38ED JR C,02C5 8 reads done?
2D8 1F. RRA

2D9 CB14 RL H Final key value in HL.
2DB 17 RLA

2DC 17 RLA Test

2DD 17 RLA line 6

2DE 9F SBC AA UK/USA

2DF E618 AND +18 standard

2E1 C61F ADD +1F ZX-81.

2E3 322840 LD (4028),A

2E6 C9 RET Return.

(see also appendix iv. ‘The Table of Key Values'.) page

Keyboard decode routine

address Hex. code mnemonic comment
@¢7BD 1600 LD D,+00 Enter with Key Value in BC.
7BF CB28 SRA B
7C1 9F SBC AA Manipulate
7C2 F626 OR +26 the Key values.
7C4 2E05 LD L,+@5 to produce
7C6 95 SUB L the A register
7C7 85 ADD AL holding
7C8 37 SCF 1-78 (decimal).

153

7C9
7CB
7CD
7CE
7CF
7D0
7D1

703
7D5

7D8
7D9
7DA
7DB

217D 00

5F
19
37
C9

RR
JR
INC
RET
LD
DEC
LD
JR
LD

LD

ADD
SCF
RET

C

C.@7C7

C

NZ

csB

L

L,+01
NZ,+@7C7
HL,+@@7D

EA
HL,DE

154

Base address of character
table.

Transferto E.

Form the address in HL.

Return with address of the
character code in HL.

Appendix ii.

Tables of Z80 Machine Code Language Instructions.

00 @1 @2 @3 04 @5 @6 @7
NOP LD LD INCBC INCB DECB LD RLCA
BC, (BC),A B,+dd

+dddd
10 11 12 13 14 15 16 17
DJNZe LD LD INCDE INCD DECD LD RLA

DE, (DE),A D,+dd

+dddd
20 21 22 23 24 25 26 27
JR LD LD INCHL INCH DECH LD DAA
NZ.e HL, (addr.) H,+dd

+dddd HL
30 31 32 33 34 - 35 36 37
JR LD LD INCSP INC DEC LD SCF
NC,e SP, (addr.), (HL) (HL) (HL),

+dddd A +dd
40 41 42 43 44 45 46 47
LD LD LD LD LD LD LD LD
B,B B,C B,D B,E B,H B,L B,(HL) B.A
50 51 52 53 54 55 56 57
LD LD LD LD LD LD LD LD
D,B D,C D,D D,E D,H D,L D,HL) DA
60 61 62 63 64 65 66 67
LD LD LD LD LD LD LD LD
H,B H,D H,C H,E HH H,L H,(HL) H,A
70 71 72 73 74 75 76 77
LD LD LD LD LD LD HALT LD
(HL),B (HL),C (HL),D (HL),E (HL)H (HL),L (HL),A
80 81 82 83 84 85 86 87
ADD ADD ADD ADD ADD ADD ADD ADD
AB AC AD AE AH AL A,(HL) AA
90 91 92 93 94 95 96 97
SUBB SUBC SuUBD SUBE SUBH SuBL SuB SUB A

(HL)

155

A A1 A2 A3 A4 A5 A6 A7
ANDB ANDC ANDD ANDE ANDH ANDL AND ANDA
(HL)

BG B1 B2 B3 B4 B5 B6 B7
ORB ORC ORD ORE ORH ORL OR(HLORA

ca C1 c2 C3 C4 C5 cé c7
RET NZ POP BC JP JP CALL PUSH ADD RST
NZ,addr.addr. NZ,addr.BC A+dd 0000

D@ D1 D2 D3 D4 D5 D6 D7
RET NC POP DE JP OUT CALL PUSH SUB RST
NC,addr.(+dd) A NC,addr.DE +dd 0010

E@ E1 E2 E3 E4 ES E6 E7
RET PO POP HL JP EX CALL PUSH AND RST
PO,addr (HL),SP PO,addr HL +dd 0020

Fo F1 F2 F3 Fa F5 F6 F7
RETP POPAF JP Di CALL PUSH OR RST
P,addr. P,addr. AF +dd @030

@8 @9 GA @B ecC @D OE’ oF
EX ADD LD DEC INCC DECC LD RRCA

AF,AF HLBC A,(BC) BC C,+dd

18 19 1A 1B 1C 1D 1E 1F

JRe ADD LD DECDEINCE DECE LD RRA
HL,DE A,(DE) E,+dd

28 29 2A 2B 2C 2D 2E 2F

JR ADD LD DECHLINCL DECL LD CPL

Ze HLHL HL, L,+dd
(addr.)

38 39 3A 3B 3C 3D 3E 3F
JR ADD LD DECSPINCA DECA LD CCF
Ce HL,SP A,(addr.) A +dd

48 49 4A 4B 4C 4D 4E 4F
LD LD LD LD LD LD LD LD
CB Cc.C CD CE CH CL C,(HL) CA

58 59 5A 5B 5C 5D 5E 5F
LD LD LD LD LD LD LD LD
E,B EC ED EE EH EL E.(HL) EA

156

68 69 6A 6B 6C 6D 6E 6F
LD LD LD LD LD LD LD LD
LB L,C LD LE LH L,L L(HL) LA
78 79 7A 7B 7C 70 7E 7F
LD LD LD LD LD LD LD LD
AB AC AD AE AH AL A(HL) AA
88 89 8A 8B 8C 8D 8E 8F
ADC ADC ADC ADC ADC ADC ADC ADC
AB AC AD AE AH AL A(HL) AA
98 99 9A 9B 9C 9D 9E 9F
SBC SBC SBC SBC SBC SBC SBC SBC
AB AC AD AE AH AL A(HL) AA
A8 A9 AA AB AC AD AE AF
XORB XORC XORD XORE XORH XORL XOR XORA
(HL)
B8 B9 BA BB BC BD BE BF
CPB CPC CPD CPE CPH CPL CP(HL)CPA
cs C9 CA CcB CcC CD CE CF
RETZ RET JP see CALL CALL ADC RST
Z,addr. pages Z,addr. addr. A,+dd @008
68,70
D8 D9 DA DB DC DD DE DF
RETC EXX JP IN CALL see SBC RST
C,addr. A,(+dd) C,addr. page A,+dd 0018
158
E8 ES EA EB EC ED EE EF
RET PE JP JP EX CALL see XOR RST
(HL) PE,addr.DE,HL PE,addrpage +dd 0028
158
F8 F9 FA FB FC FD FE FF
RETM LD JP El CALL see CP RST
SP,HL M,addr. M,addr. page +dd @038

158

157

ED instructions

ED 40 ED 50 ED 60 ED A0 ED B@
IN IN IN LDI LDIR

B,(C) D,(C) H,(C)

ED 41 ED 51 ED 61 ED A1 ED B1
ouT ouT ouT CPI CPIR
(C),B (C),D (C)H

ED 42 ED 52 ED62 ED72 ED A2 ED B2
SBC SBC SBC SBC INI INIR

HL,BC HL,DE HL,HL HL,SP

ED 43 ED 53 ED63 ED73 ED A3 EDB3
LD LD LD LD OUTI OTIR
(addr.),BC| (addr.),DE| (addr.),HL | (addr.),SP

ED 44

NEG

ED 45

RETN

ED 46 ED 56 ED 66

M@ M1 M2

ED 47 EDS57 ED67

LD LA LDA|I RRD

ED 48 ED 58 ED68 ED78 ED A8 ED B8
IN IN IN IN LDD LDDR
C.(C) E,(C) L,(C) - A(C)

ED 49 ED 59 ED 69 ED79 ED A9 ED B9
ouT ouT ouT ouT CPD CPDR
(©).C (C).E €).L (C).A

ED 4A ED 5A ED6A ED7A EDAA EDBA
ADC ADC ADC ADC IND INDR
HL,BC HL,DE HL,HL HL,SP

ED 4B ED 5B ED6B ED7B EDAB EDBB
LD LD LD LD ouTD OTRD
BC,(addr.)| DE,(addr.)| HL,(addr.)| SP,(addr.)

ED4D

RETI

ED 4F ED5F ED6F

LDRA |LDAR |RLD

158

The Indexing Instructions

All the instructions using the IX register pair are prefixed by ‘DD’. All the
instructions using the IY register pair are prefixed by ‘FD’. In the following
simply read Y for IX and change DD to FD when dealing with the IY
register pair.

DD 09 ADD IX,BC DDCBd 06 RLC (IX+d)
DD 19 ADD IX,DE DD CB d OE RRC (IX+d)
DD 21 +dddd LD iX,+dddd | DDCBd 16 RL (IX+d)
DD 22 addr. LD (addr)IX || DDCBd 1E RR (IX+d)

d

d

d

d
DD 23 INC IX DDCBd 26 SLA (IX+d)
DD 29 ADD IX,IX DD CB d 2E SRA (IX+d)
DD 2A addr. LD IX,(addr) | DDCBd 3E SRL (IX+d)
DD 2B DEC IX DD CBd 46 BIT 0,(IX+d)
DD 34 d INC (IX+d) DD CB d 4E BIT 1,(IX+d)
DD 35 d DEC (IX+d) DDCBd 56 BIT 2,(IX+d)
DD 36 d+dd LD (IX+d),+dd| DD CB d 5E BIT 3,(IX+d)
DD 39 ADD IX,SP DDCBd 66 BIT 4,(IX+d)
DD 46 d LD B,(IX+d) | DDCBd 6E BIT 5,(IX+d)
DD 4E d LD C,(IX+d) | DDCBd 76 BIT 6,(IX+d)
DD 56 d LD D,(IX+d) | DDCBd 7E BIT 7,(IX+d)
DD 5E d LD E(IX+d) | DDCBd 86 RES O0,(IX+d)
DD 66 d LD H,(IX+d) | DDCBd 8E RES 1,(IX+d)
DD 6E d LD L(IX+d) |DDCBd 96 RES 2,(IX+d)
DD 70 d LD (IX+d),B | DDCBd 9E RES 3,(IX+d)
DD 71 d LD (IX+d),C | DDCBd A6 RES 4,(IX+d)
DD 72 d LD (IX+d),D | DDCBd AE RES 5,(IX+d)
DD 73 d LD (IX+d),E | DDCBd B6 RES 6,(IX+d)
DD 74 d LD (IX+d),H |DDCBd BE RES 7,(IX+d)
DD 75 d LD (IX+d)L | DDCBd C6 SET 0,(X+d)
DD 77 d LD (IX+d),A | DDCBd CE SET 1,(IX+d)
DD 7E d LD A(IX+d) | DDCBd D6 SET 2,(IX+d)
DD 86 d ADD A,(IX+d) { DD CBd DE SET 3,(IX+d)
DD 8E d ADC A(IX+d) | DD CBd E6 SET 4,(IX+d)
DD 96 d SUB (IX+d) DD CB d EE SET 5,(IX+d)
DD 9E d SBC A,(IX+d) | DDCBd F6 SET 6,(IX+d)
DD A6 d AND (IX+d) DD CB d FE SET 7,(IX+d)
DD AE d XOR (IX+d) DD Ef POP IX
DD B6 d OR (IX+d) DD E3 EX (SP),IX
DD BE d CP (IX+d) DD E5 PUSH IX

DD E9 P (X
DD F9 LD SP,X

159

Appendix iii.

Decimal-Hexadecimal Conversion Table

DECIMAL 0-255 HEX. 00-FF LOW BYTE

DEC. HEX. DEC. HEX DEC. HEX. 2'sC.| DEC. HEX, 2'sC.
0 00 64 40 128 80 -128 192 Co -64
1 01 65 41 129 81 -127 193 C1 -63
2 02 66 42 130 82 -126 194 c2 -62
3 03 67 43 131 83 -125 195 Cc3 -61
4 04 68 44 132 84 -124 196 C4 -60
5 05 69 45 133 85 -123 197 Cs -59
6 06 70 46 134 86 -122 198 Cé -58
7 07 71 47 135 87 -121 199 C7 -57
8 o8 72 48 136 88 -120 200 C8 -56
9 09 73 49 137 89 -119 201 C9 -55
10 0A 74 4A 138 8A -118 202 CA -54
1" 0B 75 4B 139 8B -117 203 CcB -53
12 oC 76 4C 140 8C -116 204 cc -52
13 oD 77 4D 141 8D -115 205 CD -51
14 OE 78 4E 142 8E -114 206 CE -50
15 OF 79 4F 143 8F -113 207 CF -49
16 10 80 50 144 90 -112 208 DO -48
17 1 81 51 145 91 -1 209 D1 -47
18 12 82 52 146 92 -110 210 D2 -46
19 13 83 53 147 93 -109 211 D3 -45
20 14 84 54 148 94 -108 212 D4 -44
21 15 85 55 149 95 -107 213 D5 -43
22 16 86 56 150 96 -106 214 D6 -42
23 17 87 57 151 97 -105 215 D7 -41
24 18 88 58 152 98 -104 216 D8 -40
25 19 89 59 153 99 -103 217 D9 -39
26 1A 90 5A 154 9A -102 218 DA -38
27 1B 91 5B 1585 9B -101 219 DB -37
28 1C 92 5C 156 9C -100 220 DC -36
29 1D 93 5D 157 9D - 99 221 DD -35
30 1E 94 5€ 158 9E - 98 222 DE -34
31 1F 95 5F 159 9F - 97 223 DF -33
32 20 96 60 160 A0 - 96 224 EO -32
33 21 97 61 161 Al - 95 225 E1 -31
34 22 98 62 162 A2 - 94 226 €2 -30
35 23 99 63 163 A3 - 93 227 E3 -29
36 24 100 64 164 A4 - 92 228 E4 -28
37 25 101 65 165 A5 - 91 229 ES 27
38 26 102 66 166 A6 - 90 230 E6 -26
39 27 103 67 167 A7 - 89 231 E7 -25
40 28 104 68 168 A8 - 88 232 E8 -24
41 29 105 69 169 A9 - 87 233 E9 -23
42 2A 106 6A 170 AA - 86 234 EA -22
43 2B 107 6B 171 AB - 85 235 EB -21
44 2C 108 6C 172 AC - 84 236 EC -20
45 2D 109 6D 173 AD - 83 237 ED -19
46 2E 110 6E 174 AE - 82 238 EE -18
47 2F 1M1 6F 175 AF - 81 239 EF -17
48 30 112 70 176 80 - 80 240 FO -16
49 31 113 71 177 B1 - 79 241 F1 -15
50 32 114 72 178 82 - 78 242 F2 -14
51 33 115 73 179 B3 - 77 243 F3 -13
52 34 116 74 180 B4 - 76 244 F4 -12
53 35 17 75 181 B5 - 75 245 F5 -11
54 36 118 76 182 B6 - 74 246 F6 -10
55 37 119 77 183 B7 -73 247 F7 -9
56 38 120 78 184 B8 - 72 248 F8 -8
57 39 121 79 185 B9 - 71 249 F9 -7
58 3A 122 7A 186 BA - 70 250 FA -6
59 38 123 78 187 BB - 69 251 F8 -5
60 3C 124 7C 188 BC - 68 252 FC -4
61 3D 125 7D 189 BD - 67 253 FD -3
62 3E 126 7E 190 BE - 66 254 FE -2
63 3F 127 7F 191 BF - 65 255 FF -1

Decimal-Hexadecimal Conversion Table (cont.)

DECIMAL 0-65280 HEX. 00-FF, HIGH BYTE
DECIMAL HEX. | DECIMAL HEX. | DECIMAL HEX. | DECIMAL "HEX. |

0 00 16384 40 32768 80 49152 co
256 01 16640 41 33024 81 49408 c1
512 02 16896 42 33280 82 49664 c2
768 03 17152 43 33536 83 49920 C3
1024 04 17408 44 33792 84 50176 C4
1280 05 17664 45 34048 85 50432 cs
1536 06 17920 46 34304 86 50688 Cé
1792 07 18176 47 34560 87 50944 C7
2048 08 18432 a8 34816 88 51200 c8
2304 09 18688 49 35072 89 51456 Co
2560 0A 18944 aA 35328 8A 51712 CA
2816 0B 19200 4B 35584 8B 51968 CcB
3072 oC 19456 4C 35840 8C 52224 cc
3328 oD 19712 4D 36096 8D 52480 CcD
3584 OE 19968 4E 36352 8E 52736 CE
3840 OF 20224 4F 36608 8F 52992 CF
4096 10 20480 50 36864 90 53248 Do
4352 11 20736 51 37120 91 53504 Dt
4608 12 20992 52 37376 92 53760 D2
4864 13 21248 53 37632 93 54016 D3
5120 14 21504 54 37888 94 54272 D4
5376 15 21760 55 38144 95 54528 D5
5632 16 22016 56 38400 96 54784 D6
5888 17 22272 57 38656 97 55040 D7
6144 18 22528 58 38912 98 55296 D8
6400 19 22784 59 39168 99 55552 D9
6656 1A 23040 5A 39424 9A 55808 DA
6912 1B 23296 5B 39680 9B 56064 DB
7168 1C 23552 5C 39936 9C 56320 DC
7424 1D 23808 5D 40192 9D 56576 DD
7680 1E 24064 SE 40448 9E 56832 DE
7936 1F 24320 5F 40704 9F 57088 DF
8192 20 24576 60 40960 A0 57344]
8448 21 24832 61 41216 Al 57600 €1
8704 22 25088 62 41472 A2 57856 E2
8960 23 25344 63 41728 A3 58112 E3
9216 24 25600 64 41984 A4 58368 E4
9472 25 25856 65 42240 A5 58624 E5
9728 26 26112 66 42496 A6 58880 E6
9984 27 26368 67 42752 A7 59136 E7
10240 28 26624 68 43008 A8 59392 E8
10496 29 26880 69 43264 A9 59648 E9
10752 2A 27136 6A 43520 AA 59904 EA
11008 2B 27392 6B 43776 AB 60160 €B
11264 2C 27648 6C 44032 AC 60416 EC
11520 2D 27904 6D 44288 AD 60672 ED
11776 2E 28160 6E 44544 AE 60928 EE
12032 2F 28416 6F 44800 AF 61184 EF
12288 30 28672 70 45056 B0 61440 FO
12544 31 28928 71 45312 B1 61696 F1
12800 32 29184 72 45568 B2 61952 F2
13056 33 29440 73 45824 B3 62208 F3
13312 34 29696 74 46080 Ba 62464 F4
13568 35 29952 75 46336 B5 62720 F5
13824 36 30208 76 46592 B6 62976 F6
14080 37 30464 77 46848 B7 63232 F7
14336 38 30720 78 47104 B8 63488 F8
14592 39 30976 79 47360 B9 63744 F9
14848 3A 31232 7A 47616 BA 64000 FA
15104 3B 31488 78 47872 88 64256 FB
15360 3C 31744 7C 48128 BC 64512 FC
15616 3D 32000 70 48384 BD 64768 FD
15872 3E 32256 7E 48640 BE 65024 FE
16128 3F 32512 7F 48896 BF 65280 FF

Appendixiv.

Table of ‘Key Values’

Key Hex. Value | Dec. Value Key Hex. Value Val
1 FOF7 65015 EDIT FCF7 64759
2 FBF7 64503 AND FAF7 64247
3 F7F7 63479 THEN F6F7 63223
4 EFF7 61431 TO EEF7 61175
5 DFF7 57335 — DEF7 57079
6 DFEF 57327 { DEEF 57071
7 EFEF 61423 s EEEF 61167
8 F7EF 63471 - F6EF 63215
9 FBEF 64495 GRAPHICS | FAEF 64239
0 FDEF 65007 RUBOUT FCEF 64751
Q FOFB 65019 | Ui FCFB 64763
w FBFB 64507 OR FAFB 64251
E F7FB 63438 STEP F6FB 63227
R EFFB 61435 {= EEFB 61179
T DFFB 57339 < DEFB 57083
Y DFDF 57311 = DEDF 57055
u EFDF 61407 S EEDF 61151
] F7DF 63455 (F6DF 63199
0 FBDF 64479) FADF 64223
P FDDF 64991 1 FCDF 64735
A FODFD 65021 STOP FCFD 64765
S FBFD 64509 LPRINT FAFD 64253
D F7FD 63485 SLOW F6FD 63229
F EFFD 61437 FAST EEFD 61181
G DFFD 57341 LLIST DEFD 57085
H DFBF 57279 - DEBF 57023
J EFBF 61375 - EEBF 61119
K F7BF 63423 + F6BF 63167
L FBBF 64447 = FABF 64191
NEWLINE | FDBF 64959 FUNCTION | FCBF 64959
Z FBFE 64510 : FAFE 64254
X F7FE 63486 ; F6FE 63230
C EFFE 61438 ? EEFE 61182
v DFFE 57342 / DEFE 57086
B DF7F 57215 . DE7F 56959
N EF7F 61311 < EE7F 61055
M F77F 63359 > F67F 63103
° FB7F 64383 , FA7F 64127
SPACE FD7F 64895 £ FC7F 64639
NO KEY FFFF 65535

162

