ESI Computer Systems Limited

68K/0s
PROGRAMMER 'S

REFERENCE MANUAL

68K/0S Reference Manual 0-0 9992.1 GST 13/1.00

20\ X8
&' FISMMAR DO

JAUAAM FOWARETDIA

batimil amatayeE wiugmold lza

ES] Computer Systems Limited

e sl el
VW

[\SJN O \VI O \O I\ V)
W o

\DCD—L]O\\N:U)!\))—'

WWwwwwwwwwwwwwwwwwuwwwwww

CONTENTS

INTRODUCTION
Purpose
Scope
Audience
Copyright
References

SYSTEM OVERVIEW

68K/0S Main Features
Asynchronous Components
Synchronous Call Components
Synchronous Trap Components
Applications Program Interface

INPUT/OUTPUT SUBSYSTEM FUNCTIONS
I0SS Interfaces

Standard Device Drivers

I0SS Channels

Device Independence and Redirectable I/0
Path Names

Path Name Defaults

Access Type

Access Mode

Calling IOSS Routines

Default String Functions

Open an IOSS Channel

Close an IOSS Channel

Procedure Handling Functions
File Delete and Rename Functions
Update Directory

Read Directory Information
Reading from IOSS Channels
Writing to IOSS Channels

File Positioning

Polling an Input Channel
Mounting and Dismounting Directories
Device Driver Special Function

68K/0S Reference Manual -1

9992.1 GST 13/1.00

ESI Computer Systems Limited

MNP NONODNONDNNOVVVEERERERFREREOONIOW FWIND -

O~V FWNOHF OOV FWHO

H o oo = e

ARG RV R, RV, RV, RV, RV, RV, RV RV, BV, RV, RV

OPERATING SYSTEM FUNCTIONS
Overview of OS Functions
Calling OS Routines

Program Manager Functions
Initial Program State

Starting a New Child Program
Determine Program Status

Wait for a Program to Finish
Force Program Termination
Memory Manager Functions
Allocate extra RAM to a Program
Change Ownership Information
Release Memory by Ownership Information
Release Memory by Address Range
The Menu Manager

Menu Data Structures

Display Fixed Menu Data

Read User Input to Menu

Read a Variable Field

Update a Variable Field

Timing Services

Passive Delay

Read Binary Time and Date

Set Binary Time and Date

Heap Allocation

Allocate a Heap Record
Deallocate a Heap Record
Determine the Free Stack/Heap Space
User Trap Handler

DISPLAY FILE MANAGER

Outline Description

Partitions

Virtual Screens

Windows

Display Files

Extended Display Files

Cursor, Action Pointer and Markers
Console Display File Interface and I0SS
Display File Binary Commands
Single Line Menu

Calling DFM Routines
Initialisation Routines
Termination Routines

Display File Control Routines
Space Allocation Routines

Line Manipulation Routines
Character Manipulation Routines
String Manipulation Routines
Cursor Routines

Marker Position Routines

Update Single Line Menu

Install User Hook Routine

68K/0S Reference Manual 0-2

9992.1 GST 13/1.00

ESI Computer Systems Limited

GRAPHICS ROUTINES

General Description

Coordinate System

Colour Definitions and Stipple Patterns
Aspect Ratio

Calling Graphics Routines

Graphics Figures

AN\

o =G o

CREATING PROGRAMS AND PROCEDURES
Overview

Position Independence

Reentrant Code

Procedure Header Block

Program Memory Requirements
Program Memory Layout

Data Area Pointers

Special Conditions at Start of Program
Program and Procedure Exit
Passing Status Parameters

=0 o~ o D

NNNNNNNNNN
o

SYSTEM DATA STRUCTURES

Scope

Notation

Directory Entry Buffer
Directory Information Buffer
Menu Fixed Data Structure
Procedure Entry Control Block
Program List Element
Standard Parameter String
Standard Text String

Qo 00 0o Co 0o o o o O O
O O~ O\ Fw -

68K/0S Reference Manual 0-=3 9992.1 GST 13/1.00

ESI Computer Systems Limited

B

~

D

=

[l s sl
nm =

el - - B M- M- B

[sNoNsNoNoNoNoNa]
O\ FWw

()R R =g OV \ VI

=)

APPENDICES

I/0 SUB-SYSTEM CALLS
I0SS Register Conventions
Detailed IOSS Function Specification

OPERATING SYSTEM CALLS
Detailed OS Function Specification

DISPLAY FILE MANAGER CALLS
Detailed DFM Function Specification

GRAPHICS ROUTINES
Detailed Graphics Function Specification

STATUS CODES
Format
Alphabetical List of Status Codes

CHARACTER CODES

General

Changes from Standard US ASCII
QL ASCII Decode Table

Summary of System Mode Commands
Summary of User Mode Commands
Display File Manager Commands
DFM and Screen Driver Commands

DEVICE DRIVERS

Overview

Keyboard Driver

Screen Driver

Microdrive Filing System
RS232 Output Driver
RS232 Input Driver

ROM Driver

68K/0S Reference Manual 0-k

9992.1 GST 13/1.00

BSI Computer Systems Limited Tnsuetusioy

SECTION 1:

INTRODUCTION

€8K/0S Reference Manual 1-0 9992.1 GST 13/1.00

_mekysubental batimil erme oy 1srumn03‘lza

21 MOTTUEE
g o HOTTIORTHE
- -
i -

L0 IV T L B GRS 2 g Py

ESI Computer Systems Limited Introduction

INTRODUCTION

Purpose .

This manual describes the 68K/0S operating system for the Sinclair OL
ané¢ other personal computers, intelligent terminals and workstations
based on “he the Motorola M68000 series processors. Sufficient details
of system call interfaces and data structures are provided for the
production of advanced assembler level applications software.

Scope

This edition of the 68K/0S Programmer's Reference Manual defines both
the portable and implementation dependent areas of the system, namely:

(a) Chapter € and appendices D, F and G refer to facilities savailable
on the Sinclair QL that may not be available or may have different
interfaces con later implementations cf the operating system.

(b) The remaining material defines the interfaces to the portable
sections of the operating system that should remain unchanged on
later implementations of the operating system.

This manual provides details of 68K/0S interfaces and internal data
structures necessary for production of applications software. Details
of 68000 architecture and instruction syntax are available from
Motorola, details of the 68K/ASM assembler and & 68000 programming
primer are available from GST (see paragraph 1.5).

Systems programming interfaces and datas structures are provided in a
separate manual (see paragraph 1.5). Certain csystems programming
facilities provided by the operating system require that the programmer
has detailed documentation of the QL hardware. GST do not supply this
documentatior and cannot guarantee that such documentation will be made
available by Sinclair Research Limited or any third party.

Audience

68K/0S is =z small but advanced operating system zimed at the following
market sectors:

(a) OEM suppliers of 68000-based terminals and workstations,
(b) Independent 68000 software developers, =

(c) Computer science students and advanced home users with 68000-based
personal computers.

This manual therefore assumes that the reader has a reasonable working
knowledge of programming, the 68000 processor and operating system
theory.

68K/0S Reference Manual I 9992.1 GST 13/1.00

ESI Computer Systems Limited Introduction

1.4 Copyright

This manual is Copyright (C) 1984, GST Computer Systems Limited. It is
sold on the understanding that it shall not be copied or distributed to
third parties in any form whatsoever. Possession of an vnauthorised
copy of this manual will be grounds for legal action.

68K/0S and 68K/ASM are trade marks of GST Computer Systems Limited.

QL and Microdrive are trade marks of Sinclair Research Limited.

1.5 References

8290.6 GST 68
9992.1 GST 5k
Motorola M68000UM
Addison-Wesley

68K/0S Reference Manual

68K/ASM Assembler Reference Manual

68K/0S Systems Programmer's Reference Manual
M68000 Programmer's Reference Manual
Programming the M68000 (Tim King & Brian Knight)

1-2 9992.1 GST 13/1.00

ESICompuwrSyMemsLmﬂmd

68K/0S Reference Manual

SECTION 2:

SYSTEM OVERVIEW

n
|
o

System Overview

9992.1 GST 13/1.00

valviawl madoy?

ER el i ¢l

WETVSHVO MaraYe

hatir) amsleye atunennl ma

g smrerpond BN

ESI Computer Systems Limited Sysken. Ueenyist

SYSTEM OVERVIEW
68K/0S Main Features

€8K/0S is & single-user nultitasked system using conventional operating
system software techniques typical of those foun¢ on many minicomputer
systems, with the addition of sophisticated screen window management
software. The main features of the system are as follows:

(a) Operating System: 68K/0S is a true operating system in the sense
that it has both asynchronous and synchronous components, unlike
a monitor system (such as CP/M) with cnly synchronous comnonents.

(b) Multitasked: the system shares its time and memory resources
between several 'concurrent' programs, with & program scheduler
that arbitrates between them.

(c) Priority Scheduling: the 68K/0S scheduler uses & priority-based
algorithm to determine which progran to invoke in resvonse to a
real-time event. The highest priority 'ready' orogram is invoked.

(d) Event Driven: the scheduler is invoked by z real-time event,
which is either a return from interrupt or a system trap or call.

(e). Programs and Reentrant Procedures: a 68K/0S program consists of a
program control block (PCB), a data area for its stack and heap,
and at least one procedure. Procedures must be both reentrant and
position independent. Only one copy of a procedure will ever te
loaded at any given time, even though it may be shared by several
concurrent programs.

(f) Semaphore Communication: concurrent programs communicate using
general semaphores. This is the only standard method of program
communication provided, though semaphore control is transparent
when using piped I/0.

(g) Device Independent I/0: with the exception of screen window
updates, all input/output of applications software within 68K/0S
uses the device independent I/0 sub-system (I0SS). The I0SS
provides a standard calling interface to I/0 functions and allows
complete run-time I/0 redirection.

(h) Screen Window Control: the display file manager (DFM} suvbports
'simultaneous' screen vupdates by concurrent programs in variable
size¢ screen partitions, anéd allows programs to divide their
screen partitions into windows dynamically. Fach window is
associated with a display file whose text is maintained by DFWM
independently of the window and can be scrolled through the window
both vertically and horizontally.

As a real-time multitasked system, 68K/0S strongly resembles cperating
systems such as RSX or UNIX and provides a powerful subset of the
features to be found on these much larger systems. In addition, 68K/0S
provides unique screen window handling facilities, yet the entire
operating system will fit into 22Kb of ROM or EPROM.

68K/0S Reference Manual 2-1 9992.1 GST 13/1.00

ESI Computer Systems Limited Syakan Overview

2.2 Asynchronous Components

The coperating system contains software proc'esses that run (either
entirely or partly) asynchronously with respect tc applications
programs. Two of these have special status and execute in supervisor
mode with interrupts disabled:

(a) Interrupt Handler: a single interrupt routine is responsible for
handling all system interrupts and vectoring (by software) to the
individual service routines. Facilities are provided for systems
programmers to add extra interrupt service routines to the system.
The interrupt handler runs with all interrupts disabled and in
supervisor mode.

(b) Scheduler: the scheduler is responsible for naintaining the queue
of PCBs and, whenever a real-time event occurs, for finding and
invoking the highest priority ready program. The scheduler runs
with all interrupts disabled and in supervisor mode.

The remaining asynchronous system processes sre all programs controlled
by the scheduler. These- run in user mode with interrupts enabled and
have the same status as user programs:

(¢) Null Program: this prograr has the lowest possible priority and
is responsible for soaking up all spare CPU cycles when no other
program is ready.

(d) Disk Program: this is responsible for maintaining an crdered list
of memory block addresses to enable intelligent seek optimisation
to be performed on & random (or pseudo-random) access device such
as a disk or microdrive.

(e) Interrupt Poll Control Program: the IPC program is invoked by a
50/60Hz clock interrupt and calls a number of hardware poll
routines for devices that are not. driven Ly interrupt. Facilities
are provided for systems programmers to add extra hardware poll
routines to the system.

(f) Undertaker Program: this program is invoked whenever a program
terminates (either voluntarily or as a result of an error trap or
a program kill system call) and is responsible for releasing all
system resources owned by the terminated program, these being open
channels, system memory, screen partition and, recursively, those
resources owned by any child programs.

Cnly systems programmers will require the asynchronous facilities
provided in the interrupt handler and IPC program. Applications
programmers should regard the whole of paragraph 2.2 as containing
background information only.

68K/0S Reference Manual

Lo}
|
n

9992.1 GST 13/1.00

ESI Computer Systems Limited Sysbem GismAlng

2.

€8K/0S Reference Manual

3

Synchronous Call Components

The majority of €8K/0S functions are provided by the synchronous
components of the operating system. These are invoked by applications
software through subroutine calls via four sets of vectored entry
points., This software is executed in user mode with interrupts enabled
and is logically an extension of the calling applications program, and
subject tc the usual rules of priority scheduling and program status.

Subroutine call entry points are provided for the system components
define¢ below:

(a) I/O Sub-System: this provides a device independent input/output
calling mechanism for data transfer to and from files and devices.
Facilities sre provided to load user defined IOSS device drivers
to enable applications software tc access plug-in devices via the
standard IO0SS calling mechanism.

(b) Program Manager: this provides & standard method to start
applications programs, determine their status, wait for their
completion or to force their termination.

(¢) Memory Manager: this provides functions to enable programs to
obtain and release extra RAM memory in 1Kb units.

(d) Display File Manager: this software provides a comprehensive set
of functions to create, update and delete information in screen
windows and to manipulate the data in the display files associated
with them.

(e) Menu Manager: this software enables the display of complex menus
and forms in & screen window and 'will handle data entry and data
capture for a complete form without the need for intervention by
the applications software.

(f) Timing Functions: facilities are provided to invoke both passive
and active program delays and tc read or set the internal time-of-
cay clock.

(g) Heap Allocation: routines are provided to grab and release space
from applications program heap storage and to determine the
available heap space.

(h) Graphics Primitives: software is provided to draw points, lines,
blocks, simple figures and conic sections in any screen window,
with automatic clipping at window edges.

The graphics functions providec unde: 68K/0S for the Sinclair QL are

specific to the QL hardware and are not guaranteed to be provided in

the same format (or at all) on later hardware implementations.

o
|
w

9992.1 GST 13/1.00

ES] Computer Systems Limited System Overview

2.4

2.5

Synchronous Trap Components

System trap entry points are vectored into the synchronous regions cf
the scheduler. These are executed in supervisor mode with interrupts
disabled and, following completion of the requested function, may cause
a system reschedule. Traps are are provided for the following systems
programming functions:

(a) Semaphore Control: general functions to signal, poll and wait on
semaphores permit low-level program communication.

(b) Program Status Control: functions that directly alter the program
status of either the caller or a target program are provided.

TRAP O is provided to terminate an spplications program. TRAPs 1 to 3
are reserved for the operating system and are fully defined in the
Systems Programmer's Reference Manual.

A function is provided tc enable an applications program tc redefine
(for its own exclusive use) those trap vectors that are not reserved
for the system. These may be vectored to user defined trap handling
routines, one of which is entered in system mode, the remainder in user
mode.

Applications Program Interface

The nrormal interface from applications software to 68K/0S is via four
general call vectors, entered with a function code in DG and returning
a status code in DO:

(a) I0SS Vector: all input/output sub-system calls.
(b) DFM Vector: all display file manager calls.

(c) 0S Vector: all other hardware independent system calls including
program manager, memory manager and menu manager functions, plus
timing and heap &llocation routines.

(d}) SP Vector: all hardware dependent system calls including graphics
primitive routines.

These functions are sufficient for all normal applications software.
Systems programs will require details of 68K/0S internal facilities
such as system traps, data structures and device driver installation.
These can be found in the System Programmer's Reference Manual.

68K/0S Reference Manual 2=l 9992.1 GST 13/1.00

ESI Computer Systems Limited Input/Output Subsystem

SECTION 3:
INPUT/OUTPUT

SUBSYSTEM FUNCTIONS

68K/0S Reference Manual 3-0 ; 9992.1 GST 13/1.00

WAt al e

T - s
madayadu® undud\ o batirnid emelzye 1smqrrugDIaa
f WOITR
TUPUO\ TUSHLI
SHOTTOMIN MATAY 2l
.

00.i\FI TR0 I.5ege farcolt s tatl B

o T ./Out . Subsyst
ESI Computer Systems Limited nput./Output. Subsystem

3

3.3

68K/0S Reference Manual

INPUT/OUTPUT SUSBSYSTEM FUNCTIONS
I0SS Interfaces

The I0SS has two major interfaces: that which it presents to calling
programs and that which it presents to device drivers.

A user program calls the T0SS as a subroutine via the entrypoint
IOENTRY. The I0SS decides which device driver shoulc be used tc
implement the function requested and calls the relevant driver as a
subroutine. All these calls take place synchronously under the control
of the calling user program and any memory which TOSS requires to
perform the requested function is allocated in the user program's heap.
I0SS is responsible for freeing any user program heap it allocates.

Some device drivers may need to operate tc some extent. asynchronously
with respect to the user program in order to operate synchronously with
some hardware device. In this case the driver will consist cf =
separate concurrently running program and/or interrupt routine in
addition to the subroutines called directly from I0SS, communicatior
between components of the driver being achieved with semaphores. This
operation is transparent tc the user program, which remains blissfully
ignorant of the relative complexities of various TO0SS drivers.
Standard Device Drivers

Standard IOSS device drivers sre provided for:

(a) Keyboard (KEY:)

(b) Screen (SCREEN:)

(c¢) Microdrive (MD:)

(d) Pipe (PIPE:)

(e) Serial Transmit (TX1l: and TX2:)

(f) Serial Receive (RX1l: and RX2:)

(g) ROM Directory (ROM:)

Note that use of the SCREEN: device is a simple method of screen output
that takes default paths through DFM and requires no explicit DFM calls
from the applications software. Note also that reading lines from KEY:
has the usual line editing screen interaction that one would expect
from a console device.

T0SS Channels

A1l 10SS input/output takes place through channels which are assigned

and controlled by the I0SS. A channel is an input/output route
attached by IOSS to a file or device and owned by a specific program.

w
|
=

9992.1 GST 13/1.00

BS] Computer Systems Limited Input/Output Subsystem

3.h

3.5

Device Independence and Redirectable I/0

Because the calling interfaces to IO0SS routines are identical for all
devices, TI055 is defined to be device independent. Applications
programs can usually perform channel I/0 without needing to know
whether the channel is attached to a microdrive file, a pipe, a serial
communications line or an TOSS compatible add-on device.

Applications software car be written toc enable the actual I/0 devices
that will be used by the program to be specified by the user when the
program is run, providing redirectable I/O.

Path Names

M1 sources and destinations of T0SS channels (devices and files) are
identified by a patt name whick has the general format:

DEVICE:DIRECTORY /FILENAME . EXTENSION
where there may be any number of directory components, each followed by
a slash, and provided that the total length of the pathname does not
exceed 4l characters. Each component must be between one and eight
characters long, and may be a mixture of rumeric and alphabetic
characters of either case, the case being non-significant.

I0OSS devices differ in their requirements for path name components, the
full path names for each standard device are defined below:

(a) KEY:
(b) SCREEN:
(c) MD:DIRECTORY/FILENAME.EXTENSION

(d) PIPE:FILENAME.EXTENSION

(e) mx1:
(f) TX2:
(g) RxX1:
(h) Rxe:

(i) ROM:FILENAME.EXTENSION

Note that where a FILENAME component is specified the EXTENSION
component. is optional.

The IOSS performs syntax analysis of a path name and extracts the
device name component to decide which device driver to call. It is
legal (though rot necessarily sensible) to append filename components
to a pathname for a device that is not file structured (TX1:FILENAME),
this will be ignored by IOSS and all standard IOSS drivers.

68K/0S Reference Manual 3-2 9992.1 GST 13/1.00

GSI Computer Systems Limited Input/Output Subsystem

3.€

Path Name Defaults

A system of path rame defaults is provided by IOSS to supply any path
name components not specified by the program. Four user-specified
cefault strings are maintained which are used by IOSS to complete
partial pathnames:

(a) Default program device

(b) Default program directory prefix
(c) Default data device

(d) Default data directory prefix

where the device name is null or a device name component ending in a
colon, and the directory prefix is null or one or more directory
components each ending in a slash.

Each IOSS function that requires a pathname has a parameter indicating
whether program or data default strings shoulé¢ be used. The program
supplied pathname is examined and any missing components are inserted
in the pathname by I0SS using the program or data strings as follows:

(a) .If the path rame does not contain either a colon or a slash then
the relevant default directory prefix is added.

(b) If the pathname cdoes not contain a colon then the relevant default
device is added.

Note that the two different sets of default strings are provided so
that programs can be loaded from one device and data files car be
accessed on snother device with ro device or directory names needing to
be specified by the user.

Note also that these rules zpply to path rames as supplied to IOSS and
that particular applications programs may apply additional rules, such
es appending standard extension names to input filenames to construct
default output filenames.

68K/0S Reference Manual 3-3 9992.1 GST 13/1.00

ESI Computer Systems Limited Input/Qutput, Subsysten

3T

3.8

Access Type
Data access type refers to read/write sccess permission at four levels:

(a) Device: each device has a fixed access type which usually refers
to some physical restriction. For example, you cannot read from
the screen or write to the keyboard.

(b) Directory: each directory has an access type which is the same as
or more restrictive than the device access type. For example, a
write-protected microdrive imposes directory level restrictions on
the access type.

(c) File: each file has an access type which is the same as or more
restrictive than the directory level access type. Note that a
file may have write permission regardless of the fact that the
microdrive it resides on has been write-protected, in this case
the access type of the directory overrides the file access type.

(d) Channel: each channel has an access type which is defined when
the channel is opened which must be the same as or more restictive
than the combined access type of the components of the path name.
Thus any attempt to open & channel to write to the keyboard will
fail immediately (on grounds of incompatible access type) before
any write attempts are made.

I0SS will always choose the most restrictive access type of the four
levels when deciding whether a data transfer request is legal. TFor
example, a channel may be opened for reading only on a file which could
otherwise be written to: read calls will be permitted but any attempts
to write to that channel are failed.

Access Mode

The access mode of data is either random or sequential and is defined
at two levels:

(a) Device: each device has a fixed access mode which usually refers
to some physical restriction. For example, it is not possible to
perform random access on & serial line.

(b) Channel: when a channel is opened its required access mode is
specified. If random access is requested and the device has
random access permission then the channel will be given random
access permission.

I0SS will always choose the more restrictive access mode of the two
levels when deciding if a data transfer request is legal. For example,
if a channel is opened with sequential access only to a file on a
random access device, then all random access calls on that channel will
bte failed.

68K/0S Reference Manual 3-k4 9992.1 GST 13/1.00

Es‘ Computer Systems Limited Input/Output Subsystem

3.9

311

Calling IOSS Routines

I0SS routines are called by applications software via a single entry
point with the function code in DO: ¥

MOVEQ #10FUNC, DO
JSR TOENTRY
On return DO contains a status code.

Descriptions of each I0SS routine follow below, and precise cdetails of
each I0S8 call are given in Appendix A.

Default String Functions

These functions sre used to set and read the current program and data
default strings used by the calling program.

When a program is created it inherits its parent program's default
strings. TIOSETDEF is used to change either the program or data default
strings, and requires a string parameter of the form DEVICE:DTRECTORY/
where both components are optional, and the directory component. may be
repeated. A null string is valid and has no effect on the current
program or data default strings.

IOGETDEV will return the current program or data default device.

IOGETPRE will return the current program or data default directory
prefix.

Open an I0SS Channel

The IOOPEN routine is the means of creating I0SS channels through which
input and output operations can be performed. An IOSS channel open
operation will follow the general pattern outlined below:

(a) The path name is extended using the program or data default
strings as necessary and the syntax of the resulting path name is
checked for plausibility.

(b) The device name is extracted from the path name and the requested
access type and mode are compared with those legal for the device.

T0SS calls the device driver to perform device specific checks. Where
this is a filing system, checks are made for the existence of the
specified file, the access types of the directory and file and whether
the user has specified double buffering for file I/0. Checks for
incompatible multiple uses of devices or files are usually generated by
the device driver, but devices which can only be used by one channel at
cnce are protected by IOSS itself.

If there are no status codes generated from any of these cperations,
IOSS will open a channel.

68K/0S Reference Manual 3-5 9992.1 GST 13/1.00

ESI Computer Systems Limited Tnpib/ Gt Subyssen

312

2.13

Close an I0SS Channel

The IOCLOSE call closes & channel. This can be a fairly lengthy
process for some devices (such as an output microdrive file) but has no
complications of interest to the user. After this call the channel
number on which this channel was oper. has no further validity.

Procedure Handling Functions

The IOLOAD call loads position independent, reentrant procedures from a
directory structured device such as a disk or microdrive or the ROM:
device. Path name validation follows the method used in TOOPEN, using
program or data default strings as required. If the procedure exists
it may be placed in FAM cepending on the following criteria:

(a) 1If the procedure is not already loaded and is held on a disk or
microdrive, then it is read into RAM, the RAM address is returned
to the caller, and a system procedure table entry is created.

(b) If the procedure is not already loaded and is hkeld in the ROM:
device, then the ROM address is supplied to the caller and a
system procedure table entry is created.

(c) If the procedure is already loaded, then its address (ROM or RAM)
is supplied to the caller and the use count field of the system
procedure table entry is incremented.

When loading a procedure, two data structures are required:

(d) A procedure entry control block. This passed by IQSS to the
device driver which places the procedure entrypoint into the
control block. If the procedure cannot be loaded, IO0SS will
supply the address of a program termination routine instead, as a
precaution against calling a non-existent procedure.

(e) A procedure list element. This is grabbed by IO0SS from the
calling program's heap and is chained to its PCB (enabling program
termination software to unload procedures owned by a program).

Note that procedures are owned by programs and that this ownership can
be shared. When its final owner is terminated the procedure is
automatically unloaded by the system.

The IODEFPRO call defines an entrypoint specified by the caller as
being a procedure. The calling program fills in the procedure entry
control block before calling the routine, and the path name supplied
must refer to a directory structured device to pass IOSS validation.

The IOUNLOAD call is used to indicate that a program no longer requires
to use a procedure. The procedure has its procedure list element
removed from its owner's PCB chain end its use count in the system
procedure table is decremented. If the use count drops to zero, the
memory that the procedure cccupied is freed. (Note that the IOLOAD and
IOUNLOAD calls car be used as an overlay mechanism).

68K/0S Reference Manual 3-6 9992.1 GST 13/1.00

ES] Computer Systems Limited Input/Output Subsystem

3.1k File Delete and Rename Functions

3.15

The IODELETE call deletes the file specified by the given path name
combined with program or data default strings as nedessary. In order
to carry out the delete function IOSS ensures:

(a) The device component of the full path name allows directory
operations.

(b) The file defined by the path name exists.

(c) The access type for the device, directory and file components of
the path name allow write access.

If these three conditions are satisfied, the file is deleted.

The IORENAME call changes the filename and/or the extension components
of the file specified by the given path name combined with program or
data default strings as recessary. I0SS will ensure that conditions
(a) to (c) above are met for the existing file and that the following
conditions are met for the new file:

(d) The device and directory components are the same as those
specified for the existing file.

(e) The new file does not already exist.

If these five conditions are satisfied, the file is renamed.

Update Directory

The IOPUTDIR call enables a program to update the directory information
for a given filename by supplying I0SS with a directory entry buffer.
Cnly three fields can be changed by this call:

(a) TFile access type (read/write permission)

(b) Date and time last modified (this is set to the current date/time)

(c) User comment

Any other fields supplied in the directory entry buffer are ignored and
the original values retained in the directory entry.

This call is designed to be used after obtaining the directory entry
buffer from an IOGETDIR call and changing the relevant entries, however
it is legal for the user program to construct its own directory entry
buffer.

68K/0S Reference Manual 3-7 9992.1 GST 13/1.00

ESI Computer Systems Limited Tneaty/ Qutnut Svhers Sl

3.16 Read Directory Information

The IOGETDIR call allows a user program to read the directory entry for
a given filename into a directory entry buffer and car be repeated tc
fetch each of the directory entries for a set of filenames that match a
given pattern,

The path rame used in this call may include ? and * as wild card
characters in the filename and extension components, as follows:

(a) A ? in the body of a component matches any single alphanumeric
character. For example, FI?E matches FILE and FIRE.

(b) Each ? at the end of a component natches zero or cne alphanumeric
characters. For example, FILE?? matches FILE, FILEl and FILE1O.

(c) A * at the end of the component is equivalent to extending the
component length to eight characters by appending ? characters.
Thus FILE¥* is equivalent to FILE???? and matches FILE, FTLEL,
FILE1O, FILE1O0O and FILE1000, for example.

Note that *.¥* will match any filename and extension combination.

The TOGETDIR call searches the directory indicated by the device and
directory fields of the path riame (extended as necessary by default
strings in the usual manner) until it finds a match, in which case the
directory entry buffer information is returned to the user.

The specified directory is searched from a starting position which
depends on a magic rumber passed to the routine in D1. On the initial
call to IOGETDIR for a given directory this number must be zero. On
subsequent calls this parameter may either be zero (to rescan the
directory from the beginning) or the magic number returned by the
previous call of TOGETDIR (in which case the directory scan continues
from where it left off). The effect of supplying any other magic
number is undefined and likely to be unhelpful.

Directory entries are retrieved by IOGETDIR in no definecd order. If
the user program requires directory entries in any particular order
then it must sort them itself.

The IODIRINF call returns information on & whole directory, whose
pathname (without filename or extension fields) is supplied by the
caller. The data is returned in & directory information buffer. This
contains three fields:

(a) Maximum number of directory entries

(b) Maximum space available in Kb

(c) Current space available in Kb

Thus this command can be used to determine free space on disk or

microdrive, and how many sort records will be required wher sorting the
directory entries.

68K/0S Reference Manual 3-8 9992.1 GST 13/1.00

G 5 Subsys
ESIComputer Systems Limited T Sutets, Sphers el

3.17 Reading from I0SS Channels

Three I0SS calls are provided for reading data from channels previously
opened succesfully for reading with IOOPEN. In all cases data is read
into a user supplied buffer of a length essumed to he large enough to
accommodate the requestecd number of bytes. If double-buffering was
requested with 100OPEN (and this is supported by the device) then the
system will perform read-ahead operations into system 'slave blocks' to
improve performance, and if so this is transparent to the user program.

The IOGETSEQ call will attempt tc read the definec¢ number of bytes from
the specified channel which must have been opened with read access
type.

The IOGETRAN call is identical to IOGETSEQ except that a file position
is provided by the calling program and I0SS also checks that the
channel was opened with random access type.

The IOGETLIN call is identical to IOGETSEQ except when a newline
character is detected during data transfer. 1In this case the transfer
will stop and the actual number of bytes read (including the newline)
will be returned to the user.

Note that an IOGETLIN call from a channel connected to the device KEY:
has a special effect. All standard ASCII characters received from the
keyboard will be reflected in the default SCREEN: window for the
calling program (which will be created automatically if necessary).
Keystroke reflection includes backspace, backspace-delete and delete
line keystrokes which provide line editing functions internal to TOSS
and with rno user program intervention.

All the calls tc read date may succeed only partially if end of file is
reached. For this reason the actual number of bytes read is returned
tc the user along with a status code tc say what happened. End of file
is a device dependent condition, but in general, if there are N bytes
left in & sequential input file and a read request for N bytes is made
then the call will succeed, end of file status being returned on the
next call.

When reading from files, the channel's file position pointer cn entry
to the read routine will be incremented by the number of bytes actually
read to give a new position in the file. This ensures that subsequent
read calls will advance through the file sequentially unless the file
position is changed explicitly.

Note that it is legal to mix all three types of read from a single

random access channel, though the user program must ensure sensible
positioning of the file pointer to avoid silly answers.

68K /0S Reference Manual

w
I
O

9992.1 GST 13/1.00

ESICmnmmﬁSwmmsUmhai Tnpyt/Quteut, Subers el

3.1€ Writing to I0SS Channels

Three I0SS calls are provided to write data to channels previously
opened succesfully for writing with TIOOPEN. In all cases data is
written from a user supplied buffer assumed to contain the requested
number of bytes. If double-buffering was requested with IOOPEN (and
this is supported by the device) then the system will perform write-
behind operations from system 'slave blocks' to improve performance,
and this is transparent to the user program.

The IOPUTSEQ call will attempt to write the defined number of bytes to
the specified channel which must have been cpened with write access

type.

The IOPUTRAN call is identical to IOPUTSEQ except that a file position
is provided by the calling program and IOSS also checks that the
channel was cpened with random access mode.

The IOPUTLIN call is identical to IOPUTSEQ except when & newline
character is detected during data transfer. 1In this case the transfer
will stop, and the remainder of the buffer contents is ignored.

Note that that first IOPUTSEQ or IOPUTLIN call will start at file
position zero and that if the file was opened for sequential output
cnly, then it will have been truncated to zero length by IOOPEN.

When writing to files, the channel's file positior pointer on entry to
the write routine will be incremented by the number of bytes actually
written to give a nev position in the file. This ensures that sub-
sequent write calls will advance through the file sequentially unless
the file position is changed explicitly.

When writing sequentially, or when a random write would exceed the end
of file position, the end of file pointer is set to point to a position
one byte greater than the last byte written. If a random write starts
at a positior beyond end of file then the file is padded with nulls up
to the start position.

Note that it is legal to mix all three types of write to a single

random access channel, though the user program must ensure sensible
positioning of the file pointer to avoid silly answers.

68K/0S Reference Manual 3-10 9992.1 GST 13/1.00

ESI Computer Systems Limited Input/Outeyt, Subsyelll

3.1¢ File Positioning

Every channel has a current position pointer (starting at position 0)
which is the byte address in the file at which input and output takes
place. This current position is moved automatically by the reading and
writing routines described above. It can also be moved and inter-
rogated directly by the user program using the routines cescribed in
this section.

Each file on disk or microdrive has a size in bytes equal to the
position of the end of file pointer. Channels which are not attached
to disk or microdrive files will not have sensible size data available.

The IOSETPOS call can be used to set the current file position pointer
for a file (with random access mode only) as follows:

(a) If the requested file pointer is less than or equal to the end of
file position when called, the file position is vupdated as
requested.

(b) If the requested file pointer is greater than the current end of
file position and the channel is open for reading only, then the
new file pointer is set to the current end of file position and a
status code is returned.

(c) If the requested file pointer is greater than the current end of
file position and the channel is open for writing, then the new
file position is set to the current end of file position and nulls
are written to the file until the file position is equal to the
desired value.

The IOTRUNC call truncates a file by setting its end of file pointer to
be equal tc the current position. Because it does not make sense to
truncate & sequential output channel (it is always positioned at end of
file) this condition is trapped and ignored by IOSS.

The IOGETPOS call returns the current position of the channel to the
calling program. Thie call is valid for sequential channels although
the information acquired cannot te used in a call cf IOSETPOS.

The IOEOF call determines whether the channel is positioned at end of
file and returns a yes or no answer to the calling program. For a
sequential output file the answer is always yes. For any random access
channel the answer is yes if the current position is equal to the end
of file pointer and no otherwise. For a sequential input channel the
answer is yes if end of file was encountered on the last read and no
otherwise. -

The IOSIZE call returns the size of the file attached to the channel in
bytes. This information is always available for random files, and for
sequential output channels the size is equal to the current position
because writing always takes place at end of file. Devices that do not
maintain end of file pointers will return an error status code.

68K/0S Reference Manual 3-11 9992.1 GST 13/1.00

ESI Computer Systems Limited Input/Output Subsystem

3+2C

3.21

Polling an Input Channel

The IOREADY call determines whether any irput is immediately available
from the given channel without suspending the calling program and
aliows user programs to-react to real-time events, such as keystrokes.

The results obtained from this call are device dependent as follows:

(a) If the device is a time dependent device with input arriving
outside the control of the operating system the answer is yes if a
read call for a single byte would te satisfied immediately and no
if such a call would have to wait for something to happen.

(b) Otherwise the answer is yes, unless the channel is positioned at
end of file in which case it is no.

The cevices which would give category (a) response include keyboard,
serial communications and pipes. Devices in category (b) include disk
cr microdrive files, even though reading the next character from the
file might take an appreciable length of time.

Mounting and Dismounting Directories

For disk and microdrive devices it is recessary to tell the device
driver explicitly that a particular directory is available before it
can be used, and to tell the driver that a particular directory is ro
longer required anc can be removed from the system.

The IOMOUNT call passes & device dependent unit number to the device
driver, typically a small integer specifying a drive or port number.
For this call to succeed a variety of device specific conditions may
need tc be met, which might include, for example:

(2) The unit does not already contain a mounted disk or capsule.
(b) The disk or capsule is physically present in the drive.

I025 (and the device driver) attempt to mount whatever is found on the
specified device. Some device drivers will be capable of automatically
¢ismounting anything which is already using that unit.

1735 checks that the directory found matches the directory specified in
the supplied path name, though if this was null then any directory
found will be successfully mounted. The name of the directory found
will be returned to the user as a string.

The IODISMOU call ends the associatior between the directory and the
unit number specified in the IOMOUNT call. For this call to succeed
it is usually a requirement that there are no files currently open on
the directory (though this is strictly a device specific condition).

The directory can either be dismounted by name (in which case the unit
number is ignored) or, if the name is rull, by unit number (in which
case any directory found on the specified unit is dismounted).

68K/0S Reference Manual 3-12 9992.1 GST 13/1.00

ESI Computer Systems Limited Tnput/Output Subsysten

3.2¢ Device Driver Special Function !

The IOSPECIA call is provided to perform any peculiar function which is
applicable to a single device and not appropriate to supply as a
general IOSS function, such as setting a serial line taud rate.

The patt name and program/data indicator identify the device: what the |
device does, what the parameters mean and what results are returned are I
entirely up to the device. The T0SS performs nc actiorn at all on this
call apart from checking that special operations are actually allowed
on this device and passing the data tc and from the device driver.

€8K/0S Reference Manual 3-13 9992.1 GST 13/1.00

mj:qunﬂ LA A S T : Lt 2rnsleye 151

~ . B Anlhe roiFoinn 10T v s aratesg nt hehiv o o NPDHHEOT adT
& e cdgyue b abpioEorags w0s ban saival '

- e Gapp weit Lotsms p apiTdes e det P s Rl WBrisal

ot fraw AEiyals 1! rppowt smdenionl edsb\meranae ben asra v s
sns Bomarda el Al laoere Jete or s snatamesed) wild fote el o 8
AN 5o I15 f5 wifr so sl 0T SfT ssivob w3 of vfu Jeoren
bawella vilputow = —actorag falwege Bl qnidosdy mot IMete 1
crmerh wsivab st s e pfeh oot amiank BHa saivak nifd o

CRAR Ismungd swp»12te

.

aoidanud inioaq® twind sulveld

(s m

PR TR LT

AP

ESI Computer Systems Limited Operating Systen

SECTION k:

OPERATING SYSTEM FUNCTIONS

68K/0S Reference Manual o] 9992.1 GST 13/1.00

00.L\EL TEN L5900

batimid zmastaye wuqmoﬂm

o BOITIHE

N
&
B4 .
e Leval o ek B ABS

ESI Computer Systems Limited Operating -SysEsl

b

b1

OPERATING SYSTEM FUNCTIONS
Overview of 0S Functions

The functions provided in this category fall under six main leadings,
each consisting of a group of related routines:

(a) Program Manager: these routines perform create and delete
operations on applications programs.

(b) Memory Manager: these routines provide applications software with
facilities for the allocation and release of system memory.

(c) Menu Manager: this software provides facilities for the display,
data entry and date capture of complex forms.

(d) Timing Services: routines are provided to perform timed delays
and to read and set the internal calendar clock.

(e) Heap Allocation: these routines perform user heap management.

(f) User Trap Handler: this allows applications programs to redirect
certain trap vectors to user written routines.

These groups of functions are not related in any structural fashion but
instead form a conveniently sized set of entry points to be assigned to
a single vector routine.

0S routines are called synchronously as subroutines of the calling
applications program and either act as straightforward subroutines or
communicate with an asynchronous sytem component using semaphores. In
the latter case, the complexities are transparent to the applications
program.

Calling OS Routines

0S routines are called by applications software via a single entry
point with the function code in DO, as follows:

MOVEQ #OSFUNC, DO
JSR OSENTRY

On return DO contains a status code.

Descriptions of each 0S routine follow below, and precise details of
each 0S routine are given at Appendix B. -

68K/0S Reference Manual L1 9992.1 GST 13/1.00

ES] Computer Systems Limited Operating System

4.3

by

Program Manager Functions

The program manager is a collection of system subroutines and system
programs that performs a variety of tasks concerned with the creation,
deletion and examination cof applications programs.

A program is an asynchronous process that consists of at least one
procedure plus a program control block and a data area that contains
its stack anc heap.

A program can own other programs and it keeps a list of these (the
program list) in its PCB. Note that program ownership can be nested to
any level, enabling the formation of family trees of related programs.

A program is only permitted to use program manager functions on its own
child programs. The program manager functions will fail if any attempt
ie made to operate on other programs. However, a program kill function
applied to a child program will recursively be applied to the entire
family sub-tree of programs owned by the child.

Program manager functions include facilities to:

(a) Start a new program.

(b) Investigate the state of a program.

(c) Terminate a program, tidying up all its resources.

The termination function is highly complex, having impact on a number
of system functions. In principle, the program manager can cope with
both rormal termination and program aborts (normally invoked by system
error traps), provided that any abnormal termination has not involved
Cestruction of any system cata structures. The major requirement in
either case is to release all of the resources owned by the terminated
program.

Initial Program State

When a newly created applications program is set into run state bty the
scheduler, the following values are present in its registers (and the
corresponding locations in the PCB) immediately prior to executing the
first instruction:

Al Address of the parameter string passed from the parent

A5 Address of the program's PCB

AT User stack pointer
This is vusually the only information that an applications program will
require to perform normal functione under 68K/0S. Systems programs may
need more details of the initial state of the program control block and

other system data structures (as found in the Systems Programmer's
Reference Manual).

68K/0S Reference Manual 42 9992.1 GST 13/1.00

ESI Computer Systems Limited Operating, SysEe

b5

L.

4.8

Starting a New Child Program

The OSSTART tunction performs the actions necessary to start a program:

(a) Load the procedure specified and set up the PCB.
(b) Chain a program list clement to the calling program's PCB.

(c) Grab the greater of the RAM memory requirements specified by the
caller or in the procedure entry control block.

(d) Alocate the program a priority less than the caller.
(e) Allocate an initial program state (either suspended or ready).
(f) Pass the program the address of a parameter string.

The created program becomes a child of the calling program.

Determine Program Status

The OSSTATUS function enables & program to find out whether a child
program is still running or has finished.

Wait for a Program to Finish

The OSWAIT function waits for a child program to finish and returns its

program list element to the parent program, so that the parent program
may examine the results.

The program list element contains two status codes and a return string
wvhich provide the caller with information concerning the termination of
the child prograu. When the caller has finished with the program list
element it should return it to the heap using OSHEAPDE.

Force Program Termination

The OSKILL function causes a child program to stop bty diverting its
program counter to a TRAP #0 instruction. Control returns to the user
before the child program stops, so the caller must use OSSTATUS to
check the status of the program or OSWAIT to wait for it to actually
stop. »
The child program is allowed to finish any critical system code that it
is executing, prior to having its program counter diverted. It will
terminate in the same way as if it had voluntarily executed TRAP #O.

Note that OSKILL cannot be carried out by the caller on itself. A
program must terminate itself by executing either a TRAP #0 or an RTS.

68K/0S Reference Manual 4-3 9992.1 GST 13/1.00

BSI Computer Systems Limited erpting SYPR

k.o

L.10

h.11

k.12

4.13

Memory Manager Functions

The memory manager is a set of subroutines which controls the
allocation of RAM memory to programs, slaved microdrive or disk blocks
and other system components.

Functions are provided for the following:

(a) Allocation of memory for use by a program.

(b) Change of memory ownership information.

(c) Deallocation of memory by ownership identifier.

(d) Deallocation of memory by address range.

Applications software will usually only need to grab extra memory,
because it will be released automatically when the program terminates.
The remaining functions are provided for systems programming use.
Allocate Extra RAM to a Program

The OSMEMALL function will attempt to allocate a contiguous area of RAM
of the specified size (in units of 1Kb), and if successful will store
the supplied ownership information in the system memory map entries
corresponding to the RAM allocated. The ownership identifier should
normally be set equal to the calling program's PCB address, because
this will ensure automatic memory release on program termination.
Change Ownership Information

The OSMEMOWN function sets a given value in the ownership field of the
memory map entry for a given range of blocks which were allocated with
the OSMEMALL routine. This can be used by system programmers to
transfer memory resources from one program to another or to retain
memory after a program is terminated.

Release Memory by Ownership Information

The OSMEMDA function deallocates all memory blocks with a specified
value of the ownership information field.

Release Memory by Address Range

The OSMEMDS function deallocates a specified number of 1Kb memory

blocks whose start address must be explicitly identified by the calling
program.

68K/0S Reference Manual Lk 9992.1 GST 13/1.00

ESI Computer Systems Limited Operating System

b1k

k.15

The Menu Manager

The Menu Manager is a set of subroutines that interface between
applications software and display file manager routines, that are
provided to simplify form filling and menu selection operations and to

provide a consistent user interface for menu driven applications
software.

A menu consists of one or two display files which are shown in
different screen windows:

(a) The menu window contains a form which is constructed from
protected heading fields, variable message fields and variable
input fields. When this window is displayed on the screen the
user can tab between the input fields, enter and edit data, and
select options using function keys.

(b) The (optional) list selection window displays a scrollable list of
items from which the user can select an item and copy it into any
input field in the menu window.

Note that these display files and windows are not initialised by the
menu manager and must be set up by the applications program explicitly
using standard display file manager initialisation routines.

Two cursors are used, one in the menu window which may be moved between
variable input fields by means of the TAB key, and a second in the list
window which may be moved up and down the list with the cursor keys.

Menu Data Structures
Two data structures are required and maintained by the menu manager:

(c) The menu fixed data structure is used tc specify field definitions
including protection status, ink and paper colours and any fixed
heading text that must be displayed. This data structure is
static and can be held in ROM if required.

(d) The menu variable data structure is initially created from the
fixed data structure and represents (in compact form) the current
state of the menu display file shown in the menu window. The
applications program need not know the detailed format of the data
structure because menu manager routines are provided tc read and
update specific menu fields.

The menu variable data structure is initially presented to the menu
manager as an empty string which must be large enough tc hold the menu.
The memory required for this must be cbtained and disposed of by the
applications program.

For details of the menu fixed data structure see section 8.

68K/0S Reference Manual 4-5 9992.1 GST 13/1.00

ESI Computer Systems Limited L

4,16

T

4.18

k.19

Display Fixed Menu Data

The OSMENDIS function clears the specified display file, copies the
fixed data to the display file (and hence the screen) and initialises
the fields in the variable data structure. This routine is called once
for each new menu displayed.

Read User Input to Menu

The OSMENRD function interacts with the operator when he fills in -the
form or selects menu options, as follows:

(a) CHARACTER keystrokes are echoed at the cursor position in the
current variable input field of the menu.

(b) The TAB and BACKTAB keystrokes move the menu window cursor between
the variable input fields.

(c) The CURSOR LEFT, BACKSPACE-DELETE and DELETE LINE keystrokes are
used to edit the contents of a variable field.

(d) The CURSOR UP and CURSOR DOWN keystrokes move the list selection
cursor up and down the list window.

(e) The ESCAPE keystroke copies an item from the list windo to the a
menu window input field. The item and field are specified by the
positions of the two cursors.

(f) The FUNCTION CODE and ENTER keystrokes return control to the user
after copying the data from the variable input fields into the
menu variable data structure.

(g) Other keystrokes are ignored.

The list selection window is cptional: where none is displayed, the
keystrokes in (d) and (e) are ignored.

Up to fifteen FUNCTION CODEs can be used, these plus ENTER are returned
to the calling program as bits in a sixteen-bit word.

Read a Variable Field

The OSMENGET function extracts the contents of the specified field from
the menu variable data structure and returns it to the user as a string
of characters.

Update a Variable Field

The OSMENPUT function is the complement of CSMENGET. The string
supplied by the user updates the contents of the specified field in the
menu variable data structure. This will subsequently be displayed on
the screen after the next call of OSMENRD.

68K/0S Reference Manual L-6 9992.1 GST 13/1.00

ESI Computer Systems Limited Operating Syrédd

L.20

4,21

4,22

L.23

Timing Services

These fall into two distinct categories (representing the two hardware
clocks supported):

(a) Passive real-time clock delay routine
(b) Hardware calendar clock support routines

The real-time clock is mandatory but may operate at either 50Hz or 60Hz
depending on the mains supply. The hardware calendar clock is optional
and may not be present in some implementations of 68K/0S.

Passive Delay

The OSDELAY function suspends the calling program for the specified
number of 50/60Hz real-time clock ticks, allowing other programs to run
in the meantime.

This function does not provide a very accurate timing mechanism, for a
number of reasons:

(a) The request to start the delay can occur at any time curing the
clock cycle, so a request to delay for one clock period actually
causes the program to wait for any time from zero to one cycle.

(b) When the processor is heavily loaded clock ticks may be ignored
altogether by both hardware and software at various levels, thus
under these conditions it ie possible for a program tc be delayed
for longer than specified.

(¢) When the delay software wakes the program up it may take some time
before it resumes running because high priority system processes
are also invoked periodically on clock ticks.

If the number of ticks on entry is zero or negative, the calling

program is delayed for one clock tick.

Read Binary Time and Date

The OSBINCLK function reads the hardware calendar clock and returns the
time and date as a binary value. This is defined to be the number of

seconds that have elapsed since 00:00 hours con lst January 1983.

Set Binary Time and Date

The OSSETCLK function sets the hardware calendar clock with a binary value
representing the time and date. This is defined tc be the number of

seconds that have elapsed since 00:00 hours on lst January 1983.

68K/0S Reference Manual b7 9992.1 GST 13/1.00

ES] Computer Systems Limited Qpexsting EYpi

4.2y

4.25

426

k.27

Heap Allocation

All applications programs must have an area of storage called a heap
which is used to allocate variable sized records for a variety of
purposes on an ad hoc basis. Programs are allocated heap storage when
they are started by the program manager, and this is subsequently used
transparently by a large number of 68K/0S system calls.

To enable applications programs to allocate and deallocate records from
their own heap, routines are provided that perform the heap management
functions required.

Allocate a Heap Record

The OSHEAPAL function allocates a record of the specified size from the
heap and returns its address to the calling program.

Deallocate a Heap Record

The OSHEAPDE function returns the specified record to the heap free
pool. Adjacent free records are coalesced. If the record lies outside
the address range of the calling program's heap, the call is ignored.
Determine the Free Stack/Heap Space

A program's stack and heap share the same area of memory but grow from
opposite ends of this area, the stack growing down from the high

address and the heap growing up from the low address.

OSAVAIL allows a program to enquire about the free space remaining and
returns three values:

(a) The size of the largest free heap record.
(b) The total size of all free heap records.
(c) The size of the gap between the top of stack and the top of heap.

It follows that the largest possible heap record available to the user
program is the greater of (a) and (c).

68K/0S Reference Manual 4-8 9992.1 GST 13/1.00

ESI Computer Systems Limited

L.2& User Trap Handler

Operating System

By default, those exception trap vectors not used by 68K/0S address &
routine which will terminate the calling program, since in most cases
accidental invocation of a trap is caused by the program running wild.

OSTRAP allows user programe to change the contents of the following
exception trap vector to address a user trap routine:

EAADDRES
EAILLEGA
EADIVIDE
EACHKINS
EATRAPV
EAPRIV
EATRACE
EAALINE
EAFLINE
EATRAPL
EATRAPS
EATRAP6
EATRAPT
EATRAP8
EATRAP9
EATRAP10
EATRAP11
EATRAP12
EATRAP13
EATRAP1L
EATRAP15

0dd address

Illegal instruction
Divide by zerco

Array bound violation
Arithmetic overflow
Privileged instruction
Trace mode exception
A-line exception
F-line exception

User
User
User
User
User
User
User
User
User
User
User
User

trap
trap
trap
trap
trap
trap
trap
trap
trap
trap
trap
trap

Note that user trap 4 and trace mode exceptions are special cases that
vector to the user defined routine in supervisor mode, all other traps

will vector in user mode.

68K/0S Reference Manual

k-9 9992.1 GST 13/1.00

i

batimil amataye lsmqmoi)m

bhs 20\¥s va Foib Jop stc¥oev gend aoifqooxs ssodd | Jluetsh VE
9 Hom F sonfs ceamerg ynilles add sfmalwest Likw doldw antuot
SBlbw anbues maryena ottt qd basuss 8l ged 8 o noidaveval Lsdmeblods

pnfuollol sdr o araalinss adf spneds o7 amsvgosq 19ar awolle TANTEO
santdets gt ases 8 edasnbbs o qorssy Jond obl¥geaxs

arwibie BEO 2ARGAANT
poldoreifonl fapelll ADSLITAY
res yd ablvid BIIVICAS
nolaploby bravol ystth AMTHHDAE
woltravo olbomitlaA VRAATAG
noltoutteal begellvicg YIMAR °
nolrgeoxs obar eyl UOARTAN
o tdgasys anif-A AWLIAAL
mifgeoxe anil-T% ENLINAM
4 gaerd tmell ZAFRTAR
gt yesl STARTAR
qetd Tanll OGAFTAS
gatd wssll TMANTAR
qard ges! BGARTAS
gand ezl GIATETAT
OL geet teell QI9AATAR
1l qevs el [I9ARTAZ
SI gs1t tesll SUGARTAN
£L qatd toal £IIAHTAR
AL gatd asall AISARTAY
2 qevd woall FITARTAS

D e Qe

teifd mmags [sivens s3e andhiqgeoxs skom a~exd bas & gt tasu et ndol
aferd tondo Ua wbom tosberoque ni onliwon banitab 1oeu sl of soimev
. Sbow dsEu ni oteav Jle

2 IsuceM ssmera el 20\ Nao

ESI Computer Systems Limited Display File Manager

SECTION 5:

DISPLAY FILE MANAGER

€8K/0S Reference Manual 5-0 9992.1 GST 13/1.00

heiimil emalaye 181ugmol m

¢ HOITDER
TADAMAM R1TT YAIRIO i ‘
()

=

0=& LonaM ooawratan Po\EY

ESICompuwrSymemsLmﬁmd Display File Maudged

\J

5.2

5.3

DISPLAY FILE MANAGER

Outline Description

The Display File Manager is & set of subroutines that controls access
to the screen by applications programs. DFM permits concurrent
programs to share the available screen area between them, and will
ensure that their screen areas dc not interact.

DFM operates on a logical screen which is & mapping onto a physical
screen. This mapping depends on the hardware implementation and/or the
screen mode selected (TV or monitor).

Physical screen output is achieved using the screen driver, which is
called synchronously from within DFM. The screen driver should not be
called direct by applications software under any cicumstances whatever.

Mthough 68K/0S graphics software calls the screen driver direct, a DFM
window is supplied as a parameter to each graphics routine and figures
drawn will be clipped at window boundaries. In this case DFM has an
indirect effect on the integrity of the screen.

Partitions

If a program requires an area on the screen it is sllocated a partition
by DFM. A partition is a variable sized horizontal slice of the
logical screen which is divided from other screen partitions by a
single pixel high rule. The screen may be divided into any number of
partitions provided that each displays at least one line.

The size of partitions is under direct user control from the keyboard,
and any partition can be grown or shrunk by any amount provided that no
partition is reduced to less than one line.

Partitions are owned by programs and can only be updated by their
owners. When a program is terminated its. partition is deleted and the
other partition(s) will expand to fill the space released.

Virtual Screens

Because a screen partition is under direct cperator control and
competes for screen resources with other partitions, a .program cannot
know the size of its partition (which may only display a portion of the
logical area that the program wishes to display). This problem_is
solved by the maintenance of a virtual screen for each program.

A virtual screen defines the program's logical screen dimensions and
its division into windows. It is not a separate physical copy of the
screen but a complex date structure which maintains the text associated
with windows in a set of linked lists known as display files.

A virtual screen can be scrolled through a partition by DFM or by user
keyboard control. This is termed metascrolling.

68K/0S Reference Manual 5-1 9992.1 GST 13/1.00

ESI Computer Systems Limited RArplag Fite Magraen

5.4

5.5

556

Windows

Intially a virtual screen consists of a single rectangular window whose
size is identical tc the requestec¢ screen partition size. The initial
window can be subdivided by a program by creating new windows.

A new window is created by splitting an existing rectangular window
either vertically or horizontally into two smaller rectangular windows.
This process can be repeated recursively to divide the virtual screen
into several windows, but will always ensure that:

(a) All windows are rectangular
(b) There are no gaps of any shape

A program can create and delete windows dynamically provided that
windows are deleted in reverse order of their creation. While a window
exists, its size and position within the virtual screen ere static.

Display Files

Each window is associated with a display file which holds an internal
representation of the display text and is potentially far larger than
the window itself. The display file is independent of the window and
is not deleted if the window is removed from the virtual screen.

The display file can be scrolled through the window either vertically
or horizontally by DFM. This scrolling is distinct from metascrolling.

The display file holds details of default ink and paper colours for the
text and the window background colour. Special commands are provided
to change ink and paper colours and character fount (see 5.9 and F.8).

Extended Display Files

FEach display file is sllocated an area of memory in which to store text
which it organises as & heap. This area cannot be expanded
dynamically, and there is s possiblity that the display file will be
filled up and exhaust the heap.

To overcome this problem DFM allows the calling program to install a
user written subroutine (the 'user hook' routine) that will be called
by DFM whenever the display file is full. This routine could:

(a) Output the top line of the display file to an IOSS channel,
providing a log facility.

(b) Maintain two IOSS channels, one for each end of the display file
which are attached to disk or microdrive files, providing extended
scrolling onto files. (This is how the GST screen editor works.)

Alternatively, DFM can be instructed tc throw away the top line of the
display file when this becomes full.

68K/0S Reference Manual 5-2 9992.1 GST 13/1.00

ESI Computer Systems Limited Display File Manager

5.7

5.8

Cursor, Action Pointer and Markers

Each display file maintains two pointers into the text called the
cursor and the action pointer. The cursor can be moved by DFM to point
to eny display character in zny line of the display file, and when the
cursor is moved the action pointer is set to the same value. The
action pointer can be moved within the current cursor line and can
point to both commands and display characters.

When displayed, the position of the cursor is represented on the screen
by an inverse video block. If the display file is associated with =z
window then DFM will always ensure that the cursor is visible in the
window, but cannot always guarantee that the window line containing the
cursor is visible in the partition.

If a program has several windows it can define cne of these to be fixed
in the partition. The cursor in this window will flash and DFM will
always ensure that it is visible in the partition, first by secrolling
the display file, and if necessary by metascrolling the virtual screen.

The cisplay file manager maintains up to eight position markers in each
display file. These can be set by the user, and the cursor can be
moved to a marked position.

Console Display File Interface and IOSS

Display files can be accessed via the console display file interface.
This allows a subset of display file operations tc be performed by
programs which have simple requirements.

A special interface between IOSS and DFM is provided tc enable console
display files to be accessed through 10SS without calling DFM directly.
If a program calls IOOPEN to open a sequential output channel to the
device SCREEN: or calls IOGETLIN to read a line from device KEY: then
the system will, if necessary, create a display file and an associated
window. Further calls to IOSS have the following effects:

(a) IOPUTSER and IOPUTLIN calls to SCREEN: will output data to the
display file's screen window.

(b) TOGETLIN calls to KEY: will reflect each keystroke in the display
file's screen window (see also section 3.17).

A program can select an existing display file for use with the console
interface and this display file will be used by T0SS when required.

68¥ /05 Reference Manual 5-3 9992.1 GST 13/1.00

ESI Computer Systems Limited Display File Manager

5.9

5.10

5411

Display File Binary Commands

The display file manager maintains data in the display file connected
with colour, founts, underlining ancé spacing which is interpreted by
the screen driver (see F.T).

This data is included in a display file by inserting a binary command
consisting of two bytes, the first a command code and the second a
parameter, both having the top bit set to distinguish them from text.

A subset of these are available as user defined commands that programs
may insert in cCisplay files for their own private use. These will be
ignored by DFM and the screen driver.

Single Line Menu

The bottom screen line is maintained separately by DFM and is never
allocated tc screen partitions. This line is used by applications and
system programs to display program identification, single line menus,
messages o1 actions assigned to the function keys.

The user can select which partition (and hence which program) he wishes
tc receive input from the keyboard. This program has exclusive use of
the single line menu.

The keyboard can be used to talk directly to the operating system by
switching into system mode. This allows the user to grow, shrink and
metascroll partitions, select current programs and change their status.
When in system mode, the operating system itself uses the single line
menu to display actions assigned to the function keys.

Calling DFM Routines

DFM rcutines are called by applications software via a single entry
point with a functior code in DO:

MOVEQ #DMFUNC, DO
JSR DMENTRY

On return DO contains a status code.

Descriptions of each DFM routine follow below, and precise details of
each DFM call is given in Appendix C.

GBK/0S Reference Manual 5=k 9992.1 GST 13/1.00

ES] Computer Systems Limited Display File Manager

52

5.13

L1k

\n

5.15

Initialisation Routines

The DMINITVS call creates an (initially empty) virtual screen for the
program and will allocate & screen partition of the' defined size. The
new partition appears at the bottom of the screen, but above the single
line menu.

The DMINITDF call will perform &1l the initialisation required to
create a new empty display file, including allocation of space from the
calling program's heap (if required) and the initialisation of all
internal data structures.

The DMNEWWIN call will add a new window to the virtual screen &and will
display the associated display file on the screen.

The DMRESET routine will delete all the text in a display file and
reset the dates structures tc their initialised state.
Termination Routines

The DMFLUSH call will empty the display file by repeated calls of the
user hook routine which should write this to the top output file.

The DMKILWIN call will remove a window from the calling program's
virtual screen, if this was the last window created.

The DMKILLDF call will release the display file data area after first
calling DMFLUSH to write out the data to the top file.

Display File Control Routines

The DMTTYSEL call will select the specified display file as the current
console window to be used for IOSS output tc the SCREEN: device and for

keyboard reflection using IOGETLIN with the KEY: device.

The DMFIXDF call specifies which window should always be kept visible
within the partition and will cause the cursor in that window to flash.

The DMDISABL call will forbié screer. update for the specified display
file until reenabled. This is required when a complex operation such
as paragraph reformat takes place to avoid both the time overheads of
intermediate line repaints and the resulting unpleasant visual effects.

The DMENABL call will reenable screen update that has been disabled.

Space Allocation Routines

These calls are normally made direct from within DFM, but are provided
to enable the user hook routine to share the same display file heap.

The DMALLOC call grabs a record of specified size from the display file
heap, DMRELEAS will return a record to the heap.

68K/0S Reference Manual 5-5 9992.1 GST 13/1.00

ESI Computer Systems Limited Display File Manager

5.16 Line Manipulation Routines

5.

N

17

.18

The DMINSLIN call inserts & line into the display file immediately
above the line in which the cursor is positioned. If this is on the
screen then lines below it will be automatically scrolled down by the
display file manager.

The DMDELLIN call removes the line in which the cursor is positioned
from the display file and returns it to the heap. The rest of the
window will be scrolled up and the cursor is left at the start of the
next line.

The DMJOIN call joins the line containing the cursor with the following
line. Further lines are scrolled up.

The DMSPLIT call will split the current line into two immediately
before the cursor position. Further lines in the window are scrolled
down.

Character Manipulation Routines

The DMRDBYT call will move the action pointer by the specified amount
and return the display file byte referenced to the calling program,
which need not be a display character. When the action pointer is at
the end of line, a newline code is returned.

The DMWRBYT call will replace the display file byte referenced by the
action pointer by the byte specified, which need not be a display
character. This routine nust not be called if the pointer is at the
end of line.

The DMINSCHR call will insert the display character specified at the
cursor position, shifting the remainder of the line to the right.

The DMDELCHR call deletes the display character referenced by the
cursor. The rest of the line is shifted left.

String Manipulation Routines

The DMINSSTR call inserts a string (whose length is passed in the first
two bytes) into the display file at the cursor position. Note that the
string may contain newline characters, in which case the string will be
inserted in sections, DMSPLIT being called internally to start new
lines. The cursor is left on the character after the inserted string.
The string can contain binary data and display characters.

The DMINSBLK call is identical to DMINSSTR, but the data and bytecount
are passed separately.

The DMDELCMD call deletes a two byte binary command from a display
file. The action pointer must be pointing to the first byte of the
command.

68K/0S Reference Manual 5-6 9992.1 GST 13/1.00

ESI Computer Systems Limited Sleplay FiLs Nepagin

5.19

580

5.21

5.22

Cursor Routines

The DMMOVECU call allows the program to move the cursor (together with
the action pointer) around the display file. The movement is specified
as up, down, left, right or a number in the range O0-T7 indicating a
predefined marker position. If the cursor is moved out of the window,
the window will be scrolled until the cursor is visible.

The DMPUTCUR call will position the cursor and action pointer at a
specified line number and character position within the line.

The DMGETCUR call returns the current position of the cursor to the
calling program as a line number and character position.

The DMCURDIS call disables the cursor in the specified window. This
can be used when the cursor is not required (eg, in a help window) or
temporarily to hide the cursor to improve screen appearance.

The DMCURENA call reenables the cursor in the specified window.

Marker Position Routines

The DMMARK call sets the specified marker to reference the current
cursor position. Up to eight marker positions can be used.

The DMMKPOS call returns the position of the specified marker.

Update Single Line Menu

The DMUMENU call permits a program to display a line cf text in the
single line menu area at the bottom of the screen. It will only be
displayed when the program is selected as the current program for
keyboard input.

Install User Hook Routine

i
The DMHOOK call defines to DFM the address of a user routine to provide
scrolling for an extended display file on and off a backing medium such
as C¢isk or microdrive. This routine will be called by DFMwhen:

(a) DFM requires to write a line to backing store. This line may be
written from the top or bottom of the display file.

(b) DFM requires tc read a line from backing store. This line may be
read into the top or bottom of the display file.

The hook routine must, in principle, maintain two files to cope with
the data from either end of the file, though for some applications
where the display file is only scrolled in only one direction a single
file or sequential output channel will be sufficient. No hoock routine
is required if a simple console window is selected because DFM will
dispose of lines itself.

68K/0S Reference Manual 5-T 9992.1 GST 13/1.00

ESI Computer Systems Limited Graphics Routines

SECTION 6:

GRAPHICS ROUTINES

68K/0S Reference Manual 6-0 9992.1 GST 13/1.00

ol
Wl Computer Systems Limited Graphics Routines

6
6l

GRAPHICS ROUTINES

General Description

68K/0S graphics routines provide a mechanism for applications software
to draw medium-resolution graphics figures. These figures are drawn in
display file windows and are positioned relative to the 'origin' of the
display files, and will be clipped according to the current window
boundaries when the figure is drawn.

Although graphics and text may be mixed in the same display file window
and use the same coordinate system, the system does not maintain
graphics display files ocutside of the window currently visible on the
screen. Thus it is not possible to scroll graphics through a window
(in the same way as text) as an automatic system function, although
this can be achieved by applications software if desired. If a
graphics figure is scrolled out of and back into a window, DFM will
repaint the scrolled area in the current window background colour.

Because 68K/0S does not contain internal trigonometric functions, the
range of figures available is restricted, and two-dimensional figures
must be drawn with orthogonal axes.

Up to eight colours are supported and these can be mixed in four-pixel
block patterns to form a variety of stipple effects, producing a large
number cof pseudo-colours. Note that the QL hardware only supports four
colours in 85, 80 and 60 column modes (blue is suppressed).

Coordinate System

The graphics coordinate system is relative to three separate screen
origin offset mechanisms:

(a) The logical screen origin may be displaced in both axes from the
physical screen origin if a TV compatible mode is selected.

(b) The display file window origin will be relative to the positions
of the partition and the virtual screen.

(c) The applications software may define a graphics window whose
origin is relative to the display file origin.

Note that in each case the origin is the top left-hand corner of the
item described, and that once the origin offset and window size has
been defined, the positioning, scrolling and clipping of graphics
figures within the coordinate system is automatic.

Coordinates in both the X and Y axes are defined in screen pixels where
the full physical screen is 512x256 pixels, regardless of whether the
QL is in four or eight colour mode. In the latter, the bottom bit of
the X coordinate is ignored.

The dimensions and origin position of the graphics window are defined
in character units. This enables graphics windows to map directly onto
display file windows.

68K/0S Reference Manual 6-1 9992.1 GST 13/1.00

ESI Computer Systems Limited Graphics Routines

6.3

6.4

€.5

Colour Definitions and Stipple Patterns

Colour definitions for graphics routines are defined in & word, the
upper byte of which is set non-zero if the figure is to be drawn in XOR
ink. The lower byte is defined as follows:

Bits 7-6 Stipple (0 =Q, 1 =H, 2 =V, 3 =2C)
Bits 5-3 XOR of mixer colour and base colour
Bits 2-0 Base colour

where the stipple codes refer to a 2x2 pixel block, as follows:

Q = quarter mixer, three-quarters base
horizontal stripes of base and mixer
vertical stripes of base and mixer
checkerboard of base and mixer

I

H
v
C

Note that if bits 5-3 are zero then the plain base colour is drawn and
the defined stipple pattern has no effect.

Colours are specified as numbers in the range 0-T7 as follows:

0 Black 4 Green
1 Blue 5 Cyan

2 Red 6 Yellow
3 Magenta ¥4 White

In four-colour mode (85, 80 or 60 columns), blue is suppressed, giving
the following:

c-1 Black 4-5 Green
2-3 Red 6=T White

Aspect Ratio

Because the y-dimension of the physical pixel exceeds the x-dimension
by a factor of approximately 3:2, the QL screen aspect ratio is non-
square and will vary depending on the particular monitor or television
used. Because the coordinate system is based on physical pixels it
will be necessary to set the x-dimension some 25% to 35% larger than
the y-dimension in order to draw circular ellipses or square blocks.

Calling Graphics Routines

Because the graphics interface may change with later implementations of
68K/0S on different machines, these routines are called via the system
dependent SPENTRY vector with a function code in DO:

MOVEQ #SPFUNC, DO
JSR SPENTRY

On return, DO will be destroyed, all other registers are preserved.

68K/0S Reference Manual 6-2 9992.1 GST 13/1.00

ESI Computer Systems Limited Grapliide Bentines

6.6 Graphics Figures
The following graphics figures can be drawn:
(a) SPPOINT draws a single pixel
(b) SPLINE draws a straight line
(¢) SPELLIPS draws an orthogonal ellipse
(d) SPBLOCK draws an orthogonal filled rectangular block
(e) SPTEXT draws a text string horizontally in various sizes
(f) SPPAINT fills an area to an unspecified border
(g) SPFILL fills an area to a specified border

All these figures are clipped to window boundaries.

68K /05 Reference Manual 6-3 9992.1 GST 13/1.00

«

ESI Computer Systems Limited Exograms #nd. Procedures

SECTION T:
CREATING PROGRAMS

AND PROCEDURES

€8K/0S Reference Manual -0 9992.1 GST 13/1.00

ESI Computer Systems Limited Frograns snd Procedlics

=1

7.3

Tk

7.5

CREATING PROGRAMS AND PROCEDURES
Overview

This section defines the general programming requirements and specific
entry and exit requirements for programs or procedures, and the initial
values of pointers and registers when a program is started by the
OSSTART command.

Position Independence

A1 procedures written to run under €8K/OS must be position independent
because the user has no control over the position in which his code is
loaded into memory. This 1requirement restricts the addressing modes
available to the programmer when making references internal to his
program. In general, all internal references to addresses must use (or
be derived from) PC relative mode. Absolute short or long addresses
must only be used when referring external system routines and fixed
position hardware registers, system tables and variables.

Reentrant Code

M1 68K/0S procedures must be reentrant because it is rpossible that a
single copy of a procedure might be executed simultaneously by two
programs. As a general rule this implies that a procedure must be
written in pure.(read only) code which guarantees that it will be
reentrant and will also ensure that the code can be executed in ROM.

Procedure Header Block

A 32-byte header block must be coded at the start of each procedure,
and has the following format:

PEENTRY(.L) PC relative procedure entrypoint
PERAM(. W) Minimum RAM allocation for program

followed by the procedure name (in standard I0SS pathname format) if it -
is intended to include the program in the ROM: directory.

PERAM contains the procedure's RAM requirement for PCB, stack and heap
(in units of 1Kb) if it were tc be invoked as a program by an OSSTART
call. If this is set to zero, the procedure cannot be run zs a stand-
alone program.

Program Memory Requirements

Unless a program is ROM resident the system will load it to an area of
RAM whose size is known from the directory entry. A second non-
contiguous area of RAM (whose size is the greater of the PERAM entry or
a parameter to OSSTART) is allocated for the PCB, stack and heap.

68K/0S Reference Manual T-1 9992.1 GST 13/1.00

Programs and Procedures

ESICompumrSymemsLMﬂmd

T.€ Program Memory Layout

The stack/heap area allocated to a program is laid out as follows:

| High address
PROGRAM |

CONTROL
BLOCK
(PCB)

PCB * ——>

STACK |

AT ——>

SPARE
HEAP/
STACK

PBHEAP —-—

HEAP

PBHEBASE — Low address

68K/0S Reference Manual T-2 9992.1 GST 13/1.00

ESI Computer Systems Limited Frograms and Frocedurgs

7T

7.8

7.9

68K 100 Reference Manual T

Data Area Pointers

The pointers to the user program's data area are:

(a) AT. Thie register is the user stack pointer and ‘always addresses
the last word that has been ellocated on the stack (which grows
down from high memory).

(b) PBHEAP. This symbol is an offset in the PCB where the heap
pointer is kept. This always points to the first free word above
the top of the heap (which grows up from low memory).

(c) PBHEBASE. This symbol is an offset in the PCB where the pointer
to the base of the heap is kept. This always points to the first
byte allocated to the program.

These addresses are aligned on word boundaries.

Special Conditions at Start of Program

At the start of a program the 'stack contains the return eddress into
the operating system's program termination routine, but is otherwise
empty. This address is planted on the stack by the program manager to
enable a program to terminate using an RTS intruction.

The heap is vused by the system during program initialisation to build
those system data structures required for e new applications program,
thus PBHEAP will be greater than PBHEBASE.

AS points to the program control block (required by calls to OSMEMALL).
Al points to a (possibly null) parameter string passed from the parent
program. The standard parameter string is defined in section 8.

Program and Procedure Exit

To terminate either a program or a procedure, the final instruction
executed shoul¢ be:

RTS
Additionally, a program may be terminated by executing:
TRAP #o
Note that use of RTS is preferable since it allows a module to -be

executed either as a program or a procedure, whereas a TRAP §O executed
by a procedure will terminate the program that called the procedure.

(o)

9992.1 GST 13/1.00

ESI Computer Systems Limited Rrogrepl s freecdidugs

T7.1C Passing Status Parameters

When a program terminates either normally or because of an error, it is
possible to pass completion status parameters back to its parent in
registers that are transferred to the program list element:

DO.W status code (zero for successful completion)
D1.W return code (applications specific)
AO.L pointer to return text string

The status code will normally be zero or a system status code returned
from a system call.

The return code is, strictly speaking, applications dependent and can
be used to pass completior status in a suite of applications programs.

Stand-alone programs should clear the return code.

The return text string is free format and is up to 46 bytes long
(including the two-byte string length).

68K /0S Reference Manual T-h 9992.1 GST 13/1.00

ESI Computer Systems Limited

68K/0S Reference Manual

SECTION 8:

SYSTEM DATA STRUCTURES

System Data Structures

9992.1 GST 13/1.00

8 pomie

FABUTOUATE ATACL JOFTETE

bstirnd 2maieye muamn;)m

LaviaM sinserava?

ESI Computer Systems Limited Systen DataStTuctunes

8
8.1

SYSTEM DATA STRUCTURES
Scope

Included in this section are descriptions of those system data
structures that may usefully (and safely} be referenced as data from
applications software, namely:

Directory entry buffer
Directory information buffer
Menu fixed data structure
Procedure entry control block
Program list element

Standard parameter string
Standard text string

* %k ok ok ok ok X

The remainder of system data structures should only be referenced from
systems software and are defined in the Systems Programmer's Reference
Manual.

Notation
The following notation is used to define data structures:
(a) TField names are defined as upper case symbols:

FIELDONE

(b) Field lengths are defined as byte, word or longword (which can be
accessed directly as .B, .W or .L) or number of bytes:

BYTELEN (.B)
WORDLEN (.W)
LONGLEN (.L)
NUMBLEN (32)

(c) Field containing bit-length values are explicitly defined:
BITFIELD (.B) contains the following significant bits:

FLAGBIT1
FLAGBIT2

All other 'spare' bits are undefined but should be set to zero to allow
for future expansion.

In 8ll cases, the numeric offsets from the start of the record are not
defined. The applications programmer should code using the symbols
defined in this manual and should include the following directive at
the start of the source file:

INCLUDE 68K0S.IN 68K/0S parameters

This is the main system parameter file which will contair current
definitions of all data structure symbols.

68K/0S Reference Manual 8-1 9992.1 GST 13/1.00

ESI Computer Systems Limited

8.3

>

8.4

D

el

¥ /05 Reference Manual 8-2

System Data Structures

Directory Entry Buffer

The directory entry buffer is sn erea of memory returned from an
IOGETDIR call which contains information about a single file in a
directory. The layout of the buffer is as follows:

DEATDIR (.B) access type of the directory
CEOPTION (.B) access type and mode for this file
DEEOF (.1 file size in bytes

DECREATE (.L) creation date

DEMODIFY (.L) date last modified

DEPATH (19) filename string

DECOMM (28) user comment string

The DEATDIR and DEOPTION fields contain bits to indicate the access
type and mode for the directory and file. Three bit fields are
significant:

OPREAD 0 = read disabled 1 = read enabled
OPWRITE O = write disabled 1 = write enabled
OPRAN 0 = sequential access 1 random access

The DEATDIR field contains the combined (most restrictive) file access
permissions of both the directory and the file.

The DECREATE and DEMODIFY fields hold the relevant binary system time
(defined to be the number cf seconds elapsed since 00:00 on lst January

1983).

Strings are in standard string format as defined in 8.9 below.

Directory Information Buffer

The directory information buffer is an srea of memory returned from an
IODIRINF call that contains information about an entire directory. The
layout of the buffer is as follows:

DIENTRY _(i) number of directory entries
DITOTAL () total space available in directory
DILEFT (L) current space remaining in directory

The DIENTRY field is a number greater than or equal to the actual
number of entries in use, and its value is device dependent. It gives
zn ipper bound on the number cf entries for use by, for example, a sort
routine.

The DITOTAL field gives the total free space of an empty directory and

the DILEFT field gives the current free space in the specified
directory, both figures in units of 1Kb.

9992.1 GST 13/1.00

ESI Computer Systems Limited Bygrem Dats St E

8.5 Menu Fixed Data Structure

The menu fixed data structure is stored in z standard text string which
is read into a display file and displayed on the screen by OSMENDIS.

This

string contains fixed text, menu formatting information and

variable input or message field definitions as follows:

(a)

(b)

(c)
(a)

(e)

(£)

Display character: a character is within the standard ASCII range
and is displayed in the current fount and foreground/background
colours at the next character position on the virtual screen.

Display command: & command is a two-byte record to define
special action by the display file manager or screen driver (such
as a fount or colour change).

Code MU.NL: this is used to start a new line in the menu display.

Code MU.CLB: this is used to indicate a conditional line break
position and consists of two bytes:

MU.CLB code
Number of characters to fit on the line

If sufficient character positions remain in the window line then
the MU.CLB code is replaced by a single space, otherwise it has
the same effect as a MU.NL code.

Code MU.HT: this is used to tab conditionally to the next menu
column and consists of two bytes:

MU.HT code
Number of characters to fit on the line

If sufficient character positions remain in the window line then
the MU.HT code is replaced by the number cf spaces required to
align the specified number of characters on the right margin,
otherwise it has the same effect as MU.NL.

Code MU.ESC: this introduces a menu field specification which
consists of four bytes:

MU.ESC code
Field number (1-127)
Field attributes:

Bit T: 0 = protected, 1 = write enabled
Bits 5-3: foreground colour -
Bits 2-0: background colour

Field length (0-255)

The field number is vused to indicate the order cf cursor movement
around the menu, at least one field must be present and fields
must form a consecutive sequence starting from one. The field
length ie converted tc spaces within the window (in the background
colour). Read-only menus must include a single zero-length field.

68K/0S Reference Manual 8-3 9992.1 GST 13/1.00

ES]’ Computer Systems Limited Sygheychate SRruures

8.6

8.7

Procedure Entry Control Block

The procedure header block defined in T.4 is read by I0SS during IOLOAD
and the PC-relative entry point is converted to the absolute load
address. This is passed to the caller in modified form in z 6-byte
buffer:

PEENTRY (.L) Procedure entry point (absolute address)
PERAM (.W) Minimum RAM allocation for program

PERAM contains the procedure's RAM requirement for PCB, stack and heap
(in units of 1Kb) if it were tc be invoked as a program by an OSSTART
call. (If this is set to zero, the procedure cannot be run as & stand-
alone program.)

Note that the address of a user-constructed PECB is required by a call
to TIODEFPRO.

Program List Element

The program list element is a buffer created on the calling program's
heap when a parent program creates a child program with OSSTART. If
the parent waits for the child to finish with an CSWAIT call, a pointer
to the buffer will be returned when the child program terminates. The
following fields are of interest to applications software:

PGRETURN (.W) return code
PGSTATUS (.W) status code
PGPARMS (46) return string

This mechanism allows a child program to pass & system status code, an
applications specific return code and any arbitrary text string back to
its parent, to indicate completion status (or whatever).

Note that the child program passes these item in registers (see 7.9)
which are placed in the program list element by the system for later
examination by the parent. If the parent does not perform OSWAIT the
contents of the program list element are undefined.

68K/0S Reference Manual 8-4 9992.1 GST 13/1.00

ESI Computer Systems Limited e I SHmahtes

8.8

8.9

Standard Parameter String

The €8K/0S command program ADAM is the usual parent program for all
stand-alone applications. To start a program, the user supplies the
program name followed by any parameters that must be passed to it,
delimited by spaces. This entire command line is passed tc the child
program in & record containing a set of text strings.

The set of text strings is preceded by a set of fields giving details
of the overall length of the parameter record and the offsets from the
start of the record tc the program pathname string and the parameter
strings (if any):

APLEN (.W) Length of parameter record
APNAME (.w) Offset to program pathname string
APPARM1 (.W) Offset to first parameter string
APPARM2 (.W) Offset to second parameter string
APPARMn (.W) Offset to nth parameter

Following the nth parameter offset is the string containing the program
pathname (as keyed) followed by the n parameter strings, each string
being word-aligned.

Fach string in the parameter record is in standard text string format,
as defined in 8.9 below.

Standard Text String

All string parameters in system calls are standard string records.
These consist of a word-aligned length field (.W) followed by the text
characters, one per byte. Note that the length field defines the total
number of characters only.

€8K/0S Reference Manual 8-5 9992.1 GST 13/1.00

betimil amaseye wsuqmo:)m

2 rsdaneiss brsbnsda 5.8

a0% margorg dnevsg Leuay erdf sl MAGA meygova basmmos 20\XR5 eaT
& gy Al waYRoTE & eds of L anoirtenliqga spola~tned
370 ©2 Basang sd Jaun 1Edd avstemsrag ywme yd bavollot emasn mssats)
Bl ody o2 bestgEg =l sall bnoonos exidne aldT .ascnga «d Potlamilsh

; JLgobiiz dxed o Jee & gainisdron brotet s ai msepotg

ﬂ.ﬂsﬁ anlvla abioll 1o ¢8a & yd babsontg ai spnitde xsd %o dua o4l
mox! a¥saTlo add bne Lroost Yalomevsy oid o digesl Listsve add Yo
~ asdemateq odf bro goivds smendisq mpipong w2 of buoost afd lo Fysta

e 1) agalurs

bvonsgy edesesq Yo dapand W) HRIA

anttie smaaddng metzorq of fonll0 {W.) IMANEA
aiivtes Tsdanareq Jerll of rea1N (W.)] [MARGSA
antrda Tedsmetsq brosee o fest10 (W) SMRASIA
. Toemesy iidn of F2810 {w.) M‘HA

AFIgotg S03 apiplsinos gyodade w4y el Jeallo isyemezaq d3n ad3 griwallof
m: dage zunids vofemsraq n sdt vd Dowoffct (Bayed #8) smandtey
SDotgila~brow snled

_m anbrds Ixei basbasds gl 2t buooey ysiemsvsa st of gm:a Ao

: wolsd 0.8 ar banllsb en
A0iedE fxol bushasyz 0.0

t sobrds bssbpedu 94a alles msdays ol awsssmsusg satids LIA

SKino ersrosteds To wsdnun

‘.-"';g WJ\H TED 1,500 #-8 (swnsi snperatsn BOYVABD

ESI Computer Systems Limited

68K/0S Reference Manual

APPENDIX A:

I/0 SUB-SYSTEM CALLS

I/0 Sub-System Calls

9992.1 GST 13/1.00

A XTEESIA
ALIA) METBYE-HUE O\ Y

IeusaM annoetafl 2O\RE)

ESI Computer Systems Limited 1/0 Sub-System Calls

A.l

I0SS Register Conventions

The table following gives a quick summary of the use of registers on
entry to and exit from the IOSS.

On entry, register DO always contains the function code, which is the
name of the routine. (A set of definitions for the values of these
names is supplied in a parameter file). If I0SS is called with an
invalid function code the status STINIOSS is returned.

Usage of parameters is discussed in complete detail for each routine in
the following section.

All registers which are not shown in the table are preserved on exit
and may have any value on entry (except that registers with defined

system-wide usages follow the usual rules).

The register usage table uses the following coding scheme:

Code Length Description

* L preserved - allregisters not shown are preserved
B L buffer address

BL W buffer length

(¢ W channel number

DB .L directory name buffer

DE SIS directory entry buffer pointer

DI L directory information buffer pointer
FP L file position

MN .L magic number for directory scanning
NC W number of bytes read or written

0 .B option byte

P .L pathname

PE .L procedure entry information

PI W procedure identifier

S W status

St oy string

U .L unit number

XA wili device-dependent information, address
XD .L device-dependent information, data
YN .B yes/no answer

68K /08 Reference Manual A-1 9992.1 GST 13/1.00

ESICompumrSymemsLmﬂmd

I0SS Register Usage

Function On Entry On Exit

DO DI D2 D3 A0 Al DO DI

TOSETDRF |- 1. 10 1186 1 & ol %]
TocEToEV |1 1o 18l 115 1%]
T0GETPRE | | o st | ils | i
ToorEN |1 Jo i® 1 s ¢
TOCLOSE. | ov o 1oCoil b e 118 L
toroap |1 1o |p iz 1178 151 |
TobEFeRo | | 1o | B | PE |l | Bl
Tountomp | BT |1 11 il s %]
TODELETE | | 1o 1B 1 s |* |
ToRENAME | | o 1B 1P 1ls |* |
ToGETDIR | v | 1o | B | DE 1l S |m |
TopuTDIR | 1 1o 1B |oE 1S | %]
TobIRINF | | 1o 1B QoIS | * |
TocETsEQ | BL | 1 c 1B | s e |
TOGETRAN | BL | #p 1 C | B | 118 |nci
ToGETLIN | BL | .1 ¢ 1B | 11§ ||
ToPUTSEQ | NC | TR logseal * |
ToPUTRAN | NC | #B 1 C 1B | 1S | * !
IOPUTLIN i NC i i c i B i ii S % i
ToseTPOS | | FPlcC | | [ls |* j
omone |1 e |1 s | * i
TocETRos |1 dc |1 ils ¥ i
e : | !
tostze 11 1c | | i! s : FP |
TorEaDY | 1 dc 11 s T
ToMount | U | 1o |5 | 0B i! s | * !
TODISMOU i [i 0 i P i i! S ! * i
Tosercia | X0 | 1o 1B | xalls | x !

68K/0S Reference Manual A-2

T/0 Sub-System Calls

9992.1 GST 13/1.00

ESI Computer Systems Limited TOCLOSE

ROUTINEF

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

IOCLOSE - Close a Channel

To close an I0SS channel.

DO.W IOCLOSE

D3.W Channel number

DO.W Status

STCHAN Non-existent channel number

STIOERR I/O error on device

For sequential disk or microdrive files with a write access
type component, all blocks currently slaved in memory are
written out.

For all disk or microdrive files with a write access type
component, the directory is updated and written out.

The closing of a disk or microdrive file is a very complex
operation as far as the system is concerned and may take a
relatively long time, however, as far as the user program is
concerned there are no complications of any interest.

68K/0S Reference Manual A-3 9992.1 GST 13/1.00

ESI Computer Systems Limited IODEFPRO

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

IODEFPRO - Define Procedure Entry Point

To define & procedure entry point without loading the
procedure from a file.

DO.W IODEFPRO

D3.B Options byte

AO.L Address of the pathname string

Al.L Address of procedure entry control block

DO.W Status

D1.W Procedure identifier

STAM Access mode not allowed

STAT Illegal options byte or access type

STBADDIR Too-many or few directory components in pathname
STBADFIL Missing or unwanted filename component

STDEVICE Unknown device

STDEVSEQ Device is sequential only

STDIRECT Directory operations not allowed

STPMEM Heap or stack overflow

STPROC Procedure name already defined

STSMEM Insufficient memory to perform IODEFPRO
STSTRLEN Invalid string length

STSYNTAX Syntax error

None
The procedure entry control block must be cdefined by the user

and contains two fields:

PEENTRY (.L) Procedure entry point
PERAM (.W) RAM requirement for procedure

The pathname is conly required to force through 10SS valid-
ation (as if an IOLOAD command were being processed) and is
subsequently ignored. Any valid directory device pathname is
suitable.

The options byte has one significant bit:

OPPROG 0 = data, 1 = program

Y [05 Reference Manua A=) 9992.1 GST 13/1.00

ES'I‘ Computer Systems Limited

ROUTINE

FUNCTION

INPUTS

CUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

IODELETE

— Delete a File

TODELETE

To delete the file defined by the pathname provided.

DO.W

STAT
STBADDIR
STBADFIL
STDEVICE
STDIRECT
STEXIST
STIOERR
STPMEM
STSMEM
STSTRLEN
STSYNTAX
STUSE

TIODELETE
Options byte
Address of pathname string

Status

Illegal options byte or access type
Too many or few directory components in pathname
Missing or unwanted filename component

Unknown device

Directory operations not allowed
File does not exist

I1/0 error on device

Heap or stack overflow

Insufficient memory to execute IODELETE

Invalid string length
Syntax error
File in use

The directory will be read (if required),
to disk or microdrive.

The options byte has one significant bit:

OPPROG

68K/0S Reference Manual

0 = data, 1 = program

updated and flushed

9992,.1 GST 13/1.00

ESI Computer Systems Limited TODIRINF

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

IODIRINF — Fetch Directory Information

To fetch information about an entire directory.

DO.W IODIRINF

D3.B Options byte

AO.L Address of pathname string

Al.L Address of directory data buffer (16 bytes)
DO.W Status

STBADDIR Too many or few directory components in pathname
STBADFIL Missing or unwanted filename component

STDEVICE Unknown device

STDIRECT Directory operations not allowed

STIOERR 1/0 error on device

STPMEM Heap or stack overflow

STSMEM Insufficient memory to perform IODIRINF
STSTRLEN Invalid string length

STSYNTAX Syntax error

If the directory is not in memory, it is read in.

The directory data buffer contains the following fields:
DIENTRY (.L) Size of directory in entries

DITOTAL (.L) Total space of directory in Kb

DILEFT (.L) Current space remaining in Kb

The options byte has one significant bit:

OPPROG 0 = data, 1 = program

68K/0S Reference Manual A-6 9992.1 GST 13/1.00

ESI Computer Systems Limited TODISMOU

ROUTINE

FUNCTION

INPUTS

CUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

TODISMOUNT — Dismount a Directory

To dismount a specified directory from its current unit or to
dismount the directory mounted on a specified unit.

DO.W IODISMOU

D1.L Unit number

D3.B Options byte

AO.L Address of pathname string
DO.W Status

STEXIST Directory not found or not mounted
STOPEN Directory has open files

STSYNTAX Syntax error

STUNIT Unit number in use or invalid

None

If a directory component is included in the pathname the unit
number is ignored and the named directory is dismounted,
otherwise the directory mounted on the supplied unit number
is dismounted.

Some device drivers will be capable of automatically dis-
mounting the current directory when an IOMOUNT is requested
for the same unit number (particularly useful for devices
that have a maximum of one directory per unit).

The unit number is device dependent, being typically a small
integer for a disk driver (though this must not be assumed by

the user), and potentially some complex routing code for a
network.

The options byte has one significant bit:

OPPROG 0 = data, 1 = program

68K/0S Reference Manual A=T 9992.1 GST 13/1.00

ESI Computer Systems Limited TOEOF

ROUTINE IOEOF - End-of-File Position Test

FUNCTION To determine whether the current file position is equal to
the end-of-file position.

INPUTS DO.W IOEQOF
D3.W Channel number
OUTPUTS DO.W Status
D1.B Yes (non-zero) or no (zero)

STATUS CODES STCHAN Invalid channel number

SIDE EFFECTS None

NOTES For a sequential output file the answer is always yes.

68K /0S Reference Manual A-8 9992.1 GST 13/1.00

ESICompumrSyﬁemsUHMed TOGETDEV

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

IOGETDEV — Fetch Default Device String

To read either the default data or program device string into
a user buffer.

DO.W IOGETDEV

D3.B Options byte

AO.L Address of default string buffer (minimum 11 bytes)
DO.W Status

STPMEM Heap or stack overflow

None

The string buffer must start on en even eddress. The buffer
length is not (and cannot be) checked by the system. Tt is
the user's responsibility to ensure that enough space is
available.

The options byte has one significant bit:

OPPROG 0 = data, 1 = program

68K/0S Reference Manual A-9 9992.1 GST 13/1.00

ESI Computer Systems Limited TQEEIDIg

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

TOGETDIR — Read Directory Information

Fetch information on a specified file or the next in a range
of files to a user bufffer.

DO.W TIOGETDIR

D1.L Magic number

D3.B Options byte

AO.L Address of pathname

Al.L Address of directory entry buffer (length 64 bytes)
DO.W Status

D1.L Updated magic number

STBADDIR Too many or few directory components in pathname
STBADFIL Missing or unwanted filename component

STDEVICE Unknown device,

STDIRECT Directory operations not allowed

STEXIST File does not exist

STIOERR I/0 error on device

STPMEM Heap or stack overflow

STSMEM Insufficient memory to perform IOGETDIR
STSTRLEN Invalid string length

STSYNTAX Syntax error

If the directory block is not in memory, it will be read in.
To search a range of filenames, wild card characters may be
contained in the pathname.

The magic number is used by IOSS to determine its position
during a range search. It must be set to zero for the first
call of IOGETDIR and will then be updated automatically by
subsequent calls of IOGETDIR. It must not be modified by the
user program.

The options byte has one significant bit:

OPPROG 0 = data, 1 = program

68K/0S Reference Manual A-10 9992.1 GST 13/1.00

ESI Computer Systems Limited IOGETLIN

ROUTINE

FUNCTION

INPUTS

CUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

TIOGETLIN - Read a Line

To read a line from the given channel into a user buffer of
given length.

DO.L IOGETLIN

D1.W Buffer length

D3.W Channel number

AO.L Buffer address

DO.W Status

D1.W Number of bytes read

STCHAN Illegal channel number

STEOF End of file

STGET This channel cannot be read
STIOERR Hard I/O error

STPART Partial line has filled the buffer

In most cases an STEOF status will indicate that any further
attempts to read sequentially from that channel will fail
immediately with STEOF status and a zero byte count. However
this effect is device specific, and some devices (notably the
keyboard driver - KEY:) will permit further input while
continuing to return STEOF on each call.

A normal status from IOGETLIN indicates that & complete line
was read into the user buffer including the terminating
newline character. The byte count returned in D1 also
includes the newline.

An STPART status from IOGETLIN indicates that the line was
too long for the buffer supplied. In this case the newline
is not placed in the buffer and the count is returned equal
to the buffer length.

An STEOF status from IOGETLIN indicates that an end-of-file
condition was encountered by the device driver (the cause is
device specific). In this case the newline is not placed in
the buffer and the count returned is the number of bytes reac
prior to the detection of end-of-file. -

68K/0S Reference Manual A-11 9992.1 GST 13/1.00

BSI Computer Systems Limited TOGETPOS

ROUTINE TOGETPOS - Read the Current File Position
FUNCTION To read the current position pointer for the given channel.
INPUTS DO.W TOGETPOS
D3.W Channel number
OUTPUTS DO.W Status
A File position

STATUS CODES STCHAN Illegal channel number
SIDE EFFECTS None

NOTES This call is valid with both sequential and random files,
though with sequential output files the result is simply the
end-of-file position.

68K/0S Reference Manual A-12 9992.1 GST 13/1.00

GSI Computer Systems Limited TOGETPRE

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

IOGETPRE - Fetch Default Prefix String

To read either the default data or program prefix string into
a user buffer.

DO.W IOGETPRE

D3.B Options byte

AO.L Address of default string buffer (minimum 46 bytes)
DO.W Status

STPMEM Heap or stack overflow

None

The string buffer must start on an even address. The buffer
length is not (and cannot be) checked by the system. It is
the user's responsibility to ensure that enough space is
available.

The options byte has one significant bit:

OPPROG 0 = data, 1 = program

68K /05 Rererence Manual A-13 Q992.1 GST 13/1.00

BS] Computer Systems Limited TOGETRAN

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

IOGETRAN - Read Random

To read a specified number cf bytes from the given channel at
a defined file position.

DO.W TIOGETRAN

D1.W Buffer length

D2.L File position

D3.W Channel number

AO.L Buffer address

DO.W Status

D1.W Number of bytes read

STCHAN Invalid channel number

STEOF End-of-file detected

STGET This channel cannot be read

STIOERR Fard I/0 error

STSETPOS 1Invalid file position

STSEQ Channel is open for sequential access only

The current file position for the channel is updated by
IOGETRAN.

A normal status from TOGETRAN indicates that the number cf
bytes requested has beer read into the user buffer. In this
case D1 is equal to the entry value.

If e negative file position is requested, a status of
STSETPOS is returned.

An STEOF status from IOGETRAN indicates that an end-of-file
condition was detected during command execution and that a
partial transfer of zero or more bytes was carried out, the
byte count being held in D1. Note that if a transfer of N
bytes is requested and there are N bytes remaining to be read
then an STEOF status is not returned. Note also that a start
file position greater than or equal to the current end-of-
file position will result in an immediate STEOF status and a
zero byte count. ’

68K/0S Reference Manual A-1L 9992.1 GST 13/1.00

ESI Computer Systems Limited TOGETSEQ

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

TOGETSEQ — Read Sequential

To read the specified number of bytes from the given channel.

DO.W IOGETSEQ

D1.W Buffer length

D3.W Channel number

AO.L Buffer address

DO.W Status

D1.W Number of bytes read

STCHAN Illegal channel number
STEOF End-of-file detected

STGET This channel cannot be read
STIOERR Fard I/0 error

The file position pointer is maintained automatically during
sequential file access and need not be of concern to the user
(unless he is also using random access on the same channel).

A normal status from IOGETSEQ indicates that the number of
bytes requested has been read into the user tuffer. 1In this
case D1 is equal to the entry value.

An STEOF status from IOGETSEQ indicates that an end-of-file
condition was detected during command execution and that a
partial transfer of zero or more bytes was carried out, the
byte count being held in D1. Note that if a transfer of N
bytes is requested and there are N bytes remaining to be read
then an STEOF status is not returned.

It is permissible to mix sequential and random reads from the
same channel provided only that the file was opened for
random access. In this case the position of the file pointer
used by the IOGETSEQ call can be manipulated directly by
calls to IOGETRAN and IOSETPOS.

68K/0S Reference Manual A-15 9992.1 GST 13/1.00

ESI Computer Systems Limited TOLOAD

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

IOLOAD - Load a Procedure into RAM

Load a reentrant procedure into RAM if it is not already
present.

DO.W TOLOAD

D3.B Options byte

AO.L Address of pathname string

Al.L Address of procedure entry control block (6 bytes)
DO.W Status

D1.wW Procedure identifier

STAM Access mode not allowed

STAT Illegal options byte or access type

STBADDIR Too many or few directory components in pathname
STBADFIL Missing or unwanted filename component
STDEVICE Unknown device

STDEVSEQ Device is sequential only

STDIRECT Directory operations not allowed
STEXIST File does not exist

STIOERR I/0 error on device

STNOFILE No room left in the Open Files List
STNOSHAR Device cannot be shared and is in use
STPMEM Heap or stack overflow

STSMEM Insufficient memory to perform TOLOAD
STSTRLEN Invalid string length

STSYNTAX Syntax error

STUSE File in use

A procedure list element is created using space grabbed from
the user program's heap.

68K/0S procedures must be reentrant and position independent,
thus if a copy of the procedure is already loaded, it need
not be fetched from the device.

If the procedure cannot be loaded, the PEENTRY field will be
set up to point to an abort routine within I0SS. If this is
called, the calling program will be eborted via TRFINISH with
an STNOLOAD status.

The options byte has one significant bit:

OPPROG 0 = data, 1 = program

AEK 0T Reference Manual A-16 9992.1 GST 13/1.00

ES] Computer Systems Limited TOMOUNT

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

TIOMOUNT - Mount a Directory

To mount an unspecified directory on & given device unit
or to enable the use of the specified directory on the given
device unit.

DO.W IOMOUNT

D1.L Unit number

D3.B Options byte

AO.L Address of pathname string

Al.L Address of directory name buffer (46 bytes)
DO.W Status

STDIRECT Directory operations not allowed
STEXIST Specified directory not found
STIOERR Hard I/0O error

STMOUNT Directory already mounted

STOPEN Current directory contains open files
STSYNTAX Syntax error
STUNIT Unit number in use or invalid

When a directory is mounted, the first directory block is
read into memory and will remain slaved ir. until flushed by
some other I/0 or memory management operation.

Some device drivers will be capable of automatically dis-
mounting the current directory when an TOMOUNT is requested
for the same unit number (particularly useful for devices
that have a maximum of one directory per unit). In this case
an STOPEN status can be returned if there are open files on
the directory to be dismounted.

The unit number is device dependent, being typically a small
integer for a disk driver (though this must not be assumed by
the user), and potentially some complex routing code for a
network.

If a directory name is specified in the pathname then IOMOUNT
will check that the directory found matches the one supplied,
otherwise this check is omitted and any directory found is
mounted, its name being returned in the user buffer supplied.

The options byte has one significant bit:

OPPROG 0 = data, 1 = program

68K/0S Reference Manual A-1T 0992.1 GST 13/1.00

BSI Computer Systems Limited TOOPEN

ROUTINK IOOPEN - Open a Channel

FUNCTION To create & channel for the transfer of data between the
calling program and the supplied device or file pathname.

INPUTS DO.W TIOOPEN
D3.B Options byte
AO.L Address of pathname string
OUTPUTS DO.W Status
D1.W Channel number
STATUS CODES STAM Access mode not allowed
STAT Illegal options byte or access type

STATSEQ Cannot read and write sequential simultaneously
STBADDIR Too many or few directory components in pathname
STBADFIL Missing or unwanted filename component

STDEVICE Unknown device

STDEVSEQ Device is sequential only

STEXIST File does not exist

STIOERR I/0 error on device

STNOFILE No room left in the Open Files List

STNOSHAR Device cannot be shared and is in use

STPMEM Heap or stack overflow

STSMEM Insufficient memory to perform IOOPEN

STSTRLEN Invalid string length

STSYNTAX Syntax erro:i

STUSE File in use

SIDE EFFECTS If a non-existent file is copened with a write access type
component, then a file of zero length is created.

NOTES The options byte contains 5 significant bits:
OPREAD = read disabled, 1 = rea¢ enabled

0
OPWRITE O = write disabled, 1 = write enabled
OPRAN 0 = sequential access, 1 = random access
0
0

OPPROG data, 1 = program
OPRDAHED unbuffered, 1 = read ahead/write behind

The OPRDAHED option will provide system generated double
buffering on random or sequential file I/0 to certain file
structured devices. Those device drivers that support this
facility will automatically perform reacd ahead and write
behind operations on memory block sized units of the file.

68K/0S Reference Manual A-18 9992.1 GST 13/1.00

ES‘ Computer Systems Limited TQPUTDIR

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

IOPUTDIR - Update Directory Information

To update certain fields in the directory information for the
file defined by the given pathname.

DO.W IOPUTDIR

D3.B Options byte

AO.L Address of pathname string

Al.L Address of directory entry buffer

DO.W Status

STAT Illegal options byte or directory write protected

STBADDIR Too many or few directory components in pathname
STBADFIL Missing or unwanted filename component

STDEVICE Unknown device

STDIRECT Directory operations not allowed

STEXIST File does not exist

STIOERR 1/0 error on device

STPMEM Heap or stack overflow

STSMEM Insufficient memory to perform IOPUTDIR

STSTRLEN Invalid string length

STSYNTAX Syntax error

The directory will be read (if required), updated and flushed
to disk or microdrive.

Only the following fields within the directory entry buffer
car. be updated:

DEATFILE (.B) File access type
DECOMM (25) String holding user comment

changes to other fields are ignored.

It is safe to call IOPUTDIR to change the directory entry
of a file that is currently open.

IOPUTDIR will normally be called to update the directory
entry buffer fetched by a call to IOGETDIR (the register
usage is defined to make this simple), however, the user
can construct his own directory entry buffer if required.

The options byte has one significant bit:

OPPROG 0 = data, 1 = program

68K/0S Reference Manual A-19 9992.1 GST 13/1.00

ES] Computer Systems Limited TOPUTLIN

ROUTINE

FUNCTION

INPUTS

CUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

IOPUTLIN - Write Line

To write & line (length rot exceeding the specified number cf
bytes) to the given channel number.

DO.W IOPUTLIN

D1.W Byte count
D3.W Channel number
AO.W Buffer address
DO.W Status

STCHAN Invalid channel number
STDIRFUL = Directory full

STIOERR Hard I/O error

STPART Partial line written

STPUT Cannot write to this channel

When using IOPUTLIN with sequential access or writing past
the end-of-file with random access, the end-of-file pointer
is sutomatigally wupdated.

Bytes are output to the channel until either & newline
character is sent (normal status) or the count in D1 has been
exhausted (STPART status).

Calls to IOPUTSEQ, IOPUTRAN and IOPUTLIN can be mixed on a
single channel provided that the file has been opened for
random access. The data is written starting from the current
file position pointer and this is advanced as usual. The
end-of-file pointer is updated only when the file is extended
(it is a high water mark).

68K/0S Reference Manual A-20 9992.1 GST 13/1.00

ESI Computer Systems Limited TOPUTRAN

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

TOPUTRAN - Write Random

To write the specified number cf bytes to the given file at
the definec¢ position.

DO.W IOPUTRAN

D1.W Byte count
D2.W File position
D3.W Channel number
AO.W Buffer address
DO.W Status

STCHAN Invalid channel number
STDIRFUL Directory full

STIOERR Fard I/O error

STPUT Cannot write to this channel
STSETPOS Invalid position

STSEQ Sequential access only

If the file position is greater than the current end-of-file
position, the file will be extended prior to writing, nulls
being written between the old end-of-file and the starting
file position.

Calls to IOPUTSEQ, IOPUTRAN and IOPUTLIN can be mixed on a
single channel provided that the file has been opened for
random access. The data is written starting from the current
file position pointer and this is advanced as usual. The
end-of-file pointer is updated only when the file is extended
(it is a high water mark).

68K/0S Reference Manual A-21 9992.1 GST 13/1.00

I;SI Computer Systems Limited TOPUTSEQ

ROUTINF

FUNCTION

INPUTS

CUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

TOPUTSEQ - Write Sequential

To write the specified number of bytes to the given channel
number.

DO.W TOPUTSEQ

D1.W Byte count
D3.W Channel number
AO.W Buffer address
DO.W Status

STCHAN Invalid channel number
STDIRFUL Directory full

STIOERR Hard I/O error

STPUT Cannot write to this channel

When using IOPUTSEQ with sequential access or writing past
the end-of-file with random access, the end-of-file pointer
is automatically updated.

Calls to IOPUTSEQ, IOPUTRAN and IOPUTLIN can be mixed on a
single channel provided that the file has been opened for
random access. The data is written starting from the current
file position pointer and this is advanced as usual. The
end-of-file pointer is updated only when the file is extended
(it is a high water mark).

68K/0S Reference Manual A-22 9992.1 GST 13/1.00

ESI Computer Systems Limited TOREADY

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

IOREADY - Poll an Input Channel

To determine whether there is input pending on the specified
channel number.

DO.W TOREADY

D3.W Channel number

DO.W Status

D1.B Yes (non-zero) or no (zero)

STCHAN Invalid channel number
STGET Not an input channel

None

If the input is received from an_asynchronous device with
input arriving outside the control of the operating system, a
yes answer is returned if a call to read a single byte would
be satisfied immediately, otherwise @ no answer is returned.
Typical devices are the keyboard, RS232 input and pipes.

If the input is received from a synchronous device such as a
disk or microdrive file, the answer is no if the channel is
positioned at end-of-file, otherwise yes.

€8K/0S Reference Manual A-23 9992.1 GST 13/1.00

ESI Computer Systems Limited TORENAME

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

TIORENAME — Rename a File

To rename the file defined by the old pathname to that given
by the new pathname.

DO
D3.
A0.
Al

How

DO.W

STAT
STBADDIR
STBADFIL
STDIRECT
STDEVICE
STEXIST
STIOERR
STPMEM
STRENAME
STSMEM
STSTRLEN
STSYNTAX
STUSE

IORENAME
Options byte
0ld pathname
New pathnamme

Status

Illegal options byte or access type

Too many or few directory components in pathname
Missing or unwanted filename component
Directory operations not allowed
Unknown device

File does not exist

I/0 error on device

Heap or stack overflow

Incompatible pathnames

Insufficient memory to perform IORENAME
Invalid string length

Syntax error

File in use

The directory will be read (if required), updated and flushed
to disk or microdrive.

Except for the filenames, the old and new pathnames must be

identical.

The options byte has one significant bit:

OPPROG

68K/0S Reference Manual

0 = data, 1 = program

A-24 9992.1 GST 13/1.00

ES]. Computer Systems Limited ' TOSETDEF

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

TOSETDEF - Set Default Pathname String

To set either the default data or program pathname string
for the calling program.

DO.W IOSETDEF

D3.B Options byte

AO.L Address of default string (maximum 44 characters)
DO.W Status

STPMEM Heap or stack overflow
STSTRLEN String length invalid
STSYNTAX Syntax error

The device and/or directory components of the pathname
specified will be used to replace any respective null
components in eny subsequent IOSS calls (by the calling
program only).

If the pathname consists of a null string, no action is taken
and the current defaults are retained.

If the pathname consists of a device name, then this becomes
the new default device and the default prefix is cleared.

If the pathname consists of one or more directory components,
then these become the new default prefix and the current
default device remains unchanged.

If the pathname consists of a device name deowed.by one or
more directory components, then btoth the default device and
the default prefix strings are updated as specified.

The supplied pathname string must start on an even address.

The options byte has one significant bit:

OPPROG 0 = data, 1 = program -

68K/0S Reference Manual A-25 9992.1 GST 13/1.00

ES]CompumrSymemsLmﬁmd TOSETEOS

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

IOSETPOS — Set the Current Position Pointer

To define the-position in & random file at which the next
write operation will start.

DO.W IOSETPOS

D2.W File position
D3.W Channel number
DO.W Status

STCHAN Invalid channel number

STDIRFUL Directory full

STIOERR Fard I/O error

STSEQ Cannot perform IOSETPOS on sequential file
STSETPOS Invalid file position

If the file is open for random writing and the new position
is greater than the current end-of-file position, then the
file is extended with null bytes to the new position.

If the file pointer is negative, an STSETPOS status is
returned.

68K/0S Reference Manual A-26 9992.1 GST 13/1.00

ESI Computer Systems Limited T0SIZE

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

I0SIZE — Determine File Size

To determine the size of the file accessed by the given
channel number.

DO.W IOSIZE

D3.W Channel number
DO.W Status

D1.L File size (bytes)

STCHAN Invalid channel number
STNOSIZE No size information available

None

For sequential output channels the size is equal to the
current position.

Status code STNOSIZE is returned for devices that do not
maintain end-of-file position, such as the keyboard.

68K/0S Reference Manual A-27 9992.1 GST 13/1.00

ESI Computer Systems Limited TOSPECTA

ROUTINE IOSPECIA - Device Specific Operation

FUNCTION To perform one or more device specific operations as
specified by,the device dependent parameters.

INPUTS DO.W IOSPECIA.
D1.L Device dependent parameter
D3.B Options byte
AO.L Address of pathname string
Al.L Device dependent parameter
OUTPUTS) DO.W Status
D1.L Device dependent result

STATUS CODES STSPECIA Not allowed on this device
SIDE EFFECTS Device specific.

NOTES Status codes will be device specific.
The options byte has one significant bit:

OPPROG 0 = data, 1 = program

68K/0S Reference Manual A-28 9992.1 GST 13/1.00

ES] Computer Systems Limited IOTRUNC

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

TOTRUNC - Set End-of-File Pointer to Current Position

To truncate a file by setting the end-of-file pointer equal
to the current position pointer.

DO.W TOTRUNC
D3.W Channel number
DO.W Status

STCHAN Invalid channel number
STIOERR Hard I/0 error

STPUT Cannot write to this channel
STSEQ Sequential access only

Any disk or microdrive blocks released by file truncation are
marked as free in some device dependent manner.

IOTRUNC is not available ir sequential access mode since, by
definition, the current position pointer is always at the
end-of-file.

68K/0S Reference Manual A-29 9992.1 GST 13/1.00

ES]CompumrSyﬁemsLMﬂmd TOUNLOAD

ROUTINEF IOUNLOAD - Release a Procedure

FUNCTION To decrement the use count for the given procedure and
release its memory if the use count drops to zero.

INPUTS DO.W TOUNLOAD
D1.W Procedure identifier
OUTPUTS DO.W Status

STATUS CODES STINPROC Invalid procedure identifier
SIDE EFFECTS The procedure list element is returned to the user's heap.
If the procedure's use count drops to zero, the memory it

uses is released to the system and the procedure table entry
is deleted.

NOTES None

68K/0S Reference Manual A-30 9992.1 GST 13/1.00

BSI Computer Systems Limited pevating Systen Culls

APPENDIX B:

OPERATING SYSTEM CALLS

68K/0S Reference Manual B-0 9992.1 GST 13/1.00

bafimil amatzy@ muqmo:)m

Launnd ssnsrsisfd 20\ ¥03

ESI Computer Systems Limited

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

68K/0S Reference Manual

OSAVAIL

OSAVAIL - Determine the Free Stack/Heap Space

To determine.how much stack/heap space is still free for the
calling program.

DO.W

None

OSAVAIL

Status

Size of largest heap record
Total heap space available
Space between heap and stack

Always returns success status

The maximum sized heap record that can be allocated is the
greater of D1 and D3.

9992.1 GST 13/1.00

ESI Computer Systems Limited OSBINCLK

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

OSBINCIK - Read Date and ‘Time in Binary

To read the date and time in binary from the internal system
clock.

DO.W OSBINCLK

DO.W Status

D1.L Binary internal clock value

0 Always returns success status
None

The value returned is defined to be the number of seconds
that have elapsed since 00:00:00 am on lst January 1983.
Whether the returned value is sensible depends on & correct
call to OSSETCLK to initialise the clock.

If the hardware does not support a clock, a value of zero is
returned.

€8K/0S Reference Manual B-2 9992.1 GST 13/1.00

ESI Computer Systems Limited OSDELAY

ROUTTNE:

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

OSDELAY — Delay for a Number of Clock Ticks

To suspend the calling program for a specified number of
system clock ticks.

DO.W OSDELAY

D1.W Number of clock ticks

DO.W Status

0 Always returns success status

A1l programs with priority lower than the caller will tend to
speed up for the duration of the delay.

The program performs a passive wait for the duration of the
delay period and consumes no system time resources (except
the minimal overhead of handling a clock queue entry).

The clock frequency is 50 or 60Hz, depending on the hardware
clock rate.
If {he delay requésted is zero, one or a negative number cf
clock ticks, the program will be suspended until the next
clock tick.

The timing should not be relied upon for great accuracy,
particularly when the system is heavily loaded. The precise
timing will depend on when (in the clock cycle) the call was
made, how many clock interrupts were ignorec because of heavy
system loading and how long it takes hefore the scheduler is
able to restart the program. Even in an 'idle' system, a
request for an N clock tick delay will produce a delay of
between N-1 and N clock ticks. To ensure a delay of at least
N clock ticks, N+1 should be’ requested.

If delays are required for periods shorter than one tick or
must be accurate to within tens of microseconds the user
should perform an active wait with routine SPACTIVE in
supervisor mode with interrupts disabled.

68K /0S Reference Manual B-3 9992.1 GST 13/1.00

ES] Computer Systems Limited OSHEAPAL

ROUTINE OSHEAPAL - Allocate a Heap Record
FUNCTION To grab a record of specified size from the program's heap.
INPUTS DO.W OSHEAPAL
D1.L Size of record required
OUTPUTS DO.W Status
AO.L Address of heap record allocated

STATUS CODES STPMEM Insufficient heap space

SIDE EFFECTS Too many requests for small heap records which are released
in random order are liable to cause heap fragmentation. It
is usually bvetter practice to grab heap space in & more
structured manner.

NOTES Heap is grabbed with a first fit algorithm, which is fairly
fast, but can lead to fragmentation with undisciplined use.

68K/0S Reference Manual B=k4 9992.1 GST 13/1.00

ESI Computer Systems Limited OSHEAPDE

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

OSHEAPDE - Release a Heap Record

To release a heap record to the calling program's heap.

DO.V OSHEAPDE

AO.L Address of heap record

DO.W Status

0 Always returns success status
None

The record being returned to the heap is coalesced with
adjacent free records if possible.

If the address of the heap record supplied lies cutside of
the heap boundaries, the command is ignored.

68K /0S Reference Manual B-5 9992.1 GST 13/1.00

ES] Computer Systems Limited OSKILL

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

OSKILL - Force Termination of a Child Program

To cause the specified child program to be terminated.

DO.W OSKILL
D1.L Program identifier
DO.W Status

STSTOP Child was already stopped
STINVAL Invalid program identifier

The child program is terminated by forcing it to execute &
TRAP #f0 instructon with the resulting side effects

When the child program terminates it returns the following
data to the parent in the program list element:

PGRETURN (.W) -1
PGSTATUS (.W) STKILLED
PGPARMS (46) null

Prior to termination the child program is allowed to finish
any critical system code that it is executing, its PC is then
modified to divert it to a TRAP O instruction which performs
the STFINISH. It will then terminate in the same way as if
it had called STFINISH voluntarily.

68K/0S Reference Manual B-6 9992.1 GST 13/1.00

ESI Computer Systems Limited OSMENADY

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

OSMEMALL - Allocate RAM Memory to a Program

To allocate a specified number of contigubus 1Kb RAM memory
blocks to the calling program.

DO.W OSMEMALL

D1.L Ownerhip information

D2.W Number of 1Kb blocks wanted

DO.W Status code

AO.L Base address of allocated memory

STSMEM Insufficient memory available

The memory manager will attempt to allocate a contiguous area
of memory using a cyclic first fit method. If there are,
insufficient contiguous free blocks the memory manager first
attempts to release slaved blocks that are up-to-date on disk
or nicrodrive (avoiding data transfers). Failing this it
will force slaved blocks to disk or microdrive until there is
sufficient contiguous memory or all slaved blocks have been
released.

The value of D1 on entry should normally be the address of
the calling program's Program Control Block since this
ensures that the memory will be deallocated automatically
when the program is terminated.

If the program wishes to use memory in a non-standard way, D1
may contain any value that the user progran requires, but
this value must be remembered by the user program or passed
to any child program that is inheriting the memory, to enable
its subsequent release.

68K/0S Reference Manual B-T 9992.1 GST 13/1.00

ESI Computer Systems Limited OSMEMDA

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

OSMEMDA - Deallocate Memory by Ownership Information

To deallocate all memory blocks that are allocated to the
specified owner.

DO.W OSMEMDA

D1.L Ownership information

DO.L Status

0 Always returns success status
None

This is the recommended function for the release of memory
that, has a non-standard ownership value. All memory blocks
allocated to the specified owner are marked as free.

68K/0S Reference Manual B-8 9992.1 GST 13/1.00

ESICompumrSyﬁemsLMﬁmd OSMEMDS

ROUTINE

FUNCTION

INPUTS

CUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

€8K/0S Reference Manual

OSMEMDS - Deallocate Memory by Address Range

To deallocate "the specified number of 1Kb blocks starting at
the address provided. 3

DO.W
D2.w
AO.L

DO.W

OSMEMDS
Number of 1Kb blocks to deallocate
Base address of memory to be deallocated

Status

Always returns success status

If the parameters sre incorrect it is possible to cdeallocate
another program's memory, with drastic side effects.

This is an elternative function to OSMEMDA to deallocate
memory allocated with OSMEMALL or OSMEMOWN.

B-9 9992.1 GST 13/1.00

ESI Computer Systems Limited OSMEMOWN

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

OSMEMOWN - Change Memory Ownership Information

To change the owner information associated with & specified
range of contiguous blocks.

DO.W OSMEMOWN

D1.L New ownership information

D2.W Number of blocks to be affected
AO.L Base address of allocated memory
DO.L Status code

(0] Always returns success status

This command is capable of changing the memory allocation of
the entire system and thus should be used with great care, to
avoid some of the more drastic side effects, the most likely
being memory remaining in use after the calling program is
terminated.

This call can be used to pass memory blocks to a child
program from its parent, in which case it is recommended that
the address of the child program's Program Control Block is
held in D1, to ensure automatic deallocation when the child
program is terminated.

68K/0S Reference Manual B-10 9992.1 GST 13/1.00

ES]&mmMMSWmmsUde oMERS

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

OSMENDIS - Display Fixed Menu Data and Initialise Fields

To clear the display file, copy the fixed menu data into it
and initialise the variable data fields.

DO.W OSMENDIS

AO.L Menu display file address

Al.L Menu variable data buffer address
A2.L Menu fixed data buffer address
DO.W Status

STMURAM Variable data space insufficient
STSYNTAY Syntax error in fixed menu data

This command displays a menu on the screen using standard DFM
calls with their associated side effects.

The variable data buffer is split up into fields (as defined
in the fixed menu data) each of which contains a string whose
length word is set to zero.

The variable data buffer must be large enough to hold all the
variable fields. This entire buffer is & string whose length
word must be intitialised by the user and must lie on a worc
boundary. No other initialisation is required.

The effect of this command is to provide all the intial-
isation required to enable successive calls to OSMENRD to
fetch the user's input to the variable fields. However, to
call OSMENRD, at least one variable field must be present.

68K/0S Reference Manual B-11 9992.1 GST 13/1.00

ESI Computer Systems Limited OSMENGET

ROUTINE OSMENGET — Read Menu Field from Variable Data Structure

FUNCTION To read a specified field from the menu variable data
structure into the supplied buffer.

TNPUTS DO.W OSMENGET
Al.L Menu variable data structure address
A2.B Field number
A3.L Buffer address
OUTPUTS DO.W Status
D1.B Field attributes

STATUS CODES STMUFLD Invalid menu field number

SIDE EFFECTS None

NOTES The screen nenu need not be displayed when calling OSMENGET,
the menu variable data structure being sufficient. This
enables the variable data structure to be used as a parameter
passing mechanism between programs.

The buffer must be large enough to accept the entire contents
of the field in string format.

68K/0S Reference Manual B-12 9992.1 GST 13/1.00

ESI Computer Systems Limited OSMENPUT

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

68K/0S Reference Manual

)
OSMENPUT - Redisplay a Variable Wield

To update a menu variable field on the screen and in the
variable data structure.

DO.
D1.
D2.
0.
AlL.
A3.

[l e el o <l o B

DO.W

STMUFLD

OSMENPUT

Field attributes

Field number

Menu display file address

Menu variable data structure address

Address of string containing new field contents

Status

Invalid menu field number

STSTRLEN String too long for menu field

The screen is updated with standarc DFM calls with their
associated ‘side effects.

This call car be used to display a prompt or error message in
a particular field of the menu and to change the field
attributes associated with a given field.

B-13 9992.1 GST 13/1.00

ESI Computer Systems Limited OSMENRD

ROUTINE

FUNCTION

INPUTS

QUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

OSMENRD - Read User Input to Menu

To handle all aspects of keyboard input, screen output and
data capture associated with user interaction with a screen
menu.

DO.W OSMENRD

D1.W Keyboard channel number

D2.B Field number at which to position cursor
D3.W Allowable function codes

AO.L Menu display file address

AlL.L Menu variable data buffer address

A2.L Option list display file address

DO.W Status

D1.B Terminating function code

D2.B Field number at which cursor is positioned

STMUFLD Invalid menu field number

This command updates the screen using standarc DFM calls and
reads the keyboard using standard I0SS calls, with their
associated side effects.

OSMENRD accepts keyboard input and will output characters to
the screen in the current field, handling the specific line
imaging functions available on the keyboard (usually delete
character and delete field). Forward and backward tab
functions sre used to move the cursor between fields. (Note
that any scrolling required is performed automatically by
DFM.)

The option list display file may be omitted by setting A2 to
zero. This display file contains a list of options (one per
line) which may be selected by using the vertical cursor
movement keys and the ESCAPE key to copy it intc the current
menu field. (Scrolling is again handled by DFM.)

User input tc the menu is terminated by one of up to sixteen
function codes as defined by set bits in positions 0-15 of D3
representing the RETURN (or NEWLINE or ENTER) key and
function keys F1 to F1l5 respectively. Where there are less
than fifteer function keys, these codes may be generated by
some implementation specific combination of SHIFT and CONTROL
functions.

The fields in the menu variable data structure are updated by
OSMENRD and are read and modified by OSMENGET and OSMENPUT.

68K/0S Reference Manual B-1k4 9992.1 GST 13/1.00

ESI Computer Systems Limited @SS

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

OSSETCLK - Set Date and Time in Binary

To set the hardware date and time clock to the specified
(binary) value.

DO.W OSSETCLK

D1.L Date and time

DO.W Status

0 Always returns success status
None

The value is defined to be the number c¢f seconds that have
elapsed since 00:00:00 am on 1lst January 1983

If the hardware does not support a clock, the command is
ignored.

68K/0S Reference Manual B-15 9992.1 GST 13/1.00

ESI Computer Systems Limited ¥ OSSTART

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

OSSTART - Load and Start a Program

To create the program data structures, obtain the specified
RAM for the program's stack and heap, load the named pro-
cedure if it is not already present and start the program in
the define¢ state.

OSSTART

RAM size required

Priority relative to the calling program

Data or program default indicator (see IOSETDEF)
Program state (0 = ready, otherwise suspended)
Address of pathname string

Address of parameters string

e W o il = = o)
HFOFWMNOHFO
el B e o B v o - B S

DO.W Status

D1.L Program identifier
STAM Access mode not allowed
STAT Access type not allowed

STBADDIR Too many or few directory components in pathname
STBADFIL Missing or unwanted filename component
STDEVICE Unknown device

STDEVSEQ Device is sequential only

STDIRECT Directory operations not allowed
STEXIST File does not exist

STIOERR I/0 error on device

STNOFILE No room left in the Open Files List
STNOSHAR Device cannot be shared and is in use
STPMEM Heap or stack overflow

STSMEM Insufficient memory to perform OSSTART
STSTRLEN Invalid string length

STSYNTAX Syntax error

STUSE File in use

OSSTART calls IOGETDIR, OSMEMALL and IOLOAD and exhibits
their side effects. Also a program list element is created
on the user's heap.

RAM is grabbed by IOLOAD for the procedure code if it is not
already loaded. RAM grabbed by OSMEMALL for the program's
stack and heap is defined in Kb in D1 and/or in the procedure
entry control block, the greater of these values being used.

The bottom three bits of D2 are subtracted from the calling
program's priority to give the child's priority.

Al points to a string in which free format parameters to the
child program may be passed.

68K/0S Reference Manual R-16 9992.1 GST 13/1.00

ESI Computer Systems Limited OSSTATUS

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

OSSTATUS - Determine Program Status

Do determine whether a. child program is still' running.

DO.V OSSTATUS
D1.L Program identifier
DO.W Status

STSTOP Child program has stopped
STINPROG Invalid program identifier

None

A zero status indicates that the child program is still
running.

This call enables a program to poll a child program to

determine completion. If a program must wait for a child to
finish, it is more efficient to use OSWAIT.

68K/0S Reference Manual B-17 9992.1 GST 13/1.00

ﬁSICompumrSymemsLMﬁmd

ROUTINE

FUNCTION

INPUTS

CUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

OSTRAP - Define User Trap Routine

OSTRAP

To define an exception trap vector to the specified address

for the given trap number.

DO.W

STEXCEPT
STINTRAP

None

OSTRAP

Name of exception trap
Address of user trap routine

Status

Invalid exception routine
Invalid trap routine address

The following exceptions can be vectored to user routines:

EAADDRES
EAILLEGA
EADIVIDE
EACHKINS
EATRAPV
EAPRIV
EATRACE
EAALINE
EAFLINE
EATRAPL
EATRAPS
EATRAP6
EATRAPT
EATRAP8
EATRAP9
EATRAP10
EATRAP11
EATRAP12
EATRAP13
EATRAP1L
EATRAP15

0dd address

Illegal instruction

Divide by zerc

Array bound violation
Arithmetic overflow
Privileged instruction
Trace mode exception
A-line exception
F-line exception

User
User
User
User
User
User
User
User
User
User
User
User

trap b4

trap
trap
trap
trap
trap
trap
trap
trap
trap
trap
trap

5
6
i
8
9

10
11
12
13
1L
15

The user program may call OSTRAP as often as it likes for the

same exception,

To disable a user trap routine,

subsequent calls overwriting the previous
exception vector with the new one.

AQ should contain zero, but

use of this facility may make it impossible to run the
program with a debugger (which may wish to handle exceptions
in & special way).

68K/0S Reference Manual

9992.1 GST 13/1.00

ES]’ Computer Systems Limited OSWAIT

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

OSWAIT - Wait for a Child Program to Finish

To suspend the calling program until the specified child |
program has finished.

DO.W OSWAIT

D1.L Program identifier

DO.W Status code

AO.L Address of program list element

STINPROG Invalid program identifier

The calling program is suspended.

The program list element contains the following fields of
interest to the user:

PGRETURN (.W) Return code

PGSTATUS (.W) Status code
PGPARMS (46) Return string

These provide the calling program with information concerning
the termination of the child program.

When the parent program has finished with its child's program
list element it should dispose of it using OSHEAPDE.

68K/0S Reference Manual B-19 9992.1 GST 13/1.00

T T [U e R v — S [- ol - - s .

da2inl¥ of nergend bIID » w0l FloW - TIAWSD

SBrodaiadY sal ssvyovTe

TTAYSD ¥,

Tallidnabl mevgoTd o 10
shon sydedd N.0d
Fosmefs Fall metgony 16 assthbA J.,04

tsititnab! metperg bEleval OORARITE

Jbetnsgeus .21 metgoryg unillss AT

trsan ads ot Jesvasnd

sbos miutef (W.) WAUTERDT
shoo anded2 (W.) SUTATRR
zalate mroda® (B4] AMRA%D9

anirannas noltmrotnt Hilew metgorg sdlles ooz abiver; sasdl
Jmenyorg Bilin odd o nolfsoimyss ens

asTeore 2'Blufy a3l ditw badslstt sal memmovy TaSYSq AdT ounk
JAMTATHEC mnlau 1Y Yo szoanlb blundz 31 *aanels foil

Qr-8

To 2blslY snivoiio: ey enledaon dnsmsiv fall msimorg wil

FUITUCR

AOTTIT

fauashh sunaratal 2\ %HA

batimil emeleye mmqmot)m

ESI Computer Systems Limited Display File Manager Calls

APPENDIX C:

DISPLAY FILE MANAGER CALLS

i
|
68K/0S Reference Manual c-0 9992.1 GST 13/1.00 1
|
i
|

ESI Computer Systems Limited DMALLOC

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

DMALLOC - Allocate Space for a Display File Record

To allocate sufficient space from the display file's own heap
for a new display file record.

DO.W DMALLOC

D1.W Size of record required

AO.L Display file base address

DO.W Status

D1.W Size of record allocated

D2.W Record address (offset from DFBA)

STDFFULL Display file full

If a user hook routine has been installed by a call to DMHOOK
and the display file is full, the user hook routine will be
called tc scroll sufficient lines to the top file until space
for the new record has been made available. Any status codes
returned by the user hook routine are passed to the calling
program by DMALLOC.

DMALLOC will not normally be called by a user program, being
a by-product of other DFM commands. It is provided as a user
callable function for use in & user hook routine when reading
data into a display file.

The value returned in D2 is an offset on the display file
base address and must be added to the value in AO, or used in
the displacement addressing mode (AO,D2.W), if a pointer to
the space record is tc be formed.

The contents cf the new record are undefined. If a preformed
string is to be copied into the record then the first word of
the record must be set to the length of the string.

The size of record allocated will be greater thar or equal to
the size requested and will allow a variable amount of data
insertior before a larger record is required tc accommodate
the data. Control of record size is invisible to the user.

68K/0S Reference Manual G- 9992.1 GST 13/1.00

ES] Computer Systems Limited DMCURDIS

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

DMCURDIS - Disable Cursor in Display File Window

To disable and hide the cursor in the specified display file
window.

DO.W DMCURDIS

AO.L Display file base address
DO.W Status

(6] Always returns success status

If the (disabled) cursor is moved horizontally out of the
window then that window will not scroll horizontally unless
the cursor is reenabled.

DMCURDIS is provided to disable the display of a cursor in
any window that requires no user interaction (such as a help
menu or heading window). It can also bte used to hide the
cursor temporarily to avoid excessive cursor movement on the
screen in a complex update.

Note that although horizontal scrolling will be suspended
while the cursor is disabled, vertical scrolling will be
carried out as if the cursor were visible.

A count of DMCURDIS calls ic maintained and an equal number
of DMCURENA calls must be made to reenable the cursor.

68K/0S Reference Manual c-2 9992.1 GST 13/1.00

ES] Computer Systems Limited DMCURENA

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

DMCURENA - Reenable Cursor in Display File Window

To reenable the display of the cursor in the spnecified
display file window.

DO.W DMCURENA

AO.L Display file base address
DO.W Status

0 Always returns success status

If the cursor has been moved horizontally out of the window
while disabled, the window will scroll horizontally to
display the cursor.

DMCURENA is provided to reenable the cursor after having been
disabled by DMCURDIS.

A count of DMCURDIS calls is maintained and an equal number
of DMCURENA calls must be made to reenable the cursor.

68K/0S Reference Manual c-3 9992.1 GST 13/1.00

ESI Computer Systems Limited DMDELCHR

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

DMDELCHR — Delete Character

To delete a character from a display file at the current
cursor position.

DO.W DMDELCHR
AO.L Display file base address
DO.W Status

STDFINV Cursor is at end of line

None

The character at the cursor position is celeted and the
remainder of the line (if any) scrolled left.

If the cursor is at end of line an STDFINV status code is
returned.

68K/0S Reference Manual c-u 9992.1 GST 13/1.00

ESI Computer Systems Limited DMDELCMD

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

DMDELCMD - Delete Screen Driver Command

To delete a two-byte screen criver command from a display
file at the current action pointer position.

DO.W DMDELCMD

DO.W Status

STDFINV AP not pointing at first command byte

None

None

68K/0S Reference Manual c-5 9992.1 GST 13/1.00

ESI Computer Systems Limited DMDELLIN

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

DMDELLIN - Delete Line from Display File

To delete the line containing the cursor from the display
file.

DO.W DMDELLIN
AO.L Display file base address
DO.W Status

As returned from the user hook routine

If the line is displayecd on the screen, the lines below it
are scrolled up automatically. Scrolling may invoke the user
hook routine (if one has been installed) and as a result may
generate the associated system or user defined status- codes.

If the line to be deleted is not the last line of the file,
the cursor is left at the start of the line below.

When deleting is the last line of an extended display file,
the cursor is left at the start of the line before and
previous lines may be scrolled down.

When deleting the only line in a display file, the line is
blanked and the cursor moved to the start of line.

68K/0S Reference Manual .c-6 9992.1 GST 13/1.00

ESI Computer Systems Limited DMDTSABL

ROUTINE DMDISABL - Suspend Display File Window Update

FUNCTION To suspend screen ipdating for the specified display file
window. :

INPUTS DO.W DMDISABL
AO.L Display file base address

OUTPUTS DO.W Status

STATUS CODES O Always returns success status

SIDE EFFECTS None

NOTES DMDISABL is provided to temporarily switch off screen window
repainting during a long ané complicated series of display
file updates (such as the rejustification of a paragraph in e
word processor). This will save time (avoiding multiple
repaints of the same line) and will make the screen eppear
less busy.

68K /0S Reference Manual c-7 9992.1 GST 13/1.00

ESI Computer Systems Limited DMENABLE

ROUTINE DMENABLE — Resume Display File Window Updates

FUNCTION To resume screen updating for the specified display file
window.

INPUTS DO.W DMENABLE
AO.L Display file base address

OUTPUTS DO.W Status

STATUS CODES O Always returns success status

SIDE EFFECTS DMENABLE will only update those screen lines which have
changed or moved since screen updates were switched off by a
call to DMDISABL.

NOTES DMENABLE is provided to resume screen output after it has
been suspended by a previous call to DMDISABL for the same
display file.

68K/0S Reference Manual c-8 9992.1 GST 13/1.00

ESI Computer Systems Limited DMFIXDE

ROUTINE

FUNCTION

INPUTS

QUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

DMFIXDF - Ensure Display File Window is Visible

To ensure that part of the window associated with the
specified display file remains displayed within the calling
program's screen partition.

DO.W DMFIXDF
AO.L Display file base address
DO.W Status

STDFINV ~ The display file is not displayed in a window

The cursor associated with the specified display file window
flashes and is kept visible within the screen partition et
all times unless the virtual screen is metascrolled through
the partition by direct user commend. Even then, the next
display file update will cause an automatic metascroll to
reveal the cursor again.

This function is provided to enable the programmer to specify
which window in a multi-window virtual screen remains visible
within the partition despite any scrolling that may occur.

If CMFIXDF is not called or is called with AO = O then all
the display file windows are deselected and subsequent DFM
commands will scroll the virtual screen through the partition
as DFM thinks fit.

If a new display file window is created as a result of an
IOOPEN call to KEY: or SCREEN: then this will automatically
be fixed within the partition by IOSS.

68K/0S Reference Manual c=9 9992.1 GST 13/1.00

ESI Computer Systems Limited - DMFLUSH

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

DMFLUSH - Flush Display File Text with User Hook Routine

To copy the contents of the display file and the bottom file
tc the top file using the user hook routine.

DO.W DMFLUSH
AO.L Display file base address
DO.W Status

As returned by the user hook routine

As generated by the user hook routine

This routine is automatically invoked by both DMKILWIN and
DMKILLDF, but is provided to enable the calling program to
have greater control of error conditions (such as a full disk
or microdrive) that may occur when calling the user hook
routine.

If an error is detected by DMFLUSH via the user hook routine,
the calling program should deal with the error (if possible)
prior to calling DMFLUSH again.

Because the bottom file is copied to the top file via the
display file, it is recommended that DMDISABL is called prior
to the call of DMFLUSH. This will disable the window update
and allow the process to execute much faster.

Once DMFLUSH has returned a success status, the display file
will be unusable until DMRESET has been called (and DMENABLE
if DMDISABL was called).

68K/0S Reference Manual c-10 9992.1 GST 13/1.00

ESI Computer Systems Limited DMCEEEs

ROUTINE:

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

DMGETCUR - Get Cursor Position

To fetch the current position of the cursor within & display
File.

DO.W DMGETCUR

AO.L Display file base address
DO.W Status

D1.W Line Number

D2.W Character position

0 Always returns success status
None

The cursor position is returned in terms of line number and
character position. Line O is the top of the display file
and position O is the first character in a 1line.

68K/0S Reference Manual c=11 9992.1 GST 13/1.00

ESICompumrSyménsLmﬂmd

FUNCTION

STATUS CODES

SIDE EFFECTS

NOTES

68K /0S Reference Manual

DMHOOK

DMHOOK - Install User Hook Routine

To define the address of a user written routine that will
handle extended scrolling from the display file to and from a
backing medium such as floppy disk, and is invoked by DFM.

DO.W DMHOOK

AO.L Display file base address
Al.L Address of user hook routine
A2.L Address of user data block
DO.W Status

0 Always returns success status

Once the user hook routine has been defined, any calls tc DFM
that would cause lines to scroll on or off the top or bottom
of a full display file will invoke the user hook routine.

DMHOOK can be called more than once for the same display file
to install a different hook routine, tc handle closedown for
example. Setting A1 = O will disable the user hook routine.

When reading into the display file the user hook routine must
call DMALLOC to grab space for the data string. Note that
DMALLOC itself might invoke the user hook routine which must
cope with one level of recursion.

When writing from the display file, the user hook routine
must simply p~cces. the data line it is given, the display
file space being reclaimed automatically by DFM.

Wnen 'closing' a display file, use DMFLUSH to flugh all data
fror the display file and the bottom file to the top file.

Zntry parameters to the user hook routine from DFM are:

DO.B 0 = read line, otherwise write line
D1.B 0 = top file, otherwise bottom file
D2.L Display file line number

AO.L Display file base address

Al.L Data string address (write only)
A2.L User data block address

These registers are returned, the others must be preserved:

DO.W
Al.L

0 = success, otherwise status code
Data string address (read only)

9992.1 GST 13/1.00

ESI&mWMmSWmmsUde DMINITDF

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

DMINITDF — Initialise Display File

To allocate memory (if requested) for a display file and to
initialise the dats structures associated with it.

DO.W DMINITDF

D1.W Number of bytes required

D2.B Window foreground and background colours
D3.B Window parameters

AO.L Zero or address of preallocated space
DO.W Status

AO.L Display file base address

STPMEM Insufficient heap memory

If AO contains zero then the number of bytes specified is
grabbed from the calling program's heap, otherwise the memory
is assumed to have been preallocated with OSMEMALL.

The display file is initialised as an empty structure
preceded by a display file control block (which is itself
initialised with the parameters supplied).

Colours are specified as numbers in the range 0-T7 as follows:

Black
Blue
Red
Magenta
Green
Cyan
Yellow
White

~_N O\ FWwND O

Bits 6-4: .background colour
Bits 2-0: foreground colour

The window parameters are bit numbers as follows:

DFLNOSCR Scroll (0) or metascroll (1) to keep cursor visible
DFLWRAP Scroll (0) or wrap (1) at horizontal edge of window
DFLDISPO Scroll (0) or dispose of (1) lines from top of DF

The empty display file is not displayed in the window at this
stage but by the DMNEWWIN command.

68K/0S Reference Manual Cc-13 9992.1 GST 13/1.00

ESI Computer Systeims Limited DMINITVS

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

DMINITVS - Initialise Virtual Screen

Create an empty virtual screen and a corresponding screen
partition for the calling program.

DO.W DMINITVS
D1.W Number of lines required
DO.W Status

STPMEM Insufficient heap memory
STDFINV Invalid request

A virtual screer control block is created on the calling
program's heap and a corresponding blank screen partition is
created at the bottom of the screen. Pointers to the VSCB
and the partition are stored in the program's PCB.

DMINITVS will attempt to grab for the new partition the same
number of lines as requested for the virtual screen by taking
lines from the previous partition. If this shrinks to one
line then lines are taken from the partition previous to
that, and so on until either the requested number of lines
has been cbtained or all previous screen partitions have been
reduced to one line.

A line in this context refers to a line of characters, the
precise number of raster lines for this being implementation
dependent.

A program is allowed one virtual screen. If an attempt is
made to create a second virtual screen or there is no screen
space available for the partition (there are already as many
partitions as screen lines), an STDFINV status is ' returned.

68K/0S Reference Manual Cc-1k 9992.1 GST 13/1.00

ES] Computer Systems Limited DMTNSBLK

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

DMINSBLK — Insert a Block

To insert a block in & display file at the current cursor
position.

DO.W DMINSBLK

D1.W Byte count to insert
AO.L Display file base address
Al.L Address of block buffer
DO.W Status

D1.W Byte count insertecd

STDFFULL TCisplay file full

The user hook routine may be invoked by this routine and may
return system cr user defined status codes.

The block may contain a mixture of displayable characters,
newline codes cor two-byte screen driver commands.

If the block contains newline codes then it will be inserted
in sections over the required number of lines.

After insertion the cursor is positioneé¢ on the first
character position to the right of the inserted block.

If the inserted block woulé cause the cursor to move off the
right hand edge of the window, then if the WRAP condition is
set (see DMINITDF) the line will be split at the edge of the
window and a new line started, otherwise the window is
scrolled left.

The number of bytes actually inserted is returned in D1 to
allow for retries in the event of a recoverable status
condition. The state of the display may be undefined until a
success status is achieved.

68K/0S Reference Manual ¢-15 9992.1 GST 13/1.00

ESI Computer Systems Limited DMINSCHR

ROUTTN:

FUNCTTON

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

DMINSCHR - Insert Character

To insert a character in a display file line at the current
cursor position.

DO.W DMINSCHR

D1.B Character code

AO.L Display file base address
DO.W Status

STDFFULL Display file full

The user hook routine may be invoked and may return system or
user defined status codes.

Only displayable characters in the range $20-$7F should be
inserted. The results of inserting characters outside this
range are undefined.

Characters are inserted at the cursor position, the remainder
of the line being scrolled right. If the cursor is at the
right-hand edge of a window prior to insertion, then if the
WRAP condition is set (see DMINITDF) the line will be split
after the inserted character, otherwise the window will be
scrolled left.

68K/0S Reference Manual c-16 9992.1 GST 13/1.00

ES'I' Computer Systems Limited DMINSLIN

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

DMINSLIN — Insert Line in Display File

To insert a new line into the specified display file.

DO.W DMINSLIN

AO.L Display file base address

Al.L Address of text string to be inserted
DO.W Status

STDFFULL Display file full

If the new line is displayed on the screen, lines below it
will be scrolled down automatically. Scrolling may invoke
the user rook routine (if cne has been installed) and as a
result may generate the associated system or user defined
status codes.

The line is inserted immediately above the line containing
the cursor. The position of the cursor after line insertion
is unchanged.

The text string to be inserted must not contain a newline
code.

68K/0S Reference Manual =17 9992.1 GST 13/1.00

GSI Computer Systems Limited DMINSSTR

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

DMINSSTR - Insert a String

To insert a string in a display file at the current cursor
position.

DO.W DMINSSTR

AO.L Display file base address
Al.L Address of string

DO.W Status

STDFFULL Display file full

The user Frook routine may be invoked by this routine and may
return system or user defined status codes.

The string may contain a mixture of displayable characters,
newline codes or two-byte screen driver commands. The string
bytecount is not inserted into the display file.

If the string contains newline codes then the string will be
inserted in sections over the required number of lines.

After insertion the cursor is positioneé on the first
character position to the right of the inserted string.

If the inserted string woulé cause the cursor to move off the
right hand edge of the window, then if the WRAP condition is
set (see DMINITDF) the line will be split at the edge of the
window and a new line started, otherwise the window is
scrolled left.

Failure cof DMINSSTR may leave the display file in &n un-
defined state.

68K/0S Reference Manual c-18 9992.1 GST 13/1.00

ESI Computer Systems Limited DMJOTIN

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

DMJOIN - Join Two Lines Together

The line which contains the cursor is joined with the line
immediately beneath it (if any).

DO.W DMJOIN .
AO.L Display file base address
DO.W Status

STDFFULL Display file full

Lines below the pair that are joined are automatically
scrolled up. Scrolling may invoke the user hook routine (if
one has been installed) and as a result may generate the
associated system or user defined status codes.

Before the DMJOIN call, the cursor can be in any position in
the line. After the DMJOIN call, the cursor is placed at the
join position (on what had been the first character of the
second line).

68K/0S Reference Manual Cc-19 9992.1 GST 13/1.00

ESI Computer Systems Limited DMKTLLDF

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

DMKILLDF - Release Display File and Associated Window

To flush display file text to its top output file (if any),
to realease any space grabbed from the calling program's heap
when the display file was created, and to coalesce its window
with the parent window.

DO.W DMKILLDF
AO.L Display file base address
DO.W Status

STDFINV Window cannot be deleted

If the display file has a top output file the routine DMFLUSH
will be used to flush the text. This calls the user hook
routine defined by DMHOOK which may return system or user
defined status codes.

If the display file was created from the calling program's
heap (see DMINITDF) then space is returned to the heap.

If the display file was being displayed in & window of the
calling program's virtual screen, DMKILWIN is called to
coalesce this window with its parent window (from which it
was created by DMNEWWIN). If this fails, DMKILWIN may return
STDFINV or user fkook status codes.

DMKILLDF is the recommended method of releasing display files
and tidying up ithe associated filds, data structures and
screen areas.

The -use of DMNEWWIN to create multiple windows will generate
a tree structure of parent to child window relationships. 1In
order to unwind this nesting correctly windows must be killed
by DMKILLDF in reverse order of creation.

68K/0S Reference Manual €-20 9992.1 GST 13/1.00

ESI Computer Systems Limited DMKILWIN

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

DMKILWIN — Delete Screen Window

To remove the specified window from the calling program's
virtual screen.

DO.W DMKILWIN
AO.L Display file base address
DO.W Status

STDFINV Window cannot be deleted

If the display file was being displayed in a window of the
calling program's virtual screen, DMKILWIN will attempt to
coalesce this window with its parent window (from which it
was created by DMNEWWIN). If this fails, DMKILWIN may return
STDFINV or user hook status codes.

The use of DMNEWWIN to create multiple windows will generate
a tree structure of parent to child window relationships. In
order to unwind this nesting correctly windows must be killed
by DMKILWIN in reverse order of creation.

68K/0S Reference Manual c-21 9992.1 GST 13/1.00

ES] Computer Systems Limited DMMARK

ROUTINE DMMARK - To Set a Marker
FUNCTION To define a marker point at the current cursor position.
INPUTS DO.W DMMARK
D1.B Marker number (0-T)
AO.L Display file base address
CUTPUTS DO.W Status
STATUS CODES O Always returns success status

SIDE EFFECTS None

NOTES If the marker number is outside the range O-T7, the result is
undefined.

68K/0S Reference Manual c-22 9992.1 GST 13/1.00

ESICompumrSymeméLmﬂmd DMMKPOS

ROUTINE DMMKPOS - Fetch Marker Position
FUNCTION To fetch the position of the specified marker position.
INPUTS DO.W DMMKPOS
D1.B Marker number (O-T)
AO.L Display file base address
CUTPUTS DO.W Status
D1.W Line number
D2.W Character position
STATUS CODES 0 Always returns success status

SIDE EFFECTS None

NOTES A marker rumber outside the range O-7 will return undefined
results.
Line O is the first line of the display file, position O is

the first character in the 1line. Undefined markers are
returned as position O0,0.

68K /0S Reference Manual c-23 9992.1 GST 13/1.00

ES] Computer Systems Limited DMMOVECU

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

DMMOVECU - Move Cursor

To move the cursor in the given cirection or to the specified
marker position.

DO.W DMMOVECU

D1.B Movement specifier

AO.L Display file base address
DO.W Status

STDFINV Invalid movement specifier

The user hook routine may be invoked and may return system or
user defined status codes.

If the cursor is moved out of the window, then the window is
scrolled in the required direction until the cursor is
visible again.

The movement specifier can have the following values:

o-T7 Move to marker O-T7
CH.CURU Move up one line

CH.CURD Move down one line
CH.CURL Move left one character
CH.CURR Move right one character

When moving the cursor up or down onto a line shorter than
the current line and to & position that would be past the enad
cf line, the cursor will be positioned at the end of line.

If a move left or right is requested and the cursor is at the
start or end of line, then the command is ignored.

When the cursor is moved, the action pointer is moved to the
same position.

68K/0S Reference Manual c-24 §992.1 GST 13/1.00

ESI Computer Systems Limited DMNEWWIN

ROUTINE

"FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

DMNEWWIN - Add a Window to the Virtual Screen

To create *“he initial rectangular window in & virtual screen
or tc split the rectangular window associated with the parent
display file into two smaller rectangles as specified and to
associate the new display file with one of these windows.

DO.W DMNEWWIN

D1.W Orientation

D2.W Window size

AO.L Display file base address

Al.L Parent display file base address
DO.W Status

D1.W Window width in characters

D2.W Window depth in lines

STDFINV New window too large

If there are insufficient lines in the new display file to
fill the new window and a user hook routine has been defined
for the new window by DMHOOK, then it will be called tc read
lines from the bottom file into the display file until the
window is full o1* no more lines are available.

If this is the first window to be created in the virtual
screen then the parameters in D1, D2 and A! are ignored and
the dimensions of the virtual screen are returned in D1 and
D2.

If the orientation is vertical (D1=0), the parent window is
split vertically withk the absolute value of D2 specifying the
width (in characters) of the new window. If D2 is positive,
the new window is createc¢ on the left, otherwise it is
created on the right.

If the orientation is horizontal (D1#£0), the parent window is
split horizontally with the absolute value of D2 specifying
the depth (in lines) of the new window. If D2 is positive,
the new window is created at the top, otherwise it is created
at the bottom.

The use of DMNEWWIN to create multiple windows will generate
a tree structure of parent to child window relationships. 1In
order to unwind this resting correctly windows must be killed
by DMKILWIN in reverse order of creation.

68K/0S Reference Manual c-25 9992.1 GST 13/1.00

ESICompumrSyﬂemsLmﬂwd DMPUTCUR

ROUTINEL

FUNCTION

INPUTS

CGUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

DMPUTCUR - Position the Cursor

To move the cursor to the defined position within & display
file.

DO.W DMPUTCUR

D1.W Line number

D2.W Character position

AO.L Display file base address

DO.W Status

D1.W Line number

D2.W Character position

STEOF Attempt to move cursor beyond file boundary

The user Look routine may be invoked and may return system or
user definec¢ status codes.

If the specified position cannot be reached, then the actual
position reached is returned in D1 and D2.

Line O is the top line of a display file, position 0 is the
first character in a line.

€8K/0S Reference. Manual ¢-26 9992.1 GST 13/1.00

ESI Computer Systems Limited DMRDBYT

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

DMRDBYT — Move Action Pointer and Read Byte

To move the display file action pointer within = line without
moving the cursor and to read the byte addressed.

DO.W DMRDBYT

D1.W Amount to move action pointer

AO.L Display file base address

DO.W Status

D1.B Byte addressed by action pointer

D2.W Horizontal character position of action pointer
STEOF Attempt to move action pointer beyond line limits
None

The action pointer is moved according to the value contained
in D1, as follows:

D1 = -N move N bytes to the left
D1 = 0 retain current position
D1 = +N move N bytes to the right

]

The action pointer must remain in the same line as the cursor
and is therefore not allowed to move past the start or end of
the current line. If the value in D1 would cause the action
pointer to move beyond the line limits, it is moved to the
start or end of line (as appropriate) and an STEOF erro: code
is returned.

If the action pointer is moved to the end of line, a newline
character code is returned (CH.NL).

Unlike the cursor, which can only be placed on z displayable
character, newline or space command, the actior pointer can
be positioned on and read any byte from a display file line,
enabling the calling program to read the non-displayable data
within the line.

In order to maintain track of the (displayable) character
position within the line after actior pointer movement, the
value returned in D2 is the closest potential cursor position
equal to or to the right of the action pointer.

68K/0S Reference Manual c-27 9992.1 GST 13/1.00

ES] Computer Systems Limited DMRELEAS

ROUTINF DMRELEAS - Deallocate Display File Record Space
FUNCTION To release a display file record to the display file heap.
INPUTS DO.W DMRELEAS
AO.L Display file base address
Al.W Offset to record from DFBA
OUTPUTS DO.W Status
STATUS CODES O Always returns success status

SIDE EFFECTS None

NOTES DMRELEAS will not normally be called by a user program, being
a by-product of other DFM commands. . It is provided as a user
callable function for use in & user lrook routine when writing
data from a display file.

Note that the user hook routine provides a pointer to the

record in Al.I. and DMRELEAS requires an offset on the display
file base address in Al.W, thus some maths is necessary.

68K/0S Reference Manual c-28 9992.1 GST 13/1.00

ESI Computer Systems Limited' DMRESET

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

DMRESET- — Delete and Refresh Display File Text

To delete all the text in the specified display file, home
the cursor and refresh the window from the user hook routine.

DO.W DMRESET
AO.L Display file base address
DO.W Status

As returned from the user hook routine.

If DMHOOK has been called previously and there is data in
bottom input file then this will be read into the display
file and displayed in the window. System or user defined
status codes may be returned in the procese.

This routine may be called whether or not the display file is
displayed in a window.

If the display file is displayed in a window then sufficient
text is read from the bottom input file tc fill the window,
ctherwise only a single line is read.

If DMHOOK has not been called or the bottom file is empty
then the display file will be left with a single blank line.

68K/0S Reference Manual c-29 9992.1 GST 13/1.00

ESI Computer Systems Limited DMSPLIT

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

DMSPLIT - Split a Line Into Two

To split the current line.(at the cursor position) into two
lines.

DO.W DMSPLIT
AO.L Display file base address
DO.W Status

STDFFULL Display file full

Lines following the split are automatically scrolled down.
Scrolling may invoke the user hook routine (if cne has been
installed) and as a result may generate the associated system
or user defined status codes

The line is split immediately before the cursor position and
the cursor remains at the start of the second line.

68K/0S Reference Manual c-30 9992.1 GST 13/1.00

ESICompuwrSymemsLmﬂmd DMTTYSEL

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

DMTTYSEL — Select Window for Console Output

To select the window associated with the specified display
file to be used for keyboard line reflection.

DO.W DMTTYSEL

AO.L Display file base address
DO.W Status

6] Always returns success status

All subsequent IOGETLIN calls from KEY: made by the calling
program will echo keystrokes to the specified window.

This command is used to select which of the calling program's
windows will be used for keyboard line reflection. When used
to reflect keyboard input, IOGETLIN will accept and reflect
the following:

(a) Standard ASCII characters

(b) Backspace or backspace-delete
(c) Delete line

(d) Enter

All other characters are ignored and are not reflected in the
window.

If DMTTYSEL has not been called or was called with AO = O,
then an IOGETLIN call to KEY: or an IOOPEN call to SCREEN:
will cause an attempt to create a default window., This will
be the entire virtual screen if no windows exist, otherwise
the top eight lines of the last window created.

An TIOOPEN call to SCREEN: will open a channel to the window
currently selected by DMTTYSEL. Subsequent calls to DMTTYSEL
will have no effect on any channel already opened. Thus it
is possible to have many SCREEN: channels open to different
windows, but only one window for KEY: screen reflection.

68K/0S Reference Manual Cc-31 9992.1 GST 13/1.00

ESI Computer Systems Limited DMUMENU

ROUTINE

FUNCTION

INPUTS

CUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

DMUMENU - Update Single Line Menu Field

To update the single line menu &t the bottom of the screen
display with the contents of the specified string.

DO.W DMUMENU

AO.L Address of menu string

DO.W Status

0 Always returns success status

The address of the menu ctring is copied to the contents of
PCE field PBMENU and becomes the new default menu string for
the calling program.

The single line menu is displayed at the bottom of the screen
beneath the space allocated for partitions and will be
truncated to the screen line length if necessary. It is
normally used for the display of program identification and
function key actions associated with -~he current program.

Each program in the system may have a default string for
display in the single line menu, addressed by field FBMENU in
the PCB. This is displayed automatically when the program is
selected (usually by user keyboard command) as the current
program, and is updated by a call to DMUMENU. If PBMENU is
zero the system default string is output.

68K/0S Reference Manual c-32 9992.1 GST 13/1.00

I;SI Computer Systems Limited DMWRBYT

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

DMWRBYT - Update Byte in Display File

To replace the byte addressed by the action pointer by the
byte specified.

DO.W DMWRBYT

D1.B Byte to be stored

AO.L Display file base address
DO.W Status

STDFINV Invalid update

If the update affects the screen display, the appropriate
screen areas are repainted as follows:

(a) An updated displayable character is repainted.

(b) An updated space command causes a line repaint.

(c¢) An updated colour or fount command causes &ll affected
lines tc be repainted.

The display file data structures are updated accordingly.
DMWRBYT operates as an overstrike function thus the action
pointer is not moved as a result of the call.

Certain operations are not allowed, as follows:

(a) A newline cannot be overwritten.

(b) A command byte cannot be overwritten by a displayable
character.

Note that all commands can be modified by DMWRBYT.

68K/0S Reference Manual Cc-33 9992.1 GST 13/1.00

rraaN

ESI Computer Systems Limited Graphics Routine Calls

APPENDIX D:

GRAPHICS ROUTINE CALLS

€8K/0S Reference Manual D-0 9992.1 GST 13/1.00

ES] Computer Systems Limited HBIIGK

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

SPBLOCK — Draw a Filled Rectangular Block on the Screen

To draw a rectangular block at the coordinates specified,
relative tc the display file and graphics window.

SPBLOCK

X coordinate of start (any corner)

Y coordinate of start

X coordinate of finish (corner diagonally opposite)
Y coordinate of finish

Colour identifier

Display file base address

Graphics window block

>OQ0oUoUguouyg

FPONXFwWMPOFO
(mlll e B o SR 2R iR S

]

DO.W Destroyed

None

The block will be clipped if its size and position are such
that it extends outside the visible portion of its window.

The upper byte of the colour identifier is set non-zero for
XOR ink, the lower byte has the following fields:

Bits 7-6 Stipple (0 =Q, 1 =H, 2=V, 3 =20¢)

Bits 5-3 XOR of mixer colour and base colour

Bits 2-0 Base colour

Colours are specified as numbers in the range 0-7 as follows:

0 Black n Green
1 Blue 9 Cyan
2 Red 6 Yellow
3 Magenta T White

The graphics window is positioned relative to the disvlay
file as defined by the graphics window block fields:

CLIPXPOS (.W) X position offset (characters)

CLIPYPOS (.W) Y position offset (character lines)

CLIPWID (.W) X width of window (characters)

CLIPSIZ (.W) Y height of window (character lines)

68K/0S Reference Manual D-1 9992.1 GST 13/1.00

ESI Computer Systems Limited SPELLIPS

ROUTTNE:

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

SPELLIPS — Draw an Ellipse on the Screen

To draw an orthogonal ellipse on the screen.

DO.W SPELLIPS

D1.W X coordinate of centre
D2.W Y coordinate of centre
D3.W X radius

Dh.W Y radius

DT.W Colour identifier

AO.L Display file base address
Al.L Graphics window block
DO.W Destroyed

None

The ellipse will be clipped if its size and position are such
that it extends outside the visible portion of its window.

To produce the effect of a circle, it is recommended that the
X radius exceeds the Y radius by around 25% to 35% depending
on the particular monitor or TV in use.

The upper byte of the colour identifier is set non-zero for
XOR ink, the lower byte has the following fields:

Bits 7-6 Stipple (0 =Q, 1L =H, 2=V, 3 =C)

Bits 5-3 XOR of mixer colour and base colour

Bits 2-0 Base colour

Colours are specified as numbers in the range O-T7 as follows:

0 Black b Green
1 Blue 5 Cyan
2 Red 6 Yellow
3 Magenta T White

The graphics window is positioned relative to the display
file as cdefined by the graphics window block fields:

CLIPXPOS (.W) X position offset (characters)
CLIPYPOS (.W) Y position offset (character lines)
CLIPWID (.W) X width of window (characters)
CLIPSIZ (.W) Y height of window (character lines)

68K/0S Reference Manual D-2 9992.1 GST 13/1.00

ESI Computer Systems Limited SPFILL

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

SPFILL - Area Fill to a Specified Border

To fill an area in the specified colour up to a defined
border colour.

SPFILL

X coordinate of start

Y coordinate of start
Border colour identifier
Fill colour identifier
Display file base address
Graphics window block

> 099 og
OO0\ O
===

DO.W Destroyed

None

The filled area will be clipped if it extends outside the
visible portion of its window.

Strange effects may occur if the fill, border or original

background colour have plain or stipple colours in common.

The start coordinates should be placed well within the fill
area to avoid colour boundary effects.

The upper byte of the colour identifier is set zero. The
lower byte has the following fields:

Bits 7-6 Stipple (0 =Q, 1 =H, 2=V, 3 =C)

Bits 5-3 XOR of mixer colour and base colour

Bits. 2-0 Base colour

Colours are specified as numbers in the range O-T7 as follows:

0 Black b Green

1 Blue 5 Cyan

2 Red 6 Yellow

3 Magenta T White -

The graphics window is positioned relative to the display
file as defined by the graphics window block fields:

CLIPXPOS (.W) X position offset (characters)
CLIPYPOS (.W) Y position offset (character lines)
CLIPWID (.W) X width of window (characters)
CLIPSIZ (.W) Y height of window (character lines)

68K/0S Reference Manual D-3 9992.1 GST 13/1.00

ES] Computer Systems Limited SPLINE

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

SPLINE — Draw a Line on the Screen

To .draw a straight line between two defined points.

SPLINE

X coordinate of start

Y coordinate of start

X coordinate of end

Y coordinate of end
Colour identifier
Display file base address
Graphics window block

thEz==z===

>r>OgUUgYUyY
CFoxFONDRES

DO.W Destroyed
None

The line will be clipped if its size and position are such
that it extends outside the visible portion of its window.

The upper byte of the colour identifier is set non-zero for
XOR ink, the lower byte has the following fields:

Bits 7-6 Stipple (0 =Q, 1 =H, 2 =V, 3 =C)

Bits 5-3 XOR of mixer colour and base colour

Bits 2-0 Base colour

Colours are specified as numbers in the range O0-7 as follows:

0 Black b Green
1 Blue 5 Cyan
2 Red 6 Yellow
3 Magenta T White

The graphics window is positioned relative to the display
file as defined by the graphics window block fields:

CLIPXPOS (.W) X position offset (characters)
CLIPYPOS (.W) Y position offset (character lines)
CLIPWID (.W) X width of window (characters)
CLIPSIZ (.W) Y height of window (character lines)

68K/0S Reference Manual D=4 9992.1 GST 13/1.00

BSICompumrSymemsLMﬂwd SPPATNT

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

SPPAINT - Area Fill to an Unspecified Border

To fill an area in the specified colour over the current
background colour until the background colour changes.

DO.W SPPAINT

D1.W X coordinate of start
D2.W Y coordinate of start
DT.W Fill colour identifier
AO.L Display file base address
Al.L Graphics window block
DO.W Destroyed

None

The filled area will be clipped if it extends outside the
visible portion of its window.

Strange effects may occur if the fill, border or original

background colour have plain or stipple colours in common.

The start coordinates should be placed well within the fill
area to avoid colour boundary effects.

The upper byte of the colour identifier is set zero. The
lower byte has the following fields:
Bits 7-6 Stipple (0 =Q, 1 =H, 2=V, 3 =C)

Bits 5-3 XOR of mixer colour and base colour
Bits 2-0 Base colour

Colours are specified as numbers in the range O-T as follows:

0 Black 4 Green
1 Blue 5 Cyan
2 Red 6 Yellow
3 Magenta T White

The graphics window is positioned relative to the display
file as defined by the graphics window block fields:

CLIPXPOS (.W) X position offset (characters)
CLIPYPOS (.W) Y position offset (character lines)
CLIPWID (.W) X width of window (characters)
CLIPSIZ (.W) Y height of window (character lines)

68K/0S Reference Manual D-5 9992.1 GST 13/1.00

BSI Computer Systems Limited SPPOINT

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

SPPOINT - Draw a (Clipped) Pixel on the Screen

To draw a pixel on the screen at the defined coordinate
position.

DO.W SPPOINT

D1.W X coordinate

D2.W Y coordinate

DT.VW Colour identifier

AO.L Display file base address
Al.L Graphics window block
DO.W Destroyed

None

The pixel will not be drawn if lies outside the visible
portion of its window.

The upper tyte of the colour identifier is set non-zero for
XOR ink, the lower byte hae the following fields:

Bits 7-6 Stipple (0 =Q, 1 =H, 2=V, 3 =C)

Bits 5-3 XOR of mixer colour and base colour

Bits 2-0 Base colour

Colours are specified as numbers in the range O-T7 as follows:

0 Black b Green
il Blue 5 Cyan
2 Red 6 Yellow
£} Magenta T White

The graphics window is positioned relative to the display
file as cefined by the graphics window block fields:

CLIPXPOS (.W) X position offset (characters)
CLIPYPOS (.W) Y position offset (character lines)
CLIPWID (.W) X width of window (characters)
CLIPSIZ (.W) Y height of window (character lines)

68K/0S Reference Manual D-6 9992.1 GST 13/1.00

ESI Computer Systems Limited SPTEXT

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

SPTEXT — Draw a Text String in Graphics Mode

To draw a horizontal text string on the screeén.

DO.W SPTEXT

D1.W X coordinate of start

D2.W Y coordinate of start

D5.B Text attributes

D6.W Background colour identifier
DT.W Foreground colour identifier
AO.L Display file base address
Al.L Address of graphics window block
A2.L Address of text string

DO.W Destroyed

None

The text string will be clipped (in whole characters) if it
extends outside the visible portion of its window.

The upper byte of the colour identifier is set non-zero for
XOR ink, the lower byte has the following fields:

Bits 7-6 Stipple (0 =Q, 1 =H, 2=V, 3 =C)

Bits 5-3 XOR of mixer colour and base colour

Bits 2-0 Base colour

Colours are specified as numbers in the range O-T7 as follows:

0 Black 4 Green
1 Blue 5 Cyan
2 Red 6 Yellow
3 Magenta T White

The graphics window is positioned relative to the display
file as defined by the graphics window block fields:

CLIPXPOS (.W) X position offset (characters)
CLIPYPOS (.W) Y position offset (character lines)
CLIPWID (.W) X width of window (characters)
CLIPSIZ (.W) Y height of window (character lines)

Text attributes are as follows:

Bit O Underlined Bit 4 Double height

Bit 1 Flashing Bit. 5! Spaced characters
Bit 2 Transparent Bit 6 Double width

Bit 3 XOR ink (+ bit 2) Bit T (not used)

68K/0S Reference Manual D-T7 9992.1 GST 13/1.00

ESI Computer Systems Limited Btatue Lodes

APPENDIX E:

STATUS CODES

68K/0S Reference Manual E-0 9992.1 GST 13/1.00

ESI Computer Systems Limited DEatuE Keden

E STATUS CODES

E.1 TFormat
A status code is a two byte positive integer that ié returned from most
68K/0S system calls in register DO. The status code defines whether
the system call was executed succesfully (zero) or if a particular fail
state was detected (non-zero).

E.2 Alphabetical List of Status Codes

STADDRES Address error trap
STALINE A-line unimplemented instruction

STAM This access mode not allowed for this channel or file
STAMSEQ This access mode illegal on sequential channels
STAT Illegal option byte or access type

STATSEQ Cannot both read and write a sequential channel
STBADDIR Error in directory component

STBADFIL Error in filename component

STBUS Bus error trap

STCHAN Illegal channel number

STCHKINS CHK instruction trap (array bound violation)
STDEVICE Unknown device

STDEVSEQ Device can be accessed sequentially only
STDFINV Invalid call to display file manager
STDIRECT Directory operations not allowed on this device
STDIRFUL No space left on disk or directory

STDIVIDE Divide by zero trap

STEOF End of file

STEXIST File does not exist

STFLINE F-line unimplemented instruction

STGET Reading from this channel is illegal
STILLEGA Illegal instruction trap

STINPROC Invalid procedure identifier

STINPROG Invalid program identifier

STINTRAP Call of OSTRAP failed

STIOERR Read or write error from device

STKILLED Program was killed by TRAP O

STMUFLD Invalid menu fields specified

STMURAM Menu variable data space insufficient
STNODIR Directory cannot be found

STNOFILE No room left in open files table

STNOLOAD Unable to load procedure

STNOPROC No room left in procedure table

STNOSHAR Device is not sharable

STNOSIZE No file size information available -
STOK Success status (0)
STOPEN Directory in use, cannot dismount

STPART Partial line only read by IOGETLIN
STPMEM Heap or stack overflow

STPRIV Privileged operation trap

STPROC Procedure already exists (from IODEFPRO)

STPUT Writing to this channel is illegal
STRENAME Source and destination path names incompatible
STSEQ Channel is open for sequential access only

STSETPOS 1Invalid file position

68K/0S Reference Manual E-1 9992.1 GST 13/1.00

GSI Computer Systems Limited Shatis Sl

STSMEM Memory manager cannot satisfy request
STSPECIA Driver does not support IOSPECIAL operations
STSPUR Spurious interrupt

STSTOP Child program has stopped

STSTRLEN String length invalid

STSYNTAX Path name syntax error

STTFRLEN Invalid transfer or buffer length

STTRACE Trace mode trap

STTRAPY Trap U4 instructior
STTRAPS Trap 5 instruction
STTRAP6 Trap 6 instruction
STTRAPT Trap T instruction
STTRAP8 Trap 8 instructior
STTRAP9 Trap 9 instruction

STTRAP10 Trap 10 instructior

STTRAP11 Trap 11 instruction

STTRAP12 Trap 12 instructior

STTRAP13 Trap 13 instruction

STTRAP14 Trap 14 instructior

STTRAP1S5 Trap 15 instruction

STTRAPV TRAPV instruction trap

STUNIT Unit number invalid or in use

STUSE File in use or requested access incompatible

68K /0S Reference Manual E-2 9992.1 GST 13/1.00

ESI Computer Systems Limited

Character Codes

APPENDIX F:

CHARACTER CODES

68K/0S Reference Manual F-0 9992.1 GST 13/1.00

ES] Computer Systems Limited Character Codes

CHARACTER CODES
General

This section defines character codes for the QL keyboard, internal
ASCII encoding and screen display as follows:

(a) Keyboard ASCII decode tables

(b) Summary of Keyboard Command Keystrokes

(c) Display File Manager Binary Commands

These define all the character translation and encoding in 68K/0S that
is available to zpplications software. Direct access to keyboard
matriy codes is detailed ir the Systems Programmer's Reference Manual.
Changes From Standard US ASCII

Note that the ASCII is ron-standard (to 1eflect the QL keyboard

engraving and for compatibility with QDOS in the T-bit ASCII range),
but the differences are minor:

(a) The ASCII grave accent is replaced by '&' ($60).

(b) The copyright sign is added in the rubout position ($7F).

All other codes conform to standard US ASCII.

68K/0S Reference Manual F-1 9992.1 GST 13/1.00

ESI Computer Systems Limited Character Codes

F.3 QL ASCII Decode Table ($00-$1F)

ASCII SHIFT
HEX DEC S C A

$00
$01
$02
$03
$ob
$05
$06
$07
$08
$09

O O~ O\ W N o

s
=
1
N
e e e R R g S S R S S R N O

e e e e e e S S S S S P S PP P P
O0O0O0O0000000O0O0O00O0O0O00000CO0O0O0O0O0 OO

68K/0S Reference Manual

KEY FUNCTION FUNCTION

us (USER MODE) (SYSTEM MODE)
2 e null code
A
B
C
D
" o
F
G
H
TAB next field
ENTER new line
K
L
M
N
0
P
Q
R
S
T
9]
\
W
X
X
Z
ES?APE exit command seq. exit system mode
\
1}
6 -

I

F-2 9992.1 GST 13/1.00

ESICompumrSyﬁemsLMﬁmd

QL ASCII Decode Table ($20-$3F)

ASCII
HEX DEC

$20
$21
$22
$23
$2k
$25
$26
$21
$28
$29
$2A
$2R
$oc
$2D
$2F
$oF
$30
$31
$32
$33
$3k
$35
$36
$37
$38
$39
$3A
$3B
$3c
$3D
$3E
$37

68K/0S Reference Manual

32
33
3k
35
36
3T
38
39
Lo
41
Lo
43
Ll
45
46
b7
48
49
50
51
52
53
Sk
55
56
57
58
59
60
61
62
63

SHIFT
S CA

HFPEOHOFOOQOO0O®VOo00O0D0QOQOFHFHPORERPHEHO
zisfkalefofolofelolcfolclefaolofclcfolollcfefolofaofofofofoReoleclelal
[efelolicRolollcfofcolofelofefolecfolofololofcfelicfofofololclokaReka)

KEY

V)

SPACE

—

I OOV -V FWw -

e “eve OO\ FWNHO~-
e~ kR OICNBITE = — OV | A+ ke

S

S

R N

WOV + A e

DISPLAY
CHAR.

SPACE
!

I~ + ¥k ~——~ - 2 N3

0 OO\ FWMNDHO~-

- AN R]

F-3

Character Codes

COMMENT

US ASCII position

9992.1 GST 13/1.C

ESI Computer Systems Limited Character Codes

QL ASCIT Decode Table ($40-$5F)

ASCII SHIFT KEY DISPLAY
HEX DEC S C A Uus CHAR. COMMENT

$40 6k
$h1 65
$ho 66
$43 67
sl 68
$hs 69
$46 70
$u7 TL
$48 T2
Lo 73
Bha L
LB 75
Lhc 76
Lo 7T
LE 78
LF 79
$50 80
$51 81
$52 82
53 83
54 8l
55 85
$56 86
$57 87
$58 88
$59 89
$54 90
$5B 91
$5¢ 92
$5D 93
$5E 9b
$5F 95

n
®

FHOOOKRRRRERHEFHFHERRERERREREBRRERRR e

[e¥e¥oReNoNoNoNoNoNoNoNoloNoRoRoNe RoRoRoNoNoNoRoNeNo Ro Ne Reo e R oo

[c¥e¥oNcNoNcNoNoNoNoNoRoNe NoRoRo N Re R R RoNe Ro RoRoNe Ro RoRe o o X o}
, NHKXE<CH®NIOUYOZICNAGUHIQRHEUQ W>
e NHKXE<CHOTOWOZIORGUHIOQOHEEIQW > ®

I O\e—s——

|
|

68K/0S Reference Manual Pl 9992.1 GST 13/1.00

BSI Computer Systems Limited

QL ASCII Decode Table ($60-$T7F)

ASCII

HEX

$60
$61
$62
$63
$6k
$65
$66
$67
$68
$69
$6A
$6B
$6C
$6D
$6E
$6F
$70
$71
$72
$73
$7h

$75.

$76
$77
$718
$79
$7A
$7B
$7C
$7D
$TE
$7F

68K/0S Reference Manual

DEC

96

97

98

99
100
101
102
103
10k
105
106
107
108
109
110
111
112
113
11k
115
116
17
118
119
120
121
122
123
12k
125
126
127

SHIFT
SCA

ofellcfolcfsfellofoliciefoliofelocfcfcfeclcRolefollcfofele]

[eNeololoNeNeoleNolloNoNoNoNoNoNeoNoNoNoNoNeNeNoNoNoNoNoNeNeNo oo No]
[ejofolle fafofefcfofefollofollofaNofololafelcFofaolofolofafaolofafeRal

HHERRRPO

DISPLAY
CHAR.

P — N <Y X E S EFTNROTODSIHINGHISIRBHO A0 TP ®

=5

Character Codes

COMMENT

replaces grave accent

copyright in rubout position

9992.1 GST 13/1.00

ESI Computer Systems Limited

Character Codes

QL ASCII Decode Table ($80-$9F)

ASCII

HEX

$80
$81
$82
$83
$8L
$85
$86
$87
$88
$89
$8A
$8B
$8C
$8D
$8E
$8F
$90
$91
92
93
ol
95
$96
$97
98
99
POA
$9B
$9c
$9D
$OE
$oF

68K/0S Reference Manual

DEC

128
129
130
131
132
133
13k
135
136
137
138
139
140
141
142
143
1hk
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

SHIFT

S

HFHOOOMDMMDMMXNMDMDDBM DD DMDIMIIN DM MMM MMM

C

I TR T T T e I T i i R o]

A

FHEFRERFERRRRPRRPRRERRERERRRERERERRERRERR R

KEY FUNCTION FUNCTiON
us (USER MODE) (SYSTEM MODE)

n
(DN'-<><£<C.‘HUJ’JU‘O"UOZZL-'?&‘QH:I:C)"HMUOUJb@

I O\Ne——
Y——Q

>

]

=

F-6 9992.1 GST 13/1.00

ESICompumrSyaemsLmﬂmd

Character Codes

QL ASCIT Decode Table ($AO-$BF)

ASCII
HEX DEC

SHIFT
SCA

160
161
162
163
164
165
166
167
168
169
L70
171
172
173
174
175
176
77
178
179
180
181
182
183
184
185
186
187
188
189
190
191

$A0
$A1
$ao
$A3
Ak
$A5
$A6
$AT
$A8
$A9
$AA
$AB
$AC
$AD
$AR
$AF
$BO
$BL
$B2
$B3
$BL
$B5
$B6
$B7
$B8
$B9
$BA
$BB
$BC
$BD
$BE
$BF

e e e
HFHOOKFHFHOOKFKHOO
—OHOFOHOFOKFO

HFRPFRPFRPOOOOKFFKFKFHFROOOO

PR OORFPOORFOQORIFO
HOHOFRPOHFOHOHOR®HO

68K/0S Reference Manual

KEY
us

SPACE
SPACE
SPACE
SPACE
ENTER
ENTER
ENTER
ENTER
TAB
TAB
TAB
TAB

CAPSLOCK
CAPSLOCK
CAPSLOCK
CAPSLOCK
CAPSLOCK
CAPSLOCK
CAPSLOCK
CAPSLOCK
Fl
F1
F1
F1
Fl
F1
Fl
F1

FUNCTION
(USER MODE)

FUNCTION
(SYSTEM MODE)

WP fixed space

reformat paragraph

previous field

funused)

(unused)

(unused)

(unused)
caps lock toggle

help

enter system mode system menu or.

boot system

F-7 9992.1 GST 13/1.00

ESI Computer Systems Limited

Character Codes

QL ASCII Decode Table ($CO-$DF)

ASCII

HEX

$Co
$C1
$co
$c3
$Ch
$C5
$c6
$cT1
$c8
$C9
$CA
$CB
$cc
$CD

68K/0S Reference Manual

DEC

192
193
194
195
196
197
198
199
200
201
202
203
20k
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
202
223

SHIFT

S

QOHKFHFFHOOOOHFHFFPHOOOOHMHKFROOO®D

o

FHPRPO

C

HFFRPOOFHOOFHHFOOFHOOFHHOOFHHOORFRHFOOKHFH OO

A

HOHOFOFOFOHOHOHHOHOFOFOHOFROHOKRHOKRO

FUNCTION FUNCTION
(USER MODE) (SYSTEM MODE)

next partition

previous partition

grow partition

shrink partition

suspend program

resume program

program reset

F-8 9992.1 GST 13/1.00

ESI Computer Systems Limited

QL ASCII Decode Table ($EO-$FF)

ASCII
HEX DEC

$EO 224
$E1 225
$E2 226
$E3 227
$EL 228
$E5 229
$E6 230
$ET 231
$E8 232
$E9 233
$EA 234
$EB 235
$EC 236
$ED 237
$EE 238
$EF 239
$F0 240
$F1 241
“$F2 242
$F3 243
$FL 2Ll
$F5 245
$F6 2L6
$FT 247
$F8 248
$r9 249
$FA 250
$FB 251
$FC 252
$FD 253
$FE 254
$FF 255

HEHHOOOOKFPFPHHOOOBOORFRPFPMHIMHOOOOMRPFHEFEO®O OO
FPRPOQPPFOSFPORAPFOOFFPFOOPHOO PO FOO
PORPRPOFHROFOFFOFPOFRORFRPORPOROFHOKHORPOKOMORO

68K /0S Reference Manual

< < < << < > — > —> |

FUNCTION
(USER MODE)

cursor left

-start of line
delete char. left

delete line
word left

pan window left
delete word left

cursor right
end of line -
delete character

del. to end of line

word right
pan window right

delete word right

cursor up
previous screen

top of screen
pan window up

cursor down
next screen

bottom of screen
pan window down

Character Codes

FUNCTION
(SYSTEM MODE)

pan partition up

pan partition down

9992.1 GST 13/1.00

F.L Summary of System Mode Commands

The following table shows the system command and shift key combinations
for the QL keyboard in system mode. Key combinations marked 'unused
are untranslatable, '

[[[[CONTROL
| | CONTROL | CONTROL| SHIFT | SHIFT
| SHIFT |ALTMODE|CONTROL| SHIFT |ALTMODE |ALTMODE | ALTMODE

UNSHIFT

| PAN

[= PARTN.
| | UpP
[

PAN
| PARTN. | | I
¥ DOWN | | |

| |EXIT
| ESC |SYSTEM UNUSED |UNUSED |UNUSED |UNUSED
| | MODE

UNUSED |UNUSED

| | ENTER |
Fl | BOOT SYSTEM |
|SYSTEM |MODE |

F2 NEXT PREV.
PARTN. |PARTN.

F3 GROW SHRINK
PARTN. |PARTN.

Fh SUSPEND | RESUME
PROGRAM | PROGRAM

F5 KILL
PROGRAM

I I
I I
I I
I I
I I
I I
I I
I |
I I
I |
I I
I I
I |
I |
l I
| I
I I
I I
I |
| |
I I
I I
I I
| |
| I
I I
| I
I I
I I
I I
I I
I I

ESI Computer Systems Limited Character Codes
I
|
I
|
|

68K/0S Reference Manual F-10 9992.1 GST 13/1.00 ‘

ESI Computer Systems Limited Character Codes

.5 Summary of User Mode Commands

The following table shows the recommended command and shift key
combinations in user mode. Key combinations marked 'unused' are
untranslatable, blank entries are available for sapplications software.

| | [[[CONTROL
| | | CONTROL | CONTROL | SHIFT | SHIFT
UNSHIFT| SHIFT |ALTMODE|CONTROL| SHIFT |ALTMODE |ALTMODE | ALTMODE

DELETE |DELETE | PAN
<-— |CURSOR |WORD START |CHAR. |WORD DELETE |WINDOW
LEFT |LEFT LINE LEFT LEFT LINE |LEFT

| |

| | DELETE | PAN
| --> |CURSOR |WORD END DELETE |WORD DELETE |WINDOW
RIGHT |RIGHT |LINE CHAR. |RIGHT |TO EOL |RIGHT
[
TOP		PAN			
~	CURSOR	OF	PREV.		WINDOW
		up SCREEN	SCREEN		up
	[
BOTTOM		PAN			
wINDOW					

v DOWN SCREEN |SCREEN | DOWN

[

|

|

|

| CURSOR |OF NEXT |
|

|

TAB TO |TAB TO |
|

|

TAB |NEXT |PREV. |UNUSED |UNUSED UNUSED |
FIELD |FIELD

[

WP |

SPACE |SPACE |FIXED |UNUSED |UNUSED UNUSED |
SPACE

I
I
I
I
I
I
I
I
|
I
| |
I
I
I
I
I
|
I
I
I
|
I

| |
EXIT |
ESC |COMMAND|COPY- |UNUSED |UNUSED |UNUSED |UNUSED
SEQNCE. |RIGHT

UNUSED |UNUSED

|
|
[
|
|
|
|
|
|
|
|
[
|
CAPS |CHANGE |
LOCK |CASE |
|

}

|

|

|

|

|

|

|

|

|

ENTER |NEW REFORM |UNUSED |UNUSED UNUSED
LINE PARA.

|

|

Fl HELP |

|

| |
| SELECT | | |
| Fo-F5 |MENU | | |
! OPTION I | I |
|

68K/0S Reference Manual F-11 9992.1 GST 13/1.00

ESI Computer Systems Limited Character Codes

F.6

FuT

Display File Manager Commands

DFM includes two-byte command codes within its display text. These can
be used for three purposes:

(a) Within DFM itself as text formatting information.
(b) Within DFM to supply text output control data to screen driver.

(c) By user programs to insert binary data into & display data stream
for any purpose whatever.

These commands have the general format:

Byte 1:
bit 7 1
bit € 0 (system) or 1 (user)
bits 5-C command code
Byte 2:
bit 1L

-
bit € 0 (system) or 1 (user)
bits 5-0 command argument(s)

Note that user commands are guaranteed to be transparent as far as
68K/0S is concerned. System commands are reserved for future 68K/0S
expansion.

DFM and Screen Driver Commands

The following commands are recognised by DFM and the screen driver and
may be inserted in any text string processed by these routines:

(a) Foreground Colour - ($80)

Second byte:

Bits 7-6 10
Bits 5-3 old foreground colour
Bits 2-C new foreground colour

This command changes the foreground text colour as follows:

0 black by green =
i blue 5 cyan

2 red 6 yellow

3 magenta i white

The foreground colour of the following text is changed to the new
colour up to the next colour command.

68K/0S Reference Manual F-12 9992.1 GST 13/1.00

ES] Computer Systems Limited Character Codes

(b)

(c)

(e)

Background Colour - ($81)

Second byte:

Bits T-6 10
Bits 5-3 old background colour
Bits 2-0 new background colour

This command changes the background text colour as follows:

0 black i green
i blue 5 cyan

2 red 6 yellow
3 magenta. T white

The background colour of the following text is changed to the new
colour up to the next colour command.

Character Fount - ($82)

Second byte:

Bits T-6 10
Bits 4-3 6ld fount
Bits 1-0 new fount

This command changes the character fount cf the following text
up to the next fount command. The default fount is fount zero.

Multiple Space — ($83)
Second byte:

Bits T-6 10
Bits 5-0 number of space characters

This command will generate the number of spaces requested on the
screen. The cursor can only be positioned on the first space.

Underline On/Off — ($84)

Second byte:

Bits T-6 10
Bit 3 old underline state (0 = off)
Bit 0 new underline state (0 = off)

This command switches character underlining on or cff until the
next underline command.

68K/0S Reference Manual F-13 9992.1 GST 13/1.00

ESI Computer Systems Limited beviee Devers

APPENDIX G:

DEVICE DRIVERS

68K/0S Reference Manual G-0 9992.1 GST 13/1.00

GSI Computer Systems Limited Jevice Dyivera

G.3

G.h

DEVICE DRIVERS
Overview

68K/0S device drivers are (as far as the user is concerned) called as
subroutines via the IO0SS. 1In fact a device driver may also consist of
an Interrupt routine, polled task, asynchronous program, or all three,
communicatior: between the various components being transparent tc the
user program.

This sppendix gives a brief list of the characteristics of standard
device drivers which are provided as part of the operating system.
Drivers for add-on devices or special user written drivers can be
loaded at any time, and accessed via standard IOSS calls (see Systems
Programmer's Reference Manual).

Keyboard Driver — KEY:

Directory operations: no
Reading: yes
Writing: no
Random access: no
Double buffering no
IOSPECIA operation: no

Note: CTRL/Z is treated as end of file, ALT/Fl switches to system mode
and can therefore never be read fron. the keyboard by a user program.

Screen Driver - SCREEN:

Directory operations: no
Reading: no
Writing: yes
Random access: no
Double buffering no
IOSPECIA operation: no

The SCREEN: device driver provides an interface to the screen for
programs which only wish to use the screen as & simple sequential
output device and which do not wish to drive the display file manager
directly.

Microdrive Filing System — MD:

Directory operations: yes
Reading: yes
Writing: yes
Random access: yes
Double buffering yes
IOSPECIA operation: no

The microdrive filing system is formally an IOSS device driver.

68K/0S Reference Manual G-1 9992.1 GST 13/1.00

ES] Computer Systems Limited Device Drivers

G5

RS232 Output Driver - TX1l: and TX2:

There is one RS232 output driver for each line.

Directory operations: no
Reading: no
Writing: yes
Random access: no
Double buffering no
IOSPECIA operation: yes

The TOSPECIA call sends a break sequence or changes baud rate:
(a) D1.B < O Send a break which consists of & start bit of ~1 second

(b) D1.B >=0 Set the baud rate from the value of of D1 as follows:

0 19200 L 1200
1 9600 5 600
2 4800 6 300
3 2400 T [

On power-up the baud rates for both lines are initialised to 9600 as
this value suits most modern equipment.

RS232 Input Driver — RX1l: and RX2:

There is one RS232 input driver for each line.

Directory operations: no
Reading: yes
Writing: no
Random access: no
Double buffering no
IOSPECIA operation: no

A break condition on the line will give a status code of STIOERR, and
will usually de so without losing data, but this cannot be guaranteed
on the QL.

The line speeds for RS232 input are derived from the line speeds for
output. One of the following will hold:

(a) only one speed is in use for all output and input on both lines

(b) two different speeds are used for output or. the two lines, anc no
input is being performed

(¢) any other situation will result in input being mangled.
These limitations are due tc the hardware configuration and there is no

sensible way to improve on them in software without catastrophic
performance implications.

68K /0S Reference Manual G-2 9992.1 GST 13/1.00

ESI Computer Systems Limited bevies RRrves

G T

G.8

Pipe Driver - PIPE:

Directory operations: no
Reading: yes '
Writing: yes
Random access: no
Double buffering no
IOSPECIA operation: no

Pipes are the mechanism provided for programs to communicate and
synchronise with each other using I0SS by providing an I1/0 channel from
one applications program to another. A pipe is identified by its
filename and many pipes may exist in the system at once

ROM Driver — ROM:

Directory operations: yes
Reading: only IOLOAD
Writing: no
Random access: no
Double buffering no
IOSPECIA operation: no

It is possible to store a number of procedures in ROM and execute
these, either as procedures or as programs. The ROM: device driver
exists permits IODIRINF, IOGETDIR and IOLOAD calls only.

68K/0S Reference Manual 6=3 9992.1 GST 13/1.00

	3461_001.pdf
	3461_039
	3462_001
	3462_046
	3463_001
	3463_057

