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Preface

This book is about an application language. More specifically, it is about
how to write your own custom application language. The book contains
the tools necessary to begin the process and a complete sample language
implementation.

An application language is a language embedded in an application that
provides the user the capability to write small programs, often called
macros, to automate repetitive tasks or otherwise extend the usefulness of
the application. Many commercial programs include application
languages, even though it may be called something else. Lotus 1-2-3 has
a macro language. WordStar has named macros. dBASE has a language.
AutoCAD has AutoLisp. The list goes on and on. Write Your Own
Programming Language Using C++ provides the ordinary C++
programmer the tools necessary to build an application language into any
application program.



Chapter 1
ABOUT THIS BOOK

INTRODUCTION

Writing a custom application language is much easier than you may
believe. It’s a matter of knowing where to get started. Many commercial
products include application languages. Autocad has AutoLisp, and
Procomm: Plus includes ASPECT. An application language adds a profes-
sional quality to any program.

This book covers implementing a simple application language, CALC,
that can be added to any interactive C++ program written with either
Borland C++ or Turbo C++, which are popular products of Borland
International, Inc. CALC is implemented using a threaded interpreter
called Until for UNconventional Threaded Interpretive Language and an
RPN compiler named CALL for Callable Application Language Library.

The first chapters cover CALC and a sample program that uses it. The
second group of chapters present the underlying software technology (the
Until interpreter and CALL compiler) for implementing application
languages.

The code presented in this book was developed under Borland C++.

This book assumes that you have Borland C++ or Turbo C++ installed
and operating on your PC and are familiar with editing and compiling
programs in that environment. Care was taken to keep the code as generic
as possible, so converting it to run with another C++ or even C compiler
should not be difficult.



WHY WRITE A CUSTOM APPLICATION LANGUAGE

There are many reasons for writing a custom application language. An
applications language is a good way to add functionality a user may need
that is not directly related to the program. A good example is a calculator
language that allows the user to write new macros.

An application language is useful anytime repetitive or complicated
commands are required to accomplish an action.

This is a primary reason that virtually every commercial word processor,
spreadsheet, and communications program has some sort of macro or
application language. Capabilities range from simply recording and
playing back keystrokes in PFS: Professional Write to a full programming
language like Mocklisp in GNU Emacs.

Programs that include full langnages provide the user with a means to
extend or customize the application to fit their day-to-day environment.
If a common core macro/application language is used across all appli-
cations, there is a consistency that users become familiar with. Training
and documentation costs can be reduced via application consistency.

Users also tend to select products that they are comfortable with. A
common application language can go a long way toward supplying
consistency.

Application languages can allow user access to internal program data
structures without having to provide source code or object libraries. For
example, an application language can let the user modify the number of
lines per page on a report.

Another major reason for writing an application language is program
_ testing. Access to program data structures is very easy to include in an
interactive application language. Manipulating compiled variable values
can speed up testing considerably. This is not as important when using
Borland C++ because of its built-in debugging environment. If your
C/C++ compiler does not have these features, interactive access to
variables can be a significant time saver when debugging a program.

IMPLEMENTING AN APPLICATION LANGUAGE

There are any number of approaches to implementing a macro language
or application language. These include:

Record keystrokes in a buffer
Predefline commands lo exceute
Compile new commands to execute
* A threaded interpreter

Little knowledge of compilers is required to develop your own appli-
cations language provided you have the proper tools, such as those
presented in this book. A sample application language is developed here,
including the compiler and interpreter. The application language is named
CALC, the compiler CALL, and the interpreter Until,

The following sections take a cursory Jook at possible implementation
approaches for an applications language.

RECORDED KEYSTROKES The simplest approach to implementing
a macro or applications language is recording keystrokes. Every key-
stroke is copied into a buffer or buffers and saved for later recall.
Generally, a macro sequence is assigned to a particular keystroke, such
as Ali-A, or assigned a name. Rarely are looping or conditional logic
capabilities included. Word processors frequently follow this approach.

PREDEFINED COMMANDS Some programs take a slightly different
approach to implementing application language type processing. The
functions provided are completely defined by the developer. An example
of the predefined command approach is illustrated by the automatic
dialing facilities of many communications programs. They escape normal
operation mode to allow the user to manipulate the modem to dial the
telephone. Predefined commands are generally bound to a specific com-
mand key combination such as Alt-D.

COMPILE COMMANDS Some programs include simple compilers
specific to the application. Examples are ASPECT in Procomm Plus and
AutoLisp in AutoCAD. These may or may not be full compilers in the
traditional sense. In any case, they are complex to implement.

THREADED INTERPRETER A Threaded Interpreter, or Threaded
Interpretive Language (TIL), is a combination compiler and interpreter
all rolled into one. Procedures, or functions, or words, or macros,
depending on the TIL, are compiled. A separate interpreter executes the
“threads” the compiler builds. TILs are generally interactive. The best
known TIL is Forth. TILs can be quite a bit faster than interpretive Basic.
TIL speeds approach the performance of typical compilers of the mid-
eighties. The Microsoft Quick languages are reported to be based on a
threaded technique.



WRITING STYLE

Knowledge about the writing conventions followed in this book is helpful
in reading the text.

C++ identifiers and reserved words are set in italic type.

;I‘wo-key combinations are a combination of a shift key and a
etter.

The shift keys are Alt, Ctrl, and Shift. For example, “Press Ctrl-C to exit.”
means press the ‘C’ key while holding the Ctrl key down. The word
Press” indicates a key or key combination should be pressed to continue.

ORGANIZATION

Eacfh chapter covers a single topic. It consists of an introduction to the
tOpl(.: or feature. Examples are presented where appropriate. The intro-
duction serves as a formal definition of the topic to be covered. A Chapter
may include other sections necessary to fully explain the given topic.

CODING STYLE

The coding style used in this book favors clarity in the C++ code used in
the examples. The coding style of many C programmers combines state-

gqfcnts where possible. The typical way of testing the length of a string for
182

if(strien(xxx)==9){ ... }
The same code following coding style in this book is:

len = strlen(xxx);
if(len == 9){

}

Since.new concepts are being presented, the readability of the code is
more important than absolute program efficiency.

Chapter 2

GUIDED TOUR
THROUGH CALC

INTRODUCTION

The previous chapter introduced the concept of the application language
and an example, CALC. This chapter provides a gnided tour through
CALC. The tour consists of a sample session using CALC compiled as a
stand-alone program. The examples in this chapter introduce CALC and
attempt to show the potential of an application language as a useful part
of your C++ toolbox.

CALC uses RPN-type operators, with arguments specified before the
operator. CALC uses RPN rather than infix notation because that is how
the compiler is written. CALC uses Until to provide interactive interpreter
capabilities and CALL to compile macros. The fact that Until is a
Threaded Interpretive Language does not imply application languages
built on top of it must be RPN. Until is simply the interpreter CALC uses.
The compiler determines whether the application language uses RPN or
infix or postfix operator notation. C/C++ uses infix notation and Lisp uses
postfix notation. The CALL compiler is discussed in detail in later
chapters.

This chapter has a sample session to give a feeling of CALC’s operation.
The examples also touch on compiling new CALC macros. An overview
of the pieces that make up the application language and a section that
presents some uses for CALC and Until other than just an application
language are also presented.



RUNNING CALC AND THE BASICS

Copy the files CALC.EXE, CALC.APP, and HELPAPP from the floppy
disk included with this book to your hard disk. The examples introduce
you to many of the built-in CALC commands,

1. Type CALC from the DOS prompt, then press Enter to start a
CALC session.

CALC
Copyright 1992
All Rights Reserved

Version 1.1
JANUARY 1992

CALC> Welcome to the CALC Programmable Calculator

Type 'macros’ to show list of available mnacros.
Type ‘help help’ to type the macro usage.
Type 'exit’ to exit CALC and return to DOS.

You may type hello at any time to type the startup message again. The
upper right-hand corner of the screen displays the Data Stack most of the

time. When the Data Stack is empty, the display is ‘Stack Empty.’ The

display is updated each time a number is pushed onto the stack or a macro
executed.

NOTE

Type exit then press the Enter key at any time to exit
CALC and return to DOS.

2. Type 12 + = and press Enter to add 1 and 2. The = causes the
result, 3, to print.

CALC> 1 2 + =
3

NOTE
CALC operators are space delimited and case sensitive.

That is, a space between operators is required, and
commands CMD, Cmd, and cmd are all different,

CALC uses Reverse Polish Notation (RPN) like an HP Calculator to pass
parameters. Typing a number pushes its value onto the top of the stack.

" The following illustrates each step executed by CALC in adding two
numbers,

Typot 1 2 ¥

Stack Stack Stack St;ck
|Empty| ‘ 1 ‘ | E | | l

Execute the s? macro at any time to type the contents of the stack to the
compuier screett.

NOTE

Parameters come first when using RPN notation. If you
have a CALC macro named xxx that takes two param-
eters, you invoke xxx with the following command:

1 2 xxx

Assume you want to call the function xxx in C (infix
notation) that requires two parameters. You would use:

xxx{l, 2);

to execute it.

3. Type 1 2 s? and press Enter. The 1 and 2 are ‘pushed onto .the
stack and s? causes the stack contents to print without modifying
the stack:

CALC>1 2 87
Stack

1

2

NOTE

Press Enter to execute each command sequence specified
in the examples.

4. Now type =, then press Enter. The number on th.e ltop of the stack
is displayed by the = operator. 2 prints because it is the top value
on the stack. Type = again to print the 1.
A list of the built-in CALC commands are included in Appendix C. All
of the currently defined macros can be displayed l?y the macros command
or examples of how to use each command displayed with the help
command.

5. Type macros then press Enter now.



CALC> macros

hello ) { =
endif else if {
}m m{ help exit
do_loop do_do quote quote
branch Obran mod s7?
abort 3 2 1
0 macros drop <—
- * / rot
dup swap ? +
- < > ==
cr = const var

1lit create i

The macro list contains the names of each macro presently defined,
including both internal macros such as if or endif and macros you define.
CALC also includes a built-in help facility that prints a definition for the
built-in operators. For example,

6. Type help var to display the help entry for var.
CALC> help var

var { ——1 Compile time
{ -——— addr.of.var } Run time
"var". At compile time, creates a
variable:

var trash
At run time, push the address of the
variable onto the stack.

trash { -—= addr.cf.trash }

7. Type exit and press Enter to exit CALC and return to DOS.

This session provided a quick introduction to the interactive operation of
CALC. CALC is an application language that implements a simple four-
function HP-like calculator,

THE NEXT STEP: COMPILING MACROS

Now that we have examined the interactive portion of CALC, let’s look
at defining macros. A CALC macro begins with m{ and ends with }m.
Any of the macros used in an interactive session can be used in a macro
definition. This section shows how to add new macros to CALC.
Complete programs can be written in CALC. Some simple mathematical
formulas are developed as macro examples.

Type CALC at the DOS prompt to run CALC.

NOTIE
CALC compiles the contents of CALC.APP at startup.
You can add your own macro definitions to that file.

HELLO WORLD The traditional first program for most C program-
mers is some form of “Hello World.” Here it is in CALC:

m{ Helloc World .
" Hello Cruel World...

}m
Now type the macro definition at the keyboard. The space after “m{” and
the " are significant. After it has been compiled, type Hello_World to
execute it.
CALC> Hello World

Helleo Cruel World...
CALC>

NOTE
All of the macros in the following examples are indented
to allow comments and show code structure. The
comments are not necessary. (Comments are the text
between { and }.) The code can be typed all on one or two
lines for convenience.

PRINT 1 TO n The second macro performs a simple loop, counting
from 1 to n, where ‘n’ is the number on the top of the stack. Type the
following macro at the CALC prompt:

—to- n -—— }
" ?Oin i Get the loop index }
1 + { Add 1 to it }

= { Type the value }

) { Close the loop }

cr { Type a carriage return }

m { End the macro }

Note that loop indexes start at 0, so if printing starts at 1, then T must be
added to the loop index. The loop construct, “( ... ), can only be used
inside a macro definition. Type the following command to execute 1-to-n:

CALC> 10 l-to-n
123456788910

Try writing a count-from-0 macro. Hint: Leave out the “1 +” line.



ABSOLUTE VALUE A useful macro is calculating the absolute value
of a number. It also illustrates the if ... else ... endif construct. An easy
algorithm for calculating absolute value is to subtract the number from 0
if it is negative. Otherwise, it is already the absolute value. Type the
following code at the CALC> prompt:

m{ abs {n--=-1%
dup 0 < { Duplicate n and compare to 0 }
if { n is negative }
0 swap - { 0 - n to reverse the sign }
= { Type the |n| }
else { n is positive }
= { Type the |n| }
endif { Close the if }
m { End the macro }

Execute abs with a positive number:

CALC> 50 abs
50

Execute abs with a negative number:

CALC> -27 abs
27

The first line of the abs macro definition has a strange-looking comment
that is very important. { n --- } after the macro name is called the stack
comment. It contains the calling sequence to execute the command. The
stack comment for abs means that 2 number, n, is expected on the top of the
stack before execution. “---” represents the operation being performed.
abs leaves nothing on the stack when execution has completed. Without

the stack comment, you must figure out the macro parameters by reading
the code.

FIBONACCI NUMBERS A Fibonacci set is a set of numbers where

the Ith value is the sum of the previous two values. It is commonly used
as a program benchmark. The set is:

1123581321 .,,
A macro to compute Fibonacci numbers is not complex. The majority of

the code is a Ioop with a little stack manipulation. Type the following code
at the CALC> prompt:

m{ fibonaceci { -1
1 dup = dup = dup { Print the initial 1's }
10 ¢ { Do the loop 10 times }
dup { Make extra copy of curr value }
rot { Move third stack item to top }

10

Cloae out the macro

+ { Thie valuo + previous }

dup = { Print latest numbor }

) { Bnd of loop }

drop drop { Clean up leftovers on stack i
{

}m

(Leave out the comments. The macro definition can be typed all on a
single line. The indentations are used here to show the structure of the

example better.)
Type fibonacci, then press Enter to execute the macro:

CALC> fibonacci

11235813 21 34 55 B9 144
Try modifying the definition to take the number of times to loop from the
command prompt. So you type:

20 fibonacci
to calculate 20 Fibonacci numbers instead of 10.

FACTORIAL The final example is another traditional compiler bench-
mark. A factorial is the product of a positive integer, n, multiplitlad l?y the
product of all positive integers less than n. For example, 3 factqual is 6'0r
1 * 2 * 3, There are a number of methods for computing a factorial. Aga:m,
the emphasis here is on simple for CALC examples. Type the following
code at the CALC> prompt:

ial {n-—1}
m faitgigp { Start with 1 ¥
{ { Begin the loop ) }
Ll + { Add 1 to the loop index h
* { Do the multiply }
) { Go to the top of the leop }
= { Type the results o }
}m { End the macro definition }
At the CALC> prompt, type:
CALC> 5 factorial
120

to calculate the factorial number for 5.

11



CALC FILES

These files should be in the current directory when running CALC:

* CALCEXE
* CALC.APP
= HELPAPP

CALC.EXE is the executable file. CALC.APP is a source code file that
is automatically loaded by CALC at startup. It typically contains macro
definitions. The hello macro is defined and executed in the default
CALC.APP file. HELP.APP contains text for the help command. It is an
ASCII text file that can be edited with any text editor for customization.
Both CALC.APP and HELPAPP are optional.

UNDER THE HOOD

By this time, you are probably more than a little curious about how CALC
works. There are two primary portions to the CALC application language,
the interpreter and the compiler. Optionally, two additional sections may
be present. These are high level CALC macros, such as factorial, and user
written primitive C/C++ functions you may add to the language. This
section addresses only the primary portions.

THE INTERPRETER  The interpreter used by CALC is named Until,
for UNconventional Threaded Interpretive Language. Threaded Inter-
pretive Languages (TILj are unique in that they are both interpretive and
compiled at the same time. The compiler resolves all references and
builds a list or “thread” of functions to be executed. The thread is usually
a list of low level function addresses. The compiled addresses are placed
in a data structure called a dictionary. '

There are usually two interpreters in a TIL. The Inner Interpreter that
actually executes the functions in the thread by jumping to the addresses
compiled in the dictionary. Until uses C’s built-in call/return mechanism
as the Inner Interpreter.

The Outer Interpreter interacts with the user. The CALC> prompt means
the Quter Interpreter is waiting for keyboard input. When a macro name
is entered, the Outer Interpreter looks it up in the dictionary, then starts
the execution thread. When the thread finishes execution, the Quter
Interpreter returns to the prompt and waits for additional input.

12

There are many ways to implement a'T'lL, Until takes an unconventional
approach in several respects: il is written in C++, uses a noncontiguous
dictionary, and has no scparal¢ Inner [nterpreter.

THE COMPILER The compiler compiles references to other macros
into the dictionary. Each macro entry in the dictionary has a specific data
structure. Information in the dictionary includes the macro name, the
primitive macro type, and the list of other macros to execute.

The compiler really determines what the user sees in ferms of ]angluagf:
syntax. The Callable Application Language Library (CALL) compiler is
RPN-based for simplicity. This dictates parameters before the macro/
operator name and some other characteristics. There is no reason that any
conventional programming language cannot be implemented as a TIL.
Microsoft reportedly uses this technology in its line of Quick languages.

The RPN-type compiler is simple compared to traditional compilers such
as C or Pascal. There are several reasons for this.

* Simple parsing

*  No internal symbol tables

* Doesn’t have to generate machine code directly

¢ There is no difference between interpretive and compiled
code in a TIL.

An RPN-based compiler like CALL is simple enough for the average
C/C++ programmer to understand, implement, and take advantage of.
The CALL compiler is discussed in detail in later chapters.

OTHER USES

Once you have a simple compiler that you understand and can modify, a
whole range of possibilities opens up for new applications. The opvu?us
use is an application language as described in this book. An apphcaflon
language, like CALC, written in C or C++ can easily be inoorp.orz?tf:d mnto
any application you write, It is likewise easy to add new primitives to
tailor the application language to a specific application. One of my
favorite ideas for a TT.-based application langunage is an interactive C++
debugger. Your imagination is the limit of what can be done with an
application language once you grasp how the whole concept works.

1%



The rest of this book examines CALC as an application language and
discusses both the Until interpreter and CALL compiler in detail. Even if
you don’t understand everything that goes into the interpreter and
compiler, CALC is a ready-made application language that you can add

your own specific C++ functions to and use in any C++ program you
write.

14

Chapter 3

CALC DESIGN AND
IMPLEMENTATION

INTRODUCTION

This chapter covers the design and implementation of CALC. CALC is
an application language that implementis a simple calculator language that
includes the capability of defining macros with conditionals and loops.

CALC source code is contained in several files. These are:

= UNTIL.H

« CALC.CPP

*»  UNTIL.CPP

» CALL.CPP

* MATH.CPP

* USER.CPP

« JO.CPP

¢« PRIM.CPP
DESIGN

The design of CALC is strongly influenced by CALL. The CALL design
implications for CALC include:

+ Reverse Polish Notation
¢ Stack oriented parameter passing
* Integer only

15



¢ Space delimited tokens
* Macros must be defined before being referenced.

These constraints are related to the current version of Until. They are not
inherent in threaded interpreters. Many are a result of choosing the
simplest approach to implementation whenever possible for this book.

Reverse Polish Notation or RPN is a mathematical notation where the
parameters occur before the operator. This is how HP calculators work.
RPN makes parsing operators almost trivial because nesting is unneces-
sary. Nested statements require complicated look-ahead parsing. RPN
and a stack for parameters go hand in hand. Consider the RPN method for
adding two numbers:

12 + - 3

Parsing this string is a matter of searching for each space. The “1” is
picked up as the first token, converted to a number, and pushed onto the
stack. Then the “2” is parsed and pushed on the stack. Finally, the “+”
token is extracted and executed. Two numbers are popped off the stack,
added together, and the result, three in this case, is pushed back onto the
stack. No additional parsing is required. The same is true for compiling.

Now compare the RPN example with the algebraic equivalent:
1+ 2 = 3

Assuming space delimiters, the first token parsed is “1.” It must be stored
in a temporary variable. Next, the plus is parsed into a token. Execution
of plus looks ahead for the next token, “2” in this case, then adds the two
numbers together and places the result in a temporary variable. Parsing
complexity is higher because parsing must be done in two stages, as part
of each operator in addition to the basic parsing of the line. This is not the
only way to parse algebraic expressions,

Take the space delimiter away and algebraic parsing gets even more
complicated. Rather than simply using a blank as the delimiter, each
character must be examined and a determination made if the character is
part of the previous token, or an operator, or part of the next token.

CALL uses stacks and RPN to compile new macros. The compiler is
simple enough that the average programmer will have little trouble
understanding how it works. Simplicity, in this case, does two things: it
adds reliability to the system and influences the operation of CALC. Until
is simple enough that you can replace CALL and have a system with a
completely different feel.
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CALC OPERATORS

The relatively small number of operators in CALC is done on purpose to

keep the system understandable, CALC commands fall into several
categories:

*+  Math operators

*  Memory operators

¢ Stack operators

» Logical operators

*  Looping operators

*  Miscellancous operators

The set of operators is relatively small but complete to define a simple
programmable language. New operators can be €asily added later. The
example CALC code snippets in this chapter are contained in EXAM-
FLE.APP on the source disk.

A common documentation approach for TILs is including a comment
about the stack effects of a particular operation. Look at “+” in the list of
Math Operators. The stack comment is:

{ nl n2 -—— nl+n2 }

This describes the operation of adding two numbers together. The Data
Stack has two numbers, nl and n2. The operation is represented by “---”
and n1+n2 is the result of the operation. n1+n2 is the new top of the Data
Stack. Note that n2 is the top entry on the stack before the operation. 'Text
enclosed in { ... } is considered a comment. Note that the leading blank is
required.

MATH OPERATORS Since CALC is a calculator applications lan-

guage, the first step is to define the set of math operations supported.
These are:

+ {nln2---nl+4n2}
- {nln2--nl-n2}
* {nln2--nl*n2}
/ {nln2---nl/n2}
rem { nl n2 --- remainder(n1/n2) }

“4+” adds the top two numbers on the Data Stack and replaces them with
the result. “—" subtracts the top number on the Data Stack from the second
number {n1 - n2) and replaces them with the result. “*” multiplies the top
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two numbers on the Data Stack and replaces them with the result, */”
divides the top two numbers on the Data Stack and replaces them with the
result. That is n1 divided by n2. “rem” returns the remainder of n1 divided
by n2 as the top of the stack,

STACK OPERATORS A minimal set of stack manipulation macros
are part of CALC:

dup {al---nlnl}

swap {nln2--n2nl}

drop {nl---}

rot {nln2n3---n2n3nl}

“dup” duplicates the top entry of the Data Stack. “swap” exchanges the
top two entries. “drop” removes the top Data Stack entry. “1ot” rotates the
third entry on the stack to the top of the Data Stack, The following
examples show the stack before and after each operator:

99 dup 99
9%

10 swap 11

11 io

69 | drop |

77 rot 55

66 77

55 66

Stack operators can be used either interactively or as part of a macro
definition.

MEMORY OPERATORS An application language is severely ham-
pered without the ability to define and access variables. Rather than
predefine a fixed number of variables, CALC allows the definition of
both constants and variables and provides several macros to manipulate
them. The CALC memory operators are:

var { --- addr.of.var }
const { --- constant.value }
? { address --- }

<- { address --- value }
-> { value address --- }

var and const have both compile time and run time actions. The compile
time usage is:
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VAL XXXX

1066 aunel. year
The first line defines a variable, xxxx, whose address will be placed on
the top of the Data Stack when it is referenced. The second line defines
the constant year with a value of 1066. When year is referenced, its value,
1066, is left on the stack.

The remaining three operators manipulate variables and constants, “?”
types the contents of the address on the top of the Data Stack to the screen.
“¢-” fetches the value of the address at the top of the stack. “->” stores the
value at the address.

Here are some examples of the memory operators:

var Battle of Hastings { Define a variable }
1066 const year { Define a constant }
year Battle of Hastings -> { Store 1066 in the variable}
Battle of Hastings ? { Type contents of variable }
Battle of Hastings <- 1 - { Subtract 1 from variable }
Battle_of_BRastings -> { Store the new value }

Defining and manipulating variables and constants is relatively simple.

LOGICAL OPERATORS Part of programming is logical operations
on data. CALC provides the following logical operations:

< { nl n2 --- truth }
== { nln2 --- truth }
> {nln2 --- truth }
if else endif { truth --- }
“<”’ u==”, “>» a]l Comparf: nl and 1']_2, TRUE is left on the Data Stack

when the comparison is true, or FALSE is left when the comparison is
false. TRUE is 1 and FALSE is 0.

A comparison is done first; then the if else endif construct uses the truth
value on the stack and operates accordingly. The code between if and else
is executed when the stack value is TRUE. Code after the else executes
when the stack value is FALSE. The following code examples illustrate
how the comparison operators are used:

m{ if_example { ——= 1}
Battle_of Hastings <- 1066 == { Test var equals 1066}
if { Test condition }
the_people_won { Macreo to execute }
else { FALSE executes here }
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the_king_won { Macro to exocuto }

endif { Finieh the if }
}m

if example { Execute the macro }

One final note: comparison operations (<, ==, and >) can be executed at
any time. The if ... else ... endif construct is valid only inside a macro
definition. m{ and }m define a new macro and are explained below.
the_people_won and the_king_won must be defined as macros before
being referenced. The code on the disk contains their definitions.

LOOPING OPERATORS Another feature of CALC is the ability to
loop through a section of code.

( {n--}
) {--}

The “(” starts a loop and “}” ends it. The number of times to execute the
loop is picked up from the top of the Data Stack. For example:

m{ loop example { nl ===}
10 { dup { Save nl }
= cr { Type value }
1 + { Increment counter }
) { End of loop }
drop { Clean up stack }
}m { End macro def }
1 loop_example { Count from 1 to 10 }

Other structured looping constructs are possible but are not defined as
part of CALC to keep it simple. Loop operators can only be used as part
of a macro example.

MISCELLANEOUS OPERATORS The remainder of CALC’s
operators can be categorized as miscellaneous. They are:

- {n-}
macros  {---}
s? {-~}
exit {--}
1} {1}
m{ {—1
}m {1
" {1
cr {3
help  { -}
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“=" types the number at the top of (he Data Stack to the screen. “macros”
lists the operators presently defined in CALC. User defined macros are
also included in this list. “s?” means stack print. It is a nondestructive type
of the contents of the Data Stack. “exit” returns control to the application
program. “{” and “}" delimit comments. “m{” begins a macro definition
and “}m” ends a macro definition. Finally, “ ... ” types a string constant
to the screen. “cr” types a carriage return to the screen. The following
code illustrates each of these operators:

m{ a_macro { —— 1}

" Type a list of Macros" cr { Type a message }
macros cr { List all macros 1
" The year is: " year = cr { Type value in year }
" The stack: " cr s? { Show the Par. Stack }
Im { End Macro def }
a_macroe { Execute macro }
exit { Return to DOS ¥

Type the following macro definitions before compiling the macro if
example:

m{ the_people_won { --——- 1}
" The people won!!" cr
m

m{ the_king won { -—— 1
" The king won..." cr
m

These operators are sufficient to illustrate that the CALC is a full appli-
cations language. You may not want to include all of the commands, or
you can extend the language by predefining other macros for the user, or
you may want to add more specific primitive functions. You have the
power fo add or subiract features at will.

Primitive macros are also easy to add. A primitive macro is a C++
function that can be called directly from CALC. Most of the operators
covered in this chapter are primitive macros. For example, executing the
‘=’ operator calls dot{} in PRIMITIVES.CPE. Adding primitive macros is
covered in Chapter 10.

SUMMARY

This chapter covered the CALC application language operators. CALC
has full programming capabilities including variables, conditionals, and
looping. Additional primitive operators are easy to add to CALC.
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Enhancements to CALC are possible. Additional comparison and stack
manipulation operators are very easy to add. BCD and floating point math
may be added. Infix notation rather than Reverse Polish Notation is also
quite doable once CALL is mastered.

All of the pieces are now in place to add our applications language,
CALC, to an application program, MORE. The next chapter combines the
two. :
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Chapter 4

SAMPLE PROGRAM

INTRODUCTION

Before getting to the design and implementation of CALC, here is a
sample program that will be combined with CALC in a later chapter.
MORE.CPP is a simplified version of the MORE program available on
many MS-DOS public domain utility collection disks. It is also standard
on most Unix systems.

This chapter describes MORE as a typical candidate application program
to add an application language to. 1t is included here for that reason.

THE MORE DESIGN

MORE accepts a filename from the command line, opens the file, then
displays the contents of the file one screen at a time, and closes the file
when the end of file is reached.

The first portion of the program includes the appropriate header files. The
comments show the functions referenced in each header file.

#include <iostream.h> // cout

#include <fstream.h> // ifstream
#include <process.h> // exit

#include <string.h> // strepy

#include <conic.h> // textmode, clrscr

The function prototypes are next:

void no more();

void display(char*};
void do_page_break();

int get_line(char*,int};
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The input file is declared an input file stream object. input_file is global
because it is referenced by more than one function. The filename array is
initialized and the size of the input buffer set.

ifstream input_file;

char file name[40};
const BUF_LEN=256;

The main function can be divided into several code sections. The first
section sets up the file and screen mode. Each line of the input file will be
read into “buffer.” The maximum line size is 255 characters.

main{int arge, char* argv(]}

{
char buffer[BUF_LEN];

int status;

argc is the command line argument count plus one for the filename. Thus
arge will be two when a filename is included. An informational message
is printed and the program exits when the number of arguments js
incorrect.
iffarge 1= 2){
cerr << "USAGE: MORE filename \n";
exit(=-1);
}
The next lines open the input file and associate the file object, input_file,
with it. argv[1] contains a character pointer to the first argument string,
strepy(file_name,argvil]};
input file.cpen{file name,ios::inccreate};
if (linput_file){
cerr << "Cannot open input file: " << argv{l]
{( L1 \ n n ;
exit(-1});
}
The final two lines setting up the program initialize the PC screen for
output. The textmode is set and the screen cleared. Change the textmode
appropriately if the PC has a different type of monitor attached. These two
function calls are Borland/Turbo C++ specific.

textmode (LASTMODE) ;
clrscer();

The program is now ready to begin the primary loop. The for(;;) loops
forever. The loop will not exit unless a goto or call to exit( ) is executed,
The input file is read via get_line( ) and each line output to the screen via
display() until an end of file condition is encountered. The function
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no_more( ) closes the file and calls exit( ), elfectively jumping out of (he
loop.

for{;;){
status = get_line(buffer,BUF_LEN};
if{atatus){ // 0 means eof
display_ line(buffer);
}else{
all_done{); // done, so quit
}
}
}

MORE.CPP is divided into multiple functions following good program-

ming practice.

void all dene()

{

input_file.close();
exit{0);
}

The next function in MORE.CPP is get_line( ). It reads a line from the
input file into the character array pointed to by line. Both filling the buffer
and end of file are tested for. The test for a full buffer is implicit in the for
loop because if stops when the maximum buffer length is reached. End of
file is tested by placing the read in an if statement and changing the status
when end of file occurs.

Control flow jumps out of the for loop when a newline character, “\n’, is
detected. A null, \0’, is appended to the end of the buffer to mark the end
of the line. The value returned in status indicated whether end of file was
reached on this read or not.

Reading a character from the input file is performed by calling the method
get( ) for the input_file object. Remember that input_file is a member of
class ifstream. Thus, you expect to find a function named ifstream::get( )
in the public portion of the class statement for ifstream.

int get line{char* line,int max_len)
{

int status=1;

char ch;

for{int i=0;i<max_len;i++){
if{linput_file.get(ch)) status=0;
*line++ = ch;
if{ch == "\n’"){
break;

}
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}
*line++ = '\0';
return(status);

}

The next function, display_line( ), outputs a line to the screen. display
line( } counts the number of lines written to cout. When a page break is
detected, the function do_page_break( ) is called to handle the details.

void display_line(char* buffer}

{
static int line ct = 0;
const LINES PER_PAGE = 20;

cout << buffer;
line_ct++;
if(line_ct > LINES_PER_PAGE)}{
do page break();
line et = 0;
}
}

The final function in this program is do_page_break{ ). Both cout and cin
are used here. Cout queries the user whether or not to continue. cin reads
the response from the user. ‘n’ is the only value tested for. Any other key
is treated as a “y.” When you run MORE.CPP, notice that Enter must also
be pressed before the character is accepted.

The screen is cleared and a heading of the filename is typed to prepare the
PC screen for the next page of output.

volid do_page_break()
{

char answer;

cout << "\n" << "Continue (Y or N)? ™;

cin >> answer;

if(answer == ‘n’ || answer == 'N’){
exit(0);

}

clrscr{);
cout << "FILE: " << file_name << "\n\n";

SUMMARY

MORE.CPP is a simptle C++ application program. 1t is used in the next
chapter to add the CALC applications language.
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Chapter 5
CALC AND MORE

INTRODUCTION

This chapter ties all of the pieces of the book together from the standpoint
of adding an application language to a program. It illustrates how to
combine an application language (CALC) created by Until and a stand-
alone program (MORE). The necessary steps for building the combined
program are discussed. The new program is MORECALC.CPP.

THEORY OF OPERATION

Am application program should be interactive to take best advantage of
CALC. A pause when the program is soliciting user input is the logical
place for the user to invoke the application language. MORE.CPP waits
for user input at the end of each screen. The original code read a character
from the keyboard and tested it for ‘Y’ or ‘N’ to indicate whether to
continue or exit. This is the spot to insert the call to CALC.

There are only two steps to set CALC up and start an interactive session.

»  (Call outer to start CALC
* Compile CALC and link with the application program

Type exit to leave CALC and return to the application program. CALC
can be invoked any number of times during a run. The steps listed to call
CALC apply to any application language developed using Until.



CHANGES TO MORE

This section identifies the changes to combine CALC with MORE. Only
the changes will be discussed here. The full program was discussed in
Chapter 4.

A new function prototype must be added to the existing function proto-
types at the beginning of the program.

void outer();

All of the code changes to MORE are isolated to a single function,
do_page_break( ). The following code is the new version:

vold do_page break()
1

char answer;

cout << "\n" << "Continue (Y or N or C)? "
cin >> answer;
switch{answer){
case ‘Y':
case ‘y’:
break;
case 'N’':
case ’'n’':
exit{0);
break;
case 'C':
case 'c':
outer();
break;
}
clrscr();
cout << "FILE: " << file name << “\n\n";

}
The changes are a new switch statement replacing the if test to exit in the

original version. Type ‘C’ at the continue prompt to invoke CALC when
running MORECALC.

The modified file is MORECALC.CPP. Compiling it is accomplished
using the project file MORECALC.PRIJ which is accessed via the Project
pull-down menu in Borland C++. The result is MORECALC.EXE. Be
sure that the compiler is set to generate a compact or larger model
program. :
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SUMMARY

T'his chapler showed how to combine an Until application language with
a stand-alone program. CALC macros can be written and loaded by
placing the commands in CALC.APF.

The goal of easily adding an applications language to a stand-alone
program was demonstrated. The interactive execution of Until can be
ulilized to tie almost any set of functions into another program. The next
chapter begins delving into the mysteries of Until.
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Chapter 6

UNCONVENTIONAL
THREADED INTERPRETIVE
LANGUAGE

INTRODUCTION

The first chapters introduced the concept of an application language and
a simple implementation in the form of CALC. CALC was combined
with a stand-alone program, MORE, to illustrate the ease with which this
can be done. The remaining portion of this book delves into the under-
lying software technology, Until, that makes creating an application
language such an easy task.

This chapter introduces details of the I/Nconventional Threaded Inter-
pretive Language (Until). Until is the threaded interpreter used in CALC.
This chapter covers the overall design considerations for Until, an over-
view of threaded interpretive languages, and some of the things that make
Until unique.

The first thing to point out is that you do not have to totally understand
how Until works to use it. On the other hand, the more you understand
about how it works, the more customization you can do to mold the
resulting application language to your own liking.

Until macros are logically equivalent to functions in C++. Macros are
stand-afone units of code that can be individually referenced. Some TILs
use the term “word” in the same context that this book uses macros.
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DESIGN CONSIDERATIONS

The design considerations and tradeoffs for Until were carefully con-
sidered. The primary design goals for Until were:

* A portable TIL

* Small “macro” language that is callable by other C/C++
programs

* Easy-to-add C++ primitives

* Easy-to-implement application languages

These design considerations translate into goals. The ease constructing
CALC shows that Until has met its goals. Each of these items is discussed
in detail next.

WRITE ATILIN C/C++ There are many reasons for writing Until in
C/C++. Some of my reasons are:

* Portability

* TILs are relatively simple
* TILs are neat

* Experience with other TILs

Portability is often important. A TIL written in portable language, such as
C or C++, is very portable among different computer systems, TILs are
typically written in assembly language. This gives excellent speed- but
lacks portability. A TIL written in C or C++ does not have the speed
potential of one written in assembly language but it is very portable.

TILs are relatively simple when compared with conventional language
compilers. Conventional compilers, such as C++, are large programs that
parse and translate a C++ program from source code form into the native
assembly language of the computer being used. The Turbo C++ .EXE file
is over 800k plus overlays. Each line of source is parsed into individual
tokens. This is complicated by operator nesting. The compiler keeps
symbol tables of variables and function names. Code generation and
optimization are also very complex.

A TIL uses very simple parsing and requires no symbotl tables. It can be
written without the need for nesting by using postfix notation rather than
conventional infix notation. It may or may not generate code directly.
Until generates addresses of C++ functions to execute. (Until has a
separate compiler module named CALL that is described in Chapter 9.)
Some commercial languages that are TILs do generate machine code.
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TILs are an inleresting ¢ross between o compiler nnd an interpreter. 1 first
discovered 'T11s in the form of Forth in the December 1980 issue of Byte
Muagazine. They have fascinated me ever since. [ have used both Forth
and another T1L named STOIC on several projects over the years since.

I see the value in keeping a TIL among my software development tools.
I have been using Forth for the past few years at work. As the project
moves toward C and C++, [ want to keep the interactive nature of a TIL
in new programs, even though C++ is not an interactive language. This is
a primary reason for writing Until.

CALLABLE MACRO LANGUAGE One of the primary goals for
Until is a TIL that is callable by any C++ program. This capability puts
the ability to create and use an application language in the hands of all
C++ programmers. This opens up a great many possibilities not normally
available in C or C++. If your C++ does not have a source code debugger,
simply put calls to Until into a program instead of time honored printf
statements for debugging. You end up with an interactive debugging
environment that is quite productive during the debug phase of system
development.

EASY TO ADD PRIMITIVES A number of Forth implementations
in C exist. Some of them are quite good. They all suffer from a commeon
problem: they are difficult to add new primitive C functions to. Likewise,
a]l were intended to be stand-alone programs rather than being called
from other programs. Until takes exactly the opposite approach. Adding
new primitives is simply a matter of writing a new C++ function and
adding an entry to a table. The C++ function must follow a specific set of
interfacing rules. The interfacing rules are covered in a later chapter.

IMPLEMENT AN APPLICATION LANGUAGE The final design
goal for Until is providing an easy way to add an application language to
any C++ program. Application languages add a professional air to any
program. There is great potential for their use in many programs.

BACKGROUND

This section provides some background on threaded interpreters. The
premier TIL is Forth. Until is based largely on concepts found in Forth,
with a few twists.

33



FORTH The Forth language was invented in the early 1970s by Charles
Moore, while at the National Radio Astronomy Observatory in Kitt Peak,
Arizona. The very first Forth implementation was on an IBM 1130
computer. It only allowed five character names. So when Moore devel-
oped what he considered the first fourth generation language, “fourth”
was shortened to “forth” because of the computer it ran on. Moore and
Elizabeth Rather went on to form Forth, Inc. The company is still in
business as one of the premier Forth vendors.

Forth’s strength remains in real-time control and embedded systems to
this day. Software for several Space Shuttle experiments are written in
Forth. A number of successful commercial products have been written in
Forth over the years:

* EasyWriter I — The first word processor for the IBM PC

* Rapid File — Flat file database system from Ashton-Tate

* VP-Planner — Spreadsheet, so good that Lotus sued them out
of business

¢ Zoomracks — Shareware free format text database system

*  SAVVY — Early CP/M database system

* Some early Spinaker games for Apple II

* GE Locomotive Test Stand — Expert Systems

* Canon CAT — Dedicated word processor

* Early Peachtree accounting packages

* Many Atari Games

In 1973 the Forth Interest Group (FIG) was formed to help spread the
language on small microcomputers. A group of FIG members imple-
mented what became known as FIG Forth on over a dozen computer
systems and distributed program listings at a nominal cost. Several
current Forth vendors got their start as a direct result of FIG’s efforts. FIG
Forth became the defacto Forth standard for several years. The Forth
community has created two generally accepted standards since that time,
Forth-79 and Forth-83.

As this is written, Forth is currently going through the process of becomin g
an ANST standard language. The ANS ASC X3/X3714 Technical Commit-
tee is responsible for this effort.

SOMETHING BORROWED; SOMETHING NEW  Until borrows
significant ideas from Forth. There are also many departures from tradi-
tional Forth implementations. Some of the ideas in common with Forth
include:
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*  Dictlonary data structurey

¢ Interprelers

*  Hoth primitive and high level words/macros
* Data Stack to pass parameters

= Reverse Polish Notation (RPN) syntax

*  Separate RPN-type compiler

Many Until variables and function names are taken directly from Forth.
The dictionary is a data structure designed to support the threading acfio.n
of the TIL. The dictionary is discussed in detail in Chapter 7. Until ts
different in that Forth generally is implemented using a oa.:)ntigumfs
dictionary. Until allocates space for each new macro as it is defined. "I‘h|s
prevents running into the 64k array limit in some C/C++ C(.)n}pllers.
Forths written in C typically allocate a single large array for the dictionary.

Until uses C’s built-in function call/return mechanism for threading from
macro to macro. Forth has a separate Inner Interpreter for threading. Until
and Forth both have an Outer Interpreter to handle user interaction.

The Until compiler is separate from the rest of the system. The RPN-type
compiler in Until resembles a Forth compiler. Until is designed so the
RPN-type compiler can be removed and any compiler you may want to
write can be substituted.

The final departure from traditional Forth is the choice of implementation
language. Forth has been implemented in C several times over the years.
Each is an almost exact implementation of the Forth model in C. The
premier version is CForth by Bradley Forthware. It is usable and runs well
on several different computers including PCs, Unix systems, and work-
stations. Other notable implementations include TILE and a FIG Forth in
C; both are public domain or shareware and specific to Unix. Commercial
Forth implementations are generally written in the native assembly lan-
guage of the target system.

THREADING TYPES

Threaded interpreters can utilize several different types of threading.
These include:

» Indirect Threaded Code
¢  Direct Threaded Code
*  Token Threaded Code
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*  Subroutine Threaded Code
* Segment Threaded Code
*  Switch Threaded Code

A TIL can be implemented using any of these threading technicques. Forth
traditionally uses indirect threading. The advantages to each type of
threading is discussed in the next several paragraphs. Program threads are
traversed by the interpreter. (The Until interpreter is discussed in detail in
Chapter 8.)

Indirect threaded code is the traditional method of threading used in Forth
implementations. Words are comprised of a header and a list of word
Code Field Addresses (CFA). CFAs point to primitives to process the type
of word. Indirect is the slowest of the four threading types but generally
produces the most compact code in terms of memory.

Direct threaded code is a variation of indirect threaded code. Words are
still a list of CFAs. The difference is the CFA contains either inline code
or a call to a primitive subroutine, Direct threaded code is faster than
indirect threaded because one level of code indirection is removed.

Token threaded code has the primary advantage of being easily relocat-
able. Words consist of a header and list of token pointers. A table of
tokens and code addresses is maintained. If 8-bit tokens are used, token
threading produces the smallest code. It is generally slow because of the
extra level of indirection for accessing the token table to get the address
to execute.

Subroutine threaded code is the fastest of the threading techniques. A
word is a list of subroutine CALLS to lower level words. This approach
takes more memory than other threading methods and generally needs
two hardware stacks to implement.

Segment threaded code is a method of threading devised to cope with
limitations imposed by the INTEL 80X86 segmented architecture. Each
new macro is started on a new segment boundary. This wastes some space
(segments are 16 bytes) but allows the dictionary to be as large as memory
rather than restricted to 64k.

Switch threaded code is used by several versions of Forth written in C.
The inner interpreter is a giant switch statement with all primitives being
cases. This is very efficient in C and general opinion is that switch
threaded code results in a fast interpreter.
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UNTIL DESIGN

Until uses n modular design. This allows substituting modules as neces-
sary for the application. The Until modules are:

*  Quter Interpreter
*  Compiler
»  Core primitives

Each module is covered in detail in its own chapter.
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Chapter 7
UNTIL DATA STRUCTURES

INTRODUCTION

Data structures are the heart of every system; Until is no exception. This
chapter identifies and discusses the primary data structures used mtern-
ally by Until. The Until data structures are defined in the file UNTIL.H.

Until’s data structures may be divided into three groups:

*  Stacks
¢ Dictionary
*  QOther

Each is addressed in a separate section.

STACKS

A stack is a last-in first-out (LIFO) memory array. Stacks can be imple-
mented either in hardware or in software. Some processors have direct
support for one or more stacks.

Virtually every programming language uses stacks for passing arguments
between functions or subroutines. The difference is that the programmer
rarely has access to the stacks. The programmer not only has access to the
stacks in Until; a stack is dedicated to passing arguments between macros.

Many TILs are implemented with two stacks, the Parameter or Data Stack
and the Return Stack. The Data Stack is equivalent to the internal stack
described above for passing arguments between functions. There is a full
set of stack manipulation macros associated with the Data Stack.
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A stack cell is manipulated by primitive Until macros. Until treats a stack
cell as a long integer number by default. The width is 32 bits.

The Return Stack in a typical TiL is used for two purposes. It holds
addresses of the next macro for the Inner Interpreter to execute, so it must
be wide enough to hold an address. The second purpose is for holding
loop indices. Until uses the Return Stack only for Ioop indices.

THE DATA STACK  The Data Stack is an array of 32-bit integers used
to pass parameters between macros, Numbers typed at the keyboard are
automatically pushed onto the Data Stack.

An RPN-based stack oriented language like Until needs a set of stack
manipulation primitive functions. Most, including HP calculators, include
some of all of the following capabilities:

dup Duplicate the top number on the stack

drop Remove the top number from the stack

swap Exchange the top two numbers on the stack
ot Move the third number to the top of the stack

pushsp  Push a number onto the top of the stack
popsp Move the top number of the stack to a specified variable

Until stores all data types on the Data Stack by casting the value to long
integer before pushing it onto the stack. When numbers are popped off
the Data Stack, the calling function is responsible for casting from long
integer into the proper type.

pushsp and popsp are internal low level functions that are automatically -

called when necessary. The user never calls either primitive directly.

The other part of implementing a stack data structure is a stack pointer, A
global variable, SP, is Until’s stack pointer. It is incremented when a
number is pushed onto the stack and decremented when a number is
popped off. Until tests for both stack over and underflow.

The following code defines the Data Stack:

constant int PSTACKSIZE = 64;
long pstack[PSTACKSIZE];
long 5P; : // stack pointer

The stack depth can be increased by changing PSTACKSIZE. Tests for
stack overflow references PSTACKSIZE.
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THE RETURN $STACK  The Return Stack 1a o special purposc‘ulnck.
Until uses it for storing loop indices. The maximum number of tlmcsha
loop is to be execuled and the current loop index are pushed onto the
Return Stack at the beginning of a loop.

‘The loop index is incremented and tested for greater t}?an the maximum
loop count at the end of each loop execution. If the exit condition is not
met, the loop continues. Otherwise, it exils.

The primitive Return Stack manipulation macros are:

rpush Push a number on the stack
rpop Pop a number from the stack ‘ .
rfetch Get the top number from the stack without changing

the top value

A simple extension to add to Until is allowing the user t(.a pus‘h te.mporary
values onto the Return Stack. This has far ranging implications that
should be understood before providing user access to the Return Stack.

There is a stack pointer dedicated to the Return Stack. It is a global
variable named RP. The following code defines the Return Stack:

const long RSTACKSIZE = 32;
long rstack[RSTACKSIZE};
long RS;

pointer

// Return Stack

DICTIONARY

The second major data structure in Until is tl?e -diction:ary. %\11 U111}1l
macros are compiled into the dictionary. The dictionary is a linked list
structure. The entry for each macro is a DictHeader.

The typical TIL uses a linear dictionary; Until does not. Until ’_s dictionaerg
is a linked list of pointers. Space for each new macro is allocat

dynamically as it is compiled.
The fields in each dictionary headers are:

*  Name Field Address (NFA)

* Link Field Address (LFA)

*  Code Field Address (CFA)

»  Parameter Field Address (PFA)

41



All are used during compilation. The following illustration depicts a

dictionary entry.
Dictionary

|:CFA ‘ PFA | NFA | LFA

RaLE
T N
CFA PFA | NFA LFA_W_

I ! ‘ Name field
’ :. — T
‘ ‘ ‘ Smudge
i : Parameter Field I flag
i
‘ | pfa_Jist - I
or | Length ‘

Primitive Functions I}ray i :

— - or

"Bg_oolon | |_|0 g | ‘MNam

The PFA can be one of several data types. A C++ union is used to define
the PFA. The following code defines a dictionary entry:

struct DictHeader { -
void {*CFA)(};
union pfa_type{

DictRBeader **Waddr:

// ptr to primitive function

long lvalue;
char cvalue;
long *1 ptr;
char *c _ptr;
} PFA; // ptr to list of words to execute

NémeField *NFA; // ptr teo name string
DictHeader *LFA; // points to next word in
dict
}:
A new. dictionary entry is allocated each time a constant, variable, or
macro is defined. The minimum size allocated for a dictionary entry is:

Dictionary Header 32 bytes
Name field 32 bytes

64 bytes plus length of the
name

Ass?m'n.c the average name is eight characters long. So, each macro
definition takes an average of 72 bytes. This sounds like a lot. The other
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side of (he coin is that a relerence to a macro only takes four bytes. Calls
in C or C++ take o minimum of six bytes each,

NAME FIELD ADDRESS The NFA is a pointer to a name field
structure. The structure contains four fields:

* Length of the name text
*= | or Immediate Flag

¢ Smudge Flag

* The macro name text

Both the interpreter and compiler look up parsed macro names in the
dictionary. The name field provides the name information that is used in
the dictionary search. Here is the structure that defines the name field:
struct NameField {
int lenj;
int immediate;
int smudge;
char *name}
}i
Length of the Name Text The number of characters in the mMacro name
is stored in the name field. Forth strings are counted rather than null
terminated. Until uses counted strings internally, hence the length field.
Counted strings speed up searching the dictionary because the full string
compare ol name is only required if the lengths match first.

Immediate Flag The Immediate Flag causes a macro to be treated as
type immediate. Immediate macros execute during the compilation
process rather than being compiled into the new definition. CALL only
allows primitive functions to be declared immediate. The Immediate Flag
has no effect during interactive execution.

The comment operator, ‘{’, is immediate. When a ‘{’ macro name is
parsed and a match found in the dictionary, the compiler tests the
Immediate Flag before compiling the macro address into the dictionary.
The macro is executed if the flag is set. That is how the comment operator
works inside a macro definition. All of the compile-only macros, such as
if ... else ... endif are immediate,

Smudge Flag The Smudge Flag provides a way to hide a definition in
the dictionary. It is set during the compile process for the macro currently
being compiled. The compiler searches the dictionary and flags any
duplicate definitions found. The flag is cleared as the last compilation
step.



The Smudge Flag effectively prevents accidental recursion. CALL, as
defined in this book, does not support recursion. Recursive macros are
possible with the addition of the proper primitives.

Macro Name Text The actual text of the macro name is stored in this
field as a pointer to a string. The name string is allocated as one of the first

steps in compiling a macro. The string is also nuil terminated so it can be
manipulated using built-in C string functions.

LINK FIELD ADDRESS The LFA points to the previous dictionary
header. The LFA of the first word in the dictionary contains an LFA of 0.
The LFA is used to step through the dictionary when searching for a

macro name. This is the “thread” that ties the macros together in the
dictionary.,

CODE FIELD ADDRESS The CFA poinis fo the primitive Ci+
function to be called when this macro executes. It is defined as a void

pointer. The CFA is the execution “thread.” The CEA always points {o a
primitive C++ function.

PARAMETER FIELD ADDRESS The PFA contains the parameters
for the macro. The contents are specific to each primitive macro type. The
PFA for both variables and constants contains a long integer. It contains
a list of macro addresses to execute for a macro definition. Knowledge

about the contents of the Parameter Field is the responsibility of the
primitive,

OTHER STRUCTURES

Until uses several other minor data structures. This section identifies
them. The data structures discussed here are:

* Terminal Input Buffer (TIB)

* Scratch pad area (PAD)

* Temporary PFA (PFA_LIST)
_* Miscellaneous Pointers

Many TILs have some equivalent to these data structures. Each is a
pointer or array depending on usage.

TIB The Terminal Input Buffer is the character array that user input is
read into by the interpreter. It is a maximum of 255 characters in length.
The current offset is stored in the global variable IN. The user cannot
access TIB directly in CALC. The definition for TTB is:
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conal Int TINGRZE = 256;

char Lib[TIB3IZ2E];
PAD PAD is a scratch pad area that is used by low lCVt?] primit.ive
macros. Its primary purpose is for building temporary strings during
compilation. The macro ‘" uses PAD as a work area too. The user does
not have access to PAD in this system. PAD is defined as:

const int PADSIZE = 128;

char pad[PADSIZE};
PEA LIST The PFA_LIST field is unique to Until. It is a temporary
array-of macro pointers sized for 100 entries. That means a macro can
reference a maximum of 100 other macros. As a macro is oompﬂed,
references are added onto the end of PFA_LIS’I‘.'Memory for the fnl1al
compiled list is allocated at the end of compilation for' the a.ctual size
needed to hold the real PFA entry. This approach makes it relatively easy
to use only the needed memory for a definition ratheF than a!ways all‘ocatc
a fixed maximum. PFA_LIST can be expanded by increasing the size of
the constant PFA_SIZE. The following code segment defines PFA_LIST:

const int PFA SIZE = 100;

DictHeader *pfa_list[PFA_SIZE];
MISCELLANEQUS POINTERS Both the compiler an.d interpreter
use pointers to keep track of the state of the TIL. The primary global

pointers are:

* Dictionary Pointer (DP)
* Instruction Pointer (TP)
*  Word Address (WA)

Most TILs have equivalent pointers. Usage of the miscellaneous pointers
is discussed again in later chapters as they are referenced.

Dictionary Pointer DP is the pointer to the most ref;cnt]y defined
macro. It is the starting point for dictionary searches. 'DP is useld both by
the compiler and interpreter. CALL modifies the Dictionary Pclunter each
time a new macro definition is added to the dictionary. The interpreter
uses DP as the start of the linked list when looking up a macro name.

Instruction Pointer The IP is logically the instructiop counter for the
interpreter when it executes a high level macro definition. A high le-vel
macro is one created using m{ and }m. The IP is also used by the compiler
when building the PFA_LIST.
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Worfl Address WA is the pointer to the current macro in the dictionary.
WA is set when the interpreter finds a maich in a dictionary search. The
WA is used to get the CFA to execute. The Word Address is used both by
the interpreter and the compiler. WA is typed DictHeader*.

SUMMARY

Until uses a variety of data structures to implement a threaded interpreter.
These include stacks, a macro dictionary, and several lesser data
structures. The general data structures are borrowed from Forth. Their
implementation in Until does not resemble any Forth implementation that
I know of. This is especially true of Until’s dictionary layout. Al of the
data structures identified in this chapter are global.

These data areas are usually accessible in other TILs, including Forth.

User access to the underlying TIL data structures is restricted because it
1s not needed for CALC.

The ('iiscussions about Until’s data structures provide a starting point for
the discussion of Until’s interpreter in the next chapter.

Chapter 8
THE UNTIL INTERPRETER

INTRODUCTION

Threaded Interpretive Languages traditionally have two interpreters. The
first is a low level or Inner Interpreter. The higher level or Outer
Interpreter interacts with the user. This chapter discusses Until’s Inner
and Outer Interpreters.

INNER INTERPRETER

The Inner Interpreter is the heart of a TIL. While the Outer Interpreter
deals with the user, the Inner Interpreter interacts with compiled macro
definitions in the dictionary. The Until Inner Interpreter can also be
referred to as an address interpreter.

Until does not have a separate Inner Interpreter because it uses subroutine
threading that takes advantage of C’s built-in function call/return mech-
anism to thread from macro to macro. Other threading techniques require
separate code to implement the Inner Interpreter.

Even though there is no separate inner interpreter in Until, discussions of
TIL internals would not be complete without including how a “generic”
inner interpreter works. The remainder of this section does just that.

If the inner interpreter is at the heart of a TIL, the macro NEXT is the heart
of the inner interpreter. NEXT should always be a machine language
primitive. Execution speed is critical in NEXT. An inefficient imple-
mentation of NEXT will make a TIL slow.

The generic inner interpreter described here uses indirect threaded code.
Macros in indirect threaded code have a header and a list of Code Field
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Addresses (CFAs). The indirect threaded code architecture uses four
internal registers. These are:

* IP - Interpretive pointer
* WP - Macro pointer

* RP - Return pointer

* SP - Stack pointer

Two of these (the SP and RP) are memory pointers in many implemen-
tations, especially on small 8-bit processors because of limited hardware
registers. The use for each of the pointers is described below:

IP contains the CFA of the next macro to execute.

WP contains the CFA of the current macro to execute.

RP is the pointer to the Return Stack. It contains the CFA of the
macro to return to when the current level of interpretation is
completed.

SP is the pointer to the cutrent entry in the Data Stack.
The inner interpreter usually consists of four routines:

* NEXT

* EXECUTE
* DOCOCLON
* EXIT

These macros are all machine language primitives that interact with the
four TIL registers described to interpret and execute TIL macros.

NEXT assumes the CFA of the next macro to execute is in IP. It moves
the contents of IP into WP. Some versions of NEXT also automatically
increment IP. The macro pointed to by WP is then executed.

IP | CFA (—— = P
WP‘ ——— CcFA | WP
RP | RP
SP |

L] L %
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EXECUTLE expects the CFA on the Parnmeter Stack. It loads the CIA
into WP The macro is then exccuted either with a jump (JMP) to WP or
a subroutine call (JSR). EXECUTE is called RUN in some early TILs.

Parameter
Stack
P ! . ’7 CFA
RP
s - ]

DOCOLON assumes that the CFA of the macro to return to is in the I.P
and the CFA of the current macro to execute is in WE. The CFA in WP is
converted to a Parameter Field Address (PFA). The contents of the‘ 1P is
pushed onto the Return Stack, modifying RP. The CFA containcd. in fhe
PFA is moved into IP, then NEXT is invoked. DOCOLON is the primitive
routine whose address is compiled into the CFA of a high level macro.

DOCOLON is also named NEST in some clder TILs.

Return

Stack
P CFA |— - — CFA—| — oFA | P
wP| CFA 7 WP

SP

A o

EXIT is the last macro executed at the end of a high level macro. It pops
the CFA off the Return Stack into IP.
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Return
Slqi_:_:k
P ' CFA |- | CFA
WP
RP
SP
[ ]

THE INNER INTERPRETER AT WORK The description of the
inner interpreter pieces sounds complicated. Each macro taken indi-
vidually is relatively simple. The complicating factor is that they are all
independent and can be called at any time by each other. So keeping
straight who does what to whom can be confusing. The following exam-
ple of high level and description of the inner interpreter at work should
clear up inner interpreter operation.

We will follow the inner interpreter execution of the following macros:

m{ HELLO " Hello " im
m{ WORLD " World” Im
m{ HELLO-WORLP HELLO WORLD }m

Now assume that some other TIL macro invokes HELLO-WORLD. Here

is how the inner interpreter threads from macro to macro, executing
HELLO-WORLD.

MACRO ACTION
NEXT Called to start HELLO-WORLD
DOCOLON CFA of HELLO-WORLD is executed
{ POCOLON)
NEXT Called to execute next macro {HELLO)
DOCOLON CFA of HELLO is executed (DOCOLON)
NEXT Called to execute next macra (")

..+ Execute primitive "
EXIT Exit macro (HELLO)

NEXT Execute next macro (WORLD)
DQCOLON CFA of WORLD is executed (DOCOLON)
NEXT Called to execute next macro {")

+++ Execnte primitive "
EXIT Exit macro (WORLD)

NEXT Execute next macro
_ EXIT Exit macro {HELLO-WORLD)
NEXT Execute next macro from calling macro

The indentions under the heading MACRO show the nesting of macro
execution. Each indention implies a Return Address being pushed or
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popped off the Refurn Stack. Notice how often NEXTis called, especially
when high level macros are involved.

OUTER INTERPRETER

The Outer Interpreter is Until’s interface with the user. Simply stated, the
Outer Iriterpreter waits for the user to type a line at the keyboard. Each
word in the input line is parsed, looked up in the dictionary, and executed.

The Outer Interpreter has several functions to perform at the lower level.
These include:

» Initialization/startup

¢ Print the prompt

*  Search the dictionary for a macro
* Execute a macro

¢+ Convert digits to a number

*  Warm start on an error

Efficiency is not the prime concern in the Outer Interpreter. Most of its
processing time is spent waiting for user input. Reliability, on the other
hand, is critical.

INITIALIZATION/STARTUP The first call to Until initiates several

actions:

+ [Initialize stacks and pointers

* Display the copyright screen

*  QOpen CALCAPP

* Execute the contents of CALC.APP
¢ (lose CALC.APP

*  Begin the Quter Interpreter loop

The commands in CALC.APP are executed only the first time Until is
called from an application program. Subsequent calls do a warm start
only.

PRINT THE PROMPT The function prompt() simply prints the

Until prompt, “CALC>.” The prompt string can be changed by changing
the value in the global variable PROMPT.

SEARCH THE DICTIONARY FOR A MACRO As each wqrd of
the input line is parsed, the dictionary is searched for a match with an
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existing macro name. The result of the search is Magged for later use by
the Outer Interpreter.

EXECUTE A MACROQ When a dictionary search is successful, the
dictionary address of the macro is returned in WA. The address of
WA->CFA is exccuted. This is essentially a call to the Inner Interpreter.

CONVERT DIGITS TO A NUMBER If the parsed word from the
input stream is not the name of a macro in the dictionary, an attempt is
made to convert it to a number and push it onto the stack. Frequently used
numbers, such as one, two, and three, are defined as constants to speed up
compilation because the definition will be found without searching the
entire dictionary, then requiring a numeric conversion. An error is flagged
if the conversion fails,

WARM START ON ERROR  When an error occurs, such as a macro
not being found, error processing in the form of a warm start is performed.
Warm start processing includes typing a message to the user and resetting
the stacks. The Outer Interpreter picks up at the beginning of the main
loop.

OUTER INTERPRETER CODE

The operation of the Outer Interpreter is discussed using two forms,
pseudo code and the actual outer( ) function. The following pseudo code
logically describes the operation of Until’s Outer Interpreter:

BEGIN
INITIALIZE STACKS
BEGIN
WAIT FOR TERMINAL INPUT
BEGIN
PARSE TOKEN
SEARCH DICTIONARY
IF (TOKEN FOUND)
EXECUTE MACRO
ELSE :
CONVER? TOKEN TO A NUMBER
IF (CONVERSION ERROR)
ABORT
ELSE
PUSH NUMBER ON STACK
THEN
THEN
PRINT PROMPT
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UNTIL (END OF INPUT LINE)
UNTIL (ERROR)
FORBVER

This is & conceptual representation. The Inner Interpreter is invoked

indirectly by the EXECUTE MACRO statement.

The Quter Interpreter is function outer( ). It is amazingly simple. The

operation of each step identified in the pseudo code is identified and
discussed in the following paragraphs.

void outer(}

{

static started;
int found;

if(lstarted){
started = TRUE;
startup();
}
QUIT = 0;
for(;;id{
if{QUIT ‘
e re%irn: // Initialization
}else{
warm();
}
do{
pushsp{BLANK} ;
word(); // get next word from
// input stream
minus_find{);
found = popsp{);
if(found){ // found the macro
WA = (DictHeader*) popsp():;
(*WA->CFA) ()}
lelseq // Word not found, so
// try to turn
drop():; /7 it inte a
/f number .
pushsp( (long)pad); .
number(); // Convert it to int.
}
gdot_s{); // Type stack
}while( |ABORT) ;
ABORT = 03
}
}

All of the code for the startup/initialization is in the function startup( ).
The static variable started is tested. It is set and startup( ) called on the
initial call to outer( ). The startup( ) is skipped on all other calls.
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if(Istarted){
started = TRUE;
atartup(};

}

QUIT = 0;
The started flag allows multiple calls to outer( ) from an application
program. Macros compiled in the previous invocation remain defined.

A warm start is performed under two conditions. First, when the Outer

Interpreter is called after the first time. Second is on an Until eror such
as a stack underflow.

if{QUIT){

return; // Initialization
telse{

warm();

Executing the warm( ) function clears the stacks and resets the pointers.

Searching the dictionary is performed by the following code:

pushsp({BLANK) ;
word(};
minus_find();
foeund = popsp();

word(.) parses the next word from the input stream. The delimiter char-
acter is the top entry of the Data Stack. The call to pushsp(BLANK)
pushes a blank onto the top of the stack. The parsed word is returned in
PAD. minus_find( ) performs the dictionary search for the parsed word
and returns truth on the Data Stack.

'ljhe address of the DictHeader is left on the top of the stack by minus
find( ) whenever the dictionary is searched and a match found. -

WA = (DictHeader*) popsp{};
{*WA->CFA) () ;

WA is loaded, then the CFA called to execute the macro.

C(?nverting the word to a number is the final step if the dictionary search
fails.

pushsp((long)pad);
number{ };

Numbfsr calls the C++ library function atol( ) to perform the actual
numeric conversion,
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MACRO EXECUTION

It is time o examine what happens when a macro executes. The CFA of
every macro points to a primitive C++ function. The valid C++ functions
are determined by the compiler. If you force a garbage address into a CFA
and then try to execute it, the interpreter merely does what it is told and
tries to execute the address. The computer is likely to crash when this
happens.

Several classes of macros are defined by the CALL compiler. These are:
*  Variable
» Constant

= High level macro
= Primitive macro

The classes are a function of the compiler, not the interpreter.

The macro class is important because the class determines the content of
the PFA. This is, in fact, very important as we shall see.

CLASS CFA PFA

Variable do_variable( ) Long Integer

Constant do_constant( ) Long Integer

Primitive Macro Any function Depends on the
primitive

High Level Macro do_colon() Points to an array of

macro addresses.

‘The corresponding compiler function are:

INTERPRETER COMPILER
do_variable( ) Compile_variable( )
do_constant( ) Compile_constant( )
do_colon Compile_colon( )

Given that the address of the dictionary header for a macro is in WA, its
Code Field Address is executed by:
(*WA->CFA){);

WA is a pointer to a DictHeader structure. CFA is a field within that
structure. C++ executes the function within the first parentheses
(*WA->CFA), which is a pointer to a function. The second parenthesis

58




pair indicates there are no C++ arguments. Remember that all CALC
arguments are passed on the Data Stack, not the internal C++ stack.

VARIABLE EXECUTION Referencing a variable name pushes its
address onto the Data Stack. The Outer Interpreter parses a word, then
performs a dictionary search. WA is set to the DictHeader address of the
variable. do_variable( ) pushes the address of the PFA onto the Data
Stack.

void do_variable()

{
}

The definition of variable xxx and its DictHeader entry are:

pushsp({long) &WA->PFA.lvalue);

Var xXxx

CFA PFA NFA LFA

rdo__variable() value | pointer | pointer
. . , |

- Previous DictHeader

Smudge

1] immediate

3 len

E— pointer | *name

Name Field

CONSTANT EXECUTION  Using a constant pushes the value of the
constant onto the Data Stack. WA for the constant is set by the dictionary

search. Executing do_constant( ) pushes the contents of the PFA onto the
stack.

veid do constant()

{

}
The definition of constant yyy and its DictHeader entry is:

pushsp{WA->PFA.lvalue);

47 const yyy
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CFA PFA NFA  LFA

do_constant{) 47 ‘ pointer | pointer l

b -
L— Previous DictHeader

0 Smudge
0 | immediate
3 len
pointer | *name
Name Field

HIGH LEVELMACRO EXECUTION Executing a high level macro
is the most complicated of the macro classes. A high level macro is a
macro defined using m{ ... }m. The PFA is a list of DictHeader addresses.
The CFA contains the address of the primitive C++ function do_colon( ).
The code for do_colon is:

void do_coloen{)

{
register DictHeader *word;
DictHeader **old IP;
old_IP = IP;
IP = WA->PFA.Waddr;
WA = 0;
word = *IP++;
while{word}) {
WA = word};
{ *word->CFA) {};
word = *IP++;
}
IP = old IP;
}

Global variables WA and IP are used in addition to local variables. Ne'sted
high level macros recursively call do_colon( } so the local save pointer
works well and is very simple.
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Type the definition of macro double:

m{ double { n - n%2 )
dup +
Im
Its DictHeader entry is:
CFA PFA NFA LFA
‘ do_colon() pointer ‘ pointer | pointer ‘

hello DictHeader

—

R I D

dup 0 Smudge
pointer
0 immediats
+ rr— e |
pointer 6 len
o painter *name
—_ e
PFA List | i
———___.I double
Name Field

The pointers in the PFA List are pointers to the DictHeader entries for the
mMAcros to execute.

The Link Field Address (LFA) points to the DictHeader entry for the last
macro defined. This example assumes no other macros have been defined
since starting CALC. Therefore, the LFA for double points to the macro
hello.

Type 2 double then press Enter:

CALC> 2 double
4

The interpreter performs the following steps to process the line:

1. Parse the first word (2), convert it to a number, and push it onto
the Data Stack.

2. Parse “double.”

Search the dictionary for a macro named double.

4. Set WA to the address of the DictHeader for double.

w
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5. Cnll ihe function in the CFA, do_colon( ), to execute double.

6. Return to the Outer Interpreter.
We need to look at the steps do_colon() performs to run double to
understand all of the processing going on to execute a high level macro
definition: .

1. Save the current IP so it can be restored at the end of the macro

execution.
2. Set IP to the PFA List pointed to by the PFA.

P

dup
pointer

+
pointer

o
[

PFA List

3. Call the function pointed to by IP. dup is called to duplicate the 2
on the data stack.
4. Increment IP.

dup
painter

+
pointer

"0

PFA List

5. Call the function pointed to by IP. + adds the top two numbers on
the Data Stack, then pushes the sum onto the Data Stack.

6. Increment IP.

a0




| dup
pointer

+
pointer

0 ;

PFA List

7. The IP points to 0, indicating the end of the PFA List. The
do_colon( ) ioop ends at this point.

8. IP is restored to the original value.
9. do_colon( ) returns to the calling function, outer( ) in this case.

Saving and restoring IP on entry and exit allows nesting of macros. That
is, a high level macro can call another high level macro. do_colon( ) is
called recursively in nested macros.

PARSING THE INPUT STREAM

The final major operation performed by the Outer Interpreter is parsing

words from the input line to execute. The C++ function word( ) performs
this operation.

word( ) expects the delimiter character, a blank for the interpreter, on the
top of the Data Stack. It reads up to that character or end of line and
extracts characters into PAD. The code is:

void word()

char c¢h:;
char delim:
int i;
long X;

if(IN >= tib_len){
read _next_line(});

}

X = popsp();
delim = (char} X;
ch = tib[IN++};

while{ch == delim){
ch = tib[IN++];
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PE(IN > tib len){
ch = dalim;
road _next_line{};
H
}
i=1;
while{ch |= delim){
pad[i++] = ch;

ch = tib[IN++];
if(IN > tib len){
break;
}
}
- pad[i++] = NULL;
pad[i] = delim:
pad[ 0] = i=2;

pushsp({long)pad);
}
The first while loop skips leading delimiters. This handles leading blanks
if the source is indented. The second while loop copies characters into pad
until the next delimiter is found. The global variable IN keeps track of the
current position in tib from one execution to the next. word( ) is not
available to the user in CALC but easily could be made a primitive macro.

SUMMARY

ATIL is a unique program interpreter. It contains not one, but two built-in
interpreters. TILs do not follow other interpreters, such as BASIC, which
may interpret the source code every time a command is executed. Until
compiles source code into dictionary entries and only has to execute
function addresses. Thus Until is both compiled and interpreted at the
same time. :

The next chapter describes the CALL compiler. A thorough under-
standing of the compiler is not necessary to effectively use CALC or
develop your own application language with the tools in this book.

=1



Chapter 9
THE CALL COMPILER

INTRODUCTION

This chapter describes the Callable Application Language Library
(CALL) compiler and explains its operation. CALL is the RPN-style
compiler used by Until. Before getting into the detailed discussions, I
want to point out that 1 probably would not have finished the compiler
without the excellent debugging features built into Borland C++.

Simplicity is an overriding tenet in both CALL and Until. Simplicity
makes the software more understandable for the average C/C++ program-
mer. The code is written with clarity as a prime concern. Many code
optimizations that are possible are not included for this reason.

WHY AN RPN COMPILER? The first answer is simplicity. A lan-
guage based on RPN is very simple to parse, especially compared to a
traditional programming language like C or Pascal. Nested commands are
not necessary. In fact, parentheses are not available in most RPN systems.
HP calculators don’t even have “(’ and )’ keys.

An adjustment period may be necessary before becoming comfortable
with RPN syntax. Once you do, RPN scems as natural as the algebraic
system that takes years to teach in elementary and high school. The main
thing is to give RPN a chance before discarding it.

The simplicity of RPN is very attractive from the standpoint of writing a
compiler. Procedural language compilers are complex beasts, with symbol
tables, that must parse nested operations and require complex code
generation and optimization phases.
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A compiler for an RPN-based language, in contras, requires no separate

symbol table, can use very simple parsing methods, and do not have to
build stack frames for every procedure call.

The final reason for my choosing an RPN compiler is familiarity. 1 have
used TILs for several years. I understand how they work. Developing a
compiler is much easier when you understand how it works.

CALL COMPILER OVERVIEW

The CALL compiler does not compile directly to machine language; it
compiles to a list of function addresses for the interpreter to execute. It is
possible for a TIL to compile directly to machine language. Several
commercial Forth implementations compile to machine language,

There are two kinds of addresses manipulated by the compiler. These are
the CFA and PFA List. The address stored in a macro’s CEA must be the
address of a primitive C++ function. The PFA List is a list of DictHeader
addresses of macros to execute. The compiler is modularized with a
function to build a skeleton DictHeader structure and functions to com-
pile each class of operator. The operator classes are:

*  Variables

* Constants

*  Primitives

* High Level Macros

*  Literals

* Loops and Branching
*  Conditionals

The operation of each class is discussed in the following sections. Many
of the compilation macros are defined as immediate macros. An imme-
diate macro executes “immediately,” even during compilation, rather
than being compiled into the macro definition. All of the immediate
compilation macros execute separate compile and execution time Ci+
primitives. For example, Compile_loop( ) is the compile time loop func-

tion and do_loop( ) is the execution time function for the (...) loop
operators.

VARIABLES One of the simpler compiling macros is var. An example
of compiling a variable is:

var XxXx
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var exeeutes Compile variable( ) to compile a varinble, It performs the
following steps 1o compile the variable xxx:

1. Parse the next word from the input stream (xxx).

2. Create a skeleton DictHeader structure named xxx.

3. Set the CFA to do_variable( ).
The code for Compile_variable( ) is:

void Compile variable()

{
next_word(};
Create();
DP=->NFA->smudgqe = &;
DP->NFA=->immediate = 0
DP->CFA = do wvariable;
DP->PFA.lvalue = 0;

}

See Chapter 8 for a sample DictHeader for a variable.
CONSTANTS Compiling constants is similar to compiling variables.
Defining a constant such as yyy is:

47 const yyy

yyy is initialized with a value of 47. The steps to compile the constant are:

1. Parse the next word from the input stream (yyy).

2. Create a skeleton DictHeader structure named yyy.

3. Set the CFA to do_constant( ).

4. Load the PFA with the value on the top of the Data Stack (47 for
yyy)- '

The code for Compile_constant( } is:

void Compile_constant{}

{
next_word({};
Create();
DP->NFA->smudge = {;
DP->NFA->immediate = 0;
DP->CFA = do_constant;
DP->PFA.lvalue = popspl(};

H

See Chapter 8 for a sample constant DictHeader.




PRIMITIVES

Compiling a primitive macro is not done directly by the compiler. The
C++ functions build_primitive( } and build_iprim() set up primitive
macros. All of the calls to these two functions are isolated in make

prims( ), which is called as part of startup processing. -

Macros must exist before they are referenced in CALC. Primitive macros
are really C++ functions. This combination makes direct compilation
lm.practical as a macro must exist before it can be referenced. build

primitive( ) and build_iprim( ) are discussed in Chapter 10. -

HIGH LEVEL MACROS

The single most complex part of the compiler is compiling high level
macros. Three main functions do the bulk of the work:

¢ Create()
*  Compile_colon()
*  build_pfa_list()

Create( ) i.s 'c'alled by all of the compiling macros to create an empty
macro deflmt}on in the dictionary. Compile_colon( ) is the main compiler
function. build_pfa_list{ ) adds address tokens to the PFA List data

structu.re, which is used to create the final macro PFA. The code for
Compile_colon( ) follows:

void Compile colon()
{

void *ptr;

int len;

if (STATE == 1){
cout << "E - i i

Mode . \n" RROR->Already in Compile

}

next_word();

Create();

STATE = 1;

pfa_ocffset = 0;

build pfa list({);

len = popsp(};
len += 4;
ptr = new DictHeader*+*

[len*=zizeof{DictEeader*)]:

memcpy{ptr,pfa list, {(len*sizeof(DictHeader*)));
DP->NFA->»smudge = 0; '

o =

DP=sNPA=>immodiate = 0;

BR=>CEA v do_colon;

DP->PI"A.Waddr = (DictHeader**)ptr;
}

The compiler is invoked by the primitive my{. The first step is checking
the current compile STATE. Nested macro definitions are not allowed.
STATE is 0 during normal interpretation and 1 during compilation.
next_word( ) parses the next word from the input string. The parsed word
is the macro name to create. It is in the character array pad. Create( ) is
called to create a skeleton macro header in the dictionary.

The PFA List is then constructed by build_pfa_list( ). A fixed length work
structure is used, then space sized to fit the macro definition is allocated
using the C++ new operator, and the actual size used is copied to the final
Parameter Field. The final step is finishing the macro definition.

The smudge flag is set in Create() to prevent accidental matches in
dictionary searches done before the compile is completed. One of the last
steps in Compile_colon( ) is clearing the smudge flag to make the macro
name visible during later dictionary searches.

build_pfa_list( )} is a second major function in the compilation process.
The code is:

void build pfa list()

{
int status;
char *string;
DictHeader *save WA;

save_WA = WA;
next_word{);
while {STATE) {
status = prim_find{};
switch(status}{
case -1:
(WA->CFA) () ;
if (STATE == 0}{
goto FinishDef;
}
break;
case 0:
- pushsp( (long)pad);
number{);
if (ABORT) {
string = &padill;
cout << string << ": Word Not
Foundi\n";
STATE = 0;
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abort _F(};
break;
}elseq
literal{);
}
case 1:
pfa_list(pfa_offset++} = WA:
break;
default:
cout << “Bad prim_find
return~-build pfa_list\n";
}
if{pfa_offset > PFA SIZE)({
cout << "Definition too long. \n";
abort_F();

STATE = 0;
}
next_word();
}
Finishbef:
pfa_list[pfa offset] = 0; )
WA = save_ WA;

pushsp{pfa_ offset):
}

build_pfa_list( ) is a big loop that:

Parses the next word from the input stream

*  Looks it up in the dictionary

* Executes the macro if it is immediate

* Compiles the macro into the PFA List if it is a normal macro

Converts numbers into literals and compiles the number into
the PFA List

*  Aborts if the word is undefined

The loop continues as long as compile mode is active (STATE = 1). The
end macro operator, }m, resets STATE to 0, which changes the compile
made back to interpret. WA is saved and restored to keep the previous
thread in tact. The other classes of operators in the compiler are imple-

mented as immediate words that execute in compile mode to build entries
in the PFA List.

LITERALS

Literals pose minor problems. Typing a number in interpretive mode
simply pushes the number onto the Data Stack. That will not work during
compilation. The numeric literal must be compiled into the dictionary.
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The G+ function, literal( ), compiles a literal into 2 macro clicltini(ion. Al
run time, the primitive do_fit( ) extracts the literal from the dictionary and
pushes it onto the stack. The steps literal( ) performs are:

1. Compile the address of do_lit() into the dictionary.
2. Pop the value on the top of the Data Stack and compile it into the
next location in the dictionary.

The code for literal is:

void literal()
ist[pfa_offset++] = LIT_WA;
aia_lls [pfa_; = (DictHeader*)popsp(};
}

i i i i ictHeader pointer. WA
Notice the literal placed in WA is type cast to a Dict !
is compiled into the dictionary by build | pfa_list( ). LIT_WA coptams the
address of do_lit( ). The PFA List is defined as an array of DictHeader

pointers.

The following is a PEA List segment when a 5’ is compiled in a macro
definition:

do_lit

The run-time CFA contains do_lit( ). The code for do_lit( ) is:
void do_1it()
{

}

The literal is type cast back into a long integer as it is extractc(‘i from the
dictionary. IP is manipulated so the interpreter never sees the literal.

pushzsp{ (long} *IP++);
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BRANCHING, LOOPS, AND CONDITIONALS

Looping and branching go hand in hand. CALL does not allow user
specified branching, i.e., there is no GOTO operator. Branching is still
necessary for both loops and conditionals. This section discusses first
branching, then the loop operator.

BRANCHING Only two branching primitives are necessary. These
are:

* branch()
* zero_bran()

Both branches are implemented as relative Jumps. branch( ) is an uncon-
ditional branch. It is used at the end of a loop to branch back to the
beginning. zero_bran( }is a conditional branch. The branch is taken if the
value on the top of the Data Stack is zero. The compile-time processing

of calculating the branch offset is performed by the loop and conditional
primitives. The code for branch( } is:

void brancht)

{
long offset;
offset = (long) *IP;
Ip += offset;

}

The Outer Interpreter uses IP as its Instruction Pointer, Simply modi-

fying IP has the effect of performing a jump in the code. The offset can
be either positive or negative.

The code for zero_bran( ) is:

void zero bran{)
{
long truth;
long offset;
truth = popsp();
if(truth){

IP++; // Skip branch offset
return;

H
offset = (long)*IP;
IFP += offset;

}

zero_bran( ) takes the branch if the Data Stack entry is zero, If the value
is nonzero, the branch is not taken. The IP must be incremented to skip
over the branch offset in this case.
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The followlng PPA List segments illustrate entries for a branch and
zero_bean when the branch is taken:

branch | Zero_bran
3 - 3
dup dup
swap swap
drop drop
T _ drop |—
I

suppotts only one looping construct, ( ). Other
:tlr?lgfrleljl(foo;g‘c[;mstﬁcts, such as begin. ... until, can be ea]sl.ll){ta(ti.c;?i
to the compiler. Looping operators are restricted due to space limitat:
and to keep CALC simple for the user to learn. |
The macro ‘(’ invokes Compile_do a.nd ‘Y calls Co.mpile_lo.op. Compile_
do( ) is deceptively simple, performing the following steps:

s Compile the run-time do function address into the PFA list
»  Save the address of the empty branch offset on the Return
Stack
Compile_loop() is slightly more complex. It does the following steps at
compile time:
i -ti unction for loo
: gztﬁlz:i: :1111: ;:llgr:sn; Zf the branch offsgt cell from the Return

Stack
*  Calculate the branch offset '
*  Compile the branch offset into the PFA List

The code for Compile_do( ) and Compile_loop( ) follows:

void Compile_dof)

{

Lra ]




pfa_list[pfa_offset) = DO _Wha;
pushrs{(1ong)&pfa_liﬂt[pfa_offaet++]};

}
void Compile_ loop()
{
long offset;
pfa list[pfa_offset++] = LOOP Wa:
r_from{); -
offset = popsp(};
offset = offset - {long) &épfa_list[pfa_offset];
offse? = {offset / sizeof(DictHeader;j) + 1;
5§a_115t[p§a_offset++] = (DictHeader*) offset:
} r

Ehl: do loop is valid only in compile mode because it manipulates the PFA
ist.

Define a macro that does a simple loop:
m{ simple —_
10 ( exr ) { '
Im
simple prints 10 blank lines on the screen. The followin dicti
is generated for simple: e fictionary entry

CFA PFA NFA LFA

‘ do_colon{) ‘ pointer ‘ pointer ‘ painter ‘

] | o

———Previous DictHeader

i do lit | |

10“__1 r___L__;T

L _‘ | 0 i smudge
‘ do_do ‘ 0 | immediate
L cr L 6 _< len
! do_loop I!—--—\'_pc.;i.mer 1 *name
‘ X ‘ Name Field
0 ’—‘“‘
\‘_ ! simple '

e |
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The run time functlon called by (" is do_do( ). 1t pushes the number of
times (o loop and a zero for the index onto the return stack. The run-time
function called by )" is do_loop( ). do_loop( ) calls branch( ) to jump to
the top of the loop. Each time do_loop( ) executes, the loop index on the
Return Stack is incremented and tested to see whether to loop again or fall
out of the loop.

Other structured looping constructs, such as begin ... again, do ... while,
and begin ... until, are easily implemented in CALL. Each is a variation
on the ( ... ) loop presented here. Another useful enhancement to the
looping constructs is a function to explicitly exit a loop.

CONDITIONALS if... else ... endif is the only conditional statement
in CALL. if executes the code following the if or branches depending on
the truth value on the top of the Data Stack. Compile_if( ), Compile_else(
), and Compile_endif(} are the compile-time primitives that handie
conditional compilation.

The following diagram shows the internal branching logic to handle an if
... else ... endif statement:

zero_bran if statement

macios

branch else statement {optional)

offset |——
i
|

———  MMACros
Cof ———— J
e endif statement

_|

The if statement generates a zero branch to either the point of the else or
the endif statement. An unconditional branch to the endif statement is
generated where the else occurs in the code.

if The if statement is relatively simple. It compiles the address of
zero_bran( } into the PFA List, allocates an empty PFA List cell, and
pushes the address of the empty cell onto the Return Stack. The address
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is used later by else or endif 1o calculate the rel
bran( ). The code for Compile_if( ) is:

void Compile if()

{
pfa_list[pfa_offset++] = ZERO_BRAN_WA;
pushrs((long)&pfaﬁlist[pfa_offset++]};
WA = 0;

}

endif An if is bounded by endif. The compile-time action for endif is
performed by Compile_endif( ). The steps this function performs are:

Calculate the offset for zero_bran( ) in the if
Compile the offset into the PFA List at the if

There is no run-time code associated with an endif. The code for Compile_
endif( ) is:

void Compile_endif()

{
DictHeader **branch;
long offset;
r_from();
offset = popsp();
branch = (DictHeader+*+) offset;
offset = {long) &pfa_list[pfa_offset] - offset;
offset = offset / sizeof(DictHeader*};
*branch = {DictHeader*) offset;
WA = 0;
}

else An else statement has two primary purposes: fill in the offset for
the previous if and set up a branch to skip the code between else and endif.
The else code is basically the code for if and endif combined with a few

minor changes. The steps that compile the else portion of an if ..

.else ...
endif statement are:

Compile the address of branch( ) into the PFA List
Ailocate an empty PFA List cell

Push the address of the empty cell onto the Return Stack
* Calculate the branch offset for the if

* Compile the branch offset for the if
The code for Compile_else( ) is:

void Compile else()
{

DictHeader **branch;
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ative offset for zero_

P T -

EEES L

lLong offaoty

r_{roem{}; .
pta 1iatipfa_offset++] = BRANCH WA;
pueﬁrs((long]&pfa_list[pfa*offset++]),

offset = popsp():
= i *x ffset;
2??2:: ; :E;ﬁ;ﬁiiﬂii}iLtTpfa_offset] - offset;
offset = offset / sizeof{DictHeader*);
*branch = (DictHeader*) offset;
WA = 0y
}
SUMMARY

This chapter described CALL. It handles several' classes of comp:llaé:)(::
macros including variables, constants, macros, llterals., loops.':,1 :]md con-
ditionals. Several additional looping o.onstructs can easily be added,

as begin ... until or do ... while, with little effort.

The CALL compiler defines the application lmguage. An RPN-ba§ied
compiler is much simpler than a C or Pascal compiler, The compiler
resolves macros to C++ function addresses. The ﬂa.vor of your apphf:latlm}
language can be changed by replacing this compiler with a compiler o
your own.
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Chapter 10
UNTIL CORE PRIMITIVES

INTRODUCTION

The lowest level Until/CALL primitives are C++ functions. This chapter
discusses these functions and how fo add primitives of your own.
Primitive C++ functions are typically not referenced or run directly by the
user.

ADDING PRIMITIVES

Previous sections have described many of the primitive operators in Until.
Adding new primitive operators to Until is easy. One of the primary aims
of Until is easily adding new primitive functions. The ability to easily add
new primitives is an important consideration in extending the base system
and keeping execution efficiency high. The steps to add a new Until
primitive is slightly different than adding a CALL primitive. The follow-
ing section addresses adding new primitives to each.

ADDING AN UNTIL PRIMITIVE In simplest terms, write a C++
function and add an entry for it in make_prims( ). There is only one rule
for interfacing the new function with the rest of Until; all parameters used
by the function must be passed via the Data Stack. The primitive func-
tions pushsp( ) and popsp( ) already exist for referencing the Data Stack.

The process of adding a new primitive is illustrated by the following
example. A common CALC program sequence is:

1 -

rirl




to decrement the number on the top of the Data Stack. A program that
uses the “1 -” sequence a lot can be speeded up by adding a new primitive
that subtracts 1 from the top stack entry.

Step 1 is writing a new primitive function:

void one minus{}

{
long value:
value = popsp(}; // Extract top of stack number
pushsp(value - 1); // Decrement and it put back

}

The function popsp() retrieves the top value from the Data Stack.

pushsp( ) is its inverse; pushsp( ) pushes a long int onto the Data Stack.

Step 2: add the following line to make _prims( } in USER.CPP:
build_primitive(“1—",one_minus);

The first argument to build_primitive( ) is the macro name string. The

second argument is the address of a C++ function to execute. So when the
user types “1-" the function one_minus( ) is executed by the interpreter.

The following steps are also needed to compile the new function into
Until:

1. Add the function prototype to UNTIL.H.

2. Add the source filename that contains the new primitive to the
project file (CALC.PRI).

3. Compile and link CALC.

At this point, 2 new primitive macro named 1- has been added to CALC
and Until. Follow these steps to add any new primitive macro.

ADDING CALL PRIMITIVES Adding a new primitive to CALL is
a bit more complicated than adding one to Until. The Until primitive is
set up to be compiled into the dictionary by CALL, then executed by the
outer interpreter. A CALL primitive on the other hand has both a compile

time action and a separate run-time action. All compile-time CALL
primitives are immediate.

The general steps for adding a new CALL primitive are:

* Create a new compile-time primitive
*  Create a run-time primitive
* Add the appropriate entries to make prims( }
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New compller primitives generally manipulate the pfa_list data structure.

The example used for this discussion is adding a new looping cor)slruct.
The only loop defined in CALC is ( ... ). ( expects t‘he n.umber of times to
execute on the Data Stack. A very simple extension is do_for ... loop.
Much of the code necessary to implement the do_for construct already
exists in the ( operator:

MACRO COMPILE-TIME FUNCTION RUN-TIME FUNCTION
{ Compile_do do_do

} Compile loop deo_loop

do_for Compile_do_for do_for

lo;p Compile_loop do_loop

The only new run-time function is do_for( ). This corresponds to the
Compile_do_for( ) at compile time. do_for is a more general case qf ¢
The detailed discussion of the code for Compile_do() and Compile_
loop( ) is in Chapter 9. The code for the run-time functions follows.

void Compile dof)

{
pfa_list[pfa_offset] = DO_WA;
puers((1ong]&pfa_list{pfa_offset++});

}
Compile_do( ) adds the function address for do_do( ) to the pfa_list and
leaves its address on the Return Stack for Compile_loop( ) to use to set
up the correct branch point at the end of the loop.

void Compile do_for()
{ pfa list{pfa_offset] = DO_FOR_WA;
pusﬁrs({1ong}&pfa_list[pfa_offset++]);
}
The operation of Compile_do_for() is identical to Qompile_do( ) with
the exception of the address compiled into the pfa_list. It compiles the

function address for do_for( } rather than do_do( ).

veoid do_do{)

{ .
pushrs{0);
one minus();
to r{);

}

The code for do_do( ) has been simplified here for this discussion. The
code in the source file contains additional chec.ks for stack underflow.
do_da() is called when macro ( is called by the interpreter:
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10 ( vuve )

Two counters are necessary for a loop, the current index and the ending
index. do_do() uses zero as the starting current index value. One is
subtracted from the ending index because loop indexing is zero based.
Both indexes are pushed onto the Return Stack. Thus, the loop index
always counts from zero for the specified number of iterations.

void do_for()

{
to r();
one_minus{};
to_r();

}

do_for( ) is identical to do_do( ) except the starting index is also picked
up from the parameter stack:

100 90 do_for ... loop

The starting index is 90 in this example. Thus, when the macro i is
executed in the loop, the first value will be 90 and the last value will be
99. Stack under flow tests should be added to the beginning of do_for( )
to be sure there are at least two entries on the Data Stack if you add
do_for( ) to your version of CALL.

void do_loop(}
{

long end;
long index;

end = poprs{);
index = poprsa();
if(index == end){
IP++;
}else{
index++;
pushrs{index);
pushrs{end};
branch();

}

The code for do_loop( ) is identical for both types of do loop. The end of
the loop is tested and the branch taken back to the start of the loop.
do_loop( ) illustrates a point about macro names here. It exists under two
separate macro names after do_for ... loop has been added.
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The final step in ndding a CALL primitive is adding entrics 10 make
prims( ). 'The following entries are necessary for both do_for ... loop and

(..

build primitive("do_do",do_do};
build primitive("do_for",do_for);
build_primitive{"do_loop”,do_locp);

build iprim("(",Compile_do);

build iprim{")",Compile loop);
build_iprim("de_for",Compile_do_for};
build_iprim{"“loop”,Compile loop);

DO WA = set_WA("do_do");
DO_FOR_WA = set WA("do_for");
LOQP_WA = set WA("do_loop");

The reference card entries for these new macros are:

( {n--} .
“start loop”. Begin a do loop. Can be used only in a
macro definition.

m{ ten-dots 10 ( " ." ) }m

See *)’.

) {---}
“end loop”. The end of a do loop. Can be used only

inside a macro definition. See (.

do_for { end start --- } .
“do for”. Begin a do loop. Can be used only in a macro
definition.
m{ ten-dots 10 ( " ." } Im
See ’loop’.
loop {1}

“loop”. The end of a do loop. Can be used only inside
a macro definition. See “do_for’.

Adding new CALL primitives requires some thought and careful atten_-
tion to detail. Adding additional looping constructs such as begin ... until
or do ... while is not difficult because the existing looping constructs can
be used as a template.
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PRIMITIVES

The code that makes up Until, CALL, and CALC uses a little over 2,000
lines. Most of the functions are less than half a page in length. CALC is
a completely functioning language. Most conventional languages are
many thousands of lines of code. The simplicity of the overall approach
using a TIL and RPN syntax have a great deal to do with the small size.

Most functions/macros that users will access in CALC have already been
discussed at some point in this book. The same is true for the interpreter
and compiler. The remainder of this chapter identifies the lower level
C++ functions not covered elsewhere. Most of the functions are very
short and simple, so the source code is not included in the text. Complete
source code is on the disk included with this book. The functions are
divided into and discussed in several related areas.

STACK MANIPULATION FUNCTIONS Functions that perform
basic stack manipulation are discussed here. Until uses two stacks, the
Data Stack and the Return Stack. There are separate functions for each.
The stack manipulation functions are:

pushsp Push a number onto the Data Stack

popsp Pop a number off the Data Stack

drop Executed by the drop macro

store Executed by -»

prim_dup Executed by the dup macro

swap Executed by swap

rot Executed by rot

rfetch Fetch a value from the Return Stack

to_r Move the top of the Data Stack on the Return Stack
r_from Retrieve the top of the Return Stack to the Data Stack
times Executed by *

divide Executed by /

plus Executed by +

minus Executed by -

INTERPRETER FUNCTIONS These functions are all used inter-
nally by the interpreter:

word Parse the next word from the input stream

minus_find Look up string whose address is on the top of
the Data Stack in the dictionary
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exec_word Execute a macro from a C++ function
prompt Type the prompt on the screen
next_word Parse and look up next word in the input stream

read_next_line Read next line from input stream

COMPILER FUNCTIONS The following functions are internal to
the CALL compiler.

CreateNFA Creates the Name Field entry in the dictionary

prim_find Searches dictionary for string at PAD

build _primitive Creates dictionary entry for a primitive C++
function

build_iprim Creates dictionary entry for primitive C++

immediate function

STARTUP/SHUTDOWN FUNCTIONS The low level functions
associated with CALC startup and shutdown are:

cold Perform cold start

bye Return to DOS; called by exit
Read next line from CALC.APP
close _include Close CALC.APP

do al:toload Compile contents of CALC.APP

MISCELLANEQUS FUNCTIONS The remaining functions do not
fit into any of the above categories:

read_include

counted_to_null Convert counted string to null terminated form
null_to _cou_nted Convert counted string to null form
less:th;n Executed by <

greater_than Executed by >

equals Executed by ==

dot Executed by =
words Executed by macros
cr Executed by cr
dot_s Executed by 57
gdoﬂt_s Executed by .s
parens Executed by {

mod Executed by rem
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dot_quote Executed by "

help Executed by help to look up help entry for a
macro

SUMMARY

Adding C++ primitives to an application language is central to the theme
of this book. It is a very powerful tool that lets the programmer customize
the feel and function of the system. The capability of easily adding new
primitives is one of the unique features of Until.

Most of the macros that are primitives can be called directly from C++.
That means system access goes in both directions; Until can access the

application program’s data structures and the application program can use
the features built into Until,
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Chapter 11

THE HELP UTILITY

INTRODUCTION

The Until help facility is very simple but functional for many appli-
cations. This chapter looks at Until’s help as a stand-alone utility. The
help( ) function in Until is located in PRIM.CPP. The stand-alone
program is in HELPCPP. Both versions of help function identically.
There are minor changes in HELPCPP to eliminate having to include a
lot of other Until code.

THEORY OF OPERATION

The operation of help is simple. It reads a text file with each searchable
topic, beginning in column 1. A blank terminates the topic name. When
a topic match is found, that line and each subsequent line is printed until
a nonblank character occurs in column 1. The default help filename is
HELP.APP. A segment of HELPAPP follows to illustrate the file layout:

+ {nln2---nl+n2}
“plus”. Add n1 to n2. The sum is placed on the top of
the stack.

12 +
The result, 3, is left on the top of the stack.

11 tCXt” { — }
“double quote”, Type a string to the screen. Used in
q g
the form:

" 7his goes to the screen.”
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help {1}
“help”. Looks up the specified macro name in

HELP.APP and prints the entry to the screen. Usage:
help var

prints the help entry for “var.”” Use the ‘macros’
command to print the macros defined.

The example text contains three searchable topics; +, ", and help. Any
other topic will result in a “Topic not found.” message.

The bottom line is a simple help system that can be set up, either

stand-alone or added into another program by using HELP.CPP and
building a HELPAPP file.

HELP CODE

HELP.CPP was created by extracting the function help( ) from PRIM.CPP
Next a simple main( ) was added to call help(). There were several
changes to help( ) to remove dependencies on other Until code. All of the
I/O related code was changed to use a single file descriptor rather than an
array. The call to word( ) was removed and the search topic passed to
help( } instead. All in all, the modifications required to build HELP.CPP
as a stand-alone program were very minor.

The program starts off by referencing several system include files:

#include <iostream.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.,h>
#include <conio.h>

Next, constants and variables used by the program are declared. The FILE
pointer is a single entry rather than an array because only a single file is
used. The function prototype for help( ) is also in this code segment,

const TRUE 1;
0;

const FALSE
conat BLANK oty

FILE *FD;
char pad[512];

void help{char *topic};
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TFunction muin( ) is very short. It is set up to take the search topic from the
command line. This is accomplished by including argc and argv as
parameters. arge is the number of command line arguments. The first
argument, argv[0], is the name of the program being executed. The
second argument, argv{1], is really the first argument used by the program.
Therefore, arge is 2 when a search topic exists. The user is queried forla
search topic if one is not input on the command line. The final step in
main( ) is the call to help( ) with the search topic as its sole parameter.

void main(int argc, char*argv[])

{
char topic[80];
if{arge < 2){ .
cout << "Enter Search Topic: "“;
cin >»>» topic;
telseq
strepy(topic,argv[l]);
}
help(topic};
}

The function that does all of the work is help( ). It takes a character string
as its argument and searches HELPAPP for a matching topic. Whe.-,n a
match is found, the entry is output to the screen. The first several lines
define local variables used in processing.

void help(char *topic)
{ Il »

int i;

int  3;

int match;

int truth;

char *status;

char line{132]);

char string[32];
The first processing step is opening the help file. The code assumes
HELPAPP is in the current directory. Two simple enhancements are
adding a specific directory to the filename or passing the filename tf)
help( ) in addition to the search topic. An error message is displayed if
HELPAPP does not exist.

FD = fopen("HELE.APP","r"};

i€(1FD){ i}
cout << "Help file not foundin";
return;

}
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The next group of lines perform some initialization steps. The truth (lag
is set to FALSE. truth is used as the end of processing to determine
whether or not to display an error message. FALSE means the search topic
was not found; print the error message. TRUE indicates the topic was
found s0 no error message is generated to the screen. The work area, pad,
is initialized with the search topic and the first line read from HELPAPP.

truth = FALSE;

for(i=0;i<32;i++){

pad[i] = 0;

strcpy(pad, topic);
status = fgets{line,132,FD);

Processing with pad is not really necessary. The code is needed in the
Until version and left in the HELPAPP for code compatibility.

The main processing loop of help( ) is a while loop that continues unti)
end of file is reached or the search topic processed. The first if staternent
tests the first character of the line for a blank. If the character is nonblank,
the first word in the line is extracted into string.

while(status){

if(line[0] |= BLANK){
i =0
i =10
while(line[i] != BLANK){

string[j++] = line [i++];

}
string[3j] = NULL:

The next step is comparing the string extracted from HELPAPP with the
search topic in pad.

match = stremp({string,pad);

stremp( ) returns zero when the compare is successful. The second level
if tests the comparison and outputs the first line to the screen.
if(match == 0){

truth = TRUE;

cout << line:

status = fgets(line,132,FD);

if(lstatus) goto All_done;
This while loop continues until end of file or the first line with a nonblank
first character. Each time through the loop displays the buffer containing
the previous line from the help file,

while(line(0] == BLANK}{
cout << line;

B8

status @ fgotwe{lino,Ll32,FN);

goto All_done;

This line goes with the test of match. When pad and string dc') not match,
the next line is read and the search through the help file continues.
}else{

status = fgets(line,132,FD);
if(1status) goto All_done;

}
The code after this }else{ pairs with the first if statement. It effectively
skips the lines with a blank first character while searching for the next
topic line.
Yelse(
status = fgets(line,132,FD);
if(lstatus) goto All done;

}
¥

When end of file is detected in HELPAPP, processing branches to All._
done. The file is closed and an error message displayed if the search topic
was not found in the help file.
All _done:
feclose(FD);

if(ltruth){
cout << "Topic not found.\n";

}

SUMMARY

Until’s help facility is both simple and generic. It can bt? added to
application programs or used stand alone. help( } also prov1des. a con-
venient way to add online help by simply creating a HELP.APP file.

Any number of enhancements are practical. Some include:

e Index file of searchable topics

+  Specify help filename

* Fancy formatting
An index file of searchable topics can be constructed that consists of the
topic string and offset from the beginning of the help file fqr the entry.
This technique can speed up searching significantly and is probably
worthwhile if dealing with very large help files.
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The help fillcname could be specified on the command line along with the
search topic. This could provide the hooks for adding context sensitive
help where different help files are used, depending on the context.

Thel:e is no formatting done with the present help( ) implementation.
Adding a little formatting to the on-screen presentation of the help entry

cou.ld enhance an application; for example, different colors for the search
topic and help test.

Even though the Until help facility is simpleminded, it is quite useful for
many applications.
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Chapter 12

WHERE TO GO FROM HERE

INTRODUCTION

The entire CALC, Until, CALL system has been described at this point.
Hopefully, the potential power of the application language concept and
its implementation in the form of CALC is appreciated and understood by
now. This chapter presents some ideas for potential uses of and enhance-
ments to the system as food for thought.

USES AND ENHANCEMENTS

Until, as presented in this book, provides a framework to build application
languages. However, there are many enhancements that are easy to make
which are left to the reader. The process of adding enhancements will
bring a deeper understanding of the mechanics used in Until. This will, in
turn, stimulate new ideas for using Until in your application programs.
The following sections suggest some uses for and enhancements to Until.

GENERAL ENHANCEMENTS The simplest enhancement is simply
adding some additional math functions and use CALC as it is, either stand
alone or inside of other programs. Floating point should be a relatively
easy enhancement. See Chapter 10 for the discussion on adding primitives
to Until.

Until was originally conceived as an implementation of Forth. A Forth
can be easily implemented on the Until core. A relatively complete Forth
requires 100 - 200 primitives. A Forth based on Until could be a very
powerful applications language.
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'The following table maps many CALC macros to Forth words:

CALC FORTH COMMENT

rem mod Calculate modulo or remainder
var variable Define a variable

const constant Define a constant

<- (@ Fetch a value

- I Store a value

== = Equal

macros words Display list of macros

= . Display number on top of the stack

s? .5 Nondestructive stack dump
{} () Comment
m{ : Start macro/word definition
'}:m ; End macro/word definition
N Display the string in quotes
{ 0 do Start a do loop
? loop End a do loop
if if If construct
else else Else portion of if construct
endif then End the if |
+ + Add
- - Subtract
* * Multiply
/ / Divide
dup dup Duplicate top of data stack
swap swap Swap top two items on data stack
rot rot Rotate third entry to top of stack
Srop frop Drop top stack entry

Display value at an address

Th'is .correspondm.lce between CALC macros and Forth words makes
Ptl'uldmg a i?rth-hke application with Until relatively easy. The prim-
itives to add can be derived from any of the F i i

Avpendn b y orth books listed in
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APPLICATION LANGUAGE USES Providing users with the
capability to modify program parameters at run time is a very uscful
purpose for an application language. Normally, providing such a feature
requires a lot of code and effort for a relatively small amount of proces-
sing. The addition of a few lines of very simple code in the form of a
primitive C++ function is all that is required to use Until for this purpose.
An example could be specifying which of many fields to process in a
given run or changing the number of lines on an output report.

One specific use I have in mind for an Until-based application language
is in a system based upon a software finite state machine to contro}
program flow. The finite state machine is a two-dimensional table of C
function addresses. The columns represent high level functions, such as
adding typesetting commands, and rows represent each field to be
processed. Processing is a simple loop for each column of retrieving a
function address and executing it. The contents of the state machine is
loaded at compile time. An application language would allow different C
function addresses to be loaded into the table at run time o customize
each run without recompilation.

A modular application language, such as CALC, provides great potential
for code reuse. This can cut development cost for a new program signif-
icantly. The application language only has to be thoroughly tested the first
time it is written. In subsequent programs, only minimal testing is
required. Macros developed in one program may also be reused, with
little or no changes in most cases. Macros that take advantage of internal
program data structures are the ones most likely to require modifications.

A good example of code reuse would be a system with a Iibrary of
graphics functions. An application is constructed by writing C/C++
functions that call the graphics library in the correct order. Reuse of code
in a graphics application is at a minimum using a conventional approach
because each application is a custom stand-alone program. An application
Janguage with the graphics library functions set up as Until primitives
would allow a single executable program for many applications. The
applications would become Until macros that string the graphics calls
together in the proper sequence.

Until provides user programmability in its current state. Providing pro-
gram access to data structures in the application open up tremendous
possibilities from the user point of view for customization. Some addi-
tional data types (char) and primitives are needed before best advantage
can be taken of the programmability by application programs.
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A completely new application language can be created by replacing
CALL with a compiler of your own. This requires the most work and a

complete understanding of both Until and the language being imple-
mented.

CONVERTING FROM C++ TO C

The code used in this book is C++. It makes limited use of the object

oriented features in the language. For this reason, CALC, Until, and
CALL can be converted to C with relatively little effort. The following
arcas would need modification:

Change new calls to malloc or equivalent calls.
Change comments from // to standard /* */ form.
Change cout calls to printf or equivalent calls.
Header files probably need modification.

Other minor changes may also be required depending on your C compiler.
CALC will compile only with the compact memory model or larger with

Turbo C++. One of the larger memory models may also be necessary with
other compilers.

SUMMARY

The concept of the application language is straightforward. Many com-
mercial packages provide some form of application language. The tools,
Until and CALL, presented in this book illustrate building a simple
application langnage, CALC, that can be used in any C++ program.
Potential use of this software is bounded only by your imagination.
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Appendix A

SOURCE FILES

INTRODUCTION

"The disk included with this book contains the source code describ]edfin
this book. This appendix describes the files. See the READ.ME file for

last minute changes.

CALC.APP
CALC.CPP

CALL.CPP
EXAMPLE.CPP
EXAMPLE.APP
HELPAFF
HELP.CPP
10.CP?P
MATH.CPP
MORE.CPP

MORECALC.CPP

PRIM.CPP
UNTIL.CPP
UNTIL.H
USER.CPP

This file is loaded at startup time- by _Un.til.
User level macros may be included in this file.

The code for running CALC as a stand-alone
program.

The CALL compiler functions.

An example user developed primitive function.
CALC macros from Chapter 3.

The Help file.

Stand-alone help program.

Internal I/O functions.

Primitives for math macros.

Stand-alone version of More. This is a sample
stand-alone application program.

More and CALC combined into a single
program.

Misc primitive functions.

The Until Interpreter

Include file for all Until modules.

Primitive macros set up are in this file.
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Appendix B
BIBLIOGRAPHY

INTRODUCTION

Threaded Interpretive Languages are fascinating. The first reference [
saw to TILs was the August 1980 Byte Magazine Forth issue. This
appendix contains references to other books and sources of information
about TILs in general and Forth in particular. '

BOOKS

Brodie, Leo; Starting Forth, Prentice-Hall, 1984.
Brodie, Leo; Thinking Forth, Prentice-Hall, 1984.
Katzan, Harry; Invitation to Forth, Petrocelli Books, 1981.

Kelly, Mahlon and Spies, Nicholas; Forth: A Text and Reference,
Prentice-Hall, 1986.

Loeliger, R. G.; Threaded Interpretive Languages, Byte Books, 1981.
Pountain, Dick; Object-Oriented Forth, Academic Press, 1987,
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ORGANIZATIONS

The Forth Institute
70 Elmwood Avenue
Rochester, New York 14611

The Forth Institute publishes The Journal of Forth Applications and
Res:earcfz and sponsors the annual Rochester Forth Conference at the
University of Rochester. The conference is usually held in early June.

Forth Interst Group
P. O. Box 8231
San Jose, Calif. 95155

FIG exists to promote Forth and serve as a central point for information

about .Fofth. Membership dues are $30.00 per year, which includes a
subscription to Forth Dimensions Magazine.
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Appendix C
CALC REFERENCE CARD

INTRODUCTION

This appendix contains a quick reference of the user level macros defined
in CALC. These macros can be used in other macros. Most can be
executed individually from the command line.

Each macro entry has the macro name and the stack comments on the first
line. This is followed by a description of the word including the pronun-
ciation in gquotes.

MACRO DESCRIPTION
+ {nl n2 --- nl+n2 }
“plus”. Add nl o n2. The sum is placed on the top of
the stack.
12 +

The result, 3, is left on the top of the stack.

- {nln2---ni-n2}
“minus”. Subtract n2 from nl and place the result on
the top of the stack.

21 -
The result, 1, is left on the stack.

* {nln2---n1*n2}
“star”. Multiply nl times n2.

2 2 *
The result, 4, is placed on the top of the stack.
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->
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{nl n2---nl/n2}
“slash”. Divide nl by n2.
42/
Leaves 2 on the top of the stack.

{ address --- }

“query”. Type the contents of the address that is on the
top of the stack,

trash ?

types the value stored in the variable trash. This is
logically equivalent to “<- =",

{ address --- value }

“fetch”. Fetch the value from address and place on the
top of the stack.

trash «<-

retrieves the value stored at trash and places it on the
top of the stack.

{ value address --- }

“store™. Store the value into address,
5 trash -»

moves 5 into the variable trash.

{nl n2 --- truth }

“less than”. Compare the two numbers on the top of
the stack and return TRUE or FALSE.

{ returns true }
{ returns false }
{ returns false }

v
oy oh
AA A

{nl n2 --- truth }

“equals”. Compare nl and n2. Push TRUE on the Data
Stack if n1 equals n2. Otherwise, push FALSE.

{ returns false }
{ returns true }
{ returns false }

oh LnoLn
o

([ .|
Eonn

rRpr— .-p-quWwaawM

}m

“ text”

cls

{ nlL n2 --- truth }
“greater than”. Compare nl and n2. Push TRUE onto
the Data Stack if nl1 > n2. Otherwise, push FALSE.

5 6 » { returns false }

55 > { returns false }

6 5 > { returns true }
{ value --- }

“is” or “display”. Display the number at the top of the
Data Stack to the screen.

{o}
“left brace”. Text between the braces is treated as a
comment. Left brace starts a comment.

{ This is a comment }
See ‘).
{—}

“right brace”. Close a comment. See ‘{’.

{1}
“end macro”. Finishes a macro definition and exits
compile mode. Must be paired with m{. See ‘m{’.

{-} -
“double quote”. Type a string to the screen. Used in
the form:

" This goes to the screen.”

The space after the first double quote is necessary.

{n---}

“start loop”. Begin a do loop. Can be used only in a
macro definition.

m{ ten-dots 10 ( " ." } }m
See ‘Y.
{--}

“end loop”. The end of a do loop. Can be used only
inside a macro definition. See “(’.

{-)

“c-l-8”, Clear screen.
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const

r

drop

dup

else

endif

exit

help

if else endif

{n--} Compile time
{===mn} Run time
“constant”. Create a constant.

5 const five

{-}

“c-r”. Type a carriage teturn to the screen.

{nl---}
“drop”. Remove the top number on the stack.

{nl---nlni}
“dup”. Duplicate the top stack entry:

1 dup

Results in two 1s on the stack.

{-}

“else”. See °if’.
{-)}

“endif”. See “if’.
{~}

“exit”. Exit CALC and return to the calling function.
Returns to DOS if stand-alone program.

{om)
“help”. Looks up the specified macro name in
HELP.APP and prints the entry to the screen. Usage:

help var

prints the help entry for “var”. Use the “macros”
command to print the macros defined.

{--n}
“i”, Push the current do loop index onto the Data
Stack.

{ truth --- }

“if”. Tests the top of the Data Stack. When it is zero,
the code after the else or endif is executed. When the
value is nonzero, the code between the if and else or
endif is executed.

m{

macros

rem

§?

swap

var

1 § am

if " Trua comparison”
elpe " False comparison”
endif

{-}

“macro start”, Start a new macro definition. The
macro name is the next word in the input stream:
m{ new-macro }m
See ‘}m’.
{1}

“macros”. Display all of the currently defined macro
names on the computer screen.

{ n1 n2 --- remainder(nl/n2}

“rem”. Calculate the remainder of n1 divided by n2:
4 2 rem

Leaves 0 on the stack.,

{—}
“stack query”. Nondestructive Data Stack display to

the screen.

{nln2---n2nl}
“swap”. Swap the top two entries on the top of the
stack.
1 2 swap
results in the top stack entry being 2 and the second
entry being 1.
{---} Compile time
{ --- addr.of.var } Run time
“var”. At compile time, creates a variable:
var trash
At run time, push the address of the variable onto the
stack:

trash { --- addr.of.trash }
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