WEDTA MAMAGHR
SPECIAL HEDCTIOY

by .
Charles Dillon

Al]
A0IGITAL PRECISION

L1 O

e i B B B B L B JE I IRV IR e B e B B BE TR B B W PR T N W N T T SO N St N N T R I %

b LD L2

bt Bt BN BN BEN SN BRSL BN IR IENE AN 7 T - VL O S I S N I N

L LD L L b

LD —

L b e

(oo B No s o RN S FL T 0 3

CONTENTS

INTRODUCTION
WHAT YOU HAVE BEEN SUPPLIED WITH
WHAT TO DO FIRST OF ALL

QL

QL

MICROCARTRIDGES
THE CARTRIDGE SECTOR HEADER
THE CARTRIDGE BLOCK HEADER
THE CARTRIDGE DATA AREA
CARTRIDGE FILE STORAGE AND BLOCK NUMBERING
THE CARTRIDGE MAPPING SECTOR
THE CARTRIDGE DIRECTORY FILE
CREATING AND DELETING A CARTRIDGE FILE
DISKS
QL DISK FORMAT
DISK FILE STORAGE AND BLOCK NUMBERING
THE DISK MAPPING SECTORS
THE DISK TRANSLATION TABLES
THE DISK DIRECTORY SECTORS
CREATING AND DELETING A DISK FILE

CONFIGURING MMSE
USING MMSE

THE MAIN MENU

WHAT GOES WRONG WITH DISKS AND CARTRIDGES
DELETED FILES
BAD OR CHANGED MEDIUM
NOT FOUND
QOVERVIEW

SECTOR COPIER

DIRECTORY MANAGEMENT

UTILITIES

SECTOR EDITOR

MS-DOS/TOS FILE COPIER
DISPLAY DISK INFORMATION
SHOW QDOS OR DOS DIRECTORY
IMPORT FILES (DOS TO QDOS)
EXPORT FILES (QDOS TO DOS)
DELETE DOS FILES
RENAME DOS FILE
FORMAT ALIEN MEDIUM
CONVERT QDOS TEXT FILES
RETURN TO MAIN MENU

1. INTRODUCTION

Thank you for purchasing Media Manager Special Edition. Even Digitay] .
Precision Ltd, dedicated as it is to software quality, have rarely
spent more time and effort on a program than on this one...

Media Manager Special Edition (henceforward referred to as MMSE) is a
very powerful utility to enable QL microcartridges and floppy disks to
be "managed" and to recover data (jeopardised by some mishap or
mistake) therefrom. Its features include the ability to:

* obtain intelligent directory listings,

¥ perform selective file operations,

* restore deleted or corrupt files,

* sort directories by name, date, or size, in ascending or
descending order,

* read from and write to alien disks (in MS-DOS/TOS formats),

* perform direct sector reading, editing, and writing

operations on microdrives, or any disk (alien or QL format)
* obtain full diagnostic printouts of media storage maps for
enhanced security,
and much, much more!!

MMSE was produced to supersede the original Super Media Manager, whose
brief was somewhat similar but whose implementation was legsg
functional, slower, bigger, rather painful to work with and much lessg
user—friendly.

MMSE will operate on expanded QLs with at least 384K total RAM. It is

possible to operate the program on a QL not fitted with a disk

interface and drive, if only microdrives.are to be accessed. If a disk

drive is to be accessed, it must be via a disk interface that allows
"direct sector access". A disk interface that is unsuitable because it

does not allow direct sector access is the MCS (Micro Control Systems)

disk interface. We are not aware of any other unsuitable interface.

We have kept the MMSE manual as brief and to-the-point as possible: We
realise that when something has gone wrong and while MMSE is being
used in anger, the user is unlikely to want to have to plough through
through reams of documentation in order to find out what to do. The
design of the program is characterised by absolute consistency of
operation: this makes documenting it simple. Once the logic of what
MMSE seeks to accomplish has = been explained to the user, the steps
MMSE takes en route themselves become predictable.

More often than not MMSE is self-documenting as it runs. Sensible
prompts are always given, and the type of response required is usually
obvious. As such this manual concentrates mainly on the not gq
obvious points, and any extra information that may be of use to you.
In particular there are two sections devoted to the structure apg
operation of recording methods used for microdrives and disks. These
sections will be invaluable to you if one of the automatic or
semi-autematic file recovery functions 1is unable to retrieve your
precious data fully. The text will also be of use to those who simply
want to experiment, or who want to implement scphisticated protection
cn their media.

MMSE was mainly written by Chas Dillon and is copyright 1989 Digitan
Precision Ltd. The machine code work was by Chas Dillon and Freddw
Vachha, with some inspiration having been drawn from previous work b
Colin Opie, Mission control on MMSE was jointly by Chas and Freddy.
Digital Precision Ltd thanks Tony Tebby for some technical backup, and
acknowledges the help provided by the reference books on QDOS by
Andrew Pennell and Adrian Dickens. All the blame for the MMSE
documentation is attributable to Freddy.

MEDIA MANAGER SPECIAL EDITION Publlished by Digllal Preclislon [¢g

Page 2

This manual is meant to be read 1in entirety and in sequence. Do not
omit anything. Disk-only users should not omit the section on
cartridge storage, as many concepts are developed in that section that
are vital to aid in understanding the more complex disk storage. 1If
you don't understand how things are stored, a lot of the power of MMSE
- especially in the semi-automatic and manual areas of the Sector
Editor - will be unavailable to you. There are too many interrelated
factors to allow us to completely shield you from complexity. MMSE
provides context-sensitive help all over the place, and provides you
with a variety of tools. There is usually more than one way of
reaching the desired end result.

A key to understanding and mastering MMSE is practice. This manual
reports by exception -~ we decided not to waste paper repeating what is
already on the screen. A test program has been provided for you to
create example media on which to experiment.

2. WEAY YOU EAVE BEEN SUFPLIED WITH

The files supplied with MMSE are as follows:

BOOT _ This fires up the rest of the system.

XTRAS The run-time version of TURBO Toolkit, which

provides various extensions to SuperBASIC
required by MMSE. At the time of writing
the manual, the version number of the
toolkit is v3.20. Do NOT wuse earlier
versions of the toolkit than v3.10, as MMSE
requires keywords earlier toolkits don't
provide. BOOT automatically invokes the

toolkit,

MMSE The principal MMSE program. Note that this
is an executable task (invoked by EXEC and
capable of multitasking without any

assistance). BOOT, having invoked the XTRAS

toolkit, goes on to EXEC MMSE. MMSE 1is a
program written in SuperBASIC and compiled
with TURBO. '

THESE THREE FILES ARE ALL YOU NEED TO RUN
MEDIA MANAGER SPECIAL EDITION.

MMSE_DEFAULTS A data-file containing default values of
various parameters MMSE requires (for
example, name of the print device). MMSE
will look for this file on flpl_ (no matter
if you do not have a flpl_), mdvl_ and mdv2__
in turn, If it does not find it, no big deal
- MMSE simply uses its own internal set of
defaults.

MMSE_SET_DEFAULTS bas A SuperBASIC program, started with LRUN,
that invokes MMSE_SET DEFAULTS.

MMSE_SET_DEFAULTS The configurator program: = an executable
task which sets up the MMSE_DEFAULTS file.

MEDIA MANAGER SPECIAL EDITION Pudblished by Digltal Preciaslon Lid

MMSE_XOVER

MAKE_TEST_MEDIUM_bas

MMSE_asm

MMSE_exts

MMSE_LINES

BACKUP_bas

UPDATES _doc

Page 3

An executable task, accessed either directly
using EXEC or via the MS-DOS/TOS File
Transfer option in MMSE, that permits
bi-directional transfer of data between PC
MS-DOS disks, Atari TOS disks and QL disks,
MS-DOS/TOS FORMAT/DIR and text file
translation.

This program, invoked with LRUN, will create
a test disk / cartridge containing 26 / 10
shortish files, to be used for test purposes
and for increasing your familiarity with
MMSE. The files are "special"™ in that by
looking at any part of the file you can tell
which file that part belongs to as well as
what the position of +the part is in the
file.

For wusers who are familiar with M68000
assembler, this is the source code of the
microdrive access routines (incorporated in
the body of the XTRAS file). Ignore this
file wunless you are a machine code freak
with time on your hands.

MMSE_asm + Hisoft Assembler = MMSE_exts. As
this file is about 800 bytes long, invoke it
with A=RESPR(1024):LBYTES "FLP1_MMSE_exts",
A:CALL A if you want to experiment.

This file will be present on the first few
disk releases of Media Manager Special
Edition. It is a functionally identical but
less compact wversion of MMSE, as - unlike
MMSE - it is referenced by line number. In
the VERY unlikely event that you are able to
get MMSE (the one loaded by BOOT) to crash
with an error message, the error message
will not contain a line number (it will

refer to 1line Q). This makes it very
difficult for us to diagnose the error,
which is why we supply MMSE_LINES. If you

get a crash and error message with MMSE,
reset the QL. Reboot MMSE, and immediately
opt to return to SuperBASIC. Then enter EXEC
FLP1_MMSE_LINES, CTRL/C into the prograwm and
repeat the steps that ©brought about the
crash. You will now get an error message
which mentions the line number. Please write
to Digital Precision Ltd, describing the
precise circumstances under which you
obtained the crash, enclosing the medium
that "caused" the crash (if applicable = but
make a sector-to-sector copy of it first)
and QUOTE THE EXACT ERROR MESSAGE. Help us
to help you!

The backup program, to be invoked with LRUN.
This makes a clone of the Media Manager
medium — do this before doing anything with
the program!

-

In the event that we have something te add,
we Wwill do so in this Quill file.

MEDIA MANAGER SPECIAL EDITION Pirbhlihed hu NDicita? Prpm~lalnn 1A

Page 4
This is almost the whole story. There are several wrinkles, however:

(a) MMSE requires there to be a file with a name of length zero to be
on the medium from which it is to load ancillary program modules
like MMSE_XOVER. The contents of such a file are irrelevant.
There 1is a "zero-filename-length" file on the supplied MMSE
medium, and when you use BACKUP_bas to make one or more working
copies of the system it will automatically create such a file on
each destination medium., For more details see section 3.

(b) If you have received the system on two cartridges instead of disk,
the files are ‘spread over the cartridges. Each cartridge will
contain its own BACKUP_bas and "zero-filename-length" file.
Cartridge 1 will, in addition, contain BOOT, XTRAS, MMSE and
MMSE_DEFAULTS. The rest of the files are on cartridge 2.

We MAY add further modules (which will appear as extra files and will
be documented in UPDATES_doc) for MMSE in the future - follow our
advertisements in the computer press for details.

3a WEAT TO DO FIRST OF ALL
First of all you MUST make a backup copy of the disk or cartridges.

Taking a gamble on your honesty, we have not used any copy-protection
mechanism whatsoever within the system.

The best way to make a backup is by using our supplied BACKUP_bas
program. Reset the QL and press Fi or F2. Place the master medium in -
drive 1 and the target for backing up in the other drive. Then enter

LRUN "FLP1_BACKUP_bas"
and answer the prompts. When the copy is complete, archive the master

and use only the backup copy. Make several backup copies. Only use the
master for the purpose of producing backups.

If you have the system on cartridge, repeat the process for each
cartridge (having substituted MDV for FLP, of course!).

That's it, then. If for some odd reason you do not want to use
BACKUP_bas, there are alternatives:

It you have a copy of SuperToolkit (many disk interface ROMs contain
one, initialised by tk2_ext or flp_ext:new) you may instead use WCOPY
to make a backup copy. There is only one complication: WCOPY will fail
to copy our file with name of zero length, so at the end of the COpy
you should create a "zero~length-filename" file as follows. Enter

NEW
and then enter

SAVE "FLPZ2_"
where the backup copy has been created on flp2_. This applies to
cartridge backups too. If you do not have SuperToolkit, and do not
want to use BACKUP_bas, you may wuse the standard COPY command on each
file in turn:
COPY "FLPI_BOOT","FLP2_BOOT" -

and so on for the rest (including the zero~length~filename one}.

MEDIA MANAGER SPECIAL FDITION Pubtisrhed bu Dicital Prerisforn {r

Page &5

If you only have a single floppy drive, copy the files to ramdisk and
back to the target disk (BACKUP_bas will 1let you do this - it will
need to be invoked twice, once for floppy to ramdisk and once for
ramdisk back to new floppy). If you have neither a second floppy drive
nor a ramdisk, use a microcartridge as an intermediate storage medium

(do the files in several lots, with big files like MMSE and MMSE_LINES
on their own).

Remember, if you manage to corrupt the system without having made a
backup copy, you will NOT be able to use MMSE to recover itself as you
will not have a valid copy of MMSE to run!

4. QL KICROCARTRIDGES

The Microdrive cartridge storage format is extremely uniform and
compact, employing an endless loop of spliced BASF Video tape
travelling at constant speed through the drive. Although the optimum
can never be achieved, due to tape splicing and so on, a tape format
operation will create a numbered sequence of sectors (irrespective of
whether good or bad) up to a theoretical maximum of 255 (0...254). We
use the words tape and cartridge and microcartridge interchangeably
within MMSE. We use the word 'logical' to denote 'as you would want
it' = a logical sequence of sectors would be the sequence in which
they contained file data. Physical sequence, in contrast, is the
sequence in which they physically occur on the device.

SECTOR Sector header + Block header + Data area
0 (14 bytes) (2 bytes) (512 bytes)
SECTOR Sector header + Block header + Data area
1 {14 bytes) (2 bytes) (512 bytes)
SECTOR Sector header 4+ Block header + Data area
2 {14 bytes) (2 bytes) (512 bytes)

T T N S o sl ol g e e, g e P e ey N N N N N Al A S AN ALl e A el Mk L N S A S S S S

Each sector can be thought of as containing three clumps of
information: the sector header, the block header and the data area.

d.1 THE CARTRIDGE SECTOR EEADER
The sector header for each sector is recorded once (at FORMAT time)
and once only. It is fourteen bytes long and contains the following
data:
Byte offset Length Contents

0 1 Identifier byte - always 255

1 1 Sector number (0..255)

2 10 Ten~-byte volume label (the name for

the medium you specified at FORMAT time)
12 2 Random format number

The volume name is space—padded to the right if the name you supplied
is shorter than ten characters long. The random format number in the
sector header is used by QDOUS in order to determine if the medium in a
drive has been changed. As the data exists at the head of every
existent sector, the check can be very quick.

Page &
4.2 THE CARTRIDGE BLOCE HERADER

The ©block header for a sector is written each time a data write
operation is performed on that sector. It is two bytes long and only
has a meaning when the sector in question "belongs" to a file. The
block header contains the file number (0..255) and the relative
position of the sector within the file (0..255),

The QDOS routines that enable us to read and write sector data also
manipulate the block header data. Data and block headers are
inseparable in this respect.

4.3 THE CARTRIDGE DATA AREA

Each sector created on a tape cartridge is capable of storing 512
bytes of data. When reading a sector of data, the appropriate QDOS
routine will also return the file and block number associated with
that sector. Conversely, when writing a sector of data, the
appropriate QDOS routine needs to know what file and block numbers are
to be associated with that data.

There are three main ways in which the data in a sector is organised,
depending on whether the sector in question is the mapping sector, a
sector containing directory data, or just a simple data sector. Also,
files are stored with their own header data that is related to the
corresponding directory entry. These structures are vital to our
‘inside’ handling of the tapes, so let us look at these next.

4,3.1 CARTRIDGE FILE STOEAGE AND BLOCX NUNEERING

Any file that is to be stored on a tape must be stored in physical
sectors. So the system splits the file into S512-byte blocks and
writes each block, or part block in the case of the last one, into a
free sector. Each file " saved is given a file number that is used as
an index into the directory. Initially at 1least, saved files are
allocated numbers from unity upwards (ie; 1,2,3,...). If for example
four sectors are required +to save file number six, there will at the
end of the operation be four sectors with block headers of <6,0»
<6,1>, <6,2> and <6,3> respectively. The directory of a cartridge is’
handied by QDOS in the same way as a user file (ie; an ordinary file,
as distinct from the directory file, map ete). The only difference is
that, normally, only QDOS has access to this directory file. All
files are stored with a 64-byte header (at the ‘beginning of the
logically first sector of the file, making the amcunt of file data
storable in that first sector = §i2 - 64 = 448) that contains
essential data about the file:

Byte offset Length Contents :
0 4 Long integer holding file length in bytes
This file length includes the header

4 1 File—access byte

5 1 File-type byte

6 8 File information

14 2 File~name length

16 36 File name (Note: Max: 36 bytes)
52 12 "Reserved”

The file-access byte is normally set to zero. The file-type code is 1
for executable programs and 0 for everything else. In this latter case
the first four bytes of the fil¢ information field contain the default
size of the dataspace for that program (stored as a long integer).

Page 7

Note that the existence of this header means that only 448 bytes of
the actual file can be . stored in the first sector block (block 0).
Any subsequent blocks can contain a full 512 bytes.

Many toolkits wuse the reserved area for storing a date-stamp on the

file (date last written to): this shows up when you perform a WSTAT on
the cartridge.

At the end of a cartridge format all non-bad, non-map, non-directory
sectors are overwritten with $AA55 byte pairs. When a file is created,
and the end of the file does not correspond exactly to the end of a
sector (why should it ~ the odds are better than 200:1 against, even
allowing that even-number file-lengths are preferred) the remainder of
the sector is filled with nulls (ie: chrs$(0)s).

4.3,2 THE CARTRIDGE MAPPFING SECTOR

Sector zero is special and is called the mapping sector. It is this
that maps logical file storage onto physical sectors.

If you ¢think about it for a minute -~ the map is ‘what contains the
information about where everything else is. Correspondingly, it MUST
be in a fixed location or you are in a Catch 22 situation! .
Sector zero is split up into 256 two-byte entries. The first two -
bytes contain the file (F) and block (B) number of sector zero (see
table below). The next two bytes contain the file and block number
of sector 1, and so on. Because there can never be 256 good sectors
(in fact anything over 230 is VERY unlikely), the last two bytes of
sector zero are used by the system for other purposes. In practice we
need not concern ourselves with these last two bytes.

Map Byte 0 1 2 3 4 5 6 - - 508 509 510 511
F B F B F B F - = F B spare
Relates to : _
Sector; 0 1 2 3 254

In short, the nth and n+lth byte in the mapping sector (n being even,
the first byte in the sector being counted as 0) correspond to the
n/2th file.

We already know that microcartridge "user" (ie; non-special) files are
saved with numbers ranging from unity upwards., There are some other
‘files' that the system knows about and which will be found on viewing
the mapping sector. We now 1ist the special file numbers in
hexadecimal (hex). Hex is denoted by the 8§ sign; $A=10, $B=11 ..,
$F=15, and the left hand digit is worth 16 times .the right hand one,
so for example SFE = 15%16 + 14 = 254.

File number: $00 =~ The directory file
$F8 =~ The mapping file (i.e. sector 0, 1 block long)
SFC =~ The block is pending a delete operation

You should never see this at Media Manager
Special Edition level.

SFD - The block (sector) is unused
S$FE - The block (sector) is bad
SFF - The block (sector) does not exist

MEFNEA MAMARERN CNFEOL Y oo -

Poge 8

If a sector ‘belongs’ to any of these special 'files' OTHER THAN file
number $00 (directory file), its relative position in the file
(recorded both in the mapping sector and in the block header) will be
shown as $00., This is because the map is always one sector long (and
hence its sector has relative position 0) and because the other file
numbers ($FC-$FF) are not really files at all. Of course, for file
number $FF there will only be a mapping sector entry and no block
header - the sector itself (including sector header and block header)
just doesn't exist,

Let wus examine the two messages the QL produces on formatting a
cartridge and then immediately doing a directory operation on it. When
a cartridge is formatted, a message of the form 202/206 sectors
appears. This means that 206 sectors could be created and 202 of them
were verified as being good ones (ie; there were 4 sectors
corresponding to file number $FE. If a directory is requested, the
medium's title is given, followed by (in this case) 2007202 sectors.
This means that out of the 202 good sectors that exist, 200 are left
for general file storage use (i.e. 100K of storage). The reason why
we are 2 down before even starting is that the directory file (file 0)
always exists and starts off just one block/sector long, and of course
the mapping sector (file $F8) always exists and is always just one
block long.

Special 'files' with file number $FF will always be found, as the
mapping sector provides referencing for 255 sectors (from 0 to 254
inclusive) but the physical length of tape packed by Ablex into a
cartridge will never be long enough for that many (though heating the
tape, or continually running it, will stretch it...). The lowest
numbered sector NOT marked as 'belonging to a file of number $FF' is
the physically last sector on the cartridge. In the 1last example,
sector 206 will be the lowest numbered one belonging to 'file' number
SFF (ie; non-existent). This means that the physical length of the
tape is 206 sectors (from sector number O to 205, the last
non-non-existent onet!).

As the cartridge tape whizzes past the read/record head, sectors are
encountered in descending order, and very fast too. The QL is set up
so that if multi-sector files are being written to cartridge,
approximately every thirteenth sector will be written to. If the
thirteenth sector is a non-$¥D one, it is skipped and a further
thirteen is counted down. So if the file was five sectors long (ie;
between 4%512-64+1 bytes and 5%512-64 bytes 1long -~ 64 is deducted
because of the one-off file header) and the first 448 bytes were
recorded on sector number 26 on ocur example tape, the QL would try to
write the following 512 bytes onto sector number 13, the next 512 onto
sector number O, the next onto 193 (206-13, there is wraparound -
remember, the tape is one endless loop wuntil it snaps). Hold on - we
can't write to sector 0, as it contains the map. So the sector
sequence might be 26, 13, 193, 180, 167. If sector 180 was bad or
¢cccupied, the sequence might be 26, 13, 193, 167, 154. This paragraph
does constitute an oversimplication of the process of choosing the
next sector to write to - it is really much more complex, to ensure
that every possible sector is eventually reached - but this rule of
thumb applies a lot of the time.

A curiosity. For reasons not comprehensible to us, Lthe bloeck header
for the mapping sector contains $80 (=128) as the file number, instead
of $F8. The file number for the mapping sector as given in the map
itself is &F8.

MEDLIA MANAGER SPECIAL EDITION PriAPiabord FAre DIt bl Pamw ? o5 e 24

Page ¢
4.3.3 THE CARTRIDGE DIRRCTORY FILR

QDOS creates and maintains a directory file on each cartridge. It has
a file header, just the same as any other file. Every time a new file
is saved by a user, an entry is made in the directory file. If the
directory file runs out of space 1in its current block, another sector
will ©be allocated if possible, or a ‘'directory full' message will
appear. Each new entry in the directory file is in fact the 64~byte
file header that is also stored at the beginning of each file.

FILE © (Directory File Entry) 64 bytes
FILE 1 user file 64 bytes

FILE 2 user file 64 bytes

N
4 a .

- "

The important point is that file numbers (below $F8) are an index into
the directory file. The position of the directory entry for any user
file is given as:

file_number * 64

Perhaps now- you can see why the ‘'internal' directory file 1is file

Zero. The position in the directory file of the entry for the
directory file is 'O * 64 = 0'. That is, at the very beginning. We
know that at the beginning of every file there is a file header that
has - the same form as the directory entry. In the case of the

directory file, the file header and the directory entry simply happen
to be one and the same 64 bytes of data {everything set to chr$(0)
except the file length, which goes up in whole sector - 512 byte -
increments). If that doesn't shiver yer timbers, prepare yourself for
worse!

If you have x “short” (length<=448 bytes) files (including deleted
but not overwritten ones) on a cartridge, the number of sectors taken
up by the files themselves will be x. In addition, 1+INT(x/8) sectors
-will be occupied by the directory, and 1 sector by the map. This makes
a total of 2+x+INT(x/8). If x=128, the number of sectors required will
be 2+128+INT(128/8) = 146. There is no problem fitting this onto the
average cartridge, which has over 200 good sectors (typically
210-215). Why is this bad news?

Because the sector (or sectors) belonging to file number 128 will have
the same file number in the block header as sector zero (the one that
contains the map) - remember the last paragraph of section 4.3.2!
Quch! The map will (correctly) show no overlap as the map's number in
the map is 248 (=$F8). Well, how often do you have over 127 files on a
cartridge? And even if you do, it is the ~wvalue in the map that
actually determines what belongs to what,

The maximum number of files (obviously short ones) that can ever have
been stored at one time on a cartridge which has 254 good sectors is
224 (2+224+INT(224/8)=254). As 224=$E0 is a 1ot smaller than any of
the other special file numbers, 128=$80 is the only problem one.

Incidentally, tcolkits do not use the reserved area of each file entry
in the directory file to store the date-stamp. This is usually the
only difference between the data on a file stored in the directory and
the data stored in the 64 byte header at the start of the file. This
makes WSTAT quite slow on a cartridge =~ it has to find the start of

each file in turn on the <cartridge, which could take upto 7.5 seconds
per directory entry.

MEDFA MANAGER SPECIAL EDITION Published by Dlgltat Precislon [itd

Page 10
d.4 CREATING AND DELETING A CARTRIDGE FILRE

Let us review what happens when a file is created. A file number is
allocated to it, which if multiplied by 64 will provide a pointer to
the start of its directory entry made in the directory file. A
sufficient number of sectors will be demarcated to store the file, and
the mapping sector will have been updated to show exactly which
sectors these are and what sequence the sectors have within the
logical file. This is performed by storing the file number and block
number in the two-byte 'hole' associated with each sector (see Section
4.3.2). The data is written to the sectors themselves, simultaneously
updating the block headers with the relevant information.

After you delete a microdrive file {but before you write anything else
to the cartridge that might overwrite any sector "belonging” to the
file), the 64 byte header at the start of the first (logical) sector
of the file remains unaltered. The data itself also remains
unaltered. The block header remains unaltered. So far, so good.

The drive map does get altered. The mapping sector entries for the
deleted file are returned to the pool of free ones by being altered to
$FDOO (ie; file $FD = empty, relative block 0}. Also, the first 16
bytes (alas, all 64 bytes if Supertoolkit has been activated,
providing a somewhat other than desirable sort of compatibility with
the situation which arises when a disk file is erased!) of the
directory entry for that file are made into chr$(0)s, which conceals
the file from the likes of DIR, WSTAT and WCOPY.

Since the ©block headers (which tell the world the file to which the
following sector belongs, and tell the logical=relative position of
the sector within that file) are intact, it will always be possible to
automatically "thread" together a file (except for file number 128: we
must remember not to include sector 0 as belonging to that file, for
reasons already dealt with) that has been deleted from cartridge but
not yet overwritten. MMSE makes this very easy.

5. QL DISXS

As disk storage is more complex than microdrive storage, it is
advisable to at least read through the previous Section before trying
to understand what is going on here with disks.

No one can deny that accessing disks is relatively fast compared to
microdrive cartridges. After all, disks are fast-moving random-access
devices, whereas cartridges are slow-moving serial~access devices.
But the overall speed, although in part caused by an inherently faster
device, is also partly due to the way in which sectors are allocated
to user files.

Disks are not simply a stream of sectors; there are also tracks and
possibly sides to be concerned about. All of these factors give rise
to a system that is much more complex than the cartridge system.
Also, certain design elements like the need for ‘protection' against
illegal copying, make the recovery of lost files not exactly trivial,
Thus it is not really possible to create fully effective utilities for
disks to perform automatic file recovery. We can get close, but that
is all.

Page 11
8.1 QL DISX FORMAT

QL disks are circular wafers of high-quality magnetisable material
coated onto a base, invariably on both sides (single~sided disks do
NOT exist - the 1labelling of disks as SS or DS 1is a marketing ploy).
They come in a variety of sizes: 3.5 inches and 5.25 inches are most
common, but 3 inches (Amstrad) can also be handled, provided your disk
drive is of the right size! QL disk interfaces are very flexible! -

The disk size quoted is the edge length of the container - the actual
diameter of the disk is marginally smaller.

The good news is that the QL disk format is the same, whatever the

size of the disk! Physical dimensions are scaled down, but the layout
and logic is absolutely invariant.

Some 3.5 inch drives from Mitsubishi have a rotation rate unsuitable
for QL use. Otherwise, almost anything goes!

A disk drive may be single-sided (reading from / writing to side O
only} or double~sided (reading from / writing to both sides 0 and 1).
Double~sided drives have two sets of heads, one for the upper surface
of the disk and one for the lower. 5.25 inch disks in single-sided
drives can be furned over and the other side used by the heads — it
then counts as two disks! The same cannot be done for 3.5 inch or 3
inch disks as their rigid casing is constructed so as to permit oénly
ohe-way insertion.

With certain toolkits, the insertion of an asterisk as the - 11ith
character of a volume name (the name you specify when formatting it)
Wwill cause the disk to be formatted single-sided even on double-sided
drives. The drive is simply told not to use its heads for side 1, so
all the data gets recorded on side O. ' :

Each side of the disk is split up into a number of concentric tracks.
Each track is like a ring, and the rings are adjacent to one another,
with only a small gap separating them. All rings are of equal width.
The inner tracks are obviously shorter circles than the outer ones.
. This arrangement is very different from the format of an audio record
(LP, 45, 78) where there is just one groove, a spiral going from the
outside rim of the record and gradually curling inwards. The:tracks on
a disk are all separate.

On a disk recorded double-sided, a track on side © plus its
positionally-equivalent track on side 1t jointly comprise a cylinder.
On a disk recorded single-sided (0K - I give in - we'll call these S§
disks, though it 1is not really the disk which is SS but instead the
drive)} there is no distinction between cvlinders and tracks.

QL disks can be recorded with either 80 tracks per side (numbered
0...79) or 40 tracks per side (numbered 0...39). Track 0 is always the
one closest to the rim, and higher numbered tracks are closer to. the
hub/centre. When a drive is set for 40 tracks, the tracks are more
spaced cut. If an 80 track drive is wused to record 40 tracks by means
of some switch on the drive, it wusually means that every alternate
track will be skipped. Purpose-built 40 track drives tend to record on
wider tracks. 80 track drives, whether recording in 40 track mode or
80 track mode, are putting the same amount of data on each track and
the tracks in 40 and 80 mode are all of equal width (track lengths
vary in both cases depending on how near the centre of the disk the
track is - but what we are .concerned with is the average}: this mode
of recording is referred 4o as double-density. Purpose built 40 track
drives give single-density.

MEDIA MANAGER SPECIAL EDITION Publlaned by Diglial FPrecisdlon Lid

Poge 12

Drives that record double density are squeezing more data into unit
area of disk written to, and need a higher quality of magnetic
coating. In practice all disks should be of sufficient quality to cope
with double~density recording. Premium disks can be recorded at even
higher densities (quad-density), but QL disk interfaces and drives
aren't designed to handle these. Density is an irrelevancy as far as
MMSE is concerned. The number of tracks is relevant.

Each track contains nine sectars of equal length. Obviously inner
tracks (higher numbered ones) are shorter than outer tracks, so
sectors on inner tracks will be shorter than sectors on outer tracks.
But all the sectors on any one track will be of the same length.

As the disk is travelling at a constant rate of rotation all sectors
(irrespective of the track they belong to) pass next to the head for
the same amount of time. The head itself is poised above one track
at any particular time and jumps rapidly from track to track as per
orders from the interface.

Sectors are physically numbered from 0 to 8 at format-time. Each
sector can store 512 bytes of data. So a disk sector stores the same
amount of data as a cartridge sector: but there are many more sectors
on a disk.

The maximum number of sectors on a tape is 255 (in practice, under
230). A DS/80 (Double-sided, 80 track) disk contains 9 * 2 % g0
1440 sectors = 720K. A SS/80 disk contains 9 * 1 % 80 = 720 sectors
360K, as does a DS/40 disk (9 * 2 =% 40). A SS/40 disk contains 9 * 1 =%
40 = 360 sectors = 180K,

Good disk drives are DS/80 ones: we supply no others as the loss of
storage capacity in the case of the alternatives is immense. Good
5.25 inch drives will have a 40/80 track switch. 3.5 inch 40 track has
never caught on, so don't expect to find switches on 3.5 inch drives.

No splicing exists on a disk, and this, combined with factors of
reliability and homogeneity, means that (normally) all sectors will be
good. In fact it would be most rare if a formatted disk did not
return with a full complement of sectors (i.e. 1440/1440, 720/720, or
360/360). If it doesn't, discard it.

Many programs supplied by Digital Precision Ltd {and other suppliers
who value their time!) will, when directoried, show denominators other
than the full complement. This is NOT because there is anything wrong
with the disks! Many toolkits offer a command, FLP _TRACK, which will
allow a disk to be only partly formatted. For example,

FLP_TRACK 12:FORMAT FLP1_EXAMPLE

will format the first (starting with 0) twelve tracks of each side of
the disk, yielding 9 * 2 % 12 = 216 sectors on a DS drive (half if the

disk is recorded SS) -~ a better name for this extension command would
have been FLP_CYLINDER. We format our master disks - including the
MMSE system one - so as to have just about enough room to store all

the files in. This saves us duplication time. It also encourages good
practice on your part, as the master will have so0 few available
sectors on it that you are likely to be deterred from using it as a
working disk.... Devious, what? FLP_TRACK O sets the drive to its
maximum (40 or B80).

There are three main ways in which the data in a sector is organised,

depending on whether the sector in question 1is a mapping sector, a
sector containing directory data, or just a simple data sector.

MEDIA MANAGER SPECIAL EDITION Publiahed bu Nicitas Proriainn {4

Page 13
5.2 DISK FILE S3TORAGE AND BLOCK NUHBERING

Any file that is to be stored on a disk clearly must be stored in
physical sectors. In this respect there is little difference between
the disk system and the tape system. The disk operating system still
splits a file into 512-byte blocks and writes each block, or part
biock in the case of the 1last one, into a free sector. The main
difference, as we shall see more fully later, is that physical sectors
on the disk are allocated to files in groups of three. Therefore,
when we talk of a disk allocation block for a file, we are talking
about a group of 3 sectors, labelled a, b and ¢ in logical sequence.
Each file saved is given a number that is used as an index into the
directory. 1Initially at least, saved files are allocated numbers from
unity upwards (i.e. 1,2,3,...).

The directory of a disk is handled by QDOS in the same way as a user
file: as with tape, it is file number 0. Only QDOS has access to the
directory file. Again this is as true for disks as for tapes. The
main difference is that with disks the 64~byte file header (the one at
the beginning of the first logical sector of the file) contains the
length of the filename and the actual filename. Everything else is
likely +to be filled with nulls (chr$(0)s, as opposed to "0"s =
‘chr$(48) = chr$(s$30)) - if not, do NOT rely on it being correct (file
lengths are often wrong, for starters). This was done to aid
copy-protection methods, but it will prove to be a hindrance to us!
Instead, only the directory file (which you will recall contains
copies of the true file headers in the tape system) contains the real
header data. With disks, this header contains:

Byte offset Length . Contents '
0 4 Long integer holding file length in bytes
This file length includes the header
4 1 File-access bhyte
5 1 File-type byte
6 8 File information
14 2 File—-name length
16 36 File name (Note: Max: 36 bytes)
52 4 Date-stamp
56 8 "Resaerved"

The file-access byte is normally set to zero. The file<type code is 1
for executable programs and O for everything else. In- this latter
case the first four bytes of the file information field contain the
default size of the dataspace for that program (the program may modify
its own dataspace as it begins execution). Note that every file has a
64-byte header; it's just that with disks the file copy of the header
is almost meaningless. It still means that only 448 bytes of the
actual file can be stored in the first sector (sector 'a') of block 0.
Any subsequent sectors of blocks can contain a full 512 bytes.

5.3 THR DISK MAPPING SECTORS

It was noted in the last Section that tape systems only use one sector
for the storage map. We already know that in disk systems 3 sectors
are always allocated per block, and it just so happens that the first
allocation block (block 0) is given over to the file allocation map.
This gives wus 1536 bytes to play with. The first 96 bytes of the
allocation map are devoted to information about the disk itself. This
leaves 1440 bytes - an interesting number!

-

MEDIA MANAGER SPECIAL EDITION Publlshed by Digitatl Preclalon Lid

Page 14

Remember that on a double-sided 80-track disk we have 1440 sectors and
that each allocation block consists of 3 sectors. This means we can
have a maximum of 480 blocks - (numbers 0 to 479). It will be of no
surprise then to find that the rest of the allocation map is split up
into groups of 3 bytes, each group of bytes being used to store the
corresponding file and block number for each allocation block (see
figure 6). 3 bytes make 3%8=24 bits. The high-order 12 bits are used
to store the file number, and the low-order 12 bits store the relative
block number (ie; the position of the block within the file).

To find the bytes in the mapping sectors pertaining to allocation
block number x, multiply x by 3 and add 96. Let us say the answer is
y. Now if INT(y/512) = 0, look in the first mapping sector (track 0,
side O, sector 0). If INT(y/512) = 1, look at sector 3 of the same
track/side. If = 2, look at sector 6 of the same track/side. To find
which byte to look for, calculate y - S512%INT(y/512) = 2z, Now the
2th, z+1th and z+2th bytes of the chosen sector are the three bytes
described in the last paragraph.

As with tape, wuser files are signified by numbers ranging from 1
upwards, and the directory file is file number zero. By way of
example, if file 18 needs 5 sectors to store it, 2 blocks will have
been allocated to the file, and the mapping sectors will contain the
entries $012000 ($012 & $000) and 5012001, Similarly, if there are 25
user files on the disk (assuming no deletions) there will be 2
directory blocks (the first, relative block 0, containing data about
/+8+8 files, with the last two files being detailed in the first
sector of the second block) represented by the entries $000000 and
$000001.

If the file to which the block belongs is a special file other than
the directory, the rules are slightly different.

The map itself is denoted by the single entry S$FB80000 in the mapping
sector, and not $0F8000 as might appear more consistent. Unused blocks
are represented by $FDFFFF, and not $OFDO0OQ. Bad blocks -~ rare on
disks - are represented by SFEFFFF and not SOFE000. Non—existent
blocks (obtained when a disk is formatted single-sided, 40 tracks or
by using FLP_TRACK to exclude later tracks) are represented by
SFFFFFF, and not $OFF000.

There is a very good reason for doing things this way. While on tape
the mathematically-proven maximum number of files is 224, on disk it
is much higher. The number of sectors occupied by x user files of
short length (in this case, anything shorter than 3%512-64+1 = 1473
bytes will be accommodated on one allocation block) is given by 3 (for
the map) + 3%x (for the files themselves) + 3% (1+INT(x/24)) (for the
directory). This simplifies to 3% (2+x+INT(x/24)). A value of x=459
yields 1440, so the maximum number of short files that can be saved on
a QL DS/80 disk is 459=$1CB. The danger of wusing the $F8/$FD/SFE/SFF
file number convention as for tapes is, of course, that legitimate
user files can be expected to have those numbers. Hence the convention
is modified for disks. Don't ask us why the map wasn't denoted by
SFOFFFF instead of SOF8000 - it is just a convention, and consistency
was not a priority. The special file numbers for disks hence are:

File number: $000 - The directory file
SF80 - The mapping file (i.e. sector 0, 1 block long)
SFCF - The block is pending a delete operation

You should never see this at Media Manager
Special Edition level,

SFDF - The block . (sector) is unused

SFEF - The block (sector) is bad

SFFF - The block (sector) does not exist

MEDIA MANAGER SPECIAL EDITION | Publlshed by Digital Preciaslon litd

Page 15

We value consistency and use only the first two bytes of the file
number of special files in MMSE narrative -~ this keeps the conventions
the same as for tape.

At the end of a disk format all non-bad, non-map sectors are
overwritten with $30 bytes ($30=48 <corresponds to the character zero:
this is quite distinct with filling with nulls = $0 bytes, which is
quite another thing). When a file is created, and the end of the file
does not correspond exactly to the end of a sector (why should it -
the odds are better than 200:! against, even allowing that even-number
file-lengths are preferred) the remainder of the sector is filled with
nulls., If this sector was not the ¢ sector in the allocation block -
ie; if there were other sectors to follow in that allocation unit -
then their contents will not be disturbed. So if a new file 1is
created on a kosher. disk from which no deletions have been made, and
the file contains 10 capital "A"s, the actual allocation block would
contain a 64 byte header (containing nothing very useful) &
10%chr$ (65) & 438%chr$(0) & 2%¥512%chr$(48). '

Note that this allocation mechanism explains the two messages the QL
produces on formatting a disk and then immediately doing a directory
operation on it. When a disk 1is formatted, a message of the form
- '1440/1440Q° sectors appears., This means that 1440 sectors' could be
created and all of them were verified as being good ones. If a
directory is requested, the medium's title is given, followed by (in
this case) 1434/1440 sectors. This means that out of the 1440 good
- sectors that exist, 1434 are left for file storage use (i.e. 717K of
storage). The reason why we are 6 down before even starting is that
the directory file (file 0) always exists and starts off just one
allocation block (3 sectors) long, and of course the mapping sector
(file $F80) always exists and is always just one allocation block (3
sectors) long.
The 96 bytes of disk information stored at the beginning of the
mapping block are used in the following way:

Byte offset $00 4 bytes format ID 'QLBAY)
504 10 bytes medium name
(right-space-padded)
S0E 2 bytes format random number
$10 4 bytes count of updates
s$l4 2 bytes free sectors
516 2 bytes good sectors
$18 2 bytes total number of
sactors
S1A 2 bytes sectors per track
(normally 9) :
$1C 2 bytes sectors per cylinder
(2 or 18)
S1E 2 bytes number of tracks
(40 or 80)
820 2 bytes sectors per block
(normally 3)
322 2 bytes block number of
dir EOF
$24 2 bytes byte number of
dir EOF (0 to 511)
$26 2 bytes sector offset/track
$28 18 bytes logical-to-physical
sector table
$3A 18 bytes physical~to-logical
- sector table
S4C 20 bytes (spare)

MFMEA MANALEFD SNEC1ALD FENRTTIOM P 82 s it Ll PP ch s P s e s oa .

Page 16

Note that near the end of this 96-byte block there are two 18-byte
tables. It has been hinted at already that certain things go on in
the background of a disk filing system to keep things fast. These two
tables are precisely for this purpose.

5.3.1 THE DISK TRANSLATIOR TABLRS

To keep sector accesses to disks as fast as possible, adjacent logical
sectors are stored, spaced apart, in actual physical sectors. The two
tables in the 96-byte descriptor define the logical=-to~physical
relationship. If we take a double-sided disk as an example, there are
18 sectors per cylinder, which will be used in the following order:

a b c

sectors O 3 6 side 0 -~ allocation block 0O
0 3 6 1 - 1
i 4 7 0 - 2
i 4 7 1 - 3
2 5 a8 0o - 4
2 5 8 i - 5

This means that our mapping block (block 0) actually resides in
sectors 0, 3 and 6 of side 0, track 0. Moreover, the 96-byte disk
definition table will be found at the very start of sector 0, track O,
side 0. And this latter fact will remain true no matter what type of
disk it is (i.e. 40 or 80 track, single- or double-sided). This is
clearly important, so the disk filing system can tell very quickly and
reliably what type of disk it is trying to handle.

On a disk system, the first cylinder (ie; track 0, sides 0 & 1 or just
side 0 if the disk is formatted $S) will often be devoted to the map
and the directory (which, in Track/Side/Sector terms starts on 0/1/0,
0/1/3 and 0/1/6 unless these sectors are damaged, or on 0/0/1, 0/0/4
and 0/0/7 if the disk was formatted $S). The way 1in which. the QL
decides where to fill in the next block on a disk where there are
"holes” = caused by deleted files - is very complex.

When moving across tracks, a further timing factor is introduced: the
sector offset per track value stored at offset $26 in the definition
table, Each time a track 1s traversed, a logical/physical sector
table, such as that shown above, will be modified. Each element in
the table, in terms of sector numbers (not sides), is modified to be:

(original_entry + (track * offset)) MOD sectors_per_ track

This offset per track is hardwired in as 5, and therefore we can see
that allocation block 6 will in fact reside in sectors S5, 8, and 2 (in
that order) of track 1, side 0. It is important to keep track (sic)
of these physical sector allocation tables in order to make sensible
attempts at file retrieval. You will be pPleased to hear that Media
Manager Special Edition 1is extremely helpful in terms of letting you
know exactly what belongs where!

Compare this with the relationship between physical and 1logical for
tape, where a logical progression of +1 sectors often corresponds to a
physical shift of -13 sectors (with wrap-around).

S.4 T#R DISX DIRECTORY SECTORS

These are much the same as the éﬁrtridge ones (except that sectors are
allocated to the directory, as with any other file, in clusters of 3.
The directory entry for the directory itself is 64%chrsS(48).

Page 17
8.8 CREATING AND DELETING A DISK FILE

Let us review what happens when a file is created. A file number is
allocated to it, which if multiplied by 64 will provide a pointer to
the start of its directory entry in the directory file. A sufficient
number of allocation blocks (each of three sectors) will have been
demarcated to store the file, and the mapping sector will have been
updated to show exactly which blocks have been used. This 1is
performed by storing the file number and block number in the
three-byte 'hole’' associated with each allocation block (see Section
5.3). The data is then written to the allocation blocks themselves;
within each allocation block this is always in the sequence a b ¢.

Unfortunately, QDOS is a bit more enthusiastic when deleting a disk
file than it was .deleting a tape file. While the file contents
themselves are left untouched (until an overwrite occurs), mischief is
created in the directory. On tapes only the first 16 bytes of the
directory entry are filled with nulls - we are left the name. On disks
the entire 64 byte directory entry is filled with null characters when
a file is deleted.

What makes this even worse is that on tape you had two copies of the
file header, one at the start of the file and the other in the
directory. On disk there was but one decent copy of the file header,
and that was the copy in the directory. Note the past tense. The one
at the start of the file itself is good only for the filename and the
length of the filename - and you have got to find it first! Also, on
tape you had a block header which gave independent information about
file ownership and relative position within the file - there 1is no
such mechanism at all on disk.

There is one small redeeming feature possessed by disks in this
respect. When the mapping block entries for the erased file are
returned to the pool of free ones by having the most significant byte
of the 3-byte record set to $FD. So if for example we delete file
number 6, which is, say, 2 blocks long, the two mapping records will
be altered thus:

3006000 -> SFD6OOO
3006001 ~-> SFD6001

We have no name in the directory, disk sectors do not have headers
that tell us which files they belong to, and the actual file copy of
the file header 1is incomplete. However, the mapping block entry has
not been totally obliterated, and the first half of the second byte of
the entry for that block preserves some of the information relating to
the owner file number. The whole of the relative block number 1is
preserved,

If the disk contained more than 16 files, it is possible that there
will be more than one entry such as $FDP6000. For example, one could
refer to deleted file 6, and another to deleted file 22. Without
patient and careful scrutiny of map entries to physical sector
contents there will be no way of knowing which is which.

LidT e 14 4614 SN EY aewaAm i m s oa P P - .- . - - - - -

Page 18
6. CONFIGURING MMSE

This 1is wusually a one~off ﬁrocass. We already supply MMSE with
sensible default values, but you may want to change them.

Supplied
Default What it is

System Device flpt__ The device from which MMSE ancillary
programs will be loaded.

Print Device serl The device to which reports will be output:
note this can be set to be a file.

Baud Rate 9600 .Baud rate of Print Device. Value irrelevant
if the printer is a parallel one or if the
Print Device is a file.

Qutput Device flp2_ The device on which the collector file (the
one used for collating sectors taken from
the damaged Working Device) and other
user~created files (except reports which go
to the Print Device) will reside.

Collecter name COLLECTOR The name of the file wused for collating
" sectors from the damaged Working Device.

If we supplied you with the MMSE system on cartridge, we will have
altered the supplied defaults to more appropriate mdv values.

If you have a non-FLP disk interface (Microperipherals), contact CARE

Electronics for a QFLP ROM upgrade. Alternatively, use the VSET
command before booting up the MMSE system.

The Qutput Device should be a file-type device (ie; mdv/flp/win), not
a printer.

There is no harm in setting the Print Device to the same file-type
device as the Output Device and/or the System Device. Don't blame us
if you clutter up your working copy of MMSE!

To configure MMSE, boot up the QL, press Fl or F2 and then enter
LRUN FLP1_MMSE_SET_DEFAULTS_BAS

Then follow the prompts. At the end, a new MMSE_DEFAULTS will be
produced, containing the new default values for the main MMSE program.

If MMSE was supplied to you on microdrive, put cartridge 2 in drive
2, cartridge 1 in drive 1 and enter :

LRUN MDV2_MMSE_SET DEFAULTS_BAS

Remember that MDV! is the device containing MMSE_DEFAULTS.

7 USING MMSE

Boot up your QL with the MMSE backup disk in flpl (or cartridge 1 in
mdvi1): MMSE will load automatically.

It is always ©best to fire up™ MMSE from a reset, ie; on a c¢lean
machine. This is because the operating system creates slave blocks and
makes assumptions about things not changing that are invalid where
direct sector access games are being played.

MEFNMLA MAMACFD CHDFMIAT FDRVIOTIHOM Dish#? abhod hir RDimitoad Dawo~d ainm §+4

Page 19
7.1 THE MAIN MENU

You wil be presented with a screen bearing the title 'Media Manager
Special Edition vX.XX - Main Menu'. Twelve menu option windows will be
visible - some of them will be empty.

At this stage you can remove the MMSE medium. You will only need it
again if you want to 1load the MS-DOS/T0S File Copier (or other
ancillary add-ons to MMSE that we may release in the future). The
device from which you booted up is fully available for whatever use
you wish to put it,

The four corner option windows contain text in white. Other option
windows contain text in green. The white text indicates that those
options are available - ie; selectable. The green ones currently

aren't. The blank ones are just there to get the total up to 12!
At the foot of the screen there is a two line message:

Use cursor key to Move, ESC to 'end', SPACE | ENTER to Select
Define working, output and print devices

Look carefully at the option windows. The top left one, 'Select
Primary DPevices', has a green border superimposed around it. That
green border is your selection curscor. That is the current option. The
bottom line of the screen ('Define working, output and print devices')
tells you what that coption offers. This on-~line help, present almost
all the time, makes the task of this manual much simpler. Just read
the screen.

MMSE has a number of similarly designed menu screens, which is why we
are describing this in detail.

As a rule, when you enter a menu, MMSE puts the selection cursor on
the option window it thinks most appropriate for you to select. The
executive action is up to you. '

The penultimate line on the " screen tells you how; to navigate the
selection cursor and how to select items. It all scunds simple. Try to
move the green border using the arrow keys. It won't move.

This is because MMSE is a multitasking program, and we have not as yet
transferred keyboard control over to it. The flashing cursor ‘at the
lower left of the screen (SuperBASIC window #0) shows us that control
is still with SuperBASIC. Enter PRINT 242 to prove this.

The way to toggle control in and ocut of MMSE is by using CTRL/C - hold
the CTRL key down and tap C. You will notice a cunningly concealed
cursor at the top left of the Main Menu will start to flash. MMSE is
is now listening to your keyboard commands, and moving the green
border selection cursor around is easy. Try left, right, up and down
repeatedly until you understand the underlying mechanics of the
screen. Why bother with Up and Down when Left and Right wrap-around so
well? Try pressing number keys to jump to option windows.

Note that we allow you to move the cursor over blank option windows
and over the currently unavailable, green—-text options. However, if

yYou pressed Space or Enter in order to select them, your command would
be ignored.

Note how the help 1line at the foot of the screen changes - it is

context-sensitive, and relates to the option over which you have
placed the selection cursor (including currently non-selectable ones).

L oF L Ad a4 asa mmmEn anEna o s 4w = —

Page 20

If you press ESC when faced with a menu screen, you will be sent to
the exit option - usually the bottom right hand option window: you
will then have to press Space or Enter to execute the option. If you
press ESC in reply to a query, you will escape automatically back
whence you came. This functionality applies all over MMSE.

On this Main Menu screen, ESC gets you to the Return to SuperBASIC
option. This is not too sensible at this juncture! Select it
carefully, pressing Space or Enter just once.

MMSE now gives you an 'Are you sure' type get-out question, to protect
you against the consequences of an inadvertent keypress. In this case
the question is 'Quit Media Manager (y/n):’'. / denotes a choice by
you. When MMSE presents you with suth a choice, the pressing of any
non—-ESC, executive key (ones like SHIFT don't count) other than the
second choice will be equivalent to pressing the first-named key (in
this case, y) . So here, pressing J will the same as pressing y.
Don't. Press N - there is more to see in MMSE {that rhymes). Of
course these questions are NOT case-sensitive — we don't expect you to
keep a running track of the condition of yYour CAPS LOCK key! The ESC
key could also have been pressed - in this case, its effect would have
been as for N. As stated earlier, ESC will get you back to the state
you were in before you committed yourself to the course of action
which prompted the question.

The results of your addition exercise fron SuperBASIC are probably
~still on the screen. Pressing F4 from within MMSE will tidy wup the
screen.

You can CTRL/C in and out of MMSE at will, except when it is the
middle of certain operations (like tape formatting, when it can't
-afford to listen to you as timings are critical). This means that you
have all the power of SuperBASIC at your beck and call at virtually
any time. Even if the screen gets totally overwritten/cleared, you can
CTRL/C back into MMSE and restore order with F&4. The position of the
flashing cursor tells you where control resides.

Select the main menu option 'Set Machine Date': it is always a
good idea to wuse date-stamping of files, and it is no use date
stamping with the randomly generated QL power-on date. Notice how, on.
completion you are returned to the Main Menu with the selection cursor
still on the same option (permitting easy reselection by simply
pressing Space or Enter again - this is found in many places in MMSE).

Choosing the option 'MS-DOS/TOS File Copier' will cause the MMSE XOVER
ancillary program to be invoked — its operation is fully described
later in the manual. Explore this route. Reply with Enter to the frst
few questions/prompts — you will then see the following

System device to use: flpl_
This is asking you to confirm where MMSE_XOVER is to be found.

If you changed the default system device during the configuration
process, that is the name that will appear after the colon instead of
flpi_. Note the position of the flashing cursor at this juncture. If
you press Enter, the value of filpl_ is accepted. If you use the arrow
keys, you can edit the string (holding CTRL down too if you want to
delete characters) and, once satisfied, accept it with Enter. Or you
can press ESC to escape, which is what we suggest at this exploratory
stage.

It is at these points - when input is prompted for - that F4 will not
refresh the screen.

Page 21

Again, this facility of providing you with an editable default,
accepted with Enter and escaped from with ESC, is common in MMSE.

The remaining white text option on the Main Menu is 'Select Primary
Devices'., Until this is done all the other (currently green text) menu
options will remain unselectable. That is why we put the selection
cursor on this option when you entered the Main Menu.

Choose ‘'Select Primary Devices'. You will be presented with a
subsidiary menu, called 'Primary Device Selector'. The rules are of
course the same. Play arcund examining system settings. With typical
friendliness, MMSE allows you to adjust at run—-time the configured
defaults (which, after all, only represent suggested values you think
most likely to represent your needs - exceptions were expected) for
- Qutput Device and Print Device. Such run-time adjustments, unlike ones
dene with the MMSE_SET_DEFAULTS configurator, are forgotten when the
machine is switched off.

The selection cursor is on the menu option window 'Select Working
Device', and we would be right in deducing that this is the - one we
need to choose. Working device is not one of the presettable defaults,
The working device is the one on which the "target” medium is to be
found - we may be attacking the target because it -has become in sone
way corrupted or damaged, or because we . want to adjust or tidy it, or
simply because we want to see MMSE at work. If we are engaged in any
sort of data repair or recovery work, the Working device should be
DIFFERENT from the output device as, by and large, we will want to
write our recovered files (or batches of concatenated sectors) onto a
new, good medium!

Let us prepare a test medium for MMSE. CTRL/C into SuperBASIC and LRUN
the MAKE_TEST_MEDIUM_bas program. Create a test disk (later om, repeat
this with a created cartridge) on a blank floppy - let us assume this
is in flpl_. CTRL/C back into MMSE and ensure that the Working Device
name is flpl_, pressing Enter to confirm. You will be asked whether
you are intending to write to the working device. Let us say yes
{press y or Enter etc), '

What MMSE will now do will entirely depend on whether the working
device selected 1is a disk or a cartridge. Because of the inherent
unreliability of cartridges, MMSE makes an image of the working tape

in RAM immediately you select tape as the working device. It does
this by reading. in all the existing sectors {(complete with sector
headers and block headers) on the tape - the sector number being

scanned flashes up on the MMSE screen. Long pauses at certain sector
numbers usually means MMSE is having difficulty in reading that
sector. The process of creating a RAM image can take from as little as
20 seconds on a healthy cartridge to 10 minutes on a battered one.

1f the specified working device was disk, MMSE first scans the map and
presents the number of Tracks, Sides and Sectors per track it has
gleaned from the map. You are allowed to edit the first two items if
you disagree with the value read-in. You would generally only choose
to do this if the map was corrupted or if the map was purposely
slugged (copy protection being the goal) in order to
conceal funderstate the true size of the disk.

The next screen will appear for both tapes and disks - the Volume
Details screen. A lot of information gleaned f£from the map and
directory will be presented here. More important, a health check will
have been performed on both map and directory. No news here means
goad news. Take careful hote if either the directory or the map are
reported to be wunhealthy - what you should and should not now do is
governed a fair deal by these conclusions.

(¥ =¥ .0 B Ml ARl adMEey S e s a Ll N T - s oA e s P "o s o4 a v .

Page 22

Pressing a key will allow us to go on.

By this stage you may have noticed that MMSE permits type-ahead. This
makes MMSE very fast to use once you are familiar with the program. In
most cases you are protected against the consequences of indiscreet
typing ahead Dby questions with "safe" default answers. Go slowly at
first.

We have covered this first screen in GREAT detail. This is because a
whole host of concepts here (white/green availability indicators,
cursor movement, ESC, F4, CTRL/C, menu hierarchies, default direct key
responses, default string editing, case insensitivity, type-ahead,
run-time modification of preset defaults etc etc) are common to the
whole of the package. We won't boringly repeat any of this. Make sure
you master things so far before you proceed. Re-read 7.1!

Let us now opt to return to the Main Menu, where - surprise surprise -
all options are now presented in white (they are all accessible). We
will examine them in turn, +treating disks as the main case and
commenting on tape only where there are differences. But first let us
briefly examine what the source of medium problems might be.

7.2 WEAT GORS WRONG WITH DISKS AND CARTRIDGES

Prevention is better than cure. Make a backup. Make many backups if
you are using tape. There are so many ways that a file could go
astray, and quite a number of ways that MMSE can get it back. With
all these permutations staring at us, it is worth stepping back and
seeing just how file recovery can be systematically handled. :

Clearly microdrives and disks will have to be handled differently
during the final stages, but we can still cover file recovery
techniques using Media Manager Special Edition without becoming too
involved in media detail.

Problems could have arisen in a number of ways. Cartridges go wrong of
their own accord. The medium could have been damaged by some physical
accident (orange Jjuice is worse than coffee). A rogue program could
have overwritten parts of a medium. Faulty hardware could be to blame
(we "fondly" remember an early disk interface - v1.06 we think - whieh
trod heavily on the directory/map if a file of =zero length (not a
zero~filename—-length) file was encountered...). A glitch in the mains
supply, an inadvertent power-off or a loose drive cable could have
wreaked havoc in the middle of a medium access.

If a 5.25 inch disk is damaged/bent, cut open the sleeve carefully and
release the disk, which will possibly be readable. You can't do this
with other disk sizes.

Damage done to Archive files by illegal exit from that program are
best fixed using the dedicated PDQL program 'Recover', which
concentrates solely on Archive files. Special Archive info has to be
put onto the file to make it a legal one.

A damaged Quill file with sectors missing will not be readable into
Quill. After recovery with MMSE, 1load the file with RU into Editor
Special Edition, delete the control info from top and bottom, use F3
followed by T; RP E.x..;S where x represents the character obtained by
holding CTRL down and tapping the pound key. Then set a right margin
at 80 or whatever and enter F3 and then T; RP PR . Save the file and
lead it back with R. A bit of finor editing and you are home and dry.
If you really want, you can load the cleaned—up ASCII file into Quill
with import.

MEDFA MANAGFD SDFCiIAE FPITION Dish#iaboad hie Plnldnd Power.r_ 1 au

Page 23
7.2.1 DELETED FILES

This is probably the easiest type of file to recover. The important
point is that no save operation should have been performed between the
time that the file was deleted and the time when you try to recover
the file. If such a save operation has been performed, there is good
reason to assume that the original file's directory space and some or
all of its allocated blocks have been overwritten by the new file.

Obtain an unfiltered MMSE directory listing of the medium: it will
show the deleted file's file number, and your best course of action is
to use the Recover Deleted File utility, which peeks at block headers.
If the deleted file was from a disk, you won't be allowed to use this
utility: disk sectors do not have block headers to say which files
they belong to. Advice will, however, appear on-screen.

When a deleted file is recovered, automatically or otherwise, it is in
units of whole sectors (or 3-sector blocks in the case of disks). As
such there may be some garbage hanging around at the end of the file.
MMSE provides you with the opportunity of truncating it.

However, if the file was a SuperBASIC program, vou could simply load
it. The SuperBASIC loader will not parse the garbage at the end, and
you will either have a totally good program or a program with some
extra lines at the end containing the keyword MISTake. Simply delete
any spurious lines at the end of your program and save it back onto
the medium in question.

The four Psion programs are also likely to ignore garbage that exists
after the end of their 'known' data files. So the 'next time you use
the text or data file and re-save it from within the appropriate Psion
program, the garbage will disappear.

A problem clearly arises, however, if some terminating garbage is not
.ignored by some other program. At this point you will need to use a
sector editor to shorten the length of the file in question, so as to
eradicate the rubbish. You do this simply by altering the file—-size
parameter in the directory entry. With microdrives you should also
change the copy in the actual 64-byte file header. The true file size
can be obtained from a previously taken Media Manager Special Edition
directory listing. If you do not have such a listing, vyou will have
to find out the hard way, by using map data and the sector editor to
find out where the end of the file really 1is. Of course you could
always make an estimate of the file size. If you cut off teco much,
you can always increase the file size again - the file data is not
removed when a file is shortened in this way. You can take comfort
from the fact that the existence of end garbage rarely gives rise to a
ma jor problem.

An excellent program to use for this sort of thing is Special Edition
Editor, which is capable of 1loading and manipulating ANY file
including ones that contain unprintable characters.

7.2.2 BAD OR CHANGED MEDIUM

This is the horror-story error message that normally sets a shiver
going down most users' backs. It is almost certainly caused by a
faulty (bad or improperly changed) sector somewhere in the storage

area of the file you are trying to access.

The first thing you must"do is make a Sector to Sector copy of the
medium on a new, clean, problem—free formatted medium.

MEDIA MANAGER SPECIAL EDITION Prthlfahed bu Dicital Prprifafon {19

Page 24

The easiest way out of this Problem is to use MMSE's wutilities for
recovering lost/corrupt files and writing them out to ancther medium.
These utilities will recover all the good sectors and allow you to
specify a ‘'fi11’ character to replace each byte in any bad sectors.
In this way you obtain a readable file that could be patched later on.

Any report given on map/directory health (back when you
specified the working device) may alert you that the bad/corrupted
sector belonged to the map or directory. Alternatively, if ¥ou use the
sector editor to scan the sectors belonging to map and directory, and
if the contents of one or more of them shows up as starting with <TE>
(for transmission error) you know that there is trouble there.
Checking the filtered ang unfiltered directories may visually inform
you if the directory is corrupted, though ecaution is recommended
before you arrive at dconclusion -~ perhaps a corrupted map is causing
you to 1look at secters which have nothing to do with the real
directory,

If the sector causing the problem was a directory sector, use the
Rebuild directory utility which constructs a new directory from the
map information, optionally saving the old directory as an ordinary
user file on the working device,

If the sector causing the problem happens to be a mapping sector, your
problems are more acute (particularly so with disks). You can still
use MMSE to re-generate your medium (onto another medium, though). Tt
will take time, and you will normally use all the editing, movement
and string-search facilities available to you. Try to recover things
a file at a time and double~check all your editing activities. Spend
as long as it takes with the sector editor - which has all sorts of
superh movement commands - to view the medium, in order to ascertain
exactly what has gone wrong. Time spent checking in this way is
always worth it - it will stop you from doing more work than you have
to! If a re-generation job is Necessary, make sure that ¥You create the
recovered files on a fresh medium and NOT on the bad medium!

In general, the best approach is to obtain a hard copy of the mapping
block data (not as raw data, but as a Mapping Table which shows the
allocation block and a~b~c value for each sector on the wmedium, and
which shows to which file the sector belongs and what is its position
within that file). This witl be of use wunlss the map has
been totally corrupted. Also, get a printout of the Allocation
Summary, which will show the contents of the first and 1last 64 bytes
of each allocation block (data is ALWAYS recorded in a-b-c sequence
within the sectors of the allocation block itself, so individual
sector information here would be unnecessary) and repeat map-derived
data re alleged ownership of the block. You now know the physical
layout of the disk. :

Now, using the string Search (finds anything) and Locate (finds
filenames - ie; only searches in the 36 byte area starting at offset
16 from the start of an allocation block: note that this means it will
also find things that aren‘t filename related if the allocation block
being scanned didn't have a file starting in it) options in the sector
editor, you can resolve any ‘"doubtful identity" cases where the
first/last 64 bytes of a block did not help identify it. Use the
sector editor navigation facilities to confirm this suspicion.
Turning back to the hard copy of the mapping sectors and the sector
editor itself, make a list of any entries of the form (in hex) :

MEDIA MANAGEDR SPECIAL EDITION Published bu Dicitm# Dammar.r-_ ..

Page 25
FDx /000, FDx/001, FDx/002

1

where x' is the least significant nibble of the appropriate file
number. When you are sure that you know which entries belong to your
file, update the mapping block appropriately (i.e. replace $FDx with
the true file number, for example $008). You can then return to the
Recove lost/corrupt file procedure and let this collect the file for
you and place it onto the output device. Finally you should re~format
or discard the current disk.

7:2.3 ROT FOUNRD

Media which give this message when a DIR is attempted from
SuperBASIC have either got a corrupted map or corrupted directory or
both. Treat these as you would a bad or changed medium situation where
the map and/or directory are corrupt.

7:.2.4 OVERVIEW

If something is wrong with a medium, first make a Sectorr to Sector
Copy of it and only work with the copy. That way, errors made by you
while using MMSE do not turn a mishap into a tragedy.

An important point to remember is that you should always start at the
highest (ie; most automatic) level for file recovery. Try options in
the Utilities menu before you contemplate moving "down" to the next
level, the sector editor. Spend as long as it takes to find out what
exactly has gone wrong. You do not want to do more work than is
necessary.

While you are working on a device (the Work device) you will get an
‘in use' message if you try to access it from SuperBASIC. The way to
'free' a working device is to select another working device or to quit
the program. Do not attempt to change the medium in the working device
without going through the primary device selection.

Where a repair job has been done at sector level by rewriting to the
original faulty device (usually not good practice, but OK if the
corruption was very localised and the underlying medium was undamaged
and writeable~to), do not panic if on return to QDOS there appears to
be no change. QDOS may not have noticed (due to its internal
buffering and reliance on the random format ID) that the program has
changed the directory ete. 1In arder to see (say) your un—-deleted file
appear once again in its full glory, reset the QL and then perform a
directory: this forced QDOS to abandon its preconceptions about the
state of the medium!

Having done a repair job on tape, remember that all the work was
actually happening in the RAM image area. Some disk work is also done
in RAM, When quitting from MMSE, or when selecting a new working
device, MMSE will check if you want to discard the changes or save
them back to the working device.

Page 26
7.3 SECTOR COPIER

This Main Menu option makes a clone of the working device, even if
that device is bad and even if it contains unreadable sectors.

You are VERY VERY strongly recommended to use this option before you
make ANY attempt at recovery., Even if you are not going to do the
repair directly on the working device, make this backup.

Don't bother to make a Sector copy if your medium is good and all vou
want is to carry out some management. Of course you should have made

a backup - by conventional means, like WCOPY ~ of the intended
working device before you attempt any manipulation of it under MMSE.
All we are saying is that You needn't make a Sector cCopy... we aren't

suspending normal good practice! Do not discard the original until you
have checked (on a clean machine - remember QDOS's internal buffering)
that the 'managed’ backup is OK. 0K doesn't just mean that the
directory comes up fine - COPY a file or two to SCR, or invoke a
program on the medium to convince yourself.

Back to Sector Copying.

You are not asked for target device name. This is because the target
must be of the same TYPE as the Source (= working device). So if your
working device is flp2_ we will use flpl__ as the target, if your
working device was mdvl_ we will use mdv2_ ete. :

Once done, archive the original and Place the clone (which is an exact
clone, down to random format ID - please do not use this for piracy!)
in the working device. There is no need to reselect the working device
as the two media are perfect clones (this is the one exception to the
rule about not changing working device behind MMSE's back, as given in
section 7.2.4),

If your medium is tape, make sure that the target has at least as many
total sectors and as many good sectors as the source. If you can't
find such a tape, all is not 1lost: don't make a sector CopyY. AS wWe
will be working from the RAM image anyway, there will be no wear and
tear on the original. 1In this event (inability to make a tape sector

original (do whatever you like in RAM, but do not download the patched’

7.4 DIRECTORY MANAGEMENT

This is ONLY for use on media that are OK! Use it on a corrupted
medium and all hell could break loose....

We leave it to you to examine and experiment with the varied useful
options within this sub-menu: the headings are self~explanatory and
the context-sensitive help is conclusive,

Directory changes are not "saved" to the working device (or, in the
case of tape, to the RAM image) until you choose to Write Directory.

Do not select Volume Management. It will attempt to load a utility
program module called MMSE_VOLUME_MANAGER which does not exist. If and
when we decide to expand the functionality of MMSE, we will offer
MMSE_VOLUME_MANAGER (for nominal cost to MMSE owners) via our press
advertising. MMSE has been built with system expansion in mind.

Beware of QDOS internal buffering if you return to SuperBASIC after
having performed the directory manipulation: the operating system may

not realise that the medium has been internatly changed.

MEDIA MANAGER SPECIAL FDITION DMRBF abed &+ ee e . _

Page 27
7.8 UTILITIRS

This sub-menu containg the sort of commands you will want to use if
something has been deleted, lost or corrupted, but the map itself is
intact. The executive (Recover/Rebuild) commands here provide a
degree of automation to the recovery process. The information commands
(the 4 Show ones) are very useful, and - unless the medium treatment
is fully automatic -~ it is wise to print out the mapping table and the
allocation Summary.

Do NOT Recover/Rebuild onto the working device - use the output device
(which can easily be amended by ESCaping back to the Main Menu and
choosing to Select Primary Devices) instead, Recover makes a guess at
file length (remember, all it knows is that the file ends SOMEWHERE in
a particular block =« itg guess is the prudent one, that the file goes
right up to the end of the block) which You are allowed to edit. You
may choose to use the Sector Editor to determine the exact end-point.
If the file to be recovered has missing sectors, you will be prompted
for a "fill" character - choose something sensible like '7°',

Information is generally given in decimal rather than hex within. this
section, except in the mapping table where a hex representation allows
easier understanding of file numbers (remember how deleted files are
marked in a disk map). Common-sense abbreviations for Side (8d),
Track (Tr/Trk), Sector (Sc) and Block (Blk) are used,. Special file
numbers are highlighted with an Sp. Generally speaking, all numbering
is from base 0 (consistent with all that we've said earlier in the
manual) and not base 1. When "describing" a sector, the letters a/b/e
after an allocation block number: denote the logical sequence in which
the sectors will have been written to within that allocation block.
Note the distinction between block (or relative block) which is an
indicator of relative logical position within a file, and allocation
block, whose value shows the physical position within the file and
whose value can be used as a reference pointer into the map to
determine file ownership (and relative block number) .

In the allocation summary, the entire range of characters in the ASCII
set (0-2535) may be encountered, including unprintables about which
your printer would say unprintable things if your printer could speak.
For this reason, we represent the null character 0 ($0) by a . , the
character 255 ($FF) by .a . , all characters in the range 1 ($1) to 31
($1F) by a down-arrow and all characters in the range 127 ($7F} to 254
($FE) by an up-arrow.

If you have assigned a file instead of - a printer as the Print device,
¥ou can examine and manipulate the mapping table (the result of
processing/analysing the 'raw’ information in the mapping sector(s))
and allocation summary files using any ASCII Editor. The best one is
Special Edition FEditor from Digital Precision, whose programmability
will allow you to fully process the data if you so wish.

As before, the best way to familiarise yourself with the options here
is to try them out. Use the MAKE_TEST_MEDIUM bas SuperBASIC program to
make a test disk and also a test cartridge. Do a DIR on each from
SuperBASIC, and COPY a few of the files on it to the screen (using
COPY "FLP1_FILE:A", SCR or similar) to figure out what You expect to
see in the files, Produce a printed allocation summary, mapping table
and unfiltered directory (the filtered directory, which was available
in the Directory Management sub—-menu, is less useful as it, like the
SuperBASIC DIR, removes deleted files and removes 'blank' entries that
will pad out the alleged]y unused part of the last relative block of
the directory file) and reconcile the information in the three.

MEDNT A MAMIOAES e s oo o

Page 28

In doing this, make numerous references to the explanations and tables
given in sections 4 and 5§ of this manual. 1If you spend less than two
hours on this, you will certainly have missed things,

Also view the Volume characteristics (the same screen that you got
once MMSE finished checking the newly—-specified working device):
especially the information on the directory EOF. Later on, use the
Sector Editor and physically examine the "raw" map sector(s) and the
directory files (whose location can be found by scanning the
allocation summary or the mapping table). Print out their contents
and reconcile these - continually referring to their structures as

defined in sections 4 and 3 - with the 'processed® values obtained
from the allocation summary, mapping table and unfiltered directory.
Allow at least two hours for this. In your checking, see the

relationship between file . length deduced by counting entries for the
file' in the map-derived data (the raw map itself, the allocation
summary and the mapping table) - remembering each entry comprises a
sector or allocation block - with the file length according to the
directory file. It is a bit complex. Persevere -~ you'll get the hang
of it, and then you will be in 4 position of power!

A No Name filename in the show unfiltered directory option represents
a directory header where the filename~length 1is illegal (»36).
Equally, absurdly long file-lengths are shown as >=1E6.

Incidentally, you should already know where the map is from the
earlier sections - its position never changes. If while formatting a
disk any of the three map sectors give the result "bad', the format
aborts with a format failed message immediately. To see this happen,
try a format without any disk being present: it doesn't take long to
happen,- -once the interface abandons its attempts to retry. oOn
cartridge sectors are marked at format time, so the first non-bad
sector that is found is marked as sector zero.

The next step is to corrupt the test medium a bit (or the RAM image of
it if its was tape), to get us into the spirit of things, Experience
gained here will pay dividends when you have to use MMSE on a "real"
corrupted medium.

Go to the sector editor, Reposition to one of the directory sectors,
Edit it (putting in any garbage you want -~ but take note of whatt you
have done) and Commit the sector back., Now experiment with the Rebuild
directory and Recover file options. Repeat as necessary. Familiarise
yourself with the medium produced by MAKE_TEST_MEDIUM bas - it will be
absolutely identical each time you build it on disk, and virtually
identical on tape.

Experiment with corrupting file sectors (you should know where to look
for them from the information in the alocation summary and mapping
block) in a similar way, using the sector editor. Pay special
attention to file headers (corrupt them too - grossly), and reconcile
the information in them with what appears in the directory file entry
for that file,

Every now and again, choose the menu option of selecting a working
device. After reassuring MMSE that you mean what you say, but
immediately before You enter the name of the new working device, the
existing one will be "released" (ie; no more ‘in use' messages wghen
attempting access from SuperBASIC). This is a good point at which to
CTRL/C into BASIC and ad just the medium, perhaps using
MAKE_TEST_MEDIUM_bas or checking files (by copying to the screen) or
deleting files (to give you practice with Recover Deleted File - try
this “"straight", and then try it after you have cerrupted the
directory). Lastly, experiment after grossly corrupting the map.

MEDIA MANAGER SPECIAL EDITION PieBld abord ki Nimtsease no_.

Page 29
7.6 SEGI@R EDITOR

This is the most exciting and most powerful part of . MMSE:
a real workhorse, there is much more here than just an editor. There
are all sorts of tools for rapid navigation between sectors, and the
collection, concatenation and marking of sectprs. Play about with it

by all means ; however, when attempting to recover a
lost/deleted/corrupted file, first ensure you have exhausted the
executive options in the Utilities sub-menu. The sector editor
provides "low-level"” direct access, and automaticity is much lower

than with the Utilities options.

Most cases of problems NOT involving map corruption can be solved in
the Utilities sectlon (one exception being recovered deleted files
from DISK).

When things HAVE to be solved in the sector editor, it 1is almost
certainly sensible to have obtained a printout of the mapping table
(unless you enjoy a lot of troublesome counting working things out
from the raw mapping sectors!), the allocation summary and the
unfiltered directory.

The sector editor provides an all-encompassing, cocooned environment -
you need never leave it (provided you have set up sensible print and
output devices) during a session. An array of powerful tools are
available to you all at once.

A note - type-ahead has been disabled in some parts of the Sector
editor because of the dangers involved if you make an error.

ﬁaming and numbering conventions (all base 0) are as for the utilities
described in section 7.5 - you will see more hex here, as hex provides
a4 more compact representation than does decimal (the 3 digit decimal

number 255 is just two digits - FF - in hex), which is important as
screen space (and printer space - we assume just an 80 column printer)
are at a premium. Where decimal is more appropr1ate, though = as in

non sector-content data — we default to decimal.

Abbreviations abound. H stands for Half, Alc for Allccation block and
Rlb for relative block.

Let us examine the sector editor screen. The first two lines are
self-documenting: the first gives details about MMSE device settings,
and the second reports on the file number and name for the sector
currently on display. The bottom two lines are the usual
key-availability summary and context-sensitive help. These lines will
temporarily disappear when certain options are chosen and a dialogue
commenced.

Above the bottom two lines 1is a green band of three lines. This
represents the condensed menu system for the sector editor. We'll
return to it in a moment.

Immediately above the green band is a status line giving position and
ownership information about the sector being viewed. At the right hand
end of the line the word UNCOLLECTED will appear if the sector has not
been written to a collector file in the current session (a session
ends when a new Working device 1is specified or when you quit from
MMSE). We will cover this in more detail scon. Also a BAD SECTOR
indicator will appear if the sector is unreadable (whether or not it
is marked bad in the map is irrelevant).

[¥] =1 o0 B TR ENNA LT = L L] Lol AN T ol I - PR - - - - - - . - =

Page 30

Now we come to the main body of the display. The entire sector is
displayed, wusing the character convention described in the last
section, 64 characters per line, 8 lines (64%8=512). The numbers in
red on the left are to help you count.

Let us look at the green menu options. The cursor -~ a red slit - is
positioned on More. Press SPACE or Enter a few times to confirm that
nothing happens. Now move the cursor away with any of the arrow keys
(or by typing in the first letter of the menu option you want to go to
- if there are a number starting with the same letter, you are cycled
around in non-Chinese "reading sequence" each time you press the first
letter), experimenting to determine the underlying geometry of the
menu screen. Keep each arrow key pressed down in turn and see how fast
the cursor flies around, with the context-sensitive help getting
updated each time! This is quite relevant, as efficient use of the
sector editor often involves rapid use of these options in some cyclic
or repeated sequence.

Once you have finished having fun (and with the cursor OFF More)
observe that More is written in white while the other options (or
almost all the other options if you are on tape) appear in black. This
is because More is temporarily disabled. It is disabled for a very
simple reason - for this layout, there is no more of the sector to be
seen - all 512 bytes are shown. Select Layout and toggle it, and you
will see that More is now accessible.

In the new layout, there are two data areas - in character terms (as
before) and in hex in the big white-text block. This display is less
compact so only 256 bytes of a sector will show at any one time: hence
the use of More, which flips between them. The H: (for Half) indicator
shows, using a 0 or 1, which bit is currently on display. When you
move to a new sector while in the hex layout mode, you are always
shown the first half (H:0). Which mode you choose is up to you, but
the character mode is more convenient except when you need to know
byte values: an up-arrow isn't too helpful in such cases!

Spend a few hours playing with the options in this sector editor menu
— the bottom two lines should make things sufficiently clear. The
benefit you gain from a lot of hands-on play with MMSE is greater in
the sector editor tham it is anywhere else. Our comments here are
really by exception, where we think clarification is required.,

Status info is always full - but unnecessary user dialogue is
eliminated by not asking you for things like side number if the disk
is single-sided, etc.

You cannot Reposn (Reposition) beyond the physical end of the device
(so non-existent sectors cannot be accessed),

Edit works in both display modes - 1look out for the wrap-around!

Commit is the act of writing the sector (modified by Edit, perhaps)
back to the working device, in exactly the same position. This is only
likely to be necessary if medium corruption was very minor and very
localised. Until you Commit a sector back, the changes to it remain in
MMSE workspace (as distinct from the RAM image area in the case of a
tape - to modify the RAM image, you must use Commit}. If ycu have just
made editing changes to a sector and not committed them, the Collect
operation (discussed soon) will, however, collect the modified sector:
your meodification may have been intended only for the collector file.

-

MEDIA MANAGER SPECIAL EDITION Pubbidshed Bu Dicita? Prociiion § P

PFage 39

Commit will not allow you to 'move' the sector to another physical
location on the medium, or to directly change its ownership data (you
should do the latter by adjusting the map). The complications that
moving sectors around would introduce in terms of the map, directory
and block-headers (in the case of tape) makes it an absurdly dangerous
thing to do. Patching should be accomplished via a collector file.

If you are desperate enough to want to move the sector elsewhere, try
the Klone option which will do it. Use ALTMAP to change the ownership
of the current sector. Don't blame us if you miscalculate.

If you Commit or Klone to a sector belonging to the map or directory,
and wish the new values to be taken cognisance of immediately, opt for
a Reread.

Don't confuse Commif and Collect - they couldn't be more different.

Before using Collect there must be a collector file open - this is
opened with Opncoll (and closed with Clscoll - remember to close the
file before resetting, or vyou may be creating for MMSE the job of
recovering the recovered data! We will not allow you to open a
collector on the working device (you should open the collector on a
device that is 100%): ESC and select a more suitable output
device (ramdisk is fine): the sector editer is friendly enough to fire
up with the same sector that it had when you exited from it.

Collect will write the sector in question to the collector file, whose
filename you can select/edit when you choose Opncoll. You cannot have
more than one collector file open at a time. You can throw anything
into a collector file, but it is probably most helpful to devote one
file to each recovered file rather than concatenating the 1lot in one
monolithic collector. Simply toggle the existing collector closed and
open a new one with a different name, all without leaving the sector
editor,

At the same time, Collect will remove the 'UNCOLLECTED' status flag
from the sector.

After a «collect, the sector viewed 1is automatically advanced to the
logically next sector on the device (on tape, to the next sector, as
logical moves are not defined) - logical sequence having been defined
by the physical-logical table: it 1is the sequence of allocation
blocks. We do this to save you time, as far more often than not you
will have been moved to the logically-next sector of the file, which
is probably where you want to go (to collect this sector too).
Repeatedly pressing Space or Enter with the cursor on the Collect key
will then provide an easy way of trotting through the medium in
logical sequence, picking up sectors as we go along.

Logical sequence will be "broken" if the disk has had an “interesting"
history (ie; files have been deleted - overwriting constitutes a
deletion and a <creation, please note). This is unfortunately common,
especially if you are a particularly busy disk user, or just plain
miserly with disks. Breaks in lcgical sequence will cause you to cast
about to find the next bit of the file. We'll socn give you some
suggestions on how best to do this.

If you opt to Collect a disk sector that 1is the 'a' sectar of an
allocation block, MMSE will ask you whether or not you want the first
64 bytes of that sector (in case it is the start of a file, in
which case you don't want the header) and whether you want to pick up
the next two sectors of the block at the same time.

MEDIA MANAGER SPECIAL EDITION Published bu Ploital ProriAéfon FrA

Page 32

We suggest you say yes in reply to to this second question to speed
things up as WITHIN any allocation block unit, we GUARANTEE the data
will be written in logical a~b-c¢ sequence (unless you have used Klone
or some other program has stomped on the disk one sector at a time -
very very very unlikely). The only disadvantage of this is that you
may go a little beyond the logical end of the file - no big deal, you
would have done 50 anyway, unless the file eneded on a sector boundary
(why should it?). It probably doesn't matter, but if it does you can
always truncate the file either using Editor or by using
RESPR/LBYTES/SBYTES (a shorter length) from SuperBASIC. If you opt to
have the whole block c¢ollected, you are then moved to the start (the

1 1

a' sector) of the next allocation block.

Collect will keep going till you hit the 1logically last sector/block
on the medium.

Note that collect makes no attempt to look at the map for sequencing
information. If there are valid entries in the map for that file, you
probably shouldn't be ©bothering to collect it but instead just using
COPY from SuperBASIC or a toolkit WCOPY. We realise that the medium
may have a partly-corrupted map or corrupted directory, and the bit of
the map containing references to this file were OK - but its too
remote a case. Logical sequence is fine - most of the time. Keep an
eye on - sector contents to ensure you haven't "strayed” (the
file-deletion problem). The map-derived info on File number, File
name and Rlb (Relative block within the file) will be presented
on~screen in any event - keep an eye on them, if you prefer.

1f and when the logical move (performed automatically after the
collect) gets you out of the as-yet-not—-fully-collected file, this is
how best to pick up the threads. Don't collect a 'wrong' sector or
block. Use the menu option for a Logical move left and you will be
back to the last sector of the file.

Have a lock arocund and decide what the next sector is likely to have
at the beginning of it (eassy if it is a text file, source listing or
recognisable data (like Archive/Quill stuff). Look up the allocation
summary and hunt for it by looking at the first 64 byte summary (as
implied earlier, the trauma will only occur at block houndaries and
not within blocks).

1t is quicker to take a peek at the mapping table first - if it is
relatively uncorrupted - look to the screen for the (map-derived) file
number and relative biock number for the last sector of the desired
file found so far. Say it is file 13, relative block 4. Look up the
mapping table to see which sector contains the next relative block of
the file (look for $00D/005 =~ or $0D/05 if it is on tape), and Reposn
yourself to it.

If these suggestions fail, Reposn to the first physical sector (Tr:0
Sd:0 Sc:0 on disk, Sector 0 on tape) and do a Search (it will be case
insensitive) for a string that you know will occur in the next few
blocks of the file and in not too many other places. Even if the file
was largely unprintable or in code, there should be some ASCII strings
in it - check ¢old versions or printouts o¢f the file for ideas, or its
documentation 1if it 1is commercial stuff. Search goes in physical
sequence through the medium (on disk, c¢ycling thrcocugh the 9 sectors
(0...8)., then flipping side if appropriate, flipping through the 9
sectors, flipping side again and skipping to the next higher track
track. if a wrong match is found, a further Search will resume
progress from that point. Even if you find a segment of the desired
file a little way 1logically “beyond the immediately next missing
sector, it does not matter = a logical backwards move (2nd line of
green menu, fifth option) should get you there.

Page 33

If you can't find a suitable search string either, you may have to
wander around the medium tiil you hit the right data. This 1is made
less time~hungry by the Uncollected move commands.

Let us review all the move (ie; sector navigation) commands available.
We won't classify Collect (or Bulkwrt, which is related to collect and
which we shall soon meet) as a move command, since it has other
executive effect too. Also, lets rule out Reposn, which isn't -a single
keypress command and is hence too slow for anything but long~distance
moves to known, definite destinations.

All the other sector navigation commands are abbreviated to a move
type followed by a 1left (signifying previous) or right (signifying
next) arrow. All move commands (like Recover) will allaow setection of
sactors marked bad; deleted or wunallocated - but not ones that are
nen-existent,

More importantly, all will allow multiple entries with type—-ahead. A
lazy screen feature is implemented, we won't slow down the move by
repainting the screen if there are more commands on the way in the
keyboard buffer!

We have already encountered the Logical moves (Collect uses a Next
logical).

File moves assume a valid map and read data from the map. You move
through the file <(user files, directory or map) in logical sequence,
and you can't move off at either end. Attempt at £file movement when
the sector belongs tec other special file types will restrict your
movement to the block you are in - after all, there is no sequence in
the deleted/unallocated/bad pools!

Physical moves are obvious - they follow the same sequence as did
Search.

Uncoliected moves involve movement to the next uncollected sector, in
physical move sequence. This is useful, as hinted at earlier, as your
attention is focussed solely on uncollected sectors. Combined use of
Next/Previous Uncollected and Collect save a lot of time. Develop
(say) a U U SPACE C C C C SPACE rhythm to race through the medium.

There are three more commands to help you here. Hide removes the
'‘Uncollected' flag from a sector - sectors you encounter on your
travels dealing with the fragmented/bad-map/non-ASCII-file-filled
medium that have nothing to do with the file you are recovering (or
with other files you are likely to want to recover in the same
session) can be hidden. This means that though they have not actually
been collected they will ©be classified as collected, and Uncollect
will skip over them.

Show will unhide a sector, Use show Lo correct mistakes made when
using Hide, or te make an already c¢ollected sector reachable by an
Uncollected move.

Flags is a fascinating option. You will get an overview of all the
sectors on the medium (on a disk, presented 1in batches of 18, 4
batches per line, 20 lines, 18 * 4 * 20 = 1440). U denotes a sector is
uncoliected, . that it is collected, and @ gives the current position.

By narrowing down the field of uncollected sectors (using Collect and
Hide), the Uncollected moves will allow rapid scans of the medium.

Page 34

Let us summarise the moves:

CONSULTS MAP A-B-c SEQUENCE REQUIRES

Physical No No -

File Yes Yes Good map

Logical No Yes Clean history
desirable

Uncollected No No Intelligent

use of Hide

Similar to Search is Locate, except that it does 4 case-insensitive
Search only withinp the area where a filename could be present (ie; in
file headers). you are allowed to specify whether the match is
Beginning {(matches with start of filename), Instring (matches any part
of filename) or Complete (matches filename exactly)., To find the start
of a file which You want to collect on a disk with a bad map, a Locate
may find it faster than you wilj scanning the allocation summary.

Let us now consider Bulkwrt, This is a sort of global collect, where
it first Locates the start of the file for You, then does a number of
automatic collects, You tell it the length of ‘the file being
recovered ~ it will work out how many collects to do. Nifty, eh? It jis
worth trying even on disks with chequered histories, as if it works,
it will have saved an awful lot of keypresses.

Calc is best experimented with yourself.

Please use the sector editor for pPractice on disks generated by the
MAKE_TEST_MEDIUM_bas pProgram, including ones which you carrupt., This
is the only way to master the Sector editor...

7.7 MS-DOS/T0S FILR COPIER

When you choose this option an ancillary program module,
MMSE_XOVER, 1is loaded from the system device,

This sub-menu enables you to use disks formatted under MS-D0OS and
Atari-T0S on your Sinclair QL with disk drive. All standard file
operations are ~available. It also includes a facility to translate
text filegs between the different character sets of QDOS, MS-DOS & TOsS.

The disk interface attached to your QL must conform to the qL floppy
disk standard, This 1is hecessary because MMSE_XOVER dccesses the
floppy disk sectors directly to handle the alien disk formats. The
device name of the disk drive has to be either ‘“flp' or 'fdx',

The Atari Tog disk format is almost identical to the MS-Dos format.
There are only minor differences, which are recognised and taken into
consideration by MMSE_XOVER automatically. so that you need ' not
explicitly specif{y what disk You are using, In the following
description of the program's functions the term ‘DOs* always includes
the Atari ToS format.

7.7.14 DISPLAY DISK INFORMATION

You are asked for the drive name which containg the disk to be
examined (e.g. flpl). a default name is displayed, which can be

accepted by Pressing ENTER or altered with the usual 1ine~editing
facilities.

MEDIA MANAGER SPECIAL EDITION Pishdfatee o .

Page 35

Depending on the disk format that 1is recognised, one of the following
information screens appears:

disk type Qbos

medium name < name of disk >

random number { random value for identification >
update count ¢ write accesses since FORMAT >
free sectors < free sectors >

good sectors < usable sectors >

total sectors ¢ total sectors >

sectors/track < sectors per track >
sectors/cylinder < sectors per cylinder >
number of tracks { number of tracks >

disk type DOS/TOS

OEM name44... ¢ manufacturer identification >
VErSion ..eeveeanneens < DOS version or TOS random value >
media bytes < format identification (see below)>
sides vessee. € sides of disk >

sectors per track ... < sectors per track>

total sectors ¢ total sectors ?

reserved sectors ¢ reserved sectors >

FATS v iviiiimanonnns . ¢ number of file allocation tables >
sectorsi00n < sectors per FAT >

max. dir entries ¢ max. number of files in root

directory >

It is not necessary to understand all of the above information to use
the MS-DOS/TOS File sub-menu. The main purpose of this function is to
distinguish between QDOS— and DOS-formatted disks. Additional
information on the disk formats is contained in the documentation to
the QL floppy-disk standard and in various books on MS-DOS and on the
Atari ST.

7.7.2 SHCW QDOS OR DOS DIRRBCTORY

When you have entered the drive name, MMSE_XOVER automatically
recognises the disk format and shows the directory. In addition to
the file names, the length and the date stamp are displayed. When the
output window has filled, the program waits for a key to be pressed.
Then the window is scrolled up and another page of files is listed.

The directory function is not limited to disk drives. It may be used
to list the files on all other QD0S directory devices (like RAM disks)
as well,

If the root directory of a DOS disk contains subdirectories, these
entries are displayed and are marked with ‘'<dir>'. MMSE_XOVER doces
not support subdirectories {(rare on floppies) except for giving their
creation date.

7a7.3 IMPORT BILES (DOS TO QU0OS)

This function enables you to transfer files from DOS toc QDOS. ©On the
QDOS side the files need not to be on a disk drive; it is possible to
transfer files to RAM disk or microdrive.

When you have entered the source and the destination device, you are
asked: 'go through directpry? (Y/N)'.

MENT A MANALFD CSDFC1AY FRITION DPrihtishornd he Dicital PrepriAdon [i17

Page 36

Replying with 'y' will cause MMSE_XOVER to work through the 1list of
files in the directory of the Source device. For each file you are
asked whether a transfer is to be performed. The selection is made in
a similar way as with the wildcard commands of many toolkits:
"(Y/N/A/Q)' is displayed, and pressing

'y' transfers the file;

‘n' does not transfer the file;

‘a' transfers this and all following files;

'q’ stops the selection facility.
Within this selection facility the name of the destination file is
generated from the name of the source file. As a DOS filename
consists of only 8 characters (+ 3 characters extension), any
additional characters are .omitted. Occasionally this may lead to

problems when long QDOS filenames differ from each other only in the
last characters. Cutting the last characters then leads to identical
names, so that the filename already exists on the DOS disk. .

If you choose to spurn the selection facility described above by
typing ‘'n', you may enter the source and destination file names
explicitly. Name and extension in a DOS filename may be separated by

a '.'. The formatted filename is then achoed to the screen,

7.7.% BXPORT FILES (QDCS TO DOS)

This function enables you to transfer files from QDOS to DOS. On the
QDOS side the files need not to be on a disk drive; it is possible to
transfer files from RAM disk or microdrive. The procedure for using
this option is much the same as for the inverse transfer option
described in Sub-Section 7.7.3

7.7.83 DELETE DOS FILRES

As with the file transfer functions, it is possible to work through
the specified directory file by file or to specify the files
individually.

7.7.8 EENAME DOS PILE

As with the file transfer functions, it is possible to work through
the specified directory file by file or to specify the files
individually.

7.7.7 PORMAT ALIEN NEDIUM

This function generates a DOS~ or TOS-formatted disk by writing the

system sectors of the selected format to a QL-formatted disk. The
following formats are available:

F1 ... PCDOS 360k PC/XT (DS/40 track/9 sectors)
F2 ... PCDOS 720k PS/2 (DS/80 track/9 sectors)
F3 ... Atari TOS single-sided
F4 ... Atari T0OS double-sided

[mportant: MMSE XOVER writes only the system sectors of the specified
format to the disk. Therefore it is necessary to pre-format the disk
with the QDOS command FORMAT - with the needed number of tracks and
sides, The command to set these parameters differs from one disk
controiler to the other.

MEDIA MANAGER SPECIAL FDITION PrihPiahosd b Rt a8 o . o«

Page 37

The advantage is that the operation is much faster on an already
formatted disk. The disadvantage is that you have to make sure that

there are no defective sectors on the disk, i.e. the message from the
QD08 command FORMAT 'x / y sectors' must show x and ¥y to be equal!

7.7.8 CONVERT QDOS TEXT FILES

Though QDOS, MS-DOS and TOS all use the ASCII character set, the
special characters (Codes > 128) are totally different between GDOS
and DOS/TOS. Even between DOS and TOS there are minor differences.

The convert function performs the best achievable conversion between
character sets. A complete conversion cannot be performed because
some characters do not exist in all three character sets.

In addition to the character conversion, the end-of-line code i3
changed. QD0OS uses only a CR character, while DOS/TGS needs a CR-LF
sequence.

The conversion facility works only on files which are on a QDOS
device. So transfer the file to QDOS first, and then convert it!

7:7.9 RETURN TO MAIN MENU

You guessed it! This will leave MMSE_XOVER sub-menu and return you to
the main menu = you may need to press CTRL/C to re—-awaken MMSE. Note
that MMSE has been sleeping in RAM all along - it does net need to be
relcaded or for the system to be given any access to the medium
containing the MMSE file.

MEDLA MANAGER SPECIAL EDITION Pubtishied by Dialial Precleion tid

