ESI'Computer Systems Limited 6BK/ASM Assemdler

68K /ASM
ASSEMBLER

USER MANUAL

Copyright © 1984 GST Computer Systems Limited

68K/ASM User Manual i 8290.6 GST 68/1.03

ESI Computer Systems Limited

o
n -

-3

e
w N

NN
w

wWwwwwwww
~N O\ EFWw -

W wwww
O\ FWw -

QaaoaaaQ

n =

CONTENTS

INTRODUCTION

Copyright

Making a Backup Copy
Notation Used in this Manual

HOW TO RUN THE ASSEMBLER
Loading the Program
Command Line Format
Command Line Options

ASSEMBLER INPUTS AND OUTPUTS
Control Inputs

Source Inputs

Library Input

Screen Output

Source Listing

Symbol Table Listing

Object Code Output

LISTING OUTPUTS
Source Listing
Symbol Table Listing

APPENDICES

BIBLIOGRAPHY

SOURCE LANGUAGE

Lexical Analysis

Source Language Line Format
Expressions

Addressing Modes
Instructions

Assembler Directives

ERROR AND WARNING MESSAGES
Error Messages

Warning Messages

Operating System Error Messages

68K/ASM User Manual

68K/ASM Assembler

8290.6 GST 68/1.03

GSI Computer Systems Limited 68K/ASM Assembler

68K/ASM User Manual

INTRODUCTION

This manual tells you how to use 68K/ASM which is the assembler for the
68K/0S operating system produced by GST Computers Systems Limited.

It tells you:

* how to load and run the assembler

* what inputs the assembler takes and what outputs it produces

* how the assembler language instructions should be coded

* what assembler directives are available, what they do, anc how to
code them.

It does not:

* include a detailed description of the instruction set of the

Motorola MC68000 processor family for which you will need
additional documentation

* tell you how to talk to 68K/0S for which you will have to consult
the 68K/0S Programmer's Manual

* teach programming in general

* teach assembler programming or 68000 programming in particular.
Appendix A contains a list of some other publications which you may
find helpful.

Copyright

This manual and the 68K/ASM assembler software are

Copyright © 1984 GST Computer Systems Limited

and may not be copied by any means whatsoever without prior written
permission from GST Computer Systems Limited.

Permission is hereby granted to make copies of the software for
security or backup purposes only.

Making a Backup Copy

It is strongly recommended that you make a backup copy of the supplied
tape before using the assembler. The procedures for doing this are
fully described in the 68K/0S User Manual.

First you take a blank tape and format it using the 68K/0S FORMAT
program. Then COPY every file on the supplied assembler tape to the
newly formatted blank tape. We suggest that you use the new tape for
running the assembler and keep the supplied tape as the backup copy.

(9%}

8290.6 GST 68/1.03

ESI Computer Systems Limited 68K/ASM Assembler

1.3

Notation Used in this Manual

This section describes the notation used throughout the manual to
describe syntax of assembler source, as well as other items.

= means that the expression on the right defines the meaning of
the item on the left, and can be read as "is"

<3 angle brackets containing a lower-case name represent a named
item which is itself made up from simpler items, such as
<decimal number>

| a vertical bar indicates a choice and can be read as "or is"

[] square brackets indicate an optional piece of syntax that may
appear O or 1 times

{} curly brackets indicate a repeated piece of syntax that may
appear O or more times

is used informally to denote an cbvious range of choices, as
in:

«digit> = 0][1]...]8]9
Other symbols stand for themselves.

Example

<binary number> = %<binary digit>{<binary digit>}

1}

<binary digit> ol1

means that a binary number is a '%' sign followed by a binary digit,
followed by any number of further binary digits, where a binary digit
is the character 'O' or the character 'l'. Some examples of binary
numbers are %0, %1010101100, %0000000000000.

Some of the special symbols used in the syntax notation also occur in
the assembler source input and the common sense of the reader is reliec

on to distinguish these, as in for example:

<operator> = ... | << | ...

68K /ASM User Manual N 8290.6 GST 68/1.03

ﬂS]CompumrSymemsLmﬂmd 68K /ASM Assembler

2.1

2.2

2.3

HOW TO RUN THE ASSEMBLER

Loading the Program

To run the assembler, a microdrive containing ASM.PROG should te
mounted and the program started by typing ASM.PROG in ADAM's command
line, followed by ENTER. (If the microdrive cartridge has not been set
as the program or data default directory you will need to precede the
program name with a. directory name - see the 68K/0S User Manual).

If this file is present on the tape and provided no I/0 errors are
detected, the assembler will be loaded. It will open & large green
window (whose size car be adjusted using the grow and shrink functions)
and will output its rame, revision riumber and a command line prompt.
Command Line Format

The format of the command line is:

<source> [<listing> [<binary>]] {<option>}

where:
<option> = -NOLIST | -ERRORS [<listing>] | -LIST [<listing>] |
-NOBIN | -BIN [<binary>]
-NOSYM | -SYM |
-LIBRARY <library> | -LIB <library>
(the options may be in upper or lower case and case is
not significant)
<source> = <file name> file name of assembler source
<listing> = <file name> file name for listing output
<binary> = <file name> file name for binary output
<library> = <file name> file name for library input

Command Line Options
The options have the following meanings:

-NOLIST dc not generate any listing output

-ERRORS generate a listing of error messages and erroneous lines
only; 1if the option is followed by a <file name> then
this is the name cf the <listing> output and the
positional <listing> parameter, if specified, is not
used; the -ERRORS option also sets the -NOSYM option

68K/ASM User Manual 5 8290.6 GST 68/1.03

ES] Computer Systems Limited 68K/ASM Assembler

-LIST generate a full listing; if the option is followed by a
<file name> then this is the name of the <listing>
output and the positional <listing> parameter, if
specified, is ignored

-NOBIN do not generate any binary output

-BIN generate binary output; if the option is followed by a
<file name> then this is the name of the <binary> output
file and the positional <binary> parameter, if
specified, is ignored

-NOSYM do not generate a symbol table listing; this is the
default if -ERRORS is specified

-SYM generate a symbol table listing; this is the default if
-LIST is specified or if no listing options are
specified; if -SYM and -NOLIST are both specified then
the -SYM is ignored

-LIBRARY (or -LIB) the -LIBRARY option must be followed by a
<file name> and specifies a file containing a
precompiled library to be included in the assembly

Where conflicting options are given the last one specified takes
effect. For example, if:

-LIST mydir/fred.list -NOLIST -ERRORS

is specified then only an error listing is sent to MYDIR/FRED.LIST, and
ify

-SYM -ERRORS
is specified then no symbol table output will be generated.

The minimum command line Jjust consists of the name of the input source
file. In this case a full listing with symbol table is generated (i.e.
the default is -LIST -SYM) to the file whose name is constructed from
the <source> <file name> as described below. Also by default a binary
output file is generated (i.e. the default is -BIN) to the file whose
name is constructed from the <source> <file name> as cdescribed below.

The <source> file name is examined: if it does not contain. a file
extension component then ".ASM" is appended to the given name to make
the name of the actual source file used.

The name of the <listing> file may be given positionally as the second
parameter, or may be specified explicitly after a -ERRORS or -LIST
option, or may be allowed to default. If no <listing> <file name> is
given in a -ERRORS or -LIST option and no -NOLIST option has been
specified then the assembler constructs the <listing> <file name> by
taking the <source> <file name> and replacing the file type with
" LIS

68K/ASM User Manual 6 8290.6 GST 68/1.03

GSI Computer Systems Limited 68K/ASM Assembler

The name of the <binary> file may be giver positionally as the third
parameter, or may be specified explicitly after a -BIN option, or nay
be allowed to default. If no <binary> <file name> is given in a -BIN
cption end no -NOBIN option has been coded then the assembler
constructs the <binary> <file name> by taking the <source> <file name>
and replacing the file extension with ".BIN:.

Examples:
FRED

essemble FRED.ASM, put a full listing with symbol table listing in
FRED.LIST and put the binary in FRED.BIN

FRED TX1: -nobin

essemble FRED.ASM, print the listing as it is produced, and don't
generate any binary

FRED —errors -BIN other/fred.bin

essemble FRED.ASM, send an error listing only with ro symbol table
to FRED.LIST and put the binary in OTHER/FRED.BIN (note that
coding OTHER/FRED would not have schieved this)

FRED tx1: other/fred.bin —errors —sym —-LIBRARY system/68kos.lib

essemble FRED.ASM, print an error listing plus symbol table
directly, put the binary in OTHER/FRED.BIN and include the
precompiled file SYSTEM/68KO0S.LIB in the output binary

When the assembly has finished, and if there have beern no operating
system errors, the assembler will not terminate but will repeat the
prompt asking for a command line. You can now do another assembly
without having to reload the assembler. When you have done all the
assemblies that you want you may reply to this prompt with ENTER and
the assembler will terminate.

68K/ASM User Manual T 8290.6 GST 68/1.03

ES] Computer Systems Limited 68K/ASM Assembler

3 ASSEMBLER INPUTS AND OUTPUTS

This chapter describes all the input and output files and devices that
the assembler can use.

3.1 Control Inputs

Control information for the assembler is supplied by the user typing a
command line on the keyboard. The command line is described in
section 2 above and specifies where all the other input and output
files and devices are.

3.2 Source Inputs

The assembler assembles one main source file. This may direct the
assembler, using INCLUDE directives, to read other source files.

When assembling large and complicated programs it is normal to put no
real code at all in the main source file which will just contain
INCLUDE directives naming the other source files. For example:

TITLE A large complicated assembly
*
* Start with the 68K/0S parameter file, then the
* parameter file for my program
*
INCLUDE system/68kos.in
INCLUDE myparms.in
*
* Now the main code to be assembled: this is rather
* large so it is split into two separate files
*
INCLUDE progl.in
INCLUDE prog2.in
*
* Finally, the -LIBRARY facility is being used to
* include a library of useful subroutines; the
* declaration file for the library must be INCLUDEA
* last
3

INCLUDE 1library.in

END

It is recommended that filenames of main source files end in ".ASM",
but this is not a requirement and you can call them anything you like.

It is recommended that filenames of INCLUDEAd files end in ".IN", but
this is not a requirement and you can call them anything you 1like.
Note that 68K/ASM will search for any INCLUDEd files on the default
data directory unless a directory is specified within the INCLUDE
directive.

68K/ASM User Manual 8 8290.6 GST 68/1.03

ES'I’ Computer Systems Limited 68K/ASM Assembler

3.3 Library Input

The assembler's library mechanism allows you to include in your program
a previously assembled binary file containing useful subroutines or
other code. The program being assembled may refer to labels within the
library, but the library must be self-contained and cannot refer to
labels elsewhere in the program.

To use a library you must make reference to two files.

The first file is a set of symbol definitions, in normal assembler
source format, which you must INCLUDE at the end of your source
program. This file causes your references to library symbols to be
resolved so that your code can be assembled.

The second file is a binary file containing the code of the library
routines. You must present this to the assembler by giving its name in
the -LIBRARY option on the command line.

If you manage to leave out, one of these two files, or use a definition
file that is not compatible. with the binary file, then undefined chaos
will result.

You can build your own libraries as follows:

(a) write the code

(b) assemble it: the output from the assembler is now the library
binary file

(¢) build a definitions file from the symbol table listing resulting
from the assembly: for each symbol in the library which you wish
to be able to access from programs, write a line:

symbol EQU *+offset
where offset is the value printed for the symbol on the listing.

You can extend libraries in the obvious way as the assembly in step (b)
above can itself use a library.

68K/ASM User Manual

o

8290.6 GST 68/1.03

ES] Computer Systems Limited 68K/ASM Assembler

3.k

3.5

Screen Output

In addition to the identification message and command line prompt
when the assembler starts, the following are output to the screen.

The assembler makes two passes of the source input files and will tell
you when it starts each pass. The second pass can be expected to take
a lot longer than the first pass if listings and/or binary output are
wanted. The symbol table listing is produced after the summary
messages are displayed, so if you are assembling a large program it
will be an appreciable time after the summary messages are displayed
before the assembler finishes completely.

A summary of the number of errors and warnings generated is written to
the screen together with a summary of the amount of memory used. This
memory size excludes the memory occupied by the code of the assembler
itself (about 1Tk) and the assembler's initial data space (about 6k).
You can get a good idea of how complex your assemblies are and whether
you are likely to run out of memory by watching the memory use figure.

If you do several assemblies in one go (without reloading the
assembler) then the assembler will re-use any memory it has obtained
from the operating system but will not release any memory until it
terminates completely. This means, for example, that if you do a very
large assembly followed by a very small assembly there will be no more
free memory in the machine during the small assembly than there was
during the large assembly.

Source Listing

An optional source listing will be generated, showing the source input
and the code that has been generated.

The listings provided are controlled both by options on the command
line (see section 2 above) and by directives coded in the source
program (see appendix B below).

If the -NOLIST option is given then there will be ro listing output
from the assembler. Under all other circumstances a file or device
will be used to produce a listing.

If the filename for the listing output is generated automatically by
the assembler it will end in .LIST. It is recommended that listing
files always have filenames ending in .LIST, but this is not a
requirement and you can call them anything you like.

Listings can be printed directly as they are generated (using TX1: or
whatever is appropriate to your hardware and your implementation of
68K/0S) or can be sent to the screen (using SCREEN:) as an clternative
to sending them to files.

€8K/ASM User Manual 10 8290.6 GST 68/1.03

ESI Computer Systems Limited 6BK/ASM Assembler

3.6

3.7

Symbol Table Listing

A symbol table listing will be produced if both the -LIST and -SYM
options are in effect. :

The symbol table listing will be zdded to the end of the source
listing, starting on a new page.

Object Code Output

The assembler produces a binary file which can be loaded and run
directly as a 68K/05 program, provided that you have coded the requirec
control information (the Program Header Block) at the start of the
program. For details consult the 68K/0S Programmer's Reference Manual.

Alternatively the output binary file from the assembler can be &
library file which is not directly executable but can be included in
future assemblies. There is no difference between the format of a
library file and the format of an executable program file: the
differences are contained entirely in the code you write.

68K/ASM User Manual 11 8290.6 GST 68/1.03

ES] Computer Systems Limited 68K/ASM Assembler

b Listing Outputs

There are two listings produced by the assembler: the source listing
and the symbol table listing.

Fach line of listing output produced can be up to 132 characters long
(excluding the terminating newline); in particular each title line is
132 characters long. Some printers cannot be made to print 132
characters to a line sc the PAGEWID directive is provided to specify
the actual width of the printer. Any 1line longer than FAGEWID
characters will be overflowed onto the following line, and these

overflows will be taken account of when determining whether a page is
futl,

The listing output is paginated with the total page length defined by
the user in a PAGELEN directive or will defaull to 66. To obtain
essentially unpaginated output the user may set PAGELEN to a very large
number, in which case only one title will be printed at the beginning
of the listing, and form feeds will be included at the start and end of
the listing and between the source and symbol table listings only.

The format of each printed page is:

<heading>
<blank>
<title>
<blank>
<blank>
<listing>
<form feed>

where:
<blank> is a blank line (i.e. a line feed character)

<heading> is a line containing the name and version of the
assembler, the name of the source file being assembled,
the page number, and the time and date

<title> is the <title string> given on the relevant TITLE
directive; if no relevant TITLE directive has been
coded then this line is <blank>

<listing> consists of (PAGELEN-1L) lines of listing of whatever
format is appropriate (source listing or symbol table
listing)

<form feed> is the ASCII form feed character and appears

immediately after the line feed which terminates the
last line (if any) of <listing>

68K/ASM User Manual 12 8290.6 GST 68/1.03

ES] Computer Systems Limited 68K/ASM Assembler

ha

Source Listing

Note that if the -ERRORS option has been requested then not all source
lines are listed: only lines containing errors are listed, together
with the error messages.

Each line of listed source code has the following format:

Columns Field contents Format

1-b line number L-digit decimal

5 (blank)

6 section number 1-digit hex

8-15 location counter 8-digit hex

16 (blank)

17-28 generated code up to 12 digits hex

29 (blank)

30-132 source line as coded, truncated to fit

Source line numbers start at 1 for the first line in the (main) source
field and are incremented by 1 for each source line processed
regardless of the file from which it came and regardless of whether the
line is listed or not.

The section number is zero for instructions and data assembled into
section zero. It is left blank when absolute addresses (such as those
generated under the influence of an OFFSET directive) are being
displayed.

For instructions and data definition directives the location counter
field contains the address which woulc¢ be assigned to a label defined
cn that source line; note that this is not necessarily the same as the
value of the location counter after the previous line has been
processed. For other directives containing expressions whose value is
likely to be of interest to the user (e.g. OFFSET, EQU) the value of
the expression is printed in the location counter field or the code
field, as appropriate. If there is nothing useful that can be printed
in this field then it is left blank.

The generated code field contains up to 6 bytes of code generated by an
instruction or a data definition directive (DC or DCB). If an
instruction generates more than 6 bytes of code then z second listing
line is used to display the rest of it; this second listing line is
blank apart from the generated code field (and possibly some error
flags). Code in excess of 6 bytes generated by DC or DCB directives is
not printed; if you want to see it you should code several separate DC
or DCB directives.

68K/ASM User Manual 13 8290.6 GST 68/1.03

ES] Computer Systems Limited 68K/ASM Assembler

The length of the listing 1line is in all cases limited to 132
characters, any excess (probably comment) being truncated. :

Error and warning messages are interspersed with the source listing;
each message follows the listing of the line to which it refers. If a
line has errors or warnings it is followed by a line containing a
vertical bar character (|) below the part of the source line giving
offence. The format of the messages is:

**¥%%%¥%¥ ERROR xx - line nnnn - mmmm - <message>
*¥¥%¥ WARNING xx - line nnnn - mmmm - <message>

where xx is the error number, nnnn is the line number of the line
containing the error, mmmm is the line number of the line containing
the previous error (0 if rone) to allow the user to chain through all
the error messages to make sure none have been missed, and <message> is
a helpful message saying what is wrong. There are separate chains for
error and warning messages.

The 1line giving rise to an error or warning is always listed,
regardless of the state of any LIST or NOLIST directives. Thus the
listing generated by -ERRORS is more or less the same as the listing
generated by -LIST if NOLIST directives are in force throughout.

If there is no END directive a special warning message is printed
relating to this at the end of the assembly; the line number in this
warning message is one greater than the number of the last line in the
input file. .

At the end of the assembly a summary of the number cof errors and

warnings generated is output both tc the listing, if there is one, and
to the screen.

68K /ASM User Manual 1k 8290.6 GST 68/1.03

ES'I' Computer Systems Limited 68K/ASM Assembler

b2

Symbol Table Listing

The symbol table listing is & sorted list of each user-defined symbol
with its type, value and line number of the line on which it was first
defined.

The listing is sorted alphabetically on symbol name, with ASCII
collating sequence for non-alphabetic characters. It is printed in a

single column.

The symbol table listing for each symbol contains the following fields:

Columns Field contents Format

1-8 symbol up to 8 characters

9 (blank)

10-13 symbol type see helow

1h (blank)

15 section number G or 7 or B, sece helow
16 (blank)

17-24 value 8-digit hex

25 (blank)

26-29 line number L-digit decimal

The type field contains:
MULT if the symbol is multiply defined; the assembler will
use the first definition and print error messages for
subsequent ones

blank ordinary labels

The section number field contains:

blank symbol is absolute

[¢] symbol is simple relocatable and lives in section O
X symbol is complex relocatable

R symbol is a register list defined by a REG directive

If the symbol is undefined then the section number and value fields
will contain the word ‘'undefined'.)

The line number field contains the line number of the first line in
which the symbol was defined: for an undefined symbol it is left
blank.

68K/ASM User Manual 15 8290.6 GST 68/1.03

ES'I' Computer Systems Limited 68K/ASM Assembler

A

BIBLIOGRAPHY

In order to write 68000 assembler programs that run under the 68K/0S
operating system you will need the following two publications, or
equivalents:

MC68000UM(AD3) 16-Bit Microprocessor User's Manual

This Motorola publication describes the architecturce and
instruction set of the MC68000 family of processors. It is
available from GST Computer Systems Limited, 91 High Strect,
Longstanton, Cambridge at £8.95 including postage and packing.

9992.1 GST 13 68K/0S Programmer's Reference Manual

This manual describes the features of the 6G8K/0S operating system
and defines the system calls useful to the ordinary applications
programmer, and other interactions between the operating system
and user's programs. It is supplied with the O8K/08 operating
system.

In order to make more advanced use of 68K/0S the following additional
manual is required:

9992.1 GST 54 68K/0S System Programmer's Manual

This manual describes the system programmer's interface to 68K/0S
and contains full details of how to write device drivers and other
similar topics. Available from GST Computer Systems Limited.

In addition the following is an excellent book which teaches asscembler
programming on the 68000 and also contains a complete description of
the 68000's instruction set. It is suitable for the first-time
assembler programmer and is also very valuable to the experienced
assembler programmer who has not used a 68000 before as it points out
many of the common errors and pitfalls which usually cause trouble for
the newcomer to the 68000:

Programming the MC68000 by Tim King and Brian Knight, Addison-Wesley

Available from GST Computer Systems Limited, 91 High Street,
Longstanton, Cambridge at £8.95 including postage and packing.

68K /ASM User Manual 16 8290.6 GST 68/1.03

ESI Computer Systems Limited 68K/ASM Assembler

B

SOURCE LANGUAGE

This appendix defines the source language accepted by the assembler.
It does not specify the details of the Motorols 68000 instruction set
and a manual for the 68000 itself must be consulted for this
information.

Lexical Analysis

This section defines the way in which characters are combined to make
tokens. The notation used is described in section 1 above.

Cenerally a line of assembler source is divided into the traditional
four fields of label, operation, operand and comment, the fields being
separated by spaces.

Thus spaces are significant in this language, apart from just
terminating symbols.

As a special case a line containing an asterisk or semicolon in column
one consists entirely of comment and is treated as a blank line.

Any syntactic token is terminated either by the first character which
cannot form part of that token or by end of line.

<syntactic token> = <white space> |
<symbol> |
<number> |
<string> |
<newline> |
T M|

LS K S IR G I R A R P I (A
(where <newline> is a line feed character)
<white space> = <space>{<space>}

(where <space> is the ASCII space character)

<symbol> = <start symbol>{<rest symbol>}

<start symbol> = <letter>]|.

<rest symbol> = <letter>|<digit>|$].]

<letter> = albl...|lylz|A|B|...|Y|Z -

note that (outside strings) whether a letter is
upper or lower case is not significant

note that a symbol can be any length but only the
first eight characters are significant

68K/ASM User Manual 1T 8290.6 GST 68/1.03

Es.lComputer Systems Limited 68K/ASM Assembler

<number> = <binary number> |
<octal .number> |
<decimal number> |
<hex number>

<binary number> %<binary digit>{<binary digit)}

<octal number> @<octal digit>{<octal digit>}

I

<decimal number> = <digit>{<digit>}

<hex number> = $<hex digit>{<hex digit>}
<binary digit> = 0|1

<octal digit> =0|1]...|6]T

<digit> =0[1]...]8]9

<hex digit> = <digit>|al...|f|A]l...|F

<string> '<stringchar> {<stringchar>}"'

where a <stringchar> is any ASCII character except
a line feed, a control character, or a single quote
'; in eddition a <stringchar> may be two adjacent
single quotes which allows a single quote to be
coded inside a string

There are two iypes of <symbol> used by the assembler. <symbol>s
appearing in the operation field are "operation type symbols" and those
appearing in the operand field are "operand type symbols". These two
sets of <symbol>s are quite separate and there is ro confusion (except
in the mind of the programmer) between the same¢ name used in both
places. Thus you can have user-defined labels with the same names as
instructions and directives, if you really want to.

There are special forms of strings used by the INCILIDIK and TITLE
directives which allow the user to omit the enclosing quoles:

<file name> = ¢string>|{<non space character>}

i.e. a «<file name> is either enclosed in quotes or
is terminated by a space or end of line

<title string> = {<character>}

i.e. a <title string> is terminated by end of line

68K/ASM User Manual 18 8290.6 GST 68/1.03

Esl Computer Systems Limited 68K/ASM Assembler

B.2 Source Language Line Format

This section defines the various forms which a source line can take.

A source line consists of between O and 132 characters (excluding

B:2.2

the line feed character).

Basically a source line consists of the following four fields:

label (optional, but depends on operation)
operation (optional)

operand (depends on operation)

comment (optional)

A source line can be blank (including consisting entirely of comment as
defined above) in which case it is ignored for all purposes other than
those connected with output listings: a blank line is assigned a line
number, is printed on the listing, and its position may affect the
operation of the title directive.

The Label Field

A line contains a label field if it starts with one of the
following sequences of tokens:

<symbol><white space>

<symbol>:

<white space><symbol>:
i.e. a label starting in column 1 may be followed by <white space>
or a colon, but a label starting further along the line must be
terminated by a colon.

Such a sequence at the start of a line is referred to elsewhere in
this appendix as a <label>.

If a line contains a label and contains nothing after the label
then the label is defined with the current value of the current
location counter: otherwise the meaning of the label depends on
the operation field.

The Operation Field

The operation field follows the (optional) label field and its
syntax is:

[<white space>]<symbol> -
The symbol is one of:
an assembler directive

a 68000 instruction

68K/ASM User Manual 19 8290.6 GST 68/1.03

ES] Computer Systems Limited 6BK/ASM Assembler

B.2.3

The Operand Field

The syntax of the operand field depends on the operation. <white
space> terminates the operand.

The syntax of each format of the operand field is described below
when the operation is defined.

The Comment Field

When enough of the rest of the line has been processed to satisfy
the operation (for the majority of operations this is up to the
first <white space> beyond the start of the operand field)
anything left on the line is deemed to be comment and ignored.

68K/ASM User Manual 20 8290.6 GST 68/1.03

ES] Computer Systems Limited 68K/ASM Assembler

B.3 Expressions
Expressions are constructed from:

unary operators: +, -

binary operators: +, -, [, ¥, >>, <<, &, !
parentheses: (500
operands: <symbol>, <number>, *, <string>

<string>s used in expressions must be four characters long or shorter.
The value of a <string> consists of the ASCII values of the characters
right-justified in the normal 32-bit ‘value. Thus, for example, the two
expressions

'a'%2564+'b" and 'ab'

have the same value. (Note that the DC directive can use longer
strings with different evaluation rules.)

The character * used as an expression operand has the same value as a
<label> defined on the line in which the * is used would have.

The syntax of an expression is then:

<expr> = <symbol> | <number> | * | <string>
(<expr>) |
+ <expr> | - <expr> |

<expr> <binaryop> <expr>

<binaryop> =+ | = | /| ¥ | << | >> | & |
The operators have the following meanings:

unary + the value of the operand is unchanged

unary - the value of the operand is negated
Note that all operands are regarded as 32 bit values; these values are
obtained by extending the original operand on the left with zeroes (all
operands are originally positive except that symbols can be defined to
have negative values, in which case they will already be 32 bit
negative numbers). Likewise all intermediate and final results from
expressions are calculated as 32 bit values, and are truncated as
necessary according to context just before being used.

binary + addition

binary - subtraction

* multiplication

68K/ASM User Manual 21 8290.6 GST 68/1.03

ES] Computer Systems Limited 68K/ASM Assembler

/ division: the result is truncated towards zerc

<< shift left: +the left operand is shifted to the left by
the number of bits specified by the right operand, which
should be an absolute value between O and 32 inclusive
otherwise the result ic undefined; vacated bits at the
right hand end are filled with zeroes

>> shift right: as for shift left but the operand is
shifted right

& bitwise logical AND
! bitwise logical OR
The order of evaluation of expressions is as follows:
(a) parenthesised expressions are evaluated first (in the natural way)

(b) operators are evaluated according to priority; the order of
priority is (highest first):

unary +, -
LED S

* |

binary +, -

(c) operators of the same precedence at the same nesting level of
parentheses are evaluated from left to right.

Symbols may be absolute or relocatable. Numbers and strings are
absolute; the current location counter (¥*) is relocatable. The only
operators which may act on relocatable symbols or relocatable
subexpressions are unary + and - and binary + and -.

When an expression has been fully evaluated it is one of:

(a) absolute: the final value is independent of the start of
section O

(b) simple relocatable: the final value is an cffset from the start
of section O

(c) complex relocatable: the final value involves some other multiple
of the start of section O

68K/ASM User Manual 22 8290.6 GST 68/1.03

ESI Computer Systems Limited 68K/ASM Assembler

B.4 Addressing Modes

This section defines all addressing modes that can be coded as

instruction oper
actually do cons

B.k.1 Addressing

ands. For a definition of what these, addressing modes
ult a manual for the Motorola 68000.

Mode Syntax

A number of symbols are reserved and have special meaning when
used in operands: these are names of various registers.

DO to D7 data registers
also the symbols DO.W, DO.L etc.

A0 to AT address registers
also the symbols AO.W, AO.L etc.

SP S

ynonym for AT

also the symbols SP.W, SP.L

USP u
CCR ¢
SR s
PC P

The syntax
by a few g

<areg> =
<dreg> =

<ireg> =

<multireg>

<range> =

68K/ASM User Manual

ser stack pointer

ondition code register (low 8 bits of SR)
tatus register

rogram counter

of instruction operands is developed below, preceeded

eneral definitions.

AO | ... | AT | SP

DO | ..cnim | DT

<areg> | <dreg> |

AOW | oo. | AT.W | SP.W | DO.W | ... | DT.W |
BO.Lii | wee | AL | SEL |-DPOJIA| wes | DT

= <range>{/<range>}
<areg> | <dreg> | <areg>-<areg> | <dreg>-<dreg>
(where the registers in an individual range must be

in increasing register order, e.g. DO-D3 is valid
and A4-A2 is not valid)

23 8290.6 GST 68/1.03

GSI Computer Systems Limited 68K/ASM Assembler

B.k.2

The addressing modes which are called (by Motorola) "effective
address" and which can be coded (or at least a subset of them) in
any instruction which has a general effective address as an
operand are: v

<cea> = <dreg> | D register direct
<areg> | A register direct
(<areg>) | register indirect
(<areg>)+ | postincrement
—(<areg>) | predecrement
<expr>(<areg>) | indirect with displacement
<expr>(<areg>,<ireg>) | indirect with index
<expr> | absolute short
<expr> | absolute long
<expr> | PC relative
<expr>(PC) | PC relative
<expr>(PC,<ireg>) | PC with index
fi<expr> immediate

Note that the syntax <expr> means either PC with displacement
addressing or either form of absolute addressing, and this
ambiguity is resolved according to the semantics of the <expr>.
See below for details.

Mso the operand <dreg> (e.g.) could be either a register direct
addressing mode or a <multireg> and hence a multiple register
specification: the assembler is capable of deciding what is
meant depending on the instruction being assembled.

Interpretation of Addressing Modes

Basically all references which involve relocatable destinations
must be PC-relative for the code to be position independent which
is' a requirement for running under 68K/0S. This means that
references to labels more than 32k bytes away will fail, and the
programmer must find some other means of reaching the destination.

All forms of the effective address are coded exactly as meant
apart from

<expr>

which can mean an ebsolute short address, an absolute long address
or a PC-relative address.

If the value of the <expr> is absolute the assembler will generate
an absolute short address if possible, otherwise it will generate
an absolute long address.

68K/ASM User Manual ol 8290.6 GST 68/1.03

ESI Computer Systems Limited 68K/ASM Assembler

B.4.3

If the value of the <expr> is relocatable the assembler will try
to generate a PC-relative address. This will fail if the
destination is too far away or if the effective address is
required to be 'alterable'; in either case an error message will
be produced and the programmer must find some other way of writing
the program.

Forward references which are undefined at the time of meeting the
symbol are assumed to be simple relocatable. If the programmer
wishes to reference an absolute address this can only be done by
coding & number or by coding a symbol which has previously been
equated to a number. For example:

MOVE.B #$80, SCREEN

SCREEN EQU $18063
is not legal and will generate an error, whereas:

JMP FRED

FRED
is legal and will generate a PC-relative addressing mode.

An immediate operand fi<expr> where the <expr> is not absolute will
probably generate wrong code as the assembler does not know where
the code will be loaded and executed and is unable to add the
necessary relocation base(s). Therefore the assembler will
generate warning messages if a relocatable <expr> is used as an
immediate operand.

Branch Instructions

The branch instructions (Bec, BSR) can use either an 8-bit PC-
relative displacement or a 16-bit displacement; the assembler
will correctly choose the most efficient option for a backwards
reference but needs some help with forward references. The
default option is to generate a long (16-bit) displacement.

These branch instructions can have an explicit extent coded of .S
(short) meaning that an 8 bit displacement is to be used or .L
(long) meaning that a 16 bit displacement is to be used, for
example:

BNE.S FRED FRED is not very far away

68K/ASM User Manual 25 8290.6 GST 68/1.03

ESI Compu

B.5

B.5.1

ter Systems Limited 68K/ASM Assembler

Instructions

This section lists all the 68000 instruction mnemonics, describes how
the various modifiers are coded, and defines the operand syntax of each
instruction. Note however that for precise details of the actual
addressing modes etc. legal for each instruction a manual for the
Motorola 68000 should be consulted.

An instruction may optionally have a <label>. Before any code for an
instruction is generated the current location counter is advanced to an
even address if not already even and it is this adjusted address that
is assigned to the <symbol> in the <label>.

Instruction Mnemonic Format

The operation field of a source line containing a machine
instruction is simply a <symbol>. However there is some
flexibility allowed in the coding of mnemonics as there are some
generic mnemonics that relate to a group of instructions, the
actual instruction wanted being chosen by the assembler depending
on the operands coded.

Instructions which may operate on operands of different lengths
must have the length of the operand coded as part of the <symbol>:
this takes the form of ".B", ".W" or ".L" as the last two
characters of the <symbol> depending on whether the operand length
is byte, word or long. If a length is required and no length is
coded the assembler will assume .W and will print a warning
message.

Instructions which may only take a single operand length nay
optionally have the length coded as above.

The branch instructions may optionally have ".S" or ".I" coded as
the last two characters of the <symbol> to indicate the
displacement size as described at B.4.3 above.

Examples:
MOVE.L an instruction with an operand length coded
BEQ.S an instruction with an extent coded
JSR an instruction with no extra bits
MOVE.L DO, AO automatically generates MOVEA.L
MOVE.L #2,D3 automatically generates MOVEQ.L

68K/ASM User Manual 26 8290.6 GST 68/1.03

ESI Computer Systems Limited 68K/ASM Assembler

B.5.2

B.5.3

Data Movement Instructions

The various forms of the MOVE instruction are used to move data
between registers and/or memory. These are:

MOVE<length> <ea>,<ea>

which is the generic instruction, and will generate one of the
following if necessary:

MOVEA<length> <ea>,<areg>
MOVEQ(. L] f#<expr>,<dreg>

Note that both MOVEA and MOVEQ can be coded explicitly if desired.
Note also that the assembler will only convert a MOVE to a MOVEQ
if the length is specified as ".L".

Various other special forms of the MOVE instruction are always
coded as MOVE (they have no specific mnemonic) but they all
operate on a single length of operand and the operand length is
optional. These are:

MOVE(.W] <ea>,CCR
MOVE[. W] <ea>,SR
MOVE[.W] SR, <ea>
MOVE[.L] <areg>,USP
MOVE[.L] USP, <areg>

The MOVEM and MOVEP instructions are also involved with data
movement but, are not generated automatically by the assembler from
the MOVE mnemonic. Their syntax is:

MOVEM<length> <multireg>,<ea>
MOVEM<length> <ea>,<multireg>

MOVEP<length> <dreg>,<expr>(<areg>)
MOVEP<length> <expr~(<areg>),<dreg>

The other data movement instructions are:

EXG[.L] <reg>,<reg> where <reg> = <areg>|<dreg>
LEA[.L] <ea>,<areg>

PEA[.L] <ea>

SWAP[.W] <dreg>

Arithmetic Instructions

In a simlar way to the MOVE instruction, the ADD, CMP and SUB
mnemonics are generic and will generate ADDA, ADDI, ADDQ, CMPA,
CMPI, CMPM, SUBA, SUBI, SUBQ if necessary; again, the explicit
forms can be coded if desired

ADD<length> <ea>,<ea>
CMP<length> <ea>,<ea>
SUB<length> <ea>,<ea>

68K/ASM User Manual 27 8290.6 GST 68/1.03

ES] Computer Systems Limited

ADDA<length>
ADDI<length>
ADDQ<length>
CMPA<length>
CMPI<length>
CMPM<length>
SUBA<length>
SUBI<length>
SUBQ<length>
Additional (binary)

ADDX<length>
ADDX<length>

CLR<length>

DIVS[.W]
DIVU[.W]

EXT<length>

MULS[.W]
MULU[.W]

NEG<length>
NEGX<length>

SUBX<length>
SUBX<length>

TST<length>

<ea>,<areg>
ficexpr>,<ea>
fi<expr>,<ea>
<ea>,<areg>
ficexpr>, <ea>
(<areg>)+, (<areg>)+
<ea>,<areg>
#<expr>,<ea>
fi<expr>,<ea>

arithmetic instructions are:

<dreg>,<dreg>
—(<areg>),-(<areg>)

<ea>

<ea>,<dreg>
<ea>,<dreg>

<dreg>

<ea>,<dreg>
<ea>,<dreg>

<ea>
<ea>

<dreg>,<dreg>
-(<areg>),-(<areg>)

<ea>

68K/ASM Assembler

The binary coded decimal instructions are written as follows:

ABCD[.B]
ABCD[.B]
NBCD(.B]
SBCD(.B]
SBCD(.B]

B.5.k4 Logical Operations

AND, EOR, OR are generic nnemonics that will generate ANDI,

ORI as necessary:

AND<length>
AND<length>
AND<length>
ANDI<length>

68K /ASM User Manual

<dreg>, <dreg>
-(<areg>),-(<areg>)

<ea.>

<dreg>, <dreg>
-(<areg>),-(<areg>)

<ea>,<dreg>
<dreg>,<ea>
ficexpr>, <ea>
ficexpr>, <ea>

EORI,

8290.6 GST 68/1.03

ESI Computer Systems Limited 68K/ASM Assembler

3
i
a
t

EOR<length> <dreg>,<ea>
EOR<length> ficexpr>,<ea>
EORI<length> fi<expr>,<ea>

NOT<length> <ea>

OR<length> <ea>,<dreg>
OR<length> <dreg>,<ea>
OR<length> fi<expr>,<ea>

ORI<length> flcexpr>,<ea>

There are special forms of the ANDI, EORI and ORI instructions
which operate on the status register.

AND.B fi<expr>,SR
AND.W ff<expr>,SR
AND[.B] #<expr>,CCR
ANDI.B fi<expr>,SR
ANDI.W fi<expr>,SR
ANDI[.B] #f<expr>, CCR
EOR.B ficexpr>,SR
EOR.W ff<expr>,SR |
EOR[.B] ff<expr>,CCR
|
EORI.R fi<expr>,SR
EORI.W fi<expr>,SR]
EORI[.B] ff<expr>,CCR
|
CR.B fi<expr>,SR
OR.W fi<expr>,SR
OR[.B] #i<expr> ,CCR |
ORI.E ff<expr>,SR
ORI.W ff<expr>,SR
ORI[.B] #f<expr>, CCR
B.5.5 Shift Operations

ASL<length> <dreg>, <dreg>
ASL<length> fi<expr>,<dreg>
ASL[.W] <ea>

ASR<length> <dreg>,<dreg>
ASR<length> fi<expr>,<dreg>
ASR[.W] <ea> -

LSL<length> <dreg>,<dreg>
LSL<length> fi<expr>,<dreg>
LSL[.W] <ea>

LSR<length> <dreg>,<dreg>

LSR<length> ficexpr>, <dreg>
LSR[.W] <ea>

68K/ASM User Manual 29 8290.6 GST 68/1.03

ESI Computer Systems Limited

ROL<length> <dreg>,<dreg>
FOL<length> ficexpr>,<dreg>
ROL[.W] <ea>
ROR<1length> <dreg>,<dreg>
ROR<length> fi<expr>,<dreg>
ROR[.W] <ea>
ROXL<length> <dreg>,<dreg>
EOXL<length> fi<expr>, <dreg>
ROXL[.W] <ea>
ROXR<length> <dreg>, <dreg>
ROXR<length> fi<expr>, <dreg>
FOXR([. W] <ea>
B.5.6 Bit Operations

The length specification is optional on these instructions as the

length must be long if the <ea™ is a <dreg> and must be byte if

the <ea> is anything else.
BCHG[<length>] <dreg>,<ea~
BCHG[<length>] f#<expr>,<ear
BCLR[<length>] <dreg>,<ea>
BCLR[<length>] #<expr>,<ea>
BSET([<length>] <dreg>,<ea>
BSET[<length>] #<expr>,<ea>
BTST([<length>] <dreg>,<ea>
BTST[<length>] fi<expr>,<ea>

B.5aT Branch Instructions

The branch instructions may optionally have an extent (.S or

68K/ASM Assembler

coded as described at B.4.3 above.

B<ce>[<extent>]

where:
<ce> = 'CC
LS
HS
<extent> = .S

68K/ASM User Manual

<expr>

30

.L)

8290.6 GST 68/1.03

ESI Computer Systems Limited 68K/ASM Assembler

B.5.8

B.5.9

B.5.10

B.5.11

The unconditional branch instruction is:
BRA[<extent>] <expr>

and is in fact a version of the conditional branch instruction
that means "branch regardless of the condition codes".

The branch to subroutine instruction is:
BSR[<extent>] <expr>
Trap Instructions

Grouped here are those instructions whose main purpose is to
generate traps, either conditionally or unconditionally.

CHK[.W] <ea>,<dreg>

TRAP fi<expr>

TRAPV
The DBcc Instruction
This instruction is a looping primitive; it tests the condition
codes as does the Bce instruction but also allows the conditions
"always true" and "always false" to be tested.

DB<dbee>[.W] <dreg>,<expr>
where:

<dbee> =<ce> | T | F | RA
RA is a synonym for F, meaning branch regardless of the condition
codes; thus the instruction DBRA loops without testing conditions
other than the value of the loop counter.

Jump Instructions

The Jjump instructions are an unconditional Jjump and a subroutine
call:

JMP <ea>

JSR <ea>
See section B.4.2 for a definition of how the assembler interprets
<expr> as an <ea>, as that paragraph is particularly relevant to
these two instructions.

Stack Frame Management

LINK <areg>, fi<expr>

UNLK careg>

68K/ASM User Manual 31 8290.6 GST 68/1.03

Es.[Computer Systems Limited 68K/ASM Assembler

B.5.12 0Odds and Ends

NOP

RESET

RTE

RTR

RTS

TAS[.B] <ea>
STOP fi<expr>

The Scc instruction has the same set of conditions as DBcc but not
the RA synomym:

S<sce>[.B] <ea>
where:

<sce> =<ce> | T|F

68K/ASM User Manual 32 8290.6 GST 68/1.03

ESI Computer Systems Limited 68K/ASM Assembler

B.6 Assembler Directives
Assembler directives are instructions to the assembler and, with the
exception of DC and DCB, do not directly generate any code. The
directives provided are summarised below.
The following directives must not have labels:
INCLUDE read another source file
SECTION relocatable program section
OFFSET define offset symbols
END end of program

The following directives require labels:

EQU assign value to symbol
REG define register list

The following directives may optionally have labels:

DC define constants
DS reserve storage
DCB define constant block

The following are listing control directives and must not have labels:

PAGE start new listing page

PAGELEN define length of page

LIST switch listing on

NOLIST switch listing off

TITLE define title for listing
B.6.1 INCLUDE — Read Another Source File

This directive causes the named file to be read as if it were
present in the original source file in place of the INCLUDE
directive. INCLUDE directives may be nested to at least three
levels.
The syntax of an INCLUDE directive is:

INCLUDE <file name>

where <file name> (with optional surrounding quotes) is the normal
syntax of a path name for 68K/0S.

68K/ASM User Manual 33 8290.6 GST 68/1.03

ESI Computer Systems Limited 68K/ASM Assembler

B.6.2

B.6.3

B.6.4

SECTION - Start Relocatable Section
This directive defines the relocation base to be used for

subsequent code generation. The only section implemented is
section O.

No SECTION directive need be coded unless OFFSET is used, in which
case a SECTION directive must separate sequences of OFFSET
definitions from following code.
Any number of SECTION directives may be present.
The syntax of the SECTION directive is:

SECTION <expr>

vhere the expression must be absolute, contain no forward
references, and have the value zero.

OFFSET - Define Offset Symbols
The OFFSET directive provides a means for symbols to be defined as
offsets from a given point: this is particularly useful for
defining field names for data structures.
The <expr> given in an OFFSET directive must be absolute and must
not contain forward references or external references. The value
of the <expr> is the initial value of a dummy location counter
which can then be used to define labels on following DS
directives.
The syntax of the OFFSET directive is:

OFFSET <expr>

Between an OFFSET directive and a following OFFSET or SECTION
(or END) directive the following are not allowed:

DC, DCB, instructions.
END - End of Program
The END directive defines the end of the source input; if there
is anything else in the file or subsequent lines then this will be
ignored by the assembler.

The syntax of the end statement is:

END

68K/ASM User Manual 3k 8290.6 GST 68/1.03

ESI Computer Systems Limited 68K/ASM Assembler

B.6.5

B.6.6

B.6.7

EQU - Assign Value to Symbol
Syntax:
<label> EQU <expr>

The <expr> is evaluated and the value is assigned to the <symbol>
given in the <label>.

The <expr> may not include references to any symbol which has not
yet been defined.

The value of the defined symbol is absolute, simple relocatable or
complex relocatable depending on the type of the <expr>.

REG — Define Register List
Syntax:
<label> REG <multireg>

The <symbol> given in the <label> is defined to refer to the
register list given in <multireg> and may be used in MOVEM
instructions only.

The purpose of this directive is to allow a symbol to be defined
which represents a register list pushed at the start of a
subroutine so that the same list of registers can be popped at the
end of the subroutine without the risks involved in writing the
list out twice.

DC - Define Constants

This directive defines constants in memory. Memory is reserved
and the values of the constants given are stored in this memory.
This facility is intended to allow constants and tables to be
created.

Syntax:

[<label>] DC<length> <constant>{, <constant>}
where:

<constant> = <expr> | <string>

If a <constant> consists of a single string anc no other operators
or operands then it is left justified in as many bytes, words or
long words (depending on whether <length> is .B, .W or .L) as
necessary, with the last word or long word padded with zero bytes
as necessary. Ir this case the <string> can be of any (non-zero)
length; there is no restriction as there is with «<string>s that
form part of <expr>s.

68K/ASM User Manual 35 8290.6 GST 68/1.03

ﬂsll Computer Systems Limited 68K/ASM Assembler

This leads to the rather strange feature that:

DC.L gt "¢
causes the character to be left-justified whereas

DC.L 'a'+0
is an <expr> and so causes the character to be right-justified.
(Note that other 68000 assemblers have even stranger features in
this area.)
In the case of DC.W and DC.L the current location counter is
advanced to a word boundary if necessary, and the the optional
<label> is defined with this sdjusted value. Thus the code
fragments:

FRED DC.W S5 3

and

FRED
DC.W e

do not necessarily have the same effect as the second could result
in FRED having an odd value depending on earlier use of DC.B, DS.B
or DCB.B.

Expressions given as operands of DC directives must be absolute.
No more *than six bytes of code generated by a DC are printed on

the listing; if all generated bytes are required then the
constants must be coded on more separate DC directives.

68K/ASM User Manual 36 8290.6 GST 68/1.03

ESI Computer Systems Limited “9K/ASM Assembler

B.6.8

B.6.9

B.6.1C

DS - Reserve Storage
This directive reserves memory locations. The memory contents are
undefined. The directive is used to define offsets in conjunction
with the OFFSET directive and to leave "holes" in data generated
by DC and DCB; it is also of use in ensuring that the current
location counter has an even value.
Syntax:

[<label>] DS<length> <expr>
If the length is .W or .L. the current location counter (whick can
be a dummy location counter initiated by OFFSET) is sdvanced to &
worc¢ boundary if necessary. The (optional) <label> is assigned
the value of the adjusted location counter.

The <expr> must be absolute and contain no forward references.

DS.B reserves <expr> bytes, DS.W reserves <expr> words and DS.L
reserves <expr> long words.

<expr> may have the value zero in which case DS.W and DS.L ensure
that the location counter is on an even boundary, and the optional
<label> is defined.

DCB — Define Constant Block

The directive:

[<label>] DCB<length> <expr>,<expr>

causes the assembler to generate a block of bytes, words or longs
depending on whether <length> is .B, .W or .L.

If the length is .W or .L the current location counter is advanced
to a word boundary if necessary. The (optional) <label> is
assigned the value of the adjusted location counter.

The first <expr> must be absolute and contain no forward
references and is the number of storage units (bytes, words or
longs) to be initialised, and the second <expr> is the value to be
stored in each of these storage units.
The second <expr> should be absolute.
PAGE - Start New Listing Page

The directive

PAGE

causes the next line of the listing to appear at the top of the
next page. The PAGE directive itself is not listed.

68K/ASM User Manual 37 8290.6 GST 68/1.03

ESI Computer Systems Limited 68K/ASM Assembler

B.6.11

B.6.12

B.6.13

B.6.1k4 .

B.6.15

PAGEWID - Define Width of Page
The directive:

PAGEWID <expr>
defines the width of the printed output to be «expr> characters
The <expr> must be absolute and contair. no forward references and
must be between T2 and 132 inclusive. If no PAGEWID directive is
present the default is 132 characters.
PAGELEN - Define Length of Page
The directive

PAGELEN <expr>
defines the length of each listing page to be <expr> lines. The
<expr> must be absolute and must contain no forward references.
The value given is the physical length of the paper; rather fewer
lines of assembler source are actually listed on each page
LIST — Switch Listing On
The directive

LIST

restarts listing that was suppressed by a previous NOLIST
directive. The LIST directive itself is not listed

NOLIST — Switch Listing Off
The directive
NOLIST

suppresses listing until a LIST directive is encountered. The
NOLIST directive itself is not listed.

TITLE - Define Title for Listing
The directive

TITLE <title string>
causes the <title string> to be printed at the top of each
subsequent page of listing. If a title is wanted on the first
page of the listing then the TITLE directive should appear before

any source line which would get listed. The TITLE directive
itself is not listed.

68K /ASM User Manual 38 8290.6 GST 68/1.03

ESI Computer Systems Limited 68K/ASM Assembler

ERROR AND WARNING MESSAGES

This appendix lists the error and warning messages which can be
produced by the assembler in numerical order.

Error Messages
00 — unknown instruction/directive

An unknown symbol has been ised where an instruction or directive is
expected in the operation field.

01l - illegal line after OFFSET

Instructions and directives which generate code (DC, DCB) are not
allowed in the dummy section defined by the OFFSET directive. Return
to SECTION O before instructions cr data.

02 - syntax error in instruction field

The operation field does not contain a <symbol>.

03 - redefined symbol

The symbol has already been defined earlier in the assembly. The first
definition of the symbol will be used; futher definitions will just
produce this error message.

04 — phasing error

This is an assembler internal error - it-should only happen if the
source file has changed between pass 1 of the assembler and pass 2.

05 - missing operand
The instruction requires two operands, and only one has been coded.
06 - syntax error

The line contains a syntax error which has left the assembler with very
little idea of what was meant.

0T - syntax error in expression or operand

The assembler is expecting an expression or other instruction operand
but does not understand what it has found.

08 - multireg, cannot mix Dreg & Areg

Data registers and address registers may not be combined in a range:
eg D3-Ak is illegal.

09 - multireg, bad sequence

The registers in & range must be in increasing order - eg D5-D2 is
illegal.

68K/ASM User Manual 39 8290.6 GST 68/1.03

ES] Computer Systems Limited 68K/ASM Assembler

OA - unmatched open bracket

There are too many open brackets in the expression: unmatched open
brackets are "closed" at the end of the expression.

OB — unmatched close bracket

There are too many close brackets in the expression: unmatched close
brackets are ignored.

0OC - expression too complicated

An expression is limited to five levels of nested brackets. Certain
combinations of operators car cause this error with fewer brackets - eg
when low priority operators are followed by high priority operators.

OD - expression: string too long

When a string is used as a term in en expression, it may be up to four
characters long.

OE - value stack underflow
This is an internal assember error which should never occur.
OF - invalid character

Some characters such as " ? \ ~ = have no meaning to the assembler.
They may only be used within strings. The character is ignored

10 - invalid shift operator

The characters "<" and ">" are only legal as pairs in shift operators:
|I>>I| and H<<ll.

11 - no digits in number

A number is expected (eg after "$" or "%") but no digits are present.
12 — number overflow

The numéer is too large and will not fit in 32 bits.

13 - string terminator missing

A string must be terminated by a quote character.

14 - relocatable value not allowed here

Some addressing modes and directives require absolute values.

15 - multiply overflow in expression

A multiply overflow error occurred while evaluating an expression.

68K/ASM User Manual Yo} 8290.6 GST 68/1.03

BSI Computer Systems Limited 68K/ASM Assembler

16 - divide by O or divide underflow
A divide error occurred during evaluation of an expression.

18 - -ve value illegal

Some directives (eg DS) can accept a zero or positive number, but a
negative value is illegal.

19 - value must be +ve nonzero

Some instructions or directives require a positive, nonzero, value (eg
the number of elements for DCB).

1A - value out of range

This is a general purpose message for any value out of range in
instructions or directives. The actual value range depends on context
- reread the description of the instruction or directive involved.

1D - size not allowed on directive

Most directives do not accept a size extension: the only ones that do
allow a size are DC, DCB & DS.

1E - invalid size

The size specified on the instruction or directive is not legal.
1F - size .B illegal for Areg

Byte operations on address registers are not allowed.

20 - label illegal on this directive

Many directives (eg INCLUDE, SECTION, LIST, PAGE) do not accept a
label.

21 - too many errors

If a line has more than ten errors or warnings, only the first ten are
printed, followed by this message.

22 — invalid operand(s) for this instruction

The operand(s) specified are not valid for the instruction. Check the
rules for the instruction you are using in a 68000 manual. If one of
the operands to the instruction is an "effective address" this error
can mean that the actual adressing mode specified is not legal.

The assembler will try to point the error flag (the vertical bar
character) at the invalid operand, but as the assembler may not even
know (in the case of a generic mnemonic) which instruction you meant it
will get this wrong sometimes.

68K/ASM User Manual 41 8290.6 GST 68/1.03

ESI Computer Systems Limited 68K/ASM Assembler

23 — undefined symbol

The symbol has not been defined in the assembly.
2} - forward reference not allowed here

Many directives do not allow a forward reference.
25 - short branch out of range

BRA.S (or some other Branch.S) has been coded but the destination is
more than 128 bytes away.

26 — long branch out of range
The destination of a long branch must be within 32k.
27 — value must be simple relocatable

The expression should be simple relocatable: absolute or complex values
are illegal (e.g. in the destination of a branch instruction).

28 - value must not be complex

Absolute and simple relocatable expressions cen generally be used as
addresses but a complex relocatable value is illegal.

29 — this directive must have a label

EQU and REG require a label

2A - unable to generate position independent code here

Normally if a label or expression is used to specify an address in an
instruction, a PC-relative addressing mode is generated to produce
position independent code. This is not an alterable addressing mode,
go this error message is generated when an alterable addressing mode is
required.

2B - short branch to next instruction - NOP generated

A short branch to the next instruction is not a legal 68000 opcode. The
assembler generates a NOP instruction in this case.

68K /ASM User Manual Lo 8290.6 GST 68/1.03

ES] Computer Systems Limited 68K/ASM Assembler

G«

.
2

Warning Messages

4O - size missing, W assumed

No size was specified on an index register.
41 - size missing, W assumed

The instruction or directive can.have more than one size, but no size
was specified.

42 - multiply defined register

A register has been multiply defined in a multiregister sequence (eg
A0/D1/DO-D3 has D1 multiply defined).

43 - decimal number goes negative

A decimal number has a value between $80000000 and $FFFFFFFF. This is
a perfectly valid number with which to do unsigneé¢ arithmetic, but it
is an overflow if the programmer was intending to uvse it for signed
arithmetic. As the assembler does not know what the programmer wants
to do with the number it produces this warning.

4} — nonzero SECTION not implemented

Implementation restriction: only one relocatable section is supported.

45 - value will be sign extended to 32 bits

In MOVEQ the expression is btetween $80 and $FF so it will be sign-
extended to a 32-bit negative value.

46 - nonstandard use of this instruction

This warning is printed when an instruction is used in a nonstandard
manner which may be a bug (eg LINK with a positive displacement).

hT‘- branch could be short

A forwards branch or a branch with an explicit .L is within 128 bytes
range and could be a short branch.

48 - END directive missing

An END directive is expected at the end of the assembly, but end-of-
file was found instead.

68K/ASM User Manual 43 8290.6 GST 68/1.03

ESI Computer Systems Limited 68K/ASM Assembler

C.

el

2

Operating System Errors

When the assembler gets an error code from 68K/0S it usually gives up
completely, first displaying a message relating to the error on the
screen for a few seconds.

Most 68K/0S errors relate to particular input or cutput files or
devices and the file or device name involved is displayed as part of
the message wherever possible.

In the case of a serious error (such as hard I/0 error) affecting an
input source file the assembler does not however tell you which of the
various source (e.g. INCLUDEd) files is involved.

When an operating system error causes the assembler to terminate it
returns the status code and any relevant file name to the calling
program: normally this is a command program which will probably
display the messages again in case you weren't watching the assembler.

68K /ASM User Manual Ll 8290.6 GST 68/1.03

	3460_001.pdf
	3460_039

