PTR
Pointer Toolkit
v Forthe Sinclair QL

___%-

Sl
Y
.
.

o gwite k..a\.... .)

T HH ® H ®H O™ EH AN D ,9‘ &) '. .’m .._.. _...... w ¥y T " - - -

CGG&@@@EE@@@@E @6.@..6666&&

TP DDRDARDTRADADOADDEDTAD®DDD

N LY SN PR TR TR AR ¥

W@ W W W oW e W W W s e W W W w

(Y VRNV &

Contents

Introduction
The Pointer Toolkit
The Pointer Environment
What you get
The Demonstration Programs

Concepts

SuperBASIC
Heywords
Pointer Interface routines
Window Manager routines
Index of keywords

Assembler
Programmer’s Interface
Pointer Interface
Window Manager
Setup routines
Dravwing routines
Access routines
Utility routines
Index of TRAPs and vectors
Data Structures
Pointer Interface
Channel definition block
Graphics objects
Window Manager
Window Definition
Structure
Henu Macros
Text Macros
Index of macros
Working Definition
Windew Status Area

Pointer Environment Changes
Utilitieg
Troubleshooting

page

- D G

(S

33
42
51

53
68
69
76
86

102

105
107

111
i19
133
135
137
144

147
150
151

Qptr vO0.0 4

This is the firat released version of the Pointer Toolkit, and there are some features
which have changed pince the manual went to Press.

There is now only one version of the package, with the file PTR_GEN in place of PTR_IMI or
PTR_SQB: this version of the Pointer Interface detects the QJUMP Internal House Interface or
the Sandy SuperMouse interface if present, with priority going to the QIMI if both are inatalled,

There iz one new SuperBASIC routine:
MEPAT addr, buffer

Convérts the contents of a séreen save buffeor as created with the PSAVE fupction into a
pattern. There must be enough memory at addr for = copy of the buffer contents plus a
graphics object header: the amount of memory required may be determined by using the SPRSP
functicn with a width parameter the same as the width of the buffer, and the height
parameter half the buffer height. The width will be truncated to the nearest sixteen pixels, so
the saved buffer must be at least 15 pixels wide,

As an extelnsinn to the existing pattern definition {see the Graphics Objects gection, page
110?. the rela_ut;we pointer to the pattern mask may now be zero, In which case the pattern is
solid, This gives a useful reduction in memory requirements for large aolid patterns.

Some routines added by the reduced Toolkit file STKZ are required to run the DEMO_BAS
program, 5o this file haa been included in the BOOT_REXT file. It ia linked in with the compiled
version of PAINT.

The PAINT program has s new feature, using the MKPAT routine deacribed above, which
allowa you to use the current contents of the paate buffer as peint for doodling or spraying:
when this option is selected you must poaition the paste buffer before you can vae it as paint.,

All verasions of the Window Hanager up to and including the current one uae the A7 astack for
calculations., This means that an interpreted SuperBASIC program using the Window Manager
will probably erash when another job atarts or finishes, although in practice we have
experienced no problems. Any prograz that is intended for regular heavy use, or for sale, should
be compiled or written in machine code for maxinum reliability,

Existing versions of the Window Manager do not implement pan/scroll bars or index barsa,
but do allow for panning and scrolling using the arrow bars.

You should always use the most recent version of the Pointer Interface fils (PTR _IMI or
PTR_GEN) and_the most recent Window Manager file {WMAN), You can find the version number by
VIEWing the file using QRAM or the Toolkit II VIEW command,

Before RUNning any interpreted SuperBASIC pointer interface programa (such as CEMO_BAS)
¥ou must set SuperBASIC’s outline using the QUTLN call. 'The area set should be the whole of
screen occupied by SuperBASIC's windows. The BOOT file includes a OUTLN call for the whole
screen. In addition, any window which is to be used for pointer input using RPTR must have its
outline set - most of the printed examples assume that this has been done for window #1.

Similarly any machine-code program which reads the pointer directly, usging the IOP.RPTR
trap, should ensure that the window used, and its primary (if different), have their outlines aet,
Host programs that use the Window Manager will use WM.PRPOS op WM.PULLD to position the

window: as these vectors include a call to IOP.QUTL to aet the window's outline there is no need
to do so yourgelf,

T, I iy T s Y i s B i I v " i i I et I s s B i "B s "I i Wt T st W e B e B s - r—

e W W

L SY BRTY

Y Y VA &

¥ Y | . '8

R |

1 TS CRNRY ST

[SN A

u: iy B

Introduction
The Pointer Toolkit

The Pointer Toolkit is aimed at applications programmers who wish to
produce programs of the new "user-friendly” type. While many writers have
produced very successful menu- and pointer-driven programa, there have
so far been ne agreed atandards, resulting in users having to learn a new
interface for each program, and each programmer having to re—invent the
wheel to implement his own menu and/or pointer system. With the advent of
the QJUMP Pointer Environment, all this is in the past. The programmer is
relieved of the burden of writing the whole of the user interface, often
90% of the programming effert, and can concentrate on providing a good
range of facilities. Users end up with a program which they know how to
drive even before they open the box.

The Pointer Environment is a complex piece of software which has
been in development for over a year at the time of writing, and is still
being improved today. We therefore make no apology for the length of this
manual, nor for the amount of effort required to start using the software:
if it were an evening’s work to learn all about it, it would not be a useful
tool. We realise that there are likely to be aspects of the software which
programmers would like to =ee treated in greater detail: anyone
experiencing problems in using the software is always welcome to contact
us {preferably by letter) and we will do our best to advise.

The seftware is in several parts. The Pointer Interface extends and
modifies the QI’s standard screen driver (the CON _fSCR_ device), taking
care of the non-destructive windows and the position and appearance of
the pointer sprite {arrow, padlock etc.): in addition it provides some extra
TRAPs to read the pointer position, save window contents, write graphics
objects and =0 on.

The Window Manager provides a set of utilities for manipulating
windows. It works on data set up in memory, defining the size, position,
colour and contents of windows. Routines are provided te draw, move and
remove a window, re-draw part of a window, and to get user input via a
window. If used from machine code then the Programmer may provide
reutines to be called under particular circumstances {e.g. hitting the
QUIT item): from SuperBASIC the options are more lLimited, since
SuperBASIC procedures may not be called from within machine code
routines. The Pointer Interface must be present to use the Window
Manager.

The combination of the Pointer Interface and Window Manager is
called the Pointer Environment.

The SuperBASIC Pointer Toolkit gives the SuperBASIC programmetr
access to the Pointer Environment via a set of special procedures and
functions. While not quite as flexible as machine code, particularly when
using the Window Manager, it provides a suitable base from which to
explore the system before attempting to use it from machine code. Both
the Pointer Interface and the Window Manager must be present to use the
Pointer Toclkit.

Varicus applications are provided as examples of machine code and
SuperBASIC programs using the Pointer Environment: the SuperBASIC
programs require the Pointer Toolkit, the machine code cnes do not. The
SuperBASIC sprite editor EDSFR uses only the extension routines that
call the Peointer Interface: the painting program PAINT alsc uses the
¥Window Manager routines. There is a DEMO program which was written in
SuperBASIC and then re-written in machine code: baoth versions do the
same things, but achieve them in slightly different ways.

T -

ra N

[-

T T

For the machine code programmer there are some INCLUDE files of the
keys needed to use the Pointer Environment from assembler Programs: g
set of macros is also provided to assist with setting up window
definitions. These are suitable use with the GST Macro Assembler and
Linker: other assemblers and linkers may need modified versions.

Where to start

You should read the next section, describing the Pointer Environment
and some of the concepts it uses. Once you understand this you are well
on the way to being able to write your own programs., The next stage is to
examine the DEMO program, either the SuperBASIC _BAS version or the
_ASM and _BIN assembler versicn, depending on how strong you feel' The
demo doesn’t do anything very useful, but it does show you how to set up a
simple menu with all the facilities described.

After this, you're on your own. SuperBASIC programmers will find a
description of the new routines in the Keywords section, with a quick
reference index at the end. Azzsembler programmers have a description of
the new TRAPs in the Pointer Interface section, and the manager
vectors in the Window Manager section of the Programmer's
Interface chapter. Of interest to all will be the Concepts chapter, and
the Data Structures section of the Programmer's Interface
chapter, although the latter is essential reading only for assembler
praogrammers.,

Compiled SuperBASIC

You may wish to compile SuperBASIC programs using the Pointer
Toolkit to take advantage of the increased speed and multitasking which
are made possible by compiled SuperBASIC programs. There are some
problems in doing this, whether yeu are using Digital Precizion's
Super/Turbocharge compilers or Liberation Software’s Q_Liberator.

Supercharge and Turbo do not permit machine ceode extensicns to
return changed parameter values, and so the extensions to read the
pointer position, RPTR, and to set one line of a sprite, SPLIN, will not
work. Furthermore, array parameters are not permitted, and =o the
majority of the Window Manager extensions, along with SPSET, will not
worlk.

Q_Liberator restricta the amount of stack that a machine code
extension may use to a smaller amount than that provided by the
interpreter: while both allowances are more than stated in the QL
Technical Guide, the large smount of stack used by the Window Manager
causes problems with @Q_Liberated programs. While not strictly
Q_Liberator’s problem, this might be fixed in versions later than 3.12,
which we know to exhibit the problem. A utility program, called STKINC, is
provided to overcome this problem in current versions of @ Liberator -
see the Utilities chapter for details.

AL AL AR LN LA LA LU AN LENNS LN LENNRL ANENRL LENNRL GO B

L N

i i

v op oW L

LR VY THY A U T

L R L O O VU T T STt

]

Pointer Environsent

The Pointer Environment for the QL is a comprehensive display-
handling interface which improves on the QL’s simple window system. It
differs from the QL's standard interface in two respects. Firatly, the
interface allows overlapping non-destructive windaws. Secondly, a window
{(and by association a job) may be selected for attention direc tly, using a
pointer, as well as indirectly, using the "CTRL C" key on the keyboard.

These differences are intended to be as invisible as possible to
existing software: in particular, a considerable amount of time has been
spent ensuring that the commonly-used Psion packages will run happily.
The wajor implication of the differences iz that significantly more
memery is required when using the Pointer Environment.

The Peinter Environment is implemented as two levels. The normal
entry is to the Window Manager level, which handles windows and menus,
The Pointer Interface level is used by the Window Manager and provides
extra Trap 43 entries as used for standard I0 operations.

Peointer

All pointer input from the user is directed to a peint on the display.
The pointer may be visible or invisible, and it may be moved by the curser
keys, joystick or pointing device or else its position may be set directly,
either by the Window Manager as a result of a single keystroke, or by an
application program.

An object shown on the display may be "hit" by moving the pointer to
the object and pressing SPACE, the fire button on a Joyatick or the left
butten on a mouse. Within a menu, a keystroke may cauge a "hit"” as well as
setting the pointer position. This allows a menu to be treated either as a
single key command system, or else as a point and hit menu syatem. A "hit"
on an item will usually select or de—select that item, but only rarely
causes other action to be taken.

ENTER or the right mouse button is known as "do™ this differs from a
"hit" in that it usually selects the current item and results in an action
being performed. The exact interpretation of the difference is ultimately
ieft to the programmer.

Windows

In the context of the Pointer Environment, a window is more than Just
a portion of the display. An application using the display has Just one
primary window. Sub-windows may be enclosed within this windeow, allowing
multi-window operation of application programs. An application may open
secondary windows within its primary window, but it may not use the area
of the display outside its primary window. A secondary window may have
aub-windows itself, each enclesed within the secondary window area, Such
secondary windows are frequently used to provide pull-down menus.
Depending on the complexity of the application, it may be useful to pull
down further windows from within a pull-down menu: these "daughter"
pull-down windows are limited to be within their parent primary, faf their
parent pull-down, otherwise pull-down menus would have to get
progressively smaller!

<}

?1
th

PE
ir

pE

11
BC

P
VE

al
wl

oE
wi
=]
be

bL

P1
¥1

¥o
8¢
scC
2

(4
wi
ta

The distinction between a sub-window and a secondary window is thata
sub-window is merely a division of a window: it does not have its own
channel. A secondary window, however, is a genuine 10 channel with its own
independent. existence, The Window Manager utilities assume that when
one or more secondary windows have been pulled down, all ID operations by
that job will be ecarried out within the most recently pulled-down
secondary until it is thrown away.

The size and position of a window {primary or secondary) may be
changed by the job that owns it at any time: it is up to the programmer to
provide this facility, where appropriate, to enable the user to adjust the
display to execute as many jobs as he wishes at any one time.

Where primary windows overlap, the window below is locked until the
window ahove is moved or removed, or the window below iz brought to the
top of the pile. It is possible to move a window to the top of the pile by
"hitting" it. While a window is locked it may not be modified, sc
applications which rely on continuous modification of their windows (e.g.
the ubiquitous cleck programs) will net werk as intended. It is possible to
unleck windows, so that they become destructive.

Menus

The Window Manager includes facilities for handling menus. A menu is s
collection of items which may be "hit". Menu items may be of several types:
text, blobs, patterns and sprites. Menu items may also have several uses.
"Hitting" an item may cause an action, it may select the item for some
future action or it may cauvse a further pull down menu window tc be
invoked,

The primary window, and any other window pulled down, is treated as a
menu. There are a number of standard menu items which will appear in many
windows: these have standard "hit" keystrokes which should be used to
keep software consistent between different packages.

CANCEL should always be present to enable a window to be removed
without doing any (further) operation. This item should be "hit"
by the keystroke ESC.

HELP should usually be present to provide assistance to the user.
This item should be "hit" by the keystroke F1.

DO may sometimes be present to do any actions set up within the
window. This item should be "hit" by the keystroke ENTER.

MOVE should usually be present to allow the window to be moved.
This item should be "hit" by the keystroke CTRL F4,

SIZE will be present if it is possible to change the size of a
window. This item should be "hit"” by the keystroke CTRL F3.

A window is usually divided into sub-windows. There are information
sub-windows, which are used for titles, general information etc.. There
are menu sub-windows, which are used for collecticons of similar items
under the control of the Window Manager level. And there are application
sub-windows which are only used by the application code. An application
gub-window has a similar structure to a menu sub-window, but omits part
of the standard definition,

It is not necessary for menu items to be within a menu sub-window,
they can be put anywhere within the window. This type of item is termed a
loose menu item,

4

T r*TmPTro®rprMHrPrTHrHrTrerrrorrMNHPHTPHTHA”"DHTAOADD

m e — i

™ . e

R

Y TR U B

(¥ TRNNY VERNY VARNY VERNY VR ¥

Sub-Windows

The function of the menu and application sub-windows is defined by
the application itself {hence the name). Frequently they will be used to
display large amounts of information, facilities being provided to screll,
pan or fold this information if is mot enocugh room for all the items or
jnformation within the sub-window.

The menu items for serolling, panning and folding a sub-window are
part of the definition of a sub-window, and should appear whenever the
sub-window is too small to display all the information.

There may be a “scroll bar” to the right of a scrcllable sub-window.
This seroll bar is a map showing the portion of the sub-window contents
which is actually visible within the vertical range of the sub-window
contents. "Hitting" the scroll bar will scroll the sub-window to the hit
poaition, Within the sub-window there may be arrow bars to allow the
sub-window to be scrolled a row or a page at a time.

Similarly there may be a "pan bar" below a pannable sub-window.
Panning and scrolling may also be invoked by ALT arrow and SHIFT ALT
arrow keystrokes.

Folding a sub-window is accomplished by aplitting the sub-window and
independently scrolling or panning part of the sub-~window. In order to
keep track of which parts of a folded sub-window are visible, there may be
an index row above the sub-window or an index column to the left of the
sub-window {or both), Splitting or joining the parts of the sub-window is
accomplished by a "do" keystroke on the scroll or pan bar to the right of
or below the sub-window.

wi

P
th

P
£l

tl

2]
Ve

=g

¥
=1
=1
o

t1
M

te

Objects, Items ete.

An object is something represented on the display. An cbject may be
text, a sprite, a pattern or a blob, Text iz just readable characters. A
sprite is a picture of something, on a transparent background: a sprite is
the only type of object which may be used as both & pointer and a menu
item. A pattern is a {repeating) pattern of colours, but has no linits and
so no shape. A blob defines a shape, but has no colour or pattern.
Combining a bleb with a pattern produces a visible ohject.

An item is part of a menu. An item may consist of more than one object.
All the objects comprising an item are linked together, and se "hitting”
one object within an item selects ell the objects. To simplify the code
and to make execution as fast as possible, all the cbjects within one item
should be contiguous within the object list.

There are three main states for a menu item! unavailable {cannot be
selected), available and selected. In addition, an available or zelected
item may be the current item {the item that the pointer peintz to} or not.
The current item is indicated by & border around it, and the three main
states are indicated by various colour attributes, blobs or patterns.

Window Definition

When a window is pulled down, or redrawn, the window definition
provides all the information required to draw the window, its barder, the
menu items in the window, the sub-windows and their borders and the menu
items within the sub-windows. After a window is pulled down, the menu
definition provides all the information to process hits, Unfortunately,
because a window may be moved and have its size and shape altered, much
of the information will tend to be variable, The basic window definition is
treated as invariant, as this will usually be either in ROM or in program
RAM. On setting up a window, a variable RAM based "working definition”
will be created. The table overleaf shows the structure of a window
definition: it is described in more detail in the Data Structures section
of the Assembler chapter,

m Y H"THTH®T® D D DD

mTT T ™ T T T T D

(Y VRNRY VRNV VRt VY O ¥

[VRNV VERRY VRNt VAN ¥

M oM om

¥ PRV VIRV VY U TR T ' T YA S

¥y

i_‘/

Window definition
window size
window origin
window attributes
window pointer sprite
window help pointer
loose menu item attributes

loose menu abject list
object hit area
object justification rules
object type (text, sprite, pattern, blob)
object selection keystroke
object pointer
item number
action routine pointer

information sub-window list
information sub-window size
information sub-window origin
information sub-window attributes
information object. list
object size
object origin
ohject type (text, sprite, pattern, blob)
object attributes
object pointer

application sub-window list
menu / application sub-window size
menu /application asub-window origin
menu /application sub-window attributes
peinter sprite pointer
setup routine pointer
draw routine pointer
hit routine pointer
control routine pointer
maximum number of control seclions
sub-window selection keystroke

sub-window control definitions
control block peinter
index sizefspacing
index item attributes
control item attributes

menu item attributes
number of columns and rows
offsets to start of columns/rows
object spacing lists
object spacing
object hit area
row list
start objeci pointer
end object pointer
cbject lists
object justification rules
object type (text, sprite, pattern, blob)
selection keystroke
object pointer
item number
action routine

e e

o

[AR 2

Event Vector

The event vector is a record of all the events which have occurred
since a call was made. There are several levels to the complete Pointer
Environment. On entry to each level, its events in the vector are cleared:
on return through a level, the events which have occurred within that
level are added to the vector.

The vector is a long weord, each major level has 8 bits reserved for its
own events

Pointer level bit 0 keyclick
bit 1 key down
bit 2 keyup
bit 3 pointer moved
bit 4 pointer out of window
bit 5 pointer in window
bit 6
bit 7

Sub-window level bit 8 sub-window split
bit 9 sub-window join
bit 14 sub-window pan
bit 11 sub-window scroll
bit 12
bit 13
bit 14
bit 15

Window level bit 16 do

bit 17 cancel

kit 18 help

bit 19 move window
bit 20 change size
bit 21 sleap

bit 22 wake

bit 23

T T

=« T TP PHPPTTTTTHPTTRPD M

‘A

What you get

The following two files are used to add the Pointer Toolkit facilities
to the QL when you start it. You will probably wish to merge the BOOT file
with your existing BOOT to include other extensions.

BOOT :
BGOT_REXT contains PTR_IMI, WMAN and QPTR

Qram owners wishing to re-create their BOOT_REXT to include the
Pointer Toeolkit and upgraded Pointer Interface and Window Manager
shouid include these files {1 ¢4is ordesr. If you have a Sandy Super@Board,
then PTR_S@B replaces the built-in version of the Pointer Interface, and
you should omit the POINTER command from your BOOT fite,

PTR_IMI Pointer Interface, QIMI version
or PTR_SQB Super@Board version

WMAN - Window Manager

QPTR SuperBASIC Painter Toalkit

The following three files are SuperBASIC demonstrations of the
Pointer Toolkit.
DEMG_BAS SuperBASIC version of the demeo
PAINT_BAS painting program, uses the Window Manager
PAINT compiled verszion of the above
EDSPR_BAS aprite designing program, does
not use the Window Manager

The following files contain the assembler sources for a
machine-code version of the above DEMO_BAS program, suitable for
assembling and linking using the GST Macro Assembler. The last four are:
two files of keys required, the linker command file to link with, and a
ready-assembled and linked version of the program.

DEMO_ACTION_ASM action and hit routines
DEMO_DRAW_ASM window drawing routine
DEMO_INIT_ASM initislisation and termination
DEMO_MLYOT_ASM ment layout
DEMC_MMAIN_ASM main menu definition
DEMG_SETUP ASM menu setup routine
DEMO_SPRITE_ASM sprites used in the dema
DEMO_TEXT_ASM text uaed in the demeo
DEMO_WMAN_ASM action routines that call the
¥indow Manager

DEMO_KEYS keys for the above files
DEMO_SMS SM52 keya used in the abave files
DEMO_LINK linker command file

DEMO_BIN assenbled version of the demo

[4

pi
tl

The following files may be INCLUDEJ in your own assembler files to
define guitable symbols for the manipulation of the data structures in the
Pointer Environment.,

WMAN_KEYS keys for vectors etc.
WHAN_WDEF window definition structure
WHAN_WSTATUS window status area structure
WHAN WWORK working definition structure

WMAN_MENU_MAC menu generating macros

WMAN_TEXT_MAC text string generating macros

QEQS_I0 keys used to access the
Pointer Interface

QDOS_PT external keys for the
Pointer Interface
PTR_XEYS internal keys for the

Pointer Interface
KEYS_COLOUR some useful colours
KEYS_K symbolic names for keystrokes

Two utility programs are provided to modify screen images and
compiled SuperBASIC programs: see the Utilities section for more details.
CVSCR convert screen utility
STKINC stack increase utility

Versions of the Pointer Interface and Window Manager as shipped
with Qram v1.07 are included - they will only be of interest to writers of
commercial software who wish their products to be compatible with older
versions of the Pointer Environment.

GLD_PTR_KBD old Pointer Interface (v1.05})
OLD_WMAN old Window Manager (v1.03)

A cut-down version of SuperToolkit IT is supplied, which includes the
extensions used by the PAINT and EDSPR programs. It may be loaded with
the usual RESPR, LBYTES and CALL sequence.

8TK2 SuperBASIC extensions for demonstration
Programs.

10

T*TTT P **TPTPTPTTTTPTPT PP TOD®D

T D

2 ¥

» W W

€@ ¥ VW

. & 8 »

I‘J

R T CR 4

| C ¥

ll

The Demonstration Programs
Four demonstrations are included with the Pointer Toolkit.

Two of the demonstrations are of no practical use, but serve to
compare and contrast the way in which the facilities of the Pointer
Environment are used from SuperBASIC and machine code. These are the
files atarting with the DEMO_ prefix.

The SuperBaASIC program EDSPR demonstrates that it is posgible to
write pointer-driven Programs without using the Window Manager parts of
the Pointer Toolkit: you sheuld alse find it of use when designing sprites
for use in machine code programs.

The SuperBASIC program PAINT demonstrates one or two areas of the
Window Manager interface not used in the DEMO_ files, such as partial
window operations and the graphics object drawing operations.

Both EDSPR and PAINT have been successfully compiled and run, using
the @_Liberator compiler: a compiled version of PAINT is supplied. If you
re-compile PAINT, you will need to process the resuit with the STKINC
utility to run it, as it uses the Window Manager. EDSPR may be compiled
and run as is, because it does not use the Window Manager. See the
Utilities chapter for more details,

The DEMC_ programs

The DEMO_ prograns come in two versions: the version ending in _BAS
is SuperBASIC, and may be LOADed and RUN in the normal way: the version
ending in _BIN is machine code, and may be EXECuted from the SuperBASIC
command line or the FILES menu of Qramn.

Programs using the Window Manager go through & number of similar
stages in their execution. They start by using the pointer information
TRAP IQOP.PINF to find the Window Manager vector. This may fail due to the
absence of either the Pointer Interface or the Window Manager, it which
case the program will probably have to give up. SuperBASIC programs find
the Window Manager vector every time a Pointer Toolkit routine which
requires it is used.

The rext stage is to combine the afafic definition of the initial
window with any dgmamic information that may be reqguired. The static
definition is normally contained within the program itself, either in
SuperBASIC DATA statements or in a Window Definition generated by the
assembler using the macros provided or DC.x directives. The dynamic
information may be generated before, during or after the canversion of
the static definition to a "working definition”, or any cohvenient
combination of the three. For instance, the assembler version of the demo
has a zero pointer to the "You have used the BEEP..." information in its
atatic definition, and generates the complete atring and resetg the
pointer in the working definition once the working definition has been
mostly set up by the WH.SETUP routine,

Once a working definition has been generated, the window may be
positioned and drawn - this is one operation in SuperBASIC, and two in
machine code. VUser-defined code may be supplied to draw some
non-standard parts of the window, for instance the musical staff in the
demo progeam,

P
Bl

Bt

Pl
wi

P

i

oe

n

St
-1
1]

tr
M
wi
e

Now that the window is visible, input may be invited and acted upon.
In machine code, the Window Manager can be made to do some of the hard
work of deciding what the input consisted of and calling an appropriate
action routine. In SuperBASIC this aelection of an action routine has to
be done by the SuperBASIC program itself.

The SuperBASIC version splits into three major units. Lines 1000 to
999% contain the "action” part of the program, which setzs up the data
structures and changes them in response to user input. Lines 10000 to
19999 contain the "initialisation” part of the program, and also the data
used to describe the window layout. Lines 20000 onwards centain "setup"
routines usable in any Super8ASIC programs to set up window definitions.

The window ¥ou see is defined by the contentz of the DATA
gtatements in lines 12000 to 19999. It has four "loose menu items",
defined in lines 12620 to 12720. It has two "information sub-windows”,
defined in lines 12840 to 12980: these contain two and one "information
items" respectively, defined in lines 12730 to 12830. There are two
"application sub-windows": the one defined in lines 13550 to 135%C has a
short definition, implying that anything happening in that window needs to
be dealt with by SuperBASIC. The second application sub-window is also s
menu sub-window: the items it contains are defined in lines 12970 to 131440,
their "spacing lists" in the X and Y directionsg in lines 13160 te 13320, and
the "row list" splitting the linear item list into rows in 13330 to 13420,
The "contrel definition™ is set up in lines 13430 to 13500: this gives the
two independently-scrollable sections. Three sprites are defined in lines
1?200 te 12610; the first two are used as pointers, the last in the "move
window" loose menu item. One set of standard colourz and window
attributes are used for all items and windows: these are defined in lines
12110 Lo 12190 and 12040 to 12100 respectively,

The definitions menticned above are initialised by the setup
functions and procedures at the end of the program. These expect DATA
statements of the appropriate form, which are READ into arrays and the
dai_:,a structures set up by calling the corresponding MEK_xxx function
which is provided by the Pointer Toolkit., The result of this is passaed back
and may be used in subsequent DATA expressions: for instance, the main
app:lication window table, defined in line=s 13520 to 13670, ia then referred
to in line 13740 by a DATA statement defining the contents of the window,
Th‘_e variable used here iz main_awi: similarly the other wvariables
wain_sprite, main_lot and main_iwt have been defined earlier and are now
referred te when aetting up the main definition. The necesszity to do this
results in the "bottom—up” sequence of window definition in SuperBASIC,
a8 opposed to the "top-down" sequence possible in assembly code, and
which is probably more readable,

12

TP PE AT N

T ® ®

4 NY LY LY AL LNA SNNL AN AUNNL AN L

Ly

» o »

' YRRV YRNNN S T B O 4

Once set up, the "action” part of the program then uses the Pointer
Toolkit procedure DR_PULD to draw the window, and waits for user input by
using the RD_PTR procedure. The result of the input is then acted upon.
If the input occurred in the first application sub-window, then a note of
the appropriate pitch and duration is played: clearly, any action could be
taken here, depending on the app.ication, so such sub-windows are very
flexibie but require more effort on the part of the programmer. The
second sub-window, being a menu sub-window, is taken care of entirely by
the Window Manager. Finally a hit on a logse menu item produces a
returned sub-window number (swnum¥X) of -1, and radically different
effects depending on which item is hit. Quit is quite simple, and just
stops the program after discarding the window contents with a call to
PR_UNST: ALL copies its resulting state to all items of the menu
sub-window, and re-draws that sub-window: BEEP makes & gimple beep, and
changes and re-draws an information sub-window: and the move window
item uses the supplied routine to move the window, and then resets its own
state to available. The SELect ON construction here is peculiar to the
SuperBASIC interface to the Window Manager. In the machine code versicn
each item has its own "action routine” which is called as a result of the
Window Manager having done ita own equivalent of the SELect ON.

The machine code version in DEMO_BIN is made up of all the _ASM
files, assembled and linked together as specified by the _LINK file.
MENU_ASM and SPRITE_ASM define the data structures, INIT_ASM and
SETUP_ASM convert them into a "working definiticn”, DRAW_ASH provides a
routine for drawing the staves in the first application sub-window, and
ACTION_ASM provides all the routines used to act on user input. The
principal difference in operation between this demonstration and the one
written in SuperBASIC is that all actions are called directly from the
Window Manager: the only action resulting from the initial call to WM.RPTR
returning is after Quit has been hit to kill the job off.

The status area for the window is set up in the job's data area, which
is pointed to by A6. A small amount of space ts left below this to keep
information which does not belong in the window's status area, such as the
Window Manager vector, Note the use of dummy COMMON blocks to allocate
the correct amount of space for the status ares, the menu status block,
the section control block and the variable information item. This method
of making the Linker do all the hard work does take extra time when
re-assembling and linking the program, but saves more by removing the
need to check every file manually when a small change is made.

13

F ¥l

The EDSPR program

This simple program may be used to design sprites, blebs and
patterns for use in other programs. It produces output that can be
assembled directly to produce sprite definitions, or edited to produce
blobs or patterns. You will also need to edit the output for use in
SuperBASIC programs. To convert a sprite to a bleb, you should remove the
pattern and set the relative pointer to it te zero, Sprites to be used as
patterns must be a multiple of 16 pixels wide, but require no modification.
To generate a graphics object that is valid in more than one mode,
separate definitions for each mode should be linked together by altering
the relative pointer from its default zera value.

You are provided with a 5x5 initial grid, with each block representing
one pixel of the sprite to be designed. The grid may be expanded and
contracted in both directions by using the ADD and DELete ROW and
COLumn items found in the Functions menu: the pointer sprite will change
to show which function is currently active. Pixels may be set to any
colour or transparent {black and white stipple) by selecting the required
colour from the palette to the left of the main editing grid. The area
above the palette signals the currently selected colour, and also acts as
a "test area” so that you can see what the sprite you are designing locks
like actual size and on varying backgrounds.

The Functions menu also allows you to set the origin of the sprite
and to change display modes, After using either of these options, or
selecting SET PIXel mode, or changing the colour to be used, the program
is in SET PIXel mode and the pointer is the default arrow.

The Files menu gives you the options of saving or loading sprites
designed with EDSPR: the filename is made up of the program default plus
the given name plus the _ASM extension. The file formet is suitable for
assembling with the GST Macro Assembler, and alsc includes a
human-readable copy of the definition: this is what is used when loading a
sprite design.

14

*TPHPPrTPPPTPTO®TO® DM

n

n
|_‘, .‘J

TP PPTDHPPBDHAM

F U L VA T N " L I O 2 Y " VIR VEERY VENRY VRNV VRNV VRNV 7Y

TR ¥

The PAINT program

This program demonstrates pull-down windows, menus of aprites,
patterns and blobs, and the various graphics object-drawing routines, It
was developed progressively as a test-bed for the Pointer Toolkit, and is
thus of fairly madular construction but of only moderate readability! To
decument it fully would double the size of this manual, so we suggest that
you make a listing, and experiment with the program.

The area that you can work on defauits to a size of B40x640 pixels:
you can move about this area as required, using the MOVE option from the
Toocls menu. If you convert an existing 512x256 acreen image using the
CVSCR utility supplied, and load this, you will not be able to move as far.

The Files menu allows you to save or load all the picture, or just the
paste buffer: if you hit the filename then you can enter a different name
to be used for the save or load operation. The selected operation will
take place when you hit the OK item or do a "do" keystroke.

While drawing, a "hit"” will usually start drawing whatever object has
been selected in the Tools menu. Further "hits" will draw a line or fiip
between changing an ellipse’s aspect ratio and its sizefinclinaticon. A "do"
will draw the object at its currently shown position, and an ESCape will
abandon the current object. While in "doodle" mode, a "hit" will drop a
blob or sprite, and a "do" will draw a line of blobs {but not sprites) from
the last blob dropped to the current pointer position.

The spray option allows densities of between 5% and 95% when
spraying patterns: note that with a combination of a small brush (bleb) and
a low density you may find that no pixels are sprayed.

Cut and paste werk on rectangular areas 4mzffex than the drawing
area. If you wish to import an existing screen inte the PAINT program,
some work is necessary, as a whole 512x256 screen is too big to paste into
the drawing area. The recommended method is as follows:

a) convert the screen image using the CVSCR utility

b) within PAINT, LOAD the converted image {ALL the
Picture, not the paste BUFFER)

c}use CUT and SAVE BUFFER to carve out the chunks
you want from the screen image

d) re-start PAINT, or load a bigger picture to get
back to a large picture area

e} use LOAD BUFFER and PASTE to put the chunks of
the screen image where you want them

The Brush menu allows you to select various sizes and shapes of
brush, which are combined with the selected paint when spraying or
doodling. There are also two sprites {(a flower and an apple} which are used
directly, and not combined with the current paint. You may either hit the
required brush and then the 0K item, or "do” the reguired brush to select
it.

The Paint menu provides access to various patterns with which to
draw, and is used in a similar way to the Brush menu. The patterns at the
top of the menu are all the posaible checkerboard combinaticns of the
colours available in the current mode, and may be used to draw objects of
any sort. Lower down you will find various special patterns which can only
be used when in the doodling and spraying modes: these become unavailable
if the line, ellipse or block modes are selected. The first four ar eight of
these special patterns are stipples of the basic colours with
"transparent" ink, which allow you to blacken, whiten, redden etc, parts of
your drawing. There are also red gingham and brickwork patierns, two
sizes of latticework with transparent holes in, and & green and
transparent grass pattern.

wl

TR

Pt
tl

Bl
Wi

Wi

=

]

e

N

T oo HrHprrorrMHrPr>*rH»*%*TPTTTHTPTOETDT DT DM

a¥

& 8 & & B B

Concepts

This chapter is intended as & reference guide to the new concepts
introduced by the Pointer Envirenment, as well as scme old ones that have
acquired a new significance within the Peinter Environment. Any terms
used in the description of a concept that themselves have a description in
this section are shown in Italics thus.

Action routine

Any item, be it a JIocose menu item or member of a menu
sub-window, may be provided with an action routine. This will be called
from within the Window Mapager whenever a "hit" or "do" keystroke is
made ed the item is the current item and the item is not unavailable.

When using the Pointer Toalkit, only pre-defined action routines may
be used as it is not possible to call SuperBASIC routines from machine
code.

Application object list

The pbjects in a menu sub-window are grouped into one or more
application object lists {in SuperBASIC, one list only}. The 1list is
arranged into rows by the sub-window’s row list

An application ebject list defined from SuperBASIC also containg, at
the start, the set of item attributes which are to be used with the
objects defined in the list.

Application spacing list

The objects in a menu sub-window are arranged in a regular array
of rows and columns: however, these rows and columns need not all be of
the same height or width. A pair of spacing lists is required, cne for the
rows and one for the columns: there must be as many entries in the row
spacing list as there are rows, and similarly for the columns. An entry ina
spacing list defines (a} the size of the object itself, and (b} the apacing
between the start of this object and the next: this should obviously be
greater than the size of the object! If a row, say, consists of a numnber of
objects of various heights, then the corresponding entry in the row
spacing list should allow just enough space for the highest ebject.

Application sub-window

An application sub-window is an area of an application’s window used
for a particular purpose, for inastance the drawing area in & drawing
program or a fite list in a file copying utility. Since the uses of such an
area are very variable, the Window Manager requires the application
program to provide routines to draw, read the pointer in, and modify such a
sub-window.

A special case of an application sub-window is a menu sub-window,
which can use some special routines provided by the Window Manager. 17

wl

P
ti

P!
Wi

z P

(1]

Fax

L]

=

¥e
=14
5¢
o

Me
wi
te

Application sub-window list

The application sub-window definitions used in any window will ali
take up different amounts of aemory, depending on their complexity. It is
therefore impossible to arrange them into a list in the same way as, say,
Ioose menu Iitems, which are sl the same size. An application
sub-window list of regular-sized entries is therefore used, which
congists of a set of pointers to the sub-window definitions, followed by a
poinier with a "silly” value (zero, in fact) which marks the end of the list.

Blob

A blob is a set of data somewhere in memory defining the shape of a
graphics item, say a circle. Given a set of suitably defined patterns one
could use such a blob tc draw red, green, white, brickwork, ginghamr etc.
circles,

Bottom window

The bottom window is special, in that it is the window that will
become top of the pile when "CTRL C" is pressed.

Control definition

A menu sub-window which is {or may be} divided inte one or more
section& requires a contrel definition to tell the Window Mapager
where each section starts in the sub-window, which is the first visible
row or column in the section, and how many vigsible rows or columns there
are in the section. This control definition will be modified by the
sub-window's coptrol routine as the user scrolls, pans, splits or joins
the sections.

Control routine

When the pointer is within an application sub-window the action
to be taken when a pan/scroll bar or index item is "hit" depends on
the application itself. Therefore an application must supply a control
routine for each sub-window which can be called by the Window Manager
when either of those items is "hit"., In the case of a menu sub-window
the Window Manager provides a standard control routine WM. PANSC which
will prove uselful in the majority of cases.

When using the Pointer Toolkit, only pre-defined control routines
may be used as it iz not pessible to call SuperBASIC routines from machine
code. If a menu sub-window is defined then the standard WM.FARNSC
routine is used, otherwise the RD_PTR call which entered the Window
Hanhager returns.

ig

a

mmmmmmmmmmmmmmmmm@_@@mmﬂ

YR VRY VAR VAN VA TR TRt

YV TR VAR T ' ThE T VR TRV

T VTV VT VRV TRTY

Draw routine

Al application sub-windows may be supplied with a draw routine,
which is called by the Window Manager at the appropriate pnint when
drawing the contents of a window for the first time. In the case of a menu
sub-window this draw routine will frequently be a call to the Window
Manager's own menu-drawing routine WM,MDRAW. Note that whether a draw
routine is supplied or not, the Window Manager will always draw the
sub-window’s border and will clear it to the background calour, unless the
"do not clear” flag is set. If a menu sub-window has Index items and/or
sactions then a separate routine, WM. INDEX, must be called to draw the
index items and/or pan/scroll bars ete..

When using the Pointer Toolkit, only pre-defined draw routines may
be used as it iz not possible to call SuperBASIC routines from machine
code. If the sub—window is a menu sub-window then the WH.MDRAW routine
is used, otherwise no draw routine is used. If the sub-window has
gectiong or index items these will also be drawn.

Hit area

A window’s hit area covers the same area as the outling but
excluding the shadow. If a special pointer is defined for use within a
window, it will appear only when the pointer is within the hit area of that
window, and the window is unlocked

Hit routine

¥When the pointer is within an application sub-window the action
to be taken when the pointer is moved or a key is pressed depends on the
application itself. Therefore an application must supply a hit routine for
each sub-window which can be called by the Window Manager when either
of the above events takes place. In the case of a menu sub-window, the
Window Manager provides a standard hit routine WM, MHIT which will prove
useful in the majority of cases.

When using the Peinter Toolkit, only pre-defined hit. routines may be
used as it is not possible to call SuperBASIC routines from machine code.
If & menu sub-window is defined then the standard WM.MHIT routine is
used, otherwise the RD_PTR c¢all which entered the Window Manager
returns.

Index items

A ment sub-window may have index items at the top andfor left-hand
edge to show what is in a given column or row: for instance a spreadsheet
might use the index items to show the row numbers and column letters. An
index item list is of the same form as an application object 1list

19

P
3]

i

oo

n

¥C
1
8¢
31

44
(]
Pl
w

Information object list

An information object list defines the size, position, type and so on
of each object that appears in an information sub-window As with a
loose item 1ist it is terminated with a special value: unlike loose
objects, however, information items are fairly static and do not reguire
item pnumbers or action routines

Information sub-window list

The information that appears in a window may usefully be grouped
into a number of information sub-windows, each with its own window
atfributes and information object 1list These sub-windows are
defined in a list of regularly spaced entries, terminated by a special
value, called an information sub-window list.

Initial positicn

When a window is positioned by the Window Manager, the pointer will
always appear at the position specified by the window origin in the
window definition When the call is made to the Window Manager to
position the window, the application may apecify how the pointer is to be
moved to achieve this: an initial pointer position of (-1,-1) requests that
the pointer be moved as litile as possible, and a positive pair of
co-ordinates requests that the pointer be moved as near as possible to
that absofiite position. The existing or given position may have to be
modified if the window would fall outside the acreen ar its primary with
the pointer at this position: this modification will be as small as
possible,

Item

An item consists of one or more objects, all of which are in the same
window or menu sub-window, and have the same iItem pumber. A "hit" on
any one of the objects comprising a given item will cause all the objects
in that item to be re—drawn with the new status

Item attributes

An Item whether it is a loose menu item or contained in a menu
sub-window, may have one of three statuses When the item's status
changes it will be re-drawn using a different set of item attributes,
depending on its new status. For each of the three possible statuses,
there are four attributes that may change: the background colour, on
which the object is drawn: the text colour, used if there is any text in the
item: the blob shape, used if part of the item is a patterm and the
pattern, used if part of the item is a blob, Thus selecting a pattern frem a
menu might change itz blob from a circle te a tick, and change its
background from white to green.

20

T T P D

T TP PTDHPTDPAHAPTPTPELTPTDPADDTTT DD T

NG e i i B Y G e S S S i e — i i = o it e o s i

I VRNV VR U VAR VAR AN RV PR TRENY PRV VRNV TN VRN TR VAR VAT AN TR ¥

¢ & W

Item oumber

In each loose cor application cbject list, the objects are
given item numbers. These item numbers associate one or more objects
with each fiag in the status block so that a "hit" on one object may
affect the appearance of more than one object, but will only directly
change the status of one item.

Note that the Pointer Toolkit restricts you to one object per item,
as item numbers are assigned automatically by the various MK_ routines.

Locked window

A window iz locked while there is ancother primary window which {a)
is above it in the pIile and {b} overlaps it. Most attempts to output to or
input from a locked window will wait until the call times out or the
window becomes unlocked: the exception is a pointer read [RPTR) with bath
bits 4 and 5 {in and cut of window) set, which always returns immediately.

Loose mpenu Item

It is frequently useful to have, within a window, a set of menu items
that are permanently visible without having to pull down a sub-stenu or
pan/scroll a menu sub-window. Such items are often positioned in an
irregular manner, as opposed to the regular row and column array of & menu
gub-window, This need is catered for in the Window Manager by having a
set of "loose"” menu items which each have their own position and size
defined by the application: like other menu items, each may have its own
type, action routine etc..

Eoose item 1ist

All the Ioose menu items in a window are defined in one loose item
list, containing data on their size, position, type and so on. The epd of
the liat is marked by an entry eof a special value which cannot occur
anywhere else - experience shows that omitting this is a frequent cause
of "mysterious” problems!

A loose item list defined from SuperBASIC also contains, at the

start, the set of item attributes which are to be used with the objects
defined in the list.

Managed window

A window is said to be managed if its outline has been set by a call
ta QUTLN. Oniy if a window's primary is managed will you be able to make
use of sub-windows there are also differences when size checking on
an QUTLN or WINDOW call, and CLOSing the windaw.

21

D
©
f1
pt
t

3]
e

1]

e:
1]

=]

5

¥
3¢
L14
n

Lr
1
¥

Menu sub-window

A menu sub-window is a special case of an application sub-window
consisting of ebjects arranged in a regular array of rows and columns.
Similar or related objects will frequently be grouped together, for
instance filenames in one column, file lengths in the next. Depending on
the application single or multiple objects may be selected and
pan/scroll bars may be required to allow the user to view all the
ohjects in the menu. The objects are defined in one or more application
object 1ists, grouped inte rows by the row list, with spacings between
objects defined by spacing lists

Outline

A1l windows, primary or secondary, have an cutline., The primary
window's outline is either set by an explicit call toe QUTLN, or is
maintained by the Pointer Interface to be just big encugh to enclose the
primary and all its secondaries: the first case is that of a managed
window, the second is said ta be unmanaged

If the gutline of & primary has been set, making it managed, you will
get an "out of range” error if you try to set any of its secondaries outside
it, either with WINDOW or with QUTLN. If you reduce the primary's outline
with a further call to QUTLN, any secondaries whose area would then fall
cutside the new coutline are reset so that their outline, hit and active
areas are all the same as the primary’s new hit area {i.e. as big as
possible). Since their size has (probably) changed, any save area they may
have is discarded.

Pan/Scroll bars

& menu sub-window may not be big encugh to show all the objects
in the menu: in this case the sub-window will usually provide pan andfor
scrall bars to allow the user to move sideways or up and down through the
objects respactively.

Pattern

A pattern is a set of data somewhere in memory that defines the
colours with which a graphics item may be drawn: for instance, a brickwork
pattern would consist of red blocks with white lines between them. Using
suitable blobs, one could draw brickwork-coloured squares, triangles,
circles, crescents and so an.

22

T

THTHOPPDADAAITALTTAADATADADOANTT DD

S e —— e —— e e e e— S — e ——— I S S N EEE S B s b i i i O BN B BEEEE W W

N U YRR ¥

w W W W W

S SR REY VY VY VY VY ¥

& & W

Pick

A window is said to be picked te the top of the pile if an action by
the user or a program causes it to be transferred te the top. This
transfer consists of a number of internal re-arrangements which you
aren't very interested in {honest!), saving any primary that's about to be
overlapped, restoring the contents of the picked window to the screen,
and unlocking it. You can pick a window either from a program, using PICK,
or by pointing to & visible bit of it with the pointer and hitting a key or
mouse button, or typing "CTRL C". The last of these always picks the
bottom window, the former two pick a specified window.

Pile

The set of primary windows present at any time may be thought of
as resembling a pile of overlapping sheets of paper on a desk {the screen).
There is a siight difference, in that two windows that do not overlap are
always at different levels in the pile, even if they appear to be at the
isla]n(me level. A typical pile, viewed from the side (not possible!) might lock

ike this:

—_— <~ top window
——— <- unlocked but not top
— <~ locked

<~ bottom window, also locked

This is what the above situation looks like on the screen;

HELr CRsiR_ .. JEXT Iniscts._ Lo Wed 23 How 1087]
: Fl mwe# Oerma 16:10:24

PPDMP H vith -

PR Fz keus of the Pointer Toolkifl I

The §T¥ B Quit Beep AUl [

The 0TV p You hove used
spalling check
real-time chack
speliing utilite} Brogon
chorgcter by ch
uses the stondodi wapatode
SuperBRSIL ar 4] o
possibile for th Uombut
prograns from o ’\\X\%&\‘&\\i\\\\\%&? _________

Checking spalling from v ' NIRRT
then using GTYP, os the progrea ut @ g Tru e con ext o ung
keystroke, uhereas ATYF reeds to quess. Uhile ve have tried to make
BTYP Fair‘lg intelligent, (b will scmetimes guess incorrectly, But until
the outhors of text editors for the @ have had o chance to incorporats

tm Checker
Inactwe

_ Putl down uurnmg utndau
Save accese

WORDS: 315 LINE: 8 FAGE: |
QOCURENT: "spgent™

MODE: TMSERT
TYPEFACE s Mormal

23

7l

ar

sk

N
4]

3

-, oA

Pointer

If the mouse {if any} is moved or a read pointer call is made, a pointer
of some sort will appear on the screen: this may take various forms
depending on the state of the windew te which it points.

Pointer Environment

The combination of the Pointer Interface and the Window
Manager forms the complete Pointer Environment with both high and low
level access for the programmer.

Pointer Interface

The Pointer Interface provides an extended and modified conscle
driver, and forms the lower level of the PoInter Environment. For the
programmer it provides extra TRAP #3s (D0=§6C to $7F) to allow
applications to read the pointer and soen

Primary window

Any job running in the QL may have a number of windows open at any
one time: one of these, usually the first one used for /0 (natthe first one
opened) is designated the job's primary window. This window’s outline
defines the area restored when the job is picked to the top of the pila
If the outline of a primary is explicitly set by OUTLN then the window
becomes mapnaged and s£ize checking is performed in a slightly
different way. If the outline is not explicitly set, then the primary is
unmanaged, and the outline can be "stretched” by opening new
secondaries or moving existing ones.

Scan order

While the pointer is visible the Pointer Interface keeps track of
which window contains it by scanning the pile It is worth knowing how
this is done, so that you know why the pointer is that boring little arrow
and neot the super-duper sprite you just designed! More seriously, if the
sprite isn't what you expect then it’s probably because the window you're
using to read the pointer is unmanaged, or because its primary is
unmanaged. Overleaf is & description of how the Pointer Interface
decides which window contains the pointer, and thus which sprite to
dizplay.

24

S U PR

5

N S R S S N O N I S S N S S O

1]

l‘j

¢ & W W W e W W Y Vw

‘W

w W W

FOR all primaries in current display mode, from top down
IF peinter in this primary
EF primary is managed
FOR all its secondaries, in reverse order of use
IF this secondary is managed
IF in this secondary
SET channel ID to secondary:
SET no sub-window
SET secondary’s pointer sprite
FOR ali sub-windows of secondary
IF in sub-window
SET pointer sprite
SET sub-window number
EXIT aub-window
END IF
END FOR sub-window
EXIT to CHECK_POINTER_SPRITE
END IF
END IF
END FDR gecondaries
BET channel ID to primary
SET no sub-window
SET primary's pointer sprite
FOR all sub-windows of primary
IF in sub-window
SET pointer sprite
SET sub-window number
EXTIT sub-window
END IF
END FOR sub-window
EXIT to CHECK_FOINTER_SPRITE
ELSE

FOR primary and all secondaries, in reverse order of use

IF in active area
SET channel ID
SET default sprite
SET no sub-window
EXIT to CHECE_POINTER_SPRITE
END IF
END FOR all windows
SET no channel ID{-1)
SET no sprite
SET no sub~window
EXIT fo CHECE_POINTER_SPRITE
END IF
END IF
END FOR primaries
FOR all primaries in other node
IF in primary
SET channel ID
EXIT to CHECK_POINTER_SPRITE
END IF
END FOR primaries
SET in no window

25

CHECE_POINTER_SPRITE:
IF whole screen locked
SET pointer sprite to "locked”
ELSE
IF window size/move/query
SET pointer sprite to "size/move/query”
ELSE
IF channel in other mode
SET pointer sprite to "other mode"
ELSE
IF channel busy or doing keyboard read
SET "busy" or "keyboard"
END IF
END IF
END IF
END IF
FOR all versions of the pointer sprite
IF this version is OK in this mode
EXIT to SET_POINTER_RECORD
END IF
END FOR versicns
SET pointer sprite to "arrow®

SET_POINTER_REGORD:
fill in pointer, channel 1D, relative co-ordinates,
sub-window number, window definition
clear event vector and keystroke/keypress

Secondary window

A job may have more than one window open at once: the first used of
these will be designated the primary window, all the rest will be
secondaries. When a secondary's outline is set, that area of the screen
is saved, so that when the cutline is set. again it may be restored {and the
new area saved).

Sections

When a menu sub-window iz too small to show all its objects at
once, it may be found convenient to split the sub-window into one or more
sections which can be pan/scrolled through the data: for instance, one
would require two sections to look at the top and hottom of a spreadsheet
simultaneously. The actions of panning, scrolling, splitting and joining
the sections of a sub-window are taken care of by that sub-window’s
control routine

Setup

‘Thp process of converting from a window definition to a working
defipition is the setup stage, In the machine code case it is
accomplished by the Window Manager routine WM,SETUP, The SuperBASIC
routines DR_PPOS and DR_PULD do a similar job on the definition set up
by the MK_WDEF routine, and also call the appropriate positioning and
window drawing routines.

n

1 UG

TP P T A @

TP TPPTTDPTTT PR

w e b

R RN TR VRN ¥

& v W

T TRNY VRN VARY ¥

Y RNV VR ¥

' ¥

Setup routine

When Window Manager sets up an application sub-window the
data structures to be generated depend on the application itself,
Therefore an application may supply a setup routine for each sub-window
which can be called by the Window Manager during the setup stage. In the
case of a menu sub-window, the Window Manager provides a standard
getup routine WM. SMENU which will prove useful in the majority of cases.

When using the Pointer Toolkit, only pre-defined setup routines may
be used as it is not possible to call SuperBASIC routines from machine
cade. If a menu sub-window is defined then the standard WM.SMENU
routine is used, otherwise no setup routine is used.

Size checking

When a WINDOW or OUTLN call is made, the size required must be
checked, If the window to be re-sized is unmanaged, then the check
reguires that the new size will fit on the screen: this is also the case
when an OUTLN call is made for the primary window of a job. If the
window to be resized is a managed secondary window, then it must fall
within the hit area of its primary.

Sprite

A sprite, as used by the Pointer Interface, is a set of data scmewhere
in memory which defines both the shape and colour of a graphics object.
Such an object may be (a) drawn within a window, or (b) used as a pointer:
the familiar arrow, padiock, K and no-entry peinters are all sprites. This
is somewhat different from the games programmer’s definition of sprites,
which move arcund of their own accord colliding with one another in a mest
unsettiing manner.

Status

Any loose mepu item or item in & Renu sub-window has an
associated status: this may be unavailable, available, or selected. This
status is shown visually by changing the coleours or shapes of the objects
which comprise the item, and is recorded in a status block for use by
the application. The colours and shapes used for each status are defined
by the item attributes each window has one set of attributes for its
loose menu items (if any), and each menu sub-window has a set for its
items.

wl

£

agpmy

»
Vi

P,

L]

e

7}

¥o
8¢
=14
ol

tr
Me

te

Status blovk

A window will have a status block for its loose menu Items, and one
for each of its menu sub-windows, Each item has a one-byte flag, which
will teke different values depending on the item’s sta tus, at a position in
the block corresponding to the item number In addition, the flag may
have its bottom bit set to indicate to the Window Manager that its
status has changed and that the object should be re-drawn. Action
routines are usually called with a peinter to a status block and an item
number, so that the status of the item whose acticn reutine has been
called may be checked or modified.

Sulr-menu

A sub-menu is very sireilar to an ordinary menu, but is contained in a
secondary window that has been pulied down within its primary.
Depending on the application a sub-menu eight appear at a fixed point or
close to the pointer, Usually sub-menus contain a set of associated
options for which there ign’t room in the main memy, or which would make it
too cluttered. An exawple is the SORT sub-menu in GRAM.

Sub-window

Any managed window may have a list of sub-windows attached to it.
When a RPTR call has been made, the Pointer Interface will scan through
the pile of windows and set the pointer sprite to that defined for the
sub-window containing the pointer (if any). If the pointer read returns
then the co-erdinatesa of the pointer will be relative to the sub-window,
meking a programmer's Hfe easier, we hope! The position of a sub-window is
defined relative to its window, so it does not need to be reset if the
window is re—defined,

A sub-window is only of relevance when doing a pointer read, to
change the pointer sprite seen and the sub-window number and position
returned: you cannot print to or clear sub-windows. If ¥ou wish to modify
the area corresponding to a sub-window, you have to set a real window
channel to that area - the Window Manager provides a routine to de this.

The Window Manager uses a sub-window for each application
sub-window to determine whether the pointer is in an application
sub-windoew or the main body of the window,

Timing out

It is possible to specify how long the QL should keep trying to do an
1/0 call for befere giving up and returning a "not complete” error message
- this is called timing out. All the Pointer Toolkit routines keep trying
indefinitely, and thus never time out; but you may find that some other
rrograms {or programming languages} use finite timeouts, and therefore
fail to do some T/0 sequences correctly if they try to do them while their
windows are locked

28

it U LI AN U AN AN A A AN SR (B (R N N N S S N

D T T r 1

T

N

e U U T Y " T DR

[PR o

& W W W

' VR VRN VRNV PRV TR ¥

rYop window

The top window in the pile is special in that it is always unlocked
since nothing can overlap it, and it is the only window allowed to use the
kevboard for input.

nlocked window

rima window is said to be unlocked if there is ne primary above
it in :h{; pilzrwhich overlaps it. While a window is unlo_cked all att‘emp_ts
to output to it will succeed: attempizs to do keyboard input from it will
succeed if it is the top window. If a window iz not unlocked then o_utput
will appear either when the window becomes unlocked, or not at all if the
output call times oul before the window becomes unlocked.

In addition, an unleockable window is always unlocked, regardiess of
any overlapping windows.

Unlockable window

A window may be made unlockable, in which case all out?ut tc_: it will
appear instantly, regardless of whether there is an overl'appmg _wlpdow or
not: this is done by a specilal version of the PICK routine., This is what
life was like before the Pointer Environment, jolly messy!

Unmanaged window

A window is said to be managed if no QUTLN call has‘been mad_e to sa_at
its outline in this case it is assumed that the job using the window is
unaware of the existenge of the Pointer Interface, and thus th_e effect of
some I/0 calls is slightly changed. For instance, any sub-windows are
ignored during a pointer read. There are alsc some differences between
unmanaged and managed windows when they are CLOSEd.

Unset

Once a primary or pull-down window has been set up and drawn, the
definition wili remain until the application removes it. The l(lzfdaw
Manager provides a routine to do this which dees all the ‘operatlo.ns
required to make it safe to modify or remove the window's working
definition This routine is WM. UNSET.

The SuperBASIC unset routine not only calls the WM.UNSET vec‘tor.
but converts all the absolute pointers in the data structures back into
their relative forms,

29

wl

e

pe
gt

-4

[=3]

e:
be

11

¥
E-13

ot

Me

ke

Window definition

A window definition is &n embryonic form of a full working
definition which is converted into the latter by a setup routine,
frequently with the addition of seme extra data: for instance, s
file-copying program might generate its own application object list
from the directory of a disc.

It may be convenient for applications written in different languages
to have different window definition formats, and to provide their own
setup routines.

Window Manager

The Window Manager is a set of utility routines which assist with the
maintenance of windows, and which forms the higher level of the Pointer
Environment. A number of routines are provided which translate and
interpret data structures either set up by or contained within a Program.
Translation involves conversion of & window defini tiops of the form
recognised by the Window Manager to working definitions
Interpretation frequently takes the form of drawing or re-drawing part aof
a windaw.

Since the Window Manager is ahle to call various
application-supplied routines, quite complicated effects can be achieved
without the programmer having to write all the "boring bits",

Working definition

Whereas a window definition may take many forms, a working
definition must always be of the same form. The first action of any
application will usually be to translate the window definition into a
working definition using its Beatup routines; subsequently the Window
Manager will be able to work on the data structure produced, as it will
nov be in a standard form.

30

4 LB AN A (B (B S P S

T TP P

LA U LB U O

'&WWWWW'&I‘WWWWU

y ¥

¢y w W

1
H:iﬁgﬁ; F I L E 5 Read Ouer ALK Inf“oSort

_ _ Sert orde
2ﬁh View Execute Copy Backup HMove [" -

From: £ lpd_ w0 Torfip2_

3,.¢§ Moster 3071448 sectors OPTR_dac 64
| — - e =
| qram_help 19:00 01 Aug & *
giup_ dictionary 11123 84 Hov 8] +
1qtyp_spall 89:54 28 Nov 8% 4
:,rwnprt 18:36 01 Aug 8§ |
"_,.n' {eedit 16112 17 Hou 8-,
4 , stdio,h 19:81 @1 Aug 67 & 274
{ Siismon 23:31 27 Oct &7 1 18248
Pt L - .

A typical window

1/ A sprite type loose menu item, centred in the space allocated to it, This
is the "move windew" item, which should be present in most applications.
It i= "hit" by the standard key "CTRL F4" and specially treated within the
Window Manager by generating a "nove window™ event.

%/ Two text type loose menu items: these are alsc centred. The View item is
specific to the application, and is "hit" by the V key. The HELP item
should be present in most applications, and is therefore "hit" by a
standard help key, F1, and specially treated within the Window Manager by
generating a "help" event.

3/ Two information objects, both of them text. The medium name and
statistics object is in a window of its own, 80 that it can be re—drawn
when necessary.

4/ A menu sub-window. The cbjects in this are centred vertically, but
left-justified horizentally. Both objects in a row, the filename and the
file statistics, have the same item number, and thus share the same state;
in this example, all files are available. Sub-windows like this do not have
a separate channel of their own.

5/ The current item in the primary window, which is also selected.

6/ The current item in the pull-down window: this has not been selected, so it
still shows in the available colours. Because this is a puli-down window,
it has its own status area, so there is no confusion between this current
item and the previous one.

7/ The pointer; while this remains within the berder showing that the DO item
is current, a "hit" will select that item. As the pointer is moved, the
¥Window Manager removes and replaces this border arcund whichever menu
item the pointer is within.

8/ A pull-down window. In contrast to the sub-window, this dees have its own
channel, which is cpened when the window is pulled down and closed when it
is discarded. This is an example of a secondary window, and thus lies
entirely within its primary.

9/ Scroll arrows: when the number of files is too large for the menu
sub-window, the application increases the number of control sections
from none to one, and calls the Window Manager routine provided to draw
these bars. The Window Hanager also provides the routine to scroll
through the list of files.

31

e Jped

m
vt

wl

[+1]

e;
be

b

="

¥
ai
=14
o

M
wi
te

L3

[3

TP P D DH DT T B D
) .

'y

Y

VY W

PPOADDPTDDLD DA
(' VRNV VRN ¥ ‘.

@® W

U g

g

SuperBASIC

KEeywords

The Keywords added by the Pointer Toolkit are split inte two groups.
The first deals with those routines which use only the Pointer Interface,
the second with the routines that also require the Window Manager.

Pointer Interface routines

Optional parameters are included in square brackets, thus foption],
or curly brackets {Xpos, ypos}

Where this is of the form [#ch,] it shows that a channel nunber may
be specified. If in any case it is not, the channel number defaults to #1 as
usual.

Where an option occurs in square brackets that parameter may be
specified or not as desired; where it occurs in curly brackets it may be
specified zero, one or more times. For some optional parameters a table of
the default values iz given, with the effect the default value wiil have., If
the default value is given as "none", then the procedure or function will
do scmething different if the parameter is given, and there is no value
that wyou can give this parameter that will have the same effect as
cmitting it. For instance, the RPIXL function just reads the colour of a
pixel if no scan direction is given, but alwayz scans if a scan direction is
given, and no value of the scan direction parameter means "do not scan”.

Separators are significant only where specified: ctherwise you may
choese any of the five possibilities {, ;'\ TC), depending on which you find
the most readable.

HOT_STUFF stri$f,str2$]

Option Defasult Meaning
str2s " stuff only strl$

This procedure puts a string into the HOTKEY buffer: strl1¥ is putin
the buffer first, immediately followed by str2f if present. The string in
the HOTKEY buffer may be retrieved by typing "ALT SPACE™ in any job, which
wiil act as if the characters of the string had been typed instead of the
"ALT SPACE",

LBLOB {#ch, J{T0] {xpos, ypos{ TO xpos,ypos}, }blob,pattern

This procedure draws one or more lines of blobs. Apart from the
optional channel pnumber and the reguired blob and pattern the
parameters consist of co-ordinates preceded by TO or a comma: those
preceded by a comma set the start point for drawing, those with a TO draw
a line of blobs to the given end point and reset the start peint to that end
point. The start point is also set by the WBLOB procedure, and is kept in
SuperBASIC's channel table between calls, so successive LBLOB TOC
calls will work as expected.

Co-ordinates are in pixels, blobs which would fall wholly or partly
outside the window are not drawn.

a3

wl

o

P
£

Y]

M
Ve

L]

=g

b

¥t
14
=14
o

M
wi
te

MS_HOT [#ch, Jhot$

Set the string stuffed into the current keyboard queue when both
mouse buttons are pressed simultaneously. The string hot¥ may be 0, 1 or
2 non-null characters to clear or set 1 or 2 characters to be stuffed.
Because these characters appear in the keyhoard queue before any
further processing is done, they may be translated by the ALTKEY or
HOTKEY processes to produce longer strings or start HOTKEY jobs.

) Yf)u are advised to use this procedure only in BOOT files or utilities
which invite the user to supply a mouse hotkey, e.g. system control panels,

MS_SPD [#ch, Jaccell,wakeup]

Option Default
wakeup none

Meaning
don’t change wakeup speed

This procedure modifies the response of the keyboard and mouse
rointer movement. The accel parameter sets the acceleration of the
moeuse, making the pointer move quickly or sluggishly: it also affects the
gradual speed increase when the pointer is driven from the kevboard.

. The wakeup perameter applies only to the mouse, and sets the
minimum speed that has to be reached before the (currently invisible)
pointer appears: a high value will mean that an accidental nudge of the
mouse while you are typing wll be less likely to cause the pointer to
appear,

Both parameters are limited to a range of 0 to 9.

) Yc_)u arc advised to use this procedure only in BOOT files or utilities
wh).cllz invite the user to change the mouse response, e.g. system control
panels.

OUTLN {#ch, Ixsize,ysize,xorg, yorgl XZshad, yshadlf ,move]

Option Pefault Meaning
xshad [} no x shadow
¥shad 4] no ¥ shadow
move 0 discard window contents

Tt}e OUTLN procedure sets the "outline” of a window, and gignals to
the Pointer Interface that the window is "managed" - see the CONCEPTS
section for explanations of these terms. The three optional parameters
default to zerc, but you can specify the move key, the shadow widths, or
both if you wish., The shadow will appear to the right or the bottom if
Jl'_shad or ¥shad are positive. The move key will discard the current
window contents if it is zero, or move them to the new position if it is set
to i - you must Keep the x and y sizes the same for this to work! If you set
the outline of a secondary window, then the area underneath it will he
saved, and restored when the cutline is set again: this allows you to

implement pull-down windows without having to do the saves and restores
yourself,

34

T HrT D P D

3]

TP PP DTDDDDTETADAD DD D

e

|

.-

“.a

Y UN LRV TR VA . 2 4

' U

result=PICK{ job-ID | key)

Thizs function picks the primary window belonging to a given job to
the top of the "pile” on the screen, in the same way that the user can pick
windows with "CTRL €" or by pointing and hitting with the pointer. The
job-ID may be specified as two numbers, job number><tag>, or as one
composite number, <tag>*655364+<{job number>: this is consistent with
SuperToolkit II. Alternatively a key may be specified. If this is -1 then
whichever jobh is at. the bottom of the pile will be picked to the top: if it is
~2, then the window specified will be marked "untockable”. i

1f the job specified doesn’t have a window, or doesn’t exiat, then the
result will be ~2, the QDOS error code for "invalid job" - otherwise it will
be zerq, signalling success.

This function should be used with discrimination, unless you find it
particularly amusing to have windows popping up at you while you're
Lyping.

Example:
1000 IF PICK(job_id)<0 THEN PRINT "Can't pick ";job_name}

PREST [#ch, Jbuffer, bufxo, bufyo,xsize,ysize, winxo, winyo, keep

This procedure restores a hlock, Xsize by ysize pixels, from a
buffer into a window. If keep is set to 1 then the buffer is kept, if 0
then it is discarded. The buffer may also be discarded by using the
SuperToolkit II procedure RECHP.

resul t=PSAVE([#ch, 1buffer, bufxo, bufyo,xsize,ysize, winzo, winyo

[.,bufxs, bufys])
Option Default Meaning
bufxsfys none buffer is set up, address is valid

This function saves a block from a window inte a buffer in memory:
the block size and origin in the window are given in Xsize ysize winxo
and winyag and the origin in the buffer of the bleck to be overwritten is
given in bufxo and bufya A new buffer is zet up by specifying a buffer
size in terms of pixels, in bufxs and bufys - in this case the result
returned is the address of the buffer. This function, and its
complementary procedure PREST, allow the generation of graphics data
over an area bigger than the screen of the §L. Note that when the buffer
is set up, it is cleared to black, and that the only way of modifying it is
with PSAVE.

wl

L]

3]
1}

%]

oo

o]

Example;)
100 REMark Save the top left 100x100 pixels of channel 1
110 REMark into the top left of a new 512x768 buffer.
120 :
130 buffer=pPSAVE(0;0,0;100,100,0,0;512,768)
140
150 rREMark MNow draw a big circle, and save that 1400
160 REMark pixels across the buffer.
170
180 FILL 1:CIRCLE 50,5%0,30
190 d=PSAVE{buffer;100,0;250,200,0,0)}
200
210 REMark Now restore some of what we saved before,
220 REMark and some of the circle, at the bottom
230 REMark right of the window.
240
250 PHEST buffer;50,50;100,100,150,100;:1

resul t=RMODE

This function reads the current display mode, returning 4 for
4-colour mode and 8 for 8-colour. This function can and should be used to
avoid doing MODE calls to set the display moede to the one the QL is in
already!

result=RPIXL([#ch, }Jxstart, ystart],direction{, colour{,samel}})

Options Default Meaning
direction none noe acan
colour -1 start pixel is reference colour
same 0 scan to different colour pixel

The simple form of this function returns the caleur (0-7) of the pixel
at xstart, ystart

If a directior is given, the function scans horizentally or
vertically from the start point (0=up, 1=down, 2=left, 3=right) until a pixel
of a different colour is found, and returns the co-ordinate of that pixel.
Since the scan is horizontal or vertical the other co-ordinate remains
constant,

If a colour is given then the scan locks for a pixel of a diffe_rgnt
colour to that given: if no colour is given, or the given colour is specified
as -1, then the colour of the start pixel is used.

If the same flag is given, a value of 1 scans for a pixel of the same
celour as the reference: a value of 0 scans for a different colour.

If the scan reaches the edge of the window without finding a pixel of
the required colour then the co-ordinate returned is -1.

36

T T o+ v 2 B T P T D
l&@@@‘&&lf@'&@bb

r

4 ¢

;rpmmmmmmmmm_«t

§ TR VY VRRRT VAT T

3 B W

VR TRNTY

&

REPTR [lcb,}xabss,yabst,terms,swnums,xreIC,yrels,bts
Read the pointer position in the given window. The procedure will
return under various circums tances, depending on the value of term$

Bit set returns if...

+] & keyboard key or mouse button is pressed.
1 & keyboard key or mouse button is, or continues
to be, pressed. Nermal avto-repeat gpeeds apply.
2 «.8 keyboard key or mouse button is released,
3 «the pointer is moved from the given absolute

co-ardinates
4 w.the pointer is, or moves, out of the window
5 -the pointer is in, or moves into, the window

Bit 6 is reserved - do not set it! Bit 7 selects a special mode, in
which all other jobs' windows are locked, and a special sprite appears
depending on the values of bits 0 and 1:

Bit set sprite shown
1 "window change size"
\] "window move", unless bit 1 is set
neither "empty window"

Bits 2 to 6 should all be clear when bit 7 is set. The co-ordinates
returned are always absolute, rather than relative to the origin of the
window used to make the call.

Apart from the above "window request” mode, the co-ordinates
returned in Xrel# and yreld will be relative to the origin of a window or
"sub-window", If the pointer was in a sub-window then the value of swoumi
will be 0 or greater, stherwise it will be -1. See the description of SWDEF
to find cut about sub-windows.

If a "return on move" is requested then xabs# and yabs# are used as
the reference point — when the pointer is moved from this position then
the call will return. These variables are normally set up at the start of
the program, and subsequently updated only via the RPTR call.

The value of bt# is a single character string. If a button or key
press happened, the character will correspond to the key excent for the
following "event keystrokes™

Eey CHES$ Event

None 1] no key pressed
SPACE/left mouse 1 hit
ENTER/right mouse 2 do

EsSC 3 cancel

F1 4 help

CTRL F4 b move window
CTRL ¥3 6 change size

The values of xabs# yabs$ term$ and swnumd should be set hefore
calling this procedure, as they are used to determine when the call will
return. Cn return all the parameters will be set to the appropriate
values. Note #hat if you calf the procedie with the waong dype of

As this routine returns values through the parameter list, it is not
compatible with the Super/Turbocharge compilers.

37

wl

oY

3 el

1]
=1

P
ve

al
w]

i
wi
[
be

b

33

yo
aC
aC
ou

Mg
wi

Examples:
1000 xa%=0:ya%=0:Kkystk=1:swnum%=-i
1010 REPeat 1
1020 rt¥=kystk : REMark Return when a key is hit
1030 RPTR xa%,ya%,rt%,swnumd, xt, yi, bt$
1040 PRINT #2;x%,y%, CODE(bt$)
1050 END REPeat 1

1000 REMark Set up current absolute position
1010 REMark and sub-window number:

1020 REMark OUTWN+INWIN returns instantly
1030 :

1040 outwn=16:inwin=32:rt¥=cutwn+inwin

1050 xa%=0:ya%=0:swnumé=-1

1060 RPTR xa%,ya%,rt%,swnum®, x%,y%, bt$

result=SPRSP({width, height)

This function calculates the memory space regquired to store the
definition of & sprite of the given width and height, both in 4-celour
mode pixels. This is particularly useful for loading multiple sprites into
one piece of menory by calculating the space for each and then allecating
it all at once: this reduces overheads and heap fragmentation,

SPHDR addr,xsize,ysize,xorg,yorqg,mdf, next]
SPHDR addr,pext

This procedure sets up a sprite header te be filied by the SPLIN
procedure: there must be enough room at the address given in addr for a
sprite of the required size.

The sprite may be linked to the pext one in a list, either as an
opticn on the long form of the procedure, or using the short form. Such
linked sprites may be defined for use in different modes, as specified by
md When used as a pointer or drawn using WBLOB, the list will be searched
for a definiticn suitable for use in the current mode.

38

TP HrHrMPPrHPr 1T APrA2rHrOHPTANrTPTDPTHTPEDTDTDD

e e e —— i — ey AR B S S B S b AN B BN B NN N W T

Example:
1000
1010
1140
1110
1120
1130
1149
1150
1160
11706
1180
1194
12090
12190
1220
1230
1240
12590
1300
1310
1320
1330
1340
1350
1360
137¢
1380
1390
1400
1410
1420
1430
1440
1450
1480
1500
1510
1520
1530
1540
1600
1610
1629
1630
1640
1650
1660
1670
1680

REMark Set up a pointer for #1, shape depending

REMark on mode.

REMark First the pointer that appears
REHark in mode 4

spr4=ALCHP{SPRSP(9,9))
SPHDR spr4;%,9,5,5;4

linum%=0

SPLIN spr4,linums,’ ww '
SPLIN spr4,linumg,’ waw !
SPLIN spr4,linum$,’ waaw '
SPLIN spr4,linum%,' wawaw °

SPLIN spr4,linum%,’' wawwawww'
SPLIN epré,linum%, 'waaaaaaaw'
SPLIN spr4,linum%, 'wwwwwawww'
SPLIN spr4,linumg,’ waw '
SPFLIN spr4,linumg,’ Wi '

REMark Now set up a sprite to appear in mode 8
REMark and link it to the mode 4 sprite.

Epr8=ALCHP(SPRSP(20,10)}

SPHDR spré;20,10,10,5;8;spr4
linum$=9

SPLIN spr8,linum%,' wwwwww '
SPLIN spr8,linum$,' wwaaaaww '
SPLIN spr8,linum?,’ wawwwwaw '
SPLIN spr8,linumb,’' wawwwwaw '
SPLIN spr8,linum%,' wwaazaww '
SPLIN spr8,linum$, 'wwawwwwaww'
SPLIN spr8,linum%, 'waww wwaw'
SPLIN spr8, linum®, 'wawwwwwwaw'
SPLIN spr8,linum%, 'wwaazaaaww'
SPLIN spr8,linum%,' wwwwwwww °*

REMark Attach it to #1

OUTLN 256,182,256,26 : BORDER 1,255
SWDEF : SWDEF -1;252,200,0,%;spr8

REMark Read the pointer: the sprite you see
REMark depends on the display mode

ax¥=0:ay¥=0:swnumt=0:rt=1
REPeat 1

rti=rt

RPTR ax%,ayd,rtd,swnumé,xrs,yrs,bts
END REPeat 1

ig

wl

P

™
El

=]

P
Ve

al
w

cd

@)
be

n

P
vl

¥cC
sC
24
=19

tr
M
Wi
4]

SPLIN addr,linum#, pati$

Fill in one line of pixels in a sprite. The header must have been set
up previously using the SPHDR procedure. The line to set is given by
linums, with line 0 being the top: if the line number is too big you will get
an "out of range” error. The pixel colours are specified in patt§ as for
SPEET. If the Yine npumber parameter is a wvariable then it will be
incremented after this call, s¢ successive calls to SPLIN will set
successive lines of a sprite: this feature will not work with the
Super/Turbocharge compilers.

SPRAY xorg,yorg,blob,pattern,pixels

This procedure works in a similar way to WBLOB, but instead of
writing the whele blob it writes only a few pixels from it: the number of
pixels written is given by the pixels parameter. These are chosen "at
randow” from the bleb to give a spray effect. Somewhere between 5% and
20% of the total number of pixels in the blob usually gives a good result.
1f you spray several times with the same parameters the bleb will
gradually fill in, but there is no guarantee that it will ever do so
completely, even if the pixels parameter is the same as the total number
of pixels in the hlob,

SPSET addr,xorg,yorg,md,shape$({ysize,xsize)

This precedure sets up the data for a sprite, in a suitable form for a
particular QL mode as specified in #d The size is given by the dimensions
of the string array shape$ defining the sprite: for convenience you may
pass an array slice. The sprite’s origin must alsa be given in Xorg, yorg

The colour of each pixel of the sprite is specified by a character in
the string array, the top left pixel being specified by shape$(0, 1), the
top right. by shapef(0,xsize), the bottom right by
Bh@peﬁ’(YSJzeﬂ! XsSize} and so on, Note that the rows run from 0 toan-1,
as in other arrays, but the columns from 1 to n as for strings.

__The colour characters permitted are "aurmgcyw ", standing for
pixels that are blAck, blUe, Red, Magenta, Green, Cyan, Yellow, White and
transparent {space).

Example:
100 DIM shape${10,10):RESTORE 180
110 READ xsize,ysize,Xorg,yorg,md
120 FOR i=0 TO ysize-1:READ shape$({i}
130 addr=ALCHP{SPRSP{xsize,ysize)}
140 SPSET addr,xorg,yorg,md,shape$(0 TO ysize-1,1 TO xsize}
150 REMark Concentric rings with a hele in the centre
160 DATA 7,7,3,3,4
170 DATA " www "
180 DATA " wgggw “
190 DATA "wgrrrgw"
200 DATA "wgr rgw"
210 DATA "wygrrrgw"
220 DATA * wgggw "
230 DATA " www "

40

LA A AL A U N L UL AL N A U AL) S AL G G L I

i

| B

l.v l) | I g

VA

¥ TR ¥

SWDEF [#ch, }{swnumf ,xsize, ysize, xorqg,yorgl,spritejj]

Option Default Meaning

swnum none clear ali sub-window definitions
xsize.yorg none clear given sub-window definition
sprite none uze default sprite

This procedure sets or clears a sub—window definition. If no
parameter is given then the sub-window list for the window is removed
entirely: if just the sub-window number swnmyr is given, then that
sub-window definition is removed: and if a definition is given, then that
gub-window is {(re-Xefined. Optionally the address of a sprite definition,
sprite, may be appended, in which case the pointer will change to that
sprite when it is within the sub-window.

The origin given is relative to the “hit area” in "managed” windows, or
to the current window area (as set by WINDOW for "unmanaged” windows.
The sub-window definition for the main part of the window may be set by
specifying a sub-window npumber of —1: the origin in this case is absolute.
Removing the sub—window definition of the main part of the window will
reset the sprite to the default, and the area to the hit area,

Note that if vou wish to use N sub-windows, you must specify all
sub-windows from 0 through N-1, and in addition the primary window must
be managed {must bave had its outline set with OUTLN). Sub-windows are
checked starting at sub-window 0, up to the first unset one, and then the
main part. To avoid fragmenting the heap more than is necessary, you are
advised to define the highest nunbered sub-window first.

Example:
100 REMark Remove all current definitions, and put
110 REMark one sub-window across the top of #1, and one
120 REMark down the side with & special "hand" sprite.
130
100 SWDEF
110 SWDEF 1;250,20,0,0
120 SWDEF 0;406,100,0,21;hand

WELOB [#ch,jx,y,blob,pattern

This procedure writes the blob into the given channel, using the
pattern, at the given co-ordinates x,¥ These co-ordinates are also
used to update the default start point for the LBLOB procedure. The blob
specifies the shape of what appears, the pattern the colour, so you would
need one blob and three patterns to draw red, yellow and blue flowers. In
this version the bloh is not drawn if it overlaps the edge of the window, or
falls outside it. The blab and pattern are pointers to items of the
appropriate sort ~ probably loaded into the heap with an ALCHP feollowed
by an LBYTES, or set up from SuperBASIC by calls to SPSET, SPHDR or SPLIN.
In early versions of the Peinter Interface no check is made on the blob and
pattern, and the blob drawing routine can be crashed quite easily by duff
data; you have been warned!

Note that any sprite may be used as a blob, and any sprite whose
width is a multiple of 16 may be used as a pattern.

41

W3PRT [#ch, Ix,y,sprite

This procedure is very similar to WBLOB, except that the sprite
data structure defines both shape and colour information, so you would
need three complete sprite definitions to draw red, yellow and blue
flowers - but they could all be different shapes. The same comments apply
with regard to drawing outside the window and using valid sprite
definitions.

] A_featu_re of versions 1.13 onward of the Pointer Tnterface is that the
built-in sprite definitions may be written if a small integer is gpecified
rather than an address:

Value of sprite o 1 2 3
Sprite drawn PR L
Mode 4 l':}@ N B B

Mode B - @ i

ode =, .. £

42

& & |

|l.

a8 &

4 & & ¥ 8 B M VNV VR

T rTrr TP PTrPrLPTLrLPPTHHTLTETPTDL”TPETDTOTTPT PR OMD
&3 W e VW

B N R N S N N BN B S A D B Bl B N B S G S R TR S e B S m—— m———— e e i e -
¢ ¥

T

L

Window Manager routines

The following SuperBASIC routines form ap interface to the Window
Hanager. They are in four groups, definition routines, drawing routines,
access routine and change routines.

The majority of these routines make use of arrays to pass long
parameter lists to them with the minimum of typing: unfortunately
routines which use sarray parameters are not compatible with the
Super/Turbocharge compilers, and you will be unable to compile programs
which use them with these compilers.

The amount of stack used by the Window Manager on some cails is
greater than that permitted for machine code SuperBASIC procedures or
functions: this has not caused us any problems with the interpreter, but
has resulted in crashes with programs ccompiled with Q_Liberator,
versions up to 3,12, Later versions of @_Liberator may cure this.
Meanwhile, @_Liberated programs may be used if processed with the STKING
utility: see the Utilities chapter for more details.

Definition routines

These set up parts of a window working definition, given parts of the
window definition in one or more arrays.

MK_LIL(attr{3,3}),sizet(n,1),orgd(n, 1), juséfn,1),sks, tyvpesin),
strg${p.m),pspr(q).pblb{r),ppat(s})

Make a loose item list, complete with attributes.

There are ntt items in the list. Each item has its own size, origin and
Justification in the appropriate arrays, the x attribute Ybeing in
arr#(i,0) and the y in arr#(i,I). The justification specifies whether
the object is to be left/top justified (positive values), right/bottom
Justified (negative values), or centred {zero}. Non-zero values give the
distance in pixels from the appropriate edge of the area defined by the
gize and origin of the item.

The typed array specifies not only the type of each item in the
bottom byte of each word, but alsc the action to be taken on "hitting"
each item: if the top byte is zero, then no further action is taken, if
non~zero then the RD_PTR call returns: if +1, the item’s status is reset to
available before returning, if -1 no change is made to the status. To set
the top byte to +1 or -1, add +256 or -256 to the item type. The value of the
bottom byte may be 0, 2, 4 or 6 for string, sprite, blob or pattern items: up
to p+l elements of type$ may have a bottom byte of 0, g+l of 2, and so on.
When an element specifies that an object should be of a given type, then
the next object is taken from the appropriate array. Thus if type#
contains the values 0, 2, 2, 4, 2 and 6 the objects will come from strg$(0),
pspr(@), pspr(1}, pbib(0), pspr(2) snd ppat(0).

If an item is null (a zero length string or zerc pointer} then it is
assumed that the item is absent: such items may be reset later with the
CH_ITEM procedure.

43

1]
8¢

iyl
Ve

P,

w]

[+3]

e
be

I

P
¥l

¥
s¢
EY
ol

MK_ICL{sfze#(n,1)},orgdfn,1), imod(n), typetin),
strg$(p.m},pspriq),pblb(r),ppat(s]})

Make an information ohject list. size®, org$, type$ and the chject
arrays are the same as Tor a loose item list. There are ne justification or
select key arrays, and the top byte of the Cy¥ypel is ignored. Objects are
taken in turn from the strg$ pspr, pbldb and ppat arrays, depending on
the contents of type#®, az for the MK_LIL function.

If an information chject is a piece of text, or & blobh or pattern,
additiongl information is required to draw it: in the case of text, you need
to specify how big it is and what colour: & bleb needs to be drawn using a
pattern: and a pattern needs to be drawn using a blob. The imod array
specifies this additional information: if item N is a blob or pattern then
imod(N) contains a pointer to a pattern or blob teo combine with it. If
item N is text then the colour and size are combined using the magic
formula

Gnk>*65536+csize X0¥256+csize_TO

So a large red piece of text would have en atiribute of
2¥B5536+%2556+]1, or 131841,

MK_AOL(iattr(3,3),jusd{n,1), sk§, typed{n},
strg¥(p.m)},pspr(g),pblbir), ppat(s))

Make an application sub-window object list. Very similar to a loose
menu item list, except that there are no size or origin attributes. If the
bottom byte of typed{0) is odd then the list iz assumed to be of index
items, and the item number is set to $FFFF and the action routine to 0. In
this case the mttributes specified are those to be used in the control
definition for index items and parn and scroll bar colours {see belowh

MK_CDEF{maxsec#,arrct, barct, seccé)

Make & control definition list: this specifies the maximum number of
sections inte which the sub-window can be split, and the colours for the
arrows, bars and bkar sections. After this area is reserved enough space
for a section control block with up to maxsect sections.

MR_ASL(sized{n,1)l,isizé, ispctl})

Make an application sub-window spacing list. size8(i,) gives the
hit size, 5ize#(1,1) the spacing. The sizes and spacings for the index
bars may also be set, Two spacing lists are required for each sub-window,
one for each axis,

44

L 2 R ' TR JERY TR VRN TRERY VRNV VRNV VRNV VRNV PR T

T HH»+r*H A2 P Hr» T S ALr* TP HPHr TP P2 LTSH”TDTD
v W W W

w W

KK_RWL{ actab,sed(n, 1))

}_mke an application‘ sub-window row list. There are o rows, the i'th
starting with item 5e#({i,#) and ending just before item se#{f,1). The
object list is at aotah

MK _APPW(wdef#({3),wattr$(3), ptr,sk$,
[ctxdef, ctydef,
XOoffk, yoffR,
Xx5pcC, yspc,
Xxitab,yitab,
rowlj)

Make an application sub-window definition. If a menu sub-windew is
required, all parameters must be given, although the pointers to the
control definitions (ctxdef and ctydef) and index item lists (xitab and
¥itaB may be zero: the spacing list (2spc and yspd and row list (rowl
pointers are required. The pointer and select key (ptr and sk$ may be
zero and the null string if these are not required. The number of items in
a spacing list, index item list and row/column must be consistent.

As a special case a sub-window may be defined with only the first
four parameters, in which case a special hit routine is used which results
in a RD_PTR call returning every time the pointer is moved or a key is hit
in that sub-window.

ME_IWL{wdef#({n,63), wattrd({n, 3),infol(n))

Ha_ke an information sub-window list. Each information sub-window
has a size and position in wdef#{1i), attributes given by wattr#(i), and a
pointer to an object list in infol(i)

MK_AWL{ appsw(a)})

Hak:a an application sub-window list. The array of pointers is copied
and terminated with a long word of zero.

MK_WDEF (wdef#(3),wattre(3), ptr, Itab, inftab, apptab)

Make a complete window definition. Any of the last four pointers may
be zero.

wl

P
th

Pt
J-4]

»
t}

2]
v

=

¥
-1
-1
a1

54
M

te

Prawing routines

These routines set up and draw a window fron definitions generated
by the definition routines above, and allow an application to re-draw part
of a window. Routines are also provided to position a given window channel
"over” part of a window, so that embellishments may be added and so forth.
This is particularly useful in the case of pull-down windows, whose
channels are inaccessible to the SuperBASIC Program.

DR_FPOS [#ch, Jwdef, xpost, ypos#f,1flagi({n)]
{.aflage(p.g)l,ctx8({maxsecs, 2)]{,ctys {(maxsect,2)]}

Position a primary window, or...

OR_PULD wdef,xpos$, ypos$[,1flagé(n)],{,aflags{p,q}}
{,aflags{p,q)f, ctxi({maxsecs, 2} }{,ctyk({maxsect, 2)1}

«.pull down & window., After e window has been positioned or pulled
down then it is drawn, A flag array is passed far the loose iteas {Iflagh
and a flag array (aflag® and zere, one or two control definition arrays
{ctx? and cty® for each menu sub-window, and the items drawn with the
Eiven statuses, The channel for a pull-down window ig opened, a primary
window's channel must already be open.

When the window appears, the pointer will always be set to the initial
pointer position within the window as specified when the window
definition was set up., If the positioning parameters Xpos§ and yposi
are set to -1, then the pointer will be moved as little as possaible (often no
distance) to accomplish this. If, however, xpos# and ypos® are set to
some other value, then the pointer will be set as close to that position as
possible before the window is pulled dawn.

DR_LDRW wdef,lflag8(n)

The flag array 1flag$ is copied into the loose items status block,
and the loose items are then re-drawn. If no change bit is set in any flag,
then all items are re-drawn, otherwise only changed items are re-drawn,

DR_ADRW wdef, aswnum®, aflags{p,q)
{.ctx8(maxsoct, 2}][, ctyd(maxsect,2}]

The flag array aflag®# is copied into the status block of the
application sub-window referred te by the aswnum® parameter, the
control definition arrays ctx® and cty#l (if any) copied into the control
bleck, and the menu sub-window is re-drawn, using the same rules as for
loose menu items. If element (0,1) of a control definition is non-zers, then
the whole sub-window is re—drawn, regardless of iten status changes.

48

mmmmmmmmmmmmmmmmmmmmrrmmm

§ ZOY PRRNY VRNV VARV VRN VRRRTY

‘NWW'@WWWWW&-&WWWWIJ

W

DR_IDRW wdef, infwm

This procedure re—-draws any of the first 32 information sub-windows
in the window given by wdef, The infwm is interpreted as a bit map of the
windews to be re-drawn, with a clear bit corresponding to a window to e
re-drawn. Thus a value of -2=$FFFFFFFE will re-draw information
sub-window Q only, -6=$FFFFFFFA will re-draw windows 0 and 2, and so on.

DR_AWDF [#ch, Jwdef, swnumé

Set a channel to cover the same screen area ms the given epplication
sub-window.

DR_IWDF [#ch, Jwdef, iwnumt

Set a channel to cover the same screen area as the given information
sub-windaw.

DPR_LUDF [#ch, Jwdef.litems

Set a channel to cover the same screen area az the given loose item,

DR_UNST wdef

Unset a window definition. A window that was pulled down is removed
and its channel closed.

wl

]

-4

f1
P
th

»
i

[+

¥c
14
=19
o

tr
M
wi
te

Access routine

RD_PTR wdef, item®, swnum$, event$, xrel 8, yrelt
[,1flagk}{,aflag8f,ctx8]{, ctyd]}

Read the painter via the Window Manager; the call returns when a
window event occurs, or a return item is "hit". In addition to the returned
parameters, the item statuses are copied back into the appropriate
arrays. The item number and sub-window number of the last item hit are
returned in item?# and swonum® and the event causing the return in
eventf this may be | for a DO, 2 for a CANCEL, 4 for a HELP, 128 for & hit on
a return-type item, and 5o on.

The flag and control arrays are copied into the relevant status areas
on entry. If any of the statuses have changed (signalied by odd flag
values), the changed items only are re-drawn: if a control definition has
changed, then the whole of that menu sub-window is re-drawn., This
frequently avoids the need for explicit re-draw calls.

The returned pointer co-ordinates xrel® and yrel#® are relative to
the top left corner of the sub-window.

If the pointer is in an application sub-window which is not a menu
sub-window, then the call will return whenever a key is pressed or the
pointer is moved. Since such & sub-window has no items in it, the
keystroke and keypress are returned in the high and low bytes of itemé

48

TPrTPTPPTPDTDPTPDTPTTRRADT PP PP PD

L R TR TR TR ¥

& b 8

3 ¥ & W

E ZB VRN NNt VY VRN VN

T VRS THRNY TRV

g v

Change routines

CH_ITEM wdef, swnum#, itemt, types, selkey$,value

Change the given item in the given sub-window to the new value, type
and select key, given in value type# and selkey$ The type of the value
may be string or floating point, depending on the type of the item. Special
values are;

swoum$ -1 for loose item, -n for information item in
information window 2-n {n>1).

typeb -1 for no change

selkey$ ""for no change (ignored in information window)

chr${0) for no select key

CH_PTR wdef, swnum#,newptr

Change the pointer sprite for a sub-window, If the sub-window
number given in swnum® is -1 then the main window’s sprite is re-defined.
If the address of the pointer sprite, given in pewplr, is zero then the
default sprite is used. Thig is the same a5 the main window’s sprite for a
sub-window, and is the arrow sprite for a main windaw.

CH _WIN wdef{,xdsiz#,ydsiz$]

Change a windew’s size or position., If only the wdef parameter is
given then the window's position is changed, otherwise the size change
required is returned in xdsiz# and ydsizR Since the window's layout
will probably change fairly drastically when the size changes, it is up to
the progranmer to decide the effect of the result returned. Note that
changing the position of a primary window does not change the positions
of its secondaries: any sub-windows of the moved window do move with it,
as their positions are defined relative to it.

49

wh

&3

pa
gr

th

i1
ac

T
ve

wl

ce
wi
ex
he

bt

P
V1

o
&5C
1
oL

tr
M
Wi
te

ATray parameters
Some forms of array parameter are used in many of the akbove routines: their
dimensgions and contents are defined below.

ATray name Contents

wattr¥3} Window Attributes
Element Data
0 shadow depth
1 barder width
b4 border colour
3 paper calour
iattr{3,3) Ttem attributes
Flement Data
0,0 current item border width
0,1 current item border colour
0,2/3 spare, 0
1,0 unaveilable item background colour
1,1 unavailable item ink colour
1,2 unavailable item pointer to blob
1,3 unavailable item pointer to pattern
2,0TO 3 available item
3,0 TO 3 selected item

Note that only the currentfunavailable attributes are used for index
items, but that the available and selected attributes must still be set, If
a separate attribute array is used for index items, rows £ and 3 may be left
as 0.

wde f%(3) Window sizefposition definition
Element Data

o} wittdow x aize

1 window y size

2 window x origin

3 window y origin

cta¥{maxsec¥,2) Control definition array

Element Data
0,0 current nunber of contrel sections
0,1 <0 if the control definition is changed
i,0 start pixel position
1,1 start column/row
i,2 number of columns/rows
a0

T PP H»TTNH"TTTPrLTTTTDTTTHPTTPT AP OTDD

Y VRN VRNV VNNV URNRY VRRNY VANV VRN TAENV VARV THENY ANV TRENY RRNY THERV VRN PNV VEENS PRV THRNT FRNRV VRNNT VRRNY PR T

Index of keywords

The keywords are summarised in alphabetical order, together with an

indication of what action they perform. Those marked PTR require the
Pointer Interface, WMAN need the Window Manager in addition: unmarked
cnes are independent of either. Those marked P are procedures, F are
functions: an A signifies that the routine uses array parameters, and an R
that it returns results through its parameter list. Having either of the
latter properties makes a program using the routine uncempilable with
the Super/Turbocharge compilers.

CH_ITEM WMAN P change a menu item

CH_PTR WMAN P change a menu or sub-window's pointer sprite
CH _WIN WMAN PR change a window's position or size
DE_ADRW WMAN PA re-draw an applicaticn sub-window
DR_AWDF WMAN P put window over application sub-window
DR_IDRW WMAN PA re-draw an information sub-window
DRE_IWDF WHAN F put window over information sub-window
DR_LDREW WMAN PA re-draw loose menu item(s}

DE_LWDF WHMAN P put window over loose item

DE_PEROS WMAN P A pesition and draw a primary window
DR_¥ULD WMAN PA position and draw a pull-down window
DR_UNST WHMAN F unset and remove a window

HOT_STUFF rP put string{s) into the hotkey buffer

LELOB PTR P draw line{s) of biohs

M¥_AOL FA make an application sub-window object list
ME_APPW FA make an application sub-window definition
ME_ASL Fa make an application sub-window spacing list
MK_AWL FA make alist of application sub-windows
MEK_CDEF F make a control definition

ME_I0L FA make aninformation object list

MK_IWL FA make aninformation window list

ME_LIL FA make alooze item list

ME_ERWL FA make an application sub-window row list
MK_WDEF FA nakea window definition

M%_HOT FTR P set mouse-hotkey string

HMS5_SFED PTR P set mouse speed parameters

OUTLN PTR P set a window's outline and shadow

PICK PTR F pickAnlock a jcb

PREST FTR F part window restore from buffer

PSAVE FTR F part window save to buffer

R _EThH WHAN PRA read pointer via window manager

RMODE F read current display mode

RPIXIL PTR F read/scan for pixel colour

RPTR PTR PR read pointer directly

SPHDR P set up sprite header

SPLIN FR set up one line of sprite

SPRAY PTR P spray pixels

SFRSP F calculate space required for a sprite
SPSET PTH PA setupsprite definition from array

SPTR PTR P set pointer to new position

SWDEF FTR P {relset sub-window definition/pointer sprite
WBLOB PTR P write a blob

WSPRT PTR P writc a sprite

51

wh

£3

PI
e

al
wl

ce
wi
e
be

b

Pl
Vi

L2
8¢
oL

tr
He
wi

v +* v PP TP TP PO T T T PP DHDTD

T T

ol U

F

Assenbler
Programmer’s Interface

Pointer Interface

The base level of the Pointer Interface is accessed through extended
I0SS trap #3 operations. These traps are used in the same way as ordinary
QDOS 10 calls, but there are some distinctive characteristics.

Where an x,¥ coordinate pair is required, this is passed as a long word
with the x coordinate in the upper word, and the ¥ coordinate in the lower
word.

In place of the single window ares used by normal console output
calls {set by SD.WDEF) the Pointer Interface recognises four different
window areas. The largest is the window outline: this is the total area
occupied by a window. The second largest is the window hit area: this is
the window cutline less the window's shadow. These two areas are set by
the pointer trap IOP.OUTL. The outline {of a secondary windew} is used by
the save and restore traps (I0P.WSAV and IOP.WRST). The outline and hit
areas of the primary windows are use by the buried layers of the Pointer
Interface to determine which windows are locked by other windows which
are oh top.

Within the hit area there is the window area set by SDWDEF. This is

the area within which all output will he put: this area will often be fairly
dynamic.

Also within the hit area there are all the sub-windows. The
sub-window area definitions are in a list which is set by the pointer trap
I0P.SWDF. This sub-window list holds not only definitions of the
sub-window areas, but, for each area, a pointer to the sprite to be ugsed as
& pointer when the pointer is in that area. The only pointer trap which
uses the sub-window definitions is TOP.RPTR {read pointer). If the pointer
is within a sub-window of the window, then the pointer coordinates in the
pointer record are set relative to that sub—window.

As the sub-window definition list is held outside the IO sub-system,
it is important that the list be detached from the window channel before
the memory holding the list is returned to QD0S. This will not be a
problem if the window channel is closed first or both are returned by the
Job being removed from the machine.

Before using any of the Pointer Interface calls, it iz as well to check
whether the Pointer Interface is installed, and locate the Window Manager
routines.

53

The Pointer Interface provides facilities for pointer control,
pointer access and window control as well as some additional 10 calls to
access the area under the pointer. Some I0 calls to windows which overlap
the area occupied by the pointer will cause the pointer to be removed from
the screen before the call is executed. When this occurs the pointer will
be restored about a fifth of a second after the last standard I0 call to
the screen. The pointer will, however, appear as sooh as a pointer
position is regquested. Where possible, the screen operations will be
carried out without blanking the pointer.

You will find a set of synbols defined in gDOS_ID for use with these
THRAPs.

Additional I0 calls

Name Do Function
IOPR.FLIM $6c Find window limits
IOP.5VPW $6d Partial window save
TOP.RSPW $6e Fartial window restore
TOP.SLNK $6T Set linkage block
IOP.PINF $70 Information enquiry
IOP.RPTR $71 Read puinter
ICP.RPXL $72 Read pixel at x,y
IOP.WBLB $73 Write biob at »,y
IOP.LBLB £74 Write line of biabs
IOP.WSPT $76 Write sprite at x,y
ICP.SPRY £77 Spray pixels in blob
IOP.GUTL $7a Set window outline
TOP.SPTR $7b Set pointer positien
I0P.PICK $7c Pick window
ICP.SWDF $7d Set window definition pointer
IOP.WSAV $Te Save window area
IGP.WRST 87T Restore window area

T

h® P A D DA T DD DT DA DDA DD BDAD D

2B R RN Y JRV VRNV VRNY VAREV TRV VRN THERY VANV TRV THRNY TR VRN 1Y

I Y ¥

&+ B W

. 'l’l

Trap #3 DO=%6C IOP.FLIM Find window limits
Call parameters Return parameters
D1 D1 preserved
D2 O D2 preserved
D3 timeout D3 preserved
D4+ all preserved
AQ window channel ID AD preserved
Al pointer to result area Al preserved
AZ A2 preserved
A3+ all preserved
Conpletion codes
NO channel not cpen
BP D2C0D

This call finds the linits of where a w

indow's outline may be set by a

call to IOP.QUTL - setting the outline outside this will give an “out of

range" error, setting it within this area will not, unless the window's
primary is moved after the call to IOP.FLIM. Al points to a four-word area
of memory into which the limits are returned in the usual X-size, Y-size,
X-origin, Y-origin format. These are absolute co-ordinates. A Primary is

limited to the whole screen area, a secondary to its primary’s cutline.

Q1

#h

2T
th

a
im

L
7h

H
R
H -

coanao

Trap #3 DO=$6D IOP.SVPW Save part window
Call parameters Return parameters
D1 %x,¥ start of block in area D1 address of save area
D2 Q or x,¥ size of save area D2 preserved
D3 timecut D3 preserved
D4+ all preserved
AD window channel ID AQ preserved
Al size/start of window block Al preserved
A2 address of save area (D2=0) A2 preserved
Al+ all preserved
Completion codes
NO channel not open
OR block is not in window or save area
OM no room to set up save area {D2=0 only}

This routine saves part of the contents of a window inte a save area
in memory. The size and position of the block to be saved are passed in a
4-word definition block pointed to by Al (c.f. 1I0P.FLIK). The pixel position
in the save area to which the block should be saved is passed in D1, If
D200 then a new save area is set up, whose size in pixels is given in D2:
othervise the area pointed to by A2 is used. The routine allews the use of
bit images larger than the 512x256 limit imposed by the QL’'s hardware.

Trap #3 DO=%5E IOP.RSFPW Restore part window
Call parameters Return parameters
o1 x,¥ start of block in area D1 preserved
D2z <0 to keep save area D2 preserved
D3 timeout D3 preserved
D4+ all preserved
AD window channel ID AD preserved
Al size/start of window block Al preserved
AZ A2 preserved
Al+ all preserved
Comnpletion codes
NO channel not open
OR bleck is not in window or save area

This routine restores part of a save area into a block in a window.
Optionally the save area may be returned to the common heap. This routine
complements the I0P.SVPW routine,

&6

"H H A H A DDA DD DD DD
[S ———————————————— VR P Y ' ' I F T F IR J

AL I D Y R Y R T Y T TR TR VRN VRNV VRNV VRNV VRNV VRNV VRNV VRY VAN Y

* T * T

l 1

Trap #3 DO=%6F 10P.5LNK

Call parameters
Dl.w posgition in linkage to set

D2.Ww number of bytes to set
D3 timeout

Al window channel ID
Al pointer to data to set
A2

Completion codes

KO channel not open

Set Bytes in Linkage Block

Return parameters

Di preserved
n2 preserved
D3 preserved

D4+ all preserved

AQ preserved
Al address of linkage block
AZ preserved

A+ all preserved

Trap #3 Lo=870 IOP.PINF
Call parameters
D1

p2
D3.w timeout

AD window channel ID
Al
A2

Completion codes

NO channel not open

Get Pointer Information
Return parameters

D1.1 pointer version {n.nn)
D2 preserved

1)) preserved

D4+ all preserved

AD preserved
Al Window Manager vector
A2 preserved

A+ all preserved

BF no Pointer Interface installed

The version number is a four byte ASCII string e.g. 't.15', The Window
Manager vector contains the entry points for the upper level routines.
For example, to call the routine at vector address $08 the following code

may be used:

MOVEQ #$70,D0
MOVEQ #-1,D3
HOVE.L CHAN ID(A5},A0

TRAP #3
TST.L DO
BNE 00PS
MOVE.L A1,D0
BEQ OOPS

JSR $08({A1)

find entry point vector
set our own channel ID

is there an interface?

.-. ho

is there a Window Manager?
.- RO

call vectored routine $08

57

Trap #3 DO=471 IOF.RPTR Read pointer

Call paramcters Return paraemeters

Di.l x,¥ pointer coordinates Di X¥ pointer coordinates

D2.b termination vector D2 preserved

Diw timeout D3 preserved
D4+ all preserved

A window channel ID AD preserved

Al peinter to pointer record Al preserved

A2 A2 preserved
A3+ all preserved

Completion codes

NO channel not ospen

The cocrdinales passed {in D1} to the trap arc used to check whether
the pointer has moved since the last eall. Both the call and return
Parameters are in screen, 20¢ window, coordinates.

The termination vector is used to determine which events will cause
a "complete" return from the call, and it corresponds to the least
significant byte of the event vector:

bit 0 key or button stroke in window / window resize
bit 1 key or button pressed {subject to auto repeat)
bit 2 key or butteon up in window

bit 3 pointer moved from given coordinates in window
bit 4 pointer out of window

bit 5 pointer in window

bit & reserved

bit 7 window request

If both bit 4 and bit 5 are set, then the pointer call will always
return immediately, even if the window is locked!

Bits 7 is used to request a pointer "hit" regardless of whether the
pointer is inside or outside the window. This call must be made with
infinite timeout. While such a request is pending in the top window, all
windows are locked and only the top window will get the "hit". The pointer
sprite will be set according to the status of bits 0 and 1. If bit 7 is set
then all bits other than bits 0 and 1 should be zera. If bit 0 is sel then
the move window sprite will be used; if bit 1 is set then the window change
size sprite is used; otherwise the empty window sprite will be used.

58

SRRLANRC U A A (G A U AN (N L AN o TG (N (O O OO O O S N S

r_-m..ua_.__—_...___._—.___...-—_—-—_——_——-————-—-——-——————-‘

DWWWWWWWWWQ@WWWWW&l'\lfi&\blib

The pointer record is 24 bytes long:

00 long ID of window enclosing the pointer

04 word sub-window enclosing pointer (or -1}

06 ward x pixel coordinate of pointer within (sub-Jwindow
iy} word ¥ pixel coordinate of pointer within (sub-Jwindow
Da byte 0=no keystroke < key or button code

Ob byte O=no key down <0 space or button depressed

Oc long event vector all zero except LS Byte

10 4 words (sub-}window definiticn (size, origin}

To determine the window that a pointer is in, the Pointer Interface
scans the pile of primary windows looking for the first window whose hit
area the pointer is in. If that window has a window definition list and the
pointer is outside the main window definition {i.e. it is pointing to the
border} then the pointer is considered to be outside all windows, If the
window does not have a definition list and the pointer is outside the
current window area (set by SD.WDEF), then the pointer is also considered
to be cutside all windaws,

If the peointer is not in a window, the conventicnal ID -1 is returned
instead of an actual ID {note that as a negative "tag" is possible, the
second word of the ID should be checked to find out if the channel humber
is negative). In this case, the pointer coordinates will be relative to the
display origin.

If the pointer is within a sub-window of the window {as defined by a
ICP.SWBF call) then the x,y coordinates in the pointer record will he
relative to the origin of sub-window. Otherwise, the sub—window number
will be -1 and the x,y coordinates will be relative to the main window, If
there is no window definition list, then the X,¥ coordinates in the pointer
record will be relative to the erigin of the current window definition. In
either case, the definition of the window or sub-window is put into the end
of the pointer record.

For a button on a pointer device the code is the button number, For a
keypress on the keyboard, the code is the extended ASCII code of the
character.

59

Trap #3 DO=%72 ICP.RPXL Read Pixel Colour

Call parameters Return parameters

D1.1 x,¥ coardinate D11 new pesition | colour

Dzl scan key | scan colour D§ preseweg
i D preserve
pa Hneout D4+ all preserved
AD window channel ID AQ preserved
Al Al preserved
A2 A2 presetved
A3+ all preserved
ey it meaning
31 set => scan required)
19 set => scan until same colour: else scan to dxfferz?nt
18/17 00=scan up, Gl=scan down, 10=scan left, 11=scan right
16 gset => compare with given colour, else with start colour

Canpletion cades

NO channel not open
CR x,¥ is not in window

The %,y coordinates are relative to the current window area sgt_by
SD.WDEF. If no scan is reguired (D2..31=0) then the colour of the specified
pixel is returned in Dl.w. If a scan is required then it nay pro?eed _from
the given start pixel co-ordinates in one of four possible dlrectl?ns,
terminating when a pixel of the same/a different colour to the given
colour/colour of the pixel at the start position is found: If the scan
reaches the edge of the window before a pixel of the requ:r{ed colour is
found then the co-ordinate returned in the high word of D1 is set to -1.
Since the scan is in either the X or the y direction, the y or x co—crdinate

of the termination pixel is the same as that of the start pixel.

60

|

b

TP MPMPPMPPMP P TP THPTPTOTPTDHPTDTDT T P TD

e

h

LI

LA L 2R R 2 2B B TR TRV RV TRV VRN VRNV VIR TRNRN TRRNT TRRNY TRRNY VRNNY TRENY 7

Trap #3 DO=%$73 IOP.WBLB Write a bloh
Call parameters Return parameters
1.1 x%¥ coordinate hil pPreserved
D2 1] b2 preserved
D3.w timeout D3 preserved
D4+ all preserved
Al window channel TD AD preserved
Al pointer to blob definition Al preserved
AZ pointer to pattern defn A2 preserved
A+ all preserved
Completion codes
NO channel not open
GR %¥ is not in window
BFP bad data structure
Trap #3 DO=$74 ICP.LBLB Write a line of blohs
Call parameters Return parameters
B1 XY start coordinate D1 x,¥ end coordinate
b2 x,% end coordinate D2 preserved
D3 timeocut D3 preserved
Dd+ all preserved
AO window channel ID AO preserved
Al pointer to bloh Al updated
A2 pointer to pattern A2 preserved
Ad+ all preserved
Completicon codes
NO channel not open
BP bad data structure

The write blob call writes a blob of the pattern into the window, and
the line of blobs a line from the start to (but not including} the end
coordinates, which are relative to the current window area set by SD.WDEF.
A blob which falls wholly or partially out of the window causes an error in
IOP.WRBLB, and is ignored in F0P.LBLE.

This version checks the form of the blob and pattern against the
current screen mode, and searches along each chain until it finds a
definition with the appropriate form. If it encounters the end of the
chain or an odd pointer hefore this, a "bad parameter” error will be
returned,

61

Trap #3 DO=%$76 IOP.WSFT Write a sprite

Call parameters Return parameters
P1.1 X,¥ coardinate D1 prescrved

D2 D2 preserved
Diw timeout D3 preserved

Dd+ all preserved

AQ window channel 1D AQ preserved

Al pointer to sprite defn Al preserved

A2 AZ preserved

A+ all preserved

Completion codes

NO channel noet open
OR x,¥ 18 not in window
RF bad datla structure

™ ® D

The write sprite call writes a sprite into the windew. This version of
the Pointer Interface cannot handle sprites which partially overlap the
edge of the window,

The x,y coordinates are relative to the current window area set by
SDLWDEF,

This version checks the form of the sprite against the current
s¢reen mode, and searches along the chain until it finds a definition with
the appropriate form. If it encounters the end of the chain or an odd
pointer before this, a "bad parameter" error will be returned.

The internal sprites may be used by passing a small number in Al,
rather than a pointer:

Name Number Sprite

SP.ARROW $00 arrow

SP.LOCK $01 padlock

SP.NULT, $02 empty window
SP.MODE $03 wrong mode {4 ar 8)
SP.EEY $04 keyboard entry
SP.BUSY $05 no entry sign
SP.WMOVE $06 window move
SEWSIZE $07 window change gize

62

L L L R TR RNV VRNV VRV PRV TR 11

5 % & 4 & &

s & & &

'y

r "

TrT*?rr2* TP PrPPTPPTT™TPHDPTDTLTPTPD

Trap #3 pO=%77 IOP.SPRY S5pray pixels in blob
Call parameters Return parameters
D1 x¥ coordinate b1 X,¥ coordinate
D2 number of pixels to spray b2 preserved

D3 timeout, D3 preserved

D4+ all preserved

AD window channel 1D Al Preserved
Al puinter to bleob Al preserved
AZ pointer to pattern A2 preserved

A4 all preserved
Completion codes

NO channel not apen
OR X,¥ is not in window

This call sprays the number of pixels required into a window: the
colour of each is determined by the pattern, and each falls on a
non—transparent part of the blob, If the number of pixels required
exceeds the number of pixels in the blob the call will terminate with na
error, and smay duplicate the effect of a call to TOP.WBLE: but there is no
guarantee that one or more calls to JIOP.SPRY with the same blob in the
same position will eventually fil? in the entire blah.

63

Trap #3 DO=$74 IOP.OUTL Set Windew Outline
Call parameters Return parameters
Dild *,¥ shadow widths i T

Dz 1 to keep contents, else 0 D2 preserved
D3.w timecut D3 preserved

DA+ all preserved

AD window channel ID AN preserved

Al pointer to window def block Al preserved

AR A2 preserved
A+ all preserved

Completion codes

NO channel not open
OR window not within screen

Trap #2 DO=378 IOP.SPTR

Call parameters

01.} X,¥ coordinate
P2.b origin key

Set pointer position
Return parameters

D1.1 x,¥ coordinate
b2 preserved

This call defines a window's outline, its hit area and shadow., Al
points to a normal window definition block {4 words: x,¥ sizes, x,¥ origin)
which defines the window hit area. The shadow widths area added to this
to make the window outline, and the shadows are drawn. It is the use of
this call which indicates te the Pointer Interface that the window
concerned is a genuine managed window. Al subsequent SD.WDEF calls to
this window will be checked against the window hit area instead of the
tetal display area.

For secondary windows, IOP.QUTL slsc saves the area beneath the
window, avoiding the need for explicit TOP.WSAV and TOP.WRST calls.

If the key in D2 iz set to 1 then the contents of the window will be
prezerved, allowing applications to move a window with one call to
TGP.OUTL: note that the size must stay the same for this to work properly!

&1

rt* %P0 PTDPDPTDTDPTDPODPT DD
|—-—l-l-l_l-l-l-l-l-l-l-l-I—I-I-I-I-I-I-l-l-l-I-

bkl‘»l)\l)t&@@W@WWQQWWWOWOWWWOO

D3.w timeaut I3 preserved
Dd+ all preserved

AQ window channel ID A preserved
Al Al preserved
A2 A2 preserved

Al all preserved
Completion codes

NO channel not open
OR %,y is not in window

This call sets the current pointer position. Tt should be used with
discretion as sudden pointer position changes could prove to be very
unpleasant for the user.

The origin key should be zero if the pointer coordinates in D! are
ehsolute. D1 is always set to absolute coordinates on return. A key of -1
will set the position relative toa the current window definition. A key of 1
will set it relative to the hit area.

Trap #3 DO=$7C IOP.PICK Pick window

Call parameters Return parameters
D1.1 Job ID or key Dl 7?7

D2 p2 preserved
D3.w timecut D3 preserved

D4+ all preserved

Al window channel 1D AD preserved

Al Al preserved

AZ A2 preserved
A3+ all preserved

Completion codes

NO channel not epen
B not a valid job ID

If a job ID is given, the primary window owned by that job will be
"picked" to the top of the pile, If the key is given as -1, then the
bottommost job will be picked to the top. If the key is given as -2, the
windew is marked "unlockable". This call will work even if the channel
given is locked: it should be used very sparingly, if at all.

Trap #3 DO=$7TD IGP.SWDF Set Sub-Window Definition List

Call parameters Return parameters

o1 b8 preserved

Dz D2 preserved

D3.w timeout B3 preserved
D4+ all preserved

AG window channel ID AQ preserved

Al pointer to sub-window list Al preserved

AZ A2 preserved
A3+ all preserved

Completion codes

NQ channel not open

This call is used to set the pointer to the sub window definition list.
This is a sub-set af the window working definitien. Al peoints to a long
word peointer to a table of pointers to sub-window definitions. This
pointer may be zero. Tt is followed by a sub-window record for the main
part of the window. The pointers to sub-window definitions are long
words, the list is terminated by a zero long word. Fach pointer points toa
sub-window record.

A sub-window record specifies the area and, if desired, a peinter to a
sprite to be used as pointer when the pointer is in that sub-window. The
structure of & sub-window record is as follows:

{sub-window x size (width) in pixels

{sub-jwindow y size {height) in pixels

x origin of {(sub-)window

y origin of {sub~jwindow

{sub-lwindow attributes in 4 words - spare,
border width, border colour, paper colour

pointer to pointer sprite for this (sub-)window

Sw_Xuslze $00 word
sw_ysize $02 word
sw_xorg 04 waord
sW_yorg $06 ward
sw_wattr $08

sw_psprt $10 long

66

A L

o™ P T P
AR A N D Y RN VRNV VRNV TRNRY VRNV FRNY VARV TRNNY VRNNV VRNNT TRRNY PRENY PRRNY 1

T T H H H T H D P DD

T T T

T

r m h

Trap #3 DO=%$7E IOP.WSAV

Call parameters

Window Area Save

Return parameters

D11 length of save area {or 0) D1 preserved
D2 b2 Preserved
Di.w timeout D3 preserved

D4+ all preserved

AO window channel ID AO preserved
Al addr of save area {D1>0) Al preserved
A2 AZ preserved

A3+ all preserved

Completion codes

NO channel not open
OM out of memary
Trap #3 DO=$7F IOP.WRST Window Area Restore

Call parameters Return parameters

b1 D1 preserved

D2.b ©0 to keep save area D2 preserved

D3.w timeout b3 preserved
D+ all preserved

AG window channel ID AQ presarved

Al address of save area {or 0} Al preserved

-y A2 preserved

Al+ all preserved
Completion codes

NC channel not apen

These routines save and restore bit images from and to a window’s hit
area. The memory to be used may be supplied by the application {D1 or Al
non-zero) or allocated internally. The former option is preferable, as the
internal save area pointer may already be in use; it is used to implement
pull-down windows, for instance.

87

Window Manager

The window management routines are supplied to do all of the most
common operations in handling pull-down movable and resizable windows
and menus within these windows. The actions of the window management
routines are controlled by data structures supplied by the application.

Symbols for the vectors are defined in the WMAN_KEYS file, which
mey be TNCLUDEd in any program which makes use of these routines.

In many cases, the window data structures will have peinters to
application supplied action routines. This effectively means that the
application code calls the window manager routines, which, in turn, call
application routines. To simplify the application code, the window
manager routines treat certain registers in a uniform way:

When the window manager routines call an application routine,
A? is set to point to the window manager vector, while A5 and
Af are not used or modified by any window manager routines.
Thus A5 and A0 can be used by the application routines as
pointers to internal data structures.

There are four distinct phases invelved in setting up and using a
managed window, First the window definition is copied and expanded into
the working definition. Next the working definition iz used to open an
appropriate window, Then the windew contenis are filled in. Finally, the
window is accessed via a call to read the pointer.

Refore starting to set up a window, the application must have
initialised the window status area. This is a work area which is accessed
by both the window management routines and the application program. It
contains such useful information as the current item, the panning and
scrolling state of the application sub-windows and the status of all the
items within all the (sub-)windows.

The start of the status area holds pointers to the window
definitions. Often the initial state of the rest of the status area will be
mostly zero. Where pull-down windows are used, the status area will
usually be maintained from one use of the window to the next time the
window is set up to be used.

28]

T * "M T PP PTrPrPTPHrDOTTTDHTTDTDDTDTDHTTD

| § g v | ‘» B %

B

Setup routines

The routine WM.SETUP may be called to transfer a window definition
to the window working definition. It is possible for an application to set
up its own working definition, but it iz easier to use the window manager
routine.

The window definition iz a fixed skeleton of the appearance of the
window, a5 in practice the window contents are liable to change. This
variability is catered for in two ways. Firstly, the application must
supply its own routine teo transfer the definition of emch apgplication
sub-window: for standard format menus, the application sub-window setup
routine will just be a call to WM.SMENU. Secondly, after the working
definition has been get up, it may be modified by the application. In
particular, if there is a menu within the window which has a variable
object list, then the object lists should be set up by the application code
after the main part of the working definition has been set up by WM.SETUP.

Depending on the size of window required, one of a number of layouts
will be selected from the list provided in the window definition. The
WM.FSIZE routine may be used to determine which will be selected: the
result of this might, for instance, be used to allocate the correct amount
of memory for the working definition.

In the next phase the window is initialised. For the primary window,
the routine WM.PRPOS will position and set up a primdary window. For
secondary windows, the routine WHM.PULLD should be calied to pull down a
window within the primary window area. These routines will try to position
the window so that the pointer will point to the current item in the window
without being moved. If this is not possible, then the pointer itself will
be moved. WM.PRPQS and WM.PULLD both set the window border and clear
the window. After the window has been initialized, fancy borders or other
adornments may be added by the application.

The window should now be filled in. Most of the operations to fill in
the window will be performed by the routine WM.WDRAW. However, the
application sub-windows are initialised but not filled in. This is left to
the application code. If the sub-window is a standard format menu, then
the menu drawing routine WM.MDRAW may be called to fill in the sub-window.

In the final phase, the routine WM.RPTR may be called to read the
peinter. This routine will return with the event vector in D2. This will
indicate what actions {if any) are required tec be done. Any "hits" on loose
meny items or items within & menu sub-window will have been processed
within the window management level by the hit and action routines
supplied by the application.

If & "hit" on a loose menu jitem, or a sub-window menu item, reguires
the window to be changed (moved, squashed, stretched, thrown away etc.),
then the action routine should set the appropriate bit in the event vector
and return to the application code. This ensures that the application will
always have control over its own windows.

69

N

Vector $54 WM.FSIZE Find size of layout

Call parameters Heturn parameters

D1 x,¥ size {or 0} Dl actual X,y size

D2 D2.w layout nunber
D3+ all preserved

AQ AD preserved

A1 Al preserved

AZ A2 preserved

A3 pointer to window defn A3 preserved

Ad Ad+ all preserved

A5 not used by any routine

AB not used by any routine

Completion codes

Not set

If this routine is required it will usually be called before WM.SETUP
to determine which af the possible layouts WM.SETUP will select from the
repeated part of the window definition. If the required size is given as 0
then the default size will be used. The actual size that the window will be
is returned in Pl: this will be the same as that passed if the layout
selected is scaleable, otherwise it will be smaller in one or both
dimensions. It will be larger if the size reguested was smaller than the
smallest possible layout.

The layout number is returned in D2: this will be zerc for the first
layout, 1 for the second and so on. This may be used to allocate the
correct amount of memory for the working definition (the following code
assumes ¥ou have set the size required and pointer to the window
definition):

JSR WM.FSIZE(AZ)
ADD.W D2,D2

ADD.W D2,D2 turn into offset
MOVE.L WWTAB({PC,D2.W),D1 find space in table
JSR MEMGET(PL) and allocate it

find out which layout

WWTAR
space for layout O...
...and Ilayout 1

DC.L WWA . MENU
BC.L WWE . MENU

T » . v H PP DT TPPTDTHTPTPETPTPTPDRDT TP
B

. N A R T R R Y TV ZREY TRY YRRV VERRY VEREY VRN VAR MY VAERY VEER' TRERY TR T

Vector $04 WHM.SETUP Setup a managed window
Cali parameters Return parameters
bl.l xysize{or0,or-1) D1l x5 size
DZ+ all preserved

AQ windew channel ID AQ preserved
Al peointer to status area Al preserved
AZ A2 preserved
A3 pointer to window defn A3 preserved
Ad pointer to working defn Ad preserved
AS not used by any routine
A8 not used by any routine
Completion codes

Always returns QK

The managed window setup routine WM.SETUF is called to transfer
information from the window definition to the window working definition.
It is the responsibility of the applications code to provide an area of
memory large enough to accommodate the windew working definition. This
may seem unfair, but only the application will be able to determine the
maximum space required in this area,

if the window size is given as 0, then the default window size will be
used. If the window size is given as -1, then the window size and position
in the working definition will not be changed. This is to allow re-use of a
window {see WM.UNSET and WM. WRSET).

The window gize is used to determine the windew layout and scaling
factors. If no definition can be found that is small enocugh to
accommodate the given window size, than the size of the window in the last
definition in the list will be used.

Where possible, WH.SETUP will set up complete structures. If there
are empty pointers or structures in the window definition, these will be
transferred to the working definition as empty pointers or structures.
When it comes to transferring the definitions of application sub-windows
to the working data structure, the basic sub-window definition is
transferred, and then an application supplied routine is called to setup
the rest of the sub-window working definition.

To simplify calls back into the window manager routines, AZ will be
set to peint to the window manager vector, while A5 and A6 remain unused
since the call to WM.SETUP.

In the case of a standard menu, the application supplied routine will
Jjust be a branch to the standard menu setup routine

JMP WM. SMENU{AZ) setup stapdard menu

71

Vector $04 WM.SETUP Set Up Working Definition The call parameters to the application sub-window setup routine are
the same as the parameters to the standard menu setup routine. The
registers A3 and A4 are used as running pointers to the window definition,
and the working definition respectively. On calling the application
sub-window setup routine A3 points after the application sub—window
basic definition, or after the sub-window control definition (if present).
A4 points to the next unset location in the window working definiticn., On
exit from the application sub-menu setup, A4 should be updated to point
to the next unset location in the window working definition. A3 need not
be updated or preserved.

set pointer to window status area in working definition
set pointer to window definition in window status area
set no current item in window status area

set window mode in status area

set channel ID in working definition

set pointer to pointer record

find definition to suit size

set X,y scaling factors

set window attributes block

set pointer to pointer sprite

get loose menu item atiributes block

set help pointer

set pointer to information sub-windew list

The window scaling parameters DI and D2 are the amount by which the
window size exceeds the minimum in the x and ¥ directions. These are
words.

for all information sub-windows
set true size and origin
set window attributes

Application Sub-Window Setup Routine

set pointer to information object list Call parameters Return parameters
set number of information sub-windows
for all information sub-windows bl.w xscaling D1 preserved
sat end of List - D2.w ¥y scaling D2 preserved

for all information cbhjects
set object size and position

D34 all preserved

set object type and attributes Al AD 777
set object pointer Al pointer to status area Al 279
set number of information objects A2 window manager vector A2 Fa
set end of list A3 pointer to sub-window defn Ad 7?7
set pointer to loose menu item list Ad pointer to working defn Ad updated
for all loose menu items AS not used by any routine AD used as required
set object size and position A6 not used by any routine AB used as required

set object justification rule
set object type and selection keystroke
set pointer to object and item number
set pointer to action routine

st number of loose menu items

Completion codes

DO and the status register must be set

set end of loose menu item list
sat application sub-window list address
set sub~-window sprite list address to same
for all application sub-windows
set application sub-windew peinter list {(implicit end=0)
set humber of application sub-windows
for all application sub-windows
set true size and origin
set window attributes
zet pointer to pointer sprite
get pointers to sub-window draw and hit routines
set pointer to sub-window control routine
set selection keystroke
forxandy
set maximum number of sections
if non-zero
set pointers to part-window control blocks
copy all control attributes
elga
preset control sectian of menu definition to @
call applicalion sub-window setup routine

Al contains the pointer to the stalus area which was passed to
WHM.SETUP. To simplify calls back into the window manager routines, A2 is
set to point to the window manager vector, while A5 and A6 remain unused
since the call to WM.SETUP, All of AQ to A3 may be treated as volatile,

& & 8 & @ ¥ P IV IEELY

% & W

T T » T DT TDHATDPTDHPDPDTPHPDDEDTDDD
'y

13

W

72

* 1
\‘I

i 2
Ny

o,

Vector $08 WHM.SMENU Setup standard sub-window menu
Call parameters Return parameters
bDl.w x scaling Dl preserved
DZ.w yscaling Dz preserved
D3+ all preserved
AD AO preserved
Al pointer to status area Al preserved
AZ A2 preserved
43 ptr to sub-window menu defn Al updated to after menu def
Ad running ptr to working defn A4 updated to next unset lac
AD not used by any routine
AB not uwsed by any routine

Completion codes

Always returns OK

Vector $08 WM.SMENU Set Up a Standard Menu Sub-Window

set pointer to menu status block
set item attributes
set purber of rows and columns
set pointers to spacing lists
copy spacing lists
set pointers to index object lists
set index object lists
set pointer to row list
set row pointers
set object Lisks

Window Manager Set Window Reoutines

The primary window position routine WM.PRPOS is called to position
the primary window for an application. The position of the window is
determined by the current pointer position in conjunction with the
"origin" of the window {specified in the working definition} or the position
of the current menu item (specified in the window status area). This
ensures that the pointer wiil move as little as possible when the window
is opened, while keeping the window within the limits of the display.

The routine WM.PULLD is the equivalent calt for a secondary window.
This has the same effect as the primary open call, but the window pulied
down is limited to be within the primary window area.

The routine WM.UNSET iz called to unset the sub-window definition
peinter in the screen driver so that a working definition may be removed
or replaced.

The routine WM.WRSET is calted to reset a primary or pull down windaw
s¢ that the same window may be used with a new working definition. N.B.
see WH.UNSET
s

Vector $0C WHM.PRPOS Primary Window Positioning
Vector $10 WM.PULLD Pull BPown Window Open
Vector $14 WM.UNSET Window Unset

Vector %18 WM.WRSET Window Reset

Cali parameters Heturn parameters

b1 window "origin" or -1.1 D1+ all preserved

A A0 channel ID of window
Al Al-A3 preserved

Ad pointer to working defn Ad preserved

Ab not used by any routine

AB not used by any routine

Completion codes

Any I/O sub system errors

L A B L N Y AN TR VRENY VENRN VRERV FRERY VRNNY FRERV FRENT VRN 1)

W

T+ 7Pr1rPrMPrMPTPTHPTHPTTH»TPPTTTDHEDPTPEDNTDMDN
& W

v

If an “origin” position is given, this {in absolute screen coordinates)

is used, in place of the current pointer position, to pesition the window.

Vector $10 WM,PULLD Pull Down a Window

open conscle and fill in its channel ID
set "pulled down" flag
« then WH.PRPOS

Vector $0C WM.PRPOS Pogition a primary window

get window channel ID from working definition

find current pointer position and save it

calculate window origin

set windew outline and shadow {saves pull down window area)
adjust pointer position

adjust window definition block te exclude border

w. then WH.WRSET

Vector $§18 WM.WRSET

draw border and clear window
set sub-window definition painter

Vector $14 WMUNSET

unset sub-window definition pointer
if window was pulled down
restore area covered up
restore old pointer pogition 75

Window Manager Drawing Routines

When the working definition has been set up and the window opened,
the general purpose routine WM.WDRAW is called to draw the entire window
cantents., The information windows are set up and the information ohjects
are drawn. Then the loose menu items are drawn. Finally each epplication
sub-window is set up, bordered and cleared and the application
sub-window draw routine is called to fill in the contents and the index
bars.

Vector $1C WHWDHAW Draw window contents
Call parameters Return parameters

Di+ all preserved

AD AQ channel ID of window
Al Al-A3 preserved

Ad pointer to working defn Ad preserved

AS nol used by any routine

AG not used by any routine

Completion codes

Any I/0 sub s¥stem errors

Vector $10 WM. .WDRAW Draw Window Contents

for all information sub-windows
get sub-window size, positicn and border
set sub-window background
clear sub-window
for each ohject
draw in position

for all menu items
draw in position

for all application sub-windows
sct sub-window size, pogition and barder
get sub-window background
clear sub-window
call application sub-window draw routine

76

L TN SR TR TR Y TR TR VRN VRN VRN VRN VRN TRNEY VRN VRN VRNV VRNV FRNRV VRNV TRRRV TN U

T PP PHPDPTPDTPPTPTPTDPTEPTDTDTDTTDIAEDDTDPDDPD
T T Tr T Tr 7F _¥Ff 30 2371 IF F¥ Iy ®f Jf B0 OO0 OO RO BD ROY N RE MR O

} Y ¥

The application sub-window draw routine is called to draw the
caontents and, if required, the indices for the sub-window. When it is
called, the window definition (SD.WDEF} will have been set to the
sub-window outline. The application routine is passed the pointer to the
start of the working definition in A4, and the pointer to the sub-window
definition in A3. The sub-window definition in the window status area will
be set and D7 holds the origin of the window, aot the sub-window. The
pointer to the window status area can be found in the working definition
which is pointed to by A4,

Application Sub-Window Draw Routine
Call parameters Return parameters

D1+ all preserved

D71 x,yorigin of window D7 preserved

AQ window channel ID AD preserved

Al Al 7?7

A2 window manager vector AZ e

Al pointer to sub-window defn Al 27?7

A4 pointer to working defn A4 preserved

AD not used by any routine’ AD used as required
A6 net used by any routine AB used as reguired

Completion codes

DO and the status register must be set

To simplify calls back into the window manager routines, A2 is set to
point to the window manager vector, while A5 and A6 remain unused since
the call to WH.WDRAW,

77

Part Window Drawing Routines

There are four window management routineg to help drawing or
redrawing parts of windows. These routines may be called from the
application sub-window drawing routines {called from WM.WDRAW) or from
the action or control routines {called from WM.RPTR and WM.MHIT}.

These are the standard menu drawing routine, WM.MDRAW, the index
drawing routine, WM.INDEX, the sub-window definition routine, WM.SWDEF,
and the loose menu item drawing routine, WM.LDRAW.

Vector $20 WM. MDRAW Standard Menu Drawing

Call parameters Return parameters
D1-D2Z preserved

Di.b @ all, -1 selective D3+ all prezerved

AD window channel ID AD channel ID of window

Al Al preserved

A2 A2 preserved

A3 pointer to sub-window defn A3 preserved

Al pointer to working defn Ad preserved

A5 not used by any routine

Af not used by any routine

Completion codes

Any I/O sub system errors

If D2 is set to -1 for the call to WM.MDRAW, then only those items
whose status has the change bit set (WS1..CHC) will be drawn. Note that the
status flags are not modified by this routine, so any change bits set
should be cleared after the rouline has been called.

Vector $20 WM.MDRAW braw Standard Menu in Sub-¥Window

set sub-window definition
for all row sections
for all rows visible within section
for all column sections
for all columns visible within section
if draw all or WSI..CHG set in status
draw object in colours appropriate to status

78

" n . » D PP Hh O®THTOH T DD HOH HOH»OHEDHD DD DD
T —————————E R gy N ¢y § R PR OO0 JO0 §F _BOQ _B)

Y VRN VANV VARNY VAR K YRR TN ARV RN TRERY AN Y TR AN TR TR R T Y R T

Y SN G

Vector $24 WM.INDEX Standard Sub-Window Index
Call parameters Return parameters
Dl+ all preserved

AD window channel ID AQ channel ID of window
Al Al preserved
AZ A2 preserved
A2 pointer to sub-window defn Al preserved
Ad pointer to working defn Ad preserved
ASD not used by any routine
AB not used by any routine
Completion codes

Any I/0 sub system errors

Vector $24 WM.INDEX

set main window definition
if column index
for all column sections
for all celumns visible in section
draw column index object
if row index
for all row sections
for all rows visible in section
draw row index object

Draw Sub-Window Indices

if pannable
for all column sections
draw pan bar
if serollable
for all row sections
draw scroll bar

set sub-window definition
if pannable
for all colunn secticns
for all row sections
draw pan arrows
if scrollable
for all row sections
for all column sections
draw scroll arrows

Yector $28 WY.SWDEF Set Sub-Window Definition
Call parameters Heturn parametlers
D1+ all preserved

AQ window channel 1D AD channel ID of window
Al Al preserved
A2 A2 preserved
A3 painter to sub-window defn A3 preserved
Ad pointer to working defn Ad preserved
AL not used by any routine
AR not uzed by any routine
Completion codes

Any 1/0 sub system errors

This routine may be used to reset the definition of any application or
information sub-window.

Vector $28 WM.SWDEF Set Sub-Window Definition

find sub-window definition
make absolute screen coordinates
set window definition with zerc border width

80

Y VRNV VRNV TRV VANV ARV VRNV VRNV VANRY 2NN" 2N VAN TRNRV TRNRY TANRV VARRY TRNNV VRNRV VERNY VAR U

:z—u-hlni=—niis—-o-l—a—-_-I_-I_l-.-'-l“l-.-.-.-.-.-l-l-lq
S W

| VRN ¥

mmmmmmmmmmmmrrmmmmmmfrmmmm

|

Yaector $2C WM.LDRAW Loose Menu Itew Drawing

Call parameters Return parameters
D1-D2 preserved

D3b {all, -1sclective D3+ all preserved

AD window channel ID a0 channel ID of window

Al Al preserved

A2 A2 preserved

A2 A3 preserved

Ad pointer to working defn A4 preserved

AS not used by any routine

A6 not used by any routine

Completion codes

Any I/0 sub system errors

If D3 is set to -1 far the call to WM.LDRAW, then only those items
whose status has the change bit set {(W51..CHG) will be drawn. This routine
is normally used when a change in status of one loose item affects the
status of ethers, or when a loase item's object has been changed. Note
that the status flags are not podified by this routine, so any change bits
set should be cleared after the routine has been called.

Vector $2C WM.LDRAW Draw Loose Menu [tems

set main-window definition
for all Joose menu items
if draw all or WST..CHG set in status
draw cbject in colours appropriate to status

g1

Vector $3C WM.IDRAW Draw an information sub-window
Call parameters Return parameters
D1/DZ preserved
Dl bits clear to redraw window D3 preserved
P4+ all preserved
AD AQ channel ID of window
Al Al preserved
AZ AZ preserved
A3 A3 preserved
Ad pointer to working defn Ad preserved
A5 not used by any routine
AB not used by any routine
Completion codes
Any 10 sub system errors

This routine allows an application to re-draw any of the first 32
information sub-windows: if bit N of D3 is clear then information
sub-window N will be cleared and re-drawn. This routine will normally only
be used when the information objects in a window have been changed.

for information sub-window 0.,31
if bit N clear in D3
set sub-window definition
draw sub—window border
clear sub-window
for all objects in sub—windaow
draw object

* v +rr TP RPDH DD

™™ P T T D

L I A 25 2 B R 2R IR Y TV VRN VRN VRRRV VT VRRNY VRERV FRENV PRENY VRNNY FRENT TNV TRRNY T

v TS LT e e i i e EAAE) SIS W RS D RS SN W S N

There is a set of four vectors used to set the window to an area used
by an information sub-window, loose menu item, application sub-window or
section of application sub-window. In each case D1 specifies the number
of the entity (not to be confused with a menu item number) and D2 specifies
the colour{s}. If DZ is & negative long word, then only the window area will
be set, otherwise these routines will set the ink, paper and strip colours
and the "over” state to 0 as we)l as setting the area.

Vector $58 WH.SWINF Set window to info window
Call parameters Return parameters
Di.w info window number D1 preserved
D21 ink colour/no reset Dz preserved
D3+ all preserved
AD AD channel ID of window
Al Al Pir to window in work def
AZ A2 preserved
A3 A3 preserved
Ad pointer to working defn Ad preserved
AS not used by any routine
AG not used by any routine

Completion codes
Any I/0 sub system errors

OR Info window number ocut of range

Vector $5C WM.SWLIT Set window to loose item
Call parameters Return parameters
Di.w loose item nunber Dl preserved
D2.1 item status/no reset D2z preserved
D2+ all preserved
AD A channel ID of window
Al Al ptr to item in work def
AZ A2 preserved
A3 Al preserved
Ad pointer to working defn Ad preserved
AL not usead by any routine
AbG not used by any routine

Completion codes
Any I/O sub system errors

OR Item number cut of range

83

E- 11 11w

FYRRWEY

Vector $60 WM.SWAPFP
Call parameters

Dl application window number
p2.l ink colour/no reset

A4 pointer Lo working defn
AD not used by any routine
AG not used by any routine
Completion codes

Any I/0 sub system errors

Set window to applic sub-window
Return parameters

Di preserved

b2 preserved

D3+ ali preserved

AD channel ID of window

Al ptr to window in work def
A2 preserved
43 preserved
Ad preserved

OR Application window nuaber our of range

Vector $64 WM.SWSEC
Call paramneters

pl.l %y section numbers
p2.1 ink colour/noreset

AD
Al
A2
Al ptr to sub-window defn
Ad pointer to working defn
AS not used by any routine
AB not used by any routine

Completion codes

Any I/O sub system errors

Set to appl sub—window section
Return parameters

Dl preserved

D2 preserved

D3+ gll preserved

AD channel ID of window

Al preserved
A2 preserved
A3J preserved
Ad preserved

O Application window or section out of range

84

i

0 (B (G G UG U A

mmmmmmmmmmmommm

=

A A
& @& ¢ % & ¢ & & &I VSV

P 8 & 9 W ®

PO YRRV TR Y

'Y

Vector $44 WM.ODREDR Draw border around current item
Call parameters Return parameters
ol #lt preserved
AD channel ID of window Al preserved
Al window status area Al preserved
A2 A2 preserved
A3 Al preserved
A4 Ad preserved
AD not used by any routine
AR nat used by any routine
Completion codes
Any I/0 sub system errors

] This routine draws a border using the current item information in the
window status area.

To clear the current item, set the most significant bit of WS_CITEM
an(_:l, if WS_CIACT is clear, call WHM.DREDR, otherwise call the routine
pointed to by WS_CIACT and then clear WS_CIACT,

. To set a current item, set WS_CITEM, WS_CIBRW, WS_CIPAP {io the
highlight colour) and the hit area WS_CIHIT. Then call WM.DPRBDR. Finally
reset WS_CIPAP to the background colour.

- I

=)

[EI oo

cOoOnw

[

Window Manager Aceess Routines

Once the window, and all its sub-windows, have been se_t up, t‘,he
pointer may be read using the window read pointer vector. This routmg
repeatedly reads the pointer, waiting for a meve or keystroke ?ven.t, :E
calls any hit or action routines that may be required. If any bits in the
window or sub~-window bytes of the event vector becqme set, thep the
routine will return. Other window manager access routn_le_s are available
to handle menus within sub-windows and to provide utility support for
application sub~windows

Window Manager Read Pointer

The window manager read peointer rcutine {WM.R‘PTR} handles all the
pointer movement and keystrokes outside the sub-windows. It also does
some occasicnal operations within sub-windt)‘fs, anf.:l trap!s scme
keystrokes before they reach the application sub-window hit routines,

The rules governing the operation of WM.RPTR are rath_er ct'nln_plex, but
are designed to make the interface operate as close to ar_l intuitive model
&s is reasonable. The operatior iz complex belcause the interface has to
be capable of handling not only menu selection b}"' keystroke and meng
selection by pointing device, but also menu selection by cursor key an
arbitrary pointer input.

The three most important keystrokes are SPACE, which corres_ponds
to a click on the left mouse button, ENTER which cor?esp_onds to a click on
the right mouse button and ESC. SPACE or left click is ref_erred to as
"hit", ENTER or right click is "do". For some reason, ESC is known as
"cancel”.

Current Item

of the functions of WM.RPTR {and its menu suppo'rt routine
WM.HH(?';‘? is to maintain a current menu item. This il:.e_m is oul!:hned on the
display. As long as the pointer remains within the "hit area" of the :|.tel_n,
the item will remain outlined. As soon as the pointer moves ?ui:.' o_f Ii';he hit
area, then the outline will be removed. If the current item is hit", t.h_en,
if it is available, the status is toggiled, and the approprl'ate a_ctmn
routine called. "do"” is similar to "hit" except that if the item is available
the status is set to aelected before the action routine is called.

Alternatively, items can be selected on a single keystraoke. This_'. has
the effect of moving the pointer to a new current item, a_nd t!'ler‘l causing &
"hit". Since the "hit" will cause g call to an action routl:me, it lﬁ pc‘a‘ssible
for the application to automatically convert the "hit" to & "do” {or a
"cancel” or any cther event).

Fram the point of view of WH.RPTR, the main window is: divided i{;to Fwo
distinct areas: that part of the window which falls within an application
sub-window, and that part not within any application sub—}emdow. Every
window is considered to have at least some menu opera‘tmns. Sqme of
these, e.g. HELP or DO, may be accessible from any epplication sub-window.

g6

T+ vt DD

T T

LA SRR R N R TR A T Y VRNV VRNV VNNV TRENY VINNT VRRNY FRERN TRNEN 7

j ¥

Keystroke Selection

Most keystrokes on the keyhoard are treated as shorthand menu
selections., The keystroke iz converted to upper case, and it is compared
against the selcction keystrokes defined for the lsose menu items, the
selection keystrokes defined for the application sub-windows or, in
WM.MHIT, the selection keystrokes defined for the sub-window menu items.

There are some keystrokes which are defined to cause window events:

ENTER or a double click will cause a "do" event;
ESC will cause a "cancel” event;

F1 will cause HELF event;

CTRL F4 will cause a MOVE window event.;

CTRL F3 will cause a change SIZE event.

The treatment of these keystrokes will depend on both the
organisation of the window, and the position of the pointer.

The WM.RPTR routine is a loop reading Lthe pointer record. Whenever
there iz a move or keystroke to be processed, it checks first of all for the
event keystrokes, then other keystrokes, and if there is no keystroke, it
checks whether the current item has changed. When appropriate, it calls
either a loose menu item action routine, or a application sub-window hit
reoutine. if, at the end of all the processing of a keystroke er move an
event has been generatled, WH.RPTR will return. Otherwise it will continue
to read the peinter record.

If there is a "do" event and there is a current item, then the

corresponding item is selected and the appropriate action routine is
called.

If there is an event keystroke other than "do" or there is a "dao" with
no current item, then the loose items are searched for a corresponding
selection key., If one is found, the loose menu item status is toggled and
the action routine called. If no corresponding selection key is found,
then, unless it is a "do™ or a "cancel” within an application sub-window,

the appropriate bit will be set in the event vector and the routine will
refurn.

If there is a "do" or a "cancel” within an application sub-window and
there is no "do" or "cancel” locose menu item, then the application
sub-window hit routine will be calied.

If there i= not an event keystroke, a check is make to sece if the
pointer has moved outside the current item hit area. Ifit has, the current
item is cleared (set negative) and the border redrawn.

Next, if there is a keystroke, the loose menu item list will be
searched for a corresponding selection keystroke. If one is found, the

item status will he toggled and then the apprapriate action routine will
be calied.

If the keystroke is nol found in the loose menu item list then all
(except the current} application sub-windows are scarched for a
corresponding selection keystroke, If one is found, the pointer is moved

to the centre of the application sub-window and the sub-window hit
routine is called,

If there is ne keystroke, or the keystroke js not the selection
keystroke for a loose menu item or an application sub—window, then, if the
pointer is within a sub-window, the hil routine is called, or else the loose
menu item list is searched to find a new current. item.

On return from any loose menu item action routines, D4 is checked. If
it is non zero, the corresponding bit of the window event byte is set and
WM.RPTR returns after testing DO

On return from a sub-window hit routine the window byte of the event
vector is checked. If any bits are set, WM.RPTR returns after testing DO.

If a loose menu action routine or application sub-window hit routine
returng a non-zero condition code, WH.RPTR will return after testing DO.
This can be used to force a return without either an event or error,

Vector $30 WHM.RPTR Read Pointer

Call parameters Return parameters

AD AQ channel ID of window
Al Al preserved

A2 A2 preserved

Al A3 preserved

A4 peinler to working def Ad preserved

AS not used by any routine

Af not used by any routine

The window status area is updated by this routine
Completion codes

Any 1/0 sub system errors
Any error returned by action or hit routine

Vector $30 WM.RPTR Read Pointer

repeat until window event or error
read pointer
if event keystroke
process it and call appropriate action/hit routine
next read pointer

clear current item if pointer moved out of it

if keystroke
process it and call appropriate action/hit routine
next read pointer
if in application sub-window
call hit routine
next read pointer

if new current item
set item and border

=2

Tt *rr 71T rrTTTTPrTOTPEPYTDPEPRHRDTEDTDND

T P

1|

» & 8 8 B B2 & & B W B 8B W & B W B

s & & B

s &

The windew menager reguires all application sub-windows to have hit
routines. In the case of a standard format menu in an application
sub-window, this may be just a direct jump to the WM.MHIT routine:

JHP WM. MHIT(AZ) do move or "hit" in standard menu

Application Sub-Window Hit Routine

Call parameters Heturn parameters

D1 ¥ pointer position D1 x,¥ pointer position
Dz uppercased key, -1 or 0 D2 e

o3 timeout for next PT.RPTR
D4 event nunber of keystroke D4 772

D5+ all preserved

AD window channel ID AQ preserved

Al pointer to status area Al Eaas

A2 window manager vector A2 777

Ad pointer to sub-window defn Al T

Ad pointer to working defn Ad preserved

AS not used by any routine AS used as required
AB not used by any routine AG used az required

Completion cades

D0 and the status register must be get

The pointer in D1 is in absolute (not sbh-wéndos) coordinates. The
uppercased keystroke in D2 also has SPACE {$20) converted to "hit" {$01)
and ENTER ($0a) converted to "do" {$02). If D2 is -1, then the application
sub-window has been "hit" by an external keystroke.

D_4 can only be 0, pt.da (16) er pt.cancel (17) when the applicaticn
sub-window hit routine is called. All other event keystrokes are handled
by the routine WM.RPTR.

If & bit is set in the window byte of the event vector by a hit routine,
then WM.RPTR will return to the application. Note that WM.RPTR does not
set the "do" event if the pointer is within an application sub-window: this
is left to the hit routine.

An application sub-window hit routine may, of course, set the "do”
event bit at any time.

D3 will normally returned as -1. If, for example, the application
sub-window requires to monitor the keypress byte centinucusly, a short or
even zera timeout may be specified. Note that, if a zero timeout is
specified, the keystroke (as opposed to keypress) will always be zero.

89

Vector $34 WM.MHIT sStandard Menu Hit Routine
Call paramelers Return parameters
i3 %,¥ pointer positien Pi preserved
D2 uppercased Keystroke or 4] Dz preserved
D3 -1
4.tk 0Oorpt.do D preserved
p5+ all preserved
AQ AD channel ID of window
al Al preserved
AZ A2 preserved
A3 pointer to sub-window defn A3 preserved
Ad pointer to working defn Ad preserved
AB not used by any routine
Af not used by any routine
Completion codes
Any 1/0 sub system errors

Vector $34 WM.MHIT Standard Menu Hit

if no keystroke and no current item
find new current iten
if found: mark current item
else if "hit" or DD
find current item
if faund
mark current item
if current item available
if HIT: toggle status
if DO: set status selected
redraw current item and call action routine
if atatus changed: redraw current item
else
find matching selection keystroke
if found
un-mark current item
set pointer
mark current item
if current item available
toggle status
redraw current item and call action routine
if status changed: redraw current item

30

]

mmmmmfrmmmmmmfrmmmm
VRN VIRV VRNV VAR VRNNN VAN VANV VANV VARN VAR ' AR 2N VAN T2 2NNV VREEY V2NNV TRNRY BT Y R R

T h T
e eepep—p e T T) P B § |

n b

T

This routine is intended to be called from application sub-windew hit
routines to locate the appropriate section of a multiple section window
and check for "hit™ or "do" on the pan or scroll arrows, or for pan or scroll

keystrokes.
Vector $48 WH.MSECT Find menu section
Call parameters Return parameters
. DOw Corpan/scrollitem nr

D1 ®y pointer {absclute) 1)1 preserved

D2 uppercased keystroke D2 preserved

D3 D2 %,¥ section number
-1if in pany/scroll arrows

D4.b event number of keystroke D4.b preserved
or pt.pan or pt.secrl

AD channel ID of window A preserved

Al Al preserved

A2) AZ preserved

A3 pointer to sub-window defn A3 preserved

Ad pointer to working defn Ad preserved

AD not used by any routine

AG not used by any routine

Complelion codes

>} if pan or scroll event generated

The item number returned in D).w is the pan/scroll item and is set
only if D4 is set to pt..pan ($A} or pt.scrl ($B). The less significant byte is
the section number to which the operation applies, the most significant
nibble is %0i11. Bits 8 to 11 specify the type of event in greater detail,

Bit 8
Bit 9
Bit 10
Bit 11

set for scroll down or pan right

set for pan left or right

set for extra pan/scrcll {"do™ on arrows or ALT+SHIFT)
Fera

91

The action routines called from WM.MHIT are opticnal. As WM.MHIT
sets the appropriate byte in the status block, it is not necessary for the
application to do anything about a "hit" until a "do" causes WM.RPTR to
return to the application. On the other hand, the action routine itself
can set the "do" event, or it can act on the "hit" directly.

Note that the action routine is called on a "hit" whether the status
is selected or unselected, but not if it is unavailable. The action routine
may change the status of the item, or even the objects within the itemn.

Standard Menu Action Routine

Call parameters Return parameters

£1.1 wvirtual column/row for item D1 s

DZ.w item number D2 7
D3 77T

D41 Oorpt.do Dd.b 0 or window event to set
D5+ preserved

AD window channel ID AQ preserved

Al pir to menu status block Al T

AZ window manager vector A2 777

A3 pointer to sub~window defn A3 ?77?

Ad peinter to working defn Ad preserved

AS not used by any routine AS used as required

AB not used by any routine AB used as required

Completion codes

DO and the status register must be set

(A1,D2.w) points to the current item’s status byte, D4 may be set to
force a "do™ or any other window event.

If there is no action routine for a particular item, then a "do"
keystroke will cause a "do" event.

92

T T+ PP D P DT DT D DD
T TS T T - e e—— e s e — MG R S R § O F Y

T T H T D N T
-l’ul'kl’\lﬂulv'@@@WW&'&WWWW@OWQWOU

T v B

‘I

The application window control routine is called either from the
reutine WM.RPTR for 2 "hil" on the pan or scroll bars associated with a
window, or from WM.MBIT when there has been a "hit"” on the pan or scroll
arrows. The item number is the special item number for pan and scroll
operations. The least significant byte gives the part menu number to be
panned or scrolled. The routine may adjust the window itself or merely
adjust the control tables and call the sub-window draw routine. In either
case, the event flag should be set {¢ zero. Alternatively the event flag
may be left set, and then WM.RPTR will return to the calling routine with
the appropriate event set,

If the routine is called as the result of a "hit" on a pan or scroll bar,
the most significant word of D3 will hold the position of the hit, while the
least significant word of D3 will hold the length of the bar. Otherwise the

routine will have been called as a result of 2 "hit" on the arrow bars, in
which case D3 will have the value -1.

Application Window Control Routine

Call parameters Return parameters

Completion codes

D1 7?7

D2.w item number Dz Kl

D3.l position of "hil" or -1 D3 ???

D4.b pan or scroll event D4tk 0or window event to set
D5+ preserved

AD window channel ID AD prrezerved

Al pointer to status area Al 7?7

AZ window manager vector A2 P77

Al pointer to sub~window defn Al kN

Ad pointer to working defn Ad preserveg

AS not used by any routine AD used as required

A6 not used by any routine AB used as required

D& and the status register must be set

The simplest form of control routine is Just a call to the window
manager panning and serolling routine WM.PANSC

JMP WH.PANSC(AZ}

do standard pan scroll

93

Qr

whi

PTF
the

pat
gra
fun
paiz

the

11
aol

pre
ver

ca
wi
x
be

bu

YO
-1
ac
ou

Hc
wi

The loose menu item action routines are similar to the standard menuy
action routines (after all, a loose menu item is really part of a standard
mcnu). One difference is that the menu manzger requires there to be an
action routine for a loose item corresponding to an event.

Loose Menu Item Action Routine

Call parameters Return parameters
D1l x,y pointer position D1 7
DZ2.w upper cased keystroke Lz s
D3 ?e?
P4b event number of keystroke D4 0 or window event to set

D5+ all preserved

A0 window channel ID AD prezerved

a1 pointer to status area Al 777

A2 window manager vector A2 72

Ad puinter to loose menu item A3 77

Ad poeinter to working defn Ad preserved

AS not used by any routine AS used as reqguired
A6 not used by any routine AB used as required

Completion codes

DO and the status register must be set

The pointer in D! is in absolute {not windad coordinates. The
uppercased Keystroke in D2 also has SPACE ($20) converted to "hit" {$01)
and ENTER ($0a} converted to "do" ($02) and all other event keystrokes
converted to the event number less 14.

if the loose menu item was "hit" by a window event keystroke, then
the event number (16 to 23) will be in D4, Otherwise D4 will be zero. The
action routines may set the appropriate bit in the event vector as
required or may return an event nunber in D4, However, WM.RPTR will only
return to the calling routine if D4 is non-zero or the condition codes are
hon-zero - the event vector is not checked directly.

In the case of a loose menu item which causes an event, the action
routine may derive the event number from the selection keystroke., All
such loose menu items may be handled by the same code:

HMOVEQ #14,D4 et event number - event code
ADD.B WWL_SKEY(A3),D4 add event code

HMOVEQ #0,D0 done

RTS

94

AN AR S A A (RN (N (B SN R A T (N SR R Y Y R)
8 N N N DA N S S R S O S B AN N N SN Y B N D S N F N D M |

S I R T U Y TR TY VY VRN VRNV VR VRNV VRNV PRV RN THENV VRN TRV TR TN TRV

™ h 7

i &

Pannable and Scrollable Sub-Windows

The window management routines have two views of pannahble ang
scrollable windows. The first is the automatic pan and scroll operations
within the routine WM.RPTR. These operations are caused by events
occurring outside the application window. The second view is from the
routine WM.MHIT which will cause pan or scroll operations from within a
standarg menu sub-window,

For either of these views, panning or screlling will only be available
if the appropriate part of the window working definition has been set. up.

Any application may, of course, do its own panning or scrolling
operations on a sub-window. It would be preferable if these operations
were done in the same way as the windew manager.

The values WWA_NXSC and WWA NYSC define the pannablility and
scrollability of a sub-window. If WWA_NYSC is 0, then the window is not
scrollable, If it is I, then the window is scrollable, but may not be split.
If it is greater than 1, the window may be split into independently
scrollable sections.

External Pan and Scroll

If 2 sub-window is set up to be scrollable, then the right hand border
of the window is widened by 8 pixels to accommodate a "seroll bar”. This
acroll bar is § pixels wide and in two colours. The background bar
represents the full "height"” of the information being shown, superimposed
on this is a shorter bar representing that part of the information which is
actually vizible,

A different section of the information may be viewed by "hitting" the
scroll bar. "Hitting™ the top of the scroll bar will scroll to the top of the
information. "Hitting" the bottom of the scroll bar will scroll to the
bottom, while "hitting" the middle will screll to the middie.

As this bar is in the extended border of the sub-window, it is outsgide
the sub-window and any "hit" in this zrea will not call the application
sub-window hit routine, It will, instead, call the application sub-window
control routine,

If the working definition has been set up so that there may be more
than one vertical section, then the sub-window may be "split" by a "do" on
the scroll bar. The scroll bar will alsc be split. Each section of the
scroll bar represents the position of the visible information in the
appropriate section of the sub-window. Conversely, a "do"” on the break
between two scroll bars will re—join the sections.

If & sub-window is set up to be pannable, then the bottom border is
deepened by 5 pixels to accommodate & 4 pixel deep "pan bar”. This
functions in the same way as the scroll bar.

95

LR -

Internal Pan and Seroll To assist with panning and scrolling standard mepu sub-windows, a

The stapdard menuy hit routine WM.MHIT traps certain cursor single routine is provided to pan, scroll, split or join a standard menu.

movements as causing pan or scroll operations: these are ALT arrow to pan

or scroll by one column or row at a time, and ALT SHIFT arrcw to pan or

scroll by the width or height of a section. Vector $38 WM.PANSC PAN/SCROLL standard menu
When a scrollable standard menu is drawn by WM.MDRAW, 4 pixel rows Call parameters Return parameters

{plus the width of a current item border) are left vacant at the top and

bottom of the sub-window. If there any rows above the topmost visible D2.w item number D2 preserved

row, & row of up arrows is inserted at the top. If there are any rows below D3] position of "hit" or -1 D3 preserved

the bottommost visible row, then a row of down arrows is inserted at the D4.b pan or scroll event pal O

bottom. D5+ preserved

If & scrollable standard menu is split, then space is left at the split

for two rows of arrows (separated by the width of a current item border). A0 window chaanel ID Al preserved
Al Al preserved
If a row of up arrows is "hit", then the menu will screoll up by one item. A2 A2 preserved
If there is a "do” on a row of up arrows, then the menu will scroll up by the Al pointer to sub—window defn A3 preserved
height of the section. The down arrows behave in a similar way. Ad pointer to working defn A4 preserved
When a pannable standard menu is drawn by WM.MDRAW, & pixel columns AB not used by any rout}ne
A6 not used by any routine

{plus twice the width of the current border) are left vacant at the left and
right of the sub-window. These spaces are used for left and right arrows

which have a similar function to the up and down arrows. Completion codes

D0 and the status register must be set

Sub-Window Indices

Standard menu sub-windows may have either a column or a row index
{or both). These indices are outside the application sub-window and have
no function except to convey information to the user. When a sub-window
is panned or 5crolled, the index will be updated at the same time,

T T P TP DPTDHTAHPTDDHAOEO>DPDTDHPTDTDTDE T DD
=-—-—-—I—l—l_l-l-l-l-l-l-l-I-I-I-I-l-l-l-l-l-l-l-

b 3 3 3 3 3 I B EESEEE RIS EYE VY

96

T T

TF
ke

at
ra
an

he

1{
1]

inld
21

TE

LI

canu -

W oo

Window Move and Change Size

The size dependent layout features of the Window Manager mean that
the jnterpretation of a window change size aperaticn is largely the
responsibility of the application. If the Window Manager returns from
WM.RPTR with a window move or change size event, then the routine
WM.CHWIN may be called directly.

This routine determines the event from the window status area and
calls the appropriate window query trap. The event bit is cleared at this
stage. In the case of a window move, the operation will be completed by
WM.CHWIN and 0 is returned in D4

In the case of a change size operation, WM.CHWIN will determine the
distance moved by the pointer and return this as the change of size, If
the convention that the window change size icon is in the top left hand
carner of the window is being followed, then the move distance should be
subtracted from the current window size. The window size event number is
returned in D4,

Vector $40 WM.CHWIN Change Window Event Handling
Call parameters Return parameters
bt Di x,¥ pointer move
D2 D2 preserved
D3 k] preserved
D4 54,1 0 or pt.wsiz
Do+ all preserved

Al AD channel ID of window
Al Al preserved
A2 A2 preserved
A3 Al preserved
Al pointer to working defn Ad preserved
AD not used by any routine
AS not used by any routine
Completion codes

Any I/0 sub system errors

98

T *+ *+ " P PP DD TD

s s AN A RS A

"_'| T

"_I ‘

'ﬂ

W

A —————e]

§ Y

TTIT Y

PIY

F VAN VAN VA VAN TR TN ' TR HEE B R Y O R T R 4

Utility routines

The following routines are provided to modify the working definition
in various useful ways; in particular, they may be used to show status
information or get user input that is more complex than can be shown by
item statuses or "point and hit"” input.

If an informeaetion object or loose menu item object requires to be
redrawn, then the vectored routines WM. IDRAW and WM.LDRAW can be used.
Before redrawing, the objects themselves can be changed using one of the
two following routines.

Vector $4c WH.STLOB Set Loose Ilem Object
Call parameters Return parameters
D1 item nusber D1 preserved
D2+ all preserved
A0 a0 preserved
Al peinter to object Al preserved
AZ A2 preserved
Al Al preserved
Ad pointer to woarking defn A4 preserved
AS not used by any routine
A6 not used by any routine
Completion codes
OR Item number out of range

] BEWARE: the item number is #0Z the loose menu item number as defined
in the loose menu item record, but is the position in the list {starting at
zerol,

99

pt |
ir

EY:
th

pI
ve

Bl
wl

b

¥
11

=

o R

Vector $50 WM.STIOB Set Information Cbject
Call parameters Return paramcters
I window nr fobject nr I preserved
D2+ all preserved
AD A preserved
Al pointer to object Al preserved
A2 A2 preserved
Al A3 preserved
Ad pointer to working defn A4 preserved
Ab not used by any routine
AG not used by any routine
Completion codes
OR Window or object number cut of range

The window number {MSW D1) is the position in thc_]_‘ist ?f infor-n?ation
sub-windows. The cbject number {LSW D1} is the position in the list of
information objects for that window. Both start fron zero.

The cbject pointed to by Al in the above routines is not copied to‘a
"safe place” by the routines, It is up to the programmer to ensure that: it
does not move or get overwritten while it is in use as part of a working
definition. In particular, pointing to a string value on the SuperBASIC RI
stack or in the variable values area will cause problems.

100

T * ™" AT H H A A AP OT T A LT AHTAHTOHT PP DT P PP PPN

e e i e — — e N N N W

@ & 8 LV & 4V Y VB

& & & bV

2 Y

l.

Vector %68 WM.RNAME Read name
Vector $6C WM.ENAME Edit name
Call parameters Return parameters
D! Dl.w terminating character
D2+ all preserved
AD channel ID of window AD preserved
Al pointer to rame buffer Al preserved
A2 A2 preserved
Al Ad rreserved
Ad Ad preserved
AD not used by any routine
AS not used by any routine
Completion codes
Any I/O sub system errors
) if terminating character not <NL»

These two routines are used to read or edit strings {notiocnally file
or device names). The name buffer is in the form of & standard atring: a
word with the string length, followed by the characters themselves. The
difference between the two vectors is that WM.RNAME puts the cursor at
the start of the name, and if the first character is printable, throws the
old name away, while WM,ENAME leaves the cursor at the end of the name so
that it has to be edited. Additionally, if the first character typed is a
space, WH.ENAME will treat this as an ENTER.

The length of the name is limited to the width of the window and the
name buffer must be large encugh to accommodate this plus cne character.

The routines return on reading ENTER, ESC, UP arrow or DOWN arrow.
The condition codes will be set to -ve for an 10 error, zere for ENTER or
positive for other terminator.

101

=P]
This r_*outine_cnnvert’s 8 small negutive error co'de in DO into the - 9 Index of TRAPs and vectors
correspending string; for instance, D0=-2 converts to "invalid Job", This : i i
code works for AH, JM, JS/JSU and all MG versions of the QL ROM - if other The Pointer Interface TRAPs and Window Manager vecFors are listed
versions are used then the catch-all string "unknown error” is returned, = 9 alphabetically, along with a summary of what each does. Pointer ¥rnterfa.ce
TRAPs start with the prefix IOP. and Window Manager vectors with WM.
Vector $74 WM.ERSTR Get string corres to error code = g
Routine Fage
Call paramcters Return parameters I0P .FLIM 55 find window limits
. 9 I0P.LBLB 61 draw a kine of blobs
DO errorcode DL error code IOP.OUTL 64 set window outline and shadow
Di+ all preserved & e IOP.PICK 65 pick/unlock job
- I0P.PINF 57 get pointer information
AD AD prgser‘ved . I0®.RPTR 58 read pointer position
Aé Al pointer to error string " 9 IOP.RPXL 60 read/scan pixel colour
AB A2 preserved i IOP.RSPW 86 restore part window
A)] A3 preserved) IOP.SLNK 57 set bytes in linkage block
A4 pointer to working dfefn Ad preserved t: 9 IOFP.SPRY 63 spray pixels
A5 not used by any routf.ne I0F.SPTR 65 set pointer position
A not. used by any routine IOP.SVPW 56 save part window
C . ‘_' 9 I0P.SWDF 66 set sub-window definition pointer
omplelion codes IOP.WBLB 81 write blob
A i E e IOF . WRST 67 restore window contents
ccording to value of BO IOFP.WSAV 67 save window contents
IOP.WSPT 62 write sprite
e a WM. CHWIN 98 change window position or size
’ WM. DREDR 85 draw current item barder
WM . ENAME 101 edit name
¢ = WHM.ERSTR 102 get error string
N . ind layout size
WM.PSIZE 70 find 1 i
) WM. IDRAW 82 re-draw information window(s}
« o WM. INDEX 79 draw index items
WM. LDEAW 81 draw loose items
WM, MDRAW 78 draw menu sub-window contents
Q WM, MHIT 9 standard menu sub-window hit reutine
WM. MSECT 91 find menu section
9 WM. PANSC 97 standard menu sub-window control routine
e WM. PRPOS 75 primary window position and clear
WM. PULLD 75 pull-down window position and clear
- a WM. RNAME 101 read pamea
- WM .RPFTR 88 read pointer
WM .SETUP 71 setup from standard window definition
e_ . 9 WM . SMENU 74 setup from standard menu definition
. WM.STIOB 100 {re)set information object
WM.STLGE 99 {relset loose object
e = WM. SWAPP 84 set window to application sub-window
WM.SWINF 83 set window to infermation sub-window
_ WM. SWLIT 83 set window to loose item
e g WM. SWDEF B0 set window to applicalion sub-window
WM. SWSEC 84 set window to section of sub-window
WM.UNSET 75 unzet working definition
L o 9 WM, WDRAW 76 draw window contents
WM. WRESET 75 resetworking definition
.

102
103

T T T
y & W

(oL I BE T

Moo e

e e

T v P+ PP PHPTOPTHLTLTHHPOETDHPHTHEPT AP DD

iead

B s e B2 s B gt G meen b et G oo Dn GGAH Or DM M MGG Al EMMASA o el B MMl S E eman A e e v A S S — —

&3 & & & b

) VRNV VRNV VIRRKY VRN RNV VARV VRN VAN VAEN' ' 'RNNY TNV FRNRY TNNNV VRNNY VRN ¢

Y VIS ¥

Data Structures
Pointer Interface
Channel Definition block

The Pointer Interface forms the base level of the Pointer
Environment and provides all those facilities which are accessed through
the I0 sub-system (IQSS). These include channel open, close and normal
screen 10 as well as the pointer IO extensions. The Pointer Environment
uses this display driver which coexists with the standard CON and SCR
drivers, and extends the CON and SCR drivers to handle overlapping
windows. The extended driver requires an extended channel definition
block, whose format is discussed here,

The PTR_KEYS file contains definitions of the symbols used when
manipulating the extended channel definition block. Ordinary
applications should not need to use these.

The facility to handle overlapping windows introduces the concept of
piles of windows. Windows overlap each other in piles. Any window which is
partly obscured by another window is locked and may not be altered.
Windows may be moved to the top of the pile by the user, and applicaticons
may bury their own windews. Burying a window is actually performed by
exhuming Lhe bottom window in the pile. This will not actually bury the
window unless the bottom window overlaps the top window. The internal
structure used to maintain these piles is a2 bi-directional linked list of
all primary windows. In addition, each primary window has a pointer to an
area of memory in which to save its contents when it becomes locked, and a
flag to signal whether the window is Jocked. For the sake of speed, the
flag is duplicated in all its secondaries.

One of the major differences between the standard screen handling
and Pointer Fnvironment screen handling is the redirection of the
keyboard input. Normally the "CTRL C" kevstroke is used to redirect the
keyboard input. With the Pointer Interface installed, the "CTRL C"
keystroke is used to move windows to the tap of the pile, redirecting the
keyboard input as a side effect. This is achieved by medifying the normal
circularly linked list of keyboard gueues inte a ferm that allows the
detection of the "CTHL C" keystroke by the Pointer Interface. If the
keyboard queue is moved to a job which is waiting for character input,
then the peointer will be disabled, ctherwise the pointer will be enabled.
When the pointer is enabled, the cursor keys will move the pointer unless
SHIFT, CTRL or ALT is pressed,

An alternative method of moving the window to the top of the pile may
be used when the pointer is enabled. This is to move the pointer to parl of
anew window and "hit" it. If that window is buried, then the windaw will be
picked to the top of the pile and the hit will be ignored. If the window is
waiting for character input, then the pointer will be disabled and the hit
will be ignored. The keyboard input will then be directed to that window.

oo oa

w0

fl
3

L AT

o

To enable programs which have been written for use on a standard QL
to function sensibly in the pointer envirenment, windows are divided into
Lwo types: primary and secondary. A primary window represents the total
working area for an application. An application may have several
secondary windows open, but all of these must be conteined within the
cutline of the primary window. This introduces a new size concept, The
standard screen driver in the QL has a window size and position: this is
the window working area. The extended sereen driver has two ather sizes:
the outline and the hit area. The outline is the Hmit encloging all of an
application’s windows; Creating any window outside the application's
primary window outline will cause the outline to be extended. The outline
includes any window borders and shadows. The hit area is the area that
the poinler routines will recognise for the purposes of hitting windows
and selecting appropriate sprites. The hit area is the outline less any
shadow area. The first window used for I0 by an application is considered
to be the primary window, any other windews owned by the same job are
secondary windows. The outline and hit area ere maintained in the
extended channel definition block, along with a system of pointers linking
primary windows to their secondaries, and all secondaries back to their
primary.

The pointer routines may also make use of information in window
definitions, so there is also a link to a window working definition.

Extended Channel Block

The pointer routines use an extended channel definition block., In
order to make this compatible with the internal ROM code, the bleck is
extended below the start of the standard block, but above the 18 byrte
channel block header.

sd.extnl $30 screen definition extension length
sd_xhits -%18 word xhit gize

sd_vhits -$16 word yhit gize

sd_xhito -$14 word xhit origin{screen coordinates}
sd_yhite -$12 word yhit origin (screen coordinates)}
sd_xouts -$10 word X outline size

sd_youts -$0e word ¥ outline size

8d_xouto -$0¢ word x outline origin (screen coordinates)
sd_youto -$0a word youtline origin {screen coordinates)

sd_prwlb -$08 long primary link list bottom up (primary window}
sd_pprwn -$08 long pointer to Primary window {secondary window)
sd_prwlt -$04 long primary link list top down (primary window)
sd_sewll $00 long secondary window link list pointer

sd_wsave $04 long window save area base

sd_wssin $08 long size of window save area

sd_wwdef $0c long peinter to window working definition

sd_wlstt $10 byte window lock status -1 locked, 0 unlocked, 1 no lock

sd_prwin %11 byte bit 7 set for primary window,
bit 0 set if managed {10P.QUTL called)
sd_wmode $12 byte mode of this window
sd_mysav $13 byte true if save area is mine
ed_wmove $14 byte window move /query flag (D2 from IOP.RPTH)

196

W

T T HHPH PP H T A HP DT D P T A OT T

h

Y R T T TR A T R O R TR 2 TR A Y

Y VN URNEY TR VAR VA TR 7

i GGETEL G RS AN e e m— e E— e — — —

2 Y

Graphics objects

These base level date structures are used to pass information to the
bagse level pointer IO calls. All these structures represent visual
information. These structures have various forms, there is a canconical
form and a screen mode dependent form. To simplify application programs,
variations on the cbjects for varicus displey modes can be linked into
lists which future versions of the pointer traps will scan for the most
suitable form. In current versions the pointer traps require the cbjects
to be specified in the actual display mode for the window,

The file QDOS_PT containzs symbol definitions suitable for use in
programs that manipulate graphics cbiects.

All the structures are made from a limited set of basic elements.

Form

The form is a word which describes the screen dependent mode of the
following patterns, followed by two bytes describing the mode adaption
rules. The first of these is relevant only when the object is a sprite used
as a pointer, and defines how it changes with time: the second defines how
the object may be adapted to fit the display aspect ratio.

Dynamic peinters, that change shape with time, are used by setting
the time byte to a non-zerc value: by linking several sprite definitions
together with increasing time values {Tn}, the sprite will appear in the
lowest numbered form for Ti1 "ticks", then change to the second form for
T2-Ti ticks, then the third for T3-T2, and sc on. When no sprile can be
found with a Tn greater than the elapsed time, the counter is reset to
zero and the first form appears again. The maximum value of Tn being 255,
and the count being incremented {roughly) every 20ms, the sprite may have
a period of up to 5 seconds or so.

Form
00fc canonical, espect ratio 1:.50
oofd canonical, aspect ratio 1160
0ofe canonical, aspect ratio 1571
0GfEf canonical, agpect ratio 1:.83
000¢ canonical, aspect ratio 1:1.0
0001 canonical, aspect ratio 1:1.2
o002 canonical, aspect ratio 1:1.4
0003 canonical, aspect ratio 1:1.7
Q004 canonical, aspect ratio 1:2.0
0100 &L 4 colour
o101 QL 8 colour
Time
o0 static
1..FF used for timen
Adaption
00 translate pixel to pixel
+01 expand x if required
+02 contract x if reguired
+04 expand ¥ if required
+08 contract y if required

107

Size

The size of an object is defined by two words, the number of pixels in
the x direction, and the number of pixels in the ¥ direction. The only limit
on the size is that it must be positive non zero in both directions,

Repeat

Scmwe types of information have a repeat attribute. This is two
words, the repest distance {in pixels) in the x direction, and the repeat
distance [in pixels}in the v direction. The ¥ repeat must be positive non
zero, the x repeat must be a positive non zero multiple of the number of
pixels ina 16 bit word.

Crigin

The base level structures assume a pixel coordinate system with the origin
at the top LHS with x increasing to the right, y increasing downwards.
Objects may have their own origin which is defined as two words, x origin
and y origin. A negative origin is outside the object to the left {x) or

above (y). A zero origin is the top left pixel of the gbject,

Colour

For the canonical forms (and possibly some other forms! it iz assumed
that colours are represented by a maximum of 15 bits (32768 colours).
Notionally these are regarded as 5 bit resolution for each of the 3 primary
colours. The 16th bit is used to indicate the opacity of the object. The
order of bits is (MSB) green, red, blue, green/?, red/2, red/16, blue/lE,
opague (LSB). For monochrome, the 15 most significant bits represent the
display brightness,

Ty

o)

fa & fa) L

T T ™" % HDHDDHT BT THT B P A2 T ® W

{ Z0 TR TNNY VRNY VARNY VRNV VRNRV VRNV FRNNY VRN VR ¥

M I A A

| VR ¥

Pattern

Canonical patterns are defined as colour planes. A canonical
pattern starts with a word which defines the number of planes that will
foltow. The block defining each plane is preceded by a colour word
defining the contributicon of the following block to the complete colour.
In every block of a canonical pattern each bit represents a pixel, the most
significant bit in the firs{ word is the top left pixel. Unused parts of
words should be filled with zeros,

E.g. canonical form of yellow block {5x4) enclosing a black block (3x2}

de.w 2

de.w %1130C00000A00000
do.w %1111:0000000G000
dc.w 210001 00003000000
de.w %X1000100000000000
deuw %1111104000000000
dec.w %0000000600000001
do.w %1111160000000000
de.w %1111100000000000
de.w %1111 100000000000
dew %11113100000Q00000

Specific form patierns are stored using the standard screen
representation of the pattern. For this reason, there are two types of
specific form pattern, the colour pattern, which is the colour
representation, and the pattern mask which is white for opaque, and black
for transparent. The base level routines require specific form patterns.

two blocks required
define yellow

define opague

Sprite Definition

A sprite definition has form, size, origin, colour pattern and pattern

mask.
form 2 words
size 2 words
origin 2 words

colour pattern long word relative pointer
pattern mask long word relative pointer
next definition long word relative pointer

109

Blob Definition

A bleb is used to provide a mask through which a pattern is dropped
into the screen, The critical distinction is that while the pattern formed
by a sprite moves with the sprite, the pattern used with a blob is
stationary. The effect is akin to removing a bit of the screen to revesi
the pattern underneath.

A blob definiticon, therefore, hasg only form, size, origin and pattern
mask.

form 2 words
size 2 words
origin 2 words

colour pattern
pattern mask
next definition

long word zero
long word relative pointer
long word relative pointer

Pattern Definition

A pattern definition allows the specification ef any pixel in the
pattern to be any colour or transparent. The pattern repeats both
horizontally and vertically.

A pattern definition has form, repeat, colour pattern and pattern
mask.

form 2 words
repeat 2 words
origin 2 words zero

colour pattern
pattern mask
next definition

long word relative pointer
long word relative pointer
long word relative pointer

Arca Mask

Ap area mask defines the limits of an area operation. The form is a
table of x (horizontal) limits for each ¥ coordinate, There may be more
than one table. The total storage required is:

2 + 6%x_size + 4*¥sum of y_sizes) bytes

The form of the definition is

x_gire number of tables

¥_size length of this table

x_oTigin origin of sub-area within window
¥_origin

table 2%y size wards lower Hmit, upper limit pairs
(relative to x_crigin)

The format of a partial save area is as follows:

spare iong may be used by the application
X _size word width of save area in pixels
¥_size ward height of save area in pixels
increment word distance in bytes from one row to the next
mode byte mode of saved image
spare byte zero
110 image increment*y_size bytes bit image

] -3 &
- - %

L &

s o k|
TV TRRT T VY TR VRN THNRY THNRY YRR THNNT TRNNY YR VRN FRNNY VRN VNN SUNY YRV VNN JN WY VY Y

HT DDA D DWW

T
W

-

Window Pefinition
Structure

The window definition is split into several levels: at the top there is
the window definition. Below this, there are the definitions o%‘ any locse
menu items or sub-windows. Below these, there are the definitions of the
object lists.

This section gives the standardg meanings of the window definition
structures. However, as it is the responsibility of the application’s code
to interpret the structures, the meanings may vary.

The file WMAN_WDEF contains definitions of the symbols used in this
section: it may be INCLUDEd in any assenbler files that manipulate window
definitions.

Within these definitions all pointers are word length relative
pocinters. Where reference is to be made to an address which is more tl'_nan
a word offset away, the least significant bit is set. This (after clearing
the bit} is then a pointer to a long word containing a relative address. 4ll
addresses are even. A zero pointer implies that the structure pointed to
is absent.

In the following definitions, coordinates and sizes are specified as a
pixel position or number of pixels. To allow for continuously _var_iablc
window sizes, some coordinates and sizes can include terms to indicate
the scaling of the coordinate or size with the variation in the appropriate
dimension of the window. This is masked into the top nibble of the
ceordinate or size:

0000 invariant

oanl 1:4 scaling wrt dimension

G010 1:2 scaling wrt dimension

0011 3:4 scaling wrt dimension

0100 directly coupled to dimension.

The rest of the word has the coordinate or size corresponding to the
minimum allowakle window dimension.

111

To allow for a variety of different layouts within the window as the
size of the window varies, part of the window definition may be repeated
several times. The definitions should be made in order of decreasing
window size. The last definition, which defines the smallest allowable
window, should be followed by a word containing -1. If the top nibble of a

layout size word is zero, then the layout may not be scaled: if it is 0100
then it may.

Fixed part of window definition

wd_xsize $00 word
wd_ysize $02 word
wd_xorg %04 word
wd_yorg $06 word
wd_wattr $08
wd_psprt $10 word
wd_lattr $12
wd_help $2e¢ word
wd_rhase $30

default window x size {width} in pixels
default window y size {height) in pixels

X origin of window

¥ origin of window

window attributes

pointer to pointer sprite for this window
loose menu item attributes

pointer to help window

base of repeated part of window definition

Repeated part of window definition

wd_xmin $00 word
wd_ymin $02 word
wd_pinfo $04 word
wd_plitm $06 word
wd_pappl $08 word
wd.elen $0a

x {minimum) size for this layout + scaling flag
¥ {minimum) zize for this layvout + scaling flag

pointer to leose menu item list
repeated entry length

The origin of the window is the initial pointer position within the
window. This will usually alsc determine the positien of the window itself
as the window management level will try te avoid moving the pointer, If
the origin iz given as zero, then the origin will be calculated from the
position of the current item,

The window width and height exclude the border and shadow, i.e. they
refer to the ingide of the window.

The XMIN and YMIN sizes are actual sizes of the window, unless the
most significant bit is set in which case they are the minimum sizes.

112

reinter to information sub-window definition list

pointer to application sub-window definition st

T ™ ®Hh H DT H H D H D PH A T T oW

& @

LT T TR VIR TR TR T TR VR T TR T VPP P SPU

Window Attributes

The window attributes for the window definition are four words
defining a windew clear flag, the shadow depth, the border and paper. For
sub-windows, the shadow depth should be zero. For the main window the
typical shadow depth will be 2, the actual x and y shadows will be derived
from this. The top bit of the clear flag is used to define whether or not
the {sub-)window should be cleared when it is {re-)drawn: if it is set then
the window is not cleared.

wda_clfg 300 byte
wda_shdd %01 byte
wda_borw $02 word
wda_borc $04 word
wda_papr $06 word

MSbit clear to clear window
shadow depth

border width

border colour

paper colour

Menu Item Attributes

Ta bring some semblance of order to the window organisation, all menu items
within any one window or sub-window are constrained

to have the same attributes. There is one sct of attributes for each of the
each of the threc possible states of the itemn, and there is a border attribute
to indicate the current selected item.

current item border width
current item border colour

item unavailable

item available

item selected

menut item attribute entry length

wda_curw $00 word
wda_curc $02 word
wda_unav $04
wda_aval $0c
wda_selc $14
wda.elen $ic

atiribute record
wda_back $00 worgd
wda_ink $02 word
wda_blob $04 word
wda_patt $06 word

item background colour
text object ink colour
pointer to bleb for pattern
pointer to pattern for blob

¥l

tl

M
1
4
a

™
i

»

Lower Level Definitions

Loose Menu Ttems List

Loose l:rlenu ivtems can be positioned anywhere within the window, The
loogse menu item list is jusi a list of object types, positions, actions and

pointers. The list is terminated by a word contalning -1,

wdl xsiz 800 werd hit ares x size (width} + scaling
wdl_ysiz $02 word hit area v size fheight} + scaling
wdi _xorg %04 word hit area x origin + scaling
wdl_yorg $06 word hit area y origin + scaling
wdl‘)g‘st %08 byte object x justification rule

wdl yjst $09 byte object y justification rule

wdl type $0a byte object type (D=text, 2=sprite, 4=blob, 6=pattern)

wdl_skey $0b byte selection keystroke {upper case)
wdl_pobj $0¢ word pointer to ohject

wdl item $0e word item number

wdl_pact $10 word pointer to action routine
wdlelen $12 locse menu item list entry length

The selection keystroke should be the 'u ’
pper case’ value for letters
and the event code {not the event number} for the event, keystrokes, Tl::

these itens.

R
a__'g
t‘llg

T T T H THT D P A H T T OB ow
S VRNV VRN VRNV VRNNU VANV VANV VRNNV THNNY VENNS VANV VANNN THENN THRNNT VRNRY VERNV VRNV VRN W

S I Y G B DM e m— m — e o

Information Sub-Window

An information sub-window is set up when the menu is set up, but has
no further significance. The definition of information sub-windows is in
the form of a list terminated by a word containing 1.

wdi_xsiz $00 word sub-window x size (width)in pixels + scaling
wdi_wysiz $02 word sub-window y size (height) in pixels + scaling
wdi_xorg $04 word sub-window x origin + scaling

wdi yorg $06 word sub-window y origin + scaling

wdi_watt $08 sub-window attributes

wdi pobl $10 word pointer to information object list

wdi.elen $12 infermation list entry length

The information sub-window origin is the pixel position of the top
left hand corner of the inside of the sub-window with respect to the top
left hand corner of the window.

Information Gbject List

Each object in an information object list has only a Limited set of
attributes, and these may be different for each cbject. The list for each
information sub-window is terminated by a word containing -1.

wdo_xsiz $00 word object x size (width}in pixels ¢+ scaling
wdo_ysiz $02 word objectysize (height)in pixels + scaling
wdo_xorg $04 word object x origin + scaling

wde_yorg $06 word cobject y origin + scaling

wdo_type %08 hyte object type {0=text, 2=sprite, 4=blob, 6=pattern)

wdo_spar $09 byte spare =0
{ wdo_ink $0a word text ink colour type=0
{ wdo_csiz $0c word text character size (two bytes)
(wdo_comb $0a word pattern or blob to combine type=4,6

wdo_pobj $0e word pointer to object
wdo.elen %10 infermation object list entry length

ooeow A

Application Sub-window List

Because the size of an application sub-window definition is
dependent on the usage of the definition, the application sub-window list
is Jjust a st of pointers to individual application sub-window
definitions. The list is terminated with a zero word.

Menu Object Lists

Because menus are of indefinite size, the descriptions of the
ohjects in a menu are put into lists so that these may be set up at
execution time.

It is assumed, by the menu interface, that the objects are arranged
in a rectangular grid. Each column of the grid has a fixed width, each row a
fixed height. The interface also allows for an index to the columns and an
index to the rows to he placed above and to the left of the grid.

There are two dimensions, the first is the actual number of columns,
the second is the number of rows. All of the lists have either one
dimension or the other.

Each of the object spacing lists consists of pairs of numbers. The
first word is the hit area width or height. the second number is the
distance from the start of this hit area to the start of the next. Both
spacings are in pixels. There must he sufficient gap hetween the cbjects
to allow the current item border to be drawn.

Each of the object index lists has the game form as the object list
described below. The item numbers within these lists should be set to -1
end the action routine pointers to zero.

The cbject item lists consist of a set of list entries, one for each
column in a row. Each ohject list entry contains the item number for the
object, the object type (test, sprite ete.), the justification (1eft, right or
centre, top, bottom or centre), a pointer to the rctual object and a
pointer to an action routine to be called when the ebject is hit. Note that
it is possible to have just one large object list, which is 'cut up® inte rows
by making each row list start pointer equal to the previous row list end
pointer,

The justification rule bytes are zero for a centered object, positive
for left or top justified and negative for right or bottom justified. The
value indicates the distance of the object, in pixels, from the edge of the
hit area.

The row list congsists of pairs of pointers to the start and end of
each object list.

116

! VAN TR Y T T A A VY T T T 2

T " » » H" » » » » » » » *+ » H ®H H A - A H T A D

RPN PV S

& & & W

» B @ W & W

y ¥

Application sub-window definition

wda_xsiz $00 word sub-window x size (width} in pixels + scaling
wda_ysiz $02 word sub-window y size (height) in pixels + scaling
wda_xorg $04 word =sub-window x origin + scaling

wda_yorg $06 word sub-window y origin + scaling

wda_watt %08 sub—window attributes

wda_pspr $10 word pointer to pointer sprite for this sub-window
wda_setr $12 word pointer to application sub-window setup routine
wda_draw $!4 word pointer to application sub-window draw routine
wda_hit $16 word pointer to application sub-window hit routine

wda_ctrl $18 word pointer to application sub-window control routine

wda_nxsc $la word maximum number of x control sections

wda_nysc $lc word maximum number of y control sections
wda_skey $le byte application sub-window selection keystroke
wda_ext $1f byte zZero

wda.blen $20 application sub-window basic definition length

pannable and scrollable sub-windows only (wda_nxsc or wda_nysc ©0)

wida_part $00 word pointer to the part window control block {or 0)
for pan, scroll and split definitions

wda_insz $02 word index hit size + scaling

wda_insp $04 word index spacing left or above sub-window + scaling

wda_jcur $06 long index current item attribute (border width, colour)

wda_ijat $0a index item attribute record
wda_psac $12 word pan or scrall arrow colour
wda_psbc $14 word pan or scroll bar background colour
wda_pssc $16 word pan or scroll bar section colour
wda.clen $18 application sub-window contrel definition length

menu sub-windows only {processed by WM.SMENU called from application setup)

wda_mstt $00 word pointer to menu status block
wda_jatt 302 item attributes

wda_ncol $le word number of actual columns
wda_nrow $20 word number of actual rows

wda_xoff $22 word xoffset to start of menu (section?
wda_voff $24 word yoffset to start of menu {section}
wda_xspc $28 word pointer to x (column} spacing list
wda_yspc $28 word pointer to y(row) spacing list
wda_xind $2a word pointer tox{column}index list
wda_yind $2c¢ word pointer to y(row)index list
wda_rowl $2e word pointer to menu row list

wda.mlem $30 sub-window menu definition length

The application sub-window origin is the pixel position of the top
left hand corner of the inside of the sub-window with respect to the top
left hand corner of the window.

The pointers te the sub-window pan and scroll control blocks and the
menu status block are relative to the start of the window status area.

If a window is both pannable and screllable, then there should be two
complete sub-window contrel definitions.

117

wl

th

™
g
i,
P
t}

™
v

n

<7

¥
8¢
31
al

tr
M.
W]
tx

118

menu chject spacing list
wdm_size $00 word
wdm_spce $02 word
wdm.slen $04

object hit size + scaling
object spacing + scaling
object spacing list element length

menu row list
wdm_rows $00 word
wdn_rowe $02 word
wdm.rlen %04

pointer to object row list start
peinter to object row Hst end
menu row list element length

menu object /index list entry
wdm_xjst $00 byte objectx Jjustification rule
wdm_yjst $0] byte object y justification rule
wdm_type $02 byte object type [O=text, 2=sprite, 4=blob, G=pattern)
wdir_skey $03 byte selection keystroke {upper case)
wdm_pobj $04 word pointer to object
wdm_item $06 word item number {-1 for index)
wdm_pact $08 word pointer to action routine {zero for index)
wdm.olen $0a menu object /index list entry length

s ATEENS NS JRNNN s o

rTr »*+ *+ o H H H HP DH B H T T T A B H A A

O i T ER S On . e e— e — i ——

4 & & & & ¥

L O TN N T N "R TR VR VRN VENRY VRN VRNV VRN 7

1

I...J

Mcnu Macros

This section documents the action of the utility macros supplied in
the file WMAN MENU_MAC. These macros assist in the generation of
standard format Window Definitions by automatically generating the XDEF
and XREF directives required to use the definition: they also relieve the
programmer of the burden of remembering the size of each data item,

Most symbols generated by these macros have a four character prefix
showing their type. This means that in the user-supplied symbol, usually
referred to as the name only the first four characters will be significant.

There is, of course, no need to use these macros to generate Window
Definitions: in particular, any constraint of size and label name is
imposed only by these macros, and not by the data structures themselves.
Modification of the macros, or direct generation of the definition, is
definitely recommended if you can't get the effect you want.

Structure

The major data structure produced by the macros is the Window
Definition. This is of the form documented in the Previous section of this
manual, and is thus appropriate for conversion to its Working Definitiun
by the WM.SETUP routine of the Window Manager. Each of an application’s
Window Definitions has = unique name and may be referred to by using the
label MEN_pame which is XDEFfed by the WINDOW macro, and may be
XREFfed where required.

A Window Definition consists of one or more layouts, each
appropriate for a different size of window. One of these is selected by
the WM.SETUP routine for copying into the Working Definition, depending
on the size requested, Each layvout is given a unique letter when
introduced by the SIZE_OPT macro: when the SETWRX macro is invoked at
the end of the menu assembly, symbols of the form WWletter.name are
XDEFfed, defining the space required for the Working Definition for each
layout. These may be referred to in other modules by declaring the symbal
with an XREF.S directive. Different layouts for a window may be put in
different files: the main definition is introduced with the WINDOW macro,
and has the various layouts introduced with the SIZE_OPT macro: the
external layout definition(s) start with the XLAYOUT macro, and define
the layouts specified by calls to the LAYOUT macro.

In addition to creating the Window Definition, the macros also keep
track of the size of Status Area required. In principle, the statuses of
the items in a window may be static, so that when the window is pulled down
again previcusly selected options are still se¢lected. To cater for this,
the status blocks for a given window are deflined as COMMON blocks of the
required size: each layout defines its own blocks, bul with the same name,
so that when linked the largest version of each COMMON block is used,
Cne COMMON block is defined for the base arca and loose jtem status
bleck, one for each menu status block and control block, and one for each
item allocated space with a call to the ALCSTAT macro. By using the
COMMON DUMMY option in the linker command file, no space is allocated in
the application for the status areas, resulting in ROMable code. The
global status area for all windows may then he put in the application’s
data space, if this is big encugh, or in & suitably-sized piece of heap
aliocated when the application starts. If this area is always pointed to
by AX, then the status area for a given window will be found st
WST_name(Ax)}, this label having been defined by an XREF.S directive.
Note that this limits you Lo a maximum global status area size of 32k.
Cften A5 or A6 will be used to point to the global status area, as they
are not used by the Window Manager,

ol LT

-]

e Ln

ow Ry]

[l A A g

Rules and reserved symbols

Within the body of a description, the macro substitution syntax of
faame] is used where the value of the variable or macro parameter name
is meant: in general, macro parameters are in Italics and global
variables in UPPER_CASE., New variables and labels may be created from
global and local variables; for instance, the ACTION macro is of the form:

ACTION MACRD name
J;IREF HMEA_{name]
ENDM
An invocation of this macro might be:

ACTION QUIT

producing the expansion:

XREF MEA_QUIT

At the start of a definition, the square brackets take their usual
meaning of defining an optiona) parameter.

The varinbles CLAYQUT, CURRA, CURRW, MAXITEM and WSIZES are used
by the macros, and should not be used for other PUTDOSES,

The prefixes shown overleaf are used by the macres, for the purposes
specified. In general, you should avoid using any symhol with these
prefixes in your own code. Those marked external are XDEFfed or XREFfed
by the macros., Those marked var{iable) are used as assembler variables to
keep track of which layout(s) the corresponding object is used in.

120

- A B D N

2)

It
www'@wwmwwwwww&wwwwvb

T H DD DD DT DA T A B D
l‘ l"

r B 1
e nL gy
4 v B

=

Prefix External Var

MAD_

MAW _

MLI

MOB__

MRW

MST

MSX_
MSY_

MV

NCX,
NCY,

WCX_
WCY _

WST_

WWx.

]

Use

Label fur application sub-window
definition

Layouts using this sub-window

Label for application sub-windew list
Layouls using this application
sub-window list

Value of item select key

Label of externally defined code:
this may be an Action/Hit, Control,
Drawing or Menu-setup routine.

Label of externally defined objects:
these may be a Blob, Pattern,
Sprite or Text.

Label for an info. object list
Layouts using this list

Label for an info. sub-window list
Layouts using this list

Label for a loose item list
Layouts using this list

Label for menu sub-window or
{first) index object
Layouts using this object

Label for menu sub-window row list
Layouts using this row list

Offset of menu sub-window status bloeck
from start of global status area

Label for Xory spacing list
Layouts using this spacing list

Label for space in global status area
allocated by ALCSTAT macro

Number of control sections in the
X or Y direction for a menu sub-window

Offset of X or Y section control block
from start of global status area

Offset of window status area
from start of global status area

Size of Working Definition needed
for layout x

oY orem g

= e r a0 o

L= B

L2 g S

The macros defined in the WMAN_MENU_MAC file are listed below.

ACTION name

Generates a relative pointer to an action routine. This is external
to the menu definition, and should have the label MEA_[name].

ALCSTAT space,name

This reserves some extra space in the global status area, which can
be accessed at the offset MV_ frame] from the base of this global status
area! this offset will always be even., The amount of space reserved is
given by the value of the space parameter. The offset should be referred
to in the code by using the XREF.S directive.

APPN name

Generates a relative pointer to the application sub-window list for
this layout. This should have the label MAW _[pame] and will have an XREF
generated for it if CLAYOUT has the value "#", which implies an
externally-defined layout.

If CLAYOUT does not have the value "#", then a variable with the name
MAW_[name] is updated: if it already exists, then this application
sub-window list is used by several layouts, and the value of CLAYOUT is
appended to it., If the variable ig undefined, then it is initialised to the
current value of CLAYOUT.

ARROW colour
Define the colour of the arrows in the pan or scroll arrow rows.

A_CTRL name,dirn

Introduces an application sub-window contrel definition, defining a
pointer, relative to the start of the window status area, where the
section contrel block starts, and generating an externally accessible
offset WCfdirn]_fname] which may be used by coding & suitable XREF.5
directlive in the code wishing to use it. The size of section control bleck
is given by the maximum number of sections, which will have been
previously defined by a call to the CTRLMAX macro, and kept in the
variable NC[dirn]_ fname]

&_END

This generstes the termination for an application sub-window list: it
is not interchangeable with I_END etc,, as the terminators are different.

122

- = n * T T P T T DT PP PP DD

.- T T T

T ™

e — e g — i — T S S| B S G S O e BN G W DR N D N A B

YRR VIR VARV TR VR PR YRR RNV ST YNV YRV AT WY T Y Y Y

N VR ¥

& b

A_OBJE pame

This marks the end of a menu sub-window ohject L3 irii
label H0§_[name,}' so0 that the row list can point tthhe:» ;?it;:iflf}inﬁnft U;::
also defines a COMMON block for the menu item statuses which ma}: be
found at t.l'{c offset MST_{CURRA] from the base of the glob;l status area:
(ECERRQ] is the name of the application sub-window currentlyh bej_ng‘
clined.

A_MENU

Introduces the menu definition section of an application sub-window
and generates a relative pointer tao the menu status block. l

& _RLST name

This introduces a menu sub-window row list i
st, d labels it

MRW_fname] It also sets the value of CLAYOU q "
variabie MRW. [oamer T to the value of the

A_SLST name,dirn

This introduces a menu sub-window s i i i
i spacing list, and labels it
Ms[dirn] [name] . Tt alsoc sets the value of CLAYO
_ se oT :
variable MSfdirn}] [name] . ¢ to the value of the

The parameter dirn may take the values "X" ar "Y".

A_WDEF name

This introduces an application sub-window definiti i
: nition, and labels it
l-!.hl]‘_,[name]‘ It also sets the value of CLAYOUT to the va]ue\a o‘} q’t}ihe\
variable MAD [name]}, and CURRA to [namel. .

A_WINDW name

This generates a relative pointer Lo an a i i i
_ Th: : . pplication sub-window
definition, whlc'h must be internal to this laveut. The label usl!r:ﬂ (i:,
MAD_[name], this being generated by the A_WDEF macro, A variable
MAD_[pame] is also set to the current value of CLAYOUT.

Lol = BEa T AL T

T Fon

(PR TR

[l S W o

A_WLST name

Thiz macro Introduces an application sub-window lizt. It generates
a LabelMAW _[name] snd reads a new value for the variable CLAYOUT from
the vardablfe MAW_fname], which will have been defined by a call to APPN
or LAYOUT,

The effact of this iz to ensure that the list can be pointed to from
elsewhere in the definition, and that the space required for the
application sub-windews can be added up in the appropriate layout
variable,

BAR background, block

Define the colours of the "thermometer"” bar to the right or bottom of
an apprlication sub-window. The wisible part of the window iz represented
a5 a bar of the block colour, on a bar represcenting Lhe whole height or
width of the menu, of the background colour.

BLCE name

Generates a relative pointer to a bleb definition., This is external to
the menu definition, and should have the label MEB_ frame].

BORDER size,colour

Generates the definition of a berder to be pul arcund an ilem when
the peinter is polnting te it. Usually followed by one or three IATTHR
definitions defining the aLtributes of the item itself.

CSIZE xsize,ysize

This defines the character size for an information item: the usual
range of Xsize from 0 to 3 and ¥size from 0 to 1 applies.

CTRL npame

Generates a relative pointer to an application sub-window control
routine, This is external to the menu definition, and should have the label
MEC_{name].

CTRLMAX xsects,ysects

This defines the maximum number of sections inte which an
application sub-window may be split. It also keeps a record of these
numbers in the variables NCX.[CURRA] and BCY.[CURRA], so that when
the control definition is encountered the correct amount of space can be
‘nycat‘e’i in the status area.

T2 P2 P2 PP DPTPTPTDTPTPTETDAAYAPADT LT PDDD

& L

3 & 8 4 &

R ZRY VY ¥

J VIS TRNRY VANY THNRY VAT ¥

‘i i g tll -.._| N] U

'y

DRAW name

Generates a relative pointer to an application sub-window drawing
routine. This is external to the menu definition, and should have the label
MED_fname].

HELP label

Generates a relative pointer Lo the help definition. Since the
meaning of this pointer is dependent on the application, the label is
used directly, without adding a prefix: the label is assumed to be external,
50 an XREF is generated.

IATTR paper,ink,blob,pattern

Generates part of a definition of the attributes to be used when
drawing loose menu items, index items or menu sub-window items. The blob
and pattern are external, with labels MEB_[bIokJ and MEP_[pattern]
respectively. Locse and sub-window items should have three sets of
attributes, one for each of the three possible statuses unavailable,
available and selected. Index items do not have variable status, so only
need one set of attributes. The object to be drawn is combined with one or
more of the attributes, depending in its type:

Ohject type Attribute

paper ink bleb pattern
TEXT Y Y
SPRITE Y
BLOB Y Y
PATTERN Y Y

IBAR size,sSpacingf,szscale,spscale]

Define the size and spacing of an index bar. Optionally these may be
scaled. The spacing is measured above or to the left of the application
sub-window.

ILST name

Generates a pointer to an index object list, which is internal te the
definition and must be labelled MOE_[name] . The variable of the same
name ig given the value of CLAYCQUT.

INFO namme

Generates a relative pointer te the information sub-window list for
this layout, This should have the label MIW_[fname] and will have an XREF
generated for it if CLAYOUT has the value "*",

If CLAYOUT does not have the value "#", then a variable with the name
MIW_fnamel is updated in the same way as in the APPN macro.

INK colour

This macro defines the ink calour for an information item.

1TEM number

Defines the item number for a loose or menu cbject: more than one
object may share an item numbker, in which case they will share a status
byte and therefore all be drawn with the same status,

If the value of the variable CURRA is not "', then it is assumed that
the object being defined is in a neny sub-windew, and the maximum item
aumber for that sub-window is updated if required, this being kept in the
variable MST_[CURRA]: otherwise the variable MAXITEM is updated. In
this way it is possible to have "holes” in the tiem numbers, but still get
the correct size of status area allocated,

I_END

Generates an end-of-list marker for information sub-window and
object lists.

I_ITEM

This introduces an information item: it is this macro that adds to the
space requirements for the current layout(s), given by the value of the
variable CLAYOUT.

I_OLST name

This introduces an information object list, generating a label
MIO_[name] . The variable CLAYOUT ic sel to the value of the variable
MIO_[fname]} .

I_WINDW

This introduces an information sub-window: it is this macre that
adds to the space requirements for the current layout(s), given by the
value of the variahle CLAYQUT.

126

[13

S

' W

T T PP P HTDH DT AP P DA

s e i o ———— e o
f‘l

YRRV VRNV VRNY VANRY VRRNV VRNV VARNY PRENV NN PANNY VRRRY VRNV Y PNV Y Y VRNV TR ¥

W W

'Y

I_WLST name

This macro introduces an information sub-windew list. It generates
a fabef MIW_[name] and reads a new value for the variable CLAYOUT from
the variabfe MIW_[name]

The effect of this is to ensure that the list can be pointed to from
elsewhere in the definition, and that the space requirt_Ed for the
information sub-windows can be added up in the appropriate lavout
variable.

JUSTIFY xjst,yist

Define the justification required for an item: an item may be centred
in the area available or be positioned a fixed distance from _ei_ther margin.
A parameter value of zero requezts a centred cbject, a positive non-zero
value is an offset from the left or top, and a negative value an offset from
the right or bottom.

LAYQOUT letter,[info],[loos]},[appnl}

This specifies one of the layouts that is tr::» be dcfi_ne_d in this file, in
a similar way to the SIZE_OPT macro, but is used in a geparat_e
layout file, after the XLAYOUT. Tt should net be used in a main
definition file.

The names of the information sub-window list, loose item list and
application sub-window list may be cmitted if the layvout does nat‘con Lain
such a list, but the commas must be coded so that the correct internal
lakels are generated.

LOOS name

Generates a relative pointer to the loose item list for this lavout,
This should have the label MLI_[name] and will have an XREF generated
for it if CLAYQUT has the value "*",

If CLAYQUT does not have the value "#", then a variable wilth the name
MLI_{namel] is updated in the same way as in the APPN macro.

L_END

Terminates a loose item list, and generates = ‘COMMON b‘lock
definition for a window status area big enough for the maximum locse item
number, given in the MAXITEM variable.

L_TLST name

This macro intreduces a loose item list. It generates a fabeld
MLI_{name] and reads a new value for the variable CLAYQOUT from the
variabfe MLI_ fname]. In addition, the variable MAXITEM is initialized to
zero, and CURRA tao "*",

The effect of this is to ensure that the list can be pointed to fron
elsewhere in the definition, and that the space regquired for the loose
items will be added up in the appropriate variable,

L_ITEM

This introduces a loose item: it is this macro that adds to the sparce

requirements for the current layout, given by the valuo of the variable
CLAYOUT.

MENSIZ ncols,nrows

This defines the size of a menu sub-window in terms of rows and
columns, and therefore the sizes of the spacing lists, index item lists (if
present), and row list,

OBJEL [name]

Introduces a menu sub-window object definition: if the name is
supplied then the object is given the label MOB_ fname] and CLAYOUT is
given the value of the MOB_fname] variable.

QLST Rpame

Generate a relative pointer to an information object list. This must
be internal to the definition, and have the label MIO_fname] . A variable
of the same name is defined to have the same value as the variable
CLAYOUT, s0 that the space occupied for the object list can be attributed
to the appropriate layout.

ORIGIN xpos,ypos{,xscale,yscale]

Generates a two word origin definition for a windew, sub-window or
object. A window’s origin specifies the point within it where the pointer
should be placed when the window is drawn - this will be combined with the
current pointer position to decide the absolute origin of the window.

The origin of a sub-window or object is always specified relative to
the window containing it.

Optionally a scale factor may be rrovided to specify how the origin
should be changed if the window is bigger than expected. See the Window
Definition section of the Data Structures for details on how scale
factors work.

|

" v ®
3 & & & & B

L B s i

b

T ®** PP H T PP BT AHX T T OB OB oM

&y & @& & B

&y & & & W

g UV TR ¥

3 U VIRY TR ¥

»

PATTERN name

Generates a relative pointer to a pattern definition. This is
external to the menu definition, and should have the label MEP_ [name].

ROWEL start,end

Generate one element of & row list, consisting of a pair of relative
pointers to the start and end menu sub-window objects: Lhe start
pointer points to the first object, the end points just after the last.
The labels used must be internal to the definition, and have the symhols
MOB_[start] and MOB_[end] . Two variables of the same names are given
the current value of the CLAYOUT wvariable.

RLET name

Generates a relative pointer to a rowlist, which is internal to the
definition and must be labelled MBW_[fnamef ., A variablie of the same name
is given the current value of CLAYOUT.

SELKEY [name]

Generate a select key for a loose or menu item, The value of the
select key is an external symbol MEK. [name}: this allows the programmer
to have onec file containing all select keys {(and text), which is then the
only file that needs to be changed to make foreign language versions of
the program,

If name is not supplied, a select key of 0 is defined, which can never
veeur (it is trapped out by the Kindow Manager).

SETR name

Generates a relative pointer to an applicatien sub-window setup
routine. This is external to the menu definilion, and should have the label
MEM_[namel.

SETWRK

This macre must always be coded at the very end of a window or layout
definition: it defines the external symbols giving the space reguired for
the working definitions of the various possible size-dependent layouts.
In addition it generates & COMMON section declaration and external
definition for any extra space required in the global status arca as a
result of calls to ALCSTAT.

123

T

o N

L= I

L X+

SIZE xsize,ysizel,xscale,yscale]

Generates a two-word size definition for a window, sub-window ar
object. The size of a window is the actual area that can be used, any
border defined is added to the cutside.

Optionally a scale factor may be provided to specify how the size
should be changed if the window is bigger than expected. See the Window
Definition section of the Pata Structures for details on how scale
factors work,

SIZE_OPT letter | *

This introduces an eniry in the repeated part of the window
definition: each entry gives a possible size that the window can have, and
pointers to the various parts of the layout for this size.

The value of the parameter iz kept in the variable CLAYOUT for
future use,

If the * option is coded, the layout is assumed to be external, and
XREFs will be generated for the pointers to 1lhe loose item list,
information sub-window list, and application sub-window list.

If a letter is coded, then the layouts are assumed to be in the
current file. In this case the variables WW[letter].[CUBRW! and
Wsf{letter}] [CURRW] are initialised to suitable values: these are used
during the later stages of the menu definition to calculate the sizes
required for the working definition and status area for this layout. The
[letter] is also appended to the WSIZES variable.

SOFF3ET Xoff,yoff

This defines the offset of the top left object from the top left of a
menu sub-window, so you don’t have to squash everything up inte the top
left corner.,

SPARE

. i"}elneratcs a null byte to fill up spare space. Only required after the
definition of an application sub-window's select key.

SPCEL gap,size

This generates one element of a row or column spacing list, defining
the horizontal or vertical hit size of a column or row, and the gap between
the column or row and the next.

139

T T+ %HPr*T HPH>PTPTOTPT TLTTTTT P

T

s & x i

¢ & b

VRN VRN VIRV VERNT VRNV VRNV VARNV VRNV VARNY VANV VR ' ' 2 AN T ' 2N Y 2R 2

SLST xnam,ynam

This generates two relative pointers to the X and Y spacing lists,
which should be labelled MSX_[xnam] and MSY_[ynaml] . Twe variables of
the same names are set to the current value of CLAYOUT,

SPRITE pame

Generates a relative pointer to a sprite definition. This is external
to the menu definition, and should have the label MES_ [name)

8_END

Terminates the list of layouts in the repeated part of a window
definition.

TEXT name

Generales a relative pointer to a string. This must be external to
the menu definition, and should have the label MET_ {npame]. This aliows
the programmer to have cne file containing all text (and select keys),
which is then the only file that needs to be changed to make foreign
language versions of the program.

TYPE code

Specifies the type of a locse, information or menu object. The value
of code may be 0 for a text item, 2 for a sprite and so on! suitable symbols
are defined in the WMAN_KEYS file.

WATTR shadow, border size, border_colour, paper

Generates data describing the overall coleur of a window or
sub-window. The shadow is ignored in the case of sub-windows. The
border_size is added to the specified window size.

WINDOW name

Generates an externally accessible label MEN_[name] which points
to the Window Definition.

The variable CURRW is set to fname] so that various unigue symhols
may be defined and XDEFfed at a later stage.

The variable WSIZES is set to the null string: this is added to by
SIZE_OPT, and uzsed in SETWRK to generate XDEFs for each possible size.

131

R Y

e rn

Tt

O oo

[adh = Al

XLAYOUT pame

This introduces a set of layout definitions in a similar way to WINDOW
intreducing the main part of a window definition. It is associated with
the appropriate main definition by having the same [pame}, which i=s
assigned to the CURRW variable as in WINDOW,

132

-

*r*** P PrPPHPrHPHr T H T A T A DA

ERFE A

T W e B Wi E—en b S S e e — ———— et i e _

I 2 N 7 O T VAR VA VENNN VIR VRERY VNNV VAN VRNEY VRNV THENY RN FRNY PN |

2 & W

% n

Text Macros

The file WMAN_TEXT MAC contains a set of macros which are used for
defining text strings, often for use in menus. Several different flavours
are provided, depending on the use to which the text is going to be put.
The merit of this approach is that all text used in an application may be
put inte one file, and different versions of this file with the text in
different languages linked with the rest of the application (all of which
should be language-independent) to produce foreign language versions.

All the macros take one or more string parameters. Each of these
should consist of of the characters you wish to appear in the text,
enclosed in braces {}. This is a convention used by the G3T Macro
Asgembler to allow the use of strings with spaces in them as macro
parameters. All the macros use this parameter to generate g QDOS format
string at an even address with a 1-word character count at the beginning.

Note that you cannot use the open square bracket character e
either within a string or as a select ey when You are using the G5T Macro
Assembler, as this character is afways interpreted as the beginning of a
macro substitution. If you do need to use the open square bracket, you
will need to code the ASCII value {91 ar $5B) in a DC.x directive of YOur own
making.

The MKTEXT macro uses the variables MKT,PRM and MET.PEME, 50 you
should avoid using these varisbies when using the text generating macros.

Label and variable prefixes used by these macros are as follows:

Prefix External Var Use

MEK . Y Item select key definition
MET_ Y Text string label
MET. ¥ Text string length/2 in pixels

In the following macro definitions, square brackets in the heading
line enclose an optional parameter, braces enclose a parameter that may
be repeated more than once, Within the body of a definition, the square
brackets signify the value of a supplied parameter: see the beginning of
the previous sectien for an example.

MKSELK label,selkey

Generates an external symbol MEK.[label] whose value is that
given by the one character string passed in selkey. If the character was
in the range "a” to "z" then the upper case equivalent is used, &8s select
keys are required to be defined in upper case. This macro is of use when

defining a select key for a graphics object suchas a sprite,

MKSTR string

This is the simplest of the macros. Tt generates a GDOS string but
ho extra information.

- =

o n oL i

MKTEXT labelf, string}

. This macro is used to generate a large block of t whi &
defined over many lines of source code. The resultit.r?; slril;: 2?.:1:;; ?E
labe_t-]_led MET [label]. All parameters after the label name should be
strings enclosed in braces, and these are concatenated to produce the
result. I you wish to force a newline at any point then you may code a
backslash character "™" as the last character of any string - this wiil
then be translated into a newline character {ASCII value 10 or $0A). 4
backslazh within a string is not translated, '

MKTITL label, string

) Generates a string for use as a large title, Two external
defined, MET_fIabel] labels the string itself and HET.[Jaingol;i\%;se
half the length of the string, in pixels, if written out with CS8IZE 2,n, This
s?rmbo% may i:_:e referred to by an XREF.S directive and used to cen,t,re the
tlifle in &an information sub-window, Another macro is used for strings
written with a smaller character size, as the GST Macro Assembiler does
not allow multiplication or divisijon of externally-defined symbels,

MKTITS label, String

. Generates a string for usec as a small title, Two external 3
defined, MET flabel] labels the string itself and MET. {lajsbg}lj;ﬂ:i:::
half the length of the string, in pixels, if written out with CSIZE Qn. This
s?mbol_. may t_:e referred to by an XREF.§ directive and used to cen'tre the
tlt_le in an information sub-window. Another macro is used for strings
written Wllt.h a larger character size, as the GST Macro Assembler does not
allow multiplication ar division of externally-defined symbols.

MEKXSTR label,[selkey), string

. Generates a string for use as a loose meny ite j
string 1tself.is defined as usual, with the symbal ME'I":rl ?3:1?:;}02‘;1:;'11:23
te refer to it. Optionally a select key may be deﬁned by specifying a
nonfnu_l_‘t value for the selkey parameter. This should be a one character
string, preferably enclosed in braces for consistency. If supplied, the
symbol MEK. f label] is defined to have the value of this character: i.f the

Egagacter is in the range "a" to "z" then the upper case equivalent will be
are)

134

a E g
7 TRNY VR ¥

-

e)

fa _CHES)

S VNN RN VY TRV RN A Y I O Y Y I RN RN Y RNV VNNV PV PR 7

*T?T™T1THTHDTH T A DD T B o
SN N N AN AN N N N N N N N e e e e L

Index of macros

The macros are summarised in alphabetical crder, together with
which file they are defined in and a short description of the structure
each generates. Those marked MENU are in the file WMAN_MENT_MAC, those
marked TEXT are in the file WMAN_TEXT_ MAC.

ACTION MENU pointer to action routine

ALCSTAT MENLD space in glohal status area

APPN MENU pointer to application sub-window list
ARROW MENU arrow colour for pan/scroll bars

A _CTRL MENU start of control definition

A_END MENU end of application sub-window list
A_MEND MENU start of menu definition

A_OBJE MENU end of menu abject list

A_RLST MENU start of menu row list

A_WDEF MENU start of application sub-window
A_WINDW MENU pointer to application sub-window
A_WLST MENU start of application sub-window list
BAR MENU pan/scroll "thermometer™ colours

BLOB MENU pointer to blob

BORDER MENU border size and colour for current item
CSIZE MENU character size for information text
CTRL MENT pointer to control routine

CTRLMAX MENU maximum number of control secticns
DRAW MENU pointer to sub-window drawing routine
HELP? MEMU pointer to helpdefinition

IATTR MENL item status attributes

IBAR MENI] size and spacing of index items

ILST MENU pointer to index item list

INFO MENU pointer to informstion sub-window list
INK MENU ink colour for information text

ITEM MENU item number for loose or menu item
I_END MENU end of information window or object list
I_ITEM MENU start of informaticn object

I _OLST MENU start of information object list
I_WINDW MEMU start of information sub-window
I_WLST MENU start of information sub-window list
JUSTIFY MENU justification rules for loose or menu item
LAYOUT MENU start of external layout definiticon
LOOS MENU pointer to locse item list

L_END HMENU end of loose item list

L_ILST MENU start of loose item list

L_ITEM MENU start of loose item

MESELE TEXT item select keystrokes

MEKSTR TEXT QDOS string, no label

METEXLT TEXT multi-line text

MKTITL TEXT large title string

METITS TEXT small title string

HMEXSTR TEXT external string with select keystroke
MENSIZ MENU gize of menu in rows/columns

QBJEL MENU sgtart of menu object definition

OLST MENU pointer to information cbject list
CRIGIN MENU origin of window ar ubject

PATTERN MENU pointer to pattern

Eadit Bl B- -0 v |

L A

e

ROWEL
RLST
SELKEY
SETR
SETWRK
SIZE
SIZE_OPT
SOFFSET
SPARE
SPCEL
SLST
SPRITE
S_END
TEXT
TYPE
WATTR
WINDOW
XLAYOUT

136

row list element.

pointer to row list

select keystroke for logse or menu item
pointer to setup routine

end of entire window definition

size of window or chject

start of internal layout definition
offset from top left of menu sub-window
spare padding byte

spacing list element

pointers to spacing lists

pointer to sprite

end of layout list

pointer to text

object type

overall window attributes

start of entire window definition

start of external layout definitions

& &8 0 & 4 A B AV B A A Y L AL

e

T PP T DT T™THTDHTLTTT T THT LT DT P L AH P T P DM

T

s B f-

| T U E VR U U VR

‘.

Working Definition

To allow a very large degree of flexibility in the hardling of windows
and menus, the actual definition of a window used by the window
management routines is set up during execution. Because this definition
will usually be set up before pulling down a window, and discarded after
throwing the window away, this is referred to as the working definition.

The window definition is principally a definition of a puli-down
window. It may, however, include definitions of menus within the window.
The window working definition is a copy of the window definition, with the
addition of the definitions of menus whose contents are defined at
execution time. The form of the working definition is chosen to simplify
menu handling,

Within a window, it is likely that sub-windows will exist which are
either menus in a non-standard form, or not menus at all. In either of
these cases the corresponding part of the window working definition may
be absent or of non-standard form.

Within the working definition all pointers are long word absolute
pointers. All addresses are even. A zero pointer implies that the
structure pointed to is absent.

The file WMAN_WWORK contains definitions of the symbols used in
this section: it may be INCLUDEd in any assembler files that manipulate
working definitions.

The working definition starts with a header block. This has three
functions: the first is to save the window channel ID, the original window
definition address and the window status area address; the second is to a
pointer to the pointer record and to save the pointer position as it was
before the window was opened; the third is to provide the sprite list for
the base level of the pointer interface.

ww_wstat $00 long pointer te window status area
ww_wdef $04 long pointer to window definition
ww_chid $08 long channel ID for window

ww_pprec 30c long puinter to pointer record (24 bytes)
ww_psave 510 long saved pointer position (absolute coordinates)

ww_sparl %14 long window spare 1
ww_spar? %18 long window spare 2
ww_splst $lc long printer to sub-window sprite list

The channel ID is set when the window is opened by the window open
routine,

The pointer peosition is saved when the window is opened, and
restored when the window is thrown away.

o 3 T

L+

E -

oo

i
A
T

1
H:

te

The header block is immediately followed by the window definition
block:

window x size (width) in pixels

window ¥ size (height) in pixels

x origin of window

y origin of window

window attributes

pointer to pointer sprite for this window
loose menu item attributes

pointer to help definition

end of header

ww_xsize H20 word
wiw_ysize $§22 word
ww_xorg $24 word
ww_yorg %26 word
ww_watir $28
ww_psprt $30 long
ww_lattr $34
ww_help $5c long
ww_head $80

ww_ninfo $80 word
ww_hinob $862 ward
ww_pinfo 364 long
ww_nlitm %68 word
ww_plitm $6a long
ww_nappl $6e word
ww_pappl §70 long
ww_lists $74

The window width and height exclude the border and shadow, i.e. they
refer to the inside of the window.

number of information sub-windows
number of information sub-window objects

number of loose menu items
pointer to loose menu item list
number of application sub-windows

start of definition lists

The origin of the window is the position of the top left hand corner
of the inside of the window is display coordinates.

Window Attributes

The window attributes for the working definition are identical to
those for the window gdefipition.

MSbit set to ¢lear window
shadow depth

bhorder width

border colour

paper colour

wwa_clfg $00 byte
wwa_shdd $01 byte
wwa_borw $02 word
wwa_bore $04 word
wwa_papr $06 word

painter to information sub-window definition list

pointer to application sub-window definition list

h & T L

» Pt HHTHHTHH DTS T HSAH LT DH D P W

P

____*__*_________.&

4 &8 0 & & 0V V&V LI I A

243232

3 8 B

. B

l.

Menu Ttem Attributes

The menu item attributes for the working definition are similar to
those for the window definition. They occupy rather mare space as they
use long word pointers.

wwa_curw $00 word
wwa_curc §02 word
wwa_attr $04
wwa_unav $04
wwa_aval $10
wwa_selec $lc
wwa.elen $28

current item border width
current item border colour
attribute records

item unavailable

item available

item selected

menu item attribute entry length

attribute record

wwa_back $00 word
wwa_ink $02 word
wwa_blob $04 leng
wwe_patt $08 long
Wwa.alen $0c

item hackground colour
text object ink colour
pointer to blob for pattern
pointer to pattern for bloh
attribute record length

Loose Menu Items List

Loose menu items can be positioned anywhere within the window. The
loose menu item list is just a list of object types, pozitions, actions and
peinters. The list is terminated by a word containing -1. Apart from the
use of long word pointers, the loose menu item list is the same as in the
window definition.

wwl_xsiz $00 word hit areca x size {width)
wwl_ysiz $02 word hitarcay size {height)

wwl _xorg $04 word hit area x origin

wwl yorg $06 word hitareay origin

wwl xjst $08 byte object x justification rule
wwl yist $09 byte object v justification rule
wwl type $0a byte object type (O=text, Z=sprite, 4=blob, fzpattern)
wwl_skey $0b byte selection keystroke [upper case)
wwl_pobj $0c long pointer to object

wwl item $10 word item number

wwl _pact $12 long pointer to action routine
wwl.elen $16 loose menu item list entry length

The selection keystroke should be the 'upper case’ value for letters
and the event code (not the event number) for the event keystrokes. The
event code i the event number less 14,

139

—a A

'

Information Sub-Window Application Sub-window List

27

An information sub-window is set up when the menu is set up, but has
no further significance. The definition of information sub-windows is in
the form of a list terminated by & word containing -1. Apart from the use
of long word pointers, the information sub-window list is the same as in
the window definition.

Because the size of an applicaticon sub-window definition is
dependent on the usage of the definition, Lhe application sub-window list
is just a list of long word pointers to individual application sub-window
definitions. The list is terminated with a zero long word.

rl.

wwi xsiz $00 word sub-window X size (width}in pixels Application sub-window definition
wwi_ysiz 402 word sub-window y size {height}in pixels
wwi_xorg $04 word sub-window x origin

wwi_yorg $06 word sub-window ¥ origin

wwi_watt $08 sub—window attributes

wwi_pobl $10 long peinter to information object list
wwi.elen $14 information list entry length

' O &

wwa_xsiz $00 word sub-window x size (width) in pixels

wwa_ysiz 502 word sub-window y size theight) in pixels

wwa_xorg $04 word sub-window x origin

wwa_yorg 3$06 word sub-window y origin

wwa_watt $08 sub-window attributes

wwa_pspr $10 long pointer Lo pointer sprite for this sub window
wwa_draw $14 long pointer to gapplication sub-window draw routine
wwa_hit $18 long pointer to application sub-window hit routine
wwa_ctrl 3lc long pointer to sub-window control routine {or 0}
wwa_nxsc $20 word maximum number of x control sections

wwa_nysc $22 word maximum number of y control sections

wwa_skey $24 byte application sub-window selection keystroke
wwa.blen %28 application sub-window basic definition length

g

The information sub-window origin is the pixel position of the top
left hand corner of the inside of the sub-window with respect to the top
left hand corner of the window.

Information Object List

Fach object in an information object list has only a limited set of
attributes, which may be different for each object. The list for each
information sub-window is terminated by a word containing -1.

Two control definitions, of the following structure,

will always be present. The first will only be set up (non-zere) for
pannable sub-windows, the second only for scrollable sub-windows.
wwo_xsiz $00 word object x size (width} in pixels

wwo_ysiz 402 word abject ysize (height) in pixels

wwo_xorg $04 word object x origin

wwo _yorg $06 word object y origin

wwo_type $08 byte object type (0=text, Z=sprite, 4=blob, 6=pattern)
wwo_spar $09 byte spare

wwa_part %28 long pointer to the part window control block {or 0}
for pan, screll and split definitions
wwa_insz $2c¢c word index hit size + scaling
wwa_insp $2e word index spacing left or above sub-window + scaling
wwa_icur $30 long index current item attribute (border width, colour)
wwa_iiat $34 index item attribute record
wwa_psac $40 word ran or scroll arrow celour
wwa_psbc $42 word pan or scroll bar eolour
wwa_pssc $44 word pan or screll bar section colour
wwa.clen §le application sub-window control definition length

[wwo_ink $0a word text Ink colour type=(
{ wwo_csiz $0c word text character size {two bytes)

{ wwo_comb $0a long pattern or blob to cembine type=4 or6

wwo_pobj $0e long paointer to object menu sub-windeows only

wwouelen $12 information object list entry length wwa_mstt $64 long pointer to the menu status block

wwa_jatt $68 item attributes

wwa_ncol $90 word number of actual columns
wwa_nrow %92 word number of actual rows

wwa_xoff $94 word xoffset tostart of menu (section)
wwa_yoff $96 word yoffset to start of menu (section)
wwa_xspc $98 long pointer to x{column) spacing list
wwa_yspc $8¢ long pointer to y (row) spacing list
wwa_xind $a0 long pointer to xf{column} index list
wwa_yind $ad long pointer to y {row) index list
wwa_rowl $a8 Jong pointer to menu row list

wwa.mlen $48 length of menu working definition

Y YRV VNNV VRNNY TRNRV VRNNV UREN TRNRV VNNV VAR Y VANV VRN ¥

The application sub-window origin is the pixel position of the top
left hand corner of the insidc of the sub-windew with respect to the tep
left hand corner of the window.

The two control definitions must be present for all application
sub-windows, but need only be set up if the sub-window is pannakle
{wwa_nxsc©0) or scrollable (wwa_nysco0),

140 141

T T T D TP DHDPHTNHT D DD B T B DS AE®OET A RTMD
» & B B

¥

Menu Object Lists

It is assumed, by the menu interface, that the objects are arranged
in a rectangular grid. Each column of the grid has a fixed width, cachrowa
fixed height. The interface also allows for an index to the columns and an
index to the rows to be placed above and to the left of the grid.

There are two dimensions, the first is the actual number of columns,
the second is the number of rows. All of the lists have either one
dimension or the ather.

Each of the object spacing lists consists of pairs of numbers., The
first is the hit area width or height, the second is the distance from the
start of this hit area to the start of the next. Both spacings are in
pixels. There must be sufficient gap between the objects to allew the
current item barder to be drawn.

Each of the object index lists has the same form as the object item
lisl described below. The item numbers within these lists should be
negative, and the action routine pointers zero,

The object item lists consist of a set of list enilries, one for each
column in a row. Each object list entry contains the item number for the
obiject, the object type {test, sprite ete.), the justification {left, right or
centre, top, bottom or centre), a pointer to the actual cbject and a
pointer to an action routine to be called when the object is hit. Note that
it is possible to have just one large object list, which is 'cut up’ into rows
by making each row list start pointer equal to the previous row list end
pointer,

The justification rule bytes are zero for a centered object, positive
for left or top justified and negative for right or bottom justified, The
value indicates the distance of the object, in pixels, from the edge of the
hit area,

The row list consisis of pairs of pointers to the start and end of
each object list.

nenu abject spacing list

wwm_size $00 word object hit size
wwm_speoe 302 word object spacing
wwm.slen $04 object spacing list element length

menu row st

pointer to object row list start
pointer to object row list end
menu row list element length

wwm_rows $00 long
wwm_rowe $04 long
wwm.rlen $08

menu object /index list entry

wwm_xjst $00 byte object x justification rule
wwm_yist $01 byrte object ¥ jJustification rule

wwm_type $02 byte object type {0=text, 2=sprite, 4=blob, 6=pattern)

wWm_skey %03 byte gelection keystroke {upper case}
wwm_pobj $04 long peinter to object

wwm_item $08 word item number [-ve for index)

wwm_pact $0a long pointer to action routine (zero for index)
wwim.olen §0e menu cbject /index list entry length

142

2 8

s 838 383

LA A A U L A UNNEL L UL L L AN UNN AN U AL AL AL AN AL LA A

A 4

2 8 0L & & 0 & & B

T |

| TR T

&

Warking Definition Organisation

As the working definition is held together with pointers, it is not
necessary for the data tc be contiguous, or even in related parts of the
memory. The window management setup routine, however, does transfer the
date from the window definition to the working definition in an orderly
mAanner.

header
ww_lists (116}

information window list
wwi.elen (20) x ww_ninfo + 2

infoermation object lists
wwo.elen {18} x ww_nincb + 2 x ww_ninfo

locse menu item list
wwl.elen (22} x ww_nlitm + 2

application window list
4 x ww_nappl + 4

application window definitions

The application sub-window definition set up by the window
management routine WM.SETUP is $64 bytcs long. This definition may be
extended by either an applicaticn setup routine or the menu management
setup routine.

An application sub-window definition set up by the menu management
setup routine WM.SMENU has the following structure:

application window definition
wwa.blen + 2 x wwa.clen + wwa.mlen {172}

column spacing list
wwi.slen (4} x wwa_ncol

row spacing list
wwim.slen {4} x wwa_nrow

column index index {optional)
{wwm.olen [14) x wwa_ncol}

row index list {opticnal}
{wwm.olen {14} x wwa_nrow!

menu row list
wwn.rlen {8) x wwa_nrow

menu object lists
wwm.olen x nr of objects

143

Window Status Area

The window atatus ares is used for communication between the
application and the window and menu management routines, The window
status area contains the pointer record, the tables giving the current
sub-window and menu item, the control blocks for the pan, screll and split
status of a sub-window and the tables giving the status of all menu items,

The file WMAN_WSTATUS contains definitions of the symbols used in
this secticn: it may be INCLUDEd in any assembler files that manipulate
window status areas.

There is a fixed size base area which is pointed to from the window
working definition header;
window linkage ares

wa_work 00 long
wy_wdef $04 long

window working arca

pointer to window working definition
pointer to window definition

pointer record (24 bytes)

channel ID of window enclosing the pointer
sub-window number enclosing pointer {or -1}
pointer x pixel position (sub-window)
pointer ¥ pixel position {sub-window)

key stroke {or 0}

key press {or 0)

wa_point $08

wsp_chid $08B long
wsp_swinr $0c word
wsp_xpos $0= word
wsp_spos $10 word
wap_kstr $12 byle
wap_kprs $13 byte

event vector

window byte of event vector
sub-window byte of event vector
pointer byte of event vector

wsp_evnt $14 long
wsp_weve $15 byte
wsp_seve $16 byte
wsp_peve $17 byte

ws_subdf $18

wsp_xsiz $18 word
wsp_ysir $la word
wsp_xorg $1c word
wsp_yorg $le word

sub-window area definition {4 words)
sub-window x size {width)
sub-window y size (height)
sub-window x origin

sub-window vy origin

pointer position (absolute)
display mode for this window

ws_ptpos $20 long
ws_wmode $24 word

ws_cilact $Z2c¢ long
ws_citem $30 word
ws_citrw $32 word
ws_Cipap $34 word
ws_cispr $36 word
ws_cihit $38

ws_cihxs $3B word
ws_cihys $3a word
ws_cihxo $3c word
ws_cihyo $3e word

pointer to current item action routine
current item in sub-window

current item border width

paper colour behind current item

spare

current item hit area (absolute coordinates)
hit area x size

hit area y size

hit area x origin in sub-window

hit area y origin in sub-window

144

+*+ ®* H H & » H T T B B D

T M
J

T T D PP H DD DO

!‘J .l.

T YT WY T TR T

TN TN |

3 8 8 B &

]

The current item action rouline is called whenever the the pointer is
moved, or may be moved, while the current ilem is zers or positive. If this
pointer is zero the internal current item routines are called: these
require all the rest of the current item status area to be correctly set.
If an acticn routine is supplied, then the $10 bytes after the action
routine may be redefined as required.

The fixed size area is followed immediately by the loose menu item
status block which gives the status of all the loose menu items. The block
is indexed by the loose menu item number. The status blsck should be
preset by the application: thereafter it is maintained by the window
management routines,

loose menu item status block

ws_litem $40 one byte per loose item ($10 is unavailable,

$00 is available, $80 is selected)

The rest of the status area is in a free format. It may contaln status
blocks for the application sub-window menus (if any) end pan and scroll
centrol blocks. Since there is a peointer from the window working
definition to each of these blocks, they need not be contiguous and may be
in completely unrelated parts of the memory.

For each standard format sub-window, there is a status block giving
the status of each item in the sub-window menu.

sub-window menu item status block
wss_item $00 one byte per menu item {$10 is unavailable,
300 is available, $30 is selected)

The status bytes in the item status blocks are used for
communication between the application and the menu handling routines.
Initially, the status of each item is set by the application. The window
and menu drawing routines will draw each item using the appropriate
colours patterns and blobs. The byte is divided into two nibbkles: the
upper nibble contains the required {or actual status), the lower nibble is
zero except when ap action routine requires an item to be redrawn.

If an item is "hit", or selected by keystroke, then, if the item is
available, the status is changed. If an item is hit by a "do” then, if the
item is available, the status is set to selected. IT an action routine
requires the status of any items to be redrawn, then the new status
should be set in Lhe upper nibble, and the least significant bit sct.

Status Wormal Redraw
unavallable $10 311
available $00 $01
selected $80 51

For each sub-window, there may be an optional pan or scroll and split
control block for horizontal and vertical control of & window.

This block starts with the number of pannable or scrollable sections,
followed by a list of the start and end row or column number ‘f—’f each
section, As usual, the start row or column is included in the section, the
end row or column is excluded.

sub-window section eonlrol block header
wss_nsec $00 word number of sections
sub-window section control block record

section start pixel position

section start column or row

section size (number of columns or rows}
section status list entry length

wss_spos $00 word
wss_sstt $02 word
wss_ssiz $04 word
wss.s5ln $06

** T T H»TTH DT AHH AN

L S SN AN G N)
24 4 3 3 33 SIS IIISJI

. &

2 2 '3 b 2 4

g |

Pointer Environment Changes

You are supplied with two versions of both the Pointer Interface and
the Window Manager, of different vintages. Those loaded by the BOOT file
are the more recent versions, and have more features than the old
versions. The older versions are as shipped with Qram v1.07, and are thus
typical of the versions used by the majority of owners of Qram. Should you
wish to write software for sale, you can either write for these older
versions, eccepting their restrictions, or for the never versions, in which
case Some existing users of the Pointer Envircnment will be unable to use
your software. A third option i3 to enter into a licensing agreement with
QJUMP which would allow you to include the upgraded version of the
Pointer Environment with your software in return for a suitable fee: as we
intend the Pointer Environment to set & new standard for QL software,
such a fee is unlikely to be excessive (end of sordid commerciall),

The following list summarises the changes since the release of Qram
v1.07 with the Q@ram version in the left-hand column for information. It is
in the form of the corrections that were made for each version, aloeng with
suggested methods of skirting round the problem. The descriptions are
necessarily very sketchy: if you reguire further details please write to us
at the address given on the first page of this manual.

Qram Changes
v1.08 v1.06 Pointer Interface.
Fey debounce improved.

Evasive action reguired,

{Extension)

v1.04 Window Manager
Putting pointer over HELP text does
not new get NO ENTRY peinter.

(Cosmetic change.)

v1.09 +1.07 Pointer Interface.
First internal mouse version.
Closing last window in particular
mode now restores all windows
in other mode.

{(Extension)
{Fxtension)

v1.05 Window Manager.
Zero text pointers allewed.
Information blobs allowed.

Point Lo null string.
Use & sprite.

vi.i1 v1.08 Pointer Interface.
Avoids problems with closing unused
consoles (1L used to be able to
lose the keyboard queue.)}

Never open a console
without using it,

Inmprovements to screen restoration on {Extension)
window close,
v1.12 v1.09 Pointepr Interface.
Prevents channel ¢ from being closed. {(Extension)
Mouse movement stuffs cursor (Extension)

keystrokes into keyboard queue.
SD.WDEF (WINDOW from SuperBASIC)
now resets cursor positicon.
Multicclour patterns for bloba made
usable,

Do explicit SD.POS after
an SDWDEF
Usge only sclid colours.

147

VXXX

148

v1.06 Window manager

WM.CHWIN now returns window size
change correctly.

Initial pointer position now set
relative to hit area.

Structures extended to allow fixed
layout sizes as well as scaleable.

WHM.RPTR detects BREAK when called
from SuperBASIC.

Pending newline problems in
information windows fixed.

Menu sub-window paper set hefore
scrolling.

v1.1¢ Pointer Interface

"Top" secondary is now the most
recent one, not the first one.

New TRAP IOP.FLIM, DB=$6C to find
permigsible limits for window.

New TRAPs IOP.SVPW/RSPW DO=$6I/6E
to save/restore part windows

IOP.RPXL now implemented: new spec,
includes scanning

FWIND now anly detectis managed
secondaries of managed primaries

IOP.OUTL can how move a secondary.

IOP.OUTL now deals with secondaries
that fall cutside a re—-defined
primary (now set to primary’s hit
arsal

Odd shadow widths evened up.

I0P.5PTR now only sets new position,
s0 it works properly.

Unmanaged secondaries now Yimited ta
managed primary cutline, not
whole screen,

IOP.PICK ignores lock.

IOP.PICK allows keyboard gueue to be
grabbed, 50 cursor appears OK

Hitting DO mouse button in kevboard
window stuffs an ENTER.

Both buttons on mouse stuffs one or
two character string,

Dropping blohs under sprite in MODE 8
fixed,

Dynamic sprites implemented.

Pattern outside sprite mask is now
X0Red into screen, not ORed.

Extending an unmanaged locked
primary’s outline by opening a
larger secondary now works,

Write your own WM.CHWIN,

Adjust initial positian
in definition.
Request only fixed sizes

No fix possible.

Leave one character
spare al RHS of
information window.

Set paper before calling
WM.PANSC

Use SDLEXTQOP to re-link
{Extension)

{Extensicon)

{(Extension)

Den't move secondaries.
Re-define all
secondaries when moving
primary.

Use only even width
shadows.
No fix possible,

Ensure secondaries are
managed

Don't pick via a
locked window,
{Cosmetic)

{Extension)
(Extension}

Don't drop blobs under
sprite.

{Extension)

{Extension)

Hake primary managed
ordon't do it.

3 4 b ‘4 A

J ¥

4y 4 44 & 3 A

s T H PP H HH H A DD DO DT T T T P AP

L 34 48 3 3 33D

B

5\

v1.07 Window Manager

Pull-down windows now limited to
primary.

WHM.CHWIN can now deal with pull-down
windows.

WM.SETUP now uses correct amount of
space in the working definition.

Sub-window hit routine now called
when E5C hit in sub~window,

Window clear flag introduced into
window attributes.

Position them carefuliy
Don’t move pull-downs

Allow one word extrs
per information
sub-window.

Mo fix possible.

Use zero clear flag
(clear window) only.

Utilities
Two utility programs are provided: they are ordinary EXECutable
programs which may be started frem SuperBASIC or Qram’s FILES menu.

CVSCR

This utility converts a screen image file into a fermat suitable for
loading into the PAINT demonstration program. It requests an input
filename, and checks that it is exactly 32k long, and of an appropriate
type (not executable). If the input file passes these tests, an output
filename is reguested, into which the processed file will be written: if
this already exists then you are asked whether it is OK to overwrite it.
Finally the program asks which screen mode the screen image wasg in, there
being no way to determine this from the file, and writes out the copverted
file,

The conversion process adds a 10-byte header onto the start of the
screen image data, consisting of a flag, X and Y sizes {in pixels), Yine
length in bytes, and the mode flag.

Canert Screen

Scresn imgoe needing treotaent £ip2_demscr
Destingtion fileranes fip2_demscr_pic
flp2_demscr_pilc already exists

oF to overurife. Y or N7 Y

MODE 4 zcreen image,.Y or NP Y

STEKINC

This utility is used to process SuperBASIC programs which use the
Window Manager facilities of the Painter Toolkit, and have been compiled
using the @_Liberator compiler. It fixes the problem caused by the Window
Manager using more stack than @_Liberator provides, by increasing the
provision. This modification needs to be done in the file header, the
compiled code and the run-time system, sa the run-time system must have
been included in the object file. One filename is requested, and the file is
converted in place as no size change is involved. The program will usually
notice if the file is not a @_Liberated object file including the run-time
system, and complain,

: - Btock. Increqse

0_Liberated progrim so that it hes enough stuck to

use the Window Munager successfully. The progrom

nust contain its oun copy of the runtime system.
Frogrom £ile needipg treatment? flpZ_paint_obj
Dz

L)

rT* T PDH PP HHS HEDTEETHEHTOTDHPTEETTEETTDTPD

,—gpq-g—-—-_-—-—-—__..__—______..

IE;

TR TR A S N N T T ! O ¢

A8 8 4333033

&

Troubleshecoting

You may encounter problems with the FPointer Toolkit: the following
list is by no means exhaustive, but covers some of the most likely causes
of errer.

My progream wads OK yesterday, but i doesnt’t work today. This is
usually caused by changing your BOOT file, or some other aspect of your
system not directly cennected with the program itself. In particular, you
must set SuperBASIC’s outline with an QUTLN #0... call to use all but the
gimplest parts of the Toolkit: if you don’t, then the Pointer Interface will
assume that SuperBASIC is "unmanaged”, and not bother to check for
sub-windows, user-defined pointers and so on.

I don’t get my speclal sprite, just The ariow. User-defined sprites
appear in sub-windows as a reault of a call to SWDEF or IOP.SWDF to set up
the appropriate data structure. Sub-windows will be ignored if their
"parent” window or its primary (or both) are "unmanaged”. They wiil alsc be
jgnored if there is & gap in the sub-window list, as the list is terminated
by & zere pointer so a zerc in the middle of the list is interpreted as an
end of liat marker.

wmwmwmmwmmmmau compibed
SuperBASIC programs using the Pointer Toolkit can't be compiled with the
Super/Turbocharge compilers, as they can't cope with array parameters or
results returned in the parameter list. If compiled with Q_Liberator then
you will have problems if you have used Window Manager routines but have
not used the STKINC utility on the resulting program. The program will not
work if its cutline has not been set: see above.

My compifed program -startd odd OK but then {t cradhes This is
usually caused by not using the STKINC utility where appropriate: it can
also happen if you haven't specified encugh heap, stack or buffer space
for the program.

wmmmmmmamwmmm This is
very often caused by an incorrect window definition, which causes the
setup routine WH.SETUP Lc use more space, when creating the werking
definition, than was anticipated. If this space is in the common heap then
the following heap header will be corrupted, resulting in a system crash
instantly or half an hour later, depending.

Ommmmoémemmwgatae&G&doan
When specifying a keystroke to select a menu jitem, remember that the
character must be specéfied in upper case, although it doesn't matter if
the key ptedded is upper or lower case. Remember also that event keys
such az HELP, CANCEL and so on are translated to have very low key values
such as 4, 3 and so on.

151

