{_LIBERATOR USER MANUAL

Second edition February 1988
Updates for Esleass 3.3 March 1990

Valid for Budget Release 1.0 and Roleane 3.3

The §_Liberstor software and documentation are copyrighted with all

rights reserved. Mo part of the software or documeniation may be copled,
reproduced or slored on any electronic medium withoul the prior written

mldhhﬂlhmﬂmmuhurhﬂhlﬂlwl

Wnilst all reasonsble care has been taken to ensure that Q Liberator does
nol contain errors and that the documentation Is sccurate, in mno
circumatances will Liberation Software be lishle for any direct, indlirect or
oonaequential damage or loss arising out of the use or inability to use the
soflware or (ts documentstion

Liberation Software has a policy of conatant development and Improvement of
ite products. Updates (o this monual will be available for later releases.

Copyright (c) 1986,1990
Liberation Softwara

IMPORTANT HOTE

In chaplers 1 to 14 of this manual, reference is made lo Release 3.2 of the
compiler. All the information is also valid for Release 1.J excepl where the
text in marked with a vertical line in the right margin. This indicates thet 3.3
containe enhancements to the Q_Liberator specification. These are explained
in detail in chapter 15, Please note that the index ourrently excludes
raferences lo this chapler.

Thank you for buying O Liberator. Please complete
the following registration form and ceturn it to :

Liberation Software
43 Clifton Road
Kingstopn upon Thames
Surrey KT2 6PJ

Hama) Q0 _Liberator Release

dress __ R Q L ROM Version

Flease describe your hardware {disks, memory etc)

Where did you hear of O _Liberator ?

Oo you read QL WORLD regularly ¥

Are you a QUANTA member 7

Which other Q@ L compilers do you usge 7
w do you think {0 _Liberator compares ?

Which features do you like and why ?

Which don't you like ¥

How useful did you find the manual ?

Do you use QLOAD and QREF 7

Please use the space overleaf to write any other comments on Q Liberator.
We are particularly intereated in features would you like to sae in
future versions.

e

CHAPTEHR 1 INTRODUCTION
Why a SuperBASIC compiler. System requirements. Package contenis.
Making copies. How to use this monual, Commerciol use. References.
QIAPTEHR 2 GETTING STARTED
Compiling a progrum. The @ Liberalor screen. Running o compiled
program. Introduction to QX. Separaling phase [and 2.
GIAPTER 3 FUNDAMENTALS

The ﬂu.pé-*HAS#C interpreter. The @ Liberator compiler. Multitosking.
Jobi Control. A muititasking example. Adapling prograoms to multitosk.
Kevhoard hordling. Screen handling. File handling.

CHAPTER 4 USING Q_LIRERATOR
Phase | - producing a workfile. Celling phase 2. Phase 2 - producing an
abject file. Budget QLIS phase 2, The Release 3 meru syslem. Compiling
a program. Compiler oplions. Compiler directives.

CHAPTERS COMPILER MESSAGES
Megsages during phase 1. Messages from phase 2. Wamings and Errors.

CHAPTER 6 RUNTIME ERHORS
The error window,. Initialisation errors. QDOS errors. QLIB errors.

CHAPTER 7 MEMORY MANAGEMENT
Object program structure. Dala areg. Runtime statistics. QLIB_PATCH.

(HAPTER 8 INTERPRETER [Q_LIBERATOR COMPARISON

Compalibility. Progrom structure. DEFne-.END DEFine FOR-.END FOR
HE Peat..END REPeal SELect ON..END SELect [F.THEN.END IF. The
dreuded GO T, Program size. Unsupported keywords. [Dala types.
Flaating point numbers, [ntegers. Strings. Arrays. Chonels. Initial
win dows.

CHAPTER S USING ASSEMBLER EXTENSIONS

Loading assembler extensions. HRESPH. Wriling assembler exignsions.
Linking during compilation. An example.

0.1

CHMAPTER 10 INTER-JOB COMMLUNICATION

Passing information (o jobs. The procedure QX. Passing o command
siring. Pasiing chawnels lo jobs. Working with pipes. Q/UMP Toolkit.
Example of filter program. Selling priority with @X.

CHAPTER 11 ERROR TRAPPING

Existing error trapping facilities. Liberator error trapping. Tuming
on error lrapping.: @ _ERR ond Q_ERRS. Tuming off error (ropping.
Caul lon.

CHAPTER 12 JOB CONTROL

Listing jobs. Removing a job. Changing the priority of a Job, Currenl job
number, Cursor conirol.

(HAPTER 13 SOLVING PROBLEME
Problema wilh microdrives. Problems with compiled programs.

CHAPTER 14 RELEASE J EXTENSIONS

Integer FOR variables. DEF_INTEGER. Integration with QLOAD. External
procedures. Extemals as residen! procedures. Erternals as overiays.
OVERLAY and UNLOAD., Compiled subrouline libraries. EXT_PROC ond
EXT_FN. Variables and external procedures. GLOBAL. Implementalion
notes. Free ruming procedures. Use with QRAMN and QFTH.

CHAPTER 15 RELEASE 1.3 ENHANCEMENTS

Notes for Minerva users. SuperBASIC changes. WHEN ERRor. Enlering
WHEN Error. ERLIN, ERNUM & REPORT. Exiting WHEN ERRor. CONTINUE &
RETRY. Tuming off WHEN ERRor. WHEN ERRor ond Q_ERH. WHEN ERRor
in compiled programs. WHEN ERRor ond externals. WHEN wariable.
Stopping WHEN processing. WHEN variable in eompiled progroms. TRACE
option. Error console. Free munning procedures. GQLIH SYS. New error
massagen.

APPENDIX A BUDGET Q_LIBERATOR FILE CONTENTS
APPENDIX B RELEASE 3.3 FILE CONTENTS
INDEX

M) INTRODUCTLON

Chapter 1 Introduction

WY A SUPERBASIC COMPILER ?

SuperBASIC is an elegent, flexible language designed by programmers for
programmers. It i8 8 considersble advance on other Implementations of
RASIC and eontains some unigue fealures. It i ideally suited to be the
QL's native lnguage.

1t is also somewhat slow, and gets slower as programs increase in size.
Programs ¢an take an age to load and there 18 no posaibility of mmning
more than one SuperBASIC program simultsnecusly.

To solve these problems we decided to write a SuperBASIC compller. We
did not wish to deny the programmer any of SuperBASICs more exotic
features and so the major design aim was to adhere rigidly to the
SuperBASIC syntax. There seemed little point in supporting a subset
similar to that of our competitors.

The result was the first version of Q_Liberator - now available as our
budget version. It is a sophisticated tool which produces compiled
programs {(known technically as objeci programs) from a SuperBASIC
program. Object programa losd in a fraction of the time and execute many
times fastes than the mterpreled original. Purthermore such programsa
can be multitasked ie several programs can be run simutaneously and all
are sccure from prying eyes because Q Liberator programs are
indecipherable when examined.

With a few well documented (and obvious) exceplions Q_Liberator can
compile virtually sny SuperBASIC program. There is not normally any need
o chango the original program.

EXTHA FEATURES

) _Liberator is much more than just a tool to create faster programs; the
SuperBASIC extenslons also supplied provide socess to facilities within
the QL w hich until now have been denied to SuperBASIC, In particwar full
error trapplng can he included in programs rogardless of ROM version,
and the interesting possibilities of inter-job communication through
various means including pipes can be exploroed.

11

INTRODUCTION

SYSTEM REQUI REMENTS

Q_Liberator has been designed to be fully useable on any QL compatible
hardware. § Liberstor end the programs which it compiles will work with
all extension disk systems which sdhere to the standard QL format and
will happily coexist slongside any well behaved sofl ware.

Special provision has been made in the budget version to ensure that large
programs can be compiled and run on an unexpanded QL, but il extendod
memory is available then @_ Liberator will exploit it.

Q@ _LIBERATOR RELEASE 3.2

This wversion of @ Liberator includes all the festures of the budget
compiler but with many improvements in speed and functionality. It hes a
complately different menu driven 'front end® and adds & major new facility
- the ahility to build libraries of complled procedures or functions. Such
procedures can be loaded in a variety of different ways snd can be called
by elther interpreted or compiled programs.

Release 1.2 is larger than the budget version and is best used with at least
256k of memory. An slternative for 128k users is to buy the ROM version
of 3.2. This 16K ROM cartridge contains the QLIB runtime system and
most of our ancilliary SuperBASIC extensione. This frees RAM for larger
complled programs, and gives the advantage of even faster execution. In
all other respects it is identical to an entirely RAM based version.

PACKAGE CONTENTS

The @_Liberator peekage comprises this manual, & registration form and &
master microdrive (or floppy) containing all the @ _Liberator software.
The udget master can be identified by a green label whereas the release 3
master has a red label. The ROM version also includes a 16k ROM
cartridge which plugs into the rear of the QL. (Power off first!)

The master copy should be kept in & safe place and used only for creating
working coples as deseribed below. Replacement, except in cases of faully
materials, is chargeable. If you ever order sn upgrade from us, please
return only the master with your remittance (ie NOT the manual)

The files on the master vary between releases and are fully described in
appendices A and B.

MAKING WORKING COPIES

Unlike the earliest versions of Q Liberator, there is no copy protection on
current relesses. You cen freely copy the files to any media but please,
for your own use oly. There s a CLONE program on the master which will
copy the QLIB files and optionslly the DEMO and BOOT files to a device of
yeuur choice (including RAMdisk) to produce a working copy.

CLONME is supplied as a BASIC program and is straightforward in use. It
expects the target media to be be pre-formatted (but nol neceasarily
empty). If & micredrive copy is belng preduced it is wise to format the
cartridge in the device in which it will be used to minimise bad media
eTrorS.

1.2

INTRODUCTION

CLOME first prompts for the name of the device which contalns the masier
and shows the defaull entry mdv? _ in parenthesls. This can be sccepled
by hitting ENTER, or an allernative drive name antered,

After specifying the name of the targel device in similar way, CLONE asks
for the name of the load device for the part of the compller called
QLIB_OfJ, Enter the name of the device in which this §_Liberator copy
will b used, This will probably be the drive the copy is being prodused
in. Thin eniry is mecessary because Q Liberator (s organised in 2 parts.
The fiest part needs to know where to find the second part la.

You will then be asked if you wanl to copy the demonsiration programs
sontained on tha master. Do so for your first working copy so that you can
work through the examples in this manual.

Tha last guestion inquires if you want to creale a standard BOOT program
on your working copy. It is wise to do this for your first experiments.
Later you may wish lo adapt an existing BOOT program to include loading
the @ Liberator system. If you have a ROM based Q@ _Liberator then the

program is superfloous as the exiensions w BOOT loads are
alresdy resident in the ROM.

CLONE then proceeds to copy each of the files from the master lo the new
working copy. When it is complete, reset the QL and iry loading (rom It.

CREATING A RAM DISK COPY

If you want to conflgure Q_Liberator to load from a RAM disk, put the
master in mdvl , set the working copy as mdvi_, and the load device as

raml_. After ihe CLONE is complete, you can modify the BOOT to load
QLI _OlJ into the RAM disk on start up.

CONFIGURING RELEASE 3

The configuration process which takes place in the CLONE procodure, can
ba furiher modified with the procedurn QLIB_USE desoribad in chapter 14
for Holouse 3 users only. This should only be sttempled when you are
completoly familiar with §@_Liberator.

USING TS MANUAL

This manual describes both Budget Q_Liberalor and Releasa 1.1. All
information is relevant to both releases unless otherwise siated. Minor
differencos are explained in the ltext, but where there are major
differences there is a separate section describing the features of each
version. An mlire chapter i3 devoled Lo the unique features of relesse
3.2,

We Wlended this manusl to be suitable both for those who mre unfamiliar
with the conoepts of compilation and multitasking. and the more advanced
user, who will hopefully find many stimalating idens.

A working knowledge of SuperBASIC Is assumed. Throughoul the text

there are many examples; you are encouraged to try these to aid your
understan ding.

1.3

IHNTRODUCTION

COMMERCIAL USE

Those who wish to market programs compiled with @ _ Liberator are free to
do so provided that :

Credit i8 given to Q_Liberator and Liberation Software within the
program or accompanying documentat ion.

Liberation Soft ware is notified of all such programs.

Amy Liberation Software extensions such as those in QLIB_EXT, are
linked to the object program, (ses chapter 9.

It is preferable to link the runtime system QLIB_RUN to the object
program to produce a stand-alone file (see Chapter 4. If however the
product comprises several compiled programs this can be inelficient in
memory usage. For such cases the runtime system can be supplied as a
aseparate file.

The partz of Q_Liberator contained within commercial programs remain
the intellectual property of Liberation Software at all times.

Mo other part of the Q_Liberator system may be distributed in any form.

REFERENCE MATERIAL

The best book for those who wish a fuller deseription of SuperBASIC than
that provided by the QL User Guide is:

QL SuperBASIC - The Definitive Handbook
by Jan Jones, designer and writer of the language.
Me Graw Hill 1985 ISBHN 0-07-084784-3

This book proved indispensible during the cereation of @_Liberator. The

language described therein is followed precisely except where documented
in this manual.

CHEDITS

The original Libarator was designed and written in many long evenings
between April 1985 and September 1986, It was a joint project and lent
itgelf well to creation by & team of two.

Adrian Ssundy was mainly responsible for the compiler, which itself was
written in SuperBASIC then compiled, whilst 1, lan Stewart wrote the
runtime system and the manal.

Thanks are due to Leon Jeeggl for relentless bupg hunting snd much
support, to Tony Tebby for useful tools and challenging test material and
to my wife Julis.

SINCLAIR, QL. SuperBASIC and QDOS are trademarks of SINCLAIR
Research Litd.

The Toolkit referred to throughout this text is the QJUMP Toolkit 11,
available from CARE Flectronics. Many of the leatures mentioned are
present on the earlier QL Toolkit from Sinclair.

14

GETTING STARTED

Chapter 2 Getting Started

‘The ailm of this chapler is to teach you enough aboul @ _Liberator to
compile a Ehort SuperBASIC program and to run the complled version.

First, if you have not slready done so, create a working ocopy of
Q Liberator with all demo programs present by londing and running the
CTONE program. Now reset your QL , place the working copy in MDVL__ (or
FLPL_) ond press F1 or F2 as you see fit. The BOOT program on the
microdrive will automat ically load all the necessary @ Liberator files. In
channal 0 you will see the Q_Liberator copyright message brisfly appear.
Your system is now ready to compile a program.

If you have s ROM based Q Liberator the BOOT program |a unnecessary.
Simply lnsert the ROM with the QL powered off, then turn it on. The
copyright message will be displayed on the initial sereen above the F1 F2
prompl. You will still need the working copy in MDVL to load the remaining
paris of the compiler.

Liberalor takes as its starting point a working SuperBASIC program

has been LOADed into memory. This is referred Lo as the source

program. For the demonsiration we will use 8 small program supplied on
the master which sorts integers, strings or Ooats.

Type LOADMDVI_SOKT_DEMO

and wall for the cursor to reappear. Now type RUN and walch the screen.
All bying well you should see the demonstration sort program being put
throupgh ils paces. Wall until it is complote and make a note of the times
which are displayed.

Now we are ready to see §@_Liberator in action.

COMPILING A PROGRAM

Q_Liherator compiles programs in two distincl phases, The first phase
does saome inltial checking and produces a work file for use by the second
phane.

The second phase does all the detailed work of checking the program for
errors ond produces en object program, An object program when
execculed behaves In the same way as (he original source program, but
loads wnd runs moch faster. Purthermore it can multitesk le man
concurrently with other programs.

The two compilor phases can be run independentily of each other or,
providing there I8 oough memory, they can run automatically ane after the
olher. We shall use the sutomatic mode for the first demonstration.

2.1

CGETTLNG STARTED

Type LIBERATE MDVI_SORT DEMO,

Take care to type in the comma at the end as it is this which causes the
two phases to follow esch other. If you did forget it, don't worry; just
retype the line.

You should now see the message "Creating work file” in channel 0 and hear
MDV1 spinning. The work file (its name is MIVL_DEMO SORT wrk) will
ocoupy much the same amount of space on the microdrive as fhe source
program. Once it has been created, the source program is no longer
necessary for @_Liberator to complete its job.

After a fow seconds you will see the message "Loading Q_Liberator” in
chanpel 0. The second phase which does most of the work is now being
loaded. Phase 2 is itself a multitasking Q_Liberator program, so while it
is mmnning you will still see a cursor in channel 0 end can continue to use
SuperBA SIC if you wish.

THE @_ LIBERATOR SCHEEN

When loading is complete you will see the main Liberator screen. Al
firat the top window will contain only the prod name, but shortly you
will see the SuperBASIC line number which Q@ Liberator is currently
processing displayed in the top right hand corner. Shortly after this
mimber haa reached the maximom line mumber in the program the
compilation is complete.

The results of the compilation are displayed in the lower window. Here
yout will see the size of the program, the amound of data area required, the
higheat channel used and the compile time (phase 2 onlyl The
demonstration program as supglied compiles perfectly (of course) but if
there had been any errors then they too would have been displayed in the
lower window.

RUNNING THE COMPILED PROGRAM

After compllation , you can try running the object program which
Q_Liberator has produced. The object program name has the extension
' obj’ appended to it.

Type EXEC_W MDV1_DEMO_SORT_OBJ

to load and execute the compiled sort program. After avery briefl loading
time you should see the sort program running again, but this time much
faster. We used EXEC_W because this ensures that only the sort program
is running. You could mlso use EXEC to start the program in which case
both the compiled program end the SuperBASIC interproter will run
simultsnecsly. You can switch the keyboard between the two programs by
pressing controd-C. This operation which will already be familiar to many
users is explained in more detail in the next chapter. When EXEC is used
the times for the complled program ure slightly longer, because the
SuperBASIC interproter (8 still active and using some processor Lime.

22

o CETTING STARTED

INTRODUCTION TO QX

The procedure §X offers an easier way to load and slart chject programs,
becanse there is no need to spocify the extension *'_obj'. In other respects
it behaves similady to EXEC. Its companion, QW is similar to EXEC_W.

Try QX MDV1_DEMO_SORT

Whilst the sort is runndng, try typing some SuperBA SIC commands to show
that the interpreter and the compiled program are indeed running
simultanecusly. QX and its companion QW have other uses, explained fully
in chapter 10.

SEPARATING PHASE 1 AND PHASE 2

When there is nsuffucient memory to had both the source program and

phase 2 in memory simultanecusly, the program can be compiled in separate
phases. The first phase is started by Lyping

LIBERATE MDV1_DEMO_SORT

This simply creates the workfile then stops. You can now type NEW to
clear all the memory used by the interpreter before starting phase 2 by
typing just

LIBRERATE

This has the effect of bading @ Liberator which will then wait to be told
what to do. First press control C to swilch the cursor to the compiler
window if it is not already there. What you do next to start compilation
differs between the 2 compiler versions.

With the BUDGET releaze the compller will be expecting a8 command line o
be typed. In its simplest form this is just the name of the program to
compile. Type

MDV1_DEMO_SORT

and you will see the budget compliler running as before.

With RELEASE 1.2 you will sec a more complex screen with o number of
menu item boxes. The box marked 'source file' on the screen will have a
highlighted outline. Press SPACE to select this box, type the [file name
MWL DEMO SORT lerminated by ENTER into the box, then press C (for
Compile) to start compilation. If you find this confusing. don't worry. All
will be explained in chapter 4.

With either releass, when §_Liberator is finished you have the opportunity
to compile snother program or lo end § Liberator. With the BUDGET
version, just enter an empty line to end; with HELEASE 3.2 press the
ESCape key.

23

GETTING STARTED

i i

The workfile created by phase 1 is automatlically deleted at the end of &
compilation, If however the compile fails because of lack of memory, it will
remain on the microdrive. It is ot chengad in any way during phase 2 and
&0 can be resubmitted to the compiler when more memory is available.

You should now have enough information to begin compiling your own
programs, but beginers in particuar should read the next chapter which
gives some guidelines to ensure they will mm successfully in & multitasking
environment. Detailed compiler oporating instructions are in chapter 4,
while chapters 5 snd 6 describe the error messages which you may
encounter.

Release 3.2 owners may find it instructive to play with the menu system
and read some of the online HELP information which is availabie through
the Fl key before proceeding further.

" Copyright 1987 Liberation Sof tuure Releose 3.21
wir s -Belibergtor o 200
Stats Debug Lines Hames Run Auto

Vinds Compile Beep
Source file | FipZdemo_sort™ |

Object file fip2_demo_sort_obj

Report fila -——- SCREEN ——---

Job nome SORT_DEMO

Press - Fi for HELP = F4 for REFRESH - Esc to QUIT

Copygright 1967 Liberation Sof tuare Releose 3.21

Q_L iberdtor Line 158

Compiling ... flp2_demo_sort urk
Mo errors found

Size of progrom : 4598 Dato areo 1 3742
Hﬁ;wst Channel 1 15 Conpile time : 24 Seconds

Pres: - Spoce key to continue

2.4

Chapter 3 Fundamentals

The Motorola 68008 chip inside your QL can only execute its own machine
code instructions; it cannot execute SuperBASIC programa directly.
Therefore, before a program can be exequted, the SuperBASIC instructions
must be translated into snother form. There are two types of program
which can perform such a translation; interpreters and compilers. This
chapter explains the essential differences between them. [t also containg
an introduction to multitasking and advice on writing programs designed to
execute in the multitasking @DOS environment.

THE BUPERBASIC INTERPRETER

When a SuperBASIC program is LOADed, the interpreter translates the
program text which it reads from the microdrive into an internal program
format. The names of all varigbles, procedures and functions are put into &
name table and memory is allocated for the program to use.

This process takes time and is the reason why SuperBASIC programs take
& long time to load.

When you LIST & program the intérpreter converts the internal format back
to s text format which can be displayed on the soreen.

When you type RUN the interpreter starts to translate the program in
memory ling by line. Executing a simple statement can involve many
mmdreds of machine code instructions, most of which are spent
determ just what is to be done. The actual operation, mcoounts for
relatively few instructions.

If a statement i placed inside a FOR or REPeat loop then esch time round
the loop the interpreter must retranslate the statement.

The interpreter keeps track of the location of each procedurs, funotion,
ioop ete, by means of the number gt the start of each line. Finding a line
rmumber irvolves searching from the current line all the way to the target
line. This process gets progressively alower as program size increases.

THE @_LIBERATOR COMFILER

In contrast, @ Liberator takes the internal form of the program and
translates it onee at compile !ime , creating a new file called an object file.

3.1

In the object file, references to line mumbers, procedures, loops etc are
absolute, je the program knows where everything is and searching is
uUnneceEssary.

During compilation, @ Liberator performs all the work of deciding what
has to be done to execute m given statement. Thus when the program is
executed at runtime it runs mach faster.

The object program can enly run in conjunction with the run time system.

This is either pre-losded by a BOOT program or linked to the object
program at compile time.

Q_Liberator programs also load much faster than SuperBASIC programa
because no translation takes place during loading.

It is important to realise that Q@ Liberator in no way replaces the
interpeeter. In fact they complement each other, resulling in a wore
pophisticated working environment. The interpreter becomes the ideal
program development tool offering the advantages of interactive operation,
whilst @ Liberator ensures that the finished product loads and nms
efficiently

MULTITASKING

The QL is rare amongst low cost micros in that its operating system, QDOS,
is inherently muititasking. This means that more than one program can run
on the machine simultanecusly. A multitasking program in QL parlance is
termed a job. Q_Liberator identifies jobe by their number or their name.

The SuperBASIC interpreter, together with the program it is interpreting
conatitute job 0. Job 0 is unigue In that It can grow or ahrink in size as
necessary, and can never be removed.

QDS manages joba by allocating each job some processor time in turm
while the job ia active. The amoumnt of time which a job gets is determined
by its priority . The priority can renge from 0 to 255; 0 means that a job
is inactive, and gets no processor time. When changing priorities it is the
relative difference In priority between two jobs that matters, not the
absolute priority.

If a job ia just waiting for a keyboard input, then it is not using processor
resources.

q_h berator package contains & number of procedures to muﬂ}obl.
t you display which jobs are running, remove jobs and change the
priority of jobs. You may already have aimilar procedures and know how to
use them. If not, you may find it useful to read chapter 12 so that you can
experiment with the procedures within the example which follows.

You can, for example, see the effect that changing a job's priority has on
the rate at which it counts. Try this when there is more than 1 job running.

3.2

e

A MULTITASKING EXAMPLE

The following short program is contained on the Working copy. It is useful
for Uluatrating some aspects of multitasking.

i:: REMark MULTITASKING DEMONSTRATION
107 REMark DEMO_MULTI

108 :

110 j=Q_MYJOB: REMark see chapter 12
120 REPeat

130 AT j,0:PRINT FILL$(" ",20)

140 AT j,0

150 INPUT ("JOB "&ja" >"ka

160 IF s=0 THEN STOP

170 FORx=1TOa

180 AT §,15: PRINT x

190 END POR x

200 END REPeat loop

This program simply prints ite job mumber and prompts for a number to be
entered. If this mumber is 0, the program ends; otherwise it counts from 1
to the number given, whilst displaying the current figure on the screen
The position on the screen is determined by the job mumber.

Type QX MDV1_DEMO_MULTI

to start a copy of this program. You will see the prompt "JOB 1 >" at the
top of the screen with a non flaghing cursor beside it. The job is waiting
for keyboard input. Mote that there is still a flashing curaor in channel 0,
and you can still use SuperBASIC,

There is only one keyboard on the QL, but there may be many jobs waiting
for keyboard input. QDOS provides a mechanism whereby you can
effectively attach the keyboard to different joba as required. This ia done
by pressing Control-C (hold down CTRL and press Ch Doing this makes the
flaghing cursor move to the next job which is awaiting input. If you keep
preasing Control-C you can selact any job which is aweiting input.

Select the curaor for job 1 and type in 8 number, say 1000. You will ses the
program count from 1 to 1000. Mow select the SuperBASIC cursor In
charmel 0 and start a few more coples- Use Control-C to select each
in turn and set them all counting simultsnecusly. Motce how the rate of
counting slows down as more and more jobs are started.

Try changing & job's priority to see the effect this has on the rate at which
it eounte, particularly when there fa more than 1 job runming.

When you are finished, end each program by entering 0.

3.3

o — P —

ADAPTING PROGRAME TO MULTITASK

Mot all programs will be sultsble for mutitasking bocsuse when seversl

programs are running simultsnecusly they compete for the QL's resources.
You need to take this into scooumt when a program is Intended to multitask.

KEYBOARD HANDLING

Thore are three different ways of reading the keyboard in SuperBASIC,
and sach behaves in a different fashion when multitasking.

It ia Important lo consider this point when complling interactive gumes
which use INKEYS., The alternative is to use EXEC_W or QW 1o start the the
job 8o that it runs on itz cen. Then you are guarsnieed sole use of the

1

method of resding the keyboard is to use the KEYROW function.
KEYROW doss not care which job the keyboard s currently atiached fo. It
bypasses this mechanism and reads the keyboard directly. Care is
necessary when EEYROW s the program will treat all keysirokes as
ite own making it to type characters intended for other joba. Itis
bast to elther run such programs on their own, or use obacure keysirokes

¥ USING Q_LIBERATOR

Chapter 4 Using Q Liberator

This chapter gives a detailed description of how to use both Q Liberator
compilers. You will alresdy have seen how easy this can be {f you have
worked through the demonstration run.

An stated earller, §_Liberator compiles programs in two distinot phases.
The [lrst phase produces a work [lle, generated from the SuperBASIC
program which is currently loaded. The second phase processes the work
file to produce an ohject file. Phase 1 is implemented as an assembler
procedure while phase 2 ia in fact a §_Liberator object program

Remember that an object file requires that the runtime sysiem, QLIB_RUN
is present before it can be exeouted. QLIB_RUN can either be loaded once
into the resident procedure area and shared by several object programa
simultanecusly, or an individusl copy can be linked to the object program.

PHASE 1 = PRODUCING A WORKFILE

Before allempling a compllation, you must load the SuperBASIC source into
memory and ensure that your program will run correctly in its interpreted
form. Q_Liberstor cannot be expected to fix programming errors for you!
If you have an unexpanded machine, it is wise to type CLEAR to free any
avallable memory before starting compilation.

Q Liberstor phase 1 is started by using the LIBERATE commmnd in the
following form :

LIRERATE filens ma

'"Fllename’ specifies the name Q_ Liberator will use when forming the work
file name and later in phase 2, the object file name. Thae work file name
will be "fllename_wrk' and the object name 'Mlenama_obf'. Normally you
will have to specify filenames in full unless you have the Toolkit 2
extensions to support default directories.

LIBERATE prints the message "Creating workfile™ on channal 0 while it is
busy. When the cursor reappears the work file is complete. The work [ile
fs a complele representation of the BASIC program in an intermal format.
After this, the original BASIC source program is mo onger needed for the
compllation process and can be removed if required by lyping NEW.

As an example, lo produce a work file of the program MDVI_DEMO_SORT
on MIWZ, you would type:

LOAD MDV] _DEMO_SORT
LIRERATE MDV2_DEMO_SORT

If you winl to compile a really large program on an unexpanded syalem,

41

USING §_LIBERATOR

then you need only load the file GLIB_BIN to the resident procedurs area
when you boot the system. This conlains the LIBERATE procedure and
ocoupies only aboul 3k of memory. After producing a workfile, clear the
program using NEW (or reset), load the runtime system QLIB _RUN and then
slart phase 2 as described below to complets the compilation,

LIBEHATE must slways be typed as & direcl command. 1t is not meaninglul
to use it within & program. If you attempt this you will gel the arror 'bad
o'

PHASE 2 = PROIDUCING AN OBJECT FILE

Phane 2 of the compller reeds to know what work fila it is to process and
any special instructions regarding compilation. [t obtains this from a
command line. A command line is a string of charnoters corresponding to
the following format:

Work_flle_name [option_list }

At a minimum it containe just the name of a work file as produced by phase
1. This should be specified without the *_wrk' suffix. The option_list
specifies which particular compiler feafures are to be emabled or
disabled. The complete list of options is described later in this chapler.

There are several ways of passing & command line to phase 2. One method
i8 o execute the compller and pass the command line in & command string.
Command strings are described in detafl on page 10.2. For example,

QX MDV1_QLIB,"MDVEI_DEMO SORT™

would complete the compilation of the workfile produced in the earlier
example. Phane 1 would be lbaded from MIDVL and then would process the
flis "MOVI_DEMO_SORT wrk" producing tha object file
'IMEMD:Mﬂ_nhj'. At the end of the compilation the work file is
delete

When no option list is present, a default set of options is usod. As an
example of an option lst, the option -0BJ could be used to chenge the name
of the object program. For example,

QX MIV1_QLIB,"MDV2_DEMO_SORT - OBJ MOVl _FREDDY"

would ocreate an object wversion of the sort demo ealled
MOV1_FREDDY _obj.
COMBINING PHASE 1 AND PHASE 2

When there is sufficient memory to hold both the original program and
phase I of the compiler in memory simullsnecusly, the (wo phases of
compilation can be combined. This is initisted by placing a comma after
the filename in & LIBERATE command. If required an option list can be
placed in a string following the comma.

42

USIHG @ LIBERATOR

Thus the format is

LIBERATE filename,
LIBERATE filename,"option_list"

Think of the [first form as having an empty option list. Internally,
LIBERATE first produces the workfile am before, then combines the
filename and tho option list to produce a command string. Phase 2 is then
executed and passed this command string.

While phase 2 i3 being loaded the message “Loading Liberator® is
displayed on channel 0. The device from which phase ¢ is loaded is
confligured when you make a working copy with the CLONE program. With
relesse 3.2 it can also be configured by the QLIB_USE procedure
described in chapter 14, Altermatively the release 3.2 compiler can be
made resident in which case no loading Is necessary.

For example,
LIBERATE MIWV2_TEST,"-0BJ MDV]1_ FREDDY™

would produce the file MDV1_FREDDY OBJ in one operation from whatever
SuperBASIC program was currently loaded.

COMMAND LINE ERRORS

If you make an error in a command line, @ _Liberator will print the bad line
on the listing channel with an arrow pointing to the part in error. You will
see ong of the following self explanatory messages:

HNo source fils

Option name expected
Parameter expected
Invalid eption

INTERACTIVE CONTROL OF PHASE 2

S0 far, each time we have used phase 2 it has compiled one program
according to the command line passed to it, then aborted. An slterrative
method s available by starting phase @ without passing a command line.
This can be done by typing LIBERATE with no parameters whatsoever or
QX MDVI_QLIB without a command string. [n either case phase 2 loads,
openg its windows then awaits your command. At this point there is a
major difference in the way Release 3.1 is controlled from the budget
vergion. Please read the appropriate section.

43

USING Q_LIBERATOR

BUDGET Q_ LIBERATOR PHASE 2

When the budget compiler is started without any parametors, il simply
prompts for & command line to be entered. The commund line has precisely
the same syniax ss eariier defined, but you should nol pul any quotes
arcund the command string when it is entered. For example,

Command : MOV]_DEMO_SORT -0BJ MDVZ_FREDDY _ORJ
would compile the demonstration program as hefore.

Al the end of the compilation, you will be asked if you wmnt to compile
another program Answering no terminates phase 2. You can also
terminate Q@_Liberator by entering an empty commund line.

When you have several programs to complle on o miorodrive based QL it
may be more productive to create all the workfiles fleat then compile them
one after the other with phase 2. Phase 1 is then only loaded once.

Mormally the workfile is deleted at the end of a compliation. If however
phase 2 falls because there is insufficlent memory, the workfile remains
intact. You should reset the QL, reload Q_Liberstor form the working
eopy then repeal phasa L.

You should now skip to the end of this chapler where compller options and
directives are described in detail and further examples are giver.

‘mmarad 1 Tlpd_ Lell
ol anoirer prograe? ydng

ighari L chonnal

44

USING § LIBERATOR

THE @ LIHERATOR MENU SYSTEM

& _Liherator Reloase 1.2 is equipped with an entirely different user
inlerface. In plice of the simple command line of the budget compiler,
there is now o menu driven front end which letas you easily configure the
compiler to suit your own purposes. The menu sysiem exploits, but is not
dependent upon the QPTH interface as used in the QRAM utility package
from QJUMP. If you own this package, preferahly with a mouse, then the
meru system will be entirely familiar. If not, you can drive the program
from the keybonrd and still have sccess to QRAM like facilities such as the
ability to repogition the compiler window on the soreen.

To see the new menu system in setion, boot the §_ Liberator system from a
working copy and type LIBERATE, with no parameters. After a short
loading time you will see the §_Liberator menu screen populated by & sat
of hoxes, mostly containing function names, These are the menu items.
With QHAM instslled, you can select these items with the peinter in the
usual manner. 1f you don't use QRAM then a non flashing cursor will be
visible n one of the boxes. Press control C to switch the keyboard to this
job (page 3.3) snd the cursor will be replaced by a highlighted cutline
around the box in which it sat. This is the Q@ Liberator cursor. It can be
moved back and forth between the various menu ftems with the 4 cursor
keys up, down, left and right. If you ever switch to another job with
control © the outline cursor will again be replaced by a conventional QL
CUrsnr.

A menu item can be selected or deselected by hitting the space bar when
the cursor s over it. A selected item in shown with & red background, a
deselecied item has a black background. [n addition, the items with
function mames in lower case can be toggled by entering the first
character.

Help can be obtained about sny item by positioning the cursor over it and
pressing Fl. Provided that the file QLIB_HELP is presemnt, a page of
relevant nformation will be displayed. Please read the help information
for each entry as it is designed to complemant this manual. If you wish you
can COPY the [ile QLIB_IELF to & o printer or the screen, since it is
stored in o readable form.

Two other keys have a specisl function. F4 redraws the ontire
@_Liverator screen and ESCape has the effect of QUITting the compiler.

MENU ORGANISATION

The box marked "Compile' W the centre of the screen will start
Q_Liberator complling when it is selected providing that a source file
rame hes bheon entered as desceribed below.

In a row ahove 'Complle’ and on either side of {1 the compiler options are
displayed as deseribed i chapter 4. Options can be selected or
deselected as required with the specebar.

The long horizontal boxes in the lower part of the screen are used to enter
file or job names. By positioning the cursor around ome and pressing
space the contents of the field can be edited in the normal QL manner. An
edit is terminated by ENTEHR or the up or down keys. Note that entering
the source file name outomatically defawlts the object file name and the job
mame. They can be altered i required.

4.5

USING Q_ LIBERATOR

The lop righl corner dontains the function MOVE. MOVE is used Lo change
the position of the Q_Liberator window on the screen. When MOVE is
selected a cursor appears which ean be moved around Lhe screen. When
ENTER is mbsequently pressed, the window is redrawn so that the top
right hand corner is as close as possible to the cursor with the whole
window st visible. The position which @ Liberator last occupled is
stored belween calls to the compiler. See the description of QLIB_USE in
chapter 14 for details.

COMPILING A PROGRAM

Before @ _Liberator can start to compile a program, it must be given the
name of source file to process. The source [lle must be cither a
Q Liberstor work file as created by the LIBERATE command or o file
which has been produced by QSAVE. There is normally no need to lype the
extension when you enter a source file name. Liberstor will first
append _wrk lo the name you give it and try to com a temporsry work
file. 1f this does not exist then it attempts to compile a OSAVEd file
(_savd If you want to force the compiler to complle the QSAVEd (ile, then
entar the mame in full & including the extension _sav. The only difference
in the tresiment of wrk and sav files Is that the former are
sutomatically deleted afler compilation.

Thass If we wish to complle DEMO_SORT on mdvl, we ocould compile it in the
following different way (Type the UPPER CA SE only) :

LOAD MDV1_DEMO _SORT load program to

memory
LIBERATE MDV]_DEMO_SORT phase 1, creates "mdvl_demo_sort_wrk'

LIBERATE phase 2, call up Uhe menu Fyslem

wait till the sereon clears
prass CONTHOL C an outline cursor appoars
prass SPACE seleot the source file name hox
MDV1_DEMO_SORT enter the source file, the others defaull
press C siart compilation

46

USING Q_LIBERATOR

COMPILER OPTIONS

Compiler oplions turn varlous compiler features off or on. One or more
options, separated by spaces can be specified in a string after the
filename in & LIPERATE command or in & commend line. Each oplion
consists of a short mnemonic name preceded by a minus algn. Options can
be apecified in upper or lower case in any order. Some reqguire a
parameter which mustl immediately follow the corresponding option, again
geparated by 1 or more spaces. The complete list of options is
summarised below. Some relate to toples discussed in deteil elsewhere.
Further information is contained in.the Release 1,2 HELP fila.

=NOLINE Suppress generation of a line number table. This makes
the object program shorter, but any runtime errors will
not contain a line mmber. If your program includes &
GO TO expression (eg GO TO x*10) or other statements
which require a line rumber to be caloulated, then the
compiler will slways generate the line nomber table
because the runlime system requires it.

=8TAT Print memory wsage statistics at end of job.
The format of the statistios is described in chapter 7.

-0BJ filename Use filename as the name of the object file.
This lets you create the object file on a different
device [rom the work file.
Mote that _obj will atill be appended to the filensme.

~MAME jobrame Chenge the neme of the job. This is the name used to
reference the job whilst it is running. [t cannot
contain spaces and is beat kept short.

=HUIN{ deviea] Link a copy of the runtime system to the compiled
program. The object program can then run in stand alone
mode je without the runtime system loaded.
Such programs will of course be longer than programs
compiled without this option.
The device parameter spacifies where the mintime system
QLIB_RUN is to be copled from, eg mdvl . It MUST be present
when using the BUDGET compiler snd MUST NOT be present
when using release 3, which always obtains the runtime

system from memory.

=LIST filename Divert the error listing to the specified device or
file. This can be a printer, a disk file ete.

‘The defaults when no options are present are:

Line number table included, no statistics, no runtime linkage, listing
to @ Liberator window. The cbject name and job name are derived
from the filens me.

4.7

USING Q_LIBERATOR

RELEASE 3.2 COMPILER OPTIONS

‘The following options can only be used in command lines il you have
Release 3.2. 11 is often more comvenient with this release to turn options
on or off Intersctively via the mem system.

~NONAMES Hormally Q_Liberator includes the name of all variables
which are used as procedurs parameters in the object file.
This is necessary to support procadures such as OPEN which
can use a varigble's name as a parameter. For exn
OPEN #3,MDV1_DATAFILE. [f this option is selected, then
such mames are not included, and the object file is
correspondingly shorter, Statements such as the example
above then have to be rewritten with the filo name naide
quotes, eg OPEN #3,"MDV1_ DATA FILE".

-AUTOF When this option is used, all FOR variables in the program
are ireated as integer variables if possible. See chapler 8
for further detafls.

- ERUG This option tells the compiler NOT Lo obey the compiler
directive $$off described later in this chapter. If any
debugging routines sre included within the program,
ihey will slwsys be compiled when - DEBUG |a used.

-WINDS If this option is presenl then a complled program will have

channals #8, #1 and #2 slready opm when it starts. If the
oplion is off then the program musl open all its own windows.

The defaults for the above options are:
Names generated, -AUTOF on, debug mode off and -WINDS on.

4.8

USLNHG Q_LIBERATOR

COMPILER DI RECTIVES

These are special REMark statements inserted into a SuperBASIC program
to instruct the compiler how to compile specific parts of & program or
about special storage requirements at mmtime.

A line containing & directive must start with a REMark followed by 2
dallars then the first directive.

Each directive consists of a 4 character name followed by an equal sign
and then a parametor. There must not be any spaces separating these
items. More than 1 directive can be placed on & line by separating each
with & comma.

SETTING THE DATA AREA

The following 3 directives affect the size of the object program data ares.
They are only necessary when the default valuves are inadequate or over
generous. When present, they are best placed at the start of the program,

where they can be easily seen. Explanations of the parameters which are
changed can be found in chapters 7 and 10.

REMark $$heap=SIZE Set gize of initial user heap allocation.
Default 2048, minimom 32, maximum 512k
REMark $3atak=S8I1ZE Sot mize of the working stack.

Default 800, minimum 128, maximum 513k

REMark $3chan=MAX Define maximum channel number to be used.
This reserves space for the channel table.

See chapler 8 under CHANNELS for more
information

LINKING ASSEMBLER EXTENSIONS

HEMark $$ssmb=F1LEMAME, INIT, TABLE

This directive causes SuperBASIC axtensions wrillen in
pasembler or with release 3, compiled libraries,

to be linked into the ebject program during compilation.
It may be apocifind up to B times. Each library can
contain any mamber of procedures or functions.

See chapter 9 for detalls of how to use this directive.

OPTIMISATION OF CONSTANTS

HREMark $%i Turn cn nteger modo
This directive natructs the compiler to generate nteger
constants whenever possible. This will ceduce the size of
the object code and give nereased performance when integer

variables are used. Integer conatants are also 4 bytes
gharter than floating point constants.

4.9

USIKG Q_LIBERATOR

REMarck §§7 Turn on floating point mod &
This directive instructa the compiler to generate [oating
point constants, thus optimising the code for Ooating
point work.

The default case is equivalent to $%f and is suitable for general use.
Whare space i3 at a premium, using $$1 gives space savings of around 10%
on Average programs. When maximum speed is required, these directives
can be used any mumber of times within a program lo turn on the
appropriate optimisation for speeific routines.

SETTING THE INPUT BUFFER SILE

When data is read from a device using INPUT, it is placed in a temporary
buffer. This buffer has a fixed size of 128 bytes in ROM versions AH and
JM. If the nput data exceeds this size then a "bulfer overflow' error will
occur. Page 11.4 shows how to trap such a condition with §@_Liberator.

J8 and later ROMS have a dynamic buffer which expands as necessary. If
you wish to complle programs which INPUT more than 128 bytes then you
muat use the $$buff directive described below to set the maximum buffer
size required.

REMark $$muff=gize Set INPUT buffer to slze specified
$$buffl gives no advantages with AH and JM ROMS.

RELEASE 3.2 COMPILER DIRECTIVES
The following directives are only available with the release 3.2 compiler.

REMark $$off This causes the compller to lgnore all subseguent
program lines until a $%on directive is encounterad.
Its purpose is to suppress compilation of test and
debugging routines included within the program. $$off
is ignored If the - DEBUG option has been used.

HEMark $5on This turns compilation back on after a $$off directive
has been used.

REMark $$external Informs the compiler that the procedure or function
definition which immedistely follows this directive is
to be accessible from other programs. (see Chapter 140

HEMark $3ext_all [nforms the compiler that every procedure and function
ia external and accessible from other programs.

4.10

COMPILER MESBAGES

e e

Chapter 5 Compiler Messages

This chapter explains all of the messages which can occour when you are
compiling & program wth @_Liberstor. It concentrates on those messages
which pertaln to errors or inconsistencles in your program. However both
phase 1 and phase 2 can encounter errors when accessing microdrives eg
'drive [ull' or *file not found'. These messages are self explanatory.

MESSAGES DURING PHASE 1

Phase | will give the error "bad name' if you try to use the LIBERATE
procedure within & program and "invelid Job' if there is no program to
compile. You can glso get "bad parameter’ if the name you have chosen for
the object correspands to one of your procedurs or function names.

MESSAGES RELATING TO STRUCTURE CHECKS

A correctly written SuperBASIC procedure or function should have only
one EMD DEFine statement. However the interpreter will tolerate and
correctly handle multiple END DEFines.

og NEF PROCedure TEST (x)
IF x=1 then END DEFine
PRINT X
EMD DEFine

Q_Liberator always checks that there is only ome END DEFine for each
procedure or function. If a procedure or function contalns multiple END
DEFines then ¢ Liberator changes all but the last END DEFine into a
RETurn, which is the correct way to exit prematurely from a procedure.

Thus the above example would become:

DEF PROCedure TEST (x)
IF %=1 then RETURM
PHRINT X

END DEFine

BUDGET ¢} Liberator performs such checks on program structure during
phase 1 and may issue some of the errors below., RELEASE 3.2 performs all
structure checks during phase I and issues more explicit warnings or
errorg. It is aleo capable of compensating for a greater range of errors.

EMND DEFine error Budget QLIB only

This means that you have either nested DEFinitions or an END DEFine has
been found cutside of a procedure. The rules concerning DEFine and END
DEFine are listed in chapter 8.

5.1

COMPILER MESSAGES

END DEFine altered Bud get QLIN only

One or more eonditional END IFs has been changed to a RETURN. The
BUDGET compiler sctuslly makes this chsnge to your source program in
memory during phase 1. They can be seen when the program is llsted.
This message is only issued once, regardless of how many HETurns had to
be ingerted. See chapler B for more details.

MESSACES FROM PHASE 2

Phaae two reports errors on the screen or other listing device ss thoey are
encounterad. Liberator continues to prooess your program after an
error has been d, but will not genorate any object program, since it
would be uusable.

Some conditions gencrate warnings rather then errors. These happen
because of subtle differences in the way in which the Interpreter and
Q_Liberator work. @ Liberator recognises a problem and takes
corrective action. In such cases an object file s generated and will often
run correctly. You are advised however to examine your source program
to understand the warning, then make the necessary corrections and
recompile.

All warnings and errors are preceded by o line number and the statement
number within the line. eg Line 100,3 is the third statement on line 100,
The line number is the line at which the error was detected. This will
usually be the line which needs changing. Sometimes howover the real
error may lie elsewhere, usually earijer, in the program.

If your program is still in memory you can examine it and correct errors
while phage 2 of Q_Liberator is running.

To draw your attention to these messages, Liberator gives a short high
pitched beep when warnings are Bsuwed and a low pitched beep for errors.

Warning.END IF without IF

The compiler has spotted an END IF where one i not needed. It simply
ignores it in the same way as the nterpreter does.

Warning-END IF missing

Any IF statements within a procedurs or function ought to have a
correspmding END IF within the same procedure or fonction. The
interpreter ia not so fussy about this as the compiler and will quite
happily use the mext END IF which it finds. This will almost certainly not
be what you fntended. Thus if the compiler arrives at an END) DEFine with
ane of more unterminated [Fs cutstanding, it will nsert them automatically
in the objecl program just before the END DEFine and give you a warning.
It does not change your source program; that is your responsibility.
Warning- Procedure cannot be compiled

You have used s procedure which meakes no sense in a compiled
environment. Rather than forcing you to remove it, Q_Liberator simply
lgnores it. See chapter 8 for further explanation. The iuagnl procedures
Bra:

AUTO CONTINUE DLINE EDIT LIST LOAD LRUN MERGE MRUN NMEW RETRY
RENUM SAVE 52

x COMPILER MESSAGES

Warning..Varialde used for channel number

This message is printed once at the end of compilation if somewhere in the
program you have specified a channel munber in & variable. ¢ _Liberator
does nol know how big lo generate the chennel table and generates the
defmidt size (0 to 154 It may be necessary to insert a $$chan directive to
increane this.

The fallowing 4 mesmges relate to program structurs errors as described
on page 8.2 and at the start of this chapter.

Warning.. Conditional END DEFine , RETURN assumed Releasne 3.2 only
Warning-Nested DEFINEs , END DEFINE insertad Release 3.2 only
Warning-END DEFine missing - inserted Release 1.2 only
Error..END DEFine withoul DEFINE Helease 3.1 only

Errore.MNot a §_Libersior work file.

The Mle which phase 2 is processing is unrecognisable as the output of
phase 1. Either you have been tampering with the work file or a corruption
has oocurred. Repeal phase L.

Error...Unrecognised symbal

The line being processed starts with an unrecognised character. Normally
such errors are trapped by the SuperBASIC editor which flags them as &
:Ilﬂ‘lh. The likely cause is that the work file & corrupts Repeat phase

Errofe=Unsupportad statement

The line contains a statement which is not supported by Q_Liberator. In
practice this means SuperBASIC has recognised an error and Inserted a
MISTAKE, or you are trying to use the construots in J8 and later ROMS for
error trapping ke WHEN ERROR ete.

Errof..Too many neated [Fs

Each time you use an IF statement within an IF stastement the compiler
needs space to keep track of this pesting. It can do this up to 32 times;
beyond this il gives up with this error. If you get thia error then it most
probably means that your program needs restructuring. If a limit of 32
really caumes you a problem it can be increased. Write to us.

Errof... Too many nosted SELects

This ls similar to the nested IF error described above. The maximum
mesting Is again 3% NWote that there is a separale storage area for
administering SELects and IFs.

53

COHPILER HESSACES

Frrote.SELect misaing

The compiler has found a SELect clause (eg ON x=1 or simply =1} but there
has been no previous SELect which must precede such a construct. Your
program musl be corrected as the interpreter’s behaviour in such
circumstances is to go searching through your progrem for the next END
SELect (any one will do') then continue execution after this point. An END
SELect without a prior SELect will also give this error.

EProresELSE without IF

An ELSE statement has been found outside of an IF construct. When the
inter preter encounters this it searches down your program until it finds
the mext END IF then continues execution at that point. This is a good
source of bugs. If no END IF is found the interpreter just stops. This ia
an example of how using Q@ Liberator can help to track down problems in
your program.
Erfora.END SELsct missing

In a correctly structured SuperBASIC program, every SELact must have a
corresponding END) SELect. Purthermore they should both be contained
within the same procedure. If the compiler finds itself ot an END DEFine
with an unfinished SELect then it lssues this error.

Errore.END REPeat missing

Each REPeat started within a funotion or procedure should be terminated
with an END} REPeat within the same procedure. If thia rule is viclated
then thia error will be given at the end of the procedure.

Errors. Ambiguous name

A name has been used to represent more than one entity. eg as a variable
and as a procedure or function. You will also get this error il you try lo
make an assignment to a function. Programs containing such errors will
usually be rejected by the inter preter with a *bad name' arror.

Error=..Too many assembler routines

A maximum of 8 assembler extensions can be linked to an object module
using the directive $$asmb.

ErTOr = Cannot open assembler routine

The assembler extension cannot be found on the deviee which you stated in
the directive $$asmb.

Efrofe.. Keyword musl be at start of program Releage 3.2 only
GLOBAL, DEF_INTEGER, EXT PROC and EXT_FN (ln mny order) must be
placed before the first line of your program (excluding REMarksk

Error...Syntax error (in REM $3% directiva)
Mrectives are explained in chapter 4.

5.4

RUNMTLHE ERRORS

Chapter 6 Runtime Errors

When an error occurs within & running object program it is termed a
runtime error.

You will slready be familiar with many of the runtime errors becausae they
are jdentical to those gencrated by the Interpreter. However, the
interpreter is often vague about the éxact cause of an error with some of
the messages being used to cover more then one situation. Liberator
improves upon this with more explicit messages. Purthermore chance
to recover from certain errors is included as a standard feature.

THE ERROR WINDOW

When a runtime error occurs, @ _Liberator opens a 3 line ervor window in
which to display it. This window stays on the screen until you select the
cursor within il by pressing control C. Now you must acknowledge the
error with any key or if prompted, answer the Retry question. The error
window will then disappear. Note that when memory permits, this window
is transient, ie when it is closed it restores what was present on the
screen al the time it was opened.

The name aof the job that caused the error is slways printed in the top left
hand corner of the error window. The rest of the error information
depends upon the eategory of mmtime error. There are three categories,
initialisation errors, QDOS errors and QLIB errors.

INITIALISATION ERRORS

Initialization errors occour immediately after an object program is loaded
if something essential to support the program cannot be found.

The first thing & job looks for i2 the runtime system. If this is not found
or has the wrong version then you will see

Runtimes missing!

on channel 0. The error window cannot be used because it is controlled by
the runtime system! The runtime system, QLIB_RUN should be loaded by &
bool program prior to running an object program, or the program should
have its own copy linked to it. The release 1.2 runtime system will support
programs compiled by the budget compiler but NOT vice versa.

6.1

RUNTIME ERRORS

The second thing that a ©@_Liberator object program does is check that
any extension procedures or functions which it needs are present. The
action taken if any are not found differs between the compiler releases.
The BUDGET compiler produces a list of the missing names in the error
window. The program can go no further and aborts.

For example if you had a game which required 2 assembler procedures and
you forgot to Joad them with & beot program, and had not linked thom
during compile time, you mighl see:

JOB ; Spaccgame ZAP EXPLODE missing!

with the BUDGET compilar.

RELEASE 3.2 does HOT report missing procedures at initialisation - they
age assumed to be overlays which will later be loaded and are marked as
eurrently undefined. If they are called when they are undefined a QDOS
'bad name' error is reported. Chapter 14 explains overlays in detail.

QDOS ERRORS

QDOS errors are the stondard error messages which are also used by the
interpreter. They are listed in the Concepts section of the OL User Guide,
and will be familiar to most vsers. There i a progedure described in
chapter 11 which contains every QDOS error.

Only some of the QDOS errors are actually used. The only occasion which
can result in a QDOS error ia when a machine code procedure or funotion
returns an error code. The only exceplion is "bad name' as described
above for Release 3. Qall;ibernm has its own messages for other
circumstances. For exam trylng to position the cursor outside of &
window results in a QDOS ‘out of range’ error. Trying to access an arcey
element which does not exiet gives a QLIB 'Index out of range' error.

QDOS errors are reported along with the line number at which they
oecurred providing that you have not suppressed generation of the line
number table by a compiler option. Following the line number the name of
the offending procedure is printed, then the text of the QDOS message.

QDOS errors are usually Input/output errors, ie they occur in procedures
which mowve data to snd from devices. Often such errors will be
recoverable. For this reason §_ Liberator always lets you retry when a
QDOS error cccurs. The point at which the retry restarts is immediately
before the procedure name which caused the crror. For example the
program TEST might contain the following:

10 CLE: OPEN_IN ¢3,MDVE TESTDATA

If you ran this with the wrong tape in mdvi then you would see the
following in the error window:

Job 1'TEST Line 10 OPEN_IN

ot found
Hetry Y/N

6.2

RUNTIME ERRORS

Kole Lhal this means the procedure OPEN IN has reported error "not
found'. 1t does NOT mean that OPEN_IN itself cannot be found.

Placing the correct tape in mdv2 and answering 'Y' to the retry question
would resull in the program restarting just after the CLS procedure and
continuing successfully.

If you anwwer "N' then the program will print ite runtime siatistics and
nbarl.

Mota that RETRY may mot be pogsible under some clroumatances, and of no
value In others, but ot least you can try- In addition to this siandard form
of error recovery, QDOS errors can be trapped using Q_ERR error
trapping, explained in chapter 11.

QLIB EXKRORS

QLIB errors are more serious. They indicate either s programming
problem o & lack of memory. Wheresa the error messages generaled by
the knterpreter sre often (Il defined and unhelpful, O_Liberator has many
explicit runlime messages to shed lighl on where an error really lies
Some of these are related solely to Q@ Liberstor's intermal workings while
others are used 1o replace an ambiguous QDOS message.

Each QLIH message has | or more error mambers associated with it which
can somotimes convey sdditional information. Where this |8 the case,
detalls are given after the explanation of the message in the complete list
below. QLIB errors are always fatal; no retry 8 poraible.

No hoap spaco

The job has requestod more data storage from the common heap but has
been wnsuccessful. There are too many jobs running, the heap is
fragmented or you have exceeded the memory capacily of your QL.
Poasibly you have written a progeam which runa riot and grabs more and

more momory. Read the section on memory organisation for further
details.

No siack lafl

There s meufficient stack space to continue. Allocats more stack using
QLIB_PATUH or include a $3stak directive in the source program and
rocompila.

6 Occurred within nantime system
12 Oecurred within procedurs

Variable undelined

You hove referenced a variable which has nol been assigned a value.
SuparBASIC would give ‘error in expression'.

6.3

RUNTIME ERRORS

String too long

The maximum string size is 32767 charscters. This error is generated
when concatenaling two strings (eg a$a"ABC®) produces a string which
exececds this Hmit.

Array too big

The dimensions of the array when multiplied together are loo large. See
the sootion on arrays for further details.

Array nolt DiMed

¥ou have tried to sccess an arrsy which is currently undefined. Place the
DIM statement before this point in the program.

Indiaas wrong

You have specified loo many or o few indices for an array or string, or
the "array’ is sctuslly a variable.

19 Type is wrong
20 Number of indices wrong
17 Occurred in & procedure parameler

Index out of range
An ndex is negative or greater than the dimension.

13 Ooourred during a slicing operat ion
28 Occurred in & procedure parameier
15 Oceurred during array or string aocoss

Slice not allowed

You have attempled to perform a slicing operation on the wrong sort of
date. This cen happen if you pass a simple variable to s procedurs which
expects to work with arrays, or if you don't specify encugh indices to
uniquely identify an element of an arrsy. Mote that only slices of sirings
or siring arrays can be used within an expression, but any array slice can
be used as a procedure or function parameter.

T Occurred within an

expression
24 Occurred when storing data into a varishle eg o2 Lo 4)=1
Occurred in & procedurs parameter

6.4

RUNTIME ERRORS

Array not allowed

Yeou have attempted to use an array when a8 simple variable was expected.
This happens when an arcay is passed to a procedure or function which can
only deal with simple variables.

Division by 0
Thig is of course illegal in both floating point and integer form.

25 Integer operation
37 Floating paint operation

Overfllow

1f floating point overflow, you have exceeded the range of OL floating point
arithmetic or more likely, divided by zero. If integer overflow then an
integer has exceaded the range -32768 to +32767. This can only happen
when making an assignment to an Integer variable. When evaluating an

integer expreasion, @ _Liberator will automatically switch to floating point
if integer overflow occours.

13 Integer overflow
36 Floating point overflow

String is not mmeric

You have tried to perform & calculation on, oF act a varlable o, & string
which does not contain a valid number. ’

Cannot retry

The error is oo sovere for retry to work. This is unlikely to occur in
practice.

Unresolved roforence

Your program is trying to go to an undefined place. This may be caused by
EXITing from a FOR loop which has no END FOR

RETurn missing in function

Every function should RETurn a value. This error oocurs if the program
reachos the END DEFine of a function.

6.5

RUNTIME ERRORS

ut of DATA in READ

The READ procedure has run out of DATA statements. Use EOF Lo test for
this condition prior o calling READ.

GO TO oul of range

You are attempting to GO TO a line number beyond the last line in the
program.

Internal

Oh dear, you should never see this! An error has ocourred finside
Q_Liberator. If it really happens to you, check that its not a spurious
corruption, that you are not violating any rules and thal your program
works correctly under the interpreter. If the error persists, please write
to us Including if possible a concise demonstration of the error.

The following errors can only ococur with Release 3,
FORtype error

The wrong type of variable has been used in a FOR loop. The compiler must
allocate extra storage for FOR variables. This error happens if the FOR
control variable is a formal procedure parameter and the actual parameter
is a rormal float or integer.

eg- 10 DEFine PROCedure BADFORID
10 FOHRX=]1 to ll: PRINT X
30 END DEFine
40 A=l
SOBADFOR A

A 'For type error' is reported at lUne 20 because variable A is substituted
for X in the procedure. The interpreter would give a 'bad name' error
under these olrcumstances.

Overlay tahlo full

You have altempled W use oo many external Mles almull aneously either as
overlays or resident procedures in one program.

Glohal missing
A GLOBAL wariable referenced in an external is nol present in the root.

6.6

Chapter 7 Memory Management

for variables. Mote that it ia only the code area that ooouples flle space on
a microdrive. However when the program ls loaded Into memory, there
must be encugh space to sccomodate both the code and the data.

The sizes of the code and dats areas are printed at the end of a suocessful
compllation. They can also be obtained by using QLIB_PATCH, whilst the
total ares ocoupied by a job in memory can be displayed by the procedure
&,

7.1

DATA AREA

‘The following parts of the data area are of interast to the user bécauss
their size can be modified:

Channel table

The size of this table dictates the highest charmel mamber that can be daed
within o program. It ia sensible to keep channal numbera low because a 40
byte entry Ia reserved for all chammels up to the highest which you specify.
(This is aiso true for the interpreter)

The mumber of channels la normelly set automatically by the compiler. The
mindmum number of channels is 3 and the default if variables are used for
channel numbars ia 16. This can be changed by using the $$chan directive.
Hote that an attempt to open a channel with a mamber higher than tha table
size allows will probably result in a system crash.

Stack

The stack area is a general work area used to store return addresses,
local warlables, prooedure parameters and miscellanecus econtrol
mmmmﬂrmwdm-mumhmmm
programs. Deeply nested procedurs calls or recursive routines will
require a large stack to run succeasfully, as will machine code routines
which manipulate large strings. If a program runs out of steck then it will
nnrulﬂrlrhpnlﬂuq-_uﬂnrm

Occaslonally the stack shor ocours within a machine code procedure
which cannot handla the condi! This is Hkaly to cause & orash.

The default size for the stack ls 512 bytes which is generous for small
programs. It can be changed by placing a $$stak directive in the source

common heap and expand into them. Thuas a program will never crash
mmu-hupimhxemmmﬂmﬂfm-mmph
ted.

possibility of unuumhup l'rq‘nntlﬂ.mgw should obtain the statistics
for a given job and set the heap area high encugh so that no common heap
requests Are NeCessAry.

T.2

RUNTIME STATISTICS

Most programs will run correctly with the default parameter settings, but

they will not be making the optimum use of memory. To assist in setting the

stack aize and daia size parameters, the runtime system can produce

statistics. These are produced when a job ends if the -stat option was

solected during compilation or subsequently tumed on by uaing

Elt;[ha__ramu. The statistica are always produced when a job terminates
BT #FTPOF.

The statistice appear in the error window in the form:
Dats sasa bbbb oc Stack dddd esee

where asas gives the size of the heap area within the job, as
set by the $$heap directive.

bbbb gives the total rumber of bytles requested from
the common heap,

c¢ i the total number of common heap requests.

dddd is the size allocated to the atack as set by the
$$stak directive.

egee ln the amount of steck which was actually used.

If you complle s program which uses strings or arrays using the standard
defaults, then the first time that it is run you will ase that bbbbh and cc are
non zero ie the job has 'spilled over' into the common heap. By setting the
heap size to a figure slightly greater than the sum of saas and bbbb the
entire user heap can be conflned to the job's data area.

Similarly the atack area csn be reduced by setting the stack size to a
figure closer o esee. It 18 wise to always leave some spare.

7.3

HEMORY MANACEMENT

QLIB_PATCH

The program QLIB_PATCIL, supplied in object form on your working copy,
can be used o change parameters afler a program has been compiled. 1t
may be used interactively by loading it with the command: QX

QLIB PATCH The presentation of QLIB_PATCI! on the screen varies
between the budget version and release 3.1

BUDGET QLIB PATCH

With this version you will first be asked for the object name which you
wmt to chenge (no need to append objk The current paramelers are
displayed snd you can overwrile them If necessary. If you decide not to
patch the [ile you can QUIT before the changes are applied.

Budget QLIB PATCH can also be started by passing it a command string
in a similar format to the LIBERATE command, The first parameter in the
commend string {s the name of the file to be patehed. [t should be followed
by @ liat of options eeparated by spaces or commas. All oplions expect a
parameter sxcepl for =stat and -noatat. The options are as follows:

=ghan number change the size of the channel table

-glak number change the size of the stack area

-heap number change the size of the job's user heap area

-name jobname change the name of the job (HOT the object mame)

-gtat turn on statistics
=nostat turn off statistics
Example

QX mdvl_qglib_patch,"mdvl_demo_sort -stak 400 -chan 4 -stat"”

If & parameter is out of range then QLIB_PATCH enters the interactive
mod e to allow the error to be corrected. [f the patch is successful the
message “QLIE_PATCH complete” ia printed on channel 0.

RELEAEE 3.2 QLIB_PATCH

Thiz version is controlled by the pointer interface in the same way o8

the compiler itself. New values for the parametlers can be typed into the
appropriate box. The changes are applied when PATCH is selected. There
is no command line interface, but the utility can be made resident or
overlaid and called up with the procedure name PATCH.

PATCHING QLI B_OBJ
in the unlikely event of Q_Liberator itselfl running out of stack when

compiling, it is possible to increase its stack with QLIB_PATCH. The other
option parameters should not be modified.

74

P INTERPRETER / Q LIBERATOR COMPARLISON

Chapter 8 Interpreter/Q_Liberator Comparison

0_Liberstor wes designed to provide maximum compatibllity with the
BuperBASIC interpreter, There are however aroas whore a compiler must
by ite noture do things differently from an interprater. Furthermora there
are SuperBASIC keywords which are meaningless In & compiled
anvironmant.

This chapter compares the operation of Q_Liberator with the interpreter
and documents deviations, enhancements and restriotions. A mumber of
rulen are formulated which If applied will help to ensure that your
programs complle without errors. These rules should not be regarded as
reatrictions; they are all really part of the syntax of SuparBASIC and are
therefore bullt into §_Liberator. The interpreter ia loss rigourcus in its
interpretation (of the rules) and can be made to disregard them by bad
programming.

COMPATIBILITY

Q_Liberstor was designed to support the version of SuperBASIC present
fn JM and AH ROMS as documented in reference 1. The sdditional
keywords present in JS and subsequent ROMS are not supported as they
are incomplete snd nol formally docusented. The © ERKR form of error
trapping s sdequete compensation for their omission mnd has the
advantage of being useable with all ROMS,

Compiled programa are fully portable across different ROM types.

Compatibilily means that a @ Liberator object program ahoadd behave
identically Lo the corresponding SuperBASIC program running under the
interproter, This ia generally true providing that the first rule s met:

Rule 1: The source program must run correcily under the interpreter.

Compiling programs which conform to the SuperBASIC syntax but give rise
to serious runtime errors can produce unprediotable resulls; there s no
guarantes of identical behaviour in such cases.

Somelimen, however, it can be enlightening lo compile a program which is
behaving sirangely, because Q_Liberator's more explicit error messages
may pin down the problem either at compile time or runtime.

8.1

INTERPRETER / Q_LIBERATOR COMPARISON

PROGRAM BETRUCTURE

SuperBASIC, in contrast to eardier BASIC implementations is well
equipped with constructs which add structure to a program. PROCedures,
FuNetions, HEPeat loops, FOR loops eto, simplify a program and make it
easier to read. Programs can be well structured or badly structured. We
shall not attempt to formally define 'wall structured® it will simply stats
that a well structured program would slready cbhey all the rules presented
here, would probably be ndented to reveal the underlying form and would
compile without problema.

Badly structured programs will result in compilation errors and warnings,
and may well be impossible to fthom.

Dhiring compilation, Q_Liberator has to ascertain the structure of an
entire program as it reads it from top to bottom. The interpreter however
tackles a program’'s structure as it encounters the keywords al runtime.
it is quite possible o exploit this phenomenon to produce jll-structured
programs which will revertheless run. As an extreme example consider

10 bad_practice: STOP

20 END DEFine bad _practice

30 DEFine P ROCedure bad_practice
40 PRINT "bresking the rules®

50 GOTO20

The nterpreter doas not care that the procedure seems to end before it
starts, At runtime it sees & DEFine then an END DEFine which is all it
requires. Of course Q Liberator cannot predict the arder in which
statements will be execuled and so would reject the above program diring
phase 1.

DEFine..END DEFne
The rules relating to proce dure definitions are simple:

Rule 2: Every DEFine statement must have a corresponding END DEFine
later in the program.

Rule 3: DEFinitions cannot be nested mslde each other.

It is slso a bad habit to have more than one END DEFine in & procedure or
furction. Some programmers use this as a method of escaping prematurely
from a routine. @_Libersator tolerates this by changing such END DEFines
into RETurns. This ia performed during phase 1 with the budget compiler
and in phase 2 with Release 3.2.

8.2

ot INTERPRETER [Q LI BERATOR COMPARISON

FOR..END FOH

The SuperfiASIC POR.NEXT..END FOR construct is a vast improvement
over (hs FOR.NEXT loop present in earier BASIC implementations.
However some of the books purporting Lo teach SuperBASIC fall to make
clear exactly how it operates and how il should be wmed.

With the exception of the single line (inline) form, each FOR statement
ought 1o have a eorresponding END FOR statemont. This s the point at
which tho loop mids.

If you wish lo prematurely process the next ilem whilst within a FOR loop,
the HEXT statement should be used. This passes control back to the line
emntaining FOR

If you wish to prematurely escape from the entire loop, then the EXIT
slalement should be used. The program jumps Lo the statement after the
END FOH

For example,

10 FOR x=1 to 10,20,30,40

20 IF x=a THEN NEXT x : REMark skip print if x=a
30 [IF x=b THEN EXIT x : REMark abort loop if x=b
40 PRINT x

SOEND PORx

In practice, often due to experience of sarljer BASICs, programmers will
use NEXT in place of END FOR Q_Liberator supporis this usage snd such
programs will compile without errors. They will also run without problems
with two exonpl jons:

IT an EXIT i attempled, the QLIE error "Unrasolved reference™ will
b reported.

An empty FOR loop (eg FOR x=1 to 1) will couse the same error
becaune the program expects to continue alter an END FOR, and nong
in prosent.

In these cases, the interpreter would simply stop or, worse still, use the
next matching END FOR which it could find

The inline form of s FOR NEXT loop has an implied END FOR st the end of
the line. If & superfllucus END FOR (or NEXT) is preseni, it is simply
igmored

e 10FORx=1TOI1k PRINT x
and 10 FORx=1 TO L& PRINT x: END FORx

are ogquivalent.

The control variable of & FOR.END FOR loop cannol be & formal proce dare
paramoler or an error will occur.

8.3

INTERPRETER / §_LIBERATOR COMPARISOM

FOH loops can be nested to any desired depth; there is no stack penalty.
FOR loops ought not to be nested as shown below, bul ©Q_Liberator will in
fact handle such nesting In precisely the same manner as the interpreter.

10 FOR x=1 TO 10
20 FOR =1 TO 10
30 PRINT x,y
40 END POR x
S0 END FORy

With Helease 3.2, integer FOR loops are possible. This is described in
chapler 14.

REPeat...END HEPeat

This construct has no counterpart in earlier BASICs. Consequently there
is no excuse for not obeying the rules.

Rule 4: Every REPeat should have & corresponding END REPeat later
in the program.

Rule 5: REPest loops started within a procedurae or function must be
terminated inside that procedure or function.

The use of MEXT as a substitute for END REPent is not supported because
such a loop cannot be EXITed. (EXIT causes a jump to the statement after
END HEPeat) @ _Liberator will generate the error "END REPeat missing'
with the line mumber of the END_DEFine statement where it was detected.
There I8 of course no restriction on the use of NEXT within the body of the
loop-

A super flomis END_REPeat at the end of an inline REPeat is ignored.
REFeats can be nested to any desired depth

S5ELect OM...END SELect

It is regretable that the interpreter only permits flosting point numbers as
the variable which is tested in & SELect construct. It is in fact possible to
enter and run a program containing a SELect on a string or integer, but it
will not give correct results with the interpreter. It will, however, mm
correctly when complled. This s a construct well worth using if you can
put up with the inconvenience of not being able to test it with the
interpreter.

eg 10 SELect on 8%

20 ON a$="STOP"™: print "stopped”
30 END SELect

B.4

o INTERPRETER / Q_LIBERATOR COMPARLSON

IF=THEN.END 1¥

With the exceplion of the inline form, each IF should have s correspanding
END IF within the same procedurs or function. Missing END [Fs detected
at the end of & routline will sutomatically be inserted immedistely prior to
the END DEFine, end a warming will be ssued. You are strongly advised to
check that this is the correct place for the END IF.

Super Nuous END [Fs are alweys ignored,

THE DHEADED GO TO

GO0 TO in all its forms 8 fully supported. If you use a computed GO TO and
end up beyond the last line of a program then you will gel an error. Use of

ed G0 TOs requires that a table of SuperBASIC line numbers i
included in the object program. This is also true for OO SUB expression
and RESTOHRE expreaalon.

You should mever wse GO TO to jump into or out of & procedure or function.
This can ceisie problems for both interpreted and complled programs.

PROGRAM SIZE

There & no restriction on source program size other then the memory size
of your QL. For all but he shortest program the object produced will be
smaller than the source. This is particulardy noticeable on very large

programs where the savings can approach 50% when the option to suppress
line mimbers & used,

The workfile is typlcally slightly larger than the source program. It is
important lo enmure thal there s enough space on microdrive or disk for
both the workfile and the object file before starting compilation. A useful
rule of thumb is thet an area spproximately twice twe size of the source
program should ba svailable. When space (8 sl a premium, it ls possible to
place the workfile file on one device and produce the obiject on another by
using the compiler option -0BJ. The fastest results will be obtained when
u RAM disk is vaed.

UNSUPPORTED KEYWORDS

If any mame from the following list is wsed within a program then
Q_Liberator will lgnore the entire statement, lssue a warning and continue
compilation.

AUTO, DLINE, EDIT, RENUM beceuse they are of use only during
and LIST program development with the interpreter.

CONTINUE and RETRY which are designed for intersctive use. I
They can be replaced by Q_ERR error trapping.

8.5

INTERPRETER / Q LIBERATOR COMPARISON

LOAD, LEUN, MERGE, MELN, because they relate anly to the scurce form
HEW and SAVE of @ program. They are replaced in part by
QX end QW which load and run objecl programs.

Note thet other procedures concerned with program development conlained
within some toadkits will dlso be unsuitsble for compilation.

DATA TYPES

¢ Liberator Always slores and manipulates dala in a manner compatible,
though not neceasary identical te SuperBASIC. This s necessary to
provide maximum compatibility for additional assembler proocedures. In
general the alorage requirements of s object program at runtime will be
leas than thet used by the corresponding source program, due lo more
efficient packing of numeric variables.

FLOATING POINT NUMBERS

Flosting point mmbers (Mosts) occupy § byles. The range supported is

identical to that of the interpreter. Arithmetic operations on floats are

hnl.lr compat fhle with those performed by the interpreter. but are often
ter.

Integers cccupy I byles. The interpreter provides very little support for
the use of integers. Simple integer variables ccoupy as much Space as
floals (B bytes, the minimum storage allocation) and, with the exception of
DIV and MOD operations, the interpreter alwemys converts Integers to
flosting point before performing any calculations. This conversion makes
working with integers actually slower than working with Moating point.

Integer variables are normally identified by the § at the end of their name,
but with release 3.2, other names can be treated as integers by using
DEF_INTEGER as described in chapter 14.

Whan presented with 2 integer quantities Q_Libarator will use 16 bit twos

t integer erithmetic for the ar fo operations +, -, *, DIV
and MOIA Mote that division, / , slways produces a Mosting point result.
Such arithmetic & moch faster than floating point arithmel ic.

Integers should be wed wherever possible to schleve maximum execution
speed. The $§1 directive described in chapter 4 will ensure Integer
mm:ﬂ germrated. Making sll array indices integers is particularly

If integer overfllow occurs when evalusting an inleger expression, then
both integers are converted inlo floels and the calculation s repeated,
this time giving a Nosting point result. Integer overflow errors can only
oocur when attempling lo store an oul of range mumber in an integer
variable.

8.6

INTERPRETER [Q_LIBERATOR COMPARLSON

STHINGS

Strings are stored within the user heap (see memory orgenisation)k They
have the same formal as in SuperBASIC ie one word length followed by the
string characters. Qal.lb-eﬂ'tﬂr supports both strings and string arrays
of one or more dimensions. The subtle differences in the way in which the
interpreter handles strings from one dimensional string arrays is
reproduced preclsely.

If a program manipulates large strings then a stack area larger than the
longest string is needed for some machine code procedures to run
properly. Purthermore the job's heap area also needs to be large (use
atatistica lo see how large) For some applications, DiMensioning all
sirings will redupe the memory requirement. The strings then become one
dimensional siring arrays end slways occupy the same area in memory.

Many string operations are actually performed by manipulating pointers to
steings rather than the actual siringe. This increases spead, but leads to
a very minor restriction. If a string variable is used two or more times
within an expression and its value changes between these ocourences, then
g Liberator will use the latest value throughout the axpresalon, leading to
a Inlge result. This is best illustrated by an example:

10 n$="old"

20 print afstest{a$)

23:

10 DEFine FuNotlon test (s5)

40 s$="new"

50 END DEFine

Under SuperBASIC line 20 printa "oldnew”, whilst @ Liberator prints
"newnew” because af is changed within the function test. Note that

20 P RINT aj;:teat(a$)
correctly prints "aldnew™. Here the af and test(a$) do not occur within

the same expreassion.
In practice, this problem will rarely, if ever be encountered.

a7

INTERPRETER / Q_LIBERATOR COMPARISON

AHRRAYS

All of SuperBASIC's powerful array handling features are fully supported.
Thus slices can be made of arrays to produce sub-arrays, and arrays or
sub-arrays can be passed as parameters {o proce dures.

Arrays cen be DIMensioned dynamically st runtime. eg DIM elxyh
ReDIMensioning an array is a fast way of clearing all alements to garao.

The maximum size of an array in both SuperBASIC and §_Liberator is
determined by three things:

a) The memory available

b) The restriction that an fndex can have a maximum value of 32767

¢} The SuperBA SIC array descriptor, which limits the multiplier
for a given dimension to n uneigned word.

To determine if 8 mmeric array satisfies (e}, write down the dimensiona of
the array then add 1 to each dimengion (to allow for the zeroth elementlh
How starting from the second dimension, multiply all remaining dimensions
together. The result must be less than 65535 for the array to be viable.
The calculation b slmilar for a siring array, but the final dimengion should
firat be Increased by 2 then rounded up to an even number.

For example, on an expanded gyatem
10 DIM a%(2,4,13106)
is mcceptable because (4+1) * (13106+1) = 65535,
10 DIM a%(2.4,13107)
causes @ ervor because (4+1) *(13107+41) > 65535,

Since the first dimension plays no part in this caleulation, making it the
lnpgest dimension can eliminate such problems.

Thus 10 DIM a%{12107,4,2)

is mtirely acceplable.
The total storage required for an array cen be calculated by taking the
result from the calculation above and multiplying it by the first dimension

{incremented by 1), then by the size of the array eclement. This will ba &
for a float array, 2 for an integer array and 1 for a string array.

88

2t INTERPRETER / Q_LTBERATOR COMPARLSON

CHANMELS

SuperBASIC will quite happily let you open channels with numbers such as
#50, but this is in fact a very wasieful practice. The channel able contains
a 40 byte entry for each channel from 0 up to the highest used. You can
obwiously save memory by Keeping your channel mumbers low.

At complle time, Q Liberator allocates a similar channel table large

to accomodate the maximum channel mumber used. This can only be
established when all chennel mumbers are literals. If any chanpel number is
a variable, thén Q_Liberator issmws a warning and allocates either a
defsult table which supports chennel mumbers from 0 to 156, or a larger
table {f the highest literal channel number exceeds 15. You can override
the default by wsing a $$chan directive as described in chapter 4.

The minimum size of & channel table is 3 entries, for channels 0,1 and 2.

MHaote that attempting to access a channel number higher than the tahle
accomodates will probably resddt n a total system crash

INITIA L WINDOWS

When a SuperBASIC program starls, chennals 0, 1| and 2 are usually open.
The size snd beation of the sasocisted windows, the paper and ink colours
ete, are as left behind by the st program. 1t is therefore wise lo always
redefine these windows in the programs

When s Q Liberator object program starts to run, the windows for
channels 0, 1 and 2 are identical to the defsnlt windows preseni after the
aystem is reset. If the screen I8 in 8 codour mode then the windows
correspand lo those setl up when F2 I8 pressed; 4 caour mode corredponds
to Fl.

The nitisl windows are overridden if a channel is replaced by a channel
passed to the job. This subject is discussed i chapter 10.

With release 3.2 the -WINDS option must be enabled for channels 0,1 and 2
to be opened. If this option is off then the program must open all its own
win dows.

Take care when calling compiled exiernals {rom the interpreter not to
closge channal 0 as this will prevent you from entering any further
comman ds.

89

8.10¢

Chapter 9 Using Assembler Extensions

One of the major edvantages of SuperBASIC is ita extensibility. Mew
be written in assembler and linked

of extensions will oparate in compiled programs. This includes
those that soocess interpreter dats structures like the name table, or alter
variable values wsing the utility routine BP LET. Any which try to
manipulate the internal form of the program will of course be doomed to

The rule when using sssembler extensions is that they MUST be rosident at
the time your program is complled, and they MUST be present in some form
whem e obect s e @ Literator will glve you s nuntlme ercor I this bs
not the case.

LOADING ASSEMBLER EXTEMSIONS

MNormally a program which uses extenslons will be started by & BOOT
program of the form:

10 basesRESP Rigize) : REMark reserve space

20 LEYTES mdvl_extensions_code,base : REMark load the file

30 CALL base : REMark add the new names

40 LRUN mdvl_mainprogram : REMark load the main program
(MERGE might also bo used)

Tha BOOT program is separate from the main program so that all the new
procedure names are recognised before the main program is loaded. Such
boot programs CANNOT BE COMPILED by @ Liberator for the following
reasons:

a) The standard function RESPR gives an error if any jobs are
rurming and so has bean modifiad (see below)

b) Each file of extensions contains a small piece of code to
link the new names into SuperBASIC's name table which is
deslgned to grow as necessary. The @ Liberator name table
is of & fized size, determined during compllation.

€} LRUN is an illegal procedure as far as Q_Liberator is concerned.
(see chapter)

9.1

and are only executed st the start of & session.
in the program above, it can be used to load extensions prior to running a
Q_Liberator object:

40 EXEC mdvl_mainprogram_obj

;
i
i

TREATMENT OF RESPR

when nterpreted.
BY_CHRIX can be used to reserve spece on the arithmetic stack, but the
stack will never sctually be expandsd. If thers ia insuffclent then

mﬂn-ﬂﬂ-ﬂdmh:pwmrwlm
large stack area.

Unlike the inlerpreter, §_Liberstor permita addresses passed relative to
A8 o be converted to absolute addresses. Some routines can be speeded
up oonsidersbly when they are not restricted to the doubly Indexed
addressing mode. Kote that A6 itself must never be changed.

X USIHG ASSEMBLER EXTENSIONS

LINKING ASSEMBLER ROUTINES DURING COMPILATION

The compller directive $$asmb can be used to permanenty link SuperBASIC
extensions into an object program. This removes the need to use a boot
program and gives the benefit of not filling the interpreter's name table
with names which it does not need. To use this festure you need to
understand the structure of such extensions snd should preferably have
acceess to the source.

The directive $$a8mb may reference up to 8 modules containing extensions.
Each module can contain sny mumber of procedures or funetions.

The formal of a $$asmb directive is:

REMark $$aamb=FILENAME,INIT,TABLE
whera

FILENAME is the full name of the module eg MDVI_FEXTENSIONS_CODE

IHIT is the address n module of any initialisation routine
1f present it must end with RTS and MUST NOT contain a
eall to BP_INIT.
If there i3 no routine let INIT=0.

TARLE iz the address af the SuperBASIC procadure [fimetion tnhle
as uged by the ROM routine BP_INIT.

IT IS5 ESSENTIAL THAT SUCH EXTENSIONS ARE ALREADY LOADED WHEN
THE PROGRAM IS COMPILED. If this is not observed, the compiler will
find ambiguous names or unpredictatle nmtime behaviour will result. will
result.

This condition I8 relaxed with release 3.2 which allows missing procedures
to be declared with the keywords EXT PROC and EXT FN (see chapler
14} Externals compiled with release 3.2 cen also be Tinked using this
directive. In this case the INIT and TABLE parameters should be omitted.

The extensions in QLIB_EXT can be linked to your programs with the
lollowing direot ive:

REMark $$asmb=mdvl_qglib_ext,0,10
The lollowing page contains an example of the use of $$asmi.

93

USING ASSEMRLER EXTENSIONS

As an example of procedure liskage TO Q Liberator, here is & shortened form
of the file QLIS EXT. The directive “Qn‘ Iﬂ“l.'l“l‘“ would be:

REMark $$asabd sdvl_qlib_ext,0,12

000 &IFADDOA start laa.l table,al standard procedure

004 JATEOLLO move.w bp inic, a2 linkage (not used

008 AE9Z isc (a2} by Q_Liberator)
ahikd Popaible additional inltialimation roukine
tddd Ond parameter for SSASHE %%

O0A AETS IHIT

rts sust end with rte

4tk Procedure and function table
w4t 1rd parameter for JHASHB

00C D002 TABLE de.w 2 1 procsdures

DOE D08 de.w cursom=*

010 0A313ré15332 de.b 8,7Q CURSOR",0

OLA OOlA de.w cursoff-#

OlC O9513Fal15532 de.b 9,7Q CURSOFF”

028 OOODOOODO0O000 de.w 0.0,

02E 6112 CURSOFF bar.s chanasl Q_CURSOFF

030 HBOE boe.s cursl procedore

03k 700F noveq fed_curs,d0

03 B006 bra.s cursl

036 6l0a CURSON ber.e channel Lﬂl‘lﬂl

038 6606 boe.s cursl procedure

0JA TOoOE soveq Fad cure, d0

0ic ToFF cural moveq #=-1,d3

O3 hE4D trap

040 4B7S cural rte

042 JATHOLL2 CHANNEL wove.w ca gilnk,al subroutlne to

46 4E92 jar {ﬂ{ return chaonal 1d

6618 bas.s chanl in al

OdA TOFL moveq #-15,40

o4C 5303 subq.b 1,43

O4E 6612 boz.s chaal

0%0 7o28 movey 140,40

052 COPGSBO0 sulo.w Ofab,sl.1),40

056 206£0030 move.l bv chbas(ab),al

054 DOCO add.w 40,a0

05c 2076BROO move.l Of{ab,aD.1),a0

060 7000 moveg #0,40

062 AETS chanl rte

INTER-JO8 COMMUNICATION

Chapter 10 Inter-Job Communication

Q_Liberator cbject programs, Hke other independent programa can be
londed and started using the procedure EXEC. You have to specify the full
name of the object program.

eg EXEC MDV1_DEMO_SORT_08J

When you type this as a direct command the sort program starts to run, but
you will still be sble to use SuperBASIC, fe they run concurrently.
Sometimes it is more useful to suspend SuperBASIC when the object
program is running, particularty to avoid conflicts over the use of the
keyboard. EXEC_W will do this automatically.

ef EXEC_W MDV1_DEMO_SORT_OBJ

How while the sort program is running, it is not possible to use
SuperBASIC. Be careful to provide a "way out” of programs started using
EXEC_W, or you will have to reset the machine to stop them.

EXEC and EXEC W can also be used within compiled programs to atart
other jobs rurnming. For the following discussion we shall refer to the job
which contains the EXEC as the parent job and the job which it starts as its
dayghter. Within the Hmits of QDOS, any job can spawn as many dsughters
as it pleasea. A job also has an owner associated with it, which may or may
it be the same job as the parent.

Joba only survive for as long as their owner exists. I the owner is
ramoved or comesd Lo a natural end, all jobs which It owns are aitomatically
ramoved.

EXEC makea job 0 the owner of the daoghter job.

EXEC_ W makes the parent the owner of the dsughter job. The parent is
suspended whilst the daughter job is rumning. SuperBASIC and any other
jobs contimue to runs.

FASSING INFORMATION TO JOBS

QDOS defines mechaniams for passing useful information to jobs upon thelr
ereation but EXEC and EXEC W in their standard form provide no support
for this facility.

10.1

INTER-JOB COMMUNICATION

Q_ Liberator hes been designed to exploit QDOS to the full and so three
closely related procedures are supplied to complement EXEC and EXEC_W.
They are QX, QW, and QX JOBOD. They share a common syntax which is
described below, but first Tet us make plain the differences between them.

QX loads and atarts an object program making the parent the owner. The
parent continues to run.

QW loads and starts an object program making the parent the gwmer. The
parent ia suspended until the dmltm-it complete. (of EXEC_W)

QX_ JOBO loads and starts an object program, but makes tha owner Job 0.
{ef EXEC) Since Job 0 cannot be removed, using QX_JOBO will spare the new
job from a premature death if its parent is removed. It is only useful
within programa.

THE PROCEDURE QX
The simplest form of QX is:

QX objectname

In this form the procedure behaves identically to the EXEC procedure
except that:

o) There I8 no need to supply the extension _OBJ, since QX assumes
that you are running a §_ Liberator object program.

) The job ia given a priority of 8 whereas EXEC givea it 32 (except
when using the Toolkit)

) The owner {& the parent job.
Like EXEC, QX can be typed directly at the keyboard or used within a
compiled program. When used as & direct command the parent is job 0.
For example QX MDV1_DEMO_SORT

This has the same effect as EXEC MDV1_DEMO_SORT_OBJ.

PASSING A COMMAND STRING

It is very useful to pass information to a program when it is started. For
example a program which prints a file could be passed the file name or the
heading for the top of esch page. QDS provides facilities to pass a
command string to & job via its stack when it is created, but few programa
exploit this feature. QX makes this posaible for @_Liberator programe.

10.2

INTER-JOB QOMMUNICATION

Using Q_Liberator, this command string can be sy string literal or string
variable up to a length of 127 characters. If you wish to pass numeric data
to & job them it must fArst be moved lo a string. The command string can
also be a SuperBASIC name, but then the range of characters avallable is
reatricted.

To pase much & string it must be given as the firat parameter after the
object name in & @X procedures call.

eff QX MDV1_PRINTFILE,"acoounts_ dataJuly 1986°
QX MDVZ_spooler,contents _doc

In your program the command string appeara sutomatically in & reserved
string variable called CMD$. This will contain an empty string, length 0 If
no command has been passed. This {s the only special characteristic of
CMD¥; it can be used as a normal string variable throughout the rest of the
program.

When dewveloping programs with the interpreter to work with a command
string, you will need to set up CMD$ manually to test the program.

PASSING CHANNELS TO JOBS

Finally QX can be used to pasa a Hst of channels to a daughter job. Such
channels must already have been opened by the parent job or they will
canse & runtime error. They are entered into the daughter job's channel
table as being already OPENed . They must not be reOPENed or CLOSEd by
the deughter job or behaviour will be unpredioteble. In general you need
not worry about closing channels because QDOS tidies up for you when the
job 18 removed.

Channels passed to s job In this way can ba accessed by both parent and
daughter job. This means that 2 or more jobs could all write to the same
file without any 'in use' errors ocourring.

The firat channel in the parameter Hat {a passed to the new job to replace
its own charmel 0. The second replaces channel 1. Thereafter the channels
which are replaced mumber sequimtially from 3. Channel 2 cught to be
resarved for LISTing snd so carmot be’ passed.

eg QX mdvl_testprog.#,13

Start teatprog using the parent's channel 3 as testprogs's channel 0 and
also as its channel 1.

If you want to leave a channel as it Is, then a gap can be left in the
parameter Hat by typing & comma.

QX mdvl_demo,"TITLE", /104
Btart teatprog, passing "TITLE" as the command string. It will use its

own channal 0, the parent's channel 1 &s its channel 1, and the parent's
charmel 4 as its channel 3 !

10.3

Remember, the channel numbers relate to the parent job; the position of
the parameler delermines the channel which ia replaced in the dsughter
b,

A example which can easily be tried should help to clarify the above. Enter
the following | line program and compile it with the name MDV1_COMMAND.

10 PRINT cmd$

All it does is print the command string which il is passed. Mow type
QX MDV]_COMMAND, "Where am | now? "

This will result in the program prinling the command string "Where am 1
row?™ on its own channel 1. Now the fun starts. Try

OFEN 1, scr 50x50a50x50
QX MDVI_COMMAND; *Inside your window®,,#1

The message appears inside the window which you just OPEMed becsuss
COMMAND s using SuperBASIC's channal 3.

WURKING WITH PIFES

A pipe is a one-way connection between two channeis. Plpes are a
uséful means of passing messages or data belween joba. Messages
PRINTed inio one end of a pipe and retrieved from the other end
INFUT. In the following desoription we shall refer to the and which P
as the active end and the other as the passive end.

A pipe has a flxed length, determined when the active end la opened
behaves as a "Mrat in firet out' buffer.

The sctive end of a plps can ba apened with a normal SuperBASIC OPEN.
The length is appended to the device nama PIPE.

®8 OPEN#4,PIPE_ 1034

1

g

The passive end of a pipe can only be opened with the Q_Liberstor
exienslon § PIPE. There are two forma:

Q_PIPE #plpe_chan

This takes channel pipe_chan, s passed by snother job using QX, assumes
its & pipe already opéned, and opens the passive end. The passive channel
id replaces the active one in the job's channel table, Either the parent
the daughter can elect lo open the passive end, pormil

up In both directions.

10.4

e —

INTER-JOR OOMMIMICATION

— .

There is
owned by the same job.

also a form of §_PIPE for creating a pipe between two channels

Q_PIPE fctive to spasaive

Here fctive is a pipe already actively opened and ppassive is an unused
channel mamber less than gmotive. You will get a "bad parameter’ if this is
not the case. It is a useful convention to make the active end an even
charmel namber and the pasaive end odd.

Such a plpe can serve a8 & uselul temporary memory buffer.

eg 10 OPEN ®,PIPE_256
10 Q_PIFE M ta @
30 PRINT p4," "
40 INPUT n.-f
50 PRINT a$

If you completely fill & pipe with data, the active end will wait until the pipe
is emptied. End of file (EOF) i aignalled at the passive end when the active
end is closed.

There is a demonstration showing this technique being used to create &
sorted microdrive directory In DEMO_PIPEIME.

USE WITH QJUMP TOOLKIT 11

This Toolkit also containe procedures which support the creation of pipes
between jobe and a host of other useful functions. Liberator was
designed to be compatible with, and to complement this L.

The Toolkit procedures and functiona have been extensively tested with
Q_Liberator, Almoat all will work cofrectly in compiled programs. There
are a few functions and procedures which are not useable (eg ED), and
some which should be uaed with cara (wildeard commands). PARMAMS and
PARSTRS cannot be used becpuse they require Interpreter data structures
which are not emulated. EW and EX had problems in Toolkit version 2.05.

Default directories are supported throughout Q_Liberator and the object
programs which it produces.

The extended EXEC command, EX, contained in the Toclkit can pass a
ecommand Hne to a @ Liberator program in the same way as QX. Pipes can
also be created between a chain of joba. Q_Liberator is the ideal tool for
writing short filter programs to exploit this.

The sorvention adopted for channel mumbering when writing flters is

#0 is the input charmel
#1 is the output charmel

Oﬂ'urm-mimnbnﬂ passed to the job start from §3 as with QX

105

: INTER-JOB COMMUNICATTON

thmmﬂtmmWM PAGER which
splits a document into numbered pages, putting a title at the top of sach.
Mﬂwmhhﬂwm .pa' al the starl of & lne. An
example of its use to print & text file on a printer might be:

EX demo_pager_obj,fip?_textfile serl;"AGENDA"

10 REMark DEHO PAGER

20 WEMark page mize is 712

30 REMark

100 L=0: P=1

105 elele

110 REPeat page

115 LF EOF(#0) THEN formfeed: STOP
120 IWPUT FO,a$

130 IF a§=".pa" THEN

L40 formfeed: title

130 ELSE

160 PRINT #l.a§: L=L#1

170 IF L»64 THEN formfeed:TITLE

180 END LF

190 END REFest page

100 :

210 DEFime PROCedurs formfeed
120 PRINT CHR§(LZ);:P=P+i: L=0
210 END DEFine

140 =

250 DEFloe PROCedure title

260 PRINT cwmd$, Fage : ";PA\N
270 ERD DEFine

SETTING THE PRIORITY WITH QX

QX, QW and QX_JOBO can also set the priority of the job which they load.
The priorily (s simply specified as a number or variable anywhere in the
parameters for QX

eg QX mdvl_lestiprog,"command string®, 100
Start teatprog with a priority of 100 and pass a command string.
A siring variable or unsel name is treated as o command string. a mumeric

variable or liieral is trested as the priorily and a variable or mumber
presccded with F is treated as a channel to be passed.

106

A

Chapter 11 Error Trapping

Writing and running computer programa (s an sctivity fraught with errors.
How many times have you seen 'not found®, 'bad or changed medium', "error
in expression’ ete, at a eritleal paint In operationa?

In professional programs, considersble attentlon has to be given to
trapping errors so that recovery where possible takes place automatically.
If the user must be troubled with an error message then the program can
presant it in a meandngiul way.

When working with the SuperBASIC interpreter, you can often recover
marually from errors by, for listing the program to see what was
expected and restarting ata s point.

When a has been complled however, this is not possible because
hmmumh:prmh It becomes essential to include soma
error trapping routines in the program.

EXISTING ERROR TRAPPING FACILITIES

Moat QL systems are aguipped with either a JM or AH ROM. You can check
which yours has by typing PRINT VER$. The versions of SuperBASIC in
these QLa provide no support for programmed error trapping whatsoever.
Manmual error reccvery & possible with RETRY and CONTINUE.

A few of the later (Ls have JS or MG ROMS. These implemented a form of
arror trapping based on the WHEN ERROR keyword, but unfortumately the
Implementation itselfl contained errors and was never formally documented.
Consequentially few programs are written to use thie error trapping. For
thesa ressons this form of error trapping is mnot supported by
Q_Liberator.

Angther approach to error trapping is to turn the procedures which
commonly generate errors eg OPEN, info fumctions such as FOPEM. These
retum an error code to the program as the valuve of the huncton. A
considerable rumber of such functions is contained within the Toolkit, and
in many disk system ROMS. Their use is fully supported by §_Liberator.

Q_Liberator has an alternative way of handling errors, sultable for any QL
ROM.

11.1

ERROR TRAFPING

Q_LIBERATOR ERROR TRAPPING

Every Q_Liberator program sutomatically contains & ruodimentary form of
error trapping which can help to avold disasirous fallures. This is the
'Retry’ mechanism described in chapler §. Whenever a call to a ROM

TURKING ON ERROR THAPPING

Before you can trap errors from a procedure (ts name must be added to an
internal list using the procedurs @ ERR ON.

ef Q_ERR_ON "OPEN"
Q_ERR_ON "OPEN","OPEN_IN", "INPUT", "COPY"

You can print the complete error trap list on channel 0 using the procedure
Q_ERR_LIST, which takes no paramelers.

Q_ERR and Q_ERRS$

When an error la detected by a procedure on the error trap Hst, your
will not atop with & message. Inatead the error number (s stored
and the procedurs réturns normally. A program can cheok if an

mmnww%mmh-mﬁ QDOS error keys
will normally be negative. assist in producing error messages a
tion Q_ERRS is included in the demonstration library. This will retum
& string containing the QDOS error text for amy error number. [t is
al the end of this chapter to serve as a list of error mumbers.

?i

11.2

4 ERROR TRAPFING

TURNING OFF ERROR TRAPPING

Once a procedure has been placed on the error trap list it atays there
aven if you type NEW, CLEAR or LOAD another program. The only way to
clear the error trap list is to use the procedure q__ﬂﬂﬂ_ﬂﬁ'!'.

Q@ _ERR OFF will remove one or more procedures from the error trap
list. It takes one or more strings as its parameters in the same way as
Q ERR_ON. However if no parameters are supplied then Q ERR OFF
will remove all procedures from the error trap list.

eg Q_ERR_OFF "INPUT","COPY"
Q_ERR_OFF

Compiled programs which use error trapping each have their own error
trap lat, which does not interfere with the Interpreter's error trap
lhll

11.3

A WORD OF CAUTTON

The error Lrapping facilitiea presented here require care in their use.

If you turmn on error trapping and omit to test Q ERR, you can have the

illusion that your program is operatling ocorrec when it is in feet

generating errora.

If you are getting strange results, check what is on the error trap list,
ERROR TRAPFING EXAMPLE

As a simple example of Q_ERR here is & robust numeric INPUT procedure
which won't stop with ‘error in expression’ if alpha charscters are typed
and which will give a meaningful error if "bulfer overflow’ cccurs.

100 EEMark DEMONSTRATION OF ERROR HANDLING
110 EEMark demo qerc

120 :

130 REFeat dama

140 ousioput =

150 PRINT =

160 END REPeat demo

170 &

180 DEFine PROCedure mumloput{no)

190 ERR ON " INPUT™

200 E gatous

210 INFUT “Number >"jn

210 IF { EER=0 THEN EXIT getous

230 BEEF 200,10

240 FRINT

250 IF Q ERR=-17 THEN FRINT “Only sumbers pleans®
260 IF 5 THEM PRINT “Too many characters™

270 END REPeat gotous
280 Q EER OFF “INPUT"
290 END DEFine pusminput

Finally, here is the Hsting of the function @ ERR$ which returns the last

QDOS error as a string.

1000 DEFine FuNctiom () ERES
10L0 REMark demo gqerr

L1020 LOCal =

1030 ERR

1040 SELect ON =
1050 =0 : HETurn
1060 ==1 : RETurn
1070 ==3 : RETurn
lo8o ==3 : RETurn
1080 ==4 1 RETurn
1100 =5 : RETurn
1110 ==f 1 RETurn
1120 =] : RETurn
1130 =8 ; RETurn
1140 ==8 : RETurn
1150 =—10: EETuran
1160 ==]11 RETurn
1170 =-12: RETurn
1180 ==13; RETurm
1190 =—]&: EETura
1200 ==15: RETurn
1210 m=16: RETurn
1220 =171 RETura
1230 ==18: RETurn
1240 =—19: EETura
1250 =—20: RETurn
1260 ==33: RETurn
1270 =REMATHDER :
1280 END SELect

1290 END DEFioe Q ERR$

"mot complete”
“fuvalid job”
“put of memory”
“out of range”
“buffer overflow®

“end of file”

“drive Ffull”™

“bad pame"
“transmigaion error”
“format falled"

“bad parameter”
“flle errox”

“error in expression”
“arithmetic overflow”
"not implemented”
“read ounly”

“bad lime”

EETurn “error “bke

11.5

11.6

Chapter 12 Job Control

When working with miltitasking programs, it is useful to have prooedures
to Hat which jobs are currently runming, to remove joba which are no longer
needed, and to set the relative priority of joba.

Buch procediures are available from many sources. They are included In the
Toolkit, on moat disk system ROMs, have been published in magazines and
books, and are available from the QUANTA (QL user group) library.

For those who have no access lo these routines, we have included & sulte of
procedures to control jobs in the fle QJOB_BIN. This file is an optionsl
extra which can be omitted from the BOOT program if regquired. Whilst
these procedures perform in roughly the same mammer as other job control
procedures, they have some advantages and are generally useful. They
have been given short names because they are often typed.

LISTING JOBS
QJ [fchannel [[owner_job]

This procedurs liats the tree of joba starting from the specified owner job
to & given chanmel. If no channel is specified then charmel 2 is used. 1f no
owner job is specified then job 0, SuperBASIC is sssumed and all joba in
the system will be Hated. The format of the Hating is beat shown by
example.

Typing QI might produce the following:

Job Owner Size Priority Name
0 0 0k 532 BASBIC

1 0 10k 8 Qdemo_l
F; 1 15k 8 8 Qdemo_2
where Job is the job mumber,
Owner ia the job rumber of the owner,
Size is the memory area cccupled by the job,

Priority is the priority on a scale from 0 (inactive) to 235,
Hame is the job's name (f it has onel.

The '5' before the priority indicates that a job is suspended,
eg walting for the keyboard or another job.

The 'Q' before the name indicates & Q_ Liberator job.

121

JOB CONTROL

The QR will remove, ie terminate, a given job. If & job owns
other joba, then they will be removed also. [t is not posaible to remove
0. The format is:

QR jobname [,error_codel
or QR jobrumber Lerror_codal

As you can ses, the job can be specified by name or number. The optional
arror code, If present, in passed back to the program which started the
job, eg as the rasull of EXEC W or QW. It can be trapped using Q_ERR
error trapping. If no error oode is specified, 0 is returned,

CHANGING THE PRIORITY OF A JOB
The procedure QP will set the priority of a job to a given value in
range 0 to 255. A priority of 0 means that a job is inactive and uses no

time.
QF jobname,priority
or QP jobnumber,priority

2

FINDING THE CURRENT JOB NUMBER

it can be useful for a job o know ils own job mumber. The function
Q_MYJOB will return this as an Integer.

eg PRINT Q_MYJOB

12.2

CURSOR CONTROL

Each console device has a cursor assoclated with it. [t is normally only
turned on during an INPUT statement. it is useful to be able to enable

the cursor at other times, in particular to allow Control-C to
switch the keyboard to that device. The cursor will flash when the keyboard
is attached to it.

Q_CURSON [#charmel]

will turn on the cursor for a glven channel. The default ia channel is 1.
Q_CURSOFF [#charmel |

turn= it off again.

12.3

124

SOLVING PROBLEMS

Chapter 13 Solving Problems

This chapter is designed to help you if you experience problems with
Q_Liberator.

PROBLEMS WITH MICRODRIVES
If you find that you eannct read elther the Master or your Working copy,
and you normally do not experience loading problems, then it Is possible

that the microdrive is defective. In such circumstances we will replace it
free of charge if it is returned to us.

If both microdrive cartridges will not read then there is a fair probability
that your machine is misaligned. We will replace the microdrives if you
return them, but if the problem persists, your machine should be serviced.

Hote that we can tell how many copies have been made from a Master.
Claims that a Master does not read when it has in fact expired will be
viewed with suspicion.

PROBLEMS WITH COMPILED PROGRAMS

At some time you may come across a program which does not function
correctly when compiled or worse still, which crashes the machine. Before
assuming that there is an errer in @ _Liberator, please check the following:

Does the program nun correctly under the interpreter every time?
Md you lgnore warnings at compile time? If so. go back and check
them,

Try mumning the program with QW in place of QX. If it now runs
correctly the problem is Hkely to be keyboard handling. Try enabling
the cursor.

If the program uses assembler extensions,
Are you sure that the correct versions are loaded?

Do they make assumptions which are imvalid when run from other than
job 0 ? For example we have seen routines to set up user defined
graphice which have a hard coded reference to one of the
BuperBASIC channels.

The same applies to machine code routines which are CALLed.

13.1

If the whale system crashes,

It is possible that your program is renmning out of heap or stack at a
oritical point. Try incressing these parameters using QLIB_PATCH
and see {f |t makes sny difference. Use the statiatics option.

Are you sccessing a channel number larger than the channel table
allows? Again QLIB_PATCH can help.

lflﬂdlllﬂh,plmh'rhhﬂlhﬂnmdmhll-ﬂm
which demonatrates it consistently. Please send tha program,

dmnwmﬂm-mrmumwmuumumu
to the address below. ll'lﬂll.ldlthlllrl.l.lrlllbl‘rﬂﬁ Libarator and don't
forget your telaphone mumber and address.

Please do not lalephone with such problems; It |s not realistie to solve them
in this way.

The solution to moat problems s contained within this manual. Please read
it carefully snd persevere. Check too for any additional INFO files which
may have been supplied.

Address for all correspondence:

Literation Software
43 Qifton Road
Kingston upon Thames

KT2 6PJ

13.2

RELEASE 3 EXTENSIONS

Chapter 14 Release 3 Extensions

In general release 3.2 compiles programs faster than the budget compiler.
The gencrated code ia more concise and also mma fastor. In addition to
these advantages, release 3 has an exciting range of features, deseribed in
this chapter.

INTEGER FOR VARIABLES

The SuperBASIC interpreter insista that the control variable of a
FOR.ENDFOR loop be floating point. Release 3.2 supports 2 methods for
speeding up compiled programs by allowing integer FOR variables.

The first method is suitable for most programs and is achieved via a new
option, AUTO { -AUTOF if wsing in the command line interfacel This
instructs the runtime system to treat any FOR variable as an integer if the
atart, end mnd step are all nteger quantities. If the same variable is later
used in & floating point FOR loop, then the runtime system alters ita type
to a float sutomatically. Q Liberator can do this becsuse it knows a
variable's type at runtime, a prerequisite for a full implementation of the
language.

Salacting the AUTO option cen greatly speed up many programs,
particulary if the FOR variahle &8 used as an array index, but there is one
drawback which may be encountered. If such g FOR variable ia currently
an integer and used as a parameter to an INPUT atatement, then INPUT
won't let you enter a flosting point number into the variable. INPUT does
notl Know that the variable's type is changeable. You can get round this
easily by THPUTing to another float variable, then assigning il to the FOR
variable., This will change the type to a foat.

AUTO can also be turned on of off for any program alter compllation using
the QLIB_PATCH utility.

DEF_INTEGER

The second method for supporting integer FOR variables is through the
pseuda keyword, DEF_INTEGER. DEF_INTEOEHR should be followed by a
list of flosting point variables which are to be treated as htegers by the
compiler, even though their mame does not emd in % 11 & variable named in
o DEF_INTEGER statement is used as a FOR variable, then the compiler
generates s fast integer loop. Unlike AUTO variables, the type of such
variables is fixed, and the compiler can generate slightly faster code.

14.1

RELEASE 3 EXTEMSTONS

Any DEF_INTEGEH silstements must be placed right at Lthe start of &
program. Only REMarks, other DEF INTEGEH statements snd the special
keywards EXT_FN, EXT_PROC and GLOBAL (described later) can precede
DEF_INTEGER. DEF_INTEGER is totally ignored by the interpreter.

Example 10 HEF'__IHTEGEH. i,k : REMark Treat Lj and k as Integer

DEF INTEGER is of course also useful outside of FOR loops to gel the
benefit of integer arithmetic. For maximum performance (and smaller
code), the $%i directive which makes the compiler treat constants as
integers should be used either globally or locally when working
predominantly with inteper variables.

Be aware when testing programs which use DEF INTEGER, that the
interproter will regard such variables as floats end that / (divide) always
produces & foating point result. DIV can be substituted if appropriate.

COMPATIBILITY WITH REL 2 OBJECTS

The release 3.2 runtime system will support old programs compiled under
release 2 or the budget compiler. However it is generally worth
recompliling with release 3 to meake them both amaller and faster. Note
however that rel 2 objects cannol be used as resident procedures, or
processed with Qlib_Patch .

INTEGRATION WITH QLOAD

QLOAD is our indispensible utility for loading interpreter programs in
much the same time ne compiled programs. Because the files used by
QLOAD are identical in format to rel 3 workfiles, § Liberator can complle
from such ' _sav' files directly. Using QSAVE followed by LIBERATE is
gimilar to the two stage methed of compiling large programs on
unexpanded syatems. [has the advantige of ensuring that the latest
interpreted version of a program is alweys saved and consistent with the
compiled program.
ROMABLE CODE

Al Liberator 3.2 object programs are ROMable provided that any
extensions linked to them using $$asmb are also ROMable, fe they should
not have mny storape areas within their code

The utility program RPM (Romable Program Maenager) is svailable to
support creation of ROMs containing any desired mixture of compiled
programs, subroutine libraries snd assembler extensions.

14.2

o RELEASE 3 EXTENSLONS

EXTERNAL PROCEDURES

One of the great strengths of SuperBASIC is its provision for extending
the language with new regsident procedures. (Throughout this section, the
term 'procedure’ includes functions tood Such extensions are normally
loaded into the resident procedure area using RESPR and LBYTES and
remaln avallable until the machine is reset. To date it has nol been
possible to create such extensions without recourse to assembly languasge
progesmming.

Q_Liherator Release 3.2 changes this. Mow the compiled procedures and
functions within amy Rel 3.2 object flle can be called by other programs,
just as if they were bullt In procedures! We will term such compiled
proce dures 'external procedures’, or just 'externals', because they have
been separately compiled from any program which uses them. External
proce dures can be linked to a program in a variety of ways as described
below.

An object file can contain 0,1 or more realdent procedures (or functionsk
There 1s no limit to the complexity of an extermal procedure - it could if
required be an entire program. They can be called intersctively from the
interpreter, by nterpreted or compiled programs with parameters passed
back and forth. Externals can even call other external prooedures.

There is also no limit to the mumber of external procedures which an object
file can contain, bul sinee it is not alweys desirable to hawve all the
procedures in a file available extermally, @_Liberator requires that you
indicate the procedures which are extermal by placing the compller
directive "REMark §$external’ on the line preceding the DEFine statement.
Altermatively you can use 'REMark $$ext_all' which indicates that all
procedures and functions are external. As an example, consider the
following short program:

10 REMark §%external

20 DEFine PROCedure SQUARE(x)

30 PRINT x*x

&0 END DEFine 45 :

50 REMark $5external

60 DEFine Fulctlion FRA{x)

70 RETurn x-IRT(x)

B0 EMD DEFine 85 :

90 SQUARE 10: PRINT FRA(1.5)

If this is compiled, the object program (assume its called demo_obj) would
contain SQUARE and FRA as extermals. To indicate this, Q_Liberator
printa their names at the end of compilation. Note that this program can
atill be executed a8 a job n which case line 50 would be executed. When
used as an external procedurs file however, line 20 would never be
execuled asz it is not within any procs dure.

Candidates for turning into external procedurcs mighl be that set of
useful routines which you slways include in your programs, or a graphics
rouline library, or perhaps a utility which you want to make resident.

In the following sections we will see three different ways in which these
external proocedures can be wed.

14.3

RELEASE 3 EXTENSIONS

USING EXTERNALS AS RESIDENT FROCEDUHES

You are probably already familiar with the way in which additional
procedures can be added to SuperBASIC using RESPR snd LBYTES
Externals can be used in the same way. Il you have Toolkit 2, simply
LRESPR the object file. Otherwise you need lo note the aize of the code
area of the object program as displayed at the end of compilation. (You
can algo gel it from a WSTAT type of command) Then type something like:

base=RESP R(E00): LBYTES mdvl_demo_chj,base: call base
assuming the code gize in the example is 600 bytes.

After loading the external progedures can be used by any job in the
system, indeed by several jobs simultanecusly if required. Try it with the
demo program.

It iz HOT possible to load externals into the resident procedure area n a
compiled program = they must he always be loaded by an interpreted
program prior to execution.

USING EXTERNALS AS OVERLAYS

Resident procedures are very useful, but they have a big drawback - once
loaded they can never be removed. If you continually load more and more
of them, sconer or later you will nm out of memory.

But of course, Liberation Software has the answer - overlays. An overlay
iz simply a file containing extermal procadires, bit it can be loaded and
unloaded as and when required. When they are lpaded, the procedures
behave like resident procedures. When they are unloaded, all space which
they formerly occupied is released. Overlays can be loaded and unloaded
by both the interpreter and complled jobs, butl there iz an important
difference in their behaviour. We term a program which calls overlays a
ROOT program.

When an overlay is loaded by a compiled program, ONLY that compiled
program can access the extermals in the overlay. This is not true of
overlays loaded by SuperBASIC. In this case the externmals behave just
like resident procedures and other jobs may use them. You must ensure
however that you don't unload an overlay while a job Iz uwsing one of its
proge dures - 4 gystem crash would be nevitable.

Overlays find application a8 a meana of supporting large programs in
minimum memory. The major subfunctions of a program suite should be
made into overlays which will individually fit into the memory available.
Then a amall root program can load and unload the appropriste overlays as
different functions are called.

If you went to work with overlays, then you should ensure that the file
QLIE_OVL has besen loaded as a resident procedure. (BOOT normally does
thish This file contains the extensions OVERLAY and UNLOAD deseribed
below. If you wse overlays In a compiled program you can link these
extensions to your program with the following directive:

REMark $$asmb=flpl _qlib_ovl,0,10

14.4

— T

THE PROCEDURE OVERLAY
Byntax: OVERLAY overlay _number,exteral_file

Errors:
=31 Out of memory
=7 File not found
-8 Already exints - Ovorlay number pocupied
=12 Dad name - not a valid file or no externsl procedures in file

This procedure loads an object file hito memory (common heap) and links
the external procedures which it containg to the current job. If the job is
tha interpreter, they are marked as machine code fusctions and
procedures in the name table.

OVERLAY requires two parameters. The first is an OVERLAY NUMBER (1
to 15) which is wsed to identify the overlay in a job specific overlay table.
The second is the name of the object lile containing them. It is the
reaponaibility of the user program to keep track of which overlay numbers
are occupled.

For example, the procedure and function in the file DEMO_OBJ could be
made available by typing

OVERLAY 1,MDVL_DEMO_OBJ

Up to 15 different files can be simultenecusly wsed as overlays. An overlay
can itself call other overlays subject to this maximum. Note that OVERLAY
only works with rel 3.2 object files. Trying to OVERLAY other files of
machine code procedures will not work.

THE PROCEDURE UNLOAD
Syntax: UNLOAD [overlay_mumber]

This procedure removes one or all overlays from memory. All the
proce durés within the overlay disappear and the space they cceupled is
reclaimed. A subsequent attempl to use n now missing external proce dure
will result in a QDOS 'Bad name' (-12) error. ‘This is true for both
compiled and interpreted programs.

The optional parameter specifies which overlay is to be unloaded. If none
s specified then all overlays are unloaded. When overlays are used wilh
the interpreter, they remain even after NEW has been typed. UNLOAD is
the only way to clear them.

EXTERNALS AS COMPILED SUBROUTINE LIBRARIES

The third method of using externals is only available to eompilod
programs. With these, it is possible to LINK an object file containing
external procedures to a program at compile time. The technique is
similar to that described for assembler extensions on page 9.3 of the user
manual. The directive $$asmb is uwsed, specilying the object file name but
with no initialisation address and no table sddress. For example,

10 REMark $$asmb=mdvl_demo_ob]
when placed at the start of a program would allow that compiled program

14.5

———

RELEASE 3 EXTENSIONS

to use the externals SQUARE and FRA. For each compiled subroutine
library used, an entry in the overley table is created. The runtime system
allocates these from 15 d ownw ardse, leaving the lower range for externalsa.

This feature is useful to speed development of large programs. As a
section of code is completed, it can be compiled and treated as a library.
The source code for thal szection can be deleted of hiddey from the
compiler with the $$aoff directive,

COMPILING PROGHRAMS WHICH USE EXTERNALS

At compile time Q Liberator needs to know for certain the precise type
associated with each name in & program, otherwise an ‘Ambiguois name’
error will be reported by the compiler. In general, if you can RUN a
program then all names will be wnmambiguous and compilation will be
successful. However when a program uses externals, the compiler must be
explicitly hformed about all references to external procedures and
functions by pseudo keywords placed within the program IF those
extermals are not currently Joaded into the eystem.

In gentral you shatld weite your external routines firat, teat them and then
compile them. To avold ambiguities, ensure that the interpreted source
farm of the extermals has heen deleted from memory. Now load the
external file as an overlay and code and test the root program. When you
are ready to compile the root no changes have to be made if you have
sufficient memory to leave the overlay loaded. If you have not, you must
UNLOAD the overlay and inform QLIB of the procedures which it contained
by using the psewdo keywords EXT _PROC or EXT_FN.

EXT_PROC and EXT_FN

Syntax: EXT_PROCstring [, string]..
EXT_FN string L string Je.

These procedures inform §_Liberator of external procedures or functions
which mre not currently loaded. Each parameter MUST be s STRING
containing & procedure of fumetion name. These keyworde have no effect
on interpretation, but a syntax check to ensure that the parameters are
atrings is carried out when the program is run under the interpreter.
EXT_ PROC and EXT_FN must be placed at the beginning of the program.
They can also be used to define the types of assembler extensions which
are linked using $$asmb directive for ceccestons when they are not
regidont st compile time.

For example, il a program mekes use of the FHA and SQUARE defined
earlier, and the flle demo obj has not been loaded as an overlay or in the
resident procedure area, then the following stalements should he placed at
tha start of the program:

EXT_FH "FRA"™ EXT_PROC nSOUA RE™

If this iz not done then § Liberator will think that FRA is a variable and
SQUA RE will give an "ambiguous mame' error.

14.6

RELEASE 3 EXTENSLONS

VARIABLES AND EXTERNAL PROCEDURES

The treat ment of variables when @ program calle an external procedure is a
logical extension of the SuperBASIC conceptl of LOCAL wvariables. Al
variables used within an externsl file are considered LOCAL to that
axternal o they are only accessible by the procedures within the external
file. Thus the value of a variable in a root program is not influenced if o
similady named variable s altered within an external. Externals behave
a8 program modules, insulated from the programs which call them. There
are however twovery important exeeptions.

The first exception concerns any parameters passed to an external. If the
valur of a parameter is altered by an extermnsl procedure then the
correzponding varipble in the main program Is also altered as you might
expact, Compiled programs can pass any type of parameter back and forth
between extermals, including arrays. Furthermore, since § Liberator is a
true SuperBASIC compiler, the types of the actual parameters are used
within the external.

When calling externals from an interpreted program, only scalar
parametere ie flosts, integers and strings can be passed. Sec the
implementation notes ater in this chapter for an explanation.

The second exception concerns GLOBAL variables. A global variable is a
variable defined in a root program which is to be accessible by one or
more exterrsl routines. Global wvariables must he indicated to the
compiler by means of a GLOBAL statement. They cannot be used with the
interpreter.

THE PSEUDO KEYWORD GLOBAL
Syntax: GLOBAL variable [, wariable | ..

This keyword when placed at the start of a program indicates thatl all
variables in the list of parameters are to be treated os GLOBAL Any
externals which this program calla should slso contain a GLOBAL
astatement if the global variables are to be accessed. One GLOBAL
statement serves for all the procedures in a file and only those globals
which are actually referenced nocd be specified. ie The external's global
vuriable list may be a subaet of the root program's global warizhle list.
Only complled programs can share global variables, Global statements are

gimply ignored by the interpreter. This may change in a subseqguent
release.

IMPLEMENTA TION NOTES

Thera are important differences in the behaviour of externals when called
from the interpreter and when called by & compiled job. Before it can be
executed, an external job must sliocate it own variables area and have
available a @ Liberator muntime data area containing amongst other things
& heap ares, & stack area and a channel table.

EXTERNALS CALLED BY COMPILED JOBS

When called by a complled job, en external uses its host job's data area
and 50 can wae any channels already opened or can open iits own. You must
be careful to allocate sufficient atack in the rool program to accomodats
any externals which are called.

14.7

RELEASE 3 EXTENSIONS

— S i

The extermal's variables ares is crested on the first call to ANY external

external s being used as an overlsy, until the overlay is remowved.
subsequent calls & change of poinlers is all that is necossary to provide
the correct environment.

Note that the values of all veriables within an extermal rema
bl wesn proosdure calls, fe they are statie.

EXTERNALS CALLED HY THE INTERPHETER

Whion an external procedure Is called by the inler preter, & néw job has to
be oreated lo provide the runtime data area needed lo execute the
external. This is done on each and every call to an extermal routine.

After oreation, any parameters to be passed are copled lo the new job
along with a list of opened channels. The extermal can fresly use any
channels whish have already been opened, but if it opens further channels,
they will not be present when ocutside of the overlay. You musi be very
eareful ot 1o sllow the external to close channel 0, or you will be unable to
enter SuperBASIC lines when you return from the external.

The job ls now activeted and the interpreter is smpended. When the new
job mnds, the interpreter s activated, the parameters are copled back and
the external job I8 removed.

Parameters have to be copled becawse SuperBASIC has a lendency (o move
sround memory. It is not possible o pass array parameters becmuse the
overhesds would be too grest. If you try it you will get a "Not
implemented’ error.

Necausé & new job is created each time a procodure is called, variable
values are lost between procedure calls. This mechanism is considerably
slower than that used by compiled jobs, but Is fine for development
purposes and for calling compiled toalkits or utility routines.

Mote that whilst the interpreter can call compiled external roulines, it is
NOT possible for external routines to call interpreted prooedures.

H
B
E

SEARCHING FOR NAMES

At compile time, §_Liberator only needs to know the name and type of each
procedure and function; the address is resolved at runtime. When a root
program or exterral is first initialised it searches in varioms places for
the procedures It requires lo nm, using the procedure's name as its
search key. The order of searching is as follows:

l. The linked resident procedures table of the current job. This
contains the mames of any exterral procedures end assembler
rout nes linked st compile time veing $3asmb.

L. (Extermals only) The linked resident procedure table of the root
program.

1L (Externals only) Procedures in the root program which are marked
as external.

4. The SuperBASIC name table which containg the names of all built
in and resident procedures.

14.8

RELEASE 3 EXTENSIONS

If all searches fail then the procedurs {8 marked as undefined. Calling it
will result in a "bad name' error. It may well become defined later if it ia
lopded as an overlay.

It should be clear from the abowe that it is possible for a compiled
program to effectively override resident procedures if its own external
proce dures have the same name.

FREE RUNNING PROCEINRES

To further add to the rich range of facilities available through externals,
we have provided a means of calling external procedures (NOT functions)
such that they emecute as independsnt jobs while the host program
continues to nm. Such procedures can have parameters passed to them in
the normal way, bul no parametera are copled back when the external job
ends.

To start such a procedure simply put an exclamation mark after the last
paramétar. For example, if the compiler QLIB_OBRJ is resident then typing

QLI
will start the compiler and still let you use BASIC.

COMPATIBILITY WITH QRAM
Q@ Liberator and the programs it compiles thrive in the OQRAM

environment. They can also be processed by the QRAM utility routine to
make them available on & hotkey.

COMPATIBILITY WITH QPTR INTERFACE

As supplied, Helease 3.2 can be used to compile programs which use the
SuperBASIC Interface to the QJUMP QPTR package. The instructlons in
the QPTH manual describing how to modify release 3.1 to be compatible
should not be followed.

14.9

L RELEASE 3 EXTEWSIONS

CONFIGIURING TIHE COMPILER

You can cuslomise the compiler to suit your particular hardware
configuration and define your own set of default options with the
procedure QLIB_USE, This would normally be done inside a BOOT
program. The syntax is :

QLIB_USE load_device, help_device, x_pos, y_pos, "options bits"

All parameters ure optional. You meed only specify the parameters you
wish Lo change - the others can be defaulted by using a comma.

lLoad deviee The device where the file QLIB_OBJ is located.
Help_device The device where the file QLIB_HELP can be found.
X_pos The X coordinate of the top left hand corner of the window.
Y _ pos The Y coordinate of the top lefl hand corner.
"option bits” This s a 10 charscter string in which each position
refers to en option. A '1' in & given position enables the
correspmding option, a '0" disables it.

Device parameters can be up to 10 characters long, giving the possibility
of apecifying not only a device, but a directory.

For example, QLIB USEfipl_sabc_flpl_abe

The compller wauld be found under flpl_sbo_glib_obj and the HELP file
as flpl_abc_qlib_help.

X_pos, X_pos and the option bits string are updated in memory each time
the compller terminates end are remembered for the next eompiler eall.

The option bits are in the following order:

=8TAT default O
- DEBUG
=LINES
~NAMES
=RUN
=AUTOF
BEEFP
=WINDS
reserved
0 resarved

AT 30 =] O LA e L B
e

There is however little need to refer to this tahle because an easy method
of deriving the parametlers to QLIB_USE is aveilable.

14,10

2 RELEASE] EXTENSIONS

THE FUNCTION QLIB _LISTS

This function returns a string containing the current defaull value of each
of the parameters maintsined through QLIB_USE. Each perameler is
separaied from the next by a new line charscter. Therefore the line

PRINT QLIB_LISTS

will diaplay all the defaults on the sereen. The aimplast way to conflgure
the compller is to load it and select the options and positlons which you
require ne your defsults then exit, Then use QLIN_LISTS to display the
values and conatruct a QLIB_USE line to put into your BOOT program,

The default parameters for a microdrive based QL an net in the standard
BOOT program ls

QLIB_USE mdvl_,mdvl_,74,50,"001 1010100

This combination will compile most programs without any changes and
debugging is simplified by the inclusion of line numbers. AUTOmatic
integer FOR la turned on for speed. If you wanl to oblain the smallest

object size sl the possible expense of some minor changes, turn
off the NAMES and LINES options, snd include $3i at the start of the
program to force integer mode.

MAKING THE COMPILER RESIDENT

If you have sufficien! memory, you can make Q_Liberator resident and
Instantly ovailable. This can be done in several differen! ways as
summarised below. Details of the techniques behind these facllities are
axplained in the seotion on external procedures.

1) To make the compllér a permanent resident procedurs
b=RESPR(siza): LBYTES MDV_GQLIB_OBJ,b : CALL b

where size ls the length of the fite QLIB_OBJ, This Is given In Appendix
B, It i likely to change in fulure releases.

1) To load the compiler a8 an overlay (lemporary resident procedurel
OVERLAY L MODV1_QLIB_OBJ
1) A QLIB system file can be created with the RPM utility containing the
compiler, nantime system, todkit routines and anything else you choose lo
Include. This flle sould be loaded as a resident procedure or pul into a
ROM. This s slresdy done for you if you have the 64K ROM version.
The Q_Liberator menu can then be called up by Lyping Lhe procedure name
QLIA. " If you wish you can append an option string in a string varisble, in
which case § Liberstor will run sutomatically. If you wanl lo continue
working with SuperBASIC while the compiler is running. append an
exola mation mark after the lastl parameler. For examplo,
QLIB "MDV]_ DEMO"!

would automatically compile the flle MOVI_DEMO _WRK or
MDV1_DEMO_SAV.

14.11

] RELEASE 3.3 ENRANCEMENTS

INTRODUCTION

When _Libevator was orlginally concelved, the majority of QLa were
fitted with AH and JH ROMS. The later ROMS, J5 and MG introduced the
WHEN ERROR and WHEN wvariable constructs, but deficiencies in the
implementation meant that they could mot be wsed rellably although
Toolkir 2 from QJUMF went some way towards correcting thes. By that
time we were concentrating on enhancing 0 Liberator to provide full
compatibility with QJUMP products such asa QRAM and HOTKEY 2 and to
provide the valuable facilicy of external procedures and funcrienms.

The esergence of MINERVA prompted us to revisit § Liberator to provide
support for dts dual screen mode feature and to add some enhancesents
we had long planned. At the same Ctime we have leplemented WHEN etrror
and WHEN warlable as they work consistently with that ROM. The result
is Q Liberator Release 3.3.

This release will run object code programs compiled by all previous
verslons of Liberator. Note however that the 3.3 runtime aystes sust
be used with the 3.3 coapller. Use of an earlier runtimes will give
QLIE error 5 - Internal error.

NOTES FOR MIMEEVA USERS

This is the first release which we claim to be truly Minerva
compatible. F¥or the record, all release 3 versions of (Liberator will
run with Minerva In the single screen mode. Release 31.24, which was
igpued on a restricted basis to QUANTA first supported dual screen
mode.

Please read the documentation supplied with Minerva as it makes several
references to) Liberator. Compiled programs with machine code
extensions which require sore space on the RI stack than Le available
can with crash the system. Minerva prevents this by the cather dramatle
actlon of removing the offending job. Thua If you find your program
suddenly asborts without reason then tey Increasing the stack size with
QLIE PATCH.

Whilst the lmprovements to the speed of the graphics routlnes and
floacing point routines are exploited to the full by Q Liberator, the
improvessnts to the spesd of the SuperBASIC interpreter will diminish
the percelved wspeed up factor of the compiler when compared co che
interpreter.

SUPERBASIC CHANGES WITH MINERVA

With the minor exceptions detailed below, all of the enhancements Eto
SuperBASIC described in the Hinerva documentatiosn are esupported by
Q) Liberator. In some cases where there are bug filxes or obvious
enhancementa, (Liberator was already capable of handling things
correctly (e.g. String SELect, FILLS, and RESPR). The TRACE routines

15.1

RNLEASE 3.} ENHANCEMENTS

TRON, TROFF and SSTEF cannot be complled - this should mot cose as a
surprise. We have also chosen not to support FOR loops with string
variables. If you really think that we should, write to us and let as
know. § Liberator will attempt to cosrce a strimg FOR varlable to a
vusber. 1f this is oot possible then the runtise systes will fssue QLIB
error 19 = string ls oot ssmeric.

Bs careful in the wie of Minerva“s schancessnts 1f you want your
software to be portable to other ROMS.

The =s jor eshancessnt ({n Relsass 3.) coscerna WMEN handling. This
feature can oaly be wasd with the following ROMS: JS, MG varlations and
Minerva. To date there has been oo full description of the WHEN ERRor
and WHEN warlable comstructs which we found te contain complexities
vhen researching thalr behavicur prior to Isplessatation fIn
Q Liberator. The ssctlons below are an attespt to Fectify this lack of
docusentatlon.

In chapter 1l we explained the need for error teapping ln & program and
described the { ERR facilities supplied with { Liberator. From Relsase
3.1 we have laplemented error trapping which is completely compatible
with the facllities originally isplemented in the J5 ROM and corrected
in Minerva. In contrast to the { ERR error trapping which provides
keyword specific error hamdling, WHEN ERRor crapping applies to all
keywords.

WHEN ERRor is fovoked by Including & WHEN ERROr routine somewhere in
the program, A WHEN ERRor routine wstarts with a WHEN ERRor statemant
and enda with an END WHEN statement. When such a routine {8 executed
the statesenta batween WHEN and END WHEN are igonored, but the address
of the first statement is recorded. After this, wheoever an error is
encountered the atatesants between WHEN and END WHEN are emccuted.

For example:
WHEN ERRor

FRINT "Something went wrong : STOP
ERD WHEN

A slngle line verslon of WHEN ERROR (s also possible along the linea of
single line REFeats and FOR statesents. No END WHEN (s necessary:

WHEN ERRar: PRINT “Oopa!™
WHEN ERRor routines cannot be oested Imsilde each other la your source
program. At runtimse they are static. Whilst it is allowable and is

often uscful to have sore Chan one WHEN ERRor within a progras, only
the last one encountered will be active.

15.2

RELEASE 3.3 ENHANCEMENTS

ENTERING WHEN ERREDR

Once it Is active, the WHEN ERRor routine will be lovoked whenever an
error occurds within a program. With the Interpreter this ineluodes
errora which occur when entering direct cosmands.

Once {inside a WHEN ERBor, there are few restrictions on the sort of
processing you can do. The enviromnment is that of the routine in which
the error occurred. In particular, local varlables which existed at
the ctime of the error are still accesslible and Ffuncrions and
procedurss can be called st will. Note however that within the error
routine Ffurther error trapping is effectively turned off. If an error
occurd within an error routine then it will cause the program to stop.
The interpreter prints a message in the normal way except that "im
WHEN processing” 1¢ to let you know what has happened.

With compiled programs 1f an error occurs durilng WHEN ERBor processing
then it s displayed on the pop up error console In the normal way with
the error message preceeded by “During WHEN,". You then have the
opportunity to Retry, Contimue or Abort.

To be weeful, a WHEN ERBor routine meeds to be able to determine where
the error occurred and what the error was. Then it may be pogaible to

take corrective action or at least print a meaningful messago. The ROM
contalne fonctlions and procedures [o Support you.

ERLIN is a functiom which returns the lilne number at which an ercor
oecurred. ERNUM is & function which returns the error number as the
usual small negative Integer. As an alteroative to testing ERNUM, cthere
ia a sat of functions with namea corresponding to the aystem éccor
codes which return tree (=1} 1f that error occurved. ERR NF for
example, returns true If a “not found” ercor has occurred. The complete
list of functions im lizted below in the sa=me order as the error codes
in the function § ERR§ from chapter 11.

ERR NC, ERR NJ, ERR OM, ERR OR, ERR BO, ERR MO, ERR_NF, ERR EX, ERR IV,
ERR _EF, E!.R DF, l-“ BM, Ell TE, ERE | L FF, Eltlt BP, EII FE, BIIB XP, H-R.R ov,
Eltl NI, IIB RO, ll.l BN
The procedure REPORT is useful for printing the message assoclated with
the last error which sccurred or with a glven error nuember. Note that
the default channel for REPORT Lis channel 0. The ayntax is as follows:

REPORT [fchanmel, | [error |
For example:

REPORT Print laat error message on FO

EEPORT -5 Prints “already exista” on FO

REPORT #1 ,ERR_NF Prints “not Found” to #1

REPORT unfortunately insists on priating a line feed afrer the error
mESSAgE .

15.3

RELEASE 3.3 ENHANCEMENTS

EXITING WHEN ERROR
There are three legal ways by which you can leave a WHEN ERRST liuse.

The keyword END WHEN, wvhich wmust always be pressnt at tha end of an
error routine, will return contrel to the wstatesent after (the
statement which caused the error (“the error statesent”).

The procedure CONTINUE can be used at any polot in an error routine to
cause o return to the main program. 1f no paraseter Ia prasant than
COMTINUE works just llke END WHEH and returns to the naxt statement. 1f
you have Toolkit 2 then the fusctionality of CONTINUE Ls enhanced to
allow continuatlon from an arbitracy lloe oumber within the program.
of ecourss this line MUST be withim the same procedure as the error
ptatesent and will cyplcally be wery close to L.

e.g. CONTINUE 200 Contioue [rom linm 200

The procedurs RETRY can be used without & parsseter o restarc
execution at the start of the statesent which caused the ervor. As
with CONTINUE, RETRY can be glven & line oumber f Toolkic 2 1s
present, ia which case it behaves idestically to CONTINUE with a lise
oumbsr as described above.

Use of CONTINUE and KETRY is oculy possible inside WHEN ERBor. Note Chat
although Toolkit 2 {s neceszary for the Interpreter to run programs
which use “RETRY line number” or “CONTINUE line number®, Q Liberator
will ecorrectly compile and execute these nstatesents without the
presence of Toolkit 2. Fortunately the syntax is sccepted on any ROM
supporting WHEN, so wuch programs can be entered and conmplled, even
though the Interpreter would not run them corrsctly.

RETRY 1a most useful whem used with the ERLIN (unction. Note Cha
difference betveen RETRY which retries the error etatement and RETRY
EALIM which will restart at the beglaning of the line which includes
the error statesent. This gives you the opportunliy to keep things
tidy before the statesent is retried. The sxample below shows how this
technique can be used to cateh the error Iln expresslon which oceurs If
text Is entered (nto a mumeric variable. Try fk.

100 WHEN ERRor

110 IF ERR_XP THEN

120 AT 10,10: PRINT “Nusbers onaly!”

130 RETRY ERLIN

140 END LF

150 FRINT “At line “;ERLIN,”: REPORT #l: STOF
160 END WHEN

170 ¢

500 AT 8,7 1 PRINT © “: at 8,0:INPUT “Humber “;n

510 AT 10,0; PRINT “Thank you -

Be careflul with expresslons using ERLIN because sxpliclt line numbers

15.4

are not sutosatlcally adjusred 1f you RENUMber the program.
TURNING OFF WHEN ERROR

When vorking interactively with the Interpreter, any error routine
active within your program will still be active 1f you inaterrupt
enecution. This can lead o eonfuslon, partlcularly 1f che ecror
routine Ignores some classes of error. You might type a comssand and
asmums Lt has worked correctly because no errar im reported. In
reality the comsand has falled but there Ia no routine with the
reaponsibility of informing you. Te aveld this, WHEN ERRor handling can
ba turned off and the system returned to normal by typlag “WHEN ERRor”
as a direct conmand . i '

WHEN ERROR amd O ERR

These two different forms of error trapping do not compets In any wvay;
in fact they complisent each other. Both forms of error trapping store
the errof sumber im the sase location so the functloas (ERR and ERNUM
are In fact Interchangeable.

WHEN ERfor is a global form of ervor trapping. Any error in a progras
invokes it without any other special coding belng necessary. In
contrast @ ERR is specific. 1t caly cperates on procedures which have
been put on Aits error trap list by (EER ON. However thers [Is the
disadventage that Q ERR must be tested after sach statement which could
potent lally lesad to an error.)

When both forms of erver trapplng are weed within the same progras,
putting a procedure on the error trap list with @ ERR ON effectively
redirecks all errors associated with that procedure to the @ ERR
routines. The WHEN EBRRor routine will never be called for ervors In
that procedure. Thus one might use WHEN EKROR for gensral error
handling and Q_ERR for specific exceptions.

WHEN ERROR LN COMPILED PROCRAMS

We have mads avery eoffort po ensure that WHEN ERRor 1s implesented
within Q Liberator im @ wmanoer cospletely compatible with the
interpreter. This we have achieved for all the errors which are
returned by procedure calls. Bowever those errors listed as QLIB &rrors
which are maimly prograssing ecrors, cannot be Crapped. This is no
great restriction becsuse soch ervors sre usually noa recoverable. Ome
consequence is that “division by zero” camnot be trapped and will lead
to an abort.

A program which uses WHEN ERRor can omly be entered and cosmpiled on a
aystem with J§, MHC or Minerva ROMS. Howewer tha object prograss will
run on any QL provided thar the procedure REPORT is avolded.
§ Liberator will produce compatible code Lo wupport use of ERLIN,
ERNUM and all the functlons which test for specific errors auch as
EHR_NF woven though those functions are not progent [n the AN and JH
RiMs .

15.3

EELEASE 3.3 ENHANCEMENTS

WHEN ERROR AND EXTERNALS

The scope of a WHEN ERRor routine does not extend to trapplng orrora
within compiled external procedures called by a program. If error
crapping 1s required within an external them & separate WHEN EREor
should be lncluded within the external itself.

WHEN VARIABLE

WHEMN ERRor cavses a routine to be automatically called whenever an
error occuré. In o broadly similar fashion, WHEN VARIABLE causes a
routine to be called whesever a epecified warlable changea. It cam be
used to create event driven programs.

The ayntax looks as Follows:

WHEN expression
dtatements
END WHEN

where expression is usually of the form:
Variable relational operator expression

When a WHEN clause Ils executed, the statemsnte within It are ignored
but the first wvariable in the expression is entered ip a ctable of
“watched WHEN variables”. Thereafter, every time = value is stored in
this variable the WHEN classe 1is invoked. If the condition following
the WHEN evaluates to true then che statemeots which follow will be
executed. Hore than one wariable can precede the relational operatoer
but 1t is important to realise that omly the FIRST variable after the
WHEN is “witched”. Soms sxamples should clariiy this:

WHEN x=100 invoked when 100 stored in x

WHEN x50 invoked when something greater than 50
srored in x

WHEH x=y invoked when x is changed to equal y.
Changing ¥ to equal x does WOT invoke the
routlos

WHEN x#y=0 invoked when x is changed such that

xty=0. Changing y so that wiy=0 will NOT
invoke routine

You can have as many WHEN clauses in & program as you choose, each
related to the pase or different varlables. Changlng a watched variable
will result In at most one WHEN clause belng executed. Thus the order
in which WHEN clausea are tested can be significant and depends upon
the order in which they are encountered at runtime. Unlike WHEN ERRor
vhich is static and operates on one level only, statements inside one
WHEN clause may trigger entry to ancther WHEN clasuse. The only
reatriction is that it 1s WOT possible te re-enter the WHEN clawse

15.6

RELEASE 3.} ENHANCEMENTS

which is currently belang processed. The exasple overleal should help to
clarify the behaviour of WHEN. It"s worth trying it om your own system.

100 WHEN a=1

Ll0 PRINT “»=1",
120 a=0: b=l
130 EMD WHEN

200 WHEN b=1

210 FRINT "h-l".
110 b=0; a=l
230 ENMD WHEN

300 WHEN a0

310 PRINT “a2D",
310 END WHEM

500 a=1

510 PRINT “end”

When this is esecuted the sequence is as follows. At 300, settlng a to
1 triggers the WHEN at line 100 which is first in the list. The WHEN at
300, 1s mot sctivated sven though lts condition im trus. At 120, whilst
stlll imeide the first WHEN, b is set to 1 triggering the WHEN at 200.
At 210, = i@ agaim set to 1. The WHEN at 100 is already sctivated and
so is ignoved, but the condition for the WHEN st 300 is met and is
therefore triggered. Then we returm from the three nested WHENs via
lines 320, 230, 130 and finally back to the maln progras at line 510.
Thus the cutput from the program Is:

a=l b=1 a0 ' end
STOFPING WHEN PROCESSING

A warlabla can be removed From the watched 1lat by a atatesent of the
form:

WHEN varlabhle

The [irst WHEN clawse for the specifled varlable in resoved. Dthers for
the same varisble may stlll remain In force.

WHEN VARIABLE TN COMPILED FROCRAMS
Wothing such to say here. (Liberator WHEN handling Is precisely
compatible with the behaviour of the iaterpreter described above. As
with WMEN EERor, WHEN handling does mot extend into externals called by
a program, but exterasls can have thelr own WHENs if required.

HLSCELLANEQUS IMPROVEMENTS

TRACE OFTION
A TRACE option has been added to the compller. When Lt I8 turned ON
statemsnt separators are inserted in tha object code. Thia only

15.7

¥ HELEASE 3.3 ENRANCENENTS

marginally fIncresses the code sire as they wususlly replace redundant
filler bytes. The only advancage currestly is that & statement nuaber
is priated on the error console after the error line mumber. In future
we wmay develop a debugger [or § Liberator code In which case the TRACE
option will allow code to be single stepped. Please write to ua 1 you
are intecested Lo such a tool. TRACE cccupies the first reserved entry
in the QLID USE pacaseter list.

ERROR CONBOLE

When & O _Lib arcor la reported on the pop up error cansole Lo place of
the KETRY Y/N prompt you can now opt to Retry, Contlnue or Abort by
typing the appropriate character. Hetry repeats the offending
statesent, continue Lgnores it and abort tarminates theé job. You might
also spot that the border of the error console has been changed to a
chaquered pattern.

With Minerva Im two screen mode, the error console pops up on the
current deflault screan for that job.

FREE RUNNINC PROCEDURES

The concept of free running procedures was Introduced om page 14.% of
the user mamual. In releases prior to 3.), such procedures could only
be started from the laterpreter. Release J3.) removes this restrictiom
and allows complled programs to spavn nev Independent Joba by & simple
procedure call.

qLIB_STS

Over the years the § Liberator system has grown in size and has hecome
apread over several files. As an alternative to Individually loading
each file of extensions we have Llinked all thoss cossonly regquired in
one file named QLIB SYS. QLIB_SYS was produced using RPM (of coursal).
The RPH control file ls alac supplied as QLIB RPM for thoae who might
want to change it to include say QLOADSQREF or the compiler iteself,
QLIS OBJ. OQLIB 8YS im now part of the standard BOOT routime. QLIB BOOT
still containa the instructlons to load Flles lodividually.

KEW ERROR MESSACES

The compiler has Cwe new error messages assoclated with WHEN
constructs. Thelr meaning should be obvious.

Error.... END WHEN without matching WHEN
Error....MNested WHEN not allowed

Ths runtime error sessage, Can 't retry” 18 now lesued Lf
RETRY or CONTINUE are wsed outside of & WHEN ElRor ¢lauss.

15.8

x INDEX 1

Amblguous name 5.4, 14.6
Arithmetlc B
Array 6.4, B.5, B.8, 14.8
§.9, 5.4, 9.1
5.2, 8.5
4.8, 14,1

Assembler extenslona
AUTO
AUTOF

BOOT 1 2.1, 1&4.11
Buffer L]
BY_CHRIX 9
BY_RIEBAS 9
BY RLP y
BV_TGBAS 9
CALL 13.1
Channels vy Wi 4.B, &
CLONE 1.2, 2
Command line 4.2, &4
Commarcial use 1.4
Common heap 1.1, 7.2, 7.3
Communication 10.1
Compatibilicy 8.1
Complle time 3.1
Compiler 1.1, 3.1
Comflguring the compiler 14.10
Constanta & .10
CONTLNUE 5
Control-C 3.
1
3

9, 5.3, 7.2, 7.4, 8.8, 16.%
1, &:S, &L
N, ok, KT NS

Copying Q Liberator
Cursor . 8.5, 12.3
Data area

DEBUG

DEFine

DEF_INTECER
DEMO_MULTI
DEHO_PAGER
DEHO_FIPEDIR
DEMO_QERR

DEMO SORT

Dimension .
DLIRE

Directives

Division

W
-

-
#

B3

, 8.2
; 4.1, 14.2

-
L - T I = .
B o

=B N - P T]

EDIT

ELSE

END LF

END DEFine

END FOR

END REPeat

END SELectk

Errors In coamand l1lne
Errovs vhen compiling
Errors st runtime

-
=)
[*

s e @ o ow
- - =

-]

-

LT T . R T T
Ll R

INDEX 2

Error trapping
Error window

EXEC

EXIT

External Procedures
EXT FN

EXT_FROC

Fille handling

Filter program

Floating poeint

FOR

Free running procedures
Funet fon

GLOBAL
co TO

Haap

IF

Illegal procedure
Implementation notes
Inactive

Index
Inictlalisation
INKEYS

INPUT

Integer

Internal errov
Interprecer

Job

Job control
Job name
Job O

JH and JS

Keyboard
EEYROW

LIBERATE

Linme numbers
Linkinog asseabler
Linking runtimes
LIST

List device

LOAD

LOCAL

LRUK

Haster copy
Henu systes
Hemory
HERGE

133 = 18

lﬁll

2.2, 10.1, 10.2

B.3 :

4.10, 9.3, 14.3 - 14.8
5.4, 9.3, li.6

5.4, 9.3, 14.6

3.4

10.5, 10.6

8.6

6.5, 6.6, 8.3, 14.1
14.9

51, 300, 0 8.5, Bk
3.8, 14.7

6.6, 8.5

4.9, 6.3, 7.2

(Y

5.3, 8.5, 8.6

14.7

3.2

6.4, 8.8

6.1

3.4

1.4, 4.10, 12.3, 14.1
4.8 4.9, B.6, 14.1, 14.2
6.6

3R T

3.2

3.2, 12.1, 12.2

§.7, 7.4

3.2

4.10, 8.1, 11.1

3.4

3.4

2.2, 2.3, 4.1, &.2, 4.3,
4.7, 8.3, 6.2

4,9, 9.3, Lé.4, Lk.5
4.7

5.3, 8.5

4.7

5.3, 8.5

14.7

5.3, B.6

1.2

2.3, 4.5

7.1

5.3, B.§

-
L=

[NDEX 1

Meassages
Messages vhen compiling 5.1 - 5
Megsages at runtime 6.1 = 6.
Microdrives 13.1

MISTake 5.3
HMOVE 4.6
HEUN 5.3
Mulcitasking 2.1
RHame 4
Hame table 3
Heating L 1
HEW 5
REXT B

Object program 2.1; 2.2, 3.2, 4.2, 4.7, 7.1, T4.)}
OFEN 3.4
Optimisacion 4.9
Optliona .2
Overflow 6.5

6.2

OVERLAY

. 8.7, 14.10
, 8.6
» 14,4, 14.5, 14.11

Passing command lines
Fassing command strings
Faseing channels

Phage 1

Phase 2

Plpe

Priorcity

Problem aolving
Procedure

P e s DD
e)
e few oW RS
-
o3 =

@ _CURSON
Q_CURSOFF
Q_ERR
Q_ERR§
Q_ERR_LIST
Q_ERR _ONW
O_ERE_OFF
Q_MYJOB
Q_PIPE 10
QDOS errors 6.2

QJ 12.1, 12.2

GLIB errors 6.3

QLIE_BIN 4.2, Al, Bl

QLIB_BOOT, Al, Bl

QLIB_EXT L.&, 9.4, AL, Bl

QLIE_HELP 4.5, Bl

QLIB_LISTS 14.11

QLIB OBJ 1.2, 14.9, Al, Bl

QL1B_OVL lé.4, Bl

QLIE FATCH 7.1, T4, 13.2, 14.2, Al, Bl
QLIB_RUR 1.4, 6.2, 6.1, Al, Bl

QLIE USE 4.3, 14.10, 14.11

QLOAD 14.2

= 8 & B
.
=]
—
w

Ll ol T T Y Wl e RS RS e
£ B B3 B R RS P =

PO = e

B % = =

IHDEX &

QP

QFTR
QR
QRAM
QSAVE
ox
QX_JOBO
QW

RAMdiask

READ

Reference

RENLM

REFmat

Eesldent compiler
Resldeént procedures
RESPR

RETRY

Retry

RETurn

ROM

EFM

Rules

Run time system
REunt ime

SAVYE

Sereen handliag
Searching nametables
SELect

Slze of program
Slice

Bort program

Source program

Speed

Stack

Statistica

String

Btring array
Structure

Subroutine llbraries
System reguirements

Toolkic
Tranelatlon

Undefined varifable
UNLOAD

Unresolved reference
Ungupported keywords

Variables and externals

Warnings
WHEN ERROR

o e
L &
M = .
= WD L -]

10.2,

el K
Y- T]

o KB e WA
M Rie o ow REe R

. TBal,
B.%

G ek OB = A O Y WD = e O AR e O

&=
~ A =

- o owm e w
T AN
- L] Ll L
FI" R
L
-
w

o RO B R R DA
an

B T T

e . R

=
=]
-
WA

6.3

L4.5, 14.6
6.5

5.3, 8.5, 8.8

B.6, L&.7

5.2, 3.3
5.3, 11.1

10.3

1i.1,

B
4.2, 4.7, 6.1

14.2

Appendix A Budget Compiler Files

QLIB_BIN

Thias contains phase 1 of the compiler, LIBERATE, and the extensions for
loading object programs, QX, QW and QX_JOBO. It must be loaded by a
BOOT program if you intend to compile programs. QLIB_RBIN is configured
during the CLONE procadure.

QLIB_RUN
This is the run time system. It must be present to rFun object programs

except for those programs which have had the run time system linked at
compile time. The second phase of the compiler itself requires this file.

QLIB_OBJ
Thia is the second phase of ‘the compller. It ia loaded by the LIBERATE
command and requires thl.t Ql.IB B[Ii and QLIB_ RUN are present.
QLIB_EXT

This file is optional; it is not required by the compiler. You may choose
not to loed it by amending the BOOT program. [contains the following

SuperBASIC extensions:
Q-I. QP, QR, @ _MYJOB, Q CURSON, ©_CURSOFF, @ PIPE, ©_ ERR_ON,
_ERR_OFF, @_ERR_LISTand Q_ !F.H. . .
QUB_BGL'IT ’

This file is the source of the 'BDDT gram created by CLONE. In its
standard form it loads QLIB BIN, B_RUM and QLIB EXT. You can
ereate other BOOT programs (e to hld orly phase 1) by editing this one.

QLIB_PATCH_ OBJ
This is a utility in object-form for changing certain runtime parameters
without having to recompile.” It requires QLIB_RUN to be resident.

" i . e

This i& a BASIC program supplied in source form for making coples of the
Q Liberator syslem.

In addition to the above, various demos are supplied in source form with
the master.

Al

»

Appendix B Release 3 Files

QLIB_BIN

This contains phase 1 of the compiler and the following extenalons :

LIKERATE, GLOBAL, EXT FN, EXT PROC, DEF_INTEGER, QLIS_USE,
QLIB_LISTS, QX, QW and OX_JOBO. i1 must be loaded by & BOOT program
if you intend to compile programs.

QLIB_RUN

This is the ron time system. It must be present to run cbject programs
oxcepl for those programs which have had the run time system linked at
compile time. The second phase of the compiler flsell requires this fila.

QLIB_ORd

Thia In the second phase of the compller, It is loaded by the LIBERATE
command and requires that QLIB_BIN and QLID_RUN sre present. The
pizo of this file ns required when making the compilar resident can be
found In QLIB_BOOT

QLIB_EXT

This flle is not necessary for the compiler to operate. It contmins the
following extensions:

QJ, Q¢, QR, Q_MYJOB, Q@ CUHMSON, Q CURSOFF, Q_PIPE, Q_ERR_ON,
Q_ERR_OFF, Q_ERR_LIST and Q_ERR.

QLIB_OVL
This contains the procedures OVERLAY and UNLOAD.

QLIB_HELP
This s the HELP text file for the compiler. It meed only be present on a
warking copy if you think you need it.

QLIB_BOOT

Thia file is the source of the BOOT program crealed by CLONE. In its
standard form it loads QLIE_BIN, QLIB RUN and QLIR EXT. You can
areate other BOOT programs (6g to load only phase 1) by editing this one.

QLIB_PATCH_DBJ

Thia 8 & utility in object form for changing certain mmtime parameters
without having to recompile. It requires QLIB_HUN to bo resident.

QLIB_SYS

This contains QLIB_BIN, QLIB_RUN, QLIB_EXT, QLID_OVL as & single
loadable [ila.

QLIB_RPM
The Resident Program Manager source file to used lo create QLIB_SYS
CLONE

This is a BASIC program supplied in source form for making copies of the
Q__lew sy alan,

In addition to the ahove, various denos are supplled in source form with
the master.

B1

