; An Assembly Listing of the Operating System of the ZX81 ROM

; Last updated: 13-DEC-2004

; Work in progress.

; This file will cross-assemble an original version of the "Improved"

; ZX81 ROM. The file can be modified to change the behaviour of the ROM
; when used in emulators although there is no spare space available.

; The documentation is incomplete and if you can find a copy

; of "The Complete Spectrum ROM Disassembly”" then many routines
; such as POINTERS and most of the mathematical routines are

; similar and often identical.

; I've used the labels from the above book in this file and also
; some from the more elusive Complete ZX81 ROM Disassembly
; by the same publishers, Melbourne House.

#define DEFB .BYTE ; TASM cross-assembler definitions
#define DEFW .WORD
#define EQU .EQU

,-***

;** Part 1. RESTART ROUTINES AND TABLES **

;***

; THE 'START'

; All 780 chips start at location zero.

; At start-up the Interrupt Mode is 0, ZX computers use Interrupt Mode 1.
; Interrupts are disabled

;; START
L0000: OuUT (SFD) , A ; Turn off the NMI generator if this ROM is
; running in ZX81 hardware. This does
nothing
; 1f this ROM is running within an upgraded
; ZX80.
LD BC, $7FFF ; Set BC to the top of possible RAM.
; The higher unpopulated addresses are used
for
; video generation.
Jp LO3CB ; Jump forward to RAM-CHECK.

; THE 'ERROR' RESTART

; The error restart deals immediately with an error. ZX computers execute
the

; same code in runtime as when checking syntax. If the error occurred while
; running a program then a brief report is produced. If the error occurred
; while entering a BASIC line or in input etc., then the error marker
indicates

; the exact point at which the error lies.

;; ERROR-1

http://www.wearmouth.demon.co.uk/zx81.htm#L03CB%23L03CB

L0008: LD
LD
JR

HL, ($4016)

’
’

’

; THE 'PRINT A CHARACTER'

RESTART

fetch character address from CH ADD.
and set the error pointer X PTR.
forward to continue at ERROR-2.

; This restart prints the character in the accumulator using the alternate
; register set so there is no requirement to save the main registers.

; There is sufficient room available to separate a space

from other

; characters as leading spaces need not be considered with a space.

;; PRINT-A

L0010: AND
Jp
Jp
DEFB

’

’

’

’

’

test for zero

Jjump forward if not to PRINT-CH.

Jjump forward to PRINT-SP.

unused location.

; THE 'COLLECT A CHARACTER'

RESTART

; The character addressed by the system variable CH ADD is fetched and if

it

; 1s a non-space, non-cursor character it is returned else CH ADD is
; incremented and the new addressed character tested until it is not a

space.

; ; GET-CHAR
L0018: LD
LD

;; TEST-SP
LO01C: AND
RET

NOP
NOP

; The character address in
; returned if not a space,

; + NEXT-CHAR
L0020: CALL

JR

set HL to character address CH_ADD.
fetch addressed character to A.

test for space.
return if not a space

else trickle through
to the next routine.

; THE 'COLLECT NEXT CHARACTER'

RESTART

incremented and the new addressed character is

or cursor,

SEF ;

; THE 'FLOATING POINT CALCULATOR'

; this restart jumps to the recursive floating-point calculator.
; the ZX81's internal,

FORTH-1like,

else the process is repeated.

routine CH-ADD+1 gets next immediate

character.

back to TEST-SP.

unused locations.

stack-based language.

http://www.wearmouth.demon.co.uk/zx81.htm#L001C%23L001C
http://www.wearmouth.demon.co.uk/zx81.htm#L0049%23L0049
http://www.wearmouth.demon.co.uk/zx81.htm#L07F5%23L07F5
http://www.wearmouth.demon.co.uk/zx81.htm#L07F1%23L07F1
http://www.wearmouth.demon.co.uk/zx81.htm#L0056%23L0056

; In the five remaining bytes there is, appropriately, enough room for the

; end-calc literal - the instruction which exits the calculator.
;; FP-CALC
L0028: JP 1L199D ; jump immediately to the CALCULATE
routine.
;; end-calc
L002B: POP AF ; drop the calculator return address RE-
ENTRY
EXX ; switch to the other set.
EX (SP) , HL ; transfer H'L' to machine stack for the

; return address.
; when exiting recursion then the previous
; pointer is transferred to H'L'.

EXX ; back to main set.
RET ; return.

; THE 'MAKE BC SPACES' RESTART

; This restart is used eight times to create, in workspace, the number of
; spaces passed in the BC register.

;; BC-SPACES

L0030: PUSH BC ; push number of spaces on stack.
LD HL, ($4014) ; fetch edit line location from E LINE.
PUSH HL ; save this value on stack.
Jp 11488 ; jump forward to continue at RESERVE.

; THE 'INTERRUPT' RESTART

; The Mode 1 Interrupt routine is concerned solely with generating the
central

; television picture.

; On the ZX81 interrupts are enabled only during the interrupt routine,

; although the interrupt

; This Interrupt Service Routine automatically disables interrupts at the
; outset and the last interrupt in a cascade exits before the interrupts

; enabled.

; There is no DI instruction in the ZX81 ROM.

; An maskable interrupt is triggered when bit 6 of the Z80's Refresh
register

; changes from set to reset.

; The 780 will always be executing a HALT (NEWLINE) when the interrupt
occurs.

; A HALT instruction repeatedly executes NOPS but the seven lower bits

; of the Refresh register are incremented each time as they are when any
; simple instruction is executed. (The lower 7 bits are incremented twice
for

; a prefixed instruction)

; This is controlled by the Sinclair Computer Logic Chip - manufactured
from

; a Ferranti Uncommitted Logic Array.

http://www.wearmouth.demon.co.uk/zx81.htm#L1488%23L1488
http://www.wearmouth.demon.co.uk/zx81.htm#L199D%23L199D

; When a Mode 1 Interrupt occurs the Program Counter, which is the
address in

; the upper echo display following the NEWLINE/HALT instruction, goes on
the

; machine stack. 193 interrupts are required to generate the last part
of

; the 56th border line and then the 192 lines of the central TV picture
and,

; although each interrupt interrupts the previous one, there are no stack
; problems as the 'return address' is discarded each time.

; The scan line counter in C counts down from 8 to 1 within the
generation of

; each text line. For the first interrupt in a cascade the initial wvalue

of
; C is set to 1 for the last border line.
; Timing is of the utmost importance as the RH border, horizontal retrace
; and LH border are mostly generated in the 58 clock cycles this routine
; takes
;; INTERRUPT
L.0038: DEC C ; (4) decrement C - the scan line counter.
Jp NZ,L0045 ; (10/10) JUMP forward if not zero to SCAN-
LINE
POP HL ; (10) point to start of next row in
display
; file.
DEC B ;s (4) decrement the row counter. (4)
RET Z ; (11/5) return when picture complete to
L0O28B
; with interrupts disabled.
SET 3,C ; (8) Load the scan line counter with
eight.
; Note. LD C,$08 is 7 clock cycles
which
; is way too fast.
;g =>
;; WAIT-INT
L0041: 1D R,A ; (9) Load R with initial rising value $DD.
EI ; (4) Enable Interrupts. [R is now SDE].
JP (HL) ; (4) jump to the echo display file in
upper
; memory and execute characters $00 -
$3F
; as NOP instructions. The wvideo
hardware
; is able to read these characters and,
; with the I register is able to
convert
; the character bitmaps in this ROM
into a

; line of bytes. Eventually the
NEWLINE/HALT

http://www.wearmouth.demon.co.uk/zx81.htm#L0045%23L0045

; will be encountered before R reaches

SFF.
; It is however the transition from S$FF
to
; $80 that triggers the next interrupt.
H [The Refresh register is now S$DF]
;7 SCAN-LINE
L0045: POP DE ; (10) discard the address after NEWLINE as
the
; same text line has to be done again
; eight times.
RET Z ; (5) Harmless Nonsensical Timing.
; (condition never met)
JR L0041 ; (12) back to WAIT-INT
; Note. that a computer with less than 4K or RAM will have a collapsed

display file and the above mechanism deals with both types of display.

With a full display, the 32 characters in the line are treated as NOPS
and the Refresh register rises from $EO to $FF and, at the next

instruction

$FF,

’

’

; THE

’

- HALT, the interrupt occurs.
With a collapsed display and an initial NEWLINE/HALT, it is the NOPs
generated by the HALT that cause the Refresh value to rise from $EO to

triggering an Interrupt on the next transition.

This works happily for all display lines between these extremes and the
generation of the 32 character, 1 pixel high, line will always take 128
clock cycles.

'INCREMENT CH-ADD' SUBROUTINE

; This is the subroutine that increments the character address system
variable

; and returns if it is not the cursor character.

The ZX81 has an actual

; character at the cursor position rather than a pointer system variable
; as 1s the case with prior and subsequent ZX computers.

;; CH-ADD+1
L.0049: LD HL, ($4016) ; fetch character address to CH ADD.
;; TEMP-PTR1
L004C: INC HL ; address next immediate location.
;; TEMP-PTR2
L004D: LD ($4016) ,HL ; update system variable CH ADD.

LD A, (HL) ; fetch the character.

Cp STF ; compare to cursor character.

RET NZ ; return if not the cursor.

JR Loo4cC ; back for next character to TEMP-PTRI1.
; THE 'ERROR-2' BRANCH

http://www.wearmouth.demon.co.uk/zx81.htm#L004C%23L004C
http://www.wearmouth.demon.co.uk/zx81.htm#L0041%23L0041

; This is a continuation of the error restart.

; If the error occurred in runtime then the error stack pointer will
probably

; lead to an error report being printed unless it occurred during input.
; If the error occurred when checking syntax then the error stack pointer
; will be an editing routine and the position of the error will be shown
; when the lower screen is reprinted.

;; ERROR-2
L0056: POP HL ; pop the return address which points to
the
; DEFB, error code, after the RST 08.
LD L, (HL) ; load L with the error code. HL is not
needed
; anymore.
;5 ERROR-3
L0058: LD (IY+$00),L ; place error code in system variable
ERR_NR
LD SP, ($4002) ; set the stack pointer from ERR SP
CALL L0207 ; routine SLOW/FAST selects slow mode.
JP L14BC ; exit to address on stack via routine SET-
MIN
DEFB SFF ; unused

; THE 'NON MASKABLE INTERRUPT' ROUTINE

; Jim Westwood's technical dodge using Non-Maskable Interrupts solved the
; flicker problem of the ZX80 and gave the 7ZX81l a multi-tasking SLOW mode
; with a steady display. Note that the AF' register is reserved for this
; function and its interaction with the display routines. When counting
; TV lines, the NMI makes no use of the main registers.

; The circuitry for the NMI generator is contained within the SCL
(Sinclair

; Computer Logic) chip.

; (It takes 32 clock cycles while incrementing towards zero).

;; NMI
L0066: EX AF,AF’ ; (4) switch in the NMI's copy of the
; accumulator.
INC A ; (4) increment.
JP M,L006D ; (10/10) jump, if minus, to NMI-RET as
this is
; part of a test to see if the NMI
; generation is working or an
intermediate
; value for the ascending negated blank
; line counter.
JR Z,LO006F ; (12) forward to NMI-CONT
; when line count has incremented to
zero.

; Note. the synchronizing NMI when A increments from zero to one takes this
; 7 clock cycle route making 39 clock cycles in all.

;; NMI-RET

http://www.wearmouth.demon.co.uk/zx81.htm#L006F%23L006F
http://www.wearmouth.demon.co.uk/zx81.htm#L006D%23L006D
http://www.wearmouth.demon.co.uk/zx81.htm#L14BC%23L14BC
http://www.wearmouth.demon.co.uk/zx81.htm#L0207%23L0207

LO06D: EX AF, AR’ ;5 (4) switch out the incremented line
counter

; or test result $80
RET ; (10) return to User application for a
while.
; This branch is taken when the 55 (or 31) lines have been drawn.
; ; NMI-CONT
LO0O6F: EX AF, AF'! ; (4) restore the main accumulator.
PUSH AF ;o (11) ~* Save Main Registers
PUSH BC ;o(11) **
PUSH DE ;o (11) **~*
PUSH HL ;o (11) ***xx
; the next set-up procedure is only really applicable when the top set of
; blank lines have been generated.
LD HL, ($400C) ; (l6) fetch start of Display File from
D FILE
; points to the HALT at beginning.
SET 7,H ; (8) point to upper 32K 'echo display
file'
HALT ; (1) HALT synchronizes with NMI.
; Used with special hardware connected to
the
; 280 HALT and WAIT lines to take 1 clock
cycle
; the NMI has been generated - start counting. The cathode ray is at the
RH
; side of the TV.
; First the NMI servicing, similar to CALL = 17 clock cycles.
; Then the time taken by the NMI for zero-to-one path = 39 cycles
; The HALT above = 01 cycles.
; The two instructions below = 19 cycles.
; The code at L0281 up to and including the CALL = 43 cycles.
; The Called routine at L02B5 = 24 cycles.
; Total Z80 instructions = 143 cycles.
; Meanwhile in TV world,
; Horizontal retrace = 15 cycles.
; Left blanking border 8 character positions = 32 cycles
; Generation of 75% scanline from the first NEWLINE = 96 cycles
; 143 cycles
; Since at the time the first JP (HL) 1is encountered to execute the echo
; display another 8 character positions have to be put out, then the
; Refresh register need to hold S$F8. Working back and counteracting
; the fact that every instruction increments the Refresh register then

; the value that is loaded into R needs to be S$F5. =)

http://www.wearmouth.demon.co.uk/zx81.htm#L02B5%23L02B5
http://www.wearmouth.demon.co.uk/zx81.htm#L0281%23L0281

OouT (SFD) , A ; (11) Stop the NMI generator.

JP (IX) ; (8) forward to L0281 (after top) or LO28F

R e d b I a2 I ah b ah i

; ** KEY TABLES **
Kk kK kK kK Kk kK kK Kk

; THE 'UNSHIFTED' CHARACTER CODES

;7 K-UNSHIFT

LO0O7E: DEFB $3F ; Z
DEFB $3D ; X
DEFB $28 ; C
DEFB $3B ;v
DEFB $26 ; A
DEFB $38 ;S
DEFB $29 ; D
DEFB $2B ; F
DEFB $2C ; G
DEFB $36 ;7 Q
DEFB $3C ;W
DEFB $2A ; B
DEFB $37 ; R
DEFB $39 ;T
DEFB $1D ;1
DEFB S1E ;2
DEFB S1F ;3
DEFB $20 ; 4
DEFB $21 ;5
DEFB s1cC ;0
DEFB $25 ;9
DEFB $24 ; 8
DEFB $23 ;7
DEFB $22 ;6
DEFB $35 ; P
DEFB $34 ; O
DEFB S2E ;I
DEFB $3A ;U
DEFB $3E ;Y
DEFB $76 ; NEWLINE
DEFB $31 ; L
DEFB $30 ;K
DEFB S2F ; J
DEFB $2D ; H
DEFB $00 ; SPACE
DEFB $1B P
DEFB $32 ;M
DEFB $33 ; N
DEFB $27 ; B

; THE 'SHIFTED' CHARACTER CODES

;; K-SHIFT
LOOAS5: DEFB SOE P
DEFB $19 ;o

DEFB SOF P2

; THE

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

'FUNCTION'

;; K-FUNCT

LOOCC:

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

518 ;
SE3 ;
SE1 ;
SE4 ;
SES5 ;
SE2 ;
SCo ;
SD9 ;
SEO ;
SDB ;
$DD ;
S75 ;
SDA ;
SDE ;
SDF ;
$72 ;
$77 ;
$74 ;
S73 ;
$70 ;
$71 ;

SOB ;
S11 ;

510 ;
$0D ;

SDC ;
$79 ;
$14 ;
$15 ;
$16 ;

$D8 ;

socC ;
S1A ;

$12 ;
$13 ;

S17 ;

SCD ;
SCE ;

SC1 ;
$78 ;

SCA ;
SCB ;

SccC ;
S$D1 ;
$D2 ;
$c7 ;
SC8 ;

$C9 ;

SCF ;
$40 ;

$78 ;
$78 ;

$78 ;
$78 ;

$78 ;

/
STOP
LPRINT
SLOW
FAST
LLIST
OR
STEP
<=
<>
EDIT
AND
THEN
TO
cursor-left
RUBOUT
GRAPHICS
cursor-right
cursor-up
cursor-down
"
)
(
$
>=
FUNCTION

LN
EXP
AT
KL
ASN
ACS
ATN
SGN
ABS
SIN
COS
TAN
INT
RND
KL
KL
KL
KL
KL

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

$78
$78
$78
$78
$78
SCc2
$D3
$c4
SD6
$D5
$78
SD4
$C6
$C5
$DO
$78
$78
$42
SD7
$41

; THE 'GRAPHIC' CHARACTER CODES

; » K-GRAPH
LOOF3: DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

; THE 'TOKEN'

$08
SO0A
$09
S8A
$89
$81
$82
$07
$84
$06
$01
$02
$87
$04
$05
$77
$78
$85
$03
$83
S8B
$91
$90
$8D
$86
S78
$92
$95
$96
$88

TABLES

KL
KL
KL
KL
KL
TAB
PEEK
CODE
CHRS
STRS
KL
USR
LEN
VAL
SOR
KL
KL
PI
NOT
INKEYS

graphic
graphic
graphic
graphic
graphic
graphic
graphic
graphic
graphic
graphic
graphic
graphic
graphic
graphic
graphic
RUBOUT
KL
graphic
graphic
graphic
graphic
inverse
inverse
inverse
graphic
KL
inverse
inverse
inverse
graphic

—

; ; TOKENS

LO111:

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

SO0F+5$80

SO0B, $0B+580
$26,$39+580
$39,$26,527+$80
SOF+580
$28,$34,$29,$2A+580
$3B,$26,$31+5$80
$31,$2A,533+580
$38, $2E, $33+$80
$28,$34,538+3$80
$39,5%26,$33+3$80
$26,$38,$33+5$80
$26,$28,$38+5$80
$26,5$39,5$33+5$80
$31,$33+580
$2A,$3D, $35+$80
$2E,$33,5$39+$80
$38,$36,537+580
$38,$2C,$33+580
$26,$27,538+$80
$35, $2A,$2A,530+580
$3A,$38,$37+5$80
$38,$39,%37,50D+580
$28,$2D,$37,S0D+$80
$33,5834,5$39+3$80
$17,$17+$80
$34,$37+580
$26,5$33,529+580
$13,$14+$80
$12,$14+$80
$13,$12+$80
$39,$2D, $2A,$33+580
$39,$34+580
$38,$39,3$2A,535+580

$31,$35,%37,52E,$33,539+$80
$31,$31,$2E,5$38,539+$80

$38,$39,534,$35+580
$38,531,534,$3C+$80
$2B,$26,538,539+$80
$33,52A,53C+3580

$38,528,337,534,531,531+$80

$28,534,$33,$39+$80
$29,82E,$32+$80
$37,$2A,832+580
$2B, $34,837+$80
$2C,$34,$39,$34+3$80

$2C,$34,$38,$3A,527+$80
S2E, $33,$35,83A,539+880

$31,$34,526,$29+380
$31,$2E,$38,$39+$80
$31,52A,539+3580

$35,%26,53A,538, $2A+$80

$33,$2A,5$3D,$39+$80
$35,$34,$30,$2A+$80

$35,$837,$2E,$33,$39+$80

$35,$31,%34,5$39+580
$37,%3A,5$33+$80
$38,$26,3$3B,$2A+580
$37,$26,533,5$29+580
$S2E, $2B+580

'?2'+3580

nwn

; AT

TAB
1214580
CODE

; VAL

LEN
SIN
COS
TAN
ASN

; ACS
; ATN

LN

EXP
INT
SOR
SGN

; ABS

PEEK
USR
STRS
CHRS
NOT

* K

<>
THEN
TO
STEP
LPRINT
LLIST
STOP
SLOW
FAST
NEW
SCROLL
CONT
DIM
REM
FOR
GOTO
GOSUB
INPUT
LOAD
LIST
LET
PAUSE
NEXT
POKE
PRINT
PLOT
RUN
SAVE
RAND
IF

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

$28,$31,5$38+580 ; CLS
$3A,$33,535,5$31,%$34,539+$80 ; UNPLOT
$28,%$31,%2A,$26,537+580 ; CLEAR
$37,%$2A,$39,$3A,$37,533+3$80 ; RETURN
$28,$34,$35,$3E+580 ; COPY
$37,$33,529+580 ; RND
$2E,$33,$30, %2R, $3E, $S0D+580 ; INKEYS
$35, $2E+$80 ; PI

; THE 'LOAD-SAVE UPDATE' ROUTINE

;; LOAD/SAVE

LO1FC: INC
EX
LD
SCF
SBC
EX
RET

POP

; THE 'DISPLAY'

;; SLOW/FAST

L0207: LD
LD
RLA
XOR
RLA
RET

HL ;
DE, HL ;
HL, ($4014) ;
HL, DE ;
DE, HL ;
NC ;
HL ;
ROUTINES

HL, $403B ;
A, (HL) ;
(HL) ;
NC ;

system variable edit line E LINE.
set carry flag

return if more bytes to load/save.

else drop return address

Address the system variable CDFLAG.
Load value to the accumulator.
rotate bit 6 to position 7.
exclusive or with original bit 7.
rotate result out to carry.

return if both bits were the same.

; Now test i1if this really is a ZX81 or a ZX80 running the upgraded ROM.
; The standard ZX80 did not have an NMI generator.

LD
EX

LD
occur

ouT

; Note that if

;; LOOP-11
L0216: DJINZ
kick in.

cycles.

ouT
EX

A,$TF ;
AF,AF' ;
B,S$11 ;
(SFE) , A ;

Load accumulator with %$011111111
save in AF'

A counter within which an NMI should

if this is a ZX81.
start the NMI generator.

this is a ZX81 then the NMI will increment AF'.

L0216 ;
(SFD) , A ;
AF, AF! ;

self loop to give the NMI a chance to

= 16*13 clock cycles + 8 = 216 clock

Turn off the NMI generator.
bring back the AF' value.

http://www.wearmouth.demon.co.uk/zx81.htm#L0216%23L0216

RLA
JR
SLOW.

; If the AF'
can
; be set.

SET

PUSH
PUSH
PUSH
PUSH

JR

;7 NO-SLOW
L0226: RES
RET

; THE

; This routine is executed once

;; DISPLAY-1

'MAIN DISPLAY'

’

NC, L0226 ;

test bit 7.

forward, if bit 7 is still reset, to NO-

was incremented then the NMI generator works and SLOW mode

7, (HL) ;
AF ;
BC ;
DE ;
HL ;
10229 ;
6, (HL) ;

LOOP

Indicate SLOW mode - Compute and Display.

* Save Main Registers
* *

* kK

* Kk ok x

skip forward - to DISPLAY-1.

reset bit 6 of CDFLAG.
return.

for every frame displayed.

L.0229: LD HL, ($4034) ; fetch two-byte system variable FRAMES.
DEC HL ; decrement frames counter.
;; DISPLAY-P
L022D: LD A, $TF ; prepare a mask
AND H ; pick up bits 6-0 of H.
OR L ; and any bits of L.
LD A,H ; reload A with all bits of H for PAUSE
test.
; Note both branches must take the same time.
JR Nz,L10237 ; (12/7) forward if bits 14-0 are not zero
; to ANOTHER
RLA ; (4) test bit 15 of FRAMES.
JR L0239 ; (12) forward with result to OVER-NC
; ; ANOTHER
L.0237: LD B, (HL) ; (7) Note. Harmless Nonsensical Timing
weight.
SCF ; (4) Set Carry Flag.
; Note. the branch to here takes either (12) (7) (4) cyles or (7) (4) (12)
cycles.
; ; OVER-NC
L0239: LD H,A ; (4) set H to zero
LD ($4034) ,HL ; (16) update system variable FRAMES
RET NC ; (11/5) return if FRAMES is in use by

PAUSE

http://www.wearmouth.demon.co.uk/zx81.htm#L0239%23L0239
http://www.wearmouth.demon.co.uk/zx81.htm#L0237%23L0237
http://www.wearmouth.demon.co.uk/zx81.htm#L0229%23L0229
http://www.wearmouth.demon.co.uk/zx81.htm#L0226%23L0226

; command.

;; DISPLAY-2
LO23E: CALL LO2BB ; routine KEYBOARD gets the key row in H
and
; the column in L. Reading the ports also
starts
; the TV frame synchronization pulse.
(VSYNC)
LD BC, ($4025) ; fetch the last key values read from
LAST K
LD ($4025) , HL ; update LAST K with new values.
LD A,B ; load A with previous column - will be S$FF
if
; there was no key.
ADD A, $02 ; adding two will set carry if no previous
key.
SBC HL, BC ; subtract with the carry the two key
values.

; If the same key value has been returned twice then HL will be zero.

LD A, ($4027) ; fetch system variable DEBOUNCE
OR H ; and OR with both bytes of the difference
OR L ; setting the zero flag for the upcoming
branch.
LD E,B ; transfer the column value to E
LD B, SOB ; and load B with eleven
LD HL, $403B ; address system variable CDFLAG
RES 0, (HL) ; reset the rightmost bit of CDFLAG
JR NZzZ,L0264 ; skip forward if debounce/diff >0 to NO-
KEY
BIT 7, (HL) ; test compute and display bit of CDFLAG
SET 0, (HL) ; set the rightmost bit of CDFLAG.
RET 7 ; return if bit 7 indicated fast mode.
DEC B ; (4) decrement the counter.
NOP ; (4) Timing - 4 clock cycles. 2?7
SCF ; (4) Set Carry Flag
;; NO-KEY
L0264: LD HL, $4027 ; sv DEBOUNCE
CCF ; Complement Carry Flag
RL B ; rotate left B picking up carry
; C<-=76543210<-C
;; LOOP-B
L0O26A: DJNZ L026A ; self-loop while B>0 to LOOP-B
LD B, (HL) ; fetch value of DEBOUNCE to B
LD AE ; transfer column value
CP SFE ;
SBC A,A ;
D B, S1F ;
OR (HL) ;
AND B ;

http://www.wearmouth.demon.co.uk/zx81.htm#L026A%23L026A
http://www.wearmouth.demon.co.uk/zx81.htm#L0264%23L0264
http://www.wearmouth.demon.co.uk/zx81.htm#L02BB%23L02BB

RRA ;

LD (HL) , A ;

ouT (SFF) , A ; end the TV frame synchronization pulse.

LD HL, ($400C) ; (12) set HL to the Display File from
D FILE

SET 7,H ; (8) set bit 15 to address the echo
display.

CALL 10292 ; (17) routine DISPLAY-3 displays the top
set

; of blank lines.

; THE 'VIDEO-1' ROUTINE

;; R-IX-1
1.0281: LD A,R ; (9) Harmless Nonsensical Timing or
something
; very clever?
LD BC, $1901 ; (10) 25 lines, 1 scanline in first.
LD A, SF5 ; (7) This value will be loaded into R and
; ensures that the cycle starts at the
right
; part of the display - after 32nd
character
; position.
CALL LO2B5 ; (17) routine DISPLAY-5 completes the
current
; blank line and then generates the display
of
; the live picture using INT interrupts
; The final interrupt returns to the next
; address.
LO28B: DEC HL ; point HL to the last NEWLINE/HALT.
CALL 10292 ; routine DISPLAY-3 displays the bottom set
of
; blank lines.
;; R-IX-2
L028F: JP L0229 ; JUMP back to DISPLAY-1

; THE 'DISPLAY BLANK LINES' ROUTINE

; This subroutine is called twice (see above) to generate first the blank
; lines at the top of the television display and then the blank lines at
the

; bottom of the display.

;; DISPLAY-3

L0292: POP IX ; pop the return address to IX register.
; will be either L0281 or LO28F - see

above.

http://www.wearmouth.demon.co.uk/zx81.htm#L0229%23L0229
http://www.wearmouth.demon.co.uk/zx81.htm#L0292%23L0292
http://www.wearmouth.demon.co.uk/zx81.htm#L02B5%23L02B5
http://www.wearmouth.demon.co.uk/zx81.htm#L0292%23L0292

LD C, (IY+528) ; load C with value of system constant

MARGIN.
BIT 7, (IY+S$3B) ; test CDFLAG for compute and display.
JR Z,L02A09 ; forward, with FAST mode, to DISPLAY-4
LD A,C ; move MARGIN to A - 31d or 55d.
NEG ; Negate
INC A ;
EX AF,AF' ; place negative count of blank lines in A’
OuUT (SFE) , A ; enable the NMI generator.
POP HL HE R
POP DE HE
POP BC HE
POP AF HE Restore Main Registers
RET ; return - end of interrupt. Return is to

; user's program - BASIC or machine code.
; which will be interrupted by every NMI.

; THE 'FAST MODE' ROUTINES

;; DISPLAY-4

LO2A9: 1D A, SFC ; (7) load A with first R delay value

LD B, S$01 ; (7) one row only.

CALL LO2B5 ; (17) routine DISPLAY-5

DEC HL ; (6) point back to the HALT.

EX (SP) , HL ; (19) Harmless Nonsensical Timing if
paired.

EX (SP) ,HL ; (19) Harmless Nonsensical Timing.

JP (IX) ; (8) to L0281 or LO28F

; THE 'DISPLAY-5' SUBROUTINE

; This subroutine is called from SLOW mode and FAST mode to generate the
; central TV picture. With SLOW mode the R register is incremented, with
; each instruction, to $F7 by the time it completes. With fast mode, the
; final R value will be $FF and an interrupt will occur as soon as the

; Program Counter reaches the HALT. (24 clock cycles)

;; DISPLAY-5

LO2B5: LD R,A ; (9) Load R from A. R = slow: S$SF5 fast:
SEC
LD A, $DD ; (7) load future R value. SF6
SFD
EI ; (4) Enable Interrupts SE7
SFE
Jp (HL) ; (4) Jjump to the echo display. SF8
SFF

; THE 'KEYBOARD SCANNING' SUBROUTINE

; The keyboard is read during the vertical sync interval while no video is

http://www.wearmouth.demon.co.uk/zx81.htm#L02B5%23L02B5
http://www.wearmouth.demon.co.uk/zx81.htm#L02A9%23L02A9

; being displayed. Reading a port with address bit 0 low i.e. SFE starts
the
; vertical sync pulse.

;; KEYBOARD

LO2BB: LD HL, SFFFF ; (16) prepare a buffer to take key.
LD BC, SFEFE ; (20) set BC to port SFEFE. The B
register,
; with its single reset bit also acts
as
; an 8-counter.
IN A, (C) ; (11) read the port - all 16 bits are put
on
; the address bus. Start VSYNC pulse.
OR 501 ; (7) set the rightmost bit so as to
ignore
; the SHIFT key.

;; EACH-LINE

L02C5: OR SEO ; [7] OR %11100000
LD D,A ; [4] transfer to D.
CPL ; [4] complement - only bits 4-0 meaningful
now.
CP 501 ; [7] sets carry if A is zero.
SBC A, A ; [4] SFF if $00 else zero.
OR B ; [7] SFF or port FE,FD,FB....
AND L ; [4] unless more than one key, L will
still be
; SFF. if more than one key 1is pressed
then A is
; now invalid.
LD L,A ; [4] transfer to L.

; now consider the column identifier.

LD A,H ; [4] will be SFF if no previous keys.
AND D ;o [4] 111xxxxx
LD H,A ; [4] transfer A to H

; since only one key may be pressed, H will, if valid, be one of
; 11111110, 11111101, 11111011, 11110111, 11101111
; reading from the outer column, say Q, to the inner column, say T.

RLC B ;5 [8] rotate the 8-counter/port address.
; sets carry if more to do.

IN A, (C) ; [10] read another half-row.
; all five bits this time.

JR C,L02C5 ; [12](7) loop back, until done, to EACH-

LINE

; The last row read is SHIFT,Z,X,C,V for the second time.

RRA ; (4) test the shift key - carry will be
reset
; if the key is pressed.
RL H ; (8) rotate left H picking up the carry
giving
; column values -
; SFD, SFB, $F7, SEF, S$DF.
; or $FC, $FA, $F6, $EE, $DE if

shifted.

http://www.wearmouth.demon.co.uk/zx81.htm#L02C5%23L02C5

; We now have H identifying the column and L identifying the row in the
; keyboard matrix.

; This is a good time to test if this is an American or British machine.
; The US machine has an extra diode that causes bit 6 of a byte read from
; a port to be reset.

RLA ; (4) compensate for the shift test.

RLA ; (4) rotate bit 7 out.

RLA ; (4) test bit 6.

SBC A,A ;5 (4) SFF or $00 {USA}

AND $18 ;o (7) $18 or $00

ADD A,S$1F s (7)) $37 or S1F

; result is either 31 (USA) or 55 (UK) blank lines above and below the TV
; picture.

LD ($4028) ,A ; (13) update system variable MARGIN

RET ; (10) return

; THE 'SET FAST MODE' SUBROUTINE

;; SET-FAST

LO2E7: BIT 7, (IY+S$3B) ; sv CDFLAG
RET Z ;
HALT ; Wait for Interrupt
ouT (SFD) , A ;
RES 7, (IY+$3B) ; sv CDFLAG
RET ; return.

; THE 'REPORT-F'

;7 REPORT-F
LO2F4: RST 08H ; ERROR-1
DEFB SO0E ; Error Report: No Program Name supplied.

; THE 'SAVE COMMAND' ROUTINE

;; SAVE

LO2F6: CALL LO3AS8 ; routine NAME
JR C,L02F4 ; back with null name to REPORT-F above.
EX DE, HL ;
LD DE, $12CB ; five seconds timing value

; ; HEADER

LO2FF: CALL LOF46 ; routine BREAK-1

http://www.wearmouth.demon.co.uk/zx81.htm#L0F46%23L0F46
http://www.wearmouth.demon.co.uk/zx81.htm#L02F4%23L02F4
http://www.wearmouth.demon.co.uk/zx81.htm#L03A8%23L03A8

JR

;; DELAY-1
L0304: DJNZ

DEC
LD
OR
JR

;; OUT-NAME

LO30B: CALL
BIT
INC
JR

A,D
E
NZ,LO2FF

to BREAK-2

to DELAY-1

back for delay to HEADER

routine OUT-BYTE

test for inverted bit.

address next character of name.
back if not inverted to OUT-NAME

; now start saving the system variables onwards.

LD

; ; OUT-PROG

L0316: CALL

CALL
JR

HL, $4009

; THE 'OUT-BYTE'

SUBROUTINE

’

set start of area to VERSN thereby
preserving RAMTOP etc.
routine OUT-BYTE

routine LOAD/SAVE >>
loop back to OUT-PROG

; This subroutine outputs a byte a bit at a time to a domestic tape

recorder.

;; OUT-BYTE

LO31E: LD
SCF

;; EACH-BIT

L0320: RL
RET
SBC
AND
ADD
LD

longer

;; PULSES

L0329: OUT
LD

;; DELAY-2

L032D: DJNZ

CALL
;; BREAK-2
L0332: JR

LD

E, (HL)

NC, L0O3A6

B, $1E

fetch byte to be saved.
set carry flag - as a marker.

C < 76543210 < C

return when the marker bit has passed
right through. >>
SFF if set bit or $00 with no carry.

$05 $00

$09 $04

transfer timer to C. a set bit has a
pulse than a reset bit.

pulse to cassette.

set timing constant

self-loop to DELAY-2

routine BREAK-1 test for BREAK key.

forward with break to REPORT-D

set timing value.

http://www.wearmouth.demon.co.uk/zx81.htm#L03A6%23L03A6
http://www.wearmouth.demon.co.uk/zx81.htm#L0F46%23L0F46
http://www.wearmouth.demon.co.uk/zx81.htm#L032D%23L032D
http://www.wearmouth.demon.co.uk/zx81.htm#L0316%23L0316
http://www.wearmouth.demon.co.uk/zx81.htm#L01FC%23L01FC
http://www.wearmouth.demon.co.uk/zx81.htm#L031E%23L031E
http://www.wearmouth.demon.co.uk/zx81.htm#L030B%23L030B
http://www.wearmouth.demon.co.uk/zx81.htm#L031E%23L031E
http://www.wearmouth.demon.co.uk/zx81.htm#L02FF%23L02FF
http://www.wearmouth.demon.co.uk/zx81.htm#L0304%23L0304
http://www.wearmouth.demon.co.uk/zx81.htm#L0332%23L0332

;; DELAY-3

L0336: DJNZ L0336 ; self-loop to DELAY-3
DEC C ; decrement counter
JR NZ,L0329 ; loop back to PULSES
;; DELAY-4
L0O33B: AND A ; clear carry for next bit test.
DJINZ LO33B ; self loop to DELAY-4 (B is zero - 256)
JR L0320 ; loop back to EACH-BIT

; THE 'LOAD COMMAND' ROUTINE

;; LOAD
L0340: CALL LO3AS8 ; routine NAME

; DE points to start of name in RAM.

RL D ; pick up carry
RRC D ; carry now in bit 7.

; ; NEXT-PROG
L0347: CALL 1L034cC ; routine IN-BYTE
JR 10347 ; loop to NEXT-PROG

; THE 'IN-BYTE' SUBROUTINE

;; IN-BYTE
L034C: LD C,s$01 ; prepare an eight counter 00000001.

;; NEXT-BIT

LO034E: LD B, $00 ; set counter to 256

;; BREAK-3

L0350: LD A,STF ; read the keyboard row
IN A, (SFE) ; with the SPACE key.
ouT (SFF) ,A ; output signal to screen.
RRA ; test for SPACE pressed.
JR NC, LO3A2 ; forward if so to BREAK-4
RLA ; reverse above rotation
RLA ; test tape bit.
JR C,L0385 ; forward if set to GET-BIT
DJINZ L0350 ; loop back to BREAK-3
POP AF ; drop the return address.
Cp D ; ugh.

;; RESTART

L0361: JP NC,LO3ES ; jump forward to INITIAL if D is zero

; to reset the system

http://www.wearmouth.demon.co.uk/zx81.htm#L03E5%23L03E5
http://www.wearmouth.demon.co.uk/zx81.htm#L0350%23L0350
http://www.wearmouth.demon.co.uk/zx81.htm#L0385%23L0385
http://www.wearmouth.demon.co.uk/zx81.htm#L03A2%23L03A2
http://www.wearmouth.demon.co.uk/zx81.htm#L0347%23L0347
http://www.wearmouth.demon.co.uk/zx81.htm#L034C%23L034C
http://www.wearmouth.demon.co.uk/zx81.htm#L03A8%23L03A8
http://www.wearmouth.demon.co.uk/zx81.htm#L0320%23L0320
http://www.wearmouth.demon.co.uk/zx81.htm#L033B%23L033B
http://www.wearmouth.demon.co.uk/zx81.htm#L0329%23L0329
http://www.wearmouth.demon.co.uk/zx81.htm#L0336%23L0336

example

LD
LD

;7 IN-NAME
L0366: CALL
name

BIT
LD
JR

CP
JR

;; MATCHING
L0371: INC
RLA
JR

(HL)
Nz,L0347

HL

NC, L0366

if the tape signal has timed out for

if the tape is stopped. Not just a simple
report as some system variables will have
been overwritten.

else transfer the start of name
to the HL register

routine IN-BYTE is sort of recursion for

part. received byte in C.

is name the null string ?

transfer byte to A.

forward with null string to MATCHING

else compare with string in memory.
back with mis-match to NEXT-PROG
(seemingly out of subroutine but return
address has been dropped) .

address next character of name
test for inverted bit.
back if not to IN-NAME

; the name has been matched in full.
; proceed to load the data but first increment the high byte of E LINE,

which

; 1s one of the system variables to be loaded in. Since the low byte is

loaded

; before the high byte,

false

it is possible that, at the in-between stage, a

; value could cause the load to end prematurely - see LOAD/SAVE check.

INC
LD

; ;» IN-PROG

L0O37B: LD
CALL
LD
CALL
JR

(IY+S$S15)
HL, $4009

D,B
L034C
(HL) ,C
LO1FC
L037B

increment system variable E LINE hi.
start loading at system variable VERSN.

set D to zero as indicator.

routine IN-BYTE loads a byte

insert assembled byte in memory.

routine LOAD/SAVE >>
loop back to IN-PROG

; this branch assembles a full byte before exiting normally

; from the IN-BYTE subroutine.

;; GET-BIT

1.0385: PUSH
LD

;; TRAILER

L0388: LD

; ; COUNTER

LO38A: DEC
IN

DE
E,$94

B, $1A

A, (SFE)

save the
timing value.

counter to twenty six.

decrement the measuring timer.
read the

http://www.wearmouth.demon.co.uk/zx81.htm#L037B%23L037B
http://www.wearmouth.demon.co.uk/zx81.htm#L01FC%23L01FC
http://www.wearmouth.demon.co.uk/zx81.htm#L034C%23L034C
http://www.wearmouth.demon.co.uk/zx81.htm#L0366%23L0366
http://www.wearmouth.demon.co.uk/zx81.htm#L0347%23L0347
http://www.wearmouth.demon.co.uk/zx81.htm#L0371%23L0371
http://www.wearmouth.demon.co.uk/zx81.htm#L034C%23L034C

RLA ;

BIT 7,E ;
D AE ;
JR C,L0388 ; loop back with carry to TRAILER
DJNZ 1.038A ; to COUNTER
POP DE ;
JR NZ,L039C ; to BIT-DONE
CP $56 7
JR NC, LO34FE ; to NEXT-BIT
;; BIT-DONE
L039C: CCF ; complement carry flag
RL C ;
JR NC,L034F ; to NEXT-BIT
RET ; return with full byte.

; 1f break is pressed while loading data then perform a reset.
; 1f break pressed while waiting for program on tape then OK to break.

;; BREAK-4
LO3A2: LD A,D ; transfer indicator to A.
AND A ; test for zero.
JR Z,L0361 ; back if so to RESTART
; ; REPORT-D
LO3AG6G: RST 08H ; ERROR-1
DEFB $S0C ; Error Report: BREAK - CONT repeats

; THE 'PROGRAM NAME' SUBROUTINE

; ; NAME
LO3A8: CALL LOF55 ; routine SCANNING
LD A, ($4001) ; sv FLAGS
ADD A,A ;
JP M, LODSA ; to REPORT-C
POP HL ;
RET NC ;
PUSH HL ;
CALL LO2E7 ; routine SET-FAST
CALL L13F8 ; routine STK-FETCH
D H,D ;
D L,E ;
DEC C ;
RET M ;
ADD HL, BC 7
SET 7, (HL) ;

RET ;

http://www.wearmouth.demon.co.uk/zx81.htm#L13F8%23L13F8
http://www.wearmouth.demon.co.uk/zx81.htm#L02E7%23L02E7
http://www.wearmouth.demon.co.uk/zx81.htm#L0D9A%23L0D9A
http://www.wearmouth.demon.co.uk/zx81.htm#L0F55%23L0F55
http://www.wearmouth.demon.co.uk/zx81.htm#L0361%23L0361
http://www.wearmouth.demon.co.uk/zx81.htm#L034E%23L034E
http://www.wearmouth.demon.co.uk/zx81.htm#L034E%23L034E
http://www.wearmouth.demon.co.uk/zx81.htm#L039C%23L039C
http://www.wearmouth.demon.co.uk/zx81.htm#L038A%23L038A
http://www.wearmouth.demon.co.uk/zx81.htm#L0388%23L0388

; THE 'NEW'

;; NEW

LO3C3: CALL
LD
DEC

COMMAND ROUTINE

LO2E7
BC, ($4004)
BC

; THE 'RAM CHECK' ROUTINE

;; RAM-CHECK

LO3CB: LD
LD
LD

;; RAM-FILL

LO3CF: LD
DEC
CPp
JR

; ; RAM-READ
LO3D5: AND
SBC
ADD
INC
JR

DEC
JR

DEC
JR

;; SET-TOP
LO3E2: LD

;; INITIAL
LO3E5: LD
DEC
LD

DEC

LD

DEC
stack

> o
n Qw

(HL), $02
HL
H
NZ,LO3CF

A
HL, BC
HL, BC

HL

NC, LO3E2

; THE 'INITIALIZATION'

HL, ($4004)
HL
(HL) , $3E

HL
SP, HL

HL

ROUTINE

’

’

’

routine SET-FAST
fetch value of system variable RAMTOP
point to last system byte.

to RAM-FILL

to SET-TOP

to SET-TOP

to RAM-READ

set system variable RAMTOP to first byte
above the BASIC system area.

fetch system variable RAMTOP.

point to last system byte.

make GO SUB end-marker $3E - too high for
high order byte of line number.

(was $3F on ZX80)

point to unimportant low-order byte.

and initialize the stack-pointer to this
location.

point to first location on the machine

http://www.wearmouth.demon.co.uk/zx81.htm#L03D5%23L03D5
http://www.wearmouth.demon.co.uk/zx81.htm#L03E2%23L03E2
http://www.wearmouth.demon.co.uk/zx81.htm#L03E2%23L03E2
http://www.wearmouth.demon.co.uk/zx81.htm#L03CF%23L03CF
http://www.wearmouth.demon.co.uk/zx81.htm#L02E7%23L02E7

DEC
LD

HL
($4002) ,HL

which will be filled by next CALL/PUSH.
set the error stack pointer ERR SP to
the base of the now empty machine stack.

; Now set the I register so that the video hardware knows where to find the
This ROM only uses the character set when printing to

; the ZX Printer. The TV picture is formed by the external video hardware.
that this 8K ROM can be retro-fitted to the ZX80 instead

; character set.

; Consider also,

of

; its original 4K ROM

LD
LD
IM

LD

LD

LD

LD
LD

;; LINE

L.0408: LD
INC
DJINZ

LD
CALL

and

;; N/L-ONLY
L.0413: CALL

CALL
DISPLAY

; THE 'BASIC

; + UPPER

L.0419: CALL
LD
LD
AND
SBC
EX
JR

1E

4

S
A

o

1Y, $4000

(IY+$3B), $40

HL, $407D

($400C) , HL
B, $19

(HL) , $76
HL

L0408
($4010) ,HL

L149A

L14AD

LISTING'

LOA2A

HL, ($400R)
DE, ($4023)
A

HL, DE

DE, HL
NC,L042D

SECTION

so the video hardware could be on the ZX80.

address for this ROM is $1E00.
set I register from A.
select Z80 Interrupt Mode 1.

set IY to the start of RAM so that the
system variables can be indexed.

set CDFLAG 0100 0000. Bit 6 indicates
Compute nad Display required.

The first location after System Variables

16509 decimal.

set system variable D FILE to this wvalue.
prepare minimal screen of 24 NEWLINESs
following an initial NEWLINE.

insert NEWLINE (HALT instruction)
point to next location.
loop back for all twenty five to LINE

set system variable VARS to next location

routine CLEAR sets $80 end-marker and the
dynamic memory pointers E LINE, STKBOT

STKEND.
routine CURSOR-IN inserts the cursor and
end-marker in the Edit Line also setting

size of lower display to two lines.

routine SLOW/FAST selects COMPUTE and

routine CLS
sv E PPC lo
sv S _TOP 1lo

to ADDR-TOP

http://www.wearmouth.demon.co.uk/zx81.htm#L042D%23L042D
http://www.wearmouth.demon.co.uk/zx81.htm#L0A2A%23L0A2A
http://www.wearmouth.demon.co.uk/zx81.htm#L0207%23L0207
http://www.wearmouth.demon.co.uk/zx81.htm#L14AD%23L14AD
http://www.wearmouth.demon.co.uk/zx81.htm#L149A%23L149A
http://www.wearmouth.demon.co.uk/zx81.htm#L0408%23L0408

ADD
LD

;; ADDR-TOP
L042D: CALL
JR

EX

;; LIST-TOP

L0433: CALL
DEC
JR

LD
CALL
LD
SCF
SBC
LD
JR

EX
LD
INC
LDI
LD
JR

; ; DOWN-KEY
L.0454: LD

;; INC-LINE

L0457: LD
INC
LD
PUSH
EX
INC
CALL
CALL
POP

;; KEY-INPUT
L0464: BIT
JR

LD
DEC
LD
JR

HL, DE
($4023) , HL

—
o
Ne}
-}
o

N
~
=
(@]
N
(O8]
[O8)

DE, HL

LO73E
(IY+$1E)
NZ,L0472

HL, ($400R)
L.09D8
HL, ($4016)

HL, DE
HL, $4023
NC, L0457

DE, HL
A, (HL)
HL

(DE) , A
10419

HL, $400A

E, (HL)
HL
D, (HL)

5, (IY+$2D)
NZ,L0472

(HL) , D
HL
(HL) ,E
10419

; THE 'EDIT LINE COPY'

SECTION

sv S _TOP lo

routine LINE-ADDR
to LIST-TOP

routine LIST-PROG
sv BERG
to LOWER

sv E _PPC lo
routine LINE-ADDR
sv CH ADD 1lo

Set Carry Flag

sv S TOP lo
to INC-LINE

to UPPER

sv E PPC lo

routine LINE-ADDR
routine LINE-NO

sv FLAGX
forward to LOWER

to UPPER

; This routine sets the edit line to just the cursor

; 1) There is not enough memory to edit a BASIC line.

; 2) The edit key is used during input.
; The entry point LOWER

when

http://www.wearmouth.demon.co.uk/zx81.htm#L0419%23L0419
http://www.wearmouth.demon.co.uk/zx81.htm#L0472%23L0472
http://www.wearmouth.demon.co.uk/zx81.htm#L05BB%23L05BB
http://www.wearmouth.demon.co.uk/zx81.htm#L09D8%23L09D8
http://www.wearmouth.demon.co.uk/zx81.htm#L0419%23L0419
http://www.wearmouth.demon.co.uk/zx81.htm#L0457%23L0457
http://www.wearmouth.demon.co.uk/zx81.htm#L09D8%23L09D8
http://www.wearmouth.demon.co.uk/zx81.htm#L0472%23L0472
http://www.wearmouth.demon.co.uk/zx81.htm#L073E%23L073E
http://www.wearmouth.demon.co.uk/zx81.htm#L0433%23L0433
http://www.wearmouth.demon.co.uk/zx81.htm#L09D8%23L09D8

;; EDIT-INP
LO46F: CALL
line.

; =>

; ; LOWER

L0472: LD

; ; EACH-CHAR

L.0475: LD
CP
JR
LD
CALL
JR

;; END-LINE

1.L.0482: CP
INC
JR

;; EDIT-LINE

L0487: CALL

; ; EDIT-ROOM

L048A: CALL
LD
LD
CALL
BIT
JR

LD
CPp
JR

INC
LD
LD
LD
CALL
LD
LD
LD

;; FREE-LINE

L04Bl1: DEC
CP
JR

INC
EX
LD
CP
CALL
JR

L14AD

HL, ($4014)

A, (HL)
STE
NZ,L0482

BC, $0006
LOAG6O
10475

$76
HL
NZ,L0475

LOALF

HL, ($4014)
(IY+$00), SFF
L0766

7, (IY+S00)
NZz,L04C1

A, ($4022)
$18
NC, L04cC1

H QW -~ >
o

> EH g
~ B m

(HL)
NZ,L04B1

HL
DE, HL

A, ($4005)
$4D
C,LOAS5D
L048A

routine CURSOR-IN sets cursor only edit

fetch edit line start from E LINE.

fetch a character from edit line.
compare to the number marker.

forward if not to END-LINE

else six invisible bytes to be removed.

routine RECLAIM-2
back to EACH-CHAR

to EACH-CHAR

routine CURSOR sets cursor K or L.

routine LINE-ENDS
sv E LINE lo

sv ERR_NR

routine COPY-LINE
sv ERR NR

to DISPLAY-6

sv DF 57

to DISPLAY-6

sv DF_SZ

routine LOC-ADDR

to FREE-LINE

sv RAMTOP hi

routine RECLAIM-1
to EDIT-ROOM

http://www.wearmouth.demon.co.uk/zx81.htm#L048A%23L048A
http://www.wearmouth.demon.co.uk/zx81.htm#L0A5D%23L0A5D
http://www.wearmouth.demon.co.uk/zx81.htm#L04B1%23L04B1
http://www.wearmouth.demon.co.uk/zx81.htm#L0918%23L0918
http://www.wearmouth.demon.co.uk/zx81.htm#L04C1%23L04C1
http://www.wearmouth.demon.co.uk/zx81.htm#L04C1%23L04C1
http://www.wearmouth.demon.co.uk/zx81.htm#L0766%23L0766
http://www.wearmouth.demon.co.uk/zx81.htm#L0A1F%23L0A1F
http://www.wearmouth.demon.co.uk/zx81.htm#L0537%23L0537
http://www.wearmouth.demon.co.uk/zx81.htm#L0475%23L0475
http://www.wearmouth.demon.co.uk/zx81.htm#L0475%23L0475
http://www.wearmouth.demon.co.uk/zx81.htm#L0A60%23L0A60
http://www.wearmouth.demon.co.uk/zx81.htm#L0482%23L0482
http://www.wearmouth.demon.co.uk/zx81.htm#L14AD%23L14AD

; THE 'WAIT FOR KEY' SECTION

;; DISPLAY-6

L04Cl: LD HL, $0000 ;
LD ($4018) , HL ; sv X PTR lo
LD HL, $403B ; system variable CDFLAG
BIT 7, (HL) ;
CALL Z,L0229 ; routine DISPLAY-1

;; SLOW-DISP

LOACF: BIT 0, (HL) ;
JR Z,L04CF ; to SLOW-DISP
LD BC, ($4025) ; sv LAST K
CALL LOF4B ; routine DEBOUNCE
CALL LO7BD ; routine DECODE
JR NC, L0472 ; back to LOWER

; THE 'KEYBOARD DECODING' SECTION

; The decoded key value is in E and HL points to the position in the
; key table. D contains zero.

;; K-DECODE

LO4DF: LD A, ($4006) ; Fetch value of system variable MODE
DEC A ; test the three values together
JP M, L0508 ; forward, i1f was zero, to FETCH-2
JR Nz, LO4F7 ; forward, if was 2, to FETCH-1
; The original value was one and is now zero.
LD ($4006) ,A ; update the system variable MODE
DEC E ; reduce E to range $00 - $7F
LD AE ; place in A
SUB $27 ; subtract 39 setting carry if range 00 -
38
JR C,L04F2 ; forward, if so, to FUNC-BASE
LD E,A ; else set E to reduced value
; ; FUNC-BASE
LO4F2: LD HL, LOOCC ; address of K-FUNCT table for function
keys.
JR L0505 ; forward to TABLE-ADD
;; FETCH-1
LO4F7: LD A, (HL) ;
CP $76 ;
JR Z,L052B ; to K/L-KEY

http://www.wearmouth.demon.co.uk/zx81.htm#L052B%23L052B
http://www.wearmouth.demon.co.uk/zx81.htm#L0505%23L0505
http://www.wearmouth.demon.co.uk/zx81.htm#L00CC%23L00CC
http://www.wearmouth.demon.co.uk/zx81.htm#L04F2%23L04F2
http://www.wearmouth.demon.co.uk/zx81.htm#L04F7%23L04F7
http://www.wearmouth.demon.co.uk/zx81.htm#L0508%23L0508
http://www.wearmouth.demon.co.uk/zx81.htm#L0472%23L0472
http://www.wearmouth.demon.co.uk/zx81.htm#L07BD%23L07BD
http://www.wearmouth.demon.co.uk/zx81.htm#L0F4B%23L0F4B
http://www.wearmouth.demon.co.uk/zx81.htm#L04CF%23L04CF
http://www.wearmouth.demon.co.uk/zx81.htm#L0229%23L0229

CP $40 ;
SET 7,A ;
JR C,L051B ; to ENTER
LD HL, $00C7 ; (expr reqgd)
;; TABLE-ADD
L0505: ADD HL, DE ;
JR L0515 ; to FETCH-3
;; FETCH-2
L0508: LD A, (HL) ;
BIT 2, (IY+501) ; sv FLAGS - K or L mode
JR NZ,L0516 ; to TEST-CURS
ADD A, S$CO ;
CP SE6 ;
JR NC, L0516 ; to TEST-CURS
;; FETCH-3
L0515: LD A, (HL) ;
;; TEST-CURS
L0516: CP SFO :
JP PE, L0O52D ; to KEY-SORT
; + ENTER
L051B: LD E,A ;
CALL L0537 ; routine CURSOR
LD A,E ;
CALL L0526 ; routine ADD-CHAR
; ; BACK-NEXT
L0523: JP L0472 ; back to LOWER
; THE 'ADD CHARACTER' SUBROUTINE
;; ADD-CHAR
L.0526: CALL LO99B ; routine ONE-SPACE
LD (DE) , A ;
RET ;
; THE 'CURSOR KEYS' ROUTINE
;; K/L-KEY
L052B: LD A,S$78 ;
;; KEY-SORT
L052D: LD E,A ;
LD HL, $0482 ; base address of ED-KEYS

?

(exp reqgd)

http://www.wearmouth.demon.co.uk/zx81.htm#L099B%23L099B
http://www.wearmouth.demon.co.uk/zx81.htm#L0472%23L0472
http://www.wearmouth.demon.co.uk/zx81.htm#L0526%23L0526
http://www.wearmouth.demon.co.uk/zx81.htm#L0537%23L0537
http://www.wearmouth.demon.co.uk/zx81.htm#L052D%23L052D
http://www.wearmouth.demon.co.uk/zx81.htm#L0516%23L0516
http://www.wearmouth.demon.co.uk/zx81.htm#L0516%23L0516
http://www.wearmouth.demon.co.uk/zx81.htm#L0515%23L0515
http://www.wearmouth.demon.co.uk/zx81.htm#L051B%23L051B

ADD
ADD
LD
INC
LD
PUSH

; ; CURSOR

L0537: LD
BIT
JR

; ; K-MODE
L0540: RES

;; TEST-CHAR

L0544: LD
CP
RET

INC
CALL
JR

CP
JR

CPp
JR

;; L-MODE
L0O556: SET
JR

HL, DE
HL, DE
C, (HL)
HL
B, (HL)
BC

HL, ($4014)
5, (IY+$2D)
NZ,L0556

2, (IY+5$01)

A, (HL)
$TF
Z

HL
LO7B4
7,1.0544
C,L0544
$DE

Z,10540

2, (IY+s01)
10544

sv E LINE lo
sv FLAGX
to L-MODE

sv FLAGS - Signal use K mode

return

routine NUMBER
to TEST-CHAR

to TEST-CHAR

to K-MODE

sv FLAGS - Signal use L mode
to TEST-CHAR

; THE 'CLEAR-ONE' SUBROUTINE

JPp LOAGO ; to RECLAIM-2

; THE 'EDITING KEYS' TABLE

;; ED-KEYS

L0562: DEFW LOS59F ; Address: $059F; Address: UP-KEY
DEFW L0454 ; Address: $0454; Address: DOWN-KEY
DEFW L0576 ; Address: $0576; Address: LEFT-KEY
DEFW LOS7F ; Address: $057F; Address: RIGHT-KEY
DEFW LOSAF ; Address: S$05AF; Address: FUNCTION
DEFW 1.05Cc4 ; Address: $05C4; Address: EDIT-KEY
DEFW 1L.060C ; Address: $060C; Address: N/L-KEY
DEFW LO58B ; Address: $058B; Address: RUBOUT

DEFW LOSAF ; Address: $O05AF; Address: FUNCTION

http://www.wearmouth.demon.co.uk/zx81.htm#L05AF%23L05AF
http://www.wearmouth.demon.co.uk/zx81.htm#L058B%23L058B
http://www.wearmouth.demon.co.uk/zx81.htm#L060C%23L060C
http://www.wearmouth.demon.co.uk/zx81.htm#L05C4%23L05C4
http://www.wearmouth.demon.co.uk/zx81.htm#L05AF%23L05AF
http://www.wearmouth.demon.co.uk/zx81.htm#L057F%23L057F
http://www.wearmouth.demon.co.uk/zx81.htm#L0576%23L0576
http://www.wearmouth.demon.co.uk/zx81.htm#L0454%23L0454
http://www.wearmouth.demon.co.uk/zx81.htm#L059F%23L059F
http://www.wearmouth.demon.co.uk/zx81.htm#L0A60%23L0A60
http://www.wearmouth.demon.co.uk/zx81.htm#L0544%23L0544
http://www.wearmouth.demon.co.uk/zx81.htm#L0540%23L0540
http://www.wearmouth.demon.co.uk/zx81.htm#L0544%23L0544
http://www.wearmouth.demon.co.uk/zx81.htm#L0544%23L0544
http://www.wearmouth.demon.co.uk/zx81.htm#L07B4%23L07B4
http://www.wearmouth.demon.co.uk/zx81.htm#L0556%23L0556

DEFW LOSAF ; Address: S$05AF; Address: FUNCTION

; THE 'CURSOR LEFT' ROUTINE

;; LEFT-KEY

L0576: CALL L0593 ; routine LEFT-EDGE
LD A, (HL) ;
LD (HL) , $7F ;
INC HL ;
JR L0588 ; to GET-CODE

; THE 'CURSOR RIGHT' ROUTINE

;; RIGHT-KEY

LO57F: INC HL ;
LD A, (HL) ;
CP $76 ;
JR Z,L059D ; to ENDED-2
LD (HL) , $TF ;
DEC HL ;

;; GET-CODE

1.0588: LD (HL) , A ;
;; ENDED-1
1.0589: JR 10523 ; to BACK-NEXT

; THE 'RUBOUT' ROUTINE

; ; RUBOUT

LO58B: CALL L0593 ; routine LEFT-EDGE
CALL L055C ; routine CLEAR-ONE
JR 10589 ; to ENDED-1

; THE 'ED-EDGE' SUBROUTINE

;; LEFT-EDGE

1L0593: DEC HL ;
D DE, ($4014) ; sv E_LINE lo
LD A, (DE) ;
CP STF ;
RET NZ ;

POP DE H

http://www.wearmouth.demon.co.uk/zx81.htm#L0589%23L0589
http://www.wearmouth.demon.co.uk/zx81.htm#L055C%23L055C
http://www.wearmouth.demon.co.uk/zx81.htm#L0593%23L0593
http://www.wearmouth.demon.co.uk/zx81.htm#L0523%23L0523
http://www.wearmouth.demon.co.uk/zx81.htm#L059D%23L059D
http://www.wearmouth.demon.co.uk/zx81.htm#L0588%23L0588
http://www.wearmouth.demon.co.uk/zx81.htm#L0593%23L0593
http://www.wearmouth.demon.co.uk/zx81.htm#L05AF%23L05AF

LO59D: JR L0589 ; to ENDED-1

; THE 'CURSOR UP' ROUTINE

;; UP-KEY
LO59F: LD HL, ($400A) ; sv E_PPC_lo
CALL L09D8 ; routine LINE-ADDR
EX DE, HL ;
CALL LOSBB ; routine LINE-NO
LD HL, $400B ; point to system variable E PPC hi
Jp 10464 ; jump back to KEY-INPUT

; THE 'FUNCTION KEY' ROUTINE

;; FUNCTION

LO5AF: LD A,E ;
AND 507 ;
LD ($4006) ,A ; sv MODE
JR LO59D ; back to ENDED-2

; THE 'COLLECT LINE NUMBER' SUBROUTINE

;; ZERO-DE
LO5BR7: EX DE, HL ;
LD DE,L04C1 + 1 ; $04C2 - a location addressing two zeros.
;>
;; LINE-NO
LO5BB: LD A, (HL) ;
AND $CO ;
JR NZ,LO5B7 ; to ZERO-DE
LD D, (HL) ;
INC HL ;
LD E, (HL) ;
RET ;

; THE 'EDIT KEY' ROUTINE

;; EDIT-KEY
L05C4: CALL LOAIF ; routine LINE-ENDS clears lower display.

LD HL,LO46F ; Address: EDIT-INP

http://www.wearmouth.demon.co.uk/zx81.htm#L046F%23L046F
http://www.wearmouth.demon.co.uk/zx81.htm#L0A1F%23L0A1F
http://www.wearmouth.demon.co.uk/zx81.htm#L05B7%23L05B7
http://www.wearmouth.demon.co.uk/zx81.htm#L04C1%23L04C1
http://www.wearmouth.demon.co.uk/zx81.htm#L059D%23L059D
http://www.wearmouth.demon.co.uk/zx81.htm#L0464%23L0464
http://www.wearmouth.demon.co.uk/zx81.htm#L05BB%23L05BB
http://www.wearmouth.demon.co.uk/zx81.htm#L09D8%23L09D8
http://www.wearmouth.demon.co.uk/zx81.htm#L0589%23L0589

; so now RST $10 will print the

screen.

PUSH

BIT
RET

LD
LD

HL

5, (IY+$2D)
NZ

HL, ($4014)
($400E) , HL

** is pushed as an error looping address.

test FLAGX
indirect jump if in input mode
to LO46F, EDIT-INP (begin again).

fetch E_LINE
and use to update the screen cursor DF CC

line numbers to the edit line instead of

; first make sure that no newline/out of screen can occur while sprinting

the

; line numbers to the edit line.

in DE

edit.

line.

INP.

LD
LD

LD

CALL

CALL

LD
OR
RET

DEC
CALL

INC
LD
INC
LD

INC
LD

LD
LD
INC
PUSH
LD
ADD
ADD
SBC
POP

RET

HL, $1821
($4039) ,HL

HL, ($400R)

LO9D8

LOSBB

N

HL
LOAAS

HL
C, (HL)
HL
B, (HL)

HL
DE, ($400E)

A, S$7F
(DE) , A
DE

HL

HL, $001D
HL, DE
HL, BC
HL, SP

HL

NC

prepare line 0, column O.

update S POSN with these dummy values.
fetch current line from E PPC may be a
non-existent line e.g. last line deleted.
routine LINE-ADDR gets address or that of
the following line.

routine LINE-NO gets line number if any
leaving HL pointing at second low byte.

test the line number for zero.

return if no line number - no program to

point to high byte.

routine OUT-NO writes number to edit

point to length bytes.

low byte to C.

high byte to B.

point to first character in line.

fetch display file cursor DF CC

prepare the cursor character.

and insert in edit line.
increment intended destination.

* save start of BASIC.

set an overhead of 29 bytes.

add in the address of cursor.

add the length of the line.

subtract the stack pointer.

* restore pointer to start of BASIC.

return if not enough room to LO46F EDIT-

the edit key appears not to work.

http://www.wearmouth.demon.co.uk/zx81.htm#L0AA5%23L0AA5
http://www.wearmouth.demon.co.uk/zx81.htm#L05BB%23L05BB
http://www.wearmouth.demon.co.uk/zx81.htm#L09D8%23L09D8
http://www.wearmouth.demon.co.uk/zx81.htm#L046F%23L046F

else copy bytes from program to edit
Note. hidden floating point forms are
copied to edit line.

transfer free location pointer to HL
** remove address EDIT-INP from stack.
routine SET-STK-B sets STKEND from HL.
back to ENDED-2 and after 3 more jumps
to L0472, LOWER.

Note. The LOWER routine removes the

floating-point numbers from the edit

routine LINE-ENDS
prepare address: LOWER

sv FLAGX
to NOW-SCAN

sv E LINE lo

to STK-UPPER

routine CLEAR-PRB

routine CLS

Address: UPPER

push routine address (LOWER or UPPER).
routine LINE-SCAN

routine CURSOR

routine CLEAR-ONE

routine E-LINE-NO
to N/L-INP

to N/L-LINE

LDIR
line.
also
EX DE, HL
POP DE
CALL L14A6
JR L0O59D
hidden
line.
; THE 'NEWLINE KEY' ROUTINE
;; N/L-KEY
L060C: CALL LOALF
LD HL, L0472
BIT 5, (IY+52D)
JR NZ,L0629
LD HL, ($4014)
LD A, (HL)
CP SFF
JR Z,L0626
CALL LO8E2
CALL LOA2A
;; STK-UPPER
L0626: LD HL, L0419
; + NOW-SCAN
L0629: PUSH HL
CALL LOCBA
POP HL
CALL L0537
CALL LO55C
CALL LOA73
JR NZ,LO6G4E
D A,B
OR C
JPp NZ,LO6EOD
DEC BC
DEC BC
LD ($4007) ,BC
LD (IY+$22),5%02
LD DE, ($400C)

SV
SAY
SV

PPC 1lo
DF SZ
D FILE lo

http://www.wearmouth.demon.co.uk/zx81.htm#L06E0%23L06E0
http://www.wearmouth.demon.co.uk/zx81.htm#L064E%23L064E
http://www.wearmouth.demon.co.uk/zx81.htm#L0A73%23L0A73
http://www.wearmouth.demon.co.uk/zx81.htm#L055C%23L055C
http://www.wearmouth.demon.co.uk/zx81.htm#L0537%23L0537
http://www.wearmouth.demon.co.uk/zx81.htm#L0CBA%23L0CBA
http://www.wearmouth.demon.co.uk/zx81.htm#L0419%23L0419
http://www.wearmouth.demon.co.uk/zx81.htm#L0A2A%23L0A2A
http://www.wearmouth.demon.co.uk/zx81.htm#L08E2%23L08E2
http://www.wearmouth.demon.co.uk/zx81.htm#L0626%23L0626
http://www.wearmouth.demon.co.uk/zx81.htm#L0629%23L0629
http://www.wearmouth.demon.co.uk/zx81.htm#L0472%23L0472
http://www.wearmouth.demon.co.uk/zx81.htm#L0A1F%23L0A1F
http://www.wearmouth.demon.co.uk/zx81.htm#L0472%23L0472
http://www.wearmouth.demon.co.uk/zx81.htm#L059D%23L059D
http://www.wearmouth.demon.co.uk/zx81.htm#L14A6%23L14A6

JR

;; N/L-INP
LO64E: CP
JR

LD
CALL
LD
LD

;; TEST-NULL
LO661: RST
CP

;; N/L-NULL
LO664: JP

LD
EX

;; NEXT-LINE

LO66C: LD
EX
CALL
CALL
RES
LD
LD
CALL
RES
BIT
JR

LD
AND
JR

LD
INC
LD
LD
INC
LD
INC
LD
INC
EX
ADD
CALL
JR

LD
BIT
JR
LD

;; STOP-LINE

$76
Z,L0664

BC, ($4030)
10918

DE, ($4029)
(IY+$22),502

18H
$76

Z,L0413

(IY+$01),$80
DE, HL

($4029) , HL
DE, HL
1L004D
Locc1

1, (IY+$01)
A, $SCO
(IY+$19),A
L14A3

5, (IY+$2D)
7, (IY+S00)
7, LO6ARE

HL, ($4029)
(HL)
NZ,LO6AE

D, (HL)
HL

E, (HL)
($4007) , DE
HL

E, (HL)
HL

D, (HL)
HL

DE, HL
HL, DE
LOF46
C,L066C

HL, $4000
7, (HL)
Z,L06AE

(HL), $0C

’

’

’

forward to TEST-NULL

to N/L-NULL
sv T ADDR 1lo
routine LOC-ADDR

sv NXTLIN lo
sv DF_SZ

GET-CHAR

to N/L-ONLY

sv FLAGS

sv NXTLIN lo

routine TEMP-PTR-2

routine LINE-RUN

sv FLAGS - Signal printer not in use
sv X PTR lo

routine X-TEMP

sv FLAGX

sv ERR NR

to STOP-LINE

sv NXTLIN lo

to STOP-LINE

sv PPC lo

routine BREAK-1
to NEXT-LINE

sv ERR NR

to STOP-LINE

http://www.wearmouth.demon.co.uk/zx81.htm#L06AE%23L06AE
http://www.wearmouth.demon.co.uk/zx81.htm#L066C%23L066C
http://www.wearmouth.demon.co.uk/zx81.htm#L0F46%23L0F46
http://www.wearmouth.demon.co.uk/zx81.htm#L06AE%23L06AE
http://www.wearmouth.demon.co.uk/zx81.htm#L06AE%23L06AE
http://www.wearmouth.demon.co.uk/zx81.htm#L14A3%23L14A3
http://www.wearmouth.demon.co.uk/zx81.htm#L0CC1%23L0CC1
http://www.wearmouth.demon.co.uk/zx81.htm#L004D%23L004D
http://www.wearmouth.demon.co.uk/zx81.htm#L0413%23L0413
http://www.wearmouth.demon.co.uk/zx81.htm#L0918%23L0918
http://www.wearmouth.demon.co.uk/zx81.htm#L0664%23L0664
http://www.wearmouth.demon.co.uk/zx81.htm#L0661%23L0661

LO6AE: BIT
CALL
LD
CALL
LD
LD
INC
JR

CP
JR

INC

;; CONTINUE
LO6CA: LD
JR

DEC

; ; REPORT
LO6D1: CALL
LD

RST
CALL
CALL
Jp

;; N/L-LINE

LOG6EQO: LD
LD
EX
LD
PUSH
LD
SBC
PUSH
PUSH
CALL
CALL
POP
CALL
JR

CALL
CALL

; ; COPY-OVER

L0O705: POP
LD
DEC
OR
RET

PUSH
INC
INC
INC
INC

7, (IY+$38)
Z,L0871
BC,$0121
L0918

A, ($4000)
BC, ($4007)
A

Z,L06D1

$09
NZ,LO6CA

BC

($402B) , BC
NZ,L06D1

BC

LO7EB
A,$18

LOA9S
L14AD
L0o4c1

($400R),BC
HL, ($4016)
DE, HL

HL, L0413
HL

HL, ($401AR)
HL, DE

sv PR CC
routine COPY-BUFF

routine LOC-ADDR
sv ERR NR
sv PPC 1lo

to REPORT

to CONTINUE

sv OLDPPC 1lo
to REPORT

routine OUT-CODE

PRINT-A

routine OUT-NUM
routine CURSOR-IN
to DISPLAY-6

sv E PPC lo
sv CH ADD 1lo

Address: N/L-ONLY

sv STKBOT 1lo

routine SET-FAST
routine CLS

routine LINE-ADDR
to COPY-OVER

routine NEXT-ONE
routine RECLAIM-2

http://www.wearmouth.demon.co.uk/zx81.htm#L0A60%23L0A60
http://www.wearmouth.demon.co.uk/zx81.htm#L09F2%23L09F2
http://www.wearmouth.demon.co.uk/zx81.htm#L0705%23L0705
http://www.wearmouth.demon.co.uk/zx81.htm#L09D8%23L09D8
http://www.wearmouth.demon.co.uk/zx81.htm#L0A2A%23L0A2A
http://www.wearmouth.demon.co.uk/zx81.htm#L02E7%23L02E7
http://www.wearmouth.demon.co.uk/zx81.htm#L0413%23L0413
http://www.wearmouth.demon.co.uk/zx81.htm#L04C1%23L04C1
http://www.wearmouth.demon.co.uk/zx81.htm#L14AD%23L14AD
http://www.wearmouth.demon.co.uk/zx81.htm#L0A98%23L0A98
http://www.wearmouth.demon.co.uk/zx81.htm#L07EB%23L07EB
http://www.wearmouth.demon.co.uk/zx81.htm#L06D1%23L06D1
http://www.wearmouth.demon.co.uk/zx81.htm#L06CA%23L06CA
http://www.wearmouth.demon.co.uk/zx81.htm#L06D1%23L06D1
http://www.wearmouth.demon.co.uk/zx81.htm#L0918%23L0918
http://www.wearmouth.demon.co.uk/zx81.htm#L0871%23L0871

DEC
CALL
CALL
POP
PUSH
INC
LD
DEC
LDDR
LD
EX
POP
LD
DEC
LD
DEC
LD
DEC
LD

RET

; THE 'LIST'

;; LLIST
LO072C: SET

;; LIST
L0730: CALL

LD
number.
AND

LD
LD
LD
CALL

;; LIST-PROG
LO73E: LD

;; UNTIL-END
L0740: CALL

>>

AND

HL, ($401R)
HL

HL, ($400R)
DE, HL

BC

(HL) , B

HL

(HL) ,C

HL

(HL) , E

HL

(HL) , D

’

routine MAKE-ROOM
routine SLOW/FAST

sv STKBOT 1lo

copy bytes
sv E PPC lo

return.

'LLIST' COMMAND ROUTINES

1, (IY+$01)

LOEAT
A,B
$3F
H,A
L,C

($400A) ,HL
1L09D8

E,$00

; THE 'PRINT A BASIC LINE'

;; OUT-LINE
L0745: LD
CALL

BC, ($400R)
LOSEA

’

’

sv FLAGS - signal printer in use

routine FIND-INT
fetch high byte of user-supplied line

and crudely limit to range 1-16383.

sv E PPC lo
routine LINE-ADDR

routine OUT-LINE lists one line of BASIC
making an early return when the screen is
full or the end of program is reached.

loop back to UNTIL-END

sv E PPC lo
routine CP-LINES

http://www.wearmouth.demon.co.uk/zx81.htm#L09EA%23L09EA
http://www.wearmouth.demon.co.uk/zx81.htm#L0740%23L0740
http://www.wearmouth.demon.co.uk/zx81.htm#L0745%23L0745
http://www.wearmouth.demon.co.uk/zx81.htm#L09D8%23L09D8
http://www.wearmouth.demon.co.uk/zx81.htm#L0EA7%23L0EA7
http://www.wearmouth.demon.co.uk/zx81.htm#L0207%23L0207
http://www.wearmouth.demon.co.uk/zx81.htm#L099E%23L099E

rs

LD
JR

LD
RL

TEST-END

L0O755: LD

rs

LD
CP
POP
RET

PUSH
CALL
INC
LD

RST
INC
INC

COPY-LINE

LO0766: LD

rs

SET

MORE-LINE

LO076D: LD

rs

LD
AND
SBC
JR
LD
RST

TEST-NUM

LO077C: LD

rs

LD
INC
CALL
LD
JR

CPp
JR

CP
JR

BIT
JR

CALL
JR

NOT-TOKEN

LO79A: RST

D, $92
Z,L0755

DE, $0000
E

(IY+S$1E),E
A, (HL)

$40

BC

NC

BC
LOAAS
HL
A,D

10H
HL
HL

($4016) ,HL
0, (IY+$01)

BC, ($4018)
HL, ($4016)
A

HL, BC
NZ,L077C

A, SB8

10H

HL, ($4016)
A, (HL)

HL

LO7B4
($4016) ,HL
Z,L076D

STE
Z,L079D

$76
Z,LO7EE

N o

A
, L0797

1L094B
L076D

10H

to TEST-END

sv BERG

routine OUT-NO

PRINT-A

sv CH ADD

sv FLAGS

lo
- Suppress leading

sv X PTR lo

sv CH_ADD

1o

to TEST-NUM

PRINT-A

sv CH_ADD

lo

routine NUMBER

sv CH_ADD

1o

to MORE-LINE

to OUT-CURS

to OUT-CH

to NOT-TOKEN

routine TOKENS
to MORE-LINE

PRINT-A

space

http://www.wearmouth.demon.co.uk/zx81.htm#L076D%23L076D
http://www.wearmouth.demon.co.uk/zx81.htm#L094B%23L094B
http://www.wearmouth.demon.co.uk/zx81.htm#L079A%23L079A
http://www.wearmouth.demon.co.uk/zx81.htm#L07EE%23L07EE
http://www.wearmouth.demon.co.uk/zx81.htm#L079D%23L079D
http://www.wearmouth.demon.co.uk/zx81.htm#L076D%23L076D
http://www.wearmouth.demon.co.uk/zx81.htm#L07B4%23L07B4
http://www.wearmouth.demon.co.uk/zx81.htm#L077C%23L077C
http://www.wearmouth.demon.co.uk/zx81.htm#L0AA5%23L0AA5
http://www.wearmouth.demon.co.uk/zx81.htm#L0755%23L0755

JR

;; OUT-CURS

LO79D:

cursor.

cursor.

LD
LD

AND

JR

LD
LD

;; FLAGS-2

LO7AA:

; THE 'KEYBOARD

RRA
RRA
AND

ADD

CALL
JR

CP
RET

INC
INC
INC
INC
INC
RET

; ; DECODE

LO7BD:

LD
SRA
SBC
OR
LD
SUB

;; KEY-LINE

LO7C7:

ADD
SCF
RR
JR

NZ,LO7AA

A, ($4001)
B, $BO

; THE 'NUMBER'

SUBROUTINE

STE
NZ

HL
HL
HL
HL
HL

DECODE' SUBROUTINE

’

’

to MORE-LINE

Fetch value of system variable MODE
Prepare an inverse [F] for function

Test for zero -
forward if not to FLAGS-2

Fetch system variable FLAGS.
Prepare an inverse [K] for keyword

00000200 -> 00000020
00000020 -> 00000007
00000007 0000000x
Possibly [F] -> [G] or [K] -> [L]

routine PRINT-SP prints character
back to MORE-LINE

Set Carry Flag

to KEY-LINE

http://www.wearmouth.demon.co.uk/zx81.htm#L07C7%23L07C7
http://www.wearmouth.demon.co.uk/zx81.htm#L076D%23L076D
http://www.wearmouth.demon.co.uk/zx81.htm#L07F5%23L07F5
http://www.wearmouth.demon.co.uk/zx81.htm#L07AA%23L07AA
http://www.wearmouth.demon.co.uk/zx81.htm#L076D%23L076D

INC
RET

LD
DEC
LD
JR

LD
LD
ADD
SCF
RET

; THE 'PRINTING'

;; LEAD-SP
LO7DC: LD
AND
RET

JR

;; OUT-DIGIT
LO7El: XOR

;; DIGIT-INC

LO7E2: ADD
INC
JR

SBC
DEC
JR

;; OUT-CODE

LO7EB: LD
ADD

;; OUT-CH

LO7EE: AND
JR

;; PRINT-CH
LO7F1l: RES
permitted

;7 PRINT-SP

LO7F5: EXX
PUSH
BIT
JR

C
NZ

C,B
L

L,$01
NZ,L07C7

HL, $007D
E,A
HL, DE

SUBROUTINE

=
al

LO7F1

HL, BC
A
C,L07E2

HL, BC
A
Z,L07DC

>
[
=
Q

,LO7FS

0, (IY+$01)

HL
1, (IY+$01)
Nz,L0802

’

’

to KEY-LINE

(expr reqgd)

Set Carry Flag

to PRINT-CH

to DIGIT-INC

to LEAD-SP

to PRINT-SP

update FLAGS - signal leading space

test FLAGS - is printer in use ?
to LPRINT-A

routine ENTER-CH
to PRINT-EXX

http://www.wearmouth.demon.co.uk/zx81.htm#L0805%23L0805
http://www.wearmouth.demon.co.uk/zx81.htm#L0808%23L0808
http://www.wearmouth.demon.co.uk/zx81.htm#L0802%23L0802
http://www.wearmouth.demon.co.uk/zx81.htm#L07F5%23L07F5
http://www.wearmouth.demon.co.uk/zx81.htm#L07DC%23L07DC
http://www.wearmouth.demon.co.uk/zx81.htm#L07E2%23L07E2
http://www.wearmouth.demon.co.uk/zx81.htm#L07F1%23L07F1
http://www.wearmouth.demon.co.uk/zx81.htm#L07C7%23L07C7

;; LPRINT-A
L.0802: CALL L0851 ; routine LPRINT-CH

;; PRINT-EXX

L0805: POP HL ;
EXX ;
RET ;

;; ENTER-CH

L0808: LD D,A ;
LD BC, ($4039) ; sv S_POSN x
LD A,C ;
CP $21 ;
JR z,1L082C ; to TEST-LOW

;; TEST-N/L

L.0812: 1D A,S$76 ;
CP D ;
JR Z,L0847 ; to WRITE-N/L
LD HL, ($400E) ; sv DF_CC lo
CP (HL) ;
D A,D ;
JR Nz,L083E ; to WRITE-CH
DEC C ;
JR NZ,L083A ; to EXPAND-1
INC HL ;
LD ($400E) , HL ; sv DF _CC lo
LD Cc,$21 ;
DEC B ;
LD ($4039),BC ; sv S _POSN x

;; TEST-LOW

L082C: LD A,B ;
CP (IY+$22) ; sv DF_SZ
JR Z,L0835 ; to REPORT-5
AND A ;
JR NZ,L0812 ; to TEST-N/L

; ; REPORT-5
L0835: LD L, $04 ; 'No more room on screen'
JP L0058 ; to ERROR-3

;; EXPAND-1
LO83A: CALL LO9S9B ; routine ONE-SPACE
EX DE, HL ;

;7 WRITE-CH

LO83E: LD (HL) , A ;
INC HL H
LD ($400E) , HL ; sv DF _CC_lo

DEC (IY+$39) ; sv S_POSN x

http://www.wearmouth.demon.co.uk/zx81.htm#L099B%23L099B
http://www.wearmouth.demon.co.uk/zx81.htm#L0058%23L0058
http://www.wearmouth.demon.co.uk/zx81.htm#L0812%23L0812
http://www.wearmouth.demon.co.uk/zx81.htm#L0835%23L0835
http://www.wearmouth.demon.co.uk/zx81.htm#L083A%23L083A
http://www.wearmouth.demon.co.uk/zx81.htm#L083E%23L083E
http://www.wearmouth.demon.co.uk/zx81.htm#L0847%23L0847
http://www.wearmouth.demon.co.uk/zx81.htm#L082C%23L082C
http://www.wearmouth.demon.co.uk/zx81.htm#L0851%23L0851

RET ;

’

;; WRITE-N/L

L0847: LD c,$21 ;
DEC B ;
SET 0, (IY+S01) ; sv FLAGS - Suppress leading space
JP 10918 ; to LOC-ADDR

; THE 'LPRINT-CH' SUBROUTINE

; This routine sends a character to the ZX-Printer placing the code for the
; character in the Printer Buffer.

; Note. PR-CC contains the low byte of the buffer address. The high order
byte
; 1s always constant.

;7 LPRINT-CH

L0851: CP $76 ; compare to NEWLINE.
JR Z,L0871 ; forward if so to COPY-BUFF
LD C,A ; take a copy of the character in C.
LD A, ($4038) ; fetch print location from PR _CC
AND STF ; ignore bit 7 to form true position.
CP $5C ; compare to 33rd location
LD L,A ; form low-order byte.
LD H,$40 ; the high-order byte is fixed.
CALL Z,L0871 ; routine COPY-BUFF to send full buffer to
; the printer if first 32 bytes full.
; (this will reset HL to start.)
LD (HL) ,C ; place character at location.
INC L ; increment - will not cross a 256
boundary.
LD (IY+$38),L ; update system variable PR _CC
; automatically resetting bit 7 to show
that
; the buffer is not empty.
RET ; return.

; THE 'COPY' COMMAND ROUTINE

; The full character-mapped screen is copied to the ZX-Printer.
; All twenty-four text/graphic lines are printed.

;; COPY

L0869: LD D, $16 ; prepare to copy twenty four text lines.
LD HL, ($400C) ; set HL to start of display file from

D FILE.
INC HL ;
JR L0876 ; forward to COPY*D

; A single character-mapped printer buffer is copied to the ZX-Printer.

http://www.wearmouth.demon.co.uk/zx81.htm#L0876%23L0876
http://www.wearmouth.demon.co.uk/zx81.htm#L0871%23L0871
http://www.wearmouth.demon.co.uk/zx81.htm#L0871%23L0871
http://www.wearmouth.demon.co.uk/zx81.htm#L0918%23L0918

COPY-BUFF

rs

L0871: LD
LD

; both paths

;; COPY*D

L0876: CALL
PUSH

;; COPY-LOOP

LO87A: PUSH
XOR
LD

; this inner

;; COPY-TIME

L087D: OUT
POP

(*)

;5 COPY-BRK

1L0880: CALL
JR

D,S$01 ;
HL, $403C ;

converge here.

LO2E7 ;

BC ;

loop deals with each

(SFB) ,A ;

HL ;

LOF46 ;
,LO88A ;

Q

; else A will hold 11111111 O

RRA
OouT
stylus.

;7 REPORT-D2
L0888: RST
DEFB

;; COPY-CONT

LO88A: IN
ADD
JP

JR
BRK

PUSH
PUSH
line.

LD
CPp
SBC

; now cleverly prepare a printer control mask setting bit 2

1)

; of D to slow printer

(SFB) , A ;

08H ;
so0cC ;

for the last two pixel lines (E =

prepare to copy a single text line.
set HL to start of printer buffer PRBUFF.

routine SET-FAST

*** preserve BC throughout.
a pending character may be present
in C from LPRINT-CH

save first character of line pointer. (%)
clear accumulator.
set pixel line count,

range 0-7, to zero.

horizontal pixel line.

bit 2 reset starts the printer motor
with an inactive stylus - bit 7 reset.
pick up first character of line pointer

on inner loop.

routine BREAK-1
forward with no keypress to COPY-CONT

0111 1111

stop ZX printer motor, de-activate

ERROR-1

Error Report: BREAK - CONT repeats

read from printer port.
test bit 6 and 7
jump forward with no printer to COPY-END

back if stylus not in position to COPY-

save first character of line pointer (%)

** preserve character line and pixel

text line count to A?
sets carry if last line.
now SFF if last line else zero.
(later moved to

6 and 7)

http://www.wearmouth.demon.co.uk/zx81.htm#L0880%23L0880
http://www.wearmouth.demon.co.uk/zx81.htm#L08DE%23L08DE
http://www.wearmouth.demon.co.uk/zx81.htm#L088A%23L088A
http://www.wearmouth.demon.co.uk/zx81.htm#L0F46%23L0F46
http://www.wearmouth.demon.co.uk/zx81.htm#L02E7%23L02E7

;; COPY-

L089C:

set.

inverse.

;; COPY-

LO8B5:

;; COPY-

LO8BA:

AND E ; and with pixel line offset 0-7

RLCA ; shift to left.

AND E ; and again.

LD D,A ; store control mask in D.

NEXT

LD C, (HL) ; load character from screen or buffer.

LD A,C ; save a copy in C for later inverse test.
INC HL ; update pointer for next time.

CP $76 ; 1s character a NEWLINE °?

JR Z,L08C7 ; forward, if so, to COPY-N/L

PUSH HL ; * else preserve the character pointer.
SLA A ; (?) multiply by two

ADD A,A ; multiply by four

ADD A,A ; multiply by eight

LD H, SOF ; load H with half the address of character
RL H ; now $1E or $1F (with carry)

ADD A,E ; add byte offset 0-7

LD L,A ; now HL addresses character source byte
RL C ; test character, setting carry if inverse.
SBC A,A ; accumulator now $00 if normal, S$FF if
XOR (HL) ; combine with bit pattern at end or ROM.
LD C,A ; transfer the byte to C.

LD B, $08 ; count eight bits to output.

BITS

LD A,D ; fetch speed control mask from D.

RLC C ; rotate a bit from output byte to carry.
RRA ; pick up in bit 7, speed bit to bit 1

LD H,A ; store aligned mask in H register.

WAIT

IN A, (SFB) ; read the printer port

RRA ; test for alignment signal from encoder.
JR NC, LO8BA ; loop if not present to COPY-WAIT

LD A,H ; control byte to A.

ouT (SFB) , A ; and output to printer port.

DJNZ LO8BS ; loop for all eight bits to COPY-BITS

POP HL ; * restore character pointer.

JR 1L089C ; back for adjacent character line to COPY-

; A NEWLINE has been encountered either following a text line or as the

; first character of the screen or printer line.
;; COPY-N/L
L08C7: 1IN A, (SFB) ; read printer port.
RRA ; wait for encoder signal.

JR NC, L08C7 ; loop back if not to COPY-N/L

http://www.wearmouth.demon.co.uk/zx81.htm#L08C7%23L08C7
http://www.wearmouth.demon.co.uk/zx81.htm#L089C%23L089C
http://www.wearmouth.demon.co.uk/zx81.htm#L08B5%23L08B5
http://www.wearmouth.demon.co.uk/zx81.htm#L08BA%23L08BA
http://www.wearmouth.demon.co.uk/zx81.htm#L08C7%23L08C7

LD A,D ; transfer speed mask to A.

RRCA ; rotate speed bit to bit 1.
; bit 7, stylus control is reset.
ouT (SFB) , A ; set the printer speed.
POP DE ; ** restore character line and pixel line.
INC E ; increment pixel line 0-7.
BIT 3,E ; test if value eight reached.
JR Z,L087D ; back i1f not to COPY-TIME

; eight pixel lines, a text line have been completed.

POP BC ; lose the now redundant first character
; pointer
DEC D ; decrease text line count.
JR NZ,LO87A ; back if not zero to COPY-LOOP
LD A, $04 ; stop the already slowed printer motor.
ouT (SFB) , A ; output to printer port.
;; COPY-END
LO8DE: CALL 10207 ; routine SLOW/FAST
POP BC ; *** restore preserved BC.

; THE 'CLEAR PRINTER BUFFER' SUBROUTINE

; This subroutine sets 32 bytes of the printer buffer to zero (space) and
; the 33rd character is set to a NEWLINE.

; This occurs after the printer buffer is sent to the printer but in
addition

; after the 24 lines of the screen are sent to the printer.

; Note. This is a logic error as the last operation does not involve the
; buffer at all. Logically one should be able to use

; 10 LPRINT "HELLO ";

; 20 COPY

; 30 LPRINT ; "WORLD"

; and expect to see the entire greeting emerge from the printer.

; Surprisingly this logic error was never discovered and although one can
argue

; 1f the above is a bug, the repetition of this error on the Spectrum was
most

; definitely a bug.

; Since the printer buffer is fixed at the end of the system variables, and
; the print position is in the range $3C - $5C, then bit 7 of the system
; variable is set to show the buffer is empty and automatically reset when
; the variable is updated with any print position - neat.

; ; CLEAR-PRB
LO8E2: LD HL, $405C ; address fixed end of PRBUFF
LD (HL) , $76 ; place a newline at last position.
LD B, $20 ; prepare to blank 32 preceding characters.
;; PRB-BYTES
LO8BES: DEC HL ; decrement address - could be DEC L.
LD (HL) , $00 ; place a zero byte.
DJINZ LO8E9 ; loop for all thirty-two to PRB-BYTES
LD A, L ; fetch character print position.
SET 7,A ; signal the printer buffer is clear.
LD ($4038) ,A ; update one-byte system variable PR CC

RET ; return.

http://www.wearmouth.demon.co.uk/zx81.htm#L08E9%23L08E9
http://www.wearmouth.demon.co.uk/zx81.htm#L0207%23L0207
http://www.wearmouth.demon.co.uk/zx81.htm#L087A%23L087A
http://www.wearmouth.demon.co.uk/zx81.htm#L087D%23L087D

; THE 'PRINT AT' SUBROUTINE
;5 PRINT-AT
LO8F5: LD A,S17
SUB B
JR C,L0905
;; TEST-VAL
LO8FA: CP (IY+S$22)
JP C,L0835
INC A
D B, A
D A, $1F
SUB C
; ; WRONG-VAL
L.0905: JP C,LOEAD
ADD A, $02
LD C,A
;; SET-FIELD
LO90B: BIT 1, (IY+$01)
JR Z2,1L0918
D A, $5D
SUB C
LD ($4038) ,A
RET
; THE 'LOCATE ADDRESS' ROUTINE
; ; LOC-ADDR
1.L.0918: LD ($4039),BC
LD HL, ($4010)
LD D,C
LD A,S$22
SUB C
LD C,A
LD A,$76
INC B
; ; LOOK-BACK
L.0927: DEC HL
CP (HL)
JR NZ,L0927
DJNZ L0927
INC HL
CPIR
DEC HL

’

’

’

’

to

sv
to

to

Shv
to

SV

SAv

WRONG-VAL

DF_SZ
REPORT-5

REPORT-B

FLAGS -
LOC-ADDR

PR_CC

S_POSN_x

sv VARS 1o

to

to

LOOK-BACK

LOOK-BACK

Is printer in use

http://www.wearmouth.demon.co.uk/zx81.htm#L0927%23L0927
http://www.wearmouth.demon.co.uk/zx81.htm#L0927%23L0927
http://www.wearmouth.demon.co.uk/zx81.htm#L0918%23L0918
http://www.wearmouth.demon.co.uk/zx81.htm#L0EAD%23L0EAD
http://www.wearmouth.demon.co.uk/zx81.htm#L0835%23L0835
http://www.wearmouth.demon.co.uk/zx81.htm#L0905%23L0905

LD (S400E) , HL
SCF
RET PO
DEC D
RET 7
PUSH BC
CALL LO99E
POP BC
LD B,C
LD H,D
LD L,E

;; EXPAND-2

L0940: 1D (HL) , $00
DEC HL
DJNZ L0940
EX DE, HL
INC HL
LD ($400E) , HL
RET

; THE 'EXPAND TOKENS'

;; TOKENS

L094B: PUSH AF
CALL 10975
JR NC, 10959
BIT 0, (IY+$01)
JR NZ,L0959
XOR A
RST 10H

;; ALL-CHARS

L0959: LD A, (BC)
AND $3F
RST 10H
LD A, (BC)
INC BC
ADD A,A
JR NC, L0959
POP BC
BIT 7,B
RET 7
CP S1A
JR 7,L096D
CP $38
RET C

SUBROUTINE

’

’

sv DF CC 1lo
Set Carry Flag

routine MAKE-ROOM

to EXPAND-2

sv DF CC 1lo

routine TOKEN-ADD
to ALL-CHARS

sv FLAGS - Leading space if set
to ALL-CHARS

PRINT-A

PRINT-A

to ALL-CHARS

to TRAIL-SP

http://www.wearmouth.demon.co.uk/zx81.htm#L096D%23L096D
http://www.wearmouth.demon.co.uk/zx81.htm#L0959%23L0959
http://www.wearmouth.demon.co.uk/zx81.htm#L0959%23L0959
http://www.wearmouth.demon.co.uk/zx81.htm#L0959%23L0959
http://www.wearmouth.demon.co.uk/zx81.htm#L0975%23L0975
http://www.wearmouth.demon.co.uk/zx81.htm#L0940%23L0940
http://www.wearmouth.demon.co.uk/zx81.htm#L099E%23L099E

;; TRAIL-SP

LO096D: XOR
SET
Jp

;; TOKEN-ADD

L0975: PUSH
LD
BIT
JR

AND

;; TEST-HIGH
LO97F: CP
JR

LD
INC

;; WORDS

L0985: BIT
INC
JR

DJINZ

BIT
JR

CPp

;; COMP-FLAG
L0992: CCF

; ; FOUND

L0993: LD
LD
POP
RET

LD
ADD
RET

A
0, (IY+S$01)
LO7F5S

HL
HL,LO111
7,A
Z,L097F

S3F

$43
NC, L0993

; THE 'ONE SPACE' SUBROUTINE

;; ONE-SPACE
LO99B: LD

BC, $0001

; THE 'MAKE ROOM' SUBROUTINE

sv FLAGS - Suppress leading space
to PRINT-SP

Address of TOKENS

to TEST-HIGH

to FOUND

to WORDS

to WORDS

to COMP-FLAG

Complement Carry Flag

http://www.wearmouth.demon.co.uk/zx81.htm#L0992%23L0992
http://www.wearmouth.demon.co.uk/zx81.htm#L0985%23L0985
http://www.wearmouth.demon.co.uk/zx81.htm#L0985%23L0985
http://www.wearmouth.demon.co.uk/zx81.htm#L0993%23L0993
http://www.wearmouth.demon.co.uk/zx81.htm#L097F%23L097F
http://www.wearmouth.demon.co.uk/zx81.htm#L0111%23L0111
http://www.wearmouth.demon.co.uk/zx81.htm#L07F5%23L07F5

; ; MAKE-ROOM

LO99E: PUSH HL ;
CALL LOECS ; routine TEST-ROOM
POP HL ;
CALL LOSAD ; routine POINTERS
LD HL, ($401C) ; sv STKEND lo
EX DE, HL ;
LDDR ; Copy Bytes
RET ;

; THE 'POINTERS' SUBROUTINE

;; POINTERS

LOSAD: PUSH AF ;
PUSH HL ;
LD HL, $400C ; sv D FILE lo
LD A,$09 ;

;7 NEXT-PTR

LO9B4: LD E, (HL) ;
INC HL ;
LD D, (HL) ;
EX (SP), HL ;
AND A ;
SBC HL, DE ;
ADD HL, DE ;
EX (SP), HL ;
JR NC, L0O9C8 ; to PTR-DONE
PUSH DE ;
EX DE, HL ;
ADD HL, BC ;
EX DE, HL ;
LD (HL),D ;
DEC HL ;
LD (HL) ,E ;
INC HL ;
POP DE ;

; ; PTR-DONE

L09CS8: INC HL ;
DEC A ;
JR NZ,L09B4 ; to NEXT-PTR
EX DE, HL ;
POP DE ;
POP AF ;
AND A ;
SBC HL, DE ;
1D B,H ;
LD c,L ;
INC BC ;
ADD HL, DE ;
EX DE, HL ;
RET ;

; THE 'LINE ADDRESS' SUBROUTINE

http://www.wearmouth.demon.co.uk/zx81.htm#L09B4%23L09B4
http://www.wearmouth.demon.co.uk/zx81.htm#L09C8%23L09C8
http://www.wearmouth.demon.co.uk/zx81.htm#L09AD%23L09AD
http://www.wearmouth.demon.co.uk/zx81.htm#L0EC5%23L0EC5

;; LINE-ADDR

1L09D8: PUSH HL ;
LD HL, $407D ;
1D D,H ;
1D E,L ;

;; NEXT-TEST

LO9DE: POP BC ;
CALL LO9EA ; routine CP-LINES
RET NC ;
PUSH BC ;
CALL LOOF2 ; routine NEXT-ONE
EX DE, HL ;
JR LO9DE ; to NEXT-TEST

; THE 'COMPARE LINE NUMBERS' SUBROUTINE

;; CP-LINES

LOSEA: LD A, (HL) ;
CP B ;
RET NZ ;
INC HL ;
LD A, (HL) ;
DEC HL ;
CP C ;
RET ;

; THE 'NEXT LINE OR VARIABLE' SUBROUTINE

;7 NEXT-ONE

LO9F2: PUSH HL ;
LD A, (HL) ;
CP $40 ;
JR C,LOAQF ; to LINES
BIT 5,A ;
JR Z,LOA10 ; forward to NEXT-0-4
ADD A,A ;
JPp M,LOAOT ; to NEXT+FIVE
CCF ; Complement Carry Flag

;; NEXT+FIVE
LOAOl: 1D BC, $0005 ;
JR NC, LOAOS8 ; to NEXT-LETT

LD c,$11 ;

http://www.wearmouth.demon.co.uk/zx81.htm#L0A08%23L0A08
http://www.wearmouth.demon.co.uk/zx81.htm#L0A01%23L0A01
http://www.wearmouth.demon.co.uk/zx81.htm#L0A10%23L0A10
http://www.wearmouth.demon.co.uk/zx81.htm#L0A0F%23L0A0F
http://www.wearmouth.demon.co.uk/zx81.htm#L09DE%23L09DE
http://www.wearmouth.demon.co.uk/zx81.htm#L09F2%23L09F2
http://www.wearmouth.demon.co.uk/zx81.htm#L09EA%23L09EA

;; NEXT-LETT

LOAO8: RLA ;
INC HL ;
D A, (HL) :
JR NC, LOAOS ; to NEXT-LETT
JR LOA1S ; to NEXT-ADD
;; LINES
LOAQEF: INC HL ;

;; NEXT-0-4

LOA10: INC HL ;
LD C, (HL) ;
INC HL ;
1D B, (HL) ;
INC HL ;

;5 NEXT-ADD
LOAl15: ADD HL, BC ;
POP DE ;

; THE 'DIFFERENCE' SUBROUTINE

;; DIFFER
LOA17: AND A ;
SBC HL, DE ;
LD B, H ;
1D c,L ;
ADD HL, DE ;
EX DE, HL ;
RET ;

; THE 'LINE-ENDS' SUBROUTINE

;; LINE-ENDS

LOAlF: LD B, (IY+$22) ; sv DF S7Z
PUSH BC ;
CALL LOA2C ; routine B-LINES
POP BC ;
DEC B ;
JR LOA2C ; to B-LINES

; THE 'CLS' COMMAND ROUTINE

;; CLS
LOA2A: LD B,S$18 7

http://www.wearmouth.demon.co.uk/zx81.htm#L0A2C%23L0A2C
http://www.wearmouth.demon.co.uk/zx81.htm#L0A2C%23L0A2C
http://www.wearmouth.demon.co.uk/zx81.htm#L0A15%23L0A15
http://www.wearmouth.demon.co.uk/zx81.htm#L0A08%23L0A08

rs

B-LINES

LOA2C: RES

rs

LD
PUSH
CALL
POP
LD
CPp
JR

SET

CLEAR-LOC

LOA42: XOR

rs

CALL
LD
LD
OR
AND
JR

JP

COLLAPSED

LOA52: LD

rr

LOA5D:

rs

LOAGO:

LD
DEC
LD
LD
LDIR
LD

THE 'RECLAIMING'

RECLAIM-1
CALL

RECLAIM-2
PUSH
LD
CPL
LD
LD
CPL
LD
INC
CALL
EX
POP
ADD
PUSH
LDIR
POP
RET

1, (IY+$01)
C,$21

BC

L0918

BC

A, ($4005)
$4D
C,LOA52

7, (IY+S$S3A)

A
LO7F5

HL, ($4039)
A, L

H

STE
NZ,LOA42

L0918

SUBROUTINES

’

sv FLAGS - Signal printer not in use

routine LOC-ADDR
sv RAMTOP hi
to COLLAPSED

sv S_POSN_y

prepare a space
routine PRINT-SP prints a space
sv S POSN x

to CLEAR-LOC

to LOC-ADDR

Copy Bytes
sv VARS 1o

routine DIFFER

routine POINTERS

Copy Bytes

http://www.wearmouth.demon.co.uk/zx81.htm#L09AD%23L09AD
http://www.wearmouth.demon.co.uk/zx81.htm#L0A17%23L0A17
http://www.wearmouth.demon.co.uk/zx81.htm#L0918%23L0918
http://www.wearmouth.demon.co.uk/zx81.htm#L0A42%23L0A42
http://www.wearmouth.demon.co.uk/zx81.htm#L07F5%23L07F5
http://www.wearmouth.demon.co.uk/zx81.htm#L0A52%23L0A52
http://www.wearmouth.demon.co.uk/zx81.htm#L0918%23L0918

; THE

;7 E-LINE-NO
LOA73: LD
CALL

RST
BIT
RET

LD
LD
CALL
CALL
JR

LD
ADD

;7 NO-NUMBER

LOAS1: JP
CP
Jp
; THE

; ; OUT-NUM

LOA9S: PUSH
PUSH
XOR
BIT
JR

LD
LD
LD
JR

;; OUT-NO

LOAAS: PUSH
LD
INC
LD
PUSH
EX
LD

;; THOUSAND

LOAAD: LD
CALL
LD

HL, ($4014)
1004D

18H
5, (IY+$2D)
NZ

HL, $405D
($401C) , HL
L1548
L158A
C,LOA91

HL, $D8FO
HL, BC

'REPORT AND LINE NUMBER'

DE
HL

A

7,B

NZ, LOABF

H,B
L,C

E, $SFF
LOAAD

DE
D, (HL)
HL

E, (HL)
HL

DE, HL
E,$00

BC, SFC18
L07E1
BC, SFFIC

'E-LINE NUMBER'

SUBROUTINE

sv E LINE lo
routine TEMP-PTR-2

GET-CHAR
sv FLAGX

sv MEM-0-1st

sv STKEND lo
routine INT-TO-FP
routine FP-TO-BC
to NO-NUMBER

value '-10000"

to REPORT-C

routine SET-MIN

PRINTING SUBROUTINES

’

’

to UNITS

to THOUSAND

set E to leading space.

routine OUT-DIGIT

http://www.wearmouth.demon.co.uk/zx81.htm#L07E1%23L07E1
http://www.wearmouth.demon.co.uk/zx81.htm#L0AAD%23L0AAD
http://www.wearmouth.demon.co.uk/zx81.htm#L0ABF%23L0ABF
http://www.wearmouth.demon.co.uk/zx81.htm#L14BC%23L14BC
http://www.wearmouth.demon.co.uk/zx81.htm#L0D9A%23L0D9A
http://www.wearmouth.demon.co.uk/zx81.htm#L0A91%23L0A91
http://www.wearmouth.demon.co.uk/zx81.htm#L158A%23L158A
http://www.wearmouth.demon.co.uk/zx81.htm#L1548%23L1548
http://www.wearmouth.demon.co.uk/zx81.htm#L004D%23L004D

CALL LO7E1 ; routine OUT-DIGIT

LD C,SF6 ;
CALL LO7E1 ; routine OUT-DIGIT
D A, L ;

;; UNITS

LOARF: CALL LO7EB ; routine OUT-CODE
POP HL ;
POP DE ;
RET ;

; THE 'UNSTACK-Z' SUBROUTINE

; This subroutine is used to return early from a routine when checking
syntax.

; On the ZX81 the same routines that execute commands also check the syntax
; on line entry. This enables precise placement of the error marker in a
line

; that fails syntax.

; The sequence CALL SYNTAX-Z ; RET Z can be replaced by a call to this
routine

; although it has not replaced every occurrence of the above two
instructions.

; Even on the ZX-80 this routine was not fully utilized.

; ; UNSTACK-Z

LOAC5: CALL LODAG6 ; routine SYNTAX-Z resets the ZERO flag if
; checking syntax.
POP HL ; drop the return address.
RET Z ; return to previous calling routine if

; checking syntax.

Jp (HL) ; else jump to the continuation address in
; the calling routine as RET would have

; THE 'LPRINT' COMMAND ROUTINE

; ; LPRINT
LOACB: SET 1, (IY+$01) ; sv FLAGS - Signal printer in use

; THE 'PRINT' COMMAND ROUTINE

;; PRINT
LOACE: LD A, (HL) ;
CP $76 ;
JPp Z,L0B84 ; to PRINT-END
;; PRINT-1
LOAD5: SUB S1A ;
ADC A, S$00 ;

JR Z,L0B44 ; to SPACING

http://www.wearmouth.demon.co.uk/zx81.htm#L0B44%23L0B44
http://www.wearmouth.demon.co.uk/zx81.htm#L0B84%23L0B84
http://www.wearmouth.demon.co.uk/zx81.htm#L0DA6%23L0DA6
http://www.wearmouth.demon.co.uk/zx81.htm#L07EB%23L07EB
http://www.wearmouth.demon.co.uk/zx81.htm#L07E1%23L07E1
http://www.wearmouth.demon.co.uk/zx81.htm#L07E1%23L07E1

CP
JR

RST
CALL
CPp
JPp

RST
CALL
CALL

RST
DEFB
DEFB

CALL
CALL
JR

;; NOT-AT
LOAFA: CP
JR

RST
CALL
CALL
CALL
Jp

AND
LD
BIT
JR

SUB
SET
ADD
CALL

;; TAB-TEST

LOB1E: ADD
CP
LD
SBC
CALL
SET
JR

;; NOT-TAB
LOB31: CALL
CALL

;7 PRINT-ON
LOB37: RST

SA7
NZ, LOAFA

208
L0D92
S1A
NZ,LODOA

SAS8
NZ,L0B31

20H
L0D92
LOBAE
LOCO02
NZ,LOEAD

S1F

C,A

1, (IY+$01)
7,LOB1E

(TY+538)
7,A

A, $3C
NC, L0871

A, (IY+$39)
$21

A, ($403R)
A,S$01
LOSFA

0, (IY+$01)
LOB37

LOF55
LOB55

to NOT-AT

NEXT-CHAR

routine CLASS-6

to REPORT-

NEXT-CHAR

C

routine CLASS-6
routine SYNTAX-ON

FP-CALC

;exchange
;end-calc

routine STK-TO-BC
routine PRINT-AT
to PRINT-ON

to NOT-TAB

NEXT-CHAR

routine CLASS-6
routine SYNTAX-ON
routine STK-TO-A
to REPORT-B

sv FLAGS

- Is printer in use

to TAB-TEST

sv PR _CC

routine COPY-BUFF

sv S POSN_x

sv S POSN y

routine TEST-VAL

sv FLAGS

- Suppress leading space

to PRINT-ON

routine SCANNING
routine PRINT-STK

GET-CHAR

http://www.wearmouth.demon.co.uk/zx81.htm#L0B55%23L0B55
http://www.wearmouth.demon.co.uk/zx81.htm#L0F55%23L0F55
http://www.wearmouth.demon.co.uk/zx81.htm#L0B37%23L0B37
http://www.wearmouth.demon.co.uk/zx81.htm#L08FA%23L08FA
http://www.wearmouth.demon.co.uk/zx81.htm#L0871%23L0871
http://www.wearmouth.demon.co.uk/zx81.htm#L0B1E%23L0B1E
http://www.wearmouth.demon.co.uk/zx81.htm#L0EAD%23L0EAD
http://www.wearmouth.demon.co.uk/zx81.htm#L0C02%23L0C02
http://www.wearmouth.demon.co.uk/zx81.htm#L0B4E%23L0B4E
http://www.wearmouth.demon.co.uk/zx81.htm#L0D92%23L0D92
http://www.wearmouth.demon.co.uk/zx81.htm#L0B31%23L0B31
http://www.wearmouth.demon.co.uk/zx81.htm#L0B37%23L0B37
http://www.wearmouth.demon.co.uk/zx81.htm#L08F5%23L08F5
http://www.wearmouth.demon.co.uk/zx81.htm#L0BF5%23L0BF5
http://www.wearmouth.demon.co.uk/zx81.htm#L0B4E%23L0B4E
http://www.wearmouth.demon.co.uk/zx81.htm#L0D92%23L0D92
http://www.wearmouth.demon.co.uk/zx81.htm#L0D9A%23L0D9A
http://www.wearmouth.demon.co.uk/zx81.htm#L0D92%23L0D92
http://www.wearmouth.demon.co.uk/zx81.htm#L0AFA%23L0AFA

SUB S1A ;

ADC A,$00 ;
JR Z,L0B44 ; to SPACING
CALL LOD1D ; routine CHECK-END
JP L.OB84 ; 7, to PRINT-END
;; SPACING
LOB44: CALL NC, LOB8B ; routine FIELD
RST 20H ; NEXT-CHAR
CP $76 ;
RET Z ;
JP LOADS ;:: to PRINT-1

; ;7 SYNTAX-ON

LOB4E: CALL LODAG ; routine SYNTAX-Z
RET NZ ;
POP HL ;
JR L0OB37 ; to PRINT-ON
;7 PRINT-STK
LOB55: CALL LOACS ; routine UNSTACK-Z
BIT 6, (IY+S$01) ; sv FLAGS - Numeric or string result?
CALL Z,L13F8 ; routine STK-FETCH
JR Z,L0B6B ; to PR-STR-4
JP L15DB ; jump forward to PRINT-FP
;; PR-STR-1
LOB64: LD A, SOB ;
;; PR-STR-2
LOB66: RST 10H ; PRINT-A
;; PR-STR-3
LOB67: LD DE, ($4018) ; sv X_PTR lo
;; PR-STR-4
LOB6B: LD A,B ;
OR C ;
DEC BC ;
RET Z ;
LD A, (DE) ;
INC DE ;
LD ($4018) ,DE ; sv X_PTR lo
BIT 6,A ;
JR Z,L0B66 ; to PR-STR-2
CP $Co ;

JR Z,L0B64 ; to PR-STR-1

http://www.wearmouth.demon.co.uk/zx81.htm#L0B64%23L0B64
http://www.wearmouth.demon.co.uk/zx81.htm#L0B66%23L0B66
http://www.wearmouth.demon.co.uk/zx81.htm#L15DB%23L15DB
http://www.wearmouth.demon.co.uk/zx81.htm#L0B6B%23L0B6B
http://www.wearmouth.demon.co.uk/zx81.htm#L13F8%23L13F8
http://www.wearmouth.demon.co.uk/zx81.htm#L0AC5%23L0AC5
http://www.wearmouth.demon.co.uk/zx81.htm#L0B37%23L0B37
http://www.wearmouth.demon.co.uk/zx81.htm#L0DA6%23L0DA6
http://www.wearmouth.demon.co.uk/zx81.htm#L0AD5%23L0AD5
http://www.wearmouth.demon.co.uk/zx81.htm#L0B8B%23L0B8B
http://www.wearmouth.demon.co.uk/zx81.htm#L0B84%23L0B84
http://www.wearmouth.demon.co.uk/zx81.htm#L0D1D%23L0D1D
http://www.wearmouth.demon.co.uk/zx81.htm#L0B44%23L0B44

PUSH
CALL
POP
JR

;5 PRINT-END
LOB84: CALL
LD

RST
RET

;; FIELD

LOB8B: CALL
SET
XOR

RST
LD
LD
BIT
JR

LD
SUB

; ; CENTRE

LOBA4: LD
CPp
JR

LD

;; RIGHT
LOBAB: CALL
RET

; THE 'PLOT AND

;; PLOT/UNP

LOBAF: CALL
LD
LD
SUB
Jp

LD
LD
SRA
JR

LD

BC
L094B
BC
LOB67

LOACS
0, (IY+$01)
A

10H

BC, ($4039)
A,C

1, (IY+$01)
Z,LOBA4

A, $5D
(IY+$38)

c,s$11
C
NC, LOBAB

C,s01

LOBES
($4036),BC
A, S$2B

B

C, LOEAD

B,A
A,S$01

B

NC, LOBC5

A, 504

routine TOKENS

to PR-STR-3

routine UNSTACK-7Z

PRINT-A

routine UNSTACK-Z
- Suppress leading space

sv FLAGS
PRINT-A
sv S _POSN x
sv FLAGS

to CENTRE

sv PR _CC

to RIGHT

routine SET-FIELD

routine STK-TO-BC

sv COORDS_ x

to REPORT-B

to COLUMNS

- Is printer in use

http://www.wearmouth.demon.co.uk/zx81.htm#L0BC5%23L0BC5
http://www.wearmouth.demon.co.uk/zx81.htm#L0EAD%23L0EAD
http://www.wearmouth.demon.co.uk/zx81.htm#L0BF5%23L0BF5
http://www.wearmouth.demon.co.uk/zx81.htm#L090B%23L090B
http://www.wearmouth.demon.co.uk/zx81.htm#L0BAB%23L0BAB
http://www.wearmouth.demon.co.uk/zx81.htm#L0BA4%23L0BA4
http://www.wearmouth.demon.co.uk/zx81.htm#L0AC5%23L0AC5
http://www.wearmouth.demon.co.uk/zx81.htm#L0AC5%23L0AC5
http://www.wearmouth.demon.co.uk/zx81.htm#L0B67%23L0B67
http://www.wearmouth.demon.co.uk/zx81.htm#L094B%23L094B

; » COLUMNS
LOBC5: SRA
JR

RLCA

;; FIND-ADDR

LOBCA: PUSH
CALL
LD
RLCA
CP
JR

RRCA
JR

XOR

;7 SQ-SAVED
LOBD9: LD

;; TABLE-PTR

LOBDA: LD
LD
SUB
Jp

POP
CPL
AND
JR

;; PLOT
LOBE9: POP
OR

; ; UNPLOT
LOBEB: CP
JR

XOR

;; PLOT-END
LOBFl: EXX

RST
EXX
RET

;; STK-TO-BC
LOBF5: CALL
LD

PUSH

C
NC, LOBCA

$10
NC, LOBDA
NC, LOBD9

S8F

B, A

DE, LOCOE
A, ($4030)
E

M, LOBEY
AF

B
LOBEB

AF

$08
C,LOBF1

S8F

10H

; THE 'STACK-TO-BC'

LOCO02
B, A
BC

SUBROUTINE

’

’

’

’

’

to FIND-ADDR

routine PRINT-AT

to TABLE-PTR

to SQ-SAVED

Address: P-UNPLOT

sv T ADDR 1lo

to PLOT

to UNPLOT

to PLOT-END

PRINT-A

routine STK-TO-A

http://www.wearmouth.demon.co.uk/zx81.htm#L0C02%23L0C02
http://www.wearmouth.demon.co.uk/zx81.htm#L0BF1%23L0BF1
http://www.wearmouth.demon.co.uk/zx81.htm#L0BEB%23L0BEB
http://www.wearmouth.demon.co.uk/zx81.htm#L0BE9%23L0BE9
http://www.wearmouth.demon.co.uk/zx81.htm#L0C9E%23L0C9E
http://www.wearmouth.demon.co.uk/zx81.htm#L0BD9%23L0BD9
http://www.wearmouth.demon.co.uk/zx81.htm#L0BDA%23L0BDA
http://www.wearmouth.demon.co.uk/zx81.htm#L08F5%23L08F5
http://www.wearmouth.demon.co.uk/zx81.htm#L0BCA%23L0BCA

CALL L0C02
LD E,C
POP BC
LD D,C
LD C,A
RET

; THE 'STACK-TO-A'

;; STK-TO-A

L0C02: CALL L15CD
JP C, LOEAD
LD c,$01
RET 7
LD C, SFF
RET

; THE 'SCROLL' SUBROUTINE

;; SCROLL

LOCOE: LD B, (IY+$22)
LD c,$21
CALL 10918
CALL LO99B
LD A, (HL)
LD (DE) , A
INC (IY+$3R)
LD HL, ($400C)
INC HL
LD D,H
LD E,L
CPIR
JP LOASD

; THE 'SYNTAX' TABLES

; 1) The Offset table

;; offset-t

L0C29: DEFB LOCB4 - $
DEFB LOCB7 - S
DEFB LOC58 - S
DEFB LOCAB - S
DEFB LOCAE - $
DEFB L0C77 - $
DEFB LOCA4 - S
DEFB LOC8F - $
DEFB L0C71 - $
DEFB L0C74 - $
DEFB LOCSE - $

SUBROUTINE

’

’

routine STK-TO-A

routine FP-TO-A
to REPORT-B

SAv

DF_SZ

routine LOC-ADDR
routine ONE-SPACE

sv S _POSN vy
sv D FILE lo

to RECLAIM-1

8B
8D
2D
TF
81
49
75
5F
40
42
2B

offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset

to;
to;
to;
to;
to;
to;
to;
to;
to;
to;
to;

Address:
Address:
Address:
Address:
Address:
Address:
Address:
Address:
Address:
Address:
Address:

P-LPRINT
P-LLIST
P-STOP
P-SLOW
P-FAST
P-NEW
P-SCROLL
P-CONT
P-DIM
P-REM
P-FOR

http://www.wearmouth.demon.co.uk/zx81.htm#L0C5E%23L0C5E
http://www.wearmouth.demon.co.uk/zx81.htm#L0C74%23L0C74
http://www.wearmouth.demon.co.uk/zx81.htm#L0C71%23L0C71
http://www.wearmouth.demon.co.uk/zx81.htm#L0C8F%23L0C8F
http://www.wearmouth.demon.co.uk/zx81.htm#L0CA4%23L0CA4
http://www.wearmouth.demon.co.uk/zx81.htm#L0C77%23L0C77
http://www.wearmouth.demon.co.uk/zx81.htm#L0CAE%23L0CAE
http://www.wearmouth.demon.co.uk/zx81.htm#L0CAB%23L0CAB
http://www.wearmouth.demon.co.uk/zx81.htm#L0C58%23L0C58
http://www.wearmouth.demon.co.uk/zx81.htm#L0CB7%23L0CB7
http://www.wearmouth.demon.co.uk/zx81.htm#L0CB4%23L0CB4
http://www.wearmouth.demon.co.uk/zx81.htm#L0A5D%23L0A5D
http://www.wearmouth.demon.co.uk/zx81.htm#L099B%23L099B
http://www.wearmouth.demon.co.uk/zx81.htm#L0918%23L0918
http://www.wearmouth.demon.co.uk/zx81.htm#L0EAD%23L0EAD
http://www.wearmouth.demon.co.uk/zx81.htm#L15CD%23L15CD
http://www.wearmouth.demon.co.uk/zx81.htm#L0C02%23L0C02

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

; 1i) The parameter table.

;; P-LET
L0OC48: DEFB
DEFB
DEFB
string,
;; P-GOTO
LOC4B: DEFB
follow.
DEFB
DEFW
;; P-IF
LOC4F: DEFB
follow.
DEFB
DEFB
entirely
DEFW
;; P-GOSUB
LOC54: DEFB
follow.
DEFB
DEFW
;; P-STOP
LOC58: DEFB
DEFW
;; P-RETURN
LOC5B: DEFB
DEFW

;; P-FOR

$01
$14
$02

$DE
$05

LODAB

$06

$00

LOEBS

$00
LOCDC

$00
LOEDS8

Uy 0 r r Uy Ur Uy Uy Uy Oy D O > D D O Uy U Uy Uy

17 offset to; Address: P-GOTO
1F offset to; Address: P-GOSUB
37 offset to; Address: P-INPUT
52 offset to; Address: P-LOAD
45 offset to; Address: P-LIST
OF offset to; Address: P-LET

6D offset to; Address: P-PAUSE
2B offset to; Address: P-NEXT
44 offset to; Address: P-POKE
2D offset to; Address: P-PRINT
5A offset to; Address: P-PLOT
3B offset to; Address: P-RUN

4C offset to; Address: P-SAVE
45 offset to; Address: P-RAND
0D offset to; Address: P-1IF

52 offset to; Address: P-CLS

5A offset to; Address: P-UNPLOT
4D offset to; Address: P-CLEAR
15 offset to; Address: P-RETURN
6A offset to; Address: P-COPY
Class-01 - A variable is required.
Separator: =1

Class-02 - An expression,

must follow.

Class-06 - A numeric expression must

Class-00 - No further operands.
S0E81; Address: GOTO

Address:

Class-06 - A numeric expression must

'THEN'

numeric or

Separator:
Class-05 - Variable syntax checked

by routine.

Address: $O0DAB; Address: IF

Class-06 - A numeric expression must
Class-00 - No further operands.

Address: $SOEB5; Address: GOSUB

Class-00 - No further operands.
Address: $0CDC; Address: STOP

Class-00 - No further operands.
Address: $0ED8; Address: RETURN

http://www.wearmouth.demon.co.uk/zx81.htm#L0ED8%23L0ED8
http://www.wearmouth.demon.co.uk/zx81.htm#L0CDC%23L0CDC
http://www.wearmouth.demon.co.uk/zx81.htm#L0EB5%23L0EB5
http://www.wearmouth.demon.co.uk/zx81.htm#L0DAB%23L0DAB
http://www.wearmouth.demon.co.uk/zx81.htm#L0E81%23L0E81
http://www.wearmouth.demon.co.uk/zx81.htm#L0CB1%23L0CB1
http://www.wearmouth.demon.co.uk/zx81.htm#L0C5B%23L0C5B
http://www.wearmouth.demon.co.uk/zx81.htm#L0C92%23L0C92
http://www.wearmouth.demon.co.uk/zx81.htm#L0C9E%23L0C9E
http://www.wearmouth.demon.co.uk/zx81.htm#L0C95%23L0C95
http://www.wearmouth.demon.co.uk/zx81.htm#L0C4F%23L0C4F
http://www.wearmouth.demon.co.uk/zx81.htm#L0C86%23L0C86
http://www.wearmouth.demon.co.uk/zx81.htm#L0C8C%23L0C8C
http://www.wearmouth.demon.co.uk/zx81.htm#L0C7A%23L0C7A
http://www.wearmouth.demon.co.uk/zx81.htm#L0C98%23L0C98
http://www.wearmouth.demon.co.uk/zx81.htm#L0C6A%23L0C6A
http://www.wearmouth.demon.co.uk/zx81.htm#L0C80%23L0C80
http://www.wearmouth.demon.co.uk/zx81.htm#L0C66%23L0C66
http://www.wearmouth.demon.co.uk/zx81.htm#L0CA7%23L0CA7
http://www.wearmouth.demon.co.uk/zx81.htm#L0C48%23L0C48
http://www.wearmouth.demon.co.uk/zx81.htm#L0C7D%23L0C7D
http://www.wearmouth.demon.co.uk/zx81.htm#L0C89%23L0C89
http://www.wearmouth.demon.co.uk/zx81.htm#L0C6D%23L0C6D
http://www.wearmouth.demon.co.uk/zx81.htm#L0C54%23L0C54
http://www.wearmouth.demon.co.uk/zx81.htm#L0C4B%23L0C4B

LOCSE: DEFB
must

DEFB

DEFB
follow.

DEFB

DEFB
follow.

DEFB
entirely

DEFW
; ; P-NEXT

LOC66: DEFB
must

DEFB
DEFW

; ;7 P-PRINT
LOCG6A: DEFB
entirely

DEFW

;; P-INPUT

LOC6D: DEFB
DEFB
DEFW

;; P-DIM
LOC71: DEFB
entirely

DEFW
;; P-REM
LOC74: DEFB
entirely

DEFW
;; P-NEW
LOC77: DEFB

DEFW
;» P-RUN
LOC7A: DEFB
follow

DEFW
;; P-LIST
LOC7D: DEFB
follow

DEFW

;; P-POKE

$04
$14
$06

SDF

$06

$05

LODBY

$04

$00
LOE2E

$05

LOACFE

$01
$00
LOEEQ

$05

$05

LOD6A

$00
LO3C3

$03

LOEAF

$03

Class-04 - A single character variable
follow.
Separator: '="

Class-06 - A numeric expression must

Separator: 'TO!
Class-06 - A numeric expression must

Class-05 - Variable syntax checked

by routine.

Address: $0DB9; Address: FOR

Class-04 - A single character variable
follow.

Class-00 - No further operands.
Address: $0E2E; Address: NEXT

Class-05 - Variable syntax checked

by routine.

Address: $SOACF; Address: PRINT

Class-01 - A variable is required.
Class-00 - No further operands.
Address: $O0EE9; Address: INPUT
Class-05 - Variable syntax checked
by routine.

Address: $1409; Address: DIM
Class-05 - Variable syntax checked
by routine.

Address: $0D6A; Address: REM

Class-00 - No further operands.
Address: $03C3; Address: NEW
Class-03 - A numeric expression may
else default to zero.

Address: $OEAF; Address: RUN
Class-03 - A numeric expression may

else default to zero.
Address: $0730; Address: LIST

http://www.wearmouth.demon.co.uk/zx81.htm#L0730%23L0730
http://www.wearmouth.demon.co.uk/zx81.htm#L0EAF%23L0EAF
http://www.wearmouth.demon.co.uk/zx81.htm#L03C3%23L03C3
http://www.wearmouth.demon.co.uk/zx81.htm#L0D6A%23L0D6A
http://www.wearmouth.demon.co.uk/zx81.htm#L1409%23L1409
http://www.wearmouth.demon.co.uk/zx81.htm#L0EE9%23L0EE9
http://www.wearmouth.demon.co.uk/zx81.htm#L0ACF%23L0ACF
http://www.wearmouth.demon.co.uk/zx81.htm#L0E2E%23L0E2E
http://www.wearmouth.demon.co.uk/zx81.htm#L0DB9%23L0DB9

LOC80: DEFB
follow.

DEFB

DEFB
follow.

DEFB

DEFW
;; P-RAND

LOC86: DEFB
follow

DEFW

;; P-LOAD
L0OC89: DEFB
entirely

DEFW

;; P-SAVE
LOC8C: DEFB
entirely

DEFW

;7 P-CONT
LOCS8F': DEFB
DEFW

;; P-CLEAR
L0OC92: DEFB
DEFW

;; P-CLS
LOC95: DEFB
DEFW

;; P-PLOT
LOC98: DEFB
follow.

DEFB

DEFB
follow.

DEFB

DEFW
;; P-UNPLOT

LOCSE: DEFB
follow.
DEFB
DEFB
follow.
DEFB
DEFW

;; P-SCROLL
LOCA4: DEFB
DEFW

;; P-PAUSE

$06

S1A
$06

$00

LOE92

$03

LOE6C

$05

$00
LOE7C

$00
11492

$00
LOA2A
$06

S1A
$06

$00
LOBAF
$06

S1A
$06

$00
LOBAF

$00
LOCOE

Class-06 - A numeric expression must

Separator: !
Class-06 - A numeric expression must

Class-00 - No further operands.
Address: $0E92; Address: POKE
Class-03 - A numeric expression may
else default to zero.

Address: $0E6C; Address: RAND
Class-05 - Variable syntax checked
by routine.

Address: $0340; Address: LOAD
Class-05 - Variable syntax checked
by routine.

Address: $02F6; Address: SAVE

Class-00 - No further operands.
Address: $0E7C; Address: CONT

Class-00 - No further operands.
Address: $149A; Address: CLEAR

Class-00 - No further operands.
Address: $0A2A; Address: CLS
Class-06 - A numeric expression must

Separator: !
Class-06 - A numeric expression must

Class-00 - No further operands.
Address: $OBAF; Address: PLOT/UNP
Class-06 - A numeric expression must

Separator: !
Class-06 - A numeric expression must

Class-00 - No further operands.

Address: S$O0BAF; Address: PLOT/UNP

Class-00 - No further operands.
Address: $0COE; Address: SCROLL

http://www.wearmouth.demon.co.uk/zx81.htm#L0C0E%23L0C0E
http://www.wearmouth.demon.co.uk/zx81.htm#L0BAF%23L0BAF
http://www.wearmouth.demon.co.uk/zx81.htm#L0BAF%23L0BAF
http://www.wearmouth.demon.co.uk/zx81.htm#L0A2A%23L0A2A
http://www.wearmouth.demon.co.uk/zx81.htm#L149A%23L149A
http://www.wearmouth.demon.co.uk/zx81.htm#L0E7C%23L0E7C
http://www.wearmouth.demon.co.uk/zx81.htm#L02F6%23L02F6
http://www.wearmouth.demon.co.uk/zx81.htm#L0340%23L0340
http://www.wearmouth.demon.co.uk/zx81.htm#L0E6C%23L0E6C
http://www.wearmouth.demon.co.uk/zx81.htm#L0E92%23L0E92

LOCA7: DEFB 506 ; Class-06 - A numeric expression must
follow.

DEFB 500 ; Class-00 - No further operands.
DEFW LOF32 ; Address: $0F32; Address: PAUSE
;; P-SLOW
LOCAB: DEFB $00 ; Class-00 - No further operands.
DEFW LOF2B ; Address: $0F2B; Address: SLOW
;; P-FAST
LOCAE: DEFB $00 ; Class-00 - No further operands.
DEFW LOF23 ; Address: S$0F23; Address: FAST
;; P-COPY
LOCB1l: DEFB 500 ; Class-00 - No further operands.
DEFW 10869 ; Address: $0869; Address: COPY

;; P-LPRINT

LOCB4: DEFB $05 ; Class-05 - Variable syntax checked
entirely
; by routine.
DEFW LOACB ; Address: S$O0ACB; Address: LPRINT
;; P-LLIST
LOCB7: DEFB $03 ; Class-03 - A numeric expression may

follow
; else default to zero.
DEFW 1L.072C ; Address: $072C; Address: LLIST

; THE 'LINE SCANNING' ROUTINE

;; LINE-SCAN
LOCBA: LD (IY+s$01),$01 ; sv FLAGS
CALL LOA73 ; routine E-LINE-NO

;; LINE-RUN

LOCCl: CALL L14BC ; routine SET-MIN
LD HL, $4000 ; sv ERR NR
LD (HL) , $SFF ;
LD HL, $402D ; sv FLAGX
BIT 5, (HL) ;
JR Z,LOCDE ; to LINE-NULL
CP SE3 ; 'STOP' ?
LD A, (HL) ;
Jp NZ,LOD6F ; to INPUT-REP
CALL LODAG ; routine SYNTAX-7Z
RET Z ;
RST 08H ; ERROR-1
DEFB $S0C ; Error Report: BREAK - CONT repeats

; THE 'STOP' COMMAND ROUTINE

http://www.wearmouth.demon.co.uk/zx81.htm#L0DA6%23L0DA6
http://www.wearmouth.demon.co.uk/zx81.htm#L0D6F%23L0D6F
http://www.wearmouth.demon.co.uk/zx81.htm#L0CDE%23L0CDE
http://www.wearmouth.demon.co.uk/zx81.htm#L14BC%23L14BC
http://www.wearmouth.demon.co.uk/zx81.htm#L0A73%23L0A73
http://www.wearmouth.demon.co.uk/zx81.htm#L072C%23L072C
http://www.wearmouth.demon.co.uk/zx81.htm#L0ACB%23L0ACB
http://www.wearmouth.demon.co.uk/zx81.htm#L0869%23L0869
http://www.wearmouth.demon.co.uk/zx81.htm#L0F23%23L0F23
http://www.wearmouth.demon.co.uk/zx81.htm#L0F2B%23L0F2B
http://www.wearmouth.demon.co.uk/zx81.htm#L0F32%23L0F32

rr

STOP

LOCDC: RST 08H ; ERROR-1

DEFB $08 ; Error Report: STOP statement

the interpretation of a line continues with a check for just spaces
followed by a carriage return.

The IF command also branches here with a true value to execute the
statement after the THEN but the statement can be null so

10 IF 1 = 1 THEN

passes syntax (on all ZX computers).

;; LINE-NULL
LOCDE: RST 18H ; GET-CHAR
LD B,S$00 ; prepare to index - early.
CP $76 ; compare to NEWLINE.
RET Z ; return if so.
LD C,A ; transfer character to C.
RST 20H ; NEXT-CHAR advances.
LD A,C ; character to A
SUB SEL ; subtract 'LPRINT' - lowest command.
JR C,L0D26 ; forward if less to REPORT-C2
LD C,A ; reduced token to C
LD HL,L0OC29 ; set HL to address of offset table.
ADD HL, BC ; index into offset table.
LD C, (HL) ; fetch offset
ADD HL, BC ; index into parameter table.
JR LOCF7 ; to GET-PARAM
;; SCAN-LOOP
LOCF4: LD HL, ($4030) ; sv T _ADDR lo

’

-> Entry Point to Scanning Loop

;; GET-PARAM
LOCF7: LD A, (HL) ;
INC HL ;
LD ($4030) , HL ; sv T _ADDR lo
LD BC, LOCF4 ; Address: SCAN-LOOP
PUSH BC ; 1s pushed on machine stack.
LD C,A ;
CP SOB ;
JR NC, LOD10 ; to SEPARATOR
LD HL,LODl16 ; class-tbl - the address of the class
table.
LD B, $00 ;
ADD HL, BC ;
LD C, (HL) ;

ADD HL, BC ;

http://www.wearmouth.demon.co.uk/zx81.htm#L0D16%23L0D16
http://www.wearmouth.demon.co.uk/zx81.htm#L0D10%23L0D10
http://www.wearmouth.demon.co.uk/zx81.htm#L0CF4%23L0CF4
http://www.wearmouth.demon.co.uk/zx81.htm#L0CF7%23L0CF7
http://www.wearmouth.demon.co.uk/zx81.htm#L0C29%23L0C29
http://www.wearmouth.demon.co.uk/zx81.htm#L0D26%23L0D26

PUSH HL H

RST 18H ; GET-CHAR
RET ; indirect jump to class routine and
; by subsequent RET to SCAN-LOOP.

; THE 'SEPARATOR' ROUTINE

; » SEPARATOR

LOD10: RST 18H ; GET-CHAR
CPp C ;
JR NZ,L0D26 ; to REPORT-C2

; '"Nonsense in BASIC'

RST 20H ; NEXT-CHAR
RET ; return

; THE 'COMMAND CLASS' TABLE

;; class-tbl

LODl16: DEFB LOD2D - $; 17 offset to; Address: CLASS-0
DEFB L0D3C - $; 25 offset to; Address: CLASS-1
DEFB LOD6B - $; 53 offset to; Address: CLASS-2
DEFB L0D28 - $; OF offset to; Address: CLASS-3
DEFB LOD85 - $; 6B offset to; Address: CLASS-4
DEFB LOD2E - $; 13 offset to; Address: CLASS-5
DEFB LOD92 - S ; 76 offset to; Address: CLASS-6

; THE 'CHECK END' SUBROUTINE

; Check for end of statement and that no spurious characters occur after

; a correctly parsed statement. Since only one statement is allowed on each
; line, the only character that may follow a statement is a NEWLINE.

;; CHECK-END
LOD1D: CALL LODAG6 ; routine SYNTAX-Z

RET return in runtime.

POP else drop return address.
;; CHECK-2
LOD22: LD fetch character.

CPp compare to NEWLINE.

RET return if so.

;; REPORT-C2
LOD26: JR

to REPORT-C
'Nonsense in BASIC'

; COMMAND CLASSES 03, 00, 05

http://www.wearmouth.demon.co.uk/zx81.htm#L0D9A%23L0D9A
http://www.wearmouth.demon.co.uk/zx81.htm#L0DA6%23L0DA6
http://www.wearmouth.demon.co.uk/zx81.htm#L0D92%23L0D92
http://www.wearmouth.demon.co.uk/zx81.htm#L0D2E%23L0D2E
http://www.wearmouth.demon.co.uk/zx81.htm#L0D85%23L0D85
http://www.wearmouth.demon.co.uk/zx81.htm#L0D28%23L0D28
http://www.wearmouth.demon.co.uk/zx81.htm#L0D6B%23L0D6B
http://www.wearmouth.demon.co.uk/zx81.htm#L0D3C%23L0D3C
http://www.wearmouth.demon.co.uk/zx81.htm#L0D2D%23L0D2D
http://www.wearmouth.demon.co.uk/zx81.htm#L0D26%23L0D26

;; CLASS-3
L0D28: CP
CALL

;; CLASS-0
LOD2D: CP

;; CLASS-5

LOD2E: POP
CALL
EX
LD
LD
INC
LD
EX

;; CLASS-END
LOD3A: PUSH
RET

;; CLASS-1
LOD3C: CALL

;; CLASS-4-2
LOD3F: LD
JR

SET
JR

;5 REPORT-2
LOD4B: RST
DEFB

;; SET-STK

LOD4D: CALL
BIT
JR

XOR
CALL
CALL
LD
OR
LD
EX

;; SET-STRLN
LOD63: LD
LD

$76
L0D9C

BC
Z,L0D1D
DE, HL

HL, ($4030)
C, (HL)

HL

B, (HL)

DE, HL

BC

(IY+$2D), $00
NC,L0D4D

1, (IY+$2D)
NZ,L0D63

08H
$01

Z,L11A7
6, (IY+$01)
NZ,L0D63

A
LODAG
NZ,L13F8
HL, $402D
(HL)
(HL) , A
DE, HL

($402E) ,BC
($4012) ,HL

’

routine NO-TO-STK

routine CHECK-END

sv T ADDR 1lo

routine LOOK-VARS

sv FLAGX
to SET-STK

sv FLAGX
to SET-STRLN

ERROR-1
Error Report: Variable not found

routine STK-VAR
sv FLAGS - Numeric or string result?
to SET-STRLN

routine SYNTAX-7Z
routine STK-FETCH
sv FLAGX

sv STRLEN 1lo
sv DEST-1o

http://www.wearmouth.demon.co.uk/zx81.htm#L13F8%23L13F8
http://www.wearmouth.demon.co.uk/zx81.htm#L0DA6%23L0DA6
http://www.wearmouth.demon.co.uk/zx81.htm#L0D63%23L0D63
http://www.wearmouth.demon.co.uk/zx81.htm#L11A7%23L11A7
http://www.wearmouth.demon.co.uk/zx81.htm#L0D63%23L0D63
http://www.wearmouth.demon.co.uk/zx81.htm#L0D4D%23L0D4D
http://www.wearmouth.demon.co.uk/zx81.htm#L111C%23L111C
http://www.wearmouth.demon.co.uk/zx81.htm#L0D1D%23L0D1D
http://www.wearmouth.demon.co.uk/zx81.htm#L0D9C%23L0D9C

; THE 'REM' COMMAND ROUTINE

;7 REM

LOD6A: RET ;
;; CLASS-2

LOD6B: POP BC 7

LD A, ($4001) ; sv FLAGS

;; INPUT-REP

LODGF: PUSH AF ;
CALL LOF55 ; routine SCANNING
POP AF ;
LD BC,L1321 ; Address: LET
LD D, (IY+3501) ; sv FLAGS
XOR D ;
AND $40 ;
JR NZ,LODSA ; to REPORT-C
BIT 7,D ;
JR NZ,LOD3A ; to CLASS-END
JR LOD22 ; to CHECK-2
;; CLASS-4
LOD85: CALL L111C ; routine LOOK-VARS
PUSH AF ;
LD A,C ;
OR SOF ;
INC A ;
JR NZ,LODSA ; to REPORT-C
POP AF ;
JR LOD3F ; to CLASS-4-2
;; CLASS-6
LOD92: CALL LOF55 ; routine SCANNING
BIT 6, (IY+S$S01) ; sv FLAGS - Numeric or string result?
RET Nz ;

; ;+ REPORT-C
LODOA: RST 08H ; ERROR-1
DEFB S0B ; Error Report: Nonsense in BASIC

; THE 'NUMBER TO STACK' SUBROUTINE

;; NO-TO-STK
LOD9C: JR NZ,L0OD92 ; back to CLASS-6 with a non-zero number.

CALL LODAG ; routine SYNTAX-7Z

http://www.wearmouth.demon.co.uk/zx81.htm#L0DA6%23L0DA6
http://www.wearmouth.demon.co.uk/zx81.htm#L0D92%23L0D92
http://www.wearmouth.demon.co.uk/zx81.htm#L0F55%23L0F55
http://www.wearmouth.demon.co.uk/zx81.htm#L0D3F%23L0D3F
http://www.wearmouth.demon.co.uk/zx81.htm#L0D9A%23L0D9A
http://www.wearmouth.demon.co.uk/zx81.htm#L111C%23L111C
http://www.wearmouth.demon.co.uk/zx81.htm#L0D22%23L0D22
http://www.wearmouth.demon.co.uk/zx81.htm#L0D3A%23L0D3A
http://www.wearmouth.demon.co.uk/zx81.htm#L0D9A%23L0D9A
http://www.wearmouth.demon.co.uk/zx81.htm#L1321%23L1321
http://www.wearmouth.demon.co.uk/zx81.htm#L0F55%23L0F55

RET Z ; return if checking syntax.

; in runtime a zero default is placed on the calculator stack.

RST 28H ;; FP-CALC
DEFB SA0 ;;stk-zero
DEFB $34 ; ;end-calc
RET ; return.

; THE 'SYNTAX-Z' SUBROUTINE

; This routine returns with zero flag set if checking syntax.

; Calling this routine uses three instruction bytes compared to four if the
; bit test is implemented inline.

;; SYNTAX-2Z
LODAG6: BIT 7, (IY+S$01) ; test FLAGS - checking syntax only?
RET ; return.

; THE 'IF' COMMAND ROUTINE

; In runtime, the class routines have evaluated the test expression and
; the result, true or false, is on the stack.

;; IF
LODAB: CALL LODAG ; routine SYNTAX-Z
JR Z,L0DB6 ; forward if checking syntax to IF-END

; else delete the Boolean value on the calculator stack.

RST 28H ;; FP-CALC
DEFB 502 ;;delete
DEFB $34 ; ;end-calc

; register DE points to exponent of floating point value.

LD A, (DE) ; fetch exponent.
AND A ; test for zero - FALSE.
RET Z ; return if so.

;; IF-END

LODBG6: JPp LOCDE ; jump back to LINE-NULL

; THE 'FOR' COMMAND ROUTINE

;; FOR
LODB9: CP SEO ; 1s current character 'STEP' ?
JR NZ,LODC6 ; forward if not to F-USE-ONE
RST 20H ; NEXT-CHAR
CALL LOD92 ; routine CLASS-6 stacks the number
CALL LOD1D ; routine CHECK-END

JR LODCC ; forward to F-REORDER

http://www.wearmouth.demon.co.uk/zx81.htm#L0DCC%23L0DCC
http://www.wearmouth.demon.co.uk/zx81.htm#L0D1D%23L0D1D
http://www.wearmouth.demon.co.uk/zx81.htm#L0D92%23L0D92
http://www.wearmouth.demon.co.uk/zx81.htm#L0DC6%23L0DC6
http://www.wearmouth.demon.co.uk/zx81.htm#L0CDE%23L0CDE
http://www.wearmouth.demon.co.uk/zx81.htm#L0DB6%23L0DB6
http://www.wearmouth.demon.co.uk/zx81.htm#L0DA6%23L0DA6

;; F-USE-ONE

LODC6: CALL LOD1D ; routine CHECK-END

RST 28H ;; FP-CALC

DEFB SAl ; ;stk-one

DEFB $34 ;;end-calc
; ; F-REORDER
LODCC: RST 28H ;; FP-CALC v, 1, s.

DEFB SCO ;7 st-mem-0 v, 1, s.

DEFB $02 ;;delete v, 1.

DEFB 501 ; ;exchange 1, v.

DEFB SEO ; rget-mem-0 1, v, s.

DEFB S01 ; ;exchange 1, s, v.

DEFB $34 ; ;end-calc 1, s, v

CALL L1321 ; routine LET

LD ($401F) , HL ; set MEM to address variable.

DEC HL ; point to letter.

LD A, (HL) ;

SET 7, (HL) ;

LD BC, $0006 ;

ADD HL, BC ;

RLCA ;

JR C,LODEA ; to F-LMT-STP

SLA C ;

CALL LO99E ; routine MAKE-ROOM

INC HL ;
;; F-LMT-STP
LODEA: PUSH HL ;

RST 28H ;; FP-CALC

DEFB 502 ;;delete

DEFB 502 ;;delete

DEFB $34 ;;end-calc

POP HL ;

EX DE, HL ;

LD C,s$0A ; ten bytes to be moved.

LDIR ; copy bytes

LD HL, ($4007) ; set HL to system variable PPC current
line.

EX DE, HL ; transfer to DE, variable pointer to HL.

INC DE ; loop start will be this line + 1 at
least.

LD (HL) ,E ;

INC HL ;

LD (HL), D ;

CALL LOESA ; routine NEXT-LOOP considers an initial
pass.

RET NC ; return if possible.

; else program continues from point following matching NEXT.

http://www.wearmouth.demon.co.uk/zx81.htm#L0E5A%23L0E5A
http://www.wearmouth.demon.co.uk/zx81.htm#L099E%23L099E
http://www.wearmouth.demon.co.uk/zx81.htm#L0DEA%23L0DEA
http://www.wearmouth.demon.co.uk/zx81.htm#L1321%23L1321
http://www.wearmouth.demon.co.uk/zx81.htm#L0D1D%23L0D1D

BIT 7, (IY+508) ; test PPC hi

RET NZ ; return if over 32767 2?7

LD B, (IY+S$2E) ; fetch variable name from STRLEN lo
RES 6,B ; make a true letter.

LD HL, ($4029) ; set HL from NXTLIN

; now enter a loop to look for matching next.

; ; NXTLIN-NO

LOEOE: LD A, (HL) ; fetch high byte of line number.
AND SCO ; mask off low bits $3F
JR NZ,LOE2A ; forward at end of program to FOR-END
PUSH BC ; save letter
CALL LO9F2 ; routine NEXT-ONE finds next line.
POP BC ; restore letter
INC HL ; step past low byte
INC HL ; past the
INC HL ; line length.
CALL L004cC ; routine TEMP-PTR1 sets CH _ADD
RST 18H ; GET-CHAR
CP SF3 ; compare to 'NEXT'.
EX DE, HL ; next line to HL.
JR NZ, LOEQOE ; back with no match to NXTLIN-NO
EX DE, HL ; restore pointer.
RST 20H ; NEXT-CHAR advances and gets letter in A.
EX DE, HL ; save pointer
CPp B ; compare to variable name.
JR NZ, LOEOE ; back with mismatch to NXTLIN-NO

; ; FOR-END

LOE2A: LD ($4029) , HL ; update system variable NXTLIN
RET ; return.

; THE 'NEXT' COMMAND ROUTINE

; ; NEXT

LOE2E: BIT 1, (IY+$2D) ; sv FLAGX
JP NZ,LOD4B ; to REPORT-2
LD HL, ($4012) ; DEST
BIT 7, (HL) ;
JR Z,L0E58 ; to REPORT-1
INC HL ;
LD ($401F) , HL ; sv MEM lo
RST 28H ;; FP-CALC
DEFB SEO ; s get-mem-0

DEFB SE2 ; ;get-mem-2

http://www.wearmouth.demon.co.uk/zx81.htm#L0E58%23L0E58
http://www.wearmouth.demon.co.uk/zx81.htm#L0D4B%23L0D4B
http://www.wearmouth.demon.co.uk/zx81.htm#L0E0E%23L0E0E
http://www.wearmouth.demon.co.uk/zx81.htm#L0E0E%23L0E0E
http://www.wearmouth.demon.co.uk/zx81.htm#L004C%23L004C
http://www.wearmouth.demon.co.uk/zx81.htm#L09F2%23L09F2
http://www.wearmouth.demon.co.uk/zx81.htm#L0E2A%23L0E2A

DEFB SOF ;;addition

DEFB $CO ;;st-mem-0
DEFB 502 ; ;delete
DEFB $34 ;;end-calc
CALL LOEDA ; routine NEXT-LOOP
RET C ;

LD HL, ($401F) ; sv MEM lo
LD DE, SO00F ;

ADD HL, DE ;

LD E, (HL) ;

INC HL ;

LD D, (HL) ;

EX DE, HL ;

JR LOE86 ; to GOTO-2

;7 REPORT-1
LOE58: RST 08H ; ERROR-1
DEFB 500 ; Error Report: NEXT without FOR

; THE 'NEXT-LOOP' SUBROUTINE

; ; NEXT-LOOP

LOESA: RST 28H ;; FP-CALC
DEFB SE1 ;;get-mem-1
DEFB SEO ; ;get-mem-0
DEFB SE2 ;7 get-mem-2
DEFB $32 ;:1less-0
DEFB $00 ;7 jump-true
DEFB 502 ;;to LOE62, LMT-V-VAL
DEFB $01 ; ;exchange

;; LMT-V-VAL

LOE62: DEFB 503 ;s subtract
DEFB $33 ;;greater-0
DEFB $00 ;7 jump-true
DEFB 504 ;;to LOE6Y9, IMPOSS
DEFB $34 ;;end-calc
AND A ; clear carry flag
RET ; return.
;; IMPOSS
LOE69: DEFB $34 ;;end-calc
SCF ; set carry flag

RET ; return.

http://www.wearmouth.demon.co.uk/zx81.htm#L0E69%23L0E69
http://www.wearmouth.demon.co.uk/zx81.htm#L0E62%23L0E62
http://www.wearmouth.demon.co.uk/zx81.htm#L0E86%23L0E86
http://www.wearmouth.demon.co.uk/zx81.htm#L0E5A%23L0E5A

; THE 'RAND' COMMAND ROUTINE

; The keyword was 'RANDOMISE' on the ZX80, is 'RAND' here on the ZX81 and
; becomes 'RANDOMIZE' on the ZX Spectrum.

; In all invocations the procedure is the same - to set the SEED system
variable

; with a supplied integer wvalue or to use a time-based value if no number,
or

; zero, 1s supplied.

;; RAND
LOE6C: CALL LOEA7 ; routine FIND-INT
LD A,B ; test value
OR C ; for zero
JR NZ,LOE77 ; forward if not zero to SET-SEED
LD BC, ($4034) ; fetch value of FRAMES system variable.

;; SET-SEED
LOE77: LD ($4032),BC ; update the SEED system variable.
RET ; return.

; THE 'CONT' COMMAND ROUTINE

; Another abbreviated command. ROM space was really tight.

; CONTINUE at the line number that was set when break was pressed.
; Sometimes the current line, sometimes the next line.

;7 CONT
LOE7C: LD HL, ($402B) ; set HL from system variable OLDPPC
JR LOE86 ; forward to GOTO-2

; THE 'GOTO' COMMAND ROUTINE

; This token also suffered from the shortage of room and there is no space
; getween GO and TO as there is on the ZX80 and ZX Spectrum. The same also
; applies to the GOSUB keyword.

;; GOTO
LOE81: CALL LOEAY ; routine FIND-INT
1D H,B ;
LD L,C ;
;; GOTO-2
LOE86: LD A,H ;
CP SFO ;
JR NC, LOEAD ; to REPORT-B
CALL LO9D8 ; routine LINE-ADDR
LD ($4029) ,HL ; sv NXTLIN lo
RET ;

; THE 'POKE' COMMAND ROUTINE

http://www.wearmouth.demon.co.uk/zx81.htm#L09D8%23L09D8
http://www.wearmouth.demon.co.uk/zx81.htm#L0EAD%23L0EAD
http://www.wearmouth.demon.co.uk/zx81.htm#L0EA7%23L0EA7
http://www.wearmouth.demon.co.uk/zx81.htm#L0E86%23L0E86
http://www.wearmouth.demon.co.uk/zx81.htm#L0E77%23L0E77
http://www.wearmouth.demon.co.uk/zx81.htm#L0EA7%23L0EA7

LOES2: CALL
JR

JR
NEG
;; POKE-SAVE

LOE9B: PUSH
CALL

POP

; Note. the next two instructions

L15CD
C, LOEAD

7,LOE9B

AF
LOEAT7

AF

; inappropriate here.

BIT
RET

LD
RET

7, (IY+S00)
7

(BC),A

; THE 'FIND INTEGER' SUBROUTINE

;; FIND-INT
LOEA7: CALL
JR

RET

; ;7 REPORT-B

LOEAD: RST
DEFB

L158A
C,LOEAD

N

08H
SOA

; THE 'RUN' COMMAND ROUTINE

LOEAF: CALL
Jp

; THE 'GOSUB'

;; GOSUB

LOEB5: LD
INC
EX
PUSH
LD

LOE81
L1492

COMMAND ROUTINE

HL, ($4007)
HL

(SP) , HL

HL
($4002),SP

’

’

’

’

routine FP-TO-A
forward, with overflow, to REPORT-B

forward, if positive, to POKE-SAVE
negate

preserve value.

routine FIND-INT gets address in BC
invoking the error routine with overflow
or a negative number.

restore value.

are legacy code from the 7ZX80 and

test ERR NR - is it still SFF 2

return with error.

update the address contents.
return.

routine FP-TO-BC
forward with overflow to REPORT-B

return if positive (0-65535).

ERROR-1
Error Report: Integer out of range

routine GOTO
to CLEAR

sv PPC lo

set the error stack pointer - ERR SP

http://www.wearmouth.demon.co.uk/zx81.htm#L149A%23L149A
http://www.wearmouth.demon.co.uk/zx81.htm#L0E81%23L0E81
http://www.wearmouth.demon.co.uk/zx81.htm#L0EAD%23L0EAD
http://www.wearmouth.demon.co.uk/zx81.htm#L158A%23L158A
http://www.wearmouth.demon.co.uk/zx81.htm#L0EA7%23L0EA7
http://www.wearmouth.demon.co.uk/zx81.htm#L0E9B%23L0E9B
http://www.wearmouth.demon.co.uk/zx81.htm#L0EAD%23L0EAD
http://www.wearmouth.demon.co.uk/zx81.htm#L15CD%23L15CD

CALL
LD

LOE81
BC, $0006

; THE 'TEST ROOM' SUBROUTINE

;; TEST-ROOM

LOEC5: LD
ADD
JR

EX
LD
ADD
SBC
RET

;; REPORT-4
LOED3: LD
JP

; THE 'RETURN'

; ; RETURN

LOED8: POP
EX
LD
CP
JR

LD
JR

; ; REPORT-7
LOEES5: EX
PUSH

RST
DEFB

HL, ($401C)
HL, BC
C,LOED3

DE, HL
HL, $0024
HL, DE
HL, SP

C

L,$03
L0058

COMMAND ROUTINE

HL
(SP),HL

A,H

S3E
Z,L0EES

($4002),SP
LOFE86

(SP), HL

08H
$06

; THE 'INPUT' COMMAND ROUTINE

;; INPUT

LOEE9: BIT
JR
CALL
LD
SET

7, (IY+508)
NZ,L0F21

L14A3
HL, $402D
5, (HL)

’

’

’

routine GOTO

sv STKEND lo

to REPORT-4

to ERROR-3

to REPORT-7

sv ERR _SP 1lo
back to GOTO-2

ERROR-1
Error Report:

sv PPC_hi
to REPORT-8

routine X-TEMP
sv FLAGX

RETURN without

GOSUB

http://www.wearmouth.demon.co.uk/zx81.htm#L14A3%23L14A3
http://www.wearmouth.demon.co.uk/zx81.htm#L0F21%23L0F21
http://www.wearmouth.demon.co.uk/zx81.htm#L0E86%23L0E86
http://www.wearmouth.demon.co.uk/zx81.htm#L0EE5%23L0EE5
http://www.wearmouth.demon.co.uk/zx81.htm#L0058%23L0058
http://www.wearmouth.demon.co.uk/zx81.htm#L0ED3%23L0ED3
http://www.wearmouth.demon.co.uk/zx81.htm#L0E81%23L0E81

RES
LD
AND
LD
JR

LD

; ; PROMPT
LOFO05: OR
LD

RST
LD
LD
RRCA
RRCA
JR

LD
LD
DEC
LD

;; ENTER-CUR

LOF14: DEC
LD
LD
LD
POP
Jp

;; REPORT-8
LOF21: RST
DEFB

; THE

;; FAST

LOF23: CALL
RES
RET

; THE 'SLOW'

;; SLOW

LOF2B: SET
Jp

; THE 'PAUSE'

'"PAUSE' COMMAND ROUTINE

6, (HL)

A, ($4001)
$40

BC, $0002
NZ,LOF05

C,$04

C,LOF14

A, SOB
(DE) , A
HL
(HL) , A

HL
(HL) , STF
HL, ($4039)
($4030) ,HL
HL

L0472

08H
$07

LO2E7
6, (IY+$3B)

COMMAND ROUTINE

6, (IY+$3B)
L0207

COMMAND ROUTINE

’

’

’

’

’

sv FLAGS

to PROMPT

BC-SPACES

to ENTER-CUR

sv S POSN x
sv T _ADDR 1lo

to LOWER

ERROR-1
Error Report:

routine SET-FAST

sv CDFLAG
return.

sv CDFLAG
to SLOW/FAST

http://www.wearmouth.demon.co.uk/zx81.htm#L0207%23L0207
http://www.wearmouth.demon.co.uk/zx81.htm#L02E7%23L02E7
http://www.wearmouth.demon.co.uk/zx81.htm#L0472%23L0472
http://www.wearmouth.demon.co.uk/zx81.htm#L0F14%23L0F14
http://www.wearmouth.demon.co.uk/zx81.htm#L0F05%23L0F05

;; PAUSE

LOF32: CALL LOEAY ; routine FIND-INT
CALL LO2E7 ; routine SET-FAST
D H,B ;
1D L,C ;
CALL L022D ; routine DISPLAY-P
LD (IY+$35),SFF ; sv FRAMES hi
CALL 10207 ; routine SLOW/FAST
JR LOF4B ; routine DEBOUNCE

; THE 'BREAK' SUBROUTINE

;; BREAK-1

LOF46: LD A,STF ; read port $7FFE - keys B,N,M, .,SPACE.
IN A, (SFE) ;
RRA ; carry will be set if space not pressed.

; THE 'DEBOUNCE' SUBROUTINE

; ; DEBOUNCE

LOF4B: RES 0, (IY+S$3B) ; update system variable CDFLAG
LD A, SFF ;
LD ($4027) ,A ; update system variable DEBOUNCE
RET ; return.

; THE 'SCANNING' SUBROUTINE

; This recursive routine is where the ZX81 gets its power. Provided there
is

; enough memory it can evaluate an expression of unlimited complexity.

; Note. there is no unary plus so, as on the ZX80, PRINT +1 gives a syntax
error.

; PRINT +1 works on the Spectrum but so too does PRINT + "STRING".

; » SCANNING

LOF55: RST 18H ; GET-CHAR
LD B, $00 ; set B register to zero.
PUSH BC ; stack zero as a priority end-marker.

;7 S-LOOP-1
LOF59: CP $40 ; compare to the 'RND' character
JR NZ,LOF8C ; forward, if not, to S-TEST-PI

; THE 'RND' FUNCTION

CALL LODAG6 ; routine SYNTAX-7Z
JR Z,LOEF8A ; forward if checking syntax to S-JPI-END

http://www.wearmouth.demon.co.uk/zx81.htm#L0F8A%23L0F8A
http://www.wearmouth.demon.co.uk/zx81.htm#L0DA6%23L0DA6
http://www.wearmouth.demon.co.uk/zx81.htm#L0F8C%23L0F8C
http://www.wearmouth.demon.co.uk/zx81.htm#L0F4B%23L0F4B
http://www.wearmouth.demon.co.uk/zx81.htm#L0207%23L0207
http://www.wearmouth.demon.co.uk/zx81.htm#L022D%23L022D
http://www.wearmouth.demon.co.uk/zx81.htm#L02E7%23L02E7
http://www.wearmouth.demon.co.uk/zx81.htm#L0EA7%23L0EA7

LD
CALL

RST

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

CALL

LD

LD
value.

AND

JR

SUB
LD

;; S-JPI-END
LOF8A: JR

;7 S-TEST-PI
LOF8C: CP
JR

BC, ($4032)
L1520

28H
$Al
SOF
$30
$37
$16
$04
$30
$80
$41
$00,500,580
$2E
$02
$Al
$03
$2D
$34

L158A
($4032) ,BC
A, (HL)

$42
NZ,LOF9D

; THE 'PI' EVALUATION

RST
DEFB
DEFB

INC
stack.

;; S-PI-END
LOF99: RST

JP

advancing.

LODAG6
Z,L0F99

28H
$A3
$34

(HL)

~

sv SEED 1o
routine STACK-BC

FP-CALC
stk-one
addition
stk-data

;Exponent: $87, Bytes: 1

(+00,+00,+00)
multiply
stk-data

;Bytes: 3

Exponent $91
(+00)

; n—mod-m

delete

; stk-one
; subtract

duplicate
end-calc

routine FP-TO-BC
update the SEED system variable.
HL addresses the exponent of the last

test for zero
forward, if so, to S-JPI-END

else reduce exponent by sixteen

thus dividing by 65536 for last value.

forward to S-PI-END

the 'PI' character
forward, if not, to S-TST-INK

routine SYNTAX-Z
forward if checking syntax to S-PI-END

FP-CALC

;stk-pi/2
;end-calc

double the exponent giving PI on the

NEXT-CHAR advances character pointer.

jump forward to S-NUMERIC to set the flag

to signal numeric result before

http://www.wearmouth.demon.co.uk/zx81.htm#L1083%23L1083
http://www.wearmouth.demon.co.uk/zx81.htm#L0F99%23L0F99
http://www.wearmouth.demon.co.uk/zx81.htm#L0DA6%23L0DA6
http://www.wearmouth.demon.co.uk/zx81.htm#L0F9D%23L0F9D
http://www.wearmouth.demon.co.uk/zx81.htm#L0F99%23L0F99
http://www.wearmouth.demon.co.uk/zx81.htm#L0F8A%23L0F8A
http://www.wearmouth.demon.co.uk/zx81.htm#L158A%23L158A
http://www.wearmouth.demon.co.uk/zx81.htm#L1520%23L1520

rs

S-TST-INK

LOF9D: CP

rs

THE

JR

INC
CALL
LD
ADC
LD
LD
EX
JR

S-ALPHANUM

LOFB2: CALL

JR

CPp
JPp

LD
CP
JR

CP
JR

CALL

pointer.

’

CALL

CP
JR

CALL
JR

; Note.
;7 S-QUOTE
LOFD6: CP

JR

s41
NZ,LOFB2

'INKEYS'

EVALUATION

DE, HL
LOFED

L14D2
C,L1025

S1B
Z,L1047

BC, $09D8
$16
Z,L11020

$10
NZ,LOFD6

consider a quoted string e.g.
quotes are not allowed within a string.

SOB
NZ,L1002

compare to character 'INKEYS'
forward, if not, to S-ALPHANUM

routine KEYBOARD

routine DECODE

forward to S-STRING

routine ALPHANUM
forward, if alphanumeric to S-LTR-DGT

is character a '.' ?
Jump forward if so to S-DECIMAL

prepare priority 09, operation 'subtract'
is character unary minus '-' ?

forward, if so, to S-PUSH-PO

is character a '"(' ?
forward if not to S-QUOTE

routine CH-ADD+1 advances character
recursively call routine SCANNING to
evaluate the sub-expression.

is subsequent character a '")' ?

forward if not to S-RPT-C

routine CH-ADD+1 advances.
relative jump to S-JP-CONT3 and then S-

PRINT "Hooray!"

is character a quote (") ?
forward, if not, to S—-FUNCTION

http://www.wearmouth.demon.co.uk/zx81.htm#L1002%23L1002
http://www.wearmouth.demon.co.uk/zx81.htm#L0FF8%23L0FF8
http://www.wearmouth.demon.co.uk/zx81.htm#L0049%23L0049
http://www.wearmouth.demon.co.uk/zx81.htm#L0FFF%23L0FFF
http://www.wearmouth.demon.co.uk/zx81.htm#L0F55%23L0F55
http://www.wearmouth.demon.co.uk/zx81.htm#L0049%23L0049
http://www.wearmouth.demon.co.uk/zx81.htm#L0FD6%23L0FD6
http://www.wearmouth.demon.co.uk/zx81.htm#L1020%23L1020
http://www.wearmouth.demon.co.uk/zx81.htm#L1047%23L1047
http://www.wearmouth.demon.co.uk/zx81.htm#L1025%23L1025
http://www.wearmouth.demon.co.uk/zx81.htm#L14D2%23L14D2
http://www.wearmouth.demon.co.uk/zx81.htm#L0FED%23L0FED
http://www.wearmouth.demon.co.uk/zx81.htm#L07BD%23L07BD
http://www.wearmouth.demon.co.uk/zx81.htm#L02BB%23L02BB
http://www.wearmouth.demon.co.uk/zx81.htm#L0FB2%23L0FB2

CALL L0049 ; routine CH-ADD+1 advances

PUSH HL ; * save start of string.
JR LOFE3 ; forward to S-QUOTE-S
;7 S-Q-AGAIN
LOFEO: CALL 10049 ; routine CH-ADD+1
;7 S-QUOTE-S
LOFE3: CP SOB ; is character a '""' ?
JR NZ, LOFFB ; forward if not to S-Q-NL
POP DE ; * retrieve start of string
AND A ; prepare to subtract.
SBC HL, DE ; subtract start from current position.
LD B,H ; transfer this length
LD C,L ; to the BC register pair.
;7 S-STRING
LOFED: LD HL, $4001 ; address system variable FLAGS
RES 6, (HL) ; signal string result
BIT 7, (HL) ; test if checking syntax.
CALL NZ,L12C3 ; 1n run—-time routine STK-STO-$ stacks the

; string descriptor - start DE, length BC.

RST 20H ; NEXT-CHAR advances pointer.
;7 S-J-CONT-3
LOFF8: JP 11088 ; jump to S-CONT-3

; A string with no terminating quote has to be considered.

;7 S-Q-NL
LOFFB: CP $76 ; compare to NEWLINE
JR NZ,LOFEQ ; loop back if not to S-Q-AGAIN
;; S-RPT-C
LOFFF: Jp LOD9A ; to REPORT-C
;7 S—-FUNCTION
L1002: SUB sc4 ; subtract 'CODE' reducing codes
; CODE thru '<>' to range $00 - $XX
JR C,LOFFF ; back, if less, to S-RPT-C

; test for NOT the last function in character set.

LD BC, $O04EC ; prepare priority $04, operation 'not'
CP $13 ; compare to 'NOT' (- CODE)

JR Z,L1020 ; forward, i1f so, to S-PUSH-PO

JR NC, LOFFFE ; back with anything higher to S-RPT-C

; else is a function 'CODE' thru 'CHRS'

http://www.wearmouth.demon.co.uk/zx81.htm#L0FFF%23L0FFF
http://www.wearmouth.demon.co.uk/zx81.htm#L1020%23L1020
http://www.wearmouth.demon.co.uk/zx81.htm#L0FFF%23L0FFF
http://www.wearmouth.demon.co.uk/zx81.htm#L0D9A%23L0D9A
http://www.wearmouth.demon.co.uk/zx81.htm#L0FE0%23L0FE0
http://www.wearmouth.demon.co.uk/zx81.htm#L1088%23L1088
http://www.wearmouth.demon.co.uk/zx81.htm#L12C3%23L12C3
http://www.wearmouth.demon.co.uk/zx81.htm#L0FFB%23L0FFB
http://www.wearmouth.demon.co.uk/zx81.htm#L0049%23L0049
http://www.wearmouth.demon.co.uk/zx81.htm#L0FE3%23L0FE3
http://www.wearmouth.demon.co.uk/zx81.htm#L0049%23L0049

LD B, $10 ; priority sixteen binds all functions to
; arguments removing the need for brackets.

ADD A, $D9 ; add $D9 to give range $D9 thru S$EB
; bit 6 is set to show numeric argument.

; bit 7 is set to show numeric result.

; now adjust these default argument/result indicators.

LD C,A ; save code in C

CP sDC ; separate 'CODE', 'VAL', 'LEN'

JR NC,L101A ; skip forward if string operand to S-NO-
TO-$

RES 6,C ; signal string operand.
;; S-NO-TO-$
L101A: CP SEA ; 1solate top of range 'STRS$S' and 'CHRS'

JR C,L1020 ; skip forward with others to S-PUSH-PO

RES 7,C ; signal string result.
;; S—-PUSH-PO
1L1020: ©PUSH BC ; push the priority/operation

RST 20H ; NEXT-CHAR

JP LOF59 ; jump back to S-LOOP-1
;; S-LTR-DGT
L1025: CP $26 ; compare to 'A'.

JR C,L1047 ; forward if less to S-DECIMAL

CALL Lilic ; routine LOOK-VARS

Jp C,L0D4B ; back if not found to REPORT-2

; a variable is always 'found' when
checking
; syntax.

CALL Z,L11A7 ; routine STK-VAR stacks string parameters

or

; returns cell location if numeric.

LD A, ($4001) ; fetch FLAGS

CP SCO ; compare to numeric result/numeric operand
JR C,L1087 ; forward if not numeric to S-CONT-2

INC HL ; address numeric contents of variable.

LD DE, ($401C) ; set destination to STKEND

CALL L19F6 ; routine MOVE-FP stacks the five bytes

EX DE, HL ; transfer new free location from DE to HL.
LD ($401C) , HL ; update STKEND system variable.

JR 11087 ; forward to S-CONT-2

; The Scanning Decimal routine is invoked when a decimal point or digit is
; found in the expression.

; When checking syntax, then the 'hidden floating point' form is placed

; after the number in the BASIC line.

http://www.wearmouth.demon.co.uk/zx81.htm#L1087%23L1087
http://www.wearmouth.demon.co.uk/zx81.htm#L19F6%23L19F6
http://www.wearmouth.demon.co.uk/zx81.htm#L1087%23L1087
http://www.wearmouth.demon.co.uk/zx81.htm#L11A7%23L11A7
http://www.wearmouth.demon.co.uk/zx81.htm#L0D4B%23L0D4B
http://www.wearmouth.demon.co.uk/zx81.htm#L111C%23L111C
http://www.wearmouth.demon.co.uk/zx81.htm#L1047%23L1047
http://www.wearmouth.demon.co.uk/zx81.htm#L0F59%23L0F59
http://www.wearmouth.demon.co.uk/zx81.htm#L1020%23L1020
http://www.wearmouth.demon.co.uk/zx81.htm#L101A%23L101A

; In run-time,

picked
; oup.

;; S-DECIMAL
L1047: CALL
JR

CALL

RST
LD
CALL
INC
LD
INC
EX
LD

LD
AND
SBC
LD
value.

LDIR

EX
space

DEC
CALL

JR

the digits are skipped and the floating point number is

LODAG
NZ,L106F

L14D9

18H

BC, $0006
LO99E

HL
(HL) , $7E
HL

DE, HL

HL, ($401C)

C,$05

A

HL, BC
($401C) , HL

routine SYNTAX-7Z
forward in run-time to S-STK-DEC

routine DEC-TO-FP

GET-CHAR advances HL past digits

six locations are required.

routine MAKE-ROOM

point to first new location

insert the number marker 126 decimal.
increment

transfer destination to DE.

set HL from STKEND which points to the
first location after the 'last value'
five bytes to move.

clear carry.

subtract five pointing to 'last value'.
update STKEND thereby 'deleting the

copy the five value bytes.
basic pointer to HL which may be white-

following the number.

now points to last of five bytes.
routine TEMP-PTR1 advances the character
address skipping any white-space.
forward to S-NUMERIC

to signal a numeric result.

; In run-time the branch is here when a digit or point is encountered.

;7 S-STK-DEC

L106F: RST
CP
JR

INC
LD
variable
CALL
LD
LD

;7 S-NUMERIC
1L1083: SET

;; S-CONT-2
L1087: RST

;; S-CONT-3
1L1088: CP
JR

208
STE
NZ,L106F

HL
DE, ($401C)
L19F6

($401C) ,DE
($4016) ,HL

6, (IY+$01)

18H

$10
Nz,L1098

NEXT-CHAR

compare to 'number marker'

loop back until found to S-STK-DEC
skipping all the digits.

point to first of five hidden bytes.
set destination from STKEND system

routine MOVE-FP stacks the number.
update system variable STKEND.
update system variable CH ADD.

update FLAGS - Signal numeric result

GET-CHAR

compare to opening bracket ' ('
forward if not to S-OPERTR

http://www.wearmouth.demon.co.uk/zx81.htm#L1098%23L1098
http://www.wearmouth.demon.co.uk/zx81.htm#L19F6%23L19F6
http://www.wearmouth.demon.co.uk/zx81.htm#L106F%23L106F
http://www.wearmouth.demon.co.uk/zx81.htm#L1083%23L1083
http://www.wearmouth.demon.co.uk/zx81.htm#L004C%23L004C
http://www.wearmouth.demon.co.uk/zx81.htm#L099E%23L099E
http://www.wearmouth.demon.co.uk/zx81.htm#L14D9%23L14D9
http://www.wearmouth.demon.co.uk/zx81.htm#L106F%23L106F
http://www.wearmouth.demon.co.uk/zx81.htm#L0DA6%23L0DA6

BIT
JR

6, (IY+$01)
NZ,L10BC

; else i1s a string

CALL

RST
JR

; the character is now
; calculator literals.

L1263

20H
L1088

test FLAGS - Numeric or string result?
forward if numeric to S-LOOP

routine SLICING

NEXT-CHAR
back to S-CONT-3

manipulated to form an equivalent in the table of
This is quite cumbersome and in the ZX Spectrum a

; simple look-up table was introduced at this point.

;7 S-OPERTR
L1098: LD

CP
JR
expression
SUB
JR
SUBMLTDIV

ADD

JR

;; SUBMLTDIV
L10A7: CP
JR

; else possibly

SUB
JR

CPp
JR

ADD
of

BC, S00C3

$12
C,L10BC

$16
NC, L10A7
A, S0D

L10BS

$03
C,L10B5

originally $D8

$C2
C,L10BC

$06
NC, L10BC

A,$03

prepare operator 'subtract' as default.
also set B to zero for later indexing.

is character '>' ?
forward if less to S-LOOP as
we have reached end of meaningful

is character '-' ?
forward with - * / and '"**' '<>' to

increase others by thirteen
$09 '>' thru $0C '+
forward to GET-PRIO

isolate $00 '-', $01 '*', s$02 '/
forward if so to GET-PRIO

"*%' thru $DD '<>' already reduced by $16

giving range $00 to $05
forward if less to S-LOOP

test the upper limit for nonsense also
forward if so to S-LOOP

increase by 3 to give combined operators

$OO Y1
$Ol [|
$02 '/
$O3 T X% !
504 'OR'
$05 'AND'
S06 '<="'
S07 '>="

508 '<>!

http://www.wearmouth.demon.co.uk/zx81.htm#L10BC%23L10BC
http://www.wearmouth.demon.co.uk/zx81.htm#L10BC%23L10BC
http://www.wearmouth.demon.co.uk/zx81.htm#L10B5%23L10B5
http://www.wearmouth.demon.co.uk/zx81.htm#L10B5%23L10B5
http://www.wearmouth.demon.co.uk/zx81.htm#L10A7%23L10A7
http://www.wearmouth.demon.co.uk/zx81.htm#L10BC%23L10BC
http://www.wearmouth.demon.co.uk/zx81.htm#L1088%23L1088
http://www.wearmouth.demon.co.uk/zx81.htm#L1263%23L1263
http://www.wearmouth.demon.co.uk/zx81.htm#L10BC%23L10BC

; $09 '>!
; s0A '«
; S0B '="'
; S0C '"+!
;; GET-PRIO
L10B5: ADD A,C ; add to default operation 'sub' (S$C3)
LD C,A ; and place in operator byte - C.
LD HL,L110F - $C3 ; theoretical base of the priorities table.
ADD HL, BC ; add C (B is zero)
LD B, (HL) ; pick up the priority in B
;; S-LOOP
L10BC: POP DE ; restore previous
LD A,D ; load A with priority.
CP B ; 1s present priority higher
JR C,L10ED ; forward if so to S-TIGHTER
AND A ; are both priorities zero
JP Z,L0018 ; exit if zero via GET-CHAR
PUSH BC ; stack present values
PUSH DE ; stack last values
CALL LODAG ; routine SYNTAX-Z
JR Z,L10D5 ; forward is checking syntax to S-SYNTEST
LD A,E ; fetch last operation
AND $3F ; mask off the indicator bits to give true
; calculator literal.
LD B,A ; place in the B register for BREG

; perform the single operation

RST 28H ;; FP-CALC
DEFB $37 ;;fp-calc-2
DEFB $34 ;;end-calc
JR L10DE ; forward to S-RUNTEST
;; S-SYNTEST
L10D5: LD A,E ; transfer masked operator to A
XOR (IY+$01) ; XOR with FLAGS like results will reset
bit 6
AND $40 ; test bit 6
;7 S-RPORT-C
L10DB: JP NZ,LOD9A ; back to REPORT-C if results do not agree.

; in run-time impose bit 7 of the operator onto bit 6 of the FLAGS

;7 S-RUNTEST
L10DE: POP DE ; restore last operation.
LD HL, $4001 ; address system variable FLAGS
SET 6, (HL) ; presume a numeric result
BIT 7,E ; test expected result in operation

JR NZ,L10EA ; forward if numeric to S-LOOPEND

http://www.wearmouth.demon.co.uk/zx81.htm#L10EA%23L10EA
http://www.wearmouth.demon.co.uk/zx81.htm#L0D9A%23L0D9A
http://www.wearmouth.demon.co.uk/zx81.htm#L10DE%23L10DE
http://www.wearmouth.demon.co.uk/zx81.htm#L10D5%23L10D5
http://www.wearmouth.demon.co.uk/zx81.htm#L0DA6%23L0DA6
http://www.wearmouth.demon.co.uk/zx81.htm#L0018%23L0018
http://www.wearmouth.demon.co.uk/zx81.htm#L10ED%23L10ED
http://www.wearmouth.demon.co.uk/zx81.htm#L110F%23L110F

RES

;7 S-LOOPEND
L10EA: POP
JR

;; S-TIGHTER
L10ED: PUSH

LD
BIT
JR

AND
literal.

ADD
equivalent

LD
CPp
JR

SET
'AND'
JR

;7 S-NOT-AND
L1102: JR

CP
JR

SET

;7 S-NEXT
L110A: PUSH

RST
Jp

; THE 'TABLE

;; tbl-pri

L110F: DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

6, (HL)

BC
L10BC

DE
A,C

6, (IY+$01)
NZ,L110A
$3F

A,$08

C,A

510
NZ,L1102

C,L10DB
$17
Z,L110A

7,C

BC

20H
LOF59

506
$08
$08
S0A
$02
$03
$05
$05

reset to signal string result

restore present values
back to S-LOOP

push last values and consider these

get the present operator.
test FLAGS - Numeric or string result?
forward if numeric to S-NEXT

strip indicator bits to give clear
add eight - augmenting numeric to

string literals.

place plain literal back in C.
compare to 'AND'

forward if not to S-NOT-AND

set the numeric operand required for

forward to S-NEXT

back if less than 'AND' to S-RPORT-C
Nonsense if '=-', '*' etc.

compare to 'strs-add' literal
forward if so signaling string result

set bit to numeric (Boolean) for others.

stack 'present' values

NEXT-CHAR
jump back to S-LOOP-1

Tkor
v/v
VX%
'OR'
'AND'
Tt
TSt

http://www.wearmouth.demon.co.uk/zx81.htm#L0F59%23L0F59
http://www.wearmouth.demon.co.uk/zx81.htm#L110A%23L110A
http://www.wearmouth.demon.co.uk/zx81.htm#L10DB%23L10DB
http://www.wearmouth.demon.co.uk/zx81.htm#L110A%23L110A
http://www.wearmouth.demon.co.uk/zx81.htm#L1102%23L1102
http://www.wearmouth.demon.co.uk/zx81.htm#L110A%23L110A
http://www.wearmouth.demon.co.uk/zx81.htm#L10BC%23L10BC

DEFB 505 ; <>

DEFB $05 ; '
DEFB $05 ; r<r
DEFB $05 . -
DEFB $06 ; .y

; THE 'LOOK-VARS' SUBROUTINE

; ; LOOK-VARS

L111C: SET 6, (IY+$S01) ; sv FLAGS - Signal numeric result
RST 18H ; GET-CHAR
CALL L14CE ; routine ALPHA
JP NC, LODSA ; to REPORT-C
PUSH HL ;
LD C,A ;
RST 20H ; NEXT-CHAR
PUSH HL ;
RES 5,C ;
CP 510 H
JR Z2,1L1148 ; to V-SYN/RUN
SET 6,C ;
CP S0D ;
JR Z,L1143 ; forward to V-STR-VAR
SET 5,C ;
;; V-CHAR
L1139: CALL L14D2 ; routine ALPHANUM
JR NC,L1148 ; forward when not to V-RUN/SYN
RES 6,C ;
RST 20H ; NEXT-CHAR
JR L1139 ; loop back to V-CHAR

;; V-STR-VAR
L1143: RST 20H ; NEXT-CHAR
RES 6, (IY+$S01) ; sv FLAGS - Signal string result

;; V-RUN/SYN

L1148: LD B,C ;
CALL LODAG ; routine SYNTAX-Z
JR NZ,L1156 ; forward to V-RUN
D A,C ;
AND SEO ;
SET 7,A ;
LD C,A ;

JR L118A ; forward to V-SYNTAX

http://www.wearmouth.demon.co.uk/zx81.htm#L118A%23L118A
http://www.wearmouth.demon.co.uk/zx81.htm#L1156%23L1156
http://www.wearmouth.demon.co.uk/zx81.htm#L0DA6%23L0DA6
http://www.wearmouth.demon.co.uk/zx81.htm#L1139%23L1139
http://www.wearmouth.demon.co.uk/zx81.htm#L1148%23L1148
http://www.wearmouth.demon.co.uk/zx81.htm#L14D2%23L14D2
http://www.wearmouth.demon.co.uk/zx81.htm#L1143%23L1143
http://www.wearmouth.demon.co.uk/zx81.htm#L1148%23L1148
http://www.wearmouth.demon.co.uk/zx81.htm#L0D9A%23L0D9A
http://www.wearmouth.demon.co.uk/zx81.htm#L14CE%23L14CE

; + V-RUN
L1156: LD

;; V-EACH

L1159: LD
AND
JR

CP
JR

RLA
ADD
Jp

JR

POP
PUSH
PUSH

;; V-MATCHES
L116B: INC

;; V-SPACES
L1l6C: LD
INC
AND
JR

CP
JR

OR
CP
JR

LD
CALL
JR

;; V-GET-PTR
L117F: POP

;5 V-NEXT

1.1180: PUSH
CALL
EX
POP
JR

;; V-80-BYTE
1.1188: SET

;7 V-SYNTAX
L118A: POP

RST
CP

HL, ($4010)

A, (HL)
$TF
Z,11188

HL

A, (DE)
DE

A
z,L116C

(HL)
Z,L116B

$80
(HL)
NZ,L117F

A, (DE)
L14D2
NC,L1194

DE

18H
$10

’

sv VARS

to V-80-

to V-NEX

to V-FOU

to V-FOU

back to

back to

forward

routine
forward

routine

BYTE

T

ND-2

ND-2

V-SPACES

V-MATCHES

to V-GET-PTR

ALPHANUM
to V-FOUND-1

NEXT-ONE

back to V-EACH

GET-CHAR

http://www.wearmouth.demon.co.uk/zx81.htm#L1159%23L1159
http://www.wearmouth.demon.co.uk/zx81.htm#L09F2%23L09F2
http://www.wearmouth.demon.co.uk/zx81.htm#L1194%23L1194
http://www.wearmouth.demon.co.uk/zx81.htm#L14D2%23L14D2
http://www.wearmouth.demon.co.uk/zx81.htm#L117F%23L117F
http://www.wearmouth.demon.co.uk/zx81.htm#L116B%23L116B
http://www.wearmouth.demon.co.uk/zx81.htm#L116C%23L116C
http://www.wearmouth.demon.co.uk/zx81.htm#L1195%23L1195
http://www.wearmouth.demon.co.uk/zx81.htm#L1195%23L1195
http://www.wearmouth.demon.co.uk/zx81.htm#L1180%23L1180
http://www.wearmouth.demon.co.uk/zx81.htm#L1188%23L1188

JR Z,L1199 ; forward to V-PASS

SET 5B ;
JR L11A1 ; forward to V-END

;; V-FOUND-1
L1194: POP DE ;

;; V-FOUND-2

L1195: POP DE ;
POP DE ;
PUSH HL H
RST 18H ; GET-CHAR
;; V-PASS
L1199: CALL L14D2 ; routine ALPHANUM
JR NC,L11A1 ; forward if not alphanumeric to V-END
RST 20H ; NEXT-CHAR
JR L1199 ; back to V-PASS
;; V-END
L11Al: POP HL ;
RL B ;
BIT 6,B ;
RET ;

; THE 'STK-VAR' SUBROUTINE

;7 STK-VAR

L11A7: XOR A ;
LD B,A ;
BIT 7,C ;
JR NZ,L11F8 ; forward to SV-COUNT
BIT 7, (HL) ;
JR NzZ,L11BF ; forward to SV-ARRAYS
INC A ;

;; SV-SIMPLES

L11B2: INC HL ;
LD C, (HL) ;
INC HL ;
LD B, (HL) ;
INC HL ;
EX DE, HL ;
CALL L12C3 ; routine STK-STO-$
RST 18H ; GET-CHAR

JP L1252 ; jump forward to SV-SLICE?

http://www.wearmouth.demon.co.uk/zx81.htm#L125A%23L125A
http://www.wearmouth.demon.co.uk/zx81.htm#L12C3%23L12C3
http://www.wearmouth.demon.co.uk/zx81.htm#L11BF%23L11BF
http://www.wearmouth.demon.co.uk/zx81.htm#L11F8%23L11F8
http://www.wearmouth.demon.co.uk/zx81.htm#L1199%23L1199
http://www.wearmouth.demon.co.uk/zx81.htm#L11A1%23L11A1
http://www.wearmouth.demon.co.uk/zx81.htm#L14D2%23L14D2
http://www.wearmouth.demon.co.uk/zx81.htm#L11A1%23L11A1
http://www.wearmouth.demon.co.uk/zx81.htm#L1199%23L1199

rs

SV-ARRAYS

L11BF: INC

rs

INC
INC
LD
BIT
JR

DEC
JR

EX
RST
CP
JR

EX

SV-PTR

L11D1l: EX

rs

L11D4:

rs

JR

SV-COMMA
PUSH

RST
POP
CPp
JR

BIT
JR

BIT
JR

CP
JR

RST
RET

SV-CLOSE

L11E9: CP

rs

JR

CPp
JR

SV-CH-ADD

L11Fl: RST

DEC
LD

B, (HL)
6,C
7,L11D1
B
7,L11B2

DE, HL

18H
$10
NZ,L1231

DE, HL

DE, HL
L11F8

HL

18H

HL

S1A

Z,L11FB

,C
L

5
Z,L1231

6,C
NZ,L11E9

$11
NZ,L1223

20H

$11
Z,L1259

SDF
NZ,L1223

18H
HL
($4016) ,HL

forward to

forward to

GET-CHAR

forward to

forward to

GET-CHAR

forward to

forward to

forward to

forward to

NEXT-CHAR

forward to

forward to

GET-CHAR

sv CH ADD

SV-PTR

SV-SIMPLES

REPORT-3

SV-COUNT

SV-LOOP

REPORT-3

SV-CLOSE

SV-RPT-C

SV-DIM

SV-RPT-C

http://www.wearmouth.demon.co.uk/zx81.htm#L1223%23L1223
http://www.wearmouth.demon.co.uk/zx81.htm#L1259%23L1259
http://www.wearmouth.demon.co.uk/zx81.htm#L1223%23L1223
http://www.wearmouth.demon.co.uk/zx81.htm#L11E9%23L11E9
http://www.wearmouth.demon.co.uk/zx81.htm#L1231%23L1231
http://www.wearmouth.demon.co.uk/zx81.htm#L11FB%23L11FB
http://www.wearmouth.demon.co.uk/zx81.htm#L11F8%23L11F8
http://www.wearmouth.demon.co.uk/zx81.htm#L1231%23L1231
http://www.wearmouth.demon.co.uk/zx81.htm#L11B2%23L11B2
http://www.wearmouth.demon.co.uk/zx81.htm#L11D1%23L11D1

JR

; ; SV-COUNT
L11F8: LD

;; SV-LOOP
L11FB: PUSH

RST
POP
LD
CP
JR

RST
CP
JR

CPp
JR

;; SV-MULT

L120C: PUSH
PUSH
CALL
EX
EX
CALL
JR

DEC
CALL
ADD
POP
POP
DJINZ

BIT

;; SV-RPT-C
L1223: JR

PUSH
BIT
JR

LD
LD

RST
CP
JR

;; REPORT-3
L1231: RST
DEFB

HL, $0000

HL

208
HL
A, C
SCo
NZ,L120C

18H
S11
Z,L1259

$DF
7,L11F1

BC

HL
L12FF
(SP), HL
DE, HL
L12DD
Cc,L1231

BC
L1305
HL, BC
DE
BC
L11D4

7,C

NZ,L128B

HL
6,C
NZ,L123D

B,D
C,E
18H

$11
Z,L1233

08H
$02

’

forward to SV-SLICE

NEXT-CHAR

forward to SV-MULT

GET-CHAR

forward to SV-DIM

back to SV-CH-ADD

routine DE, (DE+1)

routine INT-EXP1
forward to REPORT-3

routine GET-HL*DE

loop back to SV-COMMA

relative jump to SL-RPT-C

forward to SV-ELEMS

GET-CHAR
is character a '")' ?
skip forward to SV-NUMBER

ERROR-1
Error Report: Subscript wrong

http://www.wearmouth.demon.co.uk/zx81.htm#L1233%23L1233
http://www.wearmouth.demon.co.uk/zx81.htm#L123D%23L123D
http://www.wearmouth.demon.co.uk/zx81.htm#L128B%23L128B
http://www.wearmouth.demon.co.uk/zx81.htm#L11D4%23L11D4
http://www.wearmouth.demon.co.uk/zx81.htm#L1305%23L1305
http://www.wearmouth.demon.co.uk/zx81.htm#L1231%23L1231
http://www.wearmouth.demon.co.uk/zx81.htm#L12DD%23L12DD
http://www.wearmouth.demon.co.uk/zx81.htm#L12FF%23L12FF
http://www.wearmouth.demon.co.uk/zx81.htm#L11F1%23L11F1
http://www.wearmouth.demon.co.uk/zx81.htm#L1259%23L1259
http://www.wearmouth.demon.co.uk/zx81.htm#L120C%23L120C
http://www.wearmouth.demon.co.uk/zx81.htm#L1256%23L1256

;7 SV-NUMBER

L1233: RST 20H
POP HL
LD DE, $0005
CALL L1305
ADD HL, BC
RET

;; SV-ELEMS

1123D: CALL L12FF
EX (SP) , HL
CALL L1305
POP BC
ADD HL, BC
INC HL
1D B, D
1D C,E
EX DE, HL
CALL L12C2
RST 18H
CP $11
JR 7,L1259
CP $1A
JR NZ,L1231

;; SV-SLICE

L1256: CALL L1263
;; SV-DIM
L1259: RST 20H

;; SV-SLICE-?

L125A: CP $10
JR Z,L1256
RES 6, (IY+$S01)
RET

; THE 'SLICING' SUBROUTINE

;; SLICING

1L1263: CALL LODAG
CALL NZ,L13F8
RST 208
CP $11
JR 7,L12BE
PUSH DE
XOR A
PUSH AF
PUSH BC

LD DE, $0001

NEXT-CHAR

routine GET-HL*DE

return

routine DE, (DE+1)

routine GET-HL*DE

routine STK-ST-0
GET-CHAR

is it ")'" ?

forward if so to SV-DIM
is it ', "' ?

back if not to REPORT-3

routine SLICING

NEXT-CHAR

back to SV-SLICE

sv FLAGS - Signal string result
return.

routine SYNTAX-7Z
routine STK-FETCH

NEXT-CHAR
is it ")' ?
forward if so to SL-STORE

>>

http://www.wearmouth.demon.co.uk/zx81.htm#L12BE%23L12BE
http://www.wearmouth.demon.co.uk/zx81.htm#L13F8%23L13F8
http://www.wearmouth.demon.co.uk/zx81.htm#L0DA6%23L0DA6
http://www.wearmouth.demon.co.uk/zx81.htm#L1256%23L1256
http://www.wearmouth.demon.co.uk/zx81.htm#L1263%23L1263
http://www.wearmouth.demon.co.uk/zx81.htm#L1231%23L1231
http://www.wearmouth.demon.co.uk/zx81.htm#L1259%23L1259
http://www.wearmouth.demon.co.uk/zx81.htm#L12C2%23L12C2
http://www.wearmouth.demon.co.uk/zx81.htm#L1305%23L1305
http://www.wearmouth.demon.co.uk/zx81.htm#L12FF%23L12FF
http://www.wearmouth.demon.co.uk/zx81.htm#L1305%23L1305

RST
POP
CP
JR

POP
CALL
PUSH
LD
LD
PUSH

RST
POP
CPp
JR

CP

;; SL-RPT-C

L128B:

Jp

LD
LD
JR

;7 SL-SECOND

L1292:

PUSH

RST
POP
CP
JR

POP
CALL
PUSH

RST
LD
LD
CPp
JR

;; SL-DEFINE

L12A5:

POP
EX
ADD
DEC
EX
AND
SBC
LD
JR

INC
AND
JP

LD

18H

HL

SDF
Z,L1292

AF
L12DE

18H

HL

SDF
Z,L1292

$11

NZ,L0OD92A

HL

20H

HL

$11
Z,L12A5

AF
L12DE
AF

18H
H,B
1,C
$11
NZ,L128B

AF
(SP), HL
HL, DE

HL

(SP), HL
A

HL, DE
BC, $0000
C,L12B9

HL
A
M,L1231

B, H

GET-CHAR
is it 'TO' *?
forward if so to SL-SECOND

routine INT-EXP2

GET-CHAR

is it 'TO' ?
forward if so to SL-SECOND

to REPORT-C

forward to SL-DEFINE

NEXT-CHAR

is it ")' 2

forward if so to SL-DEFINE

routine INT-EXP2

GET-CHAR

is it ")'" 2
back if not to SL-RPT-C

forward to SL-OVER

jump back to REPORT-3

http://www.wearmouth.demon.co.uk/zx81.htm#L1231%23L1231
http://www.wearmouth.demon.co.uk/zx81.htm#L12B9%23L12B9
http://www.wearmouth.demon.co.uk/zx81.htm#L128B%23L128B
http://www.wearmouth.demon.co.uk/zx81.htm#L12DE%23L12DE
http://www.wearmouth.demon.co.uk/zx81.htm#L12A5%23L12A5
http://www.wearmouth.demon.co.uk/zx81.htm#L12A5%23L12A5
http://www.wearmouth.demon.co.uk/zx81.htm#L0D9A%23L0D9A
http://www.wearmouth.demon.co.uk/zx81.htm#L1292%23L1292
http://www.wearmouth.demon.co.uk/zx81.htm#L12DE%23L12DE
http://www.wearmouth.demon.co.uk/zx81.htm#L1292%23L1292

LD c,L

;7 SL-OVER
L12B9: POP DE
RES 6, (IY+S$01)

;7 SL-STORE

L12BE:

; THE

;; STK-ST-0

L12C2:

;; STK-STO-$

L12C3:

; THE

CALL LODAG6

RET 7
'STK-STORE' SUBROUTINE

XOR A

PUSH BC

CALL L19EB

POP BC

LD HL, ($401C)

LD (HL) , A

INC HL

LD (HL) ,E

INC HL

LD (HL), D

INC HL

LD (HL),C

INC HL

LD (HL),B

INC HL

LD ($401C) , HL

RES 6, (IY+$01)

RET

'"INT EXP' SUBROUTINES

;; INT-EXP1

L12DD:

XOR

;7 INT-EXP2

L12DE:

PUSH
PUSH
PUSH
CALL
POP
CALL
JR

PUSH
CALL
POP
LD
OR
SCF

sv FLAGS - Signal string result

routine SYNTAX-Z
return if checking syntax.

routine TEST-5-SP

sv STKEND

sv STKEND
update FLAGS - signal string result
return.

routine CLASS-6
routine SYNTAX-Z
forward if checking syntax to I-RESTORE

routine FIND-INT

Set Carry Flag

http://www.wearmouth.demon.co.uk/zx81.htm#L0EA7%23L0EA7
http://www.wearmouth.demon.co.uk/zx81.htm#L12FC%23L12FC
http://www.wearmouth.demon.co.uk/zx81.htm#L0DA6%23L0DA6
http://www.wearmouth.demon.co.uk/zx81.htm#L0D92%23L0D92
http://www.wearmouth.demon.co.uk/zx81.htm#L19EB%23L19EB
http://www.wearmouth.demon.co.uk/zx81.htm#L0DA6%23L0DA6

JR Z,L12F9 ; forward to I-CARRY

POP HL ;
PUSH HL ;
AND A ;
SBC HL, BC ;

;; I-CARRY

L12F9: LD A,D ;
SBC A,S$00 ;

;; I-RESTORE

L12FC: POP HL ;
POP DE ;
RET ;

; THE 'DE, (DE+1)' SUBROUTINE

; INDEX and LOAD 780 subroutine.

; This emulates the 6800 processor instruction LDX 1,X which loads a two-
byte

; value from memory into the register indexing it. Often these are hardly
worth

; the bother of writing as subroutines and this one doesn't save any time
or

; memory. The timing and space overheads have to be offset against the ease
of

; writing and the greater program readability from using such toolkit
routines.

;; DE, (DE+1)

L12FF: EX DE, HL ; move index address into HL.
INC HL ; increment to address word.
LD E, (HL) ; pick up word low-order byte.
INC HL ; index high-order byte and
LD D, (HL) ; pick it up.
RET ; return with DE = word.

; THE 'GET-HL*DE' SUBROUTINE

;; GET-HL*DE
L1305: CALL LODAG ; routine SYNTAX-7Z
RET 7 ;
PUSH BC ;
LD B, $10 ;
LD A,H ;
LD C,L ;
LD HL, $0000 ;
; ; HL-LOOP
L1311: ADD HL, HL ;
JR C,L131A ; forward with carry to HL-END
RL C ;
RLA 7

JR NC,L131D ; forward with no carry to HL-AGAIN

http://www.wearmouth.demon.co.uk/zx81.htm#L131D%23L131D
http://www.wearmouth.demon.co.uk/zx81.htm#L131A%23L131A
http://www.wearmouth.demon.co.uk/zx81.htm#L0DA6%23L0DA6
http://www.wearmouth.demon.co.uk/zx81.htm#L12F9%23L12F9

ADD

;; HL-END

L131A:

Jp

;7 HL-AGAIN

L131D:

DJINZ

POP
RET

; THE 'LET'

;; LET
L1321:

LD
BIT
JR

LD

;; L-EACH-CH

L132D:

; check

;7 L-NO-

L132E:

INC

SP
INC
LD
AND
JR

CALL
JR

CPp
Jp

RST
PUSH
LD
DEC
LD
SUB
LD
LD
JR

;; L-CHAR

L134B:

INC
LD
AND
JR

INC
LD
DJINZ

HL, DE

C,LOED3

SUBROUTINE

HL, ($4012)
1, (IY+$2D)
Z,L136E

BC, $0005

BC

HL
A, (HL)
A
7,L134B

DE
(DE) ,A
L134B

’

’

’

’
’

’

to REPORT-4

loop back to HL-LOOP

return.

sv DEST-1lo
sv FLAGX
forward to L-EXISTS

back to L-NO-SP

routine ALPHANUM
back to L-EACH-CH

is it '$' ?

forward if so to L-NEWS

BC-SPACES

sv DEST

forward to L-SINGLE

is it a space ?
back to L-CHAR

loop back to L-CHAR

http://www.wearmouth.demon.co.uk/zx81.htm#L134B%23L134B
http://www.wearmouth.demon.co.uk/zx81.htm#L134B%23L134B
http://www.wearmouth.demon.co.uk/zx81.htm#L1359%23L1359
http://www.wearmouth.demon.co.uk/zx81.htm#L13C8%23L13C8
http://www.wearmouth.demon.co.uk/zx81.htm#L132D%23L132D
http://www.wearmouth.demon.co.uk/zx81.htm#L14D2%23L14D2
http://www.wearmouth.demon.co.uk/zx81.htm#L132E%23L132E
http://www.wearmouth.demon.co.uk/zx81.htm#L136E%23L136E
http://www.wearmouth.demon.co.uk/zx81.htm#L1311%23L1311
http://www.wearmouth.demon.co.uk/zx81.htm#L0ED3%23L0ED3

OR $80
LD (DE) , A
D A, $80
;; L-SINGLE
L1359: 1D HL, ($4012) sv DEST-lo
XOR (HL)
POP HL
CALL L13E7 routine L-FIRST
;; L-NUMERIC
L1361: PUSH HL
RST 28H FP-CALC
DEFB $02 ;delete
DEFB $34 ;end-calc
POP HL
LD BC, $0005
AND A
SBC HL, BC
JR L13AE ; forward to L-ENTER
;; L-EXISTS
L136E: BIT 6, (IY+S$01) ; sv FLAGS - Numeric or string result?
JR Z,L137A ; forward to L-DELETES
LD DE, $0006 ;
ADD HL, DE ;
JR L1361 ; back to L-NUMERIC
;; L-DELETES$
L137A: 1D HL, ($4012) ; sv DEST-1lo
LD BC, (S402F) ; sv STRLEN lo
BIT 0, (IY+S$2D) ; sv FLAGX
JR NZ,L13B7 ; forward to L-ADDS
LD A,B ;
OR C ;
RET Z ;
PUSH HL ;
RST 30H ; BC-SPACES
PUSH DE ;
PUSH BC ;
D D,H ;
D E,L ;
INC HL ;
LD (HL), $00 ;
LDDR ; Copy Bytes
PUSH HL ;
CALL L13F8 ; routine STK-FETCH
POP HL ;
EX (SP) , HL ;
AND A H
SBC HL, BC ;

ADD HL, BC ;

http://www.wearmouth.demon.co.uk/zx81.htm#L13F8%23L13F8
http://www.wearmouth.demon.co.uk/zx81.htm#L13B7%23L13B7
http://www.wearmouth.demon.co.uk/zx81.htm#L1361%23L1361
http://www.wearmouth.demon.co.uk/zx81.htm#L137A%23L137A
http://www.wearmouth.demon.co.uk/zx81.htm#L13AE%23L13AE
http://www.wearmouth.demon.co.uk/zx81.htm#L13E7%23L13E7

rs

JR

LD
LD

L-LENGTH

L13A3: EX

rs

EX
LD
OR
JR

LDIR

L-IN-W/S

L13AB: POP

’

rs

POP
POP

THE 'L-ENTER'

L-ENTER

L13AE: EX

rs

LD
OR
RET

PUSH
LDIR
POP
RET

L-ADD$

L13B7: DEC

DEC
DEC
LD
PUSH
PUSH

CALL

POP
POP
INC
INC
INC
JPp

NC,L13A3

BC
DE
HL

DE, HL
A,B

DE

HL

HL
HL
HL
A, (HL)
HL
BC

L13CE

BC
HL
BC
BC
BC
LOAGO

A, $60
HL, ($4012)
(HL)

’

’

’

forward to L-LENGTH

forward if zero to L-IN-W/S

Copy Bytes

Copy Bytes

return.

routine L-STRING

Jjump back to exit via RECLAIM-2

prepare mask $01100000
sv DEST-1o

http://www.wearmouth.demon.co.uk/zx81.htm#L0A60%23L0A60
http://www.wearmouth.demon.co.uk/zx81.htm#L13CE%23L13CE
http://www.wearmouth.demon.co.uk/zx81.htm#L13AB%23L13AB
http://www.wearmouth.demon.co.uk/zx81.htm#L13A3%23L13A3

; THE 'L-STRING' SUBROUTINE

;; L-STRING
L13CE: PUSH AF ;
CALL L13F8 ; routine STK-FETCH
EX DE, HL ;
ADD HL, BC ;
PUSH HL ;
INC BC ;
INC BC ;
INC BC ;
RST 30H ; BC-SPACES
EX DE, HL ;
POP HL ;
DEC BC ;
DEC BC ;
PUSH BC ;
LDDR ; Copy Bytes
EX DE, HL ;
POP BC ;
DEC BC ;
LD (HL) ,B ;
DEC HL ;
LD (HL),C ;
POP AF ;
;; L-FIRST
L13E7: PUSH AF ;
CALL L14c? ; routine REC-V80
POP AF ;
DEC HL ;
LD (HL) , A ;
LD HL, ($401A) ; sv STKBOT lo
LD ($4014) ,HL ; sv E_LINE lo
DEC HL ;
LD (HL), $80 ;
RET ;

; THE 'STK-FETCH' SUBROUTINE

; This routine fetches a five-byte value from the calculator stack

; reducing the pointer to the end of the stack by five.

; For a floating-point number the exponent is in A and the mantissa

; 1s the thirty-two bits EDCB.

; For strings, the start of the string is in DE and the length in BC.
; A 1s unused.

;; STK-FETCH
L13F8: LD HL, ($401C) ; load HL from system variable STKEND
DEC HL ;
D B, (HL) ;
DEC HL ;
LD C, (HL) ;
DEC HL ;
D D, (HL) ;
DEC HL ;

LD E, (HL) ;

http://www.wearmouth.demon.co.uk/zx81.htm#L14C7%23L14C7
http://www.wearmouth.demon.co.uk/zx81.htm#L13F8%23L13F8

DEC
LD

LD

value.
RET

; THE 'DIM'

HL
A, (HL)

($401C) , HL

COMMAND ROUTINE

’

’

set system variable STKEND to lower

return.

; An array 1s created and initialized to zeros which is also the space
; character on the ZX81.

;; DIM
L1409: CALL
; ;7 D-RPORT-C
L140C: JP

CALL
JR

RES
CALL
CALL

; » D-RUN
L141C: JR

PUSH
CALL
CALL
POP

;; D-LETTER

L1426: SET
LD
PUSH
LD
BIT
JR

LD

;; D-SIZE
L1434: EX

; » D-NO-LOOP

L1435: RST
LD
CALL
Jp

POP
PUSH
INC
PUSH
LD
LD
CALL
EX

LOAGO

7,C

B, $00

BC

HL, $0001
6,C
Nz,L1434

L,$05

DE, HL

20H
H,$40
L12DD
C,L1231

L1305
DE, HL

routine

LOOK-VARS

to REPORT-C

routine
forward

routine
routine

forward

routine
routine

forward

SYNTAX-Z
to D-RUN

STK-VAR
CHECK-END

to D-LETTER

NEXT-ONE
RECLAIM-2

to D-SIZE

NEXT-CHAR

routine

INT-EXP1

Jjump back to REPORT-3

routine

GET-HL*DE

http://www.wearmouth.demon.co.uk/zx81.htm#L1305%23L1305
http://www.wearmouth.demon.co.uk/zx81.htm#L1231%23L1231
http://www.wearmouth.demon.co.uk/zx81.htm#L12DD%23L12DD
http://www.wearmouth.demon.co.uk/zx81.htm#L1434%23L1434
http://www.wearmouth.demon.co.uk/zx81.htm#L0A60%23L0A60
http://www.wearmouth.demon.co.uk/zx81.htm#L09F2%23L09F2
http://www.wearmouth.demon.co.uk/zx81.htm#L1426%23L1426
http://www.wearmouth.demon.co.uk/zx81.htm#L0D1D%23L0D1D
http://www.wearmouth.demon.co.uk/zx81.htm#L11A7%23L11A7
http://www.wearmouth.demon.co.uk/zx81.htm#L141C%23L141C
http://www.wearmouth.demon.co.uk/zx81.htm#L0DA6%23L0DA6
http://www.wearmouth.demon.co.uk/zx81.htm#L0D9A%23L0D9A
http://www.wearmouth.demon.co.uk/zx81.htm#L111C%23L111C

rs

RST
CPp
JR

CP
JR

RST
POP
LD
LD
LD
INC
INC
ADD
ADD
JPp

PUSH
PUSH
PUSH
LD
LD
LD
DEC
CALL
INC
LD
POP
DEC
DEC
DEC
INC
LD
INC
LD
POP
INC
LD
LD
LD
DEC
LD
POP
LDDR

DIM-SIZES

L147F: POP

’

LD
DEC
LD
DEC
DEC
JR

RET

THE 'RESERVE'

18H
S1A
7,L1435

$11
NZ,L140C

208

BC

A,C

,B
H,$00
HL

HL

HL, HL
HL, DE
C,LOED3

DE
BC
HL
B, H
c,L
HL, ($4014)
HL
LO99E
HL

(HL) ,A
BC
BC
BC
BC
HL

(HL) ,C
HL

(HL) ,B
AF
HL
(HL) , A
H,D
L,E
DE
(HL) , $00
BC

BC
(HL) , B
HL

(HL) ,C
HL

A
NZ,L147F

ROUTINE

’

’

GET-CHAR
back to D-NO-LOOP
is it ")' 2

back if not to D-RPORT-C

NEXT-CHAR

Jjump to REPORT-4

sv E LINE lo

routine MAKE-ROOM

Copy Bytes

back to DIM-SIZES

return.

http://www.wearmouth.demon.co.uk/zx81.htm#L147F%23L147F
http://www.wearmouth.demon.co.uk/zx81.htm#L099E%23L099E
http://www.wearmouth.demon.co.uk/zx81.htm#L0ED3%23L0ED3
http://www.wearmouth.demon.co.uk/zx81.htm#L140C%23L140C
http://www.wearmouth.demon.co.uk/zx81.htm#L1435%23L1435

; ; RESERVE

1.1488: 1D HL, ($401R)
DEC HL
CALL LO99E
INC HL
INC HL
POP BC
LD ($4014),BC
POP BC
EX DE, HL
INC HL
RET
; THE 'CLEAR' COMMAND ROUTINE
;; CLEAR
L149A: LD HL, ($4010)
LD (HL), $80
INC HL
LD ($4014) ,HL
; THE 'X-TEMP' SUBROUTINE
;; X-TEMP
L14A3: LD HL, ($4014)
; THE 'SET-STK' ROUTINES
;; SET-STK-B
L14A6: LD ($401A) ,HL
;; SET-STK-E
L14A9: LD ($401C) , HL
RET
; THE 'CURSOR-IN' ROUTINE

’

’

address STKBOT
now last byte of workspace
routine MAKE-ROOM

sv E LINE lo

sv VARS 1o

sv E LINE lo

sv E LINE lo

sv STKBOT

sv STKEND

; This routine is called to set the edit line to the minimum cursor/newline

; and to set STKEND,

; ; CURSOR-IN

L14AD:

LD
LD

INC

HL, ($4014)
(HL) , $7F

HL

the start of free space,

’

’

’

at the next position.

fetch start of edit line from E LINE
insert cursor character

point to next location.

http://www.wearmouth.demon.co.uk/zx81.htm#L099E%23L099E

insert NEWLINE character
point to next free location.

set lower screen display file size DF SZ

exit via SET-STK-B above

normal location of calculator's memory

update system variable MEM
fetch STKBOT
back to SET-STK-E

ROUTINE

’

’

’

sv E LINE lo
to RECLAIM-1

skip forward to ALPHA-2

Complement Carry Flag

LD (HL), $76
INC HL
LD (IY+$22),502
JR L14A6
; THE 'SET-MIN' SUBROUTINE
;; SET-MIN
L14BC: LD HL, $405D
area
LD ($401F) , HL
LD HL, ($401A)
JR L14A9
; THE 'RECLAIM THE END-MARKER'
;; REC-V80
L14C7: 1D DE, ($4014)
JP LOASD
; THE 'ALPHA' SUBROUTINE
;; ALPHA
L14CE: CP $26
JR L14D4
; THE 'ALPHANUM' SUBROUTINE
; ; ALPHANUM
L14D2: CP $1cC
;; ALPHA-2
L14D4: CCF
RET NC
CP $40
RET
; THE 'DECIMAL TO FLOATING POINT'

;; DEC-TO-FP
L14D9: CALL
CP

routine INT-TO-FP gets first part
is character a '.' ?

http://www.wearmouth.demon.co.uk/zx81.htm#L1548%23L1548
http://www.wearmouth.demon.co.uk/zx81.htm#L14D4%23L14D4
http://www.wearmouth.demon.co.uk/zx81.htm#L0A5D%23L0A5D
http://www.wearmouth.demon.co.uk/zx81.htm#L14A9%23L14A9
http://www.wearmouth.demon.co.uk/zx81.htm#L14A6%23L14A6

JR

RST

DEFB
DEFB
DEFB
DEFB

;7 NXT-DGT-1

L14E5: RST
CALL
JR

RST

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

JR

;7 E-FORMAT
L14F5: CP
RET

LD

RST
CPp
JR

CP
JR

INC

;7 SIGN-DONE
L1508: RST

;7 ST-E-PART
L1509: CALL

RST
DEFB
TRUE/FALSE
DEFB
DEFB
DEFB

;; E-POSTVE
L1511: DEFB
DEFB

RET

NZ,L14F5

28H
$Al
$CO
$02
$34

20H
L1514
C,L14F5

28H
SEO
SA4
$05
$co
$04
SOF
$34

$2A
NZ

(IY+$5D), SFF
208

$15

Z,L1508

$16
NZ,L1509

(IY+$5D)

20H

28H
SEO

$00
$02
318

$38
$34

’

’

’

’

’

’

’

’

’

forward if not to E-FORMAT

; FP-CALC
; stk-one
; st-mem-0
;delete

;end-calc

NEXT-CHAR
routine STK-DIGIT
forward to E-FORMAT

; FP-CALC
;get-mem-0
;stk-ten

;division
; st-mem-0
;multiply
;addition
;end-calc

loop back till exhausted to NXT-DGT-1

is character 'E' ?
return if not

initialize sv MEM-0-1st to S$SFF TRUE
NEXT-CHAR
is character a '"+' ?

forward if so to SIGN-DONE
is it a '=-' ?

forward if not to ST-E-PART
sv MEM-0-1st change to FALSE

NEXT-CHAR

routine INT-TO-FP

; 7 FP-CALC m, e.
; ;get-mem-0 m, e, (1/0)

;; jump-true
;;to L1511, E-POSTVE

; ;neg m, -e
;;e-to-fp X.
; ;end-calc X.

return.

http://www.wearmouth.demon.co.uk/zx81.htm#L1511%23L1511
http://www.wearmouth.demon.co.uk/zx81.htm#L1548%23L1548
http://www.wearmouth.demon.co.uk/zx81.htm#L1509%23L1509
http://www.wearmouth.demon.co.uk/zx81.htm#L1508%23L1508
http://www.wearmouth.demon.co.uk/zx81.htm#L14E5%23L14E5
http://www.wearmouth.demon.co.uk/zx81.htm#L14F5%23L14F5
http://www.wearmouth.demon.co.uk/zx81.htm#L1514%23L1514
http://www.wearmouth.demon.co.uk/zx81.htm#L14F5%23L14F5

; THE 'STK-DIGIT' SUBROUTINE

;; STK-DIGIT

L1514: CP S1C ;
RET C ;
CP $26 ;
CCF ; Complement Carry Flag
RET C ;
SUB $1cC ;

; THE 'STACK-A' SUBROUTINE

;; STACK-A
L151D: LD C,A ;
LD B,S$00 ;

; THE 'STACK-BC' SUBROUTINE

; The 7ZX81 does not have an integer number format so the BC register
contents

; must be converted to their full floating-point form.

;7 STACK-BC
L1520: LD 1Y,$4000 ; re-initialize the system variables
pointer.

PUSH BC ; save the integer value.

; now stack zero, five zero bytes as a starting point.

RST 28H ;; FP-CALC

DEFB SAO ;;stk-zero 0.
DEFB $34 ;;end-calc

POP BC ; restore integer value.

LD (HL) ,$91 ; place $91 in exponent 65536.

; this is the maximum possible wvalue

LD A,B ; fetch hi-byte.

AND A ; test for zero.

JR NZ,L1536 ; forward if not zero to STK-BC-2
LD (HL) , A ; else make exponent zero again
OR C ; test lo-byte

RET Z ; return if BC was zero - done.

; else there has to be a set bit if only the value one.

LD B,C ; save C in B.
LD C, (HL) ; fetch zero to C

4

http://www.wearmouth.demon.co.uk/zx81.htm#L1536%23L1536

LD

;; STK-BC-2

L1536: DEC
SLA
RL
JR

SRL
RR

INC

; THE 'INTEGER TO FLOATING POINT'

;; INT-TO-FP
L1548: PUSH

RST
DEFB
DEFB

POP

;; NXT-DGT-2
L154D: CALL
RET

RST

DEFB
DEFB
DEFB
DEFB
DEFB

RST
JR

AF

28H
$A0
$34

28H
$01
$A4
$04
SOF
$34

20H
L154D

’

’

’

’

’

’

’

’

’

’

’

’

make exponent $89 256.

decrement exponent - halving number

C<-76543210<-0
C<-76543210<-C

loop back if no carry to STK-BC-

0->76543210->C
C->76543210->C

address first byte of mantissa
insert B
address second byte of mantissa
insert C

point to the
exponent again
return.

;; FP-CALC
;7 stk-zero

;end-calc

routine STK-DIGIT

; » FP-CALC
; ;exchange
; 7 stk-ten

;ymultiply
; ;addition
; rend-calc

NEXT-CHAR
to NXT-DGT-2

; THE 'E-FORMAT TO FLOATING POINT' SUBROUTINE

'e-to-fp"')

; (Offset $38:

; invoked from DEC-TO-FP and PRINT-FP.
; e.g. 2.3E4 is 23000.
; This subroutine evaluates xEm where m is a positive or negative
; At a simple level x is multiplied by ten for every unit of m.

; If the decimal exponent m is negative then x is divided by ten for each

unit.

2

integer.

http://www.wearmouth.demon.co.uk/zx81.htm#L154D%23L154D
http://www.wearmouth.demon.co.uk/zx81.htm#L1514%23L1514
http://www.wearmouth.demon.co.uk/zx81.htm#L1536%23L1536

; A short-cut is taken if the exponent is greater than seven and in this

; case the exponent is reduced by seven and the value is multiplied or
divided

; by ten million.

; Note. for the ZX Spectrum an even cleverer method was adopted which
involved

; shifting the bits out of the exponent so the result was achieved with six
; shifts at most. The routine below had to be completely re-written mostly
; in 7280 machine code.

; Although no longer operable, the calculator literal was retained for old
; times sake, the routine being invoked directly from a machine code CALL.

; On entry in the 7ZX81, m, the exponent, is the 'last value', and the

; floating-point decimal mantissa is beneath it.

;; e-to-fp

L155A: RST 28H ;; FP-CALC X, m.
DEFB $2D ;;duplicate X, m, m.
DEFB S32 ;;less-0 x, m, (1/0)
DEFB $CO ;7 st-mem-0 x, m, (1/0)
DEFB 502 ; delete X, m.
DEFB 527 ; ;abs X, +m

;; E-LOOP

L1560: DEFB SAl ; ;stk-one X, m,1
DEFB 503 ; ;subtract X, m-1
DEFB $2D ; ;duplicate X, m-1,m-1.
DEFB $32 ;7 1less-0 x, m-1, (1/0)
DEFB $00 ;;jump-true x, m-1
DEFB $22 ;;to L1587, E-END x, m-1
DEFB $2D ;;duplicate x, m-1, m-1
DEFB $30 ; ;stk-data
DEFB $33 ; ;Exponent: $83, Bytes: 1
DEFB $40 ;7 (+00,+00,+00) x, m-1, m-1, 6.
DEFB 503 ; ;subtract X, m-1, m-7.
DEFB $2D ; ;duplicate X, m-1, m-7, m-=7.
DEFB $32 ;;1less-0 x, m-1, m-7, (1/0)
DEFB $00 ;;jump-true x, m-1, m-7.
DEFB S0C ;;to L157A, E-LOW

; but if exponent m is higher than 7 do a bigger chunk.

; multiplying (or dividing if negative) by 10 million - le7.
DEFB 501 ; ;exchange x, m=7, m-1
DEFB 502 ;;delete X, m-=7.
DEFB $01 ; ;exchange m-7, x.
DEFB $30 ;istk-data
DEFB $80 ;;Bytes: 3
DEFB $48 ; ;Exponent $98
DEFB $18,$96,5$80 ;7 (+00) m-7, x, 10,000,000
(=1£)
DEFB $2F ;i jump
DEFB $04 ;;to L157D, E-CHUNK
;; E-LOW
L157A: DEFB 502 ;;delete x, m-1.
DEFB $01 ; ;exchange m-1, x.

http://www.wearmouth.demon.co.uk/zx81.htm#L157D%23L157D
http://www.wearmouth.demon.co.uk/zx81.htm#L157A%23L157A
http://www.wearmouth.demon.co.uk/zx81.htm#L1587%23L1587

DEFB
; ; E-CHUNK
L157D: DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
;; E-DIVSN
L.1583: DEFB
;; E-SWAP
1L.1584: DEFB
DEFB
DEFB
;; E-END
L1587: DEFB
DEFB
RET

; THE 'FLOATING-POINT TO BC'

’

SA4

SEO
$00
$04

$04
S2F
$02

$05

$01
S2F
$DA

$02
$34

’

’

’

’

’

’

’

’

’

; ;stk-ten

m-1, x, 10 (=f).

;get-mem-0 m-1, x, £, (1/0)

;7 jump-true m-1, x, £

;;to L1583, E-DIVSN

;y,multiply m-1, x*f.

;7 jump

;;to L1584, E-SWAP

; ;division m-1, x/f (= new x).
; ;exchange x, m-1 (= new m).

7 jump X, m.

;;to L1560, E-LOOP

;;delete x. (=1)
;;end-calc X.
; return.

SUBROUTINE

; The floating-point form on the calculator stack is compressed directly

into

; the BC register rounding up if necessary.
; Valid range is 0 to 65535.4999

;; FP-TO-BC
L158A: CALL

AND
JR

; else value is

LD
LD
PUSH
JR

; EDCB =>

; ; FPBC-NZRO

L1595: LD
LD
LD

SUB
CCF

(@5 Rvs]
o Q=

$91

routine STK-FETCH - exponent to A
mantissa to EDCB.

test for value zero.

forward if not to FPBC-NZRO

zero to B

also to C

save the flags on machine stack
forward to FPBC-END

transfer the mantissa from EDCB

to BCE. Bit 7 of E is the 17th bit which
will be significant for rounding if the
number is already normalized.

subtract 65536
complement carry flag

http://www.wearmouth.demon.co.uk/zx81.htm#L15C6%23L15C6
http://www.wearmouth.demon.co.uk/zx81.htm#L1595%23L1595
http://www.wearmouth.demon.co.uk/zx81.htm#L13F8%23L13F8
http://www.wearmouth.demon.co.uk/zx81.htm#L1560%23L1560
http://www.wearmouth.demon.co.uk/zx81.htm#L1584%23L1584
http://www.wearmouth.demon.co.uk/zx81.htm#L1583%23L1583

BIT
PUSH

SET
JR

END

rs

INC
NEG

CP
JR

LD
LD
LD
SUB

BIG-INT

L15AF: AND

rs

LD

LD

RLCA

JR

FPBC-NORM

L15B5: SRL

rs

RR

DEC

JR

EXP-ZERO

L15BC: JR

rs

INC
LD
OR
JR

POP
SCF
PUSH

FPBC-END

L15C6: PUSH

’

set HL and DE

RST
DEFB

POP
POP
LD

Z,L15BC

B
C

D

NZ,L15B5

NC, L15C6
BC

A,B

C
NZ,L15C6
AF

AF

BC

’

test sign bit
push the result

set the implied bit
forward with carry from SUB/CCF to FPBC-

number is too big.

increment the exponent and
negate to make range $00 - S$OF

test if one or two bytes
forward with two to BIG-INT

shift mantissa

8 places right

insert a zero in B
reduce exponent by eight

test the exponent
save exponent in D.

fractional bits to A
rotate most significant bit to carry for

rounding of an already normal number.

forward if exponent zero to EXP-ZERO
the number is normalized
0->76543210->C
C->76543210->C

decrement exponent

loop back till zero to FPBC-NORM

forward without carry to NO-ROUND

round up.

test result

for zero

forward if not to GRE-ZERO

restore sign flag

set carry flag to indicate overflow
save combined flags again

save BC wvalue

to calculator stack pointers.

28H
$34

BC
AF

’

’

FP-CALC

;;end-calc

’

’

’

restore BC value
restore flags
copy low byte to A also.

http://www.wearmouth.demon.co.uk/zx81.htm#L15C6%23L15C6
http://www.wearmouth.demon.co.uk/zx81.htm#L15C6%23L15C6
http://www.wearmouth.demon.co.uk/zx81.htm#L15B5%23L15B5
http://www.wearmouth.demon.co.uk/zx81.htm#L15BC%23L15BC
http://www.wearmouth.demon.co.uk/zx81.htm#L15AF%23L15AF
http://www.wearmouth.demon.co.uk/zx81.htm#L15C6%23L15C6

;; FP-TO-A
L15CD: CALL
RET

PUSH
DEC
INC
JR

POP
SCF
RET

;; FP-A-END
L15D9: POP
RET

; prints 'last value'

AF

’

return

; THE 'FLOATING-POINT TO A'

SUBROUTINE

routine FP-TO-BC

forward if in range to FP-A-END

fetch result
set carry flag signaling overflow

return

X on calculator stack.

; THE 'PRINT A FLOATING-POINT NUMBER'

SUBROUTINE

; There are a wide variety of formats see Chapter 4.

; e.g.

; PI

; 123

; .0123

; 999999999999
; 9876543210123

prints
prints
prints
prints
prints

as
as
as
as
as

3.1415927
0.123
.0123
1000000000000
9876543200000

; Begin by isolating zero and just printing the '0' character
For negative numbers print a leading
; then form the absolute value of x.

; for that case.

;; PRINT-FP

L15DB: RST
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB

LD

RST
RET

28H
$2D
$32
$00
SO0B

$2D
$33
$00
$S0D

$02
$34

A, S1C

10H

’

’
’

’

’
’

’

’

’

’

’

’

;; FP-CALC

;duplicate

;7 1less-0
;5 jump-true
;;to L15EA,

;duplicate

; ;greater-0
;7 jump-true
; ;to L15FOQ,

; sdelete
; ;end-calc

load accumulator with character

PRINT-A
return.

PEF-NGTVE

PF-POSTVE

Xy

X.

and

X.
(1/0).

(1/0) .

'O'

>>

http://www.wearmouth.demon.co.uk/zx81.htm#L15F0%23L15F0
http://www.wearmouth.demon.co.uk/zx81.htm#L15EA%23L15EA
http://www.wearmouth.demon.co.uk/zx81.htm#L15D9%23L15D9
http://www.wearmouth.demon.co.uk/zx81.htm#L158A%23L158A

;7 PF-NEGTVE

L15EA: DEFB $27 ; abs +x.
DEFB $34 ;;end-calc X.
LD A,S$S16 ; load accumulator with '-'
RST 10H ; PRINT-A
RST 28H ;; FP-CALC X.

;; PF-POSTVE
L15F0: DEFB $34 ; ;end-calc X.

; register HL addresses the exponent of the floating-point wvalue.
; 1f positive, and point floats to left, then bit 7 is set.

LD A, (HL) ; pick up the exponent byte
CALL L151D ; routine STACK-A places on calculator
stack.

; now calculate roughly the number of digits, n, before the decimal point
by

; subtracting a half from true exponent and multiplying by log to

; the base 10 of 2.

; The true number could be one higher than n, the integer result.

RST 28H ;; FP-CALC X, e.

DEFB $30 ;;stk-data

DEFB $78 ; ;Exponent: $88, Bytes: 2

DEFB $00,$80 ;7 (+00,+00) X, e, 128.5.
DEFB 503 ; ;subtract x, e —-.5.
DEFB $30 ;s stk-data

DEFB SEF ; ;Exponent: $7F, Bytes: 4

DEFB S1A,$20,5%9A,5$85 ;; .30103 (logl0 2)
DEFB 504 ;smultiply X,

DEFB $24 ;;int

DEFB SC1 ;;st-mem-1 X, n.

DEFB $30 ;s stk-data

DEFB $34 ; ;Exponent: $84, Bytes: 1

DEFB 500 ;5 (+00,+00,+00) x, n, 8.
DEFB 503 ; ;subtract X, n-8.

DEFB 518 ;s neg x, 8-n.

DEFB $38 ;ie-to-fp x * (10”n)

; finally the 8 or 9 digit decimal is rounded.
; a ten-digit integer can arise in the case of, say, 999999999.5
; which gives 1000000000.

DEFB SA2 ;;stk-half
DEFB SOF ;;addition
DEFB $24 ;rint i.
DEFB $34 ; ;end-calc

; If there were 8 digits then final rounding will take place on the
calculator

; stack above and the next two instructions insert a masked zero so that
; no further rounding occurs. If the result is a 9 digit integer then

http://www.wearmouth.demon.co.uk/zx81.htm#L151D%23L151D

; rounding takes place within the buffer.

LD HL, $406B ; address system variable MEM-2-5th
; which could be the 'ninth' digit.
LD (HL) , $90 ; insert the value $90 10010000

; now starting from lowest digit lay down the 8, 9 or 10 digit integer
; which represents the significant portion of the number
; e.g. PI will be the nine-digit integer 314159265

LD B, $S0A ; count is ten digits.
;; PF-LOOP
L1615: INC HL ; lncrease pointer
PUSH HL ; preserve buffer address.
PUSH BC ; preserve counter.
RST 28H ;; FP-CALC i.
DEFB SA4 ;;stk-ten i, 10.
DEFB S2FE ; ;n—-mod-m i mod 10, 1/10
DEFB 501 ; ;exchange i/10, remainder.
DEFB $34 ;;end-calc
CALL L15CD ; routine FP-TO-A $00-509
OR $90 ; make left hand nibble 9
POP BC ; restore counter
POP HL ; restore buffer address.
LD (HL) ,A ; insert masked digit in buffer.
DJINZ L1615 ; loop back for all ten to PF-LOOP

; the most significant digit will be last but if the number is exhausted
then
; the last one or two positions will contain zero ($90).

; e.g. for 'one' we have zero as estimate of leading digits.
; 11078 100000000 as integer value
; 90 90 90 90 90 90 90 90 91 90 as buffer mem3/mem4 contents.

INC HL ; advance pointer to one past buffer
LD BC, $0008 ; set C to 8 (B is already zero)
PUSH HL ; save pointer.

;; PF-NULL

L162C: DEC HL ; decrease pointer
LD A, (HL) ; fetch masked digit
CP $90 ; 1s it a leading zero ?
JR Z,L162C ; loop back if so to PF-NULL

; at this point a significant digit has been found. carry is reset.

SBC HL,BC ; subtract eight from the address.
PUSH HL ; ** save this pointer too

LD A, (HL) ; fetch addressed byte

ADD A, $6B ; add $6B - forcing a round up ripple

; 1f $95 or over.
PUSH AF ; save the carry result.

http://www.wearmouth.demon.co.uk/zx81.htm#L162C%23L162C
http://www.wearmouth.demon.co.uk/zx81.htm#L1615%23L1615
http://www.wearmouth.demon.co.uk/zx81.htm#L15CD%23L15CD

; now enter a loop to round the number. After rounding has been considered
; a zero that has arisen from rounding or that was present at that position
; originally is changed from $90 to $80.

;; PF-RND-LP

L1639: POP
INC
LD
ADC

DAA
PUSH
AND

LD
SET

point.
JR

trailing

POP
POP

AF
HL
A, (HL)
A, 500

AF
HL

retrieve carry from machine stack.
increment address

fetch new byte

add in any carry

decimal adjust accumulator
carry will ripple through the '9'

save carry on machine stack.

isolate character 0 - 9 AND set zero flag
if zero.

place back in location.

set bit 7 to show printable.

but not if trailing zero after decimal

back if a zero to PF-RND-LP
to consider further rounding and/or

zero identification.

balance stack
** retrieve lower pointer

; now insert 6 trailing zeros which are printed if before the decimal point
; but mark the end of printing if after decimal point.
; e.g. 9876543210123 is printed as 9876543200000

; 123.456001 is printed as 123.456

LD

;; PF-ZERO-6

L164B: LD
DEC
DJINZ

B, $06

(HL), $80

HL
L164B

’

’

’

’

the count is six.

insert a masked zero
decrease pointer.
loop back for all six to PF-ZERO-6

; n—-mod-m reduced the number to zero and this is now deleted from the

calculator

; stack before fetching the original estimate of leading digits.

RST

DEFB
DEFB
DEFB

CALL
JR

NEG

;; PF-POS

L165B: LD
INC
INC
POP

;7 GET-FIRST

28H
$02
SE1
$34

;; FP-CALC 0.
; ;delete

;;get-mem-1 n.
;;end-calc n.

’

routine FP-TO-A
skip forward if positive to PF-POS

negate makes positive
transfer count of digits to E
increment twice

* retrieve pointer to one past buffer.

http://www.wearmouth.demon.co.uk/zx81.htm#L165B%23L165B
http://www.wearmouth.demon.co.uk/zx81.htm#L15CD%23L15CD
http://www.wearmouth.demon.co.uk/zx81.htm#L164B%23L164B
http://www.wearmouth.demon.co.uk/zx81.htm#L1639%23L1639

L165F: DEC HL ; decrement address.

DEC E ; decrement digit counter.

LD A, (HL) ; fetch masked byte.

AND SOF ; isolate right-hand nibble.

JR Z,L165F ; back with leading zero to GET-FIRST

; now determine if E-format printing is needed

LD AE ; transfer now accurate number count to A.

SUB $05 ; subtract five

CP $08 ; compare with 8 as maximum digits is 13.

JP P,L1682 ; forward if positive to PF-E-FMT

CPp SFo6 ; test for more than four zeros after
point.

JP M,L1682 ; forward if so to PF-E-FMT

ADD A, $06 ; test for zero leading digits, e.g. 0.5

JR Z,L16BF ; forward if so to PF-ZERO-1

JP M,L16B2 ; forward if more than one zero to PF-ZEROS

; else digits before the decimal point are to be printed

LD B,A ; count of leading characters to B.
;; PF-NIB-LP
L167B: CALL L16DO0 ; routine PF-NIBBLE
DJINZ L1678 ; loop back for counted numbers to PF-NIB-
LP
JR L16C2 ; forward to consider decimal part to PF-
DC-0OUT
;; PF-E-FMT
L1682: LD B,E ; count to B
CALL L16DO0 ; routine PF-NIBBLE prints one digit.
CALL L16C2 ; routine PF-DC-OUT considers fractional
part.
LD A, $2A ; prepare character 'E'
RST 10H ; PRINT-A
LD A,B ; transfer exponent to A
AND A ; test the sign.
JP P,L1698 ; forward if positive to PF-E-POS
NEG ; negate the negative exponent.
LD B,A ; save positive exponent in B.
LD A,S$16 ; prepare character '-'
JR 1L169A ; skip forward to PF-E-SIGN
;; PF-E-POS
L1698: LD A, $15 ; prepare character '+'
;; PF-E-SIGN

L169A: RST 10H ; PRINT-A

http://www.wearmouth.demon.co.uk/zx81.htm#L169A%23L169A
http://www.wearmouth.demon.co.uk/zx81.htm#L1698%23L1698
http://www.wearmouth.demon.co.uk/zx81.htm#L16C2%23L16C2
http://www.wearmouth.demon.co.uk/zx81.htm#L16D0%23L16D0
http://www.wearmouth.demon.co.uk/zx81.htm#L16C2%23L16C2
http://www.wearmouth.demon.co.uk/zx81.htm#L167B%23L167B
http://www.wearmouth.demon.co.uk/zx81.htm#L16D0%23L16D0
http://www.wearmouth.demon.co.uk/zx81.htm#L16B2%23L16B2
http://www.wearmouth.demon.co.uk/zx81.htm#L16BF%23L16BF
http://www.wearmouth.demon.co.uk/zx81.htm#L1682%23L1682
http://www.wearmouth.demon.co.uk/zx81.htm#L1682%23L1682
http://www.wearmouth.demon.co.uk/zx81.htm#L165F%23L165F

; now convert the integer exponent in B to two characters.
; it will be less than 99.

LD A,B ; fetch positive exponent.

LD B, SFF ; initialize left hand digit to minus one.
;; PF-E-TENS
L169E: INC B ; increment ten count

SUB S0A ; subtract ten from exponent

JR NC,L169E ; loop back if greater than ten to PF-E-
TENS

ADD A, SOA ; reverse last subtraction

LD C,A ; transfer remainder to C

LD A,B ; transfer ten value to A.

AND A ; test for zero.

JR Z,L16AD ; skip forward if so to PF-E-LOW

CALL LO7EB ; routine OUT-CODE prints as digit '1'
191
;; PF-E-LOW
L16AD: LD A,C ; low byte to A

CALL LO7EB ; routine OUT-CODE prints final digit of
the

; exponent.
RET ; return. >>

; this branch deals with zeros after decimal point.

; e.g. .01 or .0000999

;; PF-ZEROS

L16B2: NEG ; negate makes number positive 1 to 4.
LD B,A ; zero count to B.
LD A,S$1B ; prepare character '.'
RST 10H ; PRINT-A
LD A,S$1C ; prepare a '0'

;; PF-ZRO-LP

L16BA: RST 10H ; PRINT-A
DJINZ L16BA ; loop back to PF-ZRO-LP
JR L16C8 ; forward to PF-FRAC-LP

; there is a need to print a leading zero e.g. 0.1 but not with .01

;; PF-ZERO-1
L16BF: LD A,S$1C ; prepare character '0'.
RST 10H ; PRINT-A

; this subroutine considers the decimal point and any trailing digits.

; 1f the next character is a marked zero, $80, then nothing more to print.

;; PF-DC-OUT

http://www.wearmouth.demon.co.uk/zx81.htm#L16C8%23L16C8
http://www.wearmouth.demon.co.uk/zx81.htm#L16BA%23L16BA
http://www.wearmouth.demon.co.uk/zx81.htm#L07EB%23L07EB
http://www.wearmouth.demon.co.uk/zx81.htm#L07EB%23L07EB
http://www.wearmouth.demon.co.uk/zx81.htm#L16AD%23L16AD
http://www.wearmouth.demon.co.uk/zx81.htm#L169E%23L169E

L16C2: DEC (HL) ; decrement addressed character
INC ; increment it again
RET PE ; return with overflow (was 128) >>
; as no fractional part

e
5

; else there is a fractional part so print the decimal point.

LD A,S$1B ; prepare character '.'
RST 10H ; PRINT-A

; now enter a loop to print trailing digits

;; PF-FRAC-LP
L16C8: DEC (HL) ; test for a marked =zero.
INC (HL) ;
RET PE ; return when digits exhausted >>
CALL L16DO0 ; routine PF-NIBBLE
JR L16C8 ; back for all fractional digits to PF-
FRAC-LP.

; subroutine to print right-hand nibble

;; PF-NIBBLE

L16D0O: LD A, (HL) ; fetch addressed byte
AND SOF ; mask off lower 4 bits
CALL LO7EB ; routine OUT-CODE
DEC HL ; decrement pointer.
RET ; return.

; THE 'PREPARE TO ADD' SUBROUTINE

; This routine is called twice to prepare each floating point number for
; addition, in situ, on the calculator stack.

; The exponent is picked up from the first byte which is then cleared to
act

; as a sign byte and accept any overflow.

; If the exponent is zero then the number is zero and an early return is
made.

; The now redundant sign bit of the mantissa is set and if the number is
; negative then all five bytes of the number are twos-complemented to
prepare

; the number for addition.

; On the second invocation the exponent of the first number is in B.

; ; PREP-ADD
Ll1eD8: LD A, (HL) ; fetch exponent.

LD (HL), $00 ; make this byte zero to take any overflow
and

; default to positive.

AND A ; test stored exponent for zero.

RET Z ; return with zero flag set if number is
zZero.

INC HL ; point to first byte of mantissa.

BIT 7, (HL) ; test the sign bit.

SET 7, (HL) ; set it to its implied state.

http://www.wearmouth.demon.co.uk/zx81.htm#L07EB%23L07EB
http://www.wearmouth.demon.co.uk/zx81.htm#L16C8%23L16C8
http://www.wearmouth.demon.co.uk/zx81.htm#L16D0%23L16D0

DEC HL ; set pointer to first byte again.
RET Z ; return if bit indicated number is
positive.>>

; 1f negative then all five bytes are twos complemented starting at LSB.

PUSH BC ; save B register contents.

LD BC, $0005 ; set BC to five.

ADD HL, BC ; point to location after 5th byte.

LD B,C ; set the B counter to five.

LD C,A ; store original exponent in C.

SCF ; set carry flag so that one is added.

; now enter a loop to twos-complement the number.
; The first of the five bytes becomes $FF to denote a negative number.

;; NEG-BYTE
L16EC: DEC HL ; point to first or more significant byte.
LD A, (HL) ; fetch to accumulator.
CPL ; complement.
ADC A, $00 ; add in initial carry or any subsequent
carry.
LD (HL) , A ; place number back.
DJNZ L16EC ; loop back five times to NEG-BYTE
LD A,C ; restore the exponent to accumulator.
POP BC ; restore B register contents.
RET ; return.

; THE 'FETCH TWO NUMBERS' SUBROUTINE

; This routine is used by addition, multiplication and division to fetch
; the two five-byte numbers addressed by HL and DE from the calculator
stack

; into the 780 registers.

; The HL register may no longer point to the first of the two numbers.

; Since the 32-bit addition operation is accomplished using two Z80 16-bit
; instructions, it is important that the lower two bytes of each mantissa
are

; 1n one set of registers and the other bytes all in the alternate set.

; In: HL = highest number, DE= lowest number

; :alt':

; Out: :H,B-C:C,B: numl

; :L,D-E:D-E: num2

;; FETCH-TWO
L16F7: PUSH HL ; save HL

PUSH AF ; save A - result sign when used from
division.

LD C, (HL) ;

INC HL ;

LD B, (HL) ;

LD (HL) , A ; insert sign when used from
multiplication.

INC HL ;

LD A,C ; ml
LD c, (;

http://www.wearmouth.demon.co.uk/zx81.htm#L16EC%23L16EC

PUSH BC ; PUSH m2 m3

INC HL ;

LD C, (HL) ; md

INC HL ;

LD B, (HL) ; m5 BC holds m5 m4
EX DE, HL ; make HL point to start of second number.
LD D,A ; ml

LD E, (HL) ;

PUSH DE ; PUSH ml nl

INC HL ;

LD D, (HL) ;

INC HL ;

LD E, (HL) ;

PUSH DE ; PUSH n2 n3

EXX ; - - - - - - -
POP DE ; POP n2 n3

POP HL ; POP ml nl

POP BC ; POP m2 m3

EXX ; - - - - - - -
INC HL ;

LD D, (HL) ;

INC HL ;

LD E, (HL) ; DE holds n4 n5
POP AF ; restore saved
POP HL ; registers.

RET ; return.

; THE 'SHIFT ADDEND' SUBROUTINE

; The accumulator A contains the difference between the two exponents.
; This is the lowest of the two numbers to be added

;; SHIFT-FP

L171A: AND A ; test difference between exponents.
RET Z ; return if zero. both normal.
CP $21 ; compare with 33 bits.
JR NC,L1736 ; forward if greater than 32 to ADDEND-0
PUSH BC ; preserve BC - part
LD B,A ; shift counter to B.

; Now perform B right shifts on the addend L'D'E'D E

; to bring it into line with the augend H'B'C'C B

;; ONE-SHIFT

L1722: EXX HE
SRA L ; 76543210->C bit 7 unchanged.
RR D ; C->76543210->C
RR E ; C->76543210->C
EXX ;- - -

RR D ; C->76543210->C

http://www.wearmouth.demon.co.uk/zx81.htm#L1736%23L1736

RR E ; C->76543210->C

DJINZ L1722 ; loop back B times to ONE-SHIFT

POP BC ; restore BC

RET NC ; return if last shift produced no carry.

>>
; 1f carry flag was set then accuracy is being lost so round up the addend.

CALL L1741 ; routine ADD-BACK
RET NZ ; return if not FF 00 00 00 00

; this branch makes all five bytes of the addend zero and is made during
; addition when the exponents are too far apart for the addend bits to
; affect the result.

;; ADDEND-0

L1736: EXX ; select alternate set for more significant
; bytes.
XOR A ; clear accumulator.

; this entry point (from multiplication) sets four of the bytes to zero or
if

; continuing from above, during addition, then all five bytes are set to
Zero.

;; ZEROS-4/5

L1738: LD L,$00 ; set byte 1 to zero.
LD D,A ; set byte 2 to A.
LD E,L ; set byte 3 to zero.
EXX ; select main set
LD DE, $0000 ; set lower bytes 4 and 5 to zero.
RET ; return.

; THE 'ADD-BACK' SUBROUTINE

; Called from SHIFT-FP above during addition and after normalization from
; multiplication.

; This is really a 32-bit increment routine which sets the zero flag
according

; to the 32-bit result.

; During addition, only negative numbers like FF FF FF FF FF,

; the twos-complement version of xx 80 00 00 01 say

; will result in a full ripple FF 00 00 00 00.

; FF FF FF FF FF when shifted right is unchanged by SHIFT-FP but sets the
; carry invoking this routine.

; ; ADD-BACK

L1741: INC E ;
RET NZ ;
INC D ;
RET Nz ;
EXX ;
INC B ;
JR NZ,L174A ; forward if no overflow to ALL-ADDED

INC D ;

http://www.wearmouth.demon.co.uk/zx81.htm#L174A%23L174A
http://www.wearmouth.demon.co.uk/zx81.htm#L1741%23L1741
http://www.wearmouth.demon.co.uk/zx81.htm#L1722%23L1722

; ; ALL-ADDED
L174A: EXX ;

RET ; return with zero flag set for zero
mantissa.

; THE 'SUBTRACTION' OPERATION

; just switch the sign of subtrahend and do an add.

;; subtract
L174C: 1D A, (DE) ; fetch exponent byte of second number the
; subtrahend.
AND A ; test for zero
RET 7 ; return if zero - first number is result.
INC DE ; address the first mantissa byte.
LD A, (DE) ; fetch to accumulator.
XOR $80 ; toggle the sign bit.
LD (DE) ,A ; place back on calculator stack.
DEC DE ; point to exponent byte.

; continue into addition routine.

; THE 'ADDITION' OPERATION

; The addition operation pulls out all the stops and uses most of the Z80's
; registers to add two floating-point numbers.

; This is a binary operation and on entry, HL points to the first number

; and DE to the second.

;; addition
L1755: EXX ;o - -
PUSH HL ; save the pointer to the next literal.
EXX ; - - -
PUSH DE ; save pointer to second number
PUSH HL ; save pointer to first number - will be
the
; result pointer on calculator stack.
CALL 1L16D8 ; routine PREP-ADD
LD B,A ; save first exponent byte in B.
EX DE, HL ; switch number pointers.
CALL 1L16D8 ; routine PREP-ADD
LD C,A ; save second exponent byte in C.
CPp B ; compare the exponent bytes.
JR NC,L1769 ; forward if second higher to SHIFT-LEN
LD A,B ; else higher exponent to A
LD B,C ; lower exponent to B
EX DE, HL ; switch the number pointers.
;; SHIFT-LEN
L1769: PUSH AF ; save higher exponent
SUB B ; subtract lower exponent
CALL L16F7 ; routine FETCH-TWO
CALL L171A ; routine SHIFT-FP

POP AF ; restore higher exponent.

http://www.wearmouth.demon.co.uk/zx81.htm#L171A%23L171A
http://www.wearmouth.demon.co.uk/zx81.htm#L16F7%23L16F7
http://www.wearmouth.demon.co.uk/zx81.htm#L1769%23L1769
http://www.wearmouth.demon.co.uk/zx81.htm#L16D8%23L16D8
http://www.wearmouth.demon.co.uk/zx81.htm#L16D8%23L16D8

POP HL ;
LD (HL) , A ;
PUSH HL ;

; now perform the 32-bit addition

LD L,B ;
individually

LD H,C ;

ADD HL, DE ;

restore result pointer.

insert exponent byte.

save result pointer again.

using two 16-bit Z80 add instructions.
transfer low bytes of mantissa

to HL register

the actual binary addition of lower bytes

; now the two higher byte pairs that are in the alternate register sets.

EXX ;

EX DE, HL ;
register.

ADC HL, BC ;

EX DE, HL ;
HL

; now consider the two sign bytes

LD A,H ;
ADC A,L ;
LD L,A ;

switch in set
transfer high mantissa bytes to HL

the actual addition of higher bytes with
any carry from first stage.

result in DE, sign bytes (SFF or $00) to

fetch sign byte of numl

add including any carry from mantissa
addition. 00 or 01 or FE or FF

result in L.

; possible outcomes of signs and overflow from mantissa are

; H+ L + carry = L RRA XOR L RRA
; 00 + 00 = 00 00 00
; 00 + 00 4+ carry = 01 00 01 carry
; FF + FF = FE C FF 01 carry
; FF + FF + carry = FF C FF 00
; FF + 00 = FF FE 00
; FF + 00 + carry = 00 C 80 80
RRA ; C->76543210->C
XOR L ; set bit 0 if shifting required.
EXX ; switch back to main set
EX DE, HL ; full mantissa result now in D'E'D E
registers.
POP HL ; restore pointer to result exponent on
; the calculator stack.
RRA ; has overflow occurred ?
JR NC,L1790 ; skip forward if not to TEST-NEG

; if the addition of two positive

mantissas produced overflow or if the

; addition of two negative mantissas did not then the result exponent has

to
; be incremented and the mantissa

LD A,S$01 ;

shifted one place to the right.

one shift required.

http://www.wearmouth.demon.co.uk/zx81.htm#L1790%23L1790

too

; at this stage

;; TEST-
L1790:

CALL

INC
JR

NEG
EXX
LD

AND

EXX

INC

LD

DEC
JR

the exponent on

A, L
$80

HL
(HL) , A
HL
7,L17B9

routine SHIFT-FP performs a single shift
rounding any lost bit

increment the exponent.

forward to ADD-REP-6 if the exponent
wraps round from FF to zero as number is

big for the system.

the calculator stack is correct.

’
’
’
’

’

’
’

’

’

’

switch in the alternate set.

load result sign to accumulator.

isolate bit 7 from sign byte setting zero
flag if positive.

back to main set.

point to first byte of mantissa
insert $00 positive or $80 negative at
position on calculator stack.

point to exponent again.
forward if positive to GO-NC-MLT

; a negative number has to be twos-complemented before being placed on

stack.
LD A,E ; fetch lowest (rightmost) mantissa byte.
NEG ; Negate
CCF ; Complement Carry Flag
LD E,A ; place back in register
LD A,D ; ditto
CPL ;
ADC A,S$00 ;
LD D,A 7
EXX ; switch to higher (leftmost) 16 bits.
D AE ; ditto
CPL ;
ADC A,S$00 ;
LD E,A ;
LD A,D ; ditto
CPL ;
ADC A,$00 7
JR NC, L17B7 ; forward without overflow to END-COMPL
; else entire mantissa is now zero. 00 00 00 0O
RRA ; set mantissa to 80 00 00 0O
EXX ; switch.
INC (HL) ; increment the exponent.
;; ADD-REP-6
L17B3: JP Z,L1880 ; jump forward if exponent now zero to
REPORT-6

EXX

'Number too big'

switch back to alternate set.

http://www.wearmouth.demon.co.uk/zx81.htm#L1880%23L1880
http://www.wearmouth.demon.co.uk/zx81.htm#L17B7%23L17B7
http://www.wearmouth.demon.co.uk/zx81.htm#L17B9%23L17B9
http://www.wearmouth.demon.co.uk/zx81.htm#L17B3%23L17B3
http://www.wearmouth.demon.co.uk/zx81.htm#L171A%23L171A

; ; END-COMPL
L17B7: LD D,A ; put first byte of mantissa back in DE.
EXX ; switch to main set.

;7 GO-NC-MLT
L17B9: XOR A ; clear carry flag and

; clear accumulator so no extra bits
carried

; forward as occurs in multiplication.

JR 11828 ; forward to common code at TEST-NORM
; but should go straight to NORMALIZE.

; THE 'PREPARE TO MULTIPLY OR DIVIDE' SUBROUTINE

; this routine is called twice from multiplication and twice from division
; to prepare each of the two numbers for the operation.
; Initially the accumulator holds zero and after the second invocation bit

; of the accumulator will be the sign bit of the result.

;; PREP-M/D

L17BC: SCF ; set carry flag to signal number is zero.
DEC (HL) ; test exponent
INC (HL) ; for zero.
RET Z ; return if zero with carry flag set.
INC HL ; address first mantissa byte.
XOR (HL) ; exclusive or the running sign bit.
SET 7, (HL) ; set the implied bit.
DEC HL ; point to exponent byte.
RET ; return.

; THE 'MULTIPLICATION' OPERATION

;; multiply

L17C6: XOR A ; reset bit 7 of running sign flag.
CALL L17BC ; routine PREP-M/D
RET C ; return if number is zero.
; zero * anything = zero.
EXX ;- - -
PUSH HL ; save pointer to 'next literal'
EXX ;- - -
PUSH DE ; save pointer to second number
EX DE, HL ; make HL address second number.
CALL L17BC ; routine PREP-M/D
EX DE, HL ; HL first number, DE - second number
JR C,L1830 ; forward with carry to ZERO-RSLT
; anything * zero = zero.

PUSH HL ; save pointer to first number.

http://www.wearmouth.demon.co.uk/zx81.htm#L1830%23L1830
http://www.wearmouth.demon.co.uk/zx81.htm#L17BC%23L17BC
http://www.wearmouth.demon.co.uk/zx81.htm#L17BC%23L17BC
http://www.wearmouth.demon.co.uk/zx81.htm#L1828%23L1828

from

sign

number

bytes

thirty

; The multiplication loop is entered at

CALL

LD

AND
SBC

EXX

PUSH

SBC

EXX

LD

JR

;; MLT-LOOP
L17E7: JR
ADD
EXX
ADC
carry.
EXX

; 1in either

;; NO-ADD

L17EE:

EXX
RR
RR
EXX
RR
RR

;; STRT-MLT

L17F8:

EXX
RR
RR
EXX
RR
RRA
DJINZ

EX

L16E7

HL
HL, HL

NC,L17EE

HL, DE

HL, DE

’

’

routine FETCH-TWO fetches two mantissas

calc stack to B'C'C,B D'E'D E
(HL will be overwritten but the result

in A is inserted on the calculator stack)
transfer low mantissa byte of first

clear carry.

a short form of LD HL,$0000 to take lower
two bytes of result. (2 program bytes)
switch in alternate set

preserve HL

set HL to zero also to take higher two

of the result and clear carry.
switch back.

register B can now be used to count

three shifts.
forward to loop entry point STRT-MLT

STRT-LOOP.

forward if no carry to NO-ADD
else add in the multiplicand.

add the two low bytes to result
switch to more significant bytes.

add high bytes of multiplicand and any

switch to main set.

case shift result right into B'C'C A

DE, HL

switch to alternate set
C > 76543210 > C
C > 76543210 > C

C > 76543210 > C

C > 76543210 > C

switch in alternate set.

C > 76543210 > C

C > 76543210 > C

now main set

C > 76543210 > C

C > 76543210 > C

loop back 33 times to MLT-LOOP

http://www.wearmouth.demon.co.uk/zx81.htm#L17E7%23L17E7
http://www.wearmouth.demon.co.uk/zx81.htm#L17EE%23L17EE
http://www.wearmouth.demon.co.uk/zx81.htm#L17F8%23L17F8
http://www.wearmouth.demon.co.uk/zx81.htm#L16F7%23L16F7

EXX
EX
EXX
POP
POP
LD
ADD
JR

AND

; ; MAKE-EXPT
L180E: DEC
CCF

;; DIVN-EXPT

L1810: RLA
CCF
RRA
JP

JR
AND

;; OFLW1-CLR
L.1819: INC
JR

JR

EXX
BIT
EXX
JR

;; OFLW2-CLR

L1824: LD
EXX
LD
EXX

DE, HL

BC

HL

A,B

A,C
NZ,L180E

A

P,L1819

NC, L1880

Nz,L1880

(HL) , A

A,B

forward

to

Complement

Complement

forward

forward

forward

forward

forward

to

to

to

to

to

; addition joins here with carry flag clear.

; ; TEST-NORM
L1828: JR

LD

AND
; ; NEAR-ZERO
L182C: LD
bit

JR
;; ZERO-RSLT

L1830: XOR

;; SKIP-ZERO
L1831: EXX

NC,L183F
A, (HL)

A

A, $80
7,L1831
A

’

MAKE-EXPT

Carry Flag

Carry Flag

OFLW1-CLR

REPORT-6

OFLW2-CLR

OFLW2-CLR

REPORT-6

forward to NORMALIZE

prepare to rescue the most significant

of the mantissa if it is set.
skip forward to SKIP-ZERO

make mask byte zero signaling set five
bytes to zero.

switch in alternate set

http://www.wearmouth.demon.co.uk/zx81.htm#L1831%23L1831
http://www.wearmouth.demon.co.uk/zx81.htm#L183F%23L183F
http://www.wearmouth.demon.co.uk/zx81.htm#L1880%23L1880
http://www.wearmouth.demon.co.uk/zx81.htm#L1824%23L1824
http://www.wearmouth.demon.co.uk/zx81.htm#L1824%23L1824
http://www.wearmouth.demon.co.uk/zx81.htm#L1880%23L1880
http://www.wearmouth.demon.co.uk/zx81.htm#L1819%23L1819
http://www.wearmouth.demon.co.uk/zx81.htm#L180E%23L180E

AND
$80) .

CALL

RLCA

LD
JR

INC
LD

DEC
JR

isolate most significant bit (if A is

routine ZEROS-4/5 sets mantissa without
affecting any flags.

test 1if MSB set. bit 7 goes to bit 0.
either $00 -> $00 or $80 -> $01

make exponent $01 (lowest) or $00 zero
forward if first case to OFLOW-CLR

address first mantissa byte on the
calculator stack.

insert a zero for the sign bit.
point to zero exponent

forward to OFLOW-CLR

; this branch is common to addition and multiplication with the mantissa
; result still in registers D'E'D E

;; NORMALIZE
L183F: LD
be

;7 SHIFT-ONE

L1841: EXX
BIT
EXX

JR
NOW

RLCA

RL

RL

EXX

RL
RL

EXX
DEC

calculator

JR
ZERO

DJINZ

B, $20

7,D

NZ,L1859

(HL)

11841

’

’

a maximum of thirty-two left shifts will
needed.

address higher 16 bits.

test the leftmost bit

address lower 16 bits.

forward if leftmost bit was set to NORML-
this holds zero from addition, 33rd bit
from multiplication.

C < 76543210 < C
C < 76543210 < C

address higher 16 bits.

C < 76543210 < C
C < 76543210 < C

switch to main set.

decrement the exponent byte on the
stack.

back if exponent becomes zero to NEAR-

it's just possible that the last rotation
set bit 7 of D. We shall see.

loop back to SHIFT-ONE

; 1f thirty-two left shifts were performed without setting the most

significant

; bit then the result is zero.

http://www.wearmouth.demon.co.uk/zx81.htm#L1841%23L1841
http://www.wearmouth.demon.co.uk/zx81.htm#L182C%23L182C
http://www.wearmouth.demon.co.uk/zx81.htm#L1859%23L1859
http://www.wearmouth.demon.co.uk/zx81.htm#L1868%23L1868
http://www.wearmouth.demon.co.uk/zx81.htm#L1868%23L1868
http://www.wearmouth.demon.co.uk/zx81.htm#L1738%23L1738

JR
; ; NORML-NOW
L1859: RLA
JR

L1830

NC,L1868

back to ZERO-RSLT

for the addition path, A is always zero.
for the mult path,

forward to OFLOW-CLR

; this branch is taken only with multiplication.

CALL

JR

EXX
LD
EXX
INC
JR

L1741

NZ,L1868

D, $80

(HL)

Z,11880

’

’

’

routine ADD-BACK

forward to OFLOW-CLR

forward to REPORT-6

; now transfer the mantissa from the register sets to the calculator stack
; incorporating the sign bit already there.

;7 OFLOW-CLR

L1868:

$80.

; now pick up the sign bit.

; and transfer mantissa from main

literal.

PUSH
INC

EXX
PUSH
EXX

POP

LD
RLA
RL
RRA

LD
INC
LD
INC
LD
INC
LD

POP
POP

EXX
POP

EXX

HL
HL

DE

BC

A,B

(HL)

(HL) , A
HL
(HL) ,C
HL
(HL) ,D
HL
(HL) ,E

HL
DE

HL

save pointer to exponent on stack.
address first byte of mantissa which was
previously loaded with sign bit $00 or

push the most significant two bytes.

pop - true mantissa is now BCDE.

first mantissa byte to A

rotate out bit 7 which is set

rotate sign bit on stack into carry.
rotate sign bit into bit 7 of mantissa.

registers to calculator stack.

restore pointer to numl now result.
restore pointer to num2 now STKEND.

restore pointer to next calculator

http://www.wearmouth.demon.co.uk/zx81.htm#L1880%23L1880
http://www.wearmouth.demon.co.uk/zx81.htm#L1868%23L1868
http://www.wearmouth.demon.co.uk/zx81.htm#L1741%23L1741
http://www.wearmouth.demon.co.uk/zx81.htm#L1868%23L1868
http://www.wearmouth.demon.co.uk/zx81.htm#L1830%23L1830

RET ; return.

; ; REPORT-6
1L1880: RST 08H ; ERROR-1
DEFB $05 ; Error Report: Arithmetic overflow.

; THE 'DIVISION' OPERATION

’

"Of all the arithmetic subroutines, division is the most complicated

the least understood. It is particularly interesting to note that the
Sinclair programmer himself has made a mistake in his programming (or
copied over someone else's mistake!) for

PRINT PEEK 6352 [$18D0] ('unimproved' ROM, 6351 [$18CF])

should give 218 not 225."
- Dr. Ian Logan, Syntax magazine Jul/Aug 1982.
[i.e. the jump should be made to div-34th]

First check for division by zero.

;; division
1L1882: EX DE, HL ; consider the second number first.
XOR A ; set the running sign flag.
CALL L17BC ; routine PREP-M/D
JR C,L1880 ; back if zero to REPORT-6
; '"Arithmetic overflow'
EX DE, HL ; now prepare first number and check for
zero.
CALL L17BC ; routine PREP-M/D
RET C ; return if zero, 0/anything is zero.
EXX ; - - -
PUSH HL ; save pointer to the next calculator
literal.
EXX ;- - -
PUSH DE ; save pointer to divisor - will be STKEND.
PUSH HL ; save pointer to dividend - will be
result.
CALL L16F7 ; routine FETCH-TWO fetches the two numbers
; into the registers H'B'C'C B
; L'D'E'D E
EXX ; - - -
PUSH HL ; save the two exponents.
LD H,B ; transfer the dividend to H'L'H L
LD L,C ;
EXX ;
LD H,C ;
LD L,B ;
XOR A ; clear carry bit and accumulator.
LD B, $SDF ; count upwards from -33 decimal

JR L18B2 ; forward to mid-loop entry point DIV-START

http://www.wearmouth.demon.co.uk/zx81.htm#L18B2%23L18B2
http://www.wearmouth.demon.co.uk/zx81.htm#L16F7%23L16F7
http://www.wearmouth.demon.co.uk/zx81.htm#L17BC%23L17BC
http://www.wearmouth.demon.co.uk/zx81.htm#L1880%23L1880
http://www.wearmouth.demon.co.uk/zx81.htm#L17BC%23L17BC

;; DIV-LOOP

L18A2: RLA
RL
EXX
RL
RL
EXX

;; div-34th
L18AB: ADD
EXX
ADC
EXX
JR

;; DIV-START

L18B2: SBC
EXX
SBC
EXX
JR

ADD
EXX
ADC
EXX
AND
JR

; ; SUBN-ONLY

L18C2: AND
SBC
EXX
SBC
EXX

; ;7 NO-RSTORE
L18C9: SCF

; ; COUNT-ONE

L18CA: INC
Jp
PUSH
JR

HL, DE
HL, DE
NC,L18C9
HL, DE
HL, DE
A
L18CA

HL, DE

HL, DE

; multiply partial quotient by two
; setting result bit from carry.

; forward to SUBN-ONLY

; subtract divisor part.

; forward if subtraction goes to NO-RSTORE

; else restore

; clear carry
; forward to COUNT-ONE

; set carry flag

; increment the counter
; back while still minus to DIV-LOOP

; back to DIV-START

; "This jump is made to the wrong place. No 34th bit will ever be obtained
; without first shifting the dividend. Hence important results like 1/10

and

; 1/1000 are not rounded up as they should be. Rounding up never occurs

when

; 1t depends on the 34th bit.
; — Dr. Frank O'Hara,

The jump should be made to div-34th above."

"The Complete Spectrum ROM Disassembly", 1983,

; published by Melbourne House.
; (Note. on the ZX81 this would be JR Z,L18AB)

; However if you make this change, then while (1/2=.5) will now evaluate as

; true, (.25=1/4),

which did evaluate as true, no longer does.

http://www.wearmouth.demon.co.uk/zx81.htm#L18B2%23L18B2
http://www.wearmouth.demon.co.uk/zx81.htm#L18A2%23L18A2
http://www.wearmouth.demon.co.uk/zx81.htm#L18CA%23L18CA
http://www.wearmouth.demon.co.uk/zx81.htm#L18C9%23L18C9
http://www.wearmouth.demon.co.uk/zx81.htm#L18C2%23L18C2

LD E,A
LD D,C
EXX

1D E,C
LD D,B
POP AF
RR B

POP AF
RR B

EXX

POP BC
POP HL

LD A,B
SUB C

Jp 11810

; THE 'INTEGER TRUNCATION TOWARDS

;; truncate

L18E4: LD A, (HL)
CP $81
JR NC,L18EF

; else the number is smaller than

LD (HL) , $00

LD A,$20
Zero.

JR L18F4

;; T-GR-ZERO

L18EF: SUB SA0
RET P
bits
part.
right
NEG
bits

’

Jjump back to DIVN-EXPT

ZERO' SUBROUTINE

fetch exponent
compare to +1
forward, if 1 or more, to T-GR-ZERO

plus or minus 1 and can be made zero.

make exponent zero.
prepare to set 32 bits of mantissa to

forward to NIL-BYTES

subtract +32 from exponent
return if result is positive as all 32

of the mantissa relate to the integer
The floating point is somewhere to the
of the mantissa

else negate to form number of rightmost

to be blanked.

; for instance, disregarding the sign bit, the number 3.5 is held as
; exponent $82 mantissa .11100000 00000000 00000000 00000000
; we need to set $82 - $SA0 = $E2 NEG = $1E (thirty) bits to zero to form

the
; integer.

; The sign of the number is never considered as the first bit of the

mantissa
; must be part of the integer.

;; NIL-BYTES

http://www.wearmouth.demon.co.uk/zx81.htm#L18F4%23L18F4
http://www.wearmouth.demon.co.uk/zx81.htm#L18EF%23L18EF
http://www.wearmouth.demon.co.uk/zx81.htm#L1810%23L1810

L18F4: PUSH DE ; save pointer to STKEND

EX DE, HL ; HL points at STKEND

DEC HL ; now at last byte of mantissa.

LD B,A ; Transfer bit count to B register.
SRL B ; divide by

SRL B ; eight

SRL B ;

JR Z,L1905 ; forward if zero to BITS-ZERO

; else the original count was eight or more and whole bytes can be blanked.

;; BYTE-ZERO

L1900: LD (HL) , $00 ; set eight bits to zero.

DEC HL ; point to more significant byte of
mantissa.

DJINZ 11900 ; loop back to BYTE-ZERO

; now consider any residual bits.

;; BITS-ZERO

L1905: AND $07 ; 1solate the remaining bits
JR Z2,L1912 ; forward if none to IX-END
LD B,A ; transfer bit count to B counter.
LD A, SFF ; form a mask 11111111

;; LESS-MASK

L190C: SLA A ;1 <= 76543210 <- o slide mask
leftwards.
DJINZ 1L190C ; loop back for bit count to LESS-MASK
AND (HL) ; lose the unwanted rightmost bits
LD (HL) , A ; and place in mantissa byte.
;; IX-END
L1912: EX DE, HL ; restore result pointer from DE.
POP DE ; restore STKEND from stack.
RET ; return.

,-********************************

;** FLOATING-POINT CALCULATOR **

,-********************************

; As a general rule the calculator avoids using the IY register.

; Exceptions are val and strs.

; So an assembly language programmer who has disabled interrupts to use IY
; for other purposes can still use the calculator for mathematical

; purposes.

; THE 'TABLE OF CONSTANTS'

; The ZX81 has only floating-point number representation.
; Both the ZX80 and the ZX Spectrum have integer numbers in some form.

;; stk-zero 00 00 00 00 00
L1915: DEFB $00 ;;Bytes: 1
DEFB SBO ; ;Exponent $00

DEFB $00 ;7 (+00,+00,+00)

http://www.wearmouth.demon.co.uk/zx81.htm#L190C%23L190C
http://www.wearmouth.demon.co.uk/zx81.htm#L1912%23L1912
http://www.wearmouth.demon.co.uk/zx81.htm#L1900%23L1900
http://www.wearmouth.demon.co.uk/zx81.htm#L1905%23L1905

;; stk-one

1.1918: DEFB
DEFB
;; stk-half
L191A: DEFB
DEFB
;; stk-pi/2
L191C: DEFB
DEFB
;; stk-ten
L1921: DEFB
DEFB
; THE

; starts with binary operations which have two operands and one result.

$31
$00

$30
$00

SF1
$49,$0F, SDA, SA2

'TABLE OF ADDRESSES'

’

’

’

’

’

’

’

; Exponent $81,
;7 (+00,+00,+00)

; Exponent:

; Exponent:

’

; s Exponent:

; three pseudo binary operations first.

;; tbl-addrs
L1923: DEFW
DEFW
DEFW

LI1C2F
L1A72
L19E3

; true binary operations.

DEFW
DEFW
DEFW
DEFW
DEFW

DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW

DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW

; unary

DEFW

DEFW

follow

L174
L17C
11882
L1DE2

@]

(o)}

$00
$01
$02

$03
$04
$05
$06
$07

$08
$09
SO0A
SOB
s0C
S0D
SOE
SOF

$10
$11
$12
$13
$14
$15
S16
$17

$18

$19

Address:
Address:
Address:

Address:
Address:
Address:
Address:
Address:

Address:
Address:
Address:
Address:
Address:
Address:
Address:
Address:

Address:
Address:
Address:
Address:
Address:
Address:
Address:
Address:

Address:

Address:

$80,
;; (+00,+00,+00)

$81,

s84,
;7 (+00,+00,+00)

Bytes:

S1C2F -
$1A72 -
S19E3 -

$174C -
$176C -
$1882 -
S1DE2 -
$1AED -

$1B03 -
$1B03 -
$1BO3 -
S1B03 -
$1B03 -
$1B03 -
S1B03 -
$1755 -

$1AF8 -
$1B03 -
$1B03 -
$1B03 -
$1B03 -
$1B03 -
$1B03 -
$1B62 -

S1AAQ0 -

$1C06 -

Bytes:

Bytes:

Bytes:

81 00 00 00 00

80 00 00 00 0O

81 49 OF DA A2

84 20 00 00 00

Jjump-true
exchange
delete

subtract
multiply
division
to-power
or

no-&-no
no-l-eql
no-gr-eql
nos—-neqgl
no-grtr
no-less
nos-eql
addition

str-&-no
str-l-eqgql
str-gr-eqgl
strs-neql
str-grtr
str-less
strs-eql
strs—-add

neg

code

http://www.wearmouth.demon.co.uk/zx81.htm#L1C06%23L1C06
http://www.wearmouth.demon.co.uk/zx81.htm#L1AA0%23L1AA0
http://www.wearmouth.demon.co.uk/zx81.htm#L1B62%23L1B62
http://www.wearmouth.demon.co.uk/zx81.htm#L1B03%23L1B03
http://www.wearmouth.demon.co.uk/zx81.htm#L1B03%23L1B03
http://www.wearmouth.demon.co.uk/zx81.htm#L1B03%23L1B03
http://www.wearmouth.demon.co.uk/zx81.htm#L1B03%23L1B03
http://www.wearmouth.demon.co.uk/zx81.htm#L1B03%23L1B03
http://www.wearmouth.demon.co.uk/zx81.htm#L1B03%23L1B03
http://www.wearmouth.demon.co.uk/zx81.htm#L1AF8%23L1AF8
http://www.wearmouth.demon.co.uk/zx81.htm#L1755%23L1755
http://www.wearmouth.demon.co.uk/zx81.htm#L1B03%23L1B03
http://www.wearmouth.demon.co.uk/zx81.htm#L1B03%23L1B03
http://www.wearmouth.demon.co.uk/zx81.htm#L1B03%23L1B03
http://www.wearmouth.demon.co.uk/zx81.htm#L1B03%23L1B03
http://www.wearmouth.demon.co.uk/zx81.htm#L1B03%23L1B03
http://www.wearmouth.demon.co.uk/zx81.htm#L1B03%23L1B03
http://www.wearmouth.demon.co.uk/zx81.htm#L1AF3%23L1AF3
http://www.wearmouth.demon.co.uk/zx81.htm#L1AED%23L1AED
http://www.wearmouth.demon.co.uk/zx81.htm#L1DE2%23L1DE2
http://www.wearmouth.demon.co.uk/zx81.htm#L1882%23L1882
http://www.wearmouth.demon.co.uk/zx81.htm#L17C6%23L17C6
http://www.wearmouth.demon.co.uk/zx81.htm#L174C%23L174C
http://www.wearmouth.demon.co.uk/zx81.htm#L19E3%23L19E3
http://www.wearmouth.demon.co.uk/zx81.htm#L1A72%23L1A72
http://www.wearmouth.demon.co.uk/zx81.htm#L1C2F%23L1C2F

DEFW L1BA4 ; S$1A Address: $1BA4 - val

DEFW L1C11 ; $1B Address: $1Cll - len
DEFW L1D49 ; $1C Address: $1D49 - sin
DEFW L1D3E ; $1D Address: $1D3E - cos
DEFW L1D6E ; S1E Address: $1D6E - tan
DEFW L1DC4 ; S$1F Address: $1DC4 - asn
DEFW 1L1DD4 ; $20 Address: $1DD4 - acs
DEFW L1D76 ; $21 Address: $1D76 - atn
DEFW LI1CA9 ; $22 Address: $1CA9 - 1n
DEFW L1C5B ; $23 Address: $1C5B - exp
DEFW L1C46 ; $24 Address: $1C46 - int
DEFW L1DDB ; $25 Address: S$1DDB - sqr
DEFW L1AAF ; $26 Address: S1AAF - sgn
DEFW L1AAA ; $27 Address: $1AAA - abs
DEFW L1ABE ; $28 Address: $1A1B - peek
DEFW L1ACS ; $29 Address: S$S1AC5 - usr-no
DEFW L1BD5 ; $2A Address: $1BD5 - str$
DEFW L1B8F ; $2B Address: $1B8F - chrs
DEFW L1ADS ; $2C Address: $1ADS5 - not

; end of true unary

DEFW L19F6 ; $2D Address: $19F6 - duplicate
DEFW L1C37 ; $S2E Address: $1C37 - n-mod-m
DEFW Lic23 ; S$2F Address: $1C23 - jump

DEFW L19FC ; $30 Address: S$19FC - stk-data
DEFW Lic17 ; $31 Address: $1Cl7 - dec-jr-nz
DEFW L1ADB ; $32 Address: S$S1ADB - less-0
DEFW L1ACE ; $33 Address: $1ACE - greater-0
DEFW LOO2B ; $34 Address: $002B - end-calc
DEFW 1L1D18 ; $35 Address: $1D18 - get-argt
DEFW L18F4 ; $36 Address: $18E4 - truncate
DEFW L19E4 ; $37 Address: $19E4 - fp-calc-2
DEFW L155A ; $38 Address: $155A - e-to-fp

; the following are just the next available slots for the 128 compound
literals
; which are in range $80 - SFF.

DEFW L1IATF ; $39 Address: $1ATF - series-xx $80 -
SOF.

DEFW L1A51 ; $3A Address: $1A51 - stk-const-xx SA0 -
SBF.

DEFW L1A63 ; $3B Address: $1A63 - st-mem-xx $CO0 -
SDF'.

DEFW L1A45 ; $3C Address: $1A45 - get-mem-xx SEQ0 -
SEFF.
; Aside: 3D - 7F are therefore unused calculator literals.
; 39 - 7B would be available for expansion.

; THE 'FLOATING POINT CALCULATOR'

;; CALCULATE
L199D: CALL L1B85 ; routine STK-PNTRS is called to set up the
; calculator stack pointers for a default

http://www.wearmouth.demon.co.uk/zx81.htm#L1B85%23L1B85
http://www.wearmouth.demon.co.uk/zx81.htm#L1A45%23L1A45
http://www.wearmouth.demon.co.uk/zx81.htm#L1A63%23L1A63
http://www.wearmouth.demon.co.uk/zx81.htm#L1A51%23L1A51
http://www.wearmouth.demon.co.uk/zx81.htm#L1A7F%23L1A7F
http://www.wearmouth.demon.co.uk/zx81.htm#L155A%23L155A
http://www.wearmouth.demon.co.uk/zx81.htm#L19E4%23L19E4
http://www.wearmouth.demon.co.uk/zx81.htm#L18E4%23L18E4
http://www.wearmouth.demon.co.uk/zx81.htm#L1D18%23L1D18
http://www.wearmouth.demon.co.uk/zx81.htm#L002B%23L002B
http://www.wearmouth.demon.co.uk/zx81.htm#L1ACE%23L1ACE
http://www.wearmouth.demon.co.uk/zx81.htm#L1ADB%23L1ADB
http://www.wearmouth.demon.co.uk/zx81.htm#L1C17%23L1C17
http://www.wearmouth.demon.co.uk/zx81.htm#L19FC%23L19FC
http://www.wearmouth.demon.co.uk/zx81.htm#L1C23%23L1C23
http://www.wearmouth.demon.co.uk/zx81.htm#L1C37%23L1C37
http://www.wearmouth.demon.co.uk/zx81.htm#L19F6%23L19F6
http://www.wearmouth.demon.co.uk/zx81.htm#L1AD5%23L1AD5
http://www.wearmouth.demon.co.uk/zx81.htm#L1B8F%23L1B8F
http://www.wearmouth.demon.co.uk/zx81.htm#L1BD5%23L1BD5
http://www.wearmouth.demon.co.uk/zx81.htm#L1AC5%23L1AC5
http://www.wearmouth.demon.co.uk/zx81.htm#L1ABE%23L1ABE
http://www.wearmouth.demon.co.uk/zx81.htm#L1AAA%23L1AAA
http://www.wearmouth.demon.co.uk/zx81.htm#L1AAF%23L1AAF
http://www.wearmouth.demon.co.uk/zx81.htm#L1DDB%23L1DDB
http://www.wearmouth.demon.co.uk/zx81.htm#L1C46%23L1C46
http://www.wearmouth.demon.co.uk/zx81.htm#L1C5B%23L1C5B
http://www.wearmouth.demon.co.uk/zx81.htm#L1CA9%23L1CA9
http://www.wearmouth.demon.co.uk/zx81.htm#L1D76%23L1D76
http://www.wearmouth.demon.co.uk/zx81.htm#L1DD4%23L1DD4
http://www.wearmouth.demon.co.uk/zx81.htm#L1DC4%23L1DC4
http://www.wearmouth.demon.co.uk/zx81.htm#L1D6E%23L1D6E
http://www.wearmouth.demon.co.uk/zx81.htm#L1D3E%23L1D3E
http://www.wearmouth.demon.co.uk/zx81.htm#L1D49%23L1D49
http://www.wearmouth.demon.co.uk/zx81.htm#L1C11%23L1C11
http://www.wearmouth.demon.co.uk/zx81.htm#L1BA4%23L1BA4

stack.

; the calculate routine is called

;7 GEN-ENT-1
L19A0: LD
LD

unary operation. HL = last value on
DE = STKEND first location after stack.

at this point by the series generator...

fetch the Z80 B register to A

and store value in system variable BREG.
this will be the counter for dec-jr-nz
or if used from fp-calc2 the calculator
instruction.

; ... and again later at this point

;7 GEN-ENT-2

L1924 : EXX
EX

instruction,

EXX

(SP) ,HL

switch sets
and store the address of next

the return address, in H'L'.

If this is a recursive call then the H'L'
of the previous invocation goes on stack.
c.f. end-calc.

switch back to main set.

; this is the re-entry looping point when handling a string of literals.

;; RE-ENTRY
L19A7: LD
STKEND
EXX
LD
INC

($401C) ,DE

A, (HL)

HL

save end of stack in system variable

switch to alt
get next literal
increase pointer’

; single operation jumps back to here

; ; SCAN-ENT

L19AE: PUSH
AND
JP

save pointer on stack *

now test the literal

forward to FIRST-3D if in range $00 - $3D
anything with bit 7 set will be one of
128 compound literals.

; compound literals have the following format.

; bit 7 set indicates compound.
; bits 6-5 the subgroup 0-3.

; bits 4-0 the embedded parameter $00 - S$1F.
; The subgroup 0-3 needs to be manipulated to form the next available four

; address places after the simple

LD
AND
RRCA
RRCA
RRCA
RRCA
ADD

LD
LD
AND
JR

D,A
$60

A,$72

L,A
A,D
S1F
L19D0

literals in the address table.

save literal in D

and with 01100000 to isolate subgroup
rotate bits

4 places to right

not five as we need offset * 2
00000xx0

add ($39 * 2) to give correct offset.
alter above if you add more literals.
store in L for later indexing.

bring back compound literal

use mask to isolate parameter bits
forward to ENT-TABLE

http://www.wearmouth.demon.co.uk/zx81.htm#L19D0%23L19D0
http://www.wearmouth.demon.co.uk/zx81.htm#L19C2%23L19C2

; the branch was here with simple

;; FIRST-3D
L19C2: CP
JR

; it is binary so adjust

EXX
LD
LD
LD
ADD

EXX

;; DOUBLE-A
L1S9CE: RLCA
LD

;; ENT-TABLE

L1SD0O: LD
LD
ADD
LD
INC
LD

LD
EX

PUSH
EXX

LD

; THE 'DELETE’

; offset $02:

$18
NC,L19CE

BC, $FFFB
D,H

E,L

HL, BC

L,A

DE, L1923
H,$00
HL, DE

E, (HL)
HL

D, (HL)

HL,L19A7
(SP) ,HL

DE

BC, ($401D)

SUBROUTINE

'delete'

pointers.

literals.

compare with first unary operations.
to DOUBLE-A with unary operations

the value -5
transfer HL, the last value, to DE.

subtract 5 making HL point to second
value.

double the literal
and store in L for indexing

Address: tbl-addrs

prepare to index

add to get address of routine
low byte to E

high byte to D

Address: RE-ENTRY
goes on machine stack
address of next literal goes to HL. *

now the address of routine is stacked.
back to main set

avoid using IY register.

STKEND hi

nothing much goes to C but BREG to B
and continue into next ret instruction
which has a dual identity

; A simple return but when used as a calculator literal this
; deletes the last value from the calculator stack.

; On entry,

; HL=first number,
; On exit, HL=result,

; So nothing to do

;; delete
L19E3: RET

as always with binary operations,
DE=second number
DE=stkend.

return - indirect jump if from above.

; THE 'SINGLE OPERATION'

SUBROUTINE

http://www.wearmouth.demon.co.uk/zx81.htm#L19A7%23L19A7
http://www.wearmouth.demon.co.uk/zx81.htm#L1923%23L1923
http://www.wearmouth.demon.co.uk/zx81.htm#L19CE%23L19CE

; offset $37: 'fp-calc-2'
; this single operation is used, in the first instance, to evaluate most
; of the mathematical and string functions found in BASIC expressions.

;; fp-calc-2

L19E4: POP AF ; drop return address.
LD A, (S401E) ; load accumulator from system variable
BREG
; value will be literal eg. 'tan'
EXX ; switch to alt
JR L19AE ; back to SCAN-ENT

; next literal will be end-calc in scanning

; THE 'TEST 5 SPACES' SUBROUTINE

; This routine is called from MOVE-FP, STK-CONST and STK-STORE to

; test that there is enough space between the calculator stack and the
; machine stack for another five-byte value. It returns with BC holding
; the value 5 ready for any subsequent LDIR.

;; TEST-5-SP

L19ER: PUSH DE ; save
PUSH HL ; registers
LD BC, $0005 ; an overhead of five bytes
CALL LOECS ; routine TEST-ROOM tests free RAM raising
; an error if not.
POP HL ; else restore
POP DE ; registers.
RET ; return with BC set at 5.

; THE 'MOVE A FLOATING POINT NUMBER' SUBROUTINE

; offset $2D: 'duplicate'

; This simple routine is a 5-byte LDIR instruction

; that incorporates a memory check.

; When used as a calculator literal it duplicates the last wvalue on the
; calculator stack.

; Unary so on entry HL points to last value, DE to stkend

;; duplicate

;; MOVE-FP
L19F6: CALL L19EB ; routine TEST-5-SP test free memory
; and sets BC to 5.
LDIR ; copy the five bytes.
RET ; return with DE addressing new STKEND

; and HL addressing new last value.

; THE 'STACK LITERALS' SUBROUTINE

; offset $30: 'stk-data'

; When a calculator subroutine needs to put a value on the calculator
; stack that is not a regular constant this routine is called with a
; variable number of following data bytes that convey to the routine
; the floating point form as succinctly as is possible.

;; stk-data
L19FC: LD H,D ; transfer STKEND
LD L,E ; to HL for result.

http://www.wearmouth.demon.co.uk/zx81.htm#L19EB%23L19EB
http://www.wearmouth.demon.co.uk/zx81.htm#L0EC5%23L0EC5
http://www.wearmouth.demon.co.uk/zx81.htm#L19AE%23L19AE

;7 STK-CONST
L19FE: CALL L19EB ; routine TEST-5-SP tests that room exists
; and sets BC to $05.

EXX ; switch to alternate set
PUSH HL ; save the pointer to next literal on stack
EXX ; switch back to main set
EX (SP),HL ; pointer to HL, destination to stack.
PUSH BC ; save BC - value 5 from test room ?7?.
LD A, (HL) ; fetch the byte following 'stk-data'
AND $COo ; isolate bits 7 and 6
RLCA ; rotate
RLCA ; to bits 1 and 0 range $00 - $03.
LD C,A ; transfer to C
INC C ; and increment to give number of bytes
; to read. $01 - $04
LD A, (HL) ; reload the first byte
AND S3F ; mask off to give possible exponent.
JR NZ,L1A14 ; forward to FORM-EXP if it was possible to

; include the exponent.

; else byte is just a byte count and exponent comes next.

INC HL ; address next byte and
LD A, (HL) ; pick up the exponent (- $50).
; ; FORM-EXP
L1Al14: ADD A, $50 ; now add $50 to form actual exponent
LD (DE) , A ; and load into first destination byte.
LD A, S$05 ; load accumulator with $05 and
SUB C ; subtract C to give count of trailing
; zeros plus one.
INC HL ; increment source
INC DE ; increment destination
LD B,S$00 ; prepare to copy
LDIR ; copy C bytes
POP BC ; restore 5 counter to BC ?7.
EX (SP),HL ; put HL on stack as next literal pointer
; and the stack value - result pointer -
; to HL.
EXX ; switch to alternate set.
POP HL ; restore next literal pointer from stack
; to H'L'.
EXX ; switch back to main set.
LD B,A ; zero count to B
XOR A ; clear accumulator
; ; STK-ZEROS
L1A27: DEC B ; decrement B counter
RET Z ; return if zero. >>

; DE points to new STKEND
; HL to new number.

LD (DE) , A ; else load zero to destination

http://www.wearmouth.demon.co.uk/zx81.htm#L1A14%23L1A14
http://www.wearmouth.demon.co.uk/zx81.htm#L19EB%23L19EB

INC DE ; increase destination
JR L1A27 ; loop back to STK-ZEROS until done.

; THE 'SKIP CONSTANTS' SUBROUTINE

; This routine traverses variable-length entries in the table of constants,
; stacking intermediate, unwanted constants onto a dummy calculator stack,
; in the first five bytes of the ZX81 ROM.

;7 SKIP-CONS
L1A2D: AND A ; test if initially =zero.

;7 SKIP-NEXT

L1A2E: RET Z ; return if zero. >>
PUSH AF ; save count.
PUSH DE ; and normal STKEND
LD DE, $0000 ; dummy value for STKEND at start of ROM

; Note. not a fault but this has to be
; moved elsewhere when running in RAM.

CALL L19FE ; routine STK-CONST works through variable
; length records.

POP DE ; restore real STKEND
POP AF ; restore count

DEC A ; decrease

JR L1A2E ; loop back to SKIP-NEXT

; THE 'MEMORY LOCATION' SUBROUTINE

; This routine, when supplied with a base address in HL and an index in A,
; will calculate the address of the A'th entry, where each entry occupies
; five bytes. It is used for addressing floating-point numbers in the

; calculator's memory area.

;; LOC-MEM
L1A3C: LD C,A ; store the original number $00-$1F.

RLCA ; double.

RLCA ; quadruple.

ADD A,C ; now add original value to multiply by
five.

LD C,A ; place the result in C.

LD B, $00 ; set B to O.

ADD HL, BC ; add to form address of start of number in
HL.

RET ; return.

; THE 'GET FROM MEMORY AREA' SUBROUTINE

; offsets $EO to SFF: 'get-mem-0', 'get-mem-1' etc.
; A holds $00-$1F offset.
; The calculator stack increases by 5 bytes.

;7 get-mem-xx
L1A45: PUSH DE ; save STKEND

http://www.wearmouth.demon.co.uk/zx81.htm#L1A2E%23L1A2E
http://www.wearmouth.demon.co.uk/zx81.htm#L19FE%23L19FE
http://www.wearmouth.demon.co.uk/zx81.htm#L1A27%23L1A27

LD HL, ($401F) ; MEM is base address of the memory cells.

CALL L1A3C ; routine LOC-MEM so that HL = first byte
CALL L19F6 ; routine MOVE-FP moves 5 bytes with memory
; check.
; DE now points to new STKEND.
POP HL ; the original STKEND is now RESULT
pointer
RET ; return.

; THE 'STACK A CONSTANT' SUBROUTINE

; offset $AO: 'stk-zero'

; offset $Al: 'stk-one'

; offset $A2: 'stk-half'

; offset $A3: 'stk-pi/2'

; offset $A4: 'stk-ten'

; This routine allows a one-byte instruction to stack up to 32 constants
; held in short form in a table of constants. In fact only 5 constants are
; required. On entry the A register holds the literal ANDed with S$1F.

; It isn't very efficient and it would have been better to hold the

; numbers in full, five byte form and stack them in a similar manner

; to that which would be used later for semi-tone table values.

;; stk-const-xx

L1A51: LD H,D ; save STKEND - required for result
D L,E ;
EXX ; sSwap
PUSH HL ; save pointer to next literal
LD HL,L1915 ; Address: stk-zero - start of table of
; constants
EXX ;
CALL L1A2D ; routine SKIP-CONS
CALL L19FE ; routine STK-CONST
EXX ;
POP HL ; restore pointer to next literal.
EXX ;
RET ; return.

; THE 'STORE IN A MEMORY AREA' SUBROUTINE

; Offsets $CO to S$DF: 'st-mem-0', 'st-mem-1' etc.

; Although 32 memory storage locations can be addressed, only six

; $CO to $C5 are required by the ROM and only the thirty bytes (6*5)
; required for these are allocated. ZX81 programmers who wish to

; use the floating point routines from assembly language may wish to
; alter the system variable MEM to point to 160 bytes of RAM to have
; use the full range available.

; A holds derived offset $00-$1F.

; Unary so on entry HL points to last value, DE to STKEND.

;; st-mem-xx

L1A63: PUSH HL ; save the result pointer.
EX DE, HL ; transfer to DE.
LD HL, ($401F) ; fetch MEM the base of memory area.
CALL L1A3C ; routine LOC-MEM sets HL to the
destination.
EX DE, HL ; swap - HL is start, DE is destination.
CALL L19F6 ; routine MOVE-FP.

; note. a short 1d bc,5; 1ldir
; the embedded memory check is not required

http://www.wearmouth.demon.co.uk/zx81.htm#L19F6%23L19F6
http://www.wearmouth.demon.co.uk/zx81.htm#L1A3C%23L1A3C
http://www.wearmouth.demon.co.uk/zx81.htm#L19FE%23L19FE
http://www.wearmouth.demon.co.uk/zx81.htm#L1A2D%23L1A2D
http://www.wearmouth.demon.co.uk/zx81.htm#L1915%23L1915
http://www.wearmouth.demon.co.uk/zx81.htm#L19F6%23L19F6
http://www.wearmouth.demon.co.uk/zx81.htm#L1A3C%23L1A3C

; so these instructions would be faster!

EX DE, HL ; DE = STKEND
POP HL ; restore original result pointer
RET ; return.

; THE 'EXCHANGE' SUBROUTINE

; offset $01: 'exchange'

; This routine exchanges the last two values on the calculator stack
; On entry, as always with binary operations,

; HL=first number, DE=second number

; On exit, HL=result, DE=stkend.

; ; exchange
L1A72: LD B, $05 ; there are five bytes to be swapped

; start of loop.

;; SWAP-BYTE
L1A74: 1D A, (DE) ; each byte of second
LD C, (HL) ; each byte of first
EX DE, HL ; swap pointers
LD (DE) , A ; store each byte of first
LD (HL) ,C ; store each byte of second
INC HL ; advance both
INC DE ; pointers.
DJNZ L1A74 ; loop back to SWAP-BYTE until all 5 done.
EX DE, HL ; even up the exchanges
; so that DE addresses STKEND.
RET ; return.

; THE 'SERIES GENERATOR' SUBROUTINE

; offset $86: 'series-06'

; offset $88: 'series-08'

; offset $8C: 'series-0C'

; The ZX81 uses Chebyshev polynomials to generate approximations for

; SIN, ATN, LN and EXP. These are named after the Russian mathematician

; Pafnuty Chebyshev, born in 1821, who did much pioneering work on
numerical

; series. As far as calculators are concerned, Chebyshev polynomials have
an

; advantage over other series, for example the Taylor series, as they can
; reach an approximation in just six iterations for SIN, eight for EXP and
; twelve for LN and ATN. The mechanics of the routine are interesting but
; for full treatment of how these are generated with demonstrations in

; Sinclair BASIC see "The Complete Spectrum ROM Disassembly" by Dr Ian
Logan

; and Dr Frank O'Hara, published 1983 by Melbourne House.

;; series-xx
L1A7F: LD B,A ; parameter $00 - S$1F to B counter
CALL L19A0 ; routine GEN-ENT-1 is called.
; A recursive call to a special entry point
; in the calculator that puts the B
register
; in the system variable BREG. The return
; address 1is the next location and where
; the calculator will expect its first

http://www.wearmouth.demon.co.uk/zx81.htm#L19A0%23L19A0
http://www.wearmouth.demon.co.uk/zx81.htm#L1A74%23L1A74

; instruction - now pointed to by HL'.

; The previous pointer to the series of

; five-byte numbers goes on the machine
stack.

; The initialization phase.

DEFB $2D ;;duplicate X, X
DEFB SOF ;;addition x+x
DEFB SCO ;s st-mem-0 X+x
DEFB $02 ;;delete .
DEFB SA0 ;;stk-zero 0
DEFB SC2 ;7 st-mem-2 0

; a loop is now entered to perform the algebraic calculation for each of
; the numbers in the series

;; G-LOOP

L1A89: DEFB $2D ;;duplicate V,V.
DEFB SEO ; rget-mem-0 v,V,X+2
DEFB $04 ;smultiply v, V¥x+2
DEFB SE2 ;7 get-mem-2 Vv,V *x+2,Vv
DEFB sC1 ;7 st-mem-1
DEFB 503 ;s subtract
DEFB $34 ;;end-calc

; the previous pointer is fetched from the machine stack to H'L' where it
; addresses one of the numbers of the series following the series literal.

CALL L19FC ; routine STK-DATA is called directly to
; push a value and advance H'L'.
CALL L19A4 ; routine GEN-ENT-2 recursively re-enters

; the calculator without disturbing
; system variable BREG
; H'L' value goes on the machine stack and

is
; then loaded as usual with the next

address.

DEFB SOF ;;addition

DEFB $01 ; ;exchange

DEFB SC2 ;;st-mem-2

DEFB 502 ;;delete

DEFB $31 ;;dec—-jr-nz

DEFB SEE ; sback to L1A89, G-LOOP

; when the counted loop is complete the final subtraction yields the result
; for example SIN X.

DEFB SE1 ;s get-mem-1
DEFB 503 ; ;subtract
DEFB $34 ;;end-calc
RET ; return with H'L' pointing to location

; after last number in series.

; Handle unary minus (18)

; Unary so on entry HL points to last value, DE to STKEND.

http://www.wearmouth.demon.co.uk/zx81.htm#L1A89%23L1A89
http://www.wearmouth.demon.co.uk/zx81.htm#L19A4%23L19A4
http://www.wearmouth.demon.co.uk/zx81.htm#L19FC%23L19FC

rs

rs

NEGATE
negate

L1AAO: LD A,

’

’

’

rs

AND
RET

INC
LD
XOR
LD
DEC
RET

(HL)

HL
A, (HL)
$80
(HL) , A
HL

This calculator literal finds
floating point, on calculator

abs
L1AAA: INC
RES
DEC
RET
Signum (26)

rs

HL
7, (HL)
HL

fetch exponent of last value on the
calculator stack.

test it.

return if zero.

address the byte with the sign bit.
fetch to accumulator.
toggle the sign bit.

put it back.
point to last value again.

return.

the absolute value of the last wvalue,
stack.

point to byte with sign bit.
make the sign positive.
point to last value again.

return.

This routine replaces the last value on the calculator stack,

which is in floating point form,

if negative.

sgn

L1AAF: INC

LD

DEC
DEC
INC

SCF
CALL

one

zero.

ZE€ros.

’

’

’

rs

INC HL

RLCA
RR

DEC HL

RET

with one if positive and with -minus one

If it is zero then it is left as such.

HL

A, (HL)
HL
(HL)
(HL)

NZ,L1AEQ

point to first byte of 4-byte mantissa.
pick up the byte with the sign bit.
point to exponent.

test the exponent for
the value zero.

set the carry flag.
routine FP-0/1 replaces last value with

if exponent indicates the value is non-

in either case mantissa is now four

point to first byte of 4-byte mantissa.

rotate original sign bit to carry.
rotate the carry into sign.

point to last value.

return.

This function returns the contents of a memory address.
The entire address space can be peeked including the ROM.

peek

http://www.wearmouth.demon.co.uk/zx81.htm#L1AE0%23L1AE0

L1ABE: CALL LOEAY ; routine FIND-INT puts address in BC.

LD A, (BC) ; load contents into A register.
;; IN-PK-STK
L1AC2: JP L151D ; exit via STACK-A to put value on the

; calculator stack.

The USR function followed by a number 0-65535 is the method by which
the 7ZX81 invokes machine code programs. This function returns the
contents of the BC register pair.

Note. that STACK-BC re-initializes the IY register to $4000 if a user-

written

’

program has altered it.

;; usr-no
L1ACS5: CALL LOEAT ; routine FIND-INT to fetch the
; supplied address into BC.
LD HL, L1520 ; address: STACK-BC is
PUSH HL ; pushed onto the machine stack.
PUSH BC ; then the address of the machine code
; routine.
RET ; make an indirect Jjump to the routine

; and, hopefully, to STACK-BC also.

Test i1f the last value on the calculator stack is greater than zero.
This routine is also called directly from the end-tests of the comparison
routine.

;7 GREATER-0
;; greater-0
L1ACE: 1D A, (HL) ; fetch exponent.
AND A ; test it for zero.
RET Z ; return if so.
LD A, SFF ; prepare XOR mask for sign bit
JR L1ADC ; forward to SIGN-TO-C
; to put sign in carry
; (carry will become set if sign is
positive)

’

; and then overwrite location with 1 or 0
; as appropriate.

This overwrites the last value with 1 if it was zero else with zero
if it was any other value.

e.g. NOT O returns 1, NOT 1 returns 0, NOT -3 returns O.

The subroutine is also called directly from the end-tests of the

comparison

http://www.wearmouth.demon.co.uk/zx81.htm#L1ADC%23L1ADC
http://www.wearmouth.demon.co.uk/zx81.htm#L1520%23L1520
http://www.wearmouth.demon.co.uk/zx81.htm#L0EA7%23L0EA7
http://www.wearmouth.demon.co.uk/zx81.htm#L151D%23L151D
http://www.wearmouth.demon.co.uk/zx81.htm#L0EA7%23L0EA7

; Operator.

;; NOT
;; not
L1AD5: LD A, (HL) ; get exponent byte.
NEG ; negate - sets carry if non-zero.
CCF ; complement so carry set if zero, else
reset.
JR L1AEQ ; forward to FP-0/1.

; Less than zero (32)

; Destructively test if last value on calculator stack is less than zero.
; Bit 7 of second byte will be set if so.

;7 less-0
L1ADB: XOR A ; set xor mask to zero

; (carry will become set if sign is
negative) .

; transfer sign of mantissa to Carry Flag.

;7 SIGN-TO-C

L1ADC: INC HL ; address 2nd byte.

XOR (HL) ; bit 7 of HL will be set if number is
negative.

DEC HL ; address 1lst byte again.

RLCA ; rotate bit 7 of A to carry.

; Zero or one
PR
; This routine places an integer value zero or one at the addressed
location

; of calculator stack or MEM area. The value one is written if carry is set
on

; entry else zero.

;; FP-0/1
L1AEQ: PUSH HL ; save pointer to the first byte
LD B, $05 ; five bytes to do.
;; FP-loop
L1AE3: LD (HL) , $00 ; insert a zero.
INC HL ;
DJINZ L1AES3 ; repeat.
POP HL ;
RET NC ;
LD (HL), $81 ; make value 1
RET ; return.

; The Boolean OR operator. eg. X OR Y
; The result is zero if both values are zero else a non-zero value.

; e.g. 0 OR 0 returns 0.

http://www.wearmouth.demon.co.uk/zx81.htm#L1AE3%23L1AE3
http://www.wearmouth.demon.co.uk/zx81.htm#L1AE0%23L1AE0

; -3 OR 0 returns -3.
; 0 OR -3 returns 1.
; -3 OR 2 returns 1.

; A binary operation.
; On entry HL points to first operand (X) and DE to second operand (Y).

;7 Or
L1AED: LD A, (DE) ; fetch exponent of second number

AND A ; test it.

RET Z ; return if zero.

SCF ; set carry flag

JR L1AEOQ ; back to FP-0/1 to overwrite the first
operand

; with the value 1.

; The Boolean AND operator.

; e.g. -3 AND 2 returns -3.
; -3 AND 0 returns O.
; 0 and -2 returns 0.
; 0 and 0 returns O

; Compare with OR routine above.

;; ho—-&-no

L1AF3: LD A, (DE) ; fetch exponent of second number.

AND A ; test it.

RET NZ ; return if not zero.

JR L1AEQ ; back to FP-0/1 to overwrite the first
operand

; with zero for return value.

; e.g. "YOU WIN" AND SCORE>99 will return the string if condition is true
; or the null string if false.

;; str-&-no

L1AF8: LD A, (DE) ; fetch exponent of second number.
AND A ; test it.
RET NZ ; return if number was not zero - the
string

; 1s the result.

; 1f the number was zero (false) then the null string must be returned by
; altering the length of the string on the calculator stack to zero.

PUSH DE ; save pointer to the now obsolete number
; (which will become the new STKEND)

DEC DE ; point to the 5th byte of string
descriptor.
XOR A ; clear the accumulator.

LD (DE) ,A ; place zero in high byte of length.

http://www.wearmouth.demon.co.uk/zx81.htm#L1AE0%23L1AE0
http://www.wearmouth.demon.co.uk/zx81.htm#L1AE0%23L1AE0

DEC DE ; address low byte of length.

LD (DE) , A ; place zero there - now the null string.
POP DE ; restore pointer - new STKEND.
RET ; return.

; Perform comparison ($09-S0E, $11-S516)

; True binary operations.

; A single entry point is used to evaluate six numeric and six string

; comparisons. On entry, the calculator literal is in the B register and

; the two numeric values, or the two string parameters, are on the

; calculator stack.

; The individual bits of the literal are manipulated to group similar

; operations although the SUB 8 instruction does nothing useful and merely
; alters the string test bit.

; Numbers are compared by subtracting one from the other, strings are

; compared by comparing every character until a mismatch, or the end of one
; or both, is reached.

; Numeric Comparisons.

; The 'x>y' example is the easiest as it employs straight-thru logic.

; Number y is subtracted from x and the result tested for greater-0
yielding

; a final value 1 (true) or 0 (false).

; For 'x<y' the same logic is used but the two values are first swapped on
the

; calculator stack.

; For 'x=y' NOT is applied to the subtraction result yielding true if the
; difference was zero and false with anything else.

; The first three numeric comparisons are just the opposite of the last
three

; so the same processing steps are used and then a final NOT is applied.

’

; literal Test No sub 8 ExOrNot 1st RRCA exch sub °? End-
Tests

jzzo—l—eql xX<=y 09 00000001 dec 00000000 00000000 ---- x-y 2?2 =--- >07?
Togo—gr—eql X>=Yy 0A 00000010 dec 00000001 10000000c swap y-x ? =--- >07?
Togos—neql x<>y OB 00000011 dec 00000010 00000001 ---- x-y ? NOT ---
Togo—grtr x>y 0c 00000100 - 00000100 00000010 ---- x-y 2 --- >07
;_;o—less X<y 0D 00000101 - 00000101 10000010c swap y-x 2?2 =--- >07
;_;os—eql X=y OE 00000110 - 00000110 00000011 =---- x-y ? NOT ---
; comp -> C/F

i str-l-eql x$<=y$ 11 00001001 dec 00001000 00000100 ---- :Z;Z 0 Tz; >07?
NOT

; str-gr-eqgl x$>=y$ 12 00001010 dec 00001001 10000100c swap yx 0 !lor >07?
NOT
; strs-neql xS$<>y$ 13 00001011 dec 00001010 00000101 =---- xSyS$ O !or >07
NOT

; str-grtr x$>y$ 14 00001100 - 00001100 00000110 ---- xy O lor >07

; str-less x$<y$ 15 00001101 - 00001101 10000110c swap ySx 0 lor >0?

; strs-eql x$=y$ 16 00001110 - 00001110 00000111 ---- xy O lor >07?

; String comparisons are a little different in that the eqgl/neqgl carry flag
; from the 2nd RRCA is, as before, fed into the first of the end tests but
; along the way it gets modified by the comparison process. The result on
the

; stack always starts off as zero and the carry fed in determines if NOT is
; applied to it. So the only time the greater-0 test is applied is if the

; stack holds zero which is not very efficient as the test will always
yield

; zero. The most likely explanation is that there were once separate end
tests

; for numbers and strings.

;; no-l-eql,etc.
L1B03: LD A,B ; transfer literal to accumulator.
$08

SUB ; subtract eight - which is not useful.
BIT 2,A ; lsolate '>', '<', '=',

JR NZ,L1BOB ; skip to EX-OR-NOT with these.

DEC A ; else make $00-$02, $08-$S0A to match bits

0-2.

;; EX-OR-NOT
L1BOB: RRCA ; the first RRCA sets carry for a swap.
JR NC,L1B16 ; forward to NU-OR-STR with other 8 cases

; for the other 4 cases the two values on the calculator stack are
exchanged.

PUSH AF ; save A and carry.
PUSH HL ; save HL - pointer to first operand.
; (DE points to second operand).

CALL L1A72 ; routine exchange swaps the two values.
; (HL = second operand, DE = STKEND)

POP DE ; DE = first operand
EX DE, HL ; as we were.
POP AF ; restore A and carry.

; Note. it would be better if the 2nd RRCA preceded the string test.
; It would save two duplicate bytes and if we also got rid of that sub 8
; at the beginning we wouldn't have to alter which bit we test.

;; NU-OR-STR
L1B16: BIT 2,A ; test if a string comparison.
JR NZ,L1B21 ; forward to STRINGS if so.

; continue with numeric comparisons.

RRCA ; 2nd RRCA causes egl/neqgl to set carry.
PUSH AF ; save A and carry

CALL L174C ; routine subtract leaves result on stack.

http://www.wearmouth.demon.co.uk/zx81.htm#L174C%23L174C
http://www.wearmouth.demon.co.uk/zx81.htm#L1B21%23L1B21
http://www.wearmouth.demon.co.uk/zx81.htm#L1A72%23L1A72
http://www.wearmouth.demon.co.uk/zx81.htm#L1B16%23L1B16
http://www.wearmouth.demon.co.uk/zx81.htm#L1B0B%23L1B0B

JR L1B54 ; forward to END-TESTS

;7 STRINGS

L1B21: RRCA ; 2nd RRCA causes egl/neql to set carry.
PUSH AF ; save A and carry.
CALL L13F8 ; routine STK-FETCH gets 2nd string params
PUSH DE ; save start2 *.
PUSH BC ; and the length.
CALL L13F8 ; routine STK-FETCH gets 1lst string

; parameters - start in DE, length in BC.

POP HL ; restore length of second to HL.

; A loop is now entered to compare, by subtraction, each corresponding
character

; of the strings. For each successful match, the pointers are incremented
and

; the lengths decreased and the branch taken back to here. If both string
; remainders become null at the same time, then an exact match exists.

; ; BYTE-COMP
L1B2C: LD A,H ; test if the second string
OR L ; is the null string and hold flags.
EX (SP) ,HL ; put length2 on stack, bring start2 to HL
*
LD A,B ; hi byte of lengthl to A
JR NZ,L1B3D ; forward to SEC-PLUS if second not null.
OR C ; test length of first string.
;; SECND-LOW
L1B33: POP BC ; pop the second length off stack.
JR Z,L1B3A ; forward to BOTH-NULL if first string is
also

; of zero length.
; the true condition - first is longer than second (SECND-LESS)

POP AF ; restore carry (set if egl/neql)
CCF ; complement carry flag.

; Note. equality becomes false.

; Inequality is true. By swapping or

applying
; a terminal 'not', all comparisons have
been
; manipulated so that this is success path.
JR L1B50 ; forward to leave via STR-TEST

’

; the branch was here with a match

; ; BOTH-NULL
L1B3A: POP AF ; restore carry - set for eqgl/neql
JR L1B50 ; forward to STR-TEST

’

; the branch was here when 2nd string not null and low byte of first is yet

http://www.wearmouth.demon.co.uk/zx81.htm#L1B50%23L1B50
http://www.wearmouth.demon.co.uk/zx81.htm#L1B50%23L1B50
http://www.wearmouth.demon.co.uk/zx81.htm#L1B3A%23L1B3A
http://www.wearmouth.demon.co.uk/zx81.htm#L1B3D%23L1B3D
http://www.wearmouth.demon.co.uk/zx81.htm#L13F8%23L13F8
http://www.wearmouth.demon.co.uk/zx81.htm#L13F8%23L13F8
http://www.wearmouth.demon.co.uk/zx81.htm#L1B54%23L1B54

; to be tested.

;7 SEC-PLUS
L1B3D: OR
JR

C
Z,L1B4D

’

’

test the length of first string.
forward to FRST-LESS if length is zero.

; both strings have at least one character left.

1D A, (DE)
SUB (HL)
JR C,L1B4D
JR NZ,L1B33
DEC BC
INC DE
INC HL
EX (SP) , HL
DEC HL
JR L1B2C
; the false condition.
;; FRST-LESS
L1B4D: POP BC
POP AF
AND A
; exact match

;; STR-TEST

fetch character of first string.
subtract with that of 2nd string.
forward to FRST-LESS if carry set

back to SECND-LOW and then STR-TEST
if not exact match.

decrease length of 1lst string.
increment 1lst string pointer.

increment 2nd string pointer.
swap with length on stack
decrement 2nd string length
back to BYTE-COMP

discard length

pop A
clear the carry for false result.

and x$>y$ rejoin here

L1B50: PUSH AF ; save A and carry
RST 28H ;; FP-CALC
DEFB SAO ;istk-zero an initial false value.
DEFB $34 ;;end-calc
; both numeric and string paths converge here.
;; END-TESTS
L1B54: POP AF ; pop carry - will be set if egl/neqgql
PUSH AF ; save 1t again.
CALL C,L1ADS ; routine NOT sets true(l) if equal (0)
; or, for strings, applies true result.
CALL L1ACE ; greater-0 222?2?22727272°7
POP AF ; pop A
RRCA ; the third RRCA - test for '<=', '>=' or
<>,
CALL NC, L1ADS ; apply a terminal NOT if so.
RET ; return.

http://www.wearmouth.demon.co.uk/zx81.htm#L1AD5%23L1AD5
http://www.wearmouth.demon.co.uk/zx81.htm#L1ACE%23L1ACE
http://www.wearmouth.demon.co.uk/zx81.htm#L1AD5%23L1AD5
http://www.wearmouth.demon.co.uk/zx81.htm#L1B2C%23L1B2C
http://www.wearmouth.demon.co.uk/zx81.htm#L1B33%23L1B33
http://www.wearmouth.demon.co.uk/zx81.htm#L1B4D%23L1B4D
http://www.wearmouth.demon.co.uk/zx81.htm#L1B4D%23L1B4D

; This literal combines two strings into one e.g. LET AS$S = BS + C$
; The two parameters of the two strings to be combined are on the stack.

;; strs-add
L1B62: CALL L13F8 ; routine STK-FETCH fetches string
parameters
; and deletes calculator stack entry.
PUSH DE ; save start address.
PUSH BC ; and length.
CALL L13F8 ; routine STK-FETCH for first string
POP HL ; re-fetch first length
PUSH HL ; and save again
PUSH DE ; save start of second string
PUSH BC ; and its length.
ADD HL, BC ; add the two lengths.
LD B,H ; transfer to BC
LD C,L ; and create
RST 30H ; BC-SPACES in workspace.
; DE points to start of space.
CALL L12C3 ; routine STK-STO-$ stores parameters
; of new string updating STKEND.
POP BC ; length of first
POP HL ; address of start
LD A,B ; test for
OR C ; zero length.
JR Z,L1B7D ; to OTHER-STR if null string
LDIR ; copy string to workspace.
; ; OTHER-STR
L1B7D: POP BC ; now second length
POP HL ; and start of string
LD A,B ; test this one
OR C ; for zero length
JR Z,L1B85 ; skip forward to STK-PNTRS if so as
complete.
LDIR ; else copy the bytes.

; and continue into next routine which
; sets the calculator stack pointers.

; Register DE is set to STKEND and HL, the result pointer, is set to five
; locations below this.
; This routine is used when it is inconvenient to save these values at

; time the calculator stack is manipulated due to other activity on the
; machine stack.

; This routine is also used to terminate the VAL routine for

; the same reason and to initialize the calculator stack at the start of
; the CALCULATE routine.

; ; STK-PNTRS
L1B85: LD HL, ($401C) ; fetch STKEND value from system variable.
LD DE, SFFFB ; the value -5

PUSH HL ; push STKEND value.

http://www.wearmouth.demon.co.uk/zx81.htm#L1B85%23L1B85
http://www.wearmouth.demon.co.uk/zx81.htm#L1B7D%23L1B7D
http://www.wearmouth.demon.co.uk/zx81.htm#L12C3%23L12C3
http://www.wearmouth.demon.co.uk/zx81.htm#L13F8%23L13F8
http://www.wearmouth.demon.co.uk/zx81.htm#L13F8%23L13F8

ADD HL, DE
POP DE
RET

; Handle CHRS (2B)

; subtract 5 from HL.

; pop STKEND to DE.
; return.

; This function returns a single character string that is a result of

; converting a number in the range 0-255 to a string e.g. CHRS$ 38 = "A".
; Note. the ZX81 does not have an ASCII character set.
;; chrs
L1B8F: CALL L15CD ; routine FP-TO-A puts the number in A.
JR C,L1BA2 ; forward to REPORT-Bd if overflow
JR NZ,L1BA2 ; forward to REPORT-Bd if negative
PUSH AF ; save the argument.
LD BC, $0001 ; one space required.
RST 30H ; BC-SPACES makes DE point to start
POP AF ; restore the number.
LD (DE) , A ; and store in workspace
CALL L12C3 ; routine STK-STO-$ stacks descriptor.
EX DE, HL ; make HL point to result and DE to STKEND.
RET ; return.
;5 REPORT-Bd
L1BAZ2: RST 08H ; ERROR-1
DEFB S0A ; Error Report: Integer out of range

; VAL treats the characters in a string as a numeric expression.

; e.g. VAL "2.3" = 2.3,
;5 val
L1BA4: LD HL, ($4016)
PUSH HL
CALL L13F8
operand
PUSH DE
string.
INC BC
return.
RST 30H
POP HL
LD ($4016),DE

VAL

"2+4" = 6, VAL ("2" + "4") = 24.

; fetch value of system variable CH ADD

; and save on the machine stack.

; routine STK-FETCH fetches the string

; from calculator stack.

; save the address of the start of the

; increment the length for a carriage

; BC-SPACES creates the space in workspace.

; restore start of string to HL.
; load CH _ADD with start DE in workspace.

http://www.wearmouth.demon.co.uk/zx81.htm#L13F8%23L13F8
http://www.wearmouth.demon.co.uk/zx81.htm#L12C3%23L12C3
http://www.wearmouth.demon.co.uk/zx81.htm#L1BA2%23L1BA2
http://www.wearmouth.demon.co.uk/zx81.htm#L1BA2%23L1BA2
http://www.wearmouth.demon.co.uk/zx81.htm#L15CD%23L15CD

PUSH DE ; save the start in workspace

LDIR ; copy string from program or variables or
; workspace to the workspace area.
EX DE, HL ; end of string + 1 to HL
DEC HL ; decrement HL to point to end of new area.
LD (HL) , $76 ; insert a carriage return at end.
; ZX81 has a non-ASCII character set
RES 7, (IY+S$01) ; update FLAGS - signal checking syntax.
CALL L0DY%2 ; routine CLASS-06 - SCANNING evaluates
string
; expression and checks for integer result.
CALL L0D22 ; routine CHECK-2 checks for carriage
return.
POP HL ; restore start of string in workspace.
LD ($4016) ,HL ; set CH ADD to the start of the string
again.
SET 7, (IY+S$01) ; update FLAGS - signal running program.
CALL LOFS55 ; routine SCANNING evaluates the string
; in full leaving result on calculator
stack.
POP HL ; restore saved character address in
program.
LD ($4016) ,HL ; and reset the system variable CH ADD.
JR 1L1B85 ; back to exit wvia STK-PNTRS.
; resetting the calculator stack pointers
; HL and DE from STKEND as it wasn't
possible

; to preserve them during this routine.

; Handle STRS (2A)

; This function returns a string representation of a numeric argument.
; The method used is to trick the PRINT-FP routine into thinking it

; is writing to a collapsed display file when in fact it is writing to
; string workspace.

; If there is already a newline at the intended print position and the
; column count has not been reduced to zero then the print routine

; assumes that there is only 1K of RAM and the screen memory, like the
rest

; of dynamic memory, expands as necessary using calls to the ONE-SPACE
; routine. The screen is character-mapped not bit-mapped.

;7 str$

L1BD5: LD BC, $0001 ; create an initial byte in workspace
RST 30H ; using BC-SPACES restart.
LD (HL) , $76 ; place a carriage return there.
LD HL, ($4039) ; fetch value of S POSN column/line
PUSH HL ; and preserve on stack.
LD L, SFF ; make column value high to create a

; contrived buffer of length 254.
LD ($4039) , HL ; and store in system variable S POSN.

http://www.wearmouth.demon.co.uk/zx81.htm#L1B85%23L1B85
http://www.wearmouth.demon.co.uk/zx81.htm#L0F55%23L0F55
http://www.wearmouth.demon.co.uk/zx81.htm#L0D22%23L0D22
http://www.wearmouth.demon.co.uk/zx81.htm#L0D92%23L0D92

LD
PUSH

LD

start

’

PUSH
CALL
POP
LD
AND

SBC

LD
LD

POP
LD

POP
LD

CALL

EX
RET

(offset $19:

HL, ($400E)
HL

($400E) ,DE

L15DB
DE

HL, ($400E)

($400E) ,HL

($4039) ,HL

THE 'CODE' FUNCTION

'code')

fetch value of DF CC
and preserve on stack also.

now set DF CC which normally addresses
somewhere in the display file to the

of workspace.
save the start of new string.

routine PRINT-FP.

retrieve start of string.

fetch end of string from DF CC.
prepare for true subtraction.

subtract to give length.

and transfer to the BC
register.

restore original
DF _CC value

restore original
S _POSN values.

routine STK-STO-$ stores the string
descriptor on the calculator stack.

HL = last wvalue, DE = STKEND.
return.

Returns the code of a character or first character of a string

e.g. CODE

"AARDVARK"

character set).

;; code
L1C06: CALL
length.

LD

OR

JR
string.

LD
;7 STK-CODE
L1COE: JP

’

’

(offset $1b:

THE 'LEN' SUBROUTINE

'len')

= 38

(not 65 as the ZX81 does not have an ASCII

routine STK-FETCH to fetch and delete the
string parameters.
DE points to the start, BC holds the

test length
of the string.
skip to STK-CODE with zero if the null

else fetch the first character.

Jjump back to STACK-A (with memory check)

Returns the length of a string.

http://www.wearmouth.demon.co.uk/zx81.htm#L151D%23L151D
http://www.wearmouth.demon.co.uk/zx81.htm#L1C0E%23L1C0E
http://www.wearmouth.demon.co.uk/zx81.htm#L13F8%23L13F8
http://www.wearmouth.demon.co.uk/zx81.htm#L12C3%23L12C3
http://www.wearmouth.demon.co.uk/zx81.htm#L15DB%23L15DB

In Sinclair BASIC strings can be more than twenty thousand characters

long
; SO a sixteen-bit register is required to store the length
;; len
L1C1l1l: CALL L13F8 ; routine STK-FETCH to fetch and delete the
; string parameters from the calculator
stack.
; register BC now holds the length of
string.
Jp L1520 ; Jjump back to STACK-BC to save result on
the

; calculator stack (with memory check).

; THE 'DECREASE THE COUNTER' SUBROUTINE

; (offset $31: 'dec-jr-nz')

; The calculator has an instruction that decrements a single-byte
; pseudo-register and makes consequential relative jumps just like
; the 7Z80's DJNZ instruction.

;; dec-jr-nz

L1C17: EXX ; switch in set that addresses code
PUSH HL ; save pointer to offset byte
LD HL, $401E ; address BREG in system variables
DEC (HL) ; decrement it
POP HL ; restore pointer
JR Nz,L1C24 ; to JUMP-2 if not zero
INC HL ; step past the jump length.
EXX ; switch in the main set.
RET ; return.
; Note. as a general rule the calculator avoids using the IY register
; otherwise the cumbersome 4 instructions in the middle could be replaced
by
; dec (iy+$xx) - using three instruction bytes instead of six.

; THE 'JUMP' SUBROUTINE

; (Offset S$2F; 'Jump')

; This enables the calculator to perform relative jumps just like
; the Z80 chip's JR instruction.
; This is one of the few routines to be polished for the ZX Spectrum.

; See, without looking at the ZX Spectrum ROM, if you can get rid of the
; relative jump.

;7 Jjump
;; JUMP
L1C23: EXX ;switch in pointer set

;; JUMP-2
L1c24: 1D E, (HL) ; the jump byte 0-127 forward, 128-255
back.

XOR A ; clear accumulator.

BIT 7,E ; test if negative jump

http://www.wearmouth.demon.co.uk/zx81.htm#L1C24%23L1C24
http://www.wearmouth.demon.co.uk/zx81.htm#L1520%23L1520
http://www.wearmouth.demon.co.uk/zx81.htm#L13F8%23L13F8

JR Z,L1C2B ; skip, if positive, to JUMP-3.

CPL ; else change to SFF.
;; JUMP-3
L1C2B: LD D,A ; transfer to high byte.

ADD HL, DE ; advance calculator pointer forward or
back.

EXX ; switch out pointer set.

RET ; return.

’

’

’

’

rs

THE 'JUMP ON TRUE' SUBROUTINE

(Offset $00; 'jump-true')

This enables the calculator to perform conditional relative jumps
dependent on whether the last test gave a true result
On the Z7ZX81, the exponent will be zero for zero or else $81 for one.

jump-true

L1C2F: LD A, (DE) ; collect exponent byte
AND A ; is result 0 or 1 ?
JR Nz,L1C23 ; back to JUMP if true (1).
EXX ; else switch in the pointer set.
INC HL ; step past the jump length.
EXX ; switch in the main set.
RET ; return.

THE 'MODULUS' SUBROUTINE

Offset $2E: 'n-mod-m')

il, i2 -- i3, i4)

The subroutine calculate N mod M where M is the positive integer, the
'last value' on the calculator stack and N is the integer beneath.
The subroutine returns the integer quotient as the last value and the
remainder as the value beneath.

e.g. 17 MOD 3 = 5 remainder 2

It is invoked during the calculation of a random number and also by
the PRINT-FP routine.

;; n-mod-m

L1C37: RST 28H ;; FP-CALC 17, 3.
DEFB SCO ;7 st-mem-0 17, 3.
DEFB $02 ;;delete 17.
DEFB $2D ;;duplicate 17, 17.
DEFB SEO ; ;get-mem-0 17, 17, 3.
DEFB 505 ;;division 17, 17/3.
DEFB $24 ;7 int 17, 5.
DEFB SEO ; rget-mem-0 17, 5, 3.
DEFB $01 ; ;exchange 17, 3, 5.
DEFB SCO ; ;st-mem-0 17, 3, 5.
DEFB $04 ;smultiply 17, 15.
DEFB 503 ;s subtract 2.
DEFB SEO ; ;get-mem-0 2, 5.
DEFB $34 ; ;end-calc 2, 5.

RET ; return.

http://www.wearmouth.demon.co.uk/zx81.htm#L1C23%23L1C23
http://www.wearmouth.demon.co.uk/zx81.htm#L1C2B%23L1C2B

; THE 'INTEGER' FUNCTION

; (offset $24: 'int')

; This function returns the integer of x, which is just the same as
truncate
; for positive numbers. The truncate literal truncates negative numbers
; upwards so that -3.4 gives -3 whereas the BASIC INT function has to
; truncate negative numbers down so that INT -3.4 is 4.
; It is best to work through using, say, plus or minus 3.4 as examples.
;5 int
L1C46: RST 28H ;7 FP-CALC X. (= 3.4 or
-3.4).
DEFB $2D ;;duplicate X, X.
DEFB $32 ;7 less-0 %, (1/0)
DEFB 500 ;7 jump-true x, (1/0)
DEFB 504 ;;to L1C46, X-NEG
DEFB $36 ;s truncate trunc 3.4 = 3.
DEFB $34 ;;end-calc 3.
RET ; return with + int x on stack.
;7 X-NEG
L1C4E: DEFB $2D ; ;duplicate -3.4, -3.4.
DEFB $36 ;;truncate -3.4, -3.
DEFB SCO ;;st-mem-0 -3.4, -3.
DEFB 503 ;;subtract -.4
DEFB SEO ;7 get-mem-0 -.4, -3.
DEFB $01 ; 7exchange -3, —-.4.
DEFB $2C ;;not -3, (0).
DEFB 500 ;7 jump-true -3.
DEFB $03 ;;to L1C59, EXIT -3.
DEFB SAl ; ;stk-one -3, 1.
DEFB $03 ; ;subtract -4.
;; EXIT
L1C59: DEFB $34 ;;end-calc -4,
RET ; return.

;; EXP
;7 exp
L1C5B: RST 28H ;; FP-CALC
DEFB $30 ;;stk-data
DEFB SF1 ; ;Exponent: $81, Bytes: 4
DEFB $38, SAA, $3B, $29 ;;
DEFB 504 ;omultiply
DEFB $2D ;;duplicate

DEFB $24 ;;int

http://www.wearmouth.demon.co.uk/zx81.htm#L1C59%23L1C59
http://www.wearmouth.demon.co.uk/zx81.htm#L1C46%23L1C46

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

CALL
JR

JR

ADD
JR

; ; REPORT-6b
L1C99: RST
DEFB

; ; N-NEGTV
L1C9B: JR

SUB
JR

NEG

;7 RESULT-OK
L1CA2: LD
RET

;; RSLT-ZERO

L1CA4: RST
DEFB
DEFB
DEFB

RET

SC3

$03

$2D

SOF

SAl

$03

$88

513

$36

$58

$65,$66

$S9D

$78,$65, 540

SA2

$60,$32,5C9

SE7
$21,S$F7,SAF, $24
SEB
$2F, $SBO, $B0O, $14
SEE

$S7E, $BB, $94, $58
SF1

$3A, $7E, SF8, SCF
SE3

$34

L15CD
NZ,L1C9B

C,L1C99

A, (HL)
NC,L1CA2

08H
$05

C,L1CA4

(HL)
NC, L1CA4

(HL) , A

28H
$02
SAQ
$34

’

’

’
’
’
’
’
’
’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

; 7 st-mem-3

;subtract
;duplicate

; ;addition
; ;stk-one

;subtract

; ;series-08

; Exponent:

;7 (+00,+00,+
; Exponent:
;7 (+00,+00)

; Exponent:

;7 (+00)

;Exponent:

;2 (+00)
; s Exponent:

’

; Exponent:

’

; Exponent:

’

; ;Exponent:

’

;get-mem-3

; ;end-calc

$63,
00)

$68,
$6D,
$72,
$77,
$7B,

$TE,

$81,

Bytes: 1
Bytes: 2
Bytes: 3
Bytes: 3
Bytes: 4
Bytes: 4
Bytes: 4
Bytes: 4

routine FP-TO-A

to N-NEGTV

to REPORT-

6b

to RESULT-OK

ERROR-1
Error Repo

rt:

to RSLT-ZERO

to RSLT-ZERO

Negate

return.

;; FP-CALC
; sdelete
; ;stk-zero

;end-calc

return.

Number too big

http://www.wearmouth.demon.co.uk/zx81.htm#L1CA4%23L1CA4
http://www.wearmouth.demon.co.uk/zx81.htm#L1CA4%23L1CA4
http://www.wearmouth.demon.co.uk/zx81.htm#L1CA2%23L1CA2
http://www.wearmouth.demon.co.uk/zx81.htm#L1C99%23L1C99
http://www.wearmouth.demon.co.uk/zx81.htm#L1C9B%23L1C9B
http://www.wearmouth.demon.co.uk/zx81.htm#L15CD%23L15CD

; THE 'NATURAL LOGARITHM' FUNCTION

; (offset $22: 'ln')

; Like the 7ZX81 itself, 'natural' logarithms came from Scotland.

; They were devised in 1614 by well-traveled Scotsman John Napier who
noted

; "Nothing doth more molest and hinder calculators than the
multiplications,

; divisions, square and cubical extractions of great numbers".

; Napier's logarithms enabled the above operations to be accomplished by
; simple addition and subtraction simplifying the navigational and

; astronomical calculations which beset his age.

; Napier's logarithms were quickly overtaken by logarithms to the base 10
; devised, in conjunction with Napier, by Henry Briggs a Cambridge-
educated

; professor of Geometry at Oxford University. These simplified the layout
; of the tables enabling humans to easily scale calculations.

; It is only recently with the introduction of pocket calculators and

; computers like the ZX81 that natural logarithms are once more at the
fore,

; although some computers retain logarithms to the base ten.

; 'Natural' logarithms are powers to the base 'e', which like 'pi' is a

; naturally occurring number in branches of mathematics.

; Like 'pi' also, 'e' is an irrational number and starts 2.718281828...

; The tabular use of logarithms was that to multiply two numbers one
looked

; up their two logarithms in the tables, added them together and then
looked

; for the result in a table of antilogarithms to give the desired
product.

; The EXP function is the BASIC equivalent of a calculator's 'antiln'
function

; and by picking any two numbers, 1.72 and 6.89 say,

; 10 PRINT EXP (LN 1.72 + LN 6.89)

; will give just the same result as

; 20 PRINT 1.72 * 6.89.

; Division is accomplished by subtracting the two logs.

; Napier also mentioned "square and cubicle extractions™.
To raise a number to the power 3, find its 'ln', multiply by 3 and find

; 'antiln'. e.g. PRINT EXP(LN 4 * 3) gives 64.

; Similarly to find the n'th root divide the logarithm by 'n'.

; The ZX81 ROM used PRINT EXP (LN 9 / 2) to find the square root of the
; number 9. The Napieran square root function is just a special case of

; the 'to power' function. A cube root or indeed any root/power would be
just

; as simple.

; First test that the argument to LN is a positive, non-zero number.

77 1n

L1CA9: RST 28H ;; FP-CALC
DEFB $2D ; ;duplicate
DEFB $33 ; ;greater-0
DEFB 500 ;7 jump-true

DEFB $04 ;;to L1CB1, VALID

http://www.wearmouth.demon.co.uk/zx81.htm#L1CB1%23L1CB1

DEFB

; 7 REPORT-Ab
L1CAF: RST
DEFB

;; VALID

L1CB1: DEFB
DEFB
DEFB
LD

LD
CALL

RST

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB

INC
RST

;; GRE.8
L1CD2: DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

$34

08H
$09

SAO
$02
$34
A, (HL)

(HL), $80
L151D

28H
$30
$38
$00
$03
S01
$2D
$30
SFO
$4cC, $CC, $CC, $SCD
$03
$33
$00
508

$01
$Aal
$03
$01
$34

(HL)

28H

$01
$30
SFO
$31,$72,$17,$F8
$04
$01
SA2
$03
$SA2
$03
$2D
$30
$32
$20
$04
SA2
$03
$8C
$11
SAC

’

’

’

’
’

’

’

’

’

’
’

’

’

; 7 stk-data

’

’

’

; ;greater-0

’

’

’

’

; ;stk-one

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

; ;stk-half

’

’

’

’

;; (+00,+00,+00)

’

; ;end-calc

ERROR-1

Error Report: Invalid argument

; ;stk-zero
; ;delete
; ;end-calc

routine STACK-A

;; FP-CALC
; »stk-data

;Exponent: $88,

;; (+00,+00,+00)
; 7 subtract
; ;exchange

;duplicate

;Exponent: $80,

;subtract

;7 jump-true
;;to L1CD2, GRE.S8

;exchange

; ;subtract
; ;exchange

;end-calc

;; FP-CALC

; ;exchange
; ;stk-data

;Exponent: $80,

’

;;multiply

; ;exchange
;;stk-half

;5 subtract
;;stk-half

; ;subtract

; ;duplicate

; ;stk-data

; ;Exponent: $82,
;; (+00,+00,+00)

;multiply

; ;7 subtract
; ;series-0C

;Exponent: $61,

Bytes:

Bytes:

Bytes:

Bytes:

Bytes:

Note. not
necessary.

1

4

4

1

1

http://www.wearmouth.demon.co.uk/zx81.htm#L1CD2%23L1CD2
http://www.wearmouth.demon.co.uk/zx81.htm#L151D%23L151D

DEFB $14 ; ;Exponent: $64, Bytes: 1

DEFB $09 ;; (+00,+00,+00)

DEFB $56 ; ;Exponent: $66, Bytes: 2
DEFB SDA, SAS 77 (+00,+00)

DEFB $59 ; ;Exponent: $69, Bytes: 2
DEFB $30, $C5 ;7 (+00,+00)

DEFB $5C ; ;Exponent: $6C, Bytes: 2
DEFB $90, SAA 77 (+00,+00)

DEFB S9E ; ;Exponent: $6E, Bytes: 3
DEFB $70, $6F, $61 77 (+00)

DEFB SAal ; ;Exponent: $71, Bytes: 3
DEFB SCB, $SDA, $96 ;i (+00)

DEFB Sn4 ; ;Exponent: $74, Bytes: 3
DEFB $31, $9F, $SB4 ;5 (+00)

DEFB SE7 ; ;Exponent: $77, Bytes: 4
DEFB SA0, $SFE, $5C, SFC ;;

DEFB SEA ; ;Exponent: $7A, Bytes: 4
DEFB $1B, $43,S3CA, $36 ;;

DEFB SED ; ;Exponent: $7D, Bytes: 4
DEFB SA7,8$9C,$TE, $S5E ;5

DEFB SFO ; ;Exponent: $80, Bytes: 4
DEFB $6E,$23,$80,%93 ;;

DEFB 504 ;omultiply

DEFB $OF ;;addition

DEFB $34 ;;end-calc

RET ; return.

; THE 'TRIGONOMETRIC' FUNCTIONS

’

; Trigonometry is rocket science. It is also used by carpenters and
pyramid

; builders.

; Some uses can be quite abstract but the principles can be seen in
simple

; right-angled triangles. Triangles have some special properties -

; 1) The sum of the three angles is always PI radians (180 degrees).
; Very helpful if you know two angles and wish to find the third.

; 2) In any right-angled triangle the sum of the squares of the two
shorter

; sides is equal to the square of the longest side opposite the right-
angle.

; Very useful if you know the length of two sides and wish to know the
; length of the third side.

; 3) Functions sine, cosine and tangent enable one to calculate the
length

; of an unknown side when the length of one other side and an angle is
; known.

; 4) Functions arcsin, arccosine and arctan enable one to calculate an
unknown

; angle when the length of two of the sides is known.

; THE 'REDUCE ARGUMENT' SUBROUTINE

; (offset $35: 'get-argt')

; This routine performs two functions on the angle, in radians, that
forms

; the argument to the sine and cosine functions.

; First it ensures that the angle

'wraps round'.

That if a ship turns

through

; an angle of, say, 3*PI radians (540 degrees) then the net effect is to
turn

; through an angle of PI radians (180 degrees).

; Secondly it converts the angle in radians to a fraction of a right

angle,
; depending within which
; resembling that of the

quadrant the angle lies,
desired sine value.

with the periodicity

; The result lies in the range -1 to +1.
; 90 deg.
; (pi/2)
; II +1 I
; |
; sin+ I\ | /1 sin+
; cos- N 1/ cos+
; tan- [N/ | tan+
; | Ny
; 180 deg. (pi) O —-|-—==4-—-—=]-=- 0 (0) 0 degrees
; | /1N |
; sin- [/ 1\ | sin-
; cos- I/ 1 \ | cos+
; tan+ |/ | \ tan-
; |
; IIT -1 v
; (3pi/2)
; 270 deg
;; get-argt
L1D18: RST 28H ;; FP-CALC X.
DEFB $30 ;7 stk-data
DEFB SEE ; ;Exponent: S$7E,
;;Bytes: 4
DEFB $22,8F9,$83,S$6E ;; X, 1/(2*PI)
DEFB S04 ;omultiply X/ (2*PI) = fraction
DEFB $2D ;;duplicate
DEFB SA2 ;;stk-half
DEFB SOF ;;addition
DEFB $24 ;;int
DEFB 503 ;;subtract now range -.5 to .5
DEFB $2D ; ;duplicate
DEFB SOF ;;addition now range -1 to 1.
DEFB $2D ;;duplicate
DEFB SOF ;;addition now range -2 to 2.
; quadrant I (0 to +1) and quadrant IV (-1 to 0) are now correct.
; quadrant II ranges +1 to +2.
; quadrant III ranges -2 to -1.
DEFB 52D ;;duplicate Y, Y.
DEFB $27 ; ;abs Y, abs(Y). range 1 to
2
DEFB sAal ; ;stk-one Y, abs(Y), 1.
DEFB 503 ; ;subtract Y, abs(Y)-1. range 0 to

DEFB $2D ; ;duplicate Y, Z, Z.
DEFB $33 ; ;greater-0 Y, Z, (1/0).

DEFB $COo ;7 st-mem-0 store as possible sign
H for cosine function.
DEFB $00 ;;jump-true
DEFB 504 ;;to L1D35, ZPLUS with quadrants II and
IIT
; else the angle lies in quadrant I or IV and value Y is already correct.
DEFB 502 ; ;delete Y delete test value.
DEFB $34 ;;end-calc Y.
RET ; return. with Q1 and Q4 >>>

; The branch was here with quadrants II (0 to 1) and III (1 to 0).
; Y will hold -2 to -1 if this is quadrant III.

;; ZPLUS
L1D35: DEFB sAl ; ;stk-one Y, 7z, 1

DEFB 503 ; ;subtract Y, Z-1. 03 = 0 to
-1

DEFB S01 ; ;exchange z-1, Y.

DEFB $32 ;;less-0 z-1, (1/0).

DEFB 500 ;7 jump-true z-1

DEFB $02 ;;to L1D3C, YNEG

;;1f angle in quadrant III

; else angle is within quadrant II (-1 to 0)

DEFB $18 ; ;negate range +1 to O
;; YNEG
L1D3C: DEFB $34 ;;end-calc quadrants II and III
correct.

RET ; return.

; THE 'COSINE' FUNCTION

; (offset $1D: 'cos')

; Cosines are calculated as the sine of the opposite angle rectifying the
; sign depending on the quadrant rules.

; /1

; h /yl

; /1o

; /x|

; /====1

7 a

; The cosine of angle x is the adjacent side (a) divided by the
hypotenuse 1.

; However if we examine angle y then a/h is the sine of that angle.

; Since angle x plus angle y equals a right-angle, we can find angle y by

; subtracting angle x from pi/2.

http://www.wearmouth.demon.co.uk/zx81.htm#L1D3C%23L1D3C
http://www.wearmouth.demon.co.uk/zx81.htm#L1D35%23L1D35

’
’
’

’

However it's just as easy to reduce the argument first and subtract the
reduced argument from the value 1 (a reduced right-angle).

It's even easier to subtract 1 from the angle and rectify the sign.

In fact, after reducing the argument, the absolute value of the

argument

’

is used and rectified using the test result stored in mem-0 by 'get-

argt'

’

for that purpose.

;7 COS
L1D3E: RST 28H ;; FP-CALC angle in radians.

DEFB $35 ;;get-argt X reduce -1
to +1

DEFB $27 ;;abs ABS X 0 to 1

DEFB SAl ; ;stk-one ABS X, 1.

DEFB $03 ; ;subtract now opposite angle

i though negative

sign.

DEFB SEO ; rget-mem-0 fetch sign
indicator.

DEFB $00 ;7 jump-true

DEFB 506 ;;fwd to L1D4B, C-ENT

’

;s forward to common code if in QII or QIII

DEFB 518 ; ;negate else make positive.
DEFB $2F 77 Jjump
DEFB 503 ;;fwd to L1D4B, C-ENT

;;with quadrants QI and QIV

THE 'SINE' FUNCTION

(offset $1C: 'sin')

This is a fundamental transcendental function from which others such as

and tan are directly, or indirectly, derived.
It uses the series generator to produce Chebyshev polynomials.

/|
1/ |
/=
/a |
/====
Y

The 'get-argt' function is designed to modify the angle and its sign
in line with the desired sine value and afterwards it can launch

straight

’

into common code.

;; sin
L1D49: RST 28H ;; FP-CALC angle in radians
DEFB $35 ;;get-argt reduce - sign now correct.
;; C-ENT
1L1D4B: DEFB $2D ; ;duplicate
DEFB $2D ;;duplicate
DEFB 504 ;;multiply

DEFB $2D ; ;duplicate

http://www.wearmouth.demon.co.uk/zx81.htm#L1D4B%23L1D4B
http://www.wearmouth.demon.co.uk/zx81.htm#L1D4B%23L1D4B

DEFB SOF ;;addition

DEFB SAl ; ;stk-one

DEFB 503 ; ;subtract

DEFB $86 ; ;series-06

DEFB $14 ; ;Exponent: $64, Bytes: 1
DEFB SE6 ;5 (+00,+00,+00)

DEFB $5¢C ; ;Exponent: $6C, Bytes: 2
DEFB $1F, SOB 77 (+00,+00)

DEFB SA3 ; ;Exponent: $73, Bytes: 3
DEFB $8F, $38, SEE ;1 (+00)

DEFB SE9 ; ;Exponent: $79, Bytes: 4
DEFB $15,$63,$BB, $23 ;;

DEFB SEE ; ;Exponent: $7E, Bytes: 4
DEFB $92, $0D, $CD, SED ;;

DEFB SF1 ; ;Exponent: $81, Bytes: 4
DEFB $23,85D,$1B, SEA ;;

DEFB 504 ;ymultiply

DEFB $34 ;;end-calc

RET ; return.

; THE 'TANGENT' FUNCTION

; Evaluates tangent x as sin(x) / cos(x).
; /|

; h / |

; / lo

; /x|

; /===

7 a

; The tangent of angle x is the ratio of the length of the opposite side
; divided by the length of the adjacent side. As the opposite length can

; be calculates using sin(x) and the adjacent length using cos(x) then
; the tangent can be defined in terms of the previous two functions.
; Error 6 if the argument, in radians, is too close to one like pi/2

; which has an infinite tangent. e.g. PRINT TAN (PI/2) evaluates as 1/0.
; Similarly PRINT TAN (3*PI/2), TAN (5*PI/2) etc.

;; tan
L1D6E: RST 28H ;; FP-CALC X.
DEFB $2D ;;duplicate X, X.
DEFB S1cC ;;sin X, sin x.
DEFB S01 ; ;exchange sin x, X.
DEFB $1D ;;cos sin X, cos X.
DEFB S05 ;;division sin x/cos x (= tan x).
DEFB $34 ;;end-calc tan x.
RET ; return.

; THE 'ARCTAN' FUNCTION

; (Offset $21: 'atn')

; The inverse tangent function with the result in radians.
; This is a fundamental transcendental function from which others such as
; asn and acs are directly, or indirectly, derived.
; It uses the series generator to produce Chebyshev polynomials.
;; atn
L1D76: LD A, (HL) ; fetch exponent
CPp $81 ; compare to that for 'one'
JR C,L1D89 ; forward, if less, to SMALL
RST 28H ;; FP-CALC X.
DEFB SAl ; ;stk-one
DEFB $18 ; ;negate
DEFB 501 ; ;exchange
DEFB 505 ;;division
DEFB $2D ;;duplicate
DEFB $32 ;7 1less-0
DEFB SA3 ;istk-pi/2
DEFB $01 ; ;exchange
DEFB $00 ;7 jump-true
DEFB 506 ;;to L1D8B, CASES
DEFB $18 ; ;negate
DEFB S$2F 77 Jjump
DEFB $03 ;;to L1D8B, CASES
;; SMALL
L1D89: RST 28H ;; FP-CALC
DEFB SAQ ;;stk-zero
;; CASES
1L1D8B: DEFB 501 ; ;exchange
DEFB $2D ;;duplicate
DEFB $2D ;;duplicate
DEFB $04 ;smultiply
DEFB $2D ; ;duplicate
DEFB SOF ;;addition
DEFB SAl ; ;stk-one
DEFB 503 ; ;subtract
DEFB $8C ;;series-0C
DEFB $10 ; ;Exponent: $60, Bytes: 1
DEFB SB2 ;; (+00,+00,+00)
DEFB $13 ; ;Exponent: $63, Bytes: 1
DEFB SOE ;7 (+00,+00,+00)
DEFB $55 ; ;Exponent: $65, Bytes: 2
DEFB $E4, $8D 77 (+00,+00)
DEFB $58 ; ;Exponent: $68, Bytes: 2
DEFB $39, $BC 77 (+00,+00)
DEFB $5B ; ;Exponent: $6B, Bytes: 2
DEFB $98, SFD ;7 (+00,+00)
DEFB S9E ; ;Exponent: $6E, Bytes: 3
DEFB $00,5$36,875 ;7 (+00)
DEFB SAQ ; ;Exponent: $70, Bytes: 3
DEFB $DB, SE8, $B4 ;; (+00)
DEFB $63 ; ;Exponent: $73, Bytes: 2
DEFB $42,5C4 ;7 (+00,+00)
DEFB SE6 ; ;Exponent: $76, Bytes: 4

DEFB $B5,$09,$36,S$BE ;;

http://www.wearmouth.demon.co.uk/zx81.htm#L1D8B%23L1D8B
http://www.wearmouth.demon.co.uk/zx81.htm#L1D8B%23L1D8B
http://www.wearmouth.demon.co.uk/zx81.htm#L1D89%23L1D89

DEFB SE9 ; ;Exponent: $79, Bytes: 4

DEFB $36,$73,$1B,$5D ;;

DEFB SEC ; ;Exponent: $7C, Bytes: 4
DEFB $D8, SDE, $63, SBE ; ;

DEFB SFO ; ;Exponent: $80, Bytes: 4
DEFB $61,S$A1, $B3,S$0C ;;

DEFB $04 ;ymultiply

DEFB SOF ;;addition

DEFB $34 ;;end-calc

RET ; return.

; THE 'ARCSIN' FUNCTION

; (Offset $1F: 'asn')

’

The inverse sine function with result in radians.

Derived from arctan function above.

Error A unless the argument is between -1 and +1 inclusive.
Uses an adaptation of the formula asn(x) = atn(x/sqr(l-x*x))

/1
/o
1/ |x
/a |
/===
Y

e.g. We know the opposite side (x) and hypotenuse (1)

and we wish to find angle a in radians.

We can derive length y by Pythagoras and then use ATN instead.

Since y*y + x*x = 1*1 (Pythagoras Theorem) then

y=sqr (1-x*x) - no need to multiply 1 by itself.
So, asn(a) = atn(x/y)

or more fully,

asn(a) = atn(x/sqr(l-x*x))

Close but no cigar.

While PRINT ATN (x/SQR (1-x*x)) gives the same results as PRINT ASN x,
it leads to division by zero when x is 1 or -1.

To overcome this, 1 is added to y giving half the required angle and
result is then doubled.

That 1is, PRINT ATN (x/(SQR (l-x*x) +1)) *2

A

c/ |
/1 |x

By creating an isosceles triangle with two equal sides of 1, angles c

c are also equal. If bt+tc+td = 180 degrees and bta = 180 degrees then

c=a/2.

’

; A value higher than 1 gives the required error as attempting to find

the
; square root of a negative number generates an error in Sinclair BASIC.
;; asn
L1DC4: RST 28H ;; FP-CALC X.
DEFB $2D ;;duplicate X, X.
DEFB $2D ;;duplicate X, X, X.
DEFB $04 ;smultiply X, X*x.
DEFB SAl ;7 stk-one X, x*x, 1.
DEFB $03 ; ;subtract X, X*x-1.
DEFB 318 ; ;negate x, 1l-x*x.
DEFB $25 ;;sqr X, sqr(l-x*x) = y.
DEFB SAl ;7 stk-one X, y, 1.
DEFB SOF ;saddition x, y+1l.
DEFB $05 ;;division x/y+1.
DEFB $21 ;;atn a/2 (half the angle)
DEFB S2D ;;duplicate a/2, a/2.
DEFB SOF ;;addition a.
DEFB $34 ;;end-calc a.
RET ; return.
; THE 'ARCCOS' FUNCTION
; (Offset $20: 'acs')
; The inverse cosine function with the result in radians.
; Error A unless the argument is between -1 and +1.
; Result in range 0 to pi.
; Derived from asn above which is in turn derived from the preceding atn.
It
; could have been derived directly from atn using acs(x) = atn(sqr(l-
X*x) /%) .
; However, as sine and cosine are horizontal translations of each other,
; uses acs(x) = pi/2 - asn(x)
; e.g. the arccosine of a known x value will give the required angle b in
; radians.
; We know, from above, how to calculate the angle a using asn(x).
; Since the three angles of any triangle add up to 180 degrees, or pi
radians,
; and the largest angle in this case is a right-angle (pi/2 radians),
then
; we can calculate angle b as pi/2 (both angles) minus asn(x) (angle a).
; /|
; 1 /b
H /=
; /a |
; /====
; y
;; acs
L1DD4: RST 28H ;; FP-CALC X.
DEFB S1F ;;asn asn (x) .
DEFB SA3 ;rstk-pi/2 asn(x), pi/2.
DEFB S03 ; ;subtract asn(x) - pi/2.
DEFB S18 ; ;negate pi/2 - asn(x) = acs(x).
(

DEFB $34 ; ;end-calc acs (x)

RET ; return.

; THE 'SQUARE ROOT' FUNCTION

; (Offset $25: 'sqgr')
; Error A if argument is negative.
; This routine is remarkable for its brevity - 7 bytes.
; The 7ZX81 code was originally 9K and various techniques had to be
; used to shoe-horn it into an 8K Rom chip.
;7 sqr
L1DDB: RST 28H ;; FP-CALC X.
DEFB $2D ;;duplicate X, X.
DEFB S2C ;;not x, 1/0
DEFB 500 ;7 jump-true x, (1/0).
DEFB S1E ;;to L1DFD, LAST exit if argument
zero
Y with zero result.
; else continue to calculate as x ** .5
DEFB SA2 ;;stk-half x, .5.
DEFB $34 ;;end-calc X, .5.
; THE 'EXPONENTIATION' OPERATION
; (Offset $06: 'to-power')
; This raises the first number X to the power of the second number Y.
; As with the ZX80,
; 0 ** 0 =1
; 0 ** +n = 0
; 0 ** -n = arithmetic overflow.
;; to-power
L1DEZ2: RST 28H ;; FP-CALC X, Y
DEFB S01 ; ;exchange Y, X.
DEFB $2D ;;duplicate Y, X, X.
DEFB $2C ;;not Y, X, (1/0)
DEFB $00 ;7 jump-true
DEFB 507 ;;forward to L1DEE, XISO if X is zero.
; else X is non-zero. function 'ln' will catch a negative value of X.
DEFB $22 ;:1n Y, LN X.
DEFB 504 ;smultiply Y * LN X
DEFB $34 ;;end-calc
Jp L1CSB ; jump back to EXP routine. ->
; These routines form the three simple results when the number is zero.
; begin by deleting the known zero to leave Y the power factor.
;7 XISO
L1DEE: DEFB $02 ; ;delete Y.

http://www.wearmouth.demon.co.uk/zx81.htm#L1C5B%23L1C5B
http://www.wearmouth.demon.co.uk/zx81.htm#L1DEE%23L1DEE
http://www.wearmouth.demon.co.uk/zx81.htm#L1DFD%23L1DFD

DEFB $2D ; ;duplicate Y, Y.
Y, (

DEFB $2C ; ;not , (1/0).

DEFB 500 ;7 jump-true

DEFB $09 ;;forward to L1DFB, ONE if Y is =zero.
; the power factor is not zero. If negative then an error exists.

DEFB SAQ ;;stk-zero Y, O.

DEFB 501 ; ;exchange 0, Y.

DEFB $33 ; ;greater-0 0, (1/0).

DEFB $00 ;7 jump-true 0

DEFB 506 ;;to L1DFD, LAST if Y was any
positive

H number.

; else force division by zero thereby raising an Arithmetic overflow
error.
; There are some one and two-byte alternatives but perhaps the most
formal

; might have been to use end-calc; rst 08; defb 05.

DEFB sAl ; ;stk-one 0, 1.
DEFB 501 ; ;exchange 1, 0.
DEFB $05 ;;division 1/0 >> error
;; ONE
L1DFB: DEFB $02 ;;delete .
DEFB SAl ; ;stk-one 1.
;; LAST
L1DFD: DEFB $34 ; ;end-calc last value 1 or O.
RET ; return.

; THE 'SPARE LOCATIONS'

;; SPARE
L1DFF: DEFB SFF ; That's all folks.

; THE 'ZX81 CHARACTER SET'

;; char-set - begins with space character.
; $00 - Character: ' ' CHRS (0)

L1EOO: DEFB %00000000
DEFB %00000000
DEFB $00000000
DEFB $00000000
DEFB %00000000
DEFB %00000000
DEFB %00000000
DEFB 00000000

http://www.wearmouth.demon.co.uk/zx81.htm#L1DFD%23L1DFD
http://www.wearmouth.demon.co.uk/zx81.htm#L1DFB%23L1DFB

; $01 - Character: mosaic CHRS (1)

DEFB %11110000
DEFB %$11110000
DEFB %$11110000
DEFB %$11110000
DEFB %00000000
DEFB $00000000
DEFB $00000000
DEFB %00000000

; $02 - Character: mosaic CHRS (2)

DEFB $00001111
DEFB $00001111
DEFB $00001111
DEFB $00001111
DEFB $00000000
DEFB %00000000
DEFB %00000000
DEFB $00000000

; $03 - Character: mosaic CHRS (3)

DEFB $11111111
DEFB $11111111
DEFB $11111111
DEFB $11111111
DEFB %00000000
DEFB $00000000
DEFB $00000000
DEFB %00000000

; $04 - Character: mosaic CHRS (4)

DEFB $00000000
DEFB $00000000
DEFB $00000000
DEFB $00000000
DEFB %$11110000
DEFB %$11110000

DEFB %$11110000
DEFB %$11110000
; $05 - Character: mosaic CHRS (1)

DEFB %$11110000
DEFB %$11110000
DEFB %$11110000
DEFB %$11110000
DEFB %$11110000
DEFB %$11110000
DEFB %$11110000
DEFB %$11110000

; $06 - Character: mosaic CHRS (1)
DEFB $00001111

DEFB $00001111
DEFB $00001111

DEFB $00001111
DEFB %$11110000
DEFB $11110000
DEFB %$11110000
DEFB %$11110000

; $07 - Character: mosaic CHRS (1)

DEFB $11111111
DEFB $11111111
DEFB $11111111
DEFB $11111111
DEFB %$11110000
DEFB %$11110000
DEFB %$11110000
DEFB %11110000

; $08 - Character: mosaic CHRS (1)
DEFB $10101010
DEFB $01010101
DEFB %$10101010
DEFB $01010101

DEFB %$10101010
DEFB $01010101
DEFB $10101010
DEFB $01010101

; $09 - Character: mosaic CHRS (1)
DEFB $00000000

DEFB $00000000
DEFB $00000000

DEFB %00000000
DEFB %$10101010
DEFB $01010101

DEFB $10101010
DEFB $01010101

; SO0A - Character: mosaic CHRS (10)

DEFB %$10101010
DEFB $01010101
DEFB %$10101010
DEFB $01010101
DEFB $00000000
DEFB %00000000
DEFB %00000000
DEFB $00000000

; $0B - Character: '"' CHRS (11)

DEFB %00000000
DEFB $00100100
DEFB $00100100
DEFB $00000000
DEFB $00000000
DEFB $00000000
DEFB %00000000
DEFB %00000000

; SOB - Character: £ CHRS (12)

DEFB $00000000
DEFB $00011100
DEFB $00100010
DEFB $01111000
DEFB $00100000
DEFB $00100000
DEFB $01111110
DEFB $00000000

; S0B - Character: 'S$' CHRS (13)

DEFB $00000000
DEFB $00001000
DEFB $00111110
DEFB $00101000
DEFB $00111110
DEFB $00001010
DEFB $00111110
DEFB $00001000

; $SO0B - Character: ':' CHRS (14)

DEFB %00000000
DEFB $00000000
DEFB $00000000
DEFB $00010000
DEFB $00000000
DEFB %00000000
DEFB $00010000
DEFB $00000000

; $SOB - Character: '?' CHRS (15)

DEFB %00000000
DEFB %00111100
DEFB $01000010
DEFB $00000100
DEFB $00001000
DEFB $00000000
DEFB $00001000
DEFB $00000000

; $10 - Character: '(' CHRS (16)

DEFB $00000000
DEFB $00000100
DEFB $00001000
DEFB $00001000
DEFB $00001000
DEFB $00001000
DEFB $00000100
DEFB $00000000

; $11 - Character: ')' CHRS (17)

DEFB $00000000
DEFB $00100000
DEFB $00010000
DEFB %00010000
DEFB $00010000
DEFB $00010000

’

’

’

’

’

’

DEFB $00100000
DEFB $00000000

$12 - Character: '>'

DEFB %00000000
DEFB %00000000
DEFB $00010000
DEFB $00001000
DEFB %00000100
DEFB $00001000
DEFB %00010000
DEFB 00000000

$13 - Character: '<'

DEFB $00000000
DEFB %00000000
DEFB $00000100
DEFB $00001000
DEFB $00010000
DEFB $00001000
DEFB $00000100
DEFB %00000000

$14 - Character: '='

DEFB $00000000
DEFB %00000000
DEFB %00000000
DEFB %00111110
DEFB $00000000
DEFB $00111110
DEFB %00000000
DEFB %00000000

$15 - Character: '+'

DEFB $00000000
DEFB %00000000
DEFB %00001000
DEFB $00001000
DEFB $00111110
DEFB %00001000
DEFB %00001000
DEFB $00000000

$16 - Character: '-'

DEFB $00000000
DEFB $00000000
DEFB $00000000
DEFB %00000000
DEFB $00111110
DEFB $00000000
DEFB $00000000
DEFB $00000000

$17 - Character: '*'

DEFB $00000000
DEFB $00000000

CHRS (18)

CHRS$ (19)

CHRS (20)

CHRS (21)

CHRS (22)

CHRS (23)

DEFB $00010100
DEFB $00001000
DEFB $00111110
DEFB $00001000
DEFB $00010100
DEFB $00000000

; $18 - Character: '/' CHRS (24)

DEFB $00000000
DEFB $00000000
DEFB $00000010
DEFB $00000100
DEFB $00001000
DEFB $00010000
DEFB $00100000
DEFB $00000000

; $19 - Character: ';' CHRS (25)

DEFB $00000000
DEFB $00000000
DEFB $00010000
DEFB %00000000
DEFB $00000000
DEFB $00010000
DEFB $00010000
DEFB $00100000

; $1A - Character: ',' CHRS (26)

DEFB $00000000
DEFB $00000000
DEFB $00000000
DEFB %00000000
DEFB $00000000
DEFB $00001000
DEFB $00001000
DEFB $00010000

; $1B - Character: '"' CHRS (27)

DEFB $00000000
DEFB %00000000
DEFB %00000000
DEFB $00000000
DEFB %00000000
DEFB $00011000
DEFB $00011000
DEFB 00000000

; $1C - Character: '0' CHRS (28)

DEFB $00000000

DEFB %00111100
DEFB $01000110
DEFB $01001010
DEFB %01010010
DEFB $01100010
DEFB %00111100

DEFB $00000000

; $1D - Character: 'l' CHRS (29)

DEFB $00000000
DEFB $00011000
DEFB $00101000
DEFB $00001000

DEFB $00001000
DEFB %$00001000
DEFB $00111110
DEFB $00000000
; $1E - Character: '2' CHRS (30)

DEFB %00000000
DEFB $00111100
DEFB %01000010
DEFB %00000010
DEFB $00111100
DEFB $01000000
DEFB %01111110
DEFB %00000000

; $1F - Character: '3’ CHRS (31)

DEFB $00000000
DEFB $00111100
DEFB $01000010
DEFB $00001100
DEFB $00000010
DEFB $01000010
DEFB $00111100
DEFB $00000000

; $20 - Character: '4' CHRS (32)

DEFB $00000000
DEFB $00001000
DEFB $00011000
DEFB $00101000
DEFB $01001000
DEFB $01111110
DEFB $00001000
DEFB $00000000

; $21 - Character: '5' CHRS (33)

DEFB $00000000
DEFB $01111110
DEFB $01000000
DEFB $01111100
DEFB $00000010
DEFB $01000010
DEFB $00111100
DEFB $00000000

; $22 - Character: '6' CHRS (34)

DEFB %00000000
DEFB $00111100
DEFB %01000000
DEFB %01111100
DEFB $01000010

’

’

’

’

’

’

DEFB $01000010
DEFB $00111100
DEFB $00000000

$23 - Character: '7'

DEFB %00000000
DEFB $01111110
DEFB $00000010
DEFB %00000100
DEFB $00001000
DEFB %00010000
DEFB %00010000
DEFB %00000000

$24 - Character: '8’

DEFB %00000000
DEFB $00111100
DEFB %01000010
DEFB %00111100
DEFB $01000010
DEFB $01000010
DEFB $00111100
DEFB $00000000

$25 - Character: '9'

DEFB $00000000
DEFB $00111100

DEFB %01000010
DEFB $01000010
DEFB $00111110
DEFB %00000010

DEFB $00111100
DEFB %00000000

$26 - Character: 'A'

DEFB $00000000
DEFB $00111100
DEFB $01000010
DEFB $01000010
DEFB $01111110
DEFB $01000010
DEFB $01000010
DEFB %00000000

$27 - Character: 'B'

DEFB $00000000
DEFB $01111100
DEFB $01000010
DEFB $01111100

DEFB %01000010
DEFB $01000010
DEFB $01111100
DEFB %00000000

$28 - Character: 'C'

DEFB $00000000

CHRS (35)

CHRS (36)

CHRS (37)

CHRS (38)

CHRS (39)

CHRS (40)

DEFB $00111100
DEFB $01000010
DEFB $01000000
DEFB $01000000
DEFB $01000010
DEFB $00111100
DEFB $00000000

; $29 - Character: 'D' CHRS (41)

DEFB $00000000
DEFB %01111000
DEFB $01000100
DEFB $01000010
DEFB $01000010
DEFB $01000100
DEFB $01111000
DEFB $00000000

; $2A - Character: 'E' CHRS (42)

DEFB $00000000
DEFB $01111110
DEFB $01000000
DEFB $01111100
DEFB $01000000
DEFB $01000000
DEFB $01111110
DEFB %00000000

; $2B - Character: 'F' CHRS (43)

DEFB $00000000
DEFB $01111110
DEFB $01000000
DEFB %01111100
DEFB $01000000
DEFB $01000000
DEFB $01000000
DEFB $00000000

; $2C - Character: 'G' CHRS (44)
DEFB $00000000
DEFB $00111100

DEFB $01000010
DEFB %01000000
DEFB $01001110
DEFB $01000010
DEFB $00111100
DEFB $00000000

; $2D - Character: 'H' CHRS (45)

DEFB $00000000
DEFB $01000010
DEFB $01000010
DEFB $01111110
DEFB $01000010
DEFB %01000010
DEFB $01000010
DEFB $00000000

; S2E - Character: 'I' CHRS (46)

DEFB $00000000
DEFB $00111110
DEFB $00001000
DEFB $00001000
DEFB $00001000
DEFB $00001000
DEFB $00111110
DEFB $00000000

; S2F - Character: 'J' CHRS (47)

DEFB $00000000
DEFB $00000010
DEFB $00000010
DEFB $00000010
DEFB $01000010
DEFB $01000010
DEFB $00111100
DEFB $00000000

; $30 - Character: 'K' CHRS (48)

DEFB $00000000
DEFB $01000100
DEFB $01001000
DEFB %$01110000
DEFB $01001000
DEFB $01000100
DEFB $01000010
DEFB $00000000

; $31 - Character: 'L' CHRS (49)

DEFB $00000000
DEFB $01000000
DEFB $01000000
DEFB $01000000
DEFB $01000000
DEFB $01000000
DEFB $01111110
DEFB $00000000

; $32 - Character: 'M' CHRS (50)

DEFB %00000000
DEFB $01000010
DEFB $01100110
DEFB $01011010
DEFB $01000010
DEFB $01000010
DEFB $01000010
DEFB $00000000

; $33 - Character: 'N' CHRS (51)

DEFB %00000000
DEFB %01000010
DEFB $01100010
DEFB $01010010

DEFB $01001010
DEFB $01000110
DEFB $01000010
DEFB $00000000

; $34 - Character: 'O’ CHRS (52)

DEFB $00000000
DEFB $00111100
DEFB $01000010
DEFB $01000010
DEFB %01000010
DEFB $01000010
DEFB $00111100
DEFB $00000000

; $35 - Character: 'P' CHRS (53)

DEFB $00000000
DEFB $01111100

DEFB %01000010
DEFB $01000010
DEFB $01111100

DEFB $01000000
DEFB $01000000
DEFB $00000000

; $36 - Character: 'Q' CHRS (54)

DEFB $00000000
DEFB $00111100
DEFB $01000010
DEFB $01000010

DEFB %01010010
DEFB $01001010
DEFB %00111100

DEFB %00000000
; $37 - Character: 'R’ CHRS (55)

DEFB $00000000
DEFB $01111100
DEFB $01000010
DEFB $01000010
DEFB $01111100
DEFB $01000100
DEFB %01000010
DEFB %00000000

; $38 - Character: 'S' CHRS (56)

DEFB $00000000
DEFB $00111100
DEFB $01000000
DEFB $00111100
DEFB $00000010
DEFB $01000010
DEFB $00111100
DEFB %00000000

; $39 - Character: 'T' CHRS (57)

DEFB %00000000
DEFB $11111110
DEFB $00010000
DEFB $00010000
DEFB $00010000
DEFB $00010000
DEFB $00010000
DEFB $00000000

; $3A - Character: 'U' CHRS (58)

DEFB $00000000
DEFB $01000010
DEFB $01000010
DEFB $01000010
DEFB $01000010
DEFB $01000010
DEFB $00111100
DEFB $00000000

; $3B - Character: 'V' CHRS (59)

DEFB $00000000
DEFB $01000010
DEFB $01000010
DEFB $01000010
DEFB $01000010
DEFB $00100100
DEFB $00011000
DEFB $00000000

; $3C - Character: 'W' CHRS (60)

DEFB $00000000
DEFB $01000010
DEFB %01000010
DEFB $01000010
DEFB $01000010
DEFB $01011010
DEFB $00100100
DEFB $00000000

; $3D - Character: 'X' CHRS (61)

DEFB $00000000
DEFB $01000010
DEFB %00100100
DEFB $00011000
DEFB $00011000
DEFB $00100100
DEFB $01000010
DEFB $00000000

; S3E - Character: 'Y' CHRS (62)

DEFB $00000000
DEFB $10000010
DEFB $01000100
DEFB $00101000
DEFB %00010000
DEFB $00010000
DEFB $00010000

’

DEFB

$00000000

$3F - Character: 'Z'

.END

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

$00000000
$01111110
$00000100
$00001000
$00010000
$00100000
$01111110
$00000000

CHRS (63)

; TASM assembler instruction.

