
GST Computer Systems Limited

(;8K/OS Reference Manual

68K/OS

PROGRAMMER'S

REFERENCE MANUAL

0-0 9QQ2 . 1 CST 1 3 /1.00

GSI Computer Systems Limited

1
1.1
1.2
1.3
1.4
1.5

2
2. 1
2.2
2 ·3
2.4
2 ·5

3
3·1
3·2
3·3
3.4
3·5
3.6
3·7
3.8
3 · 9
3·10
3·11
3· 12
3·13
3.14
3·15
3.16
3· 17
3.18
3 ·19
3 · 20
3 · 21
3·22

CONTENTS

INTRODUCTION
Purpose
Scope
Audience
Copyright
References

SYSTEM OVERVIEW
68K / OS Main Features
Asynchronous Components
Synchronous Call Components
Synchronous Trap Components
Applications Program Interface

INPUT/OUTPUT SUBSYSTEM FUNCTIONS
lOSS Interfaces
Standard Device Drivers
lOSS Channels
Device Independence and Redirectable I/O
Path Names
Path Name Defaults
Access Type
Access Mode
Calling lOSS Routines
Default String Functions
Open an lOSS Channel
Cl ose an lOSS Channel
Procedure Handling Functions
Fi l e Delete and Rename Functions
Update Directory
Read Directory Information
Reading from lOSS Channels
Writing to lOSS Channels
File Positioning
Polling an Input Channel
Mounting and Dismounting Directories
Device Driver Spec ial Function

68K/OS Reference Manual 0-1 9992 .1 GS~ 13/1.00

GST Computer Systems Limited

4
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4 .11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4. 22
4.23
4.24
4.25
4 .26
4.27
4.28

5·1
5 ·2
5·3
5.4
5 ·5
5.6
5 .7
5.8
5·9
5·10
5·11
5·12
5.13
5.14
5 ·15
5.16
5 .1/
5.18
5· 19
5.20
5.21
5.22

OPERATING SYSTEM FUNCTIONS
Overview of OS Functions
Calling OS Routines
Program Manager Functions
Initial Program State
Starting a New Child Program
Determine Program Status
Hait for a Program to Finish
Force Program Termination
Memory Manager Functions
Allocate extra RAM to a Program
Change Ownership Information
Release Memory by Ownership Information
Release Memory by Address Range
The Menu Manager
Menu Data Structures
Display Fixed Menu Data
Read User Input to Menu
Read a Variable Field
Update a Variable Field
Timing Services
Passive Delay
Read Binary Time and Date
Set Binary Time and Date
Heap Al location
Allocate a Heap Record
Deallocate a Heap Record
Determine the Free Stack/Heap Space
User Trap Handler

DISPLAY FILE MANAGER
Outline Description
Partition..
Virtual Screens
Hindows
Display Files
Extended Display Files
Cursor, Action Pointer and Markers
Console Display File Interface and lOSS
Display File Binary Commands
Single Line Menu
Calling DFM Routines
Initialisation Routines
Termination Routines
Display File Control Routines
Space Allocation Routines
Line Manipulation Routines
Character Manipulation Routines
String Manipulation Routines
Cursor Routines
Marker Position Routines
Update Single Line Menu
Install User Hook Routine

68K /OS Reference Manual 0-2

GST Computer Systems Limited

6
6.1
6.2
6.3
6.4
6.5
6.6

7
7.1
7.2
7·3
7.4
7·5
7.6
7.7
7.8
7·9
7.10

8
8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

GRAPHICS ROUTINES
General Description
Coordinate System
Colour Definitions and Stipple Patterns
Aspect Ratio
Calling Graphics Routines
Graphics Figures

CREATING PROGRAMS AND PROCEDURES
Overview
Position Independence
Reentrant Code
Procedure Header Block
Program Memory Requirements
Program Memory Layout
Data Area Pointers
Special Conditions at Start of Program
Program and Procedure Exit
Passing Status Parameters

SYSTEM DATA STRUCTURES
Scope
Notation
Directory Entry Buffer
Directory Information Buffer
Menu Fixed Data Structure
Procedure Entry Control Bloc¥,
Program List Element
Standard Parameter String
Standard Text String

68K / OS Reference Ma nual 0-1 999? . 1 r,:;'[' 1 1/ 1 • 00

.' GST Computer Systems Limited

APPENDICES

A I/O SUB-SYSTEM CALLS
A.l lOSS Register Conventions
P .. 2 Detailed lOSS Function Specification

B OPERATING SYSTEM CALLS
B. l Detailed OS Functi on Specification

c: DISPLAY FILE MANAGER CALLS
C.l Detailed DFM Function Specification

D GRAPHICS ROUTI NES
D.l Detailed Graphics Function Specification

F: STATUS CODES
E. l Format
E.2 Alphabetical List of Status Codes

F CHARACTER CODES
F . l General
F' • 2 Changes from Standard US ASCII
F.3 QL ASCII Decode Table
F . 4 Summary of System Mode Commands
F.5 Summary of User Mode Commands
F.6 Display File Manager Commands
F . '(DFM and Screen Driver Commands

G DEVICE DRIVERS
G.l Overvie;;
G.2 Keyboard Driver
G.3 Screen Driver
G.4 Microdrive Filing System
G. 5 RS232 Output Driver
G. 6 RS232 Input Driver
G.T ROM Driver

68K/OS Reference Manual 0-4 9992.1 GST 13/1.00

GST Computer Systems Limited Tntroduct i on

SECTION 1:

INTRODUCTION

68K / OS Reference Manual J -0 999?1 CST 13 / 1 . 00

GSI Computer Systems Limited Introduction

INTRODUCTION

1.1 Purpose

This manual describes the 68K/OS operating system for the Sinclair OL
and other personal computers, intelligent terminals and workstations
based on :'he the Motorola M68000 series processors. Sufficient details
of system call interfaces and data structures are provided for the
production of advanced assembler level applications software.

1. 2 Scope

This edition of the 68K / OS Programmer ' s Reference ~\anual defines both
the portable and implementation dependent areas of the system, namely:

(a) Chapter t . and appendices D, F and C refer to facilities ovailable
on the Sinclair QL that may not be available or may have different
interfaces on later implementations of the operating system.

(b) The remaining material defines the interfaces to the portable
sections of the operating system t.hat should remain unchanged on
lat.er implementat.ions of the operating system.

This manual provides details of 68K/OS interfaces and internal data
structures necessary for production of applications software. Details
of 68000 architecture and instruction syntax are available from
Motorola, details of the 68K/ASM assembler and a 68000 programming
primer are available from CST (see paragraph 1.5).

Systems programming interfaces and data structures are provided in a
separate manual (see paragraph 1.5). Certain Eyst~ms programming
facili ties provided by the operating system require that the programmer
has detailed documentation of the QL hardware. CST do not supply this
documentation and cannot guarantee that such documentation will be made
available by Sinclair Research Limited or any third party.

1. 3 Audie nce

68K/OS is c. small but advanced operating system c.imed at the following
market sectors:

(a) OEM suppliers of 68000-based terminals and workstations,

(b) Independent 68000 software developers,

(c) Computer science students 8.nd advanced home users with 68000-based
personal computers.

This manual therefore assumes that t he reader has a reasonable worki ng
knowledge of programming, the 68000 processor and operating system
theory.

68K/OS Reference Manual 1-1 9992 . 1 CST 13/1 .00

GSI Computer Systems Limited Introduction

1.1;. Copyright

This manual is Copyright (C) 1984, CST Computer Systems Limited. It is
sold on the understanding that it shall not be copiec or distributed to
third parties in any form "hatsoever. Possession of an cnauthorised
copy of this manual will be grounds for legal action.

68K/OS and 68K / ASM are trade marks of CST Computer Systems Limited.

QL and Microdrive are trade marks of Sincl air Research Limited.

1.5 References

1',290 .6 CST 68
9992.1 CST 51;
Motorola M68oo0UM
Addison-Wesley

68K/ OS Reference Manual

68K / ASM Assembler Reference Manual
68K/OS Systems Programmer ' s Reference Manual
M68000 Programmer ' s Reference Manual
Programming the M68000 (Tim King & Brian Knight)

1-2 9992.1 CST 13 / 1 . 00

GSI Computer Systems Limited System Overvi ew

SECTION 2:

SYSTEM OVERVIEW

68K/OS Reference Manual 2-0 9992.1 CST 13/1.00

GST Computer Systems Lim ited System f')'r~rview

2 SYSTEM OVERVI EW

2.1 68K/os Main Features

68K /os is 6 . s ingle-use r ".ul ti tasked sys tem using conventional operating
system software techni ques typical of those foune on many minicomputer
systems, with the addition of sophis tica t ed screen ;;indow management
software. The main features of the sys tem are as foll0'ls :

(a) Operati ng Sy s t e m: 68K / OS is a true operating system in t.he sense
tha t it. has both asynchronous and synchronous components, unlike
a monitor system (s uc h as CP /M) with cnly synchronous corr,Donents .

(b) Multitaske d : the sy s tem shares i ts time and memory resourc es
between several 'concurrent ' programs, with c program scheduler
that arbitrates behleen them.

(c) Priorit y Sche duli ng: the 68K / OS scheduler uses 8 priority- hased
algorith~ to det ermine which progran to invoke i n reSDonse to a
real-time event. The highest priority 'ready ' Drogram. is invoked .

(d) Eve nt Drlve n : the scheduler is invoked by a real-ti me event,
which is eithe r a return from interrupt or a system traD or call.

(e) . Programs and Reentr ant Procedures: a 68K/OS program consists of a
program control block (PCB), a data area for its stack and heap,
and at least one procedure. Procedures must be both reentrant. and
position independent. Only one copy of a procedure ;Jill ever t.e
loaded a t. any given t i me , even though i t may be shared by several
concurrent. programs .

(f) Se ma phore Communi ca tion: concurrent programs communicat e lls i ng
generaJ semaphores . This i s the only standard method of program
communication provided , though femaphore control is t.ransparent
when using piped I /O.

(g) De vice Inde p e nde nt 1 / 0 : with the exce p tion (,f screen \,indow
updates , all input/output of appli cations soft'.<are wi thir, 68K l os
uses t.he device i nd ependent I/O sub - system (lOSS) . The TOSS
provides a standarc calling interface to I/O functiom. and allOl<S
complete run-time I/O redirection .

(h) Scre en Window Control : the display fil e manager (rlF~ll sUDport.s
' s i mult.a neous ' screen L.pdates by concurrent. programs in \'a riable
sizec. screen partit.ions, and allows programs to divid e t.heir
screen [.arti tions int.o Io' indows dynamically . Ea c h win dOl< is
associa ted with a d isplay file whose text is maint.ained b, ' DF'M
independent.ly of the window and can be scrolled through t.he window
both vertically a nd horizontally.

As a real-t.ime mult.i tasked sys t.em , 68K / OS st.rongly resembles operating
systems such a s RSX or UNIX a nd provides a powerful subset. of th e
features to be fou nd on t.hese much larger systems. In a.ddition , 68K /os
provi des uniqu E' screen window handling fa.cili ties, yet the ent.ire
operat.ing syst.em will fit int.o 32Kb of ROM or EPROM.

68K / OS Reference Manual 2- 1 9992 . 1 GST 13/1. 00

GSI Computer Systems Limited System Overview

2.c Asynchronous Components

The operating system contains software processes that run (either
entirely or pC!-rtly) async hronously with respect to applicationE
programs . Two of these have special status a.nd execute in E.upervisor
mode with interrupts disabled:

(a) Interrupt Handler: a singl e interrupt routine is responsible for
handling All system interrupts and vectoring (by software) to the
individual service r outines . Facilities a.re provided for systems
programmers to add extra interrupt. service routines to the system .
The i nterrupt handler runs with all interrupts disabl ed and in
s upervi sor mode .

(b) Scheduler: the s cheduler is responsible for naintaining the queue
of PCBs a nd , whenever a real-time event occurs, for fi n ding and
invoking the highest pri ority ready program. The scheduler runs
with all interrupts disabled a nd i n s upervi s or mode.

The remaInIng asynchronous system processes a.re all programs controlled
by the scheduler. These· r un in user mode with interrupts enabled and
have the same status as user programs :

(c) Null Program: this prograrr has the lowest. possible priority a nd
is responsible for soaking up all spare CPU cycles when no other
program is ready.

(d) Disk Program: this is responsible for maintaining a n (.rdered list
of memory block addresses t o enable intelligent seeY. optimisation
to be performed on a. random (or pseudo - random) access device such
as a disk or microdrive .

(e) Interrupt Poll Control Program: the IPC program is i nvoked by a
50 / 60Hz clock interrupt. and c a lls a. number of ha rdwarE poll
routines for devices t hat are no t · driven ty interrupt . Facilities
are provided for systems programmers to a dd extra hardwarE' poll
routines t.o the system.

(f) Undertaker Program: this program is invoked whenever a program
terminates (either voluntarily or as a result of a n error trap or
a program kill sys t em call) a nd is responsible for releasing all
system resources owned by the terminated program , theSE being open
channels , system memory, screen f,arti tion a nd, r ecur sivel y, those
resources owned by any child p r ograms .

Only systems programmers will require the asynchronous facil ities
provided in the interrupt handler a nd IPC program. App l icatio ns
programm e r s should regard the whole of paragraph 2 .2 as contain ing
background information only.

68K / OS Reference Manual 2- 2 9992.1 GST 13/1 . 00

GST Computer Systems Lim ited System Overview

2.3 Synchronous Call Components

The majority of (8K /os functions are provide d by the synchronous
components of the operating system. These are invoked by a pplica tions
softw·are through s ubroutine calls via four sets of vectored entry
points . This software is executed in user mode with interrupts e nabled
8.nd is logically a n Extension of the calling applications program, and
subject t c the usual rules of priority scheduling and program status.

Sub r outine call ent ry points a.re provided for the system components
defined below:

(a) r /o Sub-Sy stem: this provides c' device independent input/output
calling mechanism fo r data transfer to and from files and devices.
Facilities oTe provided to load user defined ross device drivers
to enable applications software to access plug-in devices via the
standard ross calling mechanism.

(b) Program Manager: this provides a standard method to start
applications programs, determine their status, wait for their
completion or to force their t ermination.

(c) Memory Manager: this provides f unction s to enable programs t.o
obtain and release extra RA~j memory in lKb units .

(d) Display File Manager: this software provides a. comprehensive set
of functions to create, update and delete infor ma tion in screen
windows and to manipulate the data in 10he display files associated
with them.

(e) Me nu Manager: this s oftware enables the display of complex menus
and forms in a. screen windo", and ,'wiD. handle data entrJ' and data
capture for a. complete form without the need for intervention by
the applications software.

(f) Ti ming Functions: facilities aTe provided t o invoke both passive
and active program delays and t c read or set the internal time-of­
day clock.

(g) Hea p Allocat ion : routines are provide d to grab and release space
from applications program heap storage and to determine the
available heap spa ce.

(h) Graphics Primitives: software is provide d to draw points, lines,
blocks, simpl e figure s and conic sections in any screen window,
wi th automatic clipping at window edges.

The graphics functions providec unde:' 68K/os fo r the Sinclair QL are
specific to the QL hardware and are not guaranteed to be provided in
the same format (or at all) on later ha rdware implementations.

(8K/os Reference Manual ~-3 9992.1 GST 13/1.00

GSI Computer Systems Limited System Overview

2 .4 Synchronous Trap Components

System trap entry points are vectored into the synchronous regions of
the schedul er. These are executed in supervisor mode with interrupts
disabled and, following completion of the requested function, may cause
a system reschedule. Traps are are provided for the following systems
programming functions:

(a) Semaphore Control: general functions to signal, poll a.od wait on
semaphores permit low-level program communication .

(b) Program Status Control: functions that directly alter the program
status of either the caller or a target program are provided.

TRAP 0 is provided to terminate 6.0 applications program. TRAPs 1 to 3
are reserved for the operating system and are fully defined in the
Systems Programmer's Reference Manual.

A function is provided to e nable an applications program tc redefine
(for its own exclusi'/e use) those trap vectors that are not reserved
fOl- the system. These may be vectored to user defined traf. handling
routines, one of which is E.otered in E_ystem mode, the remainder in user
mode.

2.5 Applications Program Interface

The normal interface from applications software to 68K/OS is via four
general call vectors, entered with a function code in DO and returning
a status code in DO :

(a) lOSS Vector: all input/outpu-t sub-system calls .

(b) DFM Vector: all display file manager calls .

(c) OS Vector: all other hardware independent system calls including
program manager, memory manager and menu manage!- functions, plus
timing and heap 811ocation routines.

(d) SP Vector: all hardware dependent system calls including graphic s
primi ti ve routines .

These functions are sufficient for all normal applications software .
Systems programs will require details of 68K / OS internal facilities
such as system traps, data structures and device driver installation.
These can be found in the System Programmer 's Reference Manual.

68K/OS Refe r ence Manual 2-4 9992 .1 GST 13/1 . 00

CST Computer Systems Limited

68K / OS Reference Manual

SECTION 3:

INPUT/OUTPUT

SUBSYSTEM FUNC~IONS

3-0

Input/Output Subsystem

9992.1 GST 13/1 . 00

GST Computer Systems Limited Tnpllt/Oll Lpll t. ~; lIb~y s t.em

3 INPUT / OUTPUT SUSBSYSTEM FUNCTIONS

3 . 1 lOSS Interfaces

The ross has two major i ntE'rf;tces: that "hicll it pres('nt.s to caning
programf. and that which it presents to devi.ce drivers .

A user p·ogram calls thE' TOSS as a subroutine \i a th e en trypoint
IOENTRY. The ross decides which device drive r s houl r he useil tc
implement th e function ,-equested and calls th e relevant driver as a
subroutine . All these caLls takE- place synchronously uncl e ,- thc- control
of the callin g user program and any memory which TOSS require s to
perform thE' requesteel function i s allocated in the user program 's heap.
lOSS is responsible for freeing any user rrogram heap it aJJ.ocates.

Some device drivers may need to operate to some extent asynchronously
with respect to the user program in Corder to operate synchronously with
some hardware device . In this case the driver will consist cf c_
separate concurrently running program and/or in terrupt routine in
addition to thE' subroutines called directly from lOSS, commun icatior
between components of the driver being achieved with semaphores. This
operation is transparent tc the user program, whi ch remain s blissfully
ignorant of the relative complexities of various JOSS drivers.

3.2 Standard Device Drivers

Standard lOSS device drivers G_re provided for:

(a) Keyboard (KEY:)

(b) Screen (SCREEN :)

(c) Microdrive (MD:)

(d) Pipe (PIPE:)

(e) Serial Transmit (TXl: and TX2:)

(f) Serial Receive (RXl: and RX2:)

(g) ROM Di rectory (ROM:)

Note that use of the SCREEN: device is a simple method of screen output
that takes default paths througr DFM and requires no explicit. DFM calls
from the applications software . Note also that reading lines from KEY:
has the usual line editing screen interaction that one would e~pect
from a console device.

3.3 ross Channels

All lOSS input/output takes place through channels which are assigned
and controlled by the ross. A channel is an input/output route
attached by lOSS to a file or device and owned by a specific program.

68K/OS Refe r ence Manual 3-1 9992.1 GST 13/1.00

GST Computer Systems Limited Input/Output Subsystem

3 . ~ Device Independe nce and Redi r ectable I / O

Because the caning inte rfa ces t.o lOSS routines a.r e identical for all
d evices , I OSfi i s de fin ed t o be devic e independent. Applications
p rog r a ms ("an us ually perform c h a nn e l I / O without needing to know
wh e the, the c h;lnne] is attac hed to a microdrive file, a pipe, a serial
comm uni.cation s line o r an TOSS compatible a dd-on devi ce .

ilpplica ti ons softwarE car be wr itten to e nable the actual I /O devices
that will. be used by the program to be specified by the user ,,·hen the
prog ram is run, providi ng redirectable I/O.

3.5 Path Names

r.n sources a.nd destinations of lOSS channels (de vices and files) are
ident ifi e d by a pa tt name whier. has the gene ral forma t:

DEVICE:DI RECTORY /PI LENAME. EXTENSI ON

where there may be a ny nu mber of directory components , each followed by
a sl ash, and provided that the total length of the pathname does not
exceed ~~ characters . Each component must be between one and eight
characters long, a nd may b e a mixture of rumeric a nd a lphabetic
characters of ei the!" case, the cas~ being non-s ignificant.

lOSS devices differ in t.he ir requirements for path name components, the
full path names for each s tandard device are defined below:

(a) KEY:

(b) SCREEN :

(c) MD:DIRECTORY/FILENAME . EXTENS I ON

(d) PIPE:FILENAME.EXTENSION

(e) TX1:

(f) TX2 :

(g) RXl :

(h) RX2 :

(i) ROM: FI LENAME . EXTENSION

Note that where e. FILENAME component is " pec ified the EXTENSION
component. is opti onal.

The lOSS performs syntax analysis of a path name a nd extracts the
devi c e name component to decide which device driver to call . It is
l egal (though rot necessarily sensible) to a.ppend filename components
to a pathname for a device that i s not file structured (TXl :FILENAME),
this "ill be ignored by lOSS and all standard lOSS drivers.

68K / OS Reference Manual 3-2 9992.1 CST 13/1 . 00

CST Computer Systems Limited Input/Output Subsystem

3.6 Path Name Defaults

A system of path name cefaults 1 s •. rovided by ross to supply any path
name components not specified by the program. F'our user-specified
cefault strings are maintained which are used by ross to complete
partial pa thnames:

(a) Default program device

(b) Default program directory prefix

(c) Default data device

(d) Default data directory prefix

where the device name is null or a device name component ending in a
colon, and the directory prefix i~. null or one or more directory
components each ending in a slash.

Each ross function that !'equires a pa'.;hname has a parameter indicating
whether program or data default. strings shoulC! be used. The program
supplied pathname is Examined and any missing components are inserted
in the pathname by ross using the program or data strings as follows:

(a) . rf the path name does not contain either a. colon or a slash then
the relevant default directory prefix is added.

(b) If t.he pa thname does not contain a colon t.hen the relevant default
device is added.

Note that the two different sets of default strings are provided so
that programs can be loaded from one device and data fil es can be
accessed on a.nother device with r,o device or directory names needing to
be specified by the user.

Note also t.hat these rules &.pply to path rames as supplied to ross and
that particulal' applications programs may apply additional rules, such
C.s a.ppending standard extension names to input filenames to construct
default. output filenames.

68K/OS Reference Manual 3-3 9992.1 CST 13/1.00

GST Computer Systems Limited Input /Output Subsystem

3.7 Access TYPe

Data access t.ype refers to read / write 8.ccess permission at four levels:

(a) Device: each device has a fixed access type which usually refers
to some physical restriction. For example, you cannot read from
the screen or write to the keyboard.

(b) Directory: each directory has an access type which is the same as
or more restrictive than the device access type. For example , a
write-protected microdrive imposes directory level restrictions on
the access type .

(c) File: each file has an 8.ccess type which is the same 8.S or more
restrictive than the directory level access type. Note that a
file may have write permission regardless of the fact that the
microdrive it resides on has been write-protected, in this case
the access type of the di rectory overrides the file access t ype .

(d) Channel: each channel has an access type which is defined when
the channel is opened which must be t.he same as or more restictive
than the combined access type of the components of the path name.
Thus any attempt to open a channel to ,Irite to the keyboard will
fail immediately (on grounds of incompatible access type) before
any write attempts a r e made.

lOSS will always choose the most restrictive access typ e of the four
levels when deciding whether a data trans f er request is l egal . For
example, a channel may be opened for reading only on a file which could
otherwise be written to : read calls will be permitted but. any attempts
to write t.o that channel a r e failed.

3 .8 Access Mode

The access mode of data is either random or sequential and is defined
at two levels:

(a) Device: each device has a fixed access mode which usually refers
to some physical restriction. For example, it i s not. possible t o
perform random access on c. serial line.

(b) Channel: when a c hannel i s opened it s required acc ess mode is
s pecified. If random access is requested a nd the device has
randon: access permiss ion then the cha nnel will be given random
access permission.

l OSS will a l ways choose the mor e restric tive access mode of the two
levels when deciding if a data tra nsfer request is l egal. For example ,
if a channel is open e d wit.h sequential access only to a file on a
random access device, then all random access calls on that channel will
t.e failed.

68K / OS Reference Manual 3-4 9992 .1 GST 13/1.00

GST Computer Systems Lim ited rnput/Outnu t ~;uh"y " 1.('1I1

3 . 0 Calling lOSS Routines

lOSS ,'o ut.in es arC' c allC'rl by app1icCition,; [,o fi".,mr c via a s 'inr,lf' ('nt.ry
point witii tile fun c ti on corle in no:

MOV EQ
J SR

III OFLINC , no
IOENTRY

On return DO conta in s a sta tus code .

Descriptions of each lOSS routine foLlow below, Flnel p,eci se r('ta ils of
each lOSS call are g iven in Appendix A,

3 . 10 Default String Functions

These funct i on s c.re used to set a nd read the curre nt program anrl data
default strings used by the calling program,

IYhcn a pro g r a m is c r eate d it inhe rits its pare nt prog r a m's d efault
strings . 10SETDEF is used to change eithe r the program or data default
strings, and requires a string parameter of the form DEVTCE:D1RP.CTORYI
where both components are optional, a nd the directory component. may be
repeated , A null string i s valid and has no effect on the c urrent
program or data default. strings .

10GETDEV "ill return the current program or data default device.

10GETPRE will return the current program or data default directory
prefix .

3.11 Open an lOSS Channel

~'he 100PEN routine is t.he means of creating ross channels through which
input and output operations can be performed. An l OSS channel open
operation will follow the general pattern outlined below:

(al The path name is extended using the 'program or data default
strings as necessary and the syntax of the resulting path r,ame is
checked for plausibility.

(b 1 The device name is extracted from the path name 8.nd the requested
access type and mode are compared with those legal for- the device.

JOSS calls the device driver to perform device specific checks. IYhere
this is a filing system, checks are made for the existence of tfie
specified file, the access t,ypes of the directory and file and whether
the user has specified double buffering for file rio. Checks for
incompatible multiple uses of devices or files a.re usually generated by
the device driver, but devices which can only be used bO' one channel at
cnce are protected by ross itself.

If there are no status c'odes generated from any of these operations,
ross will open a channel.

68K/os Reference Manual 3-5 9992.1 GST 13/1.00

GST Compute r Systems Limited Input/Output Subsystem

3 . 12 Close an ross Channel

The roc LOSE call closes c. channel. Thi s can be a fairly lengthy
process for some devices (sucr. as an output microdrive file) but has no
complications of i nterest to the user. After this call the channel
number on which t his cha nnel was oper, has no further validity.

3.13 Procedure Handling Functions

The r OLOAD call loads position independent, reentrant procedures from a
directory s tructured device such as a disk or microdrive or the ROM:
device. Path name validation follows the method used in ~OOPEN , using
program or data default strings as required. rf the procedure exists
it may be placed in PAM cepending on t.he following criteria:

(a) rf th e procedure i s not already loaded and is held on a disk or
microdrive, then It is read into RAM, the RAM address is returned
to the caller, and a system procedure table entry is created.

(b) If the procedure is not already loaded and is held in the ROM:
device, th e n the ROM address is supplied to the caller and a
system ~·rocedure table entry is created.

(c) If the procedure is already loaded, then its address (ROM or RAM)
i s supplied to the caller and the us e count field of the system
procedure table entry is incremented.

When loading a procedure, two data structures are required:

(d) A procedure entry control block . This passed by ross to the
device driver which places the procedure entrypoint into the
control block . If the procedure cannot. be loaded, ross will
supply the address of a program termination routine instead, as a.
precaution against calling a non-existent procedure.

(e) A procedure list element . This is grabbed by ross from the
calling program's heap and is chained to its PCB (enabling program
termination 'software to unloa.d procedures owned by a program) .

Note that procedures are owned by programs and that this ownership can
be s hared. When its final owner is terminated the procedure is
automatically unloaded by t he system.

The rODEFPRO call defines an fcntrypoint specified by the caller as
being a procedure. The calling program fills in the procedure entry
control block before calling the routine, and the path name supplied
must refer to a directory structured device to pass ross validation.

The I OUNLOAD call is used to indicate that a program no longer requires
to use a procedure . The procedu re has its procedure list element
removed from its owner's PCB chain and its use count in the system
procedure table is decremented. If the use count drops to zero, the
memory that the procedure occupied is freed. (Note that the rOLOAD and
rOUNLOAD calls car. be used as an overlay mechanism).

68K/OS Reference Manual 3-6 9992.1 GST 13/1.00

GSI Computer Systems Limited Input/Output Subsystem

3.14 File Delete and Rename Functions

The IODELETE call deletes the file specified by the given path name
combined with program or data default. strings ae; necessary. In order
to carry out the delete function lOSS ensures: '

(a) The device component of the full path name allows directory
operations.

(b) The file defined by the path name exists.

(c) The access type for the device, directory and file components of
the path name allow write access.

If these three conditions are satisfied, the file is deleted.

The IORENAME call changes t.he filename and/or the extension components
of the file specified by the given path name combined with program or
data default strings as necessary . lOSS will ensure that conditions
(a) to (c) above are met for the existing Pile and that the following
conditions are met for the new file:

(d) The device and directory componenl;s are the same 'as t.hose
specified for the existing file. '

(e) The new file does not already exist.

If these five conditions are satisfied, the file is renamed.

3.15 Update Directory

The IOPUTDIR call enables a. program to update the directory information
for a given filename by supplying lOSS with a directory entry buffer.
Only three fields can be changed by this call:

(a) File access type (read/write permission)

(b) Date and time last modified (this is set to the current date/time)

(c) User comment

Any other fields supplied in t.he directory entry buffer are ignored and
the original values retained in the directory entry.

This call is designed to be used after obtaining the directory entry
buffer from an IOGETDIR call and changing the relevant entries, however
it is legal for the user program to construct its own directory entry
buffer.

68K/OS Reference Manual 3-7 9992.1 GST 13/1 .00

GST Computer Systems Limited Input/Output Subsystem

3 . 16 Read Directory Inf'ormation

The IOGETDIR call allows a user program to read the directory entry for
a given filename into a director.)' entry buffer and car, be repeated tc
fetch each of the directory entries for a set of filenames that match a
given pattern.

The path r,ame used in this call may include ? and * as wild c a rd
charac,ters in the filename and extension components, as follows:

(a) A? in the body cf a component matches any single alphanumeric
character . For example , FI?E matches FILE and FIRE.

(b) Each? at the end of a component n.atches zero or cne alphanumeric
characters. For example, FILE?? matches FILE, FILEl and FILE10.

(c) A * at the end of the component is equivalent to extending the
component length to eight characters by appending ? characters.
Thus FILE* is equivalent to FILE???? and matches FILE, F I LE1,
FILE10, FILE100 and FILE1000, for example .

Note that *.* will match any filename and extension combination .

The IOGETDIR call searches the directory indicated by the device and
directory fields of the path r,ame (extended as necessary by default
strings in the usual manner) until it finds a match, in which case the
directory entry buffer information is r eturned to the use r.

The specified directory is searched from a starting position which
depends on a. magic r:umber passed to the routine in D1. On the initial
call to IOGETDIR for a given directory thit; number must be zero . On
subsequent ca.lls this parameter may either be zero (to res can the
directory from t he beginning) or t he magic number returned by the
previous call of IOGETDIR (in ,,·hich case the directory scan continues
from where it left off) . The effect of supplying any other magic
number is undefined and likely to be t:nhelpful .

Directory entries are retrieved by IOGETDIR in no defined order . If
the user program requires directory entries in any particular order
then it must sort them itself.

The IODIRINF call return s information on ~ whole directory , whose
pathname (without filename or extension fields) is supplied by the
caller. The data is retur ned i n a. directory information buffer. This
contains three fields:

(a) Maximum number of directory entries

(b) Maximum space available in Kb

(c) Current space available in Kb

Thu s this command can be used to determine free space on disk or
microdri ve, and how many sort records will be required when sort ing the
directory entries.

68K/OS Reference Manual 3-8 9992 .1 GST 13/1.DO

GST Computer Systems Limited Input/Output Subsystem

3.11 Reading from lOSS Channel s

Three ross calls are provided for reading data from channels previously
opened succesfully for reading "ith IOOPEN. In all cases data is read
into e. user supplied buffer of a length c.ssumed to be l arge enough t.o
accommodate the requested number of bytes. If double-buffering was
requested with 100PEN (and this is supported by the device) then t.he
system will perforn, read-ahead operations into system ' slave blocks' to
improve performance, and i f so t.his is transparent. to the user program.

The IOGETSEQ call will att.empt t.e read the definec number of bytes from
the specified channel which must have been opened "ith read access
type .

The IOGETRAN call is identical to IOGETSEQ except that a file position
is provided by the calling program and lOSS also checks that the
channel was opened with random access t.ype.

The IOGETLIN call is identical to IOGETSEQ except when a newline
character is detected during data transfer. In t.his case the transfer
will stop and the actual number of bytes read (including thE' newline)
will be returned to t.he user.

Note that an IOGETLIN call from a channel connected to the device KEY:
has a special effect. AlJ standard ASCII characters received fronl the
keyboard will be reflected in the default SCREEN: window for the
calling program (which will be created automatically if necessary).
Keystroke reflection includes backspace, backspace-del ete and delete
line keystrokes which provide line editing functions internal to lOSS
and with no user program intervention.

All the calls tc read dat&. may succeed only partially if end of file is
reached . For this reason the actual number of bytes read is returned
to the user along with a statuE. code to say what. happened. End of file
is a device dependent condition, but in general, if there are N bytes
left. in 8. sequential input file and a read request for N bytes iE. made
then t.he call will succeed , end of file status being returned on the
next. call.

When reading from files, the channel 's file position pointer en Entry
to the read routine will be incremented by the number of bytes actually
read to give a new position in the file. This ensures that subsequent
read calls will advance through the file sequentially unless the file
position is changed explicitly.

Note that it is legal to mix all three types of read from a s ingle
random access channel, though the user program must ensure sensib:Le
positioning of the file pointer to avoid silly answers.

68K/OS Reference Manual 3-9 9992.1 GST 13/1 .00

GST Computer Systems Limited Input/Output Subsystem

3.18 Writing to lOSS Channels

Three lOSS calls are provided to write data to channels previously
opened succesfully for writing with IOOPEN. In all cases data is
;,ritten from a user supplied buffer assumed to contain the requested
number of bytes. If double-buffering was requested with rOOPEN (and
th i s is supported by the device) then the system ~ill perform ;,rite­
behino operations from system ' slave blocks' to improve performance,
and this is transparent to the user program.

The 10PUTSEQ call will attempt to write the defined number of bytes to
the specified channel which must have been opened with write access
type.

The lOPUTRAN call js identical to IOPUTSEQ except that a file position
is provided by the calling program and lOSS also c h ecks that the
channel was opened with random access mode.

The 10PUTLIN call i s identical to IOPUTSEQ except when 8 newline
character is detected during data transfer. In this case the transfer
will stop , and thE remainder of the buffer contents is ignored.

Note that that first IOPUTSEQ or IOPUTLIN call will start at file
posi tion zero and that if the file was opened for sequential output
only, then jt will have been truncated to zero length by IOOPEN.

When writing to files, the channel' s file positior. pointer on entry to
the write routine will be incremented by the number of bytes actually
written to give a new position in the file . This ensures that sub­
sequent write calls will advance through the file sequentially unless
the filE' positi on is changed explicitly.

When writing sequentiaUy, or when a random write would exceed the end
of file position, t he end of filE pointer is set to point to a position
one byte greater than the last byte ,,'ritten. If a random write starts
at cl positior, beyond end of file then the file i s padded witt, nulls up
to the start position.

Note that it is legal t.o mix all three t.ypes of write to a single
random access channel, though the user program must ensure sensible
positioning of the file pointer to avoid silly answers .

68K/OS Reference Manual 3-10 9992.1 GST 13 / 1.00

GSI Computer Systems Limited
Input/Output Subsystem

3.19 File Positioning

Every channel has a current position pointer (starting 'at position 0)
which is the byte address in the file at which input. a,nd output takes
place. This current position is moved automatically by the reading and
writing routines described above . It can also be moved and inter­
rogated directly by the user program using the routines described in
this section.

Each file on c.isk or mic rodr i ve has a size in bytes equal t.o the
position of the end of file pointer. Channels which arc not attached
t.o disk or microdrive files will not have sensible size data available.

The IOSETPOS call can be used to set the current file position pointer
for a file (with random access mode only) as follows:

(a) If the requested filE' pointer is less than or equal to the end of
file position I,hen called, the file position is t;pdated as
requested .

(b) If the requested file pointer is greater than t.he current end of
file position and the channel is open for reading only, then the
new file pointer is set to the current end of file position and a
status code is returned.

(e) If the requested file pointer is greater than t.he current end of
file position and the channel is open for writ i ng, then the new
file position is set to the current end of file position and nulls
are written to the file until the file pos ition is equal to t.he
desired value.

The IOTRUNC call t.runcates a file by setting its end of file pointer to
be equal to the current position . Because it does not make sense to
truncate c'. sequential output channel (it is a.lways positioned at end of
file) this condition is trapped and ignored by ross.

The IOGETPOS call returns the current position of the channel to the
calling program. This call is valid for sequent i al channels although
t.he information acquired cannot be used in a call c:f IOSETPOS.

The IOEOF call determines whether the channel is positioned at end of
file and returns a yes or no answer to the calling program. For a
sequential output file the answer is always yes. For any randonl access
channel the answer is yes if t.he current position is equal to t.he end
of filE pointer and no otherwise. For a. sequential input channel the
answer is yes if e nd of file was' encountered on t.he last read and no
otherwise.

The IOSIZE call returns the size of the file attached to the channel in
bytes. This information is always available for random f iles, and for
sequential output channels the size is equal to the current position
because writing always takes place at end of file. Devices that de. not
maintain end of file pointers will return a.n error sta.tus code.

68K/OS Reference Manual 3-11 9992.1 GST 13 /~·00

GST Computer Systems Limited I nput/Outpu t Subsystem

3 . 2C Poll i ng an Input Channel

The I OREADY call determines whether a ny ir.put is immedi ately available
from the g iven channel without s uspending the calling program and
allows user r:rograms t.o · react to real-time events , such as keystrokes.

The results obtai ned from this call are device dependent as follows:

(a) If the device is a time dependent device with input arriving
outside the control of the operating system the a nswer is yes if a
read call for a single byte "ould be satisfied immediately and no
if such a call would have to wait for something to happen .

(b) Otherwise the answer is yes, unless the channel is positioned at
end of file in which case it if no.

The cevices which would give category (a) response include keyboard,
serial communications and pipes . Devices in category (b) include disk
or microdrive files, even though reading the next character from the
file might t ake an appreciable length of time .

3 .21 Mounting and Dismounting Directorie s

For disk a n d mi crodrive devices it is r,ecessary to tel l the device
driver explicitly that a part i cular directory is avail able before i t
can be used, and to tell the driver that a particular direc t ory is r,o
longer required and can be removed from the system.

The rOMOUNT call passes 6. device dependent unit number to the device
driver , typically a small integer specifying a drive or port. number .
Fo r this call t.o s·ucceed a variety of device specific conditions may
need tc be met, which might include , for example:

(a) The un i t does not a lready cont.ain a mount.ed disk or capsule.

(-b) The disk or capsule is physically pr esent in the drive .

10'08 (and the device driver) attempt to mount whatever i.s found on t.he
specified device . Some device drivers will be capable of automatically
dis~,ounting anything which is already using that unit.

I')'O,S checks t.hat. t.he directory found matches the directory specified in
tc,,, supplied path name, though if t.his was null t.hen a ny directory
found ,. ill be successfully mount ed . The name of the directory found
will be ret.urned to the user as a. string .

Tr,e I ODIS MOU call ends t.he associatior. between t.he directory and t.he
uni t numbe r specified in the rOMOUNT call. For this call t.o succeed
it. is usually a requi rement that there are no fUes curl'ently open on
the directory (though this is strictly a device specific condition),

The director.y can either be dismount.ed by name (in which case the unit
number is ignored) or , i f t. h e name is roull, by unit number (i n "hich
case 3.n:; directory found on the specified unit. is dismounted),

68K/OS Reference Manual 3- 12 9992 .1 GST 13/1 ,00

GSI Computer Systems Lim ited Tnput/Output Suhsysterr

3 . 22 Device Driver Special Function

The IOSPECIA call i s provided to perform nny pf'C'uIi.n r function which is
applicable to a single device and not appropriate to sup pl.v as a
general ross function, such as settin/l: a serial line t.aud rate.

The paU name and program/data indicator i.dentify the clevice: what the
device does, what the parameters mean and what results are returned are
entirely up to the device. The TOSS performs no action a t all on this
call apart from checking that special operations are actually allowed
on this device and passing the data to a nd fronl the devIce driver.

68K/OS Reference Manual 3-13 9992.1 CST 13/1.00

GSI Computer Systems Limited Oper a t i ng System

SECTION 4:

OPERATING SYSTEM FUNCTIONS

68K / OS Reference Manual 4-0 9992. 1 GST 13/1 .00

GST Computer Systems Limited Operating System

If OPERATING SYSTEM FUNCTIONS

4.1 Overview of OS Functions

The functions provided in this category fall under six main [_eadings,
each consisting of a group of related routines:

(a) Program Manager: these .routines perform create and delete
operations on applications programs.

(b) Memory Manager: these routines provide applications software with
facilities for the allocation and release of system memory.

(c) Menu Manager: this soft",are provides facilities for the display,
data entry and data capture of complex forms.

(d) Timing Services: routines are provided to perform timed delays
and to read and set the internal calendar clock.

(e) Heap Allocation: these routines perform user heap management.

(f) User Trap Handler: this allows applications programs to redirect
certain trap vectors to user written routines.

These groups of functions are not related in any structural fashion but
instead form a conveniently sized set of entry points to be assigned to
a single vector routine.

OS routines are called synchronously as subroutines of the calling
applications program and either act as straightforward subroutines or
communicate with an asynchronous sytem component using semaphores. In
the latter case, the complexities are transparent to the applications
program.

4.2 Calling OS Routines

OS routines are called by applications software via a single entry
point with the function code in DO, as follows:

MOVEQ
JSR

#OSFUNC, DO
OSENTRY

On return DO contains a status code.

Descriptions of each OS routine follow below, and precise details of
each OS routine are given at Appendix B.

68K/OS Reference Manual 4-1 9992.1 GST 13/1.00

GSI Computer Systems Limited
Operating System

4.3 Program Manager Functions

The program manager is a collection of system subroutines and system
programs that performs a variety of tasks concerned with the creation,
deletion and examination 0f applications programs.

A program is an asynchronous process that consists of at least one
procedure plus a program control block and a data area that contains
its stack anc. heap.

A program can own other programs and it keeps a list of these (the
program list) in its PCB. Note that program ownership can b~ nested to
any level, enabling the formation of family trees of related programs.

A program is only permitted to use program manager functions on its own
child programs . The program manager functions will f ail if any attempt
iE made to operate on other programs. However, a program kill function
a.pplied to a child program will recursively be applied to the entire
family sub-tree of programs owned by the child.

Program manager functions include facilities to:

(a) Start a. new program.

(b) Investigate the state of a program .

(c) Terminate a program, tidying up all its resources .

The termination function is highly complex, having impact on a number
of system functions . In principle, the program manager can cope with
both rormal termination and program aborts (normally invoked by system
error traps), provided that any abnormal termination has not involved
destruction of any system c.ata structures. The major requirement in
either case is to release all of the resources owned by the terminated
program .

4.4 I n i t ial Program State

When a newly created applications program is set into run state by the
scheduler, the following values are present in its registers (and the
corresponding locations in the PCB) immediately prior to executing the
first instruction:

Al Address of the parameter string passed from the parent

A5 Address of the program ' s PCB

A7 User stack pointer

This is usually the only information that an a.pplications program will
require to perform normal functions under 68K/OS. Systems programs may
need more details of the initial state of the program control block and
other system data structures (as found in the Systems Programmer ' s
Reference Manual).

68K/OS Reference Manual 4-2 9992.1 GST 13/1.00

GST Computer Systems Limited

4 . ~ Starting a Ne w Child ProF,ram

ThE' OSSTART runc't.ioll 1'('1 '1\11'111" t. 1r(' a('tion,' 1I (,(,p"snr.\' t.o st.nrt " prop;r"m :

(n) LO,"i t.lre PI'('('l'd u1'(, "P('(' ; Cieri nnd set. up t. hE' rCR.

(b) CIr:lin" PI'ol~I'alll .l;"t. ('l clII(' n t. to t.1r(' ('aUinF, pro{':rnm ' s PCR.

(c) l~ l'nb tire l~ I'pntl'I ' of the I\A ~1 melllory re'luire me nt" speci.fied hy the
c::tHe]' 0]' in tire procedurE' e nt.ry cont.rol bl oc k.

(d) AU ocat.e tire proc;rnlll n pri.ority less t.han t he caller.

(e) Allocate a n init.in l progra m stat e (either s us pe nded or rearly).

(f) Pass the p rogram the a ddress of a parame ter s t. ring.

The c rea ted program becomes a c h ild of t.he calling program.

4. f Determine Program Status

The OSSTATUS function e na bles s progra m to find out whether a child
program is sti ll running or ha s fini s hed.

4.7 Wait for a Program to Finish

The OSWAlT function wai ts for a. child program t o finish a nd returns its
program list element to the parent progra.m, so that. the parent prograrr.
may examine the results.

The program list element contain s two status codes a.nd a return f'.t ring
which provi de the caller with information concerning the termination of
the child progra"l. 11he n the caller has finished with t he program list
element it. should return it to the heap using OSHEAPDE.

4.8 Force Program Termination

Th e OSKlLL function causes a child program to stop by diverting its
program counter to a TRAP #0 instruction. Control returns to the user
before the child program stops, so the caller must use OSSTATUS to
check the status of the prograffi or OS WAlT to wait for it to actually
stop .

The child program is allowed to finish any critical system code tha t it
is executing, prior t o having it s program counter divert e d. It will
terminate in the same way as if' it had voluntarily executed TRAP #0.

Note that OSKILL cannot be carried out b y the caller on j i.self. A
p rogram must terminate itself by e xecuting either a. TRAP #0 or a n FTS.

68K /OS Reference Manual 4-3 9992 .1 GST 13/1 . 00

GST Computer Systems Limited Operating System

I •• 5' Memory Manager Functions

The memory manager is a. set of su broutines which controls the
allocation of RA M memory to programs, slaved microdrive or disk blocks
and other system components .

Functions are prov ided for the follow ing :

(a) Allocation of memory for use by a program.

(b) Change of memory ownership information.

(c) Deallocation of memory by ownership identifier.

(d) Deal location of memory by address range.

Applica tions software will usually only need to grab extra memory ,
because it will be released automatically when the program terminates .
The rema ining f unctions are provided for systems programming use .

4.10 Allocate Extra RAM to a Program

The OS ME MALL f unction will attempt to allocate a contiguous area of RAM
of the specified s i ze (in units of lKb) , and if successful will store
the s upplied owners hip information in the system memory map ent ri es
corresponding to the RAM allocated. The ownership identifier should
normally be set equal to the calling p r ogram's PCB address , because
this will ensure automatic memory rel ease on program termination.

4.11 Change Ownership Information

The OSMEMOWN function sets a given value in the ownership field of the
memory map entry for a g iven range of blocks which were allocated with
the OSMEMALL routine. This can be used by system program mers to
transfer memory res ources from one program to a nother or to retain
memory after a program is terminated.

4.12 Release Memory by Ownership Information

The OSMEMDA function deallocates B.ll memory blocks with a specified
value of the owner s hip information field.

4.13 Release Memory by Address Range

The OSMEMDS function deallocates a specified number of lKb memory
blocks whose s t a rt address must be explicitly identified by the calling
program.

68K/OS Reference Manual 4-4 9992.1 CST 13/1.00

GSl Computer Systems Li m ited Operating System

4.14 The Menu Manager

The Menu Manager is a set of subroutines that interface between
applications software and display file manager routines, that are
provided to simplify :form filling and menu selection operations and to
provide a consistent user interface for menu driven applications
software.

A menu consists of one or two display files which are shown in
different screen windows:

(a) The menu "'indow contains a form ,,'hich is constructed from
protected heading fields, variable message fields and variable
input fields. When this window is displayed on the screen the
user can tab between the input fields, enter and edit data, and
select options vsing function keys.

(b) The (optional) list selection window displays a. scrollable list of
items from which the user can select an item and copy it into any
input field in the menu window.

Note that these display files and wIndows are not initialised -b:r the
menu manager and must be set up by the applications program explicitly
using standard display file manager initialisation routines.

Two cursors are used, one in the menu window which may be moved between
variable input fields by means of the TAB key, and a second in the list
window which may be moved up and down the list with the cursor keys .

4.15 Menu Data Structures

Two data structures are required and maintained by the menu manager:

(c) The menu fixed data structure is used to specify field definitions
including protection status, ink and paper colours and any fixed
heading text that must be displayed. This data structure is
static and can be held in ROM if required.

(d) The menu variable data structure is initially created from the
fixed data structure end represents (in compact form) the current
state of the menu display file shown in the menu window . The
applications program need not know the detailed format of the data
structure· because menu manager routinef; are provided tc read and
update specific menu fields.

The menu variable data structure is initially presented to the ·menu
manager as ar. empty string which must be large enough to hold the menu .
The memory required for this must be obtained and disposed of by the
applications program.

For details of the menu fixed data structure see section 8 .

68K/OS Reference Manual 4-5 9992 .1 GST 13/1 .00

GST Computer Systems Limited Operating System

4 . 16 Display Fixed Menu Data

The OSMENDIS function clears the specified display file, copies the
fixed data to the display file (and hence the screen) and initialises
the fields in the variable data structure. This routine is called once
for each new menu displayed.

4.17 Read User Input to Menu

The OSMENRD function interacts with t.he operator when he fills in ·t.he
form or selects menu options, as follows:

(a) CHARACTER keystrokes are echoed at the cursor position in t.he
current variable input. field of the menu.

(b) The TAB and BACKTAB keystrokes move the menu window cursor between
the variable input. fields.

(c) The CURSOR LE."FT, BACKSPACE-DELETE and ,DELETE LINE keyst.rokes are
used t.o edit the cont.ents of a variable field.

(d) The CURSOR UP and CURSOR DOWN keyst.rokes move t.he list. selection
cursor up and down the list window.

(e) The ESCAPE keystroke copies an it.em from t.he list. windo·; to t.he a
menu window input. field . The it.em and field are specif;ed by t.he
positions of the two cursors.

(f) The FUNCTION CODE and ENTER keystrokes return control t.o the user
after copying the data from the variable input fields into the
menu variable data structure.

(g) Other keystrokes are ignored .

The list selection window is optional: where none is displayed, the
keystrokes in (d) and (e) are ignored.

Up to fifteen FUNCTION CODEs can be used, these plus ENTER are returned
to the calling program as bits in a sixteen-bit word .

4.18 Read a Variable Field

The OSMENGET function extracts the contents of the specified field from
the menu variable data structure and returns it to the user as a string
of characters .

4.19 Update a Variable Field

The OSMENP UT function is t.he complement of CSMENGET.
supplied by the user updates the contents of the specified
menu variable data structure . This will subsequently be
the screen afte!' the next call of OSMENRD.

The string
field in t.he
displayed on

68K / OS Reference Manual 4-6 9992.1 GST 13/1.00

GST Computer Systems Limited Operating System

4.20 Timing Services

These fall into two distinct categories (representing the two hardware
clocks supported):

(a) Passive real-time clock delay routine

(b) Hardware calendar clock support routineE.

The real-time clock is mandatory but may operate at either 50Hz or 60Hz
depending on the mains supply. The· hardware calendar clock is optional
and may not be present in some implementations of 68K/OS.

4.21 Passive Delay

The OSDELAY function f.uspends the calling program for the specifi ed
number of 50/60Hz real-time clock ticks, allowing other programs to run
in the meantime.

This function does not provide a very accurate timing mechanism, for a
number of reasons:

(a) The request to start the delay can occur at any time curing the
clock cycle, so a request to delay for one clock period actually
causes the program to ,,'ait for any time from zero to one cycle.

(b) When the processor is heavily loaded clock ticks may be ignored
altogether by both hardware and software at various levels , thus
under these conditions it is possible for a program to be delayed
for longer t.han specified.

(c) When the delay software wakes the program up it may take some time
before it resumes running because high priority system processes
are also invoked periodically on clock ticks.

If the number of ticks on entry is zero or negative, the calling
program is delayed for one clock tick.

4.22 Read Binary Time and Date

The OSBINCLK function reads the hardware calendar clock and returns the
time and date as a binary value. This is defined to be the number of
seconds that have elapsed since 00:00 hours on 1st January 1983.

4.23 Set Binary Time and Date

The OSSETCLK function sets the hardware calendar clock with a. binary value
representing the time and date. This is defined tc be the number of
seconds that have elapsed since 00:00 hours on 1st January 1983.

68K/OS Reference Manual 4-7 9992.1 CST 13/1.00

GST Computer Systems Limited Operating System

4.24 Heap Allocation

All 8.pplica tions programs must have a.n 8.rea of storage called a heap
which is used to allocate variable sized records for a variety of
purposes on 8.n a.d hoc basis . Programs a.re allocated heap storage when
they are started by the program manager, and this is subsequently used
transparently by a large number of 68K/OS system calls .

To enable applications programs to allocate a nd deallocate records from
their own heap, routines are provided that perform the heap management
functions required.

4.25 Allocate a Heap Record

The OSHEAPAL function allocates 8. record of the specified size from the
heap and returns its address to the calling program.

4.26 Deallocate a Heap Record

The OSHEAPDE function returns the spec ified record to the heap free
pool. Adjacent free records are coalesced. If the record lies outside
the address range of the calling program 's heap, the call is ignored.

4. 27 Determine the Free Stack/Heap Space

A program 's stack and heap s hare the same area of memory but grow from
opposite ends of this area, the stack growing down from the high
address and the heap growing up from the low address.

OSAVAIL allows a program to enquire about the free space remaining and
returns three values :

(a) The size of the largest free heap record.

(b) The total size of all free heap records .

(c) The size of the gap between the top of stack and the top of heap.

It follows that the largest possible heap record available to the user
program is the greater of (a) and (c).

68K/OS Reference Manual 4-8 9992.1 GST 13/1.00

GST Computer Systems Limited Operating System

4.26 User Trap Handler

By default, those exception trap vectors not used by '6flK/OS address a
routine which will terminate the calling program , s:i,nce in most cases
accidentaJ. invocation of a trap j s caused by the program running wild.

aSTRAP allows user programs to change the contents of the following
exception trap vector to addr""ss a user trap routine:

EAADDRES Odd address
EAILLEGA Illegal instruction
EADI V IDE Divide by zer0
EACHKINS Array bound violation
EATRAPV Arithmetic overfl ow
EAPRIV Privileged instruction
EATRACE Trace mode exception
EAALINE A-line exception
EAFLINE F- line exception
EATRAP4 Use r trap 4
EATRAP5 User trap 5
EATRAP6 User trap 6
EATRAP7 User trap 7
EATRAP8 User trap 8
EATRAP9 User trap 9
EATRAP10 User trap 10
EATRAP11 User t rap 11
EATRAP12 User trap 12
EATRAP13 User trap 13
EATRAP14 User trap 14
EATRAP15 User trap 15

Note that user trap 4 and trace mode exceptions a.re special cases that
vector t o the user defined routine in supervisor mode, all other traps
will vector in user mode.

68K / OS Reference Manual 4-9 9992 .1 GST 13il.00

GST Computer Systems Lim ited Display File Manager

SECTION 5:

DISPLAY FILE MANAGER

68K / OS Ref erence Manual 5- 0 9992 .1 GST 13/1. 00

GSI Computer Systems Limited
Display File Manager

S DISPLAY FILE MANAGER

5.1 Outline Description

The Display File Manager is o. set of subroutines that controls access
to the screen by applications programs. DFM permi ts concurren~.

programs to share the available sc r een area between them, and will
ensure that their screen areas dc· not interact.

DFM operates on a logical screen which is a mapping onto B physical
screen . This mapping depends on the hardware implementation and / or the
screen mode selected (TV or monitor) .

Physical screen output is achieved using the screen driver, which is
called synchronously from within DFM. The screen driver should not be
call ed direct by applications software under any cicumstances whatever.

Although 68K/OS graphics software calls the screen driver direct, a DFM
window is supplied as a parameter to each graphics routine and figures
drawn will be clipped at window boundaries. In this case DFM has an
indirect effect on the integrity of the screen.

5.2 Partitions

If a. program requires an area on t.he screen it is allocated a partition
by DFM. A partiti on is a var i abl e sized horizontal slice of the
logical screen which is divided from other screen partitions by a
singl e pixel high r ule . The screen may be divided i nto any number of
partitions provided xhat each displays at least one line .

The size of partitions is under direc t user control from the keyboard,
and any partition can be grown or shrunk by any amount provided that no
partition i s reduced to l ess than one line.

Partitions are owned by programs and ca n only t e updated by their
owners. When a program is terminated its . partition is del eted and the
other partition(s) will expand to fill t.he space released.

5.3 Virtual Screens

Because a screen partition is un der direct operator control and
competes for screen resources wi ttl other partitions , a · program cannot
know the size of its partition (which may only displ ay a portion of the
logical area that the program wishes to display). This problem is
solved by the maintenance of a virtual screen for each program. -

A virtual s creen defines the program' s l ogical screen dim ensions and
its division into windows. It is not a separate physical copy of the
screen but a complex data s tructure which maintains t he text associated
with windows in a set of linked lists known as display fi les.

A virtual screen can be scrolled through a partition by DFM or by user
keyboard control . This is termed metascrolling.

68K/ OS Reference Manual 5-1 9992.1 GST 13/1.00

GST Computer Systems Limited
Display File Manager

5.Q Windows

rntially a virtual screen consists of a single rectangular window whose
size is identical tc the requested screen partition size . The initial
window can be subdivided by a program by creating new windows .

A new window is created by splitting an existing rectangular window
either vertically or r,orizontally into two smaller rectangular windows.
This process can be repeated recursively to divide the virtuaJ. screen
into several windows, but will always ensure that:

(a) All windows are rectangular

(b) There are no gaps of any shape

A program can create and delete windows dynamically provided that
windows are deleted in reverse order of their creation. While a window
exists, its size and position within t.he virtual screen C.re static .

5 . 5 Display Files

Each window is associated with a display file which holds an internal
representation of the display text and is potentially far larger than
the window itself. The display file is independent of the window and
is not deleted if the window is removed from the virtual screen .

The display file can be scrolled through t.he window either vertically
or horizontally by DFM. This scrolling is distinct from metascrolling.

The display file holds details of default ink and paper colours for the
text and the windm; background colour. Special commands are provided
to change ink and paper colours and character fount (see 5.9 and F.8).

5.6 Extended Displ ay Fil es

Each display file is allocated an area of memory in which to store text
which it organises as 2 heap. This area cannot be expanded
dynamically, and there is c. possibli ty that the display file will be
filled up and exhaust the heap .

To overcome this problem DF~' allows the calling program to install a
user written subroutine (the ' user hook ' routine) that will be called
by DFM whenever the display file is full . This routine could:

(a) Output the top line of the display file to an ross channel,
providing a log facility .

(b) Maintain two ross channels, one for each end of the display file
which are attached to disk or microdrive files, providing extended
scrolling onto files. (This is how the CST screen editor works.)

Alternati vely, DFM can be instructed tc throwaway the top line of the
display file when this becomes full.

68K/OS Reference Manual 5-2 9992 . 1 CST 13/1 . 00

GSI Computer Systems Limited Display File Manager

5 . 7 Curs or, Acti on Pointer and Markers

Each display file maintai ns two pointers into the text called the
cursor and the action pointer. The cursor can be move.d by DFM to point
to any displ ay character in c.ny line of the display file, and when the
cursor is moved the action pointer is set to the same value . The
action pointer can be moved within the current cursor line and can
point to both commands and display characters .

When displayed, the position of the cursor is represented on the screen
by an inverse video block . I f the d i splay file i s associated with a
window then DF~: will always ensure that the cursor is visible in the
window, but cannot always guarantee that the window line conta ining the
cursor is visible in the partiti on.

If a program has several windows it can define one of t hese to be fiJ<ed
in the partition. The cursor in this window will flash and DFM will
a l ways ensure that it is visible in the partition, first by scrolling
t he displ ay file, and if necessar y by metascrolling the virtual screen.

The displ ay file manager maintains up to eight posi tion markers in E'ach
display file. These can be set by t he us e r, a n d the cursor can be
moved to a marked position.

5.8 Console Dis play Fi l e Interf a ce and r os s

Display files can be accessed via the console display file interface .
Th i s allows a subset of displ ay file operations to be performed by
programs which have simple requirements .

II special interface between lOSS and DFM is provided to enable console
displ ay files to be accessed through lOSS without calling DFM directly.
If a program calls IOOPEN to open a sequential output channel to the
device SCREEN : or calls IOGETLIN to read a line from device KEY: then
the system will, if necessary, create a display file and an associ ated
window. Further calls to ross have t he following effects :

(a) IOPUTSEG and IOPUTLIN calls to SCREEN : will output data to the
display file ' s screen window.

(b) rOGETLIN calls to VEY: will reflect each keystroke in the display
file ' s screen window (see also section 3.17) .

A program can select an Existing displ ay file for use with the console
interface and this display file will be used by JOSS when required.

9992.1 r.s~ 11/1.00

GST Computer Systems Limited Display File Manager

5.y Display File Binary Commands

The display file manager maintains data in the display file connected
with colour , founts, underlining and spacin g which is interpreted by
the screen driver (see F.7) .

This data is included in a display file by inserting a binary command
consisting of two bytes, the first a command code and the second a
parameter, both having the top bit set to distinguish them from text.

A subset of these are available as user defined commands that programs
may insert in c.isplay files for their own private use. These will be
ignored by· DFM and the screen driver.

5 .10 Single Line Menu

The bottom screen line is maintained separately by DFM and is never
allocated to screen par titions. This line i s used by applications and
system programs t.o displ ay program identification, single line menus ,
messages 01 · action[; assigned to the function keys .

The user can select which partition (and hence which program) he wishes
tc receive input from the keyboard. This program has exclusive use of
the single line menu.

The keyboard can be used to talk directly to the operating system by
s witching into system mode . This allows the user· to grow, shrink and
metascroll parti tions , select current programs a.nd change their status.
When in system mode, the operating system itself uses the single line
menu to display actions assigned to the function keys .

5 .11 Calling DFM Routines

DF~\ routines are called by appl ications software via a singl e entry
point with a functiqr. code in DO :

MOVEQ
JSR

HDMFUNC, DO
DMENTRY

On return DO contaj ns a status code.

Descriptions of each DFM routine follow below, and precise details of
each DFM call is given in Appendix C.

(flK /0;; Hefe rr,nce M<tnll<tl ~)-4 999? 1 CST 13 / 1 . 00

GST Computer Systems Limfted Display File Mana~er

5.12 I nitialisat ion Routi nes

The DMINI TVS call creates an (initially empty) virtual screen for the
program and will allocate " screen partition of the' defined size. The
new partition appears at t.he bottom of the s creen, but a bove the single
line menu.

~'he DMI NITDF call will perform 10.11 the initialisation required to
create a. ne" empty display file, including allocation of space from the
calling program ' s heap (if required) and th e initialisation of a.ll
internal data structures .

The DMNEWWIN call will add a new window to the virtual screen e,nd will
display the associated display file on the screen.

The DMR ES ET routine will delete all the text in a display f ile a nd
reset the data. structures tc their initialised state.

5 . 13 Te rmi na t i on Routi nes

The DMFLUSH call will empty the display file by repeated calls of t.he
user hook routine which should write this to the top output file.

The DMKI LWI N call will remove a window from the calling program ' s
virtual screen, if this was t he last window created.

The DMKI LLDF call will release the display file data area ESter first
call ing DMFLUSH to write out the data to the top file.

5 . 14 Displa y Fi l e Control Rout ines

The DMTTYSEL call will select the specified displ ay file as the current
console window to be used for lOSS output tc the SCREEN: device and for
keyboard reflection using IOGETLIN with the KEY: device.

The DMFI XDF call specifies which window should always be kept visible
within the partition and will cause the cursor in that window to flash .

The DMDISABL call will forbid screer. update for thE specified display
file until reenabled. This is required when a compl ex operation such
as paragraph reformat take" place to avoid both the time overheads of
intermediate line repaints and the resulting unple<;ts?nt visual effects.

The DMENABL call will reenable screen update that has been disable~.

5 .15 Space Allocation Routines

These calls are normally made direct from within DFM, but are provided
to enable the user hook routine to share the same display file heap.

The DMALLOC call grabs 8. record of specified size from the display file
heap, DMRELEAS will return a record to the heap .

68K/OS Reference Manual 5-5 9992.1 GST 1 3/1 . 00

GST Computer Systems Limited Display File Manager

5 .16 Li ne Manipula t i on Routines

The DM I NSLI N call inserts c, line into the display file immediately
above the line in which the cursor is positioned . If this is on the
screen then lines below it will he automatically scrolled down by the
display file manager.

The DMDELLI N call removes the line in which the cursor is positioned
from the display file and returns it to the heap. The rest of the
window will be scrolled up and the cursor is left at the start of the
next. line.

The DMJOIN call joins the line containing the cursor with the following
line . Further lines are scrolled up .

1'he DMS PLIT call will split the current line i nto two immediatel y
before the cursor position. Further lines in the window are scrolled
down.

5.17 Character Manipula tion Routines

The DMRDBYT call will move the action pointer by the specified amount
and return the d i splay file byte referenced to the calling program ,
which need not be a display character. When the action pointer is at
the end of line, a newline code is returned .

The DMWRBYT call will replace the display file byte referenced by the
action pointer by the byte specified , which need not be a display
character . This l 'outine r.lust not be cal led if the pointer is at t he
end of line .

The DMINSCHR call will insert the display character specified at the
cursor position , shifting the remainder of the line to the right.

The DMDELCHR call deletes t.he display character referenced by the
cursor. The rest of the line is shifted left.

5 .18 Stri ng Mani pula t i on Routi nes

The DMINSSTR call i nserts a string (whose length is passed in the first
two bytes) into the display file at the cursor position. Note that t he
string may contain newline characters, in whi ch case the string will be
i nserted i n sections, DMSPLIT being called internally to start new
lines . The cursor is left on the character after the inserted string .
The s tring can contain binary data and display characters.

The DMINSBLK call is identical to DMINSSTR, but t he data and byte count
are passed separately.

The DMDELCMD call deletes a two byte binary command from a displ ay
f i le . The action pointer must be pointing to the first byte of the
command .

68K / OS Reference Manual 5-6 9992.1 GST 13/1.00

GST Computer Systems Limited Display File Manager

5 . 19 Curs or Rout ines

The DM MOVECU call allows the program to rr.ove the cursor (together with
the action pointer) around the display file . The movement is speci fied
as up, down, left, right or a number in the range 0-7 indicating a
predefined marker position. If the cursor is moved out of the window,
t he window "ill be scrolled until the cursor is visible.

The DMPUTCUR c"all will posi t"ion the cursor and action pointer at a
specifi e d line number and character position "ithin the line.

The DMGETCUR call returns the current position of the cursor to the
calling program as a line number a nd character position .

The DMCURDIS call disables the cursor in the specified windo" . This
can be used when the cursor is not required (eg, in 8 help ,,"indow) or
temporarily to hide the curS'Ol" to improve screen appearance .

The DMCURENA call reenabl es the cursor in the specified window.

5.20 Marker Position Routines

The DMMARK call sets the specified marker to reference the current
cursor position . Up to eight marker positions can be used .

The DMMKPOS cal l returns the position of the specified marker .

5 . 21 Upda t e Singl e Line Menu

The DMUMENU call permits a program to display a line cf text in the
s i ngle line menu area at the bottorr. of t he screen. It ,/ill only be
displayed when the program is selected as the current program for
keyboard input .

5.22 Ins t all User Hook Routine

The DMHOOK call defines to DFM the address of a user routine to provide
scrolli ng for an extended display file on and off a backi ng medium such
as disk or microdr i ve . This routine will be called by DF M"hen :

(a) DFM requires to "rite a line to backing store. This line may be
wri tten from the top or bottom of the display file .

(b) DFM requi res tc read 8 " line frolf backing store. This line may be
read i nto the top or bottom of t he display file .

The hook routine must , in princ i pl e , maintain two files to cope "ith
the da t a from eith er e n d of lhe file , t hough for some applications
where the display file is only scrolled in onl;\, one direction a single
file or sequential output channel will be sufficient . No hook routine
i s requ ired if 8 s i mple consol e window is selected because DFM will
dispose of lines itself.

68K/OS Reference Manual 5-7 9992.1 GST 13/1.00

GST Computer Systems Limited Graphics Routines

SECTION 6:

GRAPHICS ROUTINES

68K/OS Reference Manual 6-0 9992.1 GST 13/1.00

~s, Computer Systems Limited Graphics Routines

6 GRAPHICS ROUTINES

6 . 1 General Description

68K/OS graphics routines provide a mechanism for a,pplications software
to dra>l medium-resolution graphics figures . ThesE' figures are drawn in
display file windows and are positioned relative to the 'origin ' of the
display files, and will be clipped according to the current window
boundaries "hen the figu r e is drawn.

Although graphics and text may be mixed in the same di splay file window
and use the same coordinate system, the system does not. maintain
graphics display files out.side of the window currently visible on t.he
screen . Thus it is not possible to scroll g rap hics t hrough a window
(in the same way as t.ext) as an Rutomatic system function, although
this can be achieved by applications softwarE' if desired. If a
graphics figure is scrolled out of Rnd back into a window, DFM will
repaint the scrolled area in the current windm! background colour.

Because 68K/OS does not contain internal trigonometric functions, the
range of figures available is restricted, and t wo-dimensional figu r es
must be drawn with orthogonal axes .

Up to eight colours a re supported and these can be mixed in four-pixel
block patterns to form a variety of stipple effects, producing a large
number of pseudo-colours. Note that the QL hardware only supports four
col ours in 85, 80 and 60 column modes (blue is suppressed).

6.2 Coordi na te Sys tem

The g r ap hic s coordinate system is relative t o thre e separate screen
origin offset mechanisms:

(a) The logical screen origin may be displaced in hoth a xes from the
phys i cal screen origin if a TV compatible mode is selected.

(b) The displ ay file window o rigin '<'ill be relative to the position s
of the partition a nd the virtual screen.

(c) The applications software may define a graphics window whose
origin is relative to the display file origin.

No t e t hat in each case the ori g in is the top left -hand corner of the
item described, and that once the origin off set and window size has
been defined , the positioning, scrolling and clipping of graphic s
figures within the coordinate system is automatic.

Coordinates in hoth the X and Y axes a r e defined in screen pixels where
the full physical screen is 512x256 pixels, regardless of whethel' the
~L is in four or eight colour mode. In the lat ter , the bottom bit of
the X coordinate i s ignored.

The d.imensions and origin position of the graphics window are defined
in character units. This enables graphics windows to map directly onto
displ ay f ile windows .

68K/OS Reference Manual 6-1 9992.1 GST 13/1.00

GST Computer Systems Limited Graphics Routines

6 . 3 Colour Definitions and Stipple Patterns

Colour definitions for graphics routines are defined in a word, the
upper byte of which is set non- zero if the figure is to be drawn in XOR
ink. The lower byte is defined as follows:

Bits 7-6
Bits 5-3
Bits 2- 0

Stipple (0 Q, 1 ~ H, 2 ~ V, 3 ~ C)
XOR of mixer colour and base colour
Base colour

where the stipple codes refer to a 2x2 pixel block, as fo llows :

Q quarter mixer, three-quarters base
H hori zontal stripes of base and mixer
V vertical stripes of base and mixer
C checkerboard of base and mixer

Note that if bits 5- 3 are zero then t.he plain base colour is drawn and
the defined stipple pattern has no effect .

Colours are specified as numbers in the range 0- 7 as follows:

o
1
2
3

Black
Blue
Red
Magenta

4
5
6
7

Green
Cyan
Yellow
White

I n four-colour mode (85, 80 or 60 columns), blue is suppressed, giving
t.he following:

0-1
2-3

Black
Red

6 . 4 Aspect Ratio

4-5
6-7

Green
White

Because the y-dimension of the physical pixel exceeds the x-dimension
by a factor of approximately 3 :2, the QL screen aspect ratio is non­
square and will vary depending on t.he particular monitor or television
us ed. Because the coordinate system is based on phys i cal pixels it.
will be necessary to set the x-dimension some 25% to 35% larger than
the y- dimension in order to draw circular ellipses or square bl ocks .

6.5 Calling Graphics Routines

Because the graphics interface may change wi t.h later implementations of
68K/ OS on different. machines, t.hese routines are called via the sys t.em
dependent SPENTRY vector with a func tion code in DO :

MOVEQ
JSR

nSPFUNC, DO
SPENTRY

On return, DO will be destroyed, all other registers are preserved.

68K/OS Reference Manual 6- 2 9992.1 GST 13/1.00

GSI Computer Systems Limited

6.6 Graphi cs Figures

The followi ng graphics figures can be drawn:

(a) SPPOINT draws a single pixel

(b) SPLINE draws a straight line

(c) SPELLIPS draws an orthogonal ellipse

Graphics Routtnes

(d) SPBLOCK draws an orthogonal filled rectangular block

(e) SPTEXT draws a text string horizontally in various sizes

(f) SPPAINT fills an area to an unspecified border

(g) SPFILL fi l ls an area to a specified border

Al l these figures are clipped to window boundaries .

~8K!OS Reference Manual 6-3 999?1 CST 13/1.00

GST Computer Systems Limited

68K/OS Reference Manual

SECTION 7:

CREATING PROGRAMS

AND PROCEDURES

7-0

Programs and Procedures

9992.1 GST 13/1 .00

GST Computer Systems Limited Programs and Procedures

1 CREATING PROGRAMS AND PROCEDURES

7.1 Overview

This section define s the gene ral programming requirements and specific
entry a nd exit requirements for programs or procedures, and the initial
~alues of pointer s and registers when a program is started by the
OSSTART command.

1.2 Position Independence

All procedures written t.o run under ESK/OS must be Fositi on independent
because the user has no control Ovel' thE' position in which his code i s
loaded into memory . This J'equirement restricts the addressing modes
available to the programme r when making r eferences internal to his
program. In general, all internal references to addresses must use (or
be derived from) PC relative mode. Absolute short or long addresses
must only be used when referring external system routines and fixed
position hardware registers , system tables and variabl es .

7.3 Reentrant Code

J\ll 6SK/ OS procedures must be reentrant because it is possible that a
single copy of a procedure might be executed simulta neously by two
programs. As a general rule this implies that a procedure must b e
written in pure . (read only) code which guarantees that it will b e
reentrant and will also ensure that t he code can be executed i n ROM.

7. 4 Procedure Header Block

A 32-byte header block must be coded at the start of each procedure,
and has the following format :

PEENTRY(.L}
PERAM(. W}

PC relative procedure entrYFoint
Minimum RAM allocation for program

followed by the procedure name (in s t a ndard lOSS pathname format) if it ·
is i ntended to include the program i n the ROM : directory.

PERAM contains t.he procedure 's RA M requirement for PCB, stack and heap
(in units of lKb) if it were to be invoked as a program bJ' a n OSSTART
call. If this is set to zero , the procedure cannot be run 8.S a stand­
alone program.

7 . 5 Program Memory Requirements

Unless a program is ROM resident the system will load it to em a.r ea of
RAM whose size i s known from t he directory entry. A second non­
contiguous area of RAM (whose size is t.he greater of the PERAM entry or
a parameter to OSSTART) is allocated for the PCB, stack and heap.

6SK/OS Reference Manual 7-1 9992.1 GST 13/1.00

GSI Computer Systems Limited Programs and Procedures

7 .6 Program Memory Layout

The stack /heap area allocated to a program is laid out as follows:

PCB ' ---)

A7 ---)

PBHEAP ---)

PBHEBASE ---)

68K/OS Reference Manual

PROGRAM
CONTROL
BLOCK

(PCB)

STACK

SPARE
HEAP/
STACK

HEAP

"(-2

High address

Low address

9992.1 GST 13/1.00

GST Computer Systems Limited Programs and Procedures

7.7 Data Area Pointers

The pointers to the user program's data area are:

(a) A7. This register is the user stack pointer and 'always addresses
the last word that has been c.llocated on t.he stack (which grows
down from high memory).

(b) PBHEAP. This symbol is an offset in the PCB where the heap
pointer is kept. This always points to the first free word above
the top of the heap (which grows up from low memory).

(c) PBHEBASE. This symbol is an offset in the PCB where the pointer
to the base of the heap is kept . This always points to the first
byte allocated to the program.

These a.ddresses are aligned on vord boundaries.

7.8 Special Conditions at Start of Program

At the start of a program the' stack contains the return a.ddress into
the operating system's program termination routine, but i s otherwise
empty. This &.ddress is planted on the stack by the program manager to
enable a progra", to terminate using an RTS intruction .

The heap i.s used by the system during program initialisation to build
those system data structures required for E. new applications program,
thus PBHEAP will be greater than PBHEBASE.

A~. points to the program control block (required by calls to OSMEMALL).

Al points to G. (possibly null) parameter string passed from the parent
program. The standard parameter string is defined in section 8.

7.9 Program and Procedure Exit

To terminate either a program or a procedure, the final instruction
executed shoul': be:

RTS

Additionally, a program may be terminated by executing:

TRAP #0

Note that use of ~TS is preferable since it a llows a module to be
executed either as a program or a procedure, whereas a TRAP #0 executec
by a procedure ,;ill terminate the program that ca1J.ed the procedure.

999? l r.,,~ 11/1.00

GST Computer Systems Limited Progr ams and Procedures

7.1C Passing Status Parameters

When a program terminates either normally or because of an error, it is
possible to pass completion status parameters back t o its parent in
regi sters that are transferred to the program list element:

DO.W
Dl.W
AO .L

sta tus code (zero for successful completion)
return code (applications spec i fic)
pointer to return text string

The status code will normally be zero or a system status code returned
from a system call.

The return code i s, strictly speaking, applications dependent and can
be used to pass compl eti on status in a suite of applications programs .
Stand-alone programs shoul d clear t he return code .

The return text string is free format and is up to 46 bytes l ong
(including the two-byte string length).

GBK/OS Ref e r ence Manual "(-4 9992 .1 CST 13/1.00

GST Computer Systems Limited System Data Structures

SECTION 8:

SYSTEM DATA STRUCTURES

68K/OS Reference Manual 8-0 9992 .1 GST 13/1.00

GST Computer Systems Lim ited System Data Structures

8 SYSTEM DATA STRUCTURES

8 . 1 Scope

Included in t.his section are descriptions of t.ho se system data
structures that may usefully (anel safely) be referenced as data from
applications software, namely:

*

*
*

*
*

Dir ectory entry buffer
Directory information buffer
Menu fixed data structurE
Procedure entry control block
Program list element
Standard parameter string
Standard text string

The remainder of system data structures should only be referenced from
systems software and are defined in the Sys t ems Programmer ' s Refe renc e
Manual .

8 . 2 Notation

The following notation is vsed to define data structures:

(a) Field names are defined as upper case symbols :

FIELOONE

(b) Field lengths are defined as byte, word or longword (which can be
accessed directly as .B, . YI or .L) or number of bytes:

IlYTELEN (. B)
WORDLEN (. W)
LONG LEN (. L)
NUMB LEN (32)

(c) Field c~ntaining bit-length values are explicitly defined:

BITFIELD (.B) contains the following significant bits:

FLAGBITI
FLAGBIT2

,All other 'spare ' bits are undefined but should be se t to zero to allow
f or f uture expansion.

In all cases, the numeric offsets from the start of the record are not
defined. The applications programmer shoulc code using the symbols
defined in this manual and should include the following directive at
the start of the source file :

INCLUDE 68KOS.IN 68K / OS parameters

This is the main sys t em pa r ameter file which will contair. current
definitions of all data structure symbols .

68K/ OS Reference Manual 8-1 9992 . 1 GST 13/1.00

GSI Computer Systems Limited System Data Structures

8.3 Directory Entry Buffer

The directory entry buffer is S.n c.rea of memory returned from an
IOGETDIR call which contains information about a single file ~n a.
directory. The layout of the buffer is as follows:

DEATDIR
DEOPTION
DEEOF
DEC REATE
DEMODIFY
DE PATH
DECOMM

(.B)
(. B)
(.L)
(.L)
(.L)
(19)
(28)

access type of the directory
a.ccess type and mode for this file
file size in bytes
creation date
date last modified
filename string
user comment string

The DEATDIR and DEOPTION fields contain bits to indicate the access
type and mode for the directory and file. Three bit fields are
significant:

OPREAD
OPWRITE
OPRAN

o
o
o

read disabled
write disabled
sequential access

1
1

read enabled
write enabled
random access

The DEATDIR field contains the combined (most restrictive) file access
permissions of both the directory and the file.

The DECREATE and DE MODIFY fieldB hold the relevant binary system time
(defined to be the number of seconds elapsed since 00:00 on 1st January
1983) .

Strings are in standard string format as defined in 8.9 below.

8.4 Directory Information Buffer

The d.irectory information buffer is an a.rea of memory returned from an
IODIRINF call that contains information about an entire directory. The
layout of the buffer is as follows:

DIENTRY
DITOTAL
DILEFT

(.L)
"(.L)
(.L)

number of directory entries
total space available in directory
current space remaining in directory

The DIENTRY field is a number greater than or equal to the actual
number of entries in use, and its value is device dependent. It gives
8.n Lpper bound on the number of entri es for use by, for example, a sort
routine .

The DITOTAL field gives t.he total free space of an empty directory and
the DILEFT fie ld g ives th e current free spac., in the specified
directory, both figures in units of lKb.

(,F~v. / (Jr; ReferenN! Manllal 999?1 r.ST 13/1 .00

GST Computer Systems Limited System Data Structures

8 . 5 Menu Fixed Data Structure

The menu fixed data structure is stored in ~ standard text string which
is read into a display file and displayed on the scr~en by OSMENDIS.
This string contains fixed text, menu formatting information and
variable input or message field definition[; as follows:

(a) Display character: a character is within the standard ASCII range
and is displayed in the current fount and foreground/backgrourld
colours s.t the next character position on t.he virtual screen.

(b) Display command: a command is a two-byt.e record to define
special action by the display file manager or screen driver (such
as a fount or colour change).

(c) Code MU.NL: this is used t.o start a new line in the menu display.

(d) Code MU.CLB: this is used to indicate a conditional line break
posi tio;) and consists of two bytes :

MU.CLB code
Number of characters t.o fit on the line

If sufficient character posi t.ions remain in t.he window line t.hen
the MU.CLB code is replaced by a single space, oth erwise it has
the same effect. as a MU.N!, code.

(e) Code MU.HT: this is used to tab conditionally to t.he next menu
column and consists of two bytes:

MU.HT code
Number of characters t.o fit on the line

If sufficient character positions remain in the window line then
the MU .HT code is replaced by the numbe·r cf spaces required to
align the specified number of characters on the right margin,
otherwise it has the same effect as MU . NL .

(f) Code MU.ESC: this introduces a menu field specificat.ion which
consists of four bytes:

MU.ESC code
Field number (1-127)
Field attributes :

Bit 7: 0 = protected, 1 = write enabled
Bits 5-3: foreground colour
Bits 2-0 : background colour

Field length (0-255)

The field number is used to indicate the order cf cursor movement
around t.he menu, at. least. one field must be present and fields
must. form a cons ecutive sequence starting from one. The field
length is converted t.e; spaces within the window (in the background
colour). Read-only menus must include a single zero- length Held.

68K/OS Reference Manual 2-3 9992.1 CST 13/1.00

GSI Computer Systems Limited System Data Structures

8.6 Procedure Entry Control Block

The procedure header block defined in 7.4 is read by lOSS during rOLOAD
and the PC-relative entry point. is converted to the absolute load
address . This is passed to the caller in modified form in a 6-byte
buffer :

PEENTRY
PER AM

(.L)
(.IV)

Procedure entry point (absolute address)
Minimum RAM allocation for program

PERAM contains t.he procedure's RAM requirement for PCB, stack and heap
(in units of lKb) if it were to be invoked as a program by an OSSTART
call. (If t.his is set to zero, the procedure cannot be run a.s o. stand­
alone program .)

Note that the address of a user-constructed PECB is required by a call
to IODEFPRO.

8 . 7 Program List Element

The program list element is a buffer created on the calling program 's
heap when a parent program creates a child program with OSSTART. If
the parent Viaits for the child to finish with a.n OSWAIT call , a pointer
to the buffer will be returned when the child program terminates. The
following fields are of interest to applications software:

PGRETURN
PGSTATUS
PGPARMS

(.W)
(.w)
(46)

return code
status code
return str ing

This mechanism allows a child program to pass a. system s tatus code , an
applications specific return code and any arbitrary text. s tring back te·
its parent, to indicate completion status (or I,hatever).

Note that the child program passes these item in registers (see 7 .9)
whi ch are placed in the program list elemen t by the system for later
examination by the parent. If the parent does not perform OSWAIT the
contents of the program list element are undefined.

68K / OS Reference Manual 8-4 9992.1 GST 13 /1. 00

GSI Computer Systems Limited System Data Structures

8.8 Standard Parameter String

The 68KjOS command program ADAM is the usual parent program for a l l
stand-alone applications. To start a program, the user supplies the
program name followed by any parameters that must be passed to it,
delimited by spaces. This entire command line is passed tc the child
program in c. record containing a set of text strings.

The set of text strings is preceded by a set of fields glvlng details
of the overall length of the parameter record and the offsets from the
start of the record to the program pathname string and the parameter
r;trings (if any):

APLEN (.W) Length of parameter record
APNAME (.W) Offset to program pathname string
APPARMl (.W) Offset to first parameter string
APPARM2 (.W) Offset to second parameter string

APPARMn (.W) Offset to nth parameter

Following thE, nth parameter offset. is the string cont.aining the program
pathname (as keyed) followed by the n parameter strings, each string
being word-aligned .

Each string in t.he parameter record is in standard text string format ,
as defined in 8,9 below.

8 . 9 Standard Text St r ing

All string parameters in system calls are standard string records.
These consist of a word- aligned length fiel d (. W) followed by the text
characters, one per byte. Note t hat t he length fiel d defines t he total
number of characters only.

68KjOS Reference Manual 8-5 9992 . 1 GST 13/1.00

1
GSI Computer Systems Limited I/O SUb-System Call s

APPENDIX A:

I/O SUB-SYSTEM CALLS

68K / OS Reference Manual A- O 9992.1 GST 13/i.00

GSI Computer Systems Limited I/O Sub-System Calls

A. l lOSS Register Conventions

The table following gives a quick summary of the use of registers on
entry to and exit from the lOSS .

On entry, register DO always contains the function code, which is the
name of the routine. (A set of definitions for the values of these
names is supplied in a parameter file). If ross is called with an
invalid function code the status STINIOSS is returned.

Usage of parameters is discussed in complete detail for each routine in
the following section .

All registers ~hich are not s hown in the table are preserved on exit
and may have any value on entry (except that registers with defined
syst em-wide usages follow the usual rules).

The register usage table uses the following coding scheme :

Code Length Description

* .L preserved - allregisters not shown are preserved
B . L buffer address
BL .W buffer l ength
C .W channel number
DB .L directory name buffe r
DE .L directory entry buffer pointer
DI .L directory information buffer pointer
FP . L file position
MN . L magic number for directory scanning
NC . I, number of bytes read or written
a .B option byte
P . L pathname
PE . L procedure entry information
PI .1-1 procedure identifier
S .IV status
St .r. string
U .L unit number
XA .L device-dependent information, addres s
XD .L device-dependent information, data
YN . B yes/no answer

1\-1 9992 .1 GS~ 13 / 1 . 00

GSI Computer Systems Limited I / O Sub- Sys t e m Calls

ross Register Usage

Function On Entry On Exit

DO Dl D2 D3 AO Al DO DJ
- - ------- +---- +----+--- - +----+----++-- - -+----+
IOSETDEF I I I 0 I St I II s I * I
---------+ - -- - +- - --+----+---- +- --- ++-- - - +---- +
IOGETDEV I I I 0 I St I II s I * I
- ---- - ---+---- +----+--- -+---- +----+ +----+----+
IOGETPRE I I I 0 I St I II S I * I
- - ------- + - -- - +----+----+---- +----++----+----+
IOOPEN I I I 0 I P I I I s i c I
- --------+--- -+----+-- - - +---- +----++----+--- - +

IOCLOSE I I I C I I II S I * I
--- ------+----+---- +-- - - +----+---- ++----+----+
IOLOAD I I I 0 I Pi PE I I S I PI I
---------+----+----+----+----+--- - ++----+----+
IODEFPRO I I I 0 I PiPE II S I PI I
---------+----+----+----+----+----+ +----+----+
IOUNLOAD I PI I I I I II s I * I
---------+----+-- - - +----+----+----++----+---- +
IODELETE I I I 0 I P I II S I * I
- ---- - ---+-- - - +---- +- --- +----+ - --- ++----+- - - - +
IORENAME I I I 0 I p i p II S I * I
- --------+ - -- - +----+----+----+-- - - + +----+----+
IOGETDIR I MN I I 0 I P I DE II S I MN I
---------+----+----+----+----+----++----+----+
IOPUTDIR I I I 0 I P I DE II s I * I
--- -- - ---+- --- +----+----+----+----++----+---- +
IODIRINF I I I 0 I P ·1 DI I I S I * I
---------+----+----+---- +----+--- -++----+----+
IOGETSEQ I BL I I C I B I II s I NC I
- --- -----+--- - +----+-- --+----+---- ++----+----+
I OGETRAN I BL I FP I C I B I I I S I NC I
----- ----+----+---- +----+----+----++----+---- +
IOGETLI N I BL I . I C I B I I I S I NC I
- --------+----+----+---- +----+---- ++----+----+
IOPUTSEQ I NC I I C I B I I I s I * I
------ ---+---- +----+- - - - +----+- - - - ++----+----+
I OPUTRAN I NC I FP I C I B I II s I * I
----- ----+- ---+----+----+----+----++----+----+
IOPUTLI N I NC I I C I B I I I s I * I
---------+----+----+----+----+----++----+---- .~

IOSETPOS I I FP I C I I I I s l * I
- --- -----+----+----+----+----+----++----+--- - +
IOTRUNC I I I C I I I I s I * I
------ ---+----+----+----+----+--- -++----+----+
IOGETPOS I I I C I I II S I FP I
------ ---+----+----+----+-- - - +-- - - ++----+----+
IOEOF I I I C I I I I S I YN I
- -- - -----+----+----+----+----+----++----+- -- - +
I OSIZE I I I C I I II S I FP I
---------+----+----+---- +----+----++----+- ---+
IOREADY I I I C I I II S I YN I
--- ------+-- - - +---- +- - - - +- - --+----++----+-- - - +
IOMOUNT I U I I 0 I P I DB I I S I * I
---------+----+----+---- +----+-- - -++----+----+
IODISMOU I U I I 0 I P I I I s I * I
- - ----- --+----+---- +---- +- --- +----++----+----+
IOSPECI A I XD I I 0 I P I XA I I S I XD I
---------+----+----+-~--+----+----++----+----+

68K/OS Referen ce Manua l A-2 9992 .1 GST 13 /1 .00

GSI Computer Systems Limited IOCLOSE

ROUTINF

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

IOCLOSE - Close a Channel

To close a n lOSS channel.

DO. W IOCLOSE
D3.W Channel numbe r

DO.W Status

STCHAN Non-existent channel number
STIOERR I/O error on device

For s e quentia l disk or n:i crodrive files with a write access
type component, all blocks currently slaved in memory are
written out .

For all disk or microdrive files with a write a cc ess type
component, the directory i s updated and written out.

The closing of a disk or micro drive file is a very complex
operation as far as the system is concerned and may take a
rel a tively long time, however, as far a.s t.he user progra.m is
concerned there are no complications of any interest.

68K/OS Reference Manual A-3 9992 .1 CST 13/1 .00

GST Computer Systems Limited
IODEFPRO

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

IODEFPRO - Define Procedure Entry Point

To define a procedure entry point without loading the
procedure from a fi l e.

DO.W IODEFPRO
D3 · B Op t ions byte
AO . L Address of the pathname string
Al.L Address of procedure entry control block

DO.W Status
Dl.W Procedure identifier

STAM Access mode not a llowed
STA'I' Illegal options byte or access type
STBADDIR Too-many or few directory components in pathname
STBADFIL Missing or unwanted filename component
STDEVICE Unknown device
STDEVSEQ Device is sequential only
STDIRECT Di rector y operations not allowed
STPMEM Heap or stack overflow
STPROC Procedure name a lready defined
STSMEM Insufficient memory to perform IODEFPRO
STSTRLEN Invalid string length
STSYNTAX Syntax error

None

The procedure entry control block must be defined by the user
and contains two fields :

(, L) Procedure entry point PEENTRY
PERAM (.W) RA ~1 requirement for procedure

The path name is only required to force through lOS S vali d­
ation (as if an IOLOAD command >!en- being processed) and is
subsequently ignored , Any valid directory device pathname i s
suitable ,

The options byte has one signi ficant bit:

OPPRor; o = data, 1 = program

f)'J')? I (:~'I' 11/1 . 00

GSI Computer Systems Limited IODELETE

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

IODELETE - Delete a File

To delete the file defined by the path name provided.

DO.W
D3·B
AO.L

DO.W

STA'J'
STBADDIR
STBADFIL
STDEVICE
STDIRECT
STEXIS'l'
STIOERR
STPMEM
STSMEM
STSTRLEN
STSYNTA);
STUSE

IODELETE
Options byte
Address of pathname string

Status

Illegal options byte or access type
Too many or few directory components in pathname
Missing or unwanted filename component
Unknown device
Directory operations not allowed
File does not exist
I/O error on device
Heap or stack overflow
Insufficient memory to execute IODELETE
Invalid string length
Syntax error
File in use

The cirectory will be read (if l'equired), updated and flushed
to disk or microdrive.

The options byte has one significant bit:

OPPROG o = data, 1 = program

A-'} gqq~ . l CoST 13/1 .00

GST Computer Systems Limited IODIRINF

ROUTINF:

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

IODIRINF - Fetch Directory Information

To fetch information about an entire directory.

DO . IV
D3 · B
AO.L
/,1. L

DO.11

STBADDIR
STBADFI L
STDEVICE
STDIRECT
STIOERR
STPMEM
STSMEM
STSTRLEN
STSYNTAX

IODIRINF
Options byte
Address of pat.hname strinl;
Address of directory data buffer (16 bytes)

Status

Too many or few directory components in path name
Missing or unwanted filename component
Unknown device
Directory operations not a llowed
)/0 error on device
Heap or stack overflow
Insufficient memory to perform IODIRINF
Invalid string length
Syntax error

If the directory is not in memory, it is read in.

The directory data buffer contains the following fields:

DIENTRY
DITOTAL
DILEFT

(.Ll Size of directory in entries
(.Ll Total space of directory in Kb
(.Ll Current space remaining in Kb

~'he options byte has one significant bit:

OPPROG o = data, 1 = program

68K /OS Reference Manual A-6 9992.1 GST 13/1.00

GST Computer Systems Limited IODISMOU

ROUTINE:

FUNCTION

INPUTS

CUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

IODISMOUNT - Dismount a Directory

To dismount a specified directory from its current unit or to
dismount the directory mounted on a specified unit.

DO.VI
Dl.L
D3·B
AO.L

DO.VI

STEXIST
STOPEN
STSYNTAX
STUNIT

None

IODISMOU
Unit number
Options byte
Address of pathname string

Status

Directory not found or not mounted
Directory has open files
Syntax error
Unit number in use or invalid

If a. directory component is included in the pathname the unit
number is ignored and the named directory is dismounted,
otherwise the directory mounted on the supplied unit number
is dismounted.

Some device drivers will be capable of automatically dis­
mounting the current directory when an IOMOUNT is requested
for the same ~nit number (particularly useful for devices
that have a maximum of one directory per unit).

The unit number is device dependent, being typically a small
integer for a disk driver (though this must not be assumed by
the user), and potentially some complex routing code for a
network.

The options byte has one significant bit:

OPPROG o = data, 1 = program

68K/OS Reference Manual A-7 9992.1 GST 13/L .OO

GST Computer Systems Limited IOEOF

ROUTINE IOEOF - End-of-File - Position Test

FUNCTION To determine whether -the current file position is equal to
the end-of-file position.

INPUTS DO.W IOEOF
D3·W Channel number

OUTPUTS DO . W Status
Dl.B Yes (non- zero) or no (zero)

STATUS CODES STCHAN Invalid channel number

SIDE EFFECTS None

NOTES For a sequentia l output file the answer is always yes.

68K /OS Reference Manual A-8 9992.1 GST 13/1 . 00

GST Computer Systems Limited IOGFl'DEV

ROUTINE

FUNCTION

IOGETDEV - Fetch Default Device String

To read either the default data or program device string into
a user buffer.

INPUTS DO .W IOCETDEV
Options byte D3·B

AO.L Address of default string buffer (minimum 11 bytes)

OUTPUTS DO.W Status

STATUS CODES STPMEM Heap or stack overflow

SIDE EFFECTS

NOTES

None

The string buffer must start on E.n even E.ddress . The buffer
length is not (anc cannot be) checked by the system. It is
the user ' s responsibility to ensure that enough space is
available.

The options byte has one significant bit:

OPPROC o ; data, 1 ; program

68K/OS Reference Manual A-9 9992.1 CST 13/1.00

GST Com puter Systems Limited IOGETDIR

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

IOGETDIR - Read Directory Information

Fetch infor mation on a. specified file or the next in a range
of files to a user bufffer.

DO.W
Dl.L
D3.B
AO.L
Al.L

DO.W
Dl.L

STBADDIR
STBADFIL
STDEVICE
STDIRECT
STEXIST
STIOERR
STPMEM
STSMEM
STSTRLEN
STSYNTAX

IOGETDIR
Magic number
Options byte
Address of pathname
Address of directory ,entry buffer (length 64 bytes)

Status
Updated magic number

Too many or few directory components in pathname
Missing or unwanted filename component
Unknown device ,
Directory operations not allowed
File does not exist
I / O error on device
Heap or stack overflow
Insufficient memory to perform IOGETDIR
Invalid string length
Syntax error

If the directory block is not in memory, it will be read in.

To search a range of filenames, wild card characters may be
contained in t.he pathname .

The magic number is used by lOSS to determine its position
during a range search. It must be set to zero fo1' the first.
call of IOGETDIR and will then be updated automatically by
subsequent calls of IOGETDIR. It must not be modified by the
user program.

The options byte has one significant bit:

OPPROG o ; data, 1 ; program

68K/ OS Reference Manual A-10 9992 .1 GST 13 /1 .00

GSI Computer Systems Limited IOGETLIN

ROUTINE:

FUNCTION

INPUTS

CUT PUTS

STATUS CODES

SIDE EFFECTS

NOTES

IOGETLIN - Read a Line

To read a line from the given channel into a user buffer of
given length.

DO.L
Dl.W
D3·W
AO. L

DO .W

IOGETLIN
Buffer length
Channel number
Buffer address

Status
Dl .W Number of bytes read

STCHAN
STEOF
STGET
STIOERR
STPART

Illegal channel number
End of file
This channel cannot be read
Hard I / O error
Partial line has filled the buffer

In most cases an STEOF status will indicate that. any further
attempts to read sequentially from that channel will fail
immediately with STEOF status a nd a zero byte count. However
this effect i s d.evice specific, and some devices (notably the
keyboard driver - KEY:) will permit further input while
continuing to l·eturn STEOF on each cali.

A norma] status from IOGETLIN indicates that a complete line
was read into the user b uffer including the terminatin g
newline character. The byte count returned in DJ a lso
includes t.he newline .

An STPART statu s from IOGETLIN indicates that the line 'las
too long for the buffer suppl ied . In thi s case the newline
is not placed in the buffer a nd the count is returned equal
to the buffer length.

An STEOF status from IOGETLIN i ndicates t.hat an end-of-file
condition was encountered by the device driver (the cause is
device specific). In t.his case the newline i s not. placed in
the buffer and the count returned is the number of bytes read.
p rior to the detection of end-of-file.

68K / OS Reference Manual A-ll 9992.1 GST 13/1.00

CST Computer Systems Limited IOGEm'OS

ROUTINE:

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

IOGETPOS - Read t he Current Fi l e Pos i t ion

To read the current position pointer for the given channel .

DO . W
D3 · W

DO . W
Dl.L

STCHAN

None

IOGETPOS
Channel number

Status
File position

Illegal channel number

This call Is valid with both sequential and random fi l es,
though with sequent ial output files t he result is simply the
end - of - file position .

68K / OS Reference Manual A- 12 9992 . 1 CST 13 / 1.00

GST Computer Systems Limited IOGETPRE

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

IOGETPRE - Fetch Default Prefix String

To read either the default data or program ' prefix string into
a user buffer.

DO.W
D3.B
AO .L

DO.W

STPMEM

None

IOGETPRE
Options byte
Address of default string buffer (minimum 46 bytes)

Status

Heap or stack overflow

The string buffer must start on an even address . The buffer
length i<. not (ane cannot be) checked by the system. It i s
the user's responsibility to ensure that enough space is
available.

The options byte has one significant bit:

OPPROG o = data, 1 = program

A-1 3 g992 .1 GST 13/1.00

GST Computer Systems Limited IOGm'RAN

ROUTINE:

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

10GETRAN - Read Random

To read a specified number cf bytes from the given (hannel at
a defined file position.

DO . 11
Dl. 11
D2.L
D3·\~
AO.L

DO.11
Dl.11

STCHAN
STEOF
STGET
STIOERR
STSETPOS
STSEQ

IOGETRAN
Buffer length
File position
Channel number
Buffer address

Status
Number of bytes read

Invalid channel number
End-of-file detected
This channel cannot be read
l-ard I/O error
Invalid file position
Channel is open for sequentia l access only

The current file position for the channel is updated by
IOGETRAN .

A normal status from 10GETRAN indicates that the number cf
bytes requested has beer, read into the user buffer. In this
case D~ is equal to the entry value.

If c. negative file position is requested, a status of
STSETPOS is returned.

An STEOF status from 10GETRAN indicates that an end-of-file
condition was detected during command execution and that a
partial transfer of zero or more bytes was carried out, the
byte count being held in Dl. Note that if a transfer of N
bytes is requested and there are N bytes remaining to be read
then an STEOF status is not returned. Note also that a start
file position greater than or equal to the current end-of­
filE' position will result in an immediate STEOF status and a.
zero byte count.

68K / OS Reference Manual A-14 9992 .1 GST 13 / 1 .00

GST Computer Systems Limited IOGRl'SEQ

ROUTINE:

FUNC'IION

I NPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

IOGETSEQ - Read Sequential

To read the specified number of bytes from the given channel.

DO.W
Dl.W
D3·W
AO.L

DO.W
Dl.W

STCHAN
STEOF
STGET
STIOERR

IOGETSEQ
Buffer length
Channel number
Buffer address

Status
Number of bytes read

Illegal channel number
End-of-file detected
This channel cannot be read
Fard I/O error

The file position pointer is maintained automatically during
sequential file access and need not be of concern to the user
(unless he is also using random access on the same channel).

A normal status from IOGETSEQ indicates that the number of
bytes requested has been read into the user buffer. In this
case D1 is equal to the entry value.

An STEOF status from IOGETSEQ indicates that an end-of-file
condition was detected during command execution and that a
partial transfer of zero or IT.ore bytes was carried out, the
byte count being held in D1. Note that if a transfer of N
bytes is requested and there are N bytes remaining to be read
then an STEOF status is not returned.

It is permissible to mix sequential and random reads from the
same channel provided only that the file was opened for
random access. In this case the position of the file pointer
csed by the IOGETSEQ call can be manipulated directly by
calls to IOGETRAN and IOSETPOS.

68K/OS Reference Manual A-15 9992.1 GST 13/1.00

GST Computer Systems Limited IOLOAD

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

IOLOAD - Load a Procedure into RAM

Load a reentrant procedure into RAM if it is not already
present .

DO.W
D3 · B
AO . L
Al.L

DO.W
Dl.W

STAM
STAT
STBADDIR
STBADFIL
STDEVICE
STDEVSEQ
STDIRECT
STEXIST
STIOERR
STNOFILE
STNOSHAR
STPMEM
STSMEM
STSTRLEN
STSYNTAX
STUSE

IOLOAD
Options byte
Address of pathname string
Address of procedure entry control block (6 bytes)

Status
Procedure identifier

Access mode not allowed
Illegal options byte or access type
Too many or few directory components in pathname
Missing or unwanted filename component
Unknown device
Device i s sequential only
Directory operations not allowed
File does not exist
I/O error on device
No room left in the Open Files List
Device cannot be shared and is in use
Heap or stack overflow
Insufficient memory to perform IOLOAD
Invalid string length
Syntax error
File in use

A rrocedure list element is created using space grabbed from
the user program 's heap.

68K / OS procedures must be reentrant and position independent,
thus if a copy of the procedure is already loaded, it need
not be fetched from the device.

If t.he procedure cannot be loaded, the PEENTRY field will be
set up to point. to an abort routine within lOSS. If this iE
called , the calling program will be a.borted via TRFINISH with
a n STNOLOAD s tatus.

The options byte has one signifi cant bit:

OPPHOG o = data , 1 = program

A-If) 999? 1 G;,T 11/1.00

GSI Computer Systems Limited IOMOUNT

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

I OMOUNT - Mount a Directory

To mount an unspecified directory on a given device unit
m· to enable the use of the specified directory on the given
device unit.

DO.W
Dl.L
D3·B
AO.L
Al.L

DO.W

STDIRECT
STEXIST
STIOERR
STMOUNT
STOPEN
STSYNTAX
STUNIT

IOMOUNT
Unit number
Options byte
Address of pathname string
Address of directory name buffer (46 bytes)

Status

Directory operations not allowed
Specified directory not found
Hard I /O error
Directory already mounted
Current directory contains open files
Syntax error
Unit number in use or invalid

When a directory is mounted, the first directory block is
read into memory and will remain slaved ir. until flushed by
some other I / O or memory management operation.

Some device drivers will be capable of automatically dis­
mounting the current directory when an IOMOUNT is requested
for the same unit number (particularly useful for devices
that have a maximum of one directory per unit). In this case
an STOPEN status can be returned if there are open files on
the directory to be dismounted.

The unit. number is device dependent, being typically a small
integer for a disk driver (though t.his must not be c.ssumed by
the user), and potentially some complex routing code for a
network .

If a directory name is specified in t.he pathname then rOMOUNT
will check that the directory found matches the one supplied,
otherwise this che c k is omitted and any directory found is
mounted, its name being, returned in the user buffer supplied.

The options byte has one significant bit :

OPPROC o = data, 1 = program

681< /05 Reference Ma nual A-17 9992 . 1 CST 13/1.00

GST Com puter Systems Lim ited IOOPEN

ROUTINI'.

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

lOOPEN - Open a Channel

To create & channel for the transfer of data betwee n the
calling program and the supplied device or file pathname .

DO.W
D3·B
AO.L

DO.W
Dl.W

STAM
STAT
STATSEQ
STBADDIR
STBADF'IL
STDEVICE
STDEVSEQ
STEXIST
STIOERR
STNOFILE
STNOSHAR
STPMEM
STSMEM
STSTRLEN
STSYNTAX
STUSE

IOOPEN
Options byte
Address of pathname string

Status
Channel number

Access mode not allowed
Illegal options byte or access type
Cannot read and write sequential simultaneously
Too many or few directory components in pathname
Missing or unwanted filename component
Unknown device
Device is sequential only
File does not exist
I/O error on device
No room left in the Open Files List
Device can~ot be shared and is in use
Heap or -stack overflow
Insufficient memory to perform IOOPEN
Invalid string length
Syntax erro,"
File in use

If a non-existent file is opened with a write access type
component, then a file of zero lengtl-, is created.

The options byte contains 5 significant bits:

OPREAD 0 read disabled, 1 = read enabled
OPWRITE 0 write disabled, 1 = write enabled
OPRAN 0 sequential access, 1 = random access
OPPROG 0 data, 1 = program
OPRDAHED 0 unbuffered, 1 = read ahead-/wri te behind

The OPRDAHED option will provide system generated double
buffering on random or sequential file I/O to certain file
structured devices . Those device drivers that support this
facility will automatically perform read ahead and write
behind operations on memory block sized units of the file.

68K/OS Reference Manual A-IS 9992 .1 GST 13/1.00

GST Computer Systems Li mited IOPUTDIR

ROUTINr.

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

IOPUTDIR - Update Directory Information

To update certain fields in the directory information for the
file defined by the given pathname.

DO.W
D3·B
AO . L
Al.L

DO.W

STAT
STBADDIR
STBADFIL
STDEVICE
STDIRECT
STEXIST
STIOERR
STPMEM
STSMEM
STSTRLEN
STSYNTAX

IOPUTDIR
Options byte
Address of pathname string
Address of directory entry buffer

Status

Illegal options byte or directory write protected
Too many or few directory components in pathname
Missing or unwanted filename component
Unknown device
Directory operations not allowed
File does not exist
1/0 error on device
Heap or stack overflow
Insufficient memory to perform IOPUTDIR
Invalid string length
Syntax error

The directory will be read (if required), updated and flushed
to disk or microdrive.

Only the following fields within the directory entry buffer
car: be updated:

DEATFILE
DECOMM

(. B) File access type
(25) String holding user comment

changes to other fields are ignored .

It is safe to call IOPUTDIR to change the directory entry
of a file that is currently open.

IOPUTDIR will normally be called to update the director..v
entry buffer fetched by a call to IOGETDIR (the register
usage is defined to make this simple), however, the user
can construct his own directory entry buffer if required.

The options byte has one significant bit:

OPPROG o = data, 1 = program

68K/OS Reference Manual A-19 9992.1 GST 13/1.00

GSI Computer Systems Limited
IOPUTLIN

ROUTINE

FUNCTION

INPUTS

CUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

IOPUTLIN - Write Line

To write a line (length not exceeding the specified number c-f
bytes) to the given channel number.

DO.W
Dl.W
D3.W
AO.W

DO.W

STCHAN
STDIRFUL "
STIOERR
STPART
STPUT

IOPUTLIN
Byte count
Channel number
Buffer address

Status

Invalid channel number
Directory full
Hard I/O error
Partial line written
Cannot write to this channel

When using IOPUTLIN with sequential access or .Titing past
the end-of-file with random access, the end-of-file pointe!"
is a.utomatiQ..ally updated.

Bytes are output to the channel until either a newline
character is sent (normal status) or the count in Dl has been
exhausted (STPART status).

Calls to IOPUTSEQ, IOPUTRAN and IOPUTLIN can be mixed on a
single 'channel provided that the file has been opened for
random access. The data is written starting from the current
file position pointer and this is advanced as usual. The
end-of-file pointer is vpdated only when the file is extended
(it is a high water mark).

68K /OS Reference Manual A-20 9992.1 GST 13/1.00

GSI Computer Systems Limited IOPUTRAN

ROUTINE

FUNCTION

IOPUTRAN - Write Random

To write the specified number cf bytes to the given file at
the defined position.

INPUTS DO.W IOPUTRAN
Dl.W
D2.W
D3·W
AO.W

Byte count
File position
Channel number
Buffer address

OUTPUTS DO.W Status

STATUS CODES STCHAN
STDIRFUL
STIOERR
STPUT
STSETPOS
STSEQ

Invalid channel number
Directory full
I-ard I / O error
Cannot write to this channel
Invalid position
Sequential access only

SIDE EFFECTS

NOTES

If the file position is greater than t.he current end-of-file
position, the file will be extended prior to writing, nUlls
being written between the old end-of-file and the starting
file position .

Calls to IOPUTSEQ, IOPUTRAN and IOPUTLIN can be mixed on a.
single channel provided that the file has been opened for
random access. The data is written starting from the current
file position pointer and thiE is advanced as usual. The
end-of-file pointer is vpdated only when the file is extended
(i t is a high water mark).

68K / OS Reference Manual A-21 9992.1 GST 13/1.00

GSI Computer Systems Limited IOPUTSEQ

ROLITINf'

FUNCTION

,NPUTS

C'UTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

IOPUTSEQ - Wri t e Sequential

To write t.he specliied number of bytes t.o the given channel
number.

OO.W
Dl.W
D3·W
AO.W

DO.W

STCHAN
STDIRFUL
STIOERR
STPUT

IOPUTSEQ
Byte count.
Channel number
Buffer address

Status

Inval id channel number
Directory full
Hard I/O error
Cannot write to this channel

When using IOPUTSEQ witt sequential access or writing past
the end-of-file with random access, the end-of-file point er
i s automatically updated.

Calls to IOPUTSEQ , IOPUTRAN and IOPUTLIN can be mixed on a.
single channel provided that the file has been opened for
random access. The data is written f; tarting from the current
file position pointer a nd this is advanced as usual. The
end-of-file pointer is updated only when the file is extended
(it is a high water mark).

68K / OS Reference Manual 9992.1 GST 13/1.00

GST Computer Systems Limited IOREADY

ROUTINE:

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

IOREADY - Poll an Input Channel

To determine whether there is input pending on the specified
channel number.

DO.W
D3·W

DO .W
Dl.B

STCHAN
STGET

None

IOREADY
Channel number

Status
Yes (non-zero) Or no (zero)

Invalid channel number
Not an input channel

If the input is received from an asynchronous device with
input arriving outside the control 'of the operating system, a
yes answer is returned if a call to read a single byte would
be satisfied immediately, otherwise & no answer is returned.
Typical devices are the keyboard, RS232 input and pipes.

If the input. is received from a synchronous device such as a
disk or microdrive file, the answer is no if the channel is
positioned at end-of-file, otherwise yes.

68K/OS Reference Manual A-23 9992.1 GST 13/1.00

GSI Computer Systems Limited IORENAME

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

IORENAME - Rename a File

To rename the file defined by the old pathname to that given
by the new pathname.

DO.W
D3.B
AO.L
Al.L

DO.W

STA~ '

STBADDIR
STBADFIL
STDIRECT
STDEVICE
STEXIST
STIOERR
STPMEM
STRENAME
STSMEM
STSTRLEN
STSYNTAX
STUSE

IORENAME
Options byte
Old pathname
New pathnamme

Status

Illegal options byte or access type
Too many or few directory components in pathname
Mi ss ing or unwanted filename component
Directory operations not allowed
Unkriown device --
File does not exist
I / O error on device
Heap or stack overfl ow
Incompatible pathnames
Insufficient memory to perform IORENAME
Invalid string length
Syntax error
File in use

The directory will be read (if I'equired), updated and flushed
to disk or microdrive.

Except for the filenames , the old and new pathnames must be
identical.

The options byte has one significant bit:

OPPROG o = data, 1 = program

68K/ OS Reference Manual A-24 9992.1 GST 13 / 1.00

GSI Computer Systems Limited
IOSETDEF

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

IOSETDEF - Set Defau l t Pathname St ring

To set either the default data or program pathname string
for the calling program.

DO . W
D3.B
AO . L

DO.W

STPMEM
STSTRLEN
STSYNTAX

IOSETDEF
Options byte
Address of default string (maximum 44 characters)

Status

Heap or stack overflow
String len gth invalid
Syntax error

The device and / or directory components of the pathname
specified will be used to replac e any respectivE, null
components in C.ny subsequent lOSS calls (by the calling
program only).

If the pathname consists of a null string, no a ction is taken
and the current defaults are retained.

If the pathname consists of a device name, then this becomes
the, new default device and the default prefh is cl eared.

If t.he pathname consists of one or more directory components,
then these become the new default prefix and the current
default device remains unchanged .

I f the pathname consists of a device, name followed b;y one or
more directory components, then t.oth t.he default 'device and
the default prefix strings are updated as specified.

The supplied pathname string must start on B.n even a.ddress.

The options byte has one significant bit:

OPPROG o = data, 1 = program

68K / OS Reference Manual A-25 9992.1 GST 13 / 1 . 00

GST Computer Systems Limited lOSETPOS

ROUTINE:

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

IOSETPOS - Set the Current Position Pointer

To define the "position jn ~ random file at which the next
write operation will start.

DO.W IOSETPOS
D2.W File position
D3. \1 Channel number

DO.W

STCHAN
STDIRFUL
STIOERR
STSEQ
STSETPOS

Status

Invalid channel number
Directory full
rard I/O error
Cannot perform IOSETPOS on sequential file
Invalid file position

If the file is open for random writing and the new position
is greater than the current end-of-file position, then the
file is extended with null bytes to the new position.

I f the file pointer i s negative, an STSETPOS status i s
returned.

68K j OS Reference Manual A-26 9992.1 GST 13/1 .00

GSI Computer Systems Limited IOSIZE

ROUTINE:

FUNCTION ----

INPUTS

OUTPUTS

STATUS CODES

IOSIZE - Determine File Size

To determine the size of the file accessed by the given
channel number.

DO.\ol IOSIZE
D3.11 Channel number

DO . \ol Status
Dl.L File size (bytes)

STCHAN Invalid channel number
STNOSIZE No size information available

SIDE EFFECTS None

NOTES For sequential output chann el s the size is equal to the
current position .

Status code STNOSIZE is returned for devices that do not
maintain end-of-file position, such as the keyboard .

68K / OS Reference Manual A-27 9992 .1 GST 13/1 . 00

GSI Computer Systems Limited IOSPECIA

ROUTINE:

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

IOSPECIA - Device Specific Operation

To perform one or more device specific operations 8. S

specified by . the device dependent parameters.

DO .W
Dl.L
D3 .B
AO.L
Al.L

DO.W

IOSPECIA.
Device dependent parameter
Options byte
Address of pathname string
Device dependent parameter

Status
Dl.L Device dependent result

STSPECIA Not allowed on this device

Device specific.

Status co·des will be device specific.

The options byte has one significant bit:

OPPROG o = data, 1 = program

68K / OS Reference Manual A-28 9992.1 GST 13/1.00

GST Computer Systems Limited IOTRUNC

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

IOTRUNC - Set End-of-File Pointer to Current Position

To truncate a file by setting the end-of-file pointer equal
to. the current position pointer.

DO.W
D3.W

DO.W

STCHAN
STIOERR
STPUT
STSEQ

IOTRUNC
Channel number

Status

Invalid channel number
Hard I /O error
Cannot write to this channel
Sequential access only

Any disk or microdrive blocks released by file truncation are
marked as free in some device dependent manner.

IOTRUNC i s not available in sequential access mode since, by
defini tion, the current position pointer is always at the
end-of-file .

68K / OS Reference Manual A-29 9992.1 CST \3 /1.00

GST Computer Systems Limited IOUNLOAD

ROUTINt

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

IOUNLOAD - Release a Procedure

To decrement the use count for the given ~rocedure a nd
release its memory if the use count drops to zero.

DO.W IOUNLOAD
Dl.W Procedure identifier

DO .W Status

STINPROC Invalid procedure identifier

The procedure list element is returned to the user's heap.

If the procedure's use count drop s to zero, the memory it
uses is released to the syst em and the procedure table entry
is deleted.

None

68K /OS Reference Manual A-30 9992.1 CST 13/1.00

CST Computer Systems Limited Operating System Calls

APPENDIX B:

OPERATING SYSTEM CALLS

68K / OS Reference Manual B-O 9992. 1 GST 13 /1 .00

GST Computer Systems Limited OSAVAIL

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

OSAVAIL - Determine the Free Stack/Heap Space

To determine . how much stack /heap "pace is still free for the
calling program.

DO .W

DO.W
Dl.L
D2 . L
D3 ·L

o

None

OSAVAIL

Status
Size of largest heap record
Total heap space available
Space between heap and stack

Always returns success status

The maximum sized heap record that can be a.llocated is the
greater of Dl and D3.

68K/OS Reference Manual 11-1 9992.1 GST 13/1.00

GST Computer Systems Limited OSBINCLK

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

OSBINCLK - Read Date and 'Time in Binary

To read the date and time in binary from the internal system
clock.

OO.W

DO .W
Dl.L

o

None

OSBINCLK

Status
Binary internal clock value

Always returns success status

The value r eturned is defined to be the number of s econds
that have elapsed since 00 :00:00 am on 1st January 19113.
Whether t he returned value is sensible depends on a correct
call to OSSETCLK to initialise t he clock.

If t.he hardware does not support a clock, a value of zero is
returned.

68K/OS Reference Manual B-2 9992 .1 CST 13 /1.00

GST Computer Systems Limited OSDF.LAY

ROUTINf:

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

OSDELAY - Delay for a Number of Clock Ticks

To suspend the calling program for a specified number (.f
system clock ticks.

DO .W
Dl.W

DO.W

o

OSDELAY
Number of clock ticks

Status

Always returns success status

All programs "ith priority lower than the caller ",-ill tend to
speed up for the duration of the delay .

The program performs a passive wait for the duration of the
delay period and consumef; no system time resources (except
the minimal overhead of handling a clock queue entry).

The clock frequency is 50 or 60Hz, depending on the hardware
clock rate.

If the del ay req~ested is zero, one or a negative number of
clock ticks, the program will be suspended until the next
clock tick.

The timing should not be relied upon for great accuracy,
particularly when the system is heavily loaded. The precise
timing will depend on .'hen (in the clock cycle) the call was
made, how ma ny clock interrupts were ignorec because of heavy
system loading and how long it takes before the scheduler is
able to restart the program. Even in a n 'idle' system, a
!'equest for an N clock tick delay will produce a delay of
between N- l and N clock ticks. To ensure a delay of at least
N clock ticks, N+l should be ' requested.

If delays are required for periods shorter than one tick or
must be accurate to within tens of microseconds the user
should perform an active wait with routine SPACTIVF: i n
supervisor mode with interrupts (lisabled.

68K / OS Reference Manual B-3 9992.1 GST 13/1.00

GSI Computer Systems Limited OSHEAPAL

ROUTINE OSHEAPAL - Allocate a Heap Record

FUNCTION To grab a record of specified size from the program ' s heap.

INPUTS

OUTPUTS

STATUS CODES

DO.W
Dl.L

DO.W
AO.L

STPMEM

OSHEAPAL
Size of record required

Status
Address of heap record allocated

Insufficient heap space

SIDE EFFECTS Too many requests for small heap records which are released
in random order are liable to cause heap fragmentation. It
is usually better ~ractice to grab heap space in ~ more
structur ed manner.

NOTES Heap is grabbed with a first fit algorithm, whi ch is fa irly
fast, but can lead to fragmentation with undisciplined use.

68K / OS Reference Manual B-4 9992.1 GST 13/1.00

GSI Computer Systems Limited OSHEAPDE

ROUTINE:

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

OSHEAPDE - Release a Heap Record

To release a heap record to the calling program's heap.

DO.II
AO.L

DO .W

o

None

OSHEAPDE
Address of' heap record

Status

/'lways returns success status

The record being returned to the heap is ~oalesced with
adjacent free records if possible.

If the address of the heap record supplied lies outside of
the heap boundaries , the command is ignored .

68K / OS Reference Manual R-5 9992.1 CST 13/,1.00

GST Computer Systems Limited OSKILL

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

OSKI LL - For ce Termi nation of a Chi ld Program

To cause the specified child program to be terminated .

DO . W
Dl.L

DO . W

S'ISTOP
STINVAL

OSKILL
Program identifier

Status

Child was already stopped
Invalid program identifier

The child program is terminated by forcing it to exec ute &
TRAP #0 instructon with the resulting side effects .

When the child program terminates jt re t urns the following
data to the parent in the program list element :

PGRETURN
PGSTATUS
PGPARMS

(.VI) · -1
(.VI) STKILLED
(46) null

Prior to termination the child program is allowed to finis h
any critical system code that it. is executing, its PC is then
modified to divert it to o. TRAP 0 instruction which perf orms
the STFINISH . It will then terminate in the same way as if
it had called STFINI SH voluntarily.

68K / OS Reference Manual B-6 9992 .1 GST 13/1 . 00

GSI Computer Systems Limited OSMEMALL

ROUTINE:

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

OSMEMALL - Allocate RAM Memory to a Program

To allocate a specified number of contiguous lKb RAM memory
blocks to the calling program.

DO.W
Dl.L
D2.W

DO .W
AO . L

STSMEM

OSMEMALL
Ownerhip information
Number of l Kb blocks wanted

Status code
Base address of a l located memory

Insufficient memory available

The memory manager will attempt to allocate a contiguous area
of memory u sing a cyclic first fit method. If there are ,
insufficient contiguous free blocks the memory manager first
attempts to release slaved blocks that are up-to-date on disk
or n icrodri ve (avoiding data transfers) . Failing this it
will force slaved blocks to disk or microdrive until there is
sufficient contiguous memory or all slaved blocks have been
released.

The value of Dl on entry should normally be the address of
the calling program ' s Program Control Block since this
ensures that the memory will be deallocated a utomatically
when the program is t erminated.

If t.he program wis hes :t.o use memory in a. non-standard way, Dl
may contain a ny value that the user progran. requires, but
this value must be remembered by the user program or passed
to any child program that is inheriting the memory" to enable
its subsequent rel ease .

68K/OS Reference Manu~l B-7 9992.1 GST 13/1.00

GSI Computer Systems Limited OSMEMDA

ROUTINf:

FUNCTION -----

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

OSMEMDA - Deallocate Memory by Ownership Information

To deallocate all memory blocks that are allocated to the
speci fi eel owner .

DO.VI OSMEMDA
01. L O,mership information

DO.L St atus

o Always returns success status

None

This is the recommended function for the release of memory
that. has a. non-standard ownership value . AlJ. memory blocks
allocated to the specified owner are marked as free.

68K / OS Reference Manual B-8 9992.1 GST 13/1.00

GST Computer Systems Limited OSMEMDS

ROUTINE

FUNCTION

INPUTS

CUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

OSMEMDS - Deallocate Memory by Address Range

To deallocate ' the specified number of l Kb blocks starting at
the address provided.

DO.IV
D2.1V
AO.L

DO.I<

o

OSMEMDS
Number of lKb blocks to deallocate
Base address of memory to be deallocated

Status

Always returns success status

If the parameters c.re incorrect it is possible to deallocate
another program's memory, with drastic side effects.

This js c.n c.lternative function to OSMEMDA to deallocate
memory allocated with OSMEMALL or OSMEMOIVN.

E,8K/OS Reference Manual B-9 9992 .1 GST 13/1.00

GSI Computer Systems Limited OSMEMOWN

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

OSMEMOWN - Change Memory Ownership Information

To change the owner information associated with &. specified
range of contiguous blocks .

DO.W
Dl.L
D2.W
AO . L

DO .L

o

OSMEMOWN
New ownership information
Number of blocks to be affected
Base address of allocated memory

Status code

/Ilways returns success status

This command is capable of changing the, memory allocation of
t he entire system &.nd thus should be used with great care, to
avoid some of the more drastic side effects, the most likely
being memory remaining in use after the calling program is
terminated.

This call can be used to pass memory blocks to a child
program from its parent, in which case it i s recommended that
the address of the child program 's Program Control Block is
held in Dl, to ensure automatic deallocation when the child
program is terminated.

68K / OS Reference Manual 8-10 9992.1 GST 13 /1 .00 .

GSI Computer Systems Limited OSMENDIS

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

OSMENDIS - Display Fixed Menu Data and Initialise Fields

To clear the display file, copy the fixed menu data into it
and initialise the variable data fields.

DO .W
AO.L
Al.L
A2.L

DO.W

STMURAM
STSYNTAX

OSMENDIS
Menu display file address
Menu variable data buffer address
Menu fixed data buffer address

Status

Variable data space insufficient
Syntax error i n fixed menu data

This command displays a menu on the screen using standard DFM
calls with their associated side effects.

The variable data buffer is split up into fields (as defined
in the fixed menu data) each of which contains a string whose
length \wrd is set to z.ero.

The variable data buffer must be large enough to hold all the
variable fields. This entire buffer is 0, string whose l ength
word must be intitialised by the user and must. lie on a wore
boundary. No other initialisation is required.

The effect of this command is to provide all the intial­
isation required t.o enable successive calls t.o OS~1ENRD to
fetch the user's input to the variable fields , However, t.o
call OSMENRD, at least one variable field must be present.

68K/OS Reference Manual B-ll 9992 .1 GST 13/1.00

CST ~ompute r Systems Limited OSMENGET

ROUTINE:

FUNCTION ----

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

OSMENGET - Read Menu Field f rom Variable Data Structure

To r ead a s pec ified fi e ld from the menu variable data
s tructure into the s uppli ed huffer.

DO.¥!
AI. L
A2 .B
P.3·L

DO.¥!

OSMENGET
Menu varia ble data structure address
Field number
Buffer address

Status
Dl.B Fi e ld attributes

STMUFLD Invalid me nu field number

None

The screen menu need not be displayed when calling OSMENGET,
the menu variable data structure being sufficient. This
enables t.he variable data structure to be used as a parameter
passing mechanism between programs .

The buffer must be large enough to accept t he entire contents
of the field in string format.

68K / OS Reference Manual R- 12 9992.1 CST 13 / 1 . 00

GSI Computer Systems Limited OSMENPUT

ROUTINE:

FUNCTION ----

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

I

OSMENPUT - Redisplay a Variable Field

To update a menu variabl e field on the screen a nd in th e
variable data structure.

DO .W
Dl.B
D2 .B
AO.L
Al.L
A3·L

DO.W

STMUFLD
STSTRLEN

OSMENPUT
Field attributes
Field number
Menu di splay file addresE
Menu variable data structure address
Address of string containing new field contents

Status

Invalid menu field number
String t oo l ong for menu field

The screen is updated with standarc DFM calls with their
associated' side effects .

This call cae be used to display a prompt or error message in
a particular field of the menu and to change the field
attributes associated with a given field.

68K/ OS Reference Manual 8-13 9992.1 GST 13/1 .00

GSI Computer Systems Li m ited
OSMENRD

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

OSMENRD - Read User Input t o Menu

To handle all aspects .of keyboa rd input, screen output and
data capture associated with user interaction with o. screen
menu.

DO.VI
Dl.W
D2 . B
D3·W
AO.L
Al.L
A2 . L

DO.W
Dl.B
D2.B

STMUFLD

OSMENRD
Keyboard channel number
Field number at which to position cursor
Allowable function codes
Menu display file address
Menu variable data buffer address
Option list display file address

Status
Terminating function code
Field number at which cursor is positioned

Invalid menu field number

This command updates the screen using standarc DFM calls and
reads the keyboard using standard IOSS calls, with their
associated side effects.

OSMENRD accepts keyboard input and will output characters to
the screen in the current field, handling the specific line
imaging functions available on t.he keyboard (usually delete
character and delete field). Forward and backward tab
functions a.re used to move the cursor between fields. (Note
that a.ny scrolling required is p erformed automatically by
DFM.)

The option :'ist display file may be omitted by setting A2 to
zero. This display file contains a. list of options (one per
line) which may be selected by using the vertical cursor
movement keys and the ESCAPE key to copy it intc the current.
menu field: (Scrolling is s.gain handled by DFM .)

User inpu't tc the menu is terminated by one of up to sixteen
function codes as defined by set bits in positions 0-15 of D3
representing the RETURN (or NEWLINE or ENTER) key and
function keys Fl to F'15 respectively. Where there are l ess
than fifteerc function keys, these codes may be generated by
some implementation specific combination of SHIFT and CONTROL
functions .

The fields in the menu variable data structure are updated by
OSMENRD and are read and modified by OSMENGEl' and OSMENPUT.

68K / OS Reference Manual R-14 9992.1 GST 13/1.00

GST Computer Systems Limited OSSF.'I'CLK

ROUTINE:

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

OSSETCLK - Set Date and Time in Binary

To set the hardware date and time clock to the specified
(binary) value.

DO . W OSSETCLK
Dl . L Date and time

DO.W Status

o Always returns success status

None

The value is define d to be the number cf secon ds that have
elapsed since 00:00:00 am on 1st January 19R3.

If the hardware does not support a clock, the comman d i s
ignored.

68K / OS Reference Manual B-15 9992 . 1 CST 13/1 . 00

GST Co mputer Systems Lim ited OSSTART

ROUTINE:

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

OSSTART - Load and Start a Program

To create the program data structures,
RAM for the program ' s stack and heap,
cedure if it is not already ~resent and
the defined state.

obtain t.he specified
load the named pro­
start the program in

DO.W
Dl.W
D2 . B
D3 · B
D4 . B
AO . L
Al.L

DO .W
Dl.L

STAM
STAT
STBADDIR
STBADFIL
STDEVICE
STDEVSEQ
STDIRECT
STEXIST
STIOERR
STNOFILE
STNOSHAR
STPMEM
STSMEM
STSTRLEN
STSYNTAX
STUSE

OS START
RAM size required
Pri ority relat i ve to t he calling program
Data or program default indicator (see IOSETDEF)
Program state (0 = ready, otherwise suspended)
Address of path name string
Address of parameters string

Status
Program identifier

Access mode not allowed
Access type not allowed
Too many or few directory components in pathname
Missing or unwanted filename component
Unknown device
Device is sequential only
Directory operations not allowed
File does not exist
I / O error on dev i ce
No room left in the Open Files List
Device cannot be shared and is in use
Heap or stack overflow
Insufficient memory to perform OS START
Invalid string length
Syntax error
~'ile in use

OSSTART calls IOGETDIR, OSMEMALL and IOLOAD and exhibits
their side effects. Also a program list element is created
on t.he user 's heap .

RAM is grabbed by IOLOAD for the procedure code if it is not
already loaded. RAM grabbed by OSMEMALL for the program 's
stack and heap is defined in Kb in Dl "and/or in the procedure
entry control block, the greater of these values being used.

The bottom three bits of D2 are subtracted from the calling
program's priority to give the chUd 's priority.

Al points to a string in ,,'hich free format parameters to the
chUd program may be passed.

68K / OS Reference Manual p.-16 9992 .1 GST 13/1 . 00

GST Computer Systems Limited OSSTATUS

ROUTINE: OSSTATUS - Det e rmine Progr am Status

FUNCTION Do determine whether a child program is still'running,

INPUTS DO,VI OSSTATUS
Dl.L Program identifier

OUTPUTS DO.W Status

STATUS CODES STSTOP Child program has stopped
STINPROC Invalid program identifier

SIDE EFFECTS None

NOTES A zero status indicates that the child program i s still
running.

This call enables a program to poll a child program to
determi ne completion . If a program must wait for a child to
finish, it is more efficient to use OSWAlT.

68K / OS Reference Manual R-17 9992.1 CST 13'/1.00

GST Computer Systems Limited OSTRAP

ROUTINE:

FUNCT.ION

INPUTS

CUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

OSTRAP - Define User Trap Routine

To define c.n exception trap vector to the specified address
for the given trap number .

DO.W
Dl.W
AO.L

DO . W

STEXCEPT
STINTRAP

None

OSTRAP
Name of exception trap
Address of user trap routin~

Status

Invalid exception routine
Invalid trap routine address

The following exceptions can be vectored to user routines:

EAADDRES Odd address
EAILLEGA Illegal instruction
EADIVIDE Divide by zero
EACHKINS Array bound violation
EATRAPV Arithmetic overflow
EAPRIV Privileged instruction
EATRACE Trace mode exception
EAALINE A-line exception
EAFLINE F-line exception
EATRAP4 User trap 4
EATRAP5 User trap 5
EATRAP6 User trap 6
EATRAP7 User trap 7
EATRAP8 User trap 8
EATRAP9 User trap 9
EATRAP10 User trap 10
EATRAPll User trap 11
EATRAP12 User trap 12
EATRAP13 User trap 13
EATRAP14 User trap 14
EATRAP15 User trap 15

The user program may call OSTRAP as often as it likes for the
same exception , subsequent calls overwriting the previous
exception vector with the new one.

To disable a user trap routine, AO should contain zero, but
use of this facility may make it impossible to run the
program with a debugger (which may wish to handle exceptions
in Cl special way).

68KjOS Reference Manual B-18 9992 .1 GST 13/1.00

GST Computer Systems Limited OSWAlT

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

OSWAlT - Wait for a Child Program to Finish

To suspend the calling program until the specified child
program has finished.

DO.W
Dl.L

DO.W

OSWAlT
Program identifier

Status code
AO.L Address of program list element

STINPROG Invalid program identifier

The calling program is suspended.

The program list element contains the following fields of
interest to the user:

PGRETURN
PGSTATUS
PGPARMS

(. W) Return code
(.W) Status code
(46) Return string

These provide the calling program with tnformation concerning
the termination of the child program.

When the parent program has finished with its child's program
list element it should dispose of it using OSHEAPDE .

68K/OS Reference Manual R-19 9992.1 GST 13/1.00

GSI Computer Systems Limited Display File Manager Calls

APPENDIX C:

DISPLAY FILE MANAGER CALLS

68K/OS Reference Manual C-O 9992.1 GST 13/1 . 00

GSI Computer Systems Limited DMALLOC

ROUTINE:

FUNCTION ----

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECT~

NOTES

DMALLOC - Allocate Space f or a Display File Record

To allocate sufficient space from the display file ' s own heap
for a new display file record,

DO . H DMALLOC
Dl . H Size of record required
AO.L Display file base address

DO .H Status
Dl.H Size of record allocated
D2.\1 Record address (offset from DFBA)

STDFFULL Ilisplay file full

If a user hook routine· has been installed by a call to DMHOOK
and the display file is full, the user hook routine "ill be
called to scroll sufficient. lines to the top f ile until space
fo r the new record has been made available . Any status codes
returned by the user hook routine are passed to the calling
program by DMALLOC .

DMALLOC will not normally be called by a user program, being
a by-product of other DFt,j commands. It is provided as a user
callable func tion for use in c. user lwok routi ne when reading
dat.a into a display file.

The ,·alue returned in D2 is 8.n offset on the display file
base address and must be added t.o t he value in AO, or used in
the displacement addressing mode (AO,D2. (1), if a pointer to
the space record i s te· be formed .

The contents of the new r ecord are undefined. If a preformed
string is to be copied into the record t.hen the first word of
t.he record must be E.et t o the length e,f the string .

The size of record allocated will be greater than or equal to
the size requested a n d will allow a variable amount of data
insertior. before a larger record is required to accommodate
the dat.a. Cont.rol of r ecord size is invisible t.o the user.

68K / OS Reference Manual C-l 9992 .1 GST 13/1 .00

GST Computer Systems Limited DMCURDIS

ROUTINE:

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

DMCURDIS - Disable Cursor in Display File Window

To disable and hide the cursor in the specified displa y file
window.

DO. \01

AO . L

DO .W

o

DMCURDIS
Display file base address

Status

I,lways returns success status

If the (disabled) cursor is moved horizontally out of the
window then t.hat window will not scroll horizontally unless
the cursor is reenabled.

DMCLJRDIS is provided to di sable the display of a cursor in
any w!.ndow that requires no user interaction (such as a helI=
menu or heading window). It can also be lOsed to hide the
cursor temporarily to avoid excessi ve cursor movement on the
screen in a complex update.

Note that although horizontal scrolling will be suspended
while the cursor is disabl ed, vertical scrolling will be
carried out as i f the cursor were visible.

A count of DMCURDIS calls is maintained and an equal number
of DMCURENA calls must be made to reenable the cursor.

68K / OS Reference Manual C-2 9992.1 CST 13 /1.00

GST Computer Systems Limited DMCURENA

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

DMCURENA - Reenable Cursor i n Display Fi l e Window

To reenable the disp"lay of the cursor in t.he snecifie'l
display f ile window .

DO.W
AO.L

DO.W

o

DMCURENA
Display file base address

Status

Always returns success status

If the cursor has been moved horizontally out of the window
while disabled, the window will scroll horizontally to
display the cursor .

DMCURENA is provided to reenable the cursor after having been
disabled by DMCURDIS .

A count of DMCURDIS calls is maintained and an equal number
of DMCURENA calls must be made to reenable the cursor.

68K /OS Reference Manual C-3 9992 .1 GST 13/1.00

GSI Computer Systems Limited
DMDELCIIR

ROUTINE:

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

DMDELCIIR - Delete Character

To delete a character from a display fi l~ at the current
cursor position.

DO.W
AO . L

DO.W

STDFINV

None

DMDELCHR
Display file base address

Status

Cursor is at end of line

The character at the cursor position is deleted and the
remainder of the line (if any) scrolled left .

If the cursor is at end of line an STDFINV status code is
r eturned .

68K / OS Reference Manual c-4 9992.1 GST 13/1.00

GST Computer Systems Limited DMDELCMD

ROUTINE: DMDELCMD - Delet e Screen Driver Command

FUNCTION To delete a two-byte screen driver command from a di splay
file at the current action pointer posi t ion .

I NPUTS DO . VI DMDELCMD

OUTPUTS DO . VI Stat us

STATUS CODES STDFI NV AP not pointing at first command byte

SIDE EFFECTS None

NOTES None

68K / OS Reference Manual C- 5 9992 .1 CST 13/1 .00

GSI Computer Systems Limited DMDELLIN

ROUTINE:

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

DMDELLIN - Delete Line from Display File

To delete the line containing the cursor from the display
file.

DO.W
AO.L

DO.W

DMDELLIN
Displ ay file base address

Status

As returned from the user hook routine

If the line is displayed on the screen, the lines belo~ it
are scrolled up c .. utomaticaUy. Scrolling may invoke the user
hook routine (if one has been installed) and as a result may
generate the associated system or user defined status- codes .

If thA line to be deleted i s not the last line of the file,
the cursor is l eft a t the start of the line below.

When deleting is the last line of an extended display file,
the cursor is left at t he start of t.he line before B.nd
previous lines may be scrolled down .

When deleting the only line in a display file, the line is
blanked and the cursor moved to the start of line.

68K / OS Reference Manual c-6 9992.1 CST 13/1.00

GSI Computer Systems Limited DMDISABL

ROUTINE:

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

DMDIS'ABL - Suspend Dis play File Wi ndow Update

To suspend screen Lpdating for th e specified display file
window .

DO.W
AO . L

DO . W

o

None

DMDISABL
Display file base address

Status

Al ways returns success status

DMDISABL is provided to temporarily switch off screen window
repainting during a long a nd complicated series of display
f ile updates (such as t.he rejustification of a paragraph in 2 .

word processor) . This will save time (a voiding mult i ple
repaints of the same line) a nd will make the sc r een c.ppear
l ess busy.

68K/OS Reference Manual C-7 9992 .1 GST 13 /1 . 00

GST Computer Systems Limited DMENABLE

ROUTINE:

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

DMENABLE - Resume Display File Window Updates

To resume scree n updating for the specified display file
window .

DO.VI
AO.L

DO .VI

o

DMENABLE
Display file base address

Status

{,lways returns success status

DMENABLE will only update those screen lines whic h have
changed or moved s ince screen updates were switched off by a
call to DMDISABL.

DMENABLE is provided to resume screen output after i t has
been suspended by a previou s call to DMDISABL fo!" the same
display file.

68K / OS Reference Manual C-8 9992 . 1 CST 13/1 . 00

GST Computer Systems Limited DMFIXDF

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

DMFIXDF - Ensure Display File Window is Visible

To ensure t·hat part of the window associated with the
specified display file remains displayed within the callin g
program's screen "artition.

DO.W
AO.L

DO.W

STDFINV

DMFIXDF
Display file base address

Status

The display file is not displayed in a window

The cursor associated with the specified display file window
flashes and is kept visible within the screen partition st
all times unless the virtual screen is metascrolled through
the partition by direct user commend . Even then, the next
display file update will cause an automatic metascroll to
reveal the cursor a.gain.

This function is provided to enable the programmer to specify
which window in. a multi-window virtual screen remains visible
wi thin the partition despite any scrolling that may occur.

If r MFIXDF j s not called or is called with AO = 0 then all
the display file windows are deselected and subsequent DFM
commands will scroll the virtual screen through the partition
ae DFM thinks fit.

If a new display file window is created as a result of e.n
IOOPEN call to KEY: or SCREEN: then this will automatically
be fixed within the partition by lOSS.

68K/OS Reference Manual 9992.1 CST 13/1.00

GST Computer Systems Limited DMFLUSH

ROUTINE:

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

DMFLUSH - Flush Display File Text with User Hook Routine

To copy the contents of the displ ay file and the bottom file
tc the top file using the user hook routine.

DO.W
AO.L

DO . W

DMFLUSH
Display file base address

Status

As returned by the user hook routine

As generated by the user hook routine

This routine is automatically invoked by both DMKILWIN - and
DMKI LLDF, but is provided to enable the calling program to
have greater control of error conditions (such as e_ full disk
or mierodrive) that may occur when calling the user hook
routine.

If an error is detected by DMFLUSH via the user hook routine,
the calling pr.ogranl should deal with the error (if possible)
prior to calling DMFLUSH c._gain .

Because the bottom fil e is copied to the top file via the
display file , it is recommended that DMDISABI, is called prior
to the call of DMFLUSH. This "'ill disable the window update
and allow the process to execute much faster.

Once DMFLUSH has returned a success stat us , t he display file
w:il:. be unusabl e until DMRESET has been called (and DMENABLE
if DMDISABL was called).

68K / OS Reference Manual C-lO 9992 .1 CST 13/1 .00

GSI Computer Systems Limited DMGETCUR

FUNC,['ION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

DMGETCUR - Get Curs or Position

To fetch the current position of the cursor wi thin 8 . display
file .

DO.\1
P.O. L

DO . \1

DMGETCUR
Di splay file base address

Status
Dl .1-I Line Number
D2 . \1 Character position

o fllways returns success status

None

The cursor position is returned in t.erms of line number a.nd
character position . Line 0 is t he top of the display file
and posit ion 0 is t.he first character in a. line.

68K/OS Reference Manual C-11 9992.1 GST 13/ 1 . 00

GST Computer Syste'ms Limited DMllOOK

IX PUTS

2~' 1?~'TS

S':'AT:.JS CODES

SIDE EFFECTS

NOTES

DMllOOK - Install User Hook Routine

To define the addre s s of a user written routine that will
handle ext en deC. scrolling fron: the display file to and from a
t,acking medium s uch as floppy disk, and is invoked by DFM,

DO.IV DMHOOK
AO.L Display file base address
ALL Address of user hook routine
A2 . L Address of user data block

DO . IV Status

0 Always returns success status

Once the user hook routine has been defined, any calls tc DFM
that would cause lines to scroll on or off the top or bottpm
of a full display file will invoke the user hook routine.

DMHOOK can be called more than once for the same display file
to install a different hook routine, to handle closedown for
example. Setting Al ; 0 will disable the user hook routine.

IVhen reading into the display file the user hook routine must
call DMALLOC to grab space for the data string . Note that
DMALLOC itself might invoke the user hook routine which must
cop e with one level of recursion.

When writing from the display file, the user hook routine
~U Et simp:y p-cc e 3 ~ t~£ data line it is given, the display
f ile space being reclaimed automatically by DFM.

',/hen 'closing ' a display file, use DMFLUSH to flu~h all data
f r o,,", t he display file and the bottom file to the top file.

~ntry parameters to the us er hook routine from DFM are:

DO, B
D1. B
D2 . L
AO, L
AI. L
A2 . L

o ; read line, otherwise write line
o = top file, otherwise bottom file
Display file line number
Display file base address
Data string address (write only)
User data block address

These registers are returned, the others must be preserved:

DO.IV
ALL

o ; success, otherwise status code
Data string address (read only)

68K jOS Reference Manual C-12 9992.1 GST 13 / 1.00

GST Computer Systems Limited DMINITDF

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

DMINITDF - Initialise Display File

To allocate memory (if requested) for a display file and to
initialise the data. structures associated with it.

DO.W
Dl.W
D2.B
D3·B
AO.L

DO.W

DMINITDF
Number of bytes required
Window foreground and background colours
Window parameters
Zero or address of preallocated space

Status
AO.L Display file base address

STPMEM Insufficient heap memory

If AO contains zero then the number of bytes specified is
grabbed from the calling program 's heap, otherwise the memory
is assumed to have been preallocated with OSMEMALL.

The display file is initialised as an empty structure
preceded by a display file control block (which is itself
initialised with the parameters supplied).

Colours are specified as numbers in the range 0-7 as follows:

0 Black
1 Blue
2 Red
3 Magenta
4 Green
5 Cyan
6 Yellow
7 White

Bits 6-4: .background colour
Bits 2-0: foreground colour

The window parameters are bit numbers as follows:

DFLNOSCR
DFLWRAP
DFLDISPO

Scroll (0) or metascrolJ. (1) to keep cursor visible
Scroll (0) or wrap (1) at horizontal edge of window
Scroll (0) or dispose of (1) lines from top of DF

The empty display file is not displayed in the window at this
stage but by the DMNEWWIN command.

68K/OS Reference Manual C-13 9992.1 GST 13/1.00

GSI Computer Systems Limited DMINITVS

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

DMINITVS - Initialise Virtual Screen

Create an empty virtual screen and a corresponding screen
partition for the calling program.

DO.W
Dl.W

DO.W

STPMEM
STDFINV

DMINITVS
Number of lines required

Status

Insufficient heap memory
Invalid request

A virtual screer. control block is created on the calling
program 's heap a.nd a corresponding blank screen partition is
created at the bottom of the screen . Pointers to the VSCB
and the partition are stored in the program's PCB.

DMINITVS will attempt to grab for the new partition the same
number of lines as requested for the virtual screen by taking
lines from the previous partition. If this shrinks to one
line then lines are taken from the partition previous to
that, and so on until either the requested number of lines
has been obtained or all previous screen partitions have been
reduced to one line.

A line in this context refers to a line of characters, the
precise number of raster lines for this being implementation
dependent.

A program is allowed one virtual screen . If an attempt is
made to create a second virtual screen or there is no screen
space available for the partition (there are already as many
partitions as screen lines), an STDFINV status is' returned.

68K/ OS Reference Manual c-14 9992.1 GST i3/1 .00

GST Computer Systems Limited DMTNSBLK

ROUTIN]<:

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

DMINSBLK - Insert a Block

To insert a bloc k in & display fil e at th e current c ur s or
pos ition.

DO . W
D1. W
AO .L
ALL

DO . \,

DMINSBLK
Byte count to insert
Display file base address
Address of block buffe r

Status
Dl.W Byte count insertee

STDFFULL fispla y fi l e ful l

The user hook routine rna, be invoked by this routine and may
return s ystem cr use r defined status eodes .

The bl ock may conta in a mixture of displaya ble cha rac ters ,
newline codes or two-byte screen driver comma nds .

If the block contains newline codes then it will be inserted
i n sections over the required number of lines .

After insertion the cursor is positioned on the first
char acter position to the right of the inserted block.

If the inserted block would cause the curso!' to move off the
right hand edge of the window, then if 1.he WRAP condition is
set (see DMINITDF) the line will be split at the edge of the
;,indow and a new line E.tarted , otherwise the window is
s crolled l eft .

'Th e number of bytes actually inserted is returned in Dl to
allow for retries in the event of a recoverable status
condition. The state of the display may be undefined until a
success status is achieved.

68K/OS Reference Manual C-15 9992 .1 GST 13/1 .00

GST Computer Systems Lim ited DMINSCHR

r{OUTTNfo:

l'UNC'l'ION

INPUTS

OUTPUTS

STATUS CODES

SIDE El'FECTS

NOTES

DMINSCHR - Insert Character

To insert a character in a display file line at the current
cursor position.

DO,VI
Dl.B
AO,L

DMINSCHR
Character code
Display file base address

DO,VI Status

STDFFULL I>isplay file full

The user hook routine may be invoked and may return system or
user defined status codes.

Only displayable characters in the range $20-$7F shoul d be
inserted , The results of inserting characters outside this
range are undefined,

Characters are inserted at the cursor position, the remai nder
of the line' being scrolled right. If the cursor is at the
right-hand edge of a window prior to insertion, then if t.he
VlRAP condition is set (see DMINITDF) the line will be split
after the inserted character, otherwise the window will be
scrolled left ,

(,8K/OS Reference Manual c-16 9992.1 GST 13/1.00

C'ST Computer Systems Limited DMINSLIN

ROUTIN~:

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

DMINSLIN - Insert Line in Display File

To insert a new line into the specified display file.

DO.W
AO . L
Al.L

DO .W

STDFFULL

DMINSLIN
Display file base address
Addr ess of text string to be inserted

Status

Display file full

If the new line is displ ayed on the s creen, lines below it
will be sc rolled down auto matically . Scrolling may invoke
the user Look routine (if one has been ins talled) and as a
result may generate the associated system or user defined
status codes .

The line j.s inserted immediately above the line containing
the cursor. ThE' position of the cursor after line insertion
is unchanged .

The text string to be inserted must not contain a newline
code .

68K / OS Reference Manual C-17 9992 .1 GST 1311 .00

GST Computer Systems Lim ited DMINSSTR

ROUTINE

FUNCTION

I"PUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

l\'OTES

DMINSSTR - Insert a String

To insert a string in R display f ile at the current cursor
position.

DO.VI
AO.L
Al.L

DO.H

STDFF'ULL

DMINSSTR
Di splay file base address
Address of string

Status

Display file full

The user took routine may be invoked by this routine and may
return system or user defined status codes.

The string may contain a mixture of displayable characters,
newline codes or two-byte screen driver commands. The string
bytecount is not inserted into the display file.

If the string contaim; newline codes then the string will be
inserted in sections over the required number of lines.

After insertion the cursor is positioned on the first
character position to the right of the inserted string.

If the inserted string would cause the cursor to move off the
right hand edge of the window, then if the VlRAP condition is
set (see DMINITDF) the line will be split at the edge of the
,'indow and a new line started , otherwise the window is
scrolled left.

Failure of C'MINSSTR may leave t.he display file in C.n un­
defined st.ate .

68K/OS Reference Manual c-18 9992.1 GST 13/1.00

GSI Computer Systems Limited DMJOIN

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

DMJOIN - Join Two Lines Together

The line which contains the cursor is joined with the line
immediately beneath it (if any).

DO.W DMJOIN
AO.L Display file base address

DO.W Status

STDFFULL Display file full

Lines below the pai!' that are joined are automatically
scrolled up. Scrolling may invoke the user hook routine (if
one has been installed) and as a result may ge nerate the
associated system or user defined status codes.

Before the DMJOIN call, the cursor can be in any position in
the line. After the DMJOIN call, the cursor is pl aced at the
join position (on what had been the first character of the
second line).

68K/OS Reference Manual C-19 9992.1 GST 13/1.00

GST Computer Systems Limited DMKILLDF

ROUTINE:

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

DMKILLDF - Release Display File and Associated Window

To flush display file text to its top output file (if a.ny),
to realease any space grabbed from the calling program's heap
,,·hen the display file was created, and to coalesce its >Iindow
with the parent window.

DO.W
P,O.L

DO.W

STDFINV

DMKILLDF
Display file base address

Status

Window cannot be deleted

If the display file has a t op output file the routine DMFLUSH
will be used to flush the text. This calls the user hook
routine defined by DMHOOK which may return system or user
defined s tatus codes .

I f the display file was created from the calling program's
heap (see DMINITDF) then space is returned to the heap.

If t he display file was being displayed in a window of the
calling program's virtual screen, DMKILWIN is called to
coalesce this window with its parent window (from which it
was created by DMNE\O/WIN). If this fails, DMKILWIN may return
STDFINV or user t.ook status codes.

DMKILLDF is the recommended method of releasing display files
and tidying up ohe associated files, data structures and
screen areas.

The ·use of DMNEWWIN to create multiple windows will generate
a tree s tructure of parent to child window relationships. In
order to unwind this nesting correctl y windows must be killed
by DMKILLDF in reverse order of creation.

68K /OS Reference Manual C-20 9992.1 GST 13/1.00

GSI Computer Systems Limited DMKILWIN

ROUTINE:

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

DMKILWIN - Delete Screen Window

To remove the specified window from the calling program ' s
virtual screen.

DO.VI
AO . L

DO.VI

S'IDFINV

DMKI LVIIN
Display file base address

Status

Vlindow cannot be deleted

If the display file was being displayed in a windo" of the
calling program ' s virtual screen', DMKIL\HN will attempt to
coalesce this window with its parent window (from which it
,las created by DMNEVlVlIN). If t.his fails, DMKIL\HN may return
STDFINV or user hoo~ status codes.

The use of DMNEWWIN to create multiple windo;ls Hill generate
a tree structure of parent to child win do" relationships . In
order to unwind this nesting correctl y windows must be killed
by DMKIL\-lIN in reverse order of creation.

68K/OS Reference Manual C-21 9992.1 CST 13/1.00

GSI Computer Systems Limited DMMARK

ROUTI NE

FUNCTfoN

INPUTS

CUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

DMMARK - To Set a Marker

To define a marker point at the current cursor position .

DO .W
Dl.B
AO . L

DO . VI

o

None

DMMARK
Marker number (0-7)
Display file base address

Status

Always returns success status

If t he marker number is outside the range 0- 7, the result is
undefined .

68K /OS Reference Manual C-22 9992 .1 CST 13/1.00

GST Computer Systems Limited DMMKPOS

ROllTJ:NE DMMKPOS - Fetch Marker Position

FUNCTION To fetch the position of the specified marker position.

INPUTS DO .W DMMKPOS
Dl.B
AO .L

Marker number (0-7)
Display file base address

OUTPUTS DO .W Status
Dl. W
D2.W

Line number
Character position

STATUS CODES 0 Always returns success statuE.

SIDE EFFECTS

NOTES

None

A marker ,,-umber outside the range 0-7 will return undefined
results.

Line 0 is the first l ine of the display fi le, position 0 is
the first character in the line. Undefined markers are
returned as position 0,0.

68K/OS Reference Manual C-23 9992.1 GST 1 3/1.00

GST Computer Systems Limited DMMOVECU

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS -------

NOTES

DMMOVECU - Move Cursor

To move the cursor in the given cirection or to the specified
market· position.

DO.W
D1.B
AO.L

DO.W

STDFINV

DMMOVECU
Movement specifier
Display file base address

Status

Invalid movement specifier

The user hook routine may be invoked and may return system or
user defined status codes.

If the cursor is moved out of the window, then the window is
scrolled in the required direction until the cursor is
visible again .

The movement specifier can have the following values:

0-7 Move to marker 0-7
CH.CURU Move up one line
CH .CURD Move down one line
CH.CURL Move left one character
CH.CURR Move right one character

I-lhen moving the cursor up or down onto a line shorter than
the current line and to c. position that would be past the end
of line, the cursor will be positioned at the end of line.

If a move left or right is requested and the cursor i " at the
start or end of line, then the command is ignored.

When the cursor is moved, the action pointer is moved to the
same position .

68K/OS Reference Manual c-24 9992 .1 GST 13/1.00

GST Computer Systems Limited DMNEWWIN

ROUTINl:

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

DMNEWWIN - Add a Window t o the Vi rtual Screen

To create ',he initial rectangular "'indow in c< virtual screen
or to split the rectangular window associated wittl the parent
display file i nto two smaller rectangles 6.S specified and to
associate the new display file with one of these windows .

DO.W
Dl.vl
D2.W
AO . L
Al . L

DO.W
D1.W
D2 . W

STDFINV

DMNEWWIN
Orientation
Window size
Display f i le base address
Parent display file base address

Status
Window width in characters
Window depth in line,;

New window too large

If there are insufficient lin es in the new display file to
fill t .he new window and a user hook routine has been defined
for the new window by DMHOOK, then it will be called tv read
lines from the bottom file into the display file until the
window is full. O J' no morF: lines are available.

If this Is the first window to be created in the virtual
screen then the parameters in Dl, D? and A] are ignored and
the dimensions of the virtual screen are returned in Dl and
D2.

If 1.he orientation Is vertical (Dl=O), the parent window is
split vertically witt. the absolute value of D2 specifying thE'
width (in characters) of the new window. If D2 is positive,
thp. new windQl, is createc. on the left, otherwise it. is
created on the right.

If t.he orientation is horizontal (Dl;fO), the parent window is
split horizontally with the absolute value of D2 speCifying
the depth (in lines) ' of the new window. If D2 is positive,
the new window is created at the top, otherwise it. is created
at t he bottom.

The use of DMNEW\HN to create multiple windows will generate
a tree structure of parent to child window' relationships. In
order to un\,ind this nesting correctly windows must be r.illed
by DMKIL\lIN in reverse order of creation.

68K/OS Reference Ma.nual (:-25 9992.1 CST 13/1.00

GST Computer Systems Limited DMPUTCUR

ROUTINJ:

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

DMPUTCUR - Position the Cursor

To move the 'cursor t,o the defined position within &. display
file,

DO,W
Dl.W
D2,W
AO , L

DO,H

DMPUTCUR
Line number
Character position
Display file base add res>;

Status
Dl. W Line number
D2,W Character position

STEOF Attempt to move cursor beyond file boundary

The user Look routine may be invoked and may return system or
user defined status codes,

If the specified position cannot be reached, then the actual
position reached is returned in Dl and D2 ,

Line 0 is t.he top line of a display file, position 0 is the
first character in a line,

(8K /OS Reference, Manual c-26 9992,1 GST 13/1,00

GSI Computer Systems Limited DMRDBYT

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

DMRDBYT - Move Action Pointer and Read Byte

To move the display file action pointer wi thin E. line ',Ii thout
moving the cursor and to read the byte addressed .

DO.W
Dl.W
AO.L

DO.W
Dl.B
D2.'1

STEOF

None

DMRDBYT
Amount to move action pointer
Display file base address

Status
Byte addressed by action pointer
Horizontal character position of action pointer

Attempt to move action pointer beyond line limits

The 8.ction pointer is moved according to t.he value contained
in Dl, as follows:

Dl
Dl
Dl

-N
o

+N

move N bytes to the left
retain current position
move N bytes to the right

The action point.er must remain in the same line as the cursor
and is t.herefore not allowed to move past the start or end of
the current. line. If the value in Dl would cause the action
pointer to move beyond the line !imits, it is moved to the
start or end of line (as appropriate) and an STEOF erro:· code
is returned.

If the action pointer is moved to t.he end of line, a newline
character code is returned (CH .NL).

Unlike the cursor, which can only be placed on c. displayable
character, newline or space command, the action pointer can
be positioned on a.nd read any byte from a display file line,
enabling the calling program to read the non-displayable data
wi thin t.he line.

In order to maintain t.rack of t.he (displayable) character
position wit.hin the line after actior. pointer movement, the
value returned in D2 is the closest potential cursor position
equal to or to the right of the action pointer.

68K/OS Reference Manual C-27 9992.1 GST 13/1 .00

GST Computer Systems Limited DMRELEAS

ROUTINr·;

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

DMRELEAS - Deallocate Display File Recor d Space

To release a display file record to the display file heap .

DO. ,I
AO.L
Al.W

DO.W

o

None

DMRELEIIS
Display file base address
Offset to record from DF'BA

Status

Always returns success status

DMRELEAS will not normally be called by a user program, being
a by-product of other DF~'o commands . _ It is provided as a user
callable function for ese in c. user rcook routine when writing
data from a display file.

Note that the user hook routine provides a pointer to the
record in ALT. and DMRELEAS requires an offset on the display
file base address in Al .W, thus some maths is necessary .

68K j OS Reference Manual (:-28 9992.1 GST 13/1 .00

GST Computer Systems Limited' DMRESET

ROUTIN}:

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

DMRESET· - Delete and Refresh Display File Text

To delete all the text in the specified display file, home
the cursor and refresh the window fron: the user hook routine,

DO , I-!
AO ,L

DO,I-!

DMRESET
Display file base address

Status

As returned from the user hook routine.

If DMHOOK has been called previously and there is data in
bottom input file then t.his will be read into the display
file and displayed in the window. System or user defined
status codes may be returned in the proces s,

This routine may be called whether or not the display file is
displayed in 8. window.

If the display file is displayed in a window then sufficient
text is read from the bottom input file tc fill the window,
ctherwise only a single line is read.

If DMHOOK has not been called or the bottom file is empty
t.hen the display file will be left with a single blank line.

68K/OS Reference Manual C-29 9992.1 CST 13/1.00

GST Computer Systems Limited DMSPLIT

ROUTINF:

FUNCTION

DMSPLIT - Split a Line Into Two

To split the current line . (at the cursor position) into two
lines .

INPUTS DO.W DMSPLIT
AO. L Display file base addr.ess

OUTPUTS DO.W Stat us

STATUS CODES STDFFULL Display file full

SIDE EFFECTS

NOTES

Line s f .ollowing the split are automatically scrolled down .
Scrolling may invoke the user hook routine (if one has been
ins talled) and as a r esult may generate t he associated system
or user defined status codes.

The line is split i mmediately before the cursor position and
the cursor remains a t the start of the second line.

68K/ OS Reference Manual C-30 9992.1 GST 1 3 / 1.00

GST Computer Systems Limited DMTI'YSEL

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

DMn~YSEL - Select Window for Console Output

To select th e window associated with the specifie d display
file te· be u sed for keyboa rd line reflection.

DO.H
AO.L

DO.H

o

DMTTYSEL
Display file base address

StatuG

fllways returns success status

All subsequent IOGETLIN calls from KEY: made by the callin£
program will echo keystrokes to the specified window.

This command is used to select which of the calling program ' s
windows will be used for keyboard line reflection . vlhen used
to reflect keyboard input, IOGETLIN win accept and reflect
t.he following:

(a) Standard ASCII characters

(b) Backspace or backspace-delete

(c) Delete line

(d) Enter

All other characters are ignored and are not reflected in the
window .

If DMTTYSEL has not been called or was called with AO = 0,
then an rOGETLIN call to KEY: or an IOOPEN call to SCREEN:
will cause an a.ttempt to create a default window. This will
be the entire virtuaJ screen if no windows e xist, otherwise
the top eight lines of the last window created.

An IOOPEN call to SCREEN : win open a channel to the window
currently selected by DMTTYSEL. Subsequent calls to DMTTYSEL
win hav" no effect on any channel already opened . Thus it
is possible to have many SCREEN: channels open t.o different
windows, but only one window for KEY: screen reflection.

68K / OS Reference Manual C-31 9992.1 GST 13/1.00

GST Computer Systems Limited DMUMENU

flOUTINJ-:

FUNCTION

INPUTS

OUTPUTS

STATUS CODES ------

SIDE EFFECTS

NOTES

DMU MENU - Update Single Line Menu Field

To update the single line menu &t the bottom of the screen
display with the contents of the specified string .

DO.VI
AO.L

DO. ,I

o

DMUMENU
Address of menu string

Status

Always returns success s tat us

The [Lddress of the menu string is c:opi ed to the contents of
PCF field PBMENU and becomes the new default memo string for
the calling program.

The single line menu i s displayed at the bottom of the screen
ben eath the space allocated for partition (; and will be
truncated to the screen line length if necessary. It is
normally used for the display of program identification and
function key actions associated with -,he current program.

Each program in the system may have a default string for
display in the single line menu, addressed by field PB MENU in
the PCB. This is displayed automatically when the program is
selected (usually by user keyboard command) as t he current
program, and is updated by 2. call to DMUMENU . If PBMENU is
zero the system default string i s output.

68K/OS Reference Manua l C- 32 9992 .1 CST 13/1.00

GST Computer Systems Limited DMWRBYT

ROUTINr:

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SI DE EFFECTS

NOTES

DMWRBYT - Update Byte in Display File

To replace the byte 8.ddressed by the action pointer by the
byte specified.

DO.W
Dl.B
AO.L

DO.VI

STDFINV

DM,lRBYT
Byte to be stored
Display file base address

Status

Invalid update

If the update affects t.he screen display, the appropri a te
screen areas are repainted as follows:

(a) An updated displayable character i s repainted.

(b) An updated space command causes a l ine repaint .

(c) An updated colour or fou nt command causes 8.11 affected
lines to be repainted.

'J'he display file data structures are updated accordingly.

DMWRBYT operates as an overstrikE' function thus the action
pointer is not moved as a result of the call.

Certain operations are not allowed, as follows:

(a) A newline cannot be overwritten.

(b) A command byte cannot. be overwritten by a displayable
character.

Note that all commands can be modified by DMWRBYT .

68K/OS Reference Manual C-33 9992 .1 GST 1311.00

GST Computer Systems Limited Gra phics Routine Cal ls

APPENDIX D:

GRAPHICS ROUTINE CALLS

68K/OS Reference Manual D-O 9992 .1 GST 13/1.00

GST Computer Systems Limited SPBLOCK

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

SPBLOCK - Draw a Filled Rectangular Block on the Screen

To draw a rectangular block at the coorrlinates specifi" rl ,
relative tc the display file and graphics ;,in-io;,.

DO.W
Dl.W
D2.W
D3·VI
D4.w
D7.W
AO.L
Al.L

DO.VI

None

SPBLOCK
X coordinate of start (any corner)
Y coordinate of start
X coordinate of finish (corner diagonally ODp0Si ~~)
Y coordinate of finish
Colour identifier
Display file base address
Graphics window block

Destroyed

The block will be clipped if its size and position &re such
that it extends outside the visible portion of its window.

The upper byte of the colour identifier is set non-zero for
XOR ink, the l ower byte has the following fields:

Bits 7-6
Bits 5-3
Bits 2-0

Stipple (O = Q, 1 = H, 2 = V, 3 = C)
XOR of mixer colour and base colour
Base colour

Colours are specified as numbers in the range 0-7 as follows:

o
I
2
3

Black
Blue
Red
Magenta

4
5
6
7

Green
Cyan
Yellow
Vlhite

The graphics window is positioned relative to the disDlay
file as defined by the graphi cs window block fields :

CLIPXPOS
CLIPYPOS
CLIPWID
CLIPSIZ

(.VI) X position offset
(.VI) Y position off set
(.W) X width of window
(.W) Y height of window

(characters)
(character lines)
(characters)
(character .lines)

68K /OS Reference Manual D-l 9992.1 GST 13/1 .00

CST Computer Systems Limited SPELLIPS

1I0UTINr,:

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

SPELLIPS - Draw an Ellipse on the Screen

To draw a n orthogonal ellipse on the screen .

DO . H
D1. VI
D2 . H
D3 . vi
D4.VI
D7 .H
AO.L
ALL

DO . VI

None

SPELLIPS
X coordinate of centre
Y coordina.te of centre
X radius
Y radius
Colour identifier
Display file base addrese
Graphics window block

Destroyed

The ellipse will be clipped if its dze and position are such
that it extends outside the visible portion of its window.

To produce the effect of a circl e, it i s recommended that the
X radius exceeds the Y radius by around 25% to 35% depending
on the particular monitor or TV in use .

The upper byte of the colou r identifier i s set non-zero for
XOR ink, the lower byte has the following fields :

Bits 7-6
Bits 5-3
Bits 2- 0

Stipple (0 = Q, 1 = H, 2 = V, 3 = C)
XOR of mixer colour and base colour
Base colour

Colours are specified as numbers in the range 0-7 as follows:

o
1
2
3

Black
Blue
Red
Magenta

4
5
6
7

Gr een
Cyan
Yellow
Hhi te

The g r aphics window i s positioned rel ative to t he display
fil e as G.efined by the graphic s window block fields :

CLI PXPOS
CLI PYPOS
CLIPVlID
CLIPSI Z

(.H)
(. VI)
(.H)
(.H)

X Fosition offset
Y position offset
X width of window
Y height of window

(characters)
(character lines)
(characters)
(character lines)

68K /OS Reference Manual D-2 9992 .1 CST 13 /1 .00

GST Computer Systems Limited SPFILL

ROUTINE'

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

SPFILL - Area Fill to a Specified Border

To fill an a rea in the specified colour up t.o a defined
border col our.

DO.W
Dl.W
D2.W
D6'.w
D7.W
AO . L
Al. L

DO.W

None

SPFILL
X coordinate of start
Y coordinate of s t art
Border col our identifier
Fill colour identifier
Display file base address
Graphics window block

Destroyed

The filled area " ill be clipped if it extends outside the
vi sible portion of its window.

Strange eff ects may occur if the fill, border or original
background col our have plain or stippl e col ours in common.

The start coordinates s hould be plac e d well within the fill
area to avoid colour boundary effects .

The upper byte of the colour identifier is set zero . The
lower byte has the following fields:

Bits 7-6
Bits 5- 3
Bi ts. 2- 0

Stipple (0 ; Q, 1 ; H, 2 ; V, 3 ; C)
XOR of mixer col our and base colour
Base colour

Colours are specified as numbers in the range 0-7 as fol lows:

o
1
2
3

Black
Blue
Red
Magenta

4
5
6
7

Green
Cyan
Yellow
White

The graphics window is positioned relative to the display
file as defined by the graphics window block fields:

CLIPXPOS
CLIPYPOS
CLIPWID
CLIPSIZ

(.W) X position offset
(.W) Y position offset
(.W) X width of window
(.W) Y he ight of window

(characters)
(character lines)
(character s)
(character lines)

68K/OS Reference Manual D-3 9992.1 GST 13/1.00

GST Computer Systems Limited SPLINE

ROUTINE

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

SPLINE - Draw a Line on the Screen

To .draw a straight line between two defined points.

DO.W SPLINE
D1.W X coordinate of start
D2.W Y coordinate of start
D3 ·W X coordinate of end
D4.w Y coordinat e of end
D7.W Colour identifier
AO.L Display file base a ddress
,11.1. L Graphics window block

DO.W Destroyed

None

The line will be clipped if its size and position are suc h
that it extends outside the visible portion of its window.

The upper byte of the colour identifier is set non-zero for
XOR ink, the lower byte has the following fields:

Bits 7-6
Bits 5-3
Bits 2-0

Stipple (0 = Q, 1 = H, 2 = V, 3 = C)
XOR of mixer colour and base colour
Base colour

Colours are specified as numbers in the range 0-7 as follows:

o
1
2
3

Black
Blue
Red
Magenta

4
5
6
7

Green
Cyan
Yellow
White

The graphics window is positioned relative to the display
file as defined by the graphics window block fields:

CLIPXPOS
CLIPYPOS
CLIPWID
CLIPSIZ

(.W) X position offset
(.W) Y position offset
(. In x width of window
(.VI) Y height of window

(characters)
(character lines)
(characters)
(character lines)

68K/OS Reference Manua l fI-4 9992 .1 CST 13/1.00

GST Computer Systems Limited SPPAINT

ROUTINE:

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

NOTES

SPPAINT - Area Fill to an Unspecified Border

To fill a.n a rea in th e spec i fied colour over t.he curre nt
background colour until the background colour chan" es .

DO .IV
Dl . 1V
D2.\'
D7.1V
AO.L
Al.L

DO . IV

None

SPPAINT
X coordi nate of start
Y coordinate of start
Fill colour identifi er
Display file base address
Graphics window block

Destroyed

The filled area will be clipped if it extend s outside the
vis ible portion of its window.

Strange effects may occur if t.he fill, bord e r or original
background colour ha vE' plain or stipple colours iIC common.

The start coordinates s hould be placed well within th e fill
area to a void colour boundary effects .

The upper byte of the colour identifier is set zero . The
l ower ~yte has the following fields:

Bits 7-6
Bits 5-3
Bits 2-0

Stipple (0 = Q, 1 = H, 2 = V, 3 = C)
XOR of mixer colour and base colour
Base colour

Colours are specified as numbers in the range 0-7 as follows:

o
1
2
3

Black
Blue
Red
Magenta

4
5
6
7

Green
Cyan
Yellow
lVhite

The graphics window i s positioned relat ive to the display
file as defined by t he graphics window block fields:

CLIPXPOS
CLIPYPOS
CLIPIVID
CLIPSIZ

(.IV) X position offset
(.IV) Y position offset
(.IV) X width of window
(.IV) Y height of window

(characters)
(character lines)
(characters)
(character lines)

68K/OS Reference Manual D-5 9992.1 GST 13/1 .00

GSI Computer Systems Limited SPPOINT

ROUTINE:

FUNCTION

INPUTS

OUTPUTS

STATUS CODES

SIDE EFFECTS

ll'OTES

SPPOINT - Draw a (C1ipped) Pixe1 on the Screen

To draw a pixel on the screen ht the defined coordinate
position.

DO .W SPPOINT
D1. W X coordinate
D2 .W Y coordinate
D7." Colour identifier
AO.L Display file base address
Al.L Graphics window block

DO.VI Destroyed

None

The pixel will not be drawn if Iies outside the visible
portion of its window.

The upper byte of the colour identifier is set non-zero for
XOR ink, the lower byte has the following fields:

Bits 7-6
Bits 5-3
Bits 2-0

Stipple (0 = Q, 1 = H, 2 = V, 3 = C)
XOR of mixer colour and base colour
Base colour

Colours are specified as numbers in the range 0-7 as follows:

o
1
2

3

Black
Blue
Red
Magenta

4
5
6
7

Green
Cyan
Yellow
White

The graphics window is positioned relative to the display
file as c.efined by the graphics window block fields:

CLIPXPOS
CLIPYPOS
CLIPWID
CLIPSIZ

(.W) X position offset
(.W) Y position offset
(.W) X width of window
(.W) Y height of window

(characters)
(character l ines)
(characters)
(character lines)

68K / OS Reference Manual D-6 9992.1 GST 13/1.00

GSI Computer Systems Limited SPl'EXT

ROUTINE; SPTEXT - Draw a Text String in Graphics Mode

FUNCTION To draw a horizontal text string on the screen.

INPUTS DO.W SPTEXT
Dl.W X coordinate of start
D2. \0/ Y coordinate of start
D5.B Text attributes
D6.w Background colour identifier
D7.W Foreground colour identifier
AO.L Display file base address
Al.L Address of graphics window block
A2.L Address of text string

OUTPUTS DO.W Destroyed

STATUS CODES None

SIDE EFFECTS The text string will be clipped (in "hole characters) if it
extends outside the visible portion of its window.

NOTES The upper byte of the colour identifier is set non-zero for
XOR ink, the lower byte has the follo"ing fields:

Bits 7-6
Bits 5-3
Bits 2-0

Stipple (0 = Q, 1 = H, 2 = V, 3 = C)
XOR of mixer colour and base colour
Base colour

Colours are specified as numbers in the range 0-7 as follows:

o
1
2
3

Black
Blue
Red
Magenta

4
5
6
7

Green
Cyan
Yellow
White

The graphics window is positioned relative to the display
file as defined by the graphics window block fields:

CLIPXPOS
CLIPYPOS
CLIPWID
CLIPSIZ

(.W) X position offset
(.W) Y position offset
(.W) X width of window
(.W) Y height of window

Text attributes are as follows:

Bit 0 Underlined Bit
Bit 1 Flashing Bit
Bit 2 Transparent Bit
Bit 3 XOR ink (+ bit 2) Bit

68K / OS Reference Manual D-7

(characters)
(character lines)
(characters)
(character lines) .

4 Double height
5 Spaced characters
6 Double width
7 (not used)

9992.1 GST 13/1.00

GIT Computer Systems Limited Status Codes

APPENDIX E:

STAWS CODES

68K /OS Reference Manual E-O 9992 .1 CST 13/1 .00

GST Computer Systems Limited
Status Corles

F: STATUS CODES

E.l For ma t

A status code i s a. t,w byte positivf' integer t hat is returned from most
68K / OS system calls i n register DO. 'rhf· statu~. code defines whether
t.he system call was executed s uccesfully (zero) or if a pa rti cular fail
stat e was detected (non- zero).

E. 2 Alpha bet ical List of Status Codes

STADDRES
STALINE
STAM
STAMSEQ
STAT
STATSEQ
STBADDIR
STBADFIL
STBUS
STCHAN
STCHKINS
STDEVICE
STDEVSEQ
STDFINV
STDIRECT
STDIRFUL
STDIVIDE
STEOF
STEXIST
STFLINE
STGET
STILLEGA
STINPROC
STINPROG
STINTRAP
STIOERR
STKI LLED
STMUFLD
STMURAM
STNODIR
STNOFILE
STNOLOAD
STNOPROC
STNOSHAR
STNOSIZE
STOK
STOPEN
STPART
STPMEM
STPRIV
STPROC
STPUT
STRENAME
STSEQ
STSETPOS

Addre ss error trap
A-line unimplemented instruction
This ac cess mode not a llowed for th is channel or f ile,
This access mode ill egal on sequential channels
Illegal opti on byte or access typE'
Cannot both read and write a sequential cha nnel
Error in directory component
Error in f ilename component
Bus error trap
Illegal channel number
CHK instruction trap (array bound violation)
Unknown device
Device can be acce sse d sequentia l l y only
Invalid call to display file managel'
Directory operations not allowed on thi s devicf'
No space left on disk or directory
Divide by zero tra p
End of filE'
File does not exist
F- line unimplemented i nstruction
Reading from this channel i s illegal
Illegal instruction trap
Invalid procedur e identifier
Invalid program identifie r
Call of OSTRAP failed
Read or write error from device
Program was killed by TRAP 0
Invalid menu fields specified
~!enu varia bl e data space i nsufficient
Directory cannot be found
No room left in open files table
Unable to load procedure
No room l eft in procedure table
Devi ce is not sharable
No file size information availabl e
Success status (0)
Directory in use, cannot dismount
Partial line only read by IOGETLIN
Heap or stack overflow
Privileged operation trap
Procedure al ready exis t s (from IODEFPRO)
Writing to this channel is illega l
Source and destination path names incompatible
Channel is open for sequential access onl y
Invalid file position

68K/OS Reference Manual E- l 9992.1 GST 13/1 . 00

GST Computer Systems Limited

STSME[~

STSPECIA
STSPUR
STSTOP
STSTRLEN
STSYNTAX
STTFRLEN
STTRACE
STTRAP4
STTRAP5
STTRAP6
STTRAP7
STrRAP8
STTRAP9
STTRAPIO
STTRAP11
STTRAP12
STTRAP13
STTRAP14
STTRAP15
STTRAPV
STUNIT
STUSE

Memory manager c.annot sati sfy request.
Driver does not support IOSPECIAL operations
Spurious interrupt
Child program has stopped
String length invalid
Path name syntax error
Invalid transfer or buffer length
Trace mode trap
Trap 4 instructior·
Tra p 5 instruction
Trap 6 instruction
Trap 7 instruction
Trap 8 instructior
Trap 9 instruction
Trap 10 instructior
Trap 11 instruction
Trap 12 instructior
Trap 13 instruction
Trap 14 instructior.
Trap 15 instruction
TRAPV instruction traF
Unit number invalid or in use
File in use or requested access incompatible

Status Codes

68K/OS Reference Manual E- 2 9992.1 GST 13/1 . 00

GSI Computer Systems Limited Character Codes

APPENDIX F:

CHARACTER CODES

68K / OS Reference Manual F-O 9992 .1 CST 13/1.00

GSI Computer Systems Limited Character Codes

r CHARACTER CODES

F . l General

This sec tion defines character "odes for the QL keyboard, internal
ASCII encoding and screen display as follows:

(a) Keyboard ASCII decode tables

(b) Summary of Keyboard Command Keystrokes

(c) Display File Manager Binary Commands

These define all the character translation and encoding in 68K /OS that
is available to &pplications software . Direct access to keyboard
matriy codes is detailed i.t. the Systems Programmer 's Reference Manual.

F . 2 Changes From Standard US ASCII

Note that the ASCII is non-standard (to]'eflect the QL keyboard
engravint and for compatibility with QDOS in the 7-bit ASCII range),
but the differences are minor :

(a) The ASCII grave accent is replaced by ' £ ' ($60).

(b) The copyright sign is added in the rubout position ($7F).

All other codes conform to standard US ASCII .

681(/ OS Reference Manual I" -l 9992 .1 CST 13 (1. 00

GST Computer Systems Limited Character Codes

F . J QL ASCII Decode Table ($OO-$lF)

ASCII SHIFT KEY FUNCTION FUNCTION
HEX DEC SCI, U S (USER MODE) (SYSTEM MODE)

*00 0 110 2 @ null code
$01 1 X 1 0 A
$02 ? X 1 0 B
$03 3 X 1 0 C
$04 4 X 1 0 D
$05 5 X 1 0 E
$06 6 X 1 0 F
$07 7 X 1 0 G
$08 8 X 1 0 H
$09 9 X 1 0 TAB next field
$OA 10 X 1 0 ENTER new line
$OB 11 X 1 0 j(

$OC 12 X 1 0 L
$OD 13 X 1 0 M
$OE 14 X 1 0 N
$OF 15 X 1 0 0
$10 16 X 1 0 P
$11 17 X 1 0 Q
$12 18 X 1 0 R
$13 19 X 1 0 S
$14 20 X 1 0 T
$15 21 X 1 0 U
$16 22 X 1 0 V
$17 23 X 1 0 H
$18 24 X 1 0 X
$19 25 X 1 0 Y
$lA 26 }; 1 0 Z
$lB 27 010 ESCAPE exit command seq. exit system mode
$lC 28 010 \ I
$lD 29 010 J)
$lE 30 110 6 '
$lF 31 1 10

68K/OS Reference Manual F-2 9992.1 GST 13/1.00

GST Computer Systems Limited Character Codes

QL ASCrI Decode Table ($20-$3F)

ASCII SHIFT KEY DISPLAY
HEX DEC S C A U S CHAR. COMMENT

*20 32 000 SPACE SPACE
$21 33 100 1 !
$22 34 100
$23 35 100

3 " "
us ASCII position

$24 36 1 0 0 4 $ $
$25 37 100 5 % %
$26 38]. 0 0 7 & &
$27 39 000
$28 40 100 9 (
$29 41 100 o)
$2A ~2 100 8 * *
$2B 43 100 = + +
$2C 44 000) <
$2D 45 000
$2E 46 000 • >
$2F' 47 000 / ? /
$30 48 000 o) 0
$31 49 000 1 ! 1
$32 50 000 2 @ 2
$33 51 000

3 "
3

$34 52 000 4 $ 4
$35 53 000 5 % 5
$36 54 000 6 A 6
$37 55 000 7 & 7
$38 56 000 8 * 8
$39 57 000 9 (9
$3A 58 100 ; :
$3B 59 000 ; :
$3C 60 100) <
$3D 61 000 = +
$3E 62 100 . >
$3F 63 100 / ?

68K/OS Reference Manual F-3 9992.1 GST 13/1.(

GaT Computer Systems Limited Character Codes

QL ASCII Decode Table ($4o-$5F)

ASCII SHIFT KEY DISPLAY
HEX DEC S C J\ U S CHAR. COMMENT

*40 64 100 2 @ @

$41 65 100 A A
$42 66 100 B B
$43 67 100 C C
$44 68 100 D D
$45 69 100 E E
$46 70 100 F F
$47 71 100 G G
$48 72 100 H H
$49 73 100 I
$4A 74 100 J J
$4B 75 100 K K
$4c 76 100 L L
$4L' 77 100 M M
$4E 78 100 N N
$4F 79 100 0 0
$50 80 100 P P
$51 81 100 Q Q
$52 82 100 R R
$53 83 100 S S
$54 84 100 T T
$55 85 100 U u
$56 86 100 V V
$57 87 100 W w
$58 88 100 X X
$59 89 100 Y Y
$5A 90 100 Z Z
$5B 91 000 [([
$5C 92 000 \ I \
$5D 93 000 J) J
$5E 94 100 6 h

$5F 95 100

68K /OS Reference Manual F-4 9992.1. GST 13/1 .00

GST Computer Systems Limited Character Codes

QL ASCII Decode Table ($60-$7F)

ASCII SHIFT KEY DISPLAY
HEX DEC S C A U S CHAR. COMMENT

~;60 96 000 £. - £. replaces grave accent
$61 97 000 A a
$62 98 000 B b
$63 99 000 C c
$64 100 000 D d
$65 101 000 E e
$66 102 000 F f
$67 103 000 C g
$68 104 000 H h
$69 105 000
$6A 106 000 J j
$6B 107 000 K k
$6c 108 000 L 1
$6D 109 000 M m
$6E llO 000 N n
$6F 111 000 0 0

$70 112 000 P p
$71 ll3 000 . Q q
.$72 ll4 000 R r
$73 ll5 000 S s
$74 ll6 000 T t
$75. ll7 000 u u
$76 l i8 000 V v
$77 ll9 000 w w
$78 120 000 X x
$79 121 000 Y Y
$7A 122 000 z z
$7B 123 100 [((
$7C 124 100 \ I I
$7D 125 100 J J J
$7E 126 100 £. -
$7F 127 100 ESC (C) (C) copyri ght in rubout position

68K / OS Reference Manual 9992 .1 CST 13 11.00

GSI Computer Systems Limited

QL ASCII Decode Table ($80-$9F)

ASCII SHIFT KEY FUNCTION
HEX DEC SCI, U S (USER MODE)

~;80 128 1 X 1 2 @

$81 129 X X 1 A
$82 130 X X 1 B
$83 131 X X 1 C
$84 132 X X 1 D
$85 133 X X 1 E
$86 134 X X 1 F
$87 135 X X 1 G
$88 136 X X 1 H
$89 137 X X 1 I
$8A 138 Y X 1 J
$8B 139 X X 1 K
$8c 140 X X 1 L
$8D 141 X X 1 M
$8E 142 X X 1 N
$8F 143 X X 1 0
$90 144 X X 1 P
$91 145 X X 1 Q
$92 146 X X 1 R
$93 147 X X 1 S
$94 148 X X 1 T
$95 149 X X 1 U
$96 150 Y. X 1 V
$97 151 X X 1 H
$98 152 X X 1 X
$99 153 X X 1 Y
$9A 154 X X 1 Z
$9B 155 o X 1 ESCAPE
$9C 156 o X 1 \ I
$9D 157 o X 1 J)
$9E 158 1 X 1 6 "
$9F 159 1 X 1

I

68K/OS Reference Manual F-6

Character Codes

FUNCTION
(SYSTEM MODE)

9992.1 GST 13/1.00

GST Computer Systems Limited Character Codes

QL ASCII Decode Table ($AO-$BF)

ASCII SHIFT KEY FUNCTION FUNCTION
HEX DEC S C t. U S (USER MODE) (SYSTEM MODE)

Q>AO 160 100 SPACE WP fixed space
$Al 161 101 SPACE
$A2 162 110 SPACE
$A3 163 111 SPACE
$A4 164 100 ENTER reformat paragraph
$A5 165 101 ENTER
$A6 166 1 1 0 ENTER
$A7 167 111 ENTER
$A8 168 100 TAB previous field
$A9 J69 101 TAB
$AA 170 110 TAB
$AB 171 1 1 J TAB
$AC 172 (unused)
$A') 173 (unused)
$AE 174 (unused)
$AF 175 (unused)
$BO 176 000 CAPS LOCK caps lock toggle
$Bl 177 001 CAPSLOCK
$B2 178 010 CAPSLOCK
$B3 179 011 CAPS LOCK
$B4 180 100 CAPSLOCK
$B5 181 101 CAPS LOCK
$B6 182 110 CAPS LOCK
$B7 183 111. CAPS LOCK
$B8 184 000 Fl help
$B9 185 001 Fl enter system mode system menu or,
$BA 186 010 Fl
$BB 187 011 Fl
$BC 188 100 Fl boot system
$BD 189 101 Fl
$BE 190 1 0 Fl
$BF 191 111 Fl

68K/OS Reference Manual F-7 9992.1 GST 13/1 .00

GSI Computer Systems Limited Character Codes

QL ASCII Decode Table ($CO- $DF)

ASCII SHIFT KEY FUNCTION FUNCTION
HEX DEC S C PI U·S (USER MODE) (SYSTEM MODE)

*CO 192 C' 0 0 F2 next partiti on
$Cl 193 001 F2
$C2 194 010 F2
$C3 195 011 F2
$c4 196 100 F2 previous partition
$C5 197 101 F2
$c6 19B 110 F2
$C7 199 1 1 1 F2
$cB 200 000 F3 grow partition
$C9 201 001 F3
$CA 202 010 F3
$CB 203 011 F3
$CC 204 100 F3 shrink partition
$CD 205 101 F3
$CE 206 110 F3
$CF 207 11 1 F3
$DO 20B 000 F4 suspend program
$Dl 209 001 F4
$D2 210 010 F4
$D3 211 011 F4
$D4 212 100 F4 resume program
$D5 213 101 F4
$D6 214 110 F4
$D7 215 1 1 1 F4
$DB 216 000 F5
$D9 217 001 F5
$DA 21B (110 F5
$DB 219 011 F5
$DC 220 100 F5 program reset
$DD 221 101 F5
$DE 222 110 F5
$DF 223 111 F5

6BK/OS Reference Manual F-8 9992.1 CST 13/1.00

GST Computer Systems Limited Character Codes

QL ASCII Decode Table ($EO-$FF)

ASCII SHIFT KEY FUNCTION FUNCTION
HEX DEC S C " U S (USER MODE) (SYSTEM MODE)

*EO 224 000 (-- cursor left
$El 225 001 (-- -start of line
$E2 226 010 (-- delete char. left
$E3 227 011 (-- delete line
$E4 228 100 (-- word left
$E5 229 101 (-- pan window left
$E6 230 110 (--- delete word left
$E7 231 111 (--

$E8 232 000 --) cursor right
$E9 233 001 --> end of line'
$EA 234 010 --) delete character
$EB 235 011 --) del . to end of line
$EC 236 100 --) word right
$ED 237 101 --) pan window right
$EE 238 110 --) delete word right
$EF 239 111 --)

$FO 240 000 t cursor up pan partition up
$Fl 241 00 1 t previous screen

. $F2 242 o 1 0 t
$F3 243 o 1 1 t
$F4 244 1 0 0 t top of screen
$F5 245 101 t pan window uf.
$F6 246 11 0 t
$F7 247 111 t
$F8 248 000 + cursor down pan partition down
$F9 249 001 + next screen
$FA 250 010 +
$FB 251 011 +
$FC 252 100 + bottom of screen
$FD 253 101 + pan window down
$FE 254 110 +
$FF 255 111 +

68K /OS Reference Manual F-9 9992.1 GST 13/1.00

GSI Computer Systems Limited Character Codes

F. t. Summary of System Mode Commands

The following table shows the system command and shift key combinations
for the QL keyboard in system mode. Key combination~ marked 'unused'
are untranslatable.

I I I CONTROLJ
I I I 1 I CONTROL I CONTROL 1 SHIFT I SHIFT I
I UNSHIFT 1 SHIFT IALTMODE 1 CONTROL 1 SHIFT I ALTMODE IALTMODE I ALTMODE I

I--I~I--I--I--I--I--I--I--I
1 I PARTN. I I 1 1 1 1 1 1
I Iup I 1 I I 1 I 1 1
1 I I I I I I I I I
I--I~I--I--I--I--I--I-- I--I

I 1 I PARTN . 1 I 1 I I I I I
I v I OOI'IN I 1 I I I I 1 I
1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1
1 IEXIT I I I I 1 I 1 1
1 "ESC I SYSTEM I IUNUSED I UNUSED IUNUSED IUNUSED IUNUSED IUNUSED I
1 I MODE I 1 I I I 1 1 I
I I 1 I 1 1 I 1 1 1
I--I--I--IENTER 1--1--1--1--1--1
1 Fl 1 1 BOOT 1 SYSTEM I 1 I 1 1 1
1 I 1 SYSTEM 1 MODE 1 1 I 1 1 1
I I 1 I 1 I 1 1 1 1 1--1--1--1--1--1--1--1--1--1
I F2 I NEXT 1 PREY . I I 1 I 1 1 1
1 IPARTN . IPARTN. I I 1 1 I 1 I
I 1 I 1 I 1 I 1 1 1 1--1--1--1--1--1--1--1--1--1
I F3 I GROI-I I SHRINK I I I I I I I
1 IPARTN . IPARTN. 1 I I I I 1 I
1 I I I I I I 1 1 1 1--1--1--1--1--1--1--1--1--1
I F4 ISUSPEND IRESUME I I I I I I I
I I PROGRAM I PROGRAM I I I I I I I

1--1--1--1--1--1--1--1--1--1
I F5 I I KILL I I I I I I I
I I I PROGRAM I I I I I I I
1 I I I I I I I I I

68K/OS Reference Manual F-lO 9992 . 1 GST 13/1.00

GST Computer Systems Limited Character Codes

F . S Summary or User Mode Commands

Th e [ollmling table shows the recommended command and shirt key
combinations in user mode. Key combinations marked 'unused ' are
untranslatable, blank entries Cl.re available ror a.pplications sortware.

1 1 1 1 1 CONTROL 1
1 1 1 1 1 CONTROL 1 CONTROL 1 SHIFT 1 SHIFT 1
IUNSHIFT I SHIFT IALTMODE l cONTROLI SHIFT IALTMODEIALTMODE I ALTMODE I
1 1 1 1 1 1 1 1 1

�----- � ----- � ----- � ----- �DELETE IDELETE I-----I~I----- I

1 (-- 1 CURSOR 1 VlORD 1 START 1 CHAR. II·IORD 1 DELETE 1 VlINDOVI 1 1
1 1 LEFT 1 LEFT ILINE 1 LEFT 1 LEFT ILINE 1 LEFT 1 1
1 1 1 1 1 1 1 1 1 1
I--I-- I--I--I--IDELETE I--I~I--I

1 -- > 1 CURSOR 1 VlORD 1 END 1 DELETE 1 VlORD 1 DELETE 1 VlINDOVI 1 1
1 1 RIGHT 1 RIGHT 1 LINE 1 CHAR. 1 RIGHT 1 TO EOL 1 RIGHT 1 1
1 1 1 1 1 1 1 1 1 1
I--I--I~I--I--I--I--I~I--I

1 1 CURSOR 10F ! PREV . 1 1 1 1 VlINDOVI 1 1
1 1 UP 1 SCREEN 1 SCREEN 1 1 1 1 UP 1 1
1 __ 1 __ 1 __ 1 __ 1 __ 1 ___ 1 __ 1 __ 1 __ 1
1 1 1 BOTTOM 1 1 1 liPAN 1 1
1 1 ICURSOR 10F 1 NEXT 1 1 1 IWINDOW 1 1
1 v 1 DOViN 1 SCREEN 1 SCREEN 1 1 1 1 DOWN 1 1
1 1 1 1 1 1 1 1 1 1
I--ITAB TO ITAB TO 1--1--1--1--1--1--1
1 TAB INEXT IPREV. IUNUSED IUNUSED 1 IUNUSED I 1 1
1 1 FIELD 1 FIELD 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
I--I--I~I--I--I--I--I--I-- I

1 SPACE ISPACE IFIXED IUNUSED IUNUSED 1 IUNUSED 1 1 1
1 1 1 SPACE 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 I 1
I--IEXIT 1--1--1--1--1--1--1--1
1 ESC 1 COMMAND 1 COPY- IUNUSED IUNUSED IUNUSED IUNUSED IUNUSED IUNUSED 1
1 ISEQNCE .I RIGHT 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1--1--1--1--1--1--1--1--1--1

1 CAPS 1 CHANGE 1 1 1 1 1 1 1 1
1 LOCK 1 CASE 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1--1--1--1--1--1--1--1--1--1
1 ENTER INEH IREFORM IUNUSED IUNUSED 1 IUNUSED 1 1 1
1 ILINE IPARA. 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1-- 1--1--1--1--1--1--1--1--1

1 F1 1 HELP 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1
1 1 SELECT 1 1 1 1 1 1 1 1
1 F2-F5 1 MENU 1 1 1 1 1 1 1 1
1 10PTION 1 1 1 1 1 1 1 1
1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1

68K/OS Rererence Manual F·-ll 9992 .1 GST 13/1 .00

(

GST Compute~ Systems Limited Character Codes

F.r. Display File Manager Commands

DFM includes two-byte command codes wit hin i ts displ ay text. These can
be used for three purposes:

(a) l1ithin DFM itself as text formatting information .

(b) l1ithin DFM to supply text output control data t o screen dri ver .

(c) By user J'rograms to insert binary data into a display data stream
for any purpose whatever.

These commands have the general format :

Byte 1 :

bit 7
bi t (.
bits 5-0

Byte 2:

bit 7
bit 6
bits 5-0

1
o (sys t em) or 1 (user)
command code

1
o (system) or 1 (user)
command argument(s)

Note that user commands are guaranteed t o be tran sparent as far as
68K/OS is concerned. System commands are reserved fo r f uture 68K / OS
expansion .

F . 7 DFM and Screen Driver Commands

The follo" ing commands are recognised by DFM and the s creen d.river a.nd
may be inserted in any text string processed by these routines:

(a) Foreground Colour - ($80)

Second byte :

Bits 7-6
Bits 5-3
Bits 2- 0

10
ol d fo r eground col our
new foreground colour

This command changes the foreground text colour as follows :

o
1

3

black
blue
red
magenta

4
5
6
7

green
cyan
yellow
white

The coreground colour of the following text is changed to the new
colour up to the next col our command .

68K/OS Reference Manual F-12 9992.1 CST 13/1.00

GST Computer Systems Lim ited Character Codes

(b) Background Colour - ($81)

(c)

Second byte :

Bits 7-6
Bits 5-3
Bits 2-0

10
old background colour
new background col our

This command changes the background text colour as follows:

o
1
2
3

black
blue
red
magenta

4
5
6
7

green
cyan
yellow
white

The background colour of the following text is changed to ~,he new
colour up to the next colour command,

Character Fount - ($82)

Second byte:

Bits 7-6 10
Bits 4-3 Old foun t
Bits 1-0 new fount

This command changes the character fount (;f the following text
up to the next fount command, The default fount is fount zero,

(d) Multiple Space - ($83)

Second byte :

Bits 7-6
Bits 5-0

10
number of space characters

This command will generate th., number of spaces r eques ted on the
screen , The cursor can only be positioned on the first space ,

(e) Underline On/ Off - ($84)

Second byte:

Bits 7-6 10
Bit .) old underline state (0 off)
Bit 0 new underline state (0 off)

This command switches character underlining on or eff until the
next underline command,

68K / OS Reference Manual F'-13 9992,1 CST 13/1,00

GST Computer Systems Limited Device Drivers

APPENDIX G:

DEVICE DRIVERS

(

68K/OS Reference Manual C-O 9992 .1 CST 13/1.00

(.

GSI Computer Systems Limited
Device Drivers

G DEVICE DRIVERS

C.l Overview

68K/OS device drivers s.re (as far as t.he user is concerned) called as
subroutines via the ross . In fact a device driver may qlso consist of
an '_nterrupt routine, polled task, asynchronous program, or all t.hree,
communication between the vari ous componentE. being transparent tc the
user jOrogram.

This a.ppendix give s a brief list of the c haracteris tics of standard
device drivers which are provided as part of the operating system.
Drivers for add-on devices or special User written drivers can be
l oaded at any time, and accessed via standard lOSS calls (see Systems
Programmer ' s Reference Manual).

C . ~, Keyboara Driver - KEY:

Directory operations: no
Reading : yes
vlri ting: no
Random access: no
Double buf fering no
rOSPECIA operation : no

Note: CTRL/Z is treated as end of file, ALT / Fl switches to system mode
a nd can therefore never be read fron. the keyboard by a user program.

C.3 Screen Driver - SCREEN:

Directory operations: no
Reading: no
Writing : yes
Random access: no
Double buffering no
IOSPECIA operation: no

The SCREEN : device driver provides 8.n interface to the screen f or
programs which only wish to use the screen as a simple sequential
output device and which do not wis h to d.rive the display file manager
directly.

c.4 Microdrive Filing System - MD:

Directory operations: yes
Reading : yes
Wr iting: yes
Random access: yes
Double buffering yes
IOSPECIA operation: no

The microdrive filing system is f ormally an lOSS device drive r.

68K/OS Reference Manual C-l 9992.1 CST 13/1.00

liST Computer Systems Limited Device Drivers

C.~ RS232 Output Driver - TXl: and TX2:

There is one RS232 output driver for each line.

Directory operations: no
Reading: no
Writing: yes
Random access : no
Double buffering no
IOSPECIA operation: yes

The IOSPECIA call sends a break sequence or changes baud rate:

(a) Dl.B < 0 Send a break which consi sts of 8 . start bit of - 1 second \

(b) Dl. B >=0 Set the baud rate from t he value of of Dl as follows:

o
1
2
3

19200
9600
4800
2400

4
5
6
7

1200
600
300
75

On power-up the baud rates for both lines are initialised to 9600 as
this value suits most modern equipment.

G.6 RS232 I nput Driver - RXl : and RX2:

There is one RS232 input driver for each line.

Directory operations: no
Reading: yes
Wri ting : no
Random access : no
Double buffering no
IOSPECIA operati on: no

A brea k condition on the line 'iill give a status code of STIOERR, and
will usually do so without losing data, but this cannot be guaranteed
on the QL.

The line speeds for RS 232 input are derived from the line speeds for
output. One of the following will hold:

(a) only one speed is in use f or all output and i nput on both lines

(b) two different. speeds are used for output or. the two lines, am' no
input is being performed

(e) any o~her situation wi l l result in input being mangled .

These limitatiom: a re due te· the hardware configuration and there is no
sensible way to improv e on t.hem i.n software without catastrophic
performance impl ications.

68K/OS Reference Manual (;-2 9992.1 CST 13/1.00

..

GST Computer Systems Limited Device Drivers

G. 7 Pipe Driver - PIPE:

Directory operations: no
Reading : yes
\vri ting : yes
Random access: no
Double buffering no
IOSPECIA operation: no

Pipes are the mechanism provided for programs to communicate and
synchronise with each other using lOSS by providing an I/O channel from
one applications program to another. A pipe i s identified by its
filename and many pipes may exist. in t.he sys t.em at once.

G.8 ROM Dr iver - ROM:

Directory operations:
Reading :
\vri ting:
Random access :
Double buffering
IOSPECIA operation:

yes
only IOLOAD
no
no
no
no

It is possibl e to store a number of procedures in ROM and execute
these , e i ther as procedures or as programs . The ROM : device driver
exi sts permits IODIRINF, IOGETDIR and IOLOAD calls only.

68K/OS Reference Manual G-3 9992.l GST 13/1.00

	3461_001.pdf
	3461_039
	3462_001
	3462_046
	3463_001
	3463_057

