QL SuperBASIC

THE DEFINITIVE
HANDBOOK

Jan Jones
designer and writer of Sinclair's

QL SuperBASIC language

QL SuperBASIC — The
Definitive Handbook

Jan Jones

SECTOR SOFTWARE
39 Wray Crescent, Ulines Waiton,
Leyland, Lancashire PRS INH
Telk: (0772) 454328
Feoc (07725 454480

QUANTA — The Independent QL User Group

First printed by McGraw-Hill Book Company (UK) Limited 1985,
This QUANTA LIMITED EDITION was produced in response to an
overwhelming demand by our members. We would like to express our
gratitude to JAN JONES for allowing us to reprint the book.

Published by
QUANTA — The Independent QL User Group
15 Grosvenor Crescent GRIMSBY South Humberside England

British Library Cataloguing in Publication Data

Jones, Jan
QL SuperBASIC : the definitive handbook.
1. Sinclair QL (Computer) Programming
2. SuperBASIC (Computer program language)
1. Title
001.64'24 QA76.8.5625

ISBN 0-07-084784-3

Library of Congress Cataloging in Publication Data

Jones, Jan
QL SuperBASIC.

Includes index

1. Sinclair QL (Computer) — Programming. 2. BASIC

(Computer program language)

I. Title. II. Title: QL SuperBASIC. ITII. Title: QL SuperBASIC.
QA76.8.56216J66 1985 001.64'2 84-26173

ISBN 0-07-084784-3

This QUANTA LIMITED EDITION printed in July 1989

Copyright 1989 QUANTA . All rights reserved. No part of this
publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise without prior written
permission of QUANTA , or of the original copyright holder.

Preface to the 2nd Riiti<on 19th July 1989

It is now five years, two children and one
extension since I wrote this book. These
days it would be more app ropriate for me to
be writing a set of shor t snappy articles
on DIY for the under-5's or the dichotomy
of nursery hygiene in a partly built
kitchen.

Looking at the Introductiom with hindsight,
it strikes me as a bit mnaive, valiantly
high-flying. However, surely that is the
spirit in which all new languages ought to
be conceived and I am still of much the
same opinion regarding SuperBASIC as I was
then.

Given a few more years, a few more hours in
the day and a few less children, I'm not
sure that I'd make that many changes....

Jan Jones

Copyright Notice

As of December 1987 all rights in this book
reverted to Jan Jones. No portion of this
book may be reproduced without her written
permission.

CONTENTS

1. Introduction 1
Or, why we did it.

Notes 4

on the syntax of the definitions
on the examples
on the internal storage units

o =N

Procedures, Methods and F'unctions 7

What procedures are. How they are defined. How they are used
— DEFine PROCedure — RETurn — END DEFine —
SuperBASIC stages. Parsing and execution
The return stack, where procedures return to
Functions, definition of, return value, use of
— DEFine FuNction — RETurn expression — END DEFine -

Ways of commenting programs, dividing code up
— REMark -

4. The Nametable 15

How names are stored, different types of names
Simple variables, assignment, the variable values area, storage
space used
- LET -
Procedure, function names, description of nametable entry. The
namepass. Procedure arguments, how they work, nametable entry
swapping, temporary entries
Local variables, temporary entries swapped with global ones
- LOCal -
Arrays, indexed variables, array descriptors, size and storage
— DIM -
Sub-arrays, assigning to numeric arrays, substrings of string
. arrays, assigning to string arrays, substrings of string variables
length of a string, size of an index
— LEN - DIMN -
: Arrays as parameters
Local arrays

5. The Expression Evaluator 33

What is an expression? Component parts, order of precedence and
functions of operators. Intermediate storage, internal
representation. Legal constants. Sub-expressions, functions,
coercion

Mathematical functions, random number selection, string
functions, ASCII conversion

8. Control Structures 43

Simple and complex clauses. Advantages and limitations of both.
Simple controlled transfer, method of choice
— IF - THEN - ELSE - END IF -
Multiple controlled transfer, method of choice
— SELect — ON - END SELect —
Uncontrolled transfer
- GOTO-GOSUB-~ON .GOTO-0ON . GO SUB -

7. Loops 51

Continuous loops and exiting from them. The REPeat index
variable and its associated information. Simple or multi-line loops
— REPeat — NEXT — EXIT — END REPeat ~
Controlled looping. FOR ranges. The FOR index variable and
storage of its associated information. Loop epilogue
— FOR - NEXT - EXIT - END FOR -

8. Data Handling, Input, Output and the File System 58

Simple INPUT and PRINT for interactive work, separators,
printing arrays. Other forms of simple input

- INKEY$ - KEYROW - PAUSE -
Constant data held with program

— READ - DATA - RESTORE -~
Channels, file system, reading and writing to files, formatting
Microdrive media, copying files, deleting files, end of file function

—OPEN-CLOSE -DIR-COPY - DELETE - FORMAT - EOF -
Peripheral devices, defining and using SERial ports, CONsole
windows, SCReen windows, the NETwork

— WIDTH - BAUD -

9. Creating and Running Programs 80

Editing a line. Bad line during parsing. Deleting linesone at a time
or DLINE. Using the AUTO and EDIT facility. LISTing all or part

of programs. RENUMbering lines. Saving programs onto
Microdrive media. Restoring programs from Microdrives. Clearing
out programs

- SAVE - LOAD — MERGE - CLEAR - NEW -
Running programs, stopping execution, continuing after any
program halt. Error recovery

-~ RUN - ILRUN -~ MRUN STOP — CONTINUE - RETRY -

10. Screen Control 94

High resolution, low resolution. Display modes, default windows.
Pixels on screens, defining windows, overlaying windows

- MODE - WINDOW - CLS -
Colours, bit patterns, composite colour. Colouring a window,
overwriting, window areas

~ INK - PAPER - STRIP - AT - OVER -
Defining a border, pixel reference inside window

-~ BORDER-
Blocks of colour, recolouring

- BLOCK -RECOL -
Changing cursor position by pixel, changing character size,
flashing text, underlined text

~ CURSOR - CSIZE - FLASH - UNDER -
How to restore default windows without resetting

11. Graphics 114

Units of reference. Scaling

- SCALE ~
Drawing lines, carrent graphics cursor, drawing dots, off-window
drawing i

- LINE POINT —
Drawing curves;, arcs, circles, ellipses

— ARC - CIRCLE - ELLIPSE -
Annotating a graphics diagram

— CURSOR -
Drawing relative to current position

—LINE_R-POINT_R - ARC_R - CIRCLE_R - ELLIPSE_R -
Filling shapes with colour, non-reentrance

- FILL -
Turtle graphics

— PENDOWN — PENUP — MOVE - TURN - TURNTO -
Animation

12. Machine Code and Memory Access 137

Loading and saving hexadecimal data
— LBYTES - SBYTES —
Usage of the resident procedure area
— CALL - RESPR -~
Executing independent machine code programs
— EXEC - EXEC_W - SEXEC -
Accessing memory directly
— PEEK — POKE -

13. The Calendar and Clock 142

Setting the clock, adjusting the clock, reading the clock, clock time
in seconds, day of week

—~ SDATE - ADATE - DATES$ — DATE - DAY$ -
14. The QL Sound 146

Range of sounds. An explanation of the BEEP parameters. Menu
driven BEEP exerciser

— BEEP - BEEPING -
15. The Syntax Graphs 152
The ‘railway lines’ definition of SuperBASIC

16. The Keywords 165
Rapid guide to all restricted names in the SuperBASIC system

APPENDICES 184

The character set, ASCII codes, hex conversion
Errors and what they mean

SuperBASIC tokens

SuperBASIC storage area

Memory map

HoQws>

INDEX 208
A comprehensive guide to all topics in

QL SuperBASIC - The Definitive Handbook

]. INTRODUCTION

SuperBASIC is a language designed by programmers for programmers.

The aim of this book is to explain the structure of the language, the
principal commands and the reasons behind the design.

WHY A NEW LANGUAGE?

My colleague, Tony Tebby, and | are both experienced programmers. In no
one language have we ever found everything to satisfy us. We wanted
something easy to use yet with powerful constructions. We didn't want the
efficiency to decline with each new variable or each added line. We wanted
structures which were elegant and consistent, but also functional. We
wanted to be able to implement this language on a micro!

For a machine as innovative and powerful as the Sinclair QL, we decided
that we would have to design the language ourselves, so we have

incorporated all the features that we feel to be necessary to the average
programmer.

SuperBASIC is a total design. Each element has been carefully thought out
and merges with the others. None of the features is, 1 believe, entirely
new, though our interpretation and implementation of them certainly may

It is obvious that different applications need different tools. While one
could use a screwdriver to hammer in a nail, it is not the ideal solution
nor is SuperBASIC intended to be all things to all men. It does, however,
go a considerable way along the all-purpose road.

WHY A NEW BOOK?

As the writer of SuperBASIC, 1 am dissatisfied with other texts which give
you (often incorrectly) a bald recital of what you can and can't do in
SuperBASIC. I feel that it is due to the user to know why certain things
work in the way that they do and how the information is built up
internally. In my book at least, the facts will be correct; as I wrote
most of the SuperBASIC system, you can be sure of that! There is also a

comprehensive index at the back so that you should be able to find out
immediately where any topic is discussed.

WHO SHOULD READ THE ‘QL SUPERBASIC HANDBOOK’?

Any competent programmer will find this handbook useful. I won't pretend
that it is for the complete novice, though I have attempted to explain the
'computer jargon' as much as possible. However, even a beginner s
unlikely to be a beginner for long, and once the initial complications of
coming to terms with a computer have been resolved (using the 'Beginners’
Guide' supplied with the QL), then this handbook will be invaluable.

HOW TO READ THIS BOOK

Strange concept ? No, not really. I suggest that you make the time to read
this handbook properly. It should be read from cover to cover, preferably
forwards, since the contents have been designed to follow on from one
another in a natural sequence. As far as possible, [have tried not to
refer to any topic unless 1 have previously explained it in detail. Thus
certain parts of Chapter 9 assume a familiarity with Chapter 8.

Perhaps it is unreasonable of me to expect that you read the book in this
way, but I do feel that having bought (or if you are considering buying)
the QL and this book, you owe it to yourself to peruse the contents
carefully.

Of course, once read, 'QL SuperBASIC - The Definitive Handbook' will be
invaluable as a reference guide; to look up the exact syntax of a command
or to find out why a construction appears not to have worked quite in the
way that you thought it would.

OTHER USEFUL BOOKS

For machine code programming and interfacing such programs to SuperBASIC,
'QL Assembly Language Programming', by Colin Opie is the one to buy. This
is published by the McGraw-Hill Book Company (UK) Ltd, Maidenhead, Berks.

CREDITS

My thanks go to Sinclair Research Ltd, for giving me the job in the first
place and for agreeing to the imperative need for a new language; to Tony
Tebby, for doing all the difficult bits of the design work and for
suggesting that 1 write this book; to John Watson, Liz Nemecek and Susan

Sanders at McGraw-Hill for much invaluable advice and for publishing the
book.

Most thanks, however, are due to my husband, Brian, for supporting,
encouraging and threatening me; for persuading his boss, Bob Davies of H&M
(UK) Ltd, Newmarket, to lend me a word processor at weekends to write the
book on; and last but not least, for risking lifelong backstrain by
lifting all the equipment in and out of the car every week!

TRADEMARKS

SINCLAIR, QL, SuperBASIC, QDOS, QL Microdrive and QL Toolkit are all

trademarks of SINCLAIR Research Ltd, 25 Willis Road, Cambridge, CBl 2AQ,
England.

COPYRIGHT

QDOS © 1983 SINCLAIR Research Ltd
SuperBASIC © 1983 SINCLAIR Research Ltd
QL Toolkit © 1983 SINCLAIR Research Ltd

The QDOS and SuperBASIC systems are the property of Sinclair Research Ltd.
Any tables, definitions of storage, etc., in this handbook are correct at
the time of writing and appear with the kind permission of Sinclair
Research Ltd. Sinclair Research Ltd does not guarantee that they will
remain correct for any future releases of the System ROM.

The Sinclair QL Toolkit is available from Sinclair Research Ltd.

i1

2 NOTES u

1. ON THE SYNTAX OF THE DEFINITIONS
In all the formal definitions in this book, the following syntax is used :

CAPITAL LETTERS denotes a SuperBASIC keyword or built-in feature

lower case gives a general description to be replaced
[anything] means that the enclosure is optional
{any thing} means that the enclosure is optional and repeatable

For example,

DEF{INE] PROCIEDURE] procedure_name [(argument {,argument})]
would lead to various forms from the least

DEF PROC fred
through

DEFINE PROC david(x)
w to

DEFINE PROCEDURE jonathan(a,b,c)
Most of the keywords may be abbreviated. In order to avoid the tedious
construction REP{E[A[T]]] meaning REP, REPE, REPEA or REPEAT, 1 will
instead use REP[EATL Note that on the QL display, the optional part of

the keyword is written in lower case thus : REPeat.

Common abbreviations used in the syntax are: _

Ino for line number
st for statement
exp for expression
var for variable

2. ON THE EXAMPLES

In the examples CAPITAL letters denote keywords or bult-in procedures and
functions whereas lower case denotes user-defimed names. 1f 1 refer to a
user-defined name in the text, I will usually write it in upper case if
that clarifies the subject matter.

SuperBASIC statements are either held in a program o they are typed in
directly from the keyboard. If they are to form part of a program, then
they must have line numbers so that SuperBASIC knows which order to do
them in. Any line typed at the keyboard with a line number in front of it

will be inserted into your current program, but anything Without a line
number will be executed immediately.

For this reason all the examples in this book will be given line numbers
where they might form part of a program.

3. ON THE INTERNAL STORAGE UNITS

During the course of this handbook, | will refer several times to the
amount of room taken up by various tables, or entries in tables. ltems in

these entries will always be defined in terms of the number of bytes which
they occupy.

A QL byte is composed of eight bits. A bit is the smallest unit available
for independent access. It takes the value zero or one. The bits in a byte
are numbered,

7,6,5,4,3,2,1,0

Two bytes make up one word; two words make up one long word. These are
terms in general use but, for the sake of simplicity, I will refer to the
number of bytes only, in the tables in the rest of the book.

A limitation of the Motorola 68008 chip is that, though it can access
single bytes anywhere, words or long words must begin on an even, or word,
boundary if they are to be retrieved from memory. For this reason, 'spare’
bytes have to be included in certain storage areas in order to get to an
even-byte boundary. For instance, in the following, {fictitional, table, I
want to hold a two-byte length, a one-byte type and a two-byte pointer in
that order. 1f the numbers are bytes offsets from somes even address,

address + 0 length (2 bytes)
+2 type (1 byte)
+ 3 spare (1 byte)
+ 4 pointer (2 bytes)

you can see that an extra byte is needed at f(addresss)) so that the
pointer, which must be retrieved as a complete wword, stats ©On an even

offset. A long word address now added to the table,
address + 6 address 4 bytes)

would be fine, as it starts at a word boundary.

PROCEDURES, M ETHODS
3 AND FUNCTIONS

SuperBASIC is a procedure-based language That being the case, you ought
to understand about procedures before anything else is brought in to
distract you.

Procedures

In real life, a procedure is a set of directions which are followed in

order to reach some desired object. The itemized procedure for feeding my
cats, for example, is :

(1) pick the dirty dishes up from the floor;

(2) wash them and put them on the draining board;

(3) dry them and put them on the worktop;

(#) select a tin of cat food and open it;

(5) if there is a cat on the worktop, then put it back on the floor;
(6) divide the contents of the tin between the dishes;

(7) fend off the cats and put the dishes on the floor.

This procedure will be followed withat fail every morning at eight
o'clock and every evening at seven o'dock. Im my own mind it is firmly
labelled as FEED_CATS and is unlikely to get mixed up with any of the
other procedures involved in day-to-day living. A SuperBASIC procedure is
structured in much the same way. It is an enclosed set of statements,
labelled with its own name, designed to Euliil a specific task.

Most programs can be broken down imto many such tasks. A program for
drawing a scene, for example, might consist of a procedure to draw a
house, a procedure to draw a tree, a procedure to fill in the sky and a
procedure to draw the grass. Each of these procedures would be written
separately and tested to make sure that they work, then they would be
executed in turn to produce the finished pictre.

The advantages of using procedures is immense. Provided that you have

defined a procedure somewhere in yousr current program, you can call it
from anywhere just by giving its name.

To define a procedure you need to use certain SuperBASIC keywords. You
need to give the procedure a unique nzame so that when it is called, there

is no confusion over which one you mean.

The formal definition is

line number DEF[INE] PROCIEDURE] procedure name [(argument {,argumentl}}
{ statement { :statement } }

line number END DEF[INE] [proc_name]

where the procedure_name must be unique.

When calling a procedure, the general form is
{line number] procedure_name [parameter {separator parameter}]

SuperBASIC stops whatever it is doing, goes to find the named procedure,
executes all the statements inside it and then comes back to where it left
off,

A procedure has finished either when SuperBASIC reaches the END DEFine
statement or when it executes a RETURN statement. RETURNing may be done
from anywhere inside a procedure and SuperBASIC then carries on from just
after the original call. A RETurn statement from a procedure is simply

(line number] RET[URN]

A procedure must be called by name in order to have its statements
executed. If SuperBASIC, during the course of a program, suddenly comes
across a

DEFine PROCedure

statement, it will immediately start looking for an END DEFine, not taking
any notice of the intervening statements. When it finds an END DEFine, it
continues execution from there.

For example, the normal flow of execution is downwards, from line 1 to
line 32767, so in the following skeletal program where ... indicates
missing statements,

100 sky
110 house
120 tree
130 grass

.....
.....

300 DEFine PROCedure grass

ol

.....
.....

......

1230 END DEFine house

when SuperBASIC gets to line 100, it looks for the procedure called SKY
and finds it at line 200. It executes the procedure and, at line 270,
returns to the call. The next line is a call to the procedure HOUSE, which
is at line 1000. This procedure is carried out and at 1230, SuperBASIC is
sent back to the call at line 110. The next line directs SuperBASIC to
perform procedure TREE, and the one after that to do procedure GRASS.
After this, execution would normally continue until it reaches the end of
the program or is told to stop in some other way. When it comes to line
200, which is a definition Jline, SuperBASIC ignores everything untl it
reaches the first END DEFine at line 270 and then continues from there. It

proceeds in this way, skipping all the definition structures as it comes
to them.

A procedure can call any other procedure, but it should not contain
another procedure. For example, you could have,

900 DEFine PROCedure housing_estate

920 house
940 house
960 END DEFine

in which HOUSE is called repeatedly. This is acceptable, even desirable,
but the structure should not be written

900 DEFine PROCedure housing estate

1300 END DEFine housing_estate

This is because, though the procedures would work reasonably well if
called, when SuperBASIC is skipping through the definitions, it looks for
the first END DEFine after a DEFine. The name on an END DEFine is optional
.and for your convenience only; SuperBASIC does not check it. So, in the
skipping through process described earlier, the lines between 1230 and

1300 will be executed when they should not be. There are absolutely no
advantages in nesting procedure definitions in this manner.

You cannot have multiple entry points to a procedure. There is only one
place to start and that is at the beginning. If you want to make the same
basic procedure do different things under different conditions, you will
have to wuse one of the choice constructions, explained in Chapter 6,
together with a procedure parameter.

A parameter is normally used when there is a choice to be made within the
procedure, such as whether to draw a tree with or without apples. The
procedure TREE is perfectly willing to put apples on the tree, but it
needs to know whether they are wanted this time or not. Suppose that
particular definition line was updated to

400 DEFine PROCedure tree(apples)

where statements inside the procedure check the value of the variable
APPLES and draw apples on the tree only if that value is not zero. Then
the procedure calling line will be

TREE 0
for an empty tree, or
TREE |
(or any other non-zero value) for a full one.

Parameters are essentially information for the procedure. When you write a
procedure, you will know which factors can vary and what the calling
statement will have to specify. The names that you give to any of these
items of information in the statements within the procedure block must be
included (within brackets), in the definition line. The calling statement
will then give the actual values to be used at the time of running the
procedure.

As a further example, consider the procedure HOUSE. It would be nice to be
able to specify what size the house should be, either by width or by
height, and what colour the door should be painted. You could do this by
incorporating the parameters

1000 DEFine PROCedure house(size,door_colour)

in the definition line and then using whatever values are given in the
call to determine the size of the house and colour of the door each time
that the procedure is called.

The way in which parameters to procedures actually work is a little

complicated and so is dealt with in far more detail in Chapter 4 - The
Nametable.

10

Parsing v. execution

Whatever is typed into your QL must be in valid SuperBASIC if it is to be
accepted. If it is in SuperBASIC, then it will conform to one of the
syntax graphs set up in the SuperBASIC ROM (read-only memory). The process
of checking whether the line does conform is called parsing and every line
entered into the QL, whether typed in by hand or read in from a Microdrive
cassette, is parsed before anything else is done to it.

During parsing, each element in the line is checked against the syntax
graphs and, if correct, is converted into an internal SuperBASIC token.
All leading and trailing spaces are removed. Any ‘'forced' space (e.g., one
that separates a keyword from a name) is also removed.

[f a line is wrong, you will be given the error, "bad line", and the line
will be echoed for you to correct. Changing a line is detailed in Chapter
9 - Creating and Running a Program.

If a line parses satisfactorily, it is examined to see whether it s
intended to form part of a program or to be executed immediately. If the
line has a line number as its first item, it will be absorbed into the
current program at the appropriate place, an indicator of the length of
the tokenized line being slotted in front of it for greater efficiency
later on; if the line does not have a line number in front of it, then the
instructions contained within the line will be carried out straight away.
Only lines which have been parsed may be executed.

Executing a procedure

To run a procedure, all that you have to do is to give its name and the
values, in order, of any parameters. If you do this directly from the
keyboard, the procedure will be executed immediately; if you put the call
into a program, then it will not be done until the line is reached during
normal program execution. If a procedure which you have called cannot be
found in your current program, then you will get the error, "not found".
The parameters, which may be variables, arrays, array elements or
expressions, must be separated from each other by a valid SuperBASIC
separator :

. 3+ \ ! TO
There is no means currently that you can use within a SuperBASIC procedure

to indicate which separators have been used, but many of the built-in

procedures do check on the separators and treat parameters in different
ways accordingly.

11

THE RETURN STACK

When a procedure has finished, SuperBASIC returns to the calling statement
and continues from there. it must therefore keep a record of where to go
back to. Since one procedure can call another, there must be a record, in
order, of all the calls. This is achieved by building up the return stack.
This is a table having an entry for each procedure which has been called.
As a new procedure is called, an entry is made on the stack. As a
procedure is finished, its entry is removed again.

Each entry contains such information as the type of routine, the line
number to return to, the statement on that line, the status of that line
and information about the parameters in the call. The full list can be
found in Appendix D - The SuperBASIC Storage Area.

Functions

Most of the SuperBASIC commands have themselves been implemented as
procedures, e.g., PRINT, PAPER, ELLIPSE, etc. Of the rest, all of the
‘structural' commands are defined as keywords (e.g., FOR, SELect, etc.),
and the renainder are functions.

A function is similar to a procedure except that, in addition to doing a
specific job, it always returns a single value and can only be used in an
expression. [Expressions are dealt with in Chapter 5. The formal definition
of the structure of a user-defined function is :

line number DEF[INE] F[UINICTION] function_name [(argument {,argument})]

{ statement {:statement} }
line number RET[URN] expression
line number END DEF[ine] [fn_name]
where the function_name must be unique.
In this case the RETurn statement is obligatory and must be followed by an
expression giving the returned value of the function. There may be as many
RETurn statements as you like within the body of the function as long as
there is at least one. If, in a function, you put a RETurn statement
without an expression giving the value of that function, then an error
will be detected when the time comes to return and the message, "error in

expression”, will be printed out.

To use a function, you have to give the name of the function (together
with any parameter values enclosed in brackets and separated by valid

12

SuperBASIC separators), as a term in an expression. A simple example of
this is the built-in SuperBASIC function, PI, for returning the numerical

value of the mathematical quantity, W This takes no parameters so you
can simply say,

PRINT Pl

to get the result. Another mathematical function, SIN, returns the sine of

an angle. The parameter to this is the angle itself, expressed in radians.
So the call,

PRINT SIN(0)

will give the result zero. Instead of being a single figure, the parameter
can be a more complicated expression. For example,

PRINT SIN(P1/2)
gives the result, 1, of the sine of W by 2, or W divided by two.

The functions which you define yourself, called user-defined functions,
may be used in exactly the same way as the built-in ones. An entry on the
return stack will be created when a user-defined function is called and
removed when a value has been returned. As with procedures, functions may
call other functions or procedures, but the definition block must not
contain any other definitions. The only way to use a function is to call
it by name inside an expression, the ‘'skipping-through' process described
earlier for procedure definitions works in exactly the same way for
function definition structures.

Remarks or comments

It is a good idea to include comments in your programs to remind yourself
of what the different sections do. It may not be immediately apparent in
six months' time what you intended to do at the time when you wrote the

code! Commenting is achieved by using the REMARK facility. The formal
definition is

(line number] REMIARK] text
where text is everything up to the line feed.
For example,

100 DEFine PROCedure message

200 REMark A tiny procedure to cheer myself up

300 PRINT 'Hiya, gorgeous, you get better looking each day'
400 END DEFine : REMark end of message procedure

13

SPACING OUT THE CODE

SuperBASIC does not allow you to have empty lines in the middle of your
program. There are many ways of splitting up sections of your code. I tend
to use statements such as

nnn REMark

around procedure definitions to distinguish each from the next, and

nnn :

the statement separator (:) only, giving an empty statement, whenever I
want a free line. You will, I am sure, have your own preference, but
remember that it must be legal SuperBASIC.

14

4 THE NAMETABLE

Names of variables and procedures are held in a tokenized form inside a
program. It would be very time consuming and inefficient if, every time a
variable was used, the entire list of names had to be checked to see if it
existed and, if so, what its value was.

There are three separate areas where the details about the names are kept;
the nametable, the namelist and the variable values.

The namelist is, as it sounds, merely a list of names in the form
length of name, characters in name
The beginning of this list looks like
SPRINT3RUN4STOPSINPUT6WINDOWG6BORDER
The length of the name is held in a single byte, so the maximum number of
characters in a name is 127. A name may be made up of letters, numbers or

the underscore character (), the only restriction being that a name
cannot start with a number.

The nametable is the hub of the whole SuperBASIC system. Each entry refers
to one name and contains the following information :

the type of name (1 byte)
the type of variable if applicable (1 byte)
offset of the name in the namelist (2 bytes)
- pointer to associated information (4 bytes)

where the nametype is a code representing variable, procedure, etc;

the variabletype is a code representing floating point, string or
integer;

the offset to namelist is, for example, 0 for PRINT, 6 for RUN, etc;

the associated information might be the value of a variable or the
position of a procedure, etc.

When a new line is added to the program or a command line is entered, tach
name in the line is checked against the names stored in the namelist
during the parsing phase. Upper and lower case characters are considered
equivalent. when comparing names, the name cat is the same as Cat, Cal or
CAT. The form stored is that of the first time that the name was entered.

156

If a name does not already exist, then it is added to the end of the
namelist and a new entry in the nametable is created to point to it. The
number of the entry in the nametable which points to the name then forms
part of the token used for that name in the internal arrangement of the
program. At this stage the variable is unset because no value has been
associated with the nametable entry.

A simple variable has nametype 02. It must be floating point, integer or
string. The last character of the name indicates which; a dollar (§) means
that this is a string variable, a percentage sign (%) denotes an integer
whilst an absence of either is taken to be floating point. The internal
variable types are 0l for string, 02 for floating point, 03 for integer.

Asgignment

Any variable is treated as unset (nametype 00) until it has been assigned
a value. Assigning a value to a variable is done in SuperBASIC with the
statement :

[LET] variable = expression

I the variable was unset previous to this statement, a space must be
found for the result in the variable values area. After the expression has
been evaluated, the value is stored in this space and a pointer to it is
added to the nametable entry. If the variable already had a value before
the assignment, all that happens is that the old value is replaced by the
new. A complete string variable entry in the nametable is therefore :

020l.offset of name from base of namelist
offset of value from base of vv area

whereas an unset integer variable is described by

0003.0ffset of name from base of namelist
FFFFFFFF (no offset into vv)

When a variable is used in an expression, the nametable entry is checked
to see whether there is an associated value. lf there is, then this value
is copied over from the vv area; if not, then an “error in expression" is
generated. The process is described more closly in the chapter on the
expression evaluator.

THE VARIABLE VALUES AREA
In order for you to understand fully the storage of variable values, it is

necessary for me to describe the area in which they are held. So far I
have shown the namelist to be a continuous stream of names and the

16

nametable to be an orderly sequence of entries. The vv area, however, is a

heap of values of various sizes. It contains free or unused space as well
as assigned space.

A ‘'free space' pointer points to the first unused space in the table; from
this point on, each succeeding free space says how long it is and points
to the next one. When a new value is to be stored, SuperBASIC asks the
free space manager for a hole of the right size. The position of this hole
is returned and the free space pointers around it are adjusted to reflect
its status. When an area of the heap is no longer required, SuperBASIC
tells the free space manager where and how long this is and the manager
absorbs it into the free space system.

Because it may bhe freed, each entry in the vv area must be long enough to
contain its length and the next pointer in that eventudlity. The minimum
size for this is eight bytes so, even though an integer only takes two and
a floating point six, both types are assigned eight bytes. Since it s
possible for a partial section of free space to be assigned, the remaining
unused space after that portion has been detached must also be at least

eight bytes long. This means that each entry must be a multiple of eight
bytes long.

Integer and floating point values have fixed lengths, not so strings.
Strings are stored as a two-byte length followed by the characters, one
byte each. If the number of characters is odd, an unset character s
appended. The total of the length plus characters plus any unset character
is then rounded up to a multiple of eight bytes.

Reassigning values to floating point and integer varibles is simply a
matter of changing the entry in the vv table. The pointer to that entry
does not change. Because of the flexibility .of string variables,
reassignment is more complicated. The 'evened-up' length of the new string
is compared with that of the old, if it is the same then the entry is
simply changed. If it is different, however, the old entry must f{irst be
freed, a new space requested, the new string put into the new space and
the pointer in the nametable entry updated.

Procedures

Procedures and functions may be written in machine code (68000 series
assembler) or in SuperBASIC. As they are executed in different ways they
must be given different nametypes in the nametable to distinguish them.

Machine code procedures are type 08, machine code functions 09
SuperBASIC procedures are type 04, SuperBASIC functions 05

The nametable also keeps the information on where the procedures and
functions are to be found. Machine code procedures and functions have the
actual address of the start of the code included in their entry.
SuperBASIC procedures and functions, however, use the line number of the

17

DEF PROC/FN statement.
A machine code function entry would be

0900.0ffset of name from base of namelist
address of start of function

and a SuperBASIC procedure entry

0400.0ffset of name from base of namelist
line number of DEFine PROCedure line
FFFF (FF because last two bytes not used)

Whenever a direct command is executed, SuperBASIC does a namepass on the
single line and, if the current program has been changed since the last
direct command, on that as well.

A namepass simply means that all the nametypes in the line or program are
checked and reset if necessary. This is also the stage at which the line
numbers are stored against the names of user-defined procedures and
functions.

PROCEDURE ARGUMENTS

Procedure arguments were only dealt with briefly in the previous chapter.
It is not always convenient for procedures to use variable names which may
be in use elsewhere in the program. In addition, the procedure will
frequently want to be called to work with different sets of variables. A
function for calculating the sine of an angle would not be very useful if
it could only cope with an angle associated with the variable X. For this
reason, the arguments in the DEF PROC (or DEF FN) line are always replaced
by the actual parameters given in the procedure call.

So, if you have a procedure FRED with arguments X and Y
100 DEFine PROCedure fred(x,y)
110 x = x+2: y = y-2
120 END DEFine
and you call it with parameters A and B
180 a = 4: b = 10
200 fred a,b
210 PRINT a,b,x,y

then on returning, A will have increased by two and B will have decreased
by two, but X and Y will have reverted to whatever state they were in
before the call.

The actual process gone through on calling a procedure or function is as
follows :

18

. N

\“‘ﬁFirst an entry is made at the top of the mnametable for all the actual
parameters. Such entries are not permment, they only exist for the
duration of the procedure. 1f the parameter 1is a simple variable, the new
entry is a copy -of the entry for that name with the pointer to the
namelist replaced by a pointer to the original nametable entry:

copy of nametype.copy of variabletype.pointer to original entry
copy of vv offset if one exists

1f the parameter is an expression, then it 1is evaluated, space found for
the result in the vv area and a new entry created to point to it:

02.expression type.FFFF (FFFF to show no name)
offset of expression value from base of vv area

by\lext the nametype, variabletype and vw pointer for each argument are

“ ‘swapped with those for the corresponding parameter. In the example given,
within the procedure FRED, any reference to the nametable entry for X will
actually be using the vv pointer to the value of A,

If there aren't enough parameters for the arguments, unset expression
entries are created and swapped; if there are too many parameters, the
excess are simply ignored.

On RETurning from a procedure or function the steps are reversed. Fifst
the details of the arguments are swapped with those of the new parameter
entries. Then those entries are examined. If an entry is one created for
an expression, then any value assigned to it is meaningless once the
procedure has terminated. The entry in the vv heap is therefore freed and
the entry in the nametable deleted. For an entry which is a copy of a
simple variable, however, the vv pointer is first transferred into the
original nametable entry before the parameter entry is deleted. This copes
with the not infrequent situation where anew value has been assigned to a
variable inside a procedure or function.

This example shows the process in detail, using the code given earlier :
TNx means pointer into the namelist for thename of X;

TVy means pointer into the variables area for the value of Y;

TA means pointer to the nametable entry for A;

ffff indicates an unset field.

(1) initial status before anything has been caled

top of nametable

0202 TNb Tvb) |lOI variable values
0202 TNa Tva - 4| area

0002 TNy fEffftfs
0002 TNx Jigddtii
0400 TNfred 100 ffff 4fredlxly....lalb.... namelist

¥,—/

19

PA(‘{V—T:IP { e) ‘ . '\T »Ab\ghﬁg ‘e.rc_rq,tqr

PARUSE Crsma) 3
?aR Nq%(‘;;,.&mwap resrn " f\a\.Ml. aCLF&‘B.mR«\v <Q.\LPI~QS< ons bove, o nxr—v@\)
PA Qﬁ’ﬁ:{‘ ('\QM% Pﬂqu‘_] w\) O u‘. Qr,.r,.m:»,k.\,w o s glag C E s e Sheo e

<a t(,\q\p— qyb‘:kq«, e, > wq-ﬂz\gé Q:r(‘ Shp, ,\3 ?o,g\,‘.n_;é_;

(2) parameters created (3) parameters swapped
0202 1B TVb 0002 TB fiifffif
0202 1A TvVa 0002 TA tittfiff _\
0202 tNb 1vb 0202 TNb TVh nametype,
0202 TNa TVa . 0202 1TNa TVa variabletype
v and vv offset
swapped
0002 TNy fEEfffff 0202 TNy TVb
0002 TNx [E333¢H1 0202 TNx fva
0400 TNfred 100 ffff 0400 TNfred 100 ffff

A point that cannot be emphasized too strongly is that the nametypes and
the variabletypes of the parameter entries are swapped with those of the
arguments. Thus, inside a procedure, though the code has been written with
names of predetermined types, the type of the names when executed comes
from the parameters that the procedure is called with and not from the
names used in the code. For example,

100 DEFine PROCedure test(a$)
110 a$ = 'test string'
120 END DEFine

200 test x

When the call at line 200 is made, an error message will be generated
saying
At line 110 error in expression

This is likely to puzzle you at first because the line appears to be in
order, a string expression being assigned to a string variable. However,
because this particular assignment is taking place inside a procedure, the
argument entry for A$ has been replaced by the parameter entry for X. The
error has occurred because it is impossible to convert the string value
given to the floating point value required by the variabletype. The
Sinclair QL Toolkit contains functions which test parameter types once
inside the procedure.

S8EPARATORS

Although any valid SuperBASIC separator may be wused to divide the
parameters for a user-defined function or procedure, the process of
creating parameter entries is the same as that for machine code procedures
and functions, where the separator type is often crucial. The separator
types must therefore be stored with the parameter entry.

The type of the separator which follows a parameter is incorporated into
the nametable entry for that parameter by masking it into the top half of

-

the variabletype byte. The separator types are

1 for a comma ,

2 for a semicolon ;

3 for a backslash \

4 for an exclamation mark !
5 for TO

The actual nametype-variabletype of a simple floating point name followed
by a comma will be 0212, but the separator type gets removed from a
parameter entry very quickly. When we come to discuss channels in the
chapter on input and output (Chapter 8), | will be introducing a hash (#)
sign which is used to indicate a channel number. If a # is put before a
parameter, the top bit in the variabletype is set on, changing the entry
in the previous example, say, to 0292. Neither # nor separator types have

any effect on the action of parameters to user-defined procedures and
functions.

LOCAL VARIABLES

It is often the case that you want to use a variable inside a procedure
without affecting its value elsewhere in the program, but where the
variable itself is not a parameter of the procedure. This is the purpose
of local variables. Swapping the values of two variables, for example,
requires the use of a third, temporary, variable:

300 DEFine PROCedure swap(m,n)
310 LOCal temp_var
320 temp_var = m

330 m =n
340 n = temp_var
350 RETurn

360 END DEFine swap
1000 swap ja,jb

An 'unset-expression' entry for TEMP_VAR is created after those for JA and
JB. The nametype, variabletype and vv pointer are swapped with the actual
nametable entry for TEMP_VAR in the same way that the copies of JA and JB
are swapped with the entries for M and N. At the end of the procedure, the
original details are restored, the vv entry, if any, freed and the new
nametable entry deleted.

The general form of the LOCAL line is
LOCAL] name {,name}
There may be more than one LOCal statement in a procedure or function, but

they must all come before the first executable statement in the procedure.
For example,

21

i

100 DEFine FuNction steve(x,y,result)

102 LOCal i,j -
104 LOCal temp_var [
106 i = x+y
etc.
Just looking at the local variable, [, and assuming that it exists L
elsewhere, .
(1) initial (2) create local entry (3) swapped -
top of nametable 0002 fiff fiffffff 0202 ffff TVi
0202 TNi 1Vi 0202 t™Ni 1tvi 0002 TNi fEffffff —_

where tNi and Vi are as defined in the earlier example.

Arrays

Whereas a simple variable only has one value at any one time, an array, or
indexed variable, is a set of values, one for each element of the array.

Array element indices start at zero and rise to the maximum specified.
This specification is done by means of a dimension statement. The formal
definition is :
{line number) DIM dimensioned_array name {,dimensioned_array_name}
where dimensioned array name is defined as :
array_name (maximum_index {,maximum_index})
For example,
10 DIM aa(9),bb(3,4)
will create a one-dimensional array AA with ten elements indexed by
aa(0),aa(l),aa(2),...,aa(9)
and a two-dimensional array BB with twenty elements indexed by
bb{0,0),bb(0,1),...,bb{0,4),bb{1,0),bb(1,1),...,bb(3,4)

The array names themselves are normal SuperBASIC names as defined earlier.

Floating point and integer arrays are entirely regular. A floating point
array contains a given number of elements of six bytes each, the total
being rounded up to a multiple of eight bytes as discussed before. An

integer array contains elements of two bytes each, the total likewise
rounded.

Arrays of strings are not entirely regular. The final dimension of a
string array definition is the maximum size of each string in the array.
It will always be rounded up to the next even number. Thus the statement,

DIM name$(20,10) : DIM age$(20,9)

would result in an two arrays being set up with space for 2l strings, each
of which cannot exceed ten characters. Similarly,

DIM a$(8)
provides for one string of eight characters at most.

So much for the maximum length. The actual length is held in the zero'th
element of each string. The length is two bytes long and the characters
are one byte each. So after

a$="abcde!
where a$ is as dimensioned above, the internal representation would be

05abcdeXXX

where XXX exist but are undefined. The size of a string array cannot
change in the same way as that of a string variable since it would make
array indexing very inefficient if this was the case.

STORAGE OF ARRAYS

Obviously an array needs more information held about it than a simpl_e
variable. This extra information is called the array descriptor and is
kept in the vv area. The nametable entry for an array is therefore

03.arraytype.offset of name from base of namelist
offset of array descriptor from base of vv area

As soon as a DIM statement has been parsed, all the names are marked as
being unset arrays. A name cannot, therefore, be treated as both an array
and a simple variable.

As soon a a DIM statement is executed, the array descriptor is set up for
each name and storage space for the elements assigned. The total size is
calculated, multiplied by six for floating point and two for integer
arrays and a space of that size (rounded up to the nearest multiple of
eight) found in the vv area.

Floating point and integer arrays have all their elements initialized to
zero. String arrays are initialized to sets of zero length strings.

ARRAY DESCRIPTOR
This resides in the vv area and consists of the following information :

the offset of the array values from the base of the vv area (4 bytes)

the number of dimensions (2 bytes)
the maximum size of the next index (2 bytes)
how far apart succesive elements of this index are (2 bytes)

the distance being counted in elements and the last two items being
repeated for each index.

Consider, for example, the array descriptor for
DIM fx(1,2,3)

The number of dimensions is clearly three so the first two items in the
descriptor are

offset of start of array values
3

The maximum size of each index is also given; 1, 2 and 3, but what about
the distance between succesive elements ?

Storage of the elements is done sequentially, with the last index varying
fastest. The 'elements of array FX will thus be stored in the order

(000),(001),(002),(003),(010),(011),(01 2),(01 3),(020),(021),(022),(023),
(100),(101),(102),(103),(110),(111),(112),(113),(120),(121),(122),(123)

Looking at the last index, successive elements are next to each other, so
the distance factor is 1. Searching for successive elements of the middle
index, (000),(010),(020),(030),etc., shows them to be & away from each
other, while succesive elements of the first index are 12 apart.
The last six items in the array descriptor are therefore

1,12, 2,4, 3,1
SuperBASIC calculates these distances as

distance =(max +l)*distance
i i+l i+l

in other words, <number of elements in next index> times <distance apart
for next index> gives <distange apart for this index>.

24

a) el

_

The total number of elements in the array is

(max +1)*(max +1)*(max +1)* for all indices
1 2 3

so FX in the example above has 24 elements.

The distance factor in string arrays has to take into account the fact
that the zero'th element of each string is a two-byte length whereas the
characters are only one byte each. In the distance equation given above,
the maximum size of the last index must be increased by two rather than by

one.
So for the array defined by
DIM XY$(2,3,4)

the descriptor will be

offset of strings from base of vv table
3

2,24, 3,6, 4,1

REDIMENSIONING ARRAYS

1f, during DIMension statement execution, a name is found which has

already been specified as an array, the old array values and descriptor
are released before the new ones are assigned.

10 DIM a(20)

100 DIM a(5,10)

In the above example, A is changed from a one-dimensional array with 2]
elements to a two-dimensional array of 66 elements.

SUB-ARRAYS

Sub-arrays are a very powerful SuperBASIC feature. Because of the
structure of the array descriptor, it is entirely possible to define
several subsets of an array, each with its own array descriptor and all
using the same array values. To do this, it is necessary to specify, for
each index of the sub-array, the range of the original index which is to
be extracted. The general form for index range specification is

(initial index] TO (last index}

where initial index is defaulted to zero and last index is defaulted to
the maximum specified in the array definition.

25

Specifying the whole range of an index may be achieved by just giving the
keyword TO, meaning 0 TO max_index. In addition, if any ranges are omitted
at the end of the sub-array, the whole range is assumed. For example,
given an array X dimensioned to (2,4,6,8), the sub-array

X(TO, TO 3, 4 TO)
is equivalent to
X0 TO 2,0 TO 3, 4 TO 6, 0 TO 8)

Consider the example given earlier while discussing storage of the
elements. From the array defined by

DIM 1x(1,2,3)

let us extract a smaller array FX(0 TO 1, 0 TO 1, 0 TO 2). This reduced
array will only have the elements :

(000),(001),(002),(010),(011),(012),(100),(101),(102),(110),(1 1 1),(112)

and so the array descriptor for it must be a modified copy of the
original. The spacing between the elements has not changed (though some of
them are no longer available), but the maximum size of the indices has.
So, from the original array descriptor,

offset, 3, 1,12, 2,4, 3,1
we now get
offset, 3, 1,12, 1,4, 2,1

Suppose we define the array FX(I, 0 TO 1, 0 TO 2). This is half the size
of the sub-array in the previous example since we have banished all
elements (0,n,n). The values now start at a different place and, because
the first index no longer varies, it has become two-dimensional. Because
of all this, the amended descriptor is

offset+12, 2, 1,4, 2,1
When a sub-array is defined, each of its indices start again from zero,

thus while FX(0 TO 1,1 TO 2,1 TO 3) is a different portion of the original
array from FX(@© TO 1,0 TO 1,0 TO 2), most of the descriptor is similar.

FXI FXIl
FX(© TO 1,0 TO 1,0 TO 2) FX(© TO L,l TO 2,1 TO 3)
offset, 3, 1,12, 1,4, 2,1 offset+5, 3, 1,12, 1,4, 2,1
The element FX'(1,1,2) is The equivalent element FX''(l,0,1) is
(1%12+1%4+2*1)=18 away from (1*12+0%4+1%1)=13 away from the start
the start. but the start has been increased by 5.

26

Sub-arrays may be used anywhere that full arrays are used. It
possible for mass assignment of one array to another, but it
useful to be able to pass sub-arrays as parameters to procedures.

is not yet
is extremely

ASSIGNING VALUES TO ELEMENTS OF NUMERIC ARRAYS
This has the form
[LET] array (index {,index}) = expression

where an index must be specified for each dimension defined in the DIM
statement.

So, EX(1,1,1) = 45

would set the 18th element from the beginning of the array to the value
45. You could also use a sub-array, for instance

FX(0,1X2) = 540

sets the third element of the sub-array FX(0,1,0 TO 2), equivalent to the
seventh element of the whole array, to the value 540.

If you have failed to define an exact element on the left hand side of an

assignment, then you will get the error message "not implemented", because
mass array assignment is not available yet.

ASSBIGNING STRINGS TO STRING ARRAYS

Slicing string arrays is very similar to slicing numeric arrays.

Since they are defined to be arrays of strings, substring arrays are
defined to be arrays of substrings. Given an array A$%(4,6) containing
'ONE', 'TWO', 'THREE' and 'FOUR', the substring array AS$(0 to 4,3) would

produce the four substrings ‘E', 'O', 'R', U and not the single
substring 'EORU'.

Because string arrays are defined in this way, assignment to them has the
form :

[LET] string_array [(index {,index})] = string_expression

where the final index is omitted. The length and characters of the string
are entered into the vv area as normal. Examples of use are,

DIM xy5(2,6): xy$(0) = ‘'first': xy$(2) = ‘last’
DIM g$(8): gd='abcdefgh'

27

DIM tab$(10,12,8): tab$(3,4) = 'yy'

You can also, of course, change individual characters. For example,
g3(4) = "Q": PRINT g$

will give the string "abcQefgh'.

If you modify an unset character, the element will be changed but the
actual length of the string will not. SuperBASIC assumes that you know
what you are doing.

You may access the zero element of a string array to change the apparent
length of the string. Changing the length to greater than the maximum
dimensioned is not advisable since printing the whole string will give
unset characters beyond the actual length of the string.

If you assign too large a string, it will be truncated to the maximum
number of characters allowed on the left-hand side. For example, if you
tried,

g5 TO 6) = "12345"

only enough characters to fill G$(4), G$(5) and G$(6) would actually be
assigned, making the resulting string 'abcl23gh'.

BUBBTRINGS OF STRING VARIABLES

The characters of string variables may be indexed in the same way as those
of string arrays. The zero element cannot be accessed, though, since the
length may only be changed by means of an assignment of the whole string.

String variables do not have descriptors, so any substrings of string
variables have to be treated as expressions rather than as names with
associated values because there is nowhere to hold pointers into the
reduced string. Consider, for example,

100 DEFine PROCedure exl{a$,b$)

110 a$ = 'abc’
120 b$ = ‘def®
130 END DEFine
200 DIM x5(8)
210 x$ = '123456'
220 y$ = '123456'

230 ex! x$(3 TO 5),y¥3 TO 5)
240 PRINT x$,y$

Both strings are passed through to procedure EX1 as '345'. The first gets
changed to 'abc' and the second to ‘def' but, whereas A$ was swapped with

a substring of an array, B$ was swapped with a stig expression. Thus on
return, X$ will be '12abcé* but Y$ is unchanged as '1235%'.

String variables may be indexed on the left-hand side of an assignment,
y$(3 TO 5) = 'def!
gives 'l2def6', but only existing characters may be changed. 1f you said

y$(9 TO 10) = 'xy*

you would get an "out of range" error, since this asignment would extend
the length of the original string.

It should be noted that you cannot slice string expressions, €<8.,
n3=DATES: PRINT n$(16 TO 17) ... will work

but
PRINT DATES(16 TO 17) eevvrirneenn will not.

FINDING THE LENGTH OF A STRING

It is often convenient to know how many characters there are in a string.
The SuperBASIC LEN function does this. The general formis

LEN (string)
where the string can be an expression, a variable or partof an array.

PRINT LEN('abcd') .eecens gives 4
x$='t": PRINT LEN(xS) ... gives 1

or, from the earlier example

PRINT LEN{xy$(0) gives 5 even though the maximum length
is 6.

RECOVERING THE SIZE OF AN INDEX

A useful function for finding out the maximum size of the indices of an
array is DIMN. It takes two parameters :

DIMN (array [,index_number])
and returns the maximum size of the index given.
Looking at the array defined by,

DIM mat$(2,6,4)

29

If we now

PRINT DIMN(mat$,l) we get the answer 2.
PRINT DIMN(mat$,3) returns the value 4.

If the index number is omitted, the first, or major, index is assumed.
PRINT DIMN(mat$) gives 2.

Any index not dimensioned is necessarily zero :
PRINT DIMN(mat$,12) produces O.

See the effect of using sub-arrays here.

PRINT DIMN(mat$(0 TO 1)) gives |
PRINT DIMN(mat$(TO,l TO 4),2) .. gives.3

ARRAYS AS PARAMETERS

If an array is given as a parameter to a procedure call, the swapping
process described earlier for variables and expressions is slightly more
complicated.

Consider the example,

100 DEFine PROCedure john(xarr)
120 PRINT DIMN(xarr,l)
140 END DEFine

200 DIM garr(9)

220 john garr
On processing the call at line 220, a copy of the nametable entry for GARR
is added to the top of the table. A copy of the array descriptor is also
made and stored in the vv area and the new parameter entry updated to
point to it. Note that it is not necessary to make a copy of the actual
values. The nametable entries for the argument XARR and the parameter GARR
are then swapped as normal.

On returning from the procedure, the entries are swapped back again, the
copy of the array descriptor is freed and the parameter entry deleted.

You can also pass sub-arrays as parameters. For example,
250 john garr(¢ TO 6)

The same process is foliowed, the temporary array descriptor being for the
sub-array rather than the full array.

Look at this example where :

30

TNgarr is the pointer into the namelist for the name GARR;

TDgarr is the pointer into the vv area for the descriptor for GARR;
Tvgarr is the pointer into the vv area for the array values for GARR;
T1GARR points to the nametable entry for GARR. .

(1) initially

top of nametable

-

0302 TNgarr TDgarr array values variable

values area

0002 TNxarr ffffffff TVgarr 1 9 |

(2) parameter entries created

0302 TGARR TD'garr [——— D'garr(Tvgarr 1 9 |

0302 TNgarr TDgarr values of garr vv area

0002 TNxarr ffffffff ————-)Dgarr(Tvgarr T 791
I |f

(3) after swapping

0002 T1GARR ffffffif

0302 TNgarr tDgarr swapped nametype, variabletype
and vv offsets

0302 TNxarr TD'garr

LOCAL ARRAYS

If a LOCal array is required in a procedure or function, then it must be
included in the LOCal statements. For example,

110 LOCal iy_arr(4,5),25(6)
A new entry is made on top of the nametable in the form

03.arraytype.FFFF (showing a temporary entry)
offset of array descriptor from base of vv table

and a new descriptor and array values created in the vv area. The nametype

31

and vv offset are then swapped with the actual nametable entry for the
local name. This means that you can have a LOCal array with the same name
as a simple variable elsewhere in the program, the only occasion on which
this is allowed.

On returning, the real entry for the local name and the temporary array
entry are swapped back. The temporary array values are released, followed
by the temporary array descriptor. Finally, the nametable entry itself is
deleted.

As LOCal statements can contain indexed, as well as simple, variables, the
earlier definition needs to be wupdated. The formal definition is as
follows :

line number LOC[AL] name [(index (jindex})] {,name [index {index}}}

32

THE EXPRESSION
EVALUATOR

An expression is made up of terms and operators in the series

The permissible operators, grouped into order of precedence, are: =

&

INSTR

-~

MOD
DIV

[

AAAN N VvV
i v

>
= Z
o

OR

il
XOR

term {operator term }

¥
A
Fa

concatenates (joins) two strings
gets the position of one string inside another string
raise a floating point to the power of a fp or integer

muitiply one floating point by another
divide one floating point by another

take one integer to the modulus of another
perform an integer divide

add two floating points
subtract one floating point from another

greater than

greater than or equal to if both operands are
equal to strings, then character
approximately equal (equivalent) to comparisons are made,
not equal to otherwise all floating
less than or equal to point

less than

logical and (floating point)
bitwise and (integer)

logical or (floating point)

bitwise or (integer)

logical exclusive or (floating point)
bitwise exclusive or (integer)

Permissible terms are:

variables
array elements

33

functions

strings

values

sub-expressions (expressions in round brackets)

each of which may be preceded by a monadic operator

+ positive floating point
- negative floating point

NOT logical not (floating point)
- bitwise not (integer)

Values themselves may have an integral positive or negative sign, so it is

possible to have an expression such as
1 ++ 42
where the. first + is the diadic addition operator

the second + is the monadic positive sign
and the third + is an integral part of the number !

LEGAL CONSTANTS

What constitutes a legal number or string in an expression?
A legal number is of the form

(sign] decimal (E [sign] digit {digit}]

where sign is + or -

decimal is [digit (digit} 11 . [digit {digit}]
and one of the optional [] must be present

A legal string is a set of characters delimited by a pair of
double quotes.

For example,

‘abcde!

"l AZBC 3"

' "Yes", she said'
"t isn't fair"

but not

1ab'cd!

I&l ldl

" "S,end"
"quote(“ n)n

single or

The expression evaluator

Evaluating terms of expressions has to be done in a given order if a
consistent result is to be achieved. For every operator you need two
operands. SuperBASIC stores the items in linked lists:

an entry on top of the nametable defines the type of operand;
an entry on top of the arithmetic stack is the value of the operand;
pending operators are held, for convenience, on the system stack.

A marker showing the beginning of the expression is also held on the
system stack.

Taking a simple example like
b +2

the expression evaluator first makes a copy of the entry for B on top of
the nametable. It looks up the value associated with the variable B and
stores this on the arithmetic stack, changing the nametable copy to an
expression entry by putting FF (meaning no name) in the pointer to the
namelist. It then looks at the next item in the expression, which is a +
puts the + on the system stack as a pending operator, and gets the
following term. As this is a value, Z, an ‘expression’ entry is created on
top of the nametable and the floating point representation of 2 put on the
arithmetic (or RI) stack.

This is the end of the expression so the + is retrieved and the two values
on the Rl stack are added together. The top entry on the nametable is
deleted 1t [eave one expression entry on the nametable, one value (the
result) on the RI stack and no pending operators.

In general the process is :

(1) look at next term;

(2) if this is not an operator, create an entry on the nametable and a
value on the RI stack;
if it is an operator, look at the previous pending operator;

(3) if the precedence of the old operator is greater than the precedence
of the new operator, do the previous operation;

(4) if doing an operation, take both the RI values off the stack,
replacing them with the result; take the pending operator off the
system stack; delete the top entry on the nametable;

(5) put the new operator on the stack and repeat from top.

At the end of the expression, do all the pending operators in turn until
the beginning-of-expression marker has been reached on the system stack.

36

Looking at the following example step by step : the bold type shows the
running order of items on the different stacks

a=bAND x < 4 * z +y

Action at each step Nametable and RI stack | Pending operator
read term a 1 a

read operator = 1 =
read term b 2 b

read op AND,prec(=)>prec(AND)

do (a=b) | (a=b) 1 AND
read term x 2 X

read op <,prec(AND)<prec(>) 2 <
read term & 3 4

read op *,prec({)<prec(*) 3 *
read term z 4 z

read op +,prec(*)>prec(+)

do (4*2) 3 (4*2) 3 +
read term y L y

end of exp. get pending op +

do (4*z)+y. get pending op < 3 (4% 2)+(y)

do x<(4*z+y). get pend op AND | 2 (x)<(4*z+y)

do (a=b)AND(x<4*z+y) 1 (a=b)AND(x<4*z+y)

SUB-EXPRESSIONS

Sub-expressions are expressions enclosed in parentheses. They are used to
override the normal precedence order. For instance, multiplying the sum of
two numbers rby a factor is impossible unless the evaluator is forced to
generate the sum first and the product second; 4+2%6 gives 16 but (4+2)*6
gives the desired 36.

If, while processing an expression, an opening bracket, (, is found when
it is expecting a term, the evaluator immediately puts a new beginning-of-
expression marker on the system stack and ignores all previous pending
operators until the corresponding) has been located. The sub-expression
is then completed and evaluation of the outer expression recommenced.
There is no limit to the number of expressions which may be nested in this
way.

FUNCTIONS DURING EVALUATION

Functions have much the same effect on the evaluator as sub-expressions
do. All current expression evaluation is frozen wuntil the function has
finished and produced its result on the RI stack. Function calls may also
be nested as many times as you please.

36

COERCION

In the list of operators at the beginning of this chapter, 1 also included
the type of operands with which each operator works. Thus + only adds up
two floating point numbers, while & can only concatenate two strings.

It is exceedingly irritating 1o the user if he has to convert everything
to the correct type himself before the expression will evaluate.
SuperBASIC makes life easier by forcibly converting the operands, if

at
all possible, before performing the operation. This makes expressions like

'123' + 4 ... produce 127
and '123' & 4 ... produce '1234'
quite happily.

Converting a number to a string is a fairly straightforward task, but
there are some side-effects when the reverse is done. The conversion stops
at anything which does not form part of a number but does not give an
error unless an illegal number has been generated. 50, converting ‘'abcd
to a number gives an error since there is no legal number before the first

non-numeric character. '4.5ab', however, produces four and a half without
a murmur.

After conversion, the entry in the nametable is updated to reflect the new
operand type.

INTERNAL REPRESENTATION

A word should probably be said at this stage about the internal
representation of values.

Integers are represented in the Sinclair QL as two-byte hexadecimal
numbers. This gives a range of -32768 to 32767.

Floating points are held in two parts, a two-byte exponent and a four-byte
mantissa. The top four bits of the exponent are reserved for the
SuperBASIC token, so that leaves twelve bits for the exponent itself. This
gives a range of 2 %% o 22047 or, more familiarly, about 10%66€ The
mantissa is a normalized hexadecimal number. That is to say, the decimal
number is converted to hex and stored from bit 30 downwards to bit 0, bit
31 being reserved for the sign. For example,

0 is 0000 00000000
1 is 0801 40000000 -1 is O7FF C0000000 &%= Ho5o0 cmoos

37

2 is 0802 40000000 -2 is 07FE C0000000 &2e | Qocoecao
4 is 0803 40000000 -4 is 07FD C0000000 cgpmz 2 ooo ooot
10 is 0804 50000000 -10 is 07FC D0000000 ogod o0 000

Strings, as has been mentioned before, are stored as the number of
characters followed by the characters themselves. The length is a two-byte
hexadecimal number and the characters are kept in hexadecimal ASCIlL
Because the total amount stored must be even (a limitation of the 68008

processor), the length of a string is limited to 32766 which is the size
of the integer length.

Operators

Most of the operators will be familiar to you already. Some, however, need
a little explanation so, for completeness, I will give the whole list. Any
of the operations can fail if one of the operands is an unset variable, or
cannot be converted to the type required by the operator.

ARITHMETIC OPERATORS
+y =y *1 /v -
All the above arithmetic operations are carried out in floating point. The

only exception is when something is raised to the power of a value which

can be exactly represented as an integer. All results, however, are in
floating point.

MOD, DIV

These work in integer arithmetic throughout.

n DIV m gives the integer part of n divided by m,
5 DIV 2 2
n MOD m gives the value of n to modulus m,
5 MOD 2 ..1 (0,1,0,1,0,1,0,1,...)
0,1,2,3,4,5)

It is the remainder of the operation n DIV m; n ~ (n DIV m)*m
6 DIV 3 ... 2,6 MOD 3 0
5 DIV -2 .. -3, 5 MOD -2 ... -}

-5 DIV 2..-3-5M0D2 ..1
-5 DIV -2 ... 2, -5 MOD -2 ... -1

38

STRING OPERATORS

The & operator concatenates two strings. It joins the second set of
characters to the end of the first, counts the new length and appends an
unset character if necessary. So, internally, given the strings

03abcX and O4wxyz
where X is undefined, the resulting string is 07abcwxyzX

Likewise, 05zyxwvX & 03pgrX produces 08zyxwvpqr

stringl INSTR string2
gives the character position in string2 that stringl starts at.

'fox! INSTR "foxglove" ... 1 at beginning of string
‘ox!' INSTR 'fox' vevees 2 inside string
'Glove' INSTR ‘'foxglove' ... &4 case ignored
‘gloved’ INSTR "foxglove" ... 0 all of string not found

The result produced is always integer.

LOGICAL OPERATORS

Logical operators have to evaluate conditions and decide whether they are
true or false. The result, which is always floating point, is set to zero
if the condition proves false and to one if it proves true.

For the relational operators,
<, <=, =, =3, <5, &=, <

both operands are normally converted to floating point and the condition
evaluated numerically. There is an exception to this when both operands
are strings. In this case, a character by character comparison is made,
except on any embedded numbers.

Arithmetic comparisons are made strictly. A<B is only true if A-B is less
than zero; C=D is only true if C-D is exactly zero. The equivalence (==
or ‘almost equal' operator has a greater tolerance. Here, X=zY will be
true if |X-Y| <= |Y*1E-7| , where |X-Y| means the absolute, or positive,
value of X-Y.

Note : It may not be immediately obvious to you that no value will ever be
=z zero. If, in the above equation, Y is zero, then the check reduces to
|XI<=0, clearly impossible when X is non-zero. If you make X zero instead

39

of Y, then the test becomes |Y| <= |Y*IE-7| , also somewhat infeasible. To
test for a quantity being very close to zero therefore, adding one to both
sides gives the desired result, e.g., (X+1)==1.

{f the equivalence operator is applied to strings, case is ignored. Thus
'‘a'OM"A" is true, but 'a'=="A" is also true. All other string comparisons
treat upper case characters as having less value than their lower case
counterparts. Short strings are ‘smaller' than long ones. The following
are in order :

'Axe,'ape','axEhead','axe','axiom','BATH','bat’,'bath’
and 'a2','a20.0','a24','a3’

Combination logical operators work solely on true and false floating point
values. They read zero as false and non-zero as true. They return false as
zero and true as one.

LI AND L2 is true if both L1 and L2 are true

L1 OR L2 is true if either L1 or L2 or both are true

Ll XOR L2 is true if either L] or L2 but not both are true
NOT LI is true if LIl is false

Bitwise logical operators do the above operations bit by bit on integer
operands, setting the corresponding bit in the integer result ON (to 1)
for true and OFF (to 0) for false.

Thus,

| && 3 ... 00000001 and-bit 0000001! ... 00000001 ... |
11l 3 .. 00000001 or-bit 0000001l ... 00000011 ... 3

1 =% 3 ... 00000001 xor-bit 000000!1 ... 00000010 ... 2
~~ 1 .. not-bit 0000000G 00000001 ... 1iPLL1EL) H1LENLNO ... -2

Mathematical functions

There is a comprehensive set of SuperBASIC functions available. All of the
trigonometric ones assume that the angle is in radians.

The mathematical functions are :

ABS gets the absolute (positive) value of a floating point argument
ACOS calculates the angle, the cosine of which is the fp given
ACOT gets the angle, the cotangent of which is the fp given

ASIN returns the angle, the sine of which is the fp given

ATAN gets the angle, the tangent of which is the fp given

CcoOS returns the cosine of a given angle

CoT calculates the cotangent of a given angle

DEG converts radians to degrees (floating point)

EXP calculates the exponential function of the given fp (e " arg)
INT truncates a floating point to an integer and returns it as a fp

LN returns the logarithm to the base e of a floating point number
LOGIO gets the logarithm to the base 10 of a floating point number

Pl takes no arguments, returns the floating point representation of
RAD converts degrees to radians (floating point)

SIN calculates the sine of a given angle

SQRT gets the square root of a floating point number

TAN returns the tangent of a given angle

There are also random number facilities :
RND [([low_range TO] high_range)]
is a function to get a random number in the given range :
RND gets a floating point number in the range 0 to |

RND(n) gets an integer between 0 and n inclusive
RND(m TO n) gets an integer between m and n inclusive

RANDOMISE [seed]

is a procedure to set a new random number seed. If a parameter is given,
the sequence of random numbers returned by succeeding RNDs will always be
the same for that seed. Different seeds produce different sequences If no
parameter is given then a 'random’ random number seed is generated, based
on the current clock value.
and string functions :
FILLS (string,length)
produces a string of the specified length, filled with repeats of the
first two characters in the string argument. If the argument has only one
character, then all characters are a copy of this.

PRINT FILLS$('00",9) gives '000000000"

PRINT FILL%(8,2) gives '88'

aS='eric': b$ = FILL$(a$,7): PRINT b$ gives 'ererere’
CODE and CHRS
for converting ASCIl codes to characters and vice versa.

ascii_code = CODE (string)

gets the code of the first character of the given string, and

character = CHRS (integer)

returns a one character string from the ASCIlI code given.

41

Thus,
PRINT CHRS (CODE('A"Y)
should write out the letter A.

It the CODE of a character is between 48 and 537, the character is a digit;
between 65 and 90, the character is in upper case; between 97 and 122, the
character is lower case. To convert from upper 1o lower case therefore,
add 32 to the CODE and take the CHRS of the result; to convert from lower
to upper case, subtract 32.

A full listing of the ASCI equivalents is given in Appendix A.

VERS

is a string function taking no parameters which just returns the two-
character identifier of the System ROM. This identifier is completely
random for each new version of the ROM released. The function to return it
is included so that, if you do have any problems with your QL, you can let
Sinclair know which version of the ROM you have when you report the
trouble.

DIMN and LEN
These functions are fully described in Chapter 4 - The Nametable.

All the clock functions and procedures are detailed in Chapter 13 - The
Calendar and Clock.

All the machine code functions and procedures are given in Chapter 12.

42

6 CONTROL STRUCTURES

SuperBASIC is a procedure-based language. Within this framework, the major
keywords have their own structure.

CLAUSES

A clause is a set of statements bound together by 5upe_rBASlC key_words. All
start with an opening clause statement and finish Wl_th an ending c.laus.e
statement. Any SuperBASIC keyword which is only meaningful when taken in
conjunction with a particular clause is called an intermediate clause
statement.

We have already met definition clauses which opened with DEFine and closed
with END DEFine. An intermediate clause associated with them was RETurn.
Definition clauses are a special case of clauses. They may not be nested
and they must always be complex.

Complex clauses are those where the openirag dause statement is on. i
different line to the rest of the structure. T hey must always finish wit
an ENDkeyword statement. Another name for thepy is multi-line clauses.

Simple, or in-line clauses have all their sta-tements contained within the
same SuperBASIC line. They do not need an end ing statément because the end
of the line is always judged to terminate an in-lirme clause-

In general, simple clauses execute quicker than complex because SuperBAESrlfé
knows in advance that when exiting, it does no-t have to search for an
but can go straight to the next line.

Complex clauses, on the other hand, are cleare~ T and more easily understood
than simple ones. They are "also easier to e it It IS recommended that
contents of complex clauses are indented so That nesting of strugtures is
easier to keep track of. It makes no dilfe=— rene to the efficiency of
execution but it increases legibility and aids in debugging your program.
Indentation is used in all the examples following.

It should, perhaps, be pointed out that while =simple clauses can either be

embedded in a program or entered as a diree=—=t command at the console,
complex clauses make no sense unless they are use <1 vithin a program.

43

Simple controlled transfer

Frequently, when writing a program, you will want a certain piece of code
to be executed only if some condition is met.

The IF - THEN - ELSE - END IF construction caters for this eventuality.
The formal definition of the multi-line IF clause is as follows :

line number IF expression [THENI]
{statement {:statement} }

[line number ELSE [statement] {:statement}]
{statement {:statement} }

line number END IF

The sequence of events when SuperBASIC reaches an IF statement is very
simple. The expression is evaluated and if it gives a true (non-zero)
result, then the statements immediately following are carried out. On
reaching an ELSE, control is transferred to the statement after the ENDIF,

If the expression is false (zero), then SuperBASIC must skip this code and
do the alternative statements if any have been given. To this end, an ELSE
or an ENDIF are searched for. If an ELSE is found before an ENDIF,
execution continues at the statement following the ELSE. If there is no
ELSE, control is transferred to the statement after the ENDIF.

Since clauses can be nested, SuperBASIC keeps a count any intervening IFs
on its search for the alternative code, to be sure of always finding the
right ELSE or ENDIF,

Let us look at an example,

100 DEFine PROCedure ex2(a,b,c)

102 REMark Silly example with A as input, B as output, C as in and out
110 IF a<=5

120 b = a*a

130 IF b<10

140 C = C+4

150 ELSE

160 C = C*2+4
170 END IF

180 ELSE

190 b =a"3 c = c+2
200 END IF

210 END DEFine ex2
Take three cases

(1) a=1.
The lines actually executed are

110,120,130,140,150,180,210
at line 150, look for an ENDIF; at line k 80, look for an ENDIF

(2) a=5.
Lines executed are

110,120,130,160,170,180,21 0
at line 130, look for an ELSE or ENDIF; at line 180, look for ENDIF
(3) a=10.
This time the lines executed are
110,190,200,210

at line 110, look for ELSE or ENDIF, Igriore the ELSE at 150, since
it is embedded in a deeper level IF.

As soon as an IF line has been processed and control has been passed to
the appropriate place, SuperBASIC forgets that it is executing an IF
clause. When it finds an ELSE, it assumes that it must have been

processing a conditional piece of code and immediately searches for an
ENDIF.

THE SIMPLE OR INLINE IF cLA USE
This is defined as:
[line number] IF exp THEN statement (:statement} [:ELSE [st] (sst}]
alternatively, the THEN keyword may be replaced by a colon, so
[no] IF exp : st {:st} [:ELSE [st] {:st}]

Inline IFs work in the same way as multi-line IFs, except that the end of
the line is always taken to be the ENDIF, e.g.,

IF n>limit THEN PRINT "Limit reached'
IF a<l00: a = a+l: ELSE a= l: b = b+l

If you insert an ENDIF yourself, the rest of the line is normal.
IF a*b=1 THEN PRINT ‘a*b=1': ELSE PRINT 'a*b<>!': ENDIF: PRINT "DONE"
whichever choice is made, 'DONE' will aiways be printed.
Inline IFs may be nested satisfactorily.
IF a+b>10 THEN IF a>5; PRINT 'b<5': ELSE PRINT 'b>=5'
An elegant solution to the factorial process

x! = x(x-1}(x-2)...1

4b

can be shown by

100 DEFine FuNction factorial(x)

110 IF x=1: RETurn 1: ELSE RETurn x * factorial(x-])

120 END DEFine

Multiple controlled transfer

The SELECT - ON - END SELECT construction gives a wide choice of options.
The formal definition of the complex clause is :

line number SEL[ECT] [ON] variable

line number [ON variable] = range {,range}
{statement {:statement} }

{sstatement} }

Eine number [ON variable] = REMAINDER {:statement}]

{statement {:statement} }

line number END SEL[ECT]

where variable must be a simple floating point variable

and range is of the form
expression [TO expression]
For example,

990 PRINT 'choice is ';

1000 SELect ON choice

1010 ON choice = 1 TO 4,-1,9 TO 11,7
1020 PRINT '-1,1 to 4,7 or 9 to 11"
1030 ON choice = 5: PRINT '5

1040 =13 TO 15

1050 PRINT "13 to 15"

1060 =REMAINDER: PRINT ‘remainder’
1070 END SELect

The process by which SuperBASIC determines
to do runs thus :

which part of the SELect clause

An 'ON var =' clause is searched for. When one is found, the value of the
variable is checked against the ON ranges. If none of them match, then the
next ON is looked for. This process continues until either a range match

has been located or a closing ENDSELect
case, no selection is made and execution
statement. This is not an error, it avoids
skip around the construction if the variable is

has been found. In the latter
continues after the ENDSELect
the annoying step of having to
out of range.

If a match on range is found, however, control is transferred to the
statement after the relevent ON. As with [F, once the initial decision
regarding which statement to do next has been made, SuperBASIC forgets
that it is executing a SELect clause. Encountering another ON var = , it
assumes that it is and skips all the statements up to the corresponding
ENDSELect, taking any nested SELects into account.

ON var = REMAINDER is a catch-all. It is always true. it should be clear
from the above narrative that, even if it is possible for the value of a
variable to match with more than one ON range, only the first such match
will ever be found. For this reason you are strongly advised to position
the =REMAINDER range at the end of the set of ONs! Again, REMAINDER cannot

be combined with any other ranges within the same ON since everything is
included in it anyway.

INLINE SELECTS
These are of the form :
[Ino] SELIECT] [ON] var = range {,r} {:st} {:{lON varkr {,ri{:st }

The beginning of the clause has been 'closed up' to cut down the simplest
clauses, e.g.,

SELect x=14,27: y=100
(very similar to IF x=l4 OR x=27 : y=100)

When executing an inline SELect, the ON ranges are searched as before but
the line feed takes the place of the ENDSELect statement.

The criteria for deciding whether a value is in a range other than
REMAINDER is slightly different for the two cases

ON v = L

and
ON v =Ll TOL2

If the match is to be made with a single value, then the target and the
value are checked for being approximately equal. That is |L-v] <= |v*lE-7|
where [L-v| means the absolute, or positive, value of L-v.

For a range, the value must be greater than or equal to the lower limit
and less than or equal to the upper limit.

This means that when using an internally calculated value, it is possible
for = L to match, but = L TO L not to match.

Looking at an example

1000 DEFine PROCedure sel_chk(a,b,c)
1010 b=0

47

1020 SELect ON a
1030 ON a= -4 TO 14

1040 b =a MOD 5

1050 SELect ON b

1070 ON b=0,2

1070 c = c*4

1080 ON b=3: ¢ = ¢"3

1090 =REMAINDER: ¢ = ¢"3*%
1100 END SELect

1110 = -16 TO -5,15 TO 20

1120 b 10

1130 c =20
1140 END SELect
1150 END DEFine

(1) a = 5.
This executes lines
1010,1020,1040,1050,1070,1080,1110,1150
at line 1020, look for range; at line 1050, look for range; at line
1080, look for ENDSELect; at line 1110, look for ENDSELect

(2) a= 15
This executes lines
1010,1020,1120,1130,1140,1150
at line 1020, look for range

(3) a=100
This executes lines
1010,1020,1150
at line 1020, look for range; no match found

Uncontrolled transfer

However carefully structured a language is, there will always be something
that you want to do which does not fit in with the design. With this in
mind, SuperBASIC permits the use of a GO TO statement which transfers
control, unconditionally, to a given line number. The formal definition is

[line number] GO TO expression

The expression is evaluated and converted to an integer. The result must
be in the range | to 32767 since these are the allowable line numbers. The
end of the current line is found, then, utilizing the line length
increments stored with each tokenized SuperBASIC line, SuperBASIC travels
upwards or downwards very quickly until a line number is located which is
either equal to or greater than that required. So, if the line number
given does not exist, it is not an error since the next highest one
available will be transferred to instead, e.g.,

48

10 GOTO 100
50 x=1

90 y=x"3
200 PRINT x,y

On executing line 10 jt is found that line 100 does not exist so control
is passed to line 200.

Another facility is
Lline number] GO SUB expression

where the expression is also evaluated as a line number. As before,
control is transferred to that line, or the next available, with the
difference that, on encountering a RETURN statement, execution resumes at
the statement following the original GOSUB. It is, in fact, a limited form
of procedure, lacking names, parameters and local variables. When a GOSUB
is executed the line to return to is placed on the procedure return stack
with a different type to mark it as a GOSUB.

When using both GOTO and GOSUB, if the line number which has been given is
past the bottom of the program, it is not deemed to be an error, simply an
untidy way of finishing execution. SuperBASIC will return control to the
console channel.

ON..GOTO/GOSUB

A facility which might be useful is the capability to GO TO different line
numbers depending on the integer value of an index expression. The formal
definition is

[Ino]l ON index_expression GO TO Ino_expression {,Ino_expression}

The index expression is evaluated as an integer, then each line number
expression in turn is evaluated until the count of them has reached the
index. Control is then passed to the last line number evaluated.

Consider the line,
10 ON a+b GOTO 100,1100,105,4000,200,200

When this is executed, (a+b) is evaluated to give an integer. If it is
less than 1, an "out of range" error is generated. Suppose the result is
3. Then each line number expression up to the third will be evaluated, not
skipped, and control passed to, in this case, line 105. If you have not
given enough line number expressions for the index value, an "out of
range" error is again generated. In this example, results of 7 and over
would be illegal.

49

There is a corresponding definition involving GO SUB
[ino} ON index_exp GO SUB Ino_exp {,lno_exp}

The procedure followed is exactly the same except that when a RETurn is
executed, control is passed back to the statement after the ON...GOSUB.

It cannot be stressed too strongly that performing uncontrolled jumps into
other suuctures may have strange side-effects. It is entirely yowr own
fault if this occurs.

C
L
L
[

7 LOOPS

Frequently, when designing programs, you will want to be able to execute a
piece of code several times over. SuperBASIC provides two methods of doing
this.

Continuous loops

Repeating a piece of code indefinitely is easy. You simply insert the
REPEAT keyword and a loop identifier at the top of the section of code,
and an END REPEAT plus identifier at the bottom. The formal definition is

line number REP{EAT] loop_identifier_name

{statement {:statement} }

line number END REP{EAT] loop_identifier_name

There are two intermediate loop clauses

NEXT identifier
and

EXIT identifier

both of which may appear anywhere in the body of the loop any number of
times.

ENDREPeat sends you straight back to the statement after the REPeat. NEXT
enables you to go back to the beginning before reaching the end of the

loop. EXIT, as the name suggests, removes you from the loop altogether,
depositing you at the statement after the ENDREPeat.

WHAT IS A LOOP_IDENTIFIER_NAME?

The loop identifier or index must be a simple floating point variable. The
reason is that several pieces of information need to be kept about the

61

loop and the most convenient place to store them is in the vv area. In all
other respects, though, the name is still a simple variable. It can be
assigned a value and used in an expression. This means that the value, if

any, must come first in the vv entry and the other information at known
offsets to it.

The vv entry associated with a REpeat loop index is 12 bytes long :

floating point value (6 bytes)
REPeat line number (2 bytes)
ENDREPeat line number (2 bytes)
statement on REPeat line (1 byte)
statement on ENDREPeat line (I byte)

Because the vv entry is bigger, the nametable entry of a loop identifier
has to be distinguished from that of a simple variable by giving it a
different nametype. A REPeat loop index has nametype 06.

The process by which a REPeat loop is executed is as follows :

On encountering a REPeat statement, the loop identifier is examined. 1f it
is not aiready a REPeat loop index, the old vv entry, if it exists, is
released and a new one of the right size assigned. The nametype in the
nametable entry is updated and the loop information can now be stored.

The index value is always cleared. The line number of the REPeat line is
filled in, also which statement on the line this is. These are necessary
so that, when the time comes actually to repeat the loop, SuperBASIC knows
where to restart. The spaces for the ENDREPeat line number and statement
are cleared for the moment, the entry will be updated to include them when
the ENDREPeat line is actually reached.

If the identifier name was already a REPeat loop index, it is possible
that we are repeating this very line. The current line number and
statement are therefore checked with those stored in the vv entry and, if
they correspond, none of the information is replaced. There is a
particular reason for this which will be made clear later.

Having set all the information up, SuperBASIC no longer needs to remember
that it is looping. When it arrives at an ENDDREPeat statement it simply
reads the identifier name, locates it in the name table, and looks up the
loop details in the vv area. A '"not found" error is generated if the
identifier given has not been set up as a repeat loop index. If all is
well, however, the line number and statement are inserted into position in
the loop information entry. SuperBASIC goes back to the start line and
statement given in that entry and continues from the next statement.

A NEXT statement has much the same effect. The identifier is examined and
the loop information located. Execution recommences after the line number
and statement given.

An EXIT statement is used to leave the loop. SuperBASIC looks at the
identifier and finds the loop information in the vv table. If that

52

information includes the line and statement number of the ENDREPeat, then
control is passed to the statement after that given. If the ENDREPeat has
not yet been executed, however, the entries in the loop information will
be empty. In this case, SuperBASIC has no option but to search for an
ENDREPeat with the correct identifier. On finding it, the line number and
statement are stored in case they are needed again and execution continues
as normal. This is the reason for not blanking out the endline number and
statement if the other details of the loop information match The second
EXIT that is executed, if there is one, will be faster than the first
because SuperBASIC already knows where to go.

There is no limit to the number of nested loops in a program.

EXIT identifier

will transfer you out of a loop no matter how deeply you may be embedded
inside it. NEXT has the same property.
For example,

80 DEFine PROCedure print_2dalarr,nrow,ncol)
82 LOCal i,j

90 i =0

100 REPeat outer

110 j = 0: PRINT

114 i = i+l: IF idnrow: EXIT outer
120 REPeat inner

130 j = j+1: IF j>ncol: NEXT outer
140 PRINT arr(i,j),

150 END REPeat inner

160 END REPeat outer

170 END DEFine

An interesting side-effect of this method of handling loops is that,
providing you have not redefined the loop identifier, it is possible to
EXIT out of a loop which you left some time ago! I cannot think of a use
for this at present, but it is worth bearing in mind when debugging

programs which use the same names for different loops, or whch use very
similar names for different loops.

More importantly, you can also do a NEXT after you have left a loop. This
is occasionally useful, especially if you are addicted to GOTOless
programming. Indeed, provided that you never want to leave a loop, the
ENDREPeat is not even necessary, though it plays havoc With your
indentation.
For example,

190 min = 0 : max = 0

200 REPeat gobbledegook

210 a$ = CHRS(RND(65 TO 90)

220 PRINT a$;

230 IF a$="A": min = min+l: NEXT gobbledegook
240 IF a$="Z": max = max+l

250 NEXT gobbledegook

53

INLINE REPEAT LoOPS
The formal definition of a simple REPeat loop is :
[ino] REP{EAT] name : statement {,statement)}

EXITs and NEXTs may appear among the statements and the line feed is taken
as an implicit ENDREPeat name.

Inline repeats are very useful for simple looping but contain a serious
limitation in that they cannot be nested on a line. This was an oversight

and ought to be remedied. If you do nest them, only the inner one will be
repeated.

Controlled looping

While REPeat loops are very useful, it is also necessary to be able to do
a piece of code a fixed number of times, or with the index variable taking
a particular value each time through the loop, or both. FOR loops were
designed with this in mind.
The formal definition for the complex clause is :

line number FOR index = range {,range}

{statement {:statement} }

line number END FOR index
where range is of the form

expression [TO expression [STEP expression]]
Again the intermediate clauses

NEXT index
and

EXIT index
can be used anywhere in the body of the FOR code any number of times.
The major difference between FOR and REPeat loops is that the index

variable takes a value each time through the loop and, when it has run out
of values, the loop has finished.

THE INDEX VARIABLE AND THE FOR RANGE

The FOR loop index variable must also be a sirnple floating point namep.\
Each time through the loop it takes the next value in the FOR range.
range, as has already been said, is of the form

expression [TO expression [STEP expression]]

The expressions are evaluated at the time when the range |is started. If
STEP is not present, the increment between succeSsive va‘lues in the ra_rl_se
is defaulted to l. If TO is not present, the step size Is zero. he
information which has to be associated with a FOR index variable is

the current floating point value (6 bytes)
the line number of the FOR line (2 bytes)
the line number of the ENDFOR line (2 bytes)
which statement on the FOR line (1 byte)
which statement on the ENDFOR line (1 byte)
the end value of the current range (6 bytes)
the step value of the current range (6 bytes)
the position on the line of the current r ange (2 bytes)

Thus 26 bytes are needed and so the narmetpe must be different again. A
FOR indexyhas nametype 07 in the namet able. If .thns has not been set whedn
the FOR execution is started, the old vale, if one exists, Is releaseé
space for the FOR information assigned irx the v area and the nametype an
vv pointer in the nametable entry updated.

HOW DOES SUPERBASIC DECIDE ON T= HE NEXT VALUE?

The first time through the loop, the w-alue assigned is the first one In
the first range. On subsequent passes, the p r oces 152

(1) get current step value, if this is zero t Ien go on to the next range;

(2) add current step to current value;

(3) test the new value against the end-of-raange value:
if it is less, carry on; ,
if it is almost equal (within JNES-7 of stepvalue), set it to “::\
actual end value and continue €this test ‘Zt ;1ecessary since
internally calculated value can be sli ghily inaccurate)
if it is beyond the end value, the sn the range is exhausted. Move to
the next range.

Starting a new range :
(1) check to see Whether the range is po_-ssible at all. 1 TO 0 STEP -1 is

fine, but just | TO 0 is not since it— his a default step of +l. If the
range is exhausted already, move to the next one. (It is not an error

66

since it is occasionally useful to be able to force the skipping of a
range.)

(2) if the range is OK, set the index to the first value, enter details of
the new range and update the position in the vv entry.

So, in the example
1000 FOR j= -14, 1 TO 2, 7 TO 9 STEP 0.5, 2 TO -2 STEP -2
the value of J would be successively
-14,1,2,7,7.5,8,8.5,9,2,0,-2

Reading carefully through the steps given above, you will notice that it
is possible to change the number of times that a range is done, but not
the number of times that a single value is done, nor which range is done
next. If, while running the above example, you put in a line such as

1050 IF j==8 THEN j=12
the value of J would be successively
-14,1,2,7,7.5,8 (changed to 12),2,0,-2
plus, perhaps
1060 IF j==1 AND flag=0 THEN j=-4: flag=1
you would get

-14,1 (changed to -4),-3,-2,-1,0,1,2,7,7.5,8 (changed to 12),2,0,-2

WHEN IS THE INDEX VALUE UPDATED?

When executing an END FOR index statement, SuperBASIC looks at the index,
locates the loop information and gets the next value in the range. If the
value is OK, control is passed to the statement after the FOR line number
and statement held in the vv entry. If the last range has been exhausted,
however, execution continues from after the ENDFOR.

NEXT index has a similar effect. If there is a next value, the index entry
is updated to hold it and the loop is repeated from just after the FOR. If
the FOR range is exhausted, execution continues from the statement after
the NEXT.

At this point it is worth pointing out that if the whole FOR range is
exhausted before it is even started, right at the beginning of loop
execution, then the index variable has no value and execution continues
from the statement after the FOR. Any NEXTs or EXITs now will give the
error "not found".

Leaving a FOR loop is either done mnaturally, by exhausting the last range
given in the FOR statement, or can be achieved by means of the EXIT index
statement. This works in exactly the same way as exiting out of a REPeat
loop except that it is an ENDFOR rather than an ENDREPeat which is
searched for. The index holds whatever Wvalue it was given last.

If you have a missing ENDREPeat or ENDFOR, SuperBASIC gets to the bottom
of your program on its search and Stops execution normally. Of course, if
you have another loop with the same name further down your code, an EXIT
will find it. This is something eise to remember when debugging programs.

THE INLINE FOR LooP
A simple FOR loop is defined as
[Ino] FOR index = range {,range} : statement {: statement}

where NEXT and EXIT may appear among the statements and the end of the
line is taken as an implicit ENDFOR index.
For example,

DIM a(9): FOR i=0 TO 9: a(i) = i+1

There is no difference in the method of execution of an inline FOR and
they are frequently faster in performance.

Inline FOR loops are a remarkably useful construction but unfortunately,
as with inline REPeat loops, simple FOR loops cannot be nested on a line.
Only the innermost FOR or REPeat will be iterated if inline nesting is
attempted.

LOOP EPILOGUE

It is often useful for a programmer to know when a loop has finished
naturally and when it has been exited out of. A loop epilogue is inherent
in the SuperBASIC FOR structure. Look at this example :

300 DEFine PROCedure check_str(name$,arr$,row)

310 REMark Return which row, if any, name$ is in inside arr$
320 LOCal i

330 FOR i = 0 TO DlMN(arrS,l)

340 row = it IF arr${row)=zname$: EXIT i

350 NEXT i

360 row = -1

370 END FOR i

390 END DEFine

Line 360 is only ever processed if the range has been exausted. This is
called the loop epilogue.

57

DATA HANDLING, INPUT
OUTPUT AND THE
FILE SYSTEM

Simple output

We have already seen many examples of the PRINT command. It may be used
anywhere in a SuperBASIC line and its form is

PRINT [#channel_number separator] { [expression] separator}

The channel number refers to the place where the parameters of the command
are to be printed. It must always be preceded by a hash (#) sign.

#0 is the console window
#1 is the execution window
and #2 is the program listing window

These are the only reserved channel numbers, others may be assigned to
user-defined windows, peripheral devices or Microdrive files. There are
examples of their use later on in this chapter. if the channel number is
left out of the PRINT command, then the execution window, #l, is assumed.

Separators tell the PRINT statement how to format the output. They do this
by advancing the print position, the position where the next character is
to be put :

, spaces to the next eighth column, provided that that still leaves a
gap of eight columns before the edge of the window. A new line is started
if it is otherwise. When tabbing, at least one space is always made.

; does not move the print position at all.
\ sets the print position to the first column of the next line.

! only has any effect if there is a parameter following it. If there
is room on the line to print the next parameter, then a single space is
left. 1f there is not enough room, then a new line is started. If the
print position is already at the beginning of a line, then no action is
taken.

TO should be followed by the character position on the current line
where the next item is to be printed. A single space is always made. If
that takes the print position to beyond the column specified, the print

position rests there, otherwise more spaces are printed until the
character position has been reached. The separator after the column number
is not taken as a formatting separator.

If there is no separator at the end of the list, a new line is put out. So
PRINT

by itself, prints a blank line. The separator after the channel number, if
one has been used, is taken as non-formatting.

The following procedure prints column numbers across the screen and then
uses separators to position the output :

80 DEFine PROCedure sep_example

90 REMark print column numbers

100 FOR j=1 TO 3

110 FOR i=0 TO 9: PRINT i;

120 END FOR j

130 REMark print separators

140 PRINT \,',';s'\'\"\!'1at beg of line""lin middle of line'!"!but
far too much to fit on previous line. Nothing at the end of this'
150 PRINT TO 5, 'TO col 5 works' TO 10, 'but TO col 10 fails'
160 END DEFine

The parameters which are to be printed must evaluate to either floating
point or string values. Because PRINT is a procedure, the parameters must
follow the rules for procedures. Unset variables are allowed in the
parameter list, but non-evaluating expressions are not. If you try to
PRINT an unset variable, an asterisk (*) will be printed instead. For
example,

400 DEFine PROCedure ex3(a,b)
410 LOCal ¢
420 a = l: b = 2
430 PRINT a,b,ca+b
440 END DEFine
will, when you call
ex3 x,y
produce

1 2 * 3

If one of the parameters is a non-trivial expression which will not
evaluate, an error will be generated. For example,

432 PRINT a+c

included in the example above, would cause the message

59

At line 432 error in expression

to be produced.

PRINTING ARRAYS

Arrays and sub-arrays may be printed without having to specify all the
elements. The elements are printed in the order in which they are stored.
The separator which follows the array name is used to separate all the
elements printed. For example,

990 DEFine PROCedure set_up
1000 DIM ax(7),a24(2,4),a25(2,8)
1010 FOR i=0 TO 7: ax(i) = 2%i
1020 FOR i=0 TO 2

1030 FOR j=0 TO 4&: a24(i,j) = i&j
1040 a28() = i&i&i&i&i&i&i&i
1050 END FOR i

1060 END DEFine

Now, after running procedure SET_UP on the default television execution
screen,

PRINT ax, ... 0 2 4 6
8 10 12 14
PRINT ax(4 TO 6); 81012
PRINT a2(TO,3) ... 3
13
23
PRINT 'a24! ... 0123410111213 14 20 21 22 23
24

FOR i=0 TO 2: PRINT \la24(i)!

..... 01234
1011 12 13 14
20 21 22 23 24

PRINT a2§(TO,3),\a2$ 0 1 2
00000000
11111111
22222222

FREEZING THE SCREEN

Often, when items are being printed quickly, there is a danger that they
will have scrolled out of the top of the window before you have had a
chance to assimilate them. The printout can be halted at any time by
pressing CTRL and the function key F5 at the same time. This will 'freeze’
the whole screen until you press CTRL and F5 again. Pressing any other key
while the screen is frozen will also unfreeze it, but the key pressed will
remain in the input buffer to be used when the screen output has finished.

Simple input

It is wvery often the case that you want to be able to set variables to
different wvalues each time that you run the program. This is the purpose
of the INPUT command. it has much in common with the PRINT procedure.

INPUT (#channel_number separator] { [parameter] separator}

Again, if the channel number is not given, the execution window, #1, is
assumed.

If a parameter is an expression, the INPUT command acts in the same way as
PRINT, writing the value of the expression to the channel. Any separators
are also treated as they would be by PRINT.

If a parameter is a simple variable, an array element or an array string,
the cursor will flash at the next print position and wait for the data to
be entered. Each item of data must be terminated by an ENTER keystroke.
The input value is converted to the correct type and assigned to the
variable specified. INPUT then moves on to the next item.

A couple of examples,

100 INPUT 'Width of room (ft) ?',wide,'Length of room (ft) ?*,long
110 PRINT *You need 'llong*wide/9''sq.yds of carpet’

200 INPUT 'Price including VAT ?',total
210 PRINT 'Price excluding VAT is'ltotal/l.15 \'VAT is'll5*total/ll5

You may INPUT data into anything that you can normally assign to. If, when
waiting for input, just the ENTER key is pressed (no text in front of it),
this is taken to be an empty string. If a numeric value was expected, the

conversion will therefore fail and an '"error in expression" message will
be generated.

61

INPUTING SINGLE CHARACTERS

INPUT needs an ENTER keystroke to finish each item. This is not very
helpful if you want to write a program which requires constant input from
the user, a game where the cursor movement arrows are to be used to move
something around, for example. A function which returns a single character
from the keyboard is obviously required.

INKEYS does just that. It is a string function having the form,
INKEYS$ [([#channel] [time])]
where channel is where the input is to come from, default 1;

and time is the number of frames to wait for that input before
returning, a frame being one-fiftieth (1/50) of a second. If the number of
frames is zero (the default), the function will return immediately; if the
number of frames is -1, INKEYS$ will wait indefinitely.

To see the difference between an immediate return and an indefinite one,
first enter the line,

REPeat in: PRINT INKEY$(-1)

Now any character that you type at the keyboard is echoed on succeeding
lines of the execution window until you BREAK (CTRL and space together)
out of it. See the difference when you execute the line

REPeat in: PRINT INKEY$(0)

The function is constantly checking the input channel, finding nothing and
printing nothing followed by a line feed. When you do find anything, it
will be echoed as before, but for the most part there is nothing in the
input queue. Again BREAK (CTRL and space together) to finish. 1f you
retype the line as

REPeat in: PRINT INKEY$;

and type some random characters, although it looks as if it is waiting
indefinitely, the function is still constantly checking and finding
nothing but this time you have told it not to advance the print position
each time that it samples the keyboard, so it doesn't.

You will have noticed during these examples that several of the keys,
including the cursor movement ones, print blotches on the screen. A blotch
indicates a non-printing character. To check them, therefore, you need to
use the CODE function which returns their decimal ASCIl values. Try the
line,

REPeat in: PRINT !ICODE(INKEY$(-1))!

62

to find out that

« is 192 CTRL «
- is 200 CTRL >
T is 208 CTRL t
L is 216 CTRL L

is 194
is 202
is 210
is 218

ALT €« is 193
ALT - is 20l
ALT 1 is 209
ALT L is 217

and many more!

TWO OR MORE KEYS PRESSED SIMULTANEOUSLY

In the above example, | cited the value of CTRL combined with a key. This
changes the key values because it does not have an intrinsic value of its
own.

Other keys, when pressed together, do not combine to make a single values
but there are applications where it is advantageous to know if a
particular combination of keys has been selected. For example, some games
allow the user to give the directions ‘'left', 'up' and ‘fire' at the same
time by simultaneous depression of ¢— , T and the space bar. SuperBASIC

provides a function, KEYROW, which allows direct interrogation of the
keyboard in a reasonably limited fashion.
The keys are divided up into the following keyboard matrix. Each row is

numbered and each key assigned to a row sets a defined bit in the integer
value of that row. The matrix is,)

Row 0 7 4 F5 F3 F2 5 Fl F4
Row 1 [¢ SPACE \ - ESC 1 <« ENTER
Row 2 - m £ b c . z]
Row 3 H g = f s z CAPLOCK [
Row & i d [a 1 h 3 1
Row 5 o y - r TAB i w 9
Row 6 u t 0 e q 6 2 8
Row 7 ’ n / v X ALT CTRL SHIFT
bits 7 6 5 4 3 2 1 0

Each row can be interrogated using the function KEYROW, each bit in the
result being set on (to 1) if the corresponding key is depressed, or off
(to 0) if the corresponding key is idle.

The form of the function is
KEYROW (row_number)
where row_number is 0 to 7 as defined above and is which row to check.

For example, suppose that you have asked for the value of KEYROW(l) and
that you are holding down

¢« , 1 and SPACE
all at the same time.
The result will be

0 1 o 0 0 1 1 0 =64+4+2=170
J P \' Desc T ¢ ent

or suppose that you press all of the function keys at once, then the value
of KEYROW(0) will be

0 o0 1 1 I 0 1 1 =32+16+8+2+1=259
7 4 F5 F3 F3 5 Fl F4

The following procedure will demonstrate the function. It uses two screen
commands, CLS and AT, that will not be explained until Chapter 10 - Screen
Control.

100 DEFine PROCedure row_val

110 CLS: FOR i = 0 TO 7: PRINT 'Row'i

120 REPeat rows

130 FOR i = 0 TO 7: AT i,8: PRINT KEYROW(i): CLS 4
140 END REPeat rows

150 END DEFine

KEYROW calculates the value of each row in turn and the result is printed
out against its row number. You may press any combination of keys and
check the result. As soon as the keys are released, KEYROW finds a value
of zero.

There is a failing in the action of this function in that, when three keys
which form three of the corners of a rectangle within the keyboard matrix
layout are depressed simultaneously, the KEYROW values of both the
affected rows are the same, clearly untrue, e.g.,

D and A produce 80 from KEYROW(4)

D and A and B also produce 80 from KEYROW(2) even though M is not being
held down. If A is released, the KEYROW values return to 16 for row 2 and
64 for row 4.

This limitation should be born in mind when making use of the function.

PAUSING DURING EXECUTION

There is one more form of input to be considered. We have already seen
that the user may freeze the screen at any stage by pressing CTRL and F5
together, then CTRL and F5 again to continue the display. The program
itself may also halt execution temporarily, before it goes on to produce a
new diagram say, by using the PAUSE command. This causes execution to stop
for a specified length of time before continuing. At any point during this
wait, the user can press any key on the keyboard to force the program to
carry on. 1f an indefinite period of time has been specified, this is the
only way to continue execution.

The form of the procedure is
[line number] PAUSE ([time]

where time is the number of frames (a frame is 1/50th of asecond) to wait
for input before proceeding. The default is -1, wait indefinitely; if a
time length of zero is specified, no pause is made.

The following procedure will give you an idea of the action on execution
different PAUSEs.

100 DEFine PROCedure pausing

110 CLS

120 PRINT 'Pause indefinitely (default)': PAUSE

130 PRINT 'Pause 100 frames (2 seconds)': PAUSE 100
140 PRINT 'Pause 200 frames (4 seconds)': PAUSE 200
150 PRINT 'No pause's PAUSE Q

160 PRINT 'Pause indefinitely (-1)': PAUSE -1

170 INPUT 'Pause for how many frames ?'!p;

180 1IF p>=0: PRINT !'(*;p/50!'seconds)’

190 PAUSE p

200 PRINT ‘finished'

210 END DEFine

Constant data

DEFINING

[t is often the case that certain variables and arrays are required to
take values sequentially from an unvarying set of data. It is convenient,
therefore, to be able to keep these values somewhere in the program. The
mechanism used is the DATA statement which simply marks out sets of

65

expressions to be assigned at some stage during execution of the program.
The formal definition is

line number DATA expression {,expression}

e.g.,
100 DATA ‘Mon','Tues','Wednes',' Thurs','Fri','Satur','Sun’

ASSIGNING

The data items are normally selected in turn and to assign an item of this
data to a variable, you must use the READ command. The general form is

{line number] READ parameter {,parameter}

where a read-parameter may be a simple variable, an array element or an
array string, e.g.,

1000 READ dayname$: PRINT 'Today is''dayname$;'day’
When SuperBASIC executes a READ statement, it first checks to make sure
that the parameter is valid for input, then it gets the next item in the

whole DATA sequence for the assignment.

A data pointer is kept up to date in SuperBASIC's storage area. It holds

the line number of the data item read last (2 bytes)
the statement number on that line (I byte)
the item number along that line (1 byte)

When the next data item is requested, SuperBASIC looks to see if there is
another data "item on the current data line. If so, the value of that item
is returned and the item count incremented; if not, the next DATA
statement is searched for and, when found, the first item on that line is
returned and the data information updated.

[f an item of data cannot be converted to the required type for the
variable, an "error in expression" is generated. If there is no data left
when a READ statement is processed, an "end of file" error is given. If
all is well, though, the value read is assigned to the variable in the
normal way. You can find out whether you are about to run out of data by
using the function EOF. This returns true if there is no data left, false
otherwise, e.g.,

500 IF EOF: PRINT 'Run out of DATA statements': EXIT read loop

DATA statements themselves do not have any effect on normal execution.
They may be put almost anywhere. It is most efficient, however, to put
them at the very beginning of a program. This is because moving to a data
item always starts from the first line of a program so, if all the DATA
statements are up there, it takes less time to find them.

REPEATING

It is likely that circumstances will a@rise in Wwhich you want to skip
certain items of data or repeat some of them. There is a facility for
doing this called RESTORE. It has the formn

(line number] RESTORE [line_number_expression)

If there is no parameter, RESTORE sexs the current data pointer to the
beginning of the program file, otherwise= the expression is evaluated as a
line number and the current data pointer set tO sStatement one and item
zero on that line. It doesn't matter if the line given does not contain a
DATA statement because, when the next data item s requested, the first
one after that line will be found.

This is an example using READ, DATA and R ESTORE statements

100 DATA 'January',31,'February',28,"Mar ch',3,'April*,30,'May*,31
110 DATA 'June',30,'July',31,'August*,31,” September',30,‘October',3l
120 DATA ‘'November',30,'December',31

124 =

130 DEFine PROCedure print_diary

132 REMark Print set of diary sheets

140

150 INPUT 'Start at year ?'Istart_year\'E nd at year ?'lend_year\'Print
to channel ?'!'chan$

160 IF chan$=" ": chan$ = 1

170 a$ = FILLS("-",80)

180 FOR i=start_year TO end_year

190 RESTORE 100

200 FOR j=1 TO 12

210 READ month$,ndays

220 IF j=2 AND i MOD 4 = 0 THEN rdays = 29
230 PRINT #chan$,\a$\\month$,i\\as\\

240 FOR k=1 TO ndays: PRINT #charm S,k

250 END FOR j

260 PRINT #chan$,\a$\as\\
270 END FOR i

280 END DEFine print_diary

The file system

Although READ-DATA-RESTORE and simple interactive PRlNT—lNPUT‘are very
useful, they cannot be said to satisfy tahe whole spectrum of input aqd
output needs. Some method of holding dat—z separately from the program is
necessary.

67

WRITING TO FILE

The QDOS operating system supports a full file handler. The files may be

kept on Microdrive. To write information to a new file from a program, the
process is:

(1) OPEN the new file on an unused channel;
(2) PRINT the data to that channel;
(3) CLOSE the channel.

A file name may be any sequence of letters, numbers or underscores. Within
each Microdrive cassette, the name must be unique. When referring to a
file in SuperBASIC, the name must be prefixed by the device. This will be
mdvl_ or mdv2_ depending on which Microdrive slot you have inserted the
medium into, e.g.,

200 OPEN_NEW #3,mdvl_datal
210 FOR i=1 TO 10: PRINT #3,i
220 CLOSE #3

will create a new file called DATAL on the cassette in Microdrive 1.

Files are likely to be wanted for different purposes. The OPEN command has
variations to cater for different needs.

OPEN_NEW will open a new file for input and output. Currently there is
no way to rewind a file back to the beginning so the input facility on a
new file is somewhat superfluous. It is expected that rewinding will be
implemented in future releases of the ROM.

OPEN_IN will open an existing file for input only. This is not an
exclusive assignment, so the same file may be OPEN_INed on more than one
channel. The input pointers are independent for each such channel.

OPEN will open an existing file for input and output. 1f a file is
OPENed on one channel, it may not be opened on any other until it has been
closed on the original channel.

The parameters for all three commands are
#channel , name

The channel is a number which can only be in use for one channel at any
one time. If the channel number given has already been assigned, it will
be closed automatically before being re-opened.

Any number up to 32767 may be used, but details about the channels are
kept sequentially, each entry in the channel table being 40 bytes long, so
using a high number when there are lower ones unused is very wasteful of
space.

The name is a string expression, a string variable or a name. If it is a
string expression or string variable, the resulting string will be used.
If it is any other name, however, then the characters of that name are
converted to the string required, e.g.,

OPEN #4,mdv2_dat2 is equivalent to
OPEN #%,'mdv2_dat2' and

hf$='dat2': OPEN #4,"mdv2 "&hf$ and
m$='mdv2_dat2': OPEN #4,m$

Great care should be taken if reassigning channels | or 2. Certain
SuperBASIC commands use these automatically and expect them to have
various attributes. Reassigning the console channel, channel zero, s
particularly hazardous and not to be recommended because you will not be
able to enter any more commands from the keyboard. Think about it.

CLOSING A CHANNEL

Closing an output file or chamnel is very important since the action of an
explicit or implicit CLOSE is to write out anything still in the buffer
and to put an end-of-file marker on a file. The formal definition is :

[line number] CLOSE #channel

I1f you have been writing data to a Microdrive file and remove the medium
before a CLOSE has been processed on the relevent channel, the last part
of the file including the end-of-file marker will be missing. An implicit
CLOSE is done whenever a new OPEN is carried out on a channel which is
already open. Don't leave it to chance though, do an explicit CLOSE to be
safe!

READING FROM FILE

This is done in the same way as writing to a file. The file should be
OPEN_INed for maximum protection against unwitting PRINTs, e.g.,

390 DIM a(l0)

400 OPEN_IN #3,mdvl_datl

410 FOR 1=0 to 9: INPUT #3,ali)
420 CLOSE #3

When wusing a console window channel, the INPUT command will write
expressions and perform separator formatting. When using any other
channel, all formatting and printing of expressions are suppressed. The
method used is to enquire whether character positioning is allowed on the
channel from which you are INPUTing, e.g.,

490 DEFine PROCedure roots
500 INPUT #1,'Name of input device ?',inp$

69

510 OPEN #3,inp$

520 REPeat coeff

530 INPUT #3,'give terms a,b,c of ax"2+bx+c=0',a,b,c -
580 root_term = b"2-4*a*c:

545 IF root_term<0: PRINT ‘imaginary': NEXT coeff

550 root = SQRT(root_term)

560 PRINT 'Roots of'la;'x"2 +'lb;'x +'Icl'are't(-b+root)/(2*a)l'and"t

(-b~root)/(2*a) w
570 END REPeat coeff

580 END DEFine roots

Thus, when asked to give the name of the input device, if you opt for a
window on the screen, all the prompts will be given. If data is to come

from a file, however, the prompts will be suppressed. Specifying new
windows on the screen is dealt with later on in this chapter.

When INPUTing from a file, every character up to and including a line feed
will be read as a single item. The item will then be converted into the

type required for the corresponding parameter. If the conversion fails,
then an “error in expression" will be generated.

If INKEYS is used to read from a file, each character is read separately.
To see the difference, execute the following statements one at a time,

OPEN_NEW #3,mdvl_exin
PRINT #3, (94 to set the data file up
PRINT #3,'not number'

OPEN #3,mdvi _exin

INPUT #3,a$,b§ to show that what goes in must come out
PRINT a$,b$

OPEN #3,mdvI_exin

INPUT #3,a,b to show what happens converting a non-

numeric string to a floating point number
PRINT a,b result of last INPUT

OPEN #3,mdvl_exin
REPeat in: PRINT 'next' ,INKEYS$(#3) to prove that INKEYS reads one
character at a time.

Notice that this Jast line finished by displaying the “end of file"
message on the console window. To find out whether the end of a data file
has been reached, use the EOF (end of file) function with the appropriate
channel number.

420 IF EOF(#3): CLOSE #3
The general form of the EOF function is

EOF {(#channel number)]

70

where the default is DATA statements in the program itself. The result
will be true if the end of the file has been reached, but false otherwise.

USING A NEW MICRODRIVE CASSETTE

Before a new Microdrive medium can be used, it must be formatted, divided
up into manageable units of length called sectors which are then used to
direct the file handling system around the tape. This is done by using the
FORMAT ‘procedure, giving which Microdrive the medium is in and the name to
use for the tape, e.g.,

FORMAT mdvl_aaron4

The size of the name is limited, and will be truncated, to ten characters,
otherwise any normal SuperBASIC name will do. The FORMAT command fills the
tape with blank sectors, writing the name of the tape, in this case,
AARON4, at the start of every sector. This enables QDOS to tell very
quickly whether the tape in a Microdrive has been changed so, even though
an invisible random number is incorporated into the tapename, it is not a
good idea to have different media with the same name.

When it has finished this formatting, QDOS writes out a message into the
execution screen telling you how many sectors are on the tape and how many
of them were able to be verified properly.
In the case of the above example, the message might be

119/122 sectors
This means that the tape has 122 sectors on it and 119 of them have been
verified as good. If you want the message to be written into a different
place, put the desired channel number into the command. The formal
definition is

[line number] FORMAT [#channel,] name

where name is of the form

mdvl_tapename or mdv2_tapename.

FORMAT is also the command to use if you want to scratch or completely
overwrite an old tape. It will destroy any previous contents.

LISTING FILENAMES

To get a list of all the files on a particular medium, you need to use the
DIRectory command. The formal definition is

[line number] DIR [#channel,] device

71

where channel is the place where you want the catalogue to be printed out.
The default, as before, is the execution window;

and device is either mdvl_ or mdv2_ depending on which drive you have
put the cassette in.

The directory listing is in the form
name of medium
no of vacant sectors/total no of good sectors

{filename}

For example, after creating files LOG_OUTPUT and INPUT_DATA, say, the
directory listing of AARON#4 above, produced by

DIR mdvl__
might look like,

aaroné

t14/119 sectors

log_output

input_data

showing you that you have now got 114 sectors left out of the 119 good
ones that you started with.

COPYING FILES
It is possible to make copies of files on Microdrives. The normal form is
COPY name TO name

where name can be mdvl_filename or mdv2_filename and the only restriction
is that the first file must exist but the second file must not exist.

COPY mdvl_datl TO mdvl_dat33

COPY mdv2_sink TO mdvl_sink
COPY mdvl_afile TO mdv2_bname

DELETING FILES

This is done by simply saying
DELETE mdvl_filename

or DELETE mdv2_filename

No error is given if the filename isn't found; an error is given if the

72

file you are trying to delete is currently open on a channel.

The only way to overwrite a file is to delete it and then re-save it or
copy to it. For example, the set of statements to update the library
versions of a particular program presently in memory might be,

DELETE mdvl_last_version

COPY mdvl_current_version TO mdvl_last_version
DELETE mdvl_current_version

SAVE mdvl_current_version

MICRODRIVE BACKUP

There is no built-in facility for copying entire Microdrive cartridges,
but the following procedure will copy each file in turn from the medium in
mdvl to the pre-formatted medium in mdv2 :

100 DEFine PROCedure copy!_to 2

110 REMark copies all files from mdvl_ to mdvZ_
120 REMark tape in mdv2_ must be formatted already
130 OPEN_NEW #3,mdvl_allfiles

140 DIR #3,mdv!]_

150 OPEN #3,mdv! allfiles

160 INPUT #3,a$,a$: REMark skip st 2 lines

170 REPeat all

180 IF EOF(#3): EXIT all

190 INPUT #3,a$

200 IF a$='allfiles': NEXT ali

210 PRINT 'copying',a$

220 COPY 'mdvl_'&a$ TO 'mdv2 '&a$

230 END REPeat all

240 CLOSE #3

250 DELETE mdvl_allfiles

260 END DEFine

Facilities for default directories and the use of ‘'wild cards' in file
names as well as direct access to files are provided in the Sinclair QL
Toolkit, an addition to the standard SuperBASIC system.

Using peripheral devices

THE SERIAL PORTS

There are two RS-232-C jack-plug sockets at the back of the Sinclair QL.
They are marked

SERI and SER2

73

These are referred to in SuperBASIC as the serial ports and are used to
transfer data to or from external devices, printers for example.

The device names must be in the following form :
SER [portnumber] [parity type] [handshaking status] [protocol]

where the port number is either | (default) or 2 depending on which socket
the cable is plugged into.

The parity is either the default of eight-bit data
e ... for even
o ... for odd
m ... for mark
or s ... for space.
The best bet is to set the parity to whatever the device at the other end
of the RS-232 cable is expecting.

The handshaking status is either h (default) or i.
If it is h, the transmitting software will only send data when the

receiving hardware is ready. It uses the DTR (data terminal ready) line on
SER! or the CTS (clear to send) line on SER2.

If you specify i, handshaking is ignored. This means that data bytes are
sent without waiting for the ready signal. If you have sent data with the
handshaking option over the RS-232 line to a device which isn't ready and
you wish to clear the input buffer, BREAKing (by pressing CTRL and space
together) and re-opening the channel with the ignore option will cause any
data waiting to be sent to be sent. This loses the data but clears the
input buffer, i.e.,

OPEN #4,SERh: PRINT #4,a$... then BREAK out of it and
OPEN #4,SERi: OPEN #4,SERh

The protocol required may be r (default), z or c.
r just sends raw or unmodified data.

z appends a CONTROL Z to the end of the file sent. This enables SuperBASIC
to detect EOF on a text file.

c changes all ‘line feed' (new line) characters to ‘carriage return'
characters as well as putting a CONTROL Z at the end of a file.

So, SER by itself is equivalent to SERIlhr.

The SERial device names can be used in the same way as the Microdrive
filenames earlier. It is as valid to say

COPY mdvl_datl TO SER

as it is to say

74

500 OPEN #3,mdvl_datl

510 OPEN #1,SER

520 REPeat copy line

530 INPUT #3,a}

540 PRINT #4,a$

550 IF EOF(#3): EXIT copy_line
560 ENDREPeat copy_line

570 CLOSE #3: CLOSE {4

When you are printing to an output device like this, you may want to
specify the width of a line for formatting purposes. This is done by using
the following command

[line number] WIDTH #channel, number of characters
where the width of the device linked to a channel is taken to be 80
characters until it is reset. This does not apply to channels attached to

screen windows where the size of the window itself determines its width.

You will have noticed by now that the COPY command is not limited to
Microdrive files. Any device names may be used. The formal definition is

[line number] COPY device TO device

where device is MDVn_filename or any other peripheral device such as SER,
CON, SCR or NET, all of which are defined in this chapter.

It is possible to connect two QLs together via the SERial ports. If the
RS-232 cable is plugged into SERLl on one QL, it must be connected to SER2
at the other end (unless you have a crossover connector). So you can say

COPY MDVn_name TO SER
on the first machine and

COPY SER2 TO MDVn_name
on the other.
COPY copies a file with its header if at all possible. For this reason yo
should only use COPY for copying a file across SERial ports if there is a
QL at the other end also COPYing the file. With anything else, the f{ile
should be copied without its header by using the copy-no-header command.
This is of the form

COPY_N file TO device

If you are COPYing anything other than a file, it will realize that there
isn't a header and won't try to copy it.

The header is only noticeable over the serial ports. If a file is copied
over a serial line without the Z option, the header is used to determine

%

the length of the file.

If you are interested in communication with other computers, the file
header is in the form

file length (4 bytes)
file access (1 byte)
file type (1 byte)
type dependent information (8 bytes)
length of filename (2 bytes)
filename (36 bytes)
date information (12 bytes)

The BAUD rate is the number of characters per second that are being
transmitted and received. The default baud rate is 9600, but this can be
changed using the SuperBASIC procedure

{line number] BAUD baud_rate
where baud rate may be 75, 300, 600, 1200, 2400, 4600, 9600 or 19200

When receiving at 9600 baud, at least two stop bits must be sent by the
transmitting device. Receiving at 19200 baud is not yet possible.

CONSOLE DEVICES

A CONsole device defines a window on the screen with an attached keyboard
queue. Each CONsole window effectively acts as an independent terminal.

Channels 0, I and 2 are all defined as CONsole devices. The form of a
CONsole device definition is

CON [size of windowl] [position of window] [length of keyboard queuel
where the optional parameters are defined as follows :
The size of the window is
_ width of window in pixels X height of window in pixels
the default being

_448x180

A monitor screen is approximately 512 pixels across and 256 pixels deep. A
TV screen is approximately 448 pixels wide and 240 pixels deep. Thus the
32 pixels at each side of the TV screen are invisible, as are the 16
pixels at the top.

The position of window is the pixel coordinate position of the top left-

hand corner of the window. Coordinates start at (0,0) at the top left-hand
corner of the monitor screen, the x-coordinate increasing towards the

76

right-hand edge and the y-coordinate increasing downwards towards the
bottom of the screen. The position option has the form

A x-coordinate X y-coordinate
the default being

al2xlé

The length of keyboard queue is simply the number of characters which can
be accumulated in the input buffer for the window. Its form is

_ number of characters
and the default is
_128

So CON defaults to CON_448x180a32x16_128

CON_50 CON_50x180a32x16_128
CONx20 CON_448x20a32x16_128
CON_x30 CON_448x30a32x16_128
CONal00 CON_448x180al00x16_128
CONax40 CON 448x180a32x40_128
CON_ 50 CON_448x180a32x16_50
CONa_60 CON_448x180a32x16_60

CONsole devices may be used in the same way as SERial devices, e.g.,

COPY mdvl_dat33 TO CON
OPEN #3,CON_50x50: INPUT #3,a$

If you have a printer attached to SERI, try

COPY CON TO SER

and anything which you now type at the keyboard is immediately re-routed
to the printer until you BREAK (CTRL and space) out of it.

The input buffer on channel zero expands automatically when it s
necessary. There is therefore no need at all to re-open #. If you want to
change the size and position of of the console channel, the WINDOW
procedure, described in Chapter 10 on Screen Control, is perfectly safe.

SCREEN DEVICES

A SCReen device is exactly the same as a CONsole device except that there
is no attached keyboard queue. It is an output window only. Setting up the
device name uses the same form and defaults as for CON but the final
'_length' is omitted,

17

SCR [size of window] [position of window]
where size and position are as defined for CONsole.

OPEN #4,5CR_100x100a224: PRINT #4,!table$!
COPY mdv2_log TO SCRax!80

The NETwork

Another method of communicating with other QLs is to use the NETwork. A
set of QLs can be connected together via the NETwork ports at the back of
the machine (which are both alike), and each is given a different NETwork
station number to differentiate it from the others. When it is switched
on, a QL is automatically assumed to be NETwork station one. Obviously, if
two are linked together, they cannot both be station one. To assign
yourself a different station number, you simply enter

NET station_number

where station_number is evaluated to an integer which must fall in the
range | to 64.

To send information to another QL, that QL must be expecting to receive
it. You must therefore have a NETwork Output channel to the second QL
open, and that QL must have a NETwork Input channel from you open.

To set up as station % and To set up as station 5 and

send data to station 5 accept data from station 4
NET 4 NET 5

OPEN #3,NETO_5 OPEN #6,NETI_4

PRINT #3,'Hello station 5 INPUT #6,a%: PRINT a$

So NETI_n means accept input from station N; NETO n means send output to
station N. It is a collaborative system, you cannot do a NETO if the other
station hasn’t done a NETL

Any data sent is transmitted in blocks of 255 bytes. If the data is less
than 255 bytes long it will not be sent immediately, but closing the
channel causes any remaining data to be sent. If the NETwork station on
the receiving end of the block does not respond within 15 seconds,
supposing the channel to have been closed, for example, then the
transmission is aborted and control returned to the console.

The above system describes communications between two QLs only. A station

may set itself up to receive input from any other network device by the
following statement

78

OPEN_IN f#channe!,NETI n
where N is its own station number. For example,
OPEN #6,NETL_5

in the example above, will receive data fron any station transmitting to
station 5 whenever it executes an INPUT #6 staterment.

i i i i have to open a
To transmit data to any station that mnay be listening, you)
channel on the NETwork broadcasting device. This is achieved by executing
the statement

OPEN #channel,NETO_0
-and then any number of stations can say
OPEN fichannel, NETI_O

and ask for input on that channel. Zero is always the NET‘:°:.k St‘;:‘?: ‘{s;(:
for broadcasting. A QL should not define itself to be station »)
open a channel on the broadcast device.

Since the transmitting station can sSend data 1o any numberh :’f izthr?:)
stations, there is no handshaking when broadc_astnng. ‘Thus, asl t e.etz s no
confirmation that data has been recevived it 1S poss_lble to lose tlh. 255
a sensible precaution, therefore, to limit broadcasting to less an

bytes at a time.

79

CREATING AND
RUNNING PROGRAMS

Creating a program

Entering lines into a program is easy. You simply type the line of
SuperBASIC prefixed by a line number and the editor inserts or replaces
that line. If a line with no statements after it is entered, that line
will be deleted from the program.

Changing the line that you are currently typing can be achieved by means
of the left and right cursor keys. These are on the left-hand side of the
space bar and are marked €— and —>. Pressing the cursor-left key moves the
cursor one character position to the left. The cursor continues to move
for as long as the key is held down.

Deleting the character on the left of the cursor is done by pressing CTRL
and <€ ; deleting the character on the right of the cursor by pressing
CTRL and —>. The character that the cursor is flashing over is always
taken by SuperBASIC to be on the right of the cursor. New characters are
inserted in front of this character. The line editor is always in insert
mode. To overwrite a character, you have to position the cursor on top of
it, press CTRL and —, then type in the new character.

To enter a line of SuperBASIC, the cursor does not have to be at the end
of the line. The line being input is held in an input buffer which has an
implicit line feed at the end of it. The cursor can therefore be anywhere
on the line when the ENTER key is depressed and the whole input buffer
will be accepted. The ENTER key is not the only one which will send the
input buffer to SuperBASIC, the up-arrow and down-arrow keys (T , {) on
the right-hand side of the space bar will do so as well. They have a side-
effect, however, which will be detailed later on in this chapter.

As soon as a line of SuperBASIC, whether preceded by a line number or not,
has been entered, it is parsed. This means that it is checked for the
correct syntax and converted to internal SuperBASIC tokens. If the line
cannot be parsed, the error "bad line" will be printed on the console
channel, channel zero, and the line will be echoed, leaving the cursor
flashing after the last character. You can now edit the line and re-send
it, or press CTRL and the space bar together in the BREAK sequence to
clear the input buffer completely.

If you are deleting a large chunk of a program, there are more convenient

methods than by entering one line number at a time. DLINE deletes a set of
SuperBASIC lines. The definition is

DLINE range of lines {,range of lines}
where range is
[line_number] [TO Lline number]]
For example,
DLINE | TO 10,30,100 TO 200
would delete lines | to 10 inclusive, 100 to 200 inclusive, and line 30.

[f an empty range is given (e.g., DLINE ,,), no action is taken. Beware,
though, DLINE TO is expanded to DLINE | TO 32767 so your whole program
will vanish!

For entering a substantial portion of a program, the AUTOmatic line number
generator is most useful. I'ts definition is

AUTO [startline] [,increment]
where startline is the line number at which you want to start;
and increment is the difference between subsequent line numbers.

If a starting line is not given, line number 100 is assumed; if no
increment is given, a step of 10 is generated, e.g.,

AUTO gives you lines 100,110,120,130,...
AUTO 20 gives you lines 20,30,40,50,...

AUTO ,3 gives you lines 100,103,106,109,...
AUTO 400,5 gives you lines 400,405,410,415,..

If a line number does not exist already, then SuperBASIC prints it in the
console window, channel zero, at the bottom of the screen, and leaves the
cursor flashing ready for you to enter the body of the line. When you have
finished the line, press the ENTER key. The line will be absorbed into the
current program and SuperBASIC will give you the next line number in the
sequence.

Should a line in the sequence already exist, the whole line will be
printed in the console window and the cursor left flashing at the end of
it. This allows you to edit the line if you wish or just press ENTER to
move on to the next line.

The lines are treated exactly as if you had entered the line numbers
manually. lf there is no text after a line number, that line will not be
included in the program but AUTO will continue to generate the next. If
you delete all the characters except for the line number, the line will be
deleted from the program and AUTO continues.

81

To stop the automatic line number generation completely, press CTRL and
the space bar at the same time. This is the BREAK sequence which has been
referred to before. SuperBASIC then ignores whatever is in the input
buffer and turns off the AUTO command.

As was mentioned earlier, the up and down arrows can be used to send the
line instead of the ENTER key. If the down arrow is used, after the input
buffer has been passed to the editor, the next line in the program is
written to the console and waits to be edited. The AUTO sequence will now
continue from this line. So given the initial program

—
3
o
ancoe
[T I O
S W N -

and the command
AUTO 120,5

the first line to appear is
120 b = 2

1f the ENTER key is pressed, the next line is
125

Suppose you type E=5 l . This will insert the whole line 125 e=5 and
produces the next existing line

140 ¢=3
An ENTER here gets you

145
and so the sequence continues. The use of the up arrow is similar; after
interpreting the input buffer, the previous Jine is recalled. So,
continuing the example above

145 t=6 T
inserts line 145 and writes

140 c=3
Another up-arrow here produces

125 e=5

whereupon ENTER gives

82

130
that being the current line plus the current increment.
An up arrow terminates AUTO if it would take you beyond the top of the
program. A down arrow beyond the end of the program, however, continues to
increment for new lines. The up and down arrows may be used outside of the
AUTO command, where they produce the previous or next existing lines as
normal. In this case, if the down arrow is used on the last line of the
program, that same line is repeated, because the current increment is
zero.

There is another command, EDIT, which is often of use. It is defined in
exactly the same way as AUTO,

EDIT [startline] [,increment]

with a default startline of 100 but the default increment is zero. If you
only want to edit one line, it is much easier to say

EDIT line_number
make the change and be finished, than to say
AUTO line number
make the change, wait for the next line to be printed and then BREAK out

of it. Even remembering to put ' ,0 ' after an AUTO is a nuisance, so EDIT
is very useful.

Listing programs

Displaying the program currently in memory is done by using the LIST
command. This has the form

LIST [#chamnel,] range of lines {,range of lines}
where channel is the place to write the program lines to
and range of lines is
[line number] [TO [line number]]
LIST alone or LIST TO , translates to LIST | TO 32767
LIST line TO line lists from startline to endline inclusive
LIST line just lists the single line

If a channel number is not given, the program listing window, #2, is used.

LISTing can only be done on the program currently in memory. It takes the

83

inpernal SuperBASIC tokens and detokenizes them, one at a time, into the
print buffer. When a line feed token is reached and converted, the whole
line is written to the channel at the next print position.

When a line number token is reached, LIST checks to see whether it is past
the endline of the current range. If this is the case, LIST looks for the
next range to print. When listing a new range, all the lines from the top
of the program down to the first line of the range are skipped, making the
LIST command reasonably quick, whichever set of lines is required.

If you would like a hard-copy of your program, connect a printer to SERial
port | and say

‘OPEN #3,SER: LIST #3: CLOSE #3
or whichever channel number is most convenient.

The last range of lines printed to the listing window, #2, is stored in a
table. This set is called the list range and is made use of whenever a
line of the current program is changed. If the altered line is in the list
range, i.e., displayed on the screen, or within one line either side of
this range, then the set of lines is relisted in the window to reflect the
change. If the line is not in the list range, the window is not redrawn.
Thus if you want to see the lines you are changing updated, you must make
sure that they are in the list window to start with.

Taking an example. Suppose you have a program starting with line 100 and
rising in steps of 10. When you LIST 100 TO 350, some lines will scroll
off the top of the window. Say you are left with the line at the top of
your window being 160, and the line at the bottom being 350. There are two
other lines which are of interest; the line before the top one displayed
and the line after the bottom one displayed. These are called the
invisible top line and the invisible base line.

150 invisible top

P 2
, 160 top X

, 170 |

! «. the list range | window
]

| 350 base {
S d

360 invisible base

Now if you edit,say, line 250, the range 160 to 350 will be relisted on
the screen to show the change. If you alter line 100, the line in the
program will change, but it will not be visible because it is outside the
list range.

a line inside the list range, 255 say, will cause the lines
following it to be scrolled down, so the new range is 160 to 340.

Deleting a line inside the list range, 270 say, will cause the lines

following it to be scrolled up, so the list range now includes the
previous invisible base line.

Inserting a line between the top and the invisible top line will cause the
list window to be redrawn to include it, as will changing the invisible
top line. Similarly, inserting a line between the base and invisible base
line or changing the invisible base line redraws the screen.

Now, the list window might not be full when relisting is to be done. If
that is the case, printing continues until the window is full. This
naturally increases the list range. Since the LIST command writes the
lines at the next print position, scrolling when the bottom of the window
is reached, SuperBASIC has no idea where on the window the lines are.
Relisting is therefore always done from the top left-hand corner and the
remainder, if any, of the window is always cleared to avoid confusion.

Renumbering a program

It is obviously necessary to be able to renumber the lines in a program.
At the same time, there ought to be the capability of only renumbering
certain parts of programs if you so wish. To this end, the SuperBASIC
RENUMber command was designed in the following form

RENUM [top_oldline [TO [base_oldline] | ; 1lnew_startline] [,increment]

If none of the optional parameters are given

RENUM | TO 32767;100,10

is assumed. Thus,

RENUM 200 means renumber everything starting at 200 in steps of 10
RENUM ,30 means renumber everything starting at 100 in steps of 30
RENUM 150; means renumber from 150 onwards, starting at 100 step 10

RENUM TO 300; means renumber up to line 300 inclusive, from 100 step 10

This format makes the norm (renumbering everything) simple to use, but is
flexible without being confusing.

Renumbering will relist the lines in the list window if they have changed.
There are a few rules associated with renumbering.
You cannot renumber beyond 32767 or before |.

You cannot renumber a range if,by doing so, you would take it out of
position. For example, given lines

100,200,300,400

you cannot
RENUM 200 TO 300;500
because that would give lines
100,500,510,400

which is not allowed. Renumbering out of range is not allowed for two
reasons. First, it dramatically increases the possibility of error; wiping
out portions of the program, for example, would be ridiculously easy.
Secondly, even assuming that the command given was always correct, the
length of time that rearranging the lines in the program would take would
be disproportionate to its usefulness.

In order to know when lines would be renumbered out of sequence, the
actual line before the first one in the range and the actual line after
the last one in the range are also included in the renumber set, being
‘renumbered' to their existing values. A table is created in the vv area

to hold all the line numbers in the range and what they will be changed
to. The form of this table is

size of table (4 bytes)
current line number value (2 bytes)
new line number value (2 bytes)

RENUM then goes through all the lines in the range, filling in the new
line number in the table and editing the program line to reflect it at the
same time.

The next stage is to scan through the whole program, looking for any line
number expressions after GOTO, GOSUB and RESTORE. In any such line number
expression, it is only the first term, if that is a floating point
constant, which will be renumbered.

If a line number is less than or equal to the first one in the table, it
is ignored. Similarly, if a line number is greater than or equal to the
last one in the table, that too is ignored. If a line number is within the
range, however, the renumber table is scanned until a line number is found
which is greater than or equal to the target. The line number expression
within the program is then updated to the new value given in the table,
and the search through the program continues.

RENUM can only deal with GOTO, GOSUB and RESTORE because these are

SuperBASIC keywords and as such have an unchanging, easily identifiable.

internal token. Other commands which have line number parameters are
procedures which cannot be singled out at all easily. To do it, all the
procedures which might take line numbers would have to have their names
set aside in a separate list, then each and every name token in the
program would have to be detokenized and checked against the list. Again,
could any parameter be a line number, or would the particular one have to
be specified ? RENUM would be very slow indeed.

As an example of all this, consider what happens when the skeleton program
below is changed by the statement

RENUM 140 TO 300; 200, 2

original program after RENUM reason
120" GO TO 305 120 GO TO 310 (1)
130) 130

140 200

150 202

160 GOSUB 218 204 GOSUB 216 (2)
170 206

180 m = 200 208 m = 200

195 210

200 RESTORE 132 212 RESTORE 200 (3)
210 214

220 216

300 ON x GOTO 180+k, 218 ON x GOTO 208+k, (3]
nlin+200,110,200,m nlin+200,110,21 2,m

310 3lo

(1) 305 is between 300 and 310

(2) 218 is between 210 and 220, 220 has become 216

(3) 132 is between 130 and 140, 140 has become 200

(4) 180 has become 208; only the first term of a line number expression is
changed; 110 is not in the renumber range; 200 has become 212 only
floating point constants can be changed

RENUM will renumber GOTO, GOSUB and RESTORE at the time. It will renunber
the line number associated with a DEFinition line at the time when the
next line is executed, i.e, when the next namepass is done. It will not
renumber the line numbers associated with REPeat or FOR indexes. Thus

start=100: REPeat ren: RENUM start: start = start+100
will be perfectly safe if entered as a direct console command (though it

is a little single minded and might not let you BREAK for a while), but
the same line within a program is likely to become remarkably confused.

Saving a program

It is clear that there needs to be some method of saving a program onto a
Microdrive medium. SAVE takes your current program and does just that. The
formal definition is

87

SAVE name {,range of lines}
where name is MDVn_filename or a peripheral device
and range of lines is [start_line]l TO [end_line] as defined for LIST.

If no ranges are given, then the whole program will be saved with the
specified name onto the tape in the given Microdrive. The filename chosen
must not already exist on that tape.

SuperBASIC takes the internal program, detokenizes it as it does for LIST,
and writes it out in hexadecimal ASCII.

Restoring a program

There are two methods of retrieving a program from Microdrive,
LOAD name and MERGE name
where name in both cases is MDVn_filename or a peripheral device.

The SuperBASIC LOAD procedure first locates the file on the given device.
A “not found" error is generated if it doesn't exist, otherwise the
current program, if any, is deleted and the new one read in line by line.
The process is exactly the same as if you were typing the lines in at the
keyboard (but less strenuous). Each line is accepted, parsed, converted to
internal tokens and stored in memory in the program file area.

The only difference will be noticed in the case where a line will not
parse properly. To facilitate entry of the rest of the file, an error is
not generated but the MISTAKE keyword is inserted into the line, just
after the offending line number. Since it won't parse, the rest of the
line is treated as text (similar to REMark). If a line beginning with
MISTake is executed, the error "bad line" will appear at the console and
the program will halt.

MERGE is similar in method to LOAD, but it does not clear out the current
program and variables before commencing to read the new one. This means
that each line will be inserted into the original program if it has a new
line number, but will replace a line with a matching line number. The
MERGE facility is very useful for incorporating standard procedures into a
program.

Neither of the above commands executes any part of the program, they
merely read in the ASCH lines and convert them into SuperBASIC tokens.

If the lines of SuperBASIC do not have line numbers, then they will be
executed as if they had been typed directly at the keyboard. For example,
try this exercise, line by line,

OPEN_NEW #3,mdv]_loadtest
PRINT #3,'a=1'\'b=2'\"print a,b’
CLOSE #3

LOAD mdvl_loadtest

You should have the values | and 2 displayed in the execution window. To
see what the file looks like, enter

COPY mdvl_loadtest TO SCR

If you have a non-line-numbered file like this which you want to read in
as a line-numbered SuperBASIC program, you can say,

AUTO

at the keyboard, then delete the line number which is printed at the
console (don't BREAK) and enter

LOAD filename

AUTO will obligingly put a line number in front of ewery line. Try it with
the above file like so,

AUTO
delete four characters to the left and type
LOAD mdvl_loadtest

CTRL and space . to BREAK out of AUTO
LIST

Lo and behold!

You can also achieve the same effect by having AUTO as the first line of
your non-line-numbered file, for example ,

OPEN #3,mdvi_loadtest : OPEN_NEW #4,mdvl_autotest
PRINT #4,'auto’

REPeat p : INPUT #3,a$: PRINT #4,a$

CLOSE #3 : CLOSE #4

LOAD mdvl_autotest

CTRL and space «..to BREAK out of AUTO
LIST

Clever innit?

Clearing out a program

NEW is the command for clearing out most of the SuperBASIC storage area.
There are no parameters, so its form is simply

89

NEW

and on execution the current program will disappear, the vv area is all
released and the nametable is left with only machine code procedures and
functions. In addition, the arithmetic stack, return stack, data status
and line number table are cleared and all channels apart from 0, | and 2
are closed. These default channels are not reset. If you do not want to
take such drastic measures, then

CLEAR

just attacks the vv area, return stack, data status and RI stack. It does,
however, go through the current program on a name-search pass resetting
all the nametypes.

Because NEW clears out everything that it can find, any other statements
following NEW on the same line will be destroyed as well.

Running a program

So far, we have been running programs by defining them as procedures and
then entering the procedure names to execute them. If you have not set

your program up as a procedure, then you can use the RUN command instead.
The formal definition is

RUN [line number]

where line number is an expression giving the line number at which you
would like execution to start. If this is omitted, execution starts from
the top of the program. .

Because you will frequently want to run a program with different sets of
data, the values of the variables used and the current DATA item pointer
are not reset on RUN.

To load a program from Microdrive and execute it immediately, you can say

LRUN name

where name is MDVn_filename or a peripheral device as defined for LOAD.
This is exactly equivalent to the two commands "LOAD name" and "RUN".
There is a similar facility for MERGE. Its form is

[line number] MRUN name

and, when used as a direct command, it first merges the named program and
then executes from the top of the program. When used within a program, it
merges the named program and then continues execution from the line after
the MRUN command. Thus MERGE:- and MRUN, when used inside a program, have
the same effect.

If you have a program called BOOT on the medium in MDVI , then on starting
up your QL, SuperBASIC performs an LRUN on it automatically. It is exactly
the same as if you reset and then entered the command,

LRUN mdvl_boot

Although it is possible to incorporate LOAD and LRUN into programs, you
should remember that they destroy the original code before reading in the
new, so that there is no way of returning to the initiating program. Both
of them actually do a NEW before they start reading. This also means that
you cannot put any statements after LOAD and LRUN and expect them to be
done.

in other words,

LOAD name : LIST

will not write out the program because any statements after LOAD are lost,
but

MERGE name : LIST
will display the whole program after the new lines have been read in. You
should also note that if you LOAD a file as a direct command from another

file currently being LOADed, it will work, but it will not return to the
original file when the second one has finished.

Passing programs between QLs

It is possible to LOAD and SAVE programs across QLs. If two QLs are
connected together by an RS-232 cable plugged into the SER1 port of one
machine and the SER2 port of the other, you can say

SAVE SERz
on the first and

LOAD SER2z

on the second, and the current program will be transferred across. The Z
option is necessary to mark the end of the text file.

The current program can also be transferred across network lines.
NET 5 : SAVE NETO_6
on one QL and

NET 6 : LOAD NETI 5

91

on the other one does the same job.

The actual ranges of lines required can be specified on this sort of SAVE
command in the same way as they can on a normal SAVE.

MERGE, MRUN and LRUN can also be used across the SERial ports and the

NETwork in the same way as described here for LOAD. It should be noted
that they will all only work on the program currently in memory.

Stopping execution

When SuperBASIC reaches the bottom of the program, execution will stop of
its own accord. To stop it earlier than that, use the procedure

[line numberl STOP
anywhere in the program. Execution will halt and the cursor will flash in
the console window. lf you find that you want to carry on from where you
left off, enter

CONTINUE

and execution will recommence from the statement after the STOP.

The way that SuperBASIC achieves this is to keep the continuation status
in its storage area. The information held is

line number halted at (2 bytes)
statement on that line (I byte)
whether inline or not (1 byte)
index if an inline loop (2 bytes)

As this information is updated every time that a halt is made, all that
CONTINUE has to do is to retrieve it, go to the line number and statement
given, and carry on from the statement after that.

You can also CONTINUE after BREAKing (CTRL and space) into a program and
getting the message "not complete".

When a program is renumbered, the continuation status data remains
unchanged, so the line number contained therein might start you off
somewhere unexpected if you do a CONTINUE.

You cannot CONTINUE after a halt has been made while processing a direct
command, i.e.,, a line that you have entered from the keyboard rather than
one which is embedded in a program. The reason is obvious when you think
about it, because processing any new direct command (i.e., the CONTINUE),
overwrites both the input buffer and the internal tokens of the previous
command line.

92

RECOVERING AFTER ERRORS

When an error is generated, an error message is printed out on the console
window, together with the line number where it occurred, and execution
stops. SuperBASIC 1treats this as a program halt and wpdates the continue
status accordingly so, to carry on after an error, yu can simply enter
CONTINUE as before. lf you are able to make a correction, you may wish to
re-execute the line. This can be achieved by using

RETRY

which retrieves the continue status, decrements the statement number, and
does a CONTINUE.

For example, suppose you have a small procedure
100 DEFine PROCedure exu(x,y)
120 x = X" 2+¢h¥*y+16
140 END DEFine
and you have mistyped the calling line, for example
g=4: r=5: ex4 q
As you haven't provided a second argument, an unset expression will be
generated for Y. The expression evaluator therefore cannot calculate a
result at line 120, so the message
At line 120 error in expression

is printed at the console and execution stops.

You now have the chance to, say, LIST 120 to see what the erring statement
contains and you can then enter

y=5: RETRY
to set the value of Y and re-evaluate the expression.

If an error occurs inside a procedure or function and you do not CONTINUE
or RETRY, you will occasionally get the message

PROC/FN cleared
This means that the return stack has been cleared and it happeps when you
CLEAR, RUN, edit the program or put a new name into the namelist. It means
that you can no longer CONTINUE from inside that procedure or function.

If an error occurs while processing a direct command line, you will not be
able to RETRY it since parsing the statement overwrites the buffer.

93

10 SCREEN CONTROL

Screen modes

There are two QL screen modes; high resolution and low resolution. At high
resolution, 512 separate pixels can be identified across the screen; in
low resolution mode the pixels are taken in pairs so that a low resolution
character is twice the width of a high resolution character. At low
resolution, often called 256 mode, the full eight colours can be used, but
high resolution, or 512 mode, only supports four colours. This is because
the double width is necessary to display all the physical colours, one

pixel in each pair being used for red and green, and its partpner taking
care of blue and flash.

To change display modes, use the procedure
MODE mode_number

where mode number is 8 or 256 for low resolution mode
and 4 or 512 for high resolution mode

This command not only changes modes, it also clears all the windows on the
screen, resetting them to their cwrrent size and colour. MODE resets any
printing characteristics which may have been changed.

Windows

Windows are an important feature of the Sinclair QL. The only way to write
or draw anything to the screen is to direct the output to a window.

When you switch on, you are asked to choose whether you want a monitor
display or a TV display. The reason that the displays are different is
that a television overscans on both the vertical edges and on the top of
the screen, so pixels in those areas are lost. In addition, the convex
rounded corners produce a lot of distortion so need to be avoided.

The television option automatically selects low resolution mode whereas
the monitor option automatically selects high resolution mode. You can, of
course change these by use of the MODE command once the initial selection

has been made.

(;hoosing the monitor option, you are mmediately confronted with three
distinct windows on the screen,

Listing window Execution window
#2
Red ink on white paper White ink on red paper

Console window, #0, Green ink on black paper

Both the execution and listing windows are surrounded by a black and white
checkered border. You can fit 20 lines into each of them with 42 monitor-
sized characters on a line. The console has room for 5 lines with 85
characters to a line.

For a television display, all the charactes are printed as double the
width of a high resolution character, so it is more readable to have the
listing and execution windows running the whle width of the screen. To do
this, these two windows are laid on top on one another, so that there are
still three windows even though it only looks like two.

Listing window, #2, white ink on blue paper
and

Execution window, #1, white ink on red paper

Console window, #0, white ink on black paper

Both the listing and execution windows are)7 characters wide and 20 lines
deep. The console window is 37 characters wide and 4 lines deep.

The windows are actually defined in terms of pixels. A monitor screen is
512 pixels wide and 256 pixels deep whereas a television screen is 448
pixels wide and 240 pixels deep. The 32 pixels on either side of the
television screen are virtually invisible, a are the 16 pixels at the
top. The relative positions of the screen widows to one another are shown
in Fig. 10.1.

96

> -

-3

Figure 10.1

DEFINING A WINDOW
Redefining the window for a channel is achieved by use of the procedure
(ino] WINDOW [#channel,] size of window, position of window
where size of window is
width of window in pixels , height of window in pixels

and position of window is given by the x and y pixel coordinates of the
top left-hand corner of the window

number of pixels along , number of pixels down
All pixel counting starts at the top left-hand corner of the monitor
screen, so remember to add 32 to the x-coordinate and 16 to the y-
coordinate if you are using a television.
The channel used must already have been opened.

OPEN #3,CON_30x50al00x100
is the same as

OPEN #3,CON : WINDOW #3,30,50,100,100

OPEN #4,5CR_60x60a200x100

is equivalent to

OPEN #4,5SCR : WINDOW #4,60,60,200,100
or just

WINDOW 400,200,32,16

to change the size of the execution window.

OVERLAYING WINDOWS

The positioning of channels | and 2 on the initial television display may
cause some confusion at first. If you enter something like

100 PRINT 'Hello world’

the line is entered into a program and is printed in white on a completely
blue background. If you now enter

PRINT 'hello'\,'hello’\,, hello*

the words are written in white on a red background on top of what was
there before. If you now LIST, the second ‘hello' will be overwritten.
This is because the two windows are truly independent and each has its own
pointer to where the next character in that window should go.

LIST always fills in the rest of the line with the paper colour to make it
absolutely clear what a program line contains. When something is PRINTed
to a window, though, only that section of the window is affected. The red
paper behind ‘'hello' stops after the final character, it is not continued
to the end of the line. This is one of the things that makes screen
handling so quick. It also makes it easier to highlight your screen output
without having to put up with irritating bands of colour.

There are times, though, when you don't want this irregular appearence. In
that case you can completely cover the window with the colour of the paper
first. The simple form of the clear screen command is

[line number] CLS [#channel]

where channel is the channel attached to the window. If it is omitted, the
execution window will be cleared.

So, on a TV screen,
CLS or CLS #1

fills the upper window with red. When you now PRINT something, the
background colours blend in perfectly.

97

The colours

BIT PATTERNS

The colour of each pixel in the window is a combination of red, blue and
green. The numerical value of it can be calculated consistently if we use
certain bit values for each of these colours and set the bits on or off
depending upon whether the primary colour is a component of the final
colour. The bits used are

bit 0 (value 1) blue
bit 1 (value 2) red
bit 2 (value &) green

so the full range of colour values is

000 no colour « B black 0
001 blue «. Lblue 1
010 red . Rred 2
o1l blue+red . 1 magenta 3
100 green s G green 4
10l green+blue . CcCyan 3
110 green+red w7 Yyellow 6
111 green+red+blue e W White 7

In four colour mode, the colour values are

0,1 ... black
2,3 .. red

4,5 ... green
6,7 .. white

COMPONENTS
A QDOS colour is made up of three components:

a main colour whose numerical value is one of those defined above;
a contrast colouwr also of numerical value 0 to 7;

the pattern in which the two are combined. There are four patterns
available, defined by

0 dots the top right-hand pixel in a
block of four is contrast

1 horizontal the bottom two pixels in a
stripes block of four are contrast
2 wvertical the two right-hand pixels in a
stripes block of four are contrast
3 checker the top right- and bottom
board left-hand pixels in a block
i of four are contrast

When you are asked for a colour parameter to a SuperBASIC procedure, you
can actually give,

main [,contrast [,pattern]]

where the default contrast colour is the same as the main colour and the
default pattem, or stipple effect, is a checkerboard.

COMPOSITE

In order to pass the colour information to QDOS, SuperBASIC has to combine

the three components into one composite colour. This composite colour is
one byte long :

bit O value 1 bit pattern of main colour
1
2

= N

99

bit 3 value 8 bitwise XOR of main colour

4 16 with contrast colour
5 32

bit 6 value 64 bit pattern of stipple
7 128

So, to get the numerical value of a composite colour,

From zero, add 1 if main colour contains blue
+ 2 if main colour contains red
+ 4 if main colour contains green

then add 8 if contrast is different by blue
+ 16 if contrast is different by red
+ 32 if contrast is different by green

finally add 0 for dots
or 64 for horizontal stripes
or 128 for vertical stripes
or 192 for checks.

For example,

green and white horizontal stripes is

01 011 100 = 64+16+8+4 = 92
horizontal green
stripes white 111 ** 100 green

yellow with black dots is

00 110 110
dots yellow
black 000 ** 110 yellow

32+16+4+2 = 54

or, working backwards, from colour 147 128+16+2+1

10010011

"ou

main colour is 011 = magenta
contrast is 01077011 = 00! = blue
stipple is 10 = vertical stripes

You can, of course, generate this composite colour for yourself as long as

you use it as a single colour parameter only. After a little thought and
experiment, you can achieve some really terrible colours!

100

How to get the colours onto the screen

When you open a new CONsole or SCReen channel, the window defaults to
black paper and green ink. To change the colour of the paper associated
with a window, use
[line number] PAPER [#channel,] colour
where the channel defaults to the execution screen and the colowr may be
main [,contrast [,stipple] 1 or a composite colour as defined above. You
won't notice any change in the colour until you write something to the
window.
The colour of the ink with which you write can be changed by the command
[line number] INK [#channel,] colour

where channel and colour are as above. Be wary of using the same colour
for your ink as you have on the background!

You can highlight your output by using the SuperBASIC procedure

[line number] STRIP [#channel,] colour
with channel and colour as before. This writes any characters, including
spaces, which you now print on a different colour background to the paper.
When a PAPER command is executed, the STRIP colour is automatically reset
to the new colour of the paper.

Positioning the cursor without spacing to it can be done by using the
procedure

[line number] AT [#channel,] row_number , column_number

where channel is the window in which to change the print position, if
omitted it will default to the execution window, #1;

row_number is the number of lines down the window, taking 0 as the
top line and not going past the bottom line;

column_number is the number of character positions along the window,
taking 0 as the left-hand edge and not going past the right-hand edge.

For example,
REPeat tick_tock: AT 0,0: PRINT DATES$

shows the time ticking away at the top left hand corner of the execution
window. Or try this on a television display,

101

100 DEFine PROCedure pretty

110 REPeat ugh

120 row = RND(@ TO 19)

130 column = RND(O TO 36)

140 colour = RND(0 TO 255)

150 AT row,column : STRIP colour : PRINT " *
160 END REPeat ugh

170 END DEFine pretty

It eventually covers the window with a kaleidoscope of colour. Put in
102 PAPER 2 CLS: FOR izl to 295: PRINT i;

as well to see how long it takes to cover every position.

OVERWRITING

If you do not want a solid strip of colour at the back of your characters,
you can make use of the different overwriting modes. The procedure call is

[line number] OVER [#channel,] overwriting_mode

where channel is the window in which to change the overwriting
characteristic, default 1;

and the overwriting mode is 0, | or -1 as defined below,

OVER 0 is the normal overwriting mode where characters are written in the
current INK colour on the current STRIP colour background;

OVER | writes characters in the current ink colour but on a transparent
strip;

OVER -1 also has a transparent strip but, as the characters are printed,
the colour of the ink is XORed with the colour of the existing background
for each pixel written.

The overwriting mode remains in force until it is reset. MODE will reset
the overwriting characteristic to zero.

To illustrate the different effects, run the following procedure in eight
colour mode :

100 DEFine PROCedure print_over

110 PAPER I: CLS

120 PAPER 7: FOR i = 0 TO 19: PRINT ,\

130 STRIP 6: INK 3

140 AT 0,0

150 FOR i = 0,1,-1: OVER i: PRINT 'aaaaaaaaaaaa’
160 END DEFine

102

Line 110 covers the window in blue;

line 120 runs a broad white band down the left-hand side;
line 130 sets a yellow STRIP with magenta INK;

line 140 resets the print position;

line 150 prints a row of 'a's in the three overwriting modes;

The row written with OVER 0 has been printed in magenta ink on a yellow
strip clean across the the white and blue area.

‘The row written with OVER 1 has been printed in magenta ink on a
transparent strip so that the white and blue are clearly seen.

The row written with OVER -1 also has a transparent strip but the ink
colour on the white background is given by magenta XOR white = 011111
100 = green. The ink colour on the blue background is magenta XOR blue
01177001 = 010 = red.

non

AREAS OF A WINDOW
A window is defined as having five areas. They are :

- the whole window

- above the cursor line

- below the cursor line

- the whole cursor line

- from the cursor position to the right-hand end of the cursor line

£ WN—O

where the cursor line is the row of the window in which the current cursor
position is.

If X marks the position of the cursor, the area codes are

0 X 0 3 X 3 X 4

If you only. want to clear one of these areas, the area code can be
incorporated into the CLS parameter list. The formal definition is

[line number] CLS [#channel,] [area of window]
where channel is the window to clear, default #1;

and area is 0 to 4 as defined above, the default being zero, the whole

103

window.

If any area except zero is specified, the new cursor position after

clearing the window area is at the beginning of the 'next line after the
current cursor position.

For example, enter each line in turn at the console to see the relevent
areas being cleared : ,
PAPER 2: CLS : FOR i=l TO 245: PRINT j;

STRIP 0: AT 10,16: PRINT ‘abcdef’

CLS 1: PRINT ,,"xx'

CLS 4 PRINT 't

CLS 2: PRINT ‘again’

CLS 3: PRINT 'fin’

Defining a border

To make windows stand out, it is possible to specify the edge of them in a
different colour. The BORDER command is of the form

[line number] BORDER [#channet,] [depth [,colour]]
where channel is the window around which the border is to go;

depth is the size of the border in pixels. The number of pixels
specified will be doubled at the vertical edges; ’

and colour may be main [,contrast [,pattern]] or a composite.

If the channel number is omitted, then the execution window, #l, is
assumed. If the depth is not given, then the border no longer exists. If a
colour is not specified, then the border is deemed to be transparent.

A border is always drawn inside the window. As soon as the command is
executed, the border is drawn and, if its width has changed, the cursor is
set to the new character position (0,0) just inside the border, If the
border will not fit inside the window, "out of range" will be generated.

To illustrate the transparent border, try the following example in eight
colour mode: s '

100 DEFine PROCedure bord

110 FOR k=1 TO 10

120 BORDER k*5

130 CLS

140 FOR j=1 TO 5

150 FOR i=1 TO 5: PRINT i;
160 PRINT

170 END FOR j

104

180 END FOR k
190 END DEFine

You will see that the border, though transparent, is definitely in
existence. To see the sequence of events more clearly, append

N3

to line 120 and run the procedure again. For a beiter effect, delete line
130, which clears the screen, and rewrite line 110 as

110 FOR k=10 TO | STEP -1
leaving line 120 as
120 BORDER k*5k

Now rerun the procedure. Pretty, isn't it ?

REFERENCE POINTS

When defining windows, all the pixel coordinates have to be given relative
to the top left-hand corner of the monitor screen because there is no
other frame of reference available. it would be nonsensical to continue to
use that reference position after a window has been defined, since the
whole point of using a window as a framework for your output would be
lost.

Within a window, therefore, all pixel coordinate s and character
positioning are relative to the top left-hand corner of that window. A
border is defined as running round the inside edge of a window so, if a

border has been specified, the top left-hand pixel aailable for output on
the window changes again.

Blocks of colour

For solid areas of colour within a window, the SuperBASIC BLOCK command is
defined as,

[line number] BLOCK [#channel,] size of block, position of block, colour
where channel is the window in which to draw the block, default 1;
block size must fit inside the window and is
width of block in pixels , height of block in pixels

block position is the pixel coordinates of +the top left-hand corner

105

of the block relative to the top left-hand corner of the window : -

number of pixels along , number of pixels down -
colour is the colour of the block. This may be -—

main [,contrast [stipple]l 1 or a composite colour -

If the overwriting mode is -1, then the block colour will be XORed with

the existing colour for each pixel in the block. If there is a border on

the window, blocks are positioned relative to inside the border. Try the

following, one step at a time,

CLS to set the execution window all red

BLOCK 100,100,0,0,4 draws a green block in the top left-hand corner

BORDER 10 sets a transparent border inside the window

BLOCK 100,100,0,0,1 draws a blue block in the new top left-hand corner

Using blocks is a very fast way of drawing horizontal or vertical lines on

the screen. For example, you could say, -

100 DEFine PROCedure sql
110 OVER 0: PAPER 7: CLS
120 BLOCK 100,2,20,20,)
130 BLOCK 2,50,120,20,2
140 BLOCK 100,2,20,70,3
150 BLOCK 2,50,20,20,4

200 END DEFine

then run 5Ql for a fast multi-coloured square. To really appreciate the
power of the screen driver, amend the procedure to,

100 DEFine PROCedure sql
110 OVER 0: PAPER 7: CLS
114 FOR i=0 TO 445

120 BLOCK 100,2,20+i,20+i,l
130 BLOCK 2,50,120+i,20+i,2
140 BLOCK 100,2,20+i,70+i,3
150 BLOCK 2,50,20+i,20+i,4
160 END FOR i

200 END DEFine

and now run it!

If OVER -l is specified when you execute a BLOCK command, the block colour
is XORed with what is already there. Add the following line to your
procedure,

180 OVER -1: FOR i=0 TO 7: BLOCK 154,104,16,16,i: PAUSE

and run it again. Whenever the execution seems to have stopped, press any
key on the keyboard for the next colour wash.

106

RECOLOURING

Using BLOCK with OVER -l is a very fast way of recolouring part of a
window, but the same relative colours will always be generated and working
out what they will be is a little time consuming. If you want to reset any
colour in a window to any other colur then you will have to use the
RECOLour procedure. This takes the form

[line number] RECOL [#channel,] colou changes
where channel is the window to recolour, default |;
and colour changes are eight numerical values defined as follows

the colour to change black (0) pixels to
the colour to change blue (1) pixels to
the colour to change red (2) pixels to
the colour to change magenta (3) pixels to
the colour to change green (4) pixels to
the colour to change cyan (5) pixels to
the colour to change yellow (6) pixels to
the colour to change white (7) pixels to

For example,

RECOL 3,7,5,0,6,4,4,4
would change the square printed in the above example to having a black
top, white base, cyan left edge and yellow right edge, the whole on a

green background.

Because it has to look up every pixel, RECOL is quite slow compared with
blocking over, but on the other hand, youdo know what to expect!

Changing the cursor position

If you are laying out a window, it is not always convenient to write the
text at particular character positions as required by AT. You can instead
define the next print position by using

[line number] CURSOR [#channel,] pixel position
where channel is the window to move the cursor around in, default |;

and the pixel position is the x and y pixel coordinate pair of the top

left-hand corner of the print position to move to. The coordinates are, as
before, relative to the top left-hand corner of the window {(minus any

107

border).
So, for example,
CURSOR #4,0,0

positions the cursor at the top left-hand corner of the window attached to
channel 4;

CURSOR 224,100

puts the cursor in the middle of the default television screen execution
window.

A nice little example is
100 CLS: OVER 0: FOR i=0 TO 200: CURSOR 2*j,i: PRINT i

Try running it - ahhh!

Changing the character size

The normal character size at high resolution is 5 pixels wide by 9 pixels
high in a total space of 6 pixels by 10, i.e.,

Low resolution characters are double width, 10 pixels by 9 in a space of
12 by 10. The character size can be changed by

[tine number] CSIZE [#channel,] width_mode , height_mode

where channel is the window in which to change the character size
attribute, default 1;

and width_mode is
g for single width (5) , 6 pixel spacing
1 for single width (5) , 8 pixel spacing

2 for double width (10) , 12 pixel spacing
3 for double width (10) , 16 pixel spacing

108

and height mode is

0 for single height (9, 10 pixel line spacing
1 for double height (18) , 20 pixel line spacing

All the widths may be specified in high resolution mode, but only the
double widths may be used in low resolution mode. If 0 or | are used at
low resolution, they will be converted to 2 and 3 respectively.

Changing the size of characters alters the character positioning which AT
uses. MODE will reset character size to the default.

Moving the contents of windows

The contents of windows can be moved up and down or left and right. To
move the contents up and down, use

[line number] SCROLL [#channel,] distance [,window areal
where channel refers to the window in which you want to scroll, default 1;

distance is the number of pixels to move the contents down by (so a
negative distance moves the contents up);

and window area is O for the whole window (default)
1 for the area above the cursor line
2 for the area below the cursor line

Vacated rows of pixels are filled with the current PAPER colour and, once
the contents have been scrolled out of the top or bottom of a window, it
is impossible to retrieve them.
To move left and right, use

[line number] PAN [#channel,] distance [,window areal
where channel is the window to pan in (default #1);

distance is the number of pixels to move the contents right by (so a
negative distance moves the contents left);

and window area is 0 for the whole window (default)
3 for all of cursor line
4 for right-hand side of cursor line, including the
character at the cursor potition.

The vacated pixels will be filled with the current PAPER colour and it

should be noted that in low resolution, panning can be done only in steps
of two.

109

Once anything has been panned past the edge of a window, it cannot be
retrieved again.

To see what can be achieved with scroll and pan :

100 DEFine PROCedure roll

110 OPEN #3,SCR_40x120a40x120

120 OPEN #4,SCR_120x20a40x120 .
130 OPEN #5,SCR_40x120a120x120 : FOR i=3 TO 5: CLS #i
140 PRINT #3,'!

150 FOR i=120 TO 130 STEP 2: SCROLL #3,2
160 FOR i=40 TO 120 STEP 2: PAN #4,2

170 FOR i=140 TO 230 STEP 2: SCROLL #5,2
180 FOR i=120 TO 140 STEP 2: PAN #5,2

190 FOR i=230 TO 130 STEP -2: SCROLL #5,-2
200 FOR i=140 TO 66 STEP -~2: PAN #4,-2

210 FOR i=120 TO 20 STEP -2: SCROLL #3,-2
220 FOR i=66 TO 40 STEP -2: PAN #3,-2

230 CLOSE #3: CLOSE #4: CLOSE #5

240 END DEFine

Flashing text

In low resolution mode, characters can be flashed on and off. The command
to use is

[line number] FLASH [#channel,] flash_mode

where channel is the window in which to change the flash attribute, the
default being #1;

and flash mode is 0 to turn flash off
I to turn flash on.

Turning flash on and off does not affect anything that is already in the
window. Switching flash on, means that any characters now printed will
flash; switching flash off, means that anything printed from now on will
not flash.

When a character is flashing, it is first written as it would normally be.
Each row of pixels in the character square then alternates between its
current form and the colour of the background. The background colour for a
row of pixels is taken from the colour of the pixel at the left hand edge
of the row. So if a character has been written on a bi-colour background
(Fig. 10.7)

110

Blue]

the character square will alternately flash between

and

which locks somewhat irregular. To see this, run the following procedure

100 DEFine PROCedure flashl

110 PAPER 2: INK 7: MODE 8

120 CSIZE 3,1: CLS

130 FOR i=0 TO 30 STEP 2: BLOCK 2,10,90+i,110+1,1
140 CURSOR 100,100: OVER I: FLASH |: PRINT 'a’
150 END DEFine

To prove that flash doesn't work in high resolution, change line 110 to
MODE 4 and rerun the procedure. MODE resets the flash mode to O.

Underlining text

Characters may be underlined using the procedure
f{line number] UNDER [#channel,] underline_mode

where channel is the window in which to wunderline the characters, the
default being #1 as usual;

and underline_mode is 0 to turn underlining off
I to turn underlining on.

When UNDERIlining is switched on, anything now printed will be underlined
in the current INK colour. When underlining is switched off, no further
text will be underlined. If FLASH 1 has been set, the underscores
themselves do not flash. MODE resets the underlining attribute to oftf,
€.8.y

100 DEFine PROCedure under_ex
110 PAPER 2: INK 7: MODE 8
120 PRINT ‘Default is not underlined'\\

111

130 UNDER 1: PRINT 'This is underlined';

140 UNDER 0: PRINT !"but this isn't"\\

150 UNDER 1: FLASH 1: PRINT "Underlining doesn't flash"
160 UNDER 0: FLASH 0: END DEFine

Redefining the default windows

It may be that while experimenting, all your windows have got themselves
tangled up. This is a comprehensive procedure for resetting the default
channels without having to reset the machine. Note that channel zero only
has its window redefined, it is not re-opened. If you have been misguided
enough to re-open #0, then there is no alternative but to reset the QL
using the button on the right hand edge.

(1) on a monitor screen

100 DEFine PROCedure redef_mon

110 WINDOW #0,512,50,0,206

120 PAPER #0,0: INK #0,4: BORDER #0

130 OPEN #1,CON_256x202a256x0_128

140 PAPER #1,2: INK #1,7: BORDER #1,1,255
150 OPEN #2,CON_256x202a0x0_128

160 PAPER #2,7: INK #2,2: BORDER #2,1,255
170 MODE &

180 END DEFine

(2) on a television screen

200 DEFine PROCedure redef_tv

210 WINDOW #0,448,40,32,216

220 PAPER #0,0: INK #0,7: BORDER #0
230 OPEN #1,CON_448x200a32x16_ 128
240 PAPER #1,2: INK #1,7: BORDER #{
250 OPEN #2,CON_448x200a32x16_128
260 PAPER #2,1: INK #2,7: BORDER #2
270 MODE 8

280 END DEFine

Animation

The screen organization on the QL is for high resolution graphics rather
than for games. The emphasis is on scalable, off-window graphics, and
cursor positioning of text rather than on individual pixel movement.
SCROLL and PAN can be used for shifting the contents of windows, and you
can redefine windows over and over again to give the illusion of movement.
User-defined character generation is possible using a command in the
Sinclair QL Toolkit.

112

High quality animation is far better done neatly in machine code than
messily in SuperBASIC. Colin Opie's book 'QL Assembly Language
Programming', published by McGraw-Hill, describes animation techniques in
detail. Since SuperBASIC is a totally extendible language, it is possible
to create procedures of your own In machine code for animated graphics;
the machine code interface is well defined and details can be found in the
afore-mentioned 'QL Assembly Language Programming'.

113

Septl —lew 50,50

]. 1 THE GRAPHICS

The units

The QL SuperBASIC graphics system works in a conventional cartesian
coordinate framework, with an x-axis and y-axis at right angles, «x
increasing regularly towards the right and y increasing steadily upwards.

NO{’Q‘ - M')/\Qj‘dm T y-axis
“Ne Sc (_—,_]Q_
“"j o
-
\ 3
)
2
1
>
we =2 -l 0 1 2 3 .. x-axis
-1 :
-2

For every window, the state of the graphics initially is that the origin,
0,0), is at the bottom left-hand corner and that the height of the window
is 100 units. The number of pixels in each graphics unit therefore depends
on the size of the window, and the number of units wide that the window is
is deduced from the height. Both the height and the position of the origin
can be changed by using the SCALE procedure,

[line number] SCALE [#channel,] scale_factor, x-value, y-value
where channel is the window in which to change the scale, default 1;
scale_factor is the number of units high that the window is to be;

x-value is the coordinate unit value of x at the left-hand edge of
the window;

114

and y-value is the coordinate unit value of y at the bottom of the
window.

So, given a square window created by, say,
OPEN #3,5CR_137x100
the command,
SCALE #3,2,-1,-1
w‘ould place the origin, or (0,0), right in the middle of the window;

(-1,7 -1) at the bottom left-hand corner; (l,~-1) at the bottom right-hand

corner; (-1,1) at the top left-hand corner and (1,1) at the top right-hand
corner of the window.

+
-1,1) yi (L,
1 T
[.
]
i
|
i
2| T~ L0 X)) Bt R x 2
|
|
[}
|
i
(‘ly'l) i (lf‘l)
or SCALE #3,50,10,-20 would be
F)
y) (10,30) (60,30)
| N
| ’
]
:
|
|
]
N R I 50
AR (X e x?
:
: pN
| (10,-20) (60,-20)

The graphics cursor for every window Is initially set to (0,00 This

115

changes as soon as something is drawn.

Drawing lines

A line can be drawn on the execution screen from the current graphics
cursor position to another point by using the LINE command in the
following simple form :

LINE TO end_position
where end_position is the pair of cartesian coordinates ,

x-coord of the end of the line , y-coord of the end of the line

The line will be drawn in the current INK colour from the current position
to the given end point, but the final pixel is not inked in. The reason
for this will become apparent later. The current graphics pointer is then
updated to hold the end coordinates.

To change the current graphics position without drawing a line to it can
be done by saying

LINE new_position

where new_position is the graphics coordinate pair of the new cursor
position. The pointer will be changed but nothing will actually be drawn.

If the two forms are combined, the method of drawing a line from any
position to any other position can be clearly seen,

LINE xl,yl TO x2,y2

first changes the graphics cursor to (xl,yl) then draws a line in the
current ink colour to (x2,y2) and leaves the cursor there. The formal
definition is .
[ino] LINE [#channel,] [new_position] { [,new_pos] TO end_position }
where channel is the window in wl‘uch to draw the line, default 13

= “Govv AR RIS 2 o, befot i

new_position is the position to move the cursor to;

and end_position is the point to draw a line to.

So the following line,

SCALE 100,0,0: LINE 15,75 TO 115,75 TO 115,15 TO 15,15 TO 15,75

draws a square.

116

1f the printing characteristic OVER -l has been specified, the colour of

the ink will be XORed with the colour of the backgound for each pixel. So
now the line,

OVER -l: LINE 15,75 TO 115,75 TO 115,15 TO 1515 TO 15,75

will wipe the above square out again. This is the reason -nen.tione.d earlier
for why LINE doesn't draw the last pixel on & line. If it did, when
drawing over the top of a set of linked lines, dts would be left at all
the intersections.

If you want to draw dots, use the procedure,
[line number] POINT [#channel,] position {,positionl
where channel is the window to draw the dots in, defalt 13
and position is the graphics coordinate pair of the pint to ink in.

POINT uses the current INK colour and updates the current graphics cursor
position.

Off-window drawing

Changing the scale does not affect the coordinate position of the current
graphics cursor. Suppose you start off with a scale of 100 ~umts with the
coordinates of the bottom left-hand corner of the vindow being (0,0), draw
a line to (50,50), then change the scale to 100. The graphics cursor
will still be at (50,50) - somewhere near the celing of the room next
door! Drawing a line now to (0.5,0.7) will illustrate this, the line comes
diving in from nowhere. This is something to watch out for but it .does
make a very interesting point, namely that the gaphics system continues
to operate outside the window. This has great adwntages, one IS that for
a diagram like

117

you do not have to work out the positions where AB, AC and BC intersect
the edge of the window, you can just use the actual coordinates of A, B
and C even though they don't appear in the window. Another advantage is
that you can examine part of a diagram in more detail just by changing the
number of vertical units in the window and where the window is to start.
It will seem a bit slow because SuperBASIC is still drawing the whole
diagram, even though only a portion of it is visible,

The fact that the graphics system works in this manner is especially

useful for the next topic, curves, but be warned, if nothing seems to be

happening when you are drawing, it could well be that the wrong scale or
axes have been set!

Drawing curves

>

Figure 11.1 B

In Fig. 1.1, it is possible to specify the arc AB subtended by the angle &
(in a circle of radius r) by using the Super BASIC procedure,

ARC xA,yA TO xB,yB,

The course of action taken is to move the current graphics pointer to the
coordinates for A, work out the radius (r) of the circle, then draw the
arc anticlockwise in the current ink colour to the position given for B.
The graphics pointer is then updated.
Like LINE, you can continue to draw ARCs to other points. For example,

ARC 10,50 TO 50,50,P1/4 TO 90,50,P1/4 TO 130,50,P1/4
The formal definition is
[ino} ARC [#channel,] [new_position] { [,new_pos] TO end_position,angle}
where channel is the window in which to draw, default |;

new_position is the graphics coordinate pair of the point to move to;

118

end_position is the coordinate pair of the point to draw to;

and angle is the value in radians of the subtended angle required at the
centre of the ‘circle'.

The arc is always drawn in an anticlockwwise direction. If you want it to
be drawn in a clockwise direction, you have to either reverse the end
points or specify a negative angle.

For example, given point A at (70,70) and B at (60,20), the command
ARC 70,70 TO 60,20,P1/2

gives the arc

whereas both

ARC 60,20 TO 70,70,P1/2
and ARC 70,70 TO 60,20,-Pl/2

give the arc

B

The angle must be given in radians; the larger the subtended angle that is
specified, the curvier the arc that will be produced. Generally, arcs are
specified in terms of 1 (SuperBASIC function PI), 2T radians being equal
to 360 degrees, a complete circle. An angle of 1 gives half a circle, the
chord AB being its diameter. There are two SuperBASIC functions, RAD and
DEG, to convert degrees to radians and vice versa if you need them.

Lines and arcs can be combined of course; look at the following example :

100 DEFine PROCedure club(ch$)

110 REM Call with 'f' for flower shape,

120 REM 's' for club with straight stem (default)

130 REM 'c' for club with curved stem

140 SCALE 100,0,0

150 ARC 120,60 TO 120,65,3*Pl/2 TO 92,65,3*P1/2 TO 92,40,3*P1/2

160 IF ch$(1)=="f's ARC TO 120,40,3*P1/2: RETurn: ELSE LINE TO 106,52.5
170 IF ch$(l)=='c': ARC TO 115,20,P1/4: ELSE LINE TO 115,20

119

180 LINE TO 97,20

190 IF ch$(1)=='c': ARC TO 106,52.5,P1/4: ELSE LINE TO 106,52.5
200 LINE TO 120,40

210 END DEFine club

It would seem as if a complete circle could be drawn with the command

ARC 20,20 TO 20,20,2*PI

but thinking about it for a couple of seconds should convince you that
this isn't so. There is no way to tell what size the circle should be!

Whenever a graphics procedure is insoluble in this way, nothing at all is

drawn on the window and no error is given, control just passes to the next
statement.

Circles and ellipses

To draw a circle, the procedure
[line number] CIRCLE [#channel,] centre_position , radius
should be used, where
channel is the window in which to draw the circle, default |;
centre_pasition is the coordinate pair of the centre of the circle,
x value at centre , y value at centre
and radius is the length in graphics units of the radius of the circle.
The circle is drawn in the current ink colour. If OVER -1 has been set,
the ink colour is XORed with the background colour at each pixel on the
circumference of the circle. The current graphics pointer will be updated
to the origin (centre) of the circle.
Try this for a nice effect :
100 DEFine PROCedure circ
110 SCALE 100,0,0
120 FOR i=l TO 70 STEP 2: CIRCLE i,i,i
130 END DEFine
and expand it thus for a very soothing vision,
140 DEFine PROC rep_circ

150 PRINT #0, *** BREAK (CTRL and space) to stop ***'
160 PAPER I: INK 7: CLS: OVER 0

120

17¢ 4o~

In coordinate geometry, the equation of a circle with centre (0,0) is
2 2 2
X +y =r7r

where ¢ is the radiss. This is a special case of the equation for an
ellipse with centre (0,0)

where a is the radius along the x-axis;

and b is the radius along the y-axis.
An ellipse is an oval, symmetric about its major and minor axes. These
bisect one another at right angles, the major axis being longer than the
minor axis. A SuperBASIC ellipse can be drawn anywhere in the graphics
coordinate system, at any angle. It is defined by
(ino]} ELLIPSE (#channel,] centre_position, major_radius, ratio, rotation
where channel is the window in which the ellipse is to be drawn, default 1

centre_position is the coordinate pair of the centre of the ellipse,

x value at centre , y value at centre

major_radius is the length in units of the longest radius;

121

ratio is the ratio of the minor radius to the major radius. This
will normally be in the range 0.1 to 1

and rotation is the angle in radians at which the major radius is
inclined away from the vertical in an anticlockwise direction. A rotation
of zero is vertical, 0, T /2 is horizontal, «> and A /4 is at 45 degrees Q

y 1;
Ratio = Mino: r%“u:
b % s

y-centre
[
]
|
! >

x-centre 'i x

|

Figure 11.3

An example of the different shapes and sizes of ellipses can be seen if
you run the following procedures, ELL or REP_ELL :

90 DEFine PROCedure ell

100 FOR i=l TO 70 STEP 2: ELLIPSE i,i,i,.5,P1/2-i*P1/70
110 END DEFine

120 REMark
130 DEFine PROCedure rep_ell

140 PRINT #0,'#** BREAK (CTRL and space) to stop ***'
150 PAPER I: INK 7: CLS : OVER 0

160 ell: OVER -1: REPeat c: ell

170 END DEFine

Varying the ratio instead of the major radius produces a very strange
effect :

122

9 DEFine PROCedure star

100 FOR i=1 TO 70 STEP 2: ELLIPSE i,i,5,i,i

110 END DEFine

120 REMark -

130 DEFine PROCedure rep_star

140 PRINT #0,'*** BREAK (CTRL and space) to stop ***'
150 PAPER 1: INK 7: CLS : OVER 0

160 star: OVER -1: REPeat c: star

170 END DEFine

Quite a firework display!

Incidentally, to see how well the ELLIPSE command matches the geometric
equation, and to appreciate the speed of it, the following procedures
fiest draw the ellipse or circle using the SuperBASIC graphics commands,
then painstakingly blot it out wusing coordinates generated from the
equations given earlier.

100 DEFine PROCedure make_ell(a,b)
110 PAPER I: INK 7: SCALE 4,-2,-2
120 ELLIPSE 0,0,a,b/a,P1/2

130 INK O

140 FOR i=0 TO a STEP a/200

150 j=SQRT((1-1"2/a"2)*b"2)

160 POINT i,j, i,~)y ~byjy -is~)

170 END FOR i

180 END DEFine

190 REMark
200 DEFine PROCedure make_cir(a)
210 PAPER 1: INK 7: SCALE 4,-2,-2
220 CIRCLE 0,0,a

230 INK O -

240 FOR i=0 TO a STEP a/200

250 j=SQR T(a"2-i"2)

260 POINT i,j, iyjy ~lyjy -iy-j

270 END FOR i

280 END DEFine

Now call MAKE ELL with two parameters, major_radius, minor_radius (bearing
in mind the scale of four), e.g., MAKE ELL 1.8,l.1, and call MAKE CIR with
one parameter, the radius, e.g., MAKE_CIR 1.5 .

Note that calling MAKE ELL with both parameters equal is the same as
calling MAKE_CIR, In fact the SuperBASIC procedures, CIRCLE and ELLIPSE,
are themselves interchangeable, three parameters being necessary to
generate a circle and five to create an ellipse.

123

Annotating a graphics diagram

You will often want to mix text and graphics. We saw in the previous
chapter how the procedure, CURSOR, was used to move the print, or text,
awsor around the window, but it needed pixel coordinates specified, which
are not very easy to relate to graphics units. What you really want to be
able to do, in order to annotate drawings, is to combine the CURSOR
command with the graphics units system.

When using the CURSOR procedure earlier, it had two parameters, the x-
pixel coordinate and the y-pixel coordinate. There is an alternative form
of CURSOR using four parameters.

The formal definition of the full form is :

[line number] CURSOR [#channel,] [graphics_position,] pixel_position

where channel is the window in which to move the text cursor, default |;

graphics position is the graphics units coordinate pair of the
position to move the text cursor to;

pixel position is either the x and y pixel offsets from the graphics
position, if given;
or the absolute x and y pixel position if the
graphics position has been omitted.
In diagrammatic form, the command

CURSOR a,b,x,y

moves the cursor,

X f
y

(0,0) a

where A and B are counted across and up in graphics units, and X and Y are
counted across and down in pixels. So,

CURSOR 200,100

moves the text cursor to a position 200 pixels along from the left hand
edge of the window and 100 pixels down from the top of the window;

124

moves the text cursor to a position 200 graphics units to the right of the
graphics origin and 100 graphics units above the graphics origin;

CURSOR 100,50,8,10

moves the text cursor to 8 pixels along and 10 pixels down from the
graphics position given by (100,50).

The CURSOR command only affects the position of the text cursor. It has no
effect at all on the current graphics cursor. As an example of text cursor
movement within the graphics system, run the following procedure :

100 DEFine PROCedure axes

110 WINDOW 448,200,32,16: SCALE 4,-2,-2
120 PAPER 2: INK 7: CLS

130 LINE 0,2 TO 0,2 , -2,0 TO 4,0

140 INK 0: FOR i=-2 TO 3: POINT i,0, 0,i
150 INK 7: FOR i=-2 TO 3

160 IF i<>0: CURSOR i,0,0,2: PRINT i
170 IF i<0: y=30: ELSE y=16

180 CURSOR 0,i,-y,0: PRINT i

190 END FOR i

200 CURSOR 2.5,0,0,20: PRINT 'x-axis'
210 CURSOR 0,1.5,-100,0: PRINT 'y-axis'
220 END DEFine

Relative drawing

All of the graphics commands we have examined so far,
LINE, POINT, ARC, CIRCLE and ELLIPSE

have used absolute coordinates. That is, graphics coordinates relative to
the origin of the graphics system.

It is often advantageous to draw parts of diagrams relative, not to the
origin, but to the current graphics cursor position. 1f this facility
existed, it would be possible to write a procedure wusing relative
coordinates to draw a picture and then, by moving the graphics cursor
around, to reproduce the drawing anywhere in the window.

Well, the facility for relative drawing does exist, and it is very simple
to use, All of the above commands may be suffixed by

R

and take exactly the same parameters except that all the coordinate pairs
are taken as the offsets from the current graphics cursor position. After

125

drawing each stage, the graphics cursor is updated to reflect its new
position.

The relative graphics commands are : -
[ino]l LINE_R [#channel,] [xr,yr] { [,xr,yr] TO xr,yr}

[ino] POINT_R [#channel,] xr,yr {,xr,yr} -
[lno] ARC_R [#channel,] [xr,yr] { [,xr,yr] TO xr,yr,angle} -

[ino] CIRCLE R [#channel,] xr,yr,radius
[ino] ELLIPSE_R [#channel,] xr,yr,major_radius,ratio,rotation

where all the pairs of coordinates, xr,yr , are the offsets from the
current cursor position, the value of the current cursor being updated at
each stage of the commands.

In other words,

X = X + X sresses NEW X

absolute current relative current
=Yy +Yy sesesss NEW Y

absolute current relative current

You can see how easy this makes drawing a square. Wherever the current
cursor position is, you can say,

LINE R TO 20,0 TO 0,20 TO -20,0 TO 0,-20

to draw a square of side 20 units with the current graphics position at
the bottom left-hand corner. The following procedure illustrates this,

100 DEFine PROCedure rep_square

110 SCALE 100,0,0

120 PAPER 7: CLS

130 REPeat sq

140 POINT RND(0 TO 170),RND(0 TO 100)

150 square_r

160 END REPeat sq —
170 END DEFine

180 REMark —
190 DEFine PROCedure square_r

194 REMark Draw a relative square

200 INK RND(O TO 7)

210 LINE_R TO 20,0 TO 0,20 TO -20,0 TO 0,-20

220 END DEFine

126

Filling shapes with colour

All of the graphics commands draw outlines only. If you want to draw solid
shapes then you will have to utilize the FILL attribute.

FILL fills non-reentrant shapes with the current ink colour spectacularly
fast. The general form is

[line number] FILL [#channel,] fill_mode

where channel is the window in which to change the fill attribute, the
default being channel |;

and fill mode is 0 to turn area filling off
l to turn area filling on

The FILL command does not affect anything that is already on the screen.
FILL | means that any non-reentrant shape drawn from now on wil be filled
in. FILL 0 turns further area filling off.

It is a good idea to turn FILL off as soon as you have finished drawing
your shape otherwise you might find unexpected areas being flooded with
colour. Fill starts to paint as soon as you have defined a closed shape.

NON-REENTRANCE

Any shape must be non-reentrant in the vertical plane. FILL works by
keeping the start pixel to fill and the end pixel to fill for each row of
pixels in the window. This means that the outline of a shape must pass
through no more than two points on each horizontal row of pixels. If the
outline crosses a row in more than two places, the outside ones mark the
filling limits.

For example,

is fine because the outline of
the shape only passes through
each horizontal row twice. The
filled shape is

but

is a reentrant shape since,
between the horizontal lines
marked, the outline occurs in

four positions on each row of -
pixels. The filled shape will
therefore be

127

Similarly

will fill inside the outline

will be filled right up to the
top dotted line

To illustrate non-reentrance on the QL, you can run the following program.
There is a pause before each new figure, hit any key to continue.

100 DEFine PROCedure fill_ex

110 REM illustrate FILL problems

120 PAPER 2: CLS: SCALE 4,-2,-2
130 FILL 1: INK 0: fillin

140 FILL 0: INK 7: fillin

150 PAUSE: CLS

160 FILL 1: INK 0: fillin2

170 FILL 0: INK 7: fillin2

180 PAUSE: CLS

190 INK 0: fillsq 1

200 INK 7: fillsq O

210 END DEFine

220 REMark
230 DEFine PROCedure fillin
240 ARC 2,1 TO 1,-1,3*P1/2
250 ARC 2,1 TO 0,0,PI

260 ARC 1,-1 TO 0,0,-5*Pl/6
270 END DEFine

280 REMark —
290 DEFine PROCedure fillin2
300 ARC -1,2 TO 2,1,3*P1/2

310 ARC -1,2 TO 2,1,PI

320 END DEFine

330 REMark
340 DEFine PROCedure fillsq(fill mode)

350 FILL fill_mode

360 POINT -.5,1

370 LINE_R TO 0,-! TO 1,0 TO -.5,.5 TO .5,.5 TO -1,0
380 FILL 0: FILL fill_mode

390 POINT 2,1

400 LINE R TO 0,~1 TO 1,0 TO 0,1 TO -.5,-.5 TO -.5,.5
410 FILL 0

420 END DEFine

If you understand FILL, you should be able to work out why line 380 is

128

necessary. If not, try inserting 'REMark" _after the line number and rerun
it. In actual fact, you do not need both WFILL 0 and FILL fill mode, since
FILL 1 automatically turns an old fill off befcoreitturns a new one on.

As long as you treat it with respect, FELL i a wvery powerful feature.
Here is another example which takes a I—ey, ¢ combination of keys, as
input and produces various swirly patter—ns Especially good are those
produced on receipt of

F4, d, e, space, CTRL and F3, b, p, ALT =and ENTER, SHIFT and h

100 DEFine PROCedure rep_swirl

110 WINDOW 448,240,32,16

120 PAPER 0: MODE 8

130 SCALE 300,-200,-150

140 PRINT \\'Press any key or combination of :3<eyseach time the figure
finishes'\' BREAK (CTRL and space) to stop.’

150 REPeat s: a=KEYROW(0): R ANDOMISE COrDE(NKEY(~1)): CLS: swirl

160 END DEFine

170 REMark ———emmmee=-

180 DEFine PROCedure swirl

190 loop = RND(100 TO 200)

200 col = 8+(248*RND{G TO 1))

210 rot = RND(1 TO 10)

220 ratio = {/RND(2 TO 10)

230 bit = RND(1 TO 5) .
240 FOR nzloop TO 5 STEP -bit: INK n MOD cwcl: FILL 132 ELLIPSE 0,0,n,ratio,
nfrot: FILL 0

250 END DEFine swirl

You ought to be able to modify this to prccluce endless different patterns
without the need for input. It can be watched feeor hwrs!

Turtle graphics

In order to make the graphics system even si mmpler, it would be nice, when
drawing diagrams, to be able to give the lergth of the line to draw
(rather than specifying its end-coordinates), esor the angle to turn through
relative to the direction of the last line drawn.

The turtle graphics commands maintain a curssrent direction as well as t_he
normal current position. MOVE moves the cursee>r by 3 given number of units
in the current direction. Whether the line isss dawn as the cursor moves
along it is decided by which of PENUP or PEEENIOWN is currently set. The
formal definitions of these commands are :

{line number] PENDOWN [#channel]

where channel is the window in which to s=set the pen attribute to on,

129

default 1

PENDOWN does not affect anything which is already in the window. Any MOVEs
done from now on will be drawn in the current ink colour. PENDOWN has no
effect on any of the other graphics commands;

{fine number] PENUP {#channell

where channel is the window in which to set the pen attribute to off,
default 1;

PENUP is the state of the pen on first opening a window. When PENUP is
set, all MOVE commands move the cursor but their action is invisible.
PENUP does not affect anything already in the window, nor does it have any
effect on the other graphics or printing commands;

[line number] MOVE [#channel,] distance
where channel is the window in which to move the cursor, default 1;
and distance is the number of graphics units to move by.

MOVE moves the graphics cursor by a given number of units in the current
direction. The graphics cursor is then updated. If PENDOWN is currently
set, the line moved will be drawn in the current ink colour. If OVER -l
has been set, then the colour of the ink will be XORed with the colour of
the background for each pixel drawn. If PENUP has been specified, the move
is transparent.

Changing the cwrrent direction can be done only with the two commands,
TURN and TURNTO. Their form is

[line number] TURN [#channel,] angle

where channel is the window in which to change the current direction,
default 1;

and angle is the number of degrees to turn, anticlockwise from the
current direction.

There is no visible effect of this command, the current direction is
modified and when the next MOVE is done, it will be in the new direction.
When the window is first opened, the turtle graphics direction is
initially horizontal and pointing towards the right-hand side of the
screen. Even though the other graphics commands draw lines at different
angles, they do not update the current turtle graphics direction. Only
TURN and TURNTO do this. There are two SuperBASIC functions, DEG and RAD,
which convert radians to degrees and vice versa if you need them.

TURNTO is used when you want to change the current direction to a specific
absolute angle from the horizontal. Its form is

[line number] TURNTO [#channel,] angle

130

where channel is the window in which to «<hange the direction, default 1;

and angle is the angle in degrees T©O set the current direction pointer,
counted anticlockwise from due East.

TURNTO 0 sets the current direction sQuarely towards the right-hand edge;
TURNTO 90 points vertically towards the top and TURNTO 270 points towards
the bottom of the window. A negative angle is turned clockwise from the

horizontal, an angle of greater than 360 degrees is taken as (360-angle)
degrees.

Like TURN, TURNTO does not have any visible effect until the next MOVE is
done,

The following procedure is a stunningly be autiful example of MOVE and TURN

100 DEFine PROCedure daisy wheel

110 SCALE 4,-2,-2: PAPER 7: MODE 8: P ENDOWN
120 r = 2.2

130 FOR j=0 TO 6

140 INKj:n=2r=r1-2

150 disc n,r

160 END FOR j

170 END DEFine

180 REMark
190 DEFine PROCedure disc(no_de g,radius)

200 LOCal i

210 FOR i=1 TO 360/no_deg: POINT 0,0: TURN no_deg: MOVE radlus
220 END DEFine E

Include lines
124 REPeat always
and

164 END REPeat always

to watch the figure disappear again then gradually get larger in single
colour steps.
As another example, consider the problems of drawing regular polygons.

Given a fixed length side and a specified number of sides, you can write
the procedure,

100 DEFine PROCedure poly(no_sides,len_side)
110 LOcal i

120 PENDOWN

130 FOR izl TO no_sides

140 'MOVE len_side

150 TURN 3607no_sides

160 ENDFOR i

170 END DEFine

181

If you now say
SCALE 100,0,0: POINT 50,50: POLY 3,20
you get a triangle. Now,
POLY 4,20
draws a square on top of it and
POLY 5,20

adds a pentagon. The final direction is always the same as the initial
direction, so the first lines of these figures coincide. [find this
slightly displeasing, but adding the lines

124 TURN 180/no_sides - 90
and
164 TURN 90 - 180/no_sides

to the procedure means that the original direction now bisects the angle
made by the first and last sides and is still restored after the last
line. Redrawing the three figures above is now much more pleasant.

A very simple extension to this procedure can give muitiple polygons
equally spaced about the original point :

200 DEFine PROCedure mpoly(no_poly,no_sides,len_side)
210 LOcal k

220 FOR k=1 TO no_poly

230 poly no_sides,lenside

240 TURN 360/n0J)oly

250 END FOR k

260 END DEFine

Now run
mpoly 5,5,20
mpoly 6,3,20
or, very pretty this one,
CLS: LINE 70,50: mpoly 10,10,15
As a final example of what can be achieved with the QL SuperBASIC graphics
system, | offer a set of scenic procedures together with three ways in

which you might combine them. You will, I am sure, be able to modify and
improve them to your own satisfaction.

132

Run

100
110

the procedures SCENEI, SCENE2 and SCENE3 for the sample composites.

DEFine PROCedure scenel
MODE 8: SCALE 1,0,0

120 sky
130 mountains

140
150
160

rainbow .7, 2e-2, .8, .15
house .6, .8, 3e-2, 6
tree 1.5, le-2, .5, 2

170 grass 5

180
190
200
210

END DEFine
REMark ---
DEFine PROCedure scene2
MODE 8: SCALE 1,0,0

220 PAPER 7,0,0: CLS
230 house .1, 0, .9, 2
240 house .2, .1, 8, &

250

house .3, .3, .65, 6

260 house .5, .6, .35,5

270
280
290
300
310

house .6, 1.1,0,0

END DEFine

REMark : ————
DEFine PROCedure scenel

MODE 8: SCALE 1,0,0

320 PAPER 7,0,3: CLS

330

340

350

360

370

380

390

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
2000
2010

FOR ii = .9 TO 0 STEP -.0l
IF RND>.2: NEXT ii
house .2, RND*1.6, ii, RND(0 to 6)
jj = RND: IF jj».5: NEXT ii
tree jj*2*1.6, ii, RND(1 TO 2)/10, RND(0 TO &)
END FOR ii
END DEFine
REMark

DEFine PROCedure rainbow(x,y,h,w)
REMark x,y - coords of mid-point of base
REMark h - height of rainbow
REMark w - total width of bands
LOCal colour,r,s
s=-w/7: r=h
FOR colour = 2,226,6,4,1,201,209
INK colour: FILL 1
ARC x, y+«t TO x-r, y, P1/2
LINE x, y+ TO x, y+r+s
ARC TO x-r-s, y, P1/2
FILL 0: FILL 1|
ARC x+r, y TO x, y+r+s, P1/2
LINE TO x, yir+s
ARC x+r+s, y TO x, y+r+s, PI1/2
r=r+s: FILL O
END FOR colour
END DEFine
REMark
DEFine PROCedure sky

133

2020
2030
2040
2050
2060
2070
2080

2100
3000
3010
3020
3030
3040
3050
3060
3070
3080

3l00
3110
3120
3130
3140
3150
3160
3170
3180
3190
3200
3210
3220
3230
3240
3250
3260
3270
3280
4000
4010
4020
4030
4040
4050
4060
4070
4080
4090
4100
4110
4120
4130
4140

134

REMark pale blue sky with fluffy white clouds
LOCal i
PAPER 5: CLS: INK 7 =
FOR i=0 TO 30
FILL |
ELLIPSE RND*!.8, .5+RND*.5, 3e-2+RND*3e-2, 1+RND, 0
FILL © []
END FOR i
END DEFine
REMark -
DEFine PROCedure tree(x,b,h,apples)
REMark x,b - position of base of tree
REMark h - height of trunk (half of whole tree)
REMark apples - 0 for none, > 1 for lots
LOCal t,w,0,s,i

t=b+h: w=h/6: 0=-w/2: s=-0/2
REMark —--- trunk —---
FOR i = 0,16,192+16+2,16+2,2
INK it FILL |
LINE x+0, b TO x+0/2, t
0O =0+ 58
LINE TO x+0, b TO x+0/2, t
END FOR i
REMark —-- leaves —--
INK &
FOR i = 0 TO 55
FILL |
ELLIPSE x+(RND-.5)*h, t+(RND-.5)*h, (RND+.4)*w
ENDFOR i
REMark —-- apples ----
IF apples
INK 2
FOR i = 1| TO l0*apples
FILL 1
ELLIPSE x+(RND-.5)%(7*h/8), t+(RND-.5)*(7*h/8), .25*w
END FOR i
END IF
END DEFine
REMark
DEFine PROCedure grass(flowers)

REMark flowers - 0 for none, 20 for masses
LOCal ih
INK 4 FILL O —
FOR i=0 TO 1.7 STEP 3.5e-3: LINE i, 0 TO i, 2e-2+RND*5e-2
IF flowers
FOR i=0 TO 1.7 STEP 5e-3
IF RND>5e-2*flowers: NEXT i
INK 2+4*RND(0 TO)
h=RND*3e-2+|.5e-2
FILL 1
ELLIPSE i, h, le-2
END FOR i
END IF

5000
5010
5020
5030
5040
5050
5060
5070
5080
5070
5100
5110
5120
5130
5140
5150
5160
6000
6010
6020
6030
6040
6050
6060
6070
6080
6090
6100
6110
6120
6130
6140
6150
6160
6170
6130
6190
6200
6210
6220
6230
6240
6250
6260
6270
6280
6290
6300
6310
6320
6330
6340
6350

REMark

DEFine PROCedure mountains
LOCal h,x,col

FOR col = 3,]
h=RND*.2+col*1.5e-2+3e-2: x=0
FILL 1I: INK col
LINE 0,0 TO O,h
REPeat loop

h=RND*.2+col*].5e-2+3e-2

x=x+5e-2+RND*.|

LINE TO x,h TO x,0

FILL |

LINE TO x,h

IF x>2 THEN EXIT loop
END REPeat loop

END FOR col

END DEFine

REMark

DEFine PROCedure house(w,x,y,door)
REMark w - width
REMark x,y - bottom left hand corner

REmark door - front door and window frame colour

LOCal ww,wl_5,w2_5,h,h_5,wh,wr

ww = wf5: wl_5 = L.5¥ww: w2_5 = 2.5%ww
h= .6%w: h 5 = .5%w: wh = ww + Yy

rect w,h,x,y,226

windw ww, wl_5, x+.5%*ww, wh, 201, door, 7
windw ww, wl_5, x+3.5*ww, wh, 201, door, 7
windw ww, w2 5, x+.4*w, y, door, 7, -1

FILL 1: INK |

ELLIPSE_R .1*ww, wl_5, .l*ww

FILL 1: INK 82

POINT x-.5*ww, h+y

wr = 5% (wrww)

LINE R TO wr, h_ 5 TO wr, -h_5 TO -w+ww, 0
FILL O

END DEFine

REMark --

DEFine PROCedure windw(w,h,x,y,i,bord,cross)
REMark w,h - width,height
REMark x,y - bottom left hand corner
REMark i - main colour
REMark bord - border colour if +ve, else none
REMark cross - crossbars colour if +ve, else none
rect w,h,x,y,i
IF bord>0

INK bord

LINE R TO 0,h TO w,0 TO 0,-h TO -w,0
END IF
IF cross>0

INK cross

LINE_R w/2,0 TO 0,h , w/2,-h/2 TO -w,0
END IF

136

6360
6370
6380
6390
6400
6410
6420
6430
6440

136

END DEFine
REMark

DEFine PROCedure rect(w,h,x,y,i)

INK i

FILL !

POINT x,y

LINE R TO Oh TO w,0 TO 0,-h TO -w,0
FILL O

END DEFine

MACHINE CODE AND
12 MEMORY ACCESS

This handbook is on SuperBASIC, not machine code. McGraw-Hill publishes an
excellent book, 'QL Assembly Language Programming' which deals
«xhaustively with interfacing machine code programs to SuperBASIC. All
hat 1 am going to do in this chapter, therefore, is to explain the
various SuperBASIC procedures and functions which enable you to use pre-
written machine code procedures and functions.

Saving and loading hexadecimal data

‘o load raw hexadecimal bytes into the memory of the QL, use

[tine number] LBY TES device, start_address
vhere device is the place where the data is to come from. This can be a
ficrodrive file, e.g., mdvl_test proc, or any other peripheral device, a
network channel for example.

and start_address is the absolute address in memory where the data is to
10 to.

To save bytes from memory, use the command,
[line number] SBY TES device, start_address, length

where device is where the data is to go. It can be a file on Microdrive
‘e.g., MDV2 test2) or any other peripheral device, e.g., SERz ;

start_address is the start of the data to save;
and length is the number of bytes to save.
“or example,
SBY TES NETO_3, 131072, 32768

ia'ves the contents of the screen over the network.

137

Using the resident procedure area
CALL is wused to transfer execution to a machine coded area. It is
effectively a ISR, or 'jump to subroutine’, instruction. Its form is

[line number] CALL address {, registers}
where address is the absolute address in memory to transfer execution to;

and registers are the new contents of any 68000 registers. These will

normally be used as parameters to the machine code program and should be
given in the order
data registers

D1,D2,D3,D4,D5,06,D7
then address registers

A0,Al1,A2,A3,A4,A5
The machine code routine will need an RTS (return statement) to transfer
control back to SuperBASIC. On returning, the contents of the data
resgister, DO, are checked. This should have been set by the machine code
routine to zero for a good return, anything else is an error and will be
treated accordingly.
All extra machine code procedures and functions should be kept in the
resident procedure area. Because it is resident, once any space has been

reserved in it, that space cannot be released again until the QL is reset.
To allocate space, use the function,

RESPR (length)

where length is the number of bytes of room required in the resident
procedure area;

and the return value is the address at which the allocated space begins.
Space should be allocated in blocks of 512 bytes.
Machine code extensions to SuperBASIC should first be loaded into the
resident procedure area and then linked with CALL to create entries for
them in the nametable. For example,
np = RESPR(512) to reserve 512 bytes in the resident
procedure area

LBYTES mdvl_boot_code,np to load the raw bytes from the file on the
tape in mdvl into the space just allocated

138

CALL np to link the procedures in

Executing independent machine code programs

CALL executes a machine code subroutine in memory from a SuperBASIC
program. To execute an independent machine code program, ie, oOne that
will not interfere with the normal SuperBASIC program and which is not in
memory, you must use the command :

[line number] EXEC device

where device can be the Microdrive file where the program is held, or any
other peripheral device from where the program is coming.

EXEC mdv2_clock
EXEC NETI_2

If you want to run a machine code program in this way and suspend
SuperBASIC processing while you do so, then use :

[line number] EXEC_W device

where device can be a Microdrive file or any other inpuit peripheral
device.

This command starts up the independent machine code program as it does for

EXEC, but does not allow you to continue with any other SuperBASIC
commands until the job has finished.

Using EXEC means that you can have up to 56 jobs running on your QL at
once. Quite a lot of these could be requiring input from yowu. Obviously
you can only put data into one channel at any one time. Changing which
input buffer you are attached to can be done by pressing CTRL and C
together. This key combination moves the cursor to the next channe!l
awaiting input. The cursor flashes when input is expected so if each of
the jobs wanting input has a window open on the screen, then you can see
which input buffer you are attached to now by whereabouts the cursor is
flashing. Continue to press CTRL and C together until ymu reach the
channel that you want.

If you want to save a machine code program to be executed vith EXEC or
EXEC W, use

{line number] SEXEC device,start_address,length, data space

where device is the new Microdrive file or other output peripheral device
where the program is to be written;

start_address is the absolute address in memory where the machine
code program starts;

139

length is the number of bytes long that the program is; -

and data space is the number of bytes required on the user stack plus N
the number of bytes required by the program for data.

Accessing memory directly

To read the contents of memory directly, you can use the functions

PEEK (address)

PEEK_W (even_address)
and PEEK_L (even_address) -
where address is the absolute address in memory that you want to look at.

PEEK returns the integer value, range 0-255, of the byte at the address
given;

PEEK_W returns the integer value, range 0-32767, of the word (two bytes)
starting at the even address given;

PEEK_L returns the floating point value, with no loss of precision, of the
long word (four bytes) starting at the even address given.

Words and long words can only be accessed on word, or even, boundaries.
To change the contents of memory, you can use the procedures

[Ino] POKE address,expression

[ino] POKE_W even_address,expression
and [Ino] POKE_L even_address,expression

where address is the absolute address in memory in which you are
interested;

and expression is the value which you want to put into that address.
POKE puts a byte, range 0-255, into the contents of the address given;

POKE_W puts a word (two bytes), range 0-32767, into memory starting at the
even address given;

POKE_L puts a long word (four bytes), range 10*ee
at the even address given.

, into memory starting

Words and long words can only be accessed on word, or even, boundaries.

140

The usage of PEEK and POKE is not to be particularly recommended. The
machine code interface is well defined and is described in detail in Colin

Opie's 'QL Assembly lLanguage FProgramming'. Any further comment is beyond
the scope of this Handbook.

Other commands for running machine code programs are collected together in

the Sinclair QL Toolkit, available as an extension to the SuperBASIC
system.

141

THE CALENDAR AND
13 CLOCK

The QL contains a real-time clock chip and SuperBASIC provides a set of
procedures and functions to access it. The most familiar is the string
function, DATES. This returns a string made up from

a four digit year number
space

a three character month number
space

a two digit day number
space

two digits for the hour
colon

two digits for the minute
colon

two digits for the second

There is no battery backup for the clock, so the date set when you switch
your QL on is random.

PRINT DATES
might give you something like
201? Feb 08 00:54:39

TEA e 2ty TR0

To set the clock to a specific date, you will have to use the procedure,
SDATE, with a numeric parameter for each component of the date. The full
form of the command is :
[ine number] SDATE year,month,day,hour,minute,second
where year is the non-abbreviated year number, 0 to 32767;

month is the month number, | to 12;

day is the day in the month, | to 3l;

howur is the 24-hour-clock number, 0 to 23;

minute is the number of minutes past the hour, 0 to 60;

142

and second is the number of seconds past the minute, 0 to 60.
So,
SDATE 1984,10,6,19,20,15

sets the time to twenty minutes and fifteen seconds past seven in the
evening on the 6th October 1984. It doesn't have any visible effect but

PRINT DATES
now gives you
1984 Oct 06 19:20:21
because six seconds have passed since you set the date.
You can adjust the date and time by using the procedure

[line number] ADATE seconds

where seconds is the number of seconds to add to the current time. A
negative parameter will turn the clock back.

So
ADATE 3600
advances the clock by an hour and
ADATE 3*24%3600 - 30%60
puts it foreward by half an hour short of three days.

DATES$ returns the current date and time in a string; to get the value of
the current date and time in seconds, use the function

DATE

which has no parameters, Thus, having set the date as above,
PRINT DATE

will give you something like
7.499352e8

- an awesome number of seconds!

A more serious use for DATE is in timing tests. You can say

d_beg = DATE

143

at the beginning of a piece of code and
d_end = DATE
at the end, then the statement
d diff = d_end - d_beg
gives the number of seconds taken. Since the date count is only
incremented once per second, fractions of seconds will not be included.
Timing runs should therefore be done repeatedly and the average taken for
a more accurate result.
By using the expanded form of the DATE$ function, you can find out the
date in an intelligible form from any number of seconds. The general form
is ¢
DATES [(seconds)]
where seconds is the total number of seconds in the whole date. As we have
already seen, if the number of seconds is omitted, the current date is
used.
For example,
PRINT DATE$(8e8)
produces

1986 May 09 06:13:20

A function is also provided to find out the current day of the week. The
formal definition of the string function, DAYS, is :

DAYS [(seconds) 1

where seconds is the total number of seconds in the date and, if omitted,
the current date is used.

So,
PRINT DAYS

when the date has been set as it was earlier, gives
Sat

Or using other values for the total number of seconds,
PRINT DAY$(7e8)

gives
Tue

144

and

PRINT DAY$(8e8)

gives -
- Fri

To find out what day of the week a particular day was, yu will have to
set the date and then print the day. For instance,

SDATE 1955,12,24,0,0,0 : PRINT DAY$

tells me that 1| was born on a Saturday (works hard for a living). To
restore the original date afterwards is a little more tricky and not
terribly accurate. This is an approximate method.

100 PRINT DATE$

110 d_orig = DATE

120 SDATE 1950,11,6,0,0,0
130 PRINT DATE$,DAY$
140 SDATE 0,0,0,0,0,0

150 ADATE d_orig + 10
160 PRINT DAT

145

14 THE QL SOUND

The QL has an astonishingly varied repertoire of sounds and a powerful
speaker through which to play them. The formal definition of the command
is :

[line number] BEEP [beep_parameters]

where all of the beep_parameters should be omitted to turn the sound off
(an extremely necessary option), but otherwise are in the form :

dura‘gon,pitch [,range,time_step,pitch_step [,repeats [,fuzz [,random]ll]
= [

Each of these parameters will be dealt with in turn, but the only real way
to judge for yourself how to use the BEEP command is to spend a whole
morning varying the parameters and listening to the result. At the end of
the parameter explanations therefore, | have appended a fairly simple
procedure which you would be wise to type into your QL and keep on a
Microdrive cassette. It is an uncomplicated menu-driven method of varying
the parameter values, certain of which have been adjusted to make
experimentation easier for you. When you do find a pleasing combination of
sounds, write down the parameter values somewhere safe or you are unlikely
to be able to reproduce it for a while.

Do note the adjustments which | have made to the parameter values, they
are for convenience only and are in no way obligatory. It is always
possible to improve upon a program and to tailor it to your individual
needs. All that 1 have done is to give you a starting point.

So, first of all, read the parameter explanations, then enter and save the

BEEP_MENU procedure, then use it in conjunction with the parameter
explanations.

DURATION

This is the length of time, in units of 72 microseconds, that the note, or
sequence of notes, will be held for. The range is 0 to 32767.

A duration of zero means that the sound will be continued indefinitely. It
can be turned off by the command BEEP with no parameters at all.

146

To get a burst of sound one second jong, the duration must be 1000000/72.
Half a second is 500000/72. The smallest detectable length is about 10,
but short bursts do distort the tone of the note

Since it is an integer parameter, the longest finite le.ngth of time that
you can specify with one command is 32767 lots of 72 microseconds, or 2.36
seconds. There are ways around this problem, however.

The sound produced is independent of thxe SuperB ASIC system. Once the BEEP
parameters have been assimilated and the conmand passed to the IPC (inter-
process communication) controller to be executed, SuperBASlC carries on
immediately with the next statement. Y ou can rmake use of this to produce
the length of sound you require by giving the BEEP commar)d an infinite
duration, putting a PAUSE in of the right length, then turning the sound
off,

BEEP 0,30 : PAUSE 200 : BEEP

for example, produces a sound four seconds long, the pause-time-rate being
in fiftieths of a second.

In the exerciser example, | have assunmed siepS of half a seqond, so.tt.mat
the actual parameter value passed to BEEEP is the value you give multiplied
by 500000/72.

PITCH

This is the tone of the main sound procduced. The pitch range is 0 to 255,
cyclic, so that a parameter value of 2546 is equivalent to one of 0, 257 is
the same as | and -1 gives the same pi tch as 255. A pitch value of zero is
the highest tone produced, descending grad ssally to the lowest at 255.

When just two parameters are given tc>» the BEEP command, duration and
pitch, a single pure note is produced. Use of the next three parameters
gives a sequence of notes tied to the main pitch parameter. These three
parameters are secondary pitch, tinee=—interval step and pitch~-interval
step.

SECONDARY PITCH

This is a second pitch below the main pmi tch defining a range across Wthh
pitch steps can be made. The range of the parameter s 0 to 255, cydlc,
as with the main pitch parameter. A s=econdary pitch value' less than or
equal to the main pitch will not prod #asce a range, otherwise the.range
achieved depends on the interval betwee— s» the main and secondary pitches,
and the size of the pitch step given.

147

TIME INTERVAL BETWEEN STEPS

This is the length, in units of 72 microseconds, of each note in the sound
sequence. The permitted range for this parameter is 0 to 32767. The larger
the time steps, the more distinct each separate note becomes. Small steps
only produce a buzz.

In the exerciser program, the actual parameter for time interval s
adjusted so that the input value is in hundredths of a second. So,
parameter value = input value * le4/72.

PITCH INTERVAL BETWEEN STEPS

This has a range of 0 to 15, cyclic, and gives the size and direction of
the pitch interval between each note in the sound sequence. A new note is
made at each time interval specified.

A pitch step of zero produces no step.

A pitch step of | means that each note will be one pitch below the last.

A pitch step of 2 means that each note will be two pitches below the
previous one.

Pitch steps of 3 to 7 produce increasingly larger steps in a downwards
direction.

A step of 8 gives a complete ripple upwards.

Pitch steps of 9 to 15 give Iincreasingly smaller steps in an upwards
direction corresponding to the step sizes 7 to l. Since the range is
cyclic, you could use -7 to -l instead if that makes the step size and
direction clearer.

When running through a sequence of notes, the pitch step is added to the
previous pitch and the resulting note sounded at the next time interval.
If that resulting pitch is below the secondary pitch specified in the
command, then it is not sounded. Instead the step direction is reversed
and the new note is produced one pitch step above the old one. Likewise,
if the new note would be above the top of the range, the direction is
reversed again. The sequence continues to 'bounce' between the upper and
lower range markers until the length of time specified for the complete
sound has been covered.

Pitch steps of | (smallest step possible) to 7 (largest step possible)
always start the sequence on the highest note of the range; pitch steps of
9 to 15 (or -7 to -1) always start the sequence on the lowest note. A
pitch interval of 8 is not really a step size at all; when it is specified
BEEP fits as many notes as possible (in sequence) into the range.

148

REPEATS

A normal sequence has the notes rippling up and down between the range
markers. The repeat parameter allows each 'sweep' of notes to be repeated
before going on to the next.

By a sweep, | mean from the first note in a particular direction to the

last-but-one note in that direction (the last note being taken as the
first note in the next direction). So, if your sequence is

etc.

The range of the repeat parameter is 0 to 15, cyclic, the default being no
repeats, just the ordinary range.

FUZZ

This parameter affects the purity of tone of each note in the sequence.
The range is 0 to 15, cyclic, but since values of zero to seven,have no
effect on the tone, the effective range is 8 to 15.

Each note becomes slightly ‘fuzzy' or blurred with a parameter value of 8

down to an indistinguishable (fairly unpleasant) buzz at 15. The default
value is zero, no fuzz.

149

RANDOM

Specifying a random factor in a sequence of notes directs BEEP to find a
note a random step away from the next note in the sequence. Again, though
the range of parameter values is 0 to 15, cyclic, the effective range is
actually 8 to 15, As the value increases from 8 to 15, a greater
proportion of random, rather than true, notes is selected. At a parameter
value of 15, very little of the original sequence is discernible.

The BEEP exerciser

100 DEFine PROCedure beep_menu
110 REmark BEEP exerciser
120 PAPER 2: INK 7: WINDOW 448,200,32,16

130 CLS

140 PRINT 'Duration in half-seconds (0-4)"\'Pitch (0-255"\

‘Pitch 2 (0-255)"\' Time step in hundredths (0-235)\'Pitch step’
(0-15)"\'Repeats (0-15)'\'Fuzz (8-15)"\'Random

(8-15)

150 At 12,0:PRINT 'Cursor up, cursor down to change the menu item selected
\'Cursor left to decrease the current value'\'Cursor right to increase

the value'\'SPACE to stop the noise'\'ENTER to stop noise and leave menu'
160 DIM parm(7)

170 FOR iparm = 0 TO 7: print_param

180 STRIP 0: iparm = O: print_param

190 REPeat in

200 inc = CODE(INKEY$(-1)): REMark read keyboard

210 SELect ON inc :

208: IF iparm>0: change_param -1: REMark up

220 ON inc =

230 ON inc = 216: IF iparm<7: change_param l: REMark down

240 ON inc = 192: parm(iparm) = parm(iparm)-1: rebeep: REMark left
250 ON inc = 200: parm(iparm) = parm(iparm)+1: rebeep: REMark right
260 ON inc = 32: BEEP: REMark space

270 ON inc = 10: BEEP: EXIT in: REMark enter

280 END SELect

290 END REPeat in

300 END DEFine

310 REMark -

320 DEFine PROCedure rebeep

330 print_param

340 BEEP parm(0)*500000/72,parm(1),parm(2),parm(3)*16000/72,parm(4),
parm(5),parm(6),parm(7)

350 END DEFine

360 REMark
370 DEFine PROCedure change param{change)

380 STRIP 2: print_param: REMark print old selection on red
390 iparm = iparm + change

150

400 STRIP 0: print_param: REMark print new selection on black
410 END DEFine

420 REMark
430 DEFine PROCedure print_param

440 AT iparm,ll: PRINT parm(iparm) TO 14
450 END DEFine

CONTROLLING THE SOUND

There is, unfortunately, no way of turning down the volume control on the
loudspeaker. [find the application of a woolly hat to the grill on the
front edge of the QL an improvement, or possibly a strip of sticky tape,
but the vents at the rear of the QL must be left clear to prevent
overheating.

If the QL is beeping and you want to stop it doing so, you can either :

BREAK (CTRL and space together) then enter BEEP with no parameters as fast
as possible;

or you can reset the QL completely. This method is drastic, but fast.

There is a SuperBASIC function which enables a program to detect whether
the QL is producing a noise or not. Its form is simply

BEEPING
and it has a true or false return. Thus you can have lines like
nnn IF BEEPING : PRINT "Noisy, isn't it?"

A good idea is to have plain BEEP commands scattered around programs to
turn any sound off, just in case!

151

15 THE SYNTAX GRAPHS

The SuperBASIC syntax definitions were originally drawn in the shape of
'railway line' diagrams, which is a marvellous way to resolve any lurking
ambiguities.

The railway line concept is that, when travelling along it, you can run
along curves or straight lines but you must not reverse or make any sharp
turns. So, in Fig. 15.1, taking A as the starting point,

Figure 15.1 l—_c

you can travel from A to B along the straight, or from A to C along the
curve;
you camnot travel directly from A to D because that would involve a sharp
turn.

From B, you can go either to E or along the curve to D;
you cannot reverse back and go to A or C.

From D, you have to go through junction X and then to B or C as before;
you cannot make the sharp turn back to A;
you cannot reverse back to B.

To show how the graphs were designed, look at this example of the
definition of a SuperBASIC name. This can be any combination of letters,
numbers and underscores, not starting with a number and optionally
finishing with a percentage sign or a dollar.

(1) must start with a letter or an underscore (Fig. 15.2)

letter

Figure 15.2 L
underscore ®

152

(2) then can be letter, number, underscore or none (Fig. 15.3)

® letter

digit ©

underscore-———— (D)

Figure 15.3

®

(3) repeated indeiinitely (Fig. 15.4)

®
Figure 15.4

@ 0 ®

(4) optionally finishing with percentage sign or dollar (Fig. 15.5)

®
%
Figure 15.6
$

So the whole diagram is as shown in Fig. 15.6

~ letter
underscore l—L—— letter ——

M digit —A

Figure 15.6 I underscore -

163

line number
L—-——L— opening ;e foed

definition clause

(pise)

M~ IF- spaoe-expresaionr’l‘HENTspace

SELect ~space <*ON ~~ space
i floating
point~- :

name

M——-— opening clause

N——— intermediate clause

————ending clause

L

_

Figure 15.7 Syntax graph for a complete SuperBASIC line

164

—— DEFine [Pl::::re lsm - | Cu'mej)
|

Figure 15.8 Syntax graph for an opening definition clause

165

IREM - space - floating point name

FOR m _ m_=£m-

1S'I'E‘P-spwcl-.xpnuion

Figure 159 Syntax graph for an opening clause

156

—~— NEXT
’*—E)(I'l‘L space — name ——7m8 —

~RETurn T space — expression T

M~ ON— space— name\l

b = REMAINDER ~

rangD—*—

Figure 15.10 Syntax graph for an intermediate clause

1567

—— END —~— IF .

[Stlect \

\— DEFine J

N— REPeat

\— FOR space —name —

Figure 18.11 Syntax graph for an ending clause

168

v DIM ~ space ™— name —|{ expression)

LOCal » spa(:e(name

M—REMark «—
(—MISTake Rl——f text
M~ RESTORE
~GO—~-TO
—ISUB space — expression
~~DATA

L LET~ Sp&mj)j
name~it;pammewr list —)

expression

Lname - parameter list -——.

[~— ON ~—spacer expression~ G()ITO f :
SUB space expms@\

Figure 15.12 Syntax graph for a statement

159

monadic

operator w

(—expression- } -
value —
string
name (+ parameter liﬂt-)—>

Figure 15.13 Syntax graph for an expression

160

- ~ operator

——expression TTO ——space —— expression 1

Figure 15.14 Syntax graph for a range

separator

expression

Figure 15.15 Syntax graph for a parameter list

161

Figure 15.16 Syntax graph for a string

3

Figure 15.17 Syntax graph for a value

162

Figure 15.18 Syntax graph for a name

—tetter
lette=rx

digi t

Figure 15.18 Syntax graph for a floating po-imt name

163

. + N
: A [
/ \-———-o—w
! N———) ——
TO M >=

Figure 15.20 Syntax graph for a separator D c—
N m
-—

+
e B ———
B M———a A]
e
NOT

F__.&———q

Figure 15.21 Syntax graph for a monadic operator __ _gp_ |

[F——AND—

PM——XOR
[F——MOD —
DIV %
:NSTR _—
CC e D Figure 16.23

Syntax graph
Figure 16.22 Syntax graph for text for an operator

164

16 THE KEYWORDS

'‘Keywords' is a loose term generally taken to mean some name which has a
predetermined meaning. In the SuperBASIC system, such names might be
built-in procedures or functions or actual structural keywords.

The following pages contain an alphabetical list of all the restricted
names in the SuperBASIC system, giving their type, action and syntax. Only
a brief explanation is made, you are referred to the chapter concerned for
more information on the names in particular, or the group to which they
belong in general.

166

ABS (expression)
Function returning the absolute (positive) floating point value
of the expression given. Chapter 5.

ACOS (expression)
Function returning the floating point angle in radians of which
the given expression is the cosine. Chapter 5.

ACOT (expression)
Function returning the floating point angle in radians of which
the given expression is the cotangent. Chapter 5.

ADATE seconds
Procedure to adjust the total value of the clock-calendar by the
given number of seconds. Chapter 13.

AND

Combination logical operator
working on two operands which are floating point true
or false quantities, returning a floating point true or
false result. Chapter 5.

ARC [#channel,] [x,y] {,x,y] TO x,y,angle }

Procedure
to reset the current graphics cursor and draw an arc of
subtended angle given anticlockwise between the two
absolute graphics points specified. Default channel 1;
default point is current graphics position. Chapter 11.

ARC_R [#channel,] [xr,yr] {[,xr,yr] TO xr,yr,angle}

Procedure
to reset the current graphics cursor and draw an arc of
subtended angle given anticlockwise between two
graphics points specified relative to the current
graphics cursor. Default channel 1; default point is
the current graphics position. .Chapter 11.

ASIN (expression)
Function returning the floating point angle in radians of which
the given expression is the sine. Chapter 5.

AT [#channel,] row, column

Procedure
to move the text cursor invisibly to the character
position given. Default channel 1. Chapter 10.

ATAN (expression)

Function returning the floating point angle in radians of which
the given expression is the tangent. Chapter 5.

166

AUTO (startline] [,increment]

Procedure
to start the automatic line number generator and
editor., Default starthne s 100; default increment s
10. Chapter 9.

BAUD baud rate
Procedure to reset the baud rate to that specified for
transmittung and receving. Chapter {0,

BEEP [beep parameters)
Procedure tor producing sound. Lack of any parameters stops the
sound sequence. Chapter 14,

BEEPING
Function returtung tloaung point true if the QL is beeping,
floating point false otherwise. Chapter 4.

BLOCK [#channel,] width,height,x,y,colour

Procedure
for painting a block in the specified colour of the
given size, with the tuop leti-hand corner at the point
given. All sizes and coordinates are in pixels relative
to the window. Default channel L. Chapter (0.

BORDER [#channel,] Lpixel_depth L,colour] |

Procedure
to set a border of the given depth in a given colour
around the specified window. Default channel 1; default

depth is zero; default colour is transparent. Chapter
10.

CALL address [fregister values]

Procedure
to transfer executlon to machine code at the absolute
address given. It further parameters are given, they
will be put into the registers DI to D7, A0 to A5. DO
should be 0 or error code on return. Chapter 12.

CHRS (code)
Function to return a one-character string from the ASCIl code
given. Chapter 5.

CIRCLE [#channel,} x,y,radius

Procedure
to draw a arcle of given radius about a given absolute
centre point. Radius and position given in graphics
units. Graphics cursor updated. Default channel L.
Chapter 11.

167

CIRCLE_R [#channel,] xr,yr,radius

Procedure
to draw a circle of given radius around a mid-point
given relative to the current cursor position. Radius
and position offsets given in graphics units. Graphics
cursor updated. Default channel 1. Chapter 11.

CLEAR

Procedure to clear out the variable values area, the arithmetic

stack, the return stack, the data status and reset name
types. Chapter 9.

CLOSE #channel
Procedure to close the data stream open on the given channel and
to release the channel number. Chapter 8.

CLS [#channel,) {window_area]

Procedure
to cover the given area of the specified window with
the current paper colour for that channel. Default
channel 1; default window area is the entire window.
Chapter 10.

CODE (string)

Function to return the integer ASClHl code of the first character

in the given string. Chapter 5.

CON [_size] [Aposition] [_bufferlength]
Device name

for a console window with an attached input buiffer.
Default name is CON_448x200a32x16_128. Chapter 8.

CONTINUE
Procedure to continue execution from the statement after that
which caused the last halt. Chapter 9.

COPY device TO device

Procedure to copy information from an existing Microdrive file or
other input peripheral device to a new Microdrive file
or other output peripheral device. Chapter 8.

COPY_N file TO device
Procedure to copy a Microdrive file without its header to an
output peripheral device. Chapter 8.

COS (angle)

Function returning the floating point cosine of an angle given
in radians. Chapter 5.

COT (angle)

Function returning the floating point cotangent of an angle

given in radians. Chapter 5.

168

ﬂ

CSIZE [#channet,] with_mode , height_mode

Procedure ’
to select a different character size to be used in the
specified window. Default channel i. Chapter 10.

CURSOR [#channel,] [graphics_position,] pixel_position

Procedure
to move the text cursor in the specified window to the
pixe! offset required from the graphics position given.
Defauit channel |; default graphics position is the top
left hand corner of the relevent window. Chapter 10.
Chapter L1.

DATA expression {,expression}

Keyword
defining a set of constant data expressions within a
program. Chapter 8.

DATE

Function returning the total number of seconds (floating point)

in the current date. Chapter 13,

DATES [{seconds)]

Function returning a string containing an intelligable date and
time from the total number of seconds given. Default is
the current date. Chapter 13,

DAYS [(seconds)]
Function returning a string containing the abbreviated name of

the day of the date given in seconds. Default is the
current date. Chapter 13.

DEF{INE]

Keyword starting off an opening definition clause. Also used in
conjunction with END. Chapter 3.

DEFLINE] FIUNICTION] function_name [(argument [,argument})]
Keyword structure

of a complete opening definition clause for a wuser-
defined function. Chapter 3.

DEFIINE] PROCIEDURE] procedure_name [(argument {,argument})]
Keyword structure

of a complete opening definition clause for a user-
defined procedure. Chapter 3.

DEG (radians)

Function returning the number of degrees (floating point)
equivalent to the number of radians given. Chapter 5.

DELETE MDVo_filename

Procedure to remove the specified file from the medium in the
Microdrive slot given. Chapter 3.

169

DIM name(expression {,expression}) {,name{expression {,expression})}

Keyword
defining a set of dimensioned names, or arrays,
together with the maximum size of each index allowed.
Chapter 4.

DIMN (array_name {,index_number]})

Function
returning the integer maximum value of the index
required for the given array. Default index is the
first. Chapter 4.

DIR [#channel,] MDVn_

Procedure
writing out on the specified channel a list of all the
filenames on the medium in the specified Microdrive
slot, together with the number of good sectors used and
remaining. Default channel |. Chapter 8.

DIV

Operator performing an integer divide on two integer operands

and producing an integer result. Chapter 5.

DLINE [startline) [TO [endline] J {,[startline] (TO [endline]]

Procedure
to delete ranges of lines from the SuperBASIC program
currently in memory. Default startline is 1; default
endline is 32767. Chapter 9.

EDIT {startline] {,increment}

Procedure
to initiate the automatic line number generator and
editor. Default startline is 100; default increment s
0. Chapter 9.

ELLIPSE [#channel,] x,y,major_radius,ratio,rotation

Procedure
to draw in the specified window an ellipse with the
given major radius and minor to major ratio, around the
central absolute graphics position specified at the
given angle in radians anticlockwise to the vertical.
All lengths are in graphics units. Graphics cursor
updated. Default channel |. Chapter 10.

ELLIPSE_R (#channel,] xr,yr,major_radius,ratio,rotation

Procedure
to draw in the specified window an ellipse with the
given major radius and minor to major ratio, around the
central position specified relative to the current
graphics cursor, at the given angle in radians
anticlockwise to the vertical. All lengths and offsets
are in graphics wunits. Graphics cursor updated. Default
channel !. Chapter 10.

170

ELSE [statement]

Keyword used once only in a clause as an intermediate IF clause
to indicate the start of the alternative section of
code. If the alternative code is not required, then it

transfers control to the corresponding END IF instead.
Chapter 6.

END
Keyword used to start-all ending clauses.

END DEF[INE] [name]
Keyword structure of an ending definition clause. Also acts as a retun
from a procedure call. Chapter 3.

END FOR index_name
Keyword structure of an ending FOR loop clause. Transfers control back to
the beginning of the FOR loop. Chapter 7.

END IF

Keyword structure of an ending IF clause. Also marks end of alternative
code. Chapter 6.

END REP[EAT] index_name
Keyword structure

of an ending REPeat loop clause. Transfers control back
to the beginning of the REPeat loop. Chapter 7.

END SEL[ECT]

Keyword structure of an ending SELect clause. Also marks end of all
choices. Chapter 6.

END WHEN
Keyword structure of non-implemented ending WHEN clause.

EOF [(#channel)]

Function returning floating point true if the end of the file on
the specified channel has been reached, floating point
false otherwise. Default is for DATA items within the
current program. Chapter 8.

ERR[OR]
Keyword used in the non-implemented WHEN construction.

EXEC device

Procedure to initiate the independent machine code program coming
from the device given. This can be MDVn_filename or any
other input peripheral device. Chapter 12.

171

EXEC _W device

Procedure to initiate the independent machine code program coming
from the device given and to suspend SuperBASIC
execution while it does so. The device can be
MDVn_filename or any other input peripheral device.
Chapter i2.

EXIT index_name

Keyword structure of an intermediate FOR or REPeat loop clause
transferring execution to the statement after the end
of the loop indicated by END FOR index_name or END
REPeat index_name. Chapter 7.

EXP (expression)

Function returning the floating point value of the mathematical
quantity e raised to the power of the expression given.
Chapter 5.

FILL (#channel,] fill_mode
Procedure

to turn area filling on or off in the window given.
Default channel I. Chapter 10.

FILLS (string,length)

Function returning a string of the specified length, filled with
repeats of the first two characters in the string
given. If there is only one character, repeats are all
of that. Chapter 5.

FLASH (#channel,] ftash_mode

Procedure
to turn the text flashing attribute on or off in the
specified window. Defauit channel i. Chapter 0.

FOR

Keyword used to start an opening or inline FOR loop clause.

Also used in conjunction with END. Chapter 7.

FOR index_name = range {,range} [: statements]

Keyword structure
of an opening FOR loop clause. 1f followed by any
statements on the same line, it is an inline FOR loop.

Chapter 7.
FORMAT [#channel,] MDVn_name
Procedure
to format the medium in the Microdrive slot defined,
giving it the name specified and directing any message
to the channel given. Default channel |. Chapter 8.
FIUNICTION]
Keyword used in conjunction with DEFine. Chapter 3.

172

GO
Keyword starting an uncontrolled transfer statement. Chapter 6.

GO SUB line_number
Keyword structure transferring further execution to the line number

given, returning later to the statement after this.
Chapter 6.

GO TO line_number
Keyword structure transferring further execution to the line number
given. Chapter 6.

IF
Keyword starting off an opening or inline IF dause. Also used
in conjunction with END. Chapter 6.

IF expression [THEN] [:] [statements]

Keyword structure
of an opening IF clause. If there are any further
statements on the line, this is an inline IF clause,
Chapter 6.

INK [#channel,] colour
Procedure to set the colour of the ink used in the given window
to that specified. Default window 1. Chapter 10.

INKEYS [({#channel] [timeout])]

Function
returning a single character (string) taken from the
given channel during the specified time in fiftieths of
a second. Default channel 1; default timeout 0. Chapter

INPUT [#channel,] { [parameter] separator }

Procedure
to input values from the specified channel. If channel
is a console window, parameter expressions will be
printed and separator formatting done, otherwise
ignored. Default channel 1. Chapter 8.

INSTR

Operator returning integer position of first string operand

inside second string operand. Channel 5.

INT (expression)

Function returning the integer part of the floating point
expression given. Chapter 5.

KEYROW (row_number)

Function returning the integer value of the state of the keys in
the specified row (0 to 7) of the keyboard matrix.
Chapter 8.

173

LBYTES device,address,length

Procedure
to load the given number of raw hexadecimal bytes from
the Microdrive file or other input peripheral device
specified into QL memory starting at the absolute
address given. Chapter 12,

LEN (string)
Function returning the integer length of the string expression
given. Chapter 5.

[LET] variable = expression

Keyword structure
to assign the value of the expression given to a simple
variable, array element or array string. Chapter 4.

LINE [#channel,] [x,y] I,x,y] TO x,y }

Procedure
to reset the current graphics cursor and to draw a
straight line from one absolute graphics position to
another. Default channel 1; default point is current
graphics cursor. Graphics cursor updated. Chapter 1.

LINE R [#channel,] [xr,yr] {[,xr,yr] TO xr,yr }

Procedure
to reset the current graphics cursor and to draw a
straight line from one graphics position relative to
the current graphics cursor to another. Default channel
I; default point is current graphics cursor. Graphics
cursor updated. Chapter 11.

LIST [#channel,] [startline] [TO [endline]] {,[startline] [TO [endlineIl}

Procedure
to list the specified ranges of lines of the SuperBASIC
program currently in memory to the channel given.
Default channel 2; default startline is |; default
endline is 32767. Chapter 9.

LN (expression)
Function returning the floating point logarithm to the base e of
the floating point expression given. Chapter 5.

LOAD device

Procedure to load a completely new SuperBASIC program into memory
from the Microdrive file or input peripheral device
given. Chapter 9.

LOCIAL] name[{expression {,expression}) 1 {,namel(exp {,exp})]}

Keyword
defining a set of simple or dimensioned variables
(arrays) to be used locally to a procedure or function.
Chapter 4.

174

LOGI10 (expression)
Function

LRUN device
Procedure

MDVnumber_ [name]
Device name

MERGE device
Procedure

MISTTAKE] text
Keyword

MOD
Operator

MODE mode_type
Procedure

returning the floaling poimat logarithm to the base 10
of the floating point expression given. Chapter 5.

to load a comple tely new SuperBASIC program into meinory
from the Microdrive lile or other input peripheral
device given, and then to run from the top of the
prograin immediately. Chapter 9.

i i i i file on
of a Microdrive. Optionally devnf:g name of a
the medium iresi dep the specified Microdrive slot.
Chapter 8.

to merge a Super B ASIC program from thg Microd.rive file
or other input perpheral device given with the
SuperBASIC program curently in memory. Chapter 9.

defining a line of illegal SuperBASIC. Chapter 9.

i i he first integer
returnin the imteger result of t ‘
operandgin the mroduls of the second integer operand.
Chapter 5.

10 reset the mo»de of the screen to high or low
resolution. Also clears various screen attributes.
Chapter 10.

MOVE [#channel,] distance

Procedure

MRUN device
Procedure

NET number
Procedure

i i 1 indow by the
to move the graphics cursor in the given win
specified graghigs units distance from the current
graphics position in the current turtlg graphics
direction. Line willR be visible or not according to PEN
status. Default chansnel I. Chapter 1.

to imerge a SuperB,ASIC program I(orn thg Microd‘rive file
or other input peripheral ‘dewce given with thfi
SuperBASIC program currently in memory and then run i
immediately either —from the top of the program or from
the statement after the MRUN. Chapter 9.

to reset the netwo &k station number of the QL to the
value given. Chapter 8.

175

NETI_number

Device name of a network input channel from the network station
with the station number given. Chapter 8.

NETO_number

Device name of a network output channel to the network station with
the station number given. Chapter 8.

NEW

Procedure to clear out almost everything. Chapter 9.

NEXT index_name

Keyword structure of an intermediate FOR or REPeat loop clause directing
execution back to the beginning of the FOR or REPeat
loop with the given name. Chapter 7.

NOT
Monadic operator working on a floating point true or false value and

returning a floating point true or false answer.
Chapter 5.

ON

Keyword starting an intermediate SELect clause or a multiple
uncontrolled transfer. Can also be combined with SELect
in an opening or inline SELect clause,

{ON name] = range {,range} {:statements}

{ON name) = REMAINDER

Keyword structure
of an intermediate SElect clause. Marks end of previous
ON block. If unexpected will transfer execution to the
ENDSELect. Chapter 9.

ON expression GOTO/GOSUB expression {,expression)
Keyword structure

of a multiple uncontrolled transfer. Chapter 6.

OPEN #channel, device

Procedure to open exclusively a device for input or output on the
channel given. 1f the device is a Microdrive filename,
that file must exist on the medium in the specified
slot. Chapter 8.

OPEN_IN #channel, device
Procedure

to open a shared file for input only on the channel
given. The file must exist on the medium in the
specified Microdrive slot. Chapter 8.

176

OPEN_NEW {/channel, device

Procedure .
to open a new file for input or output on the channel
given. The file must not exist already on the medium in
the specified Microdrive slot. Chapter 8.

OR

Combination logical operator
returning a floating point true or false result from
the two floating point true or false operands given.
Chapter 5.

OVER [#channel,] overwriting mode

Procedure
to change the overwriting mode in the window given.
Default channel 1. Chapter 10.

PAN (f#channel,] distance [,window areal

Procedure
to move the contents of the window area specified in
the window given rightwards by the number of pixels
defined. Vacated columns are f{filled with current paper
colour. Distance must be even in low resolution mode.
Default channel 1; default window area is entire
window. Chapter 10.

PAPER [#channel,] main_colour [,contrast [,pattern]]

Procedure
to reset the colour of the paper in the given window to
that specified. Colour may be composite instead. Also
resets STRIP colour. Default channel l; default
contrast as main; default pattern is checkerboard.

Chapter 10,

PAUSE [(timeout)]

Procedure to halt execution until the time limit (in fiftieths of
a second) is reached or until any key on the keyboard
is pressed Default timeout is -1 or indefinite.
Chapter 8.

PEEK (address)
Function returning the integer value of the byte at the absolute
address in memory given. Chapter 12.

PEEK_L (even_address)

Function returning the floating point value of the long word
(four bytes) starting at the absolute address in memory
given. Chapter 12.

PEEK_W (even_address)

Function returning the integer value of the word (two bytes)
starting at the absolute address in memory given.
Chapter 12

177

PENDOWN [#channel]

Procedure turning the turtle graphics pen on in the given window.
MOVEs will now be visible. Default channe! 1. Chapter
L.

PENUP [#channel]
Procedure turning the turtle graphics pen off in the given

window. MOVEs will now be invisible. Default channel 1.
Chapter 11,

Pl

Function returning the floating point value of the mathematical
quantity W , Chapter 5.

POINT [#channel,] x,y, {,x,y }

Procedure
drawing a dot at the absolute graphics position given
in the specified window. Graphics cursor updated.
Default channel 1. Chapter 11.

POINT_R [#channel,] xr,yr, {,xryr }

Procedure
drawing a dot at the graphics position given relative
to the current graphics cursor in the specified window.
Graphics cursor updated. Default channel 1. Chapter 11.

POKE address, expression

Procedure
putting the value of the integer expression given into
the byte at the specified absolute address in memory.
Chapter 12.

POKE_L even_address, expression

Procedure
putting the value of the floating point expression
given into the long word (four bytes) starting at the
specified absolute address in memory. Chapter 12.

POKE_W even_address, expression

Procedure
putting the value of the integer expression given into
the word (two bytes) starting at the specified absolute
address in memory. Chapter 12.

PRINT [#channel,] {[parameter] separator }

Procedure
to print the values of the expressions and do the
separator formatting specified to the given channel.
Default channel 1. Chapter 8.

PROCIEDURE]

Keyword used with definition clauses. Chapter 3.

178

RAD (expression)
Function returning the number of radians (floating point)
equivalent to the number of degrees given. Chapter 5.

RANDOMISE [expression]

Procedure using an optional parameter to set a new random number
seed. Default is a random seed. Chapter 5.

READ variable {,variable}

Procedure to assign the next DATA item to the variable, array
element or array string specified in the read-list.
Chapter 8.

RECOL [#channel,] list of eight colours

Procedure
to change each pixel in the specified window to the
colour determined by the new list of colours given.
Default channel 1. Chapter 10.

REMAINDER

Keyword used as a range in the intermediate SELect clause.
Chapter 6.

REM[ARK] [text]

Keyword defining a non-executable line of text. Chapter 3.

RENUM [[startline] [TO [endlinell;] [new startline] {,increment]

Procedure
to renumber the SuperBASIC program currently in memory,
renumbering the startline given to the new starting
line number specified, each succeeding line wuntil the
endline given being at the defined offset to the last.
Default is RENUM | TO 32767;100,10. Chapter 9.

REP{EAT]
Keyword starting’ an opening or inline REPeat loop clause. Also
used in conjunction with END. Chapter 7.

REPIEAT] index_name {:statements}

Keyword structure
of an opening REPeat loop clause. Any further
statements on the line indicate an inline REPeat loop.
Chapter 7.

RESPR (length)

Function to allocate the specified number of bytes in the
resident procedure area and to return the absolute
address in memory where they start. Chapter 12.

RESTORE [line_number]

Keyword resetting the current DATA pointer to the beginning of
the line given. Default is top of current program.
Chapter 8.

179

RETRY
Procedure to restart execution at the beginning of the statement
which caused the last halt. Chapter 9.

RETIURN] [expression]

Keyword structure of intermediate definition clause. Transfers execution
to the statement after a procedure call, the term after
a function call, or the statement after a GOSUB
statement. If returning from a function, the given
expression is the value of that function, else ignored.
No default allowed on a function return. Chapter 3.
Chapter 4. Chapter 6.

RND [([lower_limit] TO upper_limit)]

Function
returning a random floating point value between 0 and 1
if no parameters given, or a random integer between the
lower and upper limit inclusive specified. Default
lower limit is 0, Chapter 3.

RUN [line_number]
Procedure to start execution of the current program at the line
number given. Default is top of program. Chapter 9.

SAVE device {,range of lines}

Procedure
to save the specified ranges of lines from the
SuperBASIC program currently in memory onto the given
device. This may be an output peripheral channel or
MDVn_filename. The filename must not already exist on
the medium in the Microdrive slot given. Chapter 9.

SBYTES device,address,length

Procedure]
to save the specified number of raw hexadecimal bytes
starting from the absolute address in memory given onto
the specified device. This may be an output peripheral
channel or MDVn_filename. The filename must not already
exist on the medium in the Microdrive slot given.
Chapter 12.

SCALE [#channel,] height,coordinates of bottom left-hand corner
Procedure .
to set the number of graphics units along the vertical
edge of the window given, also the x and y graphical
coordinate pair of the bottom left-hand corner of the
window. Default channel 1. Chapter 1l.

SCR [_size] [Aposition]

Device name of a screen window. Default is SCR_448x200a32xlé.
Chapter 8.

180

SCROLL [f#channel,] distance [,window area]

Procedure
to move the contents of the given window area of the
specified window downwards by the given number of
pixels. Vacated rows of pixels are filled with the
current paper colour. Default channel 1; default window
area is the entire window. Chapter 10.

SDATE year ,m-onth ,day ,hour,minute,second

Procedure
to reset the clock to the date and time given. Chapter
13.

SEL[ECT] .

Keyword starting an opening ©Or inline SElect clause. Also used

in conjunction with END. Chapter 6.

SEL[ECT] [ON] name [= range {range} {;statements}]

Keyword structure
of an opening SELect clause. The optional statements
indicate an inline SELect clause. Chapter 6.

SER [port] [parity] [handshaking] [protocol]
Device name
of a serial channel for RS5-232-C use. Default SERIlhr.

Chapter 8.

SEXEC device,address,size,length of data space

Procedure
to save the specified length of executable machine code
starting from the absolute address in memory given onto
the specified device SO that it may be later used with
EXEC. The device may be an output peripheral channel or
MDvVn_filename. The filename must not already exist on
the medium in the Microdrive slot given. Chapter 12.

SIN (angle)

Function returning the floating point sine of the angle in

radians given, Chapter 5.

SQRT (expression)

Function returning the positive floating point square root of
the positive floating point expression given. Chapter
5.

STEP L

Keyword used in a FOR range defining the increment to be added
to each succeeding value of the index variable. Chapter
7.

sToP

Procedure directing SuperBASIC execution to halt and to return

control to the QL console channel. Chapter 9.

181

STRIP [#channel,] main_colour [,contrast [,pattern]]

Procedure

suB
Keyword

TAN (angle)

Function

THEN
Keyword

TO
Keyword

to define the background, or highlighting, to text in
the given window. Colour may be a composite instead.
Default channel I; default contrast is as main colour;
default pattern is checks. Channel 10.

used with GO. Chapter 6.

returning the floating point tangent of the angle in
radians given. Chapter 5.

optionally used in an opening or inline IF clause.
Chapter 6.

used in conjunction with GO. Chapter 6;

as part of a value range. Chapter 6. Chapter 7;
as a separator, in general, Chapter 3

- in particular for PRINT, Chapter 8

- as part of a line number range, Chapter 9

- with graphics procedures, Chapter 1l.

TURN [#channel,] angle_r

Procedure

to turn the turtle graphics angle in the specified
window by the given number of degrees anticlockwise
from the currect direction. Default channel 1. Chapter
1.

TURNTO [#channel,] angle

Procedure

to turn the turtle graphics angle in the specified
window to the absolute number of degrees given
anticlockwise from due East. Default channel 1. Chapter
1.

UNDER [#channel,] underlining_mode

Procedure

VERS
Function

WHEN
Keyword

182

to set the text underlining attribute on or off in the
given window. Default channel I. Chapter 10.

returning a two character string giving the version
letters of the current system ROM. Chapter 5.

used in the non-implemented WHEN construction.

WIDTH [#channel,] number of characters

Procedure

WINDOW [#channel,)
Procedure

XOR

to set the width of the given channel to the specified
number of characters. Default channel |, but screen
windows will be ignored. Chapter 8.

width, height, position of top left hand corner
to change the size and position of the window attached

to the given channel. All sizes and coordinates to be
given in pixels. Default channel I. Chapter 10.

Combination logical operator

producing a floating point true or false result from
two floating point true or false operands.

183

Appendix A — THE CHARACTER SET,
ASCII CODE AND
CONVERSION

Decimal ASCIl code Character Keys pressed Hexadecimal ASCIl code
0 CTRL £ 0
1 CTRL a 4
2 CTRL b 2
3 ch chan CTRL ¢ 3
4 CTRL d 4
5 CTRL e 5
6 CTRL { 6
7 CTRL g 7
8 CTRL h 8
9 CTRL i, tab 9
10 line feed CTRL j, enter a
1 CTRL k b
12 CTRL | [
13 CTRL m d
14 CTRL n e
i5 CTRL o 1
16 CTRL p 10
17 CTRL gq 11
18 CTRL r 12
19 CTRL s 13
20 CTRL t 14
21 CTRL u 15
22 CTRL v 16
23 CTRL w 17
24 CTRL x 18
25 CTRL y 19
26 CTRL z la
27 CTRL sh [(CTRL {),escape ib
28 CTRL sh \ {CTRL D) 1c
29 CTRL sh J (CTRL D id
30 CTRL sh £ (CTRL) le
31 CTRL sh esc (CTRL@®) M
32 blank space 20
33 ! sh 1 () 21
34 " sh* (" 22
35 # sh 3 (#) 23
3% $ sh 4 (9 24
37 % sh 5 (%) 25
38 & sh 7 (&) 26

184

Decimal ASCIl code Character Keys pressed Hexadecimal ASCIl code
39 ! ' 27
40 (sh 9 (0 23
41) sh 0 () 29
42 * sh 8 (¥) 2a
43 + sh = (+) 2b
44)) 2c
45 - - 2d
46 . . 2e
47 / / 2f
48 0 0 30
49 1 1 31
50 2 2 32
51 3 3 33
52 4 4 34
53 5 5 35
54 6 6 36
55 7 7 37
56 8 8 33
57 9 9 39
58 : sh 3 3a
59 H H 3b
60 < sh , (<) 3c
61 = = 3d
62 > sh .) 3e
63 ? sh / () 3f
64 @ sh 2 (@) 40
65 A sh a (A if caps lock on) 41
66 B sh b (B if caps lock on) 42
67 C sh ¢ (C if caps lock on) 43
68 D shd (D if caps lock on) 44
69 E sh e (E if caps lock on) 45
70 F sh £ (F if caps lock on) 46
71 G sh g (G if caps lock on) 47
72 H sh h (H if caps lock on) 48
73 1 sh i (1 if caps lock om) 49
74 J sh j (3 if caps lock on) 4a
75 K sh k (K if caps lock on) 4b
76 L sh 1 (L if caps lock on) bc
77 M sh m (M if caps lock on) 4d
78 N sh n (N if caps lock on) be
79 (o) sh o (O if caps lock on) 4f
80 P sh p (P if caps lock on) 50
8l Q sh g (Q if caps lock on) 51
82 R sh r (R if caps lock on) 52
33 S sh s (5 if caps lock on) 53
84 T sh t (T if caps lock on) 54
85 u sh u (U if caps lock on) 55
36 v sh v (V if caps lock on) 56
87 w sh w (W if caps lock on) 57
83 X sh x (X if caps lock on) 58
39 Y sh y (Y if caps lock on) 59

186

Decimal ASCIl code Character Keys pressed Hexadecimal ASCIl code

90 z sh z (Z if caps lock on) Sa
91 [[5b
92 \ \ 5c
93 1 1 5d
94 - sh 6 (%) Se
95 _ sh - () 5t
% £ £ 60
97 a a 61
98 b b 62
99 c c 63
100 d d 64
101 e e 65
102 f f 66
103 g g 67
104 h h 68
105 i i 69
106 j j 6a
107 k k 6b
108 1 1 6¢c
109 m m 6d
110 n n 6e
111 o () 6f
112 P P 70
i13 q q 71
114 r r 72
115 s s 73
116 t t 74
117 u u 75
118 v v 76
119 w w 77
120 X X 78
121 y y 79
122 z z 7a
123 { sh [(0 7b
124] sh \ (D 7c
125 } sh 1} 7d
126 ~ sh £ (7) 7e
127 ® sh esc (®) 7f
128 a CTRL esc 80
129 i CTRL sh 1 (CTRL ') 81
130 3 CTRL sh ' (CTRL ") 82
131 é CTRL sh 3 (CTRL #) 83
132 o) CTRL sh 4 (CTRL $) 84
133 Y CTRL sh 5 (CTRL %) 85
134 & CTRL sh 7 (CTRL &) 86
135 u CTRL 87
136 S CTRL sh 9 (CTRL () 88
137 n CTRL sh 0 (CTRL)) 89
138 ~ CTRL sh 8 (CTRL *) 8a
139 o CTRL sh = (CTRL +) 8b
140 a CTRL , 8c

186

Decimal ASCH code Character

Keys pressed

Hexadecimal ASCI code

141
142
143
144
145
146
147
148
149
150
151

152
153
154
155
156
157
158
159
160
16l

162
163
le4
165
166
167

168
169
170
171

172
173
174
175
176
177
178
179
180
181

182
183
184
185
186
187
188
189
190
191

C> L4 F OYRR o e Y 0 ok AR RO SROOMBN: K HPOCEOC DT o e

CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL

CTRL ;

CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL

NV NAVMEWN=O"

(CTRL 2)

(CTRL <)

(CTRL >)

(CTRL ?)

(CTRL @)
(CTRL A)
(CTRL B)
(CTRL C)
(CTRL D)
(CTRL E)
(CTRL F)
(CTRL G)
h (CTRL H)
i (CTRL 1)

j (CTRL 2)

k (CTRL K)
1 (CTRL L)

m (CTRL M)
(CTRL N)
(CTRL O)
(CTRL P)
(CTRL Q)
(CTRL R)
(CTRL S)

(CTRL T)
(CTRL L)
(CTRL V)
(CTRL W)
(CTRL X)
(CTRL Y)
(CTRL 2)

m O OANTE NS

N< X g <C v T00OD

6 (CTRL °)
(CTRL)

187

Decimal ASCII code Character

Keys pressed

Hexadecimal ASCIl code

188

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242

«— c0
ALT < cl
CTRL <« c2
ALT CTRL < c3
sh <« ck
ALT sh ¢« c5
CTRL sh « cé
ALT CTRL sh ¢— c?
- c8
ALT — c9
CTRL — ca
ALT CTRL — cb
sh — cc
ALT sh — cd
CTRL sh — ce
ALT CTRL sh —> cf
1 do
ALT 1 dl
CTRL 1 d2
ALT CTRL 1 d3
sh 1 d4
ALT sh ¢ d5
CTRL sh T dé
ALT CTRL sh d7
l d8
ALT ¢ d9
CTRL da
ALT CTRL | db
sh ¢ dc
ALT shd dd
CTRL sh ¢ de
ALT CTRL shi{ df
(caps lock) el
ALT caps lock el
CTRL caps lock e2
ALT CTRL caps lock el
sh caps lock e4
ALT sh caps lock e5
CTRL sh caps lock e6
ALT CTRL sh caps lock e’
Fl e8
CTRL FI1 e9
sh Fl ea
CTRL sh Fl eb
F2 ec
CTRL F2 ed
sh F2 ee
CTRL sh F2 ef
F3 10
CTRL F3 £l
sh F3 £2

Decimal ASCHl code Character Keys pressed Hexadecimal ASCII code
243 CTRL sh F3 3
244 F4 4
245 CTRL F4 5
246 sh F4 fé
247 CTRL sh Fa 7
248 F5 8
249 CTRL F5 9
250 sh F5 fa
251 CTRL sh F5 fb
252 sh space fc
253 sh tab 1d
254 sh enter fe
255 ALT if

Except where stated, combining the ALT key with any other key on the
keyboard produces a two character code. The first character is always 255
and the second is the code generated by the normal key press. ALT can thus
be used to generate a completely alternative character set; each keystroke
could be treated as a new command just by checking the first character of
an INKEY$ for 255, then using the second as an offset to a table, for

example.

189

Appendix B—- ERRORS AND THEIR
MEANING

There are a finite number of SuperBASIC and QDOS error messages. In most
cases, due to lack of space, the messages are a trifle terse. In several
cases the messages are multi-purpose, the cause of the error could be a
number of things. In one or two cases, the error message generated has
nothing to do with what you have originally done wrong, but the fault has
caused spin-off effects which eventually result in the error message.

Apart from the message, "out of memory", when a message is printed in the
form

At line_number message

it means that the error has occurred while processing that line in the
current program. You can LIST the line to get an idea of what the problem
might be.

If the message is printed without an ™At line number" in front of it, it
means that the error occurred on the direct keyboard command which you
have just typed in. The line should still be visible on the console
window, but you will have to retype it in order to execute it again.

"not complete”

This message only occwrs when you have broken out of program execution,
program listing or the AUTOmatic line number generator. BREAKing is
achieved by pressing the CTRL key and the space bar together. This is not
an error message (unless you have managed to BREAK accidently)), it just
lets you know what's going on.

“out of memory™

My, you have been working hard. This message means exactly what it says.
Something that you have done has exceeded the memory available. SuperBASIC
immediately does a CLEAR to clear some space. This error can happen on any
operation but favourite causes are too large or unnecessary dimensioning
of arrays, too high a channel number when there are lower ones unused, too
much resident procedure area assigned. Cures? Use low (starting at #3)

190

channels, check arrays carefully, buy an expansion board.

If you get an “out of memory" message when YOu are creating a program,
there will be enough space to parse a <Cuple of commands but probably not
any more. If you don't want to have 1O feset the QL, use those commands
wisely (like saving the program). You have been warned.

"out of range"

This error normally occurs when you are refaring to elements of arrays or
strings which either don't exist, or which yu _are not allowed access to
(e.g., element zero of a string - Chapter), It is also prodpced by .the
RENUM command, or if any other line ranges used are not sensnb!e. If plxgl
or character positioning would take yous outside the relevent window, this
error will be generated to inform you of the fact

"buffer fulf”

Aha, you've reached the end of an inpuat biufer- If this occurs while you
are doing normal console input, get in Touch with Sinclair Research Ltd.
If it occurs while you are inputing tToO 3 different channel, assign a
larger butfer (Chapter 8).

"channel not open”

Normally means that the channel which yprou e trying to write to, read
from or even close, hasn't been opened. <« —ould be a spelling mistake or a
missing OPEN command.

"already exists"

Another file handling message. A file whic M was supposed not to exist has
been found. You will have to delete it then re==try the command.

"ot found”

This message is generated when SuperBASIC_—— canot find a file °ff detV‘C‘;
which it expects to exist (e.g., if you leay e the *MDVn_' off theTr:im ?t
a filename). It also occurs when an END FOF==, END REPeat or NEX oesnt
have a corresponding FOR or REPeat line to 8o hack to, or if you _?appen ()
delete a procedure definition line before ce=mlling the procedure. he name
exists but cannot be found in the current progra==x

191

This message does not occur when an EXIT, IF, ELSE, SELect, ON or DEFine

cannot find its ending clause. That is taken as a messy way of ending the
program.

A file or device cannot be assigned because it is already open on another
channel, or is otherwise occupied. You will have to close it first, or use
something different.

"invalid job"

QDOS message when accessing independent jobs.

“end of file"

This is caused by a number of things: the end of a file has been read
instead of the expected data; there are no more DATA items in the current
program; there are no executable lines after a DEFine statement.

*drive full"

You have managed to fill up a Microdrive medium. Close the channel to put
an end-of-file marker on the file. Cure? Put another cassette in or buy a
floppy disc.

"bad name”

Covers a multitude of sins. A "bad name" error is generated if you give a
command which SuperBASIC takes to be a procedure call, but which is not
defined in the nametable as being a procedure. This is aiso the message if
a loop index is not a simple floating point variable. Causes are likely to
be a mis-spelling, forgetfulness or, on rare occasions, if you have
somehow managed to overwrite the nametable. This last might occur if you
have loaded machine code into the wrong place, for example. The cure is to
reset the QL.

*format failed™

QDOS has been unable to format a Microdrive medium. Assuming that this
isn't because you pulled it out half-way through, then the tape itself

192

might be creased in some way. Try formatting it again a couple of times,
or use the other Microdrive slot. The cartridges are fairly delicate and
ought to be treated carefully. 1f you are sure that it isn't your fault,
then take the tape back and complain.

"Xmit error"

This stands for 'transmission error’ and occurs when the parity set on an
SER device doesn't match the parity required. Check the switches on the
other (non-QL) end of the RS-232 cable.

"bad or changed medium"

This is a Microdrive access error. It occurs when you have, for instance,
got a bad tape;

removed the medium while a file on it was open;

had a medium in the slot, but now have nothing and are accessing it.

This sort of error often generates two messages. One from the Microdrive
handling software also giving the name of the medium and one from
SuperBASIC.

"error in expression”

Well, this means exactly what it says, somewhere on the line there is an
error in an expression. Unfortunately expressions make up about 90 per
cent of any SuperBASIC line (in indices, as parameters, in FOR ranges,
etc.), so it might not be apparent to you which one is wrong. Some common
causes are :

an unset variable in an expression (other than a single unset variable
parameter which is allowed);

a term which cannot be converted to the required type for an operand
(especially remembering that a blank string does not convert to zero!);

the whole expression is unable to be converted to the type required for an
assignment (checking assignments and inputs to procedure parameters very
carefully since the parameter might not be the same type as the argument
name);

using an array as a simple variable;

mis-spelling a name;

referring to a function that doesn't exist.

"overflow”

This occurs normally when you have divided a quantity by zero or when you
are trying to cram a large (>32767) number into an integer variable or

193

"read only"

Sufficiently obvious, 1 think. You are trying to write to a device which
you are only allowed to read from. You have either got the OPEN command
wrong or you are using the wrong channel number or your device name needs
changing or you are just doing the wrong thing.

*bad parameter”

Too many or too few parameters to a built-in procedure or function.

"bad fine"

Normally, this error is given when a line of SuperBASIC fails to parse;
when what you have typed does not correspond to any of the syntax graphs,
in short, when a line is invalid SuperBASIC. When this happens, the line
will be echoed for you to correct and re-send.

If an invalid line has been read in from a Microdrive file during LOAD or
MERGE, the MISTake keyword is inserted in front of it and loading
continues. When executed, a MISTake statement produces "bad line". The
other case when "bad line" is given during execution is if a LOCal line is
found out of place. LOCals must come before the first executable statement
in a definition structure.

A very rare occurence is when, whatever you type at the keyboard, you get
"bad line” with no echo. The cause of this is very specific. You have re-

opened #0 against all advice and RUN something. The only cure is to reset
the QL.

OTHER ERRORS
LIST doesn't work - no current program or #2 closed.
AUTO doesn't work - re-openéd #0. Reset QL.

RUN doesn't work - re-opened #0 or there is no current program or the
program consists entirely of procedures.

Nothing being printed ~ ink is the same colour as the paper or the strip;
window defined incorrectly. If in #0, type Invisibly to get a different
ink colour.

Rubbish being printed across network or serial lines - baud rate not set

194

Rubbish being printed across network or serial lines - baud rate not set
correctly, cables not wired up properly, framing error (not enough stop
bits being transmitted).

If the message "At line" is printed with no error message, it means that a
non-existent error number has been generated from a machine code routine.

196

Appendix C — THE SuperBASIC
TOKENS

A line of SuperBASIC is completely tokenized. | have used the dollar
symbol, §, to indicate hexadecimal quantities. The tokens are as follows :

spaces two bytes $80.number of spaces 1-$7¢

keywords two bytes $8l.keyword identifier 1-$11
$01 END
$02 FOR
$03 IF
$04 REPeat
$05 SELect
$06 WHEN
$07 DEFine
$08 PROCedure
$09 FuNction
$0a GO
b TO
$0c SUB
$0e ERRor
$i1 RESTORE
$12 NEXT
S$13 EXIT
$l4 ELSE
$15 ON
$16 RETurn
$17 REMAINDER
$18 DATA
$19 DIM
$la LOCal
$lb LET
$ic THEN
$1d STEP
Sle REMark
$1f MISTake

198

symbols two bytes $84.symbol identifier 1-$a

0l =

$02 :
$03 #
$04
$05
$06
$07
$08
$09 forced space
$0a line feed ($a)

— e '~

operators two bytes S85.o$%erator identifier 1-$§16
1 +
$02
$03
S04
$05
$06
S07
508
$09
S0a
$0b
Soc |l
0d &&
gOe- an
sof *
$10 &
$11 OR
$12 AND
$13 XOR
S$14 MOD
$15 DIV
$16 INSTR

Vv

AAAN DT VS %!

monadic ops two bytes $86.rggnadic operator identifier 1-4
1 +
$02 -
$03 ~~
S04 NOT

four bytes $88.00.no of entry in nametable
four bytes+ $8b.delimiter code.no of chars.

1 byte/char+ chars in string if >0.
spare if nec unset to make even if necessary

il

text four bytes+ $8¢.00.no of chars.
1 byte/char+ chars of text.
spare if nec unset to make even if necessary

line number four bytes $8d.00.line number in hex 1-$7¢if

separators two bytes $8e.s§§>arator identifier 1-5
1,
$02
$03 \
$04 1.
$05 TO
floating point six bytes top two bytes: exponent in powers of two
offset above and below $0800
$1 masked into top four bits {e.g., $1800)
next four bytes: mantissa
normalized, hexadecimal, Jeft-justified

In a tokenized program, each line is preceded by two bytes giving the
change in length, in bytes, of this line from the last: 0 means that it is

the same length; +n means that it is N bytes more; -m means that it is M
bytes less.

198

Appendix D — THE SurerBASIC
STORAGE AREA

The SuperBASIC storage area is arranged thus :

system stack

arithmetic stack downwardly expanding

temp graph stack (parsing)

backtrack stack (parsing)

line number table (relist)

return stack

channel table

variable values area

namelist upwardly expanding

nametable

program file

token list

buffer

SuperBASIC variables

The SuperBASIC variables area is a constant size. All of the other stacks,
heaps and lists are constantly expanding and occasionally contracting.

Each area, apart from the SuperBASIC variables, has a base pointer and a
running pointer. There is normally a breathing space between the running

199

pointer and the base pointer of the next area up. As more information is
put into an area, this breathing space is eaten up until the running
pointer bumps into the bottom of the area above. When this happens, the

higher areas are moved up into the central space, leaving more room above
the stack concerned.

When an area contracts, the running pointer falls, and the available space
above it is increased. That space remains the property of the area in

question and is not released except on a CLEAR or NEW (and sometimes not
even then!).

If, during the expansion process, the central free area is completely used
up, then SuperBASIC has to ask the QDOS system for extra space. When this
is allocated, it is inserted into the central area and all of the upwardly
expanding areas are correspondingly moved down to make room for it.

Because of the flexibility of this system, absolute addressing cannot be

used within SuperBASIC. Every offset is relative to the base of its area,

and every base and running pointer is relative to the base of the
SuperBASIC area itself.

The SuperBASIC areas

BUFFER

Contains the actual command line typed or read in. Often used for
conversions too.

TOKEN LIST

Internal SuperBASIC token list for the line typed or read in, minus any
leading, trailing or forced spaces. If it is a program line, it will be
transferred to the program file.

PROGRAM FILE

Complete tokenized program. Lines are in the form given in Appendix C.

NAMETABLE

Hub of system, exhaustively discussed in Chapter 4. Each entry is eight

bytes long and is in the form

nametype

separator type and variabletype -

pointer to offset of name in
namelist/ copy entry

pointer to offset of value of
variable in vv area/offset
of array descriptor/address
of mc procedure or function/
Ino of SuperBASIC proc or fn

NAMELIST

List of names in the form

1 byte
1 byte

2 bytes

4 bytes

length of name (I byte) characters in name (1 byte/character)

VARIABLE VALUES AREA

Heap of variable values, array descriptors, array values, temporary
and loop information. Free space allocated and
manager. First free space pointed

succeeding free spaces pointing
interest are:

array descriptor - Chapter 4

offset in vv area of values
number of indices

then, for each index

maximum index value
distance between elements

REPeat loop information - Chapter 7

index value

REPeat line number

END REPeat line number
statement on REPeat line
statement on END REPeat line

4 bytes
2 bytes

by tes
by tes

NN

6 bytes
2 bytes
2 bytes
1 byte
| byte

tables
released by QDOS heap
to from SuperBASIC storage
to the next. Particular

area,

of

201

FOR loop information - Chapter 7

index value 6 bytes
FOR line number 2 bytes
END FOR line number 2 bytes
statement on FOR line 1 byte
statement on END FOR line 1 byte
end value of current range 6 bytes
step value of current range 6 bytes
position on line of range 2 bytes

CHANNEL TABLE

Holds information used by graphics and formatting routines

channel id (-1 if not open) 4 bytes
y value of graphics cursor 6 bytes
x value of graphics cursor 6 bytes
turtle angle 6 bytes
turtle pen status 1 byte
spare 9 bytes
character pos on line 2 bytes
width of line in characters 2 bytes
spare 4 bytes

RETURN STACK

Entries are in the form :

202

offset in nt of base of parameter entries
offset in nt of base of LOCal entries
offset in nt of top of LOCal entries
DEFine line number

function type if applicable

whether args and pars swapped yet or not

routine type: 0-GOSUB,l-proc,2/3 - fn
statement on calling line

calling line number

status of calling line

_—— N e

SN —-—

bytes
bytes
bytes
bytes
byte
byte

byte
byte
bytes
by tes

SuperBASIC
procedure and
functions

only

all the
above plus
GOSUBs too

LINE NUMBER TABLE

Entries for each line of SuperBASIC printed to #2 in the most recent list
range. Entries are in the form :

line number 2 bytes
no of window lines taken 2 bytes

BACKTRACK STACK

Keeps track of the progress while parsing a line. Enables retracing of
steps to try another path.

TEMPORARY GRAPH STACK

Keeps track of syntax graphs entered during parsing

ARITHMETIC STACK

‘Working area for the expression evaluator. Chapter 5.

SYSTEM STACK

Keeps track of machine code procedures and temporarily saved variables
used by SuperBASIC. Very important stack.

THE LIST OF SUPERBASIC STORAGE VARIABLES OFFSETS IS AS FOLLOWS:

buffer base

buffer running pointer
token list base

token list running pointer
program file base
program file running pointer
nametable base
nametable running pointer
namelist base

namelist running pointer
variable values base

203

204

variable values running pointer
channel table base

channel table running pointer
return stack base

return stack running pointer
line number base

line number running pointer

backtrack stack running pointer
backtrack stack base

temp graph running pointer
temp graph base

arithmetic stack running pointer
arithmetic stack base

system stack running pointer
system stack base

current line number
current length

current statement
continue or stop

inline or not

direct or not

index variable

first free vv area space
out of memory address

random number
command channel

line number to start at

statement to start at

command line saved or not

stop number

program edited or not

BREAK or not

need to unravel return stack or not
statement to CONTINUE from

line number to CONTINUE from

current DATA line number
statement on DATA line
item on DATA line

inline loop index for CONTINUE
inline loop flag for CONTINUE

checking listrange or not
invisible top line

bottom line in window
invisible bottom line
length of window line

Sab
$a6

Saa
. Sab
Sac
. Sae

$b0
" $by
$bs
$b9

Sba

$100 top of SuperBASIC variables area

max no of window lines
no of window lines so far

AUTOQ/EDIT on or off

print line or leave it in buffer
line number to edit next
increment on edit range

pos in tklist on entry to procedure

temp pointer for GO_PROC

undo return stack and redo procedure or not

up arrow, down arrow or enter

fill window when relisting to here

CL L EanNuvm
W7 ERLIN

<6

E0

52

P

L

Thi. Buewf

QLLr 2un

205

Appendix E - THE QL MEMORY MAP

QDOS memory map (held in RAM) :

206

—

resident procedures

transient programs

SuperBASIC area

filing subsystem slave blocks

channels/common heap items

resource management tables/
system variables

display memory

| I |

Physical memory map :

fifff
128K add-on ROM
0000
diftf
8x16K add-on peripheral devices
<0000
bifff
half a megabyte add-on RAM
40000
3ftf
(RAM 1)
30000
2ffff
RAM 0 / SCR 1
(QDOS area)
28000
2711f
SCR O
20000
1111
1/O hardware
10000
0ff£f
Plug-in ROM cartridge
0c000
Obf ff
System ROM
00000

207

INDEX

Abbreviations

ABS

Accessing memory

ACOS

ACOT

ADATE

Addresses in memory

Adjusting the clock

Almost equal to, ==

ALT

Alternative code

Ampersand, &

of keywords

definition
keyword

See Memory access

definition
keyword

definition
keyword

definition
keyword

action
operator
token

code
use with arrow keys

multiple, SELect
simple, IF

code

concatenation, action
operator

&&, bitwise AND operator

40
166

40
166

40
166

143
166

137

143

39
33
197

189
63

46
by

184
39

3
33,40

(

AND

Angles

Animation

Annotating

ARC

ARC_R

Arc-cosine
Arc-cotangent
Arc-sine
Arc-tangent

Area

Arguments

Arithmetic operators

Arithmetic (RI) stack

bitwise,&&, action
operator
token

logical, action
keyword
operator
token

of ellipse to vertical

radians to degrees to radians

subtended in ARC
in ARC_R

trig functions of

turtle angles

graphical
via CURSOR, example
via overwriting, example

using SCROLL and PAN, example

CURSOR, graphical

definition
keyword

definition
keyword

See ACOS
See ACOT
See ASIN
See ATAN
codes of windows
filling, with BLOCK
with FILL
in DEFine PROCedure lines
in DEFine FuNction lines
introduction to

swapping with parameters

list of
tokens

during expression evaluation
position in memory

40

197
40
166

197
122

118
126

130

112
108
122
110

124

118
166

126
166

103
105
127

12
18
18

38
197

S
199

209

Arrays

Arrow keys

ASIN

Assignment

AT

ATAN

AUTO

Automatic entry

210

descriptor

dimensioning

discussion

element assignment
in expressions
order

LOCal arrays

as parameters

PRINTing of

redimehsioning

size of

storage of values

sub-arrays

type of

codes of

used when creating programs

definition
keyword

to arrays

via INPUT

via LET

via READ
reassignment

to simple variables

definition
keyword

definition
keyword

definition
keyword
used with LOAD

of line numbers
from file
into program

81
167
89

81
88
9

Backslash, \

Backup

Bad line

BAUD

BEEP

BEEPING

Binary operators

Bits

Bitwise operations

BLOCK

Booting

BORDER

Boundary

Brackets

code

separator, general
used with PRINT

syntax graph

token

Microdrive

in general
on MISTake
while parsing

definition
keyword

definition

keyword

parameters
exercisér procedure

definition
keyword

See Logical operators
making up bytes
used in colour patterns

used in internal representation

list of
tokens

definition
keyword

automatic file entry

definition
keyword

word, even boundary

in array indexing
codes of

in definitions

in expressions

l46
167
146
150

151
167

98,99
37

40
197

105
167

91

104
167

5

22
185,186
Yy

36

211

BREAK, CTRL and space together
breaking out of AUTO/EDIT
breaking out of a bad line
breaking out of BEEP
breaking out of program execution
breaking out of transmission
Broadcast
over the NETwork
sound
Buffer
Command input
CONsole keyboard
peripheral
Bytes
composition
description
number of in values

212

82
80
151
74

79
146

80

74

o

Calendar and clock
reading and setting

CALL
definition
keyword
Calling
a function
independent machine code routines
a machine code program
a procedure
Case

comparison in strings
construction - see SELect
conversion between
equivalent in names
lower, in examples

in definitions
upper, in examples

in definitions

Changing input buffer
Changing program lines

Channels
brief introduction
changing input channels
closing
end of file on
opening
range of
reserved numbers
table
Characters
colour of
flashing
positioning of, via AT
via CURSOR, absolute
via CURSOR, graphics
positioning of, via PRINT
in a name
set
size of
underlining of
Checkerboard
as a colour pattern

142

138
167

12

139
138
8,11

40

41
15

S e

139

213

Choice

CHRS

CIRCLE

CIRCLE R

Clauses

CLEAR

CL OSE

muitiple, SELect
simple, IF

definition
keyword

definition
keyword

definition
keyword

discussion

definition
keyword

definition
keyword

Closing files on channels

CLS

CODE

Coercion

Colon, :

Colour

Column

214

definition, full
simple
keyword

definition
with INKEYS$
keyword

forced conversion

code
statement separator
token

bit patterns

of blocks

of border

components

composite

of ink

in different modes

of paper

recolouring via OVER
via RECOL

of strip

with AT
number on a screen
tabulation

46
44

41
167

120
167

126
168

43

90
168

69
168

69

103
97
168

41
62
168

37

185
14
197

98

105

104

98

99
101,102
94,98
101

106

107
101,102

101
95
58

Combination logical operators

Comma, ,

Commenting

Comparisons

Complex clauses
Composite colour
Concatenation

CONsole

Constants

CONTINUE
Continuous looping
Contrast colour

Control structures

CONTROL 2
Controlled looping

Controlled transfer

Controlling sound

Conversion

list of
tokens

code

separator, general
with PRINT

token

REMark

arithmetic
string

discussion
formation of
of strings
device names
keyword
window #0

legal

definition
keyword

REPeat

general
IF
SELect

to produce

FOR

multiple, SELect
simple, IF

forced
upper to lower cas-e

40
197

185
20
198

38
39

43

99
33,39
76
168
95

34

92
168

51
98

43
46
74
54

46
4k

151

37
42

215

Coordinates
COPY
COPY_N

Copying

Copyrights

COS

Cosine

CoT

Cotangent
Creating a program
Credits

CSIZE

CTRL key

CTS line

CURSOR

Cursor

216

graphics
pixel

definition
keyword

definition
keyword

devices
files
with no header

definition
keyword

See COS

definition
keyword

See COT

definition
keyword

with C
with F5
with space
using

to use

definition, full
simple
keyword

codes

keys

list position
graphics cursor

text cursor, positioning with AT
with CURSOR, absolute
with CURSOR, relative

with PRINT

14
105

75
168 -

75 -
168

75

75

40
168

40
168

80

108
169

139
61
80
63

74

124
107
169

63,187
80,82
84,97
115
it
107
113
58

Curves

drawing arcs
circles
ellipses

relative curves

118

121
125

217

DATA

Data

DATE

Date and time

DATES

DAYS

Decimal

DEFine

Definitions

DEG

DELETE

Deleting

Descriptor

218

definition
keyword

assigning, READ
constant

data pointer
defining, DATA
holding separately
repeating, RESTORE

definition
keyword

definition
keyword

definition
keyword

legal constant

internal representation
syntax graph

token

FuNction, definition
keyword

PROCedure, definition
token

clauses, discussion
on RENUM
skipping through
of syntax

definition
keyword

definition

keyword

characters on a line
files, DELETE

lines

array

66
169

66
65
66
66
67
67

143
169

142

143,144
169

144
169

34
37
162
198

12
169
8
196

40
169

72
169

80
72
80

24

Depth
DIM

Dimension

DIMN

DIR

Direct commands

Direction
Directory

DIV

Divide, /

DLINE

Dots

DTR line

Duration

of border

definition
keyword
syntax graph
token

-ing an array
max size of indices, DIMN

definition
keyword

definition
keyword

from keyboard
from Microdrive file

of graphics turtle
of files on a medium

action
keyword
operator
token

action

code

integer, See. DIV
operator

token

definition
keyword

as a colour pattern
drawing, POINT
POINT_R

1o use

of BEEP
of time steps in BEEP

104
22

170
159
196

22
29

29
170

71
170

11
88

130
71

38
170

197

38
185

33
197

81
170

99
117
126
74

146
148

219

EDIT

Editing

ELLIPSE

ELLIPSE R

ELSE

END

End of file

End of program
ENTER

Entering lines

EOF

definition
keyword

changing lines
deleting lines

EDIT

inserting lines
LISTing
renumbering, RENUM

definition
keyword

definition
keyword

definition
keyword
syntax graph
token

DEFine

end clauses
FOR

IF

keyword
REPeat
SElect
syntax graph
token

WHEN

detection on a text file
EOF for DATA
EOF for files

action on

use of

definition for channels
for DATA
keyword

92
80,82
80
70

66
171

Equals, =

Equivalent, ==

ERRor

Errors

Even boundary
Evened-up length
Examples

Exclamation mark, !

EXEC

EXEC_W

Execution

Execution window

almost equal to, ==

as assignment

code

as intermediate SELect clause

= as operator, action
operator

not equal to, <

token, operator
symbol

action
operator
token

keyword

continuing from
messages

notes on

code

separator, general
with PRINT

token

definition
keyword

definition
keyword

freezing screen during

of functions

of independent machine code
versus parsing

pausing during

of procedures

of programs, RUN

stopping

221

EXIT
definition, FOR
REPeat
keyword
syntax graph
token
Exiting
from FOR
inline
from REPeat
inline
EXP
definition
keyword

Exponentiation function
See EXP

Expressions
components
definition
evaluator
monadic operators
operators
process of evaluation
slicing string expressions
sub-~expressions
syntax graph
terms

222

i3
33
35
34
33,38
35
29

160
33

File system

FILL

FILLS

FLASH

Flashing text

Floating point

FOR

FORMAT

Frame rate

Framing error

closing files
copying files
deleting files

file names

general

listing files
opening files
reading from file
writing to file

See also Microdrive

definition
keyword

definition
keyword

definition
keyword

names
syntax graph

internal representation

legal constants

range of

storage in variable values area

syntax graph

token

definition of complex clause
of inline clause

discussion

index variable

keyword

range stepping

syntax graph

token

definition
keyword

on INKEYS
on PAUSE

on transmission

127
172

41
172

110
172

110

16
163
37
34
37
17
162
198

223

Freezing the screen

FuNction

Fuzz

224

definition

in expressions

keyword

introduction to

nesting of calls
of definitions

parameters of (See Parameters)

returning from

syntax graph

token

type of

using

as a BEEP parameter

61

12

172
12
13
13

12
155
196
12

149

GOsSuUB

GOTO

Graphics

Greater than, >

definition
keyword
ON.....GOSUB
renumbering of
syntax graph
token

definition
keyword
ON.....GOTO
renumbering of
syntax graph
token

annotating
ARC :
ARC_R
CIRCLE
CIRCLE_R
CURSOR
cursor position
ELLIPSE
ELLIPSE_R
FILL

LINE

LINE R
MOVE

off-window drawing

PENDOWN
PENUP
POINT
POINT R

relative graphics

SCALE

TURN

TURNTO

turtle graphics
units

action
code
operator
token

Greater than or equal to, >=

action
operator
token

49
173
49
86
159
196

L2)
173

86
159
196

124
118
126
120
126
124
115,116
121
126
127
116
126
130
117
129
130
117
126
125
114
130
130
129
114

39
185
33
197
39

197

226

Handshaking

on network lines 78

on serial lines 74
Hardware map 207
Hash, #

code 184

storage of 21

token 197

using with channels 58
Header

copying without 75

on files 76
Height

of a block 105

of a border 104

of a character 108

of a graphics window 114

of a window 96
High resolution

character size in 108

description 9

Highlighting
. characters, See STRIP

windows, See BORDER
Horizontal stripes

as a colour pattern 99

Identifiers

IF

lllegal values

Increments

See Names
of loops, See Index variable

definition of complex clause
of inline clause

discussion

keyword

process of choice

syntax graph

token

lines
numbers
strings

with AUTO

with EDIT

with FOR ranges
with RENUM

Independent machine code routines

Index

Index variable

INK

INKEY$

Inline clauses

INPUT

array indices
maximum size of

string indices

sub-array indices

of FOR, description
storage

of REPeat, description
storage

definition
keyword
XORed with background

definition
from file
keyword

discussion

from console windows
definition

from file

keyword

separators

173
43

6l
6l
69
173
61

227

Input buffer

Inputing

INSTR

INT

Integer

Intermediate clauses

Internal

Invisible

228

for editing

values, See INPUT

single characters, See INKEY$
multiple characters, KEYROW
program lines, from keyboard

from Microdrive

action
keyword
operator
token

definition
keyword

arrays

divide, DIV

internal representation
names

operators

range of values
storage

discussion
syntax graph

representation
Storage units
tokens

positioning of graphics cursor

LINE
LINE_R
PENUP

positioning of print cursor
AT

CURSOR, absolute
graphics offset
printing, INK

30

64
20
38

39
173

197

40
173

23
38
37
l6
33
37
17

43
157

37

196

116
126
130

101
107
124
101

Joining files
with MERGE
Joining strings
concatenation, action
operation

88

39
33

229

Keyboard matrix
Keyboard queue

KEYROW

Keywords

layout
with console device

definition
keyword

abbreviations in definitions

list of restricted names

tokens

versus procedures and functions

64
77
64
173

165
196
12

LBYTES
definition
keyword
LEN
definition
keyword
Length
of floating points, internal representation
storage
of integers, internal representation
storage
of keyboard queue
of strings
of strings in arrays
Less than, < :
action
code
operator
token

Less than or equal to, <=
action
operator
token
LET
definition, array assignment
simple assignment
keyword
syntax graph
token
Letters
also see Case
also see Characters
codes
conversion
in a name
LINE
definition
keyword
Line numbers
used when editing
used with GOSUB
used with GOTOQO
range of
range with AUTO
with DLINE
with LIST
with RENUM
with RUN

137
174

29
174

37
17
37
17
77
38
23

39
185

197
39
33
197
27
174

159
196

185

231

LINE_R

Lines

Linking

LIST

List

Listing

LN

LOAD

Loading

LOCal

Local variables

LOGIO

232

with SAVE
token
when used

definition
keyword

drawing, absolute
relative
turtle

program, editing
listing
syntax graph of

machine code
two programs

definition
keyword

list range

relisting

list window
effect on

Microdrive names
programs

definition
keyword

definition
keyword

from Microdrive
with AUTO
direct commands

across peripherals

definition, full

simple
keyword
syntax graph
token

arrays
discussion
swapping
using

definition
keyword

88
196

126
174
116
125
129
80

154

138

41
175

.3
174

Logarithms

Logical operators

Long word

Loops

Low resolution

Lower case

LRUN

See LOG10, LN

bitwise
combinational
relational
tokens

as storage unit

continuous

controlled

discussion

loop epilogue

loop identifier

storage of information

character size in
description of

checking for
comparisons
converting to
used in definitions
in examples
in names

definition
keyword

40
39
40
197

51
54
51

51,55
52,55

108
9%

42

42

15

175

Machine code

Major radius

discussion

executing independently

procedures and functions, linking in
type of

colour
pitch

Mathematical functions

Maximum

MDVn_

Memory access

MERGE

Microdrive

list of

characters in a name
in a Microdrive name
in a string
index in array
in string
line number
number of jobs
number of network stations
size of values

keyword
See Microdrive

via LBYTES
via PEEK
via POKE
via SBY TES

definition
keyword

backup
booting from
copying files on
deleting files on
direct commands from
formatting
listing names on
loading programs from
names of files

of mediums
opening files on
reading from files on
saving programs onto
writing to files on

137
139
138
ie

98
147

121

40

13
71
38
22
28

139
37

175

137
140

137

88
175

73
91
72
72
88
71
71
88
69
71
68
69
87
68

Minor radius 121

Minus, -
code 185
diadic, action 38
operator 33
token 197
monadic, operator 34
token 197
part of a number 34
MISTake
definition 80
keyward 175
syntax graph 159
token 196
MOD
action 38
keyword 175
operator 33
token 197
Mode
definition 94
keyword 175
Modulus
See MOD
Monadic operators
list 34
syntax graph 164
tokens 197
Monitor screen
default display 95
mode 9%
size of in pixels 9
Motorola chip 5
MOVE
definition 130
keyword 175
Moving contents of windows 109
MRUN
definition 90
keyword 175
Multi-line clauses 43
Multiple choice 46
Multiple entry to procedure 10

235

Multiply, *

236

action
code
operator
token

33
185
33
197

Namelist

Namepass

Names

Nametable

Nametypes

Nesting

NET
NETI

NETO

definition of entries
pointers to

position in storage area
table

discussion

definition of

of files

of functions
introduction to

of loop identifiers
of mediums

of procedures
when set up
syntax graph of
tokens

assigning values to

construction

definition of entries

during expression evaluation
pointers to

position in storage area
table

of procedures and functions
from parameter swapping
from usage

calls
clauses
DEFinitions
IFs

FORs
REPeats
SELects

definition
keyword

keyword
usage

keyword
usage

15
15
199
201

18

16
69
12
15
51
71

15
163
197
16
15
35
15
199
201
17

16

43
44,45

33,54
47

78
175

176
78

176
78

237

Network
broadcasting
general
station numbers
NEXT
definition, with FOR
with REPeat
keyword
syntax graph
token
NEW
definition
keyword
New Microdrive tapes
formatting
Non-reentrance

discussion
NOT
bitwise, *°, action
operator
token
logical, action
operator
keyword
token
Not complete
Also see BREAK
general
Not equal to,
action
definition
token
Number
codes of
legal

79
78
78

54
51
176
157
19¢

176
71
127

40
33
197
40
33
176
197

190
39
33
196

185
3%

Off-window drawing

ON

OPEN
OPEN_IN
OPEN_NEW

Opening channels

Opening clauses

Operators

definition
with GOSUB
with GOTO
with SElect
keyword
syntax graph
with GOSUB/GOTO
with SELect
token

definition
keyword

definition
keyword

definition
keyword

to files
over network
over peripherals

discussion
syntax graphs

action of arithmetic
bitwise
integer
logical
string
list of
monadic
syntax graph of
tokens
precedence in expression
storage during evaluation
syntax graph
token
type of operands

17

46
49
49
46
176
157
159
154
196

63
176

68
176

68
177

68
78
74

43
154,156

38
40
38
39
39
33
34
les
197
33
35
164
197
33

239

OR

Other books
Out of memory
Out of range

Output

OVER

Overlaying windows

Overwriting modes

bitwise, ||, action
operator
token

exclusive or, See XOR

logical, action
keyword
operator
token

general
general
to console windows
to file

to peripherals

definition
keyword

40
197

40
177

197

190
191
58
74

102
177

97
102

PAN

PAPER

Parameters

Parity

Parsing

Pattern

PAUSE

Pausing

PEEK

PEEK L

PEEK W

PENDOWN

PENUP

Peripherals

definition
keyword

definition
keyword

arrays as
brief description
entries on nametable
parameter list

syntax graph
returning
swapping with arguments

over serial lines
definition

errors during

name creation during

of colour pixels

definition
key word

during execution
by freezing screen

definition
keyword

definition
key word

definition
keyword

definitjon
keyword

definition
keyword

device names
using
with current program

109
177

101
177

74
I}
80
15
99

65
177

65
6l

140
177

140
177

140
177

130
178

129
178

73

74
91

241

Pl

Pitch

Pixels

Plus, +

POINT

POINT_R

Pointers

POKE

POKE L

POKE W

Ports

242

definition
keyword
section of circle

main pitch with BEEP
secondary
pitch step

number in a border
number in a character
used with colours

number in a CON/SCR device
counted from for blocks

for CURSOR, absolute

for CURSOR, graphics

for windows

number in a graphics unit

number on a screen

code

diadic, action
operator
token

monadic, operator
token

part of number

definition
keyword

definition
keyword

to array values
in nametable entries
to nametable entries

definition
keyword

definition
keyword

definition
keyword

network
serial

41

178
19
147

148

140
178

140
178

140
178

78
73

Positioning

Power, ~

PRINT

Printing

PROCedure

Procedures

Program

Protocol

of blocks
of border

of text by AT

by CURSOR, absolute
by CURSOR, graphics
by PRINT separators
of windows
within windows

action
code
operator
token

definition
keyword

arrays

to console windows
to file

parameters

to peripherals
separators

effect on windows

definition
keyword
syntax graph
token

calling

definition

introduction

nametable entry

names of

nesting of calls
definitions

parameters, See Parameters

return stack

returning from

single entry point

skipping through

type of

creation

brief introduction

running

serial

105
104
101
107
124
58

96

105

38
186
33
197

243

QDOS
filing system 67
memory map 206
property of 3
trademark 3
QL
available from 3
trademark 3
Quotes
codes 184
string delimeters 34

RAD

Radians

Radius
Random
RANDOMISE

Range

Ratio

READ

Reading

Receiving
'RECOL
Recolouring

Recovering

definition
keyword

used in angles

of circle
major, minor of ellipse

notes in BEEP
numbers

definition
keyword

of floating point
of indices, array
string
sub-array
of integers
of lines, See Line numbers
of loop variables
of an ON

minor to major radius of an ellipse

definition
keyword

the clock

from DATA items
from devices
from file

with INKEY$
with INPUT

with KEYROW
with PAUSE

over network lines
over serial lines

definition
keyword

with OVER
with RECOL

from errors

41
179

119

120
121

150
41

41
179

37
22
27
26
37

55

122

66
179

142

75
69
62
61
63
65

78
74

107
179

106
107

93

Registers

Relational operators

Relative drawing

REMAINDER

REMark

RENUM

Renumber table

REPeat

Repeating |

assembler

action of
list of
tokens of

discussion
with turtle

action
definition
keyword
syntax graph
token

definition
key word
syntax graph
token

definition
keyword

definition, complex
inline

keyword

syntax graph

token

BEEP sweeps
loops, continuous
controlled

Resident program area

Resolution

RESPR

RESTORE

position in memory
using

low, high

definition
keyword

definition
keyword
renumbering of
syntax graph
token

138

39
33
197

125
129

47

179
157
196

13

179
159
196

85
179

51
54
179
156
196

149
54
206
138
9%

138
179

67
179
87
159
196

Restoring

RETRY

RETurn

Return stack

Returning

RI stack

RND

Rotation

Row

RS-232-C
RUN

Running

DATA items
programs
and running

definition
keyword

definition, from function
from procedure

keyword

syntax graph

token

cleared out
description
function entry
GOSUB entry
after error
position in memory
procedure entry
table

from a function
from a GOSUB
from a procedure

during expression evaluation
position in memory

definition
keyword

of ellipse
of keyboard matrix
of window

with AT

serial device

definition
key word

loading and
machine code
independently
procedures
programs

90
180

138
139
8,12
90

247

SAVE

Saving

SBY TES

SCALE

Scenic procedures

SCR

Screen

SCROLL

SDATE

Secondary pitch
Seconds
Sectors

SELect

definition
keyword

bytes, See SBY TES
executable code, See SEXEC
to Microdrive

across peripheral lines

definition
keyword

definition
keyword

examples

definition of a screen device
keyword

device

modes

windows
colours in
default
redefining

definition
keyword

definition
keyword

BEEP parameter
in dates

formatted on Microdrive
used/left

definition, complex
inline
keyword
ranges
choosing
matching
syntax graph
token

87
180

87
9l

137
130

114
180

133

77
180

77
94
94
98
96

109
181

142
181

147
143

71
72

46
181
46
46

154
196

Semicolon, ;
code
separator, general
for PRINT
for RENUM
token
Separators
between parameters
storage with parameters
syntax graph
token
types
SER
device names of serial links
keyword
SEXEC
definition
keyword
Shift
combination codes
Shifting
contents of windows
Simple
choice
clauses
input
output
SIN
definition
keyword

Sinclair Research Ltd
credits to
Sine
See SIN
Size
of a block
of a border
of a character
of an index
of a string
of a window
Slicing
arrays
strings
Sound
making it
stopping it

185
20
58

198
20
164
198
21

73
181

139
131

63

109

105
104
108
22
33
96

25
27

146
i51

249

Space

Spacing out code
Square root

SQRT

Stacks

Station number

STEP

Stipple

STOP

Stopping execution

Storage

code
forced
in syntax graphs
leading, trailing
token
in variable values area

ways of
See SQRT

definition
key word

arithmetic, with evaluator
position in memory

system, with evaluator
position in memory

assigning
for broadcast
incorporating into device

definition with FOR
keyword

syntax graph

token

pattern of colours

definition
keyword

accidentally

by BREAKing

with an error

by freezing the screen
with PAUSE

on purpose

of array descriptor

of array values

of loop information, FOR
REPeat

memory map

of SuperBASIC items

units

of variables

in variable values area

181

STRIP

Stripes

String

SuUB

Sub-arrays

Sub-expressions

Substrings

Subtended angle

SuperBASIC

Swapping

Syntax

definition
keyword
transparent

as colour patterns

arrays
expressions
indexing
internal representation
legal
length of
names
operators
tokens
as parameters
substrings
syntax graphs
as term of expression
token
variable storage

definition
keyword
syntax graph
token

definition
as parameters

discussion

of arrays
of strings

of ARC
of ARC R

introduction to
property of

arguments and parameters
LOCal names

notes on definition of
the syntax graphs
when used

101
182
106

99

23
29
27

34
29
16
39
197
28
28
162

197
17

49

182
159
196

25
30

36

27
27

118
126

4
152
11

251

Tabulating

TAN

Tangent

Television screen

Terms

Text

THEN

Time

TO

252

via AT

via CURSOR, absolute
graphics

via PRINT separators

definition
keyword

See TAN

default display
mode
size
relative to monitor

of expression
changing size of

flashing
with MISTake

positioning, See Tabulating

printing

with REMark
syntax graph
token
underlining

definition, complex IF
inline IF

keyword

syntax graph

token

duration of BEEP
on INKEYS

on PAUSE

units

with GO
syntax graph

in index ranges
syntax graph

keyword

in loop ranges
syntax graph

in ON ranges
syntax graph

as separator, general

108
107
124
58

41
182

with ARC
with ARC_R
with COPY
with DLINE
with INPUT
with LINE
with LINE R
with LIST
with PRINT
with RENUM
with SAVE
token, keyword
separator
Toolkit
available from
Transfer of control
via ELSE
via ENDFOR
via ENDREP
via EXIT
via GOSUB
via GOTO
via IF
via NEXT
via ON
via RUN
via SELect
Transmitting
over network
over serial lines
Transparent
borders
moves
strips
tabulating, See Tabulation

Trigonometric functions

list of
Turtle graphics
TURN
definition
keyword
TURNTO
definition
keyword

118
126
75
81
61
116
126

104
130
102

40

129
131
182

131
182

253

Unconditional transfer 48
Uncontrolled structures
description 48
GOsuB 49
GOTO 48
ON.....GOTO/SUB 49
UNDER ’
definition 111
keyword 182
Underlining text 111
Units
graphical 114
sound 146
storage 5
timeout 62
Unset
expression entries for parameters 19
for LOCals 21
variables 59
PRINTing them 59
Upper case
checking for 42
codes of 42
converting to 42
used in definitions 4
in examples 5
equivalent to lower case 40
used in names 15
User defined
functions 12
procedures 8

Values

Variable types

as terms in expressions
internal representation
legal constants

from letters in name
from parameter swapping
position in nametable entry

Variable values (vv) area

Variables

VERS

Vertical stripes

description
used with names
position in storage area
storage of array descriptor
array values
loop information, FOR
REPeat
values

assignment to

dimensioned

loop index, FOR
REPeat

SELect variable

simple

as terms in expressions

unset

definition
keyword

as colour pattern

34
37
34

16

15

lé6
15
199
24
23
55
32
17

15
22
35
-1
46

33
16

42
182

929

255

WHEN

WIDTH

Width

WINDOW

Windows

Words

Writing

256

keyword
token

definition
keyword

of blocks

of borders
of characters
of printout
of windows

definition
keyword

areas of
for PAN
for SCROLL
borders round
changing character size in
default
flashing text in
ink colour in
introduction to
moving contents of
opening as channels, console
screen
overlaying
paper colour of
redefining
to default
strip colour in
tabulating in, See Tabulating
underlining text in

word boundary
long words
as a storage unit

to devices
to file
to windows, See Window

182
196

75
183

105
104
108

96

96
183

103
109
109
104
108

110
101

109
76
77
97
101

112
101

111

AU RV R}

75
68

XOR

XORing

bitwise, *", action
operator
token

logical, action
keyword
operator
token

of ink with background
of block colour

257

The Definitive Handbook . . . [

Yes, this book was written by the designer and writer of Sinclair's
QL SuperBASIC language.

Far more than a detailed description of SuperBASIC commands,

this book explains the structure of the language and the reasons for
its design. Used properly, SuperBASIC is a uniquely fast, flexible i
and elegant language, owing something to BASIC, something to !
Pascal, and much to Jan Jones’s innovative design. A

Although this book is not intended for the novice programmer, L.
almost anyone who has read the QL User Guide and has begun to]
write SuperBASIC programs will find it invaluable. There is as little L
jargon as possible, and as much useful information as possible! For f
the experienced programmgr, there is the information needed to ‘
ensure the elegance, speed and efficiency that sets SuperBASIC |
head and shoulders above older languages.

Every aspect of SuberBASIC is covered, with lots of sample
programs.

Start using the real power of the QL!

I S L S A L

Published by °
QU ANTA — The Independent QL User Group
15 Grosvenor Crescent GRIMSBY South Humberside Eng‘lapd

“A\‘O
.

