~ SUPERFORTH

~ ACOMPLETE FORTH-83 SYSTEMFORTHEQL

- ADIGITAL PE’ECIS/QI"
[] [

By
Gerry Jackson

Published by
Freddy Vachha

Program and documentation ©1985 Gerry Jackson & Digifol Precision

8L SUPERFORTH

CONTENTS

1. Introduction
1.1 Introduction
Loading the system
Input/output tos/from the system
Input from the keyboard
Input from microdrives and flcppy disks
Backing up the system

[] a

b b b s e
1]

a

2. SUPERFORTH fundamentals

The dictionary

Interpretation and compilation of the input
Number handling

Mames of SUPERFORTH words

The stack

MW=, IT ARWN

3. SUPERFORTH operations
Integer ar:thmet1c operations
Bouble length integer words
Dther arithmetic operations
Logical operations
Stack manipulation
Conditional tests
Variables and constants
3.7.1 Using variables
3.7.2 Pre—-defined constants
'Defining new words
3.8.1 Colon definitions
3.8.2 Switching between modes
Z.8.3 Immediate words
3.9 Control structures
Z.7.1 Lase statement
Z.10 Terminal input and output
3.10.1 Screen output
3.10.2 Keyvhboard input
3-10.3 0Other scresn commands
3.10.4 Graphics handling

AU W WD NN AD

N B W+ T

y
1]

S.11 Numeric conversion
312 Further memory handling
3.13 The return stack

4. Microdrive and floppy disk handling
4.1 Input from standard SUPERFORTH blocks
4.2 Input from named files
4.3 Creating a named file

S. The Screen Editor

S.1 Loading the editor
Entering the editor
The display
Commands available
Modifying the display

maa

(- PN

6., System initialisation
6.1 Startup command block
6.2 System restart

7. Error handling and messages
7.1 Error messages
7.2 BL error messages
7.3 User detected errors
7.4 Warnings

8. More advanced technigues
8.1 Compilation - adding to the dictionary
8.2 Execution vectors
8.3 Dictionmary and vocabulary management
B8.3.1 Dictionary management
8.3.2 VYocabularies

9. ?Inating point maths package

i0. Special Gl facilities

10.1 Use of BL channels ' .
i0.1.1 Redirection of input/outpu
10.1.2 Printer operation

10.2 Multitasking
10.2.1 Job identity
10.2.2 Creating tasks
10.2.3 Task activation :
10.2.4 Suspending and restarting tasks
10.2.5 Changing a task’'s priority
10.2.6 Removing tasks

10.3 Sound generation

10.4 Time and date

10.5 Serial interface baud rate

11. Details of SUPERFORTH implementation
i1.1 Memory map
11.2 The stacks
11.3 Dictionary structure
11.4 Information for machine code users
11.35 Absoclute RAM addresses

12. Demonstration game REVERSI
12.1 Game listing

13. Index

14. Appendix

NOTES: (1) A Guill file called UPDATES_DOC may be prasent on the
cartridge supplied. It is the policy of Digital Precision to
continually improve % refine its software - the +file will
contain a list of updates to the system and should be read in
conjunction with this manual.

{2) Sinclair, BL & SuperBASIC are trademarks of Sinclair
Research Ltd.

(3) This manual is designed to fit into your User Manual
file as supplied with vour QL.

L SUPERFORTH

(FORTH-83 Standard)
1 INTRODUCTION

1.1 SUPERFORTH is a standard FORTH-83 system with a complete
set of double—number extensions (ie; 32 bit integer working as
well as 16 bit integer working). The fundamentals of FORTH and
all the features of SUPERFORTH are described. Unlike wvirtually

every other FORTH software manual around, this one actually '

supplants the need for a separate FORTH reference guide. To
learn and master FORTH vou need nothing besides 8L SUPERFORTH,
this manual and your L computer system.

Alsc included with the system are a Screen Editor for
handling SUPERFORTH source code, a floating point maths package
for doing non—integer arithmetic and a fully documented example
game REVERSI, with 9 playing levels, which demonstrates the
capabilities of GSUPERFORTH. _ .

SUPERFDRTH uses the multitasking capabilities of the 8L
computer; it runs as a task so that other tasks can be run
simul taneously. Alsc, SUPERFORTH words may be defined as tasks
in their own right and executed simultanecusly with other
SUPERFORTH or machine code tasks.

Both in the Interpretive and in the Compiled modes,
SUPERFORTH will execute considerably faster than SuperBASIC.

1.2 LOADING THE SYSTEM

After switeh on or reset,. SUPERFORTH is loaded by
inserting the supplied cartridge into microdrive 1 and either
pressing F1 or FZ2 or typing

LRUN MDV1_BOOT

When the system has finished loading, a message is printed:
press CONTROL C £ ie; hold down CTRL and press £) and a
flashing cursor indicates that SUPERFORTH is waiting for input
from the keyboard. As supplied, the Screen Editor will also be
loaded using the Start-up command block Ffacility described
later, in section 6.

1.3 INPUT/ OUTPUT TD/FROM THE SURPERFORTH SYSTEM

As with SuperBASIC, input to SUPERFORTH can come from
the keyboard or microdrives { or floppy disks ! and output can
be directed tc the TV (or Monitor), microdrives or printer.
Input to SUPERFDRTH is in the Fform of Twords" which are
essentially strings of characters separated by spaces: a word
can be a name, number, command or character and can centain any
valid ASCII character.

Since SUFPERFORTH is run as a task, keyboard input may be
switched between SUPERFORTH and SuperBRASIC at will by pressing
Control C: eg; to list the directory of a microdrive.

1.4 INPUT FROM THE KEYBOARD

Commands , numbers and new definitions may be entered at
the keybogard simply by typing them inj; SUPERFORTH words must be
separated by at least one space character. The line 1is not
processed by SUPERFDRTH until the ENTER key has been pressed:
before pressing ENTER, the line may be edited using the left and
right arrows and CTRL, exactly as i+ entering a BASIC proagram.
When the line has been entered, SUFPERFURTH executes or compiles
each SUPERFORTH word in turn and, when complete; outputs the
message ok (unless there have been errors)} and waits for more
input: eg; try typing the following { note the spaces between
1,2,+ and . }:

12+ .
This will cause the respnnée
3 ok
The line input buffer will accept up to 85 characters;
if more than 85 are entered, then they will be processed without

ENTER having been pressed: the last word may be a part word,
which may cause an error.

1.5 INPUT FROM MICRODRIVES &MD FLOPPY DISCS

SUPERFDRTH has a particular way of handling input from
mass storage, which in OL terms means microdrives or +floppy
disks. This will be fully described in Section 4, but for now
it iz sufficient to say that the SUPERFORTH interpreter/compiler
still sees this input as a stream of SUPERFORTH words.

1.6 BACKING UF THE SYSTEM

To make a backup copy of 8L SUPERFORTH, place the
supplied microcartridge in drive 1 (the left hand drive } and a
fresh microcartridge {(which need not be +formatted) in drive 2.
Then enter LRUN MDVI_BACKUP. To make a backup on floppy disk,
use the utility for file transfer supplied with your floppy disk
interface — SUPERFORTH is device name driven and will transfer
and run without any problems at all {ignore any ‘flp bad name’
error message that might be displayed after the editor is loaded
from a floppy - it is just reporting that an unusual name has
been encountered, and will automatically adjust itself to cater
for the new default device).

2 SUPERFORTH FUNDAMENTALS

2.1 THE DICTIONARY

The SUFPERFDRTH system as supplied consists of a set of
SUFPERFORTH words pre-compiled into a dictionary. Using the
SUPERFORTH system consists of either

{a) executing these pre—compiled words by typing them at
the keyboard: this is using the SUPERFORTH system as an
interpreter and is callied Interpretive mode.

(b} compiling rnew words into the dicticnary +For later
execution: this is usually called Caompilation mode.

It is because new definitions can be compiled and then
executed that SUFERFORTH systems are so much faster than
SuperBASIC at axecuting programs. SuperBASIC always runs as an
interpreter: ie; evach line of the program always has to be
analysed before it can be executed.

A SUPERFORTH program consists of a set of new
definitions, compiled into the SUPERFORTH dictionary, which are
executed by typing one word which calls the others as execution
demands.

2.2 INTERPRETATION AND COMPILATION OF THE INFUT

When a word is entered in the input stream, ie; from the
keyboard or microdrive, SUPERFORTH first of all searches for
this word in the dictionarvy. If it is found then it is either
executed (if in Interpretive mode) or compiled (if in
Compilation mode). If it is not found in the dictionary,
SUPERFORTH attempts to convert it into a number wsing the
current number base. If this is not possible, an error is
reported, and control returned to the kevboard, soc that the user
can correct the fault.

2.3 NUMBER HANDL ING

All numbers, which have been entered, are treated as
integers (see the floating point package description for real
numbers }, either 16 bit integers or double 1length 32 bit
integers. The two are distinguished on input by inclusion of a
decimal point in the number for a 32 bit integer: eg; 1234 is
treated by SUFPERFORTH as a 16 bit number, and 1.234 as a 32 bit
number.

The point has no significance except to indicate that it
is a double-number; however, the number of digits to the right
of the point is stored in the variable DPL { see later) so
that the user can implement real arithmetic if desired: eg; the
numbers 12345., 1234.5,; 1.2343 and .0012345 will all be
treated as the double-number 12345, but DFL will contain the
values 0, 1, 4 and 7 respectively.

Single length (¢ 16 bit) integers have a wvalue in the
range —-3IZ2768 to +32747 i¥f signed, or O to 63535 it unsigned.
Double length (32 bit) integers have a wvalue in the range
—-2147483648 to 2147483647 iFf signed or 0 to 42949467293 if
unsigned. Negative numbers are preceded by a ~- sign without a
gspace hetween the - and the number: eg; -—-123 - Fositive

integers must not be preceded by a + sign.

2.4 NAMES (OF SUFPERFORTH WORDS

-Mames of SUPERFORTH words may contain any ASCII
character (excluding control characters er the space
character Y or the additional characters of the GL {(eg:; greek
characters). Upper case letters are distinguished from 1ower
case: eg; FRED, fred and Fred are treated as three different
names. The space and control characters are used to separate
words and the user must be particularly careful about the use of
spaces: egs —123 and -~ 123 mean two entirely different things (
the first is an integer —123 and the second is the subtract
operation followed by the integer 123).

2.5 THE STAEK -

A fundamental concept in SUPERFDORTH, and in computing in
general, is the stack. All arithmetic operations use numbers on
the stack. A stack can simply be viewed as a pile of numbers:
eq; consider a series of numbers, similar to that described in
the previous section, +or which each number in turn could be
written on a piece of paper and then stacked on a table. The
SUPERFORTH stack is a similar structure maintained in the memory
of the GL. Usually only the last two numbers entered, called the
top of the stack (TOS) and the second on the stack (208 3},
are available +or arithmetic operations. & stack can also be
described as a "last in first out” data structure.

- If we enter two numbers, eg: by typing 12% 234, then the
TS i=s 234 and the 208 is 123, If we want to add these two
numbers we type +, which, as will be seen later, adds the TO5 to
the 205 and leaves the result as the new TOS (the original TOS
and 208 are lost) ie; the stack now contains only Z57. To see
this in action type

123 234 + . <ENTER>

{ where <ENTER> means press ENTER)
which gives the response
: I57 ok

The word . tells SUPERFORTH +to print out the value of TDS on
the output display. The ocutput ok is simply SUPERFORTH s way of
saying that it has carried out the operation and is now waiting
for more input.

To see this more graphically, type

ASSIGN PROMPT TO-DO .S <ENTERX>
{ this will be explained later) and then type

123 <ENTER>

234 <ENTER>

+ <ENTER >
and after each ENTER vou will see the contents of the stack
printed on the display, the TDS to the right. It is a good idea
always to do this when working through examples or debugging new
SUHFERFORTH definitions. The remainder of this user guide will

assume that the stack contents are displayed in this way unless
you are explicitly asked to type . or a similar word to output
the TOS5. You can revert back to the ok by typing

ASSIGN PROMPT TO-DO ok <ENTER>

_ In subsequent descriptions of SUPERFORTH words vou will
come across the descriptor (nl n2 —— n3) which represents

the contents of the stack before and after the operation: ie;

{ before —— aftter), n2 being the TOS, ni the 205 and nI the

result of the operation. Hence the example above would be

represented as { 123 234 ——— 357) for +

A more complex example might say
{nl n2 N2 nd —— nS nbd) : : :
In this case, before the word is executed, nd is the T0S5, n3 the
208, n2Z2 the 305 and ni the 405. After execution, né is the new
TOS and nS the new 205. '

a

3 SUPERFORTH OPERATIONS

3.1 INTEGER ARITHMETIC OPERATIONS

First of all we will describe the integer. arithmetic
operations which operate on numbers teld on the stack.
SUPERFORTH words in this category are

4+ — % sMOD / MOD NEBATE
which operate on 16 bit integers, and

D+ D— DNEGATE
which operate on double-~length { 32 bit) integers. Nnrds that
use double—-length integers have di1,d2 etc in their stack
description instead of ni,n2 etc.

More complex arithmetic operations will be considered in
Section 3.3. :

+ { ni1 n2 —— n3) as described above. This adds the TOS
’ nl to the NOS n2 to give the sum n3: eg;
100 23 +

leaves 123 on the stack (if you have assigned PROMPT
to do .S as previously described, you will see this).
Type . to get rid of the 123, otherwise the stack will
eventually fill up and an error message will result.

- { ni n2 ——— n3 } subtracts n2 from nl to leave the
di fference n3: eg;
100 23 - leaves 77 on the stack
22 100 - leaves —77 on the stack
* {nl n2Z =-— n3) multiplies ni by n2 to leave the
product n3: eg;
123 3 *= leaves 349 on the stack

Note that the product is still a 16 bit integer. There
are other multiplication words that will leave bigger
products; these are described later.

/M0OD {ni n2 ——— n3 nd) divides ni by n2 to leave the
quotient nd4 and the remainder n3: e£g;
19 7 /MOD lzaves 3 1 on the stack
The division is flopored, which means that the guotient
is always the nearest integer below or esgqual tothe
true real guotient, and the remainder satisfies the
equation

nl = (n2 * n4 ¥ + n3
This is true for both positive and negative numbers:
egs
-10 7 /sMOD gives n4=-2 and n3=4
10 -7 /M0OD gives n4=-2Z and n3=—4
-10 -7 /0D gives nd=1 and n3=-3
/! { nl n2 —— n% 3} divides ni: by n2 to leave the
gquoctient n3S: 29;3
120 30 1 leaves 4 on the stack
136 30 / leaves 4 on the stack

Any remainder is lost.

Moo { n1 n2Z —~— n3) divides ni by n2 to leave the
remainder n3; the quotient is lost: eg; :
136 20 MOD gives n3=1é

NEGATE {n — =-n)} negates n: eg;
43 NEGATE leaves —-543 on the stack

=.2 DOUBLE LENGTH INTEGER WORDS

D+ { dil d2 —— d3) adds double-numbers dil and d2Z to
give the double_number result d3: eag;
123123, 234234. D+ gives d3I=357357
Note that the display shown by the reassigned FROMPT
gives d3 as two single integers 29677 3 . To see d3
type 123123, 234234. D+ D.

D- -, (dl d2 === d3) subtracts double-number d2 from dl to
give the double—-number difference d3: egj;
123123, 2234234, D— D. prints out -111111
DNEGATE {d — -d } negates the double-number d: e=g;
-123123. DNEGATE D. prints out 123123

Z.3 OTHER ARITHMETIC OFERATIONS

The remainder of the integer arithmetic uperatznns are
described in this sectlon.

%*/MOD (ni nZ n3 -—— n4 nS): ni is multiplied by n2 to give

an intermediate 32 bit result, which is then divided
By n3 to give the guotient nS and remainder nd4. That
is, it is a combination of %* and /MOD. The advantage
of */MOD is that it retains an accurate intermediate

result.
eg: 12 6 § */MOD gives nS=1i4 and nd=
and 10000 10 20 */MOD gives nS=3000 and n4n0.

In this latter example, typing

10000 10 % 20 /MOD gives an incorrect
answer, since the intermediate result, 100000, is too
big for a single length integer.

*/ { nl n2 n3 — nd)3 as for */MOD, except that only
the guotient nd is left on the stack.

Ui { unl un2 ——— ud }: unsigned multiplication: ie; unl
and wun?2 are unsigned single length integers in the
range O to 63533, and ud is an unsigned double length
integer. unl is multiplied by un2 to give a double

length pruduct ud:
293 SO00 100 UM+ D. prints out 3IS500000

UM/MOD { ud vnl ——— u2 uS)3 unsigned division: ie; unsigned
double-number ud is divided by unl to give guotient uZ
and remainder u2, both unsigned:

egs 123456, F79% UMMOD gives u2 = 3448

and ul = 12

ABS (nl —— n2)z n2 is the absolute value of ni, like

‘the BASIC function AES
eg;: 123 ABS gives n2=123

=123 ABS gives n2Z=123

DaBs (di ——— d2 }: a double-number squivalent of ABS

2q;: - =123454. DABS D. prints out 1234564
MAX { nl "2 ~— n3) leaves the larger of nl and n2 as n3
=T H 123 124 MAX gives n3=124
123 -124 MAX gives n3=123
124 123 MAX gives n3=124
=123 124 MAX gives n3=—123
DMAX (di d2 -—— d3 Y: a double—-number equivalent of MAX
eqgs; -123454. —-123457. DMAX D. prints -123436
MIN { nl n2 — n3) leaves the smaller of nl and n2 as n3
egs 123 124 MIN gives n3=123
123 —124 MIN gives n3=—124
-124 —-12ZF MIN gives n3=-124
DMIN _ { di d2 ——= d3) a double—number eqivalent of MIN
i+ {n ——— n+l1l) adds 1 toc the TO5. It is equivalent to
the sequence i +
Eeg: 123 1+ gives 124
-123 1+ gives -—122
1i- {n —— n—1) subtracts 1 from the TOS
2+ {n —-——— n+2) adds 2 to the TS
2~ {n — n—2) subtracts 2 from the TOS
2% {ni{ -— n2} multip]ies nl by 2 to give n2. This is
much faster than the equivalent 2 =
eg: 123 2% gives n2s244
D2# { di ——— d2): a double—number egquivalent of 2%
2/ { nl —— n2 } divides nl by 2 to give nZ. Again, this
is much faster than the equivalent 2 7/
2g3 123 2/ aives n2=561
D2/ { dl «—- d2) a double—-number equivaient of 2/

J.4 LOGICAL OPERATIONS

Four logical operations on numbers on the top of the stack are
described here.

AND { unt un2 —-—— un3): the bitwise logical AND of unl
and un? is left as un3. This is useful for masking off
unwanted bits i a number: eg; if we want to select
the bottom X bits of &% ,then &9 7 AND gives un3=3.

OR { unl un2 —- un3): the bitwise logical OR of uni and
un? is left as un3.

egs 10 19 OR gives un3=27
NOT { unl ~— un2 J: unl is inverted to give un2 (the
one’'s complement is taken)
eqgs ¢ NOT gives unZ=—1
-1 NOT gi ves unZ=
XOR { unl un2 -——— un3): the bitwise logical XOR of uni

and unZ is left as un3. This is useful for inverting
selected bits:
egs 15 6 XOR gives un3I=2

3.5 STACK MANIPULATION

There are many words provided to manipulate numbers:

DUP {in ——nn) duplicates the TOS

g3 123 DuP leaves two copies of 123

123 DUFP + leaves 24& as the TOS

DROP (n -———) drops or loses the TOS

2g3 123 DROF leaves the stack unchanged
OVER { nl p2 === nl n2 nl) duplicates the 2085

egs i 2 OVER gives TO8=1, 2085=2 and 305=1
SwWaP { nl n2 —— n2 nl) swaps the TOS5 and 20S

®93 1 2 SWAF gives TOS = | and 205 = 2
ROT. {nl n2 n3 - n2 n3 nl) rotates the 308 to the TO5
and moves the old TOS and 2058 down

=Ta H 1 2 3 ROT gives TOS=1, 205=3 and 308=2
FICK { coa nl —— ... n2) duplicates the nith stack value,

leaving the rest of the stack unchanged

eg; S 732104 PICK gives (— 5 7 32 2 1 0 7))
54 2 21 01PICK gives (— 3 4 3 21 01
Q PICK is identical to DUP
1 PICK is identical to OVER
ROLL { eaanl =— ,..) rolls the nith value on the stack
to the top, moving all the intervening values down one place
egy T 4 3 210 4 ROLL gives {(— S 3 21 0 4}
54322101 RGLL gives (—— 5 4 3 20 1)
2 ROLL is identical to ROT
1 ROLL is identical to SWAF
2DUP {n —— nn d: duplicates the TOS if n is not zero

egsy = YDUF gives (—— 5 5)3 O 7DUF gives (—-—— O)

REPTH { wue = ... N) leaves the number of 146 bit values
on the stack as the TOS
eg; 1 2 3 4 DEPTH gives { —— 1 2 3 4 4)

Also provided are double integer equivalents of some of these:

2DROF . {d =) similar toc DROP

2DUP { di === di dl)z similar to DUF

Z20VER ({ di d2 —— d1 d2 d1): similar to GVER
2R0OT { dl d2 d3 —— d2 d3 dl1): similar to ROT
Z8WAF { dl d2 ~—— d2 dl Y: similar to SWAP

Z.6 CONDITIONAL TESTS

There are many words provided which compare numbers an
the stack and leave a true or false result ({ usually called a
flag) as the TOS. The two values of this flag are:
' FALSE — represented by a zeroc
TRUE ~ represented by any non—-zero value

The words described below always leave the TOS as a O for FALSE,
and -1 { bits all 1is)} +for TRUE

Comparison operators are

< { nl n2 —— +flag) true if nl < n2
= (n1 n2 —— flag) true if nl = n2
> { nl n2 — +flag) true it nl > n2
L= { nl n2 —— flag) true if nl € n2 or nt = n2
e { nl n2 —— flag) true if nl1 > n2 or ni = n2
<x {ni n?Z —— flag)} true if nl is not equal to nZ
U< { unl un2 —— flag) true if unsigned unl < und
u> { unl un2 —— flaq) true if unsigned unl > un2
04 { nt —— +1lag) true if nl1 < O
= { ni —— flag 7 true i+ nl = O
Qx {nl — flag } true if nl1 > ©
D< { di d2 —— flag)} true if di < d2
= { di d1l ——— flag } true i+ di = d2
Du< { udl ud?2 —— flag) true if unsigned udil < ud2
DO= { dl —— flag } true if di = QO
examples are:
1 2 < gives T0S = -1
-1 -2 < gives TOS = ¢
-2 1 < gives TOS5 = -1
1 OF gives TO5 = -1
-1 0> gives TOS = O
1 2 W gives 705 = -1
-1 2 U gives TOS = 0 { because, as an

unsigned number, -1 looks like
&63535)

2.7 VARIABLES AND CONSTANTS

It is not always convenient or possible to use the
stack, therefore variables and constants are provided. These are
essentially the same as SuperBASIC wvariables, except that they
must be created, using the SUPERFORTH words VARIABLE and
CONSTANT, before they can be used.

293 VARIABLE FRED creates a variable called FRED
123 CONSTANT MARY creates a constant called MARY
which is assigned the value 123

CONSTANT assigns the number on top of the stack to the name .
following it. In strict FORTH-83, VARIABLE does not assign a
value to the name follewing it, but SUPERFORTH assigns the value
zero in such instances. When these new names are themselves
executed, by typing them in, for example, a constant will laave
its wvalue on the stack and a variable will leave its address on
the stack (note that this address is a 16 bit address in the
SUPERFORTH dictiocnary, not an absolute @GL address}.

=l H MARY . will print out 123
FRED U. will print put an address depending on
FRED's location in the dictionarvy.

In a SUPERFORTH program you could, of course, use 122 instead of
MARY, but you will often find it more meaningful to give a
constant a name. If a particular constant is frequently used,
giving it a name will save space in the dictionarvy.

It is possible to change the value of constants using
a combination of * or £'1 and *BODY (see section 8).

There are also two more words Ffor creating double
integer constants and variables, Z2CONSTANT and 2VARIABLE:

eg; 123. 456 2CONSTANT ZMARY
2YARIABLE ZFRED
now 2ZMARY D. prints out 123454
and 2FRED U. prints out a 145 bit address, just

like FRED, but a different address
Discover +for yourself whether we could have used JIM instead of
2MARY in the example above.

3.7.1 Using variables

The location of a variable is, in general, not much
use on its own: other words are provided which write values to
and read values Ffrom the relevant 1location. These are ! and @
respectively, their double integer equivalents 2! and 28, and
byte equivalents €! and C8 . These are defined as follows:

! {n ad ——)} loads the value n into the SUFERFORTH
dictionary location whose address is ad
293 234 FRED !

loads the valus 234 into variable FRED (don't forget
that executing FRED left its address on the stack).

21

ca

Two other

?

{ ad =— n } reads the location addressed by ad and
legaves its value n on the stack
egs; FRED @& leaves 234 on the stack { assuming

vyou have typed in the previous example).

{ d ad —=— }: the double integer equivalent of !
egs; 987.654 ZFRED 2¢

writes the value F87654 into double variable 2FRED
{ ad ——— d): the double integer sguivalent of @
eg; 2FRED 2@ DT . prints out 7874654
(nad -——) writes the least significant byte from
the top of the stack into address ad:

a2g3 79 FRED C! writes 99 into FRED

(ad ——— b) reads the byte addressed by ad

g3 FRED C@& leaves 99 on the stack.

useful words associated with wvariables are:

(ad —=) prints ocut the contents of location ad
2g; see below

{n ad —-—=) adds n to the contents of location ad and
writes it back into ad
ed3 100 FRED !

96 FRED +! :

FRED 7 prints put 136

3.7.2 Pre-defined constants

Some very commonly used constants are already compiled

into the dictionary; these are:

the ASCII

¢ 123 -1 -2 and BL, which holds the value 32 (ie;
code for space or blank).

.8 DEFINING NEW WORDS

Up to now, we have only typed in existing words to be
executed immediately; this is SUPERFORTH working in its
Interpretive mode. As in BASIC, programs can be stored for later
execution. In SUPERFORTH this is achieved by compiling new

definitions into the dictiopary. However, in contrast to
SuperBASIC, when the stored SUPERFORTH program is executed it
runs very much faster because it has been compiled (in

SuperBASIC the stored program is interpreted and so runs more
slowlyl.

3.8.1 Colon definitions

The simplest method of compiling new word definitions |
into the dictionary is to use colon definitions, so called
because the word : is executed,

eg; : SQUARED DUP +

compiles a word calied SGUARED into the dictionary. This new
word SEBUARED can now be treated 1like any other SUPERFORTH word
and can be executed or compiled. Note that it needs a number on
the stack to square. Typing '

3 SOUARED . gives TOS
and 11 SOUARED gives TOS

?
121

In the definition typeq in above, the following actions occurs:

(al : is executed to switch SUPERFORTH to Compile mode and

to create a new dictionary entry. It takes the next word as the .
name of the definition. -

th) DUP is the next word read in, but, since SUFPERFORTH is

now in Compile mode, it is compiled into the new definition

SAUARED instead of being exscuted.

{c} * 1is treated in the same way as DUFP, ie; compiled

td) : 1is then executed to terminate the definition and to.
switch SUPERFORTH back into Interpretive mode. (Note that ; is

executed and not compiled, because it is a special word called.
an immediate word, of which more will be said later).

When SGUARED is executed,'the words that were between
SEUARED and 3 are executed in turn, which has the effect of
squaring the rnumber on top of the stack.

: and ; must always occur in pairs and in that order.
I+ ;7 is used without a preceding :, an error message will
result. Colon definitions can be spread over more than one
line: vyou will not, however, get the prompt ok in the middle of
the definition.

Now SEHUARED can be used in other definitions: eqs

: TO_THE_FOURTH SQUARED SGUARED 3
then 2 TO_THE_FOURTH gives TOS = 16

A complete SUPERFORTH program consists of word definitions like

these: the later ones use earlier ones as necessary and the
final word runs the program: eg; in the accompanying game,
REVERSI, there is a final definition called REVYERSI which, when
executed, causes the @L to play, the game. A word must be defined
before it can be used in the dictionary.

1f you make a mistake in a definition, you can delete
the whole word from the dictionary by using FORGET
eg; typing
' FORBET SQUARED

deletes SGUARED and any later words from the dictionary. If ydu
now try to execute SRAUARED you will get an error message. Note
that TO_THE_FOURTH has also been deleted by the above command.

3.B.2 Switching between maodes

_ Whilst in the middle of a colon definition vyou can
switch SUPERFORTH between Compile and Interpretive modes using
the words I and 1, which switch to Interpretive and to Compile
mode respectively, egs

TEST: 1 DUFP + . 3 is simply compiled’
TESTZ2 1 [123 . 1 DUP + . 3 st _
will compile the same actions but will print out 123 after you

press ENTER

2.8.3 Immediate words

Some words are executed even if they occur in the
middle of a colon definition. You have already met two of these:
: and [. Such words are called immediate words. If you want to
make one of your definitions immediate, simply type the word
IMMEDIATE atter the definition, egs

NOW 123 . ;3 IMMEDIATE
and TEST 1 2 + NOW . 3 ~
will not compile NOW but execute 1t and print out 123
immediately. Typing TEST prints out 3 (don’t forget to FORGET
these words!).

3.9 CONTROL STRUCTURES

As in other languages you need to control the flow of
vour program: eguivalent structures to SuperBASIC's IF ... THEN
an ELSE ... are provided in SUPERFORTH. These control
structures can only he used in colon definitieons: an attempt to
execute them directly will result in an error message. These
structures are:

IF ... ELSE ... THEN { flag ——)3 if the +Fflag is true, the
words between IF and ELSE are executed. Otherwise, the
words between ELSE and THEN are executed.

eqgs : TEST IF ." True " ELSE ." Falzse " THEN 3
now O TEST prints out False
and 1 TEST prints out True

BEGIN ... UNTIL { flag ———) UNTIL tests the Fflag and, if

false, will then loop control back to BEGIN, to once
again execute words between BESGIN @ and UNTIL. If the
flag is true, then contreol passes +to the words
following UNTIL

293 : TEST 1 BEGIN DUP . 1+ DUP 10 >= UNTIL DROF 3
will, when executed, print out the numbers 1 to9

BEGIMN ... WHILE ... REFEAT (flag —— J: this is anather
conditicnal looping structure. Here WHILE tests the
flag which, i+ true, will execute the words between
WHILE and REFPEAT. I¥f FALSE, it will branch to just
beyond the REPEAT. When REFEAT is sxecuted it branches
back to BEGIN, eg;

: TEST { BEGIN DUP 10 <= WHILE DUF . 1+ REPEAT DROP :
will again print out the numbers 1 to 10. :

DO ... LOCP (nl n2 ——)1 this 1is similar to a BASIC FOR
loop. nl is the limit of the loop index and n2 the
starting value of the index. hWhen LOOF is executed,
the index is incremented and, if it has crossed the
boundary between ni-1 and ni, the loop is terminated,

- eg;

: TEST 1 10 1 DO DUP . 1+ LOOFP 3 will print ocut the
numbers 1 to 9.

If nl is the same as n2Z, the loop will be sxecuted
65536, times because a DO ... LOOP is always sxecuted
at least once.

pg ... +L.ODFP : this is the same as DO ... LOOF, except that
+LO0OF uses the TOS to increment (or decrement } the
loop index, egj3

: TEST 1 10 1 DO DUP . i+ 3 +LOO0OF
will print out the sequence 1 2 3

: TEST 1 -12 -1 DO DUF . 1+ -5 +LDOP ;
will print out the sequence 1 2 3

Other words associated with DO ... LDDPE are (they must be used
inside a DO ... LOOFP or DO ... +LO0F):

I {(—=n) leaves the value of the loop index on the
stack, egs waa 10 0DO I . LOCP ... inside a colan
definition will print out the numbers O to %

Jd { =—— n): like I, but leaves the next guter DC ...
LOOP index. DO ... LOOPs can be nested, eg;

e~ 3O DO 2 € DO J . LOOP LOOF ...
will print out the sequence 0 0 1 1 2 2 3 3 4 4

K { ~—— n): like I and J, except that it leaves the
index of the second outer loop.

LEAVE This is used to prematurely'terminate a bo ... LOOP.
When LEAVE is executed, it branches toc the word
following LOOP or +L.00F, eg;

ea= 10 0DO0 I . I 4 > IF LEAVE THEN LDOP ...

-

will print cut the numbers 0 1 2 3 4 5

seex 100 DO I 4 > IF LEAVE THEN I . LOOF ...
will print ocut 0 1 2 3 4

3.9.1 Case statement

To avoid the use of many IF statements, when a
multiway decision is needed on the wvalue on the top of the
stack, a CABE statement is provided. An example of the use of
CASE is (it can only be used in a colon definition }:

: TEST CASE 1 OF ." one"™ ENDOF
2 OF ." two" ENDOF
99 OF ." ninety nine” ENDOF
DEFAULT ." default"
ENDCASE
Now type 1 TEST prints cut one

g% TEST prints out ninety nine
o TEST prints out default

CASE ENDCASE { n ——— "3 mark the start and end of the
statement.

oF { ni n2 — n1) tests nl against n2. I+ equal, the
wards up to the next ENDOF are executed:; if not,

. control passes to just beyond the next ENDOF.
ENDOF { =——) marks the end of an OF ... EMDOF sequence.

DEFAULT {n =-——) marks the start of the default sequence to
be executed if none of the OF tests was equal.

3.10 TERMINAL INPUT AND OUTPUT

_ This section describes words that read words or
characters from the keyboard and print numbers or text onto the
screen, As will be seen in a later section, these same words can
be used to input or output text to other devices, eg;
microdrives, printers etc.

3.10.1 Screen gutput

First of all, the words which output numbers to the
screen: these all work on a number on the stack which is
converted to characters according to the current base held in a
variable called BASE . BASE is initially 10, which means that
decimal numbers are input and output wuntil you change its valusa.
The first word is:

o (n =-——) This prints out the TOS converted according
to the value of BASE, followed by a single
space: eg; (assuming BASE holds decimal 10)
123 . prints out 123
-123 . prints out -123

To see the effect of BASE, type in this sequence:

10 DUP . HEX . _ which prints out 10 A
This is because the word HEX loads the value decimal 16 into
BASE, which causes . to output TOS as a hexadecimal number.
This also causes input numbers to be treated as hexadecimal
numbers, so now type in A BASE ! or DECIMAL, which both
load decimal 10 into BASE.

Other words which print ocut numbers { all converted according to
BASE) are as follows: :

R (nl n2 ———) prints out nl right aligned in a field
n2 characters wide. If more characters than n2 are
needed, then the whole number is printed as i¥ . had
beenn executed.

To see the effect, type { CR is explained below)
CR 123 S5 .R
CR 123 & .R
CR 123 2 .R

-5 { ——) prints out, non destructively, the contents
of the stack as 16 bit integers. The TOS is printed to
the right. .5 has been sxplained before.

D. { d ——) prints out the double integer on top of the
stack, followed by a single space, =293
12Z%.456 D. prints 123436
-1234.54 D. prints ~-12345&
D.R {d n— 22 like .R, except that a double-number is
printed.
H. { n—-— 13z 1like ., except that TOS is printed as a

hexadecimal number. BASE is unchanged, eg:
49 H. prints 31

U. { un ———) like ., except that un 1is printed as an
unsigned number, =gj3
i23 u. prints 123
-123 U. prints 65413

U.R {uw n =)z like .R, except that un is printed as an
unsigned number.

Words associated with these number—-printing words are:

BASE { —— ad) a wuser variable that holds the current
base for number conversion, both input and output. Use
@ and ! in the usual way to read and load its value.
DECIMAL { ———) loads decimal 10 into BASE

HEX { ———) loads decimal 1& into BASE

Words that output characters and text to the screen are:

«f { ~—~—)2 used in the Fform .{ ccc...c} it prints cut
all the characters ccc...c, not including the space
aftter .({
eg; «{ Hello) prints Hello

It is most useful when compiling from microdrive or
floppy disc. '

-t { =———)t like ., except that it prints characters up
to a delimiting " and it can only be used in a colon

definition. It compiles the message into the
dictionary, eg; :

: MESSAGE ." Hello there” ; MESSAGE

CR { =———) outputs a new line (carriage return, line
feed) so that subsequent cutput starts on a new line.

EMIT { n -——) outputs the least significant 8 bits of TOS
as an ASCII character to the screen, eg:
6o EMIT prints A

66 EMIT prints B
4% EMIT prints +
SPACE { ——— } prints a space character
SFACES {n —) prints n SPACE characters
TYPE {ad n =—=) prints n characters from memocry, where ad
iz the address of the first character (lowest
address) in memory. This is normally used in

conjunction with the next word COUNT .

Before COUNT is defined, we will look at how strings are stored
in SUPERFORTH. They are stored as a sequence of characters, one
per byte, in consecutive memory locations. In the byte before
the first character in the string there is stored a count of the
number of characters in the string, giving a maximum string

length of 255 characters. For example, the string HELLO would
be stored in & bytes of memory, with the first byte helding the
character count of &, the second holding the wvalue 72 ({ the
ASCII code for H) and so on. The word ." described above stores
the message in the dictionary in precisely this way. COUNT
assumes the address of such a string is the TOS.

COUNT - { ad === ad+1 n) leaves the character count n, stored
at memory location ad, as TOS5 and increments ad to
leave ad+l as 205. As can be seen, the stack is now in
the correct state for TYPE . The sequence COUNT TYFE
is commonly used. We will postpone an example of this
until we have described a word called WORD balow. '

-TRAILING (ad ni ——— ad n2): ad and nl are the address and
character count of a character string. -TRAILING
reduces the count by the number of space characters
at the end of the string to 1leave a new character
count n2. The string stored in memory is unchanged.

2.10.2 Kepyboard input

Both single characters and words can be read from the
kevhoard.

KEY { ——n } leaves the ASCII code of the kevy pressed an
the keyboard. KEY does not display a cursor, waits
until a KEY has been pressed and does not display the
character associated with the key. Words are provided
to switch the cursor on and off { ses below), egs

KEY . -prints the ASCII code for the key

KEY EMIT prints the character for the key

CURSOR_ON KEY CURSOR_OFF EMIT displays the
cursor and prints the character. If you do not want to
wait and if no key has been pressed, the timeout can
be adiusted { see section 10 an redirecting input and
output 3.

KEYROW { nl —— h2) leaves the value n2 of row nl of the
keyboard (see the GL User Guide).

Before considering word input , we will describe some user
variables and the input buffer, which allow the user to
manipulate input (examples fpollow below).

#TIB { ==— ad }2 a variable containing the number of bytes
read into the terminal input buffer TIB .

*IN { ——— ad): a wvariable containing the present

' character offset within the input stream, ie; input
fraom TIB or from microdrive or floppy disc. It shows
how far the input scanner of the interpreter has
reached.

SFAN { —=— ad): a variable containing the actual number of
’ characters read by EXPECT {(see below)

TIH { —— ad) leaves the address of the terminal input

buffer; the capacity of TIB is 85 bytes.

Now for multiple character input:

EXPECT

QUERY

{ad n ——) receives n characters or fewer if ENTER.
is pressed earlier, and stores them at address ad and
consecutive higher addresses. All characters are:
displayed as entered and can be edited in the usual.
way. The number of characters is stored in variable
SPFAN .

{ =——) Up to 80 characters are read from the keyboard
inte TIB. The definition of &UERY includes the
sequence TIE 85 EXPECT

#TIB is loaded with the number of characters. >IN and
BLK (see section 4) are set to ¢ .

Now a word to scan the characters input by EXPECT or QUERY:

WORD

(n— ad ¥: n is +the ASCII code for a delimiting
character. WORD looks through the input stream { key-—
board, microdrive or floppy disc } from the position
indicated by the wvalue of >IN , ignoring leading
delimiters n, and transfers other characters into
memory until the First trailing delimiter n is read.
The characters accepted are stored as a counted
string, as described above for screen output, at
address ad . The wvalue of >IN is adjusted te point to
the character just beyvond the delimiter. The action of
WORD is terminated if the end of the input is reached.
If this happens before any characters are read, the
character count is zero. The stored string is followed
by one space character, not included in the count.

{ { ——)} startgs a comment in the input stream. It uses
WORD toc search for a) to terminate the comment. If
the input stream is exhausted before a) is read, the
search is terminated. Comment can be used freely, both
in Interpretive and Compilation modes and to provide
the means to document a program.

Now we can easily give some examples using these and COUNT TYFE
as promised above. Type in this definition, not the comments in
brackets:

: TEST CR { start on a new line)
-" Type in up to 85 characters with several spaces"
{ message asking for input }

WHILE
TR CDUNT TYPE
SPACE >IN @ .
REPEAT
DROFP CR ." Npb more input available”

only print a non zero string)
print the word just read)
print the value of >IN)

CR GUERY { inputs up to 85 characters)
SPAN @ . { print the number of characters)
#7TIB @ . { print number of byte=s in TIB)
>IN @ . { print value of >IN)
BEGIN { start a loop
32 WORD { read a word, space iz delimiter)
DuF Ca { leave character count on stack 3}
Q <> { flag = 0 if input exhausted)
{
{
£

Now type TEST and, after the message, tvpe in several words
separated by spaces (it doesn’'t matter what the words are at
all since they are only printed, the dictionary is not searched
for them. After you press ENTER to end the input, you should see
each word printed on a new line followed by the latest value of
*IN , which vou should be able to match up with the input by
counting characters.

To show the use of EXFECT, use the sequence

TIB 85 EXPECT instead of GUERY in TEST.
Try also using a number other than 85 , but less than 35 . You
need a bigger input buffer to handle more than 85 characters.

Z.10.3 Dther screen commands

Several other words are provided to aliow you to
abtain wvarious effects on the display. Wherever possible the
zame words as SuperBASIEC keywords are used {(in such cases, @€
the GL User Buide for explanation of some of the parameters}.
There are both text and graphics words. We will consider the
graphics words in the next section. '

AT { nl n2 —) moves the text cﬁrsnr to column nl and
rosw n2Z in the current output window. An error message
is displayed i+ outside the window. ‘

CLs { =——) clears the current output window. This is an
execution vector (see section 8).

C5IZE | { n1 n2 ——) sets the character size in ﬁhe current
output window to width nl (range O to 3) and height
n2 { 0 or 1),

CURSOR tnt n2 -——) positions the cursor using pixel
coordinates relative to the top left corner of the
window. nl and n2 ars the % and vy coordinates.
respectively.

CURSOR_ON:- ¢ -——) switches the cursor on when expecting input.
CURSDOR_OFF (———)} switches the cursor off.

FLASH_DN :{ ———) turns the flash state on. This only works in B
colour mode { see MODE).

FLASH_OFF (———) turns the flash state off, egj

8 MODE CLS
FLASH_ON ." Flashing" FLASH_OFF

INK {f n ——) sets the colour of the ink in the current
window tocn .

HMODE {n -) sets the display mode for the QL to either 4
or B8 colour mode. Because Ff the way the 8L works,
this affects all windows and clears the screen (see
SuperBASIC MODE). : :

FAFER { n ——) sets the colour of the paper in the':urrent
window to n .

STRIP { n ——) sets the colour of the strip in the current

window to n,
293 7 PAPER 7 STRIP O INK
gives black ink on white paper.

FAN { n ———)} pans the whole of the current output window
n pixels, right if n is positive, left if negative.

PAN_LIME (n -——) pans the whole line contairing the cursor by
n pixels right or left as for FPAN .

FAN_RLINE { n ———) pans the right hand end of the cursor iline
by n pixels right or left as for PAN .

SCROLL { n —) =gcrollis the whole of the current ocutput
window by n pixels:
n positive scrolls downwards
n negative scrolls upwards.

SCROLL_TOP (n —=) like SCROLL, but oniy scrolls the top of
the window, not including the cursor line.

SCROLL_BOGTTOM ¢ n ——= J): like SCROLL, buf scrolls the bottom of
the window, not including the cursor line.

SET_ MODE (n ——): like SuperBASIC OVER, it sets -the character
printing mode in the current output window
n=0 is the normal mode
=1 prints onto a transparent strip
n=-~1 axclusive ORs the datz onto the screen

TAB tn—) moves the cursor %o position i in the
current line in the current window.

UNMRER_ON ——)} switches underlining on in the current cutput
window. This only works in 8 colour mode.

UNDER_OFF (———) switches underlining off in the current cutput
window.

Z.14.4 Graphics handling

Some of these words need a 1list of floating point
numbers to specify parameters: this is because the words are
expcuted using calls +to the BL's ROM. See Bection 9 for
infarmation on the format of floating point numbers. Where the
graphics origin is referred to, this means that the origin is at
the bottom left corner of the current window and that the
coordinates are scaled (just as they are for SuperBASIC: refter
to the G User Guide).

ARC { ad ——) draws an arc. ad 1is the address of a l1ist
‘of S parameters in this order {(& bytes sach Y, which
uses the graphics origin .
"~ angle subtended by the arc { radians)

¥ coordinate of the end of the arc

X coordinate of the end of the arc

Y coordinate of the start of the arc

X coordinate of the start of the arc

BLOCK _FILL {(nl n2Z n3 nd4 nS ——): like SuperBASIC BLOCK, this
draws a rectangular block in the current ocutput
window. Fixel coordinates are used f{ origin at top
left). nl is the colour

n2 is the width

n3 is the height

nd is the X copordinate { top left corner)}

nS is the Y coordinate { top left corner @
The block is affected by the current printing mode
(see SET_MODE). This is a much faster way of drawing
horizeontal and vertical lines, if the height or width
is set to 1 respectively, than using LIME below.

EDRDER {nl n2 —-—=—)1 1like SuperBASIC BORDER, it sets the

colour nl and width nZ2 of the border of the current
output window. If nl is 128 thes border is transparent.

CIR

iy
e

m

{ ad —-——)} draws a rcircle or ellipse, relative to the
graphics origin. ad is the address of a list of 3
floating point parameters in this order:

rotation angle { radiams)

radius gf circle or ellipse

eccentricity of ellipse (1 for a circle)

¥ cogrdinate of centre

FILL_ON

Co "X coordinate of centre
(zee SuperBASIC CIRCLE)

{ —=)} turns the graphics fill on { see SuperBASIC
FILL 2 .

FILL OFF (———) turns the graphics i1l off. Because of a-

LINE

FOINT

RECOLOUR

SCALE

limitation of the BL, you should always turn the fill
off atter drawing the shape, even if the next shape is
to be filled.

{ add ——— } draws a line relative +to the graphics
origin. ad is the address of a 1list of 4 floating
point parameters in this order:

coordinate of end of line

X coordinate of end of line

Y coordinate of start of line .

X coordinate of start of line

]

({ ad ——)} plots a point relative to the graphics
origin. ad is the address of 2 +loating point
parameters in this orders:

Y coordinate of point

X coordinate of point

{ ad ——): like SuperBASIC RECOL, this recolours the
current output window: ad is the address of a list of
8 bytes which specify the new colours, in the order
black, blue, red, magenta, green, cyan, vyellow and
white. '

{ ad -——) sets the scale and origin of the graphics
coordinate system in the current output window. ad is
the address of a list of 3 -floating point parameters
in this order:
' Y coordinate of bottom line of window.

X coordinate of lefthand pixel of window

length of Y axis
the default origin is (0,0) and the default height 16O

.1y MUMERIC COMVERSION

. Words are provided to convert both from ASCII strings
to integers and vice versa. These are used by the words
described previcusly for input/output but are alsc available for .
the user.

The following words are used to convert from integers to ASCII
characters and to format numbers prior to output to the display.
An example of usage follows the definitions.

<# (——): initialise numeric output conversion. It sets
up PAD for integer to string conversion.

{ d1 -—— d2): di is divided by BASE and the remainder
converted to an ASCII character which is then stored
at the next lower address in PAD { ses below) on the
end of the string being converted. Both di and d2 must
be positive double integers. '

#3 - {d=-— 0 ©) converts d to a string of ASCII
characters stored in PAD . If d is 0, then a single
character 0 is appended to the string-

(d -—— adn) drops d and leaves the address and
count of the string, formed by using # and/or- #5 in
PAD . ad and n together are suitable for TYFE .

HoLD "{ n -)} saves the least significant byte of n in PAD
as part of the output string being converted.
Typically used between <# and #> .

SIGN { n -—): if n is negative, an ASCII minus sign is
added to the start of the string in PAD, typically
used between <# and #> after a number has been fully
converted. '

PAD { ——— ad)} leaves as TOS the lower address of a
scratchpad area used to hold data for intermediate
processing {(typically before being printed on the
display). It is used by all the standard words that
convert and print numbers. The size of PAD is 84
bytes. '

An example of the use of the previous words is to output an
integer representing cents in dollars and cents format, eg; 1323
cents would be printed out as $13.25 (dollars to avoid problems
with printers ! }). A word to do this is { assuming that the
number of cents is TOS as a positive double—number and that BASE
holds decimal 10)

: .DOLLARS <# inialialise conversion)

{
{ convert and save 2 characters for cents
445 HOLD (save a decimal point character)
#5 { convert and save dollars characters }
ZH HOLD { save a $ character
#> TYPE (end conversion and print the string)

Try it with 13.25 .DOLLARS

Words to convert from ASCII strings to integers are:

EONVERT (di adl === d2 ad2): the character strimg beginning
at adl+l is converted and accumulated into d1l to give
d2, by converting the string into digits, character by
character until =a non—convertible character is
reached. As pach charcter is converted, di is
muitiplied by BASE and the digit added to it. =adZ is
the addrass of the first non—convertihle character.

NUMBER { ad —— d) converts the count and character string
at ad into double-number d using the value held in
BASE. I+ conversion is not possible, an error message
is printed. The string may contain a preceding minus
sign, eg; '

: CONVERT_AND_PRINT 32 WORD (read a word) |
NUMBER D. 3 { convert and print it }

CONVERT_AND_PRINT 123

: TEST_CONVERT
32 WORD { read a word)}

CONVERT { convert it}

C@& EMIT SFACE { print character)

D. H { print double number)
O O TEST_CONVERT 43217635/ prints / A321755
10. TEST_CONVERT 123. prints . 10123

Arnother conversion word is:

S5-+D ({n —— d) This converts a single intager to a double
integer, the sign being retained.

3.12 FURTHER MEMORY HANMDL ING

Having considered the simple @ ! satc earlier ony, we
will now explain some more complex memory handling words.

First of all we list some words that must be used with sxtreme
caution, since they could easily crash the BL if a mistake is
made. These words are not standard FORTH-83 words but are QL
specific. Most SUPERFORTH words use a 146 bit address to access
memory within the SUPERFORTH dictionary <(the address being
relative to the start address of the SUPERFORTH dictionary).
Sometimes it is necessary to access locations using an absolute
32 bit address, for example to write direct to a peripheral
device or directly to the RAM used by the UL for the display. '

Al { ndad -—=): n is stored in absolute double—address
dad , ie; like @, except that an absoclute address is
used

Ae { dad ——— n)z like &, except that an abénluta address
is used.

AC! { n dad ~—— J: similar toc C!-

ACE { dad —— n Y: similar to C@

AZ! (d dad ———): similar to 2!

AZe { dad =~~~ d J): similar to 2@

eg: to write to the display RaAM:

HEX .
: WHAT_A_MESS CLS Z4000. { start at address HEX Z4000)
1000 O DO { write to HEX 1000 locations }
2DuUr { duplicate absolute address }
I { store loop index }
ROT ROT (get in form n dad)
AC! { write to display RAM)
t O D+ { increment absclute address)
LOGoF { and repeat)
ZDROF 3 (tidy up stack 3
DECIMAL

WHAT _A_MESS

Now some standard SUPERFORTH words which are concerned with
blocks of memory:

BLANK { ad un -——)z un bytes of memory starting at ad are
set equal +to the ASCII character for space (decimal
32).

CHOVE { adl ad2 un ——)} moves un bytes of memory +from

address adl to address ad2, moving the byte at adl to
ad2 first, then proceeding towards higher memory.

CMOVE > { adl ad? un ——)Y: like QCMOVE, except that the byte
at address { adi+un—-1)} is moved to. (adZ+un—1)}
first, then proceeding towards lower memory.

ERASE ¢ ad un -—): like BLANK, except that each byte is
set to zerg. :

FILL fad un n =———)2 un bytes of memcﬁy, starting at
address ad upwards, are set to the least significant-
byte af n.

3.13 THE RETURN STACK

When a SUPERFORTH word is called From another SUPERFORTH word,
the position to which pragram control will return when that
word is completed is stored on a second stack called the return
stack. While the contents of this return stack are usually of no
concern to the programmer, it can be used with caution to
temporarily save values Ffrom the main stack. Words handling
this are as follows:

R {tn ——) transfers TOS5 to the return stack.

R> { =——n)} transfers an integer from the return stack
to TOS, removing n from the return stack.

R& {(-———) reads the top of the return stack to TOS and.
leaves the value on the return stack.

There are restrictions on where and how these words are used. If
misused, they are likely to crash the system. The rules are:

{a) *R, R>* and R@ must only be compiled in a colon definition,
never executed from the kevboard.

{b) inside a colon definition, >R and R> must occur in that
order and must always occur in pairs as execution of that colon
definition proceeds; ie; for every >R executed, an R> must be
executed before 3 or EXIT is executed.

{c) FR@ must be used between >R and R* to be meaningful. Az many
R@s as needed can be used before R> .

{d} the >R and R> pair must not cross a DO... LOOF or +L00P; ie;
the pair must occur either outside or ins=ide the loop. If they
occur inside the loop, the SUPERFORTH words I, J and K must not
be used between the *R R> pair, and the R» must occur before any
LEAVE occurs. '

An example of their use is a possible definition of ROT:

: ROT >R SWAP R> SWAP ;

4. MICRGDRIVE AND FLOFRY DISK HANDL ING

Az well as compiling FORTH from the kevboard,
SUFPERFORTH will also compile FORTH source code stored on
microdrive cartridges or floppy disks. As supplied, SUFPERFORTH
will use microdrives as the standard backing store: if you have
made a backup copy (see 1.6} on floppy disk, the default will
have been changed to +floppy.

There are two ways of compiling from mass storage (as
we will refer to microdrive or floppy disk from now on), one
using standard SUPERFORTH blocks and the other using named files.

4.1 INFUT FROM STANMDARD SUPERFORTH BLOCKS

The standard way of storing SUFERFORTH code on mass
storage is to use standard size= blocks of 1024 bytes: this method
ic wused in SUPERFORTH. Each block is giwven a number in the range
1 to 45535 by the user and it is the responsibility of the user
to keep track of the block numbers used. SUPERFDORTH code or data
can be entered into blocks using the supplied Screen Editor and
saved to mass storage. Normally a SUPERFORTH program is stored in
consecutively numbered blocks. When a block is used, SUFERFORTH
reads it from mass storage into a block buffer: i+ it is changed
in any way (for example by using the Editor}, when ancther block
is fetched from mass storage the new version of the first block
iz automatically saved and the original deleted.

SUPERFORTH decides whether input is to come from the
. keyboard or mass storage by examining the contents of the user
variable BLK , which, if zero, defines input as coming from the
keyboard, or, if non—-zero, defines input as coming from the block
number contained in BLK .

When a block is reguested, SUPERFORTH first of ail
*ries to read it from a default device, eg; MDVi_ . I+ it is not
found - there, SUFPERFORTH then tries the other { of two)} MDV or
FLFP, but does not change the default drive. If still not found,
an error is reported on the display.

Because the operating system of the &L buffers all
input/output to mass storage, in contrast to most FORTH systems
only one block buffer is provided in the SUPERFORTH dictionary.

Blocks are stored on microdrive in small files named,
for example, BLKIZI for block 123, and, on floppy disk, FLP123
for block 123. .

iz usual, there are many words pravided'tn handie mass
storage using standard blocks:

B/EUF { — n }: a constant holding the number of bytes per
buffer, this is set toc 1024 and ought not to be
changed.

BLEK { —— ad Yz a wvariable holding the blogck number

currently being used as the source of input. If BLK
holds ©, input is taken from the keyboard (or a named
file — see later).

BLOCK (un —— ad Y2 i¥ not already present in the block
buffer, BLOCK reads block un from mass storage.It then
leaves on the stack the address, ad, of the first byte
of the buffer in which the block is stored. If the
buffer already held a bhlock that had been updated, that
other block is first saved on the default mass storage
device.

BUFFER (un ——— ad): assigns a block buffer to block un. If
the buffer already holds an updated block, that block
is saved. The address of the buffer, ad, is left on the
stack. BUFFER may be used tc create a new block, eqg;

123 BUFFER DROP creates a new block
numbered 123,

c/L { —— n J: a constant representing the number of
characters per line in a standard block. By convention,
this iz &4. '

EMPTY-BUFFERS {(——— } unassigns the block buffer. An updated

block is not written to mass storage.

FLUSH { ———) performs the function of SAVE~-BUFFERS and then
unassigns the block buffer.

FLF { n -——) makes the default mass storage device floppy
disk n.

FLP1_ { ——)} makes the default mass storage device FLFP1_

FLPZ_ { ———) makes the default mass storage device FLPZ_

L/B { =—— }: a constant giving the number of lines in a

standard SUPERFORTH block. By convention, this is 16.

LIST {n —) lists block nm on the display, using constants
C/L and L/B to format the text.

LOAD { n ——— } interprets and/or compiles SUPERFUORTH source
code from block n. It does this by saving the contents
of BLK and >IN, which define the input stream. It then
defines the new input stream by setting >IN to 0 and

BLK to n. Block n is then interpreted or compiled untii

exhausted, when *IN and BLK are restored to their
" original wvalues, thus returning to the original input

stream.
MDDV {n ——) makes MDV n the default mass storage device.
MDV1_ { —= makes MDV1_ the default mass storage devicea.
MDVZ2_ { ~== makes MDVZ_ the default mass storage device.
SAVE-BUFFERS (=---)} saves the block buffer to the default mass

storage device, if the contents have been updated. The
buffer remains assigned to the block.

THRU ' { uni un2 ———)} lgads { as for LOAD) consecutively the
blocks uni to unZ inclusive.

UPDATE (—=——) marks the block buffer as having been updated,
so that SAVE-BUFFERS, or the action of BLOCK and
BUFFER, will save the buffer to the default mass
storage device:
eq; UFPDATE SAVE-BUFFERS ensures that a block is saved;
on the default device.

4.2 INPUT FROM NAMED FILES

Another way of inputting SUPERFORTH source code is from

named files. This is not & standard FORTH method, but is
convenient and fast when a program has been developed. The method
makes use of the way input can be redirected in the QL to another.
chamnel. This method is used to locad the Screen Editor, the game
REVERSI and the floating point maths package.
Note that the word PROMPT is directed to execute no operation
during the loading, otherwise the screen would +ill up with ok’ s.
Also, since the input is being read one line at a time into TIB,
ne line in the named file should be longer than 85 characters;
ie; there should be a carriage return or line feed character
every 80 characters or fewer. Comments must not extend over more
than one line.

Words provided to handle this are:

#FILE { —— ad): a double variable used to hold the double
integer channel ID of the named Ffile being used for
input., It is loaded by LOAD_FILE . If for some reason
the load fails, then the channel may be closed by:

#FILE 2@ CLOSE

END_FILE { -———) must be employed at the end of the file being
used for input, to redirect the input stream to the
keyboard and to close the channel.

LOAD FILE (——) is used in the form
LOAD _FILE MDV1_editor_+th
toy, Ffor example, load the Screen Editor. It redirects
input Ffrom the named file and saves the channel 1ID in
#FILE . '

4.3 CREATING & MASMED FILE

There are two ways to do this:
(a) use the utility contained in block 4 to compact consecutlve
Blocks into a +ile. To use this to save blocks 30 to 60 on the
default mass storage device, in a file named example_fth on
MDVL _, for example, type:

4 LOAD
S0 &0 SAVE_FILE MDV1_example_+fth

0f course, any valid file name may be used on any device. You
must ensure that END_FILE is included at the very end of the last
block.

{b) use QUILL to generate the file. To do this you must usa the

eption that prints the current document to a +ile rather than a
printer. You must have installed a printer driver, using
INSTALL _BAS as described in the 8L User Guide, which does not do
anything except to output carriage return or line feed at the end
of every line; that is, no preamble, postamble =tc.

QUILL must be set up to print no header or footer on each pages
tabs are acceptable. When your program is ready, print it to a .

file.

5. JTHE SCREEM EDITOR

The Editor is a full screen editor, which can be used
to enter and edit standard SUPERFORTH blocks gach containing
1024 characters of SUPERFORTH source code or data. Text is
inserted simply by positioning the cwsor and typing the
required characters. Commands are available to edit the text and
to assist in saving blocks on microdrives.

S.1 LOADING THE EDITOR
fis supplied, the Editor is automatically loaded after
SUPERFORTH is loaded. If this is changed, or if you have removed
the Editor by using FORGET, it can be loaded by typing:
LOAD_FILE MDViI_EDITOR_FTH

5.2 ENTERING THE EDITOR

To edit an existing block, eg:; block 678, type:
&78 EDIT

which will enter the Editor and make the full range of commands
described below available. To create and edit a new black, egs
block 932, type: :
932 BUFFER DROP
32 EDIT

SeS THE DISPLAY

The display in the Editor has three windows:
{a}) at the top, the title and message window
(b} in the middle, the text window. This will display all 1024
characters of the block as 16 lines of &4 characters each.
However, in the default mode, only 55 characters may be =seen at
any one time, the rest being seen by scrolling the display
sideways. This happens automatically as the cursor is moved.
This display may be redefined - see below.
{c} at the bottom, the line store window, which can be used to
told one or two lines temporarily as they are moved about a
block or between blocks.

S.4 COMMANDS AVAILABLE

Various Editor commands are invoked by single or
multiple key presses. If a displayable character key is pressed,
it is inserted at the cursor position with the rest of that linme
and, optiocnally, the next line being moved to the right, the
last character being lost from the end. In the description below
the cursor control or arrow keys are called <left>, <right>,
<upr and <down>. The command keys are as follows:

<left>,dright>,<up>,<down>
move the cursor around the screen.

CTRL <left>
deletes the character to the left of the cursor.

CTRL {rzght‘

Fi

CTRL F1

CTRL F2

deletes the character under the cursur.

maves the line containing the cursor to fhe top line
of the line store window. The line is deleted from the
block but may be restored by the next command.

copies the top linme of the line store window to the
line containing the cursor. The old cursor line and
lines below it are moved down, and the last line lost.

as Fl1, except that the second line of the line store
window is used.

as CTRL F1, except that the second line of the line
store windaow is used.

CTRL SHIFT F1

F3
CTRL F3
SHIFT F3
Fa
CTRL F4
FS
SHIFT FS
ENTER

deletes the line containing the cursor.

requests another block (see notes 1 and 2).

requests the next block in sequence: eg:; if you are
editing block 234, this reqguests block 235 {(see note
1.

requests the previous block in sequence: eg; if-
editing block 234, this requests block 23T {see note

1.

saves the bluck being. edited to the default
microdrive. ‘

renumbers the block being edited and saves it on
microdrive {(see note 2).

creates a new, Empty block (see notes 1 and 2.
marks the current block as not having been modified,
S0 that it will rnot automatically be saved to

microdrive, unless it is subsequently modified.

moves the cursor to the start of the next line.

CTRL {down}

ALT T

ALT ™

ESC

clears the line store in the bottom window.

toggles a +Fflag which indicates 7 that character
insertion and deletion acts over the current and next
line. Carncel by ALT T again.

switches the default microdrive: you have to type in
the new default number. ‘

exits from the Editor and returns to normal SUFERFORTH
command mode.

ETRL SHIFT ESC

abandons the Editor and marks the block as pot having
been modified.

Note 1. If the current block has been modified in any way, it

is saved to the default microdrive before the new
: block is read.

Note 2. You are asked for the block number in the top window.
I+ vyou want to abort this command, pressing ENTER,
without any other number, will return you to the oid
block.

Note 3. If you do not like the above choice of command keys ,
they can be redefined by editing the source code file
of the Editor, using GUILL. You will need toc import
the file

‘ aeditor_fth into GUILL.
Edit the key numbers in the large CASE statement in
the word called EDIT, near the end of the file. Then
print it to a file as described in section 4 (do it on’
a copy of the original, but be careful !).

5.5 MODIFYING THE BDISPLAY

I+ you have a monitor for the display, which is
capable of clearly displaying 80 characters per line, then you
may wish +to modify the default settings of the Editor windows
and see the whole of the SUPERFORTH block at once, without the
sideways scrolling. When the editor is loaded, the first thing
it does is to load Block 3, which defines the windows and sets
the display parameters. To define your own display, simply edit
block 3 to define window sizes, colours, character sizes etc.
The three display windows sre called #i, #2, and #3, starting,
from the top. Change the constant C/D to &4 to see the whole &4
characters per line. : : '
Again, edit a copy of Block 3 and be careful: editing the Editor
can easily leave you without an editor !

If you wish to alter the number of characters per line
to non—standard values, the following constants nesd to be

changed:

C/L characters per line; default is &4

C/D characters per display; default is S& or &4
{ you must ensure that C/D is less than or
equal to C/L)

L/B lines per block; default is 1&

C/L and L/B are in the SUPERFORTH dictionary and can be changed
either by using ° and >BUODY or by redefining them in block 3.

s - 3 vou want &4 characters/iine f

‘ o C you must g@dit block I to
set thg thracter Size 1n windows #1, #2 and #3 -~ these are set up i
the definition SET_PARS Hpan

b. SYSTEM INITIALISATION

6.1 STARTUP COMMAND BLBOCK

After initialisation, or execution of COLD s SUPERFORTH loads
and executes block 1, which is used to:

{a) define the console channel which is to be used as the
default channel for the display and keyboard.

(b) define the paper,ink and strip colours For the default
channel.

(c) define the character size to be printed in the defauit
channel.

{d) do anything else the user cares to do; for example, as
supplied, the Screen Editor is automatically loaded. This can
save some lengthy typing-in of command sequences whenever
SUPERFORTH is loaded.

This facility allows the user to select the display
most suited to his requirements; for example, if he has a

monitor, he will most probably want to define the option that . -

gives him 83 characters a line, and employ a different set of
colours to the user who has a TV display. To change the supplied
settings, use the Screen Editor to modify block 1: it is best to
modify a copy of block 1, to avoid accidents.

If block t is left blank or deleted, the system still
lpads correctly. If deleted, an error message will be displayed: .
simply ignore it. A new block 1 can be created using the editor,
or by typing 1 BUFFER DROP UFDATE SAVE-BUFFERS.)

5.2 SYSTEM REBTART

There are three ways of restarting the system, giving
varying degrees of re—initialisation. These are defined with
four words and another which clears the data stack.

ABORT { wea —— ¥ clears the data stack and performs the
function of QUIT . ABORT is an execution vector,
therefore the user may (with caution) redefine its
action.

ABORT™ { flag === 1} is used in thes form
ABORT" cccc”
s that, when it is executed, if the flag is true,
then the message represented by characters cccc is
displayed and ABORT executed. I+ the flag is falss,
the flag is dropped and execution continues.

coLn { saa ==) completely re-initialises the systam: the
data and return stacks are cleared, the dictionary
restored to the initial state and block 1 executed.

QUIT { ——) glears the return stack, sets Intefpretive
mode and returns control to the kevboard.

L { =——)} clears the data stack.

7. ERROR HAMDL ING AMD MESSAGES

There are many error conditions detected by
SUPERFORTH. When these occur, the last word read from the input
stream is output followed by a ?. A message is written to the
display, execution aborted and control returned to the kevboard.
The stack is left unchanged sao that the user can possibly
analyse the data held there to identify the cause of error. The
messages output, their corresponding error number and their
causes are now described.

7.1 ERROR MESSAGES

G non—-existent name or invalid number - _
when 'a word is not recognised and cannot be converted
into a number using the current value of BASE .

i Compilation mode only : . :
when an attempt is made to execute a word while in.
Compilation mode, eg: 3

2 Execution mode only
when the system should be in Execution mode, eg; at
the end of a mass storage block when control is
returned to the keyboard.

control structure error
when an error is made in a control structure, =g;
=xa DO ... IF ... LOOFP ... {ie: there is a missing
THEM or ELSE ... THEN before LOOP).

L4

4 stack mis—-match in definition
at the start of a colon definition the depth of the
stack is stored. When 3 is executed, this value is
compared to the current depth: i+ they differ, this
message is output. This often detects a missing THEN
in an IF. statement.

use only when LDADing
when an attempt is made to execute the word ——> from
the keyboard or named file.

4]

& stack empty
whenever control is returned to the keyboard the depth
of the stack is checked. If negative, this message is
output and the stack pointer reset to the correct
value.

7 stack full
as for stack empty, except that the stack is too full.
There is room for 128 1& bit integers on the stack.

a8 not found
when a word Ffollowing "~ or FIND is not found in the
dictionarvy. :

ki in protected dictionary
when an attempt is made to FORGET beyond the valus of

the user variable FENCE .

14 ‘unassigned execution vector :
when an attempt is made to execute amn execution vector
which is not assigned to executes any cother word. This
may happen because it has not been initialised, or
because the user has used FORGET to delete the word
referred to by the execution wvector from the
dictionary.

i& division by ©
when an attempt is made to divide by zero.

i7 division overflow
when integer division causes arithmetic overflow.

i8 ROLL number negative
" when TOS is negative on execution of ROLL.

19 ROLL bevyond stack
when TOS is greater than the stack depth on execution
* of ROLL.

20 PICK number negative
when T0S is negative on execution of PICK.

21 PICK beyond stack
when TOS is greater than the stack depth on execution
of PICK.

7.2 9L ERROR MESSABGES

In addition to the above error messages, many calls
are made to the 8L°'s ROM in the form of BDOS calls. On return to
SUPERFORTH an error parameter is checked: if this is negative, a
call to the @D0S error cutput routine is reported. The messages
are as listed in the (L User GBuide, in the Concepts Error
handling secticon. Their error numbers are the negation of the
numbers shown there.

7.3 USER DETECTED ERRORS

There are some SUPERFORTH words provided which carry
out error checking and possibly invoke the sequence above:

?COMP { ===) issues error message 1 if the system is not
compiling.

7ERROR {(flagn ———)z if Flag is TRUE, issues error message
n and calls ERRCR .

TEXEC { -——) isgues error message 2 i+ system is not
executing.

?FOUND {in — n } issues error message 8 if n is zero.

?ETACK { =) issues error message & or 7 if stack is

empty or full respectively.

ERROR { n ———) issues error mnessage h and returns control
to the kesyboard. '

I1¥ the user detects an error while his program is
running, and wants to print out one of the error messages
discus=ed above, this can be done by, eg; :

& ERROR to print “stack empty’ stc.
or —4 ERROR to print GDOS error ‘'OGut of range’™ etc.

7.4 WARNINGS

One of two warnings may be issued. Since these may not
result from error, but from circumstances intended by the user,
no action results other than the issue of the warning itsel+f.
The two messages are: : :

10 redefining <npamex : ,
when a word called <namer> already exists in the.
current wvocabulary and is being superseded by ancther
version.

22 Now in SUPERFORTH wvacabulary .
when FORGET has been used fo forget past the top of
the current vocabulary, SUPERFORTH detects this,
tidies up the various linkages, selects the SUFPERFORTH
vocabulary and reports the fact.

¥You will have noted that the series of error and warning numbers
have gaps: the missing numbers are used to print various system
messages.

8. | MORE ADVANCED TECHMIGUES

3.1 COMPILATION —~ ADDING TO THE DICTIDNARY

We have already discussed some compiling words such as

H ;. CONSTANT and VARIABLE and their double length equivalents.
Now we pursue the subject Ffurther to examine other ways of

adding to

the dictionary and other words associated with

compilation.

E

[COMPILE]

C,

ALLOT

COMFPILE

CREATE

{ ———) sets Interpretive mode, usually within a colon
definition {see LITERAL below for an example).

{ =———) sets Compilation mode, usually within a colon
definition {(gee LITERAL). :

{ ———) can only be used in Compilation mode and is

used in the form
CCOMPILE] <namex

to force compilation of <namelX, which is the next word
in the input stream. It is used to force compilation
of an immediate word which would otherwise he sxecutad
instead of being compiled: eg; in a colon definition,
the sequence -e« L[COMPILE] LITERAL would compile a
call to LITERAL .-

{n ——) compiles the TOS into the next two available
bytes in the dictionary.

{n ——) compiles the least significant byte of n
into the next available byte in the dictionary.

{" n =———) allocates n bytes in the dictionary and
updates the address of the next avilable location. The
contents of the allotted bytes are undefined.

{ =——— } used in the forms
: <namel’ ... COMPILE <namel’> ...

When <namel> is executed, COMPILE compiles the
compilation address of <namel2’ instead of executing
it; <namel> is usually immediate. :

(===) is a defining word used in the form
EREATE <name’

to create an entry in the dictionary called <name> .
When <name’> is later exscuted, the address of <namel
‘s parameter field is le+t on the stack: eg: to CREATE
a dictionary entry called FRED and to allocate & bytes
to it, we type

CREATE FRED & ALLOT

Or, if we want to store a message in the form of a
countsd string,

CREATE MESSAGE S C, 72 €, 101 £, 108 C, 108 C, 111 C,

DOES >

EXIT

To see this message, type MESSAGE COUNT TYFE

CREATE is u=z=ed by the other defining words to create
dictionary entries. For example, the definition of
variable is: : '

1 VARIABLE CREATE O , 3

An alternative version, which does not initialise the
variable to zero, is:

: VARIABLE CREATE 2 ALLOT 3
{ =—— ad ? is a word typically used in conjunction

with CREATE to define the execution time action of a
new user—specified defining word. It is used in ths

form

: <npamel’> ... CREATE ... DOES> ... 3§ to define a new
defining word <namel> . When <namell iz used in the
form
<namel> <namel>

it creates a new dicticnary entry called <namel>
which, when executed, leaves the parameter field
address of <name2> as T0S and then executes the words
following DOES> in the definition following <pamel> .
fn example is a definition of the word CONSTANT:

: CONSTANT CREATE , DOES> @ ;

Now we can see what 97 COMSTANT FRED does:

when CONSTANT is executed, the TOS is 9. First of
all CREATE is executed, which creates a new dictionary
entry called FRED (because FRED is the next word in
the input stream following CONSTANT). Then , is
executed, which compiles the TOS {is=; 99) into the
dictionary.

wWhen FRED is executed, the address of the compiled 99
is left as TOS, and control now passes to the words
foliowing DOES> in the definition of CONSTANT. These
execute @&, which places the 99 as TOS and then ;.
which terminates the actions of FRED . As you can see,
this is exactly the action of a constant.

{ ——)} is used in Compilation mode only, to
prematurely términate execution of a word. It does the
same thing as the run time action of ; . EXIT must not
be used within a PC ... LLDOP or +LOOF or between a >R
and R> pair, otherwise the systam will almost
certainly crash.

=g; @ TEST BEGIN KEY DUF 32 =

IF DROFP EXIT THEMNW

EMIT ©

UNTIL 3

This enters an infinite loop: every time you press a
key which is not a space, it is displayed on the
sereen. 1F it is a space, control returns te the
keyboard.

HERE

IMMEDIATE

LITERAL

RECURSE -

SMUDEE

STATE

{ —— ad) leaves the address of the next available
dictionary location.

{ === 3} rhanges the last word defined in the
dictionary into an immediate word.

{n —— }: when compiling, it compiles the TGS as a
literal which, when the word being detined is later
executed, will leave n as the TOS. It is often used in
conjunction with [and J to do calculations in the
middle of defining a new word , eg;

ee= £ 100 31 + 3 % 1 LITERAL ...

will compile 3923 as a literal. When the word
containing this is exscuted, 392 will be left on the
stack. _ '
In fact, whenever you have used a number in a
definition, it has been compiled as a literal without
you realising it. :

{ —==—) is umed in Compilation mode only, to
recursively compile the word currently being defined.
This cannot be done by Jjust typing the name, eq;

: CALLS_ITSELF DUP Q> IF DUP 1- CALLS_ITSELF THEN . j;

will not compile because CALLS_ITSELF does not exist -
in the dictionary until ; is executed, and so the
compilation fails. However, replacing the second
CALLS_ITSELF with RECURSE wiil give a word which

-prints an ascending list of numbers. Eg; try

S CALLS_ITSELF

{ -== 31 iz used either to enable or to disable
recognition of the latest entry in the dictionary if
it was previously disabled or enabled respectively:

eq:

: TEST ; SMUDGE TEST will work correctly
then SMUDGE TEST will not find TEST
and again SMUDGE TEST will work.
The normal use of SMUDGE is that when a new definition
has failed to compile, it is l=ft disabled (to prevent
inadvertent execution of the word). The ssquence
SMUDGE FORGET <name’ then FORBET= the faulty word.
2g3 : FAULTY IF ; will not compile
FORGET FAULTY will not delete it
SMUDGE FORGET FAULTY will delete it

{ —— &d } is a variable which detfines the Compilation
mode: STATE holds O when interpreting, and -1 when
compiling.

8.2 EXECUTION VECTORS . _

Execution vectors are used indirectly to executs other
words: as such, they may be reassigned by the user to vary their
effect. One use is for forward calls; ie; where you want to
execute a word which has not yvet been defined, ar execution
vector can be defined and then assigned to the word once it has
been defined. The words to handle execution vectors are:

EXVELC: a defining word used in the form
EXVEC: <namex
to create an execution vector dictionary entry for
<name*. Ry using ASS5IGN and TO-DD the parameter field
must subsequently be loaded with the compilation
address of another compiled word, such that, when
<name> is executed, this octher word is executed. If an
execution vector is used without having been assigned,
an error message is output. _ . :

ASSIGN is used to define the word to be executed by an
execution wvector; it must be folliowed by a valid name
in the input stream.

TO0~-D0 is used with ASS5IGN to define the word to be executed
by an execution vector; it must be followed by the
name of the word to be sxecuted.

Example: +type in the following sequence:
EXVELC: ANY-MESSAGE?
1 RUDE-MESSAGE CR ." Push off * ;
: POLITE-MESSAGE CR ." Hello there "
: ASSIGN ANY-MESSAGE?Y TO-DOD RULDE-MESSAGE
now execute ANY-MESSAGE? by typing ‘
ANY ~-MESSAGE?
which gives the response
Push off ok
and reassigning ANY-MESSAGE? by
ASSIGN ANY-MESSAGE? TO-DO PDOLITE—MESSAGE
which changes the response to
ANY-MESSAGE?
to
Helloc there ok

Note that there are four words in the existing dictionary that

are execution wvectors, enabling & usear to redefine their
actionss:

ABORT to enable a different abort sequence to be followed
during a user—detected failure. g

€LS to avoid trouble when outputting to a printer.
ERROR to help locate an error during compilation.
PROMPT which has already been used to exescuts .5

I+ an execution vector centains a forward refsrence, FORBETing

through the forward reference will re—assign the execution

vector to an error call. If this happens to FROMPT, simply type:
.ASSIGN FROMPT TO-DO ok

8.3 DICTIONARY AND YOEAEUL ARY MANAGEMENT

There is a series of words which allow you to manage
and handle dictionary entries. You can search the dictionary for
entries by name, and, perhaps most powerful of 311, you can
declare separate vocabularies of words. :

8.3.1 Dictionary management

{ =—— ad) is used in the form

<{name> .
to search the dictiocnary For <name>. If <name> is
found, then ad is the compilation address of <{name>

{ ie; the address which is compiled into the
dictionary when <namer> occurs in a colon definition).
I¥f <name> is not found, error message 8 " not found v

is displayed: eg;
DR U, prints the compilation
address of DUF . See below for more sxamples.

£°3 { =——— ad) is used in compilation mode only: it is

used in the form
£°1 <namex .

to search the dictionary for <pame?> . If <name’ is
found, then the compilation address of <name> is.
compiled intoc the dictionary as a literal, ig; when
later executed, this compilation address is left on
the stack (see LITERAL }.

>BODY (adl -—-— adZ) converts the compilation address adi
of a dictionary entry intoc a parameter field address
{in Ffact, it is the same as 2+). A common use of
this is to changes the value of constants in
conjunction with “ or £°1, eg;

123 CONSTANT FREDR FRED . displays 123
4548 ° FRED >BODY ! changes FRED
FRED . displays 456

£°1 can be used similarly, inside a colon definition.

EXECUTE { ad ———) ewecutes the word whose compilation address -
is ad. If ad is not a valid compilation address, the
system is very likely to crash: eg;

° DUP EXECUTE) does exactly the same as
DUP

FENCE { ——— ad } is a user variable used to hold the address
bevond which FORGET may not operate. It is used to
protect against inadvertent deletions from the
dictionary. If vou want to protect some dictionary
entries in this way, after compiling them type

HERE FENCE !

This protection can be cleared by &hanging the
contents of FEMCE suitably. If an attempt is made to
FORGEY beyond FEMCE, error message 9 * in protected
dictignary " is displayed.

FINMD { adi ——— adZ n)z like ", this is used to search the

dictionary. This time, however, the name being
searched for is held in memory at adl as a counted
string. If the name is found, adZ is the compilation
address of the name and i has one of two values: i+
the word found is immediate, then n is set to 13 if
not immediate, then n is set to -1. I+ the name is not

found, then adl = adl and n is set to 0: eg:
: LOCATE 32 WORD FIND . U. j and try
LDCATE DUP { displays —1 and an address)}
LOCATE IF { displays 1 and an address }
LOCATE xvy=z { digplays 0O and an address)}

In. { ad —-—— } displays the name of the dictionary entry

whose header starts at ad, often used in conjunction
with LATEST.

LATEST { —— ad) putg the address of the last word defined
' in the dictionary on top of the stack: eg; tvpe :

LATEST ID. { will print a name 1}

: GODZIILLA 3

LATEST ID. { displays GODZIILLA >
8.3.2 Vocabularies

The wvocabulary Ffeature allows vyou to partition dictionary
entries into named vocabularies. There are many good reasons to
do this; for example, you can use the same names more than once
in different wvocabularies. If vyou have compiled a very large
program using vocabularies, you can make subsequent compilation
faster. Examples of commonly used vocabularies are SUPERFORTH
and EDITOR : all the words described in this manuwal are
contained in the SUPERFORTH vocabulary:; the supplied Screen
Editor is in an EDITOR wvocabulary.

Words to handle vocabularies are (we will postpone examples
until after these are described):

CONTEXT { ——— ad) : a user variable which is used to determine
which vocabulary is searched first of all, when words
are interpreted or compiled.

CURRENT { —= ad } 2 a user variable which is used to specify
the vocabulary in which new word definitions are
appended. The definition of LATEST is, in fact:

: LATEST CURRENT & & 3

DEFINITIONS {(——)} = the compilation wvocabulary is changed to
be the same as the vocabulary which is searched +irst.

FORGET {(===) is used in the form
FORGET <name’
to delete the dictionary entry for <namer, and ali
subsequent words., from the dictionary. A smart form of
FORGET is provided which will detect i+ vyou FORBET
through vocabularies and execution vectors: in the
first case, SUFPERFORTH is made the search and
compilation vocabulary and a warning displayed: in the
second case, the appropriate execution vectors are set

to execute a word which displays an error messags.

FORTH { ———) makes the SUFPERFORTH wvocabulary the
vocabulary to be searched Ffirst of all. This is the
primary wvocabulary in which 211 the supplisd words are
situated and is, in fact, the only vocabulary until
gither the user defines a new one or the Editor is
loaded. MNote that this word is NOT immediate: previous
FORTH standards, eg; FORTH 79, had FORTH as an
immediate wordy; FORTH BF does not.

FORTH-8Z {(——) ensures that a standard FORTH B3 system is
available. If you FORGET past this word, you ars very
likely to crash the system. FENCE is initially set
just past this word, to protect it.

VOCABULARY (———) is a defining word used in the form
VOCABULARY <name’ : o
to define a new vocabulary which, when executed, will
make <name’> the first vocabulary to be searched wien
interpreting or compiling words.

An example of the use of vocabularies is:

FORTH DEFINITIONS { makes FORTH the compilation vocabulary and
the first searched)}

VOCABULARY S0OCCER { creates a vocabulary named SOCCER)

VOCABULLARY RUGRY { creates a vocabulary named RUGBY)

SOCCER DEFINITIONS (new dictionary entries now go in the
SO0CCER vocabulary 3} .

: BALL ." is round" ; { defines the ball ‘s shape)

: TEAMS ." have il men"; (the number of plavyers)

RUGRY DEFINITIONS (new entries go in the RUGBY vocabulary)

Bakl ." is gval" 3 { defines the ball’'s shape ?
TEAMS .* have 1% men": { the number of players)

(note thaf yvou get no
Mow tvpe:

redetfining warning messages?.

FORTH DEFIMITIONS
BALL { gives an error message, as does TEAMS,
- because they are not in the SUFPERFORTH
vocabulary ?
but now, typing:

S0ECER BALL displays is round
TEAMS displays have 11 men

This is bscause typing SOCCER makes it the +Ffirst wvocabulary
searched, s¢ that SOCCER's definitioms of BALL and TEAMS are
found. Mow try:

RUGRY BALL displays iz oval
TEAMS displays have 1% men

Now the RUBRY vocabulary is the first &g be sesarched.

?. FLOATING POINT MATHS PACKAGE

A floating point package is provided in a separate |
file, which is not included in the main dictionary. This is
because most applications do neot need floating point facilities,
The package is loaded by typing:

LOAD_FILE MDV1_FPMATHS_FTH

Words are provided to give a wide range of floating
point maths operations using BDOS calls. The @L°'s floating point
number format is used, which takes six bytes of memory for each
floating point number. Where possible, the relevant integer word
of FORTH 83 is preceded by an F, to give an equivalent operation
on fleating point numbers on the stack. Words provided are { fp
refers to a six byte flgating point number):

FORTH 83 EQUIVALENT

Fbur (fp —-— fp fp) DUP
FDROFP (fp ——) DROP
FSWAP (fpl fp2 ——— fp2 Ffpl) SWAF
FOVER (fpl fp2 ——— fpil fp2 fpl } OVER
Fa { ad —— fp) : @
F1 { fp ad ——) !
F>R { fp —— 1} *R
FR> { ——— +p) : R
FROT (fpl +p2 fp3 ——— +Fp2 fp3 fpl) ROT
FRICK (fp...fp n ——— fp...fp fp) FICK
FROLL ¢ fp...fp n —— fp...fp } ROLL
FO= { fp —— +1lag } o=
FO< { fp —— flag)} O<
FO> { fp -——— flag)} OX
F< { fpl fp2 -— +lag) <
F { fpl Ffpd —— +lag) p
F= { ¥pl fp2 -——— Flag) =
FCONSTANT (fp -~ 1} CONSTANT
creates a floating point
constant.
FVARIABLE (——) VARIAREBLE

creates a floating point
variable.

Operations on floating point numbers are :

F+ (fpl +p2 —— +p3) does fpl+fp2 to give +pd
F— { fpl fp2 —— +p3 } does fpl~fp2 to give +p3
Fx { fpl fpZ2 —— fp3 1} does Ffpl*fp2 tog give fp3
F/ { fpl $p2 ——— fpI) does fpl/fp2 to give fp3
FABS (fp ——— ifpil) simitar to FORTH B3 AERS

FMNEGATE (fp ——— —fp) similar to FORTH 83 NEGATE

COS (fp1 —— §p2)
8IN (fpl —= fp2) :
TAM (fpl ——— #p2) the usual trigonometric

COT (fpl —— fp2 functions; angles must be

ARCSIN { fpl ——— fp2 1} expressed in radians.
ARCCOS (fpl —— $p2)

ARCTAN (fpl ~— p2

ARCCOT { fpl ——— fp2)

SERT {(fpl ——— Ffp22) the square root

LN (fpl ——— +$p2 1} the natural leogarithm
LoGio { fpt —— +p2) lgg to the base 10
EXF (fpl —— fp2) & tog the power fpl
~ { fpl #p2 —— Fp3 } fpl to the power fp2

Conversions between floating 'point numbers and - integers are
achieved by: '

fp — n

F->5 (} Ffloating to nearest single integer
F->D ($¢p —— d) Ffloating to nearest double integer
INT { fp -—=~ n } *truncate fp to single integer

5~ {(n — fp } single integer to floating

D= { d = fp)} double integer to floating

Input and output of floating point numbers is achieved with:

F. { fp ~-—) which prints a floating point numbar‘un
the display
F¥ { —— fp) which converts the next word into a

-floating point number, egs

F$ 3.14159 FCONSTANT PI or
% 123.45E8B3

Use of all these words is straightforward. Those words with
integer equivalents are used in the same way. DOthers, such as
the trigonometric Ffunctions; are used as in the following
example:

assuming PI defined as above,

FI 2 5-5F F/ SIN F. (to print sini{pi/2))

10. SFECIAL 9L FACILITIES

‘10.1 USE OF Gl CHAMMELS

The L is able to direct input and output from/toc any
input or output device attached to the 8L simply by using the
appropriate channel number or channel ID. Thers are several
SUPERFORTH words provided +to handle this capability. First of
all, thera are some general chamnel handling words: you should
note that the channel ID is a double length integer, so that 28
and 2! should be used in conjunction with 2ZVARIABLEs to
manipul ate them. Alsc note the convention adopted of calling the
MVARIABLEs used to hold channel IDs by a name beginning with a #
symbol, eg; #IN.

HDEFALLT ¢ ——— d }: a double length constant used to hold the
default channel ID, this is 1locaded by block 1 as
supplied and is the channel ID 1lpaded into #IM and
#OUT whenever an error occurs. This ensures that a
fault always returns contrel to the keyboard and
display. #DEFAULT is 1loaded with a suitable wvalue
prior to block 1 being loaded.

#IN { ——— ad)z & double length user variable used to hold
thhe channel ID of the current keyboard input stream
{ not the mass storage stream J. By manipulating

this, input may be obtained from other sources: this
is the technigue used by LOAD_FILE to 1load From a
named file.

#OUT { ——— ad J: similar to #IN, except that it holds the
channel ID of the current output device. Output may be
redirected by manipulating this, which is the
technique used to ocutput to the printer.

CLOGE (d ——=) closes the channel whose ID is on top of the
stack. Always be careful to close channels when you
have ftinished with them, to avoid profligate use of
the 8L 's RAM.

OFEN {n -—d) is used in the form, for example,
O OPEN CON_130X256A52X54

to open a console channel. The channel IR is left on
top of the stack usually to be saved in a variable.
fny valid device name , for sScreen windows,
microdrives, +loppy discs, serial interfaces stc can
be used, but vyou must uwuse the correct syntax as
defined in the 6L User Guide: eg;
O DPEN MDV1_BLK?9 (opens a chamnnel to file BLK?9)
O DPEN SCR_1BOX26AS2ZX182 { opens a screen window ;
The parameter n used before OFEM is there primarily
for microdrive Filesy it should be 9 +for other
devices. For microdrive files it should have the
following values:

old { exclusive) file

old { shared } file

new (sxclusive } file

directory

BRI O

TIMEQUT { —=—n }: a constant defining the timeout of amn input
or output operation, it is initially -1, which means
that input and output operations will wait
indefinitely if the input or output device 1s not
ready or has no data. If TIMEBUT is positive, it
defines the length of time the GL will wait for input
or output in fiftieths of a second. This may be used,
for example, to read the keyboard but not wait if no
key has been pressed. Always be careful to restore it
to -1 afterwards.

io.1.1 Redirection pf input/output

This may be achieved using the above words in the following way,
for example to output to a new screen window:

2VARIABLE #MESSAGES
O OPEN SCR_420X44A52X20%7 #MESSAGES 2!

and whenever you'want to output +to this window vyou use the
sequence {(of course, you can define a word to do this J:

#MESSAGES 2@ #OUT 2!

any output now goes to this new window. To revert to the
original, tvype:s

#DEFAULT #OUT 2!

A similar sequence is used to redirect input.

10.1.2 Printer opesration

Certain words are already provided which perform the
redirection, enabling you to output to the printer:

#PRINT { —— ad Y: a double variable used to hold the channel
ID for the printer.

PRINTER_IS (——)} defines the characteristics of vour primnter
{igee the Gl User Buide for details), opens a channel
to the printer and saves the channel ID in double
variable #PRINT: egs

PRINTER_IS SERIE

PRINTER_ON { ——)} simply selects the printer as the output
device by loading #FRINT into #0OUT. It alsoc ensures
that +the prompt ok is output +to the display and naot
the printer, and that €CL53 does not send nasty
characters to the printer.

FRINTER_OFF { ———)} restores the default output device to #0OUT.

PRINTER_CLOSE { ———)} closes the printer channel.

0.2 MULTI-TASKING

It is possible to multi-task both SUFERFORTH programs, which
are compiled and created while SUPERFORTH is running, and
mactiine code programs, which have been created independently of
SUPERFORTH and stored on microdrive or floppy disc. Facilities
are provided to create, activate, suspend and remove these
tasks.

A SUPERFOGRTH task is provided on block 3S: a clock
gispiay, which is used in examples below. To load, tvype

S LODAD which loads but does not run the clock, for
which see below.

10.2.1 Job identity

Whenever a task or job is activated on the GL it is
allocated & double—-number identifying it. This double-number is
then used to manage the task. If a task wishes toc refer to
itself it can use a double-—number -1 as the Jjob identity. Two
wiords are provided to utilise job identity:

FIOBE_ID § ~—— d) is used in the form
?I0B_ID <name>
to +ind the job identity of a SUPERFORTH task created
using JGB described below. It can not be used to find
the identity nf machine code tasks.
egs ?JOB_ID CLOCK

JOB_1IiD (—— ad)z a double variable which holds the identity
of a machine code task which is activated using EXEC,
see below. If vyou wish to manage this task vou will
probably need to save this value in another double
varijiable.
eq JOB_ID Za leaves the double number
job identity in the stack after EXEC <{name’

1G.2.2 Creating tasks
The words available to create SUPERFORTH tasks are

JOB (ad nl n2 n3 ~——) : used in the form
J0B <namel> RUNS <name2r>
to create a dictionary entry called <namel> which,
when executed, will cause <name2’> to be run as a
multi-tasked program; <nameiX> must already exist. Eg:
see hlock 2 for:
JOB CLOCK RUNS GLOCK
which creates a task called "~ CLOCK which, when
activated, will run a SUFERFORTH word called GLOCK.
Note that the task is not yet activated: this must be
done using START or ACTIVATE (see below).
ad is the address of the job's USER variables; ad=Q {¥f
there is none.
nl is the number of long-words needed for the retarn
stack { ie; ni¥*4 is the number of bytes)
n2 is the number of words nesded for the data stack
(ie; n2%2 is the number of bykes }
nZ is the job's priority (I to 127

$2

RUNS
OWN_USERS
OWN_PAD

OWN_TIE
DWN_BUF

10.2.3

ACTIVATE

EXEC

5TART

{ ———) must only be used after JOB { see above }

{ —— ad }
{ ad ——— ad)
{ ad ——— ad)}
{ ad —— ad }

These four words reserve dictionary space for USER
variables, PAD, TIE and a block buffer respectively.
ad in all cases iz the address of the USER variable
area. OWN_USERS must be used immediately before the
other three, which are optional: eg: a sequence might
be:

OWN_USERS OWN_PAD 8 16 1 JOB FRED RUNMS MARY

If a task inputs data or outputs data, it must use its
own USER variables and PAD (for output)} and TIB

{ for input). An input buffer must be used if data is .

to be read from mass storage by the task.

An additional requirement for tasks using WORD and the
graphics words ARC, CIRCLE, LINE, POINT and SCALE is

an area of dictignary for working (for an arithmetic
stack for GDOS). To allocate this, add:
310 ALLOT

after the task is created using JOB ... RUNS ...
Task activation

(dt d2 n ——) .is used to start a task with job

identity d2. dil = 0 for the current Jjob to continue
and -1 to suspend the current job until the activated .
job is finished { da not use di = -1 with CLOCK

because CLOCK never terminates). n is the new task’s
pricrity: 1 is the highest priority and 127 the lowest
priority.

Eg; o 0 ?JO0B_ID CLOCK 15 ACTIVATE

starts the clock.

{ ——)} is used to activate a machine code task from
mass storage, Jjust like SuperBASIC EXEC. The new
task’'s identity is left in variable JOB_ID .

Eg: EXEC MDV1_TASK (assuming a task named
TASK is held on MDVLI_). :

{ dnt —— Y is used as START <namel> to start an
inactive job with priority ni. If d is &, the current
job continues:; if d is -1, the current Jjob 1is

suspended indefinitely.
Eg: to start the clock with priority 10 (assuming the
claock has never heen activated):

O 0 10 START CLOCK

10.2.4 Suspending and restarting tasks

FREEZE

{dn -———) suspends a task with identity d for n
fiftieths of a second, =93
7J0OE_ID CLGOCK 30U FREEZIE

suspends the clock for 10 seconds, after which it
restarts. IFf n=-1 the suspension is indetinite.

SLEEP { —_ 3} is used by a task to suspend itself
indefinitely by changing its priority to 0. This is
compiled automatically at the end of a SUPERFORTH task
by RUNS {(to prevent a job "falling off the end":.

SUSPEND {n ——) is used in the form
SUSPEND <NAME:-
to suspend task <name> for n fiftieths of a second.
Eg: 1000 SUSPEND CLOCK '
suspends the clock for 20 seconds.

SUSPEND ME (n =——) suspends the current task for n fiftieths
of a second.

RELEASE. { ——) is used in the form
RELEASE <name’
to restart <namei.

Eg; -1 SUSPEND CLOCK stops the clock
RELEASE CLOCK restarts it.
UNFREEZE (d ———) restarts the task whose identity is d -
10.2.5 Changing a task's priority
PRIORITY { dn ———) changes the priority of the fask whase
identity is d to n. n is in the range 127 { lowest

} to 1 (highest). If n=0, the task is suspended.

FRIGRITY_OF (n ——)} is used in the form
FRIORITY_OF <name’
to change the priority of task <{pname> to n. n has the
same meaning as in PRIORITY, eg;
25 PRIDRITY_OF CLOCK
changes the clock s priority to 25.

10.2.6 ‘Remgving tasks
BYE { —=——) is used by & task to remove itselt from the

system. Typing in BYE removes SUPERFORTH +from the
system. You will need to press Control € to return to
the SuperBASIC interpireter.

KILL { ——) is used in the form
KILL <nameX>
to stop and remove task <name> from the system. It
must pot be restarted by using START stc.

REMOVE (d ——) stops and removes the task whose identity is
d from the system. Do not restart it.

10.3 SOUND SENERATION

Some SUFERFORTH words are provided to'#acilitaﬁe use of the 9L's .
sound generator; these include simple bheeps and a defining word.

BEEF { nl n2 ——=)} generates a single tone: nl is the pitch
{ in the range 0 to 255) and n2 the ‘duration (in
units of 72 microsecs Y. I+ n2 is zero, the sound will
continue indefinitely until ancother BEEP or SILENCE .

Eg: S0 S000 BEEF

BEEFPING { —— flag } tests the sound generator and leaves the
flag TRUE if sound is being generated, otherwise
FALSE.

SILENCE { === 3} silences the sound generator.

SOUND {nlnZ NIndnS nén7nB -—) is a defining ward

used in the form :
SOUND <name> .

to enter a word called <name’> in the dictiocnary which,
when executed, will generate the sound defined by
parameters nl toc n8, which are (see GL User Guide):

nl fuzziness range 0 to iS5

nZ randomness range ©O to 1S5

n3 wrap range 0 to 13

nd4 step grad_y range —8 to 7

nS5 duration range O to 65535
néd interval grad_x range © to 6830930
n7 pitch 2 range O to 255
18 pitch 1 o range O to 255

Egy O © 15 1 1500 100 50 1 SOUND ZAP
Now tvype Iar to generate the sound (this sound

is already in the dictionary).

10.4 TIME AND DATE

Words are inciuded to enable yvou to set and read the internal
clock of the GL. 411 times are expressed in seconds and affect .

the time and date.

ADJUST _TIME (d ———)} adds double-number d to the time. d is in

seconds and may be negative, eg;
100. ADJUST_TIME adds 100 seconds

DATES { =—— ad) leaves the address of a string representing
the date and time on top of the stack. The string is
stored in the standard SUPERFORTH format, ies the
first byte iz the number of characters:

DATE# COUNT TYPFPE prints the date and time
DATES 12 + % TYPE prints the time only

DEYF { = ad J: as DATEX, except that the string is the
day ot the wesk, =g
DAYF COUNT TYPE

SET_TIME {(d ——) sets the time to dnuﬁle—numbér'd seconds.

TIME { —— d) leaves the time on top of £he stack as a
double—number in seconds.

In addition to these, a utility bloeck is provided to enable you
tg set the date and time. This is lcaded and sxecuted by typing
2 LOAD '
which, when loaded, requests the year etc. All replies must be
integers (egq; MAY is month o). The prompt and response segquence
can be bypassed if you simply type ENTER in response to Year?

10.35 SERIAL INTERFACE/BAUD RATE

One word is included to adjust the baud rate of the RSZEIZ2
interfaces:

BAUD { n -—==) changes the baud rate to n
eg; 4600 BAUD changes it to 94800 baud

11. DETAILS OF SUPERFORTH IMPLEMENTATION

1i1.1 MEMORY MaP

DP SUPERFORTH uses aver 6BK bytes of memory. It is
fully relocatable and the actual locations it cccupies depend on
what other tasks are running and whether extended RAM ig fitted
to the L. The locations available tg a standard SUFERFORTH
program are © to &5535 relative to an absolute address held in
register A2 of the &RB008 microprocessor. The SUPERFORTH
dictionary occupies 1locations 327488 upwards. Locations from
{approximately) 42000 to 65535 and O to 31738 are available to
the user, but the user can guite happily use the system without
worrying about addresses (unless, of course, the space is
completely Ffilled wup: which, given the compactness of
SUFPERFORTH, would imply a wvery big application indeed). The
memory map is: :

locations 32768 .to 42000 (approximately) SUPERFORTH dictionary

42000 {(approx.) to &5535
and o to 31738 " the user dictionary

J173F to 32767 the block buftfer

Some code and the error messages are situsated outside the
dictionary, to maximise the space available for the user.

11.2 THE STACKS

These are situated cutside the dictionary area (for
added protection) and just below the dictionary in the 8L's
memory. The reaturn stack is immedistely below the dictionary and
there is room for Si2 bytes, which is enough for 128 calls to
SUPERFORTH secondaries. The data stack is just below the return
stack and has room for 23&6 bytes or 128 integers.

1.3 DICTIONARY STRUCTURE

This information is supplied for thes dedicatead

SUPERFORTH enthusiast, who is familiar with FORTH systems, and
therefore no attempt is made to explain the facts.

Each word in the dictionary has a header which contains the
following {(in this order}: :

{3} two bytes for a link field to the previous entry in the
dictionary.

(b)) one byte for the numher of characters in the name of the
word. Bit 7 of this byte is set; bit 6 is the immediate
flag and bit 5 the smudge bit.

{c}) n bytes (maximum 31)} for characters of the name: the last
byte has bit 7 =et.
{d) two bytes for the code pointer.

(2} +then the parameter {field, as long as necessary.

The system uses indirect threaded code: ie; each call
to a secondary points to the code pointer of that secondary,
which itzelf points to the code to be executed for that word.

11.4 INFORMATION FOR MAEHINE CODE USERS

DPF SUPERFORTH uses the following registers, which,if
used by some machine code, must be saved before and restored
after the machine code:

AOLL holds the SUPERFORTH address { isy 146 bit relative to
AZ } of the USER variables. :
ALl.L igs the IFP, or interpretive pointer, that points to the

parameter field of the SUPERFORTH word currently being
executed. Al.L i=s pushed onto the return stack when a
secondary is called.

AZ.L holds the abspolute address of location O in the
SUPERFORTH dictionary: all SUPERFORTH addresses are
relative to AZ.L ‘ :

AS.L is the data stack pointer. It holds an absclute

address and points to the second item on the stack.
o is the return stack pointer, an absciute sddress.
A7.L is used as an internal stack pointer to temporarily
hold data during GDOS calls. It is alsc used by RQD005.
D2.W igs the top of the data stack. ' .

In addition to these, the other registers are used for various
aoperations and cannot be guarantesed +to remain uncorrupted, but
changing them in a machine coded definition will pot matter.

I¥f a machine code word is inserted, it m;ust "end with the
following code { in HEX)Y gr a branch toc such a seguesnce, which
is the well known MEXT sequence:

HEX 3219 MOVE.W (A1)+,D1
za72 MOVE.W O(AZ,D1.W),AS
1000
4EF2 JMP O(AZ,AS. W)
DOOO

11.5 ABSOLUTE RAM ADDRESSES

The absoclute address of the dictionary is - held as a
double wvariable in SUPERFORTH location 327761 ie: typing

will 1leave the absclute address of SUFERFORTH location 3274883 as
a double-number on the stack. This may vary when the SUFERFORTH
system is loaded, depending om what othsr tasks are running
before SUPERFORTH is loaded and whether extended RAM is fitted
to the GL. ‘

12 REVERSI

To run the program, take a regset 6L % EXEC the Ffile REVERSI. i+ the
device is mdvi_, then the appropriate command is:

EXEC MDV1_REWVERSI
Once the load screen appears, press CTRL % C simultansously.

The aim of Reversi (alsoc called Othello) is to end up with the most
pizces on the Bx8 board. You % your opponent make moves alternatelv,
using pieces which are black on one side & white on the other. The plaver
winto is black willi always place them with black facing up, etc.

To make a move, you must place a new pisce such that vou ftrap one or mors
of your ogpponent’s pieces between the new pisce % one or more of your
own pieces, in one oaor more continuous (ie: no intervening vacant
squares) straight lines along rows, columns or diagonals. You can only
play on a vacant square — hence a game can never last more than 44 moves
excluding passes { vyou "pass" if you cannot make any move — it is then
your apponent’s turn). The move is completed by changing all the trapped
pieces to vour own colowr { ie; by Fflipping them). I+ +this sounds
complex don't worry — SUFER REVEREI wiill not permit illegal moves, so by -
plaving vow will soon pick up the game. Remember — a move must result in
at least one flip.

The game is usually started with four pieces placed in the centre { as
shown when you run the game)}, but SUPER REVERSI gives you the option of
setting up your own starting position. Black always meves first - vou are
given the option at the beginning of the game to bHe either Black or
White. Do not jume to the conclusion that the first plaver has an
advantage - Reversi is far more subtle than that!

The game finishes when neither player can move. The plaver who thern has

the most pieces showing on the beoard is the winner { draws ars
possible) - SUPER REVERSI keeps track of the number of pierces for sach
side throughout the game. Note that it is only at the final position
that the number of pieces decides the cutcome - earlier on, it iz not

necessarily good strategy to maximise the number of pisces of vour colour
(to do so would give vyour opponent more piecss to flip over latsr).
Naturally, you must have at least one piece on the board or slze you will
havea to pass for the rest of the game.

You make a move either by typing the grid reference of the move: HI or 2R
followed by ENTER or SFACE, or by moving the cursor to the sguars using
the cursor keys % pressing ENTER or SFACE.

Any other key either selects one of the command options listed below or
zancels the move.

«axe Display Options

«ss. PMode — BL ws BL, Human vs Human or Normsl
Exchange sides (ie; cheat!:

cex- Setup 2 new position

==-x Hetract onge o moare moves (ie; chest!:

nmxEOQ

Ry

-«w« Hint — Suggest a move {ie; cheat!:’
cene Buit ie: Resign
Change skill level
«=a. Reddraw screen
T oaea. Togole sound on/foff (when GL moves)
ESC then CTRL+AC Return to SuperBASIC

=g

Note that the O option makes the above table redundant !

When the G8L is thinking vou can interrupt it by helding down the I key

until i1t makes a move, this is useful if you have accidentally selected

high plavying level and do not wish to wait Ffor the GL to +Finish it
deliberations {(or again, of couwrse, to cheat).

bl

It

i There are 7 playing levels ranging from the easiest at level 1 to level 7
{ where +the BL has a 7 move logk—-ahead !). On levels 3 & zbove, while
the 8L is thinking, it displays the move currently being skamined, the
best move so far % the last move consider=d: with these last two it also
displays a value which indicates how good the move is {(the higher the
value the better for the &L }. This makes waiting for the 8L to sove
quite interesting. You can change levels during the middls of a game.
ievels (& approximate t1mes taken) are:
= -a Beginner 0.1 seconds
cesa- Movice 2 seconds
awee Intermediate 30 seconds
«u.. Fairly strong i mipute
«ews Strong 2.5 minutes
Very Strong 3 minutes:

«e.. Master ' 12 minutes

anss EMpert 30 minutes

ee== Champion 1.5 hours _
When a mave is made, the pieces atfected flasgh in red for a few s=conds.

R ORI By o R ST O
»
L]

- -~

If you ‘want to see the computer play itself (differsnt levels for =ach
side possible ! o) vse the M option % choose Q.IEF you want the WL o
supervise a game between two humnans, choose M followed by H .

G

SUFER REVERSI is a multitasking SUPERFORTH program. That means you Zan
run it at the same time as other tasks (M&800G0 programs, SUFERCHAREED
grograms, EXEC-able files output by other compilers, the SuperBASIC task
or other SUFERFORTH programs — including octher ‘copies’ of SUFER REVEREI
itself! 3. ise the W option to vedraw ths soreen 1+ 1t appears wuntidy
while multitasking. Naturally, if vou run multiple copiss of SUFER

REVERSI they will all run slow. CTRL+C allows you to page freely bshwesn
SUFPER REVEREI & SupesrBASBIC.

The Setup optiocon (52 is useful either to solve Reversi problems or to
return to an abandoned position. Any position may bg setup but some may
not be much fun {(ie; the empity board, which will of courss result in a
drawn game!!. The keys to be used for setup are displaved on the setup
sScreent

Arrow Kevs Move cursoar
W ..., Put a White pisce on sgusrs
B Fut a Black piece on sguare
C Qlear board
H Clzar sqguare
Esc ...- Tarminate =zetup modse

Use the I option if vou want the Q. to move immediatsly — but remember
you are handicapping it by denying it the agreed time for the move. You
must hold the I key down for a few seconds until the red pisces are
displayed - the keyboard is only polled intermittently to keep things
ftast.

Here are some tips that should improve yowr plaving strength: .

{a) Do not "grab’ material - position is more important than material
until the last stages of the game.

(b In the beginning of the game, try to stay within the central 4ud
sauare area. the first player to move out of this area is often at a
disadvantage. :

{c) The most valuable squares are the cormer sguares as once occupisd

their occupier can (cbviously) never be flipped. If the loss of a corner .
is inevitable then play should be directed towards blocking its
effectiveness { eg; the corner Al is much less useful for Black if Black
also has AZ & White has A2).
(d) Edge squares other than corners are somewhat dangerous to occupy,
gspacially those immediately adjacent to corner squares. They can praovide
an avenue of attack for your opponent culminating in his occupation of =
corner sguare. :

i) At every stage of the game try +to make moves that, while nok
contradicting (a)—(d) above, reduce the number of options open to your
opponent to a minimum. .

() Long diagonals are useful only if a corner on that diagonal has been
secured, or if the diagonals are for some other reason immune feom
attack.

(3} Remember not to count aon your opponent making oversights!

SCORE INTERFRETATIOM { assuming &4 pieces are on the bosard '}

232 Drawn

FZ3-31 to 3529 Marrowly won

3628 to 41-23 Comtortably won
42-22 to 49-15 A Smashing victory
530-14 or better LArE

12.1 GAME LISTING

The complete listing of SUPER REVERSI Follows. It is advisable
to study the program carefully — it demonstrates SUFERFORTH in
dynamic actiont

(REVERSI version 1.2 copyright 1985 G.W.Jackson)
CLS 3 1 CSIZE CR . ¢ LOADING REVERSI) CR 1 0 CSIZE

#COM is a defining word that creates and opens a)
display window and saves the channel ID. When the)
newly created word is executed it makes that window)
the input/output window by loading it°s channel ID)
into #IN and #0UT) :

e e]

: #CON ZCONSTANT
DOES> 2@ ZDUP
#IN 2!
#OUT 2% 3

creates a double length constant 2
l=zaves the channel as TOS, twice)
which it loads into #IN)

and HOUT 3}

e Py ey e

-~

now we open all the windows used in the game)

the red title window)
for the moves i

for the score)

for messages and)
information ?

O OPEN CON_202X136A2468X44 #CON #BDARD the playing board)
#OUT 2@ #HCON #MAINM (covering the whole screen }

OPEN SCR_180X5S0A52X44 #CON #TITLE
OFEN CON_1BOXBOASZX?3 #CON #MOVES
OFPEM SCR_130X2Z246A52X172 #CON #SCORE
OPEN CON_420X34A52X19% #CON #MESS

oo

{
{
(
{
{
{

INIT_SCR DUP PAPER STRIFP INK DUF BORDER ;
initialise screens, used by the below words to set the)
colour and border of each display window ¥

e, WH

: DRAW_SCR #MAIN makes #MAIN the current wlnduw)

{
0 { the border width)
1 { the ink colour)
5 (the paper and strip colour)
IMIT_SCR { set the above parameters)
cLs { and clear the window)

{

now do the same for the rest of the)
{ windows)

#TITLE © 7 2 INIT_SCR CLS

#MOVES © & & INIT_S5CR CLS

#SCORE © 7 1 INIT_SCR CLS

96 2 CURSOR ." SCORE™ { print the heading }
#MESS 1 1 S INIT_SER CLS

#BODARD O 1 4 INIT_SCR CLS H

{ DRAW_SIDES draws the grid of the playing board and prints
{ the square coordinates round the sides)

: DRAW_SIDES #MAIN done on #MAIN because the letters &)
numbers are outside #BOARD)

the ASCII code for 8 }

the end pixel Y coordinate)

the start pixel ¥)

lopop to print numbers 8 to 1)
position the pixel cursor)

print the digit }

decrement the ASCII code)

‘the loop step, digits are 17 pixels)
apart vertically }

and repeat for the next digit

drop the TOS, no longer nesded)

S6
173
R
Da
222 1 CURSOR
DUF EMIT
i—
17

+L.00F
DROP

ety ML Ry S L, e gy M g,

{ now we repeat the process for the letters A to H)
{ along the bottom edge , very similar so no further)
{ comments)

&5 430 243
na :
I 173 CURSCR :
DUFP EMIT 1+ 25 { letters 25 pixels apart)
+L.OOF DROF
{ now we draw the horizontal lines, 1
: { BLOCK_FILL is faster than LINE)
173

{ the bottom end of the line)
3 { the top end of the line)
Do { 3Z34+9%17 > 173 so we loop 9 times)
i { the line colour)
202 { the width, ie the line length)
1 { the height ?
237 { the X start coordinate ?
I { the Y coordinate) '
BLOCK _FILL { draw the line)
17 (17 pixels apart)
+L.00P _
{ similarly draw the vertical lines)}
444 237
fa]

1 2 136 1 33 BLOCK_FILL 25
+L00FP 2 O ESIZE :

HEX { convert to hexadecimal mode for now)

{ FP converts a positive integer to floating point format, so 3
{ does not need the floating point package)

: FP DUP
IF { not zero }
o { the provisional exponent)
SWAF —10 { decimal -16 }
BEGIN
OVER 4000 U< { repzat until top bit is & 1 1}
WHILE
SWAP Z2¥ { shift it 1 place left }
SWAP 1 { decrement the exponent for)
' { each place shifted)
REPEAT
8iF + { add the +iddle factor !)
ELSE { integer is zero ?
o 0 { gives floating zerc)
THEN H
DECIMAL { hack to decimal)

{ now lots of variables that are used)

VARIABLE C_COL
VARIABELE F_COL
VARIABLE COLOUR
VARIABLE P_SCORE
VARIABLE C_SCORE
VARIABLE MEN
VARIABLE COMP
VARIABLE PLAYER

computer ‘s colour)

human plaver ‘s colour)
temparary colour store)
player s score)

computer ‘s score)

number of pieces on the board)
holds the computer's last move !
the player ‘s last move !} '

I e T T T T o S

VARIABLE MEN_FLIPPED { the number of pieces flipped over }

{ in one direction for a move)
VARIABLE NEW_MOVE { a flag to indicate a new move }
VARIABLE GFLAG i a flag to indicate fuit game)
VARIABLE MOVE_NO - . { the move number) :
VARIABLE FPRUNE { indicates whether the list of moves)
{

is pruned or not }

7 CONSTANT WHITE
O CONSTANT BLACK
7?2 CONSTANT SIIE

the value of white used by the QL)
the value of black ?

the number of bytes needed to hold)
a game position)

: ARRAY CREATE ALLDT DOES> + 3 :

{ creates a bvte array which when executed adds the index. tn).
- { the array start address, the size of the array is on the)

{ stack ?

64 BRRAY GAME : " { used to store the moves madé) -

CREATE START_BOARD 92 ALLOT (used to held the starting)
(position of a game)

FPARRAY CREATE DOER: SWAF & # + 3
used to create an array of floating point numbers, each of)}
which is & bytes long)

e, A

: FP, FP , 4 o« H { compiles a floating point number)

FFPARRAY X_CEN { an array of the x coordinates of the)
: { centres of the playing squares, used to 1}
{ draw the pieces)
185 FP, 203 FP, 222 FP, 241 FF, { pixel numbers)
260 FP, 279 FP, 297 FP, 315 FP,

(similarly for the Y coordinates }

FPARRAY Y_CEN 82 FP, 100 FP, 117 FP, 134 FP,
152 FP, 1467 FF, 185 FF, 202 FF,

CREATE FARAMETERS © FFP, &6 FF, 1 FP, O FP, G FP,
{ the parameter list for CIRCLE : see the SUPERFORTH manual)

{ now use a temporary area of RAM to set the SCALE of the)
{ digplay, the next words are executed not compiled)

HERE SO0 + 18 O FILL { clear it)
244 FFP HERE 512 + 2¢ { the scale factor in FF format)
DROF HERE SO0 + SCALE { and set the scale)

next we allocate to every sguare of the board a value which)
indicates how good it iz, the squares value is 16 less than)
the value stored. When a game is played a value of less than
15 indicates it is occupied and gives it's colour, a value J
of more than 16 means uncccupied, equal to 1% is off the)
board there are 92 sguares, &4 to play on, and 28 round 2)
of the edges, this makes off-board detection easy.)

These values are compiled into an array which is copied)

to the starting position of every game.)

P T e T e T e s

HEX

CREATE SQU VALUES (values in hex). |
211F

i010 , 1oi0 , 1010 , 1010 , 1010 , 2D19 , , 1F21 ,
192D , 1019 , 111E , 1EiB , 1Bi1 , 1910 , 211B , Z2iiF ,
1F21 , 1B21 , 10iF , 1B1F , 0007 , 1F1E , 1F10 , iFiB ,
1{FO7 , OO1F , iBIF , 1071 , 1B21 , 1F1F , 211E , 2110 ,
1911 , 1BiB , iBiB , 1119 , 102D , 1921 , 1F1F , 2119 ,
2D10 , 1010 , 1010 , 1010 , 1010 , 1010 ,

DECIMAL

now an array defining word which creates a board array)
there will be one of these for each level of move loocked }
ahead by the ©L, seven in all. there are 91 sguares in !

each board, numbered ¢ to 20, the playing sgquares are }
numbered 10 to 17, 19 to 26, stc. A one dimensional array !}
is used, rather than a two dimensional array, to aveoid)
multiplications, which are slow whatever the language used }
to program the game, to index the board array only a simple)
addition is needed)

P T T T T

: BD_ARRAY CREATE S5IZE ALLOT { 22 bytes per board
DOES> (OVER SIZE 1- U> 1IF)
{ ." Board array access error ° GUIT THEN 2
+ H

{ the SUPERFDRTH code commented out in BED_ARRAY checks the
index)

{ used when a bpard is accessed, 1t was very useful in)

{ development of this program but is not needed in the fznal 3
{ vergion and so is removed to avoid slowing the game down)

{ now define the 7 boards one for each depth of search }
{ numbered PO to P7, P for position }

BD_ARRAY PO_ROARD BD_ARRAY PI_BOARD BD_ARRAY FZ_BOARD
BD_ARRAY P3_BOARD BD_ARRAY P4_BDARD BD_ARRAY FS_BOARD
BD_ARRAY F&_BOGRD
VARIABLE BOARD_AD used to indirectly executes one of)
ahove board arrays, so that common
code can be used to access them)
Execution vectors can be used }

I s B e

EBEOARD BOARD_AD @ EXECUTE ;3
accesses the board whose code field address is lgaded into 1}
variable BOARD_AD , which will be loaded using the word [°3)

e, WO

-

SCORE calculates and displays the number of pieces belonging)
{ to each player }

SCORE

1 BOARD C@
DUF 16 <
IF

get the sguare’s wvalue)
cccupied if less than 18 2

& P_SCORE ! :
O L _SCORE ! { zero the scores ?
g1 10 { examine all the sguares on the bosrd)
BG { that can be pccupiesd }
{
{

P_COL & = { is it the human’'s colour }

IF :
1 P_SCORE

{ yes, prepare to add to the
: { player’'s scare }
ELSE { otherwise the QL 'z score }
1 C_SCORE o
THEN
+! { and add 1t) .
ELSE { square is empty so do nothing 7
DROFP '
THEN
L.gar
#$SCORE _ { output to #SCORE)
P_SCORE @ C_SCORE @ 2ZDURP + MEN ! { save the total number)
{ of men }
C_COL &8 WHITE = { swap the scores if the BL is white)
IF SWAF THEN '
24 14 CURSOR . { and print the two scores at the)

120 14 CURSOR . 3 { the correct position)

s PUT_COORD { used by DRAW_FIECE to copy the circle)
{ parameters to PARGMETERS for CIRCLE)
FARAMETERS + & CMOVE ;3

{ the next draws a coloured circle on the board on the screen ? %

: DRAW_PIECE (n —)
#MAIN
DUP 10 — ¢ /MOD

where n is the sguare number)
draw on #MAIN 2

converts the sgquare number to an)
LY reference to access Y_CEWM and 7
X_CEN to draw the circle)

copy the Y centre coordinate)

and the X centre)

¥_CEN 138 PUT_COCRD
X_CEN 24 FUT_COORD

e e e e e e e

BOARD Ca@ get the sguarss value)

INK to set the ink colour
PARAMETERS { the address of the parameters }
FILL_ON CIRCLE FILL_OFF (draw = disc) .

1 INK F (and restore ink colour ?

{ now an execution vector that is used to sxecutes DRAW_PIECE)
{ or not, it is used so that we can later use some words that)
{ may or may not need to actually draw a piece)}

EXVEC: DRAW_MAN

{ more variables)

VARIABLE HEAP (base of work area)
{ six to hold the move values of different level positions)
ZYARIABLE SCOREQ VARIABLE SCORE1L VARIABLE SEOREZ
VARIABLE SCORES VARIABLE SCORE4 YARIABLE SCORES
VARIABLE MOVE _AD { points to a position’'s move list)

VARIABLE SIZE_FPTR { points to a move list’'s size }
VARIABLE SKILL 2 SKILL ! { the playing levesl)

VARTIABLE C_TAB (OL's tab value for #MOVES)
VARIABLE P_TAR { player's tab valus=)

YARIOGBLE P_BEST? { provisional plaver’'s best move }
VARIABLE P_REST { best move }

VARIABLE OLD_SKILL { previous playing level }
VARIABLE RED_FIECES { defines temporary red piesces }

{ three variables for every depth of search, ie for all seven }

{ boards, described for F0O, same for the rest)
VARIABLE PO_MOVES { points to PO’'s move list }
VARIABLE PO_SIZE { holds size of PO's move list)
VARIABLE PO_PTR { points to move being considered)
VARIABLE P1_MOVES VARIABLE FP1_SIZE VARIABLE FP1_PFPTR
VARIABLE PZ_MOVES VARIABLE P2_SIZE VARIABLE P2_PTR
VARIABLE P3I_MOVES VARIABLE P3_SIZE VARIABLE F3_FTR
VARIABLE P4_MOVES VARIABLE P4_SIZIE VARIABLE F4_FPTR
VARIABLE PS_MOVES VARIABLE PS_SIZE VARIABLE FS_PTR
VARIABLE P&_MOVES VARIABLE P&_SBIZE VARIABLE F&_PTR
: INIT-ROARD : { initialises the screen ?
{ called at the start of every game)
#MAIN DRAW_SCR DRAW_SIDES { draws screen and beard
£°1 PO_BOARD BOARD_&D ! ~ { points to position O}

{ so BOARD accesses that)
SDU_VALUES O BOARD SIZE CMOVE { copies initial square)

{ values to position O)
S0U_VvALUES START_BOARD SIZE CMOVE (and to the board)

{ holding the start position)

o MOVE_NO ! { zero moave number)

-i G@FLAG ! { clear the guit game flag !

40 DRAW_PIECE 41 DRAW_FIECE { draw the four starting 3

49 DRAW _PIECE 50 DRAW_FIECE { pieces)

#TITLE : .

Q 90 10 QO O BLOCK_FILL (draw the black and white }

7 F0 10 90 O BLOCK_FILL 3 { rectangles in #TITLE }
EVALUATE calculates the value for a given move which is }

square value + w ¥ men captured)

where w iz 1 for moves 1 to 54 and 2 after that. : 3
It is called possibly a few times for a given move but the
square value is added in only cnce)

The move value iz later modified by subtracting the number
of moves the opponent can make)

P A e e T)

r EVALUATE {nl n2 N2 — nl n2 n3)}
{ nl = square number of move !
{ n2 = step see CHECE _2_ways
{ N3 = sgquars numbesr of line end)
MEM & 11 /» 3 — 1 MAX { factor w above
MEM_FLIPPED & = { times men captured }
NEW_MDVE & { TRUE i+ a new move)}
IF
new move so)
FICK BOARD C&E 148 - + add in square va

claar new move
increase move 1i

save the move

NEW _MOVE !
SIZE FTR @ +!
PICK MOVE_AD & @ O

(C s
Wb b
[TR

w1 M

L13

{

4 MOVE_AD @ +! : { move on the move list)

{ poginter, 4 bytes per move }

MOVE_AD & & 2- ! : { save the move’'s value)
ELSE :
MOVE_AD & @ 2— +! { move already in list so 1
: { on extra wvalue }
THEN ;
HEADER { writes the name at the screen top)
#MAIN T 1 CSIZE { in large characters)}

& 120 24 158 2 BLOCK_FILL
162 4 CUREBOR

- " REVERSI"

S 5TRIP 2 © CSIZE ;

& STRIF

OFF 2+ 2& CLDSE

{ on yellow bBackground ?
{ at the top centre)
{ print it)

{ and restore strip and size)

3 { ad ———) { closes channel whose 1D)
' { is at address +2 as saved by #CON)

{ closes all display windows)

CLOSE_ALL
£’1 #TITLE OFF
E"1 #MOVES OFF
L] #SCORE OFF.
£31 #MESS OFF
L1 #BOARD OFF
SAVE_MOVE { ad ——— ad) (saves the move being made)
in array GAME, + 128 if a white move
ad points to the move)
DUF Ce { get the move)
COLOUR @ i+ the colour is white)

IF 128 + THEN
MOVE_NO @ BAME C!
1 MDVE_NO +!

SET_TABS

2 10
C_CcoL @

{

IF SWAFP THEN {

P_TAR ! {
0 25 CURBOR (position cursor in #TITLE)

{

{

{

{

C_TAB !
#TITLE
SKILL &

C_COL @ BLACK =
EL;!]

IF .o

ELSE

THEN 3

[n

BLACK =

HUMAN®

then add 128)
save move in BAME)
and increment the move numbsr }

e

(sets the tabs for #TITLE and prints the)
(column headings)
{ columns Z and 10 1}
i+ BL.'s colour is black 3
then reverse the tabs)
and save in variables ?

get playing level)
if gL is black)}
print @L first)
then the other)

HUMAN aL/* . ¢ else the other way round }

CLRMSG #MESS 1 1 BORDER ELS © 1 AT
clears the message window and sets the cursor position)

. BEST { prints the plavyer 's best move as held im)
¥ { variable P_BEST)
CLARMSG OLD _SKILL & 1 > { DLD_SKILL > 1 if the GL knows
IF { so it prints it out }
F_BEST & .” Your best move is *
10 - 2 /MOD SWAF { converts to XY grid reference)

&5 + EMIT 49 + EMIT { and prints them :

ELSE - S

" I don't know®

THEN i

250 SUSFEND _ME O 3 { and stop for S seconds)

compP_C0e, C_COL @ COLOuR ! ;3 { saves GL's colow in COLOUR D
PLAY _COL P_COL @ COLOUR ! ;3 { same for the plaver)

INITFPO [°3 PO_BDARD BOARD_AD ! 3
(initialises the BOARD to the position O board)

EXVEC: OPERATION { used to flip pieces or make a mavé 3

this next word starts at a squars and checks in one direction}
to see if that sguare can be used for a move,if the squars is)
empty and next to a square of the opponent’s colour them it 3}
carries on until it finds it's own colour ie valid or an }
square, which may be off the board, ieg; invalid ?}

P i e e B]

CHECK_1_WAY

nl n2 —=—— nl n2 » { nl = square number }
nz2 = step valuse +or the reqguired
direction, see CHECK_8_WAYS)

A e ey

DUF >R save step on return stack)
20D + BOARD C& { get vaiue of adjacent square)
DUP 16 < (if it is gecoupied C..)
IiF COLDUR @ <> "{ .a. with the oppocsite colour
- IF 1 MEN_FLIPFED ! { then set men captured)
BEGIN { and carry on looking)
RE + \ { move to next sguare)
2DUFP +
BOARD C& { and access board)
DUF 186 < { if pococupied ... } .
IF COLOUR @ = { and our colour
iF AR&E& OPERATION (then evaluate or flip)
- ELSE { else increment captursd)
1 MEN_FLIPFED +! O { and continue loop }
THEN
ELSE { not occupied so invalid move 3
DROF -3 { set flag to exit loop)
THEN
UNTIL { end of loop ?
THEN DUP '

THEM ZDRDEF R> 3 { and tidy up stacks ?

P A e e T T e T B B e

an

EHECK _Z_WAYS (n! n2 -—— n1 —n2 } (checks whether &)
{ move on sguare nl is valid in direction)
{ n2 and direction —nZ ?
CHECK _1_WAY ' { checks in one direction eg MW
MEGATE CHECK _1 _WAY 3 { and the opposite way =g B8E

The next word uses the linear square numbering system to 2
check in 8 directions, to move north, say, & step ef % is)
needed eg square 10 + 9 gives square 1%, adding anocther 2)
gives 2B etc, this moves north on the bcard, the directions)
are defined by steps)

¢ narth -2 sauth }

1 east -1 west H

10 north-east -1¢ south—~west

8 north—-west -8 south—east }

CHEECK _8_WAY3 {n —— 1} (checks whether a move on sguare)

{ iz valid in all 8 directions. }

checks sast and west

then sguth and north)

then north—sast and south-weast)
and south—east and north-west }

1 CHECK_Z_WAYS
8 - CHECK_2_WAYS
1+ CHECK_Z_WAYS
2+ CHECK_2_WAYS

R

2DROP 3 tidy up stack)
GEN_MOVES { ===) (generates the list of valid)
{ moves in & given position by ¥
{ testing every sguare on the board)
80 10 { outer and inner loops used to avoid }
DOI 8 + I { testing off-board sgquares =g 18)

DO -1 NEW_MOVE ! { set new move flag)
I BCARD C& 146 { if square is empty ...)
IF 1 CHECK_8_WAYS (then check in 8 directions toc
THEN { see i+ it i=s a valid move)
(
{

LOOF 7 and repeat for the rest the row?
+L.00OF 3 and the rest of the rows
FINISH (to return to SUPERFORTH, tidies the Screeh
#MESS S 1 RORDER CLS { clear #MESS and the border 7
#MAIN O 20 AT 3 { and peosition ths cursor }

ABANDON FINISH ." Game abandoned Y ABRORT ;
the abandon game message)

CR? { decides whether to go to a2 new line }
{ in the moves window)
10 = { mew line i+ the tab is 10 }
IF CR SPACE THEN 3 { SPACE forces the GL to new line)
SKILL? { requests the level of skiil desirsd by the 3
{ player and sets the tree pruning flag 3
CLRMSE ." Level of skill (1 to 2)" CR ©
BESIN DROF ¢ drop an invalid key)
CURSOR_ON KEY CURSOR_OFF (get a key ?
49 - DUFP 9 U4 { until in the range 1 to F 3
UNTIL
1+ SKILL ! SET_TAES { save in SBKILL and display !

SKILL @ DUP 5 = SWAP 7 = OR { in #TITLE, if S aor 7 }
IF S ELSE 100 THEN FRUNE ! 3 { then set the prune fiag

: YOUR_GO# ‘CLRHSG ." Your move (eg H3 ENTER J* CR CR

."* press O to list options™ 3
T MYMOVE { prints the BL 's move if any in #MOVES)
SCOREOQ Ce DUP 0> { if QL has a valid move)
IF 10 — 9 /7MAOD SWAF { zonvert to XY coords }
#MOVES C_TAB @ TAB
65 + EMIT 49 + EMIT { and print them)
C_TAR & CR? { with a possible new line)}
10 Z000 BEEF { and signal the move) ‘
ELSE '
DROFP CLRMSG ." I can"t go”
S0 S000 BEEP { otherwise do this)
O DOLD_SKILL ! { don’'t know the best reply }
200 SUSPEND_ME { and walt for 4 -ssconds ?
THEN 3 :
s FULL { —— flag ¥ (TRUE if the board is full)}

P_SCORE @ C_SCORE @ + &4 = ;

nl N2 3 —— ni1 N2 n3 ¥ { stack is as Ffor?
EVALUATE, execution vector OFERATION)
executes either of these two words to)
evaluate or make the move)

gives the end piece of the line)

FLIP_PIECES

DVER 3 PICK +

R A T o e ey sy

OVER QL — subtiracts 1 if step is negative to avoid)
highlighting an existing piece)
3 PICK the start sguare ?
Do T
RED_PIECES @ O= ‘ { if not drawing in red)
IF COLOUR & - (occupy the sguare with ?
I BOARD C! { the correct coclour
THEN
I DRAW_MAN DUP (draw the pisce and repeat the ;
+LOOFP 3 { rest of the line)
: FLIP { ad —— } { makes the move held at ad)
ASSIGN OPERATION TD-BO FLIP_PIECES { ensures the move)
{ is made and not evaluated)
ce 7DupP { if a valid move is at ad)
IF CHECK_8_WAYS THEN j; { then make the move)}
: MAKE_MOVE { ad === 3} (makes a move on one of the)
{ boards PO to P7 does not draw the board)
ASSIGN DRAW_MAN TO-DO DRGF { ensure no pieces are drawn?
FLIP 3 { and make the move at ad ?
: DRAW_ALL_MEN { used when a move is retracted to redraw)
(the whole board)
#BOARD CLS DRAW_SIDES ({ clear and draw a blank board)
80 10 (for every sguare)}
DO I B+ 1
DO I BOARD C& 16 <« { which is pccupied }
IF I DRAW_FIECE THEM { draw the piece }
LooFr 9
+L_OOF

SCORE ; { and print the new score)

ae

SWAF_SIDES { called to swap sides ie cheat !)

P COL & C_COLL @ P COL ¢ C_COL ! { swap the colours }
1 PLAYER ! { to ensure the GL plays)
F TAE @ C_TAB @ P_TAR ! C_TAB ! { swaps the tabs for)
{ #MOVES)
SET_TABS { and swaps the titles)
0 -1 3 (flags to ensure we lesave GET_MOVE)
= RETRACT { the option ta takee back a move)

START_BOARD O PO_BDARD SIZE CMOVE { copy the starting).
{ board to FO }
INITPO { select PO board)
O OLD_SKILL ! { the QL won't know the best reply)
-1 MOVE_NG +! { go back one move)
MOVE_NO @ 04 { if it is now negative, we are at ¥
{ starting position so 7
IF O MOVE_ND ! { clear move number }
100 S0O00 BEEP { make a rude noise)
CLRMSG (output a message)
5 2 AT ." At starting position®
150 SUSPEND_ME (for 3 seconds ? , _
ELSE MOVE _NO @& 0> { otherwise if at least one move on J
IF MOVE_NO @ Q { for every move made)
DO I GAME Ce& DUP 127 - { make the move in GAME)
IF WHITE ELSE BLACK THEN { play the correct
COLOUR ! ' {
127 AND PLAYER C! { in PLAYER)
FLAYER MAKE_MOVE { and makese the move without)
- LOOP { drawing it }
THEN 1
SWaP_SIDES ZDROP { swap colours }
DRAW_ALL_MEN { and draw the new board)}
#MOVES CLS { clear the moves }
THEM
FLAY_COL O { the flags to exit GET_MOVE)
ASSIEN CPERATION TO-DC EVALUATE j { reassign CPERATION)

BUIT GAME O QFLAG ! O PLAYER ! O COMP ! O —1 ;
{ leaves the current game and reguests another)

{ variables for setting up a new board ?

VARIABLE SGUARE { holds the sguare number of the cursor)

VARIABLE X { the X and Y coordinates of the cursor)

VARIABLE ¥ { in #BOARD)

: IMNIT_CSOCR { initialises the cursocr and sguare)
X173 Y ! 3

40 SEQUARE ! B3

: BET_SGU { converts the XY pixel coordinates to. }
{ a sgquare number and loads SRQUARE b
X a 25 /7 { each sguare 25 pixels wide }
73 + { fiddle factor, ¥ 0 at top, sguare 1 }
(at bottom)
¥ @ 17 / { sach sguare 17 pixels high 3
F R - { times the sguares pesr row and subtract)
SRUARE ' ; (to leave and store the square number
: L/R {n — 1 adjusts % by n pixels left or right 2

get X and add n
gnsures rolls round left and right)
and save and load SQUARE)

P]

X a+
200 + 200 MOD
X} SET_SAU ;

colgur, save the movel)

ol an

g Bp

n¥

{ moves 1 sguare ls+ft 3
moves 1 square right

LEFT 25 L/R
RIGHT 25 L/R 3

-~

usn (n =)
Y @ +
134 + 136 MOD
Y ! SET_SGU 3

adjusts Y by n pixels up or down)
get ¥ and add n) :
ensures rolls round top and bottom)
save and load square !}

ey e

Up -17 W/D
DOWN 17 U/D

{ moves 1 square up)
{ moves 1 square down)

LA 1]

PUT_FPIECE {n — } { places a piece of colour n on the)

(playing board FO)
#AIN SOUARE & BOARD ! { store colour in the board)

SEBUARE & DRAW_FIECE #BOARD j; { and draw it on the display).

PUT_BLACK 0 PUT_PIECE
PUT_WHITE 7 PUT_PIECE

{ places a black piece)

H
H { places a white piece ?}

EMPTY ' { blanks a sguare)}

4 PUT_PFIELCE { places and draws a green piece ie blank J
SEU_VALUES SBUARE @ + Ca { is the sguare a centre aone’
DUP 16 < { ie < 16 in SEU_VALUES, if so)

IF DROP I7 THEN { then allocate a value to thes plavying}
{ board of 37 which is high)
SQUARE @ BOARD C* 3 (load board with the value }
CLEAR { clears the whole board to the original)
{ starting position }
sS4 _VALUES O BOARD SIZE CMOVE { initialise the beoard ?
DRAW_ALL _MEN . - { draw all the men)
#BOARD INIT_CSO0OR 3 { and centre the cursor)

the next prints the options available in #MESS)
SET_HELF CLRMSG O 1 AT ." #Arrow keys move the cursor”

CR ." W or B places a white/black pigpce”
CR ." N clears the sguare®
CrR .* C clears the board”
ER ." ESC to terminate™ H
SET_POSITION { obeys the keys to set a position }
#MOVES CLS { clear the moves window)}
INITFPO { ensure setting bgard FO 3}
INIT_CSOR { centre the cursor }
SET_HELP { print the options }
DRAW_ALL _MEN #BOARD (draw all the men)
BEGIN .
X @Y 2 CURSOR { position the curscr)
CURSOR_ON KEY CURSOR_OFF DUP ¢ get a key)
CASE 172 OF LEFT ENDGF { left arrow)
200 OF RIGHT ENDOF { right arrow }
208 oF HE EMDBF { up arrow }
216 GF DOWN EMDOF { down arrow }
b& OF O FUT_FPIECE ENDOF { B for black 3
87 OF 7 FUT_FIECE ENMDOF { W for white)
78 OF EMPTY ENDOF { N for rnon= }
&7 OF CLEAR ENDOF i T
27 OF ENDOF { EBC to exit }
DEFAULT
ENDCASE 27 = { repeat until EBC)

UNTIL

SCORE { print the2 new score)

O BOARD START;BUQRD S1ZE CHMOVE (copy position to the
O MOVE_NO ! H { start and zero the move numher)
: JOPTIONS { prints the options available on the }

{ player ‘s turn)
CLRMSGE O O AT

" X exchange colours 7 best move"' CR
." 5 set up board 2 guit game® CR
=" R retract move L skill level" CR

." ESC return to SUFPERFORTH" CR
" press any key to continue® '
KEY DROP

: 7O0PTION { nl n2 —— flag) { selescts an option
+ { depending on ni+n2 }
CASE BB OF SWAFP_SIDES ENDOF £

B2 OF RETRACT ENDOF
81 OF QUIT_GAME ENDOF
&% OF .BEST ENDOF
76 OF SKILL? O ENDOF
82 OF SET_POSITION O ENDOF
79 OF .OPTIONS O ENDOF

a5
et

anr-esa

27 OF ABRANDON ENDOF ESC)
DEFAULT O anything e=lise ?}
ENDCASE ;

GET_KEY CURSUOR_ON KEY CURSOR_DFF 3

: BET_MOVE { gets the player ‘s move or ocption)
BEGIN :
YOUR _G0#% print message)

#MOVES F_TAB @ DUF TAEB
Z SPACES TAB
GET_KEY &5 — DUF 8 WU ¢=
IF 65 70PTION
ELSE DUFP 65 + EMIT
10 + BET_KEY
49 - DUP B U< 0=
IF SWAP DROF 49 70PTION check if option }
ELSE DUF 49 + EMIT else print 1 to 8)
7 # + BET_KEY 10 — 7DUP { lock four EMTER)
IF SWAaFP DROF 10 20PTION { if not check opticn)
ELSE -1 { if none of these snsure)
THEN { repeat the loop until a
THEN (valid move is read)
THEN
UMTIL 3

position cursor and)

blank any characters tharesl
i+ the key is not A to H)

check for option }
else print & to H }
get another key)

if not 1 to 8 3

e el e e e

: MEBEW { regquests the colours }
CLRMSE .* Do yvou wish to play " ER
" black or white 7?7 (B or W) *
WHITE BLACK
CURSOR_ON KEY CURSOR_OFF { get a key }
CLRMEG 86 = (if a W then set the)
IF SWAF THEN { colpurs appropriately)
OVER COtOUR ¢ C_COL ! P_COL ' g

P T A Ly P

L

draws the piece in red)
get the colour of the piece
and store a red piece)

DRAW_RED p ——)
DUP BOARD C@
SWAP 2 OVER BOARD C!

ey e

DUF DRAW_PIECE draw it J
BOARD C! 3 { and restore the original colour
DRAW_MEN { ad —= } { draws the piece on sguare n
{ by first drawing it in red for 3 seconds)
{ and then in it’'s proper colour)
bur Ce { get the move if any ie not zeroc)
IF ASSIGN DRAW_MAN TO-DO DRAW_RED (yes draw in red)
-1 RED_FIECES ! (set the red flag)
DUF FLIF { and draw them }

#MOVES 150 SUSPEND_ME ¢ and wait 3 seconds)
THEN .
ASSIGN DRAW_MAN TO-DO DRAW_FIECE { now draw the proper)

O RED_FPIECES ! FLIF { colours and clear the flag }
SCORE #MOVES ; { print the new score)

- MOVE {nl N2 ———) { prints a move)
AT PO_PTR @& C& { get the move from FPO's list 2
10 — 2 /M0OD SBWAP &5 + { and convert to ASCII ... }
EMIT 49 + EMIT ; { «u- and print it)

BEST# - { prints the 8L °'s best move so far ?
SKILL & 2 > = . { only if playing level > 2 }
IF #MESS 24 1 .MOVE { print it)
- (" SCOREQ 2+ @ 4 .R .") " { and it's value)
THEN 3

MOVE# _ { prints the &L's move }
SKILL @ 2 > { only if playing level > 2}
IF #MESS 24 3 .MOVE THEN 3

CoMP-—MOVE { generates a list of moves) :
ASSIGN OFERATION TO-DOD EVALUATE { ensure evaluation)
GEN_MOVES & { and generate the moves }

after this point there are a whole seriss of words which are }
identical or very similar and which ares numbered 0 to &,)
there is one word for each level of search or ply, }

eg P3_SCORE calculates the value of a move at ply 3. It)
would be more elegant to have written the program recursively:
so that the same code could have been used but, woulid have)
been much more difficult to understand, this is left as an }
exercise for the futwre. Where these set of & or 7 identical)
words occur, only the first is explained)

the next 7 words gensrate a l1ist of moves from each position)
PC to P&
GENPO_MOVES
INITFO { ensure we use PO_BUOARD)
HEAFP @ DUF get the address of the work area)
FO_MOVES ! PO_PTR ! and ensure the list of moves starts)
there)
point MOVE_AD to FPO_pointer)
initialise the list size to zero J
point SIZE_FTR to FO_SIZIE)
O 0 PO _MOVES & 2! make first move 0 in case no aoves)
COMP-MOVE { and generate the list of moves
FO_PTR 8 2+ 2+ PI_MOVES ! { ensuwre the Fl move list

FO_PTR MOVE_AD !
0 PO_SIZE !
FO_SIZE SIZE_PTR !

R T e T e T B

[T T I TR

o _ { starts after the PO list)
GEMF1_MOVES ' (zes GENFO_MOVES)
L3 Fi_BCARD BOCARD_AD !
Fi_MOVES @ P1_PTR ! PI_PTR MOVE_AD !
O P1_SIZE ! P1_SIZE SIZE _PTR ! O O F1_MOVES
COMP-MOVE P1_FTR @ 2+ Z+ P2_MOVES !

[
LY

GENPZ_MOVES
['] PZ_EDARD BOARD_AD !
P2_MOVES €@ P2_PTR ' F2_PTR MOVE_AD !
0 P2_SIZE ' PZ2_SIZE SIZE_FTR ! O O PZ_MOVES @ 2!
COMP-MOVE P2Z_FTR @ 2+ 2+ PS_MOVES ! ;

GENF3I_MOVES
L3 P3_BOARD BOARD_AD | .
PZ_MOVES @ PZ_PTR ! PS_PTR MOVE_AD !

O PI_SIZE ! P3I_SIZE SIZE_PTR ! © O P3I_MOVES e 2!
COMP-MOVE P3_FPTR @ 2+ 2+ P4_MOVES ! ;

BENP4_MOVES
-1 P4_BOARD BOARD_AD !
F4_MOVES @ F4_PTR ! P4_PTR MOVE_AD !
O P4_SIZE ! P4_SIZE 3IZE_PTR ! O O FP4_MOVES & 2!
COMP-MOVE F4_PTR & 2+ 2+ PS_MOVES ! ;

GENPS_MOVES
£‘3 PS_BOARD BOARD_AD !
PS_MOVES @ PS_PTR ! PS_PTR MOVE_AD !
0 PS_SIZE ¢ PS_SIZE SIZE_PTR ! O O PS_MOVES @
COMP-MOVE PS_FTR @ 2+ 2+ P4 _MOVES ! ;

]

BENF&_MOVES
[‘] P&6_BUOARD BOARD_AD ! P&_MOVES @
P&_PTR ! P&_PTR MOVE_AD ! O F&_SIZE !
P&_SIZE SIZE_PTR ! © O P&4_MOVES @ 2! COMP-MOVE ;

now we work out move values by alternately subtracting and 3
adding values from the next higher move: what is good for the:
opponent is bad for yvou so subtract his value)

P1_SCORE ' { —— n)} { calculate P1 move' s value)
FO_FTR & 2+ @ { get PO move's valus)
FL_ PTR 8 2+ & { and Pl move’'s valus)

- 3 ‘ { and subtract

P2_SCORE { -~—— n) :
P1_S5SCORE { get Fl move's value)
F2_PTR @ 2+ + 3 { and add PZ move’'s value)

1a

next 3 very similar)
PS_BCORE FP2_SCORE PI_FTR & 2+ & -~
F4_SCORE PZ_SCORE P4_PTR & 2+ @ +
PS_SCORE P4_ZSCDRE PS_FTR € 2+

(@
;
s laa

next we test move values o see if a higher value for a }
move has been found, if so update the appropriate SCORE)

TEST_F1_SCORE {nl —— 3 { nl = new move value)
SCORE1 @ SKILL &8 2 > { get SCORE!l and if skill > 2)
IF 24 2 .MOVE { we print the move and it's
26 TAB DUP .* (" 4 R " ¥ { value in brackets 1}
THEN
SCOREQ 2+ @ Z2DUP = { get OL's move value and i+ =)
{ new value we randomly selact)
IF 2DROF TIME DROF 1 AND O THEM > { one of thes= by .
{ using the BL's clock to choose
iF .
SCOREl & PO_PTR & @ SCOREO 2! { update OL's best move:!
BEST# " { and print it)
P_BEST? @& P_BEST ! { update player’'s provisional }
THEN 3 { best reply :
TEST_P2_SCORE : { =——= flag }

SCOREZ @ DUP SCORE1l @ <
IF DUP SCOREL ¢
P1_PTR & C& P_BEST? !

{ if SCOREZ < SCOREL then)
{ update SCCRE1)
{ and player's possible best)

TEST_P3_SCORE

THEM .
SCOREQ 2+ @ ¢ 3 { flag is TRUE if SCOREZ < SCORED)
{ ie; we can apply the alpha-bteta algorithm: see below)

{ -~ flag)}
SCOREZS @ DupP
SCOREZ @ MAX SCOREZ ! { this and P2 move value as FZ }
. { move value }

SCOREL @ > 3 { flag is TRUE i+ a better move found)
the next 3 are uncommented:they are similar to TEST_P3_SCORE)
TEST_P4_SCORE

SCORE4 @ DUP SCORES € MIN SCORES ! SCOREZ & < 3

TEST_PS_SCORE
SCORES @ DUF SCORE4 @ MAX SCORE4 ! SCOREZ € »

TEST_F&_SCORE
PS_SCORE + DUP SCORES @ MIN SCORES ! SCORE4 @

s

1

{ get P33 move value and save larger ofl .

: HIGH (nt ad —— nl ad nZ ? { finds the position n2 of tha)
{ highest valued move in the list at ad, nl is the }
{ number of moves in the list)

DUF 2+ 2+ { get address of next move)

OVER 3 PICK { == ni1 adl adlZ adl nl)

DUFP 1 { only dao if more than one move)
IF 1

b >R FA 2+ @
OvVER 2+ @ £
IF R> DROP DUFP >R THENM
2+ 2+ Rx
LooP
El SE DROF
THEN SWAF DROFP 3

loop for ni-1 moves ¥ .

if the next ¢ current ?
then save the next 7}

and move to the next move 3}
and repsat }

and tidy up stack }

L T e B B e T M0

: SORT_HI (n ad — 3} { sorts a move list at ad with?
: { n moves intoc ordery highest at the top)
OVER 1 > -] { only if more than 1 move)
IF OVER 1 { locop n—-1 times) _
Do HIGH { find position of highest }
*R DUF 26 R@ 2e { and swap with the top of)
4 PICK 2' Rx> 2! { the list 3
SWAFP 1— SWAP 2+ Z+ (and rspeat for the next move
Logr { in the list }

THEN Z2DROP ;3

{ the next feaw copy a position to another board for analysis 3
{ to another depth of s=arch) :

PO—3P1
{1 PO_RDARD >BODY
[l PI_BOARD
DUP BOARD_AD !
>BODY SIZE CMOVE

copies PO to Pl :

get address of board PO)

and code +ield address of P12
ensure becomes current board)
and copy PG to P1)

L T T T]

: P1-3P2 - { see PO-IP1) .
L] PI_BOARD »BODY ['3 PZ_BOARD DUP BOARD_AD !

>B0ODY SIZE CHOVE

PR-3F3 - e
[°1 PZ_BOARD »EODY ['1 F3_BOARD DUP EOARD_AD !
>BODY SIZE CMOVE 3

F3-3F3
{3 P3_ROARD >EODY ['] P4_BOARD DUF EDARD_AD !
SBODY SIZE CMOVE ; .

Fa—:PS :
['1 F4_BOARD >BODY [°1 PS_BOARD DUF BOARD_AD !
>BODY SIZE CMOVE ;

PS—>P5 _
£'1 PS_BOARD »BODY [‘1 P4_ROARD DUF BOARD_AD
»BODY SIZE CMOVE ;

SUB_SIZE {inad — n 2
{ subtracts the size of a move list +ram
{ the move value in thes next higher move }
{ list, is adjusts value for mobility
2 2+ { get address of move value)
OVER MEBATE SWAP +1 { and subtract n from it 3

{ now a set of words to initialise and generate a list of moves)
{ from & given position. Again all very similar) '

——= flag) o
initialise SCOREC to the moest
negative integer and it’'s move to ©)
gnsure using the GL's colour)
generate the list of moves)

get and duplicate the list size)
also the address of the move list)

BET_PO_MOVES
32748 O SCOREC 2!

COMP_COL
BENPO_MOVES

PO_GIIE @ DUP
Po_MOVES @ Dup

e e e e e e]

PO_PTR ! to initialise FO_PTR)
SORT_HI { and sort the list in order ! _
pUP 1 > SKILL @ 1 > AND 3 { flag i=s TRUE if list is

{ longer than 1 move and SKILL > 1 ie need)}
{ to go on top position P2)

+ BET_P1_MOVES :
cCoMP_COL. FO->P1 - { set player’'s colepur and copy

PO_PTR @ MAKE_MOVE ' { the PO board to the Pl beard)
‘ (and make the PO move }
PLAY_COL GENPI1_MOVES P1_SIZE @ { a= above)
PQ_PTR S5UB_SIIE { subtract no. of moves from the }

: { PO value etc as above ?
DUFP P1_MOVES @ DUFP €& P_BEST? ! DUP
F1_PTR ! SORT_HI 327467 SCOREL ! SKILL @ 2 > 3

: BET_PZ_MOVES
PLAY_COL Pi-»P2 P1_PTR @ MAKE_MOVE
COMP_COL. GENPZ_MOVES P2_SIZE @ Pi_PTR SUB_SIZE
DUF F2_MOVES @& DUP
P2 _PTR ' SORT_HI 32748 SCOREZ ' SKILL @ 3 >

BET_FI_MOVES
COMP_COL P2-3P3 P2_PTR @ MAKE_MOVE .
FLAY COL GENPS_MOVES P3_SIZE @ P2_PTR SUB_SIZE
DUP PI_MOVES @ DUF
PT_PTR ' SORT_HI 32747 SCORES ! SKILL @ 4 » ;

GET_P4_MOVES
PLAY COL P3-3P4 P3_PTR @ MAKE_MOVE
COMP_COL GENF4_MOVES P4 _SIZE @ P3_PTR SUB_BIZE
DUF P4_MOVES @ DUP
P4_PTR ¢ SORT_HI 32748 SCORE4 ! SKILL @ & * ;

BET_PS_MOVES ,
COMP_COL F4->PS P4_PTR @ MAKE_MOVE
PLAY COL BENPS_MOVES PS_SIZE @ F4_PTR SUB_SIZE
DUF PS_MOVES @ DUP
FS_PTR ! SORT_HI 32747 SCORES ! SKILL @ 8 >

na

BEST_Pe_MOVE { this differs from the above only in that)
{ thig is the last level and so we stop when we }
{ have the highest valued move !
FLAY_COL PS=->Ps PS_PTR & MAKE_MOVE
COMP_COL. GENFPA&_MOVES FP6_BIZE @ PS_PTR SUB_SIIE
P& _MOVES & HIEBH
2+ 8 R 2DROP R> ;

: PRUNE? (ni —— n2 ©) (this decides if we prune the move 2
(list or not pruning eccurs on plaving levels I, 7
1 MAX PRUME & MIN O { if FRUNE < n we kesgp it, loss o)

.t

B e T e T T T e T e T i o B o I e T

TRY _454_MOVES (works on ply 4,5 and & see BEST_MOVE)

jaln} { loop for all PZ moves)
GET_P4_MOVES { get list of F4 poves)
iF : { if playing lavel > & go desper)
PRUNE?T : { possibly prune no. of moves |}
Do GET_PS_MOVES { get list of PS moves)
IF 1t MAX © € i level > B go deseper)
DG BEST_FP&_MDOVE ({ and get best move at ply & 1}
TEST_F&6_SCORE ¢ and test it and exit i+)
IF LEAVE THEM (we can leave this loop now)
4 PS_FTR +! { or move on to nmext FPS move }
LOCF
ELSE DROF { levels 7,8 so calculate and)
~ P3_SCORE SCORES ! (lpad PSS value)
THEN : :
TEST_PS_SCORE © { is the PS5 move better 7)
IF LEAVE THEN { vyes we leave this loop now I
4 P4 PTR +!} { else we go on to next F4 move)
LDOOP . ‘ _ o
ELSE DROP (levels 5,86 zo calculate and)
P4 _SCORE SCORE4 ! { logad P34 value)}
THEN.
TEST_P4_SCORE { is the P4 move better 7)
IF LEAVE THEN { yves, leave this loop now)
4 PE_PTR +! _ { 2lse go on . to next FS move)
LOOP

now we have the word which finds the GL°'s best move, it ;o
searches to a depth depending on the selected skill level
level 1 searches to a depth of 1 move)

2 2 moves)
3 = n)
4 4 (1})
o and & b ")
7 and B & r }
2 7

it)
levels S and 7 prune the number of moves examined to make)
the QL move faster while still searching deeper)
The alpha-beta algorithm is used to make the searches
faster, a detailed description is beyond the scope of this)
description, see for example " Computer Gamesmanship " by)
David Levy. Basically it terminates a search through a list }
of moves if it finds a move that is better than one an)}
opponent can force, by selecting anpother move which has been)
previgusly sxamined }

BET_PC_MOVES

IF O
PG GET_Pi_MOVES .
MOVES ¢ print
IF 1 MAaXx
PRUNE @ 2% MIN O £
€
DO GET_PI_MOVES
I PRUNE? !
DB BET_P3_MOVEZ | (
IF PRUNE? {
TRY _454&_MOVES
ELSE DROF
PZ_SCORE ESLORES
THEN
TEST_PS_SCORE
IF LEAVE THEN
4 P2 _PTR +!
L.O0F
ELSE DROF
P2_SCORE SCUOREZ !
THEN
TEST_PZ_ECCRE
IF LEAVE THEMN
4 PL_PTR +!
LooP
EL5E DROP
Fi_SCORE SCOREYL ¢
F1_MOVES 2 C& "
P_BEST? ! {
THEM
TEST_P1_5CCRE {
4 FO_PTR +! {
LoaF
E! SE DRLCF
PO_PTR @ 22 SCCRESG 2t {
THEM H B,
: 50 T -t generate
SKILL @ OLD_SKILL ! P
CLRMSG ." My move " SKELL @
IF _ o -
4 SPACES ." best so far®
8 SPACES ." just consider
12 BFACES ." considering®
THEN
BEST_MOVE {
MyYMOYE (
L°2 PC_BOARD EBOARD_AT ! £
COomMP_COL {
SECOREC SAVE_MDOVE {
DRAW_MEN {
SCOREQ Ce Dome 1 ; {
r FP_CR? ({ goes to a

#MOVES P_TAR @ CRT ;

CH ¢ eime
A

i QCGQE& Y
{ get the mcve1ld5{-ﬁg~
{ it level * 1 dgo déeper ¥
{ to get the Fl-umows Tist)
Fo move .under :;ﬂsiderat G 2
(if level - 2 gp desper)
prune to le-ﬁuves 4‘ ievels !
g or 7Y LT
i_ﬂet_tJe B2 move
Tevel..» ¥ go desper
and g2t the F3 move lis
if level » 4 .go. desper)
(carry on formplies 4,5,4)
level 4—)__“ﬁ;,m
calculate ihenﬂu move
value and save it)
is thizs bettasr 7)
yes léave this dogp)
else gc on Lo nex *1Ea move)

list 3

=5
i£ !
=
-

)

P i e T e N s

i

tevel u.) ' '",- -
ca.:ulate—tbe Pﬂvmcve 1
value and save ;% %-
is this bet terwﬂ-a-i
yes leave this lopp oy

W e i ey e iy

else gz on to next FZ move)
£ level 2 3
{ :a.ch,ate the PI valua)

save it and 1‘ hetter, save as'}
the player’'s best. L<

is this
move on.

bBettzr 7 2
toc nexi move)

ievel 1

s and make&\the ”Lus.mnq: 2
cupy S%ILLthtcuBLD SKIL_ }e
2 = £ rﬁy AF Jegg}

ed" CR

get ithe best UL 's move !
make the move)

reset to FPO_2DARD

sat O ‘s golour !

save thz move in GAME)
draw the new position }

and save the move in COMFE
line ¥ iz whits !}

aeEw glayer

8L

.1 PLAYER-MOVE
BEGIN
PLAY_COL
ASSIGN OFERATION TO-DO EVALUATE
GENFO_MOVES
PO_MOVES @ C@&
IF GET_MOVE DUP
IF PLAYER C! {
FO_MOVES @
O OVER !
FO_PTR !
-1 NEW_MOVE !
PLAYER C@
DUF BOARD C& 15 >
IF CHECK_S_WAYS
PO_MOVES & C&8 0=

(allows the player

L T T T T]

Lo T T T T)

THEN

IF CLRMSG ¢
- Illazgal move, try
100 SO00 BEEP {
150 SUSPEND ME ¢
#MOVES : (
P_TAB @ TAR 2 SPACES O

EL SE

PLAYER SAVE_MOVE
DRAW_MEN —1
F_CR?
THEN
EL SE 1- THEN
ELSE ¢
O PLAYER !
CLRMEG .°
S0 S000 BEEP
. 200 SUSPEND_ME -1

i I N a

You can't go

eI T B T

P_CR?
THEN
UNTIL = j
: WIN { —— flag !
COMP @ PLAYER @ + O= FULL OR 3 ¢

{ indicats =2nd of game,
=ide can move)

L]

AGAIN7
CLRMSG & 2
CURSOR_OM KEY CURSOR_OFF

g9 < :

GAME_DOVER
{ big letters)
QFLAG 2
IF CLRMSEG
1 CSIZE 7 1 AT
RE & C_SCORE &
me drawn”
oo You w
CsIZE
SUSPEND_ME

o+
}

5 (0

L ITmi

e o I I LT R L

-~
T
1
=

iz &4 pieces on the boaird

{ if he hasn't guit print the

to make his move)

s=t player’'s cocliour ?
anly evaluate when }
check i+ he can move @
if he can then }

gat his move)

i¥ hs has made a2 moved

{ clear top of PO move list @

initialise FPO_FTR 1}
ensurs a nsw move)
get playesr ‘s move !
and check i+ he has
%
'

made a valid move

it not, tell him ?
againm " \
with a rude nois=a 3} .
wait 3 seconds
and clear his move 3

{ from #MOYVEE }
move is walid)
so save it)
draw the new positiond
possibly a new line J

{ player has swapped sides so leave)}

he can't go soc)
clear PLAYER)

and tell him }
audibly ?

wait 4 seconds
possibly a new line

{ repet until valid move or can’'t go ?

truse to)
cr naither

flag is

{ does he want another game)
AT ." Another game 7 (¥Y/N)} *

: FIRST_MOVE

COMP_COL
TIME DROF 3 AND
CASE
aF
oF
OF ag
OF 58
DEFAULT
ENDCASE
SCOREC C! MYMOVE
SCOREC SAVE_MOVE
DRAW_MEN ;

32

42

ENBROF
EMDOF
ENDOF
ENDOF

ISR NE o e

* REVERSI
BEGIN _
2 MODE (set B colour mcde ?
IMIT-BOARD { initialise the board }
HEADER (the name of the game }
MEBW { choice of colours 1}
#MOVES LCLS { cle2ar the moves window 3
SET_TABS { set tabs and print names }
SKILL? { choose playing level }
COLDUR @ WHITE = { i¥ the plaver is whita ?
IF FIRST_MOVE THEN (the QL goes firgh)
BEGIN
FLAY _COL { set player’ colour }
PLAYER-MOVE { and l=2t him move }
WIN { is the game over)
IF -1
ELSE { no, give the BL a go ?
COMFP_COL
&0
WIN { is the game cver }
THEN
UNTIL { repeat until it is)
SAME_DOVER { print result)
AGATNMT { play again)
UNTIL
FINISH ; { ma, tidy up and finish)
HERE HEAF ! 1000 ALLOT { allocate 1000 byies to working area

{ now open a big window and cl=zar it,
{ mess that may ke outside the playing area,
¢ OPEN SCR_S1Z2XIZSLA0CX0 2DUP #DUT
ELOSE

S PAPER CLS #0OUT 2¢
EMD_FILE REVERSI

Al

{ a1l the 4 possitle first moves are
{ egually

hY
strong so choose at random)
{ set BL"'s colour) :

uze clock to get a random

numbier ¢ to 3T)

which use to select a move)

P,

{ can't occcur)

{ store the move, make it)
{ save it and)

{ draw it)

{ executing this plays the game)}

thizs gets rid of any 2
then close it 1}
2@ 25WAP #0UT 2

{ end of file and play the game)
{ note the order and they must be con
{ the same line }

ADIGITAL PRELISION

|

3
)

.,": ‘3 .

. 2CONSTANT

* 2DROP
2DUP
208
20VER
2ROT
b
2%
2+
2_
2/
2a
3
AZ!
AZ@
ABORT
ABORT"
ABSOLUTE RAM ADDRESSES
ABS ‘
ACTIVATE
ACTIVATION OF TASKS
AC! '
aAcC@
ADDING WORDS
ADJUST_TIME
ALLOT
AND
ARC
ARITHMETICAL OFERATIONS
ASSIGN
AT
Al
AR
BACKING WP
BASE
BAUD RATE
BAUD
BEEFING
BEEP
BEGIN
BLANK

INDE X

N

WHHUWNOO U A W~NG O

®m &4 & & & & » % O @ 3 E B B B N B B
N

A Cd G G G G A A G N G G G G

ek (] e O~ O
QD = 0

* Wt Ny
P!ﬂ u Nk

i

3.12
3.12
8.1
10.4
B. 12
3.4
3.10.4
3.1 et seq
8.2
3.10.3
J.12
3.12
1.6
3.10.1
10.4
10.5
10.3
10.3
3.2
3.12

BLK

BLOCKS
BLOCK_FILL

BL

BORDER

BUFFER

BYE

B/BUF

CASE

CIRCLE

CLOSE

cLS

CMOVE

CMOVE >

coLp

COLON DEFINITIONS
COMMAND BLOCK
COMPILATION MODE
COMPILE
CONDITIONAL TESTS
CONSTANTS

" CONTROL. STRUCTURES
CONVERT

COUNT

CREATE

CR

CSIZE

CURSOR_OFF
CURSOR_DON

CURSOR

D2%

D2/

DABS

DATE

DATES

DAY$

DECIMAL

DEFAULT

DEFINING NEW WORDS
DEFINITIONS
DEPTH

DICTIONARY MANAGEMENT
DICTIONARY STRUCTURE
DICTIONARY

DMAX

DMIN

DNEGATE

DOES>

4. i
4.1
3.10.4
3- 7-2
3.10.4
4.1
10.2.5
4.1
3-9- 1
F.10.4
10.1
3.10.3
3.12
3.12
&.2

L3
11]
B
| aad

P I R
[

HMH.UJMU*M

3.

[I R]
OO
s e
(TSN

4 ja ¥ o 8 N @ QOO 5 1 s
WD D 5 0 G GO ===
e« s Oabs
- N -
[y

muuumumumwwguwwuwwwwuwpm
NP RL R

DOUBLE
DOUBLE
DOUBLE
DG

DPL
DRODP
DuUP
DU<

D+

D_

D<

D=
EDITOR
EDITOR
. EDITOR
" EDITOR

LENGTH INTEGERS
LENGTH OPERATIONS
NUMBERS

COMMANDS

‘DISPL.AY

ENTRY
LOADING

EDITOR
EDIT

ELSE

EMIT

EMPTY-BUFFERS

ENDCASE

ENDOF

END_FILE

ERASE

ERRCRS - USER DETECTED
ERROR HANDL ING

ERROR MESSAGES

ERROR

EXECUTE

EXECUTION VECTORS

EXEC

EXIT

EXPECT

. EXVEC:

FENCE
FILE INPUT
CFILL_OFF
FILL_ON
FILL
FIND
FLASH_OFF
FLASH_ON
FLOATING POINT OPERATIONS
FLOPPY DISK BACKING UP
FLOPPY DISK HANDLING
FLP1_
FLP2_
FLP
FLUSH
FORGET
FORTH
FORTH-83
FREEZE
GAME - REVERSI
GRAPHICS HANDLING

HHBDDWE~BONNYNNHUBHWAB WG N

[]

DOUBLE LENGTH INTEGERS

HUWHUHAWAWARNHED N
“NAPRPCCRNNCUANWID N W

a L | a a [] L] a
N o
- .
: [

O 5 8 L]
NHWKN W NOdr = ON

AN

[. L]

~ NGO Ebpab b

50. = B 8§ o = @
L7 P I S e

3.10.4

H.

HERE

HEX

HEX

HOLD

ID.

IDENTITY OF TASKS
IF

IMMEDIATE WORD
IMMEDIATE
INITIALISATION
INK

INFUT FROM FILES

INPUT FROM STD FORTH BLOCKS

INPUT INTERPRETATION
INPUT NUMBER HANDLING
INPUT REDIRECTION

INPUT

INTEGER OPERATIONS
INTERPRETIVE MODE

I

JOB_1ID

JOB CREATION

JOB IDENTITY

Jos

J

KEYBOARD INPUT

KEYBOARD WORDS

KEYROW

KEY

KILL

K

LATEST

LEAVE

LINE

LISTING OF REVERSI

LIST

LITERAL

LOADING NAMED FILES
LOADING THE EDITOR
LOADING THE SYSTEM
LOAD_FILE

L OAD

LOGICAL OUPERATIONS

LOOPS

LOOP

LOWER CASE LETTERS

L/B

MACHINE CODE INSTRUCTIGNS
MAX

MDV1_

MDVZ_

MDV .
" MEMORY HANDLING
MEMORY MAP
MICRODRIVE HANDLING
MIN

MODE

MOD

3.10.1

8.1

3.10.1
I.10.1
3.11

8.3.1
10.2.1

3.9
2.8.1,3.8.3
8.1

See SYSTEM INITIALISATION
3.10.3

4,2

a s 8 S0 8 o
a8 8 B s (b N
NMPN

2 QOO0
[]
Mo A e

16.2

NMOOO-
llll“
ARNNT

=0 == b
[

s » o & & v e & 2 o8 @
o
-3

Hr B RNAWW R RO WA (A (e R WA= RN

4 % % jpaw 8 N R W
i

T T I I BN B N N I

u

1,3. 127

WMH#:H#&#
»
(ST 1

H:AM
'y
“

MULTIPLE CHARACTER INPUT
MULTITASKING

NAMED FILE CREATION
MAMED FILE INPUT
NAMES DF SUPERFORTH WORDS
NEGATE

NOT

NUMBER HANDLING
NUMBERS

NUMERIC CONVERSIONS
OF

oK

OPEN

OR o
OUTPUT REDIRECTION
OUTPUT TO SCREE

! QUTPUT ,
OVER

OWN_BUF

OWN_PAD

OWN_TIB

OWN_USERS

PAD

PAN_LINE

PAN

PRE~DEFINED CONSTANTS
PRINT

PRICRITY OF TASKS
PROMPT ASSIGNATION
QL ERROR MESSAGES
Gl FACILITIES
RECOLOUR

RECURSE
REDIRECTION OF I/0
RELEASE

REMOVAL OF TASKS
REMOVE

REPEAT

RESTART TASK
RESTART

RETURN STACK

- REVERS1

ROLL
ROT

RUNS

R>

R@

SAVE-BUFFERS
SCALE

SCREEN EDITOR
SCREEN OUTPUT
SCROLL_BOTTOM
SCROLL_TOP
SCROLL

SERIAL. INTERFACE
SET_MODE
SET_TIME

- I B ¥ 8 B 8N & 8 B &8
e -0 b p B W
| o 8 pa s - D
- [l

_OM

N

Hlﬂh~M-*bistdh-ntdgiblwtdthzh-hb*w

OO0 »

10.1.1
10.2.4
10.2.6
10.2.5
3.9
10.2.4
6.2
3.13
12.1
3.5
3.5
10.2.2
313
3.13
4.1
3.10.4
=1
3.10.1
3.10.3
3.10.3
3.10.3
10.5
3.10.3
10.4

SIGN

SILENCE

SINGLE LENGTH INTEGERS
SLEEP '

SMUDGE

SOUND SENERATION

SOUND

SPACES

SPACES — CARE IN USE

SPAN T T T

SP! .

STACK RETURN

STACK

STARTUP COMMAND BLOCK
STARTUP

START

STATE

STRINGS

STRIP

SUPERFORTH PROGRAMS
SUSPENDING TASKS
SUSPEND_ME

SUSPEND

SWAP

SWITCHING BETWEEN MODES
SWITCHING ON
SWITCHING SUPERFORTH ON
SYSTEM INITIALISATION
SYSTEM START

S->D

TAR

THEN

THRU

TIB

TIMEQUT

TIME

TOS

“TO-DO

TYPE

UPPER CASE LETTERS
VARIABLES
VOCABULARIES
WARNINGS

_WORDS _

WORDS - DEFINING
WORDS - DESCRIPTIONS
» .
£DEFAULT
EFILE
£IN
£0UT
£PRINT
£S5
£T1B

£

£>

3.11
10.3
2.3
10.2.4
g.1
10.3
10“ 4
2.10.1
1.4,2.4

TTTES10.2

6.2

.13
2.5,3.5,11.2
G.1

See System Initialisation

10.2.3
8.1

3.10.1
3.10.3
2.1

10.2.4
1i0.2.4
10.2.4

.
N

'
C e
7]

gl WG

B O

8}

e
-

‘JMCDH-IF-EANI#!HMUI'
N

-

P RN NG WR WO N == Wb W W=
[y

[y
o-olal-lllnnnnoo

[
-

10.1
10.1.2

] B _a ™ -

1& 220- 10._3. -11. o
L] | I | L |
3.11.3.Ja.1_I1.7-11;1.1.Ln_8.a1.6.bA-3.11.6.b=u190_l1.1.11u1
: a a1 ¢ = » a =N 2 8 W] 1] » 1 BE =m0
DMMMMMMMAMMMEMMMMMIMMMEMOEMMMMME SN OO o0

y |y

ADIGITAL PRECISION

O 0O

ID

*/MOD

*/

+L 00F

-1

-2
=TRAILING
>

>=

2DUPF
2ERROR
?d0B_

?

a
FCOMPILE]

(

*
+
+1
]

14. Appendix
+% SUPERFORTH Version 2.0

Following our policy of ever improving our product { difficuit though
this is ! Y version 2.0 has many enhancements. The orincipal enhancement
involves string handiing, which is described in deotail in part &x> of
this app2ndix. The other improvements are given below.

{a) Two SUPERFORTH definitions bhave been added teo the dictionary
to give vyou the option of using upper or lower case letters to
supcute SUPERFORTH words. They are:

L OWER changes mode so that standard SUFERFORTH words will be executed
when lower or upper case letters are typed in, 293

LOWER dup DUP will execute DUF twice
UFFER reverses the sffect of LOWER, eg:

UFFER dup will give an error.

When in LUWER mode, lower case definitions are inserted into the
dictionary in upper case form. 7 '

(bl To avoid infinpite loops due to enhancement (a0 the default
words executed by the execution vectors CLS, ERROR and ABORT (8.2) are
changed to (CLS), {(ERROR? and {(ABORT). Frevipusly they were lowsr case
equivalents.

(c? In the screen editor an extra command has been added: ALTHF or ALTHF
sglect floppy disk as the default drive.

>> New Utility Blaocks
Another 4 utility blocks have been included. These are:

{a} Biock &, WLIST o
Contains a definition of VLIST which lists all the words in the

current vocabulary on the current output device, B words on a line. Type:
& LORAD WVLIST

(b Block 7, TURNKEY

This enables vou to create a stand—alone EXEDable SUFERFORTH
program, i2; it will run as a separate, dedicated task. { SUFER REVERSI
was generated in this way J. To uss it first of all Iocad your SUFERFORTH

anplication from SUFERFORTH blocks or other file, then types
7 LoAD
and TURNEEY <namex
whare <name> is the BUPERFORTH word vyou wish the stand-alone task to
exaecute { REVERSI in the case of SUFER REVERSI). Then follow the
instructions on the screen.
eq: if vou wanted a task to print out numbers O to 799 and then
terminate, first define a word. { Note the suicide word BYE at the end
which must be included to terminate thes task 2
: SIMPLE_EXAMFLE 1000 O DO I . LOOFR BYE ;
then 7 LOAD :
then TURNKEY SIMPLE EXAMPLE
To execute vour new task from SuperBASIC or SUPERFORTH type
EXED MDVi_+filename
In block 7 there is a word defined called DENAME which
erases all the SUFERFORTH headers. I+ you develop a3 preogram for
sale then we must insist that you use it to prevent you
inadvertentiy seliing a SUFERFORTH system as well.
{c) RBRlock 8, LDOAD_EBINM)

For machine code oprogrammers we have included = way of loading
maching code gensrated by conventional assemblars (eg; Metacomco s,
To demonstrate how to use this we nave included two other files:

{1y "mdwvi_sxamples_asm”

L e

76

arud (2) "mdvi_ewampie bin®

whare the second is an assembied version of the first. These give vou
three new code definitions:

NOR {(nl n2 ——— n3 } n3 is the logical NOR of ol and nZ

T tnt — nZ) nZ i1is nl times 3

IRURP € nl R2 NT ~—— nl nZ 03 nl n2 N3 ; equivalent to

< FICK 2 PICK 2 FICE
To load these, type:
8 LOAD

and LOAD_BIN mdvi_swample_bin
then try them out.
A complete description of the assembier format needed is given in
Ymadvl example_asm". This format must be followed to ensure a correct
binary +ile is assembled. Also study chapter 11 of the manual.
td} Block %9, CREATE DEVICE

For those with floppy disks which are not raferred to as fip
we have included a way for you to define your own default device, eg:
type ? LOAD

CREATE_DEVICE FDK1_
Now if you type FDKIi_ it will become the default device for handling
standard SUFERFIRTH blocks. You can retwurn to mdv by tvping HDVL_ .
(g} An example of how to use SUPERFORTH graphics has beesn supplied in a
file called CIRECLE_FTH — use the sditor to examine it.

S>> Transferring SUPERFORTH to another device

To save SUFERFORTH V1.6 onto ancther device {eg: floppy disk), do NOT
use a copying utility as suggested in 1.46: instead use LRUN MDVI_BACKUP
and choose pption 'E’. Just +tollow the prompts. Note that SUPERFORTH may
be started independently of BOOT by typing:

EXEC MDV1_FORTHBZ_JGE
or EXEL FLF1 _FORTHEZ_JO0OB as apprmpriate.

&6>> SBiring handling
A set of powerful string handling words have been added to SUPERFORTH
version 2.0 to give you the same sort of operations that are available in

SuperkAGIC, but, of course, much much faster.

Storage Of Strings

Strings are stored as a sequence opf characters, wre character per byte.
The characters are preceded by two other bytes, the maximum permitted
length of the string and the actual length of the string. HRecause the
numbers arz stored in bytes the maximum possible length of string that may
be specified is 205 bytes. For example if a string called MONTH, with a
maximum length of ¢ characters, gontainsg the value “January”, it will be
stored in this form:

Address Valua Meaninq
n 4 Maximum length
n+l 7 Actual iencth
2 7% Character *J*"

n+3 7 Character "a"

n+d 110 ' Character “n®

n+3. . 117 Character "u®
n+& 2?7 Character "a"
n+7 114 Charactgr "r"
n+8 121 Character "y*"
n+% ? Not used
n+td ? Mot used

Whnen MONTH is executed {(see below!, it leaves the addresss of the actual
length byte on the stack. The contents of MOMTH may be printed, as for any
SUPERFORTH string, by wusing COUNT TYFE (see section 3.10.1 in the
SUFERFORTH manual). For example, given MONTH as above, typing:

MONTH COUNT TYFE will display January

Defining Strings

STRING tnl -—— 3} i3 used in the form
ni STRING <namelX _
to create a dictionary called <mname> which, when executed, will
leave the address of it’'s length byte on the stack. The value nl, which
must be on the stack, defines the maximum length, in bvites, of the string.
Initially the string is empty. Eg: type:
10 STRING MONTH
to create an empty string called MONTH, which may be loaded with
a maximum of 10 characters.

STR_ARRAY (nl n2 —— 7 'is wused in the form
nl n2 STR_ARRAY <name>
to create an array of strings called <namel>. This array contains
ni strings, each with a maximum size of n2 characters. <name> may later
bhe executed in the form: N3 <name s
which will ieave the address of the length bvie of ths inZd—1iith
string in the array, on the stack. Using n3=0 will give the address of the
firzst string in the array. I+ nZ »= n2 an errcr will oceur with the
MesSSage
"String index out of range”
Eg: type:
) 7 % STR_ARRAY DAYS_0OF_WEEK
to creata an array called DAYS _OF _WEER with 7 strings, =ach with
a maximum of 7 characters.
Load the first array element with:
£ DAYS_OF _WEEX READ" Sunday”
Read 1t with:
¢ DAYS_OF _WEEK COUNT TYPE
Similarly)
S DAYS_OF_WEEK READ"™ Friday"

STR_CONST (=-— 1 4 defining word used in the farnm:
STR_CONST <name> "<character string:"

Creates a dictienary entry called <namex which, whan lat
gxecuted, leaves the address of the string’s actual length bvte an thes
stack. The following character string must be surrounded by & pair of

.characters. The maximum length byte is s=2t egual to the aciual 1}
swte. Eg; '

STR_CONST FPRAISE "SUFERFORTH is great”
FRAISE COUNT TYRE :

)

ata Input To Strings

INFUT (adl ——=) Reads a line of text from the current input strzam
into the string at adli, eg assuming string MONMTH is defined as abave, tvpe
¢ <enter> means press the ENMTER kev s
MONTH INFUT <enter> danuary <entsr>
which will load the word January into MONTH. You can prove this
By tvpings
MONTH CBUNT TYPE

READ"™ {ad! ——) In interpretive mode.
{ —— 1 In a colon definition (compilation mcdel.
Reads the feollowing characters, up to but not incliuading the next
" character aor <{enter. In interpretive mode it assigns these characters
‘o the string at adl =g:
MOMTH READ" Februarvy®

In compilation mode these characters are inssrted into thes colon
definition as a constant string. When the cooplon definitice is later
executed, the address of the actual length byte of thi=s comstant string iz
left on the stack. This string may then be used Ffor any cpsrations

described below. Egj
: TEST READ" An example™ COUNT TYFE &
TEST
This bhehaves just like: .
: TEST ." An sxample®™ ;
TEST

String Characteristics

LENBTH {adl -—— nl1) Leaves the actuwal length, nl, of the string at adit
on the stack eqg; {assuming MONTH holds February)

MONTH LENGTH . prints B
MAX_LEN {adl —— ni} Leaves the maximum length, nl , of the string at adil
on the stack egs

MONTH MAX_LEN . prints 10
UNUSED {adi —— ni) Leaves the number of spare.bytes, ni, in the string
cat adl on the stack egs;

MONTH UMNUSED . prints 2

String Operations

Examples of the use of the following words are given in the next secticn.

APPEND {adl adZ -——) Appends the string at adl onto the end of the
string at ada. ’

AFP_CHAR (nl1 adl ———)} fAppends the character whose ASCIT value is nl onto
the end of the string at adi.

CHAR (adl ni -——— n2} l.eaves on the stack the ASCIT value, n2, of the
character at pgsition ni in the string at adl.

CLEAR {adl -——) Sets the actual length of the string at adl to zero. -

INSERT {adi ad2 nit ——) Inserts the string at adl into the string at

ad?2 at position nl. The end of the string, from
position nl upwards, is moved up by the number of
characters in string adl, and the length of string adl
adjusted accordingly.

INS_E€HAR (ni adl n2 ——-—)} Inserts the character, whose ASCII value is ni,
into the string at adl, positiomn n2. Charatters from
pogition n2 are moved along 1 position in string adl..

INS/PEL f{adl nil n2 ——) If n2 is positive INS/DEL moves the string adi,
from position nl upwards, along by n2 positions, and
increases the length by nZ. If n2 is negative, then
-n2 characters are removed from position nl upwards.

LOCATE {adl ad2 nl n2 —— n3 ? The string at adl is a pattern, LOCATE
searches the string at ad2, from position nl upwards,
for the first occurrence of the pattern. IFf fourd then
n3 holds the start position of the matching characters,
otherwise if¥ the search failed, n3 is zero. If n2=0 the

search is dependent on the case of alphabetic
characters f{ie "A"<>"a"}, if n2<>»D the search is cass=
independent (ie "A"="a"}. a

LBC CHAR ind4 ad2 nl n2 ——— n3) Like LOCATE except that the pattern is a
character whose ASCII value is n4.

LOSE fadl nl n2 —— !} n2 characters are deleted from the siring =2t
adl, pasition nil. Characters at the end of the string

are moved down and the length decreased by n2.

REFLACE {({adi ad2 nl =-—— } The characters at position ni upwards in tHe
: string at ad2 are replaced by the contents of the
string adl. The iength of string adl is unchanged.

REPL_CHAR {nl adl nZ -——) The character at position n2 in the
string at adl is replaced by the character whose ASCII
value is ni. The length of string adl is unchanged.

SLICE {adl nl n2 adl -—-)} n2 characters are copied from position ni in
the string at adl into the string at adZ. The previocus
contents of string ad2 are lost. String adl is
unchanged.

;TAKE {adl nl n2 ad2 -——) TAKE is 1like SLICE, except that @ the

characters in the string at adi are removed from string
adl and the length adjusted accordingly.

TAKE_CHAR {adi n1l ——— n3) The character at position ni in the
: string at adl is removed from string adl and has it’'s
ASCII value left on the stack. '

UF_CHAR (nl1 ——— n2) If the character, whose ASCII value is nl, is & lower
case character, it is .converted toc an upper case
character with value nZ2, otherwise n2=nl.

String Comparisons

F= tadl ad2 ——— +lag) The flag is true if the string at adl is egual
to the string at ad2. The case is significant ie
llﬁt!‘v“}ﬂa!l.- .

U F== {(adl adZ ——— flag) Like F= except that +the comparison 1s case
' independent ie "AbC" is sgqual to "aRC®

F< tadl ad2?2 —-—— flag) The flag is true if the string at adl is less

than the string at adZ. The comparison is type 2 ac

described in the 6L User Guide (Concepts - String

comparison) ie case dependent with embedded number
strings compared as numbers.

> tadl adZ —-—— flag) The flag is true if string adl is greater than
string adl. The comparison is as described in $F4.

C== (ni n2 -~ flag) The flag is true if the character with ASCII
value nl is equal to character n2. The comparison is
case independent ie "a'="a". .

COMFARE (adl "ad2 nl ~—-—— n2) Comparss the strings at adl and ad2. nil
defines the type of comparison, ni=il is tvpe ©, ni=i
type 1, n1=2 type 2 and ni1=3 type (&L User Buide
Concepts = String comparison). nZ2=0 if the strings are
equal: nZ=-—1 if string adl < string adZ; nZ=1 if string
adl > string adZ2.

Illustrative Examples

The use of the above words will be demonstrated by typing in the following
{do not bother to type in the explanatory comments):

50 STRING NAME { A string to hold the full name }

20 STRING CHRISTIAM { The christian name ?
20 STRING MIDDLE (The middle name)
20 STRING SURNAME { and the surname)

First two words to save typing ?

¥. COUNT TYPE : { Use is eqg. CHRISTIAM #$. to print a string)

ASCII PL WORD i+ Ca@ ;3 { Gets the ASCII value of the next?
{ character in the input stream ?

[T I T

(Now start loading the strings, <enter’> means press ENTER)}
SURNAME INPUT <enter’> LClark <enter:
{ Clark gets loaded into SURNAME, try- SURNAME F.)

{ Cbpy it into the full name string)
SURNAME MNAME AFFPEND , { try NAME $. and SURNAME .)

{ Dops, we meant to have an 2 at the end)
ASCII e NAME AFPP _CHAR { sticks an e on the end }

CHRISTIAN INPUT <enter> fAnn <enter:>

{ Loads Ann into string CHRISTIAN)

MIDDLE INFUT <enter> Rosemary <enter:

{ and this goes into string MIDDLE ?

{ Frove these by CHRISTIAM $. and MIDDLE %.)

{ Note READ" codld have bzen used instead of INFUT)

{ Insert the christian name into NAME)
CHRISTIAN NAME 1 INSERT

(Try NAME $. , we need a space inserted, S0 ..)
BL NAME 4 INS_CHAR { see manual 3.7.2 for BL)}

{ Do the same for the middie name }
BL MNAME 4 INS_CHAR
MIDDLE NAME T INSERT { Try MAME $.

{ Mow suppose we want the middle name to be Mary)
NAME S 4 LOSE ' { gets rid of Rose ?
NAME 5 CHAR UP_CHAR NAME 5 REPL_CHAR { changes m to ™)

{ To demonstrate the difference between SLICE and TAKE)
NAME T 4 MIDDLE SLICE { do NAME #*. and HIDDLE #.,
MIDDLE CLEAR ' { ciear MIDDLE, try MIDDLE #. 3
MAME 5 4 MIDDLE TaAKE { cdo NAME F. and MIDOLE #. ?}

{ Lose the superfluous space)

NAME S TAKE_CHAR DROP { or N&ME S 1 LOSBE)

(To replace ANN with Sue)

CHRISTIAM READ" Sue " { Note the space after Sue
CHRISTIAN NAME 1 REPLACE (type NAME $.)

{ And to insert a middle name }
MIDDLE READ" Lucy ©
MIDDLE NAME 5 INSERT { type NAME #.)

{ To locate the position of a name try) : :
. MIDDLE NAME 1 1 LOCATE . { Prints the position of Lucy ?

{ Finally a colon definition which shows how to split up a)
{ string such as NAME into it’'s individual parts.)

: BET_NAMES o
BL NAME 1 O LOC_CHAR { Find position of first space 3

TDUR
IF { Have located a space }

DUF 1+ BL NAME

ROT 1 LOC_CHAR 7DUFP (and position of second space)

IF (Have located another space)
SWAP NaME 1 2 PICK 1—- { set up to read christian name).
CHRISTIAN SLICE { and copy it into CHRISTIAN }
2DUF - 1— NAME ROT 1+ ROT (Set up to read middle name
MIDDLE SLICE (and copy it into MIDDLE)
MNAME SWAF 1+ NAME LENGTH {(Set up for surname)
i1+ OVER — SURNAME SLICE { and copy into SURNAME)
CR NAME #. (To see results do this ... ?
CR CHRISTIAN #. { and this etc.)
ER MIDDLE #*.
CR SURNAME #.

ELSE
CR ." No middle name available™

THEN

-ELSE
CR ." No first name available”
THEN H
(Now trv eg.)
GET_NAMES (With NAME as above)

MAME READ" Johann Sebastian Bach®
GETNAMES :
NAME READ" Fred Smith® GET_NAMES

New Words Tg Use Strinqgs

DELETE_FILE (adl -——) deletes the file whose name is contained in ths
string at adl. . '

DEVICE STATUS (adl =-— ni) Returns the status of the device or file whose
name is contained in the string at adi. If the device

iz wvalid and a file does not exist then mil is zero. If

ni=—8 the Ffile already exists. For other values of nl
see the #L manual, concepts - error handliing. {the
codes there are —nl, eg i¥f nl=-7, lock at error 7}

DPEN_DEVICE- {mnmadl —— d) Qpens a channel to +the device whoss name.is
contained in the string at adi. n and d are--the same as
for OFEN (See SUFPERFORTH manual 10.1}) Eg;

20 STRING FILE

FILE READ" mdvl_example” .

2 FILE OPEN_DEVICE { create a file called mdvi_example)
Cl OSE . { close the channel)

FILE DELETE_FILE { and delete the file)

STATUS (=== nl) Takes the next word in the input stream, assumes it is
: a device or file name, and tests it's status. nl is the
same as for DEVICE_STATUS. Eqgs
STATUS mdvl_example
gives ni=0 if the file does not exist
ni=-8 if it already exists
etc

grénr detection

Iin the string operations, if the specified string or substring is too big
then an error will be detected and an appropriate message printed on the
output device. Possibles messages are:

Btring too long
String size tooc big
String index out of range

This action may be redefined using the technigues described in 8.2 in the
SUFERFORTH manual.

Proabesr Cmrol

eg- f'ﬂlNrEﬁ.-!S ser
ran el _oN
o Meu%ﬁ) CR
PRANTGR _CF
pRANTER - CLOSE -

prnTER _ofF € the Scwen vl echoed ‘

2 ANTER_CW g ‘ .
Befweor ef prANTER_1S al PRINTER . LloSE O

privder . Onlyome pasv
neec\ﬂ—t& o A)‘.’”’K‘rw'

