. -4 T e, .

! . I _

i o - m
b .
P ;
7 <l :

*
T -
<

r
5

P o R A Wl A, U B T

m Tt AT gLy

e e et M

i
o
e

R M
__\....F._ ..lfjl....llrh«lla\r.l..,l.
A I VY N
- N Q .Jm.]

bl i, e F s ol Ll o e i e — B

:."::!r
i
e s 3 e A ple i e v it s e bt il

;}L;‘;-----
f-
,

PRUNTETTErE e R T PR S M

PP A

-
8,
i

N L ke . s et s i T BF R T R

SR .
.o 3 .iﬂl...-u‘\;. .
- R
H . r——— T
; RPN
/ 1o,
. \|Ml..|/..
i tr 101
i] Rt
o
' ' 1 !
i %\ r.l.._!rpy M
' Saun AN
BN R
fo TR
|
Pobu i’ 1
w_ ; e i
L] ST e 3
G)
i {fowz~l~ i
v, o1
PRI
1 H
L i
: 3
1 H
[- i
] .
]
o e e - d -l SERN ..rt..lﬁ.-. sl = b7 AT
o5 - e Y P
Tt ””. 3 .
N f i . . L .
o, . i "~
) . :
» AR
[0
.\.....).il..,
-
. Y -
' R e—
.. et
ey
+ -
s . e
r—t—=
ot) ._\H -
3 ..\J.-. M
i e
. B ———
B ' .Lh Ty
- R e,
S RO

<t e g s e an

At b, R

F‘I

i b
Exe . {o.:},}__ {‘.“,_k
cadinn ¢ o, W\\LQ :

p - .mz,,ybaa/,,,?, Al e - bk
f/: - Cug

'DC'P i
(E@ﬁﬁ&.ﬁ. @ﬁ

26 Portland Square, Bnsloi RS2 SPZ

b
R R

QL C Development Kit, 2nd edition.
. Copyright (C) 19886 METACOMCO ple.

Al rights reserved. No part of this work may be rep‘rcduced inany form
" or by any means or used to make a derivative work (such as a

translation, transformation, or adaption) without the permission in

writing of METACOMCO ple, 26 Portland Square, Bristol, England.

Registered users of the Metacomeo QL C Development Kit may make an
unlimited number of copies of the C runtime library only {or inclusion in
- applications programs writlen in C. There is no fee payable for this right.

Although great care has pone inte the preparation of this product,
neither Tenchstar Limited ner its distribulors maite any warranties with
respect to this product other than to guarantee the original microdrives
and EPROM against faulty workmanship for 9% doys after purchuse.

- QL. QDOS5 and SuperBasic are trademarks of Sinclair Research Limited.,

{.attice is a trademark of Lattice, Inec. UNIXN is a trademark of 8ell
Telephone labaratories.

Contents

Chapter I

Chapter 2:

Chapter 3:

Chapter 4:

Using QL.C

1.1 Lattice C on the Q_L

1.2 Module Compilation

1.3 Program Linking))
1.4 Program Exccutic_m

i.5 Compiler Processing

The Screen Editor

2.1 Introduction

2.2 Immediate Commands

23 Extended Cominands

2.4 Command List

“The Linker

31 {ntroduction

3.2 Linker lnputs and Outputs
33 The Countrol File

3.4 The Listing File

15 Actions of the Linker

. nition
lLanguage Defl

1
1.2
43

Summary of Difierences
Major Language Features

Comparison lo the Kerighan & Ritchie

“C Reference Manual®

Using Q1. C
. QL. C Developmient Kit

Inyo i
3(ur develapment kit you should have the {ollowing itesms:

1, Microdrive cartridge 1: Ccompiler phase 1

2, Microdrive cartridge 2.C campiler phase 2

3. Micradriv H
" rive cartridge 3: Ser LET
linker- " een bditor, C run-time system plus

4. AnLEPROM containing purtof the QL.C ' -

§. The "QL C Development Kit" manual

. - We strongly reco &
. : . mmend that you . =
S~ e g - i mic H . . make back .
ae rodrives cartridges and keep the mastér copic;'z[i)n‘:]s::'s (;f the three
: & ¢ place.

Use of the EPROM cartridge :

.- As has beon : :
: 3 e ! nentioned above, p
o ‘EPROM. The P ove, part of the QL C is i
o i, ;_?L CEIl .RO.\I is encased in a plastic cartrid?vmv,ld,Cd on an
. 1e machine whenever the lanrruacc:is ¢ 'Dcd“ hich cun be
guage is required.

Ta insert your .I"I’I 1 2 O ¥
L . {O.\I irst I‘O\ El
N [SR DOWN This i
our QIJ I'his s ver

rAd g .I{
DO important! Th
] ; P il en renmove the cover f >
- which is loca) er fram the QL socket m . "ROM™
. L cartridge cm:m(in(:r-] :he teft at the rear of the computer a'ir’:“dli IJfU.\I
. o v cartrid; L # be pushed carefully inte Ihis s ‘ e LPROM
acis in, the machine can bhe })o\x-er(;d up. 8 socket Once the

I IHavi
: ing selected iy :
i can no::c b; veriﬁt{e ;:c}uucd screon (either TV or monitor) the EIPROM
i he St 15 nat essential to d [. i :
should be workin ta do this; if the title c;t i
a7 A - . M ue ¥
is agood ideat b I{Ortle\e, . as part of it may he missing or d: A
ocheck. To verify vour EPROM, (p ung or damaged. it
’ - - M, tepe:

ROM

The EPROM wi
“QLC Vf“RIS!lgI\!'Lt?(‘lT runi;!i check anitself If it is warking. th
= N followed by the versi B warking. ine message
lelt hand v ihe version number . *
corner of the screen. i the KPROM is faul.t‘:-'l:it::‘:;” un the top,
- ¢ Masiigze

)
- Csinz QLC

acomed for further
anguage can be

Qi.C Development th

s3AD ROM® will appear and you should cantact Met
assistance. After the EPROM has been verified, the |

used.

1.2 Module Compilation

ted via two SuperBasic procedures, LCL and
{ the compiler {rom any specified device {eg
microdrive, floppy}) Fach phase performs 2 portion of the compilation
process and must be invoked by separite commiands; LC1 does not
automaticaily lond 102 when it completes its processing. Normally,
1.C2 should be executed immediately after L.C1 if there are no eriors in
the source fite. The compilation process can be dingrammed as folluws:

The compiler is timplemen
1.C2. Thesc load each phase o

file C —-> el -» file Q@
file O -> LCZ -7 file_O

whose name must end in the two characters

_C,and (provided there are no fatal errors) produces an intermediate
file of an identical name, except that it ends in the two charasters _Q
1.C2 reads an intermediate file created by LC1 and produces 2 Binary
file of the same name but ending in _0. The intermediate file is deleted
by 1L.C2 when it comptetes its processing. Hach phase normaliy creates
its output file on the same device as the input file. Note that if a source
fite defines maore than one function, s docs s resulting ohject file.
Individuat functions cannot be broken out fromn the abject file when a

srogram is linked.
I -

LC1 reads a Csource file,

st be incorporuted with
es in order to

using

he compiler 1wy
n-time support subroutin
e accomplished by
and more fully in

The object file praduced by ¢
other object files and with ru
Wble 68000 code. This can b

praduce cxeculs
{ LINK is described in section 1.3

LINK. The use ©
chapler 3.

123K) Qi vou will natice the

n on an unexpanded (
This will not

screen-area of memory as workspace.
QL with memory expansion,

_Duaring compilatio
compiler using the
usyally happenona

Using QL C

QL C Develapment Kit

compiled with a previous version of the Lattice

Usine QL C

Q1. C Development Kit

Causes the identifier "symbo!” to be defined, as if
the compiler had encountered a #define command
for it. One of two forms of the option may be used.

The first form merely defines the symbol with a -

nuli substitution text; the equivalent C statcment is
gdefine symbol

The second form uses an equal sign to attach a
substitution text "value"”; its equivale - is

tdefine symbol value

~Goveral definitions can be made in the same LC1

compiler, Bach flug is specified as a single letier -dsymbol
% in either upper or lower case; more than one flag -dsymbol = value -
% may be attached to the -¢ (for example -cusw), but no
" blanks are permitted. The flag letters recognized
4 ¢ are:
L d
. ¢ Allows comments to be nested; the
;' default is that comments do not nest, in
accordance with the generally accepted
convention.
d Allows the dollar sign ($) to be used as
an embedded ¢character in idenatifiers.
S m Permits the use of multiple character
- - -constants {for example, "XX°).
s Causes the compiler to generate only
© one copy of identical string constants.
By default, the compiler generates
- unique copies of all string constants,
even if they are identical.
u Forces all char deelarations to be -l
O ’ interpreted as unsigned char,
i w Shuts off the warning generated for
| return statements which do net
) specify a return value inside anint
furicticn. {(Functions which do not
return a value shoull be declared -n
I void.)
-4 Causcs debugyging information to e included in the
quad file, Specifically, line separator quads are ~aprefix

. interspersed with the normal quads. This allows

the sccond phase to collect information relating
input line numbers io program scction olfsets. A
special debugger is required in order to use this

information, which is nut supplivd withthe package.

-6

command; however, macros with arguments cannot
be defined from: the command line. This feature
allows source files containing conditional
compilation directives (#ifdef, #ifndef, #iT, #else,
#endif) to be used to produce different results
without medifying the source file, simply by defining
the nppropriate symbol on the LCY coramand.

Forees alignmeal of all data elements except char
and short to a byte offset divisible by four. This
option is pravided in the event that code is to be
gencrated for a later version of the £8G00 series
which may perform leng operations mere eificiently
if the values are stored at modula 4 addresses.

Causes the compiler to retain up to 31 characters for
all identifier symbols, including #define symbols.
The default symbol retention length is 8 characters

Specifies that the output filename (the _Q or quad
file} is to be formed by prepending the input
filename {the _ C file which is being compiled)
with the string prefix, Any device prefivoriginally
attached ta the input filename is diseatrded befne
the new prefix is added. Nointervening blanks ure
permitted in the string following the o

-
- =

e —

" Using QLC

1.2.2 Phase 2

The second phase of the compiler reads a quad file created by the first

- phase and creates an object file in the Lattice format. See section 1.5

for a more detailed discussion of the processing performed. To perform
the second phase, the microdrive cartridge containing the second phase
of the compiler (Cartridge 2) shoulld be inserted into one of the drives
and the eartridge containing your quad file should be inserted into the
other drive. The format of the command Lo invake the second phase of the
comptler is:

LC? “device {=stack] [tworkspacel [>listfile]
{options]|" filename* ;

The various command line specifters are shown in the arder they must
appear in the command. Required specifiers are shown in bold type;
optional specifiers are shown in enclosed in brackets,

=stack sec LC1 command -

“hworkspace sce I.CI command -

>listfile - sec LC! command

device - Teils LC2 which device to load the sedond phase of
the compiler from. This can be any legal QDOS
device name.

options . Compile time options are speciﬁed as 2 hyphen
followsd by a single letter; in some cases, additional
text may be appended. The option letter may be
supplied in either upper or lewer case. Each option
must be specified scparately, with a separate
hyphen and letter. Avaitahle options are: :

-fn Specifies an address register to be used for the stack

(]

frame pointer. Only two values foe "n” are allowed:
& indicates that register A5 is to be used, G that
register AB is to be used. The address reffister
used if the -f option is not specified is A6, I the -b

-10-

QL C Develapment Kit -

pihisiosie

QI C Development Kit,

 Using QL.C

g

e

aption is specified on LC1, whichever of these two
reaistors is nol used as the stack frame painter is

used as the basc remister for addressing static and

externif data.

-oprefix : Specifies thut the yutput {tlename (the _ O fileis to
be formed by prepending the input filename (the _Q
file which is being compiled) with the string prefix.
Any device profix originaily attached ta the input
filename is discarded before the new prefix is
added. Ne intervening blanks are permitted in the
string following theo,

-p Causes the code generator to insert a specinl
instruction known as a “stack probe” at the entry of
each function for which code i3 generated. :

-r Forces all f[unstion calls to use PC-relative .
addressing, thus limiling the range of function calls
to plus or minus 32K. This option must be used if
postiion-independent code is desired.

Specifies the name of the intermediate file from
which code is to be generated. This intermediate file
is o quad file wi'b a _Q extension, created by the
{irst phase of the compiler. The file name should
be speeified without the Q) extension; the second
phuse supplies the extension autnmaticaily.
Alphebetic characiers may be snpplied in either
upper or lower case. The object fle is ereated on the
same device as the quad file unless the -6 option is
used.

filename

EXAMPLES
LC2 “mdvl_ -omdvl_ mdv2 u799"

This command executes the second phase of the compiler, loading it
grom mdvl__, using file mdv2__u790__y as input, causing the file
mdvl__u?90_ o to be created.

.11-

|

~ Using QL C 0L C Development Kit

" mdvl_mycprog_o —with mdv2_prog

This will take the object file mdvl__mycprog__o, created by the second
phase of the compiler and produce an executable file
mdvl_myeprog_o_bin. It will also create a list f{ile
mdv]__mycprog__u__map. Te quit the linker just enter a blank
_command line, and type CTRL-C to re-enter SuperBasie.

1.4 Program Execution

Aftee uking, the resulting code can be exccuted by one of the
SuperBasiccommuands EXEC, EXEC__W.

There are alse two additional SuperBasic routines CRUN and
CRUN_ W in the ROM which will aliow you to pass command line
erguments into your program by typing:

CRUN "dev_myprodg <arguments>"”

The Lext within the quetes can then be accessed via ARGV and ARGC
{see Kernighan & Ritchie 5.11). There are certain UNIX type lead-in
characters which have special signifance within the CRUN string.

Redefings STDIN to be the device specified. By
default STDOUT is set-up to be the same device as
STDIN. Therefore this will also redefine STDOUT.,

<ldevice

Redefines STDOUT to be the device specified.

>device
: ' Allows STDIN and STDOUT to be independent

devices,

=stack Overrides the number of bytes reserved for the
run-tirae stack.

“eworispace Overrides the number of bytes reserved for memory

altocation. The default causes all but about 4K of the
largest contiguous chunx of memory available to be
allocated to program execution.

QL C Development Kit ST

Another method of overriding the number of bytes reserved for menmory
atlocation is by defining the external location _mneed to be the value
required. For axample:

int ‘mneed = 5120;

inone of your C modules. this stutement must appear outside the body of

the functien to be considered external.

1.5 Compiler Processing

QL C is implemented as two separately executable programs, each
performing part of the compilation task. This section discusses the
structure of the compiler in gencerul terms, and describes the processing

. perforined by both phases, Special sections are devoted to a discussion of

the topies of error processing and codn gencration.

1.5.1 Phase 1’

The first phase of the compiler performs all pre-processor functions
concurrently with lexical and syntactical analysis of the input file. It
generates tha symbel tables, which contain information a.out the
various tdentiliers in the program, and produces an intermediate file
of logical records called quadruples, which represent the elementary
actions specified by the program. When the entire source program has
been rocessed (assining there are no fatal errors), the intermediate
file (also called the guad file) is reviewed, and lecally commun sub-
expressions are detected and replaced by equivalent resulits. Selected
symbol table information is written o the quad file, for usc by the
second phase. The first phase is thus very active as far as disk [/O is
concarned. Generally, if the disk activity stops for more than a few
seconds, it ts reasonable to assume that the compiler has failed. Sce
Appendix B for the compiler error reporting procedure if this happens.

When the first phase begins execution, it writes a sign-on message to
the standard output which identifies the version of the compiler which
is being executedd.

Usine OLC

. PR R
R R L L

]

< e s s

Usine DL.C QL C Develepment Kit

Error messazes which begin with the text CXERR are internal
compiier errers which indicate a problen in the compiler itself. See
- Appendix B for the compiler error reporting procedure. The compiler
generates a few other error messages that are not numbered; they are
uvsunily self explunatory. The most comimon of these is the

Nat enough memery . -

L J - .
message, which meoans that the compiter ran out of working memaory.

21 Introduction -

' dl.C Developmens Kit

Chapter 2: The Screen Editor

The screen editor EXD may be used to create a new file or to alter an
existing one. The text is displayed on the screen, and can be scrolled
vertically or horizentally as required. The size of the program is about
20K bytes and it requires a minimum workspace of 8K bytes.

The editor is invoked using EXEC or EXEC__W as follows
EXEC_W mdvl_ed

The difference between invoking a program with EXEC or EXEC__ W is
as follows. Using EXEC_ W means that the editor is loaded and
SuperBasic waits until the editing is complete. Anything typed while the
editor is running is directed to the editor. When the editor finishes,
keyboard input is directed at SuperBasic once more.

Using EXEC is slightly more complicated but is more flexible. In this
case the cditor is loaded into memory and is started, but SuperBasic
exrries on running. Anything typed at the keybourd is directed to
Super Basic unless the current window is changed. This is performed by
typing CTRL-C, whicli switches Lo another window. if just one copy of KD
is running then CTRL-C will switeh w the editar window, and characters
tvped at the keyboard will be directed to the editor. A subsequent
CTREL-C switches back to SuperBasic. When the editor is terminated a
CURL-C will be needed to switch back to SuperBasic once more. More
than one versian of the oditor ean be run concurrently {subject o
available memory) if EXEC is used. In this case CTRL-C swiiches
between SuperBasic und the twa versions of the editor in turn.

Once the program is londed it will ask for a tilename which shouid
conform to the standurd QDOS filename syntax. No check is made on the
Rame used, but if 1t is invalid a message will be issued when an uttempe
is made to write the file out, and a different file name may be specified
then"if required. All subsequent questions have defaults which are
obtained hy just pressing ENTER,

<19,

1
:
3
+

Screen editnr QL C Development Kit

QL C Development Kit Seroeneditor

An ENTER key causes the current line to be split at the position
indicated by the cursor, and a new line generated, [f the curser is at the
end of a line the effect is simply to create a new, empty blank line after
the current one, Alternatively CTRL-DOWN may be used to generate a
blank line after the current, with no splitof the current line taking place,
In either cuse the cursor is placed on the new line at the positinn
indicaicd by the lett margin {initially column one),

A -right margin.may be set up so that ENTERs are automatically
inserted before the preceding word when the length of the line bying
typed exceeds that margin. In detail, i a choracter is typed and the
cursor is at the end of the line and ut the right murgin position then an
au..matic newline is generated. Unless the character typed was a space,
the halfcoinpleted word at the end of the line is moved down to the newly
generated line. Initially there is a right margin set up at the right hand
edge of the window used by LD The right margin may be disabled by

~ meins of the BX command (see later).

Deleting taxt

The CTRL-LEFT key combination deletes the character to the left of the
cursor and maves the cursor left one positinn. If the cursor is at the start
of a line then the newline between the current line and the previous is
deletad (untess you are on the very first line). The text will be serotled if
required, CTRI-RIGHT deletes the character at the eurrent cursor
position without moving the cursor. As with all deletes, characters
remaining on the line are shuffled down, and text which was invisible
beyond the right hand edge of the sereen may now become visible,

The combination SHIFT-CTRL-RIGHT may be used to delete o word or n
nunber of spaces. The action of this depends on the character at the
cursar. If this character is a space then all spaces up to the next
non-space charucter on the line are deleted. Otherwise characters are
deleied from the cursor, and text shuffled left, until a space is found. The
CTRE-ALT-RIGIT commund deletes all characters from the cursor to
the end of the line. The CTRL-ALT-LEFT command deletes the entire
current line.

Scrolling

Besides the vertical seroll of one line obtained by moving the curecr to - oo

the edye of the screen, the text may he scroiled 12 lin(?s v’e.:tic;li‘.y vy
means of the commands ALT-UP and AL'!‘-[}{J‘.VZ\ A [:- T-UP moves o e
previous lines, moving the text window up, ALY DO‘-‘.-'I\-._.:: v the pext T
window down moving to lines further on in the fife. The P ‘;.c-y rewn]tes
the entire screen, which is useful if the screen s u!tcr_c-;i by ;1:'1?‘[,1cr
program besides the editor. Remember that j:'ml C::lfl switell pub of ‘the
editor window and into seme other jub by typing CII;L‘C_ atb any peint,
assunming that tivre is another job with an oulstandm.g input rupu[,é
SuperBasic will be available only if you entered ‘the editor using EXT
rather than EXEC__W. If there is enough room in memory you can run
two versions of KD at the same time if you wish.

Repeating commands

Tlie editor remembers any extended command line typed_, mnd :.hls.set of
extended commands may be executed again at any tin> by simply
pressing F2. ‘Thus a search command could be set up as the extended
command, and exccuted in the normal way. [[the first occurrence found
was not the one reguired, typing F2 will cause the sea::ch tolbe executed
again, As most immediste commands have an extended version, com}zlo.\c
sets of editing commands can be set up and e.\'ecut.ef] many times, Note
that if the extended command line contains repetition counts then ‘Lhe
relevant commands in that group will be executed many tinies each time

the F2 key is pressed.

2.3 Extended Commands

Extended command mnde is entered by pressing the F3 key. Subsequent
input will appear on the commmand line at the l‘:?ttom r}i: the scrce{?!;
Mistakes muy be corrected by means of CTRL-LEET and CTRL-RIGE
in the normal way, while LEFT and RIGHT move the cursor aver t‘hc
cummand line. The commaned line is terminated by pressing ENTER,
After the extended command has been executed the editer reverts to
immediate mode. Note that many extended commands can be givenona
sinzle command line, but the maximum length of the corn@an(l Im(f 5
255 characters. An empty command line is allowed, so just typing
ENTER after typing F'3 wili return to immediate mode.

23

5

Screen editor 1, C Davelopment Kit

aftér which the blogk start and end values are undefined. It is not
possible to insert a block within itself.

Block marks muy also be used to remember a place in a file. The SB

‘(show block) command resets the screen window on the file so that the

first }ine in the block is at the top of the screen.

" A block may alse be written to a file by mneans of the WB command. The

command is followed By a string which represents a file name. ‘The file is
created, possibly destroying the previous contents, and the buifer written
to it. A file may be inserted by the [I¥ comaand. The filename given as
the arg. uent siring is read into storage tencdiately following the
current hine.

Movement

The command T moves the screen to the top of the file, so that the first
line in tie [tle is the first line on the screen. The B command moves the
screen 1o the bottom of the file, so that the last line in the file is the
Lettom Fine on the screen if possible,

The commands N and P move the curser to the start of the next line and
previous line respectively. The commands CL and CR mave the cursor
une plece to the leit or onz place to the right, while CF pinces the cursor
at the eond of the current line, and CS places it at the start.

It is commeon for programs such as compilers and assemblers to give line
numthers to indicate where an error has been detected. For this reason
the coramand M is provided, which is followed by a number representing
the line number which is to be located. The cursor will be placed un the
line number ir question. Thus M1 is the sume as the T commaund, £ the
line number specified is too large the cursor will be placed at t'.e end of
the file.

QL C Development Kit

- Screen editor -

Searching and Exchanging

Alternatively the screen window may be moved to a particular context.

The command F is followed by # striny which represents the text to be —

located. The search starts at one place beyond the curcent curser position

and continues furwards threugh the tile. If found, the cursor is placed at -

the start of tie located string. To search backwards throuzh the text use

the comumand BEF (backwards find) in the sane way as F, BEF wiil find the - =
tast occurrcoce of the striny before the current cursor position. To find =~

the earliest occurence use T followed by-F: to find the last, use B followed
by B3F. The string aflter € and 31 can be omitted; in this case the string
gpecificd in the last F, Bl or I command is used. Thus

*F /wombat/

*BF

will search for "'wombat’ in a forwards direction and then in a reverse
direction.

The E (exchange) command takes a string followed by further text and a
further delimiter character, and causes the first string to be exchanged

_ tothe fast. Se for example

E /wombat/zebra/

would cause the letters "wombal’ to be changed to 'zebra'. The editor will
start searching for the first string at the current cursor position, and
continues through the file. Afler the exchange is done the cursor is
moved to after the exchanged lext. An empty string is ullowed as the
search string, specified by two drlimiters with nothing between them. [n
this case the second siring is inserted at the current cursor position. No
account is taken of margin settings while exchanging test.

A variant on the E command is the EQ command. This queries the user
whether the exchange sheuld take place before it happens. If the
response is N then the curser is moved past the search string. If the
response is Y or ENTEIR then the change takes place; any other respense
{except F2) will enuse the command to be abandoned. This command is
normally only useful in repeatcil groups; a responsé such as § can be
used to exit from an infinite repetition.

-27T-

I

s TTYMEGTRW T

:.4- L —— . . . [— . .- - -
Sereeneditor QL C Development Kit QL C Development Kit = . Screen editor - . -~ T
Extended Commands
- . Afst) ... Insertline after current . - m s e
- 24 Command List . B — Move to bottom of file _ . S =
* 7 In the extanded cammand list, /s/ indicates a string, /57t/ indicates two gg) _ g;ﬁ:;jﬁ"r‘i:;‘:ﬁ;sor e
s+ ... exchange strings and nindicates a number. ~ ps ¢ - Block start at cursor L S
L e L R " CE - " Move cursor to end of line : . Ll
ST Immediale commands cL *ove cursor une position left :
E *] CR Move cursor one position right
o k2 Repeat tast extended command cs Move eursor to start of line
; Py Enter extended mode D Delete current line
N 3} lRedraw sereen DB - . Delete block
1 L LEF? Move cursor left . . nDe Delete character at cursor -
5 SHHFT-LEFT Move cursor to previous word B st - _ Exchange s into 1 _ - ;
AUT-LEFT Move cursor to start of line BQ sty . I‘Ixchanje but query first - :
CTRL-LEFT _ Delete left one character X Extend :igvht margin
CTRL-ALT-LEFT Delete line . F /st Find strin:' s -
RIGHT Move cursor right - I/s/ Insert line before current i =
SHIF-RIGHT Move cursor to start of next word B Insert copy of block
ALT-RICHT Move cursor toend of line Frsl Insert file s
- CTRL-BIGUT Delete right one character : J Join current line with next T
= CPRL-ALT-RIGHT Delete to end afline e o Cistinguish between upper and]
S S SHIPT-CTRL-RIGHT Delete word toright - lower -;!S';‘ in searches
LUp Moave cursor up Mn Move to line n
L sSinkr-rp Cursor to top ol screen N :\Iovc cursor to start of next line
e . ALT-LP Scrolt up P Move cursor to start of previous line.
T DOWN Mave cursor down Q Quit without saving text e
SUIFT-DOWN Cursor to bottom of screen R /st Re-enter editor with file s
ALT-DOWN Seroll down . CRe ch—cat'until ercor
CTRL-DOWN [nsert blank line g Split line at cursor
. : SAlss Save text to tile
: S Show block on screen
. . St Show information
Sh.n Setleft margin
: Sitn Set right margin
- : STn Set tab distance
_ _ T Move to top of file B
;] u Undo changes on current line :
ve Equate U/C and Ve in searches ;
Wi /s/ Weite block to file s -
X Exit, writing text back f

30- -

T—'aul--—_-
i .
v wf- .
{
L
+

I, The Linkar

L

QL C Development Kit

- 3.L.3 Options

Linker options ave specified as a hyphen followed by a word; in some

.cases, additional text may be uppended. The option word may be

supplied in either upper or lower case.. Ench optien must be specified

.. separately with a separate hyohen, Optionsavailable are:

WIiTH{itlename]

-NOPROG
-PROG[{filename]
-NOLIST

-LIST

-NODEBUG
-DEBUG(filename]
SNOSY M

SN

.

-CRF

-PAGELEN n

take the following name as the control file

name. A file name must be given with this
optien.

do not generate a program file.
gencrate a program file {default).
do not generate any listing output.
generate a listing (default),

do not append a symbal table to the binary file
output. (default)

append u symbol table to the binary file
output. :

do not generate a symbol table listing in the
listing file.

generate a symbol table listing. The listing
will be alphabeticatly sorted with the value of
he symbol with the seetion and moedule
name in which it was defined. (default)
generate a cross reference form of symbol
table listing. If this option is requested a
cross reference form of the symbol tabie is
generated instead of the symbol table list.

specify the number of lines per page for

paginated output. If this option is not
supplied the value will default.

.34-

™

v

OL C Development Kit | : S The Linker

If an option is followed by o tile name {where appilcable) the file nume
will override the corresponding positional file name (if given) on the
command line. [f an option specifies that a file will not be generated
(-NOPROG, -NOLIST) then the file will not be generated even if a
positional file name hus beewn given,

Where éont]icling aptions are given on the connmand line (hen the last

option coded will take affect; for example:

—NOPROG -rROG #MDVL_FRED PRG
will produce a program file, whereas

-PROG MDV1_FRED_PRG =NOPROG -
will not.
3.1.4 Command Line Processing
The minimum command line then just corsists of the name of one
madule file. In this case the linker will generate a program [ile (whose
name is constructed as below from the module name) and a (ull listing
file (whose name is also alsu constructed as below),
‘This methed cannot be employed to generate a C program. The standard
control file supplied with the compiler {PROG__LINK) must be used to
link your programs,
3.1.5 Construction of Quiput File Names
Ifa module file nime is yiven then the file nuune i3 examired. 10the file
name does not contiin an underscore then the full file name becomes
the base file name, atherwise the file name with the file type (from the
underscore onwards) steipped off becomes the base file nume.
If no moddule tile name is given then the contral file name is examined.
i the file name does not contain an underscore then the full file nume
beeumes the buse file name, otherwise the file name with the file type

stripped off becomes the base file name.

" -
Phe default names are then constructed from the base file mame s
follows:

-35-

R
i
|

—in

s
4

e
e

The Linker 01.C Developmont Kit

3.2.3 Relacatable Binary Files

The linker, on instruction from the command line and/or control file, will
read one or more relocatable binary files {each of which may contain one
or nwre modules),

" The files are opened lor random access to allow modules to be extracted
independently (for EXTRACT and LIBRARY commands).

3.2.4 Sereen Output

The linker writes information to the screen to inform the user what is
happe..ing, This incledes a sign-on messuge identifying the program,
and 4 prompt for a conunand line.

"The linker writes all errore and warning messages to the screen and an
-gampletion of the link will print a summary of the number of errors and
warnings and the number of undefined symbols (if any),

The linker also tells you when it is starting to read the relocatable
binary [iles for the {irst time and when it is starting to read the
retoentable hinary files for the second time. The second pass can be
expected to take a lot longer than the first pass if listings and/or
prodgramoutput are wanted.

Tha linker finally gives a message indicating the completion status of
the link and if run interactively prempts sgain for another command
fine. '

3.2.5 Linker Listing OQutput

Anoptional linker listing will be generated, showing the commands used
in the production of the link and a map of the layout of the executable
file. The map wil! also show a list of all global symbols and their values
and o optional eross reference giving the modules which reference
them. The list file is described in detail in section 3.4,

3.2.6 Program File Qutput

The itnker will optionally generute a program tile which witl be the
result of combining the relocatuble binary files. This file can be run by
QPUS s o progran.

-35.

QL C Development Kit

The linker will uptionally append a svmbol table to the program file
output fur use by a symbolic debugyer program.

3.3 'l‘he___ Control File

t

‘The control file is a text [ile which gives a series of instructions to the =~

linker. “The complete set of instructions to the linker will be given here
tor completeness: however soine of them are pretty obscure and are not
necessary Inr linking normal programs. '

Supplied with the compiler is a standard control file for tinking your C
modules with the librury and startup code called PROG LINK. This
must be used to link your C programs.

Unlike the command line input the contral file input is not interactive
and any errors in the control file will cause the link to be abandoned.

:\.l[letters in control file commands and command parameters may be in
cither case as cuse is not significant,

3.3.1 Comments in the Linker Control File

The linker accepts comments in the linker controt file to expluin ta the
reader what a particulur control file does. A line will be consilered a
comment il the first character in the line is a star (*), semicolon (,) or an

exclamation mark (1. A blank line is also considered to be a comment,

l'he use of comments in a control file may assist you in editing the
cuntrel file to suit your particular prodram.

Standard Control File PROG__LINK

*
[
Standard control file for linking Lattice ¢
bf modules
*
L]
. Step 0 - Space allocation
. i e A T]
: . Mllocate space for sections

-39-

The Linker ™

PP

-

.

(L T,
’

¥

r

[

wr ahe

PRI ~S B

.\.’,"—'

The Linker QL C Davelysment Kit

currentiy unresolved references in the link When o mudule s
found which satisfics an unreselved reference it is inciuwied in the
tink and the library search continues form the current position.

All libraries supplied with Lattice € are ordered is stieh e way that
they need unly be searched once (i c..only one LIBRARY crannand)
If you create your own libraries, you may need to scan them more
than once; this may be achieved by including mure than ocne

LIBRARY comimand specifying the same filename. You must, of

course, include at least one LIBRALLY command for cach library
that you wish to search,

{¢) TITRACT <module name> FROM <file name>

This command instruets the linker to search the relocatable binary
file specitied fur the madule requested. [fthe module is found it is
included in the tink. Ifit is not found an error message is generated
and the tink js uborted.

[nclude one extract command for each module that you wish to
explicitly include from the relocatable hinary file.

This command is not required for linking Lattice C.
(d) DATA <value>([R]

Some languages need to use this cemmand to specify the amount of
data space ta reserve for a program for the stack and heap. This is
not needed for C since it allocated space itself for the stack nnd heap.
The vilue may be decimal or hexadecimal. This value is written to
the hexder of the program file and is used by the aperuting system to
allerate room for the stack and heap. The value may be specified in
Sstes or Kbytes (1024 bytes).

3.3.3 Erace ullocation
The mathod of atlocating space for C given in the standard control file
should always be adhered to. Thus thig section of commands is only here

for completeness.

The previous section described the commands for determining which
input medules are to inctuded in the link, This section describes bricfly

-42-

GL. C Devetopment Kit The Linker

how the linker allocates space for the modules in the sutput tile and the
linker conunands which may elfect this allocation.

Initindly the defauit allocation mechunism will be described and later
the ctlects of each command on this allocution mechanism will be

cunsidered.

References in the fellowing sections to low addresses, start addresses
and absolute sections are referring to their positioning in the pregrum
file and not to their position in memory when run. This mapping may
however be altered by the OFFSET command,

Generatly an ubject module consists of absolute sections and/or at leust
one relocatable (or common section). The allocation of each section
type is as follows:

(2) absolute sections

Absolute sections are allocated space first in the output file from
their start address (relative to the start of the file and modified by
any OFFSET command). The linker will issue a warning if any
absolute sections overlap in the link.

(b} relocutable scetions

As oach input module is read in turn (as ordered by the INPLUT,
EXTRACT and LIBRARY commands) the linker builds up a tist of
relocutable sections in the order in which they are first
encountered.

Once the size of each relocatable section is known thea the
allocation of space is made such that each relocatable section Sturts
Al the lowest possible address following the previous relocatable
section while avoiding any absolute sections already allocated. The
start of each relocatuble section is word aligned.

The SECTION command may be used to alter the defauit ordering
" of relocatable sections, i

-43-

P"\"‘."v--w.. ,.., U

A

i
|
;
3

... The Linker QL C Development Kit

(1) absolute sections

The <value> given in the OFIFSET command is subtracted
from the load address of an absclute section to determine the
oifset within the program file at which the absolute sectiva will

are not written to the output file and a warning message is
output.

(2} relocatable sections

Relocatable section allceation begins from the address given in
the QOFEFSET command instead of at zera, This still means that
relocatable sections are allecated from the start of the output
program lile onwards,

{3} common sections

F T If COMMON DUMMY is in effect then the allocation of

common sections starts from address 0 regardless of the value
given in the GFFSET command. For all other COMMON options
the allocation is as described under the COMMON command.

3.3.4 Defining symbols at'link time

Normally symbals that the linker knows about are declared and given
vatues from within relecatable binury files. Sometimes however it is
uselul to be able to define symbols from the linker contrel file
exanes of why this might be useful are:

{2} a subzoutine name hrs been accidentally spelt differently in two
different mwodules: as a temporary fix {until one of them is
recompiled) the two symbols can be made equivalent using the
DEFINE command.

some subroutines have not been written yet hut it is desired 1o test
the part of the program that has been written; the missing symbols
can be made equivalent to an error routine with the DEFINE
command.

(b

be linked. Any ahsolute sections which start below this address -

Y | s

Q1. C Development Kit o o The Linker ...

(¢t a pumber cuntiained in a library medule, such us a memory
requireinent tigure, may need to take different values in different A
tinks; these values may be assigned with the DEFINE commund. e

The DEFINE :.-omm:nu-l is:

BEFIHE <symbol> {=] <expression> T R S
where: . ' ' ' _
<expression> = [-] <term> { <op> <tegmn> } -

_‘Op> = - I + . _...._

<term> = <symbol> | <value> T e - ' LT

1

S<hexdigit>(<hexdigit>}

i

<digit> olL]...lal9

 <hexdigit> = <digit>!al...[Flal...|f

A symbal used on the right-hand side of the DEFINE commend may be
a defined in a relocatable binary file ar in a previour DEFINE
command. A forward reference to a symbol to be defined by a luture
DEFINE command is illegat and will praduce 2n error messaye. The
symhol defined by a DEFINE command may not also be used on the
right-band side of the same DEFINE command.,

tf a symbo! used in an expression remains undefined alter ail modules ' -
have been read in a warning is issued by the linker. The value of the
symbol is then undefined. : '

Examples: ' :
DEFINE SCREEN = $28000 i
DEFINE MAXPAR = 10 ; -
s -
) -
47 l
i

"<value> = <digit>{<digit>} | _ o

oS

P B

o

- - -Fhelinker

- . coa - e ar T

o

Rp——

Q1. C Revelopment Kit

fa} The section type (ABSOLUTE. SECTION, COMMON)

- - (b} The section start address

te) The saction end address
iy The section name

(2 For each subsection {contribution from a module) a line of the
ful!uwing form;:

ta) The start address of the subsection
ib) The end address of the subsection
{¢) The module name

(3) For cach entry point in a relocatable or common subsection a
line of the followir g form (in increusing address order)

{a) Theasntry point address
(b} Theentry peint name

The load map is then followed by three lists of the following
form:

(1) Abzoiute symbolsin address vrder
2} Userdefined symbols in defined order
{3} Undelined symbols in alphabetical order

{d) Sxmbol table listing

The linker produces a symbol table listing of ull global symbols in
tie fink in alphabetical order. For each symbol a fine is printed
containing the following information:

{1} The value of the symbol tor 2?7?7772 for undefined sy mbuls)

(2} The symbel nume '

{3} The section nume the symbol is defined in (or Absolute,
defined or undefined)

{41 The module name {if defined within the module),

1. C Development Kit

If the -CRF option is used on the command line then if a symbol is

“The Linker

referenced in other modules the symbol information is followed by~

one or more lines of module names which reference the symbol,
This cross reference information is followed by a blank line before

the next symbol table entry.

3.5 Actions of the Linker
This section gives 2 brief description of how the linker functions and the
expected actions when errors are encountered. The linker functions are

split into saveral phases which are logicully separate although each
phase may use information extracted from previous phuses.

3.5.1 Command line validation

In this phase Lhe linker reads the command line and decides which input

and Outpﬁt files ta use. If the command line centains any errors the

linker will display an error message stating the problem.

If the command line is valid the linker will attempt to open all nutput
files requested and the linker control file (if 2 name is supplied). If the
opening of any file fails the linker will give a message indivating the
problem,

If the finker is run inleractively it will reprompt fov another command

line. If nut then the linker will display 2 message indicating an invalid

command dine supplied and exit,
3.5.2 Control file validation

If acontrol fite name is given the linker will read the control file line by
line validating eich command in turn. if any errors are reported at
this stage the linker will report the error but continue reading the
control file,

I any errors occur in the control file the tinker will not pecform the link
'huf. the message ‘Errors in linker command file' will appear. If run in
interictive mode then the linker will reprompt for another commaund
line. if run in non-interactive mode the linker will exit.

5l-

tﬁ---u.-mmi.;-- il

T,

r
B e

Languaee D.:Gnition QL C Development Kit

- Chapter 4: Language Definition

“The Lattic'e portable C compiler accepts a program written in the C
- pregramming language, determines the elementary actions specified
- by that program, and eventually translates those actions inte machine

!:J:n;:uage instructions, Although the firal result of these processes is
hlghl_:.' machine dependent, the actusl languagze accepted hy the
t_:o.'npslcr is, for the most part, independent of any system or
imr' mentation details. This section rrescnts the language defined by
Elhe Lattice C compiler using the Kernighan and Ritchie (K&R} text
zl"hr- C Programming Language" as a reference point. Since this
@npuige conforms closely to that described in the text, only the major
dlffcrcf\.ccs are first presented, The major features of the language are
then discussed, not in any attempt at completeness, but simpcl‘y ff:;r the
sak2 of showing them from a different perspective, Finaily, a

’ v isom wi 1 "1 i i je "
cormparison with the Kernighan and Ritchie "C Reforence Manual” is

made 10 show more precisely how the Lattice implementation differs

from the standard,

4.1 Summary of Differences

Tiuerc are two classos of differences that appear in a discussion of an
tplementation of a programming language. The first ¢class is that of
acteal semantie differences, that is, variations which cause the meaning
nfIung;-mge‘cnnslruc:stn differ. The second class is merely a rcﬂuctio;
of the p’ractlc;li fimitations ta which ail programs -- including compilers
s-are subject. Enchof the fullowing subsections presents th:re%pective
details for the Lattice implementation of C. ‘

4.1.1 Riffecences from the Standard

Daviiting from 2 standard has its own peculiar st of perils and rewards
On the one hand, the differences create problems for those whao h:we.;
conformed to the standard in the past; en the other, they may make life
casier fur thase whe take advaatage of them in the future. Mast of the
differences listed below were prempted by a desira to make the Lsnguage
both more portable and more comprehensible, The vast majority T}f
proprams will not encounter these poteatial troublespots; thosa that do

.54-

£ s .

QL C Development Kit : T TR ST Languaee Definition

-a Pre-pracessor macro substitutions using arguments must be .

wiil in most cases be improved by adjusting to conform to them. Here, ™
then, is 2 summary of the major differences: o

specified on a single line; for example, when mux(a,b} is used, the
invogation text from max to the final closing parenthesis must be
defined within a single input line, : : '

the -

& In processing structure and union member declarations, o

compiler builds a separate list of member names for each structure
{or union). Thus, identical names may be used for members in
different structures, even though both the offset and the attributes
may be different in 2ach declaration. The specific structure being
referenced determines which member name (and therefore which)
offset and set of attributes) is meant. The typing rules for structure o
member references are strictly enforced so that the particular list of
valid member names can be determined. [n other words, the
expression in front of the | or - > operators must be idvatiliable by
the compiler as a structure or pointer to a structure of a dc finite type.

o Implicit pointer conversion (by assignment) is legal but generates -
a warning message; this cccurs whenever any value other than a
pointer of the same type or the constant zero is assigned te a pointer,

A cast operator cun be used to eliminate the worning A more

- stringent requirement is erforced for initializers, where the -
expression to initinlize a pointer must evaluatle to a poirter of the
same type or to the constant zero; any other value is an error.

0 I a structure or union appzars as a function argument without

being preceded by the address-of operator &, the compiler
generates a warning message and assumes that the address of the

ageregate was intended.

© Anarray name may be preceded by the address-of operator &; the
meaning, hawever, is not that of a pointer to the first element but of
a pointer to the array. This construct allows initialization of
puinterstoarrays.

¢ The constant expression following an #if conditional statement

Way not contain the sizeof oparator and must be completed in less
than i single line.

-55-

.

- P

¢

® 0

___::'_____'. -t -

- T e
:'_'.__ - . L2nguage Definition QL C Development Kit QL C Development Kit : Language Definition]) ; _: -
-~ #2.1 Pre-Processor Features . the former definition (12} is restored. To completely undefine XYZ, an
additional #undef is required. The rule is that each #define {nqu- be e T _i -
—. - The Lattice Ccompiler supports the full sct of pre-processer commands matched by a correspending -#undef before the symbol is truly . St
1777z Tdescribed in Kernighan and Ritchie, Most implementations T

" " N
.)) o X T forgotten”. . e
perform the pro-processor eommands concurrently with lexical und - : o

73 oo o symlectic analysis of the souree file, because an additional cumnpilation
_Step can be avoided by this technique. Other versions of the compiler : .
"incorporute a separute pre-processar phase in order to reduce the size of Six types of arithmetic objects are supported by the) I:attice’co_mpller:
the first phises of the compiler. In cither case, the analysis of the along with pointers, these objects represent the entities which can be
pre-processor commands is largely independent of the compiler’s C manipulated in a C program. The types are:
fanguage analysis. Thus, #define text substitutivns a symbols which
fusy er may not be defined. Otherwise, #if expressions support the full

4.2.2 Arithmetic Objects

) range of eperations described in section L5 of Appendis A of Kernighan :Ezit _ _
= and [titchie, ;nt s B
CT o " . . L long
e The #deline command, as noted in section 4.1.1, has the limitation Float
-that the macro invocation text must all be contained on a single input double -
live, flecause the compiler uses a text buffer of fived size, a . N R Y
e perticuelarly complex macro may occasionally cause a line buffer Note that unsigned is used as a modifier. . afaois s
) ovarflow condilian, usually, however, this error occurs when more s . [R
© - than one macro reference occurs in the same source line, and can be The natural size of integers, as indicated by a plain int type specifier, on P
. ciccumvenizd by placing the maeros on different lines. Circular the Sinclair QL is 32-bits; this type is identical to long.
. definitions such as i -
The compiler follows the standard pattern for conversions bet\k’cf_tl_'l the S
fdetine A B various arithunetic Lypes, the so-called "usual arithmetic convirsions S et
Bdefine B A described in the Kernighan and Ritchie text. The enly exception -0 thlsr . 7
occurs in connection with byte-oriented machines, where expansion 0 [

will be deteeted by the compiler if either A or B is cver used, as will char to int may he aveided if both operands in an expression are c}?;lr.
more subtle foops. Like many ather implementations of C, the Lattice and the target machine supports byte-mode zrithinetic and togical e s e
compiler supports nested macro definitions, so that if the line

.

kdefine vz 12

operations.

. 423 Derived Objects
is fullowed luter by The Lattice C compiler supports the standard ext,er.isiﬂns Icadlr‘:g o : .
varinus kinds of derived objects, including pointers, I'unct:onhs. | S
arrays, and structures and unions. Declarations of these types malya'(i' -
f\rbilrarily complex, although not all declarations result in a lega

kdefine X¥Z 43

the new definition takes effect, but the old one is not forgotten. [n ohject. For example, arrays of functions or functions rcFurnmgi _

other words, after encountering Afuregates are itlegal. The compiter checks for these kinds o T

] declarations and also verifies that structures or unions do not contain o .
fundef XYZ instances of theinselves. Objects which are declared as arrays canaot B

have an array length of zero, untess they are formal parameters or are

.58. o -59-

U Language Definitisn

4

0L € Development Kit

First, when identifiers are declared at the heginning of a statement
block internal to a function {other than the f(irst block immediately
following the function name), storage for any auto items declared is
allncated ngiinst the current base of auto storage. When the stateent

-block terminutes, the next available aute slorage oifset is reset to its

value preceding those dectarations, Thus, that stornye space may be
reused by later local declorations. Rather than generate explicit
allocate wnd deallocate eperations, the compiler uses this mechanism
to compute the totnl auto storage required by the function; the
resulting storage is nllaciuted whenever the function is calied. With this
scheme, functions will allocate pessibly more storage than will be
needed .1 the event that those inner statement blocks are not
exccuted), but the need for run-time dynamic allocation within the
function is avolded,

Zecond, when an identifier with a previous declzration is redefined
locally in a statement block with the extern storage class specifier, the
previous definition is superseded in the normal fashion but the
compiler alse verifies compatibility with any preceding extern
definitions of the sume name. This is done in accordance with the
principle cxprossed in the text, namely that all functions int a given
program which refer to the same external identifier refer to the sume
object. Within a source file, the compiler alzo verifies that all external
deciarations agree in type. The point is that in this particular case --
where 2 loeal block redefines an identifier as extern -- the declaration
effectively does not disappear upon termination of the block, since the
compiler now has an additional external item for which it must verify
equivalent declarations.

4.2.6 Iniliafizers -

Objects which are of the static storage class (as defined in scction
4.2.4) are guaranteed to contain binary zeres when the program begins
exccution, unless an initlalizer expression is used to define a different
initial vaiue. 'The Latlice compiler supports the full range of initializer
expressions described in Kernighan and Ritchie, but restricts the
initialization of peinters somewhut. An arithmetic object may be
initinlized with an expression that evaluates to an arithmetic constant
which, if not of the appropriate type, is converted to that of the target
object,

Q1 C Development Kit_

r

* Lanvuage Definition

The expression used to initialize v pointer is more restricted: it must

evaluate to the int constant zero or to a pointer expression yielding a

pointer of exactly the same type as the pointer being initialized. This
pointer expression cun include the address of a previously declared

incorporate a ‘cast {type conversion) operator,
conversions are nobt evaluated at compile time {exception: a cast
operatar ean be used on an intconstant but neton a variable name).
This restriction makes it impossible to initialize a pointer to an array
unless the & operator is atlowed to be used on an array name, because
the array name without the preceding & is automatically conve.rt(lzd
to 2 pointer to the first element of the array. Accordingly, as noted in

section 4.1, the Lattice compiler accepts the & operatoron an array

name so thatdeclarations such as

int af{5], (*pa)(s] = &a;
¢an be made. Note that if a pointer to a structure {or union) is being

initialized, the structure name used to generate an address must be
preceded by the & nperator.

More complex ohjects farrays and structures) may be initialized by
bracketed, comma-separated lists of initializer expressions, with each
cxpression corresponding to un arithmetic or pointer element of the
aggregate. A closing brace can be used to terminate the list carly ee
Appendix A of Kernighan and Ritchie for examples. Unions may not
be initialized under this implemuentation, although the [irst purt of &
structure containing a uninn may be initialized if the expression list
ends hefore reaching the union A character array may be ini:i:lilizcd
with i string constant which need not be enclosed in hraces: this 1s the
enly exception to the rule requiring braces around the list of initializers
for anaggregate.

Initializer expressions for auto objects can only be applied to si[nple
arithmatic or pointer types (not to aggregatesl, and are entirely
ofuivalent to ussignment statements.

4.2.7 Expression Evaluation

*_’“1 of the standard eperators are supported by the Lattice compiler,
In the staddard order of precedence {see p. 49 of Kernighan und
Ritchie). [xpressions are evaluated using an operater precedence

G3-

- statie or extern object, plus or minus an int constant, but it cannol . . " -
because pointer

U TR A

>

r

Lapeuage Definition QL. C Development Kit

analyzed, lexically and syntactically, before being eliminated.} If an if
staterrent has a constant test value, only the code for the appropriate
clause (the then or else portion) is retained; while and for statements
with zere test values are entirely discarded.)

.The code generation phase generally makes a special effort to venerate
efficient sequences for controt flow. In particular, the size und number
of branch instructions is sept toa minimum by extensive analysis of the
flow within n futietion, and switch statements are analyzed to
determine the mo«t efficient of several possible muchine language
comstructs. Cheek the implementation section of this manua! for the
detuils regarding this particular code generatyr,

4.3 Comparison to the Kernighan & Ritchie "C
Reference Manual®

The most precise definjtion of the ¢ programming language
generally avaiiable is in Appendix A of the Kernighan and Ritchie text,
which iz entiticd € Feference Manual. This section presents, in the
same erder defined in the text. a series of amendments or annotatiens

“to that macual, this commentary explicitly states any deviations of

the L
Pocian

ttice C larguage implementation from the foatures described.
v this implementation s very close to the Kernighan and
Ritehie stundard. mny of the sections apply exactly as written: these
sectivns will not be commented upvn. Any section not listed here can be
assumed o be fully valid for the language accepted by the Lattice €
counpilur,

CRM 2.1 Comments

The Latice compilor allows comments to be nested. that is, each /*
encauniered must be inatched by a corresponding */ before the comment
terminates by using the € compile-time option. This feature mukes it
easy o "enmment out” large sections of code which themselves contain
cmmenss The defanlt is to precess comments in the standard,
non-nestine made.

CRM 2.4 3 Character constants

Two extensions to chuaracter constants are provided. First, more than
nne charagier may be enclosed in single quotes; the resylt may he short

-6563-

o

QL C Development Kit " Language Definition”

or long, depeading on the number of characters, Second, if the first -

character following the backslash in an eseape sequence is x, the next
one or two digits are interpreted as a hexadecimal value. Thus,

"\xES'

7

generates a character with the value 0xF9 (see -c option for LC1). -

ChM 2.5 Strings

The Lattice compiler can be made to recognize idemically'written .
string constants and only generates one copy of the siring. (Note that- -
strings usad to initinlize char arrays -- not char * -- are not actually

generated, because they are really just short!}and for a
comma-separated list of single-character con‘stants'.) Che same \‘x
convention described above can be employed in strings, where it is
generally more useful (see -¢ aption for LC1).

CIRM 7.1 Primary expressions

The Lattice compiler always enforces the rules for the use ofstructu.res
and unions for the simple reason that it cannct otherwlse. dete::mme
which list of member names is intended. Recall from section 2.1 that
the compiler maintains a separate list of member.s for each. type of
structure or union. Therefore, the primary expression preceding the .
or -> operator must be immediately recognizable as a structu-e or
pointer to a structure of a specific type.

CM 7.2 Unary operators

The requirement that the & operator can only be applied to an Ivu.luc is
relaxed slightly to alluw upplication te an array name (which tslnnt
considered an fvalue). Note that the meaning of such a construct is a
Pointer to the array itseif, which is quite different from'a pointer to the
firstelement of the array. Thedifference between a pointer to an areay
and to an array's first element is only important when the pointer is
used in an expressiun with an int offset, because the o!'fi:‘et mus't be
scated (multiplied} by the size of the object to which the pointer points.
In this case the target ohject size is the size of the whole array, rather
thun the size of & single ¢lement, if the pointer points to the array as a
whale. ,

LTl Language Definition S . QLCDevelopmentKit ' QLCDevelopmentKit . Portable Library Functions -5

rr)ember, the name on the right must be 2 member of the aggregate
- narmed or pointed to by the expression of the left, This implementation, _ -
..o however, does not attempt to enforce any restrictions on reference to - ' Chapter 5: Portable -Library Functions - O —
. union members, such as requiring a value to be assigned to a particular) [
- member before allowing it to be examined via that member. | : : : -

LT _ = lnotder to previde real portability, a C programming environment must =~ 77 o
T . ' o ' - provide - in a inachine-independent way - not only a weil-delined ™7™ R
I ’ . " ; - language but a library of useful functions as well. The portable lfbrary — - [" -
_provided with the —Lattice C compiler attempts to fulfill this S
requirement. It provides the basic [unctions of memory allocation, file = . . L

input/output, ond character string manipulation; otherwise, the

_ . . enmpiler itsell could not be implemented. An important side benefit of

o . - ' '_ _ o ' - presenting the functions from a machine-independent viewpoint is that
e L ' - - it hielps the programmer think of them as such.

When referring to the function descriptions presented in this section,
remember that the corapiler assumes that a function will return an int
value unless it is explicitly declared otherwise. Any function which
returns any other kind of value must be deciared as that kind of
function in advance of its first usaye in the same file, —

5.1 Memory Allocation Functions

The stundard libeary provides memory allocation capabilities atseveral
different levels. The higher level functions call the tower levels to
perform the work, but provide easier interfaces in exchange for the
extra overhend. The amount of memury available for dynamic allocation
on the Sinclair QL depends on the size of the program. The default is for
the propram to grab all but 4K of the memory not used for code, data or
bss. ‘This memory is used both for dynamic allocation and for the
run-time stack (used for function calls and aute variablesk It is
necessary to leave 1K for QDOS to have room 1o work in,

A default of 2048 decimai bytes is reserved for the stack, and the N i

rernainder of the memary is used by the memory allocativn functions. in - o e
order to allow program to adjust the amount of memory reserved for the - I .
stack, a run-time_optiﬂn = si:t_ck is provided to override the default stuck i)

r
“70- o | L - | [R

© hewa ek Awneeifiem s e

QL C Development Kit

Portable Library Functions

CALLOC

. .. Purpose: .
=== Allscate memary and clear i
o Syncpsis:

LT p = eall Anelt, eltsiz);
~ char *p;
TIL.ensigned nelt;
* unsigned eltsiz;

block pointer
number of elements
elemernt size in bytes

.- Description;
. " Allocates and clears (sets to all zeros) a block of memory. The size of the
— black is <pecified by the product of the two parameters; this calling

technique is obviously convenient for alloeating arrays, Typically, the
second arnument is g sizeof expression.

teturas:

i

NULL if not enough space available
pointer to block of memory otherwise

p

.

2T

Qf C Development Kit

e ey e

Cautions: - T e

{ULL. The- function should be- ©~
turst value must be checked for .\LLL.. _ 1 .
Ei{:cll:lr‘cd char %and a cast used if defining a pointer to some other kind of |

object. as in: o - e

- ;..,... .

char *calloc(): S _ B
struct buffer *pb:;

+ = &

pb = (struct buffer *)calloc(4. sizeof(struct

-75.

buffer}); _ Coa= e _ | e

v
: I

Partable Library Functions

Q1 C Daveloprment Kit

Purpose:

wzt - Qetamermary block

" Synopsis:

p = getnuw i{nbytes);
_p = getmliinbytes);

char *p;

unsiyned nbytes;

long Inbytes,

GETMEM/GETML

block pointer
number of bytes requested
loeng number of bytes requested

Bescription:

These functinns get, a hlock of memory from the free memory pool. Ifthe
pool is ampty or o block of the requested size is not available, more
memory is obtained via the level t function sbrk. On the Sinclair QL
getmi i3 the same as vetmem,

Returns:

NULL il net eraugh space availabie
. L -
pointarto memory block otherwise

p

(]

-T8-

Portable Library Functinns

" @, C Development Kit

Cautions:

: r _QULLThe function should be =
tuen value. must be checked for . . ! hou - -
:it:c;:rcd char * and a cast used if defining a peinter to some .t_J.ter kindof """ -

object, as i 7 . . S LD S

char *getmem{}; .
struct XYZ *px: '

px = (st:ucé RYZ *)getmem{sizeoftst:uct XYzZ)y):

e r— e

f ' @ ' e @ : o e

|
Portable Library Functions

Port: ihrary [P
T ortable L:bra..\ Functions QL C Development Kit QL C Development Kit _
Cautions: . . o R L TmEmIIIIT I
B Should be called only once during the lifetime of the program. SIZMEM - SRR
— T SN i -
) - s b
W LI e " - PR) .)) T T : B .«'- - T — 1 :
. | . - Get memorypoolsize 7 e e ET L e SinieeL IRV (S
) Synnpsis: -
. bytes = sizmem(); ’ Lo T =
P © longbytes; number of bytes ~ "7 C e - .
Description: _ _
' Returns the number of unallocated bytes in the metnory pool used by -
. Il getmem and getml. Note that getmem and getml dynamically expand VL
| the pool by calling sbrk whenever a request cannot be honored. I
'y Therefore, the value returned by sizmem does not necessarily indicate . Y E
F how much memory is actually available. If used after calling allmem, RN
i " however, the actual memory pool size will be returned. . S
| | :
i
'! Returns: .
; bytes = (long) number of bytes in memory pool
Cautions:
) Note that this function returns a long integer, and must be declared long
before it is used.
.89. 83. I .
!

- Dgrtahle Libragy Functions

1. C Development Kit

SBRK/LSBRK

" Purpose: ,

Set memovy break point .

Symopsia:

p = shrk(nbytesh
p= Isbrk{inbytesh
~ char*p
unsigned nbytes:
long Inbytes;

number of bstes tobe al
lony, number of bytes to

Deseription:

These functions allocate a block of memory of
paseible; they form the basic UNLX memory
allueated by advancing the “memory breait poin

points to low allocated address

‘ocated
be allocated

the requested size, if
allocator. Memory is
r which is simply the

base address of a block of memory whose location is system-dependent.
The previons bresk point address is then returned to the caller. On the

Siaclair (L Isork is the same a5 shek.

Reiurns:
p =-1 if:eduest cannot be fulfilled isbrk only)
p = Difreguestcanncl he fulfilled (lsbrk only)

pointer to tow address of block if successful

QLC Yevelopment Kit

Cautions:

For consistency with the UNTX functi

sutisfy the request, although the rest of the memory ullocators return
"NULL. Both functions should be declared char * and a cast used if -=
defining a pointer tosome other kind o_fobject. L : S

on, sbrk returns -1 if it cannot — -

T
- 1
1
{
t
i .
i -
i
-87- froeow
t
e e _‘_“-‘JI .
-wx'g.—*.suA.',ipa.'ai&-“:‘a_.-é.ﬁ..‘..“_:‘_g,'-";_h_-f RIS S, . f
Sk OIS AU RPN

Pﬁrtatﬁé {ibrary Functions Qr. C Development Kt

ueed. The File pointer is used to specify the file upon which sperations _ .
are to be performed. Some functions require a file puinter, sucaas

FILE *fp;

to ba explicitly included in the calling sequence; uth_ers imply a specific
file pointer. la particutar, the [ile pointers stdin and stdout are
implied Ly the use of severul functions and macros; these files are 50
commonly vsed that they are opened automatically before the main
function of a program begins execution. Other file pointers muct be
dectared by Lhe progriummmer and initialized by calls to the fupen

function,

The level 2 functions are designed to work primarily with text files. The
usunl C cenveation for line termination uses a single character, the
nowline (i), to indicale the end of a line. Unfortunately, many operating
cnvirpnmnnis Use & multiple character sequence {usuaslly carriage
returntlioe fead, but occesienally even more exotic defimiters). In order
to sliew all U programns to wors with text files in the sare way, the
Lattics functions suppert the standard newline convention but perform a
tent rande traaslation so that erelof-line sequences will conform to
toeal eonventions (N0 Lexd transtation is acLuatly required on the
Sipelaic Qb bt this etbiny is kept for compatibility with versions on
othor aperating systems.) This transiation is usuaily beneticial and
transprrent LI ay eause prohlems when wosking with binacy files,
Nermally, alt dies accessed through the level 2 functivns are opened in
(e text, or teipslated mode, bul the programmer may ovarride this
made by defining the external location

int fmode = ‘oxaauu:

in one of the functions in the program {this statement musl appear
outside the baidy of the [unction itself in order lo be considered an
external definition). Fhe value ot __fmaode is passed to the level i
function open or croiet when the file isopened. [f zevo, the file is opened
in the text made; if 0xE000, the file is opened in the birary, or
untransiated mode. Note thatif _fmedeis defined as above, the stdin,
stdout, and stiderr {iles opaned for The main function will also he opened
4n the binary mode. [f this is sndesirable, _ fmode can be initialized
with zero and then set to 0x3006 before specilic fupen calls are made, in
this way, dilferent files may be opened in dilferent modes.

-90-

QL C Development Kit ‘Portable Library Funetions.

Files may also be explicitly opened in either the textor binary mode by
using a special parameter in the fopen catl; see beiow for details.

. The actual /O operations are performed by the level 2 functions through

ealls to the level 1| VO functions described in the next section. The

normitl mede of bulfering, designed to support sequential operations, *

performs read and write functions in 512-byte biocks.

Normally the level 2 functions acquire bulfers via the level 2 memory
allocator unless the file is on a device other than & disk. Alternatively.
the cetbuf function allows a private buifer Lo he attached. This function
assumes that the buffer is Lhe standard size, which is defined via the
BLFSIZ constant in stdio__h. 1f for some reaszon operating the level 2
/O Turctions in the buffered mode is not desirable, the setnbf function
can he ealled. This is dene automatically for non-disk files or if sethuf
ts catled with a NULL bulfer pointer.

In the descriptions below, some of the function calls are actually
implemented us macros; these are noted explicitly. The reason the
programumer should be aware of the distinction is because many
macros involve the conditional operater and may, undar certain
conditions, evaluate an argument expression more than once. This can
cause unexpected results if that expression involves side effects, suchas
increment ar decrement eperators or function calls. In addition, unlike
functions, macros do not have addresses, making it impossibie for
pointers to them to be passed to other functions.

.91.

.~ The return ¢ode must be checked for WU

_ Portabla Library Functions

o QL C Davelnpment Kit

Cautions:

" wenerated if an invalid mode was specified or if the file was not found,
= -

- Tiles w en.,
7 could pot be created, or too many files were already op

LL; the error return may be -

Parpose;” -

Close a buffered file

Synopsis:

= ret = {eloselfp);
intret;
FILE *fp;

return code) L
file pointer for file to be ¢losed I

Description:

Completes the processing of a file and releases all related resources. If
the file was being written, any data which has accumulated in the buffer
is written to the file, and the level 1 close function is called for the
associated file descriptor. ‘The bulfer associated with the file block is
freed. fclose is autmmatically catled for all open files when o program
<+ calls the exit function {sec section 5.2.4) or when the muain program
returns, but it is good pregramming pgactice to elose files explititly. -As
the last buiTer is not written until felose is called, dati mayb:lestifan
output file is net properly closed.

Returns:

-liferror
0if suceessful

rot

It

R P

Portable Libr i - ont Kit
" Portable Librarvy Functions QL C Dovelopment K1

PUTSFPUTS .

- l’ur'posc:..' . | o -

© Putastring

Synopsis:
- r o= puts{s)
r = fputs(s, [ph
intr; return code
char s output string pointer

T OFILE*ip fiie pointer

Deseriplicry

Puts an sutput string to a file, Characters from the stri.ng are \l\;rz.tf: tlo
the specified file {stdout, in the case of puts) until .1‘ nu Iv 5
encountercd. 'The null byte isnot written, but puts appends a newline.

Heturns:
¢ = EQFifend-of-file orcrror

-102-

P

Purpese: ¥

Perform formatted input conversions

Synopsis:

n = scanflcs, ...ptrs...};
n

Il

intn;

FILE =,
char *ss;
char “cs;

L pirs..g

Description:

These functions perform formatted input conversions on text obiained

from three types of files:

I thestdin fle (scand);

fscanf(lp, ¢s, ...ptrs...); -
n = sscanf(ss, ¢s, ...ptrs...

)
number of input items matched, or EOF
file pointer {{scanfonly}
input string (sseanfonly}
format control string
pointers for return of input values

2 the specifted file ({scanf); or
3 the specified string {sscanf),

The centro! string contains format specifiers and/or characters to be
matched from the input; the list of peinter arguments specify where the
results of the conversions are to go. Format specifiers are of the form

[t} [n][1)X

where

-103-

~—_

" m——

T o AT

i P&rtnble Librarv Functions QL. C Development Kit -

PRINTF/FPRINTF/SPRINTF

Purpose:

Generate formatted output ¢

Syropsis:

Printfles, ...args.;

fprintfifp, o5, ...args...);

n = sprintflds, ¢s, ...args...);]

intn; number of characters {sprintfonly)

LI ~fp; file nointer {{printf))
char *ds; destination string pointer (sprintf)
char *¢s; format control string

— L AFYS. list of arguments to be formatted

Deseription:

These furctions perform formatted output conversions and send the
resulting text tn:

1 Lhestdout file {printf);
2 the specified file (frinth); or
3 thespecilied output string {sprint.

The control st-ing contains ordinary characters, whicharesent w ithout
modification to the appropriate output, and format specifiers of the

form
${-1{m)[.pH{LIX

where

-106- o

£

o

- Teemew

QL C Develovment Kit

1 the optional . indicates the leld is to be left justified tright=--—— "= ‘-
justified is the defuulty -

2 the optivnal mfield isa decimal number specifying a minimum field _. B
width;

3 -the aptional .p{ield is the character . followed by a decimal number

specifving the precision of a [loating peint imawe or the muximum

number of characters to be printed from a string; Temem

4 the optional | (el) indicates that-the item to be formatted i islong = ~.. .
{un int on the Sinciair QL) and N

5 X is one of the format type indicators from the following list:

d -- decimal signed integer

4 - decimal unsigned integer
x -~ hexadecimal integer .

o -- actal integer

s--character string

¢ --single eharacter

- fixed decimal floating point
e - exponential floating point

g-- use e or [format, whichever is shorter

The format type must be specified in lower case Characters in the
contrel string which are not part of a formut specifier are sent to the
appropriate output; a % may be sent hy using the sequence %%, See

the Kernighan and Ritchie text for 2 more detailed explanation of

the formatted output functions.

Returns:
n = number of characters placed in ds {sprintf only), not including the
null byte terminator .
-107-
'

- Portable Library Funclmns__._w "‘: ‘.'._.L R

B R

T R

LY PR T INe

PR SRl] B P

R —,

TEAMEE. Bepagee RiiTe ke o am 4 T ek f i com Lae e crsmebd e ek g r R e e mem mm a1 - mLR o twmedee R ma e s

" Partahle Library Functions

(©

0L C Development Kit

FTELL

. Purpase:

Return current file position

Synopsis
pos = frelilifp); N
long pos; current file position
FILE *fp; : file pointer

»
Description:

Roturns the curvent fie position, that is, the number of b_vl:es from Fhe
beeinnizng of the file to the byte at which the next read or write operalion
wili lransfer data.

Returns:

ons = current file pasition {long)

Cautiens:

The fili pasition rerurned takes account uf'the. buf't'firing E;gerl on the
file, wo that the file position returned is a logical ﬁif.‘ position rather
than tha actual position. Nete that text mode transtation may cause an
incorrect file position to be returned, since the nuln;hm‘ of characters o
the bufler is not necessarily the number that will he actually read or
written hecause of the transiution,

-110-

S : -

- QL C Development Kit : Portable Library Functions

FERROR/FEOF

Purpose:

v
Check if errorfend of file

Syncepsis:

ret = {eof(fp);
ret = ferror(fp};

int ret; return code
FILE *fp; file pointer
Description:

These macros generate a non-zero value if the indicated condition is

" true for the specified file.

Returns:

ret = non-zero il error {ferror) or end of [ile (feof)
= zeroifnot

i1l

C b e

B L S p—

c

Poriable Library Functions

©

ol.C Development Kit

REWIND

Purpese:

Rewind o file

Syuopsis

rewind{[p):

FiLE *fp file pointer

Pascriplien:

Reseis the file position of the specified file to the beginning of the file.

Cautinns:

Liaplemented as it MACre.

114~

iy
QL € Develnpment Kit _ Portable Library Functions =~
FFLUSH
' _ T : — ‘
Purpaose: B S . :—n '
© Flush output buffer for file Ceem R - el e _
Synopsis:
fush(fp);

FILE *fps file pointer s - S

Description.

Flushes the output buffer of the specified file, that is, forces it to be
written.

Crutions:

This macro must be used only on files which have heen opened for
writing or appending.

-115-

e

P'orrable Library Functiyns Qi. C Development Hit

522 level | VO Functivns

These lunctions provide a basic, low-levet VO interface which allo\s_'s a
file to be viewed as a stream of randomly addressabie bytes. Qpcm‘tl_:)ns
are pertormed on the lite using the functions described in this sectiomn
the filc is specified by a tile number or lile descriptor, such as

int £d: .

which is returned by open ar creat when the file is opened, Data may he
read ar written in blocks of any size, from a single hvte to as much as
woveral kilohytes ina simale operation The concept of u file position is
key: thefile position is a fony integer, such s

inng fpos;

which speciiivs the pazition o
from the beginaing of the file ty yiat particular byte. Thus, the firsthyte
in the file is at (e position ni. Two distinct file positions are
maintained internaily by the lovel 1 functions. The curreat tile position
is the point at which data transfers take plice between the progriam and
the file: it is set to zero when the file is opened. and 1s advanced by the
aumber of bytes read or written usiny the read and write functions.
The end of fite pusition is simply the total number of bytes contained
in the fifes it is changad ondy hy write ope rations which increase the size
il the tite,

The current fle position can be set lo any value from zero up to and
including the.end ol fite position nsing the lseex function Thus, to
apponrl dala ton [iie, the current [ile position iz set to the endof the fite
aperations are perlormed When dota is

ng seek bolore any write
rrid from near the end of 11, ot meuch of the requaested connt o5 €an be
wtisfied is returned; zero s returred for attenmpis o road when the fite

pesition is at the end nlnle

The level tiunctions operate in nne of Pyvo mutually exclusive mades

the test or translated medis, and rhe binary or untransiated mode

CFhe deésired meade precificd when the file is opened or created, and

penmnaing in erteet nntil the e ds closed The two mudes are providued lor

compalibility with opurating systems that require transiation of text fite

end of-1ile sequences.

113

f a byte in the file as the number of bytes '

1

QI, C Develonment Kit

A public symbol called __iomede presets the translation rtode.
Normally, __iomode is 0 And translated mode is used unless O__RAW is
specilied (sce open function). If iomode is changed to 0x8000, then

Portabie Library Functions .

the untranslated mode is used unless O_ RAW is specified. In other T S

words, O__RAW teggles the meaning of _iomade, Note that, since the
tavel 2 O functivns call open, this change to __iomode affects the
meaning of the corresponding options on fopen calls,

Although the level 1 functions are brimarily useful for working with

files. they can be used to read and write data to devices lincludir g the
user's terminal), as well. The /O performed is unbuffered. Th lseek
function hus no effect on devices, and usually returns an ervor status.
Dircct /O to the user's terminal may also be performed using the
functions described in section 5.2.3. -

The actual /) aperations on disk files are buffered, but at a level that

is generally transparent to the programmer. “The buffering makes
close operations a necessity for files that are modified.

-119-

¥ i it ity - o e

——
- -

¢ | €

‘?nrtahle Library Functions OL C Development Kit

CREAT

Prurpose:

Create anew file, . i -
Synopsis:

file = creat{name, pmode);

intfile; file number or error code

chur *name;, . file name

int pmode; access privilege mode bits; bit 15 has same

meaning as for open

Description:

Creates a new file with the specified name and prepares it access via
the level 1 1O lunctions. The {ile name must conform to local naming
conventions, Creating a device is oquivalent to opening it. The aceess
privilege mode bits are Jargely ignored; however, bit 15 is interpreted
in the same way as for open if sct, operationsare performed on the file
without transiation. If the file aiready exists, its cantents are
discarded. The current file position and the end-of-file are both zero
tindicating an empty file) if the function is suceessiul.

Returns:

file = file number Lo access file, if successful
-tiferror

-122.

0. C Development Kit - - Portable Library Functions

Cautions: : : ' .
Check the return value for error. creat should be used only on files .7
which are beiny completely rewritten, since any existing duta is lost, T

~

, i
!
t
1 E I‘
-
1: - . i.
P

b 123

1 c e

Puruible Library Functions

Cautions:

If fewer than the requested number of bytes remain .between the
wsition and the end-of-file. only that number is transferred

rent {ile an
o l The number of bytes by which the file position was

and returncd.
advanced muy not egual
transtation occurred, .

-126-

O, C Development Kit

the number of bytes transferred if text mode

OV

QL. C Development Kit

WRITE

‘Purposc: . S -

- - Writedatato file e e . i T rm

int leagth; number of bytes in buffer

i Description:

Writes the next set of bytes to a file. The return count is equal to the
number of bytes written, unless an error occurred, The file position is
advanced accordingly.

R I

Returns:

diferror
number of bytes actually written

t

stiatus

Cautions:

The number of bytes written may be less than the supplied count if a
physical end-of-file {imitation was encountered,

-127-

Synopsis:
' status = write(file, buffer, length);

int status; status code or actuat length - - -
int file; file number -
- char *bulfer; output buffer

f e == e

R
..!'

.

1 oe

QL C Development Kit =~

Partable L beary Functions

Closeafile

Synopsis:

status = close{file):
int status;

int ile; - file number - o o
Description: ‘
Closes a file and frees the file number for use in accessing another f[ile.
Any bulfers allocated when the file was opened are rejcased. .
_ Returns: B
status = 0if successful
= -1 if error
Cautions: ,
This function must be called if the file was modified; otherwise, the
end-of-file and the actual data on disk may not be updated properly.
]
|
-130-
. t
N

QI.C Development Kit

status code: O if suecessful =~ 77 . A

_ Poruable Libirury Functions

£.2,3 Direct Console I/0 Functions.

These f{unctions provide a direct /O interface to the user's console,
Because there is no buffering of characters. the
particularly useful for applications which use cursor positioning to
define special sereen formats or which implement specinl single
character respenses to program prompts. In veder to distinguish these
functions from the corresponding level 2 functions. different names are
dsed fer them. This allows programs to make use of both kinds of /0.
if desired. Programs which perform consele IO exclusively can use
the #deline mechanism to establish the following equivalencies for
some of the level 2 functions:

#define getchor gelch

#deline putchar putch

#define gets cgets

#define puts cputs o
#define scanfescanf. ' o
#deline printfeprintl ' S

-131.

“functions are:

—— e ——

1

ke g

Portable Livrary Functions 01, C Development Kit

KBHIT

~ Purpose:

" Check for keyboard hit

Synopsis:

. __ hit = kbhitl}y;

int hit; 0ifno hit

Description: .

pard character is available (Le., if

Returns a non-zero value if a keyb
ely with an input

the rext call to geten or getche will. return immediat
_ character).

Iteturns:

0 if no character zvailable
non-zero if character available

hit

134

QI.C Development Kit

- Cet string directly from console : R S

Synopsis:

p = cgetsis)

< char *p returned string pointer
char *s; input string buffer
Description:

Cets a strir’lg directly from the user's console by making calis to the
5. getch function. Characters are input until a carriage return is

A encountered. The earriage return is repiaced by a zero byte.
Returns:
p = pointer to string received, which does not include the terminating
0

carriage return

Cautions:

Thcrel is no check on the length of the input string; thus, the buffer
supplied must be large enough to accommmodate the result. Input strings
larger than 256 bytes are not supported.

b ' -135-

Portable Library Functions e

L R

. The simplest way

function returns.

s

L
- A e

0L C Development Kit

partrble Libracy Funclinns

5.2.4 Program Exit and Jump Functions

to terminate execution of a C program Is for the main
function to cxegute 2 rewurn statement, or -- cven simpler -- to "drop
through” its terminaling brace. [n many €ases, however, a more flexible
program exit capability is neaded; this is provided by the exit and _ exit
functions described in this section. The vffer the advantage of allowing
any function -- not just main - to cause termination of the program, and
they allow information to be passed to other programs.

In some coses, it s useful for a program te be able to pass control
ditoetly to another puzt of the program (within a different function)
without having to £o through a long and possibly complicated series of
The setjmp and longjmp functions provide a general

cppbitity for achiaving this.

-138-

S
. @L,C Development Kit

- R

' Purpose: o

" Terminate execution of program and closefiles -~ T

Synopsis: : U .) i S

exit{errcode);

int errcode; exit error code

Description:

Terminates execution of the current program. but first closes all
output files which are currently open through the level 2 I/O functions.
The error code is normally set to zero to indicate no error, and to &
non-zero value if some kind of error exit was taken,

Cautions:

Note that exit only closes those files which are being accessed using
the level 2 functions. Files accessed using the level 1 functions are not
autematically closed.

-139-

T

-t e e bt

1

Purtable Library Functions QL. C Development Kit

SETMEM

Purpose: .

Initialize memory to specified char value

Synopsis:

setmem(p, n, ¢); o
base of memory to be initialized

char *p; tiali:
unsigned n; number of bytes to be initizlized

‘chare; initializatien value
Description:

Sets the specified number of bytes of memory to the specified byte
value. This functicn is useful for the initialization of auto char arrays.

Cautions:

Tt is good practice to use a cast operator when arrays or pointers of other
types are vsed for the p argument.

144

aante L

-y

. : b

Portable Library Functions

Aﬂ-—-‘n...‘_. :

QL C Development Kit -

MOVMEM

Purpose: i

Move a block of memory

Synopsis:

movmem(s, d, n);
char *s;
char *d;
unsigned n;

source memory block
destination memory block
number of bytes to be transferred

Bescription:

Moves memory {rom one location to another. The function checks the
relative locations of source and destination blocks, and performs the
maove in the order necessary to preserve the data in the event of overlap.

Cautions:

[t is good practice to use a cast operator when arrays or pointers of other
types are used for the s and d arguments.

-145-

e e e e

o
f T
'f é@

Poriobie Library Functions 01, C Development Kit

« isalphafc} non-zero if ¢ is alphabetic, O if not
* jsupper(c) non.zero if ¢ is upper case, 0 if not
* islower(c) non-zero if ¢ is lower case, Gifnot
* isdigit{e) non-zero if ¢ is adigit 0-9, 0if not
isxdigit{c} pon-zeraifcisa kexadecimaltdigit, 0
ifnotitn-9. A-F,aD ’
* jsspacele) non-zers if ¢ is white space, oif not

ispunctl(c) _nen-zero if ¢ is punctuation, 0 if nat
* isalnumlc) non-zero if ¢ is alphabetic or digit
isprint{c) non-zero if ¢ is printable (inciuding
blank)
isgraph(c) non-zero if ¢ is graphic (excluding
blank}

¢ jscrurl{cd non-zeroifcis control character

isasciilc} non-zero it ¢ is ASCIH(0-127)
iscsym(c) non-zere if valid character for C
identifier, 0 if not
iscsymlic) non.zero if valid first character for C
identifier, 0ifnot
toupperic) converts ¢ Lo upper case, if iower case
¢ toloweric) converts ¢ to lower case, if upper case

Note that the last two macros generate the value of ¢ unchanged if it
dees not qualify fer the conversien.

5.3.3 String Utiity Functions

‘the portable Yhrary provides sgveral functions to perform many of the
most common sbrirg manictiations. “These functions all wark with
sequences of charaeters terminated by & null (zeen) byte, which is the C
delinitinn sf a charncter sfring. A saecial naming convention is used.
which works a5 follows: The first two characters of a string function are
alvays 3t, while the third character indicates the type of the return
value from the function:

feted funciion returns an int count
sip function returns a character pointer
ats function returns an int status value

Thus, the name of the function shows at a glance the type of value it

relurins.

-148-

QI. C Development Kit

For compatibility with other C

AR,
e P

Partable Library Functions

implementations, several other

functions whose names begin with str have also been provided.

-149-

B

L, &

Portabie Library Functions Q1. C Develppment Kit

STRCPY/STRNCPY/STPCPYISTCCPY

Purpose:

" Copy one string to another

Synopsis:

to = strepyito, from);

to = stenepyito, from, length)

tn = stpepy(in, fram);

sctual = steepy(to, fram, length):

int actual; actual number of characters moved (stccpy
only} '
destination string pointer

source string pointer

maximum length of copy

1}

char *t0;
char *Trom;
int lenzth,

Dascription:

These Funciions move the null-terminated source string to the
destination string. For strnepy and steepy, if the source is too long for
the destination. its cightmost characiers are not moved. The
destinutivn string ts always null-terminated.

Irturns:
to = pointer to Jestination string (same as original to
argument} {strepy, sirnepy. stpepy!
aguil = gctual number el choractors movel, incluling the

aull terminator {steepy only)

-152-

-

L SRR ° S,

- destination string might not

QL C Development Kit Portable Librarv Functions

Cautions:
stracpy or stcepy should be used if there is any question that the

Functions returning char * must be so declared before being used.

-153-

be large enough to hold the result.

i "

|
! .- %
! , _ ‘

Partabie Library Functions 0 0 Develnpment Kit

STCU_D

Purpose:

*Fa

Convert unsigned integer to decimal string

Synopzis:

tenuth = steu__d(out, in, outlen);

int bengeth; output string length (excluding aull)

char *oul; output string

unsigned in; inpul value .
int puticn; sizeoflout) '

‘Description:
Converts un unsigned integer into a string of decimal digits terminated

with a null byte. Leading zeros are not copied to the output string, and if
the input value is zero, only a single 0 character i3 produced.

Rteturns:
leagth = number of characters placed in output string, not
including the null terminator
.)
Cautions:

If the output string is too small for the result, only the rightmost diits
are returned.

-156-

QL C Development Kit Portable [Library Functions

STCI_D

Purpuse: ’ _ B . o S

Convert signed integer to decimal string *

Synopsis;

lenpth = stei_ dfout, in, outlen);
int !length; output string length (excluding null)

char *out; output string
int in; input value
intoutlen; sizeoflout)

Deseription:

Converts an integer into a string of decimal digits terminated witha
null byte, [fthe integeris negative, the output string is preceded by a -.
Leading zeros are not copicd to the output string,

Returns:

iength = numnber of characters placed in cutput string, not
including the null terminator

Cautions;

If the output string is too small for the result, the returned length
may he zero, or a partial string may be returned.

Portable L.ibrary Functiong

QL C Development Kit

STPBLK

Purpose: ' .

Skip blanks {white space) CTT

F

Synopsis:

q = stpblkip)

char *q. updated string pointer
char *m initial string pointer
Desceription:

Advances the string pointer past white space characters (space, tab, or
newline). :

Returns:

13

q = updated string pointer (advanced past white space)

Cautions:
v

Alust be declared char *, asthe stp prefixindicates.

-160-

e

. QL C Development Kit

Portable Library Functions

STPSYM

Purpose: | o -

Get asymbol fvom a string -+ S : o me—zem | lenn

Synopsis:

p = stpsym{s, sym, symlenk;

char *p; points te next character ins - -

char *s; input string o
char *sym; outputsiring

intsymlen; sizeoflsym)

Description:

Breaks out the next symbo! from the input string. The first character of
the symbel must be aiphabetic {upper or lower case), and the remaining
characters must be alphanumeric, Note that the pointer is not advanced
past any initial white space in the input string.” The output string is the
null-terminated symbol,

Returns:

p = pointer tn next character tafter symbol) ininput string

Cautiens:
Must be declared char *, as the stp prefix indicates [no valid symbol

characters are found, p wiil equal s, and sym will contain an initial null
byte.

-161-

W T

3

1
| Py
| (

QL C Develomm Kit

Portable Library Functions

STPBRK/STRPBRK

Purpase:

Find.break character instring .
L]

Synopsis:

p = stpbrk(s, b};

p = strpbricds, by

char *p; points to elementofbins
peints to string being scanned

char *s:
points Lo break character string

char *b;

Description:

These functicns scan the specified string to find the first eccurrence ofa
character from the break string b. In other words, b is a
null-termirated list of characters being sought. If the terminator byte
for 5 is hit first, a NULL peinter is returned.

Returns:

NULLifnoelementofbisfoundins
pointer to first elementof b in s{from left)

p =

Cautions:

These functions must he declared char *.

-164-

@

QL C Development Kit Portable Library Functions

STRSPN/STRCSPN/STCIS/STCISN

Purposc:
.‘vg ‘L\O

Find longest initial span

Synopsis:

length = strspn(s, b},

length = strespn(s, bY;

length = steis(s, b);

length = steisnls, b)

int length; span length in bytes
chur *s; points to string being scanned
char *h; : points to character set string

BPescription:

These functions compute the number of characters at the beginning
(left) of 3 that come from a specified character set. For strspa and stcis,
tha character set consists of all characters in b, while for strespn and
steisn, the character set consists of all characters not inb.

Returns:

length = number of characters from the specified set which appear
at the beginning (lefty of s

-165-

T

oy s ——
. |

N ke

Portabie Library Functions QL. C Develapment Kit

Cautions:
a pointer to a character

Note that the third argument must be ;
o values: a pointer to, and

pointer, since this function realily returns tw
the length of, the first matching substring.

-163-

RE

QL C Development Kit

-

Portable Library Functions |

Purpese:

Pattern match {anchored) .

Synopsis:

length = stepmals, ph
int lenath; ’
char *s;

char *p;

Description:

length of matching string
string being scanned
pattern string

Seans the specified string to determine if it begins with a substring that
matches the specified pattern. See the description of stepm for a
specification of the pattern format.

Returns:

length = 0 ifno match

= length of matching substring if successful

-169-

\-"'-'--.-4_... T

4

Portable Libracy Functions QL C Development Kit

5.4 Mathematical Functions

The functionz described here include a large propurtion of the ﬂoat_ing
paint math functions that are usually provided with UN!K. Detaijed
specifications are yiven in the following manual payes. ..\ote that the
header files math__hand limits__h should generally be included when

usiny these functions.

-
X

£ 0,
O, T

QL Dovelopment Kit Poriable Librarv Functions

- Exponential/logarithmic functions - - e

EXP/LOG/LOG10/POW/SQRT

Synopsis: ’
r = exp{x}: compute expenential functionof ¢ :
r = log{sh compute natural log of ¢ oo T i
r = logt0i(x); compute base 10 log of x i
r = pow(x,yh compute X to power y
r = sqri{x}, compute square root of x

doubie r; result _ _

double x,y; arguments -

Description:

These functions return the result of the indicated exponential,

logarithmic, and power computations on double operands. _
!

Far log, logl, and sqrt. the x argument must be positive, and for pow, '

the y argument must be an integer if x is negative.

Cautions:

These functions must be declared double, which can be accomplished
simply by including math__h. ’

-

-173-

: -
QLC Devcﬁmnt Kit

1
Portable 1 ary Funetinns

SINH/COSH/TANH

Purpose:

Hvperbolic functions

[
Synopsis:
x = sinkily) compute hyperbolic sine
x = cosh{y) compute hyperbolic cosine
x = tanhty); compute hyperbelic tangent
double x; result ‘
double v; argument .
Description:

These functions compute and return the value of the indicated

hyperbolic functions.

Cautions:

‘these functions must be declared double, which ean be accomplished
simply by including math__h.

TR Tt~ Y T T T e T R R T T e el e
TN e T L AL e ey G L ‘_§ L

i

- R—

ek VP,
Yy 7y S

PRET L R

&y - .

QL C Develnpment Kt Portable Library Functions

RAND,SRAND

random number
randnm number sced

int x;
unsigned sced;

Description;

The rand function returns pseude-random numbers in the range from 0
to the maximum positive integer value. At any time, srand can be
called to reset the number gencrator to a new starting point. The
initia! default seed is 1. Secc the deseription of drand for more
sophisticated rundom number generation,

-177-

Purpose: -

Simple random number generation o .:
Synopsis:

X = rand();

srand(seed); . . o

s T LT Ty, o
ROMIERIN EUE- SR DT A

CEE pmmmee e

e

P, W i -

¥

TR Ty o
1

F

Portable Libeary Functions L C Davelop

CEIL/FABS/FLOOR
!FMOD!FREXPILDEXP/MODF

Purpose:

Float converslons *

Synopsis:

x = ceilly) act ceiling integer

x = [absty) get absclute value

x = lloor(y}; get floor integer

x = fmedly, =) get mod value Y
x = frexply.ph split into mantissa and expunent
x = lexpty,ih 1ond cxponent) _

x = modily.ph splitinte integer and fraction
double x; result

double v, pperands

inti: binary exponent value

. . o ditional vatu
doubie 9. for return of additional value

These functions conver? flonting point numbers intg various other

frrms.
Mo Moor and ceil functions return the integer values thatare just
bolow and just abave the epecified value, respectively.

iFzis vero. Otherwise, it returns a value

The fmed function reiurns ¥ _ . .
is loss than g, and satisfies the relationship

thal hos the spme s as Yy,

where i Is an integer.

Portable §ibrarv Functions

R
QL C Development Hit D

The frexp function splits y into its mantissa and exponent parts. The
exponent is placed into the area pointed to by p, while the mantissa is
returned by the function,

The ldexp function returnsy * {2 ** ik

" The modf function returns the fractional part of y with the same sign as

y und places the inteyer purtion into the area pointed to by p.

Cautions:

These functions must be dectared double, which can be zccomplished
simply by including math__h.

-181-

ey

s mmasy a— e e

Rt Follh SR L]

7

e e©
Ol C Developmtnt Kit

Portable Library Fungtions

STRTOL
Purpose:
Convert ASCII te fong integer

Synopsis:

r = striol(s.p.base),

long result

char *s; string to be scanned

char ""pe returns peinter to terminating character 3
int base; conversion base

Deseriplion:

Converts an ASCH string into a long integer, using the specified
mumber base for the conversivn. Leading white space (blanks, tabs,
and newlines) is skipped, and the conversion proceeds until an
is hit. The pointer to the unrecognized

unrccognised character s
chatacter is reiurned in po If ne conversion cun be performed, p will

contain s, and the result wiill be 0.

in the range from 1) to 36 It it is non-zero,

I'he conversion hase con be
aracters from 0 through 9

then the ASCII sting may contain digit ¢h
and frem the letter A through as many letters as necessary, with ne
distinction made between upper and lower tase. For example, ifbo e is
11, then the allowahie digit charneters are U through 9and AR, and Car

a b, oand ¢, I base is 16, then o Teading "Ox" ur "OXR" may appear in the

stringt.

184

QL C Development Kit Portable Library Functions

If base is 0, then the leading characters of the string are examined to
tletermine the eonversion base, A leading "0" indicates octal conversion
ibase 8), while a leading "0x" or "0X" indicates hexadecimal conversion
(base 16). A leading digit from 1 to 9 indicates decimal conversion
(base 10). ' : -

-185-

— T T T T e«

- . e - o il LT —h
R ana e S St L LA A S e i ¥ 3 PR
o ™ * ALY Kt i e ng Ehatade J RTINS B

Portable Library Functions 01, C Development Kit

The standard version of matherr supplied in the library places the
appropriate crror number into the external integer errne, and
returns zero. When matherr is called, the function that detected the
error will bave placed its propused return value into the exception
structure. ‘The zero return code indicates that return value should be

used.

Programmers may supply their own version of matherr, if desired. On
particular errors, it may be desirable to cause the funstion detecting the
error to return a value other than its usual defuult. This can be
accomplished by storing o new return value in ret of the exception
ctructure, and then returning a non-zere vilue frem matherr, which
farees the function to pick up the new value from the exception

structure.

-133-

R I

Qi.C Development Kit

5.5 QL Specific Functions - |
The functions described here provide low-level access to QDOS. Note

that the header file qdos_h should be included when using these
o etions. ¢ be nclud

-183.

e

Tk

Portable Library Functions Q1 C Development Kit

FGETCHID

Murpose: } L —

Get QDRO3 channel 1D for level-2 file.

Synopsis:
chid = fyetchidifp);

char *chid; QDOS channel ID for specified file
int fp; Level-2file pointer

Deseription:

iteturns the QDOS channe! iD associated with the specified level-2 file.

-192.

QL C Development Kit

Portable Library Functions

IO_FBYTE - ~-o=

Purpose: ' o o

Fetches a byte,

Synopsis:

error = io__ fhyte{chanid time,cptr); : -
interror; QDOSerror code (zero if no error B
char *chanid; QLOS channel (D

int time; timeput value

char *cptr; peinter to character returned

Descreiption:

Fetches a byte from the specified channel.

-193-

T e L,
. 3

il . 15
. ©9 ’ e .
Portabie Libracy Functions) OL C Develppment Kit i QLG Pevelopment Kit Portable Library Functif.ms-._ KR
SD_CURE : o _. | SD _CURS - B L
Purpose: . o . Purpose: ') . o
Enable cursor ‘ ' Suppress cursor N
Synopsis: Synopsis:
crror = sd__curelchanid,timel, ‘ . error = sd__curs{chanid,time); - B N
interror, ()OS error code (zero if no error) mt{.‘r.ror; o QDOS error code (zere if no error)
char "chanid; (108 channel [D . _Ch'"', chanid; QDOS channel ID
int time; timeout value v Ve Int time; timeout value
Description: Description; -
Enables the cursor in the window defined by the channe! ID. - Suppresses the cursor in the window defined by the channel [D.
z .
3
-196. -197-

.-

S L)

@

- QL C Development Kit

D

-~

Portable Library Functions

Purposc:

Moves cursor to newline ¢

Syropsis:

rror = sd__nl(chanid time);)
?nt ereor: QDOS error code (zero if no error)
char *chanid; QLOS channel [D

int tiwe, timeout value y

-200-

QL C Development Kit

SD__PCOL

Purpose: : I __ i i

Move cursor to previous columnn

Synopsis:

error = sd__peol{chanid,time}

int error; QDOS error code (zero if no error)
char *¢hanid, (QDOS channel 1D
int tine; timeout value

-201-

‘Portable Library Funetions © = ., = QLC Development Kit

QL C Development Kit

SD_NROW

I*urpose: . _ o

Move cursor te next row”

Synopsis:

error = sd__nrow{chanid,time);

inierrar; QDTS eoror code (zerp if no error)

char *chanid; QDOS channel ID .
int time: timeout value 4
Beseription:

Moves the cursor to the character row below its current location.

-204-

SD_PIXP = T

l’urpﬂsc: . Lot - D e ..“ J— -_-T:._:. e '__.__-....__T::: __ .

Position cursor using pixel co-ordindtes - =
Synapsis: - = ;
error = sd__pixp(chanid,time,xcol,xrow); S S
int erroe; QDOS error code (zero if no error) t
char *chanid; GDOS chaanel ID

int time; timeout value

int xcol; - nixel column number T

int xrow; pixel row number .

Description;

Position the cursor at an absolute position on the screen using pixel
co-ordinates.

~205-

il

N

G0N0 Cale Generatinn (1. C Development Kit

“‘double or

long Mout defines a 6:1-bil signed floating point number, with
an 11-bit biased binary cxponent, and a 53- bit
fractional part which is stered in nermadized form
without the high-order bit being explicitly
- represented. The exponent biss is 1023, This
representation is equivalent to approximately 15 or

15 dectmal digits of precision.

Pointers to the various data types and to functions
are {our bytes in length, nnd contain the ubsolute
uddress of the {irst byte of the target object.

The total size of all objects declared within the same
storage class is limited according to the particular
clnss, as {ollows:

Maximum total size of,
objects declared

Storage Class

extern 1048575
statie 1048575
auto 524287
formal 255

6.1.2 External Narmes

Fxterns! identifiers may be up to 8 characters in length in the default
citse, if the -n oplion 13 used on LCH, they may be as long as 31
characters. Upper wrvi lower case lfetters are distingt, ie., eu-¢ i3
significant. A\ user miay deline externai objects with any nume thut does
not conflict with the following ¢lasses of identifiers:

cerauns Certiin Hbrary functions amd data elements (detined
in modules written in C) are defined with an
initial underscore.

CXrree . Hun-time suppoert functions {written in assemhly
o lungunge) which implement C language features
such as long integer multiply and divide, fuating
point arithmetic, and the iike are defined with CX
as the first two characters.

-2038-

ST T AT et N e et L i i, b o e

QL C Development Kit 68000 Code Generation

L AR

The likelihood of collision with library definitions is_
remote, but users should be aware of these
conventions and avoid applying these ivpos of
identificrs to external,- user-defined functions and
dnta.

6.1.3 Arithmetic Operations and Conversions

Arithmetic operations for the integral types {(floating type operations
are discussed in the next section) are genctally performed by in-line
code. [nteger overflows are ignored in all ecases, although signed
comparisens correctly include overflow in determining the relative size
of operands. Short integer divisien by zero generates a trap; long
integer division by zero simply ¢enervates a result of zero. Division of
niegitive integers causes truncation toward zero, just as it does for
positive integars, and the remainder has the same sign as the dividend.
Right shifts are arithmetic, that is, the sign bit is copicd into vacated bhit
positions, unless the operand being shifted is unsigned; in that case,
a Ingical (zero-fil}) right shift is performed.

Function calls to library routines are generated only for long integer

- muitiplieation and division (both sizned and unsigned).

Cunversions are generated according to the “usuwal arithmetic
conversions” described in Kernighan and Ritchie, and are generally
trouble free. The following points should be nated:

H ‘ehar objects may be sivned or ansiened in this implementation,
Thus. sign extension may or may not be per formed during
expanshm toint. Note that ol char declarations may be foreed to
be interpreted as unsivned char by means of a compile time
oeption; see section 121

Conversion of short "to Iong causes sign extension, while

7
cconversion of unsigned short to long does not. The inverse
operations simply truncate the result, which is undefined if its
absolute value is too large to be represented.
3 Expansion of char and shert operands to int smuay not be

: performed by the compiler if those operands anly participute in
nperatinns with other operands of the same type. -esulting in
increased efficiency for sequences like

-2n9-

¥

1

e

e®

QL C Development it

GAM0O Code Grneratinn

then a occupics a single 32-bit word, a.x resides in bits 31 through 12,
ay in bits LI through 3, and 2.z in bits 2 and 1. Bit ficlds of only a singie
bit are tested and assigned constant values using the BTST, BSET, or
BCLR instructions. :

0.1.6 Hegister Variables

A register variable declaration may be accepted for any pointer or other
datu object with a size of no more than 4 bytes. Up to four pointers may
he assigned tn address registers starting with A5 down th.rough A2;‘up
tu four struple data elements moy he assigned to data registers starting
with D7 down throueh D4 The registers are nssivned in the same order
in which they np;;ear in the function declaration, with f'r_;rm:ll
mirameters being assicned rst Naturally, iFAS i_s used as a frame
pointer vin the Toption deseribed in section 1.2.2, it is net available for

Hse U8 A Te il Vi inble

The use of register variables affects the entry sequence at the start of
the funciion ir which they are declared, by requiring an additional
instruction to save the previous registers’ values before they are used in
the lunction. See section £.3.3 for more information.

6.2 General Code Generation Strategies

Wien the code fur a function is butlered in memory before being written
te the object fil~ branch instructions are not explicitly represented in the
functicn Gmige. Inetead, they are represented by special structures
denoling the type and torget of each branch. When the function has
been completely defined. the brinch instructions are analyzed and
several important optimizations are performead

i Any branch instruction that pusses control dircctly to anether
branch instruction is re-routed to branch directly to the target

ivcation.

A conditional branch instruction that branches over a single
uncomditionat branch is replaced by a single conditional branch
instructisa of the opposite sense.

o

3 Seetions uf mode into which control does not Dow are detected and
discarded.

-212.

sl g b Tale s o

R b S

QL C Dovelopmens Kir 63000 Code Generation

4 Each brunch instruction is coded in the smailest possible
machine lunguage sequence required to reach the target location,

Most of these optimizations are applied iteratively until no further
improvement is obtained.

The code generator also makes a special effort to generate efficient
ende for the switch statement. Three different code sequences may he
produced, depending on the number and range of the case values,

b . If the number of cases is three or fewer. control is routed to the
case entries by a series of test and branch instructions.

2 ¢ the case vaiues are all positive and the difference between the
maximum and minimum euse values is less than Lwice the
number of cases. the compiler generates u branch table whichis
directly indexed by the switch value. The value is adjusted, if
necessary, by the minimum case value and campared against the
size of the table before indexing. This constructinn requires
minimal execution time and a table no longer than that required
for the type of sequence described in No. 3,

3 Otherwise, the compiler generates a tuble of {case wvalue,
branch address| pairs, which is linearly searched for the switch
value.

Al of the above sequences arc generated in-line without function calls
beciuse the number of instruction bytes is small enpugh that little
benelit would be gained by implementing them as library functions,

Aside from these special control flow analyses, the compiler does not
perform any global data flow analysis or any loop optimizations.
Thus, wvalues in registers (except for register variables) are not
preserved acrnss resions into which control may be dirccted. The
compiler does, however, retain information about register contents after
condlitional branches which ecause control to leave a region of code.
Throughout each section of code into which controt cannot branch
{althouph it may exit via conditional brunches), values which are laadmi
into registers are retiined us long us possible so us to aveid redundant
load and store operations. The allocatian of registers is guiced by next-
use information. ebrained by anmalysis of the tocal block of cole, which
indicates which operands will be used aguin in subscquent operations,

-213.

£

D

A T T A TR

% r | e

(3000 Code Generiition QL C Development Kit

neecssary to implement the module specified by the C source file; it
also ¢on.ains relocation and linkage information necessary to
runrantee that the components will be addressed properly when the
inodule is executed or referenced as part of a linked program. \Whiie the
addressing ennventions used by the code generator permit duta and

-functions to be scatiered randomly throughout memory, it is usual to

foree [unctinns and <data to be collected together at link time ints two
contizuots blocks. The object module produced by the compiler is
designed wo facilitale this grouping by placing functions and data into
two sepiarate named control seetions. At link time, all elements in the
same control section are placed in contigusus regions of inemory.

"text” is the contrel section which includes the instructions which
perform the actions specified by any functions defined in the source file.

“datu” i3 the control section which includnes a!l explicitly initinlized
static data items which ure defined in the source file, and "udata” is the
logical control section which specifies the size of all uninitialized static
data items. Static data in this sense includes not only those data items
explicitly declared static but also items declared outside the body of a
function without an explicit storage class identifier. String constants
are considered initialized statie data, and are placed in the "data"
section, I Note that automatic data items are simply allocated on the
stack at run time and are not explicitly defined in the object file)

The net elfect of these control section assivnments is to force, at link
time, atl ‘unctions to be collected together and all static data items to be
similarly combined There ace two advan taces to this structure. In the

Cevent of o frogram error which addresses n urray out of vunge, the
Ceffect is wawmlly less catastrophic if it 1s oaly data (oot instructions)

which wre destroved. In addition, seme processocs mav support
wemnry manarement hardware which will allow protection or
mapping of contizuous portions of memary; separating progriim and
Jdata portions of a program facilitates use of such capabilities.

6.1.2 Linkage Conventions

As noted in sectinon B.1.2, external identifiers may be up to 31 characters
in length, depending on whether the -n option was used when the module
was eorpiled. The relocntion information in the ebject file defines all
externitt mmes as an unspecifled type. that is, there is no sct of
attributes associnted with the name; it is simply an address within the

“218-

N & N

QL C Development Kit 68008 Code Generatinn

memory de_ﬁncd by the final load module. It is therefore an error e
deline two items with the same external name in the sume program. [t

is the programmer's responsibility to prevent this vecurrence, und alsn to
make sure that pudules refer to external names i a consistent way..

(i.e,, a function should nut refer to "syz” as shert when it is actually

delined as int in some nther module). External definition und reference -

from assembly language modules are discussed in section 6.3.4.

In addition to collecting instructions and data inte separate sections, .

the GSQUO load module constructed by linking object modules must
pl.;!cc:' cither the "text” section or the "data” section lower in memory
within the loud module. Which of these alternatives is most desirable

will depend on the application. In general, the default arrangement-

Placcs the "text” sectinn below the "data” section, The "udata” section
isusnally placed immediately above the "data” section,

6.3.3 Function Call Conventions

When a C function makes a call to another function, it first pushes the

values uf any arguments onto the stack and then makes 2 call to that -

function. For external functions, a JSR instruction with an absolute
long address is normally used; compiling with the -b option causes the
compiler to use a JSK instruction with a 16-bit PC-relative address:
both forms are resolved at link time. For functions defined in the m:m.:
module, a BSR instruction is used, which is resolved at compile time,
The arguments are pushed in right-to-left order because the stack
grows downward on the 68009; this allows the called function to address
the arguments in the natural lefr-ta-right tow-address to-high-address}
order. Note that the C lanyuage definition requires all char and short
arguments to be vxpunded to int, so that a minimum of four bytes is
pushed for each argument. The first actions taken by the ealled
function are as follows:

1 The value of the frame pointer register (either A3 or AB) is saved
on the stack, the stack puinter is transferred to the frame pointer
register, and the stack pointer is then adjusted downward by the
number of bytes of stack space required by the called function
{this local storage is also entled a stack frame). This sequence of
vperations is accomplished by a simple LINK instruction, if the

. needed storage is less than 32K bytes: or by expliz.t instructions
to push the frame pointer register, transfer to it tha stack pointer.,
and ailocate the needed storage, if more than 32K bytes. The

217

__ } '

686G Code Generation QL C Development Kit

§. " Each function entry must be declured in an XDEF statement in
: . erder o be uccessible in the C modules:

.70 xp=EF AFUNC
.AFUNC * s start of Eunction
2 Each data element must be declared in an XDEF statement in

order to be accossible in the C modules:

) o XDEE DX,DY,DZ
DX DC. L S4000
DY be.W $8000
DZ 0C.L ox

3 Any of the registers D4-D7 or A2-A6 must be preserved by the
module, and the return value loaded into the appropriate data

registers,

To call a € function frem an assembly language module, an XRFF
declaration for the function must be included. Before calling the
function (viz J3R), the caller must supply any expected arguments in
the praper order {sce section 6.3.3). After control returns from the
cilled vaction, the stack pointer must he adjusted by the cailer to
account for pushed arguments.

ZREF cfunc
MOVE.L DC,~{A7) ; push acrgument
HMOVE.L DL, -(A7)
. JSR cfunc ; cali fenction
4 £9D0) #8,A7 ;] Lestore stack pointer

Data clements delined in a € module may be accessed via XREF
suttemeats, as well

-220- .

)

R R S

T A

QL. C Development Kit

XREF XD2,XD3 -

MOVE.L X02,00 --— . o -=
.7 The following example functions illustrate some of the requirement
discussed above, ’ . '

XDEF inp,outp

; .

: ¢ = inp(iocaddr); retucrns byte from specified

H - - 1/0 address el

; char c; ‘ returned byte I -

s charc *ioaddr; 1/0 address

inp MOVE.L 1{A7},A0 Fetch arqument -
MOVE. B (AQ), DD fetch byte S
RTS

H

; outp{c, ioaddr); writes byte to specified

; ' I1/0 address

: char c: byte to be written

; char *icaddr; I/0 address

cutp MOVE.L 1{A7),A0 fetch £irst arg
MOVE.L 8(a7),0D0 fetch second arg
1OVE.B DO, (AD} write byte
RTS
END

o
221

T 63000 Code Ceneratinn

s

BT

-

er

1 &

+

Error Messores L C Nevelopment Kit

File name nmissing

- A file namre was not specified on the LC1 or LC2 command.

Intermediote filn ercor

The first phase of the compiler encountered an error when writing to
the __Qfile, This error usually results from an out-o{-space condition on
the gutpul disk. '

{avali¢ coammand :ine ontion

An favalid eamiaand line eption (beginning with a -) was specified on
either the LClor the LC2 command. See soctions 1.2.1 and 1.2.2 for

“valid eomunand line options. The option is ignored, but the compilation

is not othe) wise affected. Inother words, this error is not fatal.,
Invalid symbol definition

The name attached to a -d specifying a symbol to be defined was not a
valid C identifier or was followed by text which did not begin with an

cqual sign.
¥o functions or data defined
A source file which did not define any functicnz er data elements was

processed by the computer. This error always terminates execution nf
the compiler. It ean be generated by forgetting to terminate a camment,

~ which then causes the compiler to treat the entire file as a comment,

Fot ensugh memory

This message is generated when either phase of the compiler uses up all
the available working memory. The only cure for this error is cither to
incrense the available memory on the system, or {if the maximum is
aircady available) reduce the size and complexity of the source file,
Particulariv large functions will generate this error regardless of how
much memory s available; break the task into smaller funetions if this

L oseurs.

UURTYC ¢

R

e

-+ QLC Develppment Kit -

Object file erroc

the putput disk,

Parameters beyond file name ignored |

- The second phase of the-compiler encountered an error when writing to =~
the _ O Gle. This error usually results from.un out-of-space condition on ._ -,

Additiona! information was present on the command line bevond the -

name of the source or quad file to be compiled. The compiler option flags
must be specified before the name of the file to be compiled.

Unctecognised -c option

One of the characters following the -¢ option on LClally acceptable
constructions but do not prevent the creation of the quad file. See
section L.5.3 for more information about error processing.

1 This error is generated by a variety of conditions in connection
with pre-processer commands, including specifying - an
unrecognized command, faiiure to include white space between
command ¢lements, or use of an illegal pre-processor symbol,

2 The end of an input file was encountered when the compiler
expected more data. This may occur on an #include fie or the
origiral source file. In many cases, correction of a previous ercor
will eliminate this one.

3 The file nume specified on an #include command was not found.
P

4 An unrecognized element was encountered in the input file that
could not be classified as any of the valid lexical constructs (such
as an identifier or one of the valid expression operators). This
muay occur if control churacters or other iliegal characters were
detected in the source file. This may also occur if a
pre-processor command was specified with the # not in the first

- position of an input fine. ' '

5 A pre-processor #defline macro was used with the wrong number
4 of nrguments.

o " Error Messages

i

r

e el T S,

1
1

A
¥

1 e

Error Messapes

QL C Development Kit

” .

29

30

3

32

“The context of the expression required an operand to be either

arithmetic or a pointer. This may occur for the logical OR and
loyical AND operators.

During expression svaluation, the end of an expression ‘was
encountered but not enough operands were available for
evaluation. This may oceur if a binary operation was
improperly specifjed, '

An operation was specified which was invalid for pointer
operands (such as one of the arithmetic operations other than
addition).

{ron-fatal warning) In an assignment statement defining a vaiue
for a pointer variable, the expression on the right side of the =
operator did not evaluate to a pointer of the exact same type as
the pointer variable being assigned, i.e., it did not point to the
same type of object. The warning also occurs when a pointer of
any lype is assigned to an arithmetic object. See section4.1 for an

explanation of the philosophy behind this warning. Note that the

same message becomes a fatal error if generated for an

-

initializer expression.

The context of an expression required an operand to be integraj,

L.e.,ene of the integer types (char, int, short, unsigned, or long).

.The expression specifying the tyre name for a east

{conversion) operation or a sizeof expressicn was invalid. See

- -Kermghan and Ritchie, Appendix A, pp. 199-200 for the valid
i .syntax.’

‘An aftempt was made to attach an initializer expression to a

strutture, union, or array that was declared aute, Such
initializatinns are expressly disallowed by the lunguage.

Thr expression used to initialize an object was invalid. This
may cccur for a variely of reasons. including failure to sepurate
elements in an initializer list with commas or specification of an

. expression which did not evaluate to 2 constant, This may
-:'.require some experimentation lo determine the exact cause of

the error,

A-B . e

QLC Devcloﬁment Kit

Error Messaees

36

37

38

39

44

41

42

43

44

During processing of an initializer list or_a siructure or ynipn -

member decluration list, the compiler expected a closing right

brace, but did not find it. This may oceur if too many elements -

were specified in an initializer expression list or ifa structure

" member wag improperly declared.

A statement within the body of a switch statement was not

preceded by a case or default prefix which would allow control to -

reach that statement, This may occur if a break or return
statement is followed by any other statement without an
intervening case or default prefix,

The specified statement label was gncountered more than once
during processing of the current function,

In a body of compound statements, the number of opening left
braces { and closing right braces } was not equal. This may oceur
if the compiler got "out of phase” due to a previous error,

COne of the C language reserved words appeared in an {nvalid
context {e.g., as a variable name). See Kernighan and Ritchie
for a list of the reserved words (p. 180). Note that entry is
rescrved although it is not implemented in the compiler,

A break statement was detocted that was not within the scope of a
while, do, for, or switch statement. This may eccur due to an
errarin a preceding statement.

A case prefix was encountered outside the scope of a switch
stalement. This may occur due to an error in a preceding
statement. :

The expression defining a case value did not evaluate to an int
constant,

A case prefix was encountered which defined a constant value
already used in a previous casge preflix within the same switch
statement.

A continue statement was detected that was not withia the scope
of a while, do, or for loop, This may occur due to ¢n error in a
preceding stutement,

AT

S P n

. I-Irro-l; Messizes QL. C Nevelopment Kit QL C Development Kit o _ ___Error Messages N _
63 . he indicated identifier has been declared more than once wit!ﬁn declared as returning some ?Lhcr kind of valve. Functions which - - -
the s1me scope. ‘This error may be generated due to a preceding return a value other tha_n int must be declared befor? they are :

error, but is generally the result of improper declarations. used so that the compiler is aware of the type of the function value.

84 A declaration of the members of 2 structure or union did not 73 In processing tl.w dec[aration'of objectg the compiler gxpécted

- ~ contain at least one member name. to find another line of declarations but did not, in fact, {ind one.
e This error may be generated if a preceding error caused the

65 An attempt was made to define a funl?tion body. when the compiler to "get out of phase” with respect to declarations. i
compiler was not processing external deﬁn}'twns. This may eccur)] N .
if a precading error caused the compiler to “get out of phase” with 74 (non-fatal warning) A string constant used as an intialiser for a !
respect to declarations in the source file. char array defined more characters than the specified array Y-

length. Only as many characters as are necded to define the entire o
.56 The cxpression defining the size of a subscript in an array array are taken from the first characters of the string constant, . ;R
declaration Jdid unt evaluate to a positive int canstant'. This may . ; T e
also ncenur if o zero length was specified for an inner (i.e., not the 15 Af’ attempt was made to define the same function more than once '.
leftmost) subscript. within the same source module.

67 .‘IA declaration specified an illegal ehject as defined by this version 76 The compiler expected, {mt did not ﬂnc%, an openir}g left brace in ' e
of €. IHegal objects include functions which return aggregates thc. current context. t[‘hfs may occur if the opening bruce was e
{arrays, siructures, or unions) and arrays of functions. omiltted on a list of initializer expressions for an aggregate. t B

i
. 68 A structure or union declaration included an object declared as a 71 In vaﬂfessing a deglaration, the compiter expected to find an. s
function. This is illegal, although an agyregate may contain a 1dentil_1er which was to be :Iec!ared. This may occur |fthc‘preﬁxcs e
pointer to a function. to an identifier in a declaration (parentheses and asterisks) are |
improperly specified, or if a sequence of declarations is listed P

6% The structure or unjen whose declaration was J'USL_PI'OCEE'?-ed incorrectly. ' f T

contains an instance of itself, which is illegal. This may he o . !
“gen.oated if the * is fargotten on a structure pointer declaration, 78 The indicated statement label was rc{'erred_ toin the most recent .

h «')'r if, (due to some intertwining of structure definitions) the functlrgn ina goto_smtement, but no dofinition of the label was s
B structure actually contains an instance of itself. found in that function. ;

76 A function's formel parameter was declared illegally; I.’hnl is, it 79 {nun-faml'warningl More than one identifier with.in the’lis!..for an ’
was declared ns a structure, union, or function, The compiler does enumgzmun type l.ul.d the same val‘ue,. While this is not
not automaticaily convert such references to puinters. technicatly an error, it is usually of questionable value. ;

H
- : A voriable was declared before the opening brace of a t'unctio’n. 80 The num‘bcr of bits specified f:orabit ﬁclfl was invalid. Note thut B
bt st did not appear in the list of formal names enclosed in the comp;_ler does not accept bit fields wfuch arc exactly the length R
perantheses following the function name, of a machine wf:rd (SI.sch as 16 on a 18-hit machine); these must he
v declared as ordinary int or unsigned variubles.
72 ""An external item has been declared _with attribfntes‘ wh?ch i
coniiict with a previous declaration. This may occur if a function = i
wus used eurlier, us an bmplicit int function, and was then ;l .
A-10 . A-lt :l)

L P s A

M . | ™.

01, C Development Kit - T T Compiler Errors

. Appendix B: Compiler Errors .

This appendiz deseribes the procedure {o be used {or reporting compiler

- errors. These are errors that result not from the user's incorrect

specifications but from the compiler itsclf failing to operate properly.
There are five general kinds of errors which can occur: ’

I The compiler generates an error message for a source mocule
which is actually correct.

.2 The comnpiler fails to generate an error message for an incocrect _ .

source module.

3 The compiler detects an internal error condition and generates _
2n error message of the form

CXERR: nn

where nn is an internal errer number.

4 The compiler dies mysteriously (crashes) while compiling a source
module.

5 The compiler generates incorrect code for a correct source
module.

The last type of error is, of course, the most difficult te determine and
the most vexing for the promrammer, who has no indication that
anything is wrong until something inexplicably doesn't work, and who
enly concludes that the compiler is at fault alter a longand painstaking
study of his or her own code:

Both Lattice and Metacomeo are anxious to know about and repair any

compiler errors as quickly as possible, so pleuse report any prohlems
promnptly. The difficultics encountered may be spared the next

B-1

g rmere

T

i

.. Linker Exrors

b ‘ | ‘ %

QL C Development Kit

ERROR — 8 No input mndule or control file given

* The linker requires as input either a module file name or a control file

name. [fncither is given then the linker does not have any input files to

- ket upon.

’ ER.I‘!OR - 07 Illeqgal ‘option given on command

line <option>

An unrecegnised option has been entered. The option parameter
indicates which option the linker was unable to recognise.

*C.2 Control File Errors

The linker will on vncountering an error in the contro! file list the line
for which the error has nccurred and print a message indicating the
cause of the error, The linker will process the rest of the control file

hut will not proceed with the link,
CERROR - 0% Illtegal or unrecognised command <command>

Anitlegal or unrecopnised command has been encountered in the control
file. The comimnarnd parameter is the command that the linker failed to

© recognise.
EHECR — 2% Too many paramekcers <paratﬁeter>

.] - e,
Tae linker has encountered too many parameters on the line. The
¢umnmand has been processed but the link will not be performed. -

ERROR — 0B Not cnough parameters, expecting <item>
The' linker did not {ind encugh parameters on the line. The item
parameter indicates which item was expected which will be one of the

tullowing:

P

’ 0.C ﬂeve'ln;;r-\;ént Kit - -

. Item ST Command — e
file name *° = INPUYT, EXTRACT ©r LIBRARY -
module name T 7. EXTRACT T T
FROA keyword . EXTRACT -~ ... - __._ "
section name ... TUTSECTION .- T T o IS
END or DUMMY . - COMMON T
value QFFSET
symbol name DEFINE
expression DEFINE

ERRCR - 0C No module name given in command line for
INPUT *

The linker has encountered an INPUT * in the control file but no module *

name was given on the cornmand line.

ERROR - 0D TFROM keyword missed out or incorrectly
spelt

In an extract command the FROM keyword was not found. This
keyword must be present,

ERROR - OE section already exists <secticn>

The section named in the section command has already been named in a

previous SECTION command and so cannet be placed in the order
requested.

ERROR - OF Illegal op_tion, DUMMY or-END only allowed

An illegal common option has been given. The linker only recognises
the keywords DUMMY and END.

IRROR - 10 Only one COMMON command allowed

Only one common command is allowed in any one link.

o

Cc-3

Py

P reagp -

JiE

P

Linker Errors QLC De“velopment Kit

ERROR -~ 2D Attempt 1o initialise dummy COMMON
in <file>

The linker has detected ap attempt to pluce data into a COMMON
section with the COMMEON DUMMY option in effect. As no spiace is
saved for the COMMON blocks they may not be initialised in this LAVE
The tisdeer will cantinge to process all remaining input (iles in pass 1 und
then promnpt for another command line. The program [ile will not
however be produced. '

IMROB - 2B Abscolute scction below CFFSET address
in <tile name>

This error indicates that an OFFSET command has been given in the
linker contre! file but an absolute section resides below the OFFSET

address. The linker will continue but the part of the section below the
OFFSET valve will not be contained in the file.

. ERROR - 21 Phasing ecror occurced in <filex»
Thiz is an internal linker error which should not occur.
ERROR - 32 Out of nemory

Tha linker nas run cut of memory while trying to allocate more memory
for internal tables. The linker will exitafter printing this message,

ERROR - 33 ALttempt to allocate large record

" 'Tire Tinker has attempted to allocate a record which s larger than the
current memory allocation. The linker will exit aflter printing this
message. This should never necur.

EXROR. - 34 Inccapatible section type for
section <section>

This error indicates that a section has been used both as a nor il
relocatable section and as a COMMON section. The linker will process
all remaining input files in pass 1 hut no program file will be

producedd,

C8

e R W .- C Tl i

QL C Development Kit _Linker I-lrfof;'.

WARNING = 35 Insufficient memory £oc cross reference -

"> This message indicates that the linker cannot allocate sulficient o
memary for the cross reference listing.” The linker will continuoe but a
rormal symbol tabie listing will be given instead ofieross reference.’

WARNING -~ 3¢ Truncation error at offsct <offset> - o .

This warning indicates that a valug has had to be truncated to fit intp a
byte or word expression. The offset value gives the location in the output
‘program at which the truncation has occurred. The linker will continue - - -
however the program may encounter problems if run. _ -

WARNING - 37 Undefined symbol was used in DEFINE
expression: <symbol>

This warning indicates that a symbol which was used in the expression .
part of a DEFINE command is still undeflined. This means that the . ;
rsultof the DEFINE command is also undefined. e

FRROR - 3a internal errorp

e L LL " S
.

The linker has detected an internal error {consistency check), This
error should never oceur.

WARNING - 31 Multiply defined 5ymbol <symbol>

Thiswarning indicates that a symbol has been defined more than onee in
the link. The first value encountered will be the vilue used by the link. ;

WARNING - 3B Abs section averlaps next one in <file> ’
Tiris warning indicates that two absolute sections overlup ench other in

the program file. This meuns that the second absolute section will ’ _
overwrite the lirst. :

|
ST —— -
. -

c-7

T~anolePrezrams

1

Q1L C Development Kit

.error {string}

v

" ehar stringll;

{ .

printf (“Cannct open $s\n“,string):

A : - -

Example }’rog'rz;m 4

/7
Titis oxample nronronm writes the string "Hello wocld®
to stdout using tho QDOS trap 10.s85trg.

*/

finclude "mdvi_stdio_h"
finclude “mdv)l_gdos_h"

mainf))
{
int sent;
char *buffer = "Hello world";
io_sstrgffgetchid(stdout),<2,buffer,11,Esent);

io_sstrg{chan_id,time_out,b,blen,rlen)
char *chan_id,*b;
int time out,blen,*rlen;

struct REGS in,cut;

int ret: .

in.B0 = 7;: /* function numberli/

in.02 = blen;
. in.P3 & time_out:
» in.AQ0 = chaa_id;
in.ALl = b_; .

ret = QUOS3I({&in,Lout);
*rlen = {short)out.Dl:

i

OO Devalaomaont Yig

ddefine 57, 58, 55, 131

#if5,60

#inchude 89, 147 B R
#include tule nesting 5T

. Hline 63 . S . -

sundel 98, 147

L address aperator 55

Looperatar 63,67 .-
&k onperatur G5 e
_aparater 57
§upecator 6%

- aperstor 54,67

+ {appending} 03
Sanpinnd

e aptiond
-doptian G

o aption 10
option 7
-noplien T
caprefiaoptiva ¥, 11
-uoption 8

-x oplien B

68000 code generation 208

LEXIT funclion 140
__linade 90

ALEDIZ0, 3L
£banlote sections 41, 45 .
AUCS functisn 174
Address of aperator 57
Alignmert 7,67
ALLMEM function B1
Atlocale tevel 2 ineinory poal
-5t ALLMEM ar BLDMEM
Allg=ate memory and clear
-see CALLOC
Alloratinrofspace 42 .
ALT 20
ALT-PHWN 15, 10
ALT LEF 21,3C
ALT LIGNRT 2,20
ALT CPL 30
Altering tecL (B3 28
Allering windnws 20
Arithmetic conversiany 209 !
Arithmetic objects 59, 1T
Alithmeiic spceastians 209
Artay initialization £3
Avcay subscript size 57
ASCILLAT
ASCLI convarsions 183
ASIN function 174 .

Assembly lanpuoge interfnee 219

ATAN function 74

ATANIurchn i74 - T
AT function 182

AR faartinn 152

AL

fost aatis WH marpintDred -
T Dy i, 27,33
backward. tend (BTN 22, 21
Bk 3
letweln pacs processing 52
MBI 27, 31
Eiriry mudr 90
Uit Delds 241
ULDMEM function 81 [
Dleck custrot 120 25, 26, 31 . .
Uuttan uf fiie (£ 20 -
lirarch instiuctions 68
Rrgak point 85
HELIN M
Luffered made 91
BulTering 3 91, 110, 116, 119,
139,131
Mufsiz 116
Hyte stream itie intesface 82

cemnpile-time aption 85
cflag .
CLINK 25
CALLOC function T4
Cagbuperatar 56,63, 144
CE L 26, 31
CEAL feaction 182
CaE TS lunction 115
Cliange bufler far level 2 file O
Ssee BETUE
Clar *type 72
Char 5%, 207
Chearecier consiunls G
Charater ¢ hn 133
Charucter typie functions 14T
Claragiir Lype
Chaninte s tyyse i
Chlieek Tor pemding inpat - see H}__IPEND
Circular defininigns 53
CLE 26, 3y
Cloar eerng Ny for fte see CLIRERR
ar O1LE AR
CLEAMMR funchian 112
Cluse a file - see CLOSE
Clase bufferel Bl 95 _
CLOSE function 134
CLREIE lunction EE2
Cude gencration 206

teturni{ret}; - _ . + .

s ,r..._ t[
i
i
fnvigx 4.0 Develupeent K

- g *

Gu‘lf:.-lnr-f} praed Sige e SIZAEAT
Cet e g bircty S comule
ssee COETS

Cet syl lrom steing - see STPSY M

Geltohen Loon sining - see ST (P19

GETC furgtinn B, 90 .

GETT Cunctiun E3E, 132 123, 1,
¥35.127

ITHAY fuetun B, 90

S fevetian 109, Ld, 130,134

GETLCHID funetiun 19]

CETMEA fngtlion TT.73.81

ML fuaceian TH. 81

GETS functivn i1

Hexadecimail values 67
Hosizontal ceratiing 19, 21, 25
Hypeabolic funclinn; 176

bzt 2s o

Flerrars 82

Lithincliog elosses 83

w1y v macros 5%

[RF NS TR}]

Lientiad steinge constants §7
Lienidier scupe 51

D, 0

Immediate coamands (20 20,21, 30
Implicit peinter conversion 55 -
Locluds [fes &

Initialize ravinary to specified char
value - see SETAMEM

Cinput fide rame defrulis 16
Inserting test (K13 28, 22,25, 28,
30,31
frsert Bic TR 26, 21
e 59
irleractive b {gaher) 32
M _BY O G s 123
Ity 2R o, Thgn 145
113 cil‘n VE funistion 93

JU T)
Ao cuerent bines (EN) "3 i
JLME funcrion 138

FIINT fometion 124
ey wisred hit, check fur - see KUEIT
Yoy aorda By D

Loapiae definition 51
LT 23 a3
1rya

14t '

i1 Fanetion 150
rVDI ‘I“ "'j
-r’.:ru p.meusire - see STHLEN

Level | funclmna 49

fevel LB YD

Fevel I L0 i linn, 118

Level e .y aliveat

Leve! ieniry sitoc, ave BIHE

Level Z1ile 140), change Luter far
=see SUTIHG .

Lewved 2 fusction s 39

Level 2 L83 functions and macrns 39

fevel 2memay allucutiun 77

Level 2sacinury atlucatar 91

Level Y memory gllocativn 12

LIBKRA Y 1)

Line cuntrol 6%

Line length (K1) 23, 23

Line leagth 57

Linkage conventions k4

Pirker 35

Linker Listing 38

Linking a € module 13

FIST, Linher optiun 34

Listfile 5

Listlile uption 0

Listing file 19

Listiug rile nane 38

Listing, genesatiun of 34

Luid map 19

Lauding u program 32

loaging K11 19

LOG finetion 173

LU0 funetivs 17

Logarithinie functions 173

Loyical AN Doperator 63

Lugicn! (i operatar 65

[ong 59

LONGINME functian 124, 141

Lanips 53

LSHIRK function 2

LSEER function 169, 113, 119

Lvaluz 67

MUK 26, 38
[LYART S .
Machioe dependencies 206
Mucry arpguinents 57
\1.icrot*;ﬂnll|un..m—stmg 53
Maerus 58,91, 93, 133, 147
MALLUC functicn 73
Margins (K 2z s
Malhematical fanction ecror
- ke MATHERIL
Malhematicad Furetiuns 172

e e O

L CDevctonrient Kit

MATHENN functinn 157

Mewnry aiiucution T T, 85

Moy a thet functions ¥

Memury rolease tunclion - see FRIZE _

Memiory ubihities 143

Misnbaum cemaand Hoe 35

MM Yunction T2u

Mulele 13

Mudvbir compilutiong 3

Tinul ramnands 4G

Mave block v memery .« seo A ll'f\l!— pY}

Move curwer toview Linge - see SB_SNL

Move cuszar to [EE T TUTEY cuTullln
sseal) MO0

Move cursur to fant caluma
ELETUN W

Move cursor 1 o “inus Fow
-sen Bl jHionw

EALP

Move ¢ur<or (o next row - sce St Nt

Moszin tite 2121, 26, 30, 3)
MOVMEMLaction 145
Multple conimend, 7i2D1 20
Multipte exirnted commands 23

NED 25, 2

Meatdine {ELi 20, 31

NODEDUG, Linker option 14
mOLIST, Linker option T
Non-interaciive made (Linker) a2

Non-localnotn . see SETIA I or | LONCIMP

HOMROG, Linker apjtion 14
NOBYM, Linker nptivn 14

Chjcct enle conventions 215

Object module weader infarmation 49
OFFEYT 44,45

OFEN funciion 120

OvenabunTered file - voe FOPEN
Dpenalile . sen OPEY

DVEN Tunetion S, | 14,119

Coations, Linker 13

Options, Linker 349

Dutst e names, constry~tion ol 35

PEinmg 1

Aargutnent b

PAGELEN, Linker option 34

Pass 1ol ralucatabic bin, ary files 52

Paar 2 processing 52

Pattern match fanchored) - -see STCEMA

Pattesn mareh tunarchored) « see STCRAM

I"hase 1 4, 15

Phase 1 sturage sssumptions 61
Phaie 210,16

Painter cunversion 53 I
Pointer initializativn &3

Purlable Yt wy T4

Prsidion euesor - s 50 s

Punibion < un s uniing grinel

o weilinate - sew 5§ LN Lo
Pusition lmfu;cpulcut unlc H}
I'us? prigy RIS
P'OW function IrJ
Peo pwatessor coinnomls &

T e ue g surbistitutivng 6.1 -

Frrevians line (100 26,)
Peivsary exprenaions 67
DREN T e tims 104
Pravessing structure 55
UOG Linker nption 34§
Prograg 33
Pregram control (E1) 24
Progran exeeutian 14
Program exit function 138
Progean flic nasme 36
Miogrpm lie vitiut 33
Program linking 172
!'HUEI__LI.\' % 39
Psenda canituny numbier, return
sse AN
Push character huck on tnpul fite
csee UNGETS
Puak einiracter back to consale
- see LINGETTO
PPut s charicter - sce FI'UTC
Putastring - see PUTS ar FILTs
Put character directly ta consale
= sty PLTCH
Pulcharacter to hite . see MU TC
TCITAH
Mutstring direcily to consnle
Ssee LTS
PUTC functian 97
PUICH function 131,132,127
PUTCHAR funtion 97
LTS function 102

QUL 2L 5

QU trag 190

WIOST functina 1)
QDG5S functwn 190
LHHIET Nunglipa 190

Qb specific functinns 189
LLC command 12
Lpanls &

Quitek 2y b

R es, 1
AN funetion 177

Honlum nanbr s, genedate we HAND,

HHANDL o EHEAND
BHME T dien AS ad

Tialew

ile-entesic & liter 25 M
T Rend Recbov ol dang fram tide
e FILEAD
Atrad dda fram Gle .« see BEEAD
BEA B iunciion | 15
Pedrra sgenen 2y
Pegster variondes 233
Bubitivtialuperatars 67
K lvave momory biuck -sec 8 SUIEM
a- [RESML
IN tahle Linary Miles 32
ielecutubile coctivna 43, 25 .
PMEOVE fureton 124
Reeaave filorin ftom file aystem
3 BEMUVE ar UNLINK
Rreoen abutfered e - see VILTOPEN
trpraing g mra vl B 23
“eplicatn values through ey
s LA
BEEPMEM e,
FoisetTeval2r ¥
Itrael moo-ory hicah g nnt - see RIVHK

YE, 2Y, 31

- see RSTMEM

Peseteandsim nziiher seod - sen SHAND

HE
REEJIN LN 28

Fewirmd a iy« see QEAIND
FEWEND fenciinn 93, 114
Riwrite scieen 23

WOHT 2,40 1

fhaht hand crarpin (R () 22
WESMEM factian 17, 20

RIS fance pa 85
R¥iEimea 3

HETAE M functinn 84

Rua tume propram Gtructure 204
Runery two sersivas of K123

SiEDI 78, 31
1l n
SAEmM 225 m
BaveibInusm
Savin lest iite 71
28, 31

Screes ol for 19

Beeevaoaiput 14

Berees rewrite 1l
Serwilicagifibe 17, 21, 2%, 25,30
SIF _ULEE hiecwan 195

Sh _CURS furcton 197

SO__NCOL Ganction 02
533 ML fueetion

S NEOW funetin 203
S _PCGL Sunction 201

1. C Bevelopment it

BN Dorerian 215
BB 1S funet IE
SD_IROW Junction 21}
SU_TAL Functinn 1100
Searching 110 37,24, 38
BECH 0y
Bevk b new file puestlion
e FEENK
Semd e - e W__SHY'TE
Setlite uabutfered . see 5905 BE
Setbeftmacgin il s, 12
Setnemat v brea's giint - see SBIK
o LSRR
Serrightmargini K101 25, 21
Set 1alis tEL 125, 1)
L funetion 91, 116
IME fonethn 133, 141
SEFMEM funetiun 131, ElG
SETS I Tunction 91, 117
StHmers, 1
ST 20
EUFTCTIRL RECOT 22, 30
SIHET- DAY S 23 30
BNTHE |
SHIFT LEFT 21, 50
ShIFET riGiiren, 3o
SNIFT-SraCE 2
SITEr-ur2y, an
Ehart 59
Show tlock (K11 26, 31
Sherw current «tate LI 25
Show minemstion I 31
Srnple ASCH conversinns 157
SBirteple Lol nuandier yeneration
g HAND ar SIPAND
HIN Fnction €74
Sirele ciaracter 1339
SN (o tiom VTG
SUEEANA fuactinn 77
Sirentuperalar 55, 00
SUAMEM funclam 21, 8)
Snipblanbs ave STIMHLE
St s, m
Spane atluratu 12
Spuee adbcaticen con-mandi 44
Spvetal hey s, usenl 2, 30
Bpditting lirca (B3 22 09 3¢
S fugtion 154

SSCANE fuacuwn LUT
STk es, 5

Stack 4

Stack eplivg 14,11
Stansdasd Lt} header fite 39

QI C Developnant Hit

Staadnid Langunge extenciung 59
Srartaf tine (LI 26
Sratie wtorage elasa G0, A2

STCARG function 1HG

STCCHY funclion 152 - -
STCH _Hunction §59 :
STCH 1 funcsmm 134

SIS Pancln LBS

STLISN runctiun 165
STCI__Diuacting E57 | -
STCLLEN Tupction L5
STCYA Tungtion 16T

ETCH M Punction 169
SPCPMA function 165
STCU_ 13 Nenction |56
STHRRIL 90, 92

STDLY i), 02, 96,93, 106, 120
STIN file gninler 20 B
STIHILT Ger, 92, 0T, 102 --
STROUT file peinter 90

S B2

Starape class specifiers G3
Statage classes b0

Starrge officis Go

STPBLK Muactioa 1650

STIBER furcuion VB

SIPCHR function L&D

STI'CEY function 152

STISYM forction B6]

Bwiteh staseinemts 05

Swilching amdpws 23
SY M, Linker aption 34
Gymnlnl ralie 5 -

T Symbal tulie tisting 50

STITTOHS furction Lh I

SEURCAT funciinn L5

STECIR Tunetion 183

STRCM function §54 .
STREIMY fungtinn 152
SrRUSPN fusction 165

Steng constant aize 57

Steiva delimiters (i 24
Errin utitity functiona 143

X tunchion 151

STIRNCAT function 151

S UIENC M o Ve 1534

STHHCTY functim §52

SR, Tomesean $310

SRR tua L 1)

STRECTUN bt TG

STESIN function NG

Ktruguure $3

Structure sl vnipn declarations 63
Structure armd uninn smember pames
Structare inttiadizsling i3
Structure niembar names 56
Btructores and uniony 64

HISCMP function 154

Substilidiun teat length 57
Suppress curser - soe SU_CUHS

62

CTAB 2T
© Tahcursor - see 58 __FAR

. e neeatiun ! 33

Symbel table Tiat
System Lunctinns 39

i

PLEDIG, 2

TAN ey IEINLE

Talyagtting 25

FAN Menetivn 174

AN fennan 176

Temiporaries G4

Terminate execution and close files
-see EXFP

Terminzie crecution immedixtely -

ssee _ENIT
Terminati L]
Termiisration 37
Text buller 33
Textinode 136
Text mele translation 99, LIG
“Tap of Gile 151626, 35
Translaied imade 03
Trusnslalion gamle 110, 126
Triggnnuetn e funcliong 74

T Fype iy 68

“I'y pe punaving %

LokDedh, 1

welag §

LCrbned, s

Linary operaters 67

Cidiallered nile. set - see SETXLP
CaliUvred vle 147

Lll

N
SR tune b T
LS TR T L 113 -
Lninn %5
Lnien e inber dechrariens 3%
Lo me i baer nanaees 5106
LUNIN crunpanibde mennry alliw ation
sare MALLIDC
LNEX companhle senimney release
- see FILEE
LNLINK function 128
Lintranslated manle 920,93
U LyCd DR 1
Lty functivns K13
Lty macens 151

Vertical scenltiog 10,21, 23,25

Wi

i hangs ot current line 17200125,

hileh- AT

Wtk fap e

Wonleas 17,

Wl Leriaa s o

ALY LT
Woept b 1 E']3
Wiats bk ta

Nt brahos,

Weite !
Wit fun

A

LN A

wili

—
AR AT

v
I
.

R

LT

o
*
[
b
Vi
. L
Ly
M
P

i

[
-
. Rl

-

-

BT AT LN

Lol A S AN A M e = R it

T T

i

AR

C ke bad i

-

e ey i

- ExpmpleProvrams

-

[

QL C Development Kit

'Ex:'unpfc Program 2

./*

This example program is based on the
“Sieve of Eratosthenes,™ .- o

"/ - . o
#include "mcvl _stdio_h"
fdefine TRUR 1t

$define FALSE ¢

tdefine SIZE 8195

¥delina SIZEPL Bl91

char Elags {SIZEPL]:
int i,prime,k,count,iter;

main ()

printf (“Hit ceturn to do 10 iterations: /n");
getchar ();

for (iter = 1; iter <= 10; iter++)

count = Q;
for (i = 0; § <= SIZE; i++)
flags [i} = TRUE;
for (i = 0; i <= SIZE: i++)
{
{(Elags (i])

prime = | + i + 3;
k= i + prime;
while (k <= SIZE)

. Elags [k] = FALSE:
i k += prime;
}

counkt++;

}_

'prinrﬁ {"\n¥d primes.\n",count);

D-2

cOMAREEE —n ek % Sl SR L e e B o e il B . R
=y _ ; ™

. LT
Q1. C Davelopmont Kit Exarr;;;lé Prnrzrn:hs
Example Program3 ' - L L . c et

This example prog;amumgggesuup%o;tuentyﬂfiIGSjinEG Srig.
Use CRUM to execute the resulting program £ile. The
last argument specifies the output file, and the other
arguments specify the input files.

*/

#include "mdvl_stdio_h” o .-ffmn' 'i-;~n oot o

LI

main (argc,argv) S T e
int argce;
char *argy[] -

int i, ¢ [e - -
FILE *fpin, *fpout, *fopen{);

if (farge < 3) || (arge > 22))
{

printf (“"Bad arguments\n");

exit (1);

if ((fpout = fopen (argv [arge - 1), “wb")) == NULL)
{

error (argv (arge - 1]);
exit (L);

for (i = 1: i < (arge - 1); i++}
\E ({Cpin = fopen targv (1], “£b")) == NULL)
{

etror (acgv [il};
fclose (fpout);
remove (argv [arge ~ 1]1);
exit (1);
) .
while (({c = getc (fpin)) 1= EOF} putc ic, Lpout);
fclose (fpin);:
b
1:

N.3

Dot o w aal

I —

Linker Frrors QL C Nevelapment Kit

C.5 Operating System Errors

When the linker gets an error code from QDOS the action taken is
dependent on whut the linker is trying to do when the error is
- encountered. The linker will take the following action un encountering

. errors;
{u) Openerrorson files

These errors are reported by the linker. [f the error occurs on
epening the program, listing, debug or contro! file the linker will
reprompt for a command line. If an error aceurs on opening a
reiocetable object file the tinker will continue until the end of pass 1
to validate that all gther files may be opened.

(b

=

Read and write errors on files.

If the linker encounters a read or write error on a file (other than
end oi'file on read) the linker will report the error and exit.

{c) Cloze errors on tiles

{the linker encounters an error on closing files the linker will report
the error and continue.

The tinker will display a message indicating the error which has
accurred aiong with the name of the file which encountered the error.

In non-interactive mcde all operating system errors will cause the
iinker to exit (intluding un open error).

q.

C-3

QL C Development Kit

/i:

’/ ’ : ———

Example Programs

APPENDIX D: Example Programs = =

Example Program 1

This example program prints a table of temperature
convarsions from Celsius to Fahrenheit) L

main() . =

int lower,upper,step;
£loat fahr,celsius;

lower = ~-4Q;
upper = 140;
- step = 20:

/* print a heading #/ .
printf{"Celsius Fahrenheit\n\n"};

celsius = lower;
while fcelsjus <= upper)
{
fahr = (celsiys * 5.8/5.0) + 32.0:
/* print the conversions s
printf(" %4.0f ¥6.1f\n",celsius,fahr};
celsius += step; -

D1

——

b p———— . _

T ey . . e

LI R —
v ?

[,irzwkcr Errors QL C Developnient Kit

ERROR ~ 11 Symbol was used in DEFINE
command: <symbol>

A symbinl being defined in a define command has already been used in a
previsus deline expression. Forward referencing cf defined symbols is

not allowed.
)

ERROR =~ 12 Symbol is being redefined <symbol:>

Tie symbel being defined has already appeared in a previous define
©comnuand and cannot be redelined, .

ERROX — 13 Syntax error in DEFINE command <expression>

The linker has detected an error in the syntax of the define command,
The expression foilowing the error message starts {rom the character

_position which caused the syntax error.
ERROR - 15 OFIFSET value is not a number
The value following the offset command is not a number,
ERROE; ~ 16 Only one offsct value is allowed

As the OFSET value is the start point for allocation of memory for the
program only one value is allowed,

.C.3 Low Level Errors

These errors are detected when parsing the line at a low level. The
error messages are followed by a message indicating which command
was being processed at the time the error was encountered,

CKRECR - 19 nuaeric overflow

The numeric vatue following an OFFSET command is too largetofitin a
32 bit word,

Uy D e, . aleeas - - R R Lo S

OL C Development Kit

ERIOR - 1la Syntax error in number ... " - el

Tue linker has detected an illeyal character while processing a riunher.-.

This is normaily caused by a 3 which i¢ not foliowed by a hexadecimal™ |

digit.

ERROR -~ 1B Invalid character

The linker has detected an tllegal character while processing a line,

ERROR ~ 1C Decimal number overflow

The linker has detected that n decimayl number has over{lowed to
negative.

C.4 Processing Errors and Warnings

These errors are detected while processing the link after validation of ali
command inputs to the !inker. The description of the error messages
are [ollowed by a description of the actions performed follcwing the
error. Warning messages always result in the linker continuing from
the current position in the link,

EHROR — 10 EXTRACT - module not found

The tinker could not find the madule requested inan extract commund in
the file specified. The linker will continue to process all remaining
inputs in puss 1 and then prompt for another command line. The
program fite will not be produced.

ERROR - xx Error in relocatable binary
file <file name>

This error message indicates a problem with the relocatable binury file
remaining input files in pass 1 and then prompt for_anvther command
line. The program file will not be produced.

g my

.
"
i
!

3
.

QL C Development Kit ' Q1. C Development Kit _ ' L __ LinkerErrors -

Compiler Errors

programmer if this is dene, Inorder to maintain a more precise record of
the bugs that are discovercd, all problems should be reported in

—writing to: Appendix C: Linker Brrors

tacomco Tenchstar Inc

ets)
36_99‘tl“"‘3 Square 5353E Scotts Valley Road This appendix lists the error and warning messagas which can be=*~
Bristol Bs2 8RZ Scotts Valley, CA 95066 : produced by the linker in the phases in which they will be encountered.
DX. usa

Inall cases, include the following items of information: C.1 Command Line Errors

1 A llsting of the source module for which the errer occurred. - The tinker on encountering an error in the cormand line will displaya =+ _ =
Dea't forget (o inelude listings of any #include files used (and - message indicating the problemi and reprompt for another command _ S
watch out for #include file nesting; den’t forget the inaner files . line. It will not attemyt to parse the line following the error. o

a5 well)
ERROR - Ol file name too long — <file name>

The sevision number of the compiler, when it was purchased .

i

o

and the registration number. : Either a-file name entered on the command line or a default file name
.) - generated from the primary file is too long. The full file name canonly
2 Yrur namne gnd address and, if possible, a telephone number . he 44 cheracters long.) Lo
with ‘nformation about the best time to call. : : i
‘ _ _ ‘ ERROR - 02 No link file given with the -WITH option o
"4 A deseription of the problem, along with any other information : _ S T TR
which may ba helpful such as the results of your tnvestigation A -WITH option has been entered without a link file name. The -WITH :
inte the preblem. Obviously, errors of type 3 (sce above) don't . option must be followed by a file name. ;

nead anything more than aterse "Causes CXERR 23.%
_ FIROR — 03 Page Llength missing Eollowing -PAGELEN
' ' : option

. .
AN The -PAGELEN expects o value to set the page length to for formatting
ona printer.

ERAOR — 04 Page length is not a number
The item following the -PAGELEN option is not a number.

EIRROR - 05 Page length too small. Minimum is
20 lines

' +As the listing output is formatted with headers, titles 11d subtitles the X
minimum realistic page length is 20 lines. :

b U SRR

8.2 < . cA

Error Messares

L

.

Q1 C Development Kit

83

84

37

- .)
o

The current input line contained a reference to a pre- processor
symbol which was defined with a circular definition, or leop.

~ Seesection 4.2.1 for an example.

The size of an object exceeded the maximum legal size for objects
in its storage class; or, the last object declarcd caused the total
size of declared objects for that storage class to exceed that

maximurmn,

(hon-fatal warning) An indirect pointer reference (usually a
subscripted expression) used an address beyond the size of the
object used as o base for the address calculation. This generally

occurs when an element bevond the end of an array is referred to.

(non-fatal warning) A #dcfine statement was encountered for an
atready defined symbol. As noted in section 4.2.1, the second
definition takes precedence, but requires anadditional #undef

" statement before the symbol is truly undefined.

" {non-fatal warning) The expression specifying the value to be

returned by a function was not of the same type as the funclion
itsclf. The value specified is sutomatically converted to the
appropriate type; the warning merely serves as notification of
the conversion. The warning can be eliminated by using a cast
operator ta force the return value to the function type.

{(tu.-fatal warning) The types of the formal parameters declared
in thée actual definition of a function did not agree with those of a
preceding declaration of that function with argument type

specifiers.

{non-futal warning) The number of function arguments supplizd to
a function di¢ not agree with the number of arguments in its
declaration using arurent type specillers.

tnon-futai w.oting) The type of a functien argument expression
did nut agree:neat with its corresponding type declared in the list
of argument type specifiers for that function. Note that the
compiler does not automatically convert the expression to the
specilied type; it merely issues this warning.

A-12

e T P

QL C Development Kit

Error Messaces

89
90
B a1
92
: 93
94

o

{nen-futal wurning) The type of a constant expression uséd as a

_ function wrgument did not cgree with its corresponding type_
- declared in the list of argument type specifiers for that function, ..
In this case, the compiler does convert the cxpression to the .-

expected typa,

The type specifier for an argument type in a fuaction declaration .- .

was incorrectly formed. Argument type specifiers are formed
according to the rules for fype names in cast operators or sizeef -
expressions, '

One of the operands in an expression was of type void; this is
expressly disaliowed, since void represents no value.

(non-fatal warning) An expression statement did 1ot cause either
an assignment or a fuaction call to take place. Such a stutement
serves 1o useful purpose, and can be eliminated; usually, this
error is generated for incorrectly specified expressions in which an

" assignment operator was omitted or mistyped.

{non-fatal warning) An object with local scope was declared but
never referenced within that scope. This warning is provided as a
cenvenicence to warn of declarations that may nn ionger be needed
(if. for example, the code in which the variuble was used was
eliminated but not its declaration). It may also occur if the only
use of the ehject is confined to statements which are not compiled
because of conditional compilation directives (#if, etc).

(ron-fatal warping) An aule variable was used in an expression
without having heen previcusly initiadised by an assignment
statement or appearing in a function argument list with a
preceding & (ie, its address passed to a function). Note that the
compiler considers the varisble initialised onge any statement
causes it to be initialised, even though control may not flow from
that statement to other subsequent uses of the variable. Note also
that this warning will be issued if the third cxpression in a for
statement uses a variable which has not yet been initiaslised,
which may be incorrect if that variable is initislised inside the
body of the for stutement.

=iy

-
|

!
F .

K

T

R

Prror Meszages

0L, C Development Kit -

W
48

49

52

63

54

A default prefix was encountered outside the scope of n switch

statoment. This may eccur due to an error in' a preceding

statament,

Il

rithi ape of a switch
A defuult prefix was encountered within the scap g

statement in which a preceding default prefix bhud already been

encountered.
) L)

Following the body of a do statement, the while clausc_\;rl;.ms
expected but not found, This may occur due to an error within
the body of the do statement.

i i ing condition in a while or do
The expression defining the looping ¢
luop wg.ﬂ. rul) (nob present}. Indefinite loops musk supply the

canstant 1, if that is what is intended.

An else Keyword was detected that was not within the scope'ofa
preceding if statement. This may occur due to an error in a

preceding statement.

A statement label following the goto keyword was expected but
not found.

The indicated identifier, which appeared in a goto staten'?f‘n.t a:ha
statement lubel, was already defined as a variable wishin the
scope of the current function,

T+. expression following theif keyword was null {not present).

Thn‘ expression following the return keyword could not }l:e
leg"nlly converted to the type of the value ret_urncd by_ :1 e
fur‘ct‘oh This may be generated if the expression specified a

structure, union, or function,

ssion defining the value for a switch statement did not

The expre o

dafine an int value or a value that could be legally converte

int.

tnon-fatal warning) The statement defining the body of a switch
statement did not contain at least one case preflix.

A-3

R]

.y oo

QL C Development Kit

56

57

58 -

59

60

61

62

1

The compiler expected but did not find a colon {:). This error
Tmessage may be generated if a case expression was irmproperly
specified, cor if the celon was simply emitted following a label or
prefix tu a statement. ' '

The compiler expected but did not find a semni-colon). This
error generally means that the compiler completed the processing
of an expression but did not find the statement terminator {.}.
This may cecur il too many closing parentheses were included
or if an expression was otherwise incorrectly formed. Because the
compiler scans through white space to look for the se mi-colon, the
line aumber far this error message may bhe subsequent to the
actual tine where a serni-colon was needed.

- A purenthesis required by thie syntax of the current staterment

was expected but was not found (as in a while or for loop). This
may occeur if the enclesed expression was incarrectly specified,
causing the compiler to end the expression early. '

In processing external data er function definitions, a storage
class invalid for that declaration context (such as autoor register)
was encountered. This may occur if, due to preceding errors, the
compiler began precessing portions of the body of a function as
if they were externaldelinitions.

The types of the aggregates involved in an assignment or
eonditionul operation were not exactly the same, This error may
also be generated for enum objeets,

The indicated structure or union tag was not previously defined;
that is, the members of the aggregate were unknown. Naote that »
relcrence to an undefinad tag is permitted if the object being
declared is a pointer, but not if it is an actual instance of an
aggregate. This message may be issued as a warning after the
entire source file huve been processed if a pointer was declared
with a tag that was never defined.

*A structure or union tag has been detected in the opposite usage

from which it was originally declared (ie., a tikg eriginally
applied to a struct has appeared on an agaregate with the union
specifier). The Lattice compiler defines only onr class of
identifiers for both structure and union tays,

A-9

Error Messages

it L U

LS, I

1

—
3

15

QL C Development Kit

L

Fapinsion of a #define macro caused the campiter's line buffer
te averfiow. This may oceur if more than one lengthy macre
appared on a single input line.

The maximum extent of £include file nesting was exceeded; the

. compiler suppurts #include nesting to u maximum depthof 4,

A cast (Lype conversion) operator was incorrectly specified in an
exprassion.

The pamed ident:fier was undefined in the context in which it
appeared, that i3, it had not been previousty declared. This
smessnan is only generated once: subsequent encounters with the
idintifler assuine that it is of type int (which may cause other

Crrornd,

Aun wrror wan detected in the expression fotlowing the |
charaeier {presumnably a subseript expression). This may occur
ifthe expression in hrackets was null (not present).

Ly
the corapiler {2358 bLytes). This will oceur if the closing ” (double
e} was smiitted in specifying the string.

The length of 2 string constant exceeded the maximum allowed by

ession preceding the . (period) or -> structure
epLrator was not recognizable by the compiler a5 a
ar peioater to a structure. This may occur even for

Hens which are accepted by other compilers; see section

An densilier indicating the desired aggregate member was not
found fellowing the (period)or - > operator.

Tha iodieated identifier was not a member of the structure or
univn Lnowhich the , {periodyor - > referred.

Tie identifier preceding the (function call operaior was not
impheitly or explicitly declared as a function.

A function argument expression specified following the (
functior. call operator was invalid. This may occur if an
arguwne il expression was omitied,

A-a

e e T b il e ‘rg S B e A T LT SO - .

QL € Development Kit

Error Messaoes

17

..ls

19

20

21

23

24

During expression evaluation, the end of an expression was

encountered but more than one operand was still “awaiting

evaluation, This may oceur i an expressidn contained an
incorrectly specified operation, '

During expression evaluation, the end of an expression was
encountered but an epefator was stiil pending evaluutien. This
may eccur ifan operand was omitted for a binary operation.

The number of opening and closing parentheses in an
expression was notequal. This error message may also ocour if
a mucro waspoorly specified or improperly used,

An expression which did not evaluate 0 a constant was
encountered in a context which required a constant result. This
may occur if one of the operaters not valid for constant
expressions was present {see Kernighan and Ritchie, Appendix A,
p.2tL).

An identifier declared asg a structure, union, or function was
eacountered in an expression without being preperly qualified
{by a structure reference or function call operatar).

{ron-fatal warning) An identifier declured as a structure or union
appeared as a function argument without the preceding &
aperator. Expression evaluation continues with the & assurned
(ie., a pointer ta the aggregate is generated).

The conditional operator wus used erroneously. This may accur
if the 7 operator was present but the : was not found when

expected.

The context of the expression required "an operand to be
pointer. This may occur if the expression following * did not
evaluate to u pointer.

The context of the expression required an operand to be an Ivalue,
This may occur if the expression foliowing & was not an lvalue,
or if the left side of an assignment expression was not an fvalye.

The context of the expression required an operand to be
arithmetic {nut a puinter, function, or aggregale),

A-5

R

LR R PR

[L

4T Ry .1._t||_n_‘

=3

Wil

PR

EET

e

This appendix describes the various messages produced by the first

QLG DevelopmentKit = """~ """ Brror Messages ~ == © =

Appendix A: Error Messages . = .-

and second phases of the compiler. Error messages which begin with
the text CXERR are compiler errors which are described in Appendix B.

Al Unnumbered Messages _ -

These messages describe error conditions in the environment, rather
than errors in the source file due to improper language specifications, -

Can't create object file

The second phase of the compiler was unable to create the _ O file. This
crror usually results from a full directory on the output disk.

s m—ra

Can't create guad file

The first phase of the corhpiler was unable to create the _ @ {ile. This
error usually results from a full directory on the output disk.

Can't open quad Cile) .

The second phase of the compiler was unable to open the _ Q file
specified on the LC2 command, usually because it did not exist on the
specified drive.

Can't open =ource file .

The first phase of the compiler was unable to cpen the _Cfile spec?ﬁcd
on the LC1 command, usually because it did not exist on the specified :

drive,
Combined cutput file name too large

The output file name constructed by LCL or LC2 by combining fhe : o
Source or quad file name with the text specified using e -0 option
exceeded the maximum file name size of 61 bytes.

b A-l

S L v
o
P4

G000 Code Genceration QL. C Development Kit

frame pointer is either A5 or A6, depending on the -f option used
to cornptle the function (see section 1.2.2).

2 II any of the registers D4-D7 or A2-AD5 are used in the function, a

MOVEM.L instruction is used tu save their current valuesonthe

... stack, These registers may be in use by the calling program as
register variables, see section 6.1.6.

3 If the -p option was used to compite the function, a special
instruction called a stack probe will be gencrated: ‘TST.B
-LHLAT. This instruction is used by some operating systems
{sucrh 13 Xenix) to enswe that sufficient mewory has been
eilocated for the run-time stack.

The offsuts of the various components on the stack are indicated by the
following diagram.

High R Eaiattlena !

| ———— e | <= FP (A5 or A8)

N low [~omm e e | <- sP (A7)

Function arpuments are addressed positively from the frame poin ter,
whiie the aute duta elements are addressed negatively. Temporarics
(used {or storage of reusable intermediate expression results) are placed
kbelow all of the autn data items bul are addressed positively from AT
Unly .as much sterage as is actually needed is allocated for
tempurarics. Note that the first 32K of automatic duta is addressed
wrch more efficiently than any subsequent elements; thus, it is
advantageaus for functions to use no more than 32 bytes of local

storaye.

-218-

QL C Daveiopment Kit 63000 Code Ceneratinn

When a function returns to its caller, it first loads the func tion return
value, if any, into predefined registers. The size of the value returned

- determines the register(s} used:

8 bits DO.3 {low byte of DO, char functions only}

16 bitsg D0.W (low word of DO, short functions :
only}

32 bits DO.L (all other integral types and

pointers)
64 bits _(DO.L, D1,L} (double functions only)

F‘_l}r doul'o!e precision vatues, the high order bits are contained in DO.
Note ‘ that functmps returning aggregates (structures or uniens)
acvtumly relurn a pointer te a static copy of the aggregate. DBecause
this copy persists only long enough to assign the return value, such
functions are nonetheless recursively reentrant (but not multi-tasking
reentrant).

Af‘te:—rr the return value is loaded, the function restores any of the
registers [D4-D7 or A2.A5 which were saved gn entry, by another
MOVEM.L instruction. The UNLK instruction is then used to restore
both the frame pointer repgister and the stack pointer, and an R-TS is’
cxecqted to return to the calling function. As is customary in C, that
function is responsible lor de-allocating sny stack spuce used to push
argnments. An ADDQ.L instruction is used if fonr or eight bytes of
arguments were pushed; otherwise, an instruction like ‘

LEA A7,12(AT7)

is used to rcsture’:’\‘? if more than eight bytes of arguments were pushed
on the stack. {Nete: LEA is used instead of ADDA.W because it is
faster by four ¢lock cycles.) ’

6.3.4 Assembly Languape Interface

Programmers may write assembly languapge modutes for inclusion in C
programs, provided that these modules adhere to the ohject code,
linkage, and function cail conventions described in the nreceding
sections. An assembly language module which defines one or mare
functions to be calied from C should observe the following:

-219-

s L

BEU00 Cede Generation QL. C Development Kit

Fhis rtormation also assists the compiler, in analyzing binary
nperaticns, in its decision whether to load both operands into registers
or to lvad one eperand and use a memory reference to the other.
Generaily, the result of such an operation will be computed in u
vegister, but sequences like

I += j3;
will load the value of j inte a register and compute the result directly
into the memary location for i (but only ifi is not used later in the same
local block of code).

The hardware registers DO through D7 are used as general purpose
accumulators., while AQ through A4 {and A3, if not used as a frame
puinter) are used for pointer values, allowing access to indirect operands,
Either A5 or A6 is used to address the current stack frame; see section
£.3.3 for mgre information. The use of registers for register variables
isdescribed in section 6.1.86.

6.3 Run-time Program Structure

This scction describes the run-time environment which is implicitly
assumed by the 68000 code generator und its effect on the interface
between C and assembly language. Some knowledge of the architecture
of the 68000 processor and of basic object code and linkage concepts is
required insrder Lo understand much of the information presented.

The C programming lurguage provides for three basic kinds of
memory alloeation: the instreictions which make up the executable
functions, the static data items which persist independently of any of
the functions which refer to them, and the antomatic data items which
existonly while a function is invoked. Because the 68000 processor has
a linear address space, no special assumptions about the location of
any of these components are nceded. ‘Thus, in the general cise,
functivns and dats may be placed anywhere in memory because of the
tollowing canventions: '

17 AN function calls are generated using a JSR instruction with a

" 32-bitabsolute address,

-214-

QL C Develonment Kit 68000 Code Generaiion

2 All static and external data elements are uccessed via 32- Lit
absoelute addresses. i

3 Atl actomaltic data elemnments nre allueated and accessed relative to
acdress register AT, if the offset of a data clement excoeds the
directly addressable range of 32K byies, it is aeccessed by
transferring the frame pointer regisier to another address
register and adding in the offset value,

Note that ne intialization of A7 and no stack overflow checking is
performed by the yenerated code. The initialization routine, STARTUP
supplies an initial value for A7 that will aveid possible collision with
the memory accupicd by finctions or statie data elements.

If the -r option on L.CU is used, function calls are generated using a JJSR
instruction with a 16-bit PC-relative offset. Thus, no function call can
reach farther than 32767 bytes above or below itself, I the -b option of
LC1 is wused, stalic and external data elements are accessed using
16-bit olfsets from an address register (A5 or AB). This limits the size of
static and external data te a maximum of 65535 bytes. (Note that the
linker uses Ox8000 for its initial offset, allowing the full 64K range and
requiring the address register to contain an address 32K bytes greater

than the actual bise.)

These rather severe restrictions are necessary in order to produce
true position-independent code. 1n addition, note that painters cannot
be initialized by stucie declarations such as

char *p = "stcing”;

if positisn-independent code is desired; at compile time, the only way
to initialize such an object is to generate a relocatable :u!dr{:tf.s
reference that will result in an absolute address at run tine. This
problenm illustrates unother limitation oi'pusi!,ion-indupcndent‘ C cude an
the 68000: once the address ol un object is computed wnd ussigned to a
pointer, the target ohject may not be moved to another location without
destroying the validity of such a pointer.

6.3.1 Object Code Conventions

The ohject file created by the second phase of th? cumpil'cr is in Sinclair
relocatable "object formal, and defines the instruction: and data

-215-

B

"'_."".'!'_""‘f-zf

T —

53610 Codle Guneration (1 C Development Kit

char a, b, <t
a = b + ¢

Nute thut expansien is, however, abways performed for function call
argunients.

* -
1 Conversions from integral to [floating tiypes are fairly
straightforward. The inverse conversions cause any fractionai

portto be dropped.

3 Conversion from float to double is well-defined, but the inverse
operation may cause an undertlow or overflow condition since
doubls has a much larger exponent range. Considerable precision
is also lost, thougih the fraction is rounded to its nearest float

equivalznt,

6 In general, the presence of any unsigned type operand in an
expression causes the result also to be unsigned.

6.1.4 Floating Point Opcrations.

In acecordance with the language definition, all floating peint
arithmetic operations are perfermed using double precision eperands,
and ali function arguments of type float are converted to type double
hefore the function is called. The formats used are identical to the
32.bit and 64 bit formats defined by the proposed 1EEE standard lor
flowting puine representations. Legal floating point eperations include
simple assignment, conversion to other arithineiic types, unary minus
(¢chonse sign), addition, subtraction, multiplication, division, and
comparison for equatity or relative size. Note that, in contrast to the
siyned integer representations, negative {inating point values are not
represeated in two's complement notation, positive and negative
numbers differ only in the sign bit. This vreans that two kinds of zero
are pussible: pesitive and negative. All floating peint operations treut
either varlue as true zero and generally produce positive zero, whenever
possible. Note that cede which checks {loat or double ohjects for zero
by type punning (thal is, examining the objects as if they were int or
some other integral type) may assume (falsely) negative zero to be not

LA

-210-

QL C Development Kit 58900 Code Generation

Floating point arithmetic und comparison eperations are performed by
generating calls to library routines written in assembly language.

Floating point exceptions are processed by a library function called —T=:

CXFLERR that is callied according to the followinyg convention:

CXFERR{ercno}; . -
int errno; . .

where errna can be
underflow

averflow
divide by zero

L B
[|

The stundard version of CXFERR supplied in the libraries simply
ignores all error conditions. A different version can be written {in either
C ar assembly language) to print out an error message and terminate
processing, or take any other action. [f CXFERR returns to the library
function which called it, each exception is processed as follows:

Sets the result equal ko zero.

Scts rhe result to plus or minus
infinity. ’

Sets the result equal to zero.

UnderElow
Overflow

Zerodivide

6.1.5 1}t Fields

Bit fields are fetched on i lony word basjs, that is, the eatire word
containing the desired hit field is loaded {or stored) even if the field is 16
bits or less in size. Bit fields are assigned from left to right within a
machine word; the maximum field size is 31 bits. Bit fields are
censidered unsigned in this implementation; sign extension is not
performed when the value of a field is expanded in an arithmetic
expression. [fuastructure is decliared

struct {
unsigned x 3 20;
unsigned ¥y 9:
unsigned z 2;
} a;

-211-

4

63000 Code Generation QL C Development Kit

Chapter 6: 68000 Code Generation

Any processor with a sufficiently rich instruction set allows
implementation of high-level language constructs in a variety of ways,
and the 65009 is no éxeeption. This chapter presents the general
strategy used by the Lattice compiler in generating code for the 63000,
with a view toward clarilying the machine-dependent aspects of the
language, the compiler's choice of machine language instructions, and
the interface to user-written assembly language madules.

6.1 Machine Dependencies

The C languuge definttion does not completely specify all aspects of the
tamiruage; a number of important features are described as
machine-dependent. This flexibility in some of the {iner details parmits
the language to be implemented on a variety of machine architectures
without forcing code generation seguences that are clegant on one
machine and awkward on anpther. This section describes the
muchine-dependent feutures of the language as implemented on the
63000 series. See chapter 4 of the manual for a description of the
machine-independent features of the Lattice implementation of the

lanpuaze.

G.1.1 Data Klements

The standerd € data -types are implemented according to the
fotlowiny descriptions, The only data elements which do not reguire
alignment to a word offset are characters and character arrays; as
noted in section 1.2.1, this word aligament can be forced to a long word
(four-byue) alignmanc for all ehjests larger than twa bytes by a compile
titne ol;liun. In all cises, recardless of the length of the duta ¢lement,
the hich order [most significant) byte is stored first, followed by
sucgessively luwer order hytes. This scherae is consistent with the
general byte ordering used on the 68600, The -following table
summarizes the churacteristies of the data types:

-206-

OL C Development Kit

Tvpe Lengthin Bits Range

char 8 -128 to 127 (ASCIl characters) - ;
unsigned char 8 010255 ' St
short 15 -32763 10 32787 N
unsigned short 16 T 01065535 R

int 32 -2147183648 to 2147453647

unsiyned ing 32 - Dto 4291367295

long 32 -2147333642 to 1 17483647

unsigned long 32 0to 1291967295

float 32 +/-10E37 to +/- 10E38

double 64 +/-10{2-307 to /- L3308

char defines an 8-bit signed integer. Text characters are

unsigned char

int
long
long int

" unsigned

unsigned int
unsizned long

short
short int

unsigned short,

Mout

generated with bit 7 reset, according to the standard
ASCIH format.

-~

defines an 8-bit unsigned integer,

all define a 32-bit signed integer.

all define 4 32-bit unsigned integer.

both define a 16-bit signed integer.
defines a 16-bit unsigned integer.

defines a 32-bit signed floating point number, with
an 8-bit biased binury exponent, and a 24 hilL
fractional part which is stored in normalized form
without the thigh-order bit being explicitly
represented. The exponent bias is 127 This
representation is equivalent to approximately Gor 7
decimal digits of precision.

-207-

63000 Code Genecration —

._._,,__.

- @

Portable Library Fun ctinns

- SD__ NCOL

Purpose: o : }

L4

yove cursor to next column

Synopsis:
error = sd__ncol{chanid,timeX;
int ervor; QDOS error code (zero ifno ercor)

char *chanid; QDOS cainnel ID
int thine, timeout value

Description:

MMoves the cursor ane character cell to the right.

-202-

01, C Development Kit, -

QL C Development Kit

Portable Library Functions S

SD__PROW

Move cursor to previous row

Synopsis:

t :
- error = sd__prow(chanid.time),

int er:or; _ QDOS error code {zero if no error)

’ t_:hi’lt“ chanid; QBDOS channel 1D

int time; timeout value

fa: ; Description:

¢

; Maoves the cursor to the character row above its eurrent location.

. .) -203-
-

e TR

o

Portahle Library Functions Q1. C Development Kit

SD__POS

. Purpose:

Pesition curser

Syaopsis:

error = od__pes(chanid time,col,row),
QUOS error code (zero if no error)

Q0085 channel ID

tineout value ¥
column number

row number

int errors
char *chanid;
int une,
intcol;

int row;

Description:

Positians the cursor at an absolute position on the screen using character

eo-grdinates,

: -198-

© QL € Nevelopment Kit Portable Library Functions

Purpose: o ...

Tab cursor

Synopsis: -

error = sd__tab{chanid,time col);

Tabs the cursor to the specified column,

-199-

_interror; ‘ QDOS error code (zero if no error)-
char *chanid; . QDOS channel ID

ink time; timecut value

int coi; column number

Description:

|t e w e . w

v

Freer = g

| i

QL C Development Kit

Portable Library Functions

I0_SBYTE -

{Wse: _ R . e

Send a byte

r
Eynopsis:

error = io__sbyte{chanid,time.c);

int crror; . QDOS error code (zero if noerror)

¢har *chanid; QDOSchannet (D

int time, timeout value Y
charc, character to send

Description:

Sends a byte to the specified channel,

-194-

QL C Development Kit Portahle Librarv Functions

I0_PEND - . . - .

Purpose: o

Check for pending input

Synopsis:

error = io__pend(chanid,time);

interror; QDOS error code {zero if no error] . N
E:har *chanid; QDOS channel [D

int time; timeout value

Description:

Checks the specified channel for pending input. No data is actually read.

-195-

-l

Y

Portable Library Functions

QDOS1/QDOS2/QDOS3 '

Purpose: . I_ o -

GLOStrap ft;nctions

Synopsis:

¢ = qdosliinregs,outregs);

¢ = qdos2tinregs.outregsk

e = qdog.’l(i:lregs.nutregs);

inte; ecror code
struet REGS “inregs; input registers
struct REGS "outregs; output registers

bl

Description:

These functions perform the QDOS traps, gdos] performs trap #1, qdos2
performs trap #2 and qdos3 performs trap #3. The values of the registers
are passed in the structure inregs and returned in the structure vutreys
tsee qdos__h for format). The error code returncd is the value of DO

resulting Irom the trap.

-190-

QI C Development Kit '

QL. C Development Kit.

GETCHID

Cet QDOS channel 1D for level-1 file. R

Synopsis:

chid =z getchid{fd); .
char *chid; QDOS channel ID for specified file
int fd; Level-1 file decriptor

Description:

Returas the QDOS channel [D associated with the specified level-i {ile,

-191.

Portable Library Functions . .

? D

Partable Library Functions 0. C Development Kit

ECVT

Purpose: '

Convert floating point toASCIE

Synopsis:
p = ecvivalue,ndig,dec,sign);

pointer to ASCII string

value to convert .
number of digits in string : -
returns position of decimal point

non-zero if negative

char *p;
double vilue;
tnt nedig,

int *dec:

int "sign;

Deseription:

Converts the specified value into a nuil-terminated AE?CII string
containing the specified number of digits. The integer polpted to by
doc wili thea contain the relalive location of the decima! point, with a
nesative value meaning that the decimal is to the lefli of the rc'turned
di;;’it& ‘The actual decimal point character is not included in the
ge;\.er:uefi string,

Caulions;

The poinier returned points to a static array which is ou'crwrittcn‘by
exch call ro eevt, thus, it should be copied elsewhere if necessary. The

H L]
function must be declared as returning char *.

-186-

P

QL C Development Kit Portable Librarv Functions

'MATHERR .

Purpose: _ ' -

‘Handle math function error = o

Synepsis:

cade = matherr(x); o] e

non-zero for new return value
math exception blocik

int code;
struct exception *x;

Description;

This function is called whenever one of the other math functions
detects an error. Upon entry, it receives the exception block that
describes the error in detail, This structure is defined in math__h, as
follows:

struct exception

int type; error type
char *name; name af function having ecror

double argl;
double arg2:;
double ret;

}:

first argunent
second argument
proposed return value

Theenvrlypenumesdeﬁncdinnunhquhara

Jiwe ia

domain error

singularity

ovorflow

underflow

total loss of significance
partial loss of significance

DOMAIN =>
SING =>
OVERFLOW =>
UHDERFLOW =>
TLOSS =>
* PLOSS s>

-187.

P

= R oL

fr — e i

Portable |, ary Funetions

QL C Deve. et Kit

ATOF/ATOVATOL

iurpose:

Simple ASCH conversions
Synopsis:

x = uteflph
i = atoilp)
| = atoliph
doubie x;
inti;

long |;
char *p;

Description:

ASCIT to floating point
ASCil to integer
ASCII to long integer

duuble precision result
integer result

long integer result
pointer to ASCII string

These functions skip over any leading white space (i.e., blanks, tabs,
and newlines) and then porform the appropriate conversion. The
conversion stops at the [irst unrecognized character, and no check is

made for averflow.

For atof, the ASCII string may contain a decimal peint and may be

fullowed by an e or an

E and a signed integer exponent. Fer all

{functions, a leading minus sign indicates 4 ncgative number, White
space is not allowed between the ninus sign and the numbec or between
the number and the axponent.

bl AT R T b Sl o Tl PRt AL
A S T R et

OLC Develnoment i

Portable Library Function..

Cautions:
declared long.
-
A
3
T
El
-t
"
~

The function atof must be declared double, and the function nto! must be

7

e

g, .
. ST e T
N U VP S S PR,

.

Clal

-183-
T £ Mok it
FN N e et et

¢

T

Swe e

'

o

-: o

QL C Development Kit

Portable Library Functions
S

DRAND

Purpose:

Conerate random numbers

Synopais:

x = drand48(); generate double (internal seed)

.*' = eranaldiy); generate double {external seed)

z = lrand48(). generite positive Inng (internal seed}

z = nriandi 8y} gencrate positive long {external seed) "

o= rﬁrm:d-’&B{]; generate long (internal seed}
2 = jrand-Hi{y); generate long (external seed)
srand{8iz), set high 32 bits of internal seed

set)l 48 bits of internal seed

P = seoddiR{y}
sat linear congruernce parameters

leang+8ikl;

double precision randem number

double x; ran
short y[3); 48-bit secd supplied by caller
lﬁ-mq 7 lony integer random number
<hert. "p‘ pointer te internal seed arcay

short k{71, linear congruence parameters array

Description:

These fuactions generate Ps:.\».:do-rm'uiom num!m‘rs n‘.l;in,r:;l the linc;.::
congruential algerithm und -o-bit integer :1r!t%imenc, II’Im m)”.n:
versions (drandd8, lronddd, mrandd8) utilize an internat 48- nz_ slur.\‘éc
area for the seed vaiue. Special versions {emr}tHS. nrand-tS’,_]ranf.H }
are provided for cases where several seeds are in use at the same time,
- in which cuse the user provides the seed storage arcas.

--178-

“

QI. € Development Kit Portable Library Functinns

The drand48 and erand{8 functions
distributed over the

return values uniformly
tnterval from 0.0 up to but not including 1.0,

The frand!8 and nrandi8 functions return non-negative long integers
anifermly distributed over the interval from 0 tn2+3j.),

The mreand43 and jrandd8 functions return signed
uriformly distributed over the interval from -2+°31 1o 2**31.1.

The srand48 and seedtd functions allow initialization or the internal
48-bit seed value to semething other than the defaults. For srand4s,
the specificd long value is copied into the high 32 bits of the seed, and the
low 16 bits are set to 0x320e. For seed48, the entire 48-bits are loaded
from the specified array, and the function returns a pointer to the
interaal seed array.

The Icangi8 function allows a much more intricate initialization of
the linear congruential algorithm. The algorithm is of the form:

X[n+i) = {a * Xin] + ¢} mod m

where m s 27448 and the default values for a and ¢ are Ox5deece56d
and Uxb, respectively. The array passed to lcong48 contains the value
for X[n}in kiG] to ki2], the value forain k(3] to k[5}, and the vaiue for ¢
in kf6). When seed48is called, a and c are reset to their original default
values.

Cautions:
The functions drand48 and erand48 must be declared double; the

functions lrand48, arandd8, mrand48, and jrand48 must be declared
long; and the seed4s function must be declared short *

-179-

long integers ..

i
.
¥
i

i
? €

Portable Libro . Fupetions QL C Developn 1 Kit

SIN/COS/TAN/ASIN/ACOS/ATAN/ATAN2

Purposa:

Trigonametric functions

.
Synopsis:

x = sin(r); compute sine of r (r in radians)

x = cos(rk compute cosine of r

x = tan(r); compute tangentofr .

r = asin{x}; compute arcsine of x

r = acostx}; compute arceosine of x

r = atan{.¢; compute arctangent of x .
r = atan2(y,x); compute arctangent of y/x ‘
double r; result

double x.y; arguments

Description:

The sin, co3s, and tan functions compute the normal trigonometric
functions of angles expressed in radians,

The asin frction computes the inverse sine and returns a radian value

in the rang2 -PlU2to + PI72.

"he acos funciien computes the inverse cusine and returns a radian

value in the “unge O to PL

The atan function computes the inverse tangent amd returns a ralian

value in the range -PI/2 10 + P2

The atan? function computes the inverse sine of y/x and returns a
radinn value in the range -l to + PL

o

0L C Development Kiz

Portable Library Functions

Cauticns:

simply by including math__h.

175-

Fhese function must be declared double, which can be accomplished

Bty 17 o =
R S YT

-

e ——— e e

Al P i ey oy e b

il Ao o

n T A o AT AT LL .- Eaad *

TR PN S5 A A i ot M A A AR i o L, #m

b e W e ol o e s Wil s o L B P i IR e R WS v e A :
i A oS LA IR |

Portable Library Functions QL C Development Kit '

STSPFP

Purpose:

Uv—.,.!i:\-.b“" o X . . . o .
Parse file patiern v

Symnopsis:

error = stspip{p, nhi
return code: -1 if error

interrer;
char *p; file name string
intn{1€1; node index array
i
Description:

of node mames separated by

underscores. Each underscore is replaced by a null byte, and the
beginning index of that node is placed in the index array. For example,
the pattern mdvl__ace_¢ has three nodes, and their indexes are 1 for
mdvl, 6 forace, and 10 forc. The last entry in the nede array n issetto-1

{in the example above, this causes n(31to be -13.

Parses a file name pattern which consists

teturms:
= 0 if successful

error
= .1 if too many nodes o other error

-170-

e

QL C Develooment Kit Porlable Library Functi.ons -

5 3.4 Utility Macros

The standard VO header file stdio__h defincs three general utility

macros which are useful in working with arithmetic objects. They =
are;
max{a.b} returns the maximum of a2 and b ;
minf{a.b) returns the minipum ¢f a and b
abs(a) returns the abscolute tzlue of a

Several important restrictions must be noted.

First, since t_hese are macres which use the conditional eperator
arguments with side effects (such as function calls or .increment or
d_ccrement npclra:tors) l’.‘"lﬂl"ll(‘:it be used, and the uddress-of operator -
cannot be applied to these "functions”. Second, beware of using the

\ . . =
macro names in declarations such as

int min;

because the compiler will try to expand min s a macro, and an error
message complaining of invalid macro usage will be generated
Third. only arithmetic data items should be used as argumen?s to lhesé
macros; max and min should be supplied two arguments of the same
data type, although conversion wiil be performed if necessary.

-171-

i e v

T3 o= oa

[y AP

[x)

P t;. ble Librarv Functions 0L, C Develnpment Kit QL C Develooment Kit - - Portable Library Functions
Qria -
STCARG STCPM
. - Purpose: o o e
Purpose: JREGEPSRY IR S
Gt gument : ' : Pattern match (unanchored) -
setanar . P R . . — — — el ——
Synopsis:
Synopsis: ynep
. length = stepmls, p, q);
.nath = steargls, by S . i
le r:?’ ":'ﬁth:.» g number of bytes in argument - int length; length of"matr:hed string :
::?1:1:'; . text string pointer e char *s; string bem_g scanned
he ol ‘bresk string pointer 4 char "p; pattern string
char “0, ¢ char **g; points to matched string if found
Deseription: Description: -
' : : ; i til
o & xt strine untit one of the break characters 1s found or un . ' _
St:.lr:s _Lthr:ut;.‘n i ends?a ndicated by a null character). While scanning, N Scans the specified string to find the first substring that matches the
Ei-z f::lc:i(}n i‘};;‘sb&éﬁ;apartial strinigs enclosed in single or double specified pattern. The pattern is specified in a simple form of regular
q-::otfvs and the backslash is recognized as an escape character. z expression notation, where
: R LR
T ? n:.at:'chczs any charactet
. . s* matches zero or more cccutrences cf s
Returns: v = matches one or more occurcences of s
. = number of bytes (in s} in argument ' \
tength = Elili!'lnot ['oum}; ° The backslash.is used as an escape character (to match one of the
s spacial characters 7, *, or +). The scan is not anchored; that is, if a
. matching string is not found at the first position of s, the next position is
tried, and so on. A pointer to the first matching substring is returned at
*q. .
Returns:
length = 0if no mateh
= length of matching substring, if successlul
-166- -167-
Ly ra PRI s e ‘-.»::-'w'-e.n...'x. T ot e T e e ae i It L A AR R Pt e 2t i

Portable Library Functions QL C Development Kit

STPTOK

Purpose:

CGetatoken from a string

Synopsis:

p = stptok(s, tok, toklen, brk);

char *p; points to nextcharins

char *s; _ input string

char "tok; output string

int tokls; sizeof(tok) Y
char *brk: break string

Description:

Breaks out the next token from the input string. The token consists of
all characlers in s up to but not including the first character that is in
the break string. In other words, the break string defines a list of
characters which cannot be included in a token. Note that the pointer is
not advanced past any initiul white spuce characters in the input
string. The output stringis the null-terminated token.

Returns; .

p = pointer to next character {alter token}in input string

Cautiens:

Must ve declared char ®, as the stp prefix indicates. [f no valid token
characters are found, p will equal s, and tok will contain un initial null

byte,

-162.

ety
)

Portable Library Functions

QL C Developinent Kit o

STPCHR/STRCHR/STRRCHR

Purpose:

Find speeilic character instring o B

Synopsis:

p = stpchris, ch
p = strchris, ¢k
p = strrchris, ek

char *p; pointsto¢insloris NULL)
char *s; points to string being scanned
chureg; character to be located
Description:

The stpchr and strehr functions scan the specified string to find the first
occurrence of the specified character, while the strrchr function scuns
for the last occurrence of the character. In either case, u NULL
pointer is returned if the character is nct found in the string.

Returns:

NULLifenotfoundins
= poiater to first ¢ found in s (stpchr, strehr)
= pointer 1o last ¢ teund in s (sterchr)

-
Ll

Caations:

These functions must be dectared char *,

L

Portable Libhrary Functinns . 1, C Development kit

STCH_ [

Purpose: .

Convert hexadecimai string to integer
-

Synopsis:

count = sich _ip, ok
int count,

char "

int "r.

anumber of characters scanned
input string
result integer

Descriptivn:

Converls a hexadecimal string into an integer. The process terminates
only when anon-hex character is encountered. Valid hex characters are

-9, A-¥, and a-f.,

{eturns:

count = 0ifinput string does not hesin with w hex digit
= number of characters scanned

Cautions:

\o check: fur overfluw is mude during the srocessing.

-158-

¢ T

QL C Development Kit Portable Lihrary Functions

- STCD_I

Purpose:

Convert decimal string to integer —— T

Synopsis:

- count = sted__i{p, r};

int count; number of characters scanned

SR

char *p; input string
int *r; resullinteger
Description:

Converts a decimal string into an integer. The process terminates
when a non-decimal character is found. Valid decimal characters are
0-9. The first character may be + or -,

Returns:

count = 0 if input string does not begin with a decimal digit
= number of characters scanned

Cautions:

No check for overflow is made during the processing.

-159-

. "
el s Sl

.

K ' O

Portable Library Functions Q1. C Development Kit

STRCMP/STRNCMP/STSC MP

Purpose:

Compare twostrings

Synopsis:

status = strempls, s
statps = strnemp(s, t, length)
status == stsempis, U;

int status; result of comparison >0ifs>t, pifs==t, <0

ifs<t .
first string to compare

second string to compare

length of comparison (strnemp only)

char *s;
char "t
int length;

Description:

These functions compare {wo aull-terminated strings, byte by byte, and
return an int status indicating the result of the comparisen. ifzcro, the
ctrings are identical, up to and including the terminating byte. 1If
non-zero. the status indicaies the resuit of the comparison of the first
pair of bytes which were not equal. For stracmp, no more than the
specified number of characters will be compared.

Returns:

= 0 if strings mutch .
< 0if first string iess Lhan second string
- @il lirst string greater than gecond string

stitus

-154-

I

..-451-“-2.‘_.__

04, C Development Kit Partahle Librarv Functions

Cautions:

The result of the comparisen may depend on whether characters are

© considerved signed, ifany ofthe characters is greater than 127. 7 7 o

-155-

- p—

01, C Development Kit L Portable Librarv Funciions ..

Portable Library Punetions 04, C Development Kit _

STRCAT/STRNCAT | - STRLEN/STCLEN e o |

trurpose: ' ’ Purpose: : . s B}
Concatennte strings s - Measure length of string T .. T
. - —_—— ;___ _ -
Synopsis: Synopsis:
to = streat{to, from); ¥, !"“3”‘ = stclen(s);
to = strocat{to, irom, max); . {Q"Sm = strlen(s); a _
. int length; number of bytes in s {before null)
char *Lo; - destination string) ' - -
char *from; source string ! « o
int max; " maximum number of characters h Bescription:
s .
i These functions count the number of bytes in s before the null _
Deseription: _ . - terminator. The terminator itself is not included in the count. strlenis
- provided for compatibility with other impiementations.
These functicns append the "from™ string to the "to" string. For strncal, —
po mote thun the specified maximum number of characters will be ‘"
appended. The result is always nuli-terminated, Returns: o
. length = number of bytesin string before null byte
Returns: |
.]
to = pointer toresult (same as original to argument) : I f
. .
i
Cautions: ' i
strneat should be used if there is any’ question that the destination :) - L
string might not be large enough to hold the resuit. Either lunction N !
must be declared char * if the return valueisto be used. : . ' 4
.
{ ’ {
| e
-154- ! -151- r
;)

* ¥ PN SR
'
R T AT ,'_,".1‘ Lo

4
§

Porteable Likr

o gt
£

ary Functions Q1. C Development Kit

Purpose:

Replicate values through memory

Synopsis:

repmenmy(s, v,
char *s;
chaur *v;

HR AT
intnv;

Description:

Replicates

 REPMEM

lv, nv);
mamory to be initialized
template ef values tobe replicated
number of bstes in template
number of templates to be replicated

a cet of values throughont a bleck of memory. This function

is a peneralized version of setmemnt, and can be used toinitialize arrays of

items otanr

than char. Note that the replication count indicates the

auiber of copies of v which are to be made, not the total number of bytes

to be initialized.

Chulions!

It ie geod practicdlousc

types are us

cast operator when arrays of pointers of other
ed for the s and v arguments.

-146-

OL C Development Kit ot Portable Librarv Functions

5.3.2 Character Type Macros and Functions

“Fhe character type header {iie, called ctype__h, defines severai macros
which are useful in Lhe analysis of text data. Most allow the
programmer to delermine quickly the type of a character, ie.,
whether it is alphabetic, numeric, punctuation, ete. ‘These macros
refer to an external aurray called _ ctype which is indexed by the

character itself, and so they are generally much faster than functions

which check the character axgainst a range or discrete list of values,
Although ASCI is defined as a 7-bit code, the __ctype array is defined
to be 257 bytes long so ihat valid results are obtained for any character
value. This means thut a character with the value 0xB1, for instance,
will be classified the same as ua character with the value 0Ox31L.
Programs that need to distinguish between these values must test for
the Dx30 bit before using ane of these mocros. Note that __ctype is
actuzlly indexed by the character value pius one; this allows the
standard EOF value (-1) to be tested in a macro without yielding a
nonsense result. BOF yiclds a zero vesult for any of the macros: itisnot
defined as any of the character types.

The following list presents the macros defined in the character type
header file ctype__h. Note that many of these will evaluate argument
expressions wore than once; beware of using expressions with side
effects, such as functien calls or increment or decrement vperators.
Note that the file ctype__h must be included if any of these macros are
used; otherwise, the compiler will generate a reference toa function of
the same name, ‘Those macros marked with a '** are also available in
function form. [n order o use the function form, do not #include the
ctype__h header file in that source file. If some of the other
capabilities of ctype,_h are needed, the header file sheuld be included
anyway; #undef directives can be used for the specific macros that need
to be treated as functions. '

-147-

~

T AR TR TR T TR

T
T eid

—r e b B

Purpose: ' ‘_ _ ' = -

Terminate execution immediately -

* Symopsis:

__exit{errcode);

int errcode; exit error code

Description:

. Terminates exacution of the current program immediately, without
cheeking for open files.

TS

-140-

R

o

OL C Development Kit,

SETJMP/LONGIMP

. Purpose:

Perforin non-local goto

Synopsis:

ret = setjmp(save};
longjmp{save,value);
int retl;

int value;
jmp__bufsave;

return code --
return value
context save buffer

Description:

The setjmp function saves the current stack mark in the buffer area
specified by save and returns u value of 0. A subsequent catl to longjmp
will then cause control to return to the pext statement after the original
setjmp call, with value.as the return code. If value is 0, it is forced to 1
by longjmp.

The jmp__buf descriptor is defined in the header file called setjmp_h.

This mechanism is usefu! for quickly popping back up through multiple
layers of function calls under cxceptional circumstances. Structured
programming gurus lose a lot of sleep over the “patholoyical
connections” that can result {rom indiscriminate usage of these
functions. :

-141-

Portable Library Functions

b

’"'___-.—-._.‘ et e

!

Partable Liveary Funetions

QL C Develn, . nent Kit

CPUTS

Purpose:

. Putstringdirectly toconsele

Synopsis:

cputslsi;
char *s:

string to be output
Bescriplion:

Puts a2 null terminated string directly to the user's consele by making
calls to the putch function. Does not automatically generate a

carrioze returnor linefeed.

136

2

QL C Davelopment Kit

Portable Librarv Functions

CSCANF/CPRINTF

Purpose: S ’ o ._) S __

Formatted /0 directly toconsole cla B

Synopsis:
Same us scanfand printl _ o

Deseription;

These functions perform the equivalent of scanf and printl, but
characters are sent directly to or received directly from the eonsole
using putch and getch,

Returns:

n = number of input items mateched {¢scand
Cautions;

scanf performs its [/O directly using getch, so there are none of the usua!
input conveniences such as hack spacing or line deletion,

-137.

Vo

—————— .. _—

A

Pnrtnbie i.ibrarv Functions 01, C Development Kit

GETCH/GETCHEIPUTCH

Purpesc:

_Get!put chara.cter directly from/to console

Synopsis:

get character with no echo

get character with echo

put character

character received/sent to console

¢ = geteh)
¢ = gerches
putehiel),

inte:

Deseription:

These functions get {getch, getche) or put (putch) single characters
from or to the user’s console. putch puts a carriage returncharacter in
front of cach newline. getch Joes not echo the characters typed at the

. console, while getche does echo them.

¢ = character received {(getch, getche)

Cautions:

3

There is né notion of an end of file or error status.

Taka b
[,

~132-

“J

QL Development Kit Portable Library Functions

UNGETCH

Purpose:

T*ush character back to console

Synapsis:
= ungetehie);
intr; return code T
chare; character to be pushed back T
' Description:

Pushes the indicated character back on the conscle. Only one
character of pushback is allowed. The effect is to cause getch (or
getche) to refurn the pushed-back character next time it is called.

Returns:
r = EQF ifacharacter has already been pushed back

= ¢ il successflul

-133-

—— _‘_I
' L0

\....___,___m_ -

T

R R

Pertable Library Funetions

Purpnse:

Seek to sp;ecii'_ied file position

Synopsis:

pos = lseek(file, offset, mode); .
long pos; returned file position or error code —
intfite: filec number for file I
long olfset; desired position
int mode; offset mode:

0 = relative to beginning of file

1 = relztive tocurrent file position

2 = relative to end-of-file

Description:

ew position in the file. The offset

. Changes the current file positiontoan
he current position (mode l}or

is specified as a long int and is added to t
ta the end-of-file {mode 2). .

Returns:

pos

.

.1l iferroroccurred
ne- file position if successful

-128-

OL C Development Kit e Partable Library Functions

Cautions: ' -

‘The offset pnrameter must be a long quantity. therefore a tong constant -
should be indicated when supplying a zero. In mest cases, the reiurn o T
code should be checked for error, which indicates that an invalid file -
position (beyond the end-of-{ile)} wus specified. Note thal the current
file position may be chlained by -

. L. i

long cpos, lseek{});

cpos = lseok(file, 0L, 1);

which will never return an error code. o : - ' -

-

'
L e
'

-129-

+ Oy e
[T
'
.

o

]

H
%

troriabie Linrory Functinng OL C Develnpment Kit

UNLINK/REMOVE

Purpose:

Remove file name from file system
o

Synopals:

ret = unlinkinamel
rot = romevelname).
int ret,

chir *name,

return code: 0if successiul
name of file to be removed

Description:

Removes the specified file {rom the file system. The file name must
conforma to locil naming conventions. The specified file must not be

currently open. Alldatain the file is lost.

Returns:

0 if -uccessful

ret =
= -l ijerror

1]
Cautions:

" Ghould be used with care since the file, once removed, is generally

irretricvable.

Te124-

Ol, C Development Kit

Portable Library Functions
READ

Purpose:

Read data from file . e T R :

Synopsis:

status = readtfile, buffer, lengthl;

fnt s‘t‘atus; stutus code or actual length -
fare fite; ‘ file nuinber for file

char *buffer; input buffer

int length; number of bytes requested

Description: _

Reads tha nextsetofbytes fromafile. The return count is always equal
to the number of bytes placed in the bulfer and will never exceed tl;e
length parameter, except in the case of an error, where -1 is returned
The file position is advanced accordingly. .

Returns;
0ifend-of-file

-t if error occurred
number of bytes sctually read, otherwise

status

]

-125-

Portable Library Functions

Purposé:

Qpena file

Synopsis:

file = open{name, rwmodel;

int file; file numoer or error code

char "nane; file name

int mpde; indicates read/write mode and other modes
{sce below)

Deseription:

Opens o fiie for access using the level 1 17O functions. The {ile name
must eonform to local naming conventions. The mode word indicates the
type of L0 which will be perfurmed on the file. The header file fnctl_h
defines the codes for the mode arzuments!

0_EBDLOULY ead only 4CCESS

O WROULY Write only access
(o 35 SV Read/wiite ACCESS

.

Also. the following flags cunbe (YRedl into the abave codes:

rreate the file if it doesn't exist

C_CREAT

G_TRUNC fruncate {set to zero tength) the
file 1E it does exist

O_KXCL Focrce create to fail i€ file exists

O_APeTRND ceek to end-of-file before each write

O _HAW Use untransiated I1/0 (see

introduct ion to section 5.2.2})

The current file pasition is set to zero it the Nle is successfully opened.
No more than 20 files (including any which are being accessed through

-120-

0L C Development Kit

D

Partabie Library Functivns

the level 2 functions, such as stdin, stdout, etc.} can be apen at the same

li:‘sme. Closing the file releases the file number for use with some other
ile.

Heturns: - -
3 ‘I . —
fite = file number to access fiie, if successful -

= -liferror : - - -
Cautions:

Check the return value for error.

-121-

———

-
A

o

Purzable Librarv Functions

SETBUF

Purpese:

Chanye butfer for level 2 1‘11e‘l!0

Symoypsis

zetbul{fd,bull;
IFELE *fps
char *bufl

file pointer for file
pointer to buffer to be attached

Deseripiion:

Attaches a private bulfer 10 the file whose file pointer is fp. The length
of the bufler is assumed to be the same as bufsiz, which is defaulted to
the constant BUFSIZ defined instdio_h.

if the buffer pointer is NULL,. then this function is equivalent to
setnkf.

Cautions:

Buf must be large encugh to accommodate __bufsiz charcacters.

-116-

QL. C Nevelopment Kit

?

QL € Development Kit PPartahle Librarv Functions

SETNBF

Purpose:

Set file unbuffered

Synopsis:

setnbf(fp};

FiLE *fp: {ile pointer

Description:

Changes the buffering mode for the specified file pointer from the
default 512-byte block mode to the unbuffered mode used for devices
{(including the user's console). [n this mode, read and write operations
arc performed using single characters.

Cautions:

Although the unbuffered mode may be used without difficulty on files.
the standard buffering mode is generally more efficicnt. Thus, this
function should only be used for those “fites" which are definitely kKnown
to be devices.

=17

o Loyl

QL C Nevelnpment Kit

portable Library Funclions
S oTlan:

CLRERIVCLEARERR

-~ Purposel . . -

-

Clear ervor flag for file

Syuopsis:

clrerrtfph
clearerr{fph)
FLLE file peinter

Description:

for the specified file. Once set, the flag will remain

Clears the error {lag - flag mail
he file, until this function is

set, forcing [LOF returns for functions on t
called.

-112-

QLC Development [K§t

Portable Librarv Functions

FILENO

Purpose:

L

Return file number for file pointer * -~ ===~ .

Synopsis:

fa = filenolfp); .

int fn; . file number associated with file pointer ...
FILE *fp; fite pointer

Description:

Returns the file number, used for the level 1 'O calls, for the specified
file pointer.

Heturns:

fn = file number {file descriptor) for level | calls

Cautions:

{mplemented as a macro.

- 13-

Ay e m

e et o

' '-Pnrmhlo Libwrary Functions Q1. C Development Kit

Cautians:

Lor s§ri11tf. uo check of the size of the output string area is made; tlh'us‘;
“the buffer provided must be large enough to contan the resulting

~imave. inall cases, the format specifiers must match up properly with
e, -
the supnlied values for formatting.

-108-

WL C Devetopment Kit

FSEEK

Purpose: A . ') I . - o

‘d cemem - e . . - .
Seek toa new file position I et AT
Synopsis:
ret = fseek(fp, pos, mode); o
intret; return code S T e e =
FILE #fp; : ftle pointer I
long pes; desired {ile position - - :
int mode; offset mode

Description:

Seeks to a new position in the specified file. See the lseek function
description {(section 5.2.2) for the meaning of the offset mede argument.
Returns:

0 if successhul
-l1iferror

ret

il 1l

Cautions:

Il mode 1 is specified, the file position established for files being
accessed in the translated mode may beincorrect.

-108-

" Portahle Librarv Functions

L

At

Portable Library Functions QL C Development Kit

1 the optional * means that the conversion is to be performed, but
the result value not returned;
2 the optional n is 3 decimal num
3 width;
3 the cptional l (b is
© pesultisdesired;
14 X is onc of the format type indica

ber specifying a maximum field

used to indicate an int or tong float {i.e., double)

tors from the following list:

d - decimal integer
o--pcinl integer

% -- hexadecimal integer
h--short integer

¢ --sing’r character

- s - character string

_ f--fleating point number -

The format type must be specified in lower case. White space
chargaters in the control string are ignored; characters other than
Aormazt specifiers ore expected to match the next non-white space
characters in the input, The input is scanned through white space to
losute the ncxt input item inalicases except the ¢ specifier, where the
- pext inpul character is returned without this initial scan. Note that the
.pecifier terminates on any white space. See the Kernighan and
Riichic text for a more detailed explanation of the formatied input

(A4

functions.

Returns:

fully matched, ie, for which valid i

n = number of input items success
es all single character items in the

text data’ was found; this includ

control string
= FOF if end-of-file or error is encountered during scan

-104-

ol

o B . .
M. € Development Kit Portable Library Functions

Cautions:

All of the input values must ke pointers to the result locations. Ma}
sure that the format speciliers mateh up properly with Llhc‘ r~‘1 Lli -
locn[:ons.' Ef the assignment suppressien feature (*) is used rc'rr-:::t';l’ .
that a pointer must not be supplicd for that specifier. ' e

-105-

.

_ Portabla Librarv Functions

FREAD/FWRITE

" furpose: - S ; CoT S e

!teaé.};v'riwb!ock-s-;:t:mdat%froﬁii-:'b_ﬁ file - _. ... _.

Synopsis:

vact = lread(p, s, n, fp), . . el
- ract = f\xrlte{p,s n, fp) : -

int nact; L actual number of blocks read or written

char *p; pointer wo first block of data -

int s size of esich block, in bytes

intn,; nurnber of blocks to be read or written

FILE *fp; file pointer

Bescription:

‘These funstions read (fread] orwrite (fwritel blocks of data from or to
the specified file, Each block is of size s bytes: blocks start at p and are
stored contiguously (rom that lecation. n specifies the number of blucks
{of size s} that are to be read or written,

Return:s: '

3

actua! number of blacks tol size s) read or written; may be less
than n iferror or end-of-file oceurred

nict =

Cautions:
Return vilue must be checked to verify that the correct number of

olocks was processed. The ferror and feof mucros can be used to
deterining the cause ifthe return value isless thunn.

-100-

0L C Development Kit -

-~ QL C Development Kit

)

Portabie Library Functions... .

Purpose:’§

Get astring

Synopsis:

p = gets{s);

p = fgets(s, n, fp)
char *p;

char *s;

int n;

FILE *fu;

GETS/FGETS _

returned string pointer
buffer for input string
number of bytes in builer
{ile pointer

Description: .

Cets an input string froma file. The specified file {stdin, in the case
of gets) is read until 2 newline is encountered or n-1 characters have
been read (fgets only). Then, gets replaces the newline with a aull
byte, while fgets passes the newline through witha nuil byte ap pended.

Lteturns:

It

NULIL if end of file or error
5 if successful

P

i

Cautions:

For gets, there is no length parameter; thus, the input buffer provided
must be large enough to accommodate the string.

-101-

. D

01, C Develapment Kit

01, € Develupment Kit

[ihrary Functions

- GETC/GETCHAR

porpes? Putct Tofil
: . - Put characterto hie
Get char a<ter from file - - o - _
I
Synopsis: A
Synopsit - N
_ A putefc, fph -
= .,'.g.-tfp);o r = putcharle); e emoremorcote]| -
— wptrhatl) . intr; same as character sent, or error code) o
¢ == grlitin - ari EOF : :
intc rextinput character o char e ~ character to be output)
FILE Ve fite pointer FILE *ip, file pointer :
Dascription: Description:

' Gets the next character from the indicated fil

gctchn’t"< The v

frota it

- character
EOF if end-of-file or errof
]

.

Cauid [T 1N

|,~m.l-~||\cnted 15 MAacros.

e (stdin, in the case of
alue EOF (-1)is returned on end-of-file or error.

Purpose:

Returns:

PUTC/PUTCHAR

Puts the character to the indicated file (stdout, in the case of putchar).
The value EOF (-1} is returned on end-of-file or error.

¢ = character sentif successful

= FOF iferror or end-of-file

Cautions:

Impiemented as macros.

-97.

TR T T T TR T T o wineee o i gl e

T
e o

A

PPartable Library Funciiens : L

Purposc: - BT o L

Openw/re-opena bufTered file

Synopsis:

fp = fopen{name, mode); -
fn = frecpen(name, mode, {px);) X
P?il g ‘!‘p-p file pointer for specified file '
char *name; file nrame .
har *mude; access mode
;‘l?;j :lfplx | existing file pointer {freopen only)

Descrintion:
These functions open a tile for butfered access; the translated mode is

the default mode but may be overricden _ ¢ in
to this section, er by using the appropriate aceess mode described below.

fopen riturns a file puinter ufter ['md.ing a.free slot lln dahp::;du.;f;rl:!i?
array {_ fub), while freopen uses the file pointer supp 1el y the alter
(nseful [or opening stdin, etc). note that this ‘ﬁ e pou;t‘ar -
automatically clased by frevpen Helore being reused. No rrt?re ; a? 2

fiies (inctuding stdin, stdaut, and stderr) can be openad using fopea or

freopen.

es the filename must conform to

ji.ter minated string which specifi -
e e v ; de is also specified as o

local file raming conventions. The a}ccois mo
string, and may be one of the following:

¢ apen for reading (mode set according to __fmode)

a open for reading ttranslated)
rh open for reading (untranslated)

G2.

.. FOPEN/FREOPEN

tdelen as described inthe introduction’

o

_QLC Development Kic

w open for writing (mode set according to _ fmode)
waopen for writing (transated) '
wb open for writing (untranslated)

a vpen for appending (mode set according to __fmode) S

au open for appending (transhited) o

abopen for appending (untranslated)) LT s S

The mode characters inust be specified in lower case. The a option adds
to the end af an existing file, or creates a newone; the w option discards
any data in the file, if it already exists; the r option simply reads an

existing file, Opening the file to append forces all data to be written to -

the current end of lile, regardless of previous seeks. if the character

following the read/write maode indicator is "a”, the file is opened in text - -

or translated mode; if it is "B, the file is opened in binary or
untranslated made; if it is neither, the file is opened in the mode
specitied by __Mmode as described in the introduction to this section.

Any of the above strings may be appended with a plus sign + to tndicate
opening for update (both reading and writing). In this mode, botl reads
and writes may be performed on the file; in order to switch between
reading und writing, however, an fseek or rewind must be executed. If
a file is opened lor reading with a plus, then the file must already exist;
but if a file is opened for writing with a plus, the file will be created
anew. Openinyg for appending with a plus will permit reads to take
plice from any position in the {ile, but ull write operations will nccur at
the end of the file.

Returns:

NULLiferror
{tle pointer for specified file if successful

fp

il

Portable Library Functions

QLC Development Kit . Portuble Library Functions

'-_' ‘Partahle Library Functivns

()
tw]
o
-
®,
=1 .
H i~
!
g
2
P:
-

: _ L R - 5.2 1O and System Functions : , S

o y Tha standard library provides /O functions at several different levels, e
vurnoca: - . T o . with single character get and put functions and formatted DO ut the - o0
i urposes . _ ST e e TS T) - highest levets, and direct byte stream O funclions ut the lowest e

|
.
i

. BT R o . levels. [] R

Reset memory break point SR : R :
Three general classes of O functions are provided. First, the Jevel 2 T e
- . functions define a buffered text file interface which implements the

Synepsis: ' ' single character /O functions as macros rather than [unction calls.

: : . . ~ Second, the level functions define a byte stream-oriented file interface,

- rhrk(k S - - - _ ~ primarily useful for manipuiation of disk files, though most of the same

' i .. functions are applicable to devices {such as the user’s console) as well, _

o . t = Fiually, since one of the most comnaon /0 interfaces is with the user's’ ST T e -
Descripiion: : : © % console, a special set of functions allows single character 1iQ directly to — -
the user's terminal, as well as formatted and string 0. ' o

point to its original starting-point. This

Resets the memory break t
the memory allocation

effectively frees all memory allocated by any of
funciions.

In general, these functions adhere to the UNIX convention for

reporting errors. When & failure indication from an KO function is = et
obtained, programmers can inspect the global integer errno, which will

. . contain one of the error codes defined in the header file error__h : -
Cautions: . v Addidenal information may be avaiiable from the global integer o ;
__oserr, which contains the {)DOS error code, if applicable. B

Like rstmem above, this function cannot be used if any files are open and

iy accessed using the level 2 VO functions. . _ e ‘ . . .

being accessed using ! The system funcilions discussed in Lhis section are concernde with
program termination ard transfer of controb.

i

5.2.1 Icvel 2 /O Functions and Macros

These functions provide a buffered interfzce using a special structure, ;
manipulated internally by the functions, to which a pointer called the
file pointer is defined. This structure is defined in the standard /O
header file {called silio__h) which must be included (by means of a
#include statement) in the source file where tevel 2 features are being

L
A
.

o ——

-B8- -89-

T,
T
P .

s 1, AN i Fowria A A T e

o, - L, ;
L T - A

: S oy %

.QI._C Nevelopment Kit Co Partable Library Funetiong =~ ool

) Pnrmb-l.o Library Functions 01. C Development Kit

5.1.3 Tevel t Memory Allocation

e lowest level of mewmory allocation C
basic aperations needed to

RSTMEM

The two functions detined at th
' primitives which perform the

e - - . S LooAar i =
_ o - T - - ilufplcmenl 4 more sophisticated facility: they are used by t?e ‘e\f{iﬁ
Purpose: e _ e e - functions for that purpuse. shrk treats tt'me total arnnq:_u n‘_ mef . b:'
_) e B R R . Available as i sidgle block, fromw hich portions of a specific size may be _
Reset memory pool : ' o - avsrt { at th ﬁ)w end, creating @ new nlock of smaller size. rbrk .o
. allocated at the ‘back to its original size. The “break point” o

mercly resets the block ba its 0

ais: ‘ | mentioned here should nut he confuse
- ‘) in debugging: thisterm simply refers to the |
block of memory wmanipuluted by sbrk. o

witl: the breakpeint coneept used . o
address of the low end of the -

rstiem();

Description: : ' ' _ e T

Rosets the level 2 memory pool to its initial state. All memery

allocatae by calls to getmem and getml made after allimem was called

i relensed by rstmern; memory aliocated before alimem was called is ST T S

not 2ffested, This function makes it possible to make a certain number
of initin! stirl, getinem, or getmli calls, and then to initinlize a memory o

paul by calling allmem. Any allocations made after the cali to allmem ; . N R
are freed Ly rstmem, but the preceding shrk or getmem calls are not . ' . - T
affectead. '
Cautions. B

This function cannot be used if any files have been opened after the
immodiately preceding ailmem call for access using any of the levei 2 /O ' . } o
functions, because these functions use getmem to allocate buffers. o
Files shou'd be opened before the allmem call to avoid this problem.

-t -

-84-

S .
. I:nh‘& rnit ALt A Eacih FalE CRE A T
. - : TS AT NGRS

nandi s S, P i ;

?ortable Library Functions QL C Development Kit

RLSMEM/RLSML

Release a memory block --.- o e ~

Synapsis:

ret = rlsme- ‘cp, nbytes);
fet = rlsml(cp, Inbytes);
intret;

char ®ep;.

unsigned nbytes;

long inbytes;

return code

block pointer to be fTeed
size of block _
size of block as long integer

Dexr'iption:

;ljf_‘eS"[l_fu“’:ti“"s release f'.he memary block by placing it on a free block
Bt the new h]ock is adjacent to a block on the list, they are
combined. On the Sinclair QL rlsinl is the same as rlsmem. .

Returns:

= §ifsuceessful

= -1 if.t‘.uppi.ied block is not obtilined by getmem or getml or
ifitoverlaps one of the blocks on the list

rel

Cautions;

Return value should be checked fo
i ' r error. [f the cor ize i
supplied, the block may not be freed properly. roct size s not

-80-

Description:

0O1. C Development Hit

ALLMEM/BLDMEM -

Purpose: o T LT

o
Alocate level 2 memory pool S

Synapsis:

ret = allmem(); : _

ret = bldmem(n); E
int ret; return code -
intn; maximum number of L kilobyte blocks

function sbrk toallocate upton

The bldmem function uses the jevel 1
0, then all available memory is

1 kilcbyte blocks of memory. ifnis
atlocated.

The atlmem function merely calls bldmem with nset to 0.

Subsequent getmem and getml catls will make allocations from this
All of the memory allocated by getmem calls following a

memary pook.
e freed by a call to the rstmem function

eall to g)lmem or bldingm can b
described beluw,

allocated by cither one of these functions

The size of the memory pool
function described below.

can be obtained by a call to the sizmem

Returns:

= .1if first sbrk fails
= 0 if successful

ret

- Poriable Library Functions -~

——

Portable Library Functions

QL C Development Kit

- FREE

Puerpese:

. -' "-. - . - .
UNIX.compatible memory release function -

"
Synopsis;
ret = freelep'.

:r]:t re‘t; return code
char *ep; block pointer

Deseription:

Relesses a block of m ' i

c:;x;-se-‘i']f'blm'ﬁ of memary that was previously allocated by malloc or
alloe. The pointer should be char * and ischecked for validity, thati

verified to be an element of the memory puol. e s

Returns:

ret

0 if successiul
-1 if invalid block pointer

fi

Cautions:

3

Remember tn cast Lhc potnter buck techar *, asin:

char ’ma,‘.loc(l;-
int *pi;
pi = (int *) malloc(N):

it (Eree(ichar *)piy t= 0y { ... ecror }

_ OL C Develnpment Kit

Portable Library Functions

5.1.2 Level 2 Memory Allocation

‘fhe functions described in this section provide an efficient and
convenient mernory allecation capahility. Like the level 3 functions,
allocation und de-allocation requests miay be made in any order, und it
is an crror to free memory ot ohtained by means.of ane of theze
[unctions. 'The caller must retiin both the painter and the siae of tine
block for use when it is freed: fuilure to provide the correct lenythinay
lead ta wasted mamory (the functions can detect an incorrect lenyth
when it is teo large, but not when it is teo small) An additional
convenience is provided by the sizmem function, which can be uscd
10 determine the total amount of memory available.

The tevel 2 functions maintnin a linked list of the blocks of memory

released by calls te rlsmem, ealled the free space list. Initially, this list
is nuli, and getmem acquires memory by calling the level 1 memory
allocator sbrk. As blocks are released by the program, the [ree space
list is ereuted; when a block adjacent to one already on the list is
freed, it is combined with any adjacent blocks. Thus, the size of the
largest block available may be smaller than the total amount ot free
memary, due to hreakage.

Portable Librarv Functions . QL € Davelopment Kit

size (see section 1.4); alternatively a ‘program may defline the size

- internally by defining the extend location _ stack to be the required

value for example:

int _stack = 1096 -

Similarly the totul amount of memory grabbed by the program maybe
overridden either by using the run-time option “eworkspace (see section
1 4) or by delining, tha external location _mnced to be the required

‘value, for example:

int _mneed = 5120

. Warning: There is no check against the stack overrunning its allotted
size and destroying portions of the memory pool or static data.

All of the memory allocution functions return a pointer which is of Lype
char *, but is guaruntead to be properly aligned to store any abject.

5.1.1 Level 3 Memory Allocation

The functions described in this section provide a UNIX.compatible
memery-allecation facility, The blocks of mentory ebtained may be
released in any order, but it is an error to release something not
obiamed by calling one of these functions Because these functions use
overtiead locations to keep track of allocation sizes, the [ree function
daes nat require a size argument. The overhead does, however, decrease
the efiiciegcy with which these functions use the available memory. If
many small aliecations are requested, the available memory will be
maore eflicently utitized if the level 2 functions are used instoad,

»

-72-

- QLC Development Kit

Portable Library Functions

Purpase:

' U.\A’l.‘{-compat-ible memory allocation - vt e T

Synopsis:

p = malloe(nbytes)
char *p;
unsigned nbytes;

block pointer .
number of bytes requested -

Description:

Allocates a block of memory ina way that is compatil:_ble with UNLA. The
primary difference between malloc and getmem is that the .('ormer
allocates a structure at the front of each block. This can feSult in very
inefficient use af memory when making many small allocation requests.

Returns:

p = NULLif not enough space available)
" = pointer to block of nbytes of memory otherwise

Cautions:

feturn value must be checked for NULL, The f:uncti?n should be
declared char * and a cast operator used if defining a pointer to some

other kind of object, as in:

char *malloc():
int *pi;

Pl = {int *)jmalloc{N);

“ - . — - e e -
r

v A bt L
T e

3T hawaw ot s s

. ~.-1 . . . - "}"a

QL C Development Kit

-1 - — Langaage Definmition

QL C Development Kit Language Definition

CRM 7.6 Relational operators

~ When pointers of different types are compared, the right-hand operand
is converted to the type of the left-hand operand; comparison of a
pointer and one of the integral types causes u conversion ol the integer to
the pointer type. Both of these are operations of questionable value and
. are certainly imachine-dependent.

- CRM 7.7 Equality oporatars

The sune conversions noted above are applied.

-
i

CRM 8.1 Storage class-specifiers

The text states that the storage class-specifier, if omitted from a
declaration outside 21 function, is taken to be extern, This is somewhat
mislending, if not plainly inaccurate; in fact {us the text points out in
CRM 11.2), the presence or absence of extern is critical to determining
whether an abject is being defined or referenced. As noted in section
4.2 4 of this manual, if extern is present, then the declared object either
exists in some other file or is defined later in the same file; ifno storage
class specitier is present, then the deckared object is being defined and
will be visible inather files. If the static specilier is present, the object
. is plso defined but is not made externaliy visible. "The enly exception to
these rales oceurs for functions, where it is the presence of a defining
statement body that determines whether the function is being delined.
The [Lattice can be forced to assume

compiler extern for ail

declarntions outside a function by means of the ¥ compile time option.

Beclarations which explicitly specilly static or extern are not aftfocted.

CItM 8.5 Structure and union declarations

The Lattice compiler treats the names of structure members quite
dilTervntly feom Kernighan and Ritchie, The names of membe.s and
tags ¢o not conilict with each other or with the identifiers used for
ordinary variables. Both structure and union tags are in the same class
of names, so that the sume tag cannot be used for both a structure and a
union. A sepurite list of members is maintained for each structure;
thus, & member nune may not appear twice in a particular structure, but
the same name may be used in several different structures within the
SUME scope,

68

CRM B.7 Type names

Although a structure or union may appear in a type name specifier,

it must refer to an already known tag, that is, structure definitions - e

cannot be made inside a type name. Thus, the sequence -

(struct [int high, low; } *) x
is not permitted, but

struct HL { int high, low; }:

~ {struct HL *) x
is acceptable. ' : L
CRAY 10.2 External data definitions

The Lattice compiler applies a simple rule to external data
declarations: if the keyweord extern is present, the actual storage will
be allocated elsewhere, and the declaration issimply a reference to it.
Otherwise, it is interpreted as an actual definition which aliocates
storage (uniess the x option has been used; see the comments on CRM
8.1).

CRA{ 12.3 Conditional compilation

As noted in section 4.2.1 of this manual, the constanl expression
tfollowing #if may not contain the sizeof operator, and must appearon a
single input line.

CRM 12.4 Line contrul

Although the filename for #line is denoted as identifier, it need not
conflurin to the characteristics of € identifiers. The comp‘lc.r takes
whatever string of characters is supplied; the only texical requirement
foe the filename is that it canunot contain any while spuce.

CRM 14.1 Structures and unions

The escape from typing rules described in the text is explicitly not
allowed by the Lattice cumpiler. lna reference to ustructure orunlon

= -69-

o e kT

Languace Definition

QL C Development Kit

parsing technigue which reduces complex exprassions to a sequence

: “ef unary and binary operations involving at most two operands.

- constants) arc evaluated by the compiler iminediately,
" eflort is made to re-order operands in order to group constants. Thus,
expressions such as :

Operations invalving only constant oparands lincluding floating point
but no special

c - "A' tgt

must be parenthesized so that the compiler can evaluate the gonstant
part;

+ (Ial - IAIJ

[f ai least one operand in an operation is not constant, the

. inter:nediate expression resuit is represented by a temporary storage
- location, krown as a temporary. The temporary is then “plugged into"
“the larger expression and becomes an operand of another binary or
unary opevation; the precess continues untif the entire expression has
-been zvaluated. The lifetimes of temporaries and their assignment to

sloruge locations are determined by a subroutine internal to the first
phuse of the compiler, which recognizes identically generated
temporacies within a straight-line block of code and eliminates
recompulation of equivalent results. Thus, common sub-expressinns

zre recognized and evaluated only once. For example, in the
statement
al[i*l] = b(i+1];

the expression i4+1 will be evaluated once and used for both
subscripting operations. Ex-ressions which preduce a result that is
never used and which have no side effects, such as

it3;

are discarded by this same subroutine.,

Within the bloeck of code examined by the temporary analysis
subroutine, operations which produce a temporary result are noted and
remembered so that later equivalent operations may be deteted, as
noted above. Two conditions (other than function calls, which may
have undetermined side effects) cause the subroutine to discard an

-64-

QL C Development Kit Languare Definition

operation and no longer check for the equivalent operation later: (1) if
cither of its operands appears directly as a result of a subsequant
operation; or (2) if a subsequent operation defines an indirect {ie.
through a pointer) result for the same type of nbject as one of the
original operands. The latter condition is based on the cowniler's
assumptioa that pointers ure abways used to refer to the corroes tvpe of
target object, so that, for example, if an assienment is made nsing an
int pointer only objects of type int can be changed, Only when the
programmer indulges in type punning -- using a pointer to inspect an
olject as if it were a different type - is this assumption invalid, and itis
hard to conceive of a case where the common sub-expression detection
will cause a problem with this somewhat dubious practice Such
inspactions are generally better left to assenibly language modules in
any case.

" With the exception of this common sub-expression detection, which ray

replace an operation with a previous, equivalent ane, expressions are
evaluated in sirict teft-to-right order as they are encountered, except, of
course, where that is prevented by operator precedence or paccntheses.
It is best not to make any assumptions, however, about the order of
evaluation, since the code generation phase is generally free to re-order
the sequence of many operations. The most tmportant exceptions ure
the logical OR I} and logical AND (& &) operators, for which the
language definition guarantees left-to-right evaluation. The code
generation phase may have other cifects on cxpressio_n evaluntion;
usually, seme favarable assumptions aboul pointer assignmints are
made, though these can be shut off by a compile-time option. Check tha
Emplementation section of this manual for fu!) details.

4.2.8 Conlrol low

C offers a rich set of statement flow constructs, and the Lattice compiter
Supports the full complement of them. Some minor points of
clarification are noted here, First of all, the compiler daes verify that
switch statements contain (1) at least one case entry; (2) no duplicate
tase Valués; and (3) not more than one default entry. [n addition, the
first phase of the compiler recognizes certain statement flow constructs
invoiving constant test values, and may discard certain poartions of code
accordingly. (Even these portions ultimately discarded are fully

= pree e -
'
H

"\...v it i g s

Lancuage Definitinn

"QL C Development Kit

QL C Development Kit

declared extern (sec seetion 4 241 All painters are assu med to be the
same size .- usually, that of a plain int - with one exception, On
word-addressed machines, pointers which point to objects which can
appear on any byte boundary are assumed to require twice as much
Storaye as pointers to abjects which must be word-aligned,

“Note that the size of aggregates (arrays and structures) may be affected
by alignment requireg:ents. For example, the array

sttuct {
short i;
char o
i x[10);

will accupy 40 bytes on machines which require short abjects to be
aligned on an even biyte address,

4.2.4 Storage Classes

Declared objects are assigned by the compiler to storage offsets which
are relative to one of several differcnt storage bases. The assigned
storuge base depends on the explicit storage class specified in the
declaration, or on the context of the declaration, as follows:

External An object is classified as external if the extern keyword
is present in its declaration, and the abject is not later
defined in the source file fthat i3, it is not declared
cuiside the body of any function without the extern
keyword). Storage is not allocated for external items

* because they are assumed to exist in some other fite,
and must be included during the linking process that
builds a set of shject modules into a load madule.

Statie An object is classified as static if the static keyword is
present in its declaration or if it is declared vutside the
bocy of any function without an-explicit storage class
specilier. Storage is allocated fop stuatic items in the
data section of the nbject module; all such locations
are initinlized to zero unless an initializer expression is
included in the declaration (sec section 4.2.6). Statjc
items declared outside the body of any function
without the static keyword are visible in other files, that

-60-

is, they are externally defined. Note that string
constants are allocated as static items, and are treated
as unnamed static arzays of char,

Aute An object is classified os auto if the auto keyword is -
present in its declaration, or if it is declared inside the _

body of any function without an explicit storage CI&:J.SS
specifier (it is iflegal to declare an object auto cutside
the body of a function), Storage is presumably allocated
for aute items using a stack mechanism during
execution of the function in which they are defined,

Formal An olject is classified as formal if it is a formai
“purameter to one of the functions in the source file;
Storage is presumably altocated for formal items when a
functioa call is made during execution of the program,

Note that the first phase of the compiler makes no assumption_. a:.bout
the ‘validity of the register storage cluss declm:ator. [tems which are
declared register are so flageed, but storage is allocated for them
anyway against either the auto or the formal storage base.

Note also that if the x compile-time oplion is used, the implicit storage
class for items declared outside the bady of any function changes from
staliz to extern. This allows a single header file to be wused for ail
external data definitions. When the main function is compiled, the x
option is nat used, and so the various abjects are d.eﬁned und ma?de
externally visible; when the other functions are compiled the x aptien
Causes the same declarations to be interpreted as references to objects

defined elsewhere.
4.2.5 Scope of Identifiers

The Lattice compiler conforms almost exactly to t'he scope rutes
discussed in Appendix A of the Kernighan and Ritchie text (pp.
205-206), The enly exception arises in connection with structure :_md
union member names, where (as noted in section 4.1) the f:um;n](:‘r
keeps, separate lists of member names for each structure or union:; this
Means that additional classes of non-conflicting identifiers vecur for the
Yarious structures and unions. Two additional points ure worth
clarifying' ‘

“Language Definition

-

Lancuage Definition QL C Development Kit

A more systematic and detailed explanation of the above differences
is presented in section 4.3, but some of the most impartant items above
deserve immediate clarification.

The intent behind making the structure and union member names g
separate cluss of identifiers for each structure is twolold. First, the

_I'ﬂexihi[ity of member names is greatly increased, since now the

pregrammer need not worey about a possible conflict of nantes between
dillerent structures, Second, the requirement that the cempiler be able

- to determine the type of the structure being referernced generally

improves the clurity of the code, and disallows such questionable
constoucts as

int *p;

p->xyz = 4;

which is considered an error by this compiler. Those who grumble about
tihis resiriction should note that one can accomplish the equivalent
seqquence in Laitice C by using a ecast:

{{struct ARBC ’:p}—'}x}-z :-4:

‘The purentheses are required since the - > operater binds more tightly
than the cast. The idea is not that such code should be prohibited
unconditionally but that any such constructs should be clearly visible for
what they are; the cast operator serves this purpese nicely.

Exactly the same intent is present in tha poinier conversion warning.
By using a cast operator, the programmer cun sliminate the warning;
the conversion is then explicitly intention:], and not simply the result of
steppy coding. In addition, there is a more important reason for the
waraing. Althaugh imany C programs make the implicit assumption
that puointers of all types may be stored in int variables (nr other
poinier types) and retrieved without difficulty, the lunguage itself
wikes no guarantee of this. On word-addressed machines, in fact, such
conversions will not always work properly; the warning inessage
provides a gentle {and non-fatal) reminder of this fact.

QL C Development Kit

Finally, the warning generated when a structure or union is used as a
function argument without the address-of operator is intended to

remind programmers that this compiler does not allow an aggregate to ; =

be pusserd to a function -- only pointers to such obiects,

41,2 Arbitrary Limitstions

Although the definition of a programming language is an idealized
ahstraction, any real implementation is constrained by a number of
factors, not the least of which is practicality. The Lattice compiler
imposes the following urbitrary restrictions on the language it accepts:

¢ The maximum value of the constant expression deflining t}}e_sazfz of
asingle subscript of an array is one less than the largest positive int,

o The maximum length of an input source line is 256 bytes.
o The maximum size of a string constant is 256 bytes,

6 Macros with arguments are limited to a2 maximum number of 8
arguments,

¢ The maximum length of the substitution text for a #define macrois
256 bytes

¢ The maximum level of #include file nesting is 3.
These limitations are imposed because of the way objects are

represented internally by the compiler; our hope is that they are
reasonably large enough for most real programs,

4.2 Major Language Features

" The material presented in this section is meant to clarify some of the

language features which are not always fully defined in the Kernighan

and Ritchic text. These are features which depend on implementation

decisions made in the design of the compiler itself, or on interpretations

of the langruage definition. Those language features _which ure

specifically machine dependent are described elsewhere in this manual.
-+

Languace Definition” .~

Ti.---_o—-a-". o — e

B R L

K

T

e +w - The Linker s : QL C Development Kit QL C Develnpment Kit il The l.mker:. e P

reprompt for another command line. Entering a blank tine at l}Tis atage
terminates the linker. In non-interactive mode the linker will exit.

- 3.5.3 Pase 1 of relocatable hinary files

— -« Ml the command line and control file (if given) contain valid camm:nds . B .
S .+ the linker will issuc a message saying 'starting pass 1'and will rond al] . P
=T 7 the relneatable hinary f{iles requested and determine the size of euch ' ; _ - R el et
’ “section to be placed in the output lTie. During this pass the linker will ' -
issue error and warning messages as approprinie to indicate any B S s ' T TITT e
problems encountered. : C ' ' '

TR If the linker fails to open any requested input files or encounters any
v errors during this pass the linker will issue an error message stating the _
. pr. blem and will continue processing the rest of the input {iles, : e
4 '
At the end of pass one if any errors have been encountered the linker e e . o

will print an ecrrer message summary and print the message 'Link
completed with errors’. Ininteractive mode the linker will reprompt for
another command line. innon-interactive mode the linker will exit.

; L" lf' only warnings have been detected the linker will continue with the L
B i link. i et Ll .

R : i

i' . . ' .l : : ' v

o 3.4 Bolween pass processing o '

P ‘ . - ' : -

o After pass 1 the linker determines where to place everything in the :

% . srogram file and resolves all global symbols. The load map is !)

|5 generated at this time along with a list of all abselute, user defined and i

i i undefined symbols, T

. !

i 3.5.5 Pass 2 processing i

i ! i A.F
; During this pass all thr relacatable binary files ure rercad and the ' ST

program file created complete with a program header. If any ervors are
encountered at this stage the link is aborted.

3.5.6 Post provessing

After pass 2 the symbol table is written to the listing file and if
required a symbol table is appended to the output file. Cpon
completion of the symbol table the linker issues a SUTTIITY IMESsie
stating the number of errors and warnings and the number of undelined
symbols. The linker thea issues a final message indicating the d
completion status of the link. {n inleractive made the linker will then

J——

-52.

f
By et o s .

ooy : . & .) . o \@ Lo T Y i
i - | : o — T
l’ f P __- , . . . - = - B - -
A The Linker Q1. C Development Kic Q1.C Development Kit Ll - L
| E .
‘ B o DEFINE USERSPACE = 1060 : (' OFFSET <value> - Coe
P DEFINE TOTALSPACE = LOCAL+GLOBAL+USERSPACE S Instructs the linker to start-address alloeation and to-write the - ; -
: R ' S output file from the address given in the value parameter, 7 . LT T
L twhere LOCAL and GLOBAL are declured in relocatzble object modules) ~{g) DEFINE <symbol> [=) <expression> _ o - :
- ,,‘. 3.3.5 Summary of the control file Delines a symbol at link time. Ifthe expression includes a symbol ' o o
' !« c . ' which has not already been defined then the linker expects to find it A SRR
P This section is a quick summary of the commands possible in the linker in a relocatable object module. : I
a ! control file, _ B
Lises beginning with ***, %" or "' are comments and are ignored by the ‘3.4 The Listihg I'ile S T C
linker. S : oL i S
t. i AllLL in 1 file ino ..] The listing file consisis of a series of reports to indicate what the linker = = - b IRREE ‘
Ly - Alielters in the control file input can be in either case and case is not has done with the program file. The following reports are generated: : Sy e
cr significant. - - -
- . _ {a) Command line and control file information - -
£ (a} INPUT <file name> — : :
;' . Includs all modules & " e This report indicates the command iine used to perform the link o i
RTI P AE nctude alimocules irom the named file in the link. and a listing of the control file (if one was used). Any error’ - ce
IO B . B A I
_ messages from processing of the control file are also placed in the B S
i I _i {(b) EXTRACT <module name> FROM <file name> rnpovlg b e ? ' - S
- In thva pe | P H N . . N T .
[. Include the named module from the named file in the link. (b} Olject module header information : N B
|} ;j :' (e} LIBRARY <file name> This report indicates which commands were used for input of T
AR Instructs the link h the lit = modules and the module names read in by the command. Any error L C otk .
o ns 'mc @ the lnker to search the thrary from start to finish, Any messages produced while reading the module files are also printed .
R modules in the iibrary which satisfy any currently unresolved here,

relerences are included in the link.

) (¢} Toad Map
{d) SECTION <section name>
This reporl generated after pass ©indicates where the linker has
pliced everything, The Toad map is preduced in increasing address
order with Lhe following format; : :

Declares a section to the linker All declared sections ure
altocated space before any undeclared sections,

- e Pdr—— 1,

{e) COMMON <common option>

(1} For each section a line in the following form

instructs the linker how to handle COMMON sections (if any are
cncountered).

. U -

- The Linker

QL C Developrment Kit

QI. C Develapment Kit T

Yoo

The i‘inker e

- {e}

common sections

By default commen sections are treated as relocatable sections
except that contributions towards the same commaon sec(mn from
different nodules are overlaid rather than cuncatenated.

The SECTION command may be used to alter the default ordering
of cammon sections.

The CTOMMON command may he used to alter the default treatment
of oll commuon sections.

Space allocation commands

-+ The following commands wlter the mechanism by which the linker

allocates spuace for each section:

({)]

SECTION <sention name>
Coti0N <commnon option>
CFFSET <vaiue>

SECTION <saction neme>

This command names a section which is to be placed in a
purticular ordee in the output program file. The effect on the
storage allocatien is that named sectinns are allocated space first in

the order declared with any unniamed sections aflocated space
foltowing fas with the default casel.

COMMON <comnon Option>

The COMMON command instructs the linker how 1o allocate space
for common sections. In the default cnse common sections are
treated as il they were relocatable sections for the purposes of
iwddress alloeation.

The following <commonoption >s are available:

(iy END

This aption instruets the linker to allocate spuce for comimon
sections alter all relocatable sectivns have been placed. This

b

means that the common sections appear at the high end of the
memery allocation.

commind then they are allocated space first followed by the
other common sections in the order first encountered in the input

files.
any absolute sections as with the normal relocatable sections.

(ii) puMmy

This eption instruets the linker to build a separate allocation
for common sections,
and ignores any allocation taken by relocatable or absolute

sections.

The linker will use the dummy zllocation to resolve glabal
symbols in commen sections relative to the startof the common
area so that a run time system can allocate memory sepurate
frorm the program for the purposes of storing common. The
global variables are then used as offsets from the start of the
eommon region,

Note that with this option no space is made in the program

- file for the common sections so they may not be initin.ised. Any
attempt to place data bytes in common sections with Lhis option
ineffect will cause an error.

{c) OFrFsEr <value>

This command does not affect the output program file unless there
are absolute sections present in the link, [tis only likely to be useful
for linking programs which are to live at fixed addresses, and such
progirams will probably be blown into PROM.

See section 3.3 4 below for the definition of < value>.

The OFFSET instruets the linker to start the allocation of section -

starting at the <value> given instead of at address 0.

.The efTect on the allocation of space is as follows:

-45-

If any commen sections have been numed by = SECTION-:

The ullocation of common sections is such that they avoid

The allocation starts from address zero o

The Linker . QL C Development Kit QI C Development Kit - . - The Linker ~=—---- .
RELOC startup These commands ure: . ’ ' . R }
SECTION rext g
SECTION data : INPUT <file name> . : -
SECTICN udata : LIBRARY <file name> _ T I
SECTION end : EXTRACT <module name> FROM <flle name> T ;
¢ : . B Ce e - “ . f
. Step 1 - initialisation and mést users will rarely need to use any other commands, o {
1o " SzRssrmTSSSosAmRssInssos n _ o B
: " . _ {a) INPUT <filc name> . R
L “ C initialisation must be included first, BN
P * This command instructs the linker to read the file named and place
i INPUT mdv2_startup all modules encountered in the file into the link. Include one
B * command for each file that you wish to include in the link, K
IR . Step 2 ~ user modules)
' : i‘ ” ZTZ==Z=s===saS=zsEszZSN=% [—:xan]p|e: t
P . . k
o - Yow include a single user module (from the INPUT FILEL BIN L
[, . * command line) INPUT FILE2 BIN g
’; P INBUT * : . - will include all modules in the files FILE1 BIN and FILE2Z BIN. . L
v : : .] - . e
[1 * ~ Lattice C places only one module in each relocatable binary file. -
I * For each extra module you want to include in e
. » the link, include 2 line of the form: A special case of the input command is the command I
3 » -
" . INPUT <file nane> INPUT *
H
i * .
f;; * Step 1 - C libracy which instructs the linker to input the relocatable binary file whose
iy * s-ssc=sz==czzzzazs name was given on the command line. This feature allows the
' . generation of a template file which can be used to link a single
* C library - must always be included. module nutput from the comptiler with ail the required libraries, and
. this is the standard sne PROG__LINK already shown. The template
f LIBRARY mdv2_qgic_l file is then used by o command line of the fellowing form (the -WITH
i x is optivnal):
a; | 3.3 2 Module Input Commands <module file name> [~WITH] <device>prog
- '
i
v ! There are three commands to instruct the linker to read in moedules from {b) LIBRARY <file name>
) retncatuble binary. files. All these commaunds use the same defaults for
tile nuines as the module input file in the command line. “fhis command instructs the linker to search the relocatable binary

file named from start to finish for modules which satisfy any

deor ke dmweamad

— i

I

.r' @w

The Linker

) The listing file name is the base file name with T MAPY
appended.

2) The program file name is the base file name with ©__BIN"
appended. :

3] The debug file name is the base file name with "_Sywm®
appended. |

i an output file name is given explicitly either as a positional
parameter or in an option then the file name will override the
corresponding default name, Any file name given explicitly must be
givonin full as the file name will be used exactly as entercd,

3.1.6 Input File Nitme Defaults

The linker has two types of input file: the control file, which tells the
linker what to Jdo (if more information is needed than ean be caded in the
command line) and relocatable binary files, which are the cutput files
from the compiler that contain the program to be linked.

For a inndule file name {or library file nume}, if the module file name
contsing a file type then the linker will use the file name exactly as
given. Ifthe file name does not contain a file type then " BIN" will be
appended to the file name; “if an open error occurs on this file then the
ertginal file nome is used instead {by stripping ofT the " BIN" again).

This defanlting will apply to all module input commands in the control
fi'e 2s well as to any relocatable binary file name given on the command
|ir.’|t3,

If the centro! file name contains a file type then the linker will use the
centrot file name exactly as given. Ifthe file name does not containa file
type then "_ LINK” is appended to the file name: if an Open error occurs
un this file then the original file name is used as the controel tile name,
3.1.7 Command Line Examples

f-!D'JZ_M':'PROG_'O MDVL_C ~NOLIST

i.ink the file .\[[)\'2__,\1‘(!’!{00_0 aceording to the instructions in

CMDVY__C_LINK. The program is called M DV2_ M YPROG__O_ 1IN,

36

BLC Development Kit

N/

5

QI. C Development Kit The Linker

~WdITH MDVL

FRED

Take MDVI__FRED__LINK as the control file, place the prograni in.
MDVI_FRED_BIN and place the full listing output in -~
MDVI_FRED_MAP, o

-WITH MDV1_FRED -LIST_SERJ. —NOPROG

Take MDVI_FRED_LINK us the control file, do not generate a
program file but print the listing as it is produced.

“WITH MDV1_FRED -PROG MDV2_FRED_BIN
Take MDV1_FRED__LINK as the control file, place the program in -~ -
MDV2_ FRED__BIN and place the listing output in -
MUVI_FRED__MAP. '

3.1.8 Termination

When the link has finished, and if there have been no operating system
errors, the linker will issue 2 message giving the status of the link.

3.2 Linker [nputs and Qutputs

The linker uses the follawiny inputs and outputs,

3.2.1 Command Lipe input

When run interactively, the linker will read 2 eommand line from the
kevhoord o teli it what to do. Any errors in the command line will
result in an error inessiye followed by a reprompt of the command line,
Seesection3 1 2 abiove fur full details of the command line.

3.2.2 Control File

'“' the command line includes a eontrol file nime the linker wilf expect as
nputasingle test file contiining a list of tnstructions to perform,

The control file is deseribed in detail in section 3.3,

<37

T e My s aae.

ey

b
-l
"
T
I
L)
-
1
i
1

e

QL C Development Kit

! The Linker

Chapter 3: The Linker

| 3.1 Introdtxétion

s=-3.1.1 Loading the Program

¥

The linker is found on Cartridge 3 of the QL C Development Kit. [t may
be fadded and run in one of two ways.
a} k- eractive mode
fa this mode the tinker will identify and prompt the user for a command
line. Upon completion of a link the linker will prompt for another
command line {unless a fatal etrror has occurred). You may run the
linker in interactive mode by any of the following commmands where
“lev_ "isthe device rom which the linker is to be lnaded,
To run in parallel with the SuperBasic interpreter

EXEC W dev_link
oar

EK dev_link
To wait for completion of the linker

EXEC W dev_lirnk
or

Exydev_Llink
b) Non-interactive mode
In this wmode the linker receives its command directly from the
SuperBasic interpreter ‘and does not interact with the user. On
completion of the link the linker will exit to allow the SuperBasic

interpreter to continue. You may run the linker in non-interactive mole

.32

M=

QL. C Development Kit St . The Linker - = -+

by one of two commands. e et

- - T =

To run in parallel with the SuperBasic interpreter e S

EX dev_link;"<command line»".

To wait?ortheIinktocomplete ST S -__—~ g

EW dev_link:"<command line>"
The quotes round the command line are required for the SuperBasic
interpreter to accept the line. Note that the EX and EW commands are
only available in the QL toolkit and are not part of the- standard
SuperBasic. o S e
3.1.2 Command Line ormat
The fermat of the command line is:

[module [control (listing {program]]]] [cption]

The various command line specificrs are shown in the order in which

‘they must appear. Optional specifiers are shown enclosed in brackets.

maodule Specifies the name of an vbject file to be used o
; as input to the linker.,

control Specifies the name of a control file from which

a list of instructions are input and acted upon.
listing Specifics the name of the listing file which the
linker will generate. This shows the
commands used in the praduction of the link
and 2 map of the laynut of the executable file.
The mip will also show a Tise of all global
symbols and their values un aplion cross
reference giving the modules which reference
them,

Progzrim Speeifies the name of the exeeutabip program
file to be generated by the linker.

-33- L

M

TN e s

e et v .

t
:

L

01 C Development Kit

Sereern erlitor

Al of these commards normally perform the search making a distinction
between upper and lower case. The command UC may be given which
caurses all subsequent searches to be made with cases equated, Onee this
commuand has been given then the search string "wombat" will match
"Wombat”, "WOMBAT", "WoMbAL" and so on. The distinction can he

- enabled sprain by the command LC.

Altering Lext

.
The E command cannot be used to insert a newline into the text, but the |
and A conunands nuay be used instead. The | command is followed by a
string whi~his inscrted as o complete line before the current line. The A
commmand 15 also followed by a string, which is inserted after the current
line. it is possible to add control characters into a file in this way.

The § command splits the current line at the cursor position, and acts
Just as though an ENTER had been typed in immediate mode. The .J
commanc joirs tire next line onto the end of the current one.

The T} command deletes the current line in the same way as the
CTRL-ALT-LEFT cormmand in immediate mode, while the DC command
deletes the charucter at the cursor in the same way as CTRL-RIGHT.

Repeating commands

Any commund may he repeated by preceding it with a number. For
example,

A B Jslithy/brillig/
will cianye the next four occurr ances of 'slithy® to ‘brillig’, The sereen is
verifted after ecach command. The RP {repeat) command can be used to
repeat acenmand until an error is reported, such as reaching the end of
the file For example,

AP & salithysbrillig/
will change all occurrences of 'slithy’ to ‘brillig”
Commands may be grouped tovether with brackets and these command
vroups exccuted repeatedly. Command groups mny contain further

nested comnrand groups. For example,

.28.

Yo

0L C Development Kit

Screen editor:

RP { F /banderunatens; 3 (IB: '\I))

will insert three copics of the current block whenever .the string -

*hundersnatch’ is located,
Note that sonie commaitds are possible, but silly. For example.
RP SR 60

will set the right margin to 60 ad infinitum. However. any sequence of
extended commands, amd particularly repeated ones, can be interrupied
by typing any character while they are taking pluce. Commang
sequences are abso sbanduned if an error oceurs. o

;- | L ©

Sereen editor

0O, C Develoopment Kit

Exterded commuands consist of one or two ietters, with upper and lower
case regurded as the same. Multiple commands on the sume command
line are separated from each other by a semicolnn. Commands are
sometimes followed by an argument, such as a number or a string. A
string is a sequence of fetters introduced and terminated by a delimiter,
which is any charicter besides letters, numbers, space, semicolon or

brackets Thus valid strings might be

srappy/ 123 feett :Hellot: "1/2"
Most immediate eominands have a corresponding extended versian. See

the table - rommands for Mull detatls {section 2.4).
Program control

The coimmand X cavses the editor to exit. The text held in storage is
written out to file, and the editor then terminztes. The editor may fail to
write the {ile out either because the filename specified when editing
started was invaiid, or because the microdrive becomes full, In cither
case the editor remoins running, and a new destination sheuld he
speeificd by means of the SA command described below. Alternatively
the Q@ command terminates immediately without writing the buffer;
conlirmation is requested in this case if any changes have been made to
the file. A further command allows a ‘snepshat’ copy of the Fle to he made
without enining eut of 1213, This is the 5A command. SA saves the text to
a named file ar, in the absence of a named lile, {0 the current lile. For
exampie:

YSA /wdv2_savedtext/
or :

‘5A

‘This communand is parcticularly useful in areas subject to power ‘uilure or
surge. U should be noted that SA followed by (} is equivalent to the X
command. Any alterations made between the SA and the Q will cause 1)
to request confirimation again; if no alterations have been made e

- prograsn will be quitted immediately with the file saved in that stute, S

15 alsa usetul because it allows the user to specily a llename other thun
the current one. !t s therefore possible to inake copies at different stages
and place themn in different files,

24

QL C Development Kit

The SA conunand is also useful in conjunction with the R command.
Typing R foltowed by a filename cuuses the editor to he re-entered
cditing the now file. The old file will be lost when this happens, so
confirmation is requested (as with the Q command) if any changes to the

“current (He have been made. The normal action is therelore to save the

curreat [le vvith SA, and then start editing 2 new file with I This saves
having to load the editor into memory again, and means that once the
cditor is louded the microdrive containing it can be repiaced by unother.,

The U command "undoes” any alterations made to the ¢urrent ling if
possible, When the cursor is moved from one line to another, the cditor
takes a copy of the new line before making any changes to it. The U
command causes the copy to be restored. However the old copy is
disearded and 2 new vne made in a number of circumstiinces. These are
when the cursor is moved off the current line, or when scrolling in a
horizonlal or vertical dire¢tion is performed. or when any exteaded
command which alters the current line is used. Thus U will not "undo” a

* delete line or insert line command, because the cursor has been moved

off the current line.

The SH command shows the current state of the editor. Information such
as the value of tab stops, current margins, block marks and the name of
the file being edited is displayed. Tabs are initially set at every three
eobuming; this can be chinged by the command ST, followed by a number
n, which sets tabs at every n eolumns. The left margin and right nargin
can be set by SL and SR commands, again followed by a rumber
indicating the ¢column position. The left margin shoukd not be set beyond
the width of the sereen. The EX command may be used to extend
margins; once this commund is given no account will be taken nf the
right inaryinon the cnrrent line. Once the cursor is moved off the current
line, margins are enabled once more.

Block controt

undefined once more. The start of the bleck must be on the same line, ar a
line previous to, the line which marks the end of the block. A block
adways contains all of the line(s) within it,

Once a block has been identified, u copy of it may be moved into unother
part of the file hy means of the [B (insert block) command, The
!{rcvinusly identified block is replicated iinmediutely after the current
line, Alternatively a block may be deleted by means of the DI command,

W25

Serecn editor = -

Mt e

i

PR

QL C Development Kit

Screen editor
The next question asks for the workspace required. EI) works by louding
the file to be editod into memory and satlicient workspace is needed to
hold all the file plus a small overhead. The default is 12K bytes which is

- sufficient for small files. The amount cun he specified as a number or in
units 0l 1024 bytes if the number is terminuted by the character K. if vou
ask fur mere memory than is available then the question is asked again.

“.The miniinum is 3K bytes.

You are next asked,if you wish to alter the window used by ED. If you
type N or just press ENTER then the default window is used. [[you type
Y then vou are given a chanee to alter the window. The current window ig
displayed on the sereen and the cursor keys can be used to move the
windoy around, The combination ALT and the cursor keys will alter the
size of the window althouygh there is a minlmum size which may be used,
Within this constraint you can specify o window anywhere on the screen,
sq that vou can edit a file and do something else such as run a SuperBasic
pregram concurrently. Whea you are satizfied with the position of the
window oress ENTER.

Next, an attempt is made to open the file specified, and i this succeer
editor commarnad is given.

Eattar commuands fall into tve categories - immediate commands and
extvuded commands. Immediate commands are those which are executed
immediately, and uare specified by a single key or control key
combBinatinn. Fatended commands are typed in onto the command line,
ard arce not executed until the command tina is finished. A number of
extended commands may be typed on a single commanrnd line, and any
comnunds may be grouped tagether und yroups repeated automatically.
Mestimmediate commands have a matching extended version.

liniediate commnnds use the function keys and cursor keys on the QL in
conjunction with the special keys SHUFT, CTRL aned ALT. Far example,
de'ete line i3 requested by holding down the CTRL and ALT keys and
then prossing the lelt arrew key. This is deseribed in this document us
CTHEL-ALT-LEFT Function keys aredescribed us 1, #2 ete,

The editor atlempts to keep the screen up te date, hut if a lurther
cominand is entered while it is attempting to redraw the display. the
- command is executed at once and the display will be updazed later, when
there is time. The current line is always displayed first, and is ulways up

to e,

& | ™

1, C Development Kit 'Screeneditor . _. .
2.2 Immmediate Commands -
~ Cursor control e LIy ,: S
. P - : - H

The cursor is moved one position in either direction by the cursor control -
keys I.i*lf;."l‘, RIGHT, UP an DOWN, If the cursor is on the edge of the -
screen the text is serolled to make the rest of the text visible. Vertical
seroll i cavried out a line at a time, while horizontal scro!l is earried out
ten characters at a time. The cursor cannot be moved off the top or .oy eerea
bottom of the file, or off the left hund edge of the text. '

The ALT-RIGHT combination wili take the cursor to the right hand edge

of the current fine, while ALT-LEFT moves it to the left hand edyge of the

line, The text will be scrotled horizontally if required. In a similar
fashion SHITT-UP places the cursor at the start of the first line on the - e
sereen, and SHIFT-DOWN places it at the cnd of the last line on the e
screen.

The cnmbinations SHIFT-RIGHT and SHIFT-LEFT take th» cursor to
the start of the next word or to the space following the previous word
respectively. The text will be scrolled vertically ‘or horizontally as S
required. The TAB key can alse be used. [f the cursor position is beyond :

the end of the current Hine then TAD moves the cursor to the next Lab . .
" position, whick is & multiple of the tab setting (initiatly 33, [l th2 cursor is A
over some text then suflicient spaces are inserted to align the cursor with s
the next tab position, with any characters to the right of the car zor being N

shuffled to the right.
Inserting text

Any letter typed will be added to the text in the position indicated by the
cursor, unless the line is too long (there i3 maximum of 255 chacacters
ina line). Any characters to the right of the text will be shuffled up to
make rovm, if the line exceeds the size of the screen the end of the line
will disappear and will be redisplayed when the text is scrofled
horizontally. [f the cursor has been placed beyond the end of the line, for
example by means of the TAB or cursor control keys, then spaces are
inserted between the end of the line and any inserted character.
Althsugh the QU keybourd generates a different cude for SHHFT SPACE ;
and SHIFT-ENTER these are mapped to normal space and ENTER
chiracters for convenience.

21- e

ETT Oy N

A A A el wr,

Py

T e

- Using Q1 C

S0 ©°

QL C Development Kit

1.5.2 Phase 2

" The second phase of the compiler scans the quad file produced by the

first phase, and produces an object file in the Sinclair relocatable object
format. This cbject cude supports ull of the necessury relecation and

" externad linkaye conventions needed for C programs {see scction 6.3 for
= details), A lovico] section of code text specifying the machine language

instructions which make up the executable portion of the program is
generated first, fellowed by a section of data-deflining text for all
initialized static items and a logical scction specifying the size of
uninitialized stutic data. Unlike the first phase, the code generator is

“not alwoys actively performing disk Q. Each function is constructed

in memory belern 1ts object code is generated, so that there may be lairly
sizable pauses during which no apparent disk activity is tuking place. In

. generil, these delays should not tast more than several seconds. If no

activity nccurs for more than about 30 seconds, the compiler has
grobably failed; sce Appendix B for information about reporting
compiler problei®s.

When the second phase beginsg execution, it writes a sign-on message
to the standard cutput which identifics the version of the code generator
which is being executed. When code generation is complete, the second
phase writes a message of the form

todule size P=pppp D=dddd Usuuuw

to the standard output (usually the user's console). pppp indicates
the sire in bytes of the program or executuble section of the module
generated, dddd the size in bytes of the inttialized data section, and
uuwrt the 3ize in bytes of the uninitinlized data section; all values are
given in hexadecinal. These sizes include the reguicements for all of
the functions inciuded in the original source file. Note that the sizes
define the amount of memory required for the module once il is loaded
{as purt o a pregram) into memory, the _ O lile will require inore space
because it contains relocation information,

The code generator produces o single _ O module for a given source
module, regardless of how many functions were defined in that module,
These functions {if more than one is defincd) cannot be sepurated ut link
time; ituny one of the functions is needed, all of them will be included.

16

QLG Development Kit - "~ 77 " T Usina QLETTT

Functions must be separated into individual source files and compiled
to produce separate object modules if it is necessary to avoid this
tollective inclusion. ST B .

1.5.3 Frror Processing

All error conditions (with the exception of internal compiler errors}

are detected by the first phase. As soon as the first fatal error is
encountered, the compiter stops generating quads; it then deletes the
quad file just belore it terminntes execution, This prevents the
secand phase from attempting to generate code from an erroneous quad
file. When the compiler detects an error in an {nput file, it generates an
error imessage ol the form:

filename line Error nn: descriptive text

where filename is the name of the current input file (which may not be
the original saurce file if #include tiles are used); line is the lie number,
in decimal, of the current line in that file; nn is an error number
identifying the error; and descriptive text is a brief deseription of the
error condition. {(Appendix A provides expanded explanations for all
error and warning messages produced by the compiler.) A message
similar to the one above but with the text Warning instead of Error is
agenerated for non-fatal errors; in this case, generation ol the quad file
continues normally. [n some eases, an error message will bu follnwed
by the additional message:

Execution terminated

whicl indicates that the compiler was too confused by the error to be
abile to continue processing. The compiler vses a simple ecror recovery
scheme which may sometimes cause a singte ercor to induce 2 succession
of subsequent errors in a "cascade” effect. In general, the programmer
should attempt te correct the obvious errors first und not be overly
cancerned about error messuges for apparently valid source lines
{(althuvuyh al} lines for which errors are reported should be checked).

-17-

- C

. L'siﬁg QLC . 1. C Development Kit

LCZ "mcdw2_ -£5 mdvl _testd"

This commund executes the second phase of the compiler, loading it from
“mdv2__, using file mdvl__testd__q as input, causing the file

e -mdvi_ testd o ro be created. Address register A5 will be used as the ~ -

stack frame pointer in the code generated, F—

1.2.3 The QL.C command (Compiler Driver)

L TR

Supplied with the compiler as part of the EPROM code is a SuperBasic
routine called Q1.C which loads and executes both phases of the compiler;
LC prompts the user for all the information ficeded to run the compiler,
[Lis invoked by typing

QLT

A window is apered and a sequence of prompts is generated, These ask
for:

1. Name of the device that the compiler is to lozd from.

2. Namn of source tile,

3. LCY options. This may include the =stack, %workspace and > listfile
facilitivs.

After thest are anawered the first phase of the compiler is executerd.
When this phase is eompleted, control returns to QLC.

At this poiat the user has the choice of quitting from QLC if the lirst

phase fatled, or executing the second phase of the compiler if the first

phase was successtul. Continuation generates a further prompt asking

for the LCU uptions. The second phasze of the compiler is then executed
“and QLC rerminates when LC2 has completed.

1.3 Program Linking

After all of the component source mudules for a program have been
compited, they must be linked together to produce un executable foud

12

N B _ ™ ‘ ;

QL C Development Kit - - _ Using QL. C .7 .

[IETRRTTY R ppe—
1

module, or program file. This step is necessury for several rensons.
First, the abject file produced by the second phase of the compiler isnot -~ o
in 4 state suitable for exccution, Second, most programs make use of e o
external functions not defined In the same module: before such —

programs can execute, they must ‘be "connected” with those other B
functions. The functions may be defined by the user, in which case ——~ T

they must be compiled and available as object files during linking, or .= - .g_;.'_‘___.;“-_'__-,_:-. -
they may be delined in the library supplied with the compiler. In . - T
particular, the assembly language run-time support subroutines to -

which the C compiler yenerates internal calls are supplied in the file
(.C__L. which should be searched whenever C object modules are
linked.

Although the usuat concept of linking involves external function calls, C
also permits functions Lo access data locations delined in other modules,
This kind of reference is possible because the external linkage
mechanism supported by the object code associates an external
symbot with a memory location; this symbol is the identilier used Lo
declare the object in a C program. The programmer must ba areful to
declare an ohject with the same attributes in both the module which
defines it and the module which refers to it, because linking does not P
verify the type of reference made -- it simply connects memory -
references using external symbols. The use of include files for common e
externad declarations will usually prevent this kind of error.

P TRy
v
oo
£
.

5
g

Linking aisa provides &t way to attach initialization code needed tusetup R
for execution of the € program. ' L

1.3.1 How to link a € module

A detailed explunation of how to use the linker is given in chapter 3, for
now we will concern nurselves with the procedure required to tink one C
maedule,

Firstly, inveke the linker by typing

ELEC mdv2_tink

Now type C'T'RL-C, this will switich you into the linker. Now type a
comnand tine uf the form:

————

i
H

Y @ L o T =

Using O,

Qi. C Development Kit QL C Pevelopment it
i -u Cancels all autnmatic symbo) definitions for Lhe ddefine MGB000 1 o
. . current compilativn. Certain #define symbols are 4define SPTR 1 B R S
Lt - normally pre-defined by the commpiler (see below); . - . L ==l L _
o this flag cancels all of those definitions. If the -d flag was specified (as "-d", not “-dsymbol™, the followi
4 ; symbo! is defined: e -
4 K Changes the default storage class for external ' Tt o —-
i declarations {made outside the body of a function) ¢define DEBUG 1 . . . T)
i from external definition to external reference, The
S usual meaning of an external deelaration for which The automatic definition of these symbols can be prevented ’by useof ¢
- . an explicit storage cluss is not present is to define -u option, which cancels all of the above definitions.
storage for the object and make it visible in other ’
i fites. The -x option causes such declarations to be EXAMPLES
i treated as if they were preceded by the extern
keyword. that is, the object being deciared is LCL "mdv2_ mdvi_myfile” ' . =
presentin some other file.
This command executes the first phase of the compiler, loading it fro
filename Specifies the name of the C source file which is to be mdv2_, using file mdvl. myfile_e¢ as input, and creating fi
compiled. The filename should be specified without h mdvl__myfile_ q.
the _C extension; the first phase supplies the § N
extension automatically. Alphabetic characters j LC1 "mdvl_ -omdvl -x mdv2_xyz"
may be supplied in either upper or lower case. Note ; -
that oanly files with a _C extension ecan be] This command executes the f{irst phase of the compiler, loading it fro
compiled; if some other extension is specified, the mdvt: , using file mdvZ_xyz__¢ as input, and creating i
compiler ignores it and tries io find name.C. | mdv2__xyz_ q: it causes all exterral declarations” without 2 stera
(#include files, on the otber hand, must be fully ' class to be interpreted as extern dec arations. .
specified with extensions.} The quad file is created E
an the same device as the source file unless the -o ! LC1 *mdv2 =4096 mdvl tns _err -ccuw mdvl _tns”
optian is used. - - B -
This command exvecutes the first phase of the compiler, loading it ro
Include files muy be specified enclo-ed in double cuotes {"lilename”) mdv2 , using file mdvl_tns_¢ as input, and crealir\g f
ar ang'e brackets (<filename>); the two forms have exactly the same ! mdvl__tns__g; it sets the compiler's stack size to 2096 decimal bytes, ar

offect. The name betwoen the delimiters is taken at Lee value; the
extension must be specitied if one is defined for the file. The usul
canventinn i to use H tor nil header {ilas. Alphabetic charitclers ina
file name may be speciliod inaither uppuer or fower cuse

creates a file mdvl__tns__err to contain all the messages generated |
the compiler, The compiler will allow nested comments, interpret ¢
char dectarations as unsigned char, and suppress warning mess.yes
return stalements with no return value in int functions.

As an assistance to conditional compilation, the compiler automatically
#defines several symbols, which can bie tested in #if, 7ildefl, ar #ifndel
dircctives to selvct appropriate code sequences accarding to the target
processor ur operating system. Two symbols are alwuvs defined in the
copiler: '

8 , -9-

e

L

Using QI QL. C Development Kit

1.2,¢ Phage?

¢

The first phase of the compiler reads a C source file and produces an
mle.rmedlate file of logical records called quadruples, or quads. See
section L5 for a more delailed discussion of the pracessing performed.

The micredrive cartridge containing the first phase of the compiler

{Cartridge 1) should be inserted into ane of the drives and the cortridge
L

containing your C program should be inserted inta the other drive, The
format of the command to invoke the first phase of the compiler is:

LCL “device [=stack] [twarkspacael (>listfile]
[cptions) filename”

. . . .
The various command line specifiers are shown in the order they must
appear ir. the command. Required specifiers are shown in beld type;.
optional specifiers are shown enclosed in brackets,

device Tells LC1 which device to load the first phase of the
compiler rom. This ean be any legal QDAS device
name {1 ma?vlw) T

=stack Overrides the number of bytes rescrved fur the

compiler's execution stack. The default is 2048
(decimal) bytes, which is sufficient to compile most
programs. If present, the stach size override field
must be the first ffeld after the device name. It is
specified as an eqials sign followed by a decinal
tumber (for exumple, =4096 specifies a value of
4096 decimal bytes). Since the compiler uses
recursion to procesz statements, heavilv nested
statements cause Lthe compiler to wse more stack
space than straightforward, linear seauences, I
A source program with maany embedded stiatements.
(ifs within ifs within ifs, ete) causes the first phase
lo. terminate execution with a STACK
OVERFLEW error miessage, the program shogld
compile successfully it LCT is re-exoeuted taitgr an
it‘.crr-;f.‘,rni stack size, such as 4096 Some
experimentation may be reguired to determine the

QLC Devoinpment Kit

Csinq QLC

Zworkspace

> listfile

options

-e{fiags]

necessary stuck size. On systems which are

. cramped for memory, the stack size may be
“trimmed down in an attempt to eliminatle a "Nat
- enough memory' error; there is ro guarantee,

fiowever, that the cownpiiation will be successful,
particularly if the stach size is reduced below 1024

bytes.

Overrides number of bytes allosated for the
compiler’s warkspace. The default is 20480 (decimal)
bytes. [f a source program causes the first phase to
terminate execution with a NO1T BENOUGH
MEMORY error message, the program should
compile suecessfully if LC1 is re-executed using an
increased workspace size, such as 40060, :

Causes the {irst phase messages to be written to a
specified file. These messages include the compiler
sign-on message and any error or wurning messages
which may be generated. The full fil> nume mus: be
specified. If the file already exists it is overwritten,
This eption is useful for reviewing long lists of error
mMessages.

Comipile time options are specified as a hyphen
followed by a single letter; in some cases, additional
text may be appended. The option letter wmiay be
supplicd in either upper or lower case. Each
eption must be specified separately, with a separate
hyphen and letter. Available options arc:

This option is anly necessary if pastion-independant
code is desired. It informs the frst phase thut al]
static and external data is ta be addressed using a
Iaze register, either AS or A8, thus limiting the total
size of static data objects to 64K bytes. Which
address register will be used depends on whether
the -f option is specified on LC2 (see section 122
below); A3 is the default,

Controls the various compatibility modes of the
compiler, which allow it to accept souren Tfiles

.5.

Chapter 5:

Appendix A:

Appcndix B:

Appendix C:

- Appendix N

Index

o

Portable Library Functions

5.1 Memaory Alloeation Functions
52 1O and System Funclions

§.3 Utitity Funetinns and Macros
ﬁ.-l Mathematical Functions

5.3 - -~ QL Specific Functions

68000 Code Ceneration

221" Machine Dependencies
5‘3) Gcnes:a! Code Generation Strategies
. Run-time Program Structure

Error Messages . -

f\u.l L:'nnumbered Messages
2 __ - Numbered Error Messages

Compiler Errors

Linker Errars

C.1 Command Line Errors

Ccz2 Control File Errors

gf Low [Level Brrors

C-5 I"rucuss.,ing Errors and Warnings
. Operating System Errors :

Example Programs

: :)) ——— i T ST
. - o - - - _!____.._ —

Q1. C Development Kit

-~ Chapter 1: Using QE,C

This manual provides a functional description of an implementation of
the Lattice C compiler, a portable compiler for the high level
language called C, on the Sinclair QL computer. It makes
s either programming fundamentals or how to
program in C itsell. Extensive reference is made to the definitive text
“the C Programming Language”, by Brian W. Kernighan and
Dennis M. Ritchie (Prentice-Hall, Inc., Enghwood Cliffs, New Jersey,
{978}, which alse provides an excellent tutorial intr.Juction ta the
language. An allernative tutorial is "C at a Glance” by Adam Denning,

- published by Chapman and Hall

programming
na atlempt to discus

This manual is divided into six cections. This first desceribes the
operating instructions for using the compiler on the QL. The second
details the screen editor pravided as part of this development kit. The
third details the linker. The fourth section is a description of the
language accepled hy the compiler, which differs from the standard in
only a few miner details. The fifth section presents the portable library
functions in functional groups with calling zequences and examples. The
final chapter describes QL C's general strategy for code sencrition
Details of all error messages can be (osad in the appendices.

As this manual is intended to serve as a reference manual, each topie ic
usually presented in full technical detail as it is enceuntered. Sov
reforence to sections not yet cucountered is therefare unavoidable, 1

these references are specifically noted.

1.1 Lattice Con ﬁhe QL

The QL C compiler generates progrims o be executed on the Gl T
accepls Lext files containing programs written in the € progrismming
language and produces relocatable machine code in Sinclair fermat
which is then linked to produce an exccutable fiie.

