

QDOS / SMS

Reference Manual

0.0 Why this book

1.0 About this guide

2.0 Introduction to Qdos
2.1 Memory Map
2.2 Calling Qdos Routines
2.3 Exception Processing
2.4 Start-up

3.0 Machine-Code Programming
3.1 Jobs
3.2 SuperBASIC Procedures and Functions
3.3 Tasks
3.4 Operating System Extensions

4.0 Memory Allocation
4.1 Heap Management

5.0 Input/Output on the QL
5.1 Serial I/O
5.2 File I/O
5.3 Screen and Console I/O

6.0 Qdos Device Drivers
6.1 Device Driver Memory Allocation
6.2 Device Driver Initialisation
6.3 Physical Layer
6.4 The Access Layer

7.0 Directory Device Drivers
7.1 Initialisation of a Directory Driver
7.2 Access Layer
7.3 Slaving

8.0 Built-in Device Drivers
8.1 QL Floppy Disc Format
8.2 Direct Sector Read/Write
8.3 Additional Standard Device Drivers

9.0 Interfacing into SuperBASIC
9.1 Memory Organisation with the SuperBASIC Area
9.2 The Name Table
9.3 Name List
9.4 Variable Value Area
9.5 Storage Formats
9.6 Code Restrictions
9.7 Linking in New Procedures and Functions
9.8 Parameter Passing
9.9 Getting the Values of Actual Parameters
9.10 The Arithmetic Stack Returned Values
9.11 The Channel Table

10.0 Hardware-related Programming
10.1 Memory Map
10.2 Display Control
10.3 Display Control Register
10.4 Keyboard and Sound Control
10.5 Serial I/O
10.6 Real-time clock
10.7 Network
10.8 Microdrives
10.10 User and Supervisor Mode [ST]
10.11 The Interrupt System [ST]
10.12 The Midi Interruptserver [ST]
10.13 Different Processors [ST]
10.14 Different Machines [ST]
10.15 The ATARI DMA [ST]

11.0 Adding Peripheral Cards to the QL
11.4 Add-on Card ROMs

12.0 Non-English QLs
12.1 Video
12.2 Non-English-language Keyboards
12.3 Character Set
12.4 Special Alphabets

13.0 System Traps

14.0 I/O Management Traps

15.0 I/O Access Traps

16.0 Vectored Routines

17.0 New Concepts - Things
17.1 Extension Things
17.2 The HOTKEY System II
17.3 The Button Frame

18.0 Keys
18.1 Error keys
18.2 System variables
18.3 SuperBASIC variables
18.4.1 Offsets on BASIC Channel Definitions
18.4.2 BASIC Token Values
18.5 Job-Header and Save-Area Definitions
18.6 Memory Block Table Definitions
18.7 Channel Definitions
18.8 File System Definition Blocks
18.9 Device Driver Linkage Blocks
18.8.1 Microdrive Physical Definition Block
18.9.1 Screen Driver Data Block Definition
18.9.2 Serial Channel Definition Block
18.9.3 Network Channel Definition Block
18.10 Queue Header Definitions
18.11 Arithmetic Interpreter Operation Codes
18.12 IPC Link Commands
18.13 Hardware Keys
18.14 Trap Keys
18.15 List of Vectored Routines
18.16 Keys for Things
18.17 Keys for HOTKEY Thing

19. SMSQ
19.1 Language handling in SMSQ
19.2 Other additional Trap #1 calls
19.3 Additional Trap #2 calls
19.4 Additional Trap #3 calls
19.5 Cache Handling

Appendix

0.0 Why this book?
First of all, many people asked for documentation about QDOS. The QL Technical Guide is out of
print for some years, and it is impossible to get. The information is not up-to-date, and many
things are missing. The Thing System documentation and the HOTKEY System II won't be
modified too much in the future, so it makes sense now to explain how to use it. So that's why I
thought it could be useful to make a new 'Operating System Guide'.

It took weeks to get this text typed in, and it took even more time to format everything, update the
keys and text, and make sure that the text is as bug-free as possible. There will be typing-errors
in the text, I'm sure, and if you find any serious mistake, please write. But, please make sure it is
not a problem of your way of machine-code programming (QMON is quite helpful!). If you have
serious questions and you cannot find an answer, please do NOT write, just call! If you really
discovered a typing-bug, then you can write to

Jochen Merz Software Tel. 0203/502011
Im stillen Winkel 12 Fax 0203/502012
47169 Duisburg Mailbox 0203/502013
Germany

Also, if you have written a useful application pointer-program of larger size and use, and you
would like to see it distributed, then please send a copy of it to us. If it is a kind of program which
is really worth marketing and selling, we could probably do it.

I take the chance and write some lines for those people who always find fault with the price, so
I'm telling the story about QPTR: It was not half as hard to get the QPTR manual in a printable
form; the text files from QJUMP were in ASCII-format with control codes embedded. Still, it took
many, many days to get it converted into Text87 format, updated and printed. The update price
(including a new 160 page manual with binder) is £13.50 (less than just a disc-update price of
most other suppliers of computer software!), which leaves me about £6 after the costs for the
printing, binder etc. are subtracted. Okay, there are some new customers of the product, but most
orders are updates, and on the other side, there are advertising costs etc. If I double the number
of currently sold QPTRs and updates, and count that against the hours used for producing the
product, then this will result in less than 40 Pence per hour. Who would work for this? And, this
does not consider the time taken to produce the individual copy, just the master. The question,
why in the world do I spend my time, if it's not worth at all, is easy to answer: somebody has to
do it, because this documentation is the basic for every pointer-program, and we urgently need
new programs for the QL!!! This is also the reason for producing this book you are just reading: it
is important to know how to program the QL, to keep it staying alive!

Back to this book: it is a mixture of the Technical Guide, The HOTKEY System II, the THING
system, together with information about Level 2 device driver found in different hardware add-ons
for the QL and the QL-Emulator for the ATARI ST, as well as some information about the QDOS-
compatible operating systems SMS2 and SMSQ, and even more.

The keys used in this book are SMS-notation, as these keys are more meaningful then the keys
used in the QL Technical Guide. You will also find these keys in the QPTR package. They have
been introduced a few years ago, so it not only helpful but consistent. I decided not to put the old
keys in brackets, as it is more confusing than helpful. People using the old keys will have the
documentation; they probably do not need this book. People starting new projects should use the
new keys, and if they use the Pointer Environment, they have to do so anyway.

QDOS/SMS Reference Manual 10/08/95 Section 0 1

This manual describes features available on all machines where not told otherwise. It assumes
JS or MG or later ROMS. You may find some abbreviations in square brackets throughout the
manual, they tell about restrictions. In general, try to program your programs that they don't
collide with these restrictions. Where necessary, check software version and/or hardware to trap
crashes.

[QL] Only supported on QL, not on the QL-Emulator. This usually applies to
hardware features, especially microdrives or the direct programming of the
serial ports. These features may work on an emulator, but are not guaranteed.

[ST] Only supported on the QL-Emulator for the ATARI-ST. This usually applies to
hardware which does not exist on a QL. Will also work under SMS2 if it is
running on an ST.

[SMS] Needs the operating system SMS2 or SMSQ to be installed. Many features
marked with [SMS] will also work on Qdos running on a QL-Emulator, but this
is not guaranteed.

[SMSQ] Needs the operating system SMSQ or SMSQ/E to be installed, preferably in
the most recent version.

[not SMS2] This feature is not supported on SMS2, so better avoid it if you want to write
programs which run under all operating systems.

[DD2] Only supported on Level 2 Directory Device Drivers. This depends on the
hardware connected to your machine. Microdrives and old Floppy Disc drivers
are not Level 2, whereas the Drivers for the Miracle Winchester (for example),
or the RAM disc, Floppy Disk and Hard-Disk on the ST-Emulator (from Level C
onwards) are Level 2. Devices on SMS are minimum Level 2.

[DV3] Only supported on Level 3 Directory Device Drivers.
[EXT] needs some kind of extension to be installed. This could be the HOTKEY

System II, The Pointer Environment, or SuperToolkit II, for example. It could
also be built into a hardware expansion, e.g. Floppy-Disc-Controller. In general:
available for 'well equipped' users, especially QL-Emulator owners. Will be
available in SMS2.

[QDOS Vx.xx+] only supported from operating system versions x.xx onwards supported. Can
have unpredictable results on older versions.

Credits: Many thanks to Tony Tebby for his permission to use a lot of his documentation for this
book. Thanks also to a very helpful friend who checked the typing. Many thanks to all of those
users who keep on asking for documentation - they showed interest which made me think of
doing this book.

QDOS/SMS Reference Manual 10/08/95 Section 0 2

1.0 About this Guide
This guide describes the methods which may be used for machine-code programming on the QL.
Its contents are also relevant to compiler writers who must implement a run-time library for other
languages. This guide describes only those techniques which are specific to the QL. It does not
contain a general description of 68000 or 68008 assembly language programming: this
information can be obtained from a number of different sources. It is therefore, strongly
recommended that a reference book describing 68000 assembly language be consulted before
attempting to understand this guide.

The guide also gives details of how various peripherals such as hard disk interfaces, add-on
memory and ROM cartridges may be added on to the QL, with many details about how the firm-
ware for such devices should be written.

Readers may notice that there are no circuit diagrams or detailed explanations of the QL's inter-
nal hardware structure in this manual. This is because it is not necessary to have such infor-
mation in order to write software for the QL. Sinclair tried in the design of Qdos to provide you
with a stable interface to the machine through its operating system; everything you need is there
and so long as you build your products using the interface provided there is no danger that any
future upgrade of the QL will introduce an incompatibility with existing software products.
Programs using supported entries only will work fine on future versions of the operating system,
as well as on different hardware like the ATARI ST QL-Emulator or QXL card.

QDOS/SMS Reference Manual 18/04/95 Section 1

2.0 Introduction to QDOS / SMS
QDOS is the QL operating system. SMS is an advanced version, completely reprogrammed but
as compatible as possible. It is a single-user multi-tasking operating system: that is, it provides
the means for several independent programs to run concurrently in the QL, but does not provide
any mechanisms to prevent those programs from interfering with each other. Qdos can be
thought of as a collection of several things:

1. A set of useful routines for performing functions such as memory allocation, Input/Output,
etc.

2. A mechanism for maintaining lists of things to be done on interrupt, including the function of
allocating slots of CPU time to programs which require them.

3. A mechanism for starting up the computer, and determining the configuration of any add-on
hardware that is connected to it.

The QDOS mechanisms for start- up are described in section 2.4. Once start-up has been
performed, QDOS does not "run" in the sense that traditional operating systems run: its pieces of
code and data structures simply exist for programs to use. There is no QDOS "main program"
that maintains continuous control of the machine: the SuperBASIC interpreter, which takes the
place of the command line interpreter found in traditional operating systems, is simply a program
which runs on the QL and uses QDOS's facilities, albeit with a number of special provisions. It is
possible, and indeed commonly done, to destroy the SuperBASIC interpreter completely, and yet
still use all the facilities of the operating system.

Note that in this guide, hex numbers are preceded by a dollar sign ($) as used in the Motorola
assembly language format.

QDOS/SMS Reference Manual 18/04/95 Section 2 1

2.1 Memory Map
This section describes how Qdos maintains its RAM area. On the standard QL, the RAM starts
with the screen RAM at address $20000, and the area available to Qdos starts at $28000. In an
unexpanded QL, the RAM finishes at $3FFFF, whilst in a QL with expansion memory, the RAM
may go up as far as $BFFFF. The Qdos initialisation routine determines the amount of RAM pre-
sent and adjusts the position of its pointers accordingly.

In an ST, RAM may end up at $3FFFFF. The current version of QDOS supports only a maximum
RAM size of 4MB, so it can't be expanded any further.

The memory map is as follows:

SYS_ RAMT

SYS_RPABResident procedure area

SYS_TPAB Transient program area

SYS_SBAB SuperBASIC area

SYS_FSBB Free memory area
(used up for slave blocks
by the filing system)

SYS_CHPBCommon heap area

System management tables

System variables Base of system variables

Display RAM Base of RAM

2.1.1 Principles
There is no memory management hardware in the QL. This means that all code must execute
from fixed addresses in physical memory, and that a piece of code may not be moved after it has
been loaded into memory. For this reason, memory is usually allocated in fixed size areas which
remain in a fixed location until deleted. The SuperBASIC area is an important exception to this.

2.1.2 System Variables
The QDOS system variables are a block of memory containing information required by the ope-
rating system.

This block is normally located at address $28000, but is not fixed at this address in principle.
Applications programs should not rely on that fixed address, but should get the address of the
base of system variables by calling the SMS.INFO trap (see section 13.0).

Some of the system variables can usefully be monitored by applications programs, and some of
them can safely be altered. A complete list of the system variables, each with its size and offset
from the base of system variables, given in section 18.2.

Included in the system variables area are a set of longword pointers indicating the locations of the
other areas in the memory map.

QDOS/SMS Reference Manual 18/04/95 Section 2 2

2.1.3 System Management Tables
Immediately above the system variables are various tables used by QDOS to maintain the list of
jobs and various other pieces of information. The supervisor stack also resides in this area.

2.1.4 Common Heap Area
The Common heap area contains the channel definitions which are maintained by the I/O sub-
system, together with the working storage required by I/O drivers or programs. The allocation of
space in this area is carried out either by device drivers, when invoked, or directly by jobs. There
are two traps provided to allocate and release space in this area: SMS.ACHP and SMS.RCHP
(see Section 13.0). The heap allocations of a job are automatically released when the job is
removed.

The common heap is an example of the use of a general heap mechanism provided by QDOS,
which operates in the way described in the entry for SMS.ALHP in section 13.0.

The user code needs to retain one pointer to the free space in the heap. This is a long word and
is a relative pointer to the free space in the heap. When the heap has no free space, either
because it does not exist, or because it is full, this pointer is zero.

2.1.5 Free Memory Area
The free memory area is used by QDOS as a buffer memory for the Microdrives, or, if QDOS is
suitably extended, for other filing system devices. The area is structured as a collection of slave
blocks, that is, blocks which are associated with a physical block on medium. When memory is
allocated in another area which would encroach on the free memory area, QDOS must remove
one or more slave blocks. Before such a removal takes place, QDOS ensures that a true copy of
the information is present on the medium.

Whilst the common heap grows upwards into the free memory area, the areas above it grow
downwards into it. As there are three areas above it (the resident procedure area, the transient
program area and the SuperBASIC area), special provisions are made so that all three can grow
at the appropriate times.

2.1.6 SuperBASIC area
The SuperBASIC interpreter owns a special area located immediately above the free memory
area: this area is used for all the interpreter's storage requirements such as the SuperBASIC
programs, its variables, its table of I/O channels and the interpreter's working storage. This area
is noteworthy in that it can be moved by QDOS without the knowledge of the SuperBASIC
interpreter if an area above it needs to grow, or if the SuperBASIC area itself needs to shrink. Its
size may also be altered. The mechanism which makes such movement or alteration in size
possible operates as follows:

All references to the SuperBASIC area are made relative to the address register A6, and the
value of A6 on entry to the interpreter is adjusted by QDOS to the current base of the Super-
BASIC area (which is held in the system variable SYS_SBAB), offset by the length of the inter-
preter's job header (currently $68 bytes).

The SuperBASIC interpreter divides its working area into several portions, details of which may
be found by looking at the BV definitions in section 18.3. All of the pointers to these various
portions are also relative to A6.

QDOS/SMS Reference Manual 18/04/95 Section 2 3

2.1.7 Transient Program Area
The transient program area is the area of memory into which the user's applications programs are
loaded. Each job is allocated a block of memory in the transient program area, which it keeps
until it is deleted: this area is used for the job's code, data and stack. Programs loaded in this way
are not normally re-entrant, but it is relatively straightforward to use the mechanisms in the
system to set up a single piece of code which is shared by several different jobs with different
data areas.

There is no safe way of determining a priori where a program will be loaded, therefore programs
are normally position independent (see section 3.1 on jobs).

2.1.8 Resident Procedure Area
Memory allocated in this area is unavailable to the operating system. The system knows only two
things about the resident procedure area: how to allocate memory in it, and how to release it
completely. Both of these operations can only be carried out when there are no transient
programs in the machine, due to the fact that the transient program area cannot be moved.
Normally, the allocation is done immediately after start-up, and deallocation is never performed.

The area is normally used to load in machine code procedures and functions written to extend the
SuperBASIC language (see section 9.7), and occasionally for loading in the code of device
drivers when these are not located in ROM in an add-on device.

2.2 Calling QDOS/SMS Routines

There are two categories of QDOS routines available to the user: traps and vectored routines.
The mechanism for calling a routine is different for each of these two categories.

2.2.1 Traps
Traps are called using the 68008 TRAP #n instruction: on the QL, this has the effect of a
subroutine call to a defined location which has the side effect of saving the status register and
entering supervisor mode.

Of the sixteen trap numbers available on the 68008, numbers 0 to 4 inclusive are defined for use
by QDOS, the remainder being free for the user to redirect to his own routines. Roughly
speaking, the traps are utilised as follows:

TRAP #0 Special trap for entering supervisor mode.

TRAP #1 Manager traps - routines which perform overall control of the hardware and of
the operating system's resources.

TRAP #2 Input/ Output management traps (I/O traps which allocate resources).

TRAP #3 Input/ Output traps which do not allocate resources.

TRAP #4 Special trap for the SuperBASIC interpreter.

Traps are called by setting up any required parameters in registers A0-A3 and D1-D3, setting up
the code for the required trap in D0 (usually with a MOVEQ instruction), then executing the TRAP
instruction. Trap routines do not affect D4 to D7 or A4 to A6. There are, however, a few defined
cases which are exceptions to this.

QDOS/SMS Reference Manual 18/04/95 Section 2 4

When the TRAP operating is complete, control is returned to the program at the location following
the TRAP instruction, with an error key in all 32 bits of D0. This key is set to zero if the operation
has been completed successfully, and is set to a negative number for any of the system-defined
errors (see section 17.1 for a list of the meanings of the possible error codes). The key may also
be set to a positive number, in which case that number is a pointer to an error string, relative to
address $8000. The string is in the usual QDOS form of a word giving the length of the string,
followed by the characters.

Note that all traps can return the error code ERR.IPAR (for invalid parameter). Note also that the
condition codes may not be set according to the error code on return from a trap, thus a program
wishing to detect an error should execute a TST.L D0 instruction immediately after the TRAP
instruction.

Details of all the QDOS traps are given in sections 13.0-15.0.

2.2.2 Vectored Routines
In addition to the routines accessed by traps, there are several utility routines which are available
to the applications program: their addresses are held in a vector table which is located in the
ROM starting at address $C0. A vectored routine can be accessed by the following code:MOVE.W VECTOR_ADDRESS,AnJSR (An)
where VECTOR_ADDRESS is the address of the vector table entry, and An is a suitable address
register which is not required by the particular routine on entry.

There are some exceptions to this technique: for some vectored routines, the code is:MOVE.W VECTOR_ADDRESS,AnJSR $4000(An)
The entries in section 16.0 for vectored routines which require this treatment are suitably marked.

There are no general rules covering the handling of errors in vectored routines. Some routines
return an error code in D0 in the same way as traps, but others use the technique of returning to
one of a set of alternative return addresses. An example is the vectored routine MD.RDHDR,
which returns to the location after the call if there is a "bad medium" error detected, to the
address 2 bytes later if there is a "bad sector header" error detected, and to the address 4 bytes
later for a correct completion. Thus the correct code to trap these errors would be:MOVE.W VECTOR_ADDRESS,AnJSR $4000(An)BRA.S BAD_MEDIUM_ERRORBRA.S BAD_SECTOR_ERROR
* Code for processing a correct return starts here

"BAD_MEDIUM_ERROR
* Code for processing a bad medium error starts here

"BAD_SECTOR_ERROR
* Code for processing a bad sector error starts here

QDOS/SMS Reference Manual 18/04/95 Section 2 5

Obviously, a similar mechanism can be used with any number of error returns (including zero or
one).

Complete details of the vectored routines are given in section 16.0, including information about
the behaviour of each routine when an error occurs.

2.2.3 Atomic Actions
In general, system calls are treated as atomic: while one job is in supervisor mode, no other job
in the system can take over the processor. This provides for resource table protection without the
need for complex procedures using semaphores. If a job needs to execute some action other
than a single system call into which no other job must be allowed to intervene, it should enter
supervisor mode before entering the code which performs this action. Supervisor mode is entered
using TRAP #0. The stack pointer only is changed by this trap.

A job should only use 64 bytes on the supervisor stack, and all of the space used on this stack
must be released before exiting supervisor mode. In general, there should be nothing on the
supervisor stack when a manager trap is made.

Some system calls are only partially atomic, that is, when they have completed their primary
function, some other job may gain a share of CPU time before control returns to the calling job.
These partially atomic system calls must not be made from a job in supervisor mode. All of the
scheduler calls (i.e., TRAP #1 with D0 = 4, 5, 8, 9, $A, $B) fall into this category, as do all the I/O
calls (TRAP #3), unless immediate return (timeout=O) is specified.

A piece of code in supervisor mode can be interrupted by the frame (50/60 Hz) or external
interrupts, so care must be taken, when writing interrupt servers, that the system' s internal data
structure is not modified, directly or indirectly, by system calls. In practice, since interrupt servers
tend only to be moving data into or out of queues, this is not a serious limitation.

2.3 Exception Processing

There are three categories of exception traps on the 68008: user traps, traps for software error
conditions, and traps for hardware interrupts. There is also one special hardware trap called "bus
error", which can be used to trap bad conditions on the address bus: this trap is not supported by
the QL hardware.

User traps 0 to 4 inclusive are treated as defined in sections 13.0 through 15.0.

User traps 5 to 15 inclusive, together with the software error traps for "address error", "illegal in-
struction", "divide by zero", "check array", "trap on overflow", "privilege violation" and "trace" are
redirectable by the user on a per-job basis: see the entry for SMS.EXV in section 13.0.

Traps and exception vectors which are not used by QDOS may be redirected through a table
which is set up by particular job.

If a job has set up a table of trap vectors for itself, then that table will automatically be used when
that particular job is being executed. The vector tables used by other jobs will not be affected. A
job set up by, even if not owned by, a job which has set up a table of trap vectors, will use the
same table as that job, until it is redefined.

If the job ID is a negative word, then the table will be set up for the calling job.

QDOS/SMS Reference Manual 18/04/95 Section 2 6

The table is in the form of a long word address for each trap or exception. They are in the
following order:

$00 address error
$04 illegal instruction
$08 zero divide
$0C CHK
$10 TRAPV
$14 privilege violation
$18 trace
$1C interrupt level 7
$20 trap #5
$24 trap #6
$28 trap #7
$2C trap #8
$30 trap #9
$34 trap #10
$38 trap #11
$3C trap #12
$40 trap #13
$44 trap #14
$48 trap #15
$4C end of table

All interrupts on the QL are auto-vectored, therefore there is no treatment of the 68008 vectored
interrupt traps. Interrupts generated by the QL internally are level 2 auto-vectors: the interrupt
handling mechanism includes the facility for detecting an interrupt on the EXTINTL (external
interrupt, active low) line in the QL's expansion port.

It is also possible to generate a level 7 (non-maskable) interrupt: the treatment of this can also be
redirected on a per-job basis. Pressing CTRL-ALT-7 on the keyboard generates a level interrupt
and also resets all communications with the IPC: a suitable interrupt handler could be written to
perform a warm start on the system to allow partial recovery from a crash.

2.4 Start-up
The first thing that QDOS does when the system is reset is to execute a RAM test. This test
determines the amount of contiguous RAM present, and if there is any RAM failure, hangs up the
machine.

QDOS then initialises the system variables, the system management tables, and the Super-
BASIC area.

The address $C000 is then checked by QDOS for the characteristic longword $4AFB0001: if this
is found, QDOS links in the SuperBASIC procedures contained in the ROM, prints out the name
of the ROM, and performs a JSR to its initialisation point (details of the correct format of the ROM
are found in section 11.4). It is perfectly in order for the code in this ROM to take over the
machine completely and never return to the system, for example if another operating system
were being booted.

QDOS then does the same for the other ROMs in the expansion slots.

If all of these ROMs return control to QDOS, the next action is to try to open a device driver
"BOOT": if this is found, its contents are loaded as a SuperBASIC program and executed. If no
device driver "BOOT" has been linked in, QDOS attempts to find a file "MDV1_BOOT" and load
and execute its contents as a SuperBASIC program. If both of these attempts fail, QDOS starts
up the SuperBASIC interpreter with an empty program memory.

QDOS/SMS Reference Manual 18/04/95 Section 2 7

3.0 Machine Code Programming
Four types of machine code are available to program the Ql, each being used to perform quite
different operations: jobs, SuperBASIC procedures and functions, tasks, and the operating
system or extensions to it. Thus there are several differences in both the form in which they are
written, and the way in which they are treated by Qdos.

3.1 Jobs

Most application programs written in machine code or compiled code will be in the form of jobs. A
job is an entity which has a share of machine resources: it has a priority which allows it to claim
time-slots of CPU activity, and it has a fixed-size area of memory where data and code can be
stored: code normally starts at the bottom of the area, and data at the top. This area is located
somewhere in the transient program area.

Note that the command interpreter is itself a job but with the exceptional characteristic that its
data area is expandable.

A job also has the ability to own I/O channels or other jobs. There is no protection between jobs
under Qdos, so that channels are available for use by all jobs. Ownership simply implies that
when the owner of a channel or job is deleted, the owned channel or job is deleted also (this
process continues recursively).

Jobs have three well-defined states: they are active, sharing CPU resources with other jobs; sus-
pended, for example, waiting for I/O or another job; or inactive, occupying memory but not
capable of using CPU resources.

The priority of a job can be zero, in which case it is suspended, and does not consume CPU time.
It can in fact be suspended for its entire lifetime and never execute at all, which would be the
case if it was simply used as a means of obtaining some memory into which data could be
loaded. A job at any other priority level is active.

When a job is started, two parts of its area of memory have defined meanings: the bottom of the
code area, and the stack, which is at the top of the data area. It is the programmer's responsibility
to set up the bottom of the code area, which should be in the following form for use by Qdos
utilities:JMP.L JOB_STARTDC.W $4AFBDC.W JOB_NAME_LENGTHDC.B 'Name of job' (word-aligned)JOB_START* Code begins execution here (assuming that the* start address defined when the job was created was zero)
On the first occasion that a job is activated, (A6) points to the base of the job area, (A6,A4) points
to the bottom of the data space, and (A6,A5) points to the top of the jobs area. There may be
some information on the stack, which will be in the following form: (A7) points to the number of
channels which have been opened for the job before it was activated; above this is a sequence of
longwords holding the channel IDs, and above these are a command string which may have been
passed to the job. It is the programmer's responsibility when starting a job to set up this
information: the SuperBASIC EXEC, EXEC_W commands and any utilities produced by Sinclair
are compatible with this form.

QDOS/SMS Reference Manual 06/03/97 Section 3 1

(A6,A5) | Command string length(word) + bytes || || Channel ID long || Channel ID long || " || " || Channel ID long || |(A7) | Number of Channel IDs word || |(A6,A4) | Data area || || Code area || || Job name length(word) + bytes || || $4AFB word || |(A6) | JMP.L JOB_START |
Note that the normal sequence in Qdos is as follows:

1. reserve space for a job;
2. load its code in;
3. open its channels;
4. activate it.

Execution begins at an address specified when the job was created. This is normally specified as
zero, which is why the first thing in a job is normally a JMP.L instruction to the entrypoint of the
code. Since Qdos cannot give guarantees as to where a job will be loaded, it is usual to write
jobs as position-independent code, although it is possible to avoid this constraint if a special relo-
cating loader is used after the space for the job has been allocated.

The system job table holds information about the jobs within the system. The system variable
SYS_JBTB points to the base of the job table, and SYS_JBTT points to the top. The table is a
series of longwords each of which points to a job control block: the contents of this are described
in section 18.5. The job is identified to the system by its JOB ID: this is a longword consisting of a
word giving its position in the job table (in the least significant word), and a word of tag allocated
by the operating system when the job is created (in the most significant word).

The traps that may be called relating to jobs are as follows:

SMS.INFO returns the current job ID, plus miscellaneous information
SMS.INJB returns the status of a job
SMS.CRJB creates a job
SMS.RMJB removes an inactive job
SMS.FRJB forces removal of a job (whether inactive or not)
SMS.FRTP finds the largest space available for a job
SMS.EXV sets the trap-vector table for a job
SMS.SSJB suspends a job
SMS.USJB releases a job
SMS.ACJB activates a job
SMS.SPJB changes the priority of a job

A job terminates itself by calling SMS.FRJB with its own job ID (or -1, which always refers to the
current job).

QDOS/SMS Reference Manual 06/03/97 Section 3 2

3.2 SuperBASIC Procedures and Functions

The SuperBASIC command interpreter is job number zero. It behaves like all other jobs in most
respects, with the important exception that it owns a special data area which is expandable, and
may be moved without the knowledge of the interpreter. This area is located immediately below
the transient program area.

Machine code procedures and functions which are added to SuperBASIC appear to the user to
be identical to those which are built into the ROM. From the user's point of view they are routines
which are executed from within job number zero, but which have certain constraints on the way
they are coded.

The most important constraint is that A6 is used to point to the (moveable) base of the Super-
BASIC data area. The system may move the area and change the value of A6 between
instructions without the knowledge of the interpreter, therefore A6 must not be modified within the
procedure or function, and its value must not be stored or used in calculation. This constraint may
be side-stepped by entering supervisor mode, but A6 must then be restored on exit back to user
mode (the processor is in user mode when a procedure or function is entered). The stackpointer
A7 must of course be restored to its original value before exiting from the procedure.

On exit from the procedure, an error key is passed to the interpreter in D0.L: this must be set to
zero if there was no error. The procedure or function can then be exited using an RTS statement.

If machine code procedures or functions are to be used either recursively or in recursive Super-
BASIC procedures, they must obey the usual constraints of having no local variables and no self-
modifying code.

Machine code procedures and functions are normally loaded into the resident procedure area
above the transient program area. This area can only be expanded or deleted when the transient
program area is empty, which is normally immediately after the machine is booted.

Trap #4 is the one special trap which relates to SuperBASIC procedures and functions. This trap
is used to make the addresses passed to an I/O trap relative to A6, which is necessary when
working with the SuperBASIC variables area. It only affects the following trap, and must therefore
be called before each trap whose addresses are to be modified.

Details of parameter passing, function returns and other useful information about the Super-
BASIC interface are given in section 9.0.

3.3 Tasks

Tasks are special pieces of code invoked under interrupt, usually as part of the physical layer of a
device driver. They obey special rules according to the precise conditions under which they are
called: these rules are described in the sections on device drivers (sections 6.0-8.0). The
important restriction on tasks is that they must not allocate or release machine resources: this
should only be done from within a job, or within the access layer of a device driver.

3.4 Operating System Extensions

Some parts of user-defined device drivers do not fit into any of the above categories: they are
special routines called from within a job via the Qdos Input/ output sub-system (see section 6.0).
These routines have their own rules, and these are described in the sections on device drivers
(sections 6.0-8.0).

QDOS/SMS Reference Manual 06/03/97 Section 3 3

3.5 Special Programs

Special Programs have, like standard jobs, the value $4AFB in bytes 6 and 7. This is followed by
a standard string (length in a word followed by the bytes of the program identification). This is
followed by a further value of $4AFB (aligned on a word boundary). When the program has been
loaded, the option string put on the jobs stack and the input pipe (if required) opened and its ID
put on the job's stack, then EX will make a call to the address after the second identifying word.
Note that the code call will form part of a Basic procedure, not part of an executable program.

| |
| Special Program |
| |
| Call parameters Return parameters |
| |
| D1-D3 D1-D3 ??? |
| D4.L 0 or 1 if there is an input pipe D4 ??? |
| ID is not on stack |
| D5.L 0 or 1 if there is an output pipe D5 nr. of channel ID's on stack |
| ID is on stack |
| D6.L job-ID for this program D6 ??? |
| D7.L total nr. of pipes and filenames D7 ??? |
| |
| A0 address of support routines A0 ??? |
| A1 pointer to command string A1 ??? |
| A2 A2 ??? |
| A3 pointer to first filename (name table) A3 ??? |
| (relative to A6) * |
| A4 pointer to job's stack A4 |
| A5 pointer beyond last filename (name tab.) A5 ??? |
| (relative to A6) * |
| A6 base pointer A6 preserved |
| |
| Error returns: any standard returns |
| |

The entries marked with * are relative to A6 (standard SuperBASIC procedure passing registers,
see Section 9.8).

The file setup procedure should decode the filenames, open the files required and put the IDs on
the stack (A4). D5 must be incremented by the number of channel IDs put on the job's stack.

The routine (A0) to get a filename should be called with the pointer to the appropriate name table
entry in A3. D0 is returned as the error code, D1 to D3 are smashed. If D0 is 0, A1 is returned as
the pointer to the name (relative to A6). If D0 is returned positive, A0 is returned as the channel
ID of the SuperBASIC channel (if the parameter was #n), all other address registers are
preserved.
The routine 2(A0) to open a channel should be called with the pointer to the filename in A1
(relative to A6). The filename should not be in the Basic buffer; D3 should hold the access code
and the job ID (as passed to the initialisation code) should be in D6. The error code is returned in
D0, while D1 and D2 are smashed, and A1 is returned pointing to the filename used (it may have
a defualt directory in front). If the open fails, A1 will point to the default+given filename. The
channel ID is returned in A0 and all other registers are preserved.
In both cases the status register is returned set according to the value of D0.

QDOS/SMS Reference Manual 06/03/97 Section 3 4

QDOS/SMS Reference Manual 06/03/97 Section 3 5

4.0 Memory Allocation

Memory is allocated differently in each area of the Qdos memory map.

* Memory in the resident procedure area is allocated using the trap SMS.ARPA.

* Memory in the transient program area is allocated by the mechanisms described in section
13.0 for creation and deletion of jobs. The vectored routines MEM.ALHP and MEM.REHP may be
used within a job to perform primitive heap allocation inside that job's own data area.

* Memory in the SuperBASIC area is allocated by various mechanisms. The traps
SMS.AMPA and SMS.RMPA are used by the interpreter to change the size of the entire area, but
are not normally used by anything else. The vectored routine QA.RESRI is used to allocate space
on the arithmetic stack: the interpreter itself cleans up this space on return from a procedure or
function. Space in the remaining parts of the SuperBASIC area is usually allocated by the
vectored routines being used to perform the operations that require the space, so that this
allocation is invisible to the user, except that it usually results in a modification of the value of A6.

* Memory in the free memory area is not allocated or deallocated by the user, except by the
slave block mechanisms defined in section 7.0 on directory device drivers.

* Memory in the common heap is allocated and released by the traps SMS.ACHP and
SMS.RCHP. The area allocated in this way by a job is released when that job is deleted. The
same mechanisms can be accessed from within device drivers via the vectored routines
MEM.ACHP and MEM.RCHP.

4.1 Heap Mechanism

The mechanism for allocating and releasing space are common to various routines. They are as
follows:

A heap is an area of memory which contains a linked list of used heap items, and a linked list of
free heap items. Each heap item is an area of memory (which is a multiple of 8 bytes long),
together with a pair of longwords: the first is the length of the heap item, while the second is a
pointer (relative to itself) to the next heap item in the list. The use of relative pointers ensures that
heaps may be moved.

A heap is set up by linking an area of ram -> memory into a non-existent heap (free space pointer
= 0). A heap is expanded by linking an area of ram -> memory, preferably but not necessarily,
contiguous with the current top of the heap, into the heap.

Provided the user code can remember the length of a heap item, all of the memory in it may be
used by the code. On allocation of the heap item, the first long word holds its length, and so, if
desired, this may be retained by the user code.

The user code requires to keep one pointer to the first free space item in the heap. This is a long
word, and is relative. When the heap has no free space, either because it does not exist, or
because it is full, this pointer is zero.

Releasing a heap item adds it to the list of free space items within the heap, and consolidates it
with adjacent free spaces where appropriate.

QDOS/SMS Reference Manual 18/04/95 Section 4

5.0 Input/ Output on the QL

A QL program uses I/O by accessing Qdos. The IOSS in turn accesses the device driver for the
appropriate device. The device driver is a piece of code which can perform low- level I/O routines
for a particular device: that device may correspond to a piece of hardware, such as a serial port,
or it may be some notional device occupying a piece of memory, such as a pipe, which is a
communication channel between jobs.

QL I/O is performed through the IOSS using an I/O channel. The applications program opens a
channel by passing a device name to the IOSS, which returns a channel ID. The IOSS and the
built-in device drivers have the ability to recognize qualifiers appended to the actual name of the
device which can direct the open operation in particular ways, such as identifying a file name, or
selecting some hardware option. The program then uses the channel ID to identify to the IOSS
which channel it wishes to access when performing read or write operations on it. It can also
close the channel, passing the channel ID to the IOSS. There may be several channels open
which use the same device driver, such as multiple screen windows, or Microdrive files. For this
reason, all the built-in drivers are re-entrant, as must user-defined drivers if they are to have the
same capability.

The QL ROM contains drivers for several devices such as screen windows, serial ports. pipes,
microdrives, and so on. The user can add his own device drivers for pieces of add- on hardware,
or simply for additional functions with the existing hardware.

Note that a channel ID is not the same thing as a SuperBASIC channel number (denoted by #
expression): the latter is the index of an entry in the SuperBASIC channel table which includes a
channel ID. See sections 18.4 and 18.7 for details of the channel table.

QDOS/SMS Reference Manual 18/04/95 Section 5 1

5.1 Serial I/O

All device drivers have, at the very least, the capability to perform serial I/O: that is, the
operations of reading bytes, writing bytes, and testing for pending input. Serial I/O is completely
byte-oriented - unlike many operating systems there is no inbuilt record structure, which means
that the user is free to superpose his own record maintenance in whatever form he wishes. I/O
which is purely serial is completely redirectable: when different devices are being used, the
device name passed to the channel open trap is the only thing that changes.

The IOSS supports one control character only, this being the newline character, which is ASCII
10 ($0A). Whilst this has the disadvantage that one cannot directly store files of graphics
commands which can be retrieved by a simple copy, it does have the advantage that files
containing arbitrary sequences of bytes cannot do irretrievable damage to the system by being
copied to a device for which they were not intended. The serial driver has the option of supporting
ASCII 13 as a newline, and ASCII 26 (CTRL-Z) as an end of file marker.

All serial I/O calls support a time-out feature, which may be zero (return immediately), indefinite
(wait until the operation is complete), or finite (wait until the operation is complete, or for a set
time, whichever is the sooner). This last feature makes it very easy to write code which, for
example, puts up a menu only if the user hesitates.

The IOSS supports the following calls for serial I/O:

IOA.OPEN opens a channel
IOA.CLOS closes a channel
IOB.TEST tests for pending input
IOB.FBYT fetches a single byte
IOB.FLIN fetches a line of bytes terminated by newline (ASCII 10)
IOB.FMUL fetches a string of bytes
IOB.SBYT sends a single byte
IOB.SMUL sends a string of bytes

The fetch and send traps have several special meanings when used in conjunction with screen or
console channels: for a more detailed description of these, see section 15.0 on I/O Traps.

For the fetch byte and fetch string traps, characters read from the keyboard are not echoed in the
associated window, and cursor handling is left to the applications program.

QDOS/SMS Reference Manual 18/04/95 Section 5 2

5.2 File I/O

Qdos files appear to the applications program as arrays of bytes on a physical device, with an
associated file pointer which gives the "current position" in a file. A file also has a header, which
is normally 64 bytes long containing information about the file such as its name, length, etc.
Further details concerning the format of the file header are given in section 7.0 on Directory
Device Drivers.

The open call to a file system device supports several modes: old (exclusive), old (shared), or
new (exclusive). New (overwrite) mode has a slot allocated in the open keys, but is not currently
supported for Microdrives. In addition, a special open key indicates that it is desired to open the
directory of the medium for reading rather than a particular file; the directory cannot be explicitly
written, but is maintained by the device driver when open calls and deletions are made.

Qdos supports a system of slaving, whereby 512-byte blocks of data are buffered in the free
memory area (see section 4.0): all unused memory being taken for this area. The filing system
may return from a write operation when that operation has only been performed on the slave
block concerned; Qdos will later force the system to convert that slave block into a true copy of
the data on the physical device. As a result of this mechanism, add-on filing devices normally
support 512-byte logical blocks: however this blocking system is transparent to the applications
program. A single slave block table is shared by all the directory drivers which want to use it to
improve their performance.

In addition to the serial I/O operations described above, Qdos supports the following operations
for file-system devices:

IOA.FRMT formats a sectored medium
IOA.DELF deletes a file
IOF.CHEK checks all pending operations on a file
IOF.FLSH flushes buffers for a file
IOF.POSA positions the file pointer absolutely
IOF.POSR positions the file pointer relatively
IOF.MINF gets information about the mounted medium
IOF.SHDR sets the file header
IOF.RHDR reads the file header
IOF.LOAD loads a file into memory
IOF.SAVE saves a file from memory

The IOF.FLSH and IOF.TEST commands are subtly different: IOF.FLSH ensures that all write
operations are complete, whereas IOF.TEST ensures that all write and read operations (including
prefetches) are complete.

QDOS/SMS Reference Manual 18/04/95 Section 5 3

5.3 Screen and Console I/O

The keyboard and screen devices are treated in a special way by Qdos, and have a large number
of functions in addition to those available for purely serial I/O devices. Two types of device are
supported: scr (for screen), which is a screen window, and con (for console), which is a screen
window with an associated keyboard channel. The three channels #0, #1 and #2 which are
opened by SuperBASIC are all console channels.

5.3.1 Display Modes
The QL has two display modes (see the Concepts manual for details). The display mode can be
set or read using the SMS.DMOD trap, but as this trap clears all screen windows, it should be
used with great care. A program can also find out whether the user selected TV or monitor at
switch-on by inspecting the value of the system variable SYS_DTYP, which is unfortunately
smashed by the MODE command on standard QLs.

There are two main coordinate systems used for screen I/O: these are the graphics coordinate
system and the pixel coordinate system (see the Concepts manual for details). Note that in 256-
pixel mode and for several commands in 512-pixel mode, the least significant bit of a dimension
in the x-direction is ignored, so that a given pixel address refers to the same location in both
modes. Some traps refer to character coordinates: these are based on the pixel coordinate
system but are scaled by the current character spacing for the window.

5.3.2 Window Properties and Operations
A window is an area of screen which may be in any position on the screen, subject to the
restriction that its x-position must be an even number. A window may be of any size that does not
run off the edge or bottom of the screen, subject to the same restriction. Windows may overlap,
but the system does not store or retrieve the area of overlap, it being the user's responsibility to
ensure that any information is not lost or garbled.

Each window will have its own particular set of characteristics: a border width, a border colour, a
paper colour, a strip colour, an ink colour, a cursor position, a cursor increment, a flag which says
whether the cursor is suppressed, a pair of font pointers, information about newline treatment,
and graphics information. Details of the window definition block are given in sections 18.7 to
18.10.

The special traps for dealing with windows are as follows:

IOW.PIXQ returns window information in pixel coordinates
IOW.CHRQ returns window information in character coordinates
IOW.DEFB set the border width and colour
IOW.DEFW redefines a window
IOW.ECUR enables the cursor
IOW.DCUR suppresses the cursor
IOW.SCRA scrolls a whole window
IOW.SCRT scrolls the top part of a window
IOW.SCRB scrolls the bottom part of a window
IOW.PANA pans a whole window
IOW.PANL pans the line the cursor is on
IOW.PANR pans the the right-hand end of the line the cursor is on
IOW.CLRA clears a whole window
IOW.CLRT clears the top part of a window
IOW.CLRB clears the bottom part of a window
IOW.CLRL clears the line the cursor is on
IOW.CLRR clears the right-hand end of the line the cursor is on
IOW.RCLR recolours a window

QDOS/SMS Reference Manual 18/04/95 Section 5 4

IOW.SPAP set the paper colour
IOW.SSTR set the strip colour
IOW.SINK set the ink colour
IOW.BLOK fills a rectangular block in a window
IOW.SOVA set the character writing or plotting mode

5.3.3 Screen Character Output Operations
Newline characters receive slightly different treatment when bytes are being sent to a screen or
console channel rather than to any other device. In addition to being caused by a newline
character, a newline is automatically inserted when the cursor reaches the right-hand side of the
window; when this happens during an IOB.SBYT trap, the error code ERR.ORNG (for out of
range) is also returned.

If the cursor is suppressed, the newline is held pending. It can be cleared by any call to position
the cursor, or activated by any of the following events:

send another byte or string;
changing the character size;
activating the cursor;
requesting the cursor position.

This features allows the right-hand character squares to be used without generating stray blank
lines.

The following additional operations apply to screen character output:

IOW.FONT sets or resets the character fount
IOW.SFLA sets or resets hardware flash (256-pixel mode only)
IOW.SULA sets or resets underlining
IOW.SSIZ sets the character size and spacing

5.3.4 Graphics Operations
The QL can perform line, arc or ellipse drawing on a window basis in scaled coordinates. It also
provides a primitive area flood routine. The traps are as follows:

IOG.DOT draws a point
IOG.LINE draws a line
IOG.ARC draws an arc
IOG.ELIP draws an ellipse
IOG.SCAL sets the scale
IOG.SGCR moves the graphics cursor
IOG.FILL set or reset area filling

5.3.5 Special Properties of Console Channels
For the console device, the IOB.FLIN trap behaves in a particular fashion: the characters typed
are echoed in the console window, and the left and right cursor keys (with or without CTRL) are
used to edit the line in the standard way. In addition, the cursor is automatically enabled.

An additional trap, IOB.ELIN, is provided for console channels, which invokes the line editor on a
pre-defined string. The line-editor may be exited by typing ENTER, or by typing either the cursor-
up or the cursor-down character.

QDOS/SMS Reference Manual 18/04/95 Section 5 5

The user can temporarily suspend screen output to a console channel by typing the freeze screen
character (CTRL-F5). Output is resumed when any character is typed, but the character is
ignored for all other purposes. If a finite time-out has been set for the suspended operation, it
may return non-complete if the screen is frozen past the time-out period.

5.3.6 Special Keyboard Functions
Several console channels may be open at the same time. If they are used by different jobs, it
may be that more than one console channel is expecting input at a given time. When this occurs,
the user may cycle round the list of console channels currently expecting input by typing the
change queue character on the keyboard. The cursor in the console window to which keyboard
input is currently directed will flash if it is enabled. Any enabled cursors in other windows will be
steady.

The change queue character is normally CTRL-C (ASCII 3). It can be changed by modifying the
system variable SYS_SWTC.

The keyboard maintains a type-ahead queue of seven characters in the 8049 processor which
controls it. In addition to this, there may be more type-ahead in the queue for each console
channel.

The keyboard auto-repeats on all keys except the keyboard change queue character, CTRL-
Space (the SuperBASIC BREAK) or CTRL-F5 (the freeze screen character). However, auto-
repeat will not occur unless the type-ahead queue for the console channel to which input is
currently directed is empty. The delay before auto-repetition begins is held in the system variable
SYS_RDEL, and the interval between repetitions is held in SYS_RTIM (both in multiples of
1/50th or 1/60th of a second). These can be altered by a program.

When CAPSLOCK is pressed, the system will jump to a user-supplied routine whose absolute
address is held in the system variable SYS_CSUB if the value of this is non-zero. This routine
should restore all registers to their initial state before returning.

5.3.7 Extended Operations
A special trap IOW.XTOP is provided to allow a program to invoke a user-supplied routine using
the same environment that is passed to the routines in the screen driver. See the description in
section 15.0 (I/O Traps) for a more detailed discussion of this trap.

QDOS/SMS Reference Manual 18/04/95 Section 5 6

6.0 QDOS Device Drivers
A user-supplied Qdos device driver is a collection of routines which allow an applications program
to perform IOSS functions on a user-supplied device in the same way as such functions are
performed on the devices built into the system. As these routines are linked into the system's lists
in front of the corresponding system routines, they may be used to replace the system routines.
At the very least, the device driver contains a set of routines for opening a channel, closing a
channel, and performing serial I/O on that channel: these routines are called via the IOSS as part
of the job that is performing the I/O. The driver may also include one or more tasks, that is,
routines performed asynchronously with the calling job, usually under interrupt.

Such tasks, which are known as the physical layer of the device driver, normally communicate
with the rest of the device driver, which is known as the access layer, using asynchronous
queues. these queues are usually polled by the task at regular intervals, either on every occasion
the scheduler is entered, or on every 50/60 Hz polling interrupt.

Drivers for file system devices use a slightly different, and more general, mechanism: this is
described in section 7.0.

Both drivers and tasks are linked in to lists provided by the operating system. the following traps
are used to add and remove items from those lists:

SMS.LEXI links in an external interrupt service task
SMS.LPOL links in a 50/60 Hz polling service task
SMS.LSHD links in a scheduler loop task
SMS.LIOD links in a device driver to the I/O system
SMS.LFSD links in a directory device driver to the file system

SMS.REXI, SMS.RPOL, SMS.RSHD, SMS.RIOD and SMS.RFSD remove these links.

The QL provides several utility routines which are useful for various actions commonly performed
in device drivers, such as decoding a device name, performing queue operations, etc.

QDOS/SMS Reference Manual 10/08/95 Section 6 1

6.1 Device Driver Memory Allocation

Device drivers allocate memory in two areas: the device driver definition block and the channel
definition block. The device driver definition block belongs to the driver itself, and is allocated by
the code which sets up the driver when it is initialised and linked into the various lists. The
channel definition block belongs to each I/O channel, and is allocated by the driver itself when a
channel is opened. Various parts of the channel definition block are thereafter used by the IOSS
for its own purposes.

In theory, the access layer can allocate space on the heap at other times: in practice this is not
usually required. The whole system can be made re-entrant to allow several channels to be open
with the same device driver and the same device driver definition block, but with different channel
definition blocks.

Note that the system will certainly crash if the area of a channel definition block is deallocated
and used for something else before the channel is closed, or if the area of a device driver
definition block is deallocated and used for something else before the device driver is removed
from the system`s lists, for example if the device driver definition block is in a transient program
which is force-removed. This possibility can be obviated by allocating the block in the common
heap with a job number of zero, or by allocating it in the resident procedure area.

Tasks must not allocate or release memory: this must be done for them by the access layer, or by
the device driver initialisation code.

6.2 Device Driver Initialisation

The code to initialise a device driver must first allocate the space for the device driver definition
block, usually by allocating some space in the resident procedure area, although any of the
normal allocation mechanisms may be used.

The device driver definition block will normally have the following structure, assuming that A3 has
been made to point to it:

$00(A3) Link to next external interrupt routine
$04(A3) Address of external interrupt routine
$08(A3) Link to next poll interrupt routine
$0C(A3) Address of poll interrupt routine
$10(A3) Link to next scheduler loop routine
$14(A3) Address of scheduler loop routine
$18(A3) Link to access layer of next device driver
$1C(A3) Address of input/output routine
$20(A3) Address of channel open routine
$24(A3) Address of channel close routine
$28(A3) Any further workspace required for the device driver

The initialisation code should fill in the addresses of the open, close and I/O routines, together
with those of any of the routines for tasks that it will be employing. It should also fill in any preset
data required in the remainder of the workspace.

Finally, the link routines described above should be called to include the driver in the operating
system`s lists.

Note that the structure of the first 24 bytes of the device driver definition block is not mandatory;
however it is desirable from the point of view of consistency that it be kept the same. The
comments in later sections about the base of the device driver definition block being passed to
the driver are only valid if the above structure has been used.

QDOS/SMS Reference Manual 10/08/95 Section 6 2

6.3 Physical Layer

The physical layer tasks are normally the ones which perform actual I/O under interrupt or polled
control. They usually take data out of queues or put data into queues, the other end of such
queues being maintained by the access layer.

When the operating system calls one of the tasks in the physical layer, it passes the task a
standard set of values in some of the registers. These values are as follows:

| |
| Task service routine |
| |
| Call parameters Return parameters |
| |
| D1 D1 preserved |
| D2 D2 preserved |
| D3 nr. of 50/60Hz Interrupts (sched only) D3 ??? |
| D4+ all preserved |
| |
| A0-A2 preserved |
| A3 base of device driver def block A3 preserved |
| A4-A5 preserved |
| A6 system variables A6 preserved |
| A7 supervisor stack (64 bytes may be used) |
| |

6.3.1 External Interrupt Tasks
An external interrupt task must check its own hardware to determine whether the interrupt was for
itself or for some other driver. It may also need to clear the source of the interrupt at that point. If
the interrupt was not for itself, it should return.

6.3.2 Polling Interrupt Tasks
Polling interrupt tasks should only be used when critical timing operations are required. In
common with the external interrupt tasks, they can interrupt atomic operations in the rest of the
system, such as access layer calls to the same driver, so they should be used with great care.

6.3.3 Scheduler Loop Tasks
Calls from the scheduler loop do not interrupt atomic tasks. This means that operations such as
allocating or releasing memory can be performed safely. Note that it is quite common for the
same routine to be included both in the scheduler loop and in the external interrupt list.

Scheduler loop tasks are called at around 50/60Hz when the machine is busy, and more
frequently if the machine is idle.

All physical layer calls return with RTS.

QDOS/SMS Reference Manual 10/08/95 Section 6 3

6.4 The Access Layer

The access layer consists of three routines: the channel open, the channel close, and the
Input/Output routine. These routines are called for the appropriate driver by the IOSS in response
to a user's trap instruction. In the case of the channel open, the routine is called in turn for each
device driver in the machine until a driver's open routine returns correctly to indicate that it has
recognised the device name. Due to this mechanism, an incorrect open routine may crash the
whole system when an open to any device is attempted, whereas the other routines are only
invoked in response to the particular device being used.

All access layer calls return using RTS.

6.4.1 The Channel Open Routine
When the channel open routine is called via the IOSS, the following registers are set:

| |
| Channel Open Routine for Device Drivers |
| |
| Call parameters Return parameters |
| |
| D1 D1 ??? |
| D2 D2 ??? |
| D3 access key (as per IOA.OPEN) D3 ??? |
| D4+ ??? |
| |
| A0 ptr to device name A0 channel definition block |
| A1-A2 ??? |
| A3 base of device driver def block A3 ??? |
| A4-A5 ??? |
| A6 system variables A6 preserved |
| A7 supervisor stack (64 bytes may be used) |
| |
| Error returns: |
| |
| Errors as defined below |
| 0 for successful open |
| |

The open routine should perform the following operations:

First, decode the name; the utility IOU.DNAM, which is described in section 16.0, will normally be
used for this purpose. Return with ERR.ITNF in D0 if the name was not recognised by this driver,
or with ERR.INAM if the name was recognised, but some of the additional information was
incorrect in value or format.

Then, if the device cannot be shared, check whether the device is in use and prevent another
channel from being opened to it. If the device is in use, return ERR.FDIU.

Finally, allocate some space for the channel definition block. Any buffers or working area required
for each channel are normally allocated in the common heap. Return with ERR.IMEM if there was
not enough memory to do this.

NOTE: A0 should not be amended by the open routine. D0 must be set to the appropriate error
code.

QDOS/SMS Reference Manual 10/08/95 Section 6 4

6.4.2 The Channel Close Routine
When this routine is entered, in addition to the usual values of A3, A6 and A7, A0 points to the
base of the channel definition block.

| |
| Channel Close Routine |
| |
| Call parameters Return parameters |
| |
| D1-D3 ??? |
| |
| A0 ptr to base of channel definition block A0 ??? |
| A1-A2 ??? |
| A3 ptr to base of device driver def block A3 ??? |
| A4-A5 preserved |
| A6 system variables A6 preserved |
| A7 supervisor stack (64 bytes may be used) |
| |
| Error returns: |
| |
| Always 0, as this routine cannot fail |
| |

The function of the close routine is simply to release the memory taken up by the channel
definition block and to ensure that everything in the device driver definition block is tidy.

Under some circumstances, it may not be possible to close the channel immediately because
there are bytes waiting to be transmitted by the physical layer. In this case, the physical layer
must contain a scheduler loop task, and the close routine should set a flag for the physical layer
to complete the release of the memory on the next invocation of that task in which it is possible to
do so. When this happens, it is usually necessary to build in a special mechanism to cope with
the undesirable event of a program closing a channel to a particular device, and then re-opening
it immediately only to receive an "in use" error because the closed channel has not yet been
cleared.

NOTE: On completion of the routine D0 must be set to zero as it is assumedthat CLOSE cannot
fail. Registers D4 to D7 and A4 to A6 must be set to their initial values before return.

QDOS/SMS Reference Manual 10/08/95 Section 6 5

6.4.3 The Input/Output Routine
The I/O routine is called once when an I/O call is made, and then, unless the time-out was set to
zero, on every subsequent scheduler loop until the operation is complete or the time-out has
expired.

| |
| Input/Output Routine |
| |
| Call parameters Return parameters |
| |
| D0.b trap code passed to the IOSS |
| D1 additional information D1 updated parameter |
| D2 additional information D2 ??? |
| D3 0 for first call, else -1 D3 ??? |
| D4+ ??? |
| |
| A0 ptr to base of channel definition block A0 preserved |
| A1 additional information A1 updated parameter |
| A2 additional information A2 ??? |
| A3 ptr to base of device driver def block A3 preserved |
| A4-A5 preserved |
| A6 system variables A6 preserved |
| A7 supervisor stack (64 bytes may be used) |
| |
| Error returns: |
| |
| All returns defined by the IO traps |
| |

The I/O routine should return ERR.NC (not complete) if it cannot complete the operation
immediately. If a string operation has been partially completed, the values in D1 and A1 (number
of bytes transferred and buffer pointer) should be set appropriately so that the operation can
continue on the next try. D0 should be zero on return if the operation has been completed
correctly.

Since most of the code for handling serial I/O is common to all device drivers, the I/O routine
usually calls one of the utility routines IOU.SSQ or IOU.SSIO (which are described in section
16.0). IOU.SSQ assumes that the only function of the access layer is to move bytes in and out of
a pair of queues pointed to by fixed positions in the channel definition block, while IOU.SSIO
assumes that the operations required of it can all be made up out of three primitive routines for
sending one byte, fetching one byte, and checking for pending input, such routines being
supplied by the writer of the device driver.

Note that channels are assumed to be bidirectional; it is the responsibility of the I/O routine to
trap an operation in a direction that is not allowed. Note also that output operations which appear
to the user as complete have merely completed the access layer call correctly: there being no
general way in which the user can ascertain whether the physical layer has in fact completed the
operation.

NOTE: On completion of the routine, registers A0, A2 to A6 (inclusive) should be reset to their
initial values before return.

QDOS/SMS Reference Manual 10/08/95 Section 6 6

7.0 Directory Device Drivers
Drivers for devices which have a directory and form part of the filing system have a somewhat
extended set of functions. For directory device drivers, there are three blocks in which memory is
allocated, rather than two: these are the directory driver linkage block, the physical definition
block and the channel definition block.

There is one directory driver linkage block for each directory driver: it is an extended form of the
device driver definition block as found in a non-directory device driver. The block contains
information about how to use the driver, together with the links in the operating system's lists.

Each directory driver may control up to 8 drives (numbered 1 to 8). Each drive has one physical
definition block: this contains the drive number and information about the medium.

For each I/O channel that is open, there is an open channel definition block.

The file system is assumed to be composed of 512-byte blocks: thus a byte within a file is
addressed by the IOSS by a block number and a byte number within that block. It is of course
possible to have a different physical block size, but the mapping of the IOSS structure onto the
physical structure will be less convenient.

Each file is assumed to have a 64-byte header (the logical beginning of file is set to byte 64, not
byte zero). This header should be formatted as follows:

$00 long file length
$04 byte file access key (used by third parties software)
$05 byte file type
$06 8 bytes file type-dependent information
$0E 2+36 bytes file name
$34 long update date [EXT,DD2]
$38 word version number [DD2]
$3A word reserved
$3C long backup date [DD2]

The current file types allowed are: 2, which is a relocatable object file; 1, which is an executable
program; and 0 which is anything else. In the case of file type 1, the first longword of type-
dependent information holds the default size of the data space for the program.
For level 2 devices, a type of -1 (or 255 decimal) stands for a subdirectory.

QDOS/SMS Reference Manual 28/10/98 Section 7 1

7.1 Initialisation of a Directory Driver

The initialisation routine should first allocate room for the directory driver linkage block, and then
write into it the information about the driver routine addresses, the length of the physical definition
block required for each drive, and the drive name. Note that for directory drivers, the decoding of
the device name is performed by the IOSS, not by the open routine in the device driver as in non-
directory drivers: the function of the open routine is to search for the file name within the given
drive. The linkage block may be allocated in the resident procedure area if the driver is resident
there, but will usually be in the common heap. The system will crash if the linkage block is
overwritten without the driver being unlinked.

When this has been done, the traps SMS.LEXI, SMS.LPOL, SMS.LSHD and SMS.LFSD can be
called to link the driver and any associated tasks into Qdos.

The format of the directory driver linkage block is as follows (assuming that A3 has been made to
point to it):

iod_xilk $00(A3) link to next external interrupt routine
iod_xiad $04(A3) address of external interrupt routine
iod_pllk $08(A3) link to next 50/60 Hz interrupt routine
iod_plad $0C(A3) address of 50/60 Hz interrupt routine
iod_shlk $10(A3) link to next scheduler loop routine
iod_shad $14(A3) address of scheduler loop routine
iod._olk $18(A3) link to access layer of next directory driver
iod_ioad $1C(A3) address of input/output routine
iod_open $20(A3) address of channel open routine
iod_clos $24(A3) address of channel close routine
iod_iend end of minimum device driver linkage
iod_fslv $28(A3) address of entry for forced slaving
iod_spr1 $2C(A3) reserved
iod_cnam $30(A3) address of set channel name [SMSQ]
iod_frmt $34(A3) address of entry to format medium
iod_plen $38(A3) length of physical definition block
iod_dnus $3C(A3) word-length of drive name, characters of drive name (e.g.MDV)

current usage
iod_dnam $42(A3) word-length of drive name, characters of drive name

real name [SMSQ]

Note that a directory driver must have at least 40 bytes of RAM for the linkage block.

For additional SMSQ features please refer to section 18.9

QDOS/SMS Reference Manual 28/10/98 Section 7 2

7.2 Access Layer

The access layer of a directory driver contains five routines: the channel open/file delete routine,
the close routine, the I/O routine, the forced slaving routine and the format routine.

For all directory device driver access layer calls (including open), A0 points to the base of the
channel definition block when each routine is called. However, the format of the block is
somewhat different.

The first $18 bytes are reserved for the IOSS (heap entry header). The format of the block for
microdrives is:

$18(A0) CHN_LINK long link to next file system channel
$1C(A0) CHN_ACCS byte access mode (D3 on open call, -ve on delete)
$1D(A0) CHN_DRID byte drive ID
$1E(A0) CHN_QDID word number of file on drive
$20(A0) CHN_FPOS word block number containing next byte
$22(A0) word next byte from block
$24(A0) CHN_EOF word block number containing byte after EOF
$26(A0) word byte after EOF
$28(A0) CHN_CSB long pointer to slave block table for current slave block

which may hold current/ next byte
$2C(A0) CHN_UPDT byte file updated
$32(A0) CHN_NAME 2+36 bytes file name
$58(A0) 72 bytes spare

Section 18 contains details of the block for other filing systems.

A1 points to the physical definition block, which is formatted as follows:

The first $10 bytes are reserved for the IOSS (heap entry header).

$10(A1) FS_DRIVR long pointer to access layer link for driver
$14(A1) FS_DRIVN byte drive number
$16(A1) FS_MNAME 2+10 bytes medium name
$22(A1) FS_FILES byte number of files open on this medium

The physical format for the microdrive system can be found in section 18.

QDOS/SMS Reference Manual 28/10/98 Section 7 3

7.2.1 The Channel Open/File Delete Routine
The function of the open routine depends on the access mode. This may have been passed to
the IOSS in D3 if the open routine was called as a result of an IOA.OPEN trap, or it may be a
negative number, which would be the case if the routine has been entered as a result of an
IOA.DELF trap.

In order to understand the open routine, it is necessary first to understand the way in which Qdos
handles device names. When a device name is passed to the IOSS as a result of an open or
delete call, the IOSS looks for a match in its lists of device drivers and directory device drivers.
The matching mechanism for non-directory device drivers is defined within the open routine for
that driver. The matching mechanism for directory device drivers is as follows. The first
characters of the name are checked against the driver name in the directory driver linkage block
(which is put there when the driver is initialised), and these are expected to be followed by a drive
number between 1 and 8, followed by an underscore, followed usually by the filename. If a match
is found, the file system looks to see if there is a physical definition block for that drive already in
existence. If there is not, a physical definition block is created in the system's table of physical
definition blocks (the drive ID in the channel definition block is an index to this table). Note that
the file system has no knowledge of whether a drive is actually connected, and will set up the
definition block regardless.

The IOSS then checks to see if this is the second or subsequent open to a shared file: if this is
the case it generates the complete channel definition block itself, setting CHN_FPOS+2 to $40
(i.e. the first byte behind header), and copies the remaining information from the channel
definition block for the first open. The directory driver's open routine is not called. Otherwise, the
IOSS calls the open routine, passing it the file name in the channel definition block.

| |
| Channel Open Routine for Directory Device Drivers |
| |
| Call parameters Return parameters |
| |
| D1 D1 ??? |
| D2 D2 ??? |
| D3 D3 ??? |
| D4+ all preserved |
| |
| A0 base of channel definition block A0 preserved |
| A1 base of physical definition block A1 preserved |
| A2 A2 ??? |
| A3 base of device driver def block A3 preserved |
| A4-A5 ??? |
| A6 system variables A6 preserved |
| |
| Error returns: |
| |
| Errors as defined below |
| 0 for successful open |
| |

QDOS/SMS Reference Manual 28/10/98 Section 7 4

The channel and physical definition blocks are all set to zero except for the following, which are
filled by the IOSS:

CHN_LINK link to next file system channel
CHN_ACCS access mode
CHN_DRID drive ID
CHN_NAME file name

FS_DRIVR pointer to directory driver access layer
FS_FILES number of files open on this drive (maintained by IOSS)

In the case of a device with removable media, the open routine should find out the name of the
medium and install it in FS_MNAME. It should also look at the access mode to find out which
operation is required. If the required operation is delete, it should perform that operation and
return, but if the required operation is another sort of open, then it should fill in the appropriate
portions of the channel definition block, namely CHN_QDID, CHN_EOF, CHN_EOF+2,
CHN_FPOS and CHN_FPOS+2. CHN_CSB is a pointer to the slave block table which may be
filled in as an indication to the I/O routine that the block it is looking for may be slaved there. The
I/O routine must check this however, normally by searching the slave table.

The IOSS will free the channel definition block on exit from the open routine if the action was a
delete or if the open routine returns an error key in DO.

The maintenance of the directory structure of the medium is the responsibility of the open and
close routines- the IOSS plays no part in this. Equally, the open routine is responsible for
understanding the meaning of the access mode and reacting accordingly.

NOTE: A6 should be reset to its initial state before return.

QDOS/SMS Reference Manual 28/10/98 Section 7 5

7.2.2 The Channel Close Routine
As far as the IOSS is concerned, this routine behaves in the same way as for a non-directory
device driver. It is of course necessary for the close routine to maintain the directory structure of
the medium, so its operation will normally be rather more complicated.

The close routine for a directory device driver has two additional functions: it must unlink the
channel from the list of files open, and must decrement the FS_FILES field in the physical
definition block, which gives the number of files open on the medium. Suitable code for
performing these operations and ending the close routine is as follows:* get address of physical definition block into A2MOVEQ #0,D0 top three bytes must be clearMOVE. B CHN_DRID(A0),D0 get the drive IDLSL.B #2,D0 convert it to a table offsetLEA.L SYS_FSDD(A6),A2 get base of PDB tableMOVE.L (A2,D0.W),A2 get address from (base+offset)* now decrement the file countSUBQ.B #1,FS_FILES(A2)* now unlink the fileLEA CHN_LINK(A0),A0 get address of link pointer . . .LEA SYS_FSDT(A6),A1 . . . and pointer to start of linked listMOVE.W MEM.RLST,A4 routine to unlink an itemJSR (A4)LEA -CHN_LINK(A0),A0 restore A0 to base of channel defMOVE.W MEM.RCHP,A4 routine to release channel def spaceJMP (A4) call it, and exit from the close
The close routine must also initiate the process of tidying up any slave blocks remaining for that
channel. It need not force the slave blocks to be made into true copies itself, but it must be
guaranteed that the copying will happen without further intervention by the calling program.

7.2.3. The Input/ Output Routine
This routine also appears to the IOSS to be identical for both directory and non-directory device
drivers, though once again the routine is usually rather more complex for most normal file system
devices. The main difference is that the I/O routine for a random access file system device must
take into account the current block and position as provided by the IOSS, since these may have
been updated by the IOSS as a result of a file pointer positioning trap.

QDOS/SMS Reference Manual 28/10/98 Section 7 6

7.3 Slaving

The area of memory between SYS_FSBB and SYS_SBAB is used by the filing system as
temporary storage for file slave blocks and for the slave block table. A slave block is a block of
512 bytes of data. The slave block table is a table of entries sized 8 bytes whose start point is
held in the system variable SYS_SBTB and whose top is held in the system variable SYS_SBTT;
the system variable SYS_SBRP points to the most recently allocated slave block table entry. The
address of a slave block, relative to the base of system variables, is equal to 512/8 times the
offset of the corresponding entry in the slave block table from the beginning of that table.

Currently, only the first byte of each slave block table entry is used by Qdos itself: the remaining
bytes are available for use by the driver. This byte is divided into two four-bit nibbles. The most
significant nibble contains the drive identifier (0..15), and the least significant nibble is a code
indicating the status of the block. The byte is formatted as follows:

$00 unavailable to filing system
$01 empty block
$x3 block is true representation of file
$x7 block is updated, awaiting write
$x9 block is awaiting read
$xB block is awaiting verify

x is the drive ID for this file

For Microdrives, the remaining space in each slave block table entry is laid out as follows:

SBT_PRIO 01 byte available for slaving algorithms
SBT_SECT 02 word physical sector number *2
SBT_FILE 04 word file number
SBT_BLOK 06 word block number within the file

Section 18.6 contains details of table entries for other devices.

It is left the device driver to decide what the slave blocks are used for but it must be prepared to
release a slave block if requested to do so by the memory manager. This is done by calling the
driver's forced slaving routine with the following parameters:

| |
| Forced Slaving Routine |
| |
| Call parameters Return parameters |
| |
| D1 D1 ??? |
| D2 D2 ??? |
| D3 D3 ??? |
| D4+ all preserved |
| |
| A0 A0 ??? |
| A1 base of offending slave block A1 ??? |
| A2 physical definition block A2 ??? |
| A3 base of device driver def block A3 preserved |
| A4+ preserved |
| |
| This routine cannot fail. |
| |

Typically the slave blocks are used to buffer data being written to a device, the actual writing

QDOS/SMS Reference Manual 28/10/98 Section 7 7

being carried out by an asynchronous task.

Searching for an empty slave block involves performing a linear search through the slave block
table, usually starting from SYS_SBRP or SYS_SBTB. The status of each entry in the table must
be checked and only those blocks which are empty or true representations should be taken.
When a new block is allocated SYS_SBRP should be updated to point to the allocated block.
Allocating slave blocks is a form of memory allocation and should only be carried out by access
layer or scheduler loop calls.

This position in memory of a slave block which corresponds to a slave block table entry may be
calculated using the following code:MOVE.L A4,D0 A4 is pointer to slave block table entry** form offset into slave block table, gives slave block no.*8* entries are 8 bytes wide in table* SUB.L SYS_SBTB(A6), D0LSL.L #6,D0 multiply by 64 (8*64=512)MOVE.L D0,A5ADD.L A6,A5 add offset to system variable base* A5 now has base address of slave block
7.3.1 The Format Routine
This routine is to a large extend independent of the other routines. It is called with the drive
number in D1, a pointer to the medium name in A1, and a pointer to the directory driver linkage
block in A3.

| |
| Format routine |
| |
| Call parameters Return parameters |
| |
| D1 drive number D1 number of good sectors |
| D2 D2 total number of sectors |
| D3+ ??? |
| |
| A0 A0 ??? |
| A1 ptr to medium name A1 ??? |
| A2 A2 ??? |
| A3 base of device driver def block A3 ??? |
| A4-A5 ??? |
| A6 system variables A6 preserved |
| |
| Error returns: |
| |
| FMTF format failed |
| |

QDOS/SMS Reference Manual 28/10/98 Section 7 8

8.0 Built-in Device Drivers
The following devices are built in to the QL ROM:

CON_wXhAxXy_k Console I/O,
window area "w" by "h" pixels, top left hand corner at pixel
position "x", "y",
keyboard type-ahead buffer length "k" characters.
The size and position are defined in terms of pixels on a 512x256
display map (position 256x128) is the centre of the screen in both
display modes).
Default CON_448x200a32x16_128

SCR_wXhAxXy Screen output
window definition is as for CON.
Default SCR_448x200a32x16

SERnphz RS232 serial I/O
port "n",
"p" indicates parity: E, O, M, S for even, odd, mark, or space parity,
"h" indicates handshaking, H to enable it, I if it is to be ignored
"z" indicates protocol:

R indicates raw data,
Z or C indicates that CTRL-Z is used as an EOF marker,
C indicates that ASCII 13 is to be exchanged with ASCII 10 on

input and vice versa on output.
Default SER1HR no parity.

NETI_nn Serial network input
link from node "nn"

NETO_nn Serial network output
link to node "nn"

PIPE_n Job connection and synchronisation
if "n" given it is an output pipe of length n bytes,
otherwise it is an input pipe connected to the channel ID passed
in D3.

MDVn_name Microdrive file
MDV1 refers to Microdrive "1".

FLPn_name Floppy Disc file [EXT]
FLP1 refers to Floppy Disk "1".

Within device names, no distinction is made between upper and lower case letters.

Floppy Disks are supported in a standard way. The format and additional facilities of the floppy
disk driver are explained in section 8.1 and 8.2. For the extended drivers of the QL Emulator,
their additional parameters and facilities, refer to the Emulator's manual.

QDOS/SMS Reference Manual 10/08/95 Section 8 1

8.1 QL Floppy Disc Format [EXT]

For ease of data transfer between different manufacturer's floppy disc systems, it is necessary to
have a common standard of disk formats. Clearly this only applies where the discs are physically
compatible: physical dimensions, recording method, recording density, track spacing and
positioning must all match on the source and destination machines. There is no requirement for
the format for (e.g.) 5.25" and 8" discs to be the same, however, for convenience, this standard is
proposed not only for 5.25" drives, but also for electrically compatible 3.5" and 3" drives. Similar
formats may be derived for other standards. This standard has been based on the original
Sinclair Research proposals, and compatibility between different manufacturers has already been
established.

Floppy disks will be sectored in 512 byte sectors. 5.25" compatible disks will have 9 sectors per
track (MFM 200ms rotation), for a 40 track drive, single sided, this gives 180k bytes and for an 80
track drive, double sided, this gives 720k bytes capacity.

Tracks are numbered from 0, sectors on a track are numbered, by ones, from sector 1
immediately after the index mark.

The physical format is basically IBM System 34 (8" MFM) with four changes. There is no index
mark recorded, the sector length flag is $02, the data record is 512 bytes long, and the write
splice gap is increased.

For IBM standard format on MFM recording with 256 bytes sectors, the write splice gap at the
end of a data record is 54 bytes. This is increased to 84 bytes allowing for a short term speed
variation of + or - 4%. Using this, each sector is recorded in 658 bytes, this sets the gap between
sector 9 and 1 to approximately 6250-5922 (328) bytes, allowing a long term speed variation of +
or - 2.75%.

Regardless of the physical characteristics, all floppy disks will have the same directory structure.
Track zero will hold the map of sector allocations. The first block of the map will be in sector 1
side 0 track 0.

The first 96 bytes of the sector map hold information about the format of the rest of the drive:

q5a_id $00 long format ID
q5a.id 'QL5A'
q5ax.id 'QL5B' as QL5A but no physical-logical translation
q5a_mnam $04 10*bytes medium name (space filled)
q5a_rand $0e word random number set during format
q5a_mupd $10 long count of updates
q5a_free $14 word free sectors
q5a_good $16 word good sectors
q5a_totl $18 word total sectors (sectors*tracks)
q5a_strk $1a word sectors per track (<=9)
q5a_scyl $1c word sectors per cylinder (e.g. 9 or 18)
q5a_trak $1e word number of tracks (cylinders)
q5a_allc $20 word allocation size (sectors per alloc group)
q5a_eodr $22 long current end of directory (blocck/byte format)
q5a_soff $26 word sector offset
q5a_lgph $28 18 bytes logical to physical sector translate
q5a_phlg $3a 18 bytes physical to logical sector translate (standard)
q5a_spr0 $4c 20 bytes $ff
q5a_gmap $60 3 byte entry map in form: (file id-1) / Group number
q5a_mtop $600

QDOS/SMS Reference Manual 10/08/95 Section 8 2

The map is always of a size to fill the first three (logical) sectors of the drive, being padded with
'non-existant' sectors if necessary to fill the (512*3-96)/3=480 allocation allowed. This is adequate
for up to 720k bytes with a sector allocation size of 3. (3 groups per track per side), and a sector
allocation size of 6 for up to 1440k bytes. For extended density disks, the number of entries in the
map is 1600, therefore the size is 1600*3+96=6144.

The format ID is a 4 byte ID indicating that the format conforms to this standard.

The medium name, random number and update count are used to provide protection against
media change. In addition the update count allows detection of the case of a medium being
removed, updated on another machine or drive, and being re-inserted into the original drive.

The drive statistics are maintained in the map header for simplicity and speed of access, while
the directory EOF is maintained in the map to reduce the access overheads associated with
directory handling.

Sectors are allocated to files in multiples of the allocation size. To ensure fast serial access, it is
necessary to space adjacent blocks of a file in such a way as to allow processing between those
blocks. The translate tables define the spacing. There is an additional overhead on accessing a
sector on a new track, and so there is an additional offset to be applied to the sector calculation
for each track.

The logical sector is obtained from the sector map by the following calculation:

(sector in map * alloc size + sector in alloc group) MOD sectors per cylinder

In the logical to physical translate table, the MSB of the translate byte indicates the side number,
while the remaining 7 bits give the sector number (numbered from 0 to 8). In the physical to
logical translate table the first nine bytes correspond to sectors 0 to 8 on side 0, and the next 9
bytes to sectors 0 to 8 on side 1. (Note that the internal numbering of sectors on a track starts at
0 for convenience in calculation: 1 is added to the sector number immediately before recording or
reading).

E.g. for a 1 in 3 interleave, 18 sectors per cylinder, the tables will be:

00 03 06 80 83 86 01 04 07 81 84 87 02 05 08 82 85 88
00 06 0c 01 07 0d 02 08 0e 03 09 0f 04 0a 10 05 0b 11

For each track there will be an additional offset to allow for steps between adjacent tracks. So the
final physical sector is calculated as

(translated sector + track * sector offset) MOD sectors per track

The EOF of a file is the position of the next byte after the end of the file. Thus for an empty file it
is 0/40. The block number starts at 0, the byte number is between 0 and $1ff inclusive.

The allocation map itself is a table giving the usage of each group of sectors. For each group
there are three bytes: the file number in the first 12 bits and in the second twelve bits, the
numbers of the blocks of the file, stored in the group, divided by the allocation size. Thus for file
number 2, the first allocation of sectors is identified in the map as 002000, the next allocation as
002001 and so on.

QDOS/SMS Reference Manual 10/08/95 Section 8 3

The file number is the index into the master directory. The file numbers are allocated as follows:

000 Master directory
001+ Normal files
F8x Sector map
FDx Vacant sector group
FEx Bad sector group
FFx Non existant sector group

The master directory is a table of file headers in standard format. The first 64 bytes of any file do
not contain any useful information.

8.2 Direct Sector Read/Write [EXT]

Most driver software includes provision for reading sectors of a disk using direct addressing. To
do this a special file is opened on the disk. The name is

FLPn_*Dsd where s is the sector length 0=128 bytes
 1=256 bytes
 2=512 bytes
 3=1024 bytes

 and d is the density D=double (MFM)

When opening a disk for direct sector read/write from SuperBASIC, the name should be enclosed
in quotes (or apostrophes).OPEN #3,'flp1_*d2d'
When this file is open, no other file may be open on the drive. The only IO calls supported for this
type of file are IOB.FMUL, IOB.SMUL, IOF.POSA and IOF.POSR (D0=$03, $07, $42 or $43), to
read or write complete sectors or to set the position. The parameter (D1) to the POSR call is
ignored, but the current position is returned. Reading or writing a sector does not change the file
position.

The position is a composite of the required sector, side and track:

 sector number + side * 256 + track * 65536

To ensure compatibility with string IO the length specified in the SMUL and FMUL calls may be
one of three values:

sector length the complete sector is read or written

 2 returns the sector length (IOB.FMUL)
 ignored (IOB.SMUL)

 2 + sector length returns the sector length followed by the sector (IOB.FMUL)
 skips the first two bytes, and writes the rest to the sector (IOB.SMUL)

This variety enables sectors to be read and written in SuperBASIC using the normal string IO in
the Super Toolkit II, as well as by assembler programs. For example, sector 1 of side 1 on track 2
may be read into the string A$ using the following command:GET #n\1+256+2*65536, a$
Direct sector read/write calls can be used for a 40 track disk in an 80 track drive by multiplying
the track counter by two.

QDOS/SMS Reference Manual 10/08/95 Section 8 4

8.3 Additional Standard Device Drivers [ST] [EXT]

In addition to the standard device drivers exist some other devices and directory devices which
are defined for a whole range of machines, including SMS2. Application software should allow
these optional devices whenever possible. As most device do not need special treatment, this
should be no problem at all.

FLPn_name Floppy Disc file
FLP1 refers to Floppy Disk "1".

RAMn_name RAM Disc file
RAM1 refers to RAM Disk "1".

WINn_name Harddisk or Changeable Disk file
WIN1 refers to Harddisk "1".

The Serial and Parallel Port drivers accept additional parameters:

SERnpftce Serial Port receive and transmit
SRXnpftce Serial Port receive only
STXnpftce Serial Port transmit only
PARntce Parallel Port (transmit only)
 n - port number e.g. 1 or 2; default is 1

p - parity: O (7 bit + odd parity), E (7 bit + even parity),
M (7 bit + mark=1), S (7 bit + space=0); default is none

 f - flow control: H (Hardware CTS/DTR), I (Ignore flow control),
 X (XON/XOFF); default H

t - translate: D (direct output), T (translate), A (auto-CR)
c - <CR>: C (<CR> is end of line), R (no effect)
e - end of file: F (<FF> at end of file), Z (CTRL Z at end of file)

PRT Printer Port (either SER or PAR)

NULF Null device, emulating null file.
NULZ emulates a file filled with zeros.
NULL emulates a file filled with null lines.
NULP always returns "not complete".

Named pipes have been added to the unnamed type:

PIPE_name_n Job communication and synchronisation
if "n" given it is an output pipe.

QDOS/SMS Reference Manual 10/08/95 Section 8 5

9.0 Interfacing to SuperBASIC
When writing SuperBASIC procedures or functions in machine code, there are several things that
an applications programmer may want to do: he may wish to look at or modify the information
held in SuperBASIC variables and arrays, he may wish to access or modify the SuperBASIC list
of I/O channels, and he may wish to reserve and use space on the arithmetic stack. He will also,
of course, wish to access the list of parameters passed to the routine and return values either to
those parameters or in a function return. In order to do this, it is necessary to understand the data
structures used by the interpreter and to emulate the interpreter's techniques for manipulating
them.

9.1 Memory Organisation within the SuperBASIC Area

The SuperBASIC area contains twelve distinct areas:

the job header,
the SuperBASIC work areas,
the name table,
the name list,
the variable values area,
the channel table,
the arithmetic stack,
the token list,
the line number table,
the program file,
the return list,
the buffer.

There are also various other stacks used by the interpreter.

The job header is located at the bottom of the SuperBASIC area, and looks just like other job
header (see section 18.5). Immediately above this is the SuperBASIC work area; this is an area
of fixed storage used for the working variables of the interpreter. Included in these working
variables are pointers to the other areas: the interpreter can not only shuffle these areas around,
but may also ask Qdos to change the size of the whole SuperBASIC area.

The organisation of this area is shown in section 18.3. Throughout normal operation of the
interpreter, A6 points to the base of the SuperBASIC work area, the whole of which may move
between instructions, with a corresponding change in A6. All the pointers are, of course, relative
to A6, so that their values need not be changed when the SuperBasic area is moved.

The name table, the name list and the variable values area are required by the applications
programmer in order to access and/ or modify SuperBASIC variables and parameters. The
channel table is required in order to access SuperBASIC I/O channels, and the arithmetic stack
(usually abbreviated to RI stack) is a convenient area in which to reserve storage, and is also
where parameters are passed. The remaining areas are not described in this document.

QDOS/SMS Reference Manual 06/03/97 Section 9 1

9.2 The Name Table

All variables, procedure names, parameters and even expressions are handled through the name
table. This is a regular table of eight byte entries, but the entries hold different information
according to the type of entry.
The entries may be as follows:Bytes 7-4 Bytes 3-2 Bytes 1-0 TypeValue pointer Name pointer $0001 Unset stringValue pointer Name pointer $0002 Unset floating point numberValue pointer Name pointer $0003 Unset integerPtr to RI stack -1 $0101 String expressionPtr to RI stack -1 $0102 Floating point expressionPtr to RI stack -1 $0103 Integer expressionValue pointer Name pointer $0201 StringValue pointer Name pointer $0202 Floating point numberValue pointer Name pointer $0203 IntegerValue pointer -1 $0300 SubstringValue pointer Name pointer $0301 String arrayValue pointer Name pointer $0302 Floating point arrayValue pointer Name pointer $0303 Integer arrayLine no in msw Name pointer $0400 SuperBASIC procedureLine no in msw Name pointer $0501 SuperBASIC string functionLine no in msw Name pointer $0502 SuperBASIC f.p. functionLine no in msw Name pointer $0503 SuperBASIC integer functionValue pointer Name pointer $0602 REPeat loop indexValue pointer Name pointer $0702 FOR loop indexAbs. address Name pointer $0800 Machine code procedureAbs. address Name pointer $0900 Machine code function
Byte 0 of the name table has an additional usage during parameter passing: see section 9.8.

The Name pointer is a pointer to an entry in the name list (see the following section). A name
pointer of -1 indicates a nameless item such as the value of an expression; any other negative
pointer indicates a pointer to another entry in the name table of which this entry is a copy.

The Value pointer is a pointer to an entry in the variable values area (see section 9.4). A value
pointer of -1 indicates that the value is undefined.

Since all these areas may move during execution, the pointers are offsets from the base of each
area. For the RI stack, the base is at the high address; for the others it is at the bottom.

Note that functions written in SuperBASIC are typed according to whether the name ends in %, $
or neither. Functions written in machine code, in common with procedures written in SuperBASIC
or machine code, have no type.

The entries for expressions and substrings are for use within the expression evaluator: the
applications programmer would not normally use them.

9.3 Name List

The names in the name list are stored as a byte character count followed by the characters of the
name. Note that this format is different from all the other uses of strings in Qdos in which a word
character count is used.

QDOS/SMS Reference Manual 06/03/97 Section 9 2

9.4 Variable Values Area

This area is a heap in which the values are stored. The format for each type of data item is given
in the following sections.

9.5 Storage Formats

9.5.1 Integer Storage
An integer is a 16-bit two's complement word.

9.5.2 Floating Point Storage
A floating point number is stored as a two-byte exponent followed by a four-byte mantissa.

The most significant four bits of the exponent are zero, whilst the remaining twelve bits are an
offset from -$800. The mantissa is two's complement and fractional, with bit 31 of the mantissa
representing -1, and bit 30 of the mantissa representing +1/2. There are no implicit bits in the
mantissa, so either bit 31 or bit 30 will be set for a normalized number, except in the special case
of zero.

The value of the number is thus mantissa*2 to the power (exponent-$800). If the mantissa is
viewed as two's complement absolute (as opposed to fractional), the value of the number is given
by: mantissa*2 to the power (exponent-$81F). The $1F corresponds to 31 decimal: the length of
the mantissa minus one.

Examples of floating point storage are as follows:

Hex Decimal value
0804 50000000 10.00
0801 40000000 1.00
07FF 40000000 0.25
07FF 80000000 -0.50
0800 80000000 -1.00
0000 00000000 0

9.5.3 String Storage
A string is stored as a word character count, followed by the characters of the string. The string
storage always takes a multiple of two bytes. Examples are as follows:

Hex String
0004 41424344 "ABCD"
0003 414243xx "ABC"
0000 ""

QDOS/SMS Reference Manual 06/03/97 Section 9 3

9.5.4 Array Storage
An array descriptor has a header which consists of a longword offset of the array values from the
base of the variable value area, followed by the number of dimensions (word), followed by a pair
of words for each dimension. The first word is the maximum index, the second word is the index
multiplier for this dimension.

The storage of floating point and integer arrays is entirely regular. A floating point array takes 6
bytes per element, an integer array 2 bytes per element.

A string array is stored as an array of characters; except that the zeroth element of the final
dimension is a word containing the string length. The final dimension defines the maximum length
of the string. This is always rounded up to the nearest even number.

A substring is the result of internal slicing operations; this is a regular array of characters; the
base of the indexing is one rather than zero.

Examples of Floating Point Storage
Floating point variables (in hex)
0000 0000 0000 0.0
0801 4000 0000 1.0
0800 8000 0000 -1.0
0804 5000 0000 10.0

Floating point arrays
base,2,3,3,2,1 DIM A(3,2)

Examples of string storage (numbers in decimal)
String variable

4;65,66,67,68 "ABCD"
String array

base,2,3,12,10,1 DIM A$(3,10)
4;65,66,67,78,x,x,x,x,x,x "ABCD"
9;49,50,51,52,53,54,55,56,57,x "123456789"
0;x,x,x,x,x,x,x,x,x,x ""
1;32,x,x,x,x,x,x,x,x,x " "

Substring array
base,1,3,1 A$(0,1 TO 3) as above
65,66,67 "ABC"

9.6 Code Restrictions

There is a simplest set of rules for writing procedures in machine code for SuperBASIC:

1. As the SuperBASIC program area is liable to move at any time while the execution is in user
mode, all references to this area must be indexed by A6 or A7. A6 and A7 must never be saved,
used in arithmetic or address calculations, and must never be altered, except by pushing or
popping the A7 stack. In extreme circumstances it is possible to enter supervisor mode (TRAP
#0) to make the following action atomic. If this is done, A6 and the user stack pointer must not be
saved or manipulated before entering supervisor mode, and they must be restored before exiting.
2. Not more than 128 bytes must be used on the user stack.
3. D0 must be returned as an error code (long).
4. D1 to D7 and A0 to A5 inclusive may be treated as volatile.

QDOS/SMS Reference Manual 06/03/97 Section 9 4

9.7 Linking in New Procedures and Functions

New SuperBASIC procedures and functions written in machine code may be linked into the name
table using the vectored routine SB.INIPR (see section 16.0). When the procedures and functions
are in a ROM in the suitable format (see section 11.4), SB.INIPR is called automatically. If the
procedures and functions are to be stored in RAM, they should be loaded into the resident
procedure area as, once added, they may not be removed except by re-booting the machine. It is
usually convenient to load the code for calling SB.INIPR to make the linkage into the same area,
although this is not necessary.

9.8 Parameter Passing

The SuperBASIC interpreter passes parameters using a substitution mechanism, which operates
as follows. The interpreter first evaluates any of the parameters that are expressions. A new entry
is then created at the top of the name table for each actual parameter. In the case of a procedure
or function written in SuperBASIC, this is followed by a null entry for any formal parameter that is
missing from the actual parameter list. The interpreter then swaps the new name table entries
with the old name table entries corresponding to the actual parameters. In the case of a
procedure or function written in machine code, the code is then called with A3 pointing to the
name table entry for the first parameter in the list, and A5 pointing to the last ((A5-A3)/8 is the
number of parameters).

If a local statement is encountered, the entry in the name table is copied to a new position at the
top of the table, and an empty entry put in its place.

At the end of a SuperBASIC procedure or function, the parameter entries are copied back and
local variables are removed. The parameter entries in the name table together with any
temporary storage in the variable value table are then removed for all procedures and functions.

Byte 0 of the name table entry for a parameter has an additional meaning to that associated with
a normal name table entry. The bottom four bits have the usual indication of type (0=null, 1=string
etc.), but the top four bits are used to indicate the separator that was present after the parameter
in the actual parameter list, together with information as to whether the actual parameter was
preceded by a hash (#).

Thus the format of byte 0 is as follows:

h sss tttt
tttt: type: 0=null, 1=string, 2=floating point, 3=integer

sss: type of following separator: 0=none, 1=comma, 2=semi-colon, 3=backslash,
4=exclamation mark, 5=TO

h: 1 if the parameter was preceded by hash, otherwise 0

Note that byte 0 of the name table is located at 1(a3) as it is part of a word (see section 9.2).
The name pointer of a parameter (if it is not an expression or substring) is the index of the name
table entry of the item from which it is copied. Thus the parameter "name" can be obtained from
the name list entry of that item (see also section 9.9). The index must be multiplied by the entry
size (8) to get the pointer.

QDOS/SMS Reference Manual 06/03/97 Section 9 5

9.9 Getting the Values of Actual Parameters

For the purpose of using scalar (as opposed to array) parameters locally in the same way as "call
by value" parameters in other high-level languages, it is expedient to use one of a set of four
vectored routines which place the values of actual parameters on the arithmetic stack. Each
routine assumes that all the parameters will be of the same type. It is passed the values of A3
and A5 which point to the name table entries for the parameters; it returns the number
parameters fetched in the least significant word of D3, and the values themselves in order on the
arithmetic stack with the first parameter at the top (lowest address) of the stack. These routines
smash the separator flags. They are as follows: SB.GTINT gets 16-bit integers, SB.GTFP gets
floating point numbers, SB.GTSTR gets strings, and SB.GTLIN gets floating point numbers but
converts them to 32-bit long integers.

These routines may still be used when processing parameters of mixed type or when wishing to
inspect the separators. To begin with, the values of A3 and A5 should be saved; then, for each
parameter in the succession, the separator flags are inspected, and the appropriate routine is
called with A3 pointing to the parameter and A5 equal to A3+8, thus getting one parameter.

These routines smash D1, D2, D4, D6, A0 and A2. The error codes are returned in D0 and the
condition codes.

A special technique is provided for use in those routines in which it is necessary for the user to be
able to type in a string without quotes, as it's required for SuperBASIC commands involving
device names. Firstly, the name is inspected to see if it is a valid set string variable. If it is, the
string is fetched using SB.GTSTR; if it is not, the parameter's name itself is fetched from the
name list, and converted to string form by changing its word count from byte to word, realigning
the string if necessary. If a string is to be input without quotes, it must of course follow the rules
for SuperBASIC names, as described in the Concepts manual.

9.10 The Arithmetic Stack Returned Values

The top of the arithmetic stack is usually pointed to by A1. Space may be allocated on the stack
by calling the vectored routine QA.RESRI: the number of bytes required is given in D1.L; D0 to
D3 are smashed by the call. Since both the stack within the SuperBASIC area and the
SuperBASIC area itself may move during a call, the stack pointer should be saved in BV_RIP(A6)
before the call, and restored from BV_RIP(A6) after the call has been completed. The routine
ensures that the restored value will be correct.

The vectored routines for getting parameters reserve their own space on the arithmetic stack.

The arithmetic stack is automatically tidied up both after procedures, and after errors in functions.
To make a good return from a function, the returned value should be at the top (lowest address)
of the stack with nothing below it (that is with both (A6,A1.L) and BV_RIP(A6) pointing to it) when
the routine is exited. The type of the returned value should be in D4 (1=string, 2=floating point,
3=integer). Since SuperBASIC has no long integer type, long integers must be converted to
floating point before returning.

Values can also be returned to parameters or, indeed, global variables, by putting the value on
the arithmetic stack in the same way, pointing A3 to the appropriate name table entry and calling
the vectored routine SB.PUTP. D0 is an error return, and D1, D2, D3, A0, A1 and A2 are
smashed. If the actual parameter was an expression, no error will be given, but the value
returned will be lost. The type of the returned parameter is determined by the name table entry,
and the information on the arithmetic stack must be in the correct form.

QDOS/SMS Reference Manual 06/03/97 Section 9 6

As functions do not tidy up the arithmetic stack automatically unless an error occured, it is very
important to make sure that the stack does not grow on function returns, especially if strings have
been passed and returned. Also, the routine QA.RESRI does not update A1 (return value
undefined!) or move the stack, it just makes sure that enough memory is available so that the
arithmetic stack may grow downwards.

Note that strings must be aligned on the arithmetic stack so that the character count is on a word
boundary. All entries on the stack must be even length, so that a string of odd length has one
byte at the end which contains no information.

9.11 The Channel Table

A channel number (#n) is an index to an entry in the SuperBASIC channel table. This is a table of
items which are each of length CH.LENCH (currently $28) bytes. The base of the table is at
BV_CHBAS(A6), and the top is at BV_CHP(A6); thus the base of the entry for channel #n is
given by:
(n*CH.LENCH+BV_CHBAS(A6))(A6)

The format of each table entry is as follows:

$00 long the channel ID
$04 float current graphics cursor (x)
$0A float current graphics cursor (y)
$10 float turtle angle (degrees)
$16 byte pen status (0 is up, 1 is down)
$20 word character position on line for PRINT and INPUT
$22 word WIDTH of page

If a channel entry is off the top of the channel table, or if the channel ID is negative, there is no
channel open to that # number.

QDOS/SMS Reference Manual 06/03/97 Section 9 7

10.0 Hardware-related Programming
10.1 Memory Map [QL]

The 68008 has one megabyte of address space. Although an unexpanded QL uses only the
bottom 256 kbytes of this, the allocation for the remainder is determined and should be adhered
to when designing add-on hardware. This is how it is made up:

$FFFFF
Add-on ROM (up to 128 kbytes)

$E0000
Add-on peripherals (8 slots of up to 16 kbytes each)

$C0000
Add-on RAM (up to 512 kbytes)

$40000
On-board user RAM (96 kbytes)

$28000
Screen RAM (32 kbytes)

$20000
On-board I/O (Partially decoded)

$10000
Plug-in ROM cartridge (16 kbytes)

$0C000
On-board ROM (48 kbytes)

$00000

The registers in the on-board I/O area are partially decoded: the details of this decode may vary
according to different versions of the QL hardware - some versions will recognise any address in
the entire area.

However, the address map normally used is the same for all QLs:

Address (hex) Function (read) Function (write)
$18023 Microdrive data (track 2) Display control
$18022 Microdrive data (track 1) Microdrive/RS232-C data
$18021 Interrupt/IPC link status Interrupt control
$18020 Microdrive/RS232-C status Microdrive control
$18003 Real-time clock byte 3 IPC link control
$18002 Real-time clock byte 2 Transmit control
$18001 Real-time clock byte 1 Real-time clock step
$18000 Real-time clock byte 0 Real-time clock reset

The display control registers are in the ZX8301 "Master chip", and the others are in the ZX8302
"Peripheral chip". The details of the QL hardware are rather obscure, and it is strongly
recommended that these registers should not be used by applications programs, and should only
be accessed via Qdos traps or vectored routines.

For other hardware, e.g. the Miracle Gold card or the QL-Emulator for the ATARI ST, the area
from $C0000 is filled up with contigous memory (up to $3FFFFF).

QDOS/SMS Reference Manual 10/08/95 Section 10 1

10.2 Display Control

The display format in memory is explained below: this format is specific to the QL and may
change on future Sinclair products. It is, therefore, strongly advised that screen output be
performed using only the standard screen driver, together with the SMS.DMOD trap.

In 512-pixel mode, two bits per pixel are used, and the GREEN and BLUE signals are tied
together, giving a choice of four colours: black, white, green and red. On a monochrome screen,
this will translate as a four-level greyscale.

In 256-pixel mode, four bits per pixel are used: one bit each for Red, Green and Blue, and one bit
for flashing. The flash bit operates as a toggle: when set for the first time, it freezes the
background colour at the value set by R, G and B, and starts flashing at the next bit in the line;
when set for the second time, it stops flashing. Flashing is always cleared at the beginning of a
raster line.

Addressing for display memory starts at the bottom of dynamic RAM and progresses in the order
of the raster scan - from left to right and from top to bottom of the picture. Each word in display
memory is formatted as follows:

High byte (A0=0) Low Byte (A0=1)

Bit D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 Mode
G7 G6 G5 G4 G3 G2 G1 G0 R7 R6 R5 R4 R3 R2 R1 R0 512-pixel
G3 F3 G2 F2 G1 F1 G0 F0 R3 B3 R2 B2 R1 B1 R0 B0 256-pixel

R, G, B and F in the above refer to Red, Green, Blue and Flash. The numbering is such that a
binary word appears written as it will appear on the display: i.e. R0 is the value of Red for the
rightmost pixel, that is the last pixel to be shifted out onto the raster.

10.3 Display Control Register

This is a write-only register, which is at $18063 in the QL.

One of its bits is available through the Qdos SMS.DMOD trap: bit 3, which is 0 for 512-pixel
mode and 1 for 256-pixel mode.

The other two bits of the display control register are not supported by Qdos, these being bit 1 of
the display control register, which can be used to blank the display completely, and bit 7, which
can be used to switch the base of screen memory from $20000 to $28000. Future versions of
Qdos may allow the system variables to be initialised at at $30000 to take advantage of this dual-
screen feature: the present version does not.

Bits 0, 2, 4, 5 and 6 of the display control register should never be set to anything other than
zero, as they are reserved and may have unpredictable results in future versions of the QL
hardware.

QDOS/SMS Reference Manual 10/08/95 Section 10 2

10.4 Keyboard and Sound Control

The keyboard and loudspeaker are controlled by the QL's second processor, which is an 8049
single-chip microcomputer: this is known in the QL as the Intelligent Peripheral Controller, or IPC.
The SMS.HDOP trap provides a set of commands that the CPU can send to the IPC over the
serial link that connects them. This trap is discussed in greater detail in section 13.0.

When the keyboard is accessed via the console driver, the usual functions of debounce and
conversion to ASCII are performed, in addition to the functions described in section 15.0. The
other way of accessing the keyboard is to use the SMS.HDOP trap to monitor the instantaneous
state of the keys directly: this is the only way of detecting multiple key presses (necessary for
joystick input), or of detecting the state of the SHIFT, CTRL and ALT keys when no other key has
been depressed. See the SuperBASIC Keywords entry on the KEYROW function for an example
of the use of this technique.

The same trap, with different parameters, is used for sound generation.

10.5 Serial I/O

The QL's serial I/O should only be accessed via the serial driver, except for setting the baud rate,
which is performed by the SMS.COMM trap. The only other function that can safely be performed
by the user independently of the operating system is the checking of the transmit handshake lines
(DTR on channel 1 and CTS on channel 2), which can be looked at by monitoring bits 4 and 5 of
the microdrive status register respectively. Note that if the connector is rewired to use these pins
as data lines, this function could be used to perform RS232-C reception entirely in software,
which would make it possible to perform XON-XOFF handshaking or split baud rate operation.

10.6 Real-time Clock

The QL's real-time clock is a 32-bit seconds counter. The three traps SMS.RRTC, SMS.SRTC
and SMS.ARTC are used to read, set and adjust the clock. The vectored routines CV.ILDAT and
CV.ILDAY are used to convert the time obtained to a string.

10.7 Network

This should not be accessed other than by the built-in device driver.

QDOS/SMS Reference Manual 10/08/95 Section 10 3

10.8 Microdrives

Normally, these should not be accessed other than by the built-in device driver. However, it is
possible to write routines to access microdrive sectors directly in order to perform such functions
as fast medium-to-medium copying or recovery of data from a damaged medium.

There are four vectored routines provided for this purpose: MD.READ, MD.WRITE, MD.VERIF
and MD.RDHDR. Use of these routines requires a detailed understanding of the microdrive
hardware and format, and is probably beyond the scope of most users.

However, to use these routines the following code example shows how a microdrive is selected
or de-selected. In later versions of the operating system it will be a vectored entry.sys_wsermove.b d0,-(sp) ; save operationwait subq.w #1,sys_tmot(a0) ; decrement timeoutblt.s set_mode ; done?move.w #(20000*15-82)/36,d0 ; time=18*n+42 cyclesdelay1dbra d0,delay1 ; delaybra.s wait ; repeat until timeout expiresset_modeclr.w sys_tmot(a0) ; clear waitand.b #pc.notmd,sys_tmod(a0) ; not RS232move.b (sp)+,d0or.b d0,sys_tmod(a0) ; either mdv or netand.b #$ff-pc.maskt,sys_qlir(a0) ; disable transmit interruptexit move.b sys_tmod(a0),pc_tctrl ; set PCrtssys_rserbclr #pc..serb,sys_tmod(a0) ; set RS232 modeor.b #pc.maskt,sys_qlir(a0) ; enable transmit intertuptbra.s exitmd_deselmoveq #pc.desel,d2 ; clock in deselect bit firstmoveq #7,d1 ; deselect allbra.s sedesmd_selecmoveq #pc.selec,d2 ; clock in select bit firstsubq.w #1,d1 ; and clock it through n timessedesclk_loopmove.b d2,(a3) ; clock highmoveq #(18*15-40)/4,d0 ; time=2*n+20 cyclesror.l d0,d0bclr #pc..sclk,d2 ; clock lowmove.b d2,(a3) ; ... clocks d2.0 into firstdrivemoveq #(18*15-40)/4,d0 ; time=2*n+20 cyclesror.l d0,d0moveq #pc.desel,d2 ; clock high - deselect bit nextdbra d1,clk_looprtsdrivebsr.s startupbsr.s wind_dwnrts
QDOS/SMS Reference Manual 10/08/95 Section 10 4

; Routine to start up a microdrive; RETURNS IN SUPERVISOR MODE (if D3=1 to 8);; Entry Exit; D1 D1 smashed; D2 D2 smashed; D3.L number of microdrive D3 preserved; A0 A0 SYS_BASE; A3 A3 mdctrl (=$18020);; Error returns:; orng microdrive out of rangestartupcmp.l #1,d3 ; legal microdrive?blt.s ill_drve ; jump if notcmp.w #8,d3 ; legal microdrive?bgt.s ill_drve ; jump if notmove.l (sp)+,a3 ; A3=return addressmoveq #sms.info,d0 ; get system variablestrap #do.sms2 ; get system variablestrap #0 ; supervisor modemove.l a3,-(sp) ; 'return' the return addressmoveq #$10,d0 ; microdrive modebsr sys_wser ; wait for RS232 to completeor.w #$0700,sr ; shut out rest of worldmove.l d3,d1 ; d1 is microdrive to be startedmove.l #pc_mctrl,a3 ; control registerbsr md_selec ; start it upmoveq #0,d0 ; no problemsrts ; returnill_drvemoveq #err.orng,d0 ; error!rts; Routine to wind down (all!!!) microdrives; MUST BE CALLED IN SUPERVISOR MODE;; Entry Exit; D1 D1 smashed; D2 D2 smashed; A0 A0 SYS_BASE; A3 A3 ptr to instruction after call to herewind_dwnmoveq #sms.info,d0trap #do.sms2 ; get system variablesmove.l #pc.mctrl,a3 ; control registerbsr.s md_desel ; wind it downbsr sys_rser ; re-enable RS232move.l (sp)+,a3 ; A3=return addressmove.w #0,sr ; enable interrupts, exit SV-modemove.l a3,-(sp) ; return addressrts ; return
QDOS/SMS Reference Manual 10/08/95 Section 10 5

10.10 User and Supervisor Mode [ST]

Motorola has implemented function code lines into their processors to allow for hardware memory
protection. This has never been used on a QL, and for the first two QL-Emulators for the ATARI's
the machines had to be modified to ignore the function code line which says whether an access is
done in supervisor mode or user mode - the hardware always thought the access is in supervisor
mode. Generally, allowing accesses to the system addresses in supervisor mode only is a good
idea. This traps a program which tries to destroy some vectors or modify the hardware settings by
mistake or due to a programming fault.

Accesses to the system vectors ($000 to $400) have to be done in supervisor mode, otherwise
the system will generate a bus error. The only execption is an access to a QL utility vector which
may be accessed in both modes, e.g. MOVE.W RI.EXEC,A2 JSR (A2)
Hardware registers should be modified by the supervisor only, therefore any access to ST
hardware registers ($FFxxxxxx to $FFFFFFFF) are allowed in supervisor mode only - no
exception! Again, doing it in user mode results in a bus error. The same applies for accesses to
non-existent hardware - a bus error is generated. In general there should be no need to access
non-existent hardware, as the facilities of the system can be discovered by looking at system
variables or the thing list, if a thing does not exist, then the hardware is simply not available on
this machine. If a hardware address has to be accessed and it is not known whether the machine
supports it or not, the following routine could be used to do it.; Call routine with own bus error handler ©1992 Jochen Merz; Call a user-supplied routine to access hardware addresses; and ignore internal bus error handler to find out if routine succeeds.; This routine must be called in supervisor mode!; The routine which is to be called must not modify d3-d4 and a3, but; it should reset d0 on success or return any other error!;; Entry Exit;; D1 call parameter return parameter; D2 call parameter return parameter; D3+ preserved;; A0 routine to be called return parameter; A1 call parameter return parameter; A2+ preserved;; Error returns: ERR.NIMP if bus error occured; any error returned by supplied routine;---cbus_reg reg d3-d4/a3-a4ut_cbusermovem.l cbus_reg,-(sp)move.w sr,d3 ; keep SRor.w #$0700,sr ; no interrupts allowedmove.l sp,a3 ; keep SSPmove.l $0008,d4 ; get standard bus errorlea buserr,a4move.l a4,$0008 ; and insert new onemoveq #err.nimp,d0 ; assume bus errorjsr (a0) ; call routinebuserr
QDOS/SMS Reference Manual 10/08/95 Section 10 6

move.l a3,sp ; restore stackmove.l d4,$0008 ; restore bus errormove.w d3,sr ; restore SRmovem.l (sp)+,cbus_regtst.l d0rts
The routine at (A0) should first access the hardware register which is to be tested. If this fails, the
routine is left immediately. If not, it can do whatever it wants and return with an RTS.

10.11 The Interrupt System [ST]

All I/O on the ATARI is done under interrupt. This means, disabling the interrupts for a longer
period of time should be avoided. At present, there are two different interrupt systems
implemented: one for the old ST models, which uses the VBLANK interrupt for calling the Poll
loop. The disadvantage is, that it is unknown whether the poll is called at 50, 60 or even 71 Hz,
because this depends on the monitor which is connected.

On STE and TT models the poll is a steady 50 Hz interrupt, not related to the VBLANK. It is
derived from a 200 Hz interrupt which generates a software level 1 interrupt.

The general rules are: try to avoid disabling the interrupts at all. If you have to, don't stay long in
this mode (Sometimes you have to, e.g. for accesses to the sound chip - there must be no
interrupt between register select and register read/write)! Never modify the interrupt system! Do
not modify the masks in the SCU!

If you need a timer, the system may provide a timer. Check for a thing named "Timer" by trying to
use it. If it is in use, someone else is using the timer. If it is not found, the timer is not available at
all. If it is successful (it should be, generally spoken) then the Timer B of the MFP is your's. The
Thing itself does nothing but making sure that only one job can use the timer at a time, and it also
disables the interrupt on force remove. The server routine for the timer interrupt has to be
inserted at $1A0. The timer can be programmed to any rate which is possible, but you should
refer to other documentation which gives detailed description of the MFP.

10.12 The MIDI Interrupt server [ST]

The MIDI interrupt server is invoked through the keyboard server. To locate the keyboard server,
scan through the polling linked list looking for 'ASTK' iod_pllk (8) bytes below the polling link (i.e.
the base of a standard linkage block). Then put the base address of the midi linkage at $a8 in the
keyboard linkage and the address of the MIDI server at $ac.

The MIDI server is called with A3 pointing to the MIDI linkage and D0.b holding the contents of
the MIDI status register. (D0.b will always be negative - i.e. the interrupt bit will be set.) The
server may smash D0/D1/A0/A2/A3 and should return with RTE. Due to an error in old keyboard
drivers, A3 is not saved on a MIDI call. This means, that when you look for the 'ASTK' flag, this
address should be kept and A3 should be set to this linkage address just before the MIDI server
returns with RTE.

QDOS/SMS Reference Manual 10/08/95 Section 10 7

10.13 Different Processors [ST]

You can find out which processor is running the system by having a look at the system variable
SYS_PTYP ($A1). The high nibble contains the processor type, which gives a byte value of $0x
for a 68000, $1x for a 68010, $2x, $3x and $4x for 68020, 68030 and 68040, respectively. It is a
good idea to write a branch by looking at this register for time-critical routines which could be
improved by using the extended 68020+ register set.

The low nibble is reserved to show the presence of MMUs and Floating Point Coprocessors. It is,
at present, usually 0.

The different processors differ a bit in user-mode handling of some instructions. QDOS programs
had a number of privilege violation problems, but these are emulated now. The most common
problem is the entry to Supervisor mode, which is usually something likemove.w SR,Dx ; save previous processor modetrap #0 ; into supervisor mode... supervisor mode codemove.w Dx,SR ; back to previous mode
Processors other than 68000s will generate a Privilege Violation exception on the first command,
as it is not allowed to read the status register in user mode! Therefore, all reads of the status
register are emulated. As all the other privilege violation cases will definitely lead to a program
malfunction, the programm loops in an endless loop, waiting to be removed from the system. If
you set a debugger on this program and display the memory after the PC, then you will see a
message "Priv V at (A0). The offending instruction can be found at the address to which A0
points.

10.14 Different Machines [ST, SMSQ]

It might be very helpful to know on which machine the current programs are running. They all
differ in hardware, and behave different in some ways. The standard application usually does not
need to know on which machine it is running, but it could be very useful for some special
applications to use hardware if it exists to speed up things on some machines. In addition, it
could be helpful to know which type of emulator is installed in the machine. The system variable
SYS_MTYP ($A7) gives details about the machine. At present, the definition is as follows: Bits 4
to 0 contains the machine type, bits 7 to 5 the display type:

0 for all ordinary ST's without realtime-clock.
2 for Mega ST or ST's with realtime clock.
4 for Stacy.
6 for ordinary STE.
8 for Mega STE.
10 for GoldCard.
12 for SuperGoldCard
16 for the Falcon 030.
24 for the TT.
28 for the QXL

In addition, bit 0 is set if the machine contains a Blitter chip (ATARIs only) or a Hermes (QL).

The display types are:
%000 for the Futura emulator (we cannot tell whether it gives real MODE8 or not), %010 for the
Extended 4 Emulator and %100 for the QVME emulator card. %001 stands for ATARI
monochrome mode, and %110 for VGA mode (e.g. QXL).

Please note that this system variable is supported from E.20 onwards, together with E-Init
software V1.07 or later. If this system variable is 0 you can assume a normal ST with an old
emulator or, which is more likely, old software.

QDOS/SMS Reference Manual 10/08/95 Section 10 8

10.15 The ATARI DMA [ST]

The DMA is used to handle the floppy disk system and the ACSI port. You may gain access to
the DMA by trying to TAS the system variable SYS_DMIU ($A6). If this is set, you may use the
DMA (e.g. to provide new device drivers for streamers or CD ROMs connected to the ACSI port).
You should clear this flag as soon as possible.

As SMSQ supports more than one type of RAM, a key has been added to allow for the controlled
allocation of specific RAM. The ATARI TT may have Fast RAM in addition of the standard ST
compatible RAM. This Fast RAM cannot be used for Floppy Disk DMA and DMA from and to
devices connected to the ACSI port (this includes the ATARI LaserPrinter SLM 804 and SLM
605). It is possible to pass the characters "ACSI" in D3 on the SMS.ACHP call to make sure that
only the type of RAM is allocated wich supports direct memory access to the ACSI port.

QDOS/SMS Reference Manual 10/08/95 Section 10 9

11.0 Adding Peripheral Cards to the QL
Peripheral cards may be plugged into the expansion connector on the left-hand side of the QL.

There are two general categories of peripheral card for the QL: pure add-on memory cards, and
other peripheral cards.

It is intended that only one pure add-on RAM pard be plugged into the machine at any one time.
It is allocated the address area between $40000 and $BFFFF; the add-on memory should be
contiguous from $40000 upwards. This allows for an add-on memory size of up to 512 kbytes.

There is also room for an add-on ROM card of up to 128kbytes, which is allocated the addresses
$E0000 to $FFFFF.

Other peripheral cards contain electronics for the devices being added, a small ROM containing
the drivers for the devices being added together with a code allowing the QL to detect that the
card is present, and a 4-bit comparator which is used to select the card as explained below.

Note that the convention adopted in this document for an active low signal is to append the letter
"L" to the end of the signal name, as in DTACKL, VPAL etc. This takes the place of the overbar
indication used in the data sheets from most vendors.

11.1 Expansion Connector

The expansion connector allows extra peripherals to be plugged into the QL. Details of the
connections available at the connector may be found in the QL Concepts manual.

The connector inside the QL is a 64-way male DIN-41612 indirect edge connector, as found on
standard Eurocard modules. The connector on each add-on card should be the inverse version of
this.

The VIN supply is in the region of +9V DC: the trough never falling below 7V. Up to 500 mA may
be drawn from this to power the card.

No add-on card should load any pin on the edge connector by more than two LSTTL loads. All
add-on card data bus output drivers should be a 74LS245 or equivalent, in terms of drive ability,
and being tri-state.

11.2 CPU Interface

The CPU interface is totally memory-mapped onto the 68008's bus, control of the bus for use with
the video display controller being obtained by using the DTACKL signal to arbitrate the bus.
Memory access is entirely controlled by DSL, with ASL left unused. ASL should not be used to
gate any add-on hardware.

An unexpanded QL does not look at address lines A19 and A18. In peripheral cards which are to
be added to the QL, it is necessary for each card to disable the circuitry on the QL itself when
that peripheral card recognises its own address. This is achieved by pulling signal DSMCL high
before DSL goes low including buffering times. This is done typically by using a fast NPN
switching transistor (such as an MPS2369) connected as an emitter follower with the emitter
connected to DSMCL, the collector to +5V and the base to a logic signal. Note that the timing for
this operation is the most critical in most hardware interfaces to the QL, especially when the
necessary signals have been buffered.

QDOS/SMS Reference Manual 18/04/95 Section 11 1

Add-on cards must supply DTACKL or VPAL as required, to notify the CPU that they have
recognised their address.

All 68008 signals are available on the expansion connector to allow expansion to include
coprocessors or other peripherals.

The following signals are outputs only: A0-A19, RDWL, ASL, DSL, BGL, CLKCPU, E, RED,
BLUE, GREEN, CSYNCL, ,VSYNCH, ROMOEH, FC0-2, RESETCPUL.

The following lines are inputs only, and should only be driven from open collector outputs:
DTACKL, BRL, VPAL, IPL0L, IPL1L, BERRL, EXTINTL, DBGL.

The data bus, D0-D7, is bidirectional.

The EXTINTL pin may be used to generate a level 2 external interrupt, which can be linked to a
user task (see section 6.3). Note that the EXTINTL pin must not be negated until the Qdos start-
up mechanism is complete, or there is a risk of the system hanging up.

11.3 Peripheral Card Addressing

Peripheral cards (other than pure add-on memory cards) are allocated the address space
between $C0000 and $DFFFF. Each peripheral card, when selected, must disable DSMCL and
assert VPAL or DTACKL as required, for its own use. This address pace is split into eight slots of
16kbytes each; each peripheral card should normally take only one block if a full set of eight
peripheral cards is to be allowed to operate concurrently.

There is a set of four select lines, SP0-SP3, appearing on the edge connector. The first card in an
expansion module, or a single card directly plugged into the QL, receives a value of zero on
these for lines. Each slot in an expansion module has a value one different from that in the other
slots: this means that each card is allocated 16kbytes of address space. The card select logic
compares the values on A17-A14 against the number coming in on the select lines in order to
determine whether that card is selected. For the card to be selected it must be the case that
A14=SP0, A15=SP1, A16=SP2 and A17=SP3.

If there is a ROM containing device drivers for the peripheral card, it should sit in the bottom
addresses of the 16kbyte block. The format of the lowest part of this ROM is specified in the next
section.

11.4 Add-on Card ROMs

When the machine is booted, the operating system checks for plug-in ROM drivers by looking for
the characteristic longword flag $4AFB0001 at the base of each location in which a ROM might
be present. The beginning of a plug-in ROM should be in the following format:

00 $4AFB0001 (flag to indicate ROM is present)
04 pointer to list of BASIC procedures and functions
06 pointer to initialisation routine
08 string identifying the ROM

The pointers are relative to the base of the ROM. If the list pointer is zero then there will be no
attempt to link routines into SuperBASIC.

The list of BASIC procedures and functions is in the form used by SB.INIPR (see section 16.0).

QDOS/SMS Reference Manual 18/04/95 Section 11 2

At start-up the machine will link in the additional BASIC procedures from the ROM, then call the
initialisation routine (in user mode) which must not modify A6, and finally must restore A0 (the
initial window ID), and A3, the pointer to the ROM, on exit. Up to 128 bytes may be used on the
user stack.

The description should be in the form of a character count (word) followed by the ASCII
characters of the device description(s) ending with the newline character (ASCII 10). It is
recommended that the number of characters should be limited to 36.

All code for device drivers must be position independent, since the addresses of the ROM and
the devices on the card will be dependent upon the position at which it has been plugged into a
QL expansion module. This allows multiple copies of the same add-on card to be used
simultaneously.

QDOS/SMS Reference Manual 18/04/95 Section 11 3

12.0 Non-English Systems
There are three areas in which non-English QLs may differ from English QLs: the video, the
keyboard, and the character set for serial communications.

The version codes for non-English QLs are adjusted appropriately to contain a character
identifying the country. In the version code returned by SMS.INFO, this character replaces the
decimal point; in the string returned by the SuperBASIC VER$ function, the character is added on
at the end, producing a string three characters long for non-English QLs. Example:

1G13 MGG

12.1 Video

This is different for countries where the television system is NTSC, which permits the use of
fewer raster lines than PAL. In QLs for such countries, the following options are the defaults:

For monitor operation, a 50Hz 624-line non-interlaced system is used; this is the same system as
is used on the English QL. The full 512x256 pixel display is available, and the default windows
and character size are the same as for the monitor mode on an English QL.

For TV operation, a 60Hz 524-line non-interlaced system is used in which the number of raster
lines available is limited to 192. In order to ease the task of software conversion, an alternate
display font is provided which allows a 6x8 character square instead of the usual 6x10. This
ensures approximately the same number of visible rows of text on both PAL and NTSC QLs, at
the cost of true descenders and reduced vertical spacing. The default windows and graphics
scaling for TV operation are different from those of the English QL.

12.2 Non-English-language Keyboards

The keyboard layout for most European countries will be different from the English layout. This
difference should be largely transparent to applications software, since the "QL ASCII" codes
contain all the characters necessary for the European countries in question, and the codes
generated are independent of the keyboard layout and hence of the actual key depressions
required to generate them.

However, there are a few subtleties, the following being the most obvious:

1. A program which draws pictures of keys in certain places will certainly produce an incorrect
drawing if the location of those keys has changed between countries.

2. The keyrow function (or SMS.HDOP trap) refers to the physical position of the keys, not to
their logical meaning. For example, a test on an English QL for the letter "Q" using keyrow will
turn into a test for the letter "A" on a French QL which has an AZERTY keyboard.

3. An instruction to "hit any key" will not be strictly accurate for a country which employs non-
spacing diacriticals, where the keypress of an accent character does not generate a code until the
character to be accented is pressed. The length of the type-ahead buffer in the IPC will be
apparently reduced in such cases.

QDOS/SMS Reference Manual 18/04/95 Section 12 1

12.3 Character Set [not SMS2] [SMSQ]

The English character set is available in all countries. However, in non-English countries, the
character set for serial communications may (optionally) be translated into a "local" character set.
A further option allows the user to specify his own translation table, since it is anticipated that a
number of countries will have several standards (i.e., no standards at all).

The trap SMS.TRNS is used to set up user-supplied translation tables for the serial
communications (serial and parallel printer ports). In addition, a language-dependant table for the
error-messages may be supplied.

The simple translation exchanges a character code against another one. The character may
optionally be replaced by three characters, using a second table.

The format of the translation table is as follows:

base_of_table
word $4AFB flag
word table1-base_of_table relative pointer to first table
word table2-base_of_table relative pointer to second table

table1
256 bytes 1 to 1 character translation

table2
byte number of translations or 0
for every translation ...:
byte character to be translated
3 bytes three replacement characters

If the first pointer is zero, no translation is being performed.
The second table is only used for output.

The message table, which may be optionally supplied, has to be in the following format:

base
word $4AFB flag
word err_nc-base rel. pointer to 'not-complete' message
word err_ijob-base rel. pointer to 'invalid job' message
...
... all error messages
...
word err_isyn-base rel. pointer to 'bad line' message
word atline-base * message 'At line '
word sectors-base message ' sectors'
word F1_F2-base message 'F1 .. monitor'

 'F2 .. TV'
word copyright-base * message 'C1983 Sinclair Research Ltd'
word dur_when-base message 'during WHEN processing'
word procclr-base message 'PROC/FN cleared'
word days-base * days 'SunMonTueWedThuFriSat'
word months-base * months 'JanFebMar ..' etc

All messages except the days and months have to be in standard string format.
All messages except those marked with * should end with newline (ASCII 10).

QDOS/SMS Reference Manual 18/04/95 Section 12 2

12.4 Special Alphabets

Languages with non-Roman alphabets, such as Hebrew, Greek, Thai, Arabic, etc., require spe-
cial treatment. No general scheme has been devised for making software transportable to these
countries, and the implementation means will be specific to each country.

QDOS/SMS Reference Manual 18/04/95 Section 12 3

13.0 System Traps
| |
| Trap #1 D0=$18 SMS.ACHP |
| |
| Allocate common heap area |
| |
| Call parameters Return parameters |
| |
| D1.L number of bytes required D1.L nr. of bytes allocated |
| D2.L owner job ID D2 ??? |
| D3 0 or "ACSI" D3 ??? |
| D4+ all preserved |
| |
| A0 A0 base address of area |
| A1 A1 ??? |
| A2 A2 ??? |
| A3 A3 ??? |
| A4+ all preserved |
| |
| Error returns (Z flag is not always set correctly): |
| |
| IMEM out of memory |
| IJOB job does not exist |
| |

This trap is a specific example of the general heap allocation mechanism described in section 4.1
and accessible using SMS.ALHP.
ATARI TT (or similar machines with ST RAM and Fast RAM) only: If D3 is passed as "ACSI",
then memory is allocated in ST compatible RAM, not in Fast RAM [SMSQ].

| |
| Trap #1 D0=$A SMS.ACJB |
| |
| Activate a job |
| |
| Call parameters Return parameters |
| |
| D1.L job ID D1.L job ID |
| D2.B priority D2 preserved |
| D3 timeout (0 or -1) D3 preserved |
| D4+ all preserved |
| |
| A0 A0 base of job ctrl area |
| A1 A1 preserved |
| A2 A2 preserved |
| A3 A3 preserved if D3=0 |
| A4+ all preserved |
| |
| Error returns: |
| |
| IJOB job does not exist |
| NC job already active |
| |

This trap activates a job in the transient area. Execution commences at the start address defined
when the job was created.

If the timeout is zero then the execution of the current job continues, otherwise the current job will
be suspended until the job activated is completed. The trapp will then return with the error code
(if any) from that job.

QDOS/SMS Reference Manual 28/10/98 Section 13 1

| |
| Trap #1 D0=$C SMS.ALHP |
| |
| Allocate an area in a heap |
| |
| Call parameters Return parameters |
| |
| D1.L length required D1.L length allocated |
| D2 D2 ??? |
| D3 D3 ??? |
| D4+ all preserved |
| |
| A0 ptr to ptr to free space A0 base of area allocated |
| A1 A1 ??? |
| A2 A2 ??? |
| A3 A3 ??? |
| A6 base address A6 preserved |
| |
| Error returns: |
| |
| IMEM no free space large enough |
| |

Two trap entries are provided for user heap management where this is required to be atomic. A6
is used as a base address for both this call and for SMS.REHP so that A0 (and A1) is an address
relative to A6.

See section 2.1.4 for details of the heap mechanism.

| |
| Trap #1 D0=$16 SMS.AMPA |
| |
| Allocate BASIC program area |
| |
| Call parameters Return parameters |
| |
| D1.L number of bytes required D1.L nr. of bytes allocated |
| D2 D2 ??? |
| D3 D3 ??? |
| D4+ all preserved |
| |
| A0 A0 ??? |
| A1 A1 ??? |
| A2 A2 ??? |
| A3 A3 ??? |
| A6 base address A6 new base address |
| A7 user stack pointer A7 new stack pointer |
| |
| Error returns: |
| |
| IMEM out of memory |
| |

QDOS/SMS Reference Manual 28/10/98 Section 13 2

| |
| Trap #1 D0=$E SMS.ARPA |
| |
| Allocate resident procedure area |
| |
| Call parameters Return parameters |
| |
| D1.L number of bytes required D1 ??? |
| D2 D2 ??? |
| D3 D3 ??? |
| D4+ all preserved |
| |
| A0 A0 base address of area |
| A1 A1 ??? |
| A2 A2 ??? |
| A3 A3 ??? |
| A4+ all preserved |
| |
| Error returns: |
| |
| IMEM out of memory |
| NC unable to allocaste (TRNSP area not empty) |
| |

This trap should only be invoked when the transient program area is empty.

| |
| Trap #1 D0=$15 SMS.ARTC |
| |
| Adjust real-time-clock |
| |
| Call parameters Return parameters |
| |
| D1.L adjustment in seconds D1.L time in seconds |
| D2 D2 ??? |
| D3 D3 ??? |
| D4+ all preserved |
| |
| A0 A0 ??? |
| A1 A1 preserved |
| A2 A2 preserved |
| A3+ all preserved |
| |

As setting the clock takes a significant time, no adjustment is made if a call is made to adjust the
clock and D1=0.

Time starts at 00:00:00, 1. January 1961.

QDOS/SMS Reference Manual 28/10/98 Section 13 3

| |
| Trap #1 D0=$2F [SMSQ] SMS.CACH |
| |
| Turn Cache on or off |
| |
| Call parameters Return parameters |
| |
| D1.L 1 for Cache on, 0 for Cache off, D1 1 = Cache on, 0 = Cache off |
| -1 to read current cache setting |
| |
| Error returns: |
| |
| always okay |
| |

No other value than 0 or 1 should be used to set the cache, to allow for future cache control
strategies. To read the current cache setting, use -1. For Motorola 68000 processors, it always
returns 0.

| |
| Trap #1 D0=$12 SMS.COMM |
| |
| Set the baud rate |
| |
| Call parameters Return parameters |
| |
| D1.W baud rate D1 ??? |
| D2 D2 preserved |
| D3 D3 preserved |
| D4+ all preserved |
| |
| A0 A0 preserved |
| A1 A1 preserved |
| A2 A2 preserved |
| A3 A3 preserved |
| A4+ all preserved |
| |
| Error returns: |
| |
| IPAR non recognised baud rate |
| |

For a standard QL, the baud rate supplied in D1 is applied to both serial ports. For extended
Systems (e.g. Hermes) refer to the specific documentation supplied with the extension.

QDOS/SMS Reference Manual 28/10/98 Section 13 4

| |
| Trap #1 D0=$1 SMS.CRJB |
| |
| Create a job in transient program area |
| |
| Call parameters Return parameters |
| |
| D1.L owner job ID D1.L job ID |
| D2.L length of code (bytes) D2 preserved |
| D3.L length of data space D3 preserved |
| D4+ all preserved |
| |
| A0 A0 base of area allocated |
| A1 start address or 0 A1 preserved |
| A2 A2 preserved |
| A3 A3 preserved |
| A4+ all preserved |
| |
| Error returns: |
| |
| IMEM out of memory |
| IJOB no room in job table or D1 is not a job |
| |

This trap allocates space in the transient program area, and sets up a job entry in the scheduler
tables. This does not invoke the job and the only initialisation is that two words of 0 are put on the
stack. The program itself would normally be loaded, by another job, into the space allocated, after
this system call. The stack pointer saved in the job control area points to two zero words on the
stack (at the highest addresses in the job's data area); if channels are to be opened for the job, or
a command string is to be passed to the job, then this can be done before the job is activated.
If D1 is 0 (i.e. owned by the system), the new job is independent, if D1 is negative, it is owned by
the calling job.

QDOS/SMS Reference Manual 28/10/98 Section 13 5

| |
| Trap #1 D0=$10 SMS.DMOD |
| |
| Set or read the display mode |
| |
| Call parameters Return parameters |
| |
| D1.B key: -1 read mode D1.B display mode |
| 0 mode is 4 colour |
| 2 mode is 2 colour [SMS] |
| 8 mode is 8 colour |
| 12 mode is 16 colour [Thor XVI] |
| D2.B key: -1 read display D2.B display type |
| 0 monitor |
| 1 625-line TV |
| 2 525-line TV |
| D3 D3 preserved |
| D4+ all preserved |
| |
| A0 A0 ??? |
| A1 A1 preserved |
| A2 A2 preserved |
| A3 A3 preserved |
| A4 ??? |
| |

This call is used to set or read the current display mode. It is treated as a manager trap as it
affects all the displayed windows. If a call is made to set the screen mode, then all the windows
on the screen are cleared and the character sizes may be adjusted. Oviously, there are serious
risks involved in calling this trap to set the mode when there are jobs in the machine accessing
the screen.

For a SMS machine or Extended4-Emulator, this trap only clears the windows of the calling job,
so that the windows of other jobs are not affected.

| |
| Trap #1 D0=$7 SMS.EXV |
| |
| Set the per-job pointer to trap vectors |
| |
| Call parameters Return parameters |
| |
| D1.L job ID D1.L job ID |
| D2 D2 preserved |
| D3 D3 preserved |
| D4+ all preserved |
| |
| A0 A0 base of job |
| A1 pointer to table A1 ??? |
| A2 A2 preserved |
| A3 A3 preserved |
| A4+ all preserved |
| |

Note: When a routine in the table is entered as a result of an exception, the CPU is in supervisor
mode. The routine should return with an RTE command (not RTS). Any registers used must be
saved and restored.

QDOS/SMS Reference Manual 28/10/98 Section 13 6

| |
| Trap #1 D0=$35 [SMSQ] SMS.FPRM |
| |
| Find Preferred Module |
| |

For details on this trap call, refer to section 19, "Language dependent Modules".

| |
| Trap #1 D0=$5 SMS.FRJB |
| |
| Force-remove job from transient program area |
| |
| Call parameters Return parameters |
| |
| D1.L job ID D1 ??? |
| D2 D2 ??? |
| D3.L error code D3 ??? |
| D4+ all preserved |
| |
| A0 A0 ??? |
| A1 A1 ??? |
| A2 A2 ??? |
| A3 A3 ??? |
| A4+ all preserved |
| |
| Error returns: |
| |
| IJOB job does not exist |
| |

This trap inactivates a complete job tree and deletes all jobs in it. If D1 is set to -1 then the
current job is removed.

Neither of the traps SMS.FRJB or SMS.RMJB to remove jobs can remove job 0.
Neither of these traps are guaranteed to be atomic.

If there is a job waiting on completion of any job removed, this is released with D0 set to the error
code (see SMS.ACJB D0=$A).

QDOS/SMS Reference Manual 28/10/98 Section 13 7

| |
| Trap #1 D0=$6 SMS.FRTP |
| |
| Find largest contigous free space that may be allocated in transient prog area |
| |
| Call parameters Return parameters |
| |
| D1 D1.L length of space found |
| D2 D2 ??? |
| D3 D3 ??? |
| D4+ all preserved |
| |
| A0 A0 ??? |
| A1 A1 ??? |
| A2 A2 ??? |
| A3 A3 ??? |
| A4+ all preserved |
| |

| |
| Trap #1 D0=$29 [SMS2] [EXT] SMS.FTHG |
| |
| Free Thing |
| |
| Call parameters Return parameters |
| |
| D1 user Job ID D1 preserved |
| D2 parameter D2 returned result |
| D3 parameter D3 preserved |
| D4+ all preserved |
| |
| A0 name of Thing to free A0 preserved |
| A1 parameter A1 ??? |
| A2 parameter A2 returned result |
| A3+ all preserved |
| |
| Error returns: |
| |
| ITNF Thing was not found |
| any returns from Thing's FREE code |
| |

This routine will usually be called when a Job no longer requires the use of a Thing. If a Thing is
freed on behalf of a Job other than the calling Job, then the user Job is removed, as it would
probably otherwise continue trying to use the Thing. As with the call to use a Thing, additional
parameters may be required or returned by the Thing itself.

QDOS/SMS Reference Manual 28/10/98 Section 13 8

| |
| Trap #1 D0=$11 SMS.HDOP |
| |
| Send a command to the IPC |
| |
| Call parameters Return parameters |
| |
| D1 D1.B return parameter |
| D2 D2.L preserved |
| D3 D3 preserved |
| D5 ??? |
| D7 ??? |
| |
| A0 A0 preserved |
| A1 A1 preserved |
| A2 A2 preserved |
| A3 pointer to command A3 preserved |
| A4+ all preserved |
| |

This trap sends a command to the IPC.

A command sent to the IPC is a nibble (4 bits of a byte) followed by a stream of nibbles or bytes
being the parameters of the command; some information may then be returned from the IPC. The
command format for SMS.HDOP is a header describing the command to be sent, followed by the
parameters to be sent, followed by a byte indicating whether a reply is expected. The IPC
communication is completely unprotected and the command must not contain any errors or else
the entire machine will hang up. IPC communications is a very slow process and excessive use
of the IPC, for example: polling all rows of the keyboard - the cursor keys have been organised to
all be in one row, will cause very high processor overheads.

The command format allows 0, 4 or 8 bits to be transferred from each byte in the parameter
block. This is encoded in 2 bits:

00 send least significant 4 bits
01 send nothing
10 send all 8 bits
11 send nothing.

The complete command format is:

1 byte the IPC command nibble in the LS 4 bits;
1 byte the number of parameter bytes to follow;
1 long word containing the codes for the amount of each parameter byte to be sent in

reverse order: bits 1,0 the amount of first byte to send, bits 3,2 the amount
of the second byte etc.;

n bytes the parameter bytes
1 byte length of reply encoded in bits 1,0.

QDOS/SMS Reference Manual 28/10/98 Section 13 9

Most of the IPC commands are for use by the operating system and any attempt by application
programs to use these is liable to cause loss of data or worse. There are three commands for the
IPC which may be used by applications programs:

$9 read a row of the keyboard, 1 parameter
4 bits the row number
8 bits reply

$A initiate sound, 8 parameters
8 bits pitch1
8 bits pitch2
16 bits interval between steps
16 bits duration
8 bits top 4 bits: step in pitch, lower 4 bits: wrap
8 bits top 4 bits: randomness of step, lower 4 bits: fuzziness
no reply

$B kill sound, no parameters, no reply.

An example of initiate sound is the following line, which is the data for a sirene-type sound:sirene dc.b $a ; command nibbledc.b 8 ; number of parameter bytesdc.l $0000aaaa ; paramters all 8 bitdc.b $01,$14,$c8,$00,$ff,$7f,$10,0 ; parametersdc.b 1 ; no reply
This is equivalent to the SuperBASIC command

BEEP HEX('7FFF'),1,HEX('14'),HEX('00C8'),1,0,0,0

| |
| Trap #1 D0=$0 SMS.INFO |
| |
| System information |
| |
| Call parameters Return parameters |
| |
| D1 D1.L current job ID |
| D2 D2.L ASCII OS version (n.nn) |
| D3 D3 preserved |
| D4+ all preserved |
| |
| A0 A0 pointer to system vars |
| A1 A1 preserved |
| A2 A2 preserved |
| A3 A3 preserved |
| A4+ all preserved |
| |

This trap should always be used as a means of obtaining the base address of the system
variables as well as ensuring that the operating system version supports the features you wish to
use.

QDOS/SMS Reference Manual 28/10/98 Section 13 10

| |
| Trap #1 D0=$2 SMS.INJB |
| |
| Information on a job |
| |
| Call parameters Return parameters |
| |
| D1.L job ID D1.L next job in tree |
| D2.L job at top of tree D2.L owner job |
| D3 D3.L MSB -ve if suspended |
| LSB priority |
| D4+ all preserved |
| |
| A0 A0 base address of job |
| A1 A1 ??? |
| A2 A2 preserved |
| A3 A3 preserved |
| A4+ all preserved |
| |
| Error returns: |
| |
| IJOB job does not exist |
| |

This trap returns the status of a job.

This trap may be used to check the status of a tree of jobs. On each call D2 should be the ID of
the job at the top of the tree; to scan a complete tree the trap is made with D1 being the return
value of the previous call. When the tree has been completely scanned D1 is returned equal to
zero.

| |
| Trap #1 D0=$2E [SMSQ] SMS.IOPR |
| |
| Set IO Priority |
| |
| Call parameters Return parameters |
| |
| D1 D1 preserved |
| D2.W priority to set D2 preserved |
| |
| Error returns: |
| |
| always okay |
| |

The IO priority sets the priority of the IO retry operations. In effect, this sets a limit on the time
spent by the scheduler retrying IO operations. A priority of one sets the IO retry scheduling policy
to the same as QDOS, thus giving a similar level of response but with a higher crude
performance. A priority of 2 will give QDOS levels of response, better response under load. 10,
for example, will give a much better response under load but degraded performance. 32767 will
give maximum response, the performance depends on the number of jobs waiting for input
(default SMSQ setting).

QDOS/SMS Reference Manual 28/10/98 Section 13 11

| |
| Trap #1 D0=$31 [SMSQ] SMS.LENQ |
| |
| Language Enquiry |
| |

For details on this trap call, refer to section 19, "Language dependent Modules".

| |
| Trap #1 D0=$1A SMS.LEXI |
| D0=$1C SMS.LPOL |
| D0=$1E SMS.LSHD |
| D0=$20 SMS.LIOD |
| D0=$22 SMS.LFSD |
| |
| $1A Link an external interrupt service routine |
| $1C Link a polling 50/60 Hz service routine |
| $1E Link a scheduler loop task |
| $20 Link an IO device driver |
| $22 Link a directory device driver into the operating system |
| |
| Call parameters Return parameters |
| |
| D1 D1 preserved |
| D2 D2 preserved |
| D3 D3 preserved |
| D4+ all preserved |
| |
| A0 address of link A0 preserved |
| A1 A1 ??? |
| A2 A2 preserved |
| A3 A3 preserved |
| A6 A6 preserved |
| |

| |
| Trap #1 D0=$30 [SMSQ] SMS.LLDM |
| |
| Link in Language Dependent Module |
| |

For details on this trap call, refer to section 19, "Language dependent Modules".

| |
| Trap #1 D0=$32 [SMSQ] SMS.LSET |
| |
| Language Set |
| |

For details on this trap call, refer to section 19, "Language dependent Modules".

QDOS/SMS Reference Manual 28/10/98 Section 13 12

| |
| Trap #1 D0=$26 [SMS2] [EXT] SMS.LTHG |
| |
| Link in new Thing |
| |
| Call parameters Return parameters |
| |
| D1 D1 preserved |
| D2 D2 preserved |
| D3 D3 preserved |
| D4+ all preserved |
| |
| A0 A0 preserved |
| A1 address of Thing linkage A1 preserved |
| A2 A2 preserved |
| A3+ all preserved |
| |
| Error returns: |
| |
| FEX Thing of this name already exists |
| |

The linkage block should have TH_THING, TH_USE, TH_FREE, TH_FFREE, TH_REMOV,
TH_VERID, TH_SHARE and TH_NAME filled in before this call is made: it must be allocated in
the common heap so that SMS.ZTHG, or SMS.RTHG called from another program, can
de-allocate the linkage block correctly. The name in the linkage block is set to lower case, to
speed searching.

| |
| Trap #1 D0=$34 [SMSQ] SMS.MPTR |
| |
| Find Message Pointer |
| |

For details on this trap call, refer to section 19, "Language dependent Modules".

QDOS/SMS Reference Manual 28/10/98 Section 13 13

| |
| Trap #1 D0=$2B [SMS2] [EXT] SMS.NTHG |
| |
| Next Thing |
| |
| Call parameters Return parameters |
| |
| D1 D1 preserved |
| D2 D2 preserved |
| D3 D3 preserved |
| D4+ all preserved |
| |
| |
| A0 thing name or 0 A0 preserved |
| A1 A1 next thing linkage |
| A2 A2 preserved |
| A3+ all preserved |
| |
| Error returns: |
| |
| ITNF Thing was not found |
| |

This routine allows code to scan the Thing list to find out what Things are available. On each call
the address of the next thing linkage block in the list is returned. If a zero pointer to a thing name
is passed then the first block in the list will be returned. The following code will thus scan the
entire Thing list:SUB.L A0,A0 ; start of listSLOOPMOVEQ #SMS.NTHG,D0 ; find next ThingTRAP #DO.SMS2 ; if not SMS2, jump via HOTKEY System vector!!!MOVE.L D0,-(SP)BSR proc ; process itMOVE.L (SP)+,D0 ; was there another Thing?BNE.S SDONE ; noLEA TH_NAME(A1),A0 ; point to this Thing's nameBRA.S SLOOP ; and find the next ThingSDONE
QDOS/SMS Reference Manual 28/10/98 Section 13 14

| |
| Trap #1 D0=$2C [SMS2] [EXT] SMS.NTHU |
| |
| Next Thing User |
| |
| Call parameters Return parameters |
| |
| D1 D1 preserved |
| D2 D2 owner of usage block |
| D3 D3 preserved |
| D4+ all preserved |
| |
| A0 thing name A0 preserved |
| A1 thing usage block or 0 A1 next usage block |
| A2 A2 smashed |
| A3+ all preserved |
| |
| Error returns: |
| |
| ITNF Thing was not found |
| IJOB usage block was not found |
| |

This routine allows code to scan the usage list of a given Thing to find out which Jobs are using
it. It returns in D2 the ID of the owner of the usage block passed. Note that the format of the
usage block may change, so the returned address should only be used as a parameter for this
routine. Note also that a Job may cease using the Thing between calls to this routine. The usage
list of a Thing may be scanned thus:LEA name,A0 ; point to Thing nameSUB.L A1,A1 ; start with first usage blockSLOOPMOVEQ #SMS.NTHU,D0 ; find next userTRAP #DO.SMS2 ; if not SMS2, jump via HOTKEY System vector!!!MOVE.L D0,-(SP)BSR proc ; process this userMOVE.L (SP)+,D0 ; was there another Thing?BEQ.S SLOOP ; yes!SDONE
| |
| Trap #1 D0=$33 [SMSQ] SMS.PSET |
| |
| Set Printer Translate |
| |

For details on this trap call, refer to section 19, "Language dependent Modules".

QDOS/SMS Reference Manual 28/10/98 Section 13 15

| |
| Trap #1 D0=$19 SMS.RCHP |
| |
| Release common heap area |
| |
| Call parameters Return parameters |
| |
| D1.L D1 ??? |
| D2.L D2 ??? |
| D3 D3 ??? |
| D4+ all preserved |
| |
| A0 base of area to be freed A0 ??? |
| A1 A1 ??? |
| A2 A2 ??? |
| A3 A3 ??? |
| A4+ all preserved |
| |

| |
| Trap #1 D0=$D SMS.REHP |
| |
| Link a free space (back) into a heap |
| |
| Call parameters Return parameters |
| |
| D1.L length to link in D1 ??? |
| D2 D2 ??? |
| D3 D3 ??? |
| D4+ all preserved |
| |
| A0 base of new space A0 ??? |
| A1 ptr to ptr to free space A1 ??? |
| A2 A2 ??? |
| A3 A3 ??? |
| A6 base address A6 preserved |
| |

A6 is used as a base address for this call and for SMS.ALHP so that A0 (and A1) is an address
relative to A6.

QDOS/SMS Reference Manual 28/10/98 Section 13 16

| |
| Trap #1 D0=$1B SMS.REXI |
| D0=$1D SMS.RPOL |
| D0=$1F SMS.RSHD |
| D0=$21 SMS.RIOD |
| D0=$23 SMS.RFSD |
| |
| $1B Remove an external interrupt service routine |
| $1D Remove a polling 50/60 Hz service routine |
| $1F Remove a scheduler loop task |
| $21 Remove an IO device driver |
| $23 Remove a directory device driver from the operating system |
| |
| Call parameters Return parameters |
| |
| D1 D1 preserved |
| D2 D2 preserved |
| D3 D3 preserved |
| D4+ all preserved |
| |
| A0 address of link A0 preserved |
| A1 A1 ??? |
| A2 A2 preserved |
| A3 A3 preserved |
| |

| |
| Trap #1 D0=$4 SMS.RMJB |
| |
| Remove job from transient program area |
| |
| Call parameters Return parameters |
| |
| D1.L job ID D1 ??? |
| D2 D2 ??? |
| D3.L error code D3 ??? |
| D4+ all preserved |
| |
| A0 A0 ??? |
| A1 A1 ??? |
| A2 A2 ??? |
| A3 A3 ??? |
| A4+ all preserved |
| |
| Error returns: |
| |
| IJOB job does not exist |
| NC job not inactive |
| |

This trap removes a job (and its subsidiaries) from the transient program area. Only inactive jobs
may be removed.

QDOS/SMS Reference Manual 28/10/98 Section 13 17

| |
| Trap #1 D0=$17 SMS.RMPA |
| |
| Release BASIC program area |
| |
| Call parameters Return parameters |
| |
| D1.L number of bytes to release D1.L nr. of bytes releaseed |
| D2 D2 ??? |
| D3 D3 ??? |
| D4+ all preserved |
| |
| A0 A0 ??? |
| A1 A1 ??? |
| A2 A2 ??? |
| A3 A3 ??? |
| A6 base address A6 new base address |
| A7 user stack pointer A7 new stack pointer |
| |

| |
| Trap #1 D0=$13 SMS.RRTC |
| |
| Read real-time-clock |
| |
| Call parameters Return parameters |
| |
| D1 D1.L time in seconds |
| D2 D2 ??? |
| D3 D3 preserved |
| D4+ all preserved |
| |
| A0 A0 ??? |
| A1 A1 preserved |
| A2 A2 preserved |
| A3+ all preserved |
| |

The time returned in D1 is the number of seconds since 00:00 1 January 1961.

QDOS/SMS Reference Manual 28/10/98 Section 13 18

| |
| Trap #1 D0=$27 [SMS2] [EXT] SMS.RTHG |
| |
| Remove Thing from list |
| |
| Call parameters Return parameters |
| |
| D1 D1 preserved |
| D2 D2 preserved |
| D3 D3 preserved |
| D4+ all preserved |
| |
| |
| A0 name of Thing to remove A0 preserved |
| A1 A1 preserved |
| A2 A2 preserved |
| A3+ all preserved |
| |
| Error returns: |
| |
| FDIU Thing is in use |
| ITNF Thing not found |
| |

This routine removes a Thing from the system, if it is not in use. It will be of use where a different
version of someThing is required. The Thing linkage block will have been returned to the common
heap if this call succeeds.

| |
| Trap #1 D0=$38 [SMSQ] SMS.SCHP |
| |
| Shrink allocation in common heap |
| |
| Call parameters Return parameters |
| |
| D1.L new size required D1.L new size retained |
| D2 D2 ??? |
| D3 D3 ??? |
| D4+ all preserved |
| |
| A0 base address of area A0 base address of area |
| A1 A1 ??? |
| A2 A2 ??? |
| A3 A3 ??? |
| A4+ all preserved |
| |
| Error returns (Z flag is not always set correctly): |
| |
| IJOB job does not exist |
| |

This trap can be used to link part of a heap allocation back into the free space list. The first part
of the area, starting from the base address, stays the same, and the following space which is not
required anymore is released. This trap can be used to avoid unnecessary re-allocation and
copying, in case too much memory is taken.

QDOS/SMS Reference Manual 28/10/98 Section 13 19

| |
| Trap #1 D0=$B SMS.SPJB |
| |
| Change job priority |
| |
| Call parameters Return parameters |
| |
| D1.L job ID D1.L job ID |
| D2.B priority (0 to 127) D2 preserved |
| D3 D3 preserved |
| D4+ all preserved |
| |
| A0 A0 smashed |
| A1 A1 preserved |
| A2+ preserved |
| |
| Error returns: |
| |
| IJOB job does not exist |
| |

This call is used to change the priority of a job. If D1 is a negative word it will change the priority
of the current job. Setting the priority to 0 will cause inactivation. This call re-enters the scheduler
and so a job setting its own priority to zero will be immediately inactivated.

Warning: Contrary to other QDOS documentation, A0 is smashed - it does not return the base of
the job control area.

| |
| Trap #1 D0=$3A [SMSQ] SMS.SEVT |
| |
| Send Event to Job |
| |
| Call parameters Return parameters |
| D1 destination job ID D1.l destination job ID |
| D2.b event(s) to notify D2.b preserved |
| D3+ all preserved |
| |
| A0+ all preserved |
| |
| Error returns: |
| |
| IJOB job does not exist |
| |

The events in D2 are sent the the destination job. If the job is waiting for one of these events, the
job is released, otherwise the all the events are pended.

QDOS/SMS Reference Manual 28/10/98 Section 13 20

| |
| Trap #1 D0=$14 SMS.SRTC |
| |
| Set real-time-clock |
| |
| Call parameters Return parameters |
| |
| D1.L time in seconds D1.L time in seconds |
| D2 D2 ??? |
| D3 D3 ??? |
| D4+ all preserved |
| |
| A0 A0 ??? |
| A1 A1 preserved |
| A2 A2 preserved |
| A3+ all preserved |
| |

The value in D1 has to be the number of seconds since 00:00 1 January 1961 to set the new time
and date.

| |
| Trap #1 D0=$8 SMS.SSJB |
| |
| Suspend a job |
| |
| Call parameters Return parameters |
| |
| D1.L job ID D1.L job ID |
| D2 D2 preserved |
| D3.W timeout period D3 preserved |
| D4+ all preserved |
| |
| A0 A0 base of job ctrl area |
| A1 address of flag byte or 0 A1 preserved |
| A2 A2 preserved |
| A3 A3 preserved |
| A4+ all preserved |
| |
| Error returns: |
| |
| IJOB job does not exist |
| |

A job may be suspended for an indefinite period, or until a given time has elapsed. The timeout
period is up to ($7FFF times the frame time).

If the job ID is a negative word, then the current job is suspended. The flag byte is cleared when
the job is released. If there is no flag byte, then A1 should be 0. If the timeout period is specified
as -1, then the suspension is indefinite; no other negative value should be used. If the job is
already suspended, the suspension will be reset. All jobs are rescheduled.

QDOS/SMS Reference Manual 28/10/98 Section 13 21

| |
| Trap #1 D0=$24 [not SMS2] SMS.TRNS |
| |
| Set translation table and error messages |
| |
| Call parameters Return parameters |
| |
| D1 ptr to translation table, -1 or 0 (or 1) D1 ??? |
| D2.L ptr to message table, -1 or 0 D2 ??? |
| D3 D3 ??? |
| D4+ all preserved |
| |
| A0 A0 ??? |
| A1 A1 ??? |
| A2 A2 ??? |
| A3 A3 ??? |
| A4+ all preserved |
| |
| Error returns: |
| |
| IPAR table has invalid format or is on odd address |
| |

This trap is supported from QDOS V1.10 onwards. If D1 or D2 are 0, then no translation is used
and the standard error messages are used. -1 leaves the values as it has been defined
previously. If D1=1 then a local translation table is used, depending on the language of the ROM
(not in UK or US ROMs).

[SMSQ] If D2 is not zero and it points to a message table with language code $4AFB, this
address is used for message group 0. The printer translate tables are then set according to the
value in D1 (see sms.pset).

| |
| Trap #1 D0=$9 SMS.USJB |
| |
| Release a job |
| |
| Call parameters Return parameters |
| |
| D1.L job ID D1.L job ID |
| D2 D2 preserved |
| D3 D3 preserved |
| D4+ all preserved |
| |
| A0 A0 base of job ctrl area |
| A1 A1 preserved |
| A2 A2 preserved |
| A3 A3 preserved |
| A4+ all preserved |
| |
| Error returns: |
| |
| IJOB job does not exist |
| |

After this call all jobs are rescheduled.

The activity of jobs can be controlled by activation or by modification of the priority levels. A job at

QDOS/SMS Reference Manual 28/10/98 Section 13 22

priority level 0 is inactive, at any other priority level it is active.

| |
| Trap #1 D0=$28 [SMS2] [EXT] SMS.UTHG |
| |
| Use Thing |
| |
| Call parameters Return parameters |
| |
| D1 Job ID D1 Job ID |
| D2 parameter D2 returned result |
| D3 timeout D3 version |
| D4+ all preserved |
| |
| A0 name of Thing to use A0 preserved |
| A1 A1 address of Thing or Extension |
| (if Thing is an Extension Thing) |
| A2 parameter A2 pointer to Thing linkage |
| A3+ all preserved |
| |
| Error returns: |
| |
| ITNF Thing was not found |
| NIMP Extension not found |
| any returns from Thing's USE code |
| |

Request the use of a Thing for a given Job. Various extra parameters may be required for the
Thing's USE code to determine whether the request can be granted - it is up to the provider of the
Thing to document what these parameters are. Similarly, extra results may be returned. For an
Extension Thing, D2 should be 0 or the required Extension ID.

| |
| Trap #1 D0=$3B [SMSQ] SMS.WEVT |
| |
| Wait for Event |
| |
| Call parameters Return parameters |
| D2.b event(s) to wait for D2.b event(s) causing return |
| D3.w timeout (-1 is forever) D3.w preserved |
| D4+ all preserved |
| |
| A0+ all preserved |
| |
| Error returns: |
| |
| none |
| |

The job waits for one or more of the events in D2 or the timeout. The events returned in D2 are
removed from the job's pending event vector (event accumulator).

QDOS/SMS Reference Manual 28/10/98 Section 13 23

| |
| Trap #1 D0=$25 [SMSQ] SMS.XTOP |
| |
| External Operation |
| |

The code which follows the TRAP #1 is executed as if it was part of a system call. When this
TRAP #1 is encountered, the registers are changed to A6 pointing to the system variables, A5
pointing to the stack frame (which contains D7.l, previous A5, previous A6) and the code is
executed in Supervisor mode. The routine must finish in an RTS, which brings it back to user
mode on return. It continues with the next program line after the RTS.

| |
| Trap #1 D0=$2A [SMS2] [EXT] SMS.ZTHG |
| |
| Zap Thing |
| |
| Call parameters Return parameters |
| |
| D1 D1 preserved |
| D2 D2 preserved |
| D3 D3 preserved |
| D4+ all preserved |
| |
| A0 name of Thing to zap A0 preserved |
| A1 A1 ??? |
| A2 A2 preserved |
| A3+ all preserved |
| |
| Error returns: |
| |
| ITNF Thing was not found |
| |

This routine removes a Thing and all Jobs using it. The call may not return, if the Job that called it
was removed as a result of the zap. Because of this, it may not be called from supervisor mode
under QDOS. The Thing linkage block is returned to the common heap by this call.

QDOS/SMS Reference Manual 28/10/98 Section 13 24

Trap 1 Keys - numerical order with page reference

sms.info $00 get INFOrmation on SMS 10
sms.crjb $01 CReate JoB 5
sms.injb $02 get INformation on JoB 11
sms.rmjb $04 ReMove JoB 17
sms.frjb $05 Forced Remove JoB 7
sms.frtp $06 find largest FRee space in TPa 8
sms.exv $07 set EXception Vector 6
sms.ssjb $08 SuSpend a JoB 21
sms.usjb $09 UnSuspend a JoB 22
sms.acjb $0a ACtivate a JoB 1
sms.spjb $0b Set Priority of JoB 20
sms.alhp $0c ALlocate in HeaP 2
sms.rehp $0d RElease to HeaP 16
sms.arpa $0e Allocate in Resident Procedure Area 3
sms.dmod $10 set or read the Display MODe 6
sms.hdop $11 do a Hardware Dependent OPeration 9
sms.comm $12 set COMMuncation baud rate etc. 4
sms.rrtc $13 Read Real Time Clock 18
sms.srtc $14 Set Real Time Clock 21
sms.artc $15 Adjust Real Time Clock 3
sms.ampa $16 Allocate space in SuperBASIC area 2
sms.rmpa $17 Release space in SuperBASIC area 18
sms.achp $18 Allocate space in Common HeaP 1
sms.rchp $19 Release space in Common HeaP 16
sms.lexi $1a Link in EXternal Interrupt action 12
sms.rexi $1b Remove EXternal Interrupt action 17
sms.lpol $1c Link in POLled action 12
sms.rpol $1d Remove POLled action 17
sms.lshd $1e Link in ScHeDuler action 12
sms.rshd $1f Remove ScHeDuler action 17
sms.liod $20 Link in IO Device driver 12
sms.riod $21 Remove IO Device driver 17
sms.lfsd $22 Link in Filing System Device driver 12
sms.rfsd $23 Remove Filing System Device driver 17
sms.trns $24 Set translation and error messages 22
sms.xtop $25 External Operation [SMSQ] 24
sms.lthg $26 Link in THinG [SMS2,EXT] 13
sms.rthg $27 Remove THinG [SMS2,EXT] 19
sms.uthg $28 Use THinG [SMS2,EXT] 23
sms.fthg $29 Free THinG [SMS2,EXT] 8
sms.zthg $2a Zap THinG [SMS2,EXT] 24
sms.nthg $2b Next THinG [SMS2,EXT] 14
sms.nthu $2c Next Thing User [SMS2,EXT] 15
sms.iopr $2e IO PRiority [SMSQ] 11
sms.cach $2f CACHe handling [SMSQ] 4
sms.lldm $30 Link in Language Dependent Module [SMSQ] Section 19
sms.lenq $31 Language ENQuiry [SMSQ] Section 19
sms.lset $32 Language SET [SMSQ] Section 19
sms.pset $33 Printer translate SET [SMSQ] Section 19
sms.mptr $34 find a Message PoinTeR [SMSQ] Section 19
sms.fprm $35 Find PReferred Module [SMSQ] Section 19
sms.schp $38 Shrink alloaction in common heap [SMSQ] 19
sms.sevt $3a Send event to job [SMSQ] 20
sms.wevt $3b Wait for event [SMSQ] 23

QDOS/SMS Reference Manual 28/10/98 Section 13 25

14.0 I/O Management Traps

| |
| Trap #2 D0=$2 IOA.CLOS |
| |
| Close a channel |
| |
| Call parameters Return parameters |
| |
| D1 D1+ all preserved |
| |
| A0 channel ID A0 ??? |
| A1 A1 ??? |
| A2 A2+ all preserved |
| |
| Error returns: |
| |
| ICHN channel not open |
| |

| |
| Trap #2 D0=$6 [SMSQ] IOA.CNAM |
| |
| Fetch channel name |
| |
| Call parameters Return parameters |
| |
| D1 D1 preserved |
| D2.w max length of string D2 preserved |
| D3+ all preserved |
| |
| A0 channel ID A0 preserved |
| A1 ptr to buffer A1 device name (QDOS-string) |
| A2 A2 preserved |
| A3+ all preserved |
| |
| Error returns: |
| |
| ICHN channel not open |
| IPAR buffer too small |
| |

QDOS/SMS Reference Manual 28/10/98 Section 14 1

| |
| Trap #2 D0=$4 IOA.DELF |
| |
| Delete a file |
| |
| Call parameters Return parameters |
| |
| D1.L job ID (as file open!!) D1 ??? |
| D2 D2 preserved |
| D3 D3 ??? |
| D4+ all preserved |
| |
| A0 pointer to file name A0 ??? |
| A1 A1 ??? |
| A2 A2 ??? |
| A3+ all preserved |
| |
| Error returns: |
| |
| ICHN not opened - too many channels open |
| IMEM out of memory |
| FDNF file or device not found |
| INAM bad file or device name |
| |

A0 should point to a standard QDOS string containing the full name of the device and file.

| |
| Trap #2 D0=$3 IOA.FRMT |
| |
| Format a sectored medium |
| |
| Call parameters Return parameters |
| |
| D1 D1.W number of good sectors |
| D2 D2.W total number of sectors |
| D3 D3 preserved |
| D4+ all preserved |
| |
| A0 ptr to medium name A0 ??? |
| A1 A1 ??? |
| A2 A2+ all preserved |
| |
| Error returns: |
| |
| IMEM out of memory |
| FDNF drive not found |
| FDIU drive in use |
| FMTF format failed |
| |

The medium name is in the form of a character count (word) followed by the ASCII characters of
the drive name, the drive number, underscore, then up to 10 characters for the medium name.
For example,

dc.w 13
dc.b 'FLP1_November'

QDOS/SMS Reference Manual 28/10/98 Section 14 2

| |
| Trap #2 D0=$1 IOA.OPEN |
| |
| Open a channel |
| |
| Call parameters Return parameters |
| |
| D1.L job ID D1.L job ID |
| D2 D2 preserved |
| D3.L open-key D3 preserved |
| 0 old (exclusive) file or device |
| 1 old (shared) file |
| 2 new (exclusive) file |
| 3 new (overwrite) file |
| 4 open directory |
| |
| A0 pointer to file name A0 channel ID |
| A1 A1 ??? |
| A2 A2 preserved |
| A3 A3 preserved |
| A4+ all preserved |
| |
| Error returns: |
| |
| ICHN not opened - too many channels open |
| IJOB job does not exist |
| IMEM out of memory |
| FDNF file or device not found |
| FEX file already exists |
| FDIU drive in use |
| INAM bad file or device name |
| IPAR invalid open-key |
| |

If the job ID is passed as a negative word (for example -1) then the channel will be associated
with the current job.

The file or device name should be a string of ASCII characters. This string is preceded by a
character count (word), A0 should point to this word (on a word boundary).

The error return "INAM" indicates that the name of the device has been recognised but that the
additional information is incorrect, for example CON_512y240.

The open-key is usually ignored for access to any non-shared device: in practice, this is anything
other than a file store. If the error code is non-zero then no channel has been opened.

In order to open an input pipe, D3.L must hold the output pipe channel ID instead of an open key.

Note that New (overwrite) is not currently supported for Microdrive files.

QDOS/SMS Reference Manual 28/10/98 Section 14 3

| |
| Trap #2 D0=$5 [SMSQ] IOA.SOWN |
| |
| Set new owner of open channel |
| |
| Call parameters Return parameters |
| |
| D1.l new owner job-ID D1 preserved |
| D2 D2 preserved |
| D3+ all preserved |
| |
| A0 channel ID A0 preserved |
| A1+ all preserved |
| |
| Error returns: |
| |
| ICHN channel not open |
| IJOB job does not exist |
| |

QDOS/SMS Reference Manual 28/10/98 Section 14 4

Trap 2 Keys - numerical order with page reference

ioa.open $01 OPEN IOSS channel 3
ioa.clos $02 CLOSe IOSS channel 1
ioa.frmt $03 FoRMaT medium on device 2
ioa.delf $04 DELete file from device 2
ioa.sown $05 Set OWNer of channel [SMSQ] 4
ioa.cnam $06 fetch Channel NAMe [SMSQ] 1

QDOS/SMS Reference Manual 28/10/98 Section 14 5

15.0 I/O Access Traps

Every I/O trap which is not supported by the system (e.g. IOF.XINF without level 2 device drivers)
returns the error IPAR.

| |
| Trap #3 D0=$4 IOB.ELIN |
| |
| Edit a line of characters (console driver only) |
| |
| Call parameters Return parameters |
| |
| D1 cursor/line length D1 cursor/line length |
| D2.W length of buffer D2 preserved |
| D3.W timeout D3.L preserved |
| D4+ all preserved |
| |
| A0 channel ID A0 preserved |
| A1 pointer to end of line A1 pointer to end of line |
| A2 A2 preserved |
| A3 A3 preserved |
| A4+ all preserved |
| |
| Error returns: |
| |
| NC not complete |
| ICHN channel not open |
| OVFL buffer overflow |
| |

Thisis similar to the fetch line trap, except that the pointer A1 is always to the end of the line, D1
contains the current cursor position in the msw and the length of the line in the lsw and the line
(from the current cursor position) is written out to the console when the call is made. The line
should not have a terminating character when the trap is made, but the terminating character will
be included in the character count on return. Enter (ASCII 10), cursor up or cursor down are all
acceptable terminating characters.

QDOS/SMS Reference Manual 28/10/98 Section 15 1

| |
| Trap #3 D0=$1 IOB.FBYT |
| |
| Fetch a byte |
| |
| Call parameters Return parameters |
| |
| D1 D1.B byte fetched |
| D2 D2 preserved |
| D3.W timeout D3.L preserved |
| D4+ all preserved |
| |
| A0 channel ID A0 preserved |
| A1 A1 ??? |
| A2 A2 preserved |
| A3 A3 preserved |
| A4+ all preserved |
| |
| Error returns: |
| |
| NC not complete |
| ICHN channel not open |
| EOF end of file |
| |

| |
| Trap #3 D0=$2 or $3 IOB.FLIN |
| IOB.FMUL |
| |
| D0=$2 IOB.FLIN fetch a line of characters terminated by ASCII <LF> ($A) |
| D0=$3 IOB.FMUL fetch a string of bytes |
| |
| Call parameters Return parameters |
| |
| D1 D1.W number of bytes fetched |
| D2.W length of buffer D2 preserved |
| D3.W timeout D3.L preserved |
| D4+ all preserved |
| |
| A0 channel ID A0 preserved |
| A1 base of buffer A1 updated pointer to buffer |
| A2 A2 preserved |
| A3 A3 preserved |
| A4+ all preserved |
| |
| Error returns: |
| |
| NC not complete |
| ICHN channel not open |
| EOF end of file |
| OVFL buffer overflow |
| |

The character count of a fetch a line trap includes the linefeed character if found.

QDOS/SMS Reference Manual 28/10/98 Section 15 2

| |
| Trap #3 D0=$5 IOB.SBYT |
| |
| Send a byte |
| |
| Call parameters Return parameters |
| |
| D1.B byte to be sent D1 ??? |
| D2 D2 preserved |
| D3.W timeout D3.L preserved |
| D4+ all preserved |
| |
| A0 channel ID A0 preserved |
| A1 A1 ??? |
| A2 A2 preserved |
| A3 A3 preserved |
| A4+ all preserved |
| |
| Error returns: |
| |
| NC not complete |
| ICHN channel not open |
| DVFL drive full |
| ORNG off window/paper etc. |
| |

| |
| Trap #3 D0=$7 IOB.SMUL |
| |
| Send a string of bytes |
| |
| Call parameters Return parameters |
| |
| D1 D1.W number of bytes sent |
| D2.W number of bytes to be sent D2.W preserved |
| D3.W timeout D3.L preserved |
| D4+ all preserved |
| |
| A0 channel ID A0 preserved |
| A1 base of buffer A1 updated pointer to buffer |
| A2 A2 preserved |
| A3 A3 preserved |
| A4+ all preserved |
| |
| Error returns: |
| |
| NC not complete |
| ICHN channel not open |
| DVFL drive full |
| |

Please refer to section 5.3.3 for details of the special treatment afforded to newlines on the
console or screen device.

QDOS/SMS Reference Manual 28/10/98 Section 15 3

| |
| Trap #3 D0=$0 IOB.TEST |
| |
| Check for pending input |
| |
| Call parameters Return parameters |
| |
| D1 D1 ??? |
| D2 D2 preserved |
| D3.W timeout D3.L preserved |
| D4+ all preserved |
| |
| A0 channel ID A0 preserved |
| A1 A1 ??? |
| A2 A2 preserved |
| A3 A3 preserved |
| A4+ all preserved |
| |
| Error returns: |
| |
| NC not complete |
| ICHN channel not open |
| EOF end of file |
| |

This trap is used to check for pending input on a channel. It does not read any data or modify the
input channel in any way. This only works on a console device if D3=0 and the keyboard queue is
already connected to the console.

| |
| Trap #3 D0=$40 IOF.CHEK |
| |
| Check all pending operations on a file |
| |
| Call parameters Return parameters |
| |
| D1 D1 ??? |
| D2 D2 preserved |
| D3.W timeout D3.L preserved |
| D4+ all preserved |
| |
| A0 channel ID A0 preserved |
| A1 A1 ??? |
| A2 A2 preserved |
| A3 A3 preserved |
| A4+ all preserved |
| |
| Error returns: |
| |
| NC not complete |
| ICHN channel not open |
| |

This trap is used to check whether all of the pending operations have completed.

QDOS/SMS Reference Manual 28/10/98 Section 15 4

| |
| Trap #3 D0=$4C [EXT] [DD2] IOF.DATE |
| |
| Set or read file date |
| |
| Call parameters Return parameters |
| |
| D1.l Set/read key -1, 0 or date D1.l date set or read |
| D2.b 0 update date 2 backup date D2 preserved |
| D3.w timeout D3 preserved |
| |
| A0 channel ID A0 preserved |
| A1 A1 preserved |
| |
| Error returns: |
| |
| Any I/O sub system errors |
| |

The update date of a file is usually set when a file which has been modified (including new copies
of files) is closed (or flushed for the first time).

To read the appropriate date of a file, the trap should be called with the long word value -1 in d1.
To set either the update date, or the backup date, of a file to the current date, the trap should be
called with the value 0 in d1. A specific date may be set by calling the trap with required date in
d1.
If the update date has been set by this trap, then the update date will not be re-set when the file
is closed. The backup date is not stored in the file itself, and may be updated even if the file is
open for read only.
The date is a long word giving the date and time in seconds from the start of 1961.
This trap is not supported on native QLs without Toolkit II, and it is partially supported on earlier
floppy disc drivers. It should not be used on any other than Level 2 devices.

QDOS/SMS Reference Manual 28/10/98 Section 15 5

| |
| Trap #3 D0=$41 IOF.FLSH |
| |
| Flush buffer for this file |
| |
| Call parameters Return parameters |
| |
| D1 D1 ??? |
| D2 D2 preserved |
| D3.W timeout D3.L preserved |
| D4+ all preserved |
| |
| A0 channel ID A0 preserved |
| A1 A1 ??? |
| A2 A2 preserved |
| A3 A3 preserved |
| A4+ all preserved |
| |
| Error returns: |
| |
| NC not complete |
| ICHN channel not open |
| |

When a write operation to a file is complete, the data written may still be in the slave blocks
rather than on the file. For further details please see Section 5.2 on File I/O. This call may be
used to check that a file is in a known state.

| |
| Trap #3 D0=$48 IOF.LOAD |
| |
| Load a file into memory |
| |
| Call parameters Return parameters |
| |
| D1 D1 ??? |
| D2.L length of file D2 preserved |
| D3.W timeout D3.L preserved |
| D4+ all preserved |
| |
| A0 channel ID A0 preserved |
| A1 base address for load A1 top address after load |
| A2 A2 preserved |
| A3 A3 preserved |
| A4+ all preserved |
| |
| Error returns: |
| |
| ICHN channel not open |
| |

Files may be loaded into memory in their entirety with the file load trap. If the transient program
area is used for this, a trap #1 must have been invoked to reserve the space before the file load
trap is invoked.

QDOS/SMS Reference Manual 28/10/98 Section 15 6

D3 should be set to -1 before this trap and the base address in A1 must be even.

| |
| Trap #3 D0=$45 IOF.MINF |
| |
| Get information about medium |
| |
| Call parameters Return parameters |
| |
| D1 D1.L empty/good sectors |
| D2 D2 preserved |
| D3.W timeout D3.L preserved |
| D4+ all preserved |
| |
| A0 channel ID A0 preserved |
| A1 ptr to 10 byte buffer A1 end of medium name |
| A2 A2 preserved |
| A3 A3 preserved |
| A4+ all preserved |
| |
| Error returns: |
| |
| NC not complete |
| ICHN channel not open |
| |

The name of the medium, its capacity, and the available space may be obtained for a file or
directory that is open.

The medium name is 10 bytes long and left justified. Any remaining bytes are filled with the
space character ($20).

The number of empty sectors is in the most significant word (msw) of D1, the total available on
the medium is in the least significant word (lsw).

A sector is 512 bytes.

QDOS/SMS Reference Manual 28/10/98 Section 15 7

| |
| Trap #3 D0=$4D [DD2] IOF.MKDR |
| |
| Make directory |
| |
| Call parameters Return parameters |
| |
| D1.l 0 D1 preserved |
| D2 D2 preserved |
| D3.w timeout should be -1 D3 preserved |
| |
| A0 channel ID A0 preserved |
| A1 A1 preserved |
| |
| Error returns: |
| |
| Any I/O sub system errors |
| |

The IOF.MKDR trap is called to convert the file into a directory.
The file itself should be empty. Any existing files which would, by virtue of their name, belong in
the new directory, are transferred into the directory. The trap will return a 'bad parameter' error if
the file is not empty.
The file must have been opened with a READ/WRITE access key (OLD, NEW or OVER); after
this call the access mode of the file is changed to IOA.KDIR.

| |
| Trap #3 D0=$42 IOF.POSA |
| |
| Position file pointer absolute |
| |
| Call parameters Return parameters |
| |
| D1.L file position D1.L new file position |
| D2 D2 preserved |
| D3.W timeout D3.L preserved |
| D4+ all preserved |
| |
| A0 channel ID A0 preserved |
| A1 A1 ??? |
| A2 A2 preserved |
| A3 A3 preserved |
| A4+ all preserved |
| |
| Error returns: |
| |
| NC not complete |
| ICHN channel not open |
| EOF end of file |
| |

If the position file pointer call is made for a direct sector access channel, a "special" file position
flag can be specified in D1:
iofp.off $F0FFF0FF returns the sector offset of the first physical sector of the current

partition on multiple-partition devices [SMSQ V2.77+], otherwise
returns D1 unchanged

QDOS/SMS Reference Manual 28/10/98 Section 15 8

| |
| Trap #3 D0=$43 IOF.POSR |
| |
| Position file pointer relative |
| |
| Call parameters Return parameters |
| |
| D1.L offset to file pointer D1.L new file position |
| D2 D2 preserved |
| D3.W timeout D3.L preserved |
| D4+ all preserved |
| |
| A0 channel ID A0 preserved |
| A1 A1 ??? |
| A2 A2 preserved |
| A3 A3 preserved |
| A4+ all preserved |
| |
| Error returns: |
| |
| NC not complete |
| ICHN channel not open |
| EOF end of file |
| |

If a file positioning trap returns an off file limits error, then the pointer is set to the nearest limit,
this being 0 or end of file. The relative file positioning may, of course, be used to read the current
file position.

QDOS/SMS Reference Manual 28/10/98 Section 15 9

| |
| Trap #3 D0=$47 IOF.RHDR |
| |
| Read file header |
| |
| Call parameters Return parameters |
| |
| D1 D1.W length of header read |
| D2.W buffer length D2 preserved |
| D3.W timeout D3.L preserved |
| D4+ all preserved |
| |
| A0 channel ID A0 preserved |
| A1 base of read buffer A1 top of read buffer |
| A2 A2 preserved |
| A3 A3 preserved |
| A4+ all preserved |
| |
| Error returns: |
| |
| NC not complete |
| ICHN channel not open |
| OVFL buffer overflow |
| |

The read header call is provided so that a job can allocate the space for a load call as well as
determining the characteristics of a file. The buffer provided must be at least 14 bytes long, but
should be minimum 16 for Level 2 drivers. In the case of a trap to a pure serial device, the length
of the header returned in D1 will be spurious.

The file pointer is such that position zero is the first byte after the header. Thus block boundaries
on standard directory driver files are at position 512*n-64.

Section 7 contains details about the format of a file header.

| |
| Trap #3 D0=$4A [EXT] [DD2] IOF.RNAM |
| |
| Rename file |
| |
| Call parameters Return parameters |
| |
| D1 D1 ??? |
| D2 D2 preserved |
| D3.w timeout D3 preserved |
| |
| A0 channel ID A0 preserved |
| A1 pointer to new filename (string) A1 ??? |
| |
| Error returns: |
| |
| Any I/O sub system errors |
| |

This call renames a file. The name should include the drive name (e.g. FLP1_NEW_NAME).
This trap does not work on every device, especially not on MDV on an unexpanded QL.

QDOS/SMS Reference Manual 28/10/98 Section 15 10

| |
| Trap #3 D0=$49 IOF.SAVE |
| |
| Save file from memory |
| |
| Call parameters Return parameters |
| |
| D1 D1 ??? |
| D2.L length of file D2 preserved |
| D3.W timeout D3.L preserved |
| D4+ all preserved |
| |
| A0 channel ID A0 preserved |
| A1 base address of file A1 top address of file |
| A2 A2 preserved |
| A3 A3 preserved |
| A4+ all preserved |
| |
| Error returns: |
| |
| ICHN channel not open |
| DRFL drive full |
| |

D3 should be set to -1 before this trap, and IOF.LOAD, and the base address in A1 must be
even.

| |
| Trap #3 D0=$46 IOF.SHDR |
| |
| Set file header |
| |
| Call parameters Return parameters |
| |
| D1 D1.W length of header set |
| D2 D2 preserved |
| D3.W timeout D3.L preserved |
| D4+ all preserved |
| |
| A0 channel ID A0 preserved |
| A1 base of header def A1 end of header def |
| A2 A2 preserved |
| A3 A3 preserved |
| A4+ all preserved |
| |
| Error returns: |
| |
| NC not complete |
| ICHN channel not open |
| |

This call sets the first 14 bytes of the header. The length of file will normally be overwritten by the
filing system. When a header is sent over a pure serial device, the 14 bytes of the header are
preceded by a byte $FF.

QDOS/SMS Reference Manual 28/10/98 Section 15 11

| |
| Trap #3 D0=$4B [EXT] [DD2] IOF.TRNC |
| |
| Truncate file |
| |
| Call parameters Return parameters |
| |
| D1 D1 ??? |
| D2 D2 preserved |
| D3.w timeout D3 preserved |
| |
| A0 channel ID A0 preserved |
| A1 A1 ??? |
| |
| Error returns: |
| |
| Any I/O sub system errors |
| |

This call truncates a file to the current byte position.
This trap does not work on every device, especially not on MDV on an unexpanded QL.

| |
| Trap #3 D0=$4E [DD2] IOF.VERS |
| |
| Set or read file version |
| |
| Call parameters Return parameters |
| |
| D1.l Set/read key -1, 0, version D1.l file version |
| D2 D2 preserved |
| D3.w timeout D3 preserved |
| |
| A0 channel ID A0 preserved |
| A1 A1 preserved |
| |
| Error returns: |
| |
| Any I/O sub system errors |
| |

To read the file version number, this trap should be called with the long word value -1 in d1. To
preserve the file version number, this trap should be called with the value 0 in d1. To set a
specific version number the trap should be called with the version number 1 to 65535 as a long
word value in d1. If this trap is called to set the version number, the version number will not be
incremented when the file is closed or flushed.
This trap is supported on Level 2 devices only.

QDOS/SMS Reference Manual 28/10/98 Section 15 12

| |
| Trap #3 D0=$4F [DD2] IOF.XINF |
| |
| Get extended information |
| |
| Call parameters Return parameters |
| |
| D1 0 D1 preserved |
| D2 D2 preserved |
| D3.w timeout D3 preserved |
| |
| A0 channel ID A0 preserved |
| A1 pointer to info buffer A1 preserved |
| |
| Error returns: |
| |
| Any I/O sub system errors |
| |

This call fetches extended filing system information in a block 64 bytes long.

IOI_NAME $00 string up to 20 character medium name (null filled)
 IOI_DNAM $16 string up to 4 character long device name (e.g. WIN)
 IOI_DNUM $1C byte drive number
 IOI_RDON $1D byte non zero if read only
 IOI_ALLC $1E word allocation unit size (in bytes)
 IOI_TOTL $20 long total medium size (in allocation units)
 IOI_FREE $24 long free space on medium (in allocation units)
 IOI_HDRL $28 long file header length (per file storage overhead)

IOI_FTYP $2C byte format type (1=QDOS, 2=MSDOS etc)
IOI_STYP $2D byte format sub-type
IOI_DENS $2E byte density
IOI_MTYP $2F byte medium type (RAM=0, FLP=1, HD=2, CD=3)
IOI_REMV $30 byte set if removable

 IOI_XXXX $31 $0F bytes set to -1

The number of allocation units required to store a file may be calculated as:
 (file + header length + alloc unit size - 1) / (alloc unit size)

This trap is supported on Level 2 device drivers. It should be called to find out whether the current
device is Level 2 or not and to check which operations are supported. If this trap succeeds, all
other filing system traps will be available.

QDOS/SMS Reference Manual 28/10/98 Section 15 13

| |
| Trap #3 D0=$30 draw dot IOG.DOT |
| D0=$31 draw line IOG.LINE |
| D0=$32 draw arc IOG.ARC |
| D0=$33 draw ellipse IOG.ELIP |
| D0=$34 set graphics scale IOG.SCAL |
| D0=$36 set graphics cursor position IOG.SGCR |
| |
| Call parameters Return parameters |
| |
| D1 D1 ??? |
| D2 D2.L preserved |
| D3.W timeout D3.L preserved |
| D4+ all preserved |
| |
| A0 channel ID A0 preserved |
| A1 arithmetic stack pointer A1 ??? |
| A2 A2 preserved |
| A3 A3 preserved |
| A4+ all preserved |
| |
| Error returns: |
| |
| NC not complete |
| ICHN channel not open |
| |

Plot a point, line, arc, ellipse, set scale or graphics cursor position. Expects parameters on the
arithmetic stack pointed to by (A1).

The first four traps (IOG.DOT, IOG.LINE, IOG.ARC and IOG.ELIP) draw various lines and arcs in
the given window. Any point on these lines which fall outside the window will not be plotted.

All six traps expect parameters on the arithmetic stack pointed to by (A1). The format of the
parameters required is as follows:

IOG.DOT $00(A1) y-coordinate
$06(A1) x-coordinate

IOG.LINE $00(A1) y-coord of finish of line
$06(A1) x-coord of finish of line
$0C(A1) y-coord of start of line
$12(A1) x-coord of start of line

IOG.ARC $00(A1) angle subtended by arc
$06(A1) y-coord of finish of line
$0C(A1) x-coord of finish of line
$12(A1) y-coord of start of line
$18(A1) x-coord of start of line

IOG.ELIP $00(A1) rotation angle
$06(A1) radius of ellipse
$0C(A1) eccentricity of ellipse
$12(A1) y-coord of centre
$18(A1) x-coord of centre

QDOS/SMS Reference Manual 28/10/98 Section 15 14

IOG.SCAL $00(A1) y position of bottom line of window
$06(A1) x position of left hand pixel of window
$0C(A1) length of Y axis (height of window)

IOG.SGCR $00(A1) graphics x-coordinate
$06(A1) graphics y-coordinate
$0C(A1) pixel offset to right
$12(A1) pixel offset down

For all the graphics traps, the parameters on the A1 stack are floating point, and the coordinates
are specified in relation to an arbitrary origin (default is 0,0) with an arbitrary scale (default is:
height of window = 100 units).

The calling program must allocate at least 240 bytes on the A1 stack.

| |
| Trap #3 D0=$35 IOG.FILL |
| |
| Turn area flood on and off |
| |
| Call parameters Return parameters |
| |
| D1.L key: 0=end flood D1 ??? |
| 1=start or restart flood |
| D2 D2.L preserved |
| D3.W timeout D3.L preserved |
| D4+ all preserved |
| |
| A0 channel ID A0 preserved |
| A1 A1 ??? |
| A2 A2 preserved |
| A3 A3 preserved |
| A4+ all preserved |
| |
| Error returns: |
| |
| NC not complete |
| ICHN channel not open |
| |

QDOS/SMS Reference Manual 28/10/98 Section 15 15

| |
| Trap #3 D0=$2E IOW.BLOK |
| |
| Fill rectangular block in window |
| |
| Call parameters Return parameters |
| |
| D1.B colour D1 ??? |
| D2 D2.L preserved |
| D3.W timeout D3.L preserved |
| D4+ all preserved |
| |
| A0 channel ID A0 preserved |
| A1 base of block definition A1 ??? |
| A2 A2 preserved |
| A3 A3 preserved |
| A4+ all preserved |
| |
| Error returns: |
| |
| NC not complete |
| ICHN channel not open |
| ORNG block falls outside window |
| |

This trap fills a rectangular block of a window with the current ink colour, taking into account the
mode set by IOW.SOVA.

The block definition is in the same form as a window definition. It is 4 words long: width, height,
X-origin and Y-origin. The origin is in relation to the window origin in which the block is to be
drawn.

This is a fast way of drawing horizontal or vertical lines.

QDOS/SMS Reference Manual 28/10/98 Section 15 16

| |
| Trap #3 D0=$B IOW.CHRQ |
| |
| Return the current window size and cursor position in character coordinates |
| |
| Call parameters Return parameters |
| |
| D1 D1 ??? |
| D2 D2.L preserved |
| D3.W timeout D3.L preserved |
| D4+ all preserved |
| |
| A0 channel ID A0 preserved |
| A1 base of enquiry block A1 ??? |
| A2 A2 preserved |
| A3 A3 preserved |
| A4+ all preserved |
| |
| Error returns: |
| |
| NC not complete |
| ICHN channel not open |
| |

The window size (X,Y) and cursor position (X,Y) are put into a 4 word enquiry block. The top left
hand corner of the window is cursor position 0,0. This trap activates the newline if pending in the
window.

QDOS/SMS Reference Manual 28/10/98 Section 15 17

| |
| Trap #3 D0=$20 clear all of window IOW.CLRA |
| D0=$21 clear top of window IOW.CLRT |
| D0=$22 clear bottom of window IOW.CLRB |
| D0=$23 clear cursor line IOW.CLRL |
| D0=$24 clear right hand end of cursor line IOW.CLRR |
| |
| Call parameters Return parameters |
| |
| D1 D1 ??? |
| D2 D2.L preserved |
| D3.W timeout D3.L preserved |
| D4+ all preserved |
| |
| A0 channel ID A0 preserved |
| A1 A1 ??? |
| A2 A2 preserved |
| A3 A3 preserved |
| A4+ all preserved |
| |
| Error returns: |
| |
| NC not complete |
| ICHN channel not open |
| |

The clear window traps can clear all or part of a window. To clear a part of a window the cursor is
used as a reference. The clear operation consists of overwriting all the pixels in the designated
area with paper colour.

The division between the top of the window and the bottom of the window is the cursor line. The
cursor line is neither the top nor the bottom of the window.

The cursor line is the whole height of the current character fount (either 10 or 20 rows). The right
hand end includes the character at the current cursor position.

QDOS/SMS Reference Manual 28/10/98 Section 15 18

| |
| Trap #3 D0=$F IOW.DCUR |
| |
| Disable the cursor |
| |
| Call parameters Return parameters |
| |
| D1 D1 ??? |
| D2 D2.L preserved |
| D3.W timeout D3.L preserved |
| D4+ all preserved |
| |
| A0 channel ID A0 preserved |
| A1 A1 ??? |
| A2 A2 preserved |
| A3 A3 preserved |
| A4+ all preserved |
| |
| Error returns: |
| |
| NC not complete |
| ICHN channel not open |
| |

The call to suppress the cursor does not return an error if the cursor is already suppressed, as it
merely ensures that the cursor is in the desired state.

QDOS/SMS Reference Manual 28/10/98 Section 15 19

| |
| Trap #3 D0=$C IOW.DEFB |
| |
| Set the border width and colour |
| |
| Call parameters Return parameters |
| |
| D1.B colour D1 ??? |
| D2.W width D2.L preserved |
| D3.W timeout D3.L preserved |
| D4+ all preserved |
| |
| A0 channel ID A0 preserved |
| A1 A1 ??? |
| A2 A2 preserved |
| A3 A3 preserved |
| A4+ all preserved |
| |
| Error returns: |
| |
| NC not complete |
| ICHN channel not open |
| |

This call redefines the border of a window. By default this is of no width. The width of the border
is doubled on the vertical edges. The border is inside the window limits. All subsequent screen
traps (except this one) use the reduced window size for defining cursor position and window
limits.

As a special case, the colour $80 defines a transparent border so that the border contents are not
altered by the trap.

If the call changes the width of the border, then the cursor is reset to the home position (top left
hand corner).

QDOS/SMS Reference Manual 28/10/98 Section 15 20

| |
| Trap #3 D0=$D IOW.DEFW |
| |
| Redefine a window |
| |
| Call parameters Return parameters |
| |
| D1.B border colour D1 ??? |
| D2.W border width D2.L preserved |
| D3.W timeout D3.L preserved |
| D4+ all preserved |
| |
| A0 channel ID A0 preserved |
| A1 base of window block A1 ??? |
| A2 A2 preserved |
| A3 A3 preserved |
| A4+ all preserved |
| |
| Error returns: |
| |
| NC not complete |
| ICHN channel not open |
| ORNG window does not fit on page |
| |

This call redefines the shape or position of a window: the contents are not moved or modified, but
the cursor is repositioned at the top left hand corner of the new window. The window block is 4
words long representing the width, height, X origin and Y origin.

| |
| Trap #3 D0=$2F IOW.DONL |
| |
| Do a pending newline |
| |
| Call parameters Return parameters |
| |
| D1 D1 ??? |
| D2 D2.L preserved |
| D3.W timeout D3.L preserved |
| D4+ all preserved |
| |
| A0 channel ID A0 preserved |
| A1 A1 ??? |
| A2+ all preserved |
| |
| Error returns: |
| |
| NC not complete |
| ICHN channel not open |
| |

This trap forces a newline pending in a window to be carried out. This is normally where
something has been printed at the bottom of a window, but the newline has not been performed
as this would cause the window to scroll upwards. If a newline is not pending in the window, then
the routine will return without affecting the display, otherwise the screen is scrolled upwards
SD_YINC pixels (if necessary) and the cursor is placed at the start of the next line.

QDOS/SMS Reference Manual 28/10/98 Section 15 21

| |
| Trap #3 D0=$E IOW.ECUR |
| |
| Enable the cursor |
| |
| Call parameters Return parameters |
| |
| D1 D1 ??? |
| D2 D2.L preserved |
| D3.W timeout D3.L preserved |
| D4+ all preserved |
| |
| A0 channel ID A0 preserved |
| A1 A1 ??? |
| A2 A2 preserved |
| A3 A3 preserved |
| A4+ all preserved |
| |
| Error returns: |
| |
| NC not complete |
| ICHN channel not open |
| |

The call to enable the cursor does not return an error if the cursor is already enabled, as it merely
ensures that the cursor is in the desired state.

QDOS/SMS Reference Manual 28/10/98 Section 15 22

| |
| Trap #3 D0=$25 IOW.FONT |
| |
| Set or reset the fount |
| |
| Call parameters Return parameters |
| |
| D1 D1 ??? |
| D2 0 or "DEFF" D2.L preserved |
| D3.W timeout D3.L preserved |
| D4+ all preserved |
| |
| A0 channel ID A0 preserved |
| A1 base of fount A1 ??? |
| A2 base of second fount A2 preserved |
| A3 A3 preserved |
| A4+ all preserved |
| |
| Error returns: |
| |
| NC not complete |
| ICHN channel not open |
| |

The fount is a 5x9 array of pixels in a 6x10 rectangle. A default fount and a second fount are built
into the ROM, although alternative founts may be selected.

If either fount address is given as zero, the relevant default fount will be used.

The structure of a fount assumes that up to a certain value characters are invalid (default $1E),
from the next value (default $1F) a known number of characters are valid (default $61). Thus the
structure is as follows:

$00 lowest valid character (byte)
$01 number of valid characters-1 (byte)
$02 to $0A 9 bytes of pixels for the first valid character
$0B to $13 etc.

Each byte of pixels has the pixels in bit 6 to 2 (inclusive) of the byte. The top row of any character
is implicitly blank.

If a character, which is to be written, is found to be invalid in the first fount, it is written using the
second fount. If it is also invalid in the second fount, then the lowest valid character of the second
fount is used.

The default fount extends from $20 to $7F.

In SMSQ, an optional parameter can be specified in D2. If it contains the ASCII string "DEFF",
then this call sets the default system fount used by any subsequently opened channels.

QDOS/SMS Reference Manual 28/10/98 Section 15 23

| |
| Trap #3 D0=$1B pan all of window IOW.PANA |
| D0=$1E pan cursor line IOW.PANL |
| D0=$1F pan right hand end of cursor line IOW.PANR |
| |
| Call parameters Return parameters |
| |
| D1.W distance to pan D1 ??? |
| D2 D2.L preserved |
| D3.W timeout D3.L preserved |
| D4+ all preserved |
| |
| A0 channel ID A0 preserved |
| A1 A1 ??? |
| A2 A2+ preserved |
| |
| Error returns: |
| |
| NC not complete |
| ICHN channel not open |
| |

The whole of a window, or the whole of the cursor line, or the right hand end of the cursor line
may be panned by any number of pixels to the right or to the left. A positive distance implies that
the pixels will move to the right. The space left behind will be filled with paper colour.

The cursor line is the whole height of the current character fount (either 10 or 20 rows). The right
hand end includes the character at the current cursor position.

| |
| Trap #3 D0=$A IOW.PIXQ |
| |
| Return the current window size and cursor position in pixel coordinates |
| |
| Call parameters Return parameters |
| |
| D1 D1 ??? |
| D2 D2.L preserved |
| D3.W timeout D3.L preserved |
| D4+ all preserved |
| |
| A0 channel ID A0 preserved |
| A1 base of enquiry block A1 ??? |
| A2 A2 preserved |
| A3 A3 preserved |
| A4+ all preserved |
| |
| Error returns: |
| |
| NC not complete |
| ICHN channel not open |
| |

The window size (X,Y) and cursor position (X,Y) are put into a 4 word enquiry block. The top left
hand corner of the window is cursor position 0,0. This trap activates the newline if pending in the
window.

QDOS/SMS Reference Manual 28/10/98 Section 15 24

| |
| Trap #3 D0=$26 IOW.RCLR |
| |
| Recolour a window |
| |
| Call parameters Return parameters |
| |
| D1 D1 ??? |
| D2 D2.L preserved |
| D3.W timeout D3.L preserved |
| D4+ all preserved |
| |
| A0 channel ID A0 preserved |
| A1 pointer to colour list A1 ??? |
| A2 A2 preserved |
| A3 A3 preserved |
| A4+ all preserved |
| |
| Error returns: |
| |
| NC not complete |
| ICHN channel not open |
| |

A window may be recoloured without changing the information in it. This allows the same sort of
effects as resetting the attributes of an attribute based screen, but it is very much slower.

The colour list is 8 bytes long and should contain the new colours required for each of the 8
colours in the window. Each of the new colours must be in the range 0 to 7. For 4 colour mode,
only bytes 0, 2, 4 and 6 need to be filled in.

QDOS/SMS Reference Manual 28/10/98 Section 15 25

| |
| Trap #3 D0=$18 scroll all of window IOW.SCRA |
| D0=$19 scroll top of window IOW.SCRT |
| D0=$1A scroll bottom of window IOW.SCRB |
| |
| Call parameters Return parameters |
| |
| D1.W distance to scroll D1 ??? |
| D2 D2.L preserved |
| D3.W timeout D3.L preserved |
| D4+ all preserved |
| |
| A0 channel ID A0 preserved |
| A1 A1 ??? |
| A2 A2 preserved |
| A3 A3 preserved |
| A4+ all preserved |
| |
| Error returns: |
| |
| NC not complete |
| ICHN channel not open |
| |

Part or all of window may be scrolled; for partial scrolling the cursor is used as a reference. These
traps cause pixels to be transferred from one row to another. Vacated rows of pixels are filled
with paper colour. A positive scroll distance implies that the pixels in the window will be moved in
a positive direction, i.e. downwards. The space left behind will be filled with paper colour.

The division between the top of the window and the bottom of the window is the cursor line. The
cursor line is included in neither the top nor the bottom of the window. The cursor is not moved.

QDOS/SMS Reference Manual 28/10/98 Section 15 26

| |
| Trap #3 D0=$10 set cursor position by character intervals IOW.SCUR |
| D0=$11 set cursor column IOW.SCOL |
| D0=$12 put cursor on a new line IOW.NEWL |
| D0=$13 move cursor to previous column IOW.PCOL |
| D0=$14 move cursor to next column IOW.NCOL |
| D0=$15 move cursor to previous row IOW.PROW |
| D0=$16 move cursor to next row IOW.NROW |
| |
| Call parameters Return parameters |
| |
| D1.W column number (D0=10,11) D1 ??? |
| D2.W row number (D0=10) D2.L preserved |
| D3.W timeout D3.L preserved |
| D4+ all preserved |
| |
| A0 channel ID A0 preserved |
| A1 A1 ??? |
| A2 A2 preserved |
| A3 A3 preserved |
| A4+ all preserved |
| |
| Error returns: |
| |
| NC not complete |
| ICHN channel not open |
| ORNG position would be out of window |
| |

In the case of an error return, the cursor position is not changed. The cursor position is the top
left hand corner of the next character rectangle in relation to the top left hand corner of the
window. These traps clear the pending newline in the window.

QDOS/SMS Reference Manual 28/10/98 Section 15 27

| |
| Trap #3 D0=$2A set flash attribute IOW.SFLA |
| D0=$2B set underline attribute IOW.SULA |
| |
| Call parameters Return parameters |
| |
| D1.B 0=attribute off, else attribute on D1 ??? |
| D2 D2.L preserved |
| D3.W timeout D3.L preserved |
| D4+ all preserved |
| |
| A0 channel ID A0 preserved |
| A1 A1 ??? |
| A2 A2 preserved |
| A3 A3 preserved |
| A4+ all preserved |
| |
| Error returns: |
| |
| NC not complete |
| ICHN channel not open |
| |

| |
| Trap #3 D0=$2C set the character writing or plotting mode IOW.SOVA |
| |
| Call parameters Return parameters |
| |
| D1.W mode: D1 ??? |
| -1 ink is exclusive ored into the background |
| 0 character background is strip colour |
| 1 character background is transparent |
| D2 D2.L preserved |
| D3.W timeout D3.L preserved |
| D4+ all preserved |
| |
| A0 channel ID A0 preserved |
| A1 A1 ??? |
| A2 A2 preserved |
| A3 A3 preserved |
| A4+ all preserved |
| |
| Error returns: |
| |
| NC not complete |
| ICHN channel not open |
| |

Mode 0 or 1 plotting is in ink colour.

QDOS/SMS Reference Manual 28/10/98 Section 15 28

| |
| Trap #3 D0=$27 set paper colour IOW.SPAP |
| D0=$28 set strip colour IOW.SSTR |
| D0=$29 set ink colour IOW.SINK |
| |
| Call parameters Return parameters |
| |
| D1.B colour D1 ??? |
| D2 D2.L preserved |
| D3.W timeout D3.L preserved |
| D4+ all preserved |
| |
| A0 channel ID A0 preserved |
| A1 A1 ??? |
| A2 A2 preserved |
| A3 A3 preserved |
| A4+ all preserved |
| |
| Error returns: |
| |
| NC not complete |
| ICHN channel not open |
| |

The screen driver uses three colours. There is the background colour of a window: referred to as
paper colour; this is the colour which is used by the scroll, pan and clear operations. There is the
colour which is used by the character generator to provide a highlighting background for
individual characters or words: referred to as strip colour. Finally, there is the colour used for
writing characters and drawing graphics: referred to as ink colour.

| |
| Trap #3 D0=$17 set cursor to pixel position IOW.SPAP |
| |
| Call parameters Return parameters |
| |
| D1.W x-coordinate D1 ??? |
| D2.W y-coordinate D2.L preserved |
| D3.W timeout D3.L preserved |
| D4+ all preserved |
| |
| A0 channel ID A0 preserved |
| A1 A1 ??? |
| A2 A2 preserved |
| A4+ all preserved |
| |
| Error returns: |
| |
| NC not complete |
| ICHN channel not open |
| ORNG off window |
| |

The cursor position is the top left hand corner of the next character rectangle referred to the top
left hand corner of the window. This trap clears the pending newline in the window.

QDOS/SMS Reference Manual 28/10/98 Section 15 29

| |
| Trap #3 D0=$2D set character size and spacing IOW.SSIZ |
| |
| Call parameters Return parameters |
| |
| D1.W character width/spacing D1 ??? |
| 0 single width, 6 pixel spacing |
| 1 single width, 8 pixel spacing |
| 2 double width, 12 pixel spacing |
| 3 double width, 16 pixel spacing |
| D2.W character heigth/spacing D2.L preserved |
| 0 single height, 10 pixel spacing |
| 1 double height, 20 pixel spacing |
| D3.W timeout D3.L preserved |
| D4+ all preserved |
| |
| A0 channel ID A0 preserved |
| A1 A1 ??? |
| A2 A2 preserved |
| A3 A3 preserved |
| A4+ all preserved |
| |
| Error returns: |
| |
| NC not complete |
| ICHN channel not open |
| |

The character generator supports two widths and two heights of character. In 8 colour mode, only
the double width characters may be used. In addition the spacing between characters is entirely
flexible, but for simplicity of use only two additional spacings are supported directly: these are 8
pixel and 16 pixel, in single and double width respectively.

Calls with D1=0 or 1 in 8 colour mode will operate as though a call had been made with D1 equal
to 2 or 3 respectively.

QDOS/SMS Reference Manual 28/10/98 Section 15 30

| |
| Trap #3 D0=$9 IOW.XTOP |
| |
| Call an extended operation |
| |
| Call parameters Return parameters |
| |
| D1 parameter D1 parameter |
| D2 parameter D2.L preserved |
| D3.W timeout D3.L preserved |
| D4+ all preserved |
| |
| A0 channel ID A0 preserved |
| A1 parameter A1 parameter |
| A2 start address of routine A2 preserved |
| A3 A3 preserved |
| A4+ all preserved |
| |
| Error returns: |
| |
| NC not complete |
| ICHN channel not open |
| plus anything from the operation routine |
| |

This trap invokes an externally supplied routine as if it were part of the standard screen driver.
D1, D2 and A1 are passed to the routine, while only D1 and A1 are returned. The code within the
routine is executed in supervisor mode with A0 pointing to the channel definition block (see
Section 7.2, 18.7 to 18.10) and A6 pointing to the system variables as for standard device drivers.
Both A0 and A6 must not be smashed.

QDOS/SMS Reference Manual 28/10/98 Section 15 31

Trap 3 Keys - numerical order with page reference

iob.test $00 TEST input 4
iob.fbyt $01 Fetch BYTe from input 2
iob.flin $02 Fetch LINe from input 2
iob.fmul $03 Fetch MULtiple characters/bytes 2
iob.elin $04 Edit LINe of characters 1
iob.sbyt $05 Send BYTe to output 3
iob.smul $07 Send MULtiple bytes 3
iow.xtop $09 eXTernal OPeration on screen 31
iow.pixq $0a PIXel coordinate Query 24
iow.chrq $0b CHaRacter coordinate Query 17
iow.defb $0c DEFine Border 20
iow.defw $0d DEFine Window 21
iow.ecur $0e Enable CURsor 22
iow.dcur $0f Disable CURsor 19
iow.scur $10 Set CURsor position (character coordinates) 27
iow.scol $11 Set cursor COLumn 27
iow.newl $12 put cursor on a NEW Line 27
iow.pcol $13 move cursor to Previous COLumn 27
iow.ncol $14 move cursor to Next COLumn 27
iow.prow $15 move cursor to Prevous ROW 27
iow.nrow $16 move cursor to Next ROW 27
iow.spix $17 Set cursor to PIXel position 29
iow.scra $18 SCRoll All of window 26
iow.scrt $19 SCRoll Top of window (above cursor) 26
iow.scrb $1a SCRoll Bottom of window (below cursor) 26
iow.pana $1b PAN All of window 24
iow.panl $1e PAN cursor Line 24
iow.panr $1f PAN Right hand end of cursor line 24
iow.clra $20 CLeaR All of window 18
iow.clrt $21 CLeaR Top of window (above cursor) 18
iow.clrb $22 CLeaR Bottom of window (below cursor) 18
iow.clrl $23 CLeaR cursor Line 18
iow.clrr $24 CLeaR Right hand side of cursor line 18
iow.font $25 set / read FOuNT (font U.S.A.) 23
iow.rclr $26 ReCoLouR a window 25
iow.spap $27 Set PAPer colour 29
iow.sstr $28 Set STRip colour 29
iow.sink $29 Set INK colour 29
iow.sfla $2a Set FLash Attribute 28
iow.sula $2b Set UnderLine Attribute 28
iow.sova $2c Set OVerwrite Attributes 28
iow.ssiz $2d Set character SIZe 30
iow.blok $2e fill a BLOcK with colour 16
iow.donl $2f DO a pending newline 21
iog.dot $30 draw (list of) DOTs 14
iog.line $31 draw (list of) LINEs 14
iog.arc $32 draw (list of) ARCs 14
iog.elip $33 draw ELlIPse 14
iog.scal $34 set graphics SCALe 14
iog.fill $35 set area FILL 15
iog.sgcr $36 Set Graphics CuRsor position 14

QDOS/SMS Reference Manual 28/10/98 Section 15 32

iof.chek $40 CHEcK all pending operations on file 4
iof.flsh $41 FLuSH all buffers 6
iof.posa $42 set file POSition to Absolute address 8
iof.posr $43 move file POSition Relative to current position 9
iof.minf $45 get Medium INFormation 7
iof.shdr $46 Set file HeaDeR 11
iof.rhdr $47 Read file HeaDeR 10
iof.load $48 (scatter) LOAD file 6
iof.save $49 (scatter) SAVE file 11
iof.rnam $4a ReNAMe file [EXT, DD2] 10
iof.trnc $4b TRuNCate file to current position [EXT, DD2] 12
iof.date $4c set or get file DATEs [EXT,DD2] 5
iof.mkdr $4d MaKe DiRectory [DD2] 8
iof.vers $4e set or get VERSion (d1 keys as iof.date) [DD2] 12
iof.xinf $4f get eXtended INFormation [DD2] 13

QDOS/SMS Reference Manual 28/10/98 Section 15 33

16.0 Vectored Routines

| |
| Vector $D6 [SMS] CV.DATIL |
| |
| Convert date and time to Integer Long |
| |
| Call parameters Return parameters |
| |
| D1 D1 date |
| D2 D2 preserved |
| D3 D3 preserved |
| |
| A0 A0 preserved |
| A1 ptr to 6 words A1 ??? |
| A2 A2 preserved |
| A3 A3 preserved |
| |

This routine converts the single parameters year, month, day, hour, minute and second into the
internal longword format.

This routine is not available on a standard QL or QL-Emulator.

QDOS/SMS Reference Manual 28/10/98 Section 16 1

| |
| Vector $100 Convert Decimal to Floating Point CV.DECFP |
| $102 Convert Decimal to Integer (word) CV.DECIW |
| $104 Convert Binary to Integer (byte) * CV.BINIB |
| $106 Convert Binary to Integer (word) * CV.BINIW |
| $108 Convert Binary to Integer (long) * CV.BINIL |
| $10A Convert Hexadecimal to Integer (byte) * CV.HEXIB |
| $10C Convert Hexadecimal to Integer (word) * CV.HEXIW |
| $10E Convert Hexadecimal to Integer (long) * CV.HEXIL |
| |
| Call parameters Return parameters |
| |
| D1 D1 ??? |
| D2 D2 ??? |
| D3 D3 ??? |
| D7 0 or ptr to end of buffer D7 preserved |
| |
| A0 ptr to buffer (rel. A6) A0 updated to end of buffer+1 |
| A1 ptr to RI stack (rel. A6) A1 updated |
| A2 A2 ??? |
| A3 A3 ??? |
| |
| Error returns: |
| |
| XP error in conversion (e.g. 1..0 as floating point or |
| no digits or too many hex or binary digits) |
| |

All addresses passed to this routine must be relative to A6.

Utilities marked with * are non-functioning in QDOS V1.03 and earlier.

These routines convert from ASCII characters in a buffer to a value on the stack. Conversion
ends either at the character to which D7 points (if given) or at an invalid character within the
buffer.

The hex and binary conversions from ASCII to number, always put a long word on the A1 stack.
A1 is set to point to the least significant byte or less significant word for the byte and word
conversions.

The decimal conversions may use up to about 30 bytes on the A1 stack.

If there is an error then A0 and A1 are both unchanged.

QDOS/SMS Reference Manual 28/10/98 Section 16 2

| |
| Vector $F0 Convert Floating Point to Decimal CV.FPDEC |
| $F2 Convert Integer (word) to Decimal CV.IWDEC |
| $F4 Convert Integer (byte) to Binary CV.IBBIN |
| $F6 Convert Integer (word) to Binary CV.IWBIN |
| $F8 Convert Integer (long) to Binary CV.ILBIN |
| $FA Convert Integer (byte) to Hexadecimal CV.IBHEX |
| $FC Convert Integer (word) to Hexadecimal CV.IWHEX |
| $FE Convert Integer (long) to Hexadecimal CV.ILHEX |
| |
| Call parameters Return parameters |
| |
| D1 D1 ??? |
| D2 D2 ??? |
| D3 D3 ??? |
| |
| A0 ptr to buffer (rel. A6) A0 ptr to buffer (rel. A6) |
| A1 ptr to RI stack (rel. A6) A1 updated |
| A2 A2 ??? |
| A3 A3 ??? |
| |

All addresses passed to these routines must be relative to A6.

These routines convert a value on the stack to a set of ASCII characters in a buffer. For
CV.FPDEC and CV.IWDEC, D1 contains the length of the result.

| |
| Vector $EC get date and time CV.ILDAT |
| $EE get day of week CV.ILDAY |
| |
| Call parameters Return parameters |
| |
| D1.L date (interval value) D1 preserved |
| D2 D2 preserved |
| D3 D3 preserved |
| |
| A0 A0 preserved |
| A1 ptr to RI stack (rel. A6) A1 updated |
| A2 A2 preserved |
| A3 A3 preserved |
| |

All addresses passed to this routine must be relative to A6.

There are two date conversion routines:
CV.ILDAT returns the date in the form

yyyy mmm dd hh:mm:ss

CV.ILDAY returns a three letter day of the week. The result is put on the A1 stack in string
format. At least 22 bytes are required by CV.ILDAT and at least 6 bytes by CV.ILDAY.

QDOS/SMS Reference Manual 28/10/98 Section 16 3

| |
| Vector $DC set up a queue IOQ.SETQ |
| $DE test status of queue IOQ.TEST |
| $E0 put byte into queue IOQ.PBYT |
| $E2 extract byte from queue IOQ.GBYT |
| $E4 put end of file marker into queue IOQ.SEOF |
| |
| Call parameters Return parameters |
| |
| D1.L queue length or data D1 data |
| D2 D2 preserved/free space |
| D3 D3 preserved |
| |
| A0 A0 preserved |
| A1 A1 preserved |
| A2 pointer to queue A2 preserved |
| A3 A3 ??? |
| |
| Error returns: |
| |
| NC queue is full (PBYT) or empty (GBYT, TEST) |
| EOF end of file reached (GBYT, TEST) |
| |

The data length should be less than 32767. A queue definition is given in section 18.10.

| |
| Vector $122 IOU.DNAM |
| |
| Decode Device Name |
| |
| Call parameters Return parameters |
| |
| D1 D1 ??? |
| D2 D2 ??? |
| D3 D3 ??? |
| |
| A0 pointer to name A0 preserved |
| A1 A1 ??? |
| A2 A2 ??? |
| A3 pointer to parameters A3 preserved |
| |
| Error returns: |
| |
| ITNF not recognised |
| INAM name recognised but bad parameters |
| |

This routine parses a device name. Given a device name and a description of the syntax of the
name to be checked against and for the possible parameters to be appended to it, the routine
determines whether the name is recognised, and extracts the parameters if it is. The device
name is formed using four components:

Name ASCII characters, normally letters. Case is ignored.
Separator Single ASCII character. Case is ignored.
Number Decimal number in the range 0 to 32767.
Code One of a list of ASCII characters.

QDOS/SMS Reference Manual 28/10/98 Section 16 4

On entry to the routine, A0 must point to the device name to be checked (which is in the usual
Qdos string format), A3 must point to an area of memory which is sufficient to hold the decoded
parameter values, and A6 must point to the base of system variables. The device description
starts 6 bytes after the call, and is in the following format:

word number of characters in the device name to be checked for
bytes the characters of the device name to be checked for (word-aligned)
word number of parameters

The byte which then follow are the various parameters to be checked for. For each parameter to
be checked, you will need to use one of the following options:

byte space, byte separator, word default value (numeric with separator)
word negative number, word default value (numeric with no separator)
word positive number of possible codes, bytes for the ASCII codes

Note that all letters must be in upper case.

For each numeric parameter value in the description, the utility will return either the value given in
the device name, or the default. For each list of codes in the description the utility will return the
position of the code in the list, or zero. All returned parameters are word length integers.

Examples:

The CON description is:

DC.W3,'CON' console
DC.W5 five parameters
DC.W' _',448,' X',200 window size
DC.W' A',32,' X',16 window position
DC.W' _',128 keyboard queue length

Device name Parameters

CON 448,200,0,0,128
CON_256 256,200,0,0,128
con__60 448,200,0,0,60
cona0x12 448,200,0,12,128
con_256x64a64x128_20 256,64,64,128,20

The SER description is:

DC.W3,'SER' RS232 serial device
DC.W4 four parameters
DC.W-1,1 port number (default 1)
DC.W4,'OEMS' parity (odd/even/mark/space)
DC.W2,'IH' ignore/use handshaking
DC.W3,'RZC' Raw/use CTRLZ/use CR

Device name Parameters

SER 1,0,0,0
SERE 1,2,0,0
ser2miZ 2,3,1,2

If the name is not matched, the routine returns immediately after the call with ERR.ITNF in D0. If
the name is matched but the additional information is incorrect, it returns 2 bytes after the call
with ERR.INAM in D0. If a match is found, it returns 4 bytes after the call with D0=0 (on SMS and
the Emulator), otherwise D0 is smashed.

QDOS/SMS Reference Manual 28/10/98 Section 16 5

| |
| Vector $E8 direct queue handling IOU.SSQ |
| $EA general IO handling IOU.SSIO |
| |
| Call parameters Return parameters |
| |
| D1 standard IOSS value D1 standard IOSS value |
| D2 standard IOSS value D2 standard IOSS value |
| D3 standard IOSS value D3 ??? |
| |
| A0 standard IOSS value A0 preserved |
| A1 standard IOSS value A1 standard IOSS value |
| A2 A2 ??? |
| A3 A3 ??? |
| |
| Error returns: |
| |
| IPAR undefined action |
| or errors returned from supplied routines |
| |

These routines must be called from supervisor mode, with A6 pointing to the base of system
variables. It may not be called from a task which services an interrupt.

IOU.SSQ is a direct queue handling routine. When the channel definition block is set up for
simple I/O then the 7th and 8th long words should be set to point to the queues for input and out-
put respectively. If either input or output is prohibited, then the corresponding pointer should be
zero.

IOU.SSIO should be called with the standard IOSS values in D0, D1, D2, D3, A0 and A1.

For serial I/O where the operations for byte input and output are not so simple, the routine
IOU.SSIO may be called. The call instruction should be followed by three long words, these being
the entry addresses for

testing for pending byte input, (next byte in D1)
fetch byte, (byte in D1)
send byte. (byte in D1)

The use of absolute addresses for these may prove awkward; so the entry to this routine is best
included in the physical definition block for the driver:at $28(A3) or similar or387800E8 MOVE.W $E8,A4 DC.L TEST4E94 JSR (A4) DC.L FETCHDC.L TEST DC.L SENDDC.L FETCH 4E75 RTSDC.L SEND4E75 RTSinvoked by orJSR $28(A3) PEA $28(A3)MOVE.W $E8,A4JMP (A4)
QDOS/SMS Reference Manual 28/10/98 Section 16 6

For the calls to the three service routines D0 should be returned as the error code, D1 to D3 and
A1 to A3 inclusive are volatile.

Both of these calls treat actions 0, 1, 2, 3, 5 and 7, the header set and read actions and load and
save; for undefined actions they return ERR.IPAR.

| |
| Vector $124 read a sector [QL] MD.READ |
| $126 write a sector [QL] MD.WRITE |
| $128 verify a sector [QL] MD.VERIF |
| $12A read a sector header [QL] MD.RDHDR |
| |
| Call parameters Return parameters |
| |
| D1 D1 file nr (read/verify) |
| D2 D2 block nr (read/verify) |
| D7 D7 sector nr (read header) |
| |
| A0 A0 ??? |
| A1 pointer to start of buffer A1 pointer to end of buffer |
| A2 A2 ??? |
| A3 $18020 A3 $18020 |
| |
| Error returns: |
| |
| MD.WRITE none |
| MD.READ, MD.VERIF normal failed |
| return+2 OK |
| MD.RDHDR normal bad medium |
| return+2 bad sector header |
| return+4 OK |
| |

The microdrive support routines are vectored to simplify the writing of file recovery programs. On
entry A3 must point to the microdrive control register, and the interrupts must be disabled. All
registers except A3 and A6 are treated as volatile.

These routines do not set D0 on return but have multiple returns.

Before calling MD.WRITE the stack pointer must point to a word: the file number and the block
number of the sector to be written are in the high and low byte respectively.

These vectors point to $4000 before the actual entry point. The following code may be used to
read a header:MOVE.W D2,-(sp) ; store block number and sector number on stackMOVE.W MD.RDHDR,An ; VectorJSR $4000(An)BRA.S bad_medium ; bad medium error handlerBRA.S bad_sector ; bad sector header handlerMOVEQ #0,D0 ; all is fineRTS
QDOS/SMS Reference Manual 28/10/98 Section 16 7

| |
| Vector $C0 MEM.ACHP |
| |
| Allocate common heap area |
| |
| Call parameters Return parameters |
| |
| D1.L space required D1.L space allocated |
| D2 D2 ??? |
| D3 D3 ??? |
| |
| A0 A0 base of area allocated |
| A1 A1 ??? |
| A2 A2 ??? |
| A3 A3 ??? |
| A6 ptr to system variables A6 ??? |
| |
| Error returns: |
| |
| IMEM out of memory |
| The condition code is not cleared on success on all ROM versions |
| |

This routine must be called from supervisor mode. It may not be called from a task which services
an interrupt.

The space requested must include room for the heap entry header. For simple heap entries, this
is 16 bytes long, for IOSS channels this is 24 bytes long.

The address of the heap area is the base of the area allocated, not the base of the area which
may be used (contrast with TRAP #1, D0=$18 and $19).

The area allocated is cleared to zero.

| |
| Vector $D8 MEM.ALHP |
| |
| Allocate an area in a heap |
| |
| Call parameters Return parameters |
| |
| D1.L length required D1.L length allocated |
| D2 D2 ??? |
| D3 D3 ??? |
| |
| A0 ptr to ptr to free space A0 base of area allocated |
| A1 A1 ??? |
| A2 A2 ??? |
| A3 A3 ??? |
| |
| Error returns: |
| |
| IMEM no free space large enough |
| |

See section 4.1 for details of the heap allocation mechanism.

QDOS/SMS Reference Manual 28/10/98 Section 16 8

| |
| Vector $D2 link an item into a list MEM.LLST |
| $D4 unlink an item from a list MEM.RLST |
| |
| Call parameters Return parameters |
| |
| D1 D1 preserved |
| D2 D2 preserved |
| D3 D3 preserved |
| |
| A0 base of item (un)linked A0 preserved |
| A1 pointer to previous item A1 updated |
| A2 A2 preserved |
| A3 A3 preserved |
| |

These routines are provided for handling linked lists.

These routines use A0 to pass the base address of the item to be linked or unlinked, and A1 to
pass a pointer which points to either the pointer to the first item in the list, or to an item in the list.

When an item is linked in, it will be linked in at the start of the list, or, if A1 pointed to an item in
the list, after that item. When starting a new list, A1 must be zero.

When an item is removed, A1 may point to the pointer to the first item in the list, or to any item in
the list before the item to be removed.

When starting a new list, the pointer to the first item in the list must be zero.

Each item in the list must have 4 bytes reserved at the start for the link pointer.

An example of MEM.RLST is given in Section 7.2.2

| |
| Vector $C2 MEM.RCHP |
| |
| Release common heap space |
| |
| Call parameters Return parameters |
| |
| D1 D1 ??? |
| D2 D2 ??? |
| D3 D3 ??? |
| |
| A0 base of area to release A0 ??? |
| A1 A1 ??? |
| A2 A2 ??? |
| A3 A3 ??? |
| A6 ptr to system variables A6 ??? |
| |

This routine must be called from supervisor mode. It may not be called from a task which services
an interrupt. See entry for MEM.ACHP.

QDOS/SMS Reference Manual 28/10/98 Section 16 9

| |
| Vector $DA MEM.REHP |
| |
| Link a free space (back) into a heap |
| |
| Call parameters Return parameters |
| |
| D1.L length to link in D1.L ??? |
| D2 D2 ??? |
| D3 D3 ??? |
| |
| A0 base of new space A0 ??? |
| A1 ptr to ptr to free space A1 ??? |
| A2 A2 ??? |
| A3 A3 ??? |
| |

| |
| Vector $C4 set up a window using a supplied name OPW.WIND |
| $C6 set up console window OPW.CON |
| $C8 set up screen window OPW.SCR |
| |
| Call parameters Return parameters |
| |
| D1 D1 ??? |
| D2 D2 ??? |
| D3 D3 ??? |
| |
| A0 ptr to name (OPW.WIND only) A0 channel ID |
| A1 ptr to parameter block A1 ??? |
| A2 A2 ??? |
| A3 A3 ??? |
| |
| Error returns: |
| |
| INAM bad device name (WINDW only) |
| IMEM out of memory |
| ICHN out of channels |
| ORNG window is off-screen |
| |

The above three routines, which must be called in user mode, set up console or screen windows
using a parameter list, pointed to by A1. In the first case, the window is opened using a name
which has been supplied, a block of parameters defining the border, and the paper, strip and ink
colours. The window is set up and cleared for use.

QDOS/SMS Reference Manual 28/10/98 Section 16 10

The parameter block is as follows:

$00 border colour (byte)
$01 border width (byte)
$02 paper/strip colour (byte)
$03 ink colour (byte)

For the second and third routines a further four words will need to be added to the parameter
block to define the window:

$04 width (word)
$06 height (word)
$08 X-origin (word)
$0A Y-origin (word)

| |
| Vector $11C executes an operation QA.OP |
| $11E executes a list of operations QA.MOP |
| |
| Call parameters Return parameters |
| |
| D0.W operation (QA.OP) D0.L error code |
| D1 D1 preserved |
| D2 D2 preserved |
| D3 D3 preserved |
| |
| A0 A0 preserved |
| A1 ptr to RI stack (rel. A6) A1 updated |
| A2 A2 preserved |
| A3 absolute ptr to operation list (QA.MOP) A3 preserved |
| A4 ptr to base of var area (rel. A6) A4 preserved |
| |
| Error returns: |
| |
| OVFL arithmetic overflow |
| |

All addresses except A3 (for QA.MOP only) passed to these routines must be relative to A6.

The arithmetic package is available for general use through two vectors: the first executes a sin-
gle operation, the second executes a list of operations.

The package operates on floating point numbers on a downward stack pointed to by (A6,A1.L). It
operates on the top of the stack (TOS) which is pointed to by (A6,A1.L), and the next on the stack
(NOS) at 6(A6,A1.L).

See section 9.5 for details of the floating point format.

There are two types of operation codes which can be passed to the interpreter to be executed.

Operation codes between $02 and $30 (inclusive) carry out various arithmetic operations on the
stack, with the result being stored at 0(A6,A1.L).

QDOS/SMS Reference Manual 28/10/98 Section 16 11

Operation codes between $FFFF and $FF31 allow you to access intermediate results and
variables stored on a second stack, the top of which is pointed to by 0(A6,A4.L). If an odd opcode
is used (bit 0 is set), then the top six bytes of the maths stack are copied across to
opcode-1(A6,A4.L) and A1 increased by 6, 'removing' the number from the maths stack (NOS
becomes the new TOS).
If an even opcode is used (bit 0 is clear), then the six bytes stored at opcode(A6,A4.L) are copied
across to the top of the maths stack (A1) is decreased by 6 creating a new TOS).

For QA.OP the operation code should be passed as a word in D0. For QA.MOP the operation
codes are in a table of bytes pointed to by A3. The table is terminated by a zero byte.

Note: for the function EXP, D7 should be set to zero or an erroneous value will be returned.

The operation codes for the interpreter are as follows:

CODE function change to A1

$02 qa.nint round fp to Nearest INTeger +4
$04 qa.int truncate fp to INTeger +4
$06 qa.nlint round fp to Nearest Long INTeger +2
$08 qa.float FLOAT integer -4
$0A qa.add ADD (top of stack to next of stack) +6
$0C qa.sub SUBtract (tos from nos) +6
$0E qa.mul MULtiply (tos by nos) +6
$10 qa.div DIVide (tos into nos) +6
$12 qa.abs ABSolute value 0
$14 qa.neg NEGate 0
$16 qa.dup DUPlicate -6
$18 qa.cos COSine 0
$1A qa.sin SINe 0
$1C qa.tan TANgent 0
$1E qa.cot COTangent 0
$20 qa.asin ArcSINe 0
$22 qa.acos ArcCOSine 0
$24 qa.atan ArcTANgent 0
$26 qa.acot ArcCOTangent 0
$28 qa.sqrt SQuare RooT 0
$2A qa.log Log (Natural) 0
$2C qa.l10 Log base 10 0
$2E qa.exp Exponential 0
$30 qa.pwrf raise to PoWeR (Floating point) (nos to power of tos) +6

QDOS/SMS Reference Manual 28/10/98 Section 16 12

In addition, SMSQ and Minerva support the following function codes:

$01 qa.one push constant one -6
$03 qa.zero push constant zero -6
$05 qa.n followed by a signed byte, to push FP -128 to 127 -6
$07 qa.k plus a byte, nibbles select mantissa and adjust exponent -6

Following byte values may be:
qa.pi180 $56
qa.loge $69
qa.pi6 $79
qa.ln2 $88-$100
qa.sqrt3 $98-$100
qa.pi $A8-$100
qa.pi2 $A7-$100

$09 qa.flong float a long integer -2
$0D qa.halve TOS / 2 0
$0F qa.doubl TOS * 2 0
$11 qa.recip 1 / TOS 0
$13 qa.roll (TOS)B, C, A => (TOS)A, B, C (roll third to top) 0
$15 qa.over NOS -6
$17 qa.swap NOS <=> TOS 0
$25 qa.arg arg(TOS,NOS)=a, solves TOS=k*cos(a) & NOS=k*sin(a) +6
$27 qa.mod sqrt(TOS^2+NOS^2) +6
$29 qa.squar TOS * TOS 0
$2F qa.power NOS ^ TOS, where TOS is a signed short integer +2

| |
| Vector $11A QA.RESRI |
| |
| Reserve Room on Arithmetic Stack |
| |
| Call parameters Return parameters |
| |
| D1.L nr. of bytes required D1 ??? |
| D2 D2 ??? |
| D3 D3 ??? |
| |
| A0 A0 preserved |
| A1 ptr to RI stack (rel. A6) A1 ??? |
| A2 A2 preserved |
| A3 A3 preserved |
| |
| Error returns: |
| |
| IMEM out of memory [SMSQ] |
| none [QDOS] |
| |

All addresses passed to this routine must be relative to A6.

QA.RESRI is used to reserve space on the arithmetic stack (A6,A1).

Since not only the stack but the whole SuperBASIC area may move during the call, the arithmetic
stack pointer should be saved in BV_RIP(A6), whence it should be retrieved after the call has
been completed.

QDOS/SMS Reference Manual 28/10/98 Section 16 13

| |
| Vector $112 SuperBASIC get Integer parameter(s) SB.GTINT |
| $114 SuperBASIC get Floating point parameter(s) SB.GTFP |
| $116 SuperBASIC get String parameter(s) SB.GTSTR |
| $118 SuperBASIC get Long Integer parameter(s) SB.GTLIN |
| |
| Call parameters Return parameters |
| |
| D1 D1 ??? |
| D2 D2 ??? |
| D3 D3.W number of parameters fetched |
| D4 D4 ??? |
| D6 D6 ??? |
| |
| A0 A0 ??? |
| A1 A1 ptr to RI stack (rel. A6) |
| A2 A2 ??? |
| A3 ptr to name table entry for 1st parameter A3 preserved |
| (rel. A6) |
| A4 A4 preserved |
| A5 ptr to name table entry for last A5 preserved |
| parameter (rel. A6) |
| |
| Error returns: |
| |
| standard, condition codes set |
| |

All addresses passed to these routines must be relative to A6.

These routines are used to get the values of actual parameters to SuperBASIC procedures or
functions onto the arithmetic stack. Each routine assumes that all the parameters will be of the
same type, as follows:

SB.GTINT 16-bit parameter
SB.GTFP floating point
SB.GTSTR string
SB.GTLIN floating point: convert to 32-bit long integer

The values are returned in the order on the arithmetic stack (A6,A1) with the first parameter at the
top (lowest address) of the stack.

The separator flags in the name table entries are smashed by this routine.

QDOS/SMS Reference Manual 28/10/98 Section 16 14

| |
| Vector $110 SB.INIPR |
| |
| Initialise SuperBASIC procedures and functions |
| |
| Call parameters Return parameters |
| |
| D1 D1 preserved |
| D2 D2 ??? |
| D3+ preserved |
| |
| A0 A0 preserved |
| A1 pointer to proc/fn table A1 ??? |
| A2+ preserved |
| |
| Error returns: |
| |
| IMEM no room for table |
| |

SB.INIPR is used to link in a list of procedurs and functions to be added to the SuperBASIC
name table. Once added, the functions can be called from SuperBASIC in the same way as the
procedures and functions built into the ROM.

The structure of the proc/fn table is defined in the following form:

word approximate number of procedures (see below)

for each procedure
word pointer to routine - here
byte length of name of procedure
characters name of procedure

word 0
word approximate number of functions (see below)

for each function
word pointer to routine - here
byte length of name of function
characters name of function

word 0

The "approximate number" of procedures or functions is used to reserve internal table space. It
can be calculated with the following formulae:

INT ((total number of characters used in procedures or functions + 6)/7)

The pointers to the routines are relative to the address of the program counter, e.g.
DC.W ENTRY-*

QDOS/SMS Reference Manual 28/10/98 Section 16 15

| |
| Vector $120 SB.PUTP |
| |
| SuperBASIC put Parameter |
| |
| Call parameters Return parameters |
| |
| D1 D1 ??? |
| D2 D2 ??? |
| D3 D3 ??? |
| |
| A0 A0 ??? |
| A1 ptr to value to be assigned (rel. A6) A1 ??? |
| A2 A2 ??? |
| A3 ptr to name table entry (rel. A6) A3 preserved |
| |
| Error returns: |
| |
| standard error code |
| |

All addresses passed to this routine must be relative to A6.

SB.PUTP assigns a value to be associated with an entry in the SuperBASIC name table. For
details of the value to be assigned see section 9.5. A1 and A3 should be on word boundaries.

The type of the entity to be assigned (and hence its length) is determined by the type in the name
table entry.

BV_RIP(A6) must point to the value to be returned (top of arithmetic stack). BV_RIP will be
updated on return by SB.PUTP.

QDOS/SMS Reference Manual 28/10/98 Section 16 16

| |
| Vector $E6 UT.CSTR |
| |
| Compare two strings |
| |
| Call parameters Return parameters |
| |
| D0.B comparison type D0.L -1, 0 or +1 |
| D1 D1 preserved |
| D2 D2 preserved |
| D3 D3 preserved |
| |
| A0 base of string 0 (rel. A6) A0 preserved |
| A1 base of string 1 (rel. A6) A1 preserved |
| A2 A2 preserved |
| A3 A3 preserved |
| A6 base address register A6 preserved |
| |

All addresses passed to this routine must be relative to A6.
D0 (and the status register) is set negative if the string at (A6,A0) is less than the string at
(A6,A1) etc.

The string comparison routine used by the directory system, and the Basic interpreter, uses an
extended interpretation of the value of a string and has four modes of operation.

Order of Strings
Since comparison may be used to sort strings into order as well as checking for equality or equi-
valence, the order must be well defined. A form of dictionary order is attempted - this will require
to be modified for foreign character sets.

Space is the first character.
Punctuation is in ASCII order (except "." which is the last).
All punctuation is defined to be before all letters or digits (e.g. A. before AA.).
Optionally, embedded numbers may be taken in numerical order (e.g. Case5A before Case10A,
and also Case5.10 before Case5.5).
All digits or numbers are defined to be before all letters (e.g. bat1 before bath1).
An upper case letter comes before the corresponding lower case letter but after the previous
lower case letter (e.g. Bath is before bath but after axe).
Optionally, an upper case letter is treated as quivalent to a lower-case letter.

SPACE
!"#$%&'()*+,-/:;<=>?@[\]^_£{|}~ Copyright.
Digits or numbers
AaBbCcDdEeFfGgHhIiJjKkLlMmNnOoPpQqRrSsTtUuVvWwXxYyZz
Foreign characters

Comparisons
The relationship of one string to another may be

equal all characters or numbers are the same or equivalent.
lesser the first part of the first string, which is different from the corresponding character

in the second string, is before it in the defined order.
greater the first part of the first string, which is different from the corresponding character

in the second string, is after it in the defined order.

QDOS/SMS Reference Manual 28/10/98 Section 16 17

Types of Comparison
Comparisons may be made directly on a character by character basis (type 0), or made ignoring
the case of the letters (type 1), or made using the value of any embedded numbers (type 2), or
both ignoring the case of letters and using the value of embedded numbers (type 3).

File and vaiable name comparisons use type 1.
Basic <, <=, =, >=, > and <> operators use type 2.
Basic == (equivalence) operator uses type 3.

| |
| Vector $CA write error message to channel 0 UT.WERSY |
| $CC write error message to given channel UT.WERMS |
| |
| Call parameters Return parameters |
| |
| D0.L error code D0.L preserved |
| D1 D1 preserved |
| D2 D2 preserved |
| D3 D3 preserved |
| |
| A0 channel ID (UT.WERMS only) A0 preserved |
| A1 A1 preserved |
| A2 A2 preserved |
| A3 A3 preserved |
| |

UT.WERMS should be called from user mode. If A0=0, it can be called in Supervisor mode.

These routines exist for writing simple messages to a channel. They are basic error message
handlers which write a standard or device driver supplied error message to either the command
channel 0, or else to a defined channel.

| |
| Vector $CE UT.WINT |
| |
| Write an integer to ASCII and sent it to the defined channel |
| |
| Call parameters Return parameters |
| |
| D1.W integer parameter D1 ??? |
| D2 D2 ??? |
| D3 D3 ??? |
| |
| A0 channel ID A0 preserved |
| A1 A1 ??? |
| A2 A2 preserved |
| A3 A3 preserved |
| |
| Error returns: |
| |
| All the usual IO |
| |

This routine ought usually to be called from user mode. It can be called in Supervisor mode if
A0=0.

QDOS/SMS Reference Manual 28/10/98 Section 16 18

| |
| Vector $D0 UT.WTEXT |
| |
| Send a message to a channel |
| |
| Call parameters Return parameters |
| |
| D1 D1 ??? |
| D2 D2 ??? |
| D3 D3 ??? |
| |
| A0 channel ID A0 preserved |
| A1 base of message A1 ??? |
| A2 A2 preserved |
| A3 A3 preserved |
| |
| Error returns: |
| |
| All the usual IO |
| |

This routine ought usually to be called from user mode.

The message is in the form of a text string: number of characters (word) followed by the charac-
ters in ASCII. If a newline is required at the end of the message, this should be included in the
message. If the channel is 0 then D3 will be returned 0, otherwise D3 will be returned to -1. In
version V1.03 and earlier, D0 is set to the error return but is not tested so the condition codes will
not be correct. As a special concession, interrupt servers and other supervisor mode routines can
call these routines with A0=0. If the command channel is in use, they will attempt to use channel
1. This operation is not reommended, but it does seem to work!

QDOS/SMS Reference Manual 28/10/98 Section 16 19

Vectored Routines - numerical order with page reference

mem.achp $00c0 Allocate space in Common HeaP 8
mem.rchp $00c2 Return space to Common HeaP 9
opw.wind $00c4 Open WINDow using name 10
opw.con $00c6 Open CONsole 10
opw.scr $00c8 Open SCReen 10
ut.wersy $00ca Write an ERror to SYstem window 18
ut.werms $00cc Write an ERror MeSsage 18
ut.wint $00ce Write an INTeger 18
ut.wtext $00d0 Write TEXT 19
mem.llst $00d2 Link into LiST 9
mem.rlst $00d4 Remove from LiST 9
cv.datil $00d6 DATE and time (6 words) to Integer Long [SMS] 1
mem.alhp $00d8 ALlocate in HeaP 8
mem.rehp $00da REturn to HeaP 10
ioq.setq $00dc SET up a Queue in standard form 4
ioq.test $00de TEST a queue for pending byte / space available 4
ioq.pbyt $00e0 Put a BYTe into a queue 4
ioq.gbyt $00e2 Get a BYTe out of a queue 4
ioq.seof $00e4 Set EOF in queue 4
ut.cstr $00e6 Compare STRings 17
iou.ssq $00e8 Standard Serial Queue handling 6
iou.ssio $00ea Standard Serial IO 6
cv.ildat $00ec Integer (Long) to DAte and Time string 3
cv.ilday $00ee Integer (Long) to DAY string 3
cv.fpdec $00f0 Floating Point to ascii DECimal 3
cv.iwdec $00f2 integer (word) to ascii decimal 3
cv.ibbin $00f4 integer (byte) to ascii binary 3
cv.iwbin $00f6 integer (word) to ascii binary 3
cv.ilbin $00f8 integer (long) to ascii binary 3
cv.ibhex $00fa integer (byte) to ascii hexadecimal 3
cv.iwhex $00fc integer (word) to ascii hexadecimal 3
cv.ilhex $00fe integer (long) to ascii hexadecimal 3
cv.decfp $0100 decimal to floating point 2
cv.deciw $0102 decimal to integer word 2
cv.binib $0104 binary ascii to integer (byte) 2
cv.biniw $0106 binary ascii to integer (word) 2
cv.binil $0108 binary ascii to integer (long) 2
cv.hexib $010a hexadecimal ascii to integer (byte) 2
cv.hexiw $010c hexadecimal ascii to integer (word) 2
cv.hexil $010e hexadecimal ascii to integer (long) 2
sb.inipr $0110 INITialise PRocedure table 15
sb.gtint $0112 GeT INTeger 14
sb.gtfp $0114 GeT Floating Point 14
sb.gtstr $0116 GeT STRing 14
sb.gtlin $0118 GeT Long INteger 14
qa.resri $011a QL Arithmetic Reserve Room on stack 13
qa.op $011c QL Arithmetic OPeration 11
qa.mop $011e QL Arithmetic Multiple OPeration 11
sb.putp $0120 PUT Parameter 16
iou.dnam $0122 decode Device NAMe 4
md.read $0124 read a sector [QL] 7
md.write $0126 write a sector [QL] 7
md.verif $0128 verify a sector [QL] 7
md.rdhdr $012a read a sector header [QL] 7

QDOS/SMS Reference Manual 28/10/98 Section 16 20

17.0 New Concepts - Things [EXT]

Things are general-purpose resources which may be used by any code in the system, either from
device drivers or directly from programs. In principle a Thing may be shareable by a finite or
"infinite" number of "users", or restricted to one user at a time. A run-time system will be infinitely
shareable, a two-port serial chip may have two users, and so on. The operating system provides
suitable facilities for adding, removing and using Things.

Things are kept in a linked list, each one being identified by a name which must be unique. A
new thing is added by setting up a suitable linkage block and then calling the operating system
routine to link it into the list: the new thing will be rejected if its name is not unique. The linkage
block must be in the common heap so that it may be discarded correctly when the Thing is
removed. Each Thing has a version ID which will be returned to any Job which uses the Thing:
this may be the familiar ASCII number, e.g. "1.03", or a bit map of implemented facilities, e.g.
%10000101.

A piece of code that wishes to use a Thing supplies the system routine with the name of the
Thing, and any additional parameters the Thing itself may require: this is very similar to the IOSS
open call, except that the result returned is an address, not an "ID". The meaning of this address
depends on what the Thing is. If the call to use a Thing is successful, then a new entry is made in
the Thing's "usage list", marking the Thing as used by the given Job.

A piece of code may "free" a given Thing either by an explicit call to do so, or, if it is a Job, by
being removed. As the code may "own" more than one instance of a thing (e.g. two serial ports),
parameters may be passed to the Thing's FREE code to signal which instance is to be discarded.
If the owner is a Job which is being removed, a special "Forced FREE" routine is called. If a
Thing is freed on behalf of another job, then that Job will be removed.

If a Thing is not in use it may be removed from the list by the system routine provided, and its lin-
kage block discarded. An attempt to remove a Thing that is in use will cause an error, in which
case its linkage block must not be discarded. A Thing may supply a "remove" routine to tidy itself
up before removal - for instance, a parallel I/O port would be set to all inputs.

A routine is provided to "force remove" a Thing. If the Thing is in use, then all Jobs using it will
also be removed (with the exception of the Job that is doing the forced remove, unless that Job is
owned by a Job that is itself using the Thing). In this case the linkage block is automatically
returned to the common heap.

Thing linkage format

Items from TH_THING onwards (inclusive) must be filled in by the initialsation code before a new
thing is added with the SMS.LTHG routine.
TH_NXTTH $00 long points to NeXT THing linkage block
TH_USAGE $04 long USAGE list
TH_FRFRE $08 long code called when Force Remove FREes a thing
TH_FRZAP $0c long code called when thing owner is removed *
TH_THING $10 long points to THING itself
TH_USE $14 long code to invoke to USE the thing, or 0
TH_FREE $18 long code to invoke to FREE the thing, or 0
TH_FFREE $1c long code to Force FREE a thing, or 0
TH_REMOV $20 long code to tidy up before REMOVing a thing, or 0
TH_NSHAR $24 byte byte set if Thing Not SHAReable
TH_VERID $26 long version ID, e.g. "1.03" or %1011101
TH_NAME $2a string NAME of thing

QDOS/SMS Reference Manual 18/03/96 Section 17 1

Thing header format

All offsets are relative to the address of the flag.
THH_FLAG $00 4 bytes flag signalling standard header: value "THG%"
THH_TYPE $04 long type of Thing:
 -1=the THING code itself

0=utility code (free format)
1=executable code
2=shared data (free format)
3=extension code (user mode)
4=extension code (supervisor mode)

bit 24 is set if the set if the Thing has a list Things within it.

List of Things Header

THH_NEXT $08 long offset of next Thing in list (0 for last)
THH_EXID $0c long extra ID

Executable Thing Header

THH_HDRS $08 long offset to start of header
THH_HDRL $0c long size of header
THH_DATA $10 long dataspace
THH_STRT $14 long offset of start of code or 0 to start at (copy of) header

Extension Thing Header

THH_PDEF $10 long offset to parameter definitions (or 0)
THH_PDES $14 long offset to parameter descriptions
THH_CODE $18 entry point for extension code - should exit with RTS

Different sorts of Thing

Things may take many forms, but it may be useful to mention a few "tricks" relating to specific
ones here. In particular, the programmer who wishes to make use of Things must cater for the
eventuality that his Thing will be removed, probably forcibly.

Things in ROM will often link themselves in at boot: it may be desirable to have a SuperBASIC
procedure to re-link them if removed, but otherwise no special problems present themselves.

Thing loaded into the resident procedure area act in a very similar way to ROM Things, except
that if removed there is wasted RAM where the Thing is loaded.

Things loaded into the Transient Program area as active or inactive Jobs can have the space
used reclaimed when they are removed. There are two ways in which such a Thing can be re-
moved, one is by a Thing call (RTHG or ZTHG) and the other is via a remove Job call (FRJB).
The Thing remove code must ensure that if the Job is removed, the Thing goes away, and vice
versa. This may be accomplished by ensuring that the Job owns the Thing linkage block, and that
the Thing remove code (a) sets the Job's PC to some code which will cause it to remove itself, (b)
sets the Job's priority to 127, and (c) releases it from any current suspension. Note that as the
Thing remove code is called from supervisor mode, it must not itself remove the Job.

QDOS/SMS Reference Manual 18/03/96 Section 17 2

Things loaded into common heap are the easiest to deal with. The easiest case is where the
Thing can be loaded into a suitably extended Thing linkage block, in which case no special code
is required. If this is not possible, the Thing remove code must release the heap entry containing
the Thing. While it is conceivable that the heap containing the Thing will be released by some
outside agency without calling a Thing remove routine, any such action may be regarded as so
incredibly hostile that no precautions need be taken against it. This contrasts with the
"unexpected" removal of a Job, which may be regarded as a fairly normal occurrence.

Hardware Things will frequently have some code or workspace in one or other of the above areas
of RAM. The same comments thus apply, with the extra requirement that the hardware be placed
in a "safe" state when the Thing controlling it is removed. Ideally this safe state will be the same
as that obtained by resetting the computer.

17.1 Extension Things

This chapter defines a standard mechanism for a procedure interface that can, in principle, pro-
vide extensions to any programming language.

The structure allows several related procedures to be stored in one Thing. This simplifies main-
tenance and reduces the system overheads.

Parameters are passed to the extension using conventions similar to the C programming lan-
guage. The parameter list contains keys and values passed to the routine and pointers to more
complex parameters. The parameter list itself should not be modified. Each extension can have
its own definition of the parameter list: there is both a formal definition to provide automatic
interfacing to high level languages, and an informal description to provide user help texts.

The interface provides for procedures only. If a procedure has one principal return parameter, this
should be defined as the last parameter in the list. A high level language interface can then
identify this easily if the extension procedure is called as a high level language function. Note that
this is different from calling a high level language procedure as a function where the error return
would be expected as the function value.

Extension procedures should not normally allocate memory for the return parameters, the call
mechanism provides that the amount of memory available for a return parameter is either fixed by
the parameter type or is specified for a particular call.

If a procedure requires to return a variable size parameter, with no limit on its size, and the space
pre-allocated is not sufficient, then it should return the error ERR.BFFL and the parameter list
must be defined in such a way that procedure may be re-called. In this case it is unlikely that an
automatic interface from the high level language will be appropriate.

Th aim of this definition is not to provide a universal interface which will cover all eventualities,
but to make the interface in the majority of cases automatic, while keeping the interface simple
and efficient.

QDOS/SMS Reference Manual 18/03/96 Section 17 3

Extension Thing Header

All offsets are relative to the address of the flag.
thh_flag $00 4 bytes flag signalling standard header: value "THG%"
thh_type $04 long type of Thing: value $01000003
thh_next $08 long offset of next Thing in list (0 for last)
thh_exid $0c long extension ID
thh_pdef $10 long offset to parameter definitions (or 0)
thh_desc $14 long offset to description
thh_code $18 entry point for extension code - should exit with RTS

Level 1 Extension Parameter Definition

The parameters for a extension thing are defined as a table of words. Each word defines the type
of parameter that is possible. The table is terminated by a zero word. In general, a single call
value or key is denoted by a positive word, while a pointer to a parameter value is negative. The
value -1 is used to delimit a group of repeated parameters. The value -character is used to start a
"keyed" group of parameters. Because extra information on pointer parameters is passed to the
extension procedure, these parameters can be allowed to be one of a list of possible types. Note
that extension procedures with optional or repeated parameters may have ambiguous definitions.
Ambiguous parameter definitions cannot be handled by general purpose interface code from a
high level language, so that such routines will require individually coded interfaces.

The simplest parameters are call values or keys. The parameter definitions for these are all low
value, positive words. The distinction between a key and a call value is that the former has a
significance which is defined internal to the extension procedure, while that latter has a numerical
value.

Call Values and Keys

thp.key $0001 key
thp.char $0004 character
thp.ubyt $0008 unsigned byte
thp.sbyt $000a signed byte
thp.uwrd $0010 unsigned word
thp.swrd $0012 signed word
thp.ulng $0020 unsigned long
thp.slng $0022 signed long

thp..opt 12 bit set if parameter optional
thp..nnl 11 bit set if null parameter is negative (-1)

For parameters where the item in the parameter list is a pointer to a value, the situation is rather
more complex. For each parameter, there may be a number of possibilities. The word in the list is
formed by ORing all the possibilities together. There are bits that define that the parameter is a
pointer and defines whether the parameter is call, return, updated or specified by the calling
code.

QDOS/SMS Reference Manual 18/03/96 Section 17 4

Pointer Parameter Usage

thp..ptr 15 bit set for pointer parameter
thp..cal 14 bit set for call parameter
thp..ret 13 bit set for return parameter

thp.upd $e000 updated parameter
thp.call $c000 call parameter
thp.ret $a000 return parameter
thp.ptr $8000 call or return parameter (specified by calling code)

If the parameter is optional, then the optional bit should be set (or the word is ORed with the
optional key value.

Optional Parameter

thp..opt 12 bit set if parameter is optional

thp.opt $1000 optional

The parameter could be an array of given type with a standard header: note that the standard
interface code will always allow a single value to be used in its place.

Array Parameter

thp..arr 11 bit set for array

thp.arr $0800 array

To finish of the definition word, the values defining each of the possible types of parameter
should be ORed with the word so far. Note that, provided there is at most one signed value
possible, the values representing the parameter usage, option, array and types may be ADDed
together rather than ORed. Note also that a you may not have both unsigned and signed values.

Parameter Types

thp..sgn 1 bit set if value is signed
thp..chr 2 bit set if character allowed
thp..byt 3 bit set if byte value allowed/required
thp..wrd 4 bit set if word value allowed/required
thp..lng 5 bit set if long value allowed/required
thp..str 8 standard string
thp..sst 9 sub-string

thp.char $0004 character
thp.ubyt $0008 unsigned byte
thp.sbyt $000a signed byte
thp.uwrd $0010 unsigned word
thp.swrd $0012 signed word
thp.ulng $0020 unsigned long
thp.slng $0022 signed long
thp.fp8 $0042 eight byte floating point
thp.str $0100 string
thp.sstr $0200 sub-string

QDOS/SMS Reference Manual 18/03/96 Section 17 5

Example Parameter Definitions

COPY
dc.w thp.call+thp.str pointer to source file
dc.w thp.call+thp.str pointer to destination file
dc.w 0

SER_BUFF
dc.w thp.opt+thp.ulng optional unsigned long
dc.w thp.opt+thp.ulng optional unsigned long
dc.w 0

PRT_USE$
dc.w thp.ret+thp.str pointer to return string
dc.w 0

Parameter List

For each parameter that is passed there is one or two long words in the parameter list. For a key
it is just the key in a long word. The procedure itself will determine how much of the key is
significant. For a call value, the value is in the least significant part of the long word, the rest of
the long word is ignored. If a key or call parameter is marked as optional, then the interface code
should provide a default value (normally zero or -1 depending on thp..nnl) if the parameter is
missing

For a pointer there are eight bytes: two words followed by a long word. The first word specifies
the usage of the parameter. If it was an optional parameter and it is missing, the value is 0.
Otherwise thp..ptr and either or both thp..cal and thp..ret are set. The thp..arr bit will be set if the
pointer is to an array. In addition, one of the lower bits must be set to define the type of
parameter. The thp..sng and thp..key bits should be clear.

The next word is zero for most parameters, but for a return string it is the maximum space
available, and for a call sub-string it is the length of the sub-string.

The next long word is the pointer to the parameter value (or array definition). If it is a missing
optional parameter the value is ignored, but, for future compatibility, zero should be supplied.

A repeated group of parameters is prefaced by a long word with the number of repeats.

Defining Extension Things

Extension Things do not need to be written to strict rules. Since it can be assumed that the code
calling the Extension Thing is fully aware of the requirements and behaviour of the Extension
Thing, an Extension Thing can be any routine. It is, however, advantageous to be more strict than
this. If the Extension Thing is defined with an unambiguous parameter definition, and it accepts a
parameter list in the standard form described above, and it is clean to the extent of preserving all
registers except d1 and a1 (meeting the SuperBASIC interpreter requirements for a6 and a7 as
well), and it returns a standard error code (-ve) or escape code (+ve) or zero in d0, and it has at
most one return parameter, then it will usually be possible to interface to the Extension Thing
automatically.

The format of an Extension Thing does not allow more than a four character ID. This is to simplify
access. It is up to the high level language itself to define a suitable name although the name in
the informal description may be used.

One requirement of the definition of an Extension Thing is that it must be shareable.

QDOS/SMS Reference Manual 18/03/96 Section 17 6

Accessing Extension Things

Depending on the extent to which an Extension Thing is to be used, an application can either
USE the Extension Thing during initialisation and save the address of the Extension Thing (and
possibly the Thing linkage) or it can USE the Extension Thing as required and FREE it
immediately afterwards. The latter is simpler, the former is more efficient for small, frequently
used Extension Things.

When to Use Extension Things.

There are many ways of extending the SMS2 operating system. Using an Extension Thing is just
one. There are two cases where it is appropriate to add an extension thing. The first is where the
extension is provided to access some hardware dependent facility or other facility which is an
optional extra. Provided that the Extension Thing has an unambiguous parameter definition and a
clean interface, it should be possible to add such an extension to any high level language. The
second case is where there is a facility which is likely to be required to be called from a number
of languages and involves a considerable amount of code. In this case, it is not so important that
the facility has either a unambiguous definition or a clean interface.

The SER_PAR_PRT extension things are good examples of the first. These are very simple
extensions which are linked to the serial and parallel port drivers. The FILE_SELECT extension is
a good example of the latter, this is a very complex, but useful procedure.

An Extension Thing may not be appropriate if the procedure is just a direct interface to a
operating system facility (e.g. INK, PAPER, CLS etc.).

Thing Vectors

To enable the thing system to be used from user code under QDOS, which does not allow the
TRAP #1 to be extended, versions 2.03 onwards of the HOTKEY System II add a strange Thing
to the end of the Thing list. This Thing has the name THING and is not accessible using the
Thing system and so may not be removed. The THING Thing is $18 bytes long.

THH_FLAG $00 long 'THG%'
THH_TYPE $04 long -1
THH_ENTR$08 long absolute address of TH_ENTRY routine
THH_EXEC$0C long absolute address of TH_EXEC routine

To find the THING Thing, pick up the pointer SYS_LTHG ($B8 on from the base of the system
variables), and follow the linked list to the end. The last item in the list should be the THING
Thing.

Hotkey Vectors

The Hotkey vectors are in the Hotkey Thing. These are available in all HOTKEY System II
versions.

QDOS/SMS Reference Manual 18/03/96 Section 17 7

Thing Entry Points

TH_ENTRY
entry point is for calling from user mode: in SMS2 they are replaced by a TRAP #1, and the entry
vectors added in with the rest. The parameters are exactly the same as for the SMS2 version,
though. Under QDOS, all calls to SMS.ZTHG must be made in user mode, as must calls to
FTHG on behalf of another Job.

TH_EXEC
This executes the code of an executable thing, setting the standard parameter string and opening
a file for the job if required. It returns an error code in D0, and is called with D1 holding the owner
ID, 0, or -1. The MSW of D2 should contain the priority of the job to be executed, and the LSW
should contain the timeout. A0 must contain a pointer to the Thing name, A1 is a pointer to the
parameter string.

Example of entries to the Thing Vector system:; Jump to Thing Utility through HOTKEY System II; Copyright 1989 Tony Tebby / Jochen Merz; Note this only works if a HOTKEY System version 2.03 or later is present.;; Entry Exit; d1 owner Job ID; d2 priority/timeout preserved; a0 thing name preserved; a1 parameter string preserved;; Condition codes set;ut_thjmpmove.l a4,-(sp) move.l d0,-(sp) moveq #thh_entr,d0 ; thing vector required bsr.s gu_thvec ; get THING vector bne.s gut_ex4 ; there's nothing to jump to! move.l (sp)+,d0 jsr (a4) ; do itgut_exit move.l (sp)+,a4 tst.l d0 rtsgut_ex4 addq.l #4,sp ; skip operation bra.s gut_exit
QDOS/SMS Reference Manual 18/03/96 Section 17 8

; Find Thing utilitiy vector of HOTKEY System II.; Note this only works if a HOTKEY System version 2.03 or later is present.;; Entry Exit; d0 vector required error code; a4 Thing Utility Vector;; Error returns: err.nimp THING does not exist; Condition codes set;gu_thvec movem.l d1-d3/d7/a0,-(sp) move.w d0,d3 moveq #sms.info,d0 ; get system variables trap #do.sms2move.w sr,d7 ; save current SRtrap #0 ; into supervisor mode move.l sys_thgl(a0),d1 ; this is the Thing list beq.s thvec_nf ; empty list, very bad! move.l d1,a0thvec_lp move.l (a0),d1 ; get next list entry beq.s th_found ; end of list? Should be THING! move.l d1,a0 ; next link bra thvec_lpthvec_nf moveq #err.nimp,d0 ; THING does not exist bra.s thvec_rtth_found move.l th_thing(a0),a0 ; get start of Thing cmp.l #-1,thh_type(a0) ; is it our special THING? bne.s thvec_nf ; sorry, it isn't move.l (a0,d3.w),a4 ; this is the vector we look forthvec_rtmove.w d7,sr ; back into previous state movem.l (sp)+,d1-d3/d7/a0 tst.l d0 rts
The following example demonstrates how to create and link in a Thing. Two areas are allocated,
one for the Thing contents, one for the Thing linkage. The contents may already be present in
RAM or ROM/EPROM, but the linkage has to be in RAM. The demonstration Thing is a simple
translation table.move.l #8+264,d1 ; thh_flag+thh_type+tra_tablebsr demo_achp ; allocate heapbne demo_exit ; failed!move.l a0,-(sp)moveq #$38,d1 ; room for linkagebsr.s demo_achpmove.l a0,a1 ; the linkagemove.l (sp)+,a0 ; that's the Thing addressbeq.s demo_lact ; linkage allocated
QDOS/SMS Reference Manual 18/03/96 Section 17 9

move.l d0,-(sp) ; preserve errormoveq #sms.rchp,d0 ; second ACHP failed, return firsttrap #do.sms2move.l (sp)+,d0 ; return error to calling codebra.s demo_exitdemo_lactlea th_thing(a1),a2 ; fill in linkagemove.l a0,(a2)+ ; pointer to Thingclr.l (a2)+ ; no special use clr.l (a2)+ ; and no special free clr.l (a2)+ ; and no special force free clr.l (a2)+ ; also no special remove code clr.w (a2)+ ; it's shareable move.l #'1.00',(a2)+ ; version move.w #$09,(a2)+ ; length of name move.l #'Tran',(a2)+ ; name move.l #'slat',(a2)+ ; name move.b #'e',(a2) move.l #'THG%',(a0)+ ; standard Thing flag move.l #2,(a0)+ ; Type data move.w #$4afb,(a0)+ ; now fill in TRA table move.w #6,(a0)+ ; first offset move.w #262,(a0)+ ; second offset moveq #0,d0demo_loop move.b d0,(a0)+ ; fill in 1 to 1 translation addq.b #1,d0 ; for all 256 characters bne.s demo_loop clr.w (a0) ; end word moveq #thh_entr,d0 ; thing vector required bsr.s gu_thvec ; get THING vector bne.s demo_exit ; there's nothing to jump to! lea th_name(a1),a0 ; name moveq #sms.zthg,d0 jsr (a4) ; zap it (in case, it exists) moveq #sms.lthg,d0 ; link it jsr (a4)demo_exit rtsdemo_achp moveq #sms.achp,d0 ; allocate heap moveq #0,d2 ; for system trap #do.sms2 tst.l d0 ; failed? rts
QDOS/SMS Reference Manual 18/03/96 Section 17 10

Thing-supplied code

More complex Things may need to provide code to be invoked when the Thing is used, freed and
removed. The addresses of any such routines must be filled in in the Thing linkage block before
the SMS.LTHG routine is called to add the Thing into the list. If a routine address is zero then the
internal routines will be used - these cater for the most frequent case of an infinitely-shareable
thing. All the following routines will be called in Supervisor mode, and should end with an RTS
instruction. Note that as a result of this, they must not call any of the non-atomic TRAPs.

| |
| Thing use routine TH_USE |
| |
| Call parameters Return parameters |
| |
| D1 Job ID D1 ??? |
| D2 additional parameter D2 additional result |
| D3 additional parameter D3 ??? |
| D4+ ??? |
| |
| A0 A0 usage block |
| A1 Thing linkage block A1 ??? |
| A2 additional parameter A2 additional result |
| A3-A5 ??? |
| A6 system variables A6 ??? |
| |
| Error returns: |
| |
| D0 and the status register must be set |
| |

This routine will be called from within the SMS.UTHG routine to generate a non-standard usage
block. If the Thing cannot be used, or the parameters supplied are incorrect, then an error may be
returned instead. The usage block pointed to by A0 should be a standard heap entry as allocated
by the MEM.ACHP vector (A0 points to the header, not the "usable memory), of which the first
$18 bytes (heap header + 8) are reserved for the use of the operating system. Additional
parameters passed by the calling code in D2/D3/A2 are unchanged, and results may be returned
to the calling code in D2 and A2.

QDOS/SMS Reference Manual 18/03/96 Section 17 11

| |
| Thing free routine TH_FREE |
| |
| Call parameters Return parameters |
| |
| D1 Job ID D1 ??? |
| D2 additional parameter D2 additional result |
| D3 additional parameter D3 ??? |
| D4+ ??? |
| |
| |
| A0 usage block A0 usage block to unlink |
| A1 Thing linkage block A1 ??? |
| A2 additional parameter A2 additional result |
| A3-A5 ??? |
| A6 system variables A6 ??? |
| |
| Error returns: |
| |
| It is assumed that this routine always succeeds |
| |

This routine will be called from within the SMS.FTHG routine to remove a non-standard usage
block. A0 points to the first usage block in the Thing's usage list that is owned by the Job
specified - depending on the passed parameters this may or may not be the usage block to be
removed. When the correct usage block has been found, any internal tidying up should be
performed, and the block should be returned to the heap.
Its address should then be returned so that it may be unlinked from the usage list.

| |
| Thing forced free routine TH_FFREE |
| |
| Call parameters Return parameters |
| |
| D1+ ??? |
| |
| A0 usage block A0 preserved |
| A1 Thing linkage block A1 ??? |
| A2-A5 ??? |
| A6 system variables A6 ??? |
| |
| Error returns: |
| |
| It is assumed that this routine always succeeds |
| |

This routine will be called from within the operating system when the Job that owns the usage
block pointed to is force removed. One call will be made for each usage block in the Thing's
usage list. As with the standard free routine, the usage block should be returned to the heap by
this routine.

QDOS/SMS Reference Manual 18/03/96 Section 17 12

| |
| Thing remove routine TH_REMOV |
| |
| Call parameters Return parameters |
| |
| D1+ ??? |
| |
| A0 A0 ??? |
| A1 Thing linkage block A1 ??? |
| A2-A5 ??? |
| A6 system variables A6 ??? |
| |
| Error returns: |
| |
| It is assumed that this routine always succeeds |
| |

This routine is called from the SMS.RTHG and SMS.ZTHG routines when a Thing is to be
removed entirely. It should ensure that everything associated with the Thing is in a "safe" state:
this would include setting hardware to a suitable state, freeing any extra heap entries and soon.
It must also return the Thing linkage block to the heap.

QDOS/SMS Reference Manual 18/03/96 Section 17 13

17.2 The HOTKEY System II [EXT]

The concept and function of HOTKEY System II is not described here, there are many manuals
available how to use it (from the end-user's point of view). This section explains how to use the
HOTKEY System II from machine code.

The HOTKEY System II is an exclusive Thing, so the code which uses the Thing should free it
preferably very soon. There should be a timeout of about 2 seconds, otherwise the use-routine
should give up. A sample how to get the HOTKEY linkage block (which is necessary for all
routines using the HOTKEY System II) ismoveq #sms.uthg,d0 ; we want to use moveq #sms.myjb,d1 ; for me moveq #127,d3 ; wait for use lea hk_thing,a0 ; name of thing trap #do.sms2 ; do it move.l a1,a3 ; the HOTKEY linkage must be in A3 tst.l d0 rtshk_thing dc.w 6,'Hotkey'
The HOTKEY linkage contains vectors for the various facilities of the HOTKEY System II:

hk.fitem $0014 find item
hk.crjob $0018 hotkey create job
hk.kjob $001c hotkey kill job
hk.set $0020 hotkey set
hks.off -1 turn off
hks.on 0 turn on
hks.rset 1 reset
hks.set 2 set
hk.remov $0024 hotkey remove
hk.do $0028 hotkey do
hk.stbuf $002c hotkey stuff buffer
hk.gtbuf $0030 hotkey get buffer (d0=0 current -1 prev)
hk.guard $0034 hotkey guardian / grabber (2.04 onwards)

To call a routine, get the vector and JSR it. To stuff a string into the Stuffer Buffer, get the
HOTKEY linkage, load the registers, then call the routine:move.l hk.stbuf(a3),a2 ; get vectorjsr (a2) ; call it
Finally, free the HOTKEY system as soon as possible!

QDOS/SMS Reference Manual 18/03/96 Section 17 14

| |
| HK.FITEM |
| |
| Find a HOTKEY item |
| |
| Call parameters Return parameters |
| |
| D1 D1.w HOTKEY |
| D2 D2.w HOTKEY number (-ve if off) |
| D3+ preserved |
| |
| A1 HOTKEY item name A1 ptr to HOTKEY item |
| A2 A2 preserved |
| A3 linkage block A3 preserved |
| |
| Error returns: |
| |
| ITNF item not found |
| |

This routine finds a hotkey item given a pointer to a name or key string and removes references
from the hotkey table and pointer list.

| |
| HK.CRJOB |
| |
| Create the HOTKEY job |
| |
| Call parameters Return parameters |
| |
| D1+ preserved |
| |
| A3 linkage block A3 preserved |
| |
| Error returns: |
| |
| all system errors related to jobs |
| |

| |
| HK.KJOB |
| |
| Kill the HOTKEY job |
| |
| Call parameters Return parameters |
| |
| D1+ preserved |
| |
| A3 linkage block A3 preserved |
| |
| Error returns: |
| |
| always succeeds |
| |

QDOS/SMS Reference Manual 18/03/96 Section 17 15

| |
| HK.SET |
| |
| |
| Set or reset a HOTKEY |
| |
| Call parameters Return parameters |
| |
| D0.b op: -1=off, 0=on, +1=reset, +2=set |
| D1.w new key (reset, set; d0=+1 or +2) D1.w HOTKEY |
| D2+ preserved |
| |
| A1 ptr to item (set), ptr to key or name (off, on, reset) |
| A2 A2 preserved |
| A3 linkage block A3 preserved |
| |
| Error returns: |
| |
| FDNF hotkey not found (off, on, reset) |
| FDIU hotkey in use (reset, set) |
| |

This routine can reset the state of a Hotkey to on or off. It can reset the Hotkey character for a
current hotkey. It can set a new Hotkey item.

| |
| HK.REMOV |
| |
| Remove HOTKEY item |
| |
| Call parameters Return parameters |
| |
| D1+ preserved |
| |
| A1 pointer to item name A1 ??? |
| A2 A2 preserved |
| A3 linkage block A3 preserved |
| |
| Error returns: |
| |
| ITNF item not found |
| |

Remove hotkey ITEM, this always removes the key and pointer. For defined stuffer items, it also
returns the ITEM to the common heap. For nop, execute file or pick, it also returns the ITEM to
the common heap. For executable Thing items, it also returns the ITEM and the THING.

QDOS/SMS Reference Manual 18/03/96 Section 17 16

| |
| HK.DO |
| |
| "DO" a HOTKEY item |
| |
| Call parameters Return parameters |
| |
| D1+ preserved |
| |
| A1 pointer to HOTKEY item A1 preserved |
| A2 A2 preserved |
| A3 linkage block A3 preserved |
| A6 bottom limit of stack (for pick/wake job) A6 preserved |
| |
| Error returns: |
| |
| ITNF item not found |
| |

| |
| HK.STBUF |
| |
| Set a string in the stuffer buffer |
| |
| Call parameters Return parameters |
| |
| D2.w number of characters to stuff D2.w preserved |
| D3+ preserved |
| |
| A1 pointer to characters A1 preserved |
| A2 A2 preserved |
| A3 linkage block A3 preserved |
| |
| Error returns: |
| |
| always succeeds |
| |

Set a new string in the stuffer buffer. It does not stuff a new string if this is the same as the
previous string.

QDOS/SMS Reference Manual 18/03/96 Section 17 17

| |
| HK.GTBUF |
| |
| Get stuffer buffer contents |
| |
| Call parameters Return parameters |
| |
| D0.b key: 0=current, -1=previous string |
| D2.w D2.w length of string |
| D3+ preserved |
| |
| A1 A1 pointer to characters |
| A2 A2 preserved |
| A3 linkage block A3 preserved |
| |
| Error returns: |
| |
| always succeeds |
| |

| |
| HK.GUARD |
| |
| Open and clear guardian window |
| |
| All registers preserved. |
| |

Opens and clears guardian window. The definition must immediately follow the call. Then, if next
word is non-zero, grab all but memory specified.

QDOS/SMS Reference Manual 18/03/96 Section 17 18

The HOTKEY Item

The HOTKEY Item has two words identifying the HOTKEY, followed by a pointer and then the
name. The name is a composite which can include a considerable variety of information about
the HOTKEY.

hki_id $0000 word hotkey id
hki.id 'hi'
hki_type $0002 word hotkey item type
hki..trn 0 bit set if item is transient thing
hki.llrc -8 last line recall
hki.stpr -6 stuff kbd with prevous string from buffer
hki.stbf -4 stuff keyboard queue from buffer
hki.stuf -2 stuff keyboard queue with string
hki.cmd 0 pick SuperBASIC and stuff command
hki.nop 2 just do code
hki.xthg 4 execute thing
hki.xttr 5 as hki.xthg but thing is transient
hki.xfil 6 execute file
hki.pick 8 pick job
hki.wake 10 pick and wake job (execute thing if fails)
hki.wktr 11 as hki.wake but thing is transient
hki.wkxf 12 pick and wake job (execute file if fails)
hki_ptr $0004 long pointer to (preprocessing) code, stuff buffer
hki_name $0008 string item name

For last line recall and stuffing the keyboard queue from the buffer, the name is absent or irre-
levant. For stuffing a string or command, the name is the string or command.

If the Hotkey can execute a Thing or file, the item name contains the Thing name or filename.
The Thing name or filename may be followed by a semicolon then the parameter string enclosed
by braces.

If there is a Wake or Job name which is different from the filename, this will be at the end of the
item name, separated by an exclamation mark (Wake name) or comma (Job name).

QDOS/SMS Reference Manual 18/03/96 Section 17 19

17.3 The Button Frame [EXT]

The concept of the Button Frame (built into QPAC II) described here. Owners of the Button
Frame software have to be owners of QPAC II, resulting in being owner of the manual. This
section explains how to use the Button Frame from machine code.

The Button Frame is a shareable Thing. Every Job trying to place a Button in the Button Frame
requests a position by trying to use the Button Frame. When the job is removed, the position in
the Button Frame is automatically freed by the Thing system. If the Job does not already have an
allocation in the frame, or a new allocation is required, the use routine looks for a hole in the
Button Frame and, if successful, allocates a usage block with the Size and Position of the button.
If the Job does have an allocation, and it is big enough, then the allocation is unaltered. If it is not
big enough, then the button is re-allocated.

The name of the Thing isdc.w 12,'Button Frame'
| |
| BT_USE |
| |
| |
| Use the Button Frame |
| |
| Call parameters Return parameters |
| |
| D1 user Job ID D1 Job ID |
| D2.l Button Size D2.l Button Origin |
| D3.l 0 new alloc, -ve for re-allocate D3 version |
| |
| A0 ptr to Thing Name A0 preserved |
| A1 A1 pointer to Thing |
| A2 A2 pointer to Thing linkage |
| A3 A3 ??? |
| |
| Error returns: |
| |
| ORNG no room in button frame |
| FEX re-allocated |
| |

QDOS/SMS Reference Manual 18/03/96 Section 17 20

After a Button has been woken, the Button Frame should be freed unless the position of the
Button should be kept for the next sleep. The Free routine finds the appropriate usage block, then
frees the item in the button frame and throws the usage block away. If it cannot find the right
usage block, it throws the first one away.

| |
| BT_FREE |
| |
| Free the Button Frame |
| |
| Call parameters Return parameters |
| |
| D1 user Job ID D1+ preserved |
| |
| A0 ptr to name of Thing A0 preserved |
| A1 A1 preserved |
| A2 base of usage block or 0 for 1st one A2 ??? |
| A3+ all preserved |
| |
| Error returns: |
| |
| always successful |
| |

QDOS/SMS Reference Manual 18/03/96 Section 17 21

18.0 Keys

The following section contain keys for various features of Qdos. These keys provide a definition
for several of the data structures within Qdos.

18.1 Error keys

The following keys indicate error messages already defined in the system. A large positive error
code is taken as the address of a user-supplied error message with bit 31 set. See the Concepts
manual for a fuller description of the way in which these are used by the procedures built into
SuperBASIC.

err.nc -1 operation Not Complete
err.ijob -2 Invalid JOB id
err.imem -3 Insufficient MEMory
err.orng -4 parameter Outside permitted RaNGe (c.f. err.ipar)
err.bffl -5 BuFfer FuLl
err.ichn -6 Invalid CHaNnel id
err.fdnf -7 File or Device Not Found
err.itnf -7 ITem Not Found
err.fex -8 File already EXists
err.fdiu -9 File or Device or In Use
err.eof -10 End Of File
err.drfl -11 DRive FuLl
err.inam -12 Invalid file, device or thing name
err.trns -13 TRaNSmission error
err.prty -13 PaRiTY error
err.fmtf -14 ForMaT drive Failed
err.ipar -15 Invalid PARameter (c.f. err.orng)
err.mchk -16 file system Medium CHecK failed
err.iexp -17 Invalid EXPression
err.ovfl -18 arithmetic OVerFLow
err.nimp -19 operation Not IMPlemented
err.rdo -20 ReaD Only permitted
err.isyn -21 Invalid SYNtax
err.rwf -22 Read or Write Failed [SMS2]
err.noms -22 No error message [SMSQ]
err.accd -23 Access denied [SMSQ]

QDOS/SMS Reference Manual 28/10/98 Section 18 1

18.2 System variables

The following list gives the offset of each system variable from the base of the system variables
(whose position can be found using the SMS.INFO trap), together with the length of the variable.

sys_idnt $0000 long system variables identifier
sysid.ql $d2540000 QL (QDOS) system variable identifier
sysid.at 'S2AT' SMS Atari system variable identifier
sysid.sq 'SMSQ' SMSQ identifier
sysid.th $dc010000 Thor (ARGOS) system variable identifier

The following variables are the pointers which define the current state of the Qdos memory map.

sys_chpb $0004 long Common HeaP Base
sys_chpf $0008 long Common HeaP Free space pointer
sys_fsbb $000c long Filing system Slave Block area Base
sys_sbab $0010 long 'QL SuperBASIC' Area Base
sys_tpab $0014 long Transient Program Area Base
sys_tpaf $0018 long Transient Program Area Free space pointer
sys_rpab $001c long Resident Procedure Area Base
sys_ramt $0020 long user RAM Top (+1)
sys_mxfr $0024 long Maximum return from free memory call [SMS]

sys_rtc $0028 long real time (seconds) [SMS]
sys_rtcf $002c word real time fractional, count down [SMS]

sys_rand $002e word RANDom number
sys_pict $0030 word Polling Interupt CounT
sys_dtyp $0032 byte Display TYPe (0=normal, 1=TV 625, 2=TV 525)
sys_dfrz $0033 byte Display FRoZen (T or F)
sys_qlmr $0034 byte QL Master chip Register value (Copy of MC_STAT)
sys_qlir $0035 byte QL Interrupt Register value (Copy of PC_INTR)
sys_rshd $0036 byte true to reschedule [SMS]
sys_nnnr $0037 byte Network Node NumbeR

The following system variables are pointers to the list of tasks and drivers.

sys_exil $0038 long EXternal Interrupt action List
sys_poll $003c long POLled action List
sys_shdl $0040 long ScHeDuler loop action List
sys_iodl $0044 long IO Driver List
sys_fsdl $0048 long Filing System Driver List

sys_ckyq $004c long Current Keyboard Queue

sys_ertb $0050 long Exception Redirection Table Base

The following system variables are pointers to the resource management tables. The slave block
tables have 8 byte entries, whilst the others have 4 byte entries.

sys_sbrp $0054 long Slave Block Running Pointer
sys_sbtb $0058 long Slave Block Table Base
sys_sbtt $005c long Slave Block Table Top

QDOS/SMS Reference Manual 28/10/98 Section 18 2

sys_jbtg $0060 word next JoB TaG
sys_jbtp $0062 word highest JoB in table (ToP one)
sys_jbpt $0064 long current JoB PoinTer
sys_jbtb $0068 long JoB Table Base
sys_jbtt $006c long JoB Table Top

sys_chtg $0070 word next CHannel TaG
sys_chtp $0072 word highest CHannel in table (ToP one)
sys_chpt $0074 long last checked CHannel PoinTer
sys_chtb $0078 long CHannel Table Base
sys_chtt $007c long CHannel Table Top

sys_frbl $0080 long FRee Block List (to be returned to common heap) [SMS]
sys_tsdd $0084 byte Thor flag [THOR only]

The following variables contain information about how to treat the keyboard, and about other
aspects of the IPC and serial port communications.

sys_caps $0088 word CAPS lock (0 if off, msbyte set if on)
sys_lchr $008a word Last CHaRacter (for auto-repeat)
sys_rdel $008c word Repeat DELay (20ms units)
sys.rdel 25
sys_rtim $008e word Repeat TIMe (20ms units)
sys.rtim 2

QDOS/SMS Reference Manual 28/10/98 Section 18 3

sys_rcnt $0090 word Repeat CouNTer (decremented every 20ms)
sys_swtc $0092 word SWiTch queues Character
sys_qlbp $0096 byte QL BeePing
sys_brk $0097 byte set by keyboard break [SMSQ]
sys_ser1 $0098 long receive channel 1 queue address [QL]
sys_ser2 $009c long receive channel 2 queue address [QL]
sys_tmod $00a0 byte ZX8302 transmit mode (includes baudrate) (copy of

PC_TCTRL) [QL]
sys_ptyp $00a1 byte PRoCeSsor type $00=68000/8, $30=68030 etc. [SMSQ]
sys.mtyp $1e machine ID bits
sys.immu $01 internal MMU
sys.851m $02 68851 MMU
sys.ifpu $04 internal FPU
sys.88xf $08 68881 68882 FPU
sys_csub $00a2 long subroutine to jump to on capslock
sys_stmo $00a6 word serial xmit timeout [QL]
sys_dmiu $00a6 byte DMA in use [SMS2, ST, SMSQ]
sys_mtyp $00a7 byte Machine TYPe / emulator type [SMS,ST]
sys.mblt +1 Blitter fitted [SMSQ, ST]
sys.herm +1 Hermes fitted [SMSQ, QL]
sys.mst $00 ordinary ST
sys.mstr $02 Mega ST or ST with RTC
sys.msta $04 Stacy
sys.mste $06 ordinary STE
sys.mmste $08 Mega STE
sys.mgold $0a Gold card
sys.msgld $0c SuperGold card
sys.mfal $10 Falcon
sys.mtt $18 TT
sys.mqxl $1c QXL
sys.mdsp %11100000display type mask
sys.mfut %00000000Futura emulator or none
sys.mmon %00100000Monochrome monitor
sys.mext %01000000Extended 4 Emulator
sys.mvme %10000000QVME emulator
sys.mvga %11000000VGA
sys_stmv $00a8 word value of serial timeout (1200/baud+1, i.e. 11=75 bps,

5=300 bps, 3=600 bps, 2=1200 bps, 1=2400 bps+) [QL]
sys_polf $00a8 word polling frequency [SMSQ]
sys.polf 50 ... assumed polling frequency
sys_cfst $00aa word flashing cursor status

sys_prgd $00ac long pointer to PRoGram Default [EXT]
sys_datd $00b0 long pointer to DATa Default [EXT]
sys_dstd $00b4 long pointer to DeSTination Default [EXT]

sys_thgl $00b8 long pointer to THinG List [EXT]
sys_psf $00bc long Primary stack frame pointer [SMSQ]
sys_200i $00c0 byte 200 Hz in service [SMSQ]
sys_50i $00c1 byte 50 Hz in service [SMSQ]
sys_10i $00c2 byte 10 Hz in service [SMSQ]
sys_plrq $00c3 byte poll requested (-ve for request) [SMSQ]
sys_clnk $00c4 long pointer to console linkage [SMSQ]
sys_castat $00c8 byte -1 cache on, +1 instruction cache temp off [SMSQ]
sys_casup $00c9 byte cache suppressd timer [SMSQ]
sys.casup $2 byte 1 full tick
sys_iopr $00ca word IO priority [SMSQ]
sys_cbas $00cc long current basic (copy of sys_jbpt) [SMSQ]

sys_fpu $00d0 16 bytes [SMSQ]

QDOS/SMS Reference Manual 28/10/98 Section 18 4

sys_prtc $00e0 byte set if real time clock protected [SMSQ]
sys_pmem $00e1 byte memory protection level [SMSQ, ST]
sys_slug $00e2 word slug level [SMSQ]

sys_mdrn $00ee byte which mdv drive is running? [QL]
sys_mdct $00ef byte mdv run-up run-down counter [QL]
sys_mdid $00f0 8*byte drive ID*4 of each microdrive [QL]
sys_mdst $00f8 8*byte status: 0=no pending ops [QL]

sys_fsdd $0100 16*long pointers to Filing System Drive Definitions
sys_fsdt $0140 Filing System drive Definition table Top
sys.nfsd $10 max Number of Filing System Drive definitions
sys_fsch $0140 long linked list of Filing System CHannel blocks

sys_xact $0144 byte set if XLATE active [QDOS V1.10+, not SMS2]
sys_xtab $0146 long pointer to XLATE table [QDOS V1.10+, not SMS2]
sys_erms $014a long pointer to (QDOS) error message table [QDOS V1.10+,

not SMS2]
sys_mstab $014e long pointer to (SMSQ) message table [SMSQ]
sys_taskm $0154 4 long used by Taskmaster - conflicts with
sys_turbo $0160 long used by Turbo
sys_qsound $0164 long used by QSound

sys_ldmlst $0168 long language dependent module list [SMSQ]
sys_lang $016c word current language [SMSQ]

sys_vers $0170 long operating system version [SMSQ]
sys_top $0180 TOP of system vars - bottom of Supervisor Stack

The following area, between $180 and $480 is reserved for the supervisor stack. There is no
explicit stack protection in the code, although the stack should be of sufficient size for most
normal purposes.

QDOS/SMS Reference Manual 28/10/98 Section 18 5

18.3 SuperBASIC Variables

bv_start $00 start of pointers

bv_bfbas $00 long buffer base
bv_bfp $04 long buffer running pointer
bv_tkbas $08 long token list
bv_tkp $0c long
bv_pfbas $10 long program file
bv_pfp $14 long
bv_ntbas $18 long name table
bv_ntp $1c long
bv_nlbas $20 long name list
bv_nlp $24 long
bv_vvbas $28 long variable values
bv_vvp $2c long
bv_chbas $30 long channel table
bv_chp $34 long
bv_rtbas $38 long return table
bv_rtp $3c long
bv_lnbas $40 long line number table
bv_lnp $44 long

bv_chang $48 change of direction marker

bv_btp $48 long backtrack stack during parsing
bv_btbas $4c long
bv_tgp $50 long temporary graph stack during parsing
bv_tgbas $54 long
bv_rip $58 long arithmetic stack
bv_ribas $5c long
bv_ssp $60 long system stack (real one!)
bv_ssbas $64 long

bv_endpt $64 end of pointers

bv_linum $68 word current line number
bv_lengt $6a word current length
bv_stmnt $6c byte current statement on line
bv_cont $6d byte continue ($80) or stop (0) processing
bv_inlin $6e byte processing in-line clause or not

loop (1), other ($ff) or off (0)

bv_sing $6f byte single line execution on ($ff) or off (0)
bv_index $70 word name table row of last in-line loop index read

bv_vvfre $72 long first free space in variable value table
bv_sssav $76 long save sp for out/mem to go back to

bv_rand $80 long random number
bv_comch $84 long command channel

QDOS/SMS Reference Manual 28/10/98 Section 18 6

bv_nxlin $88 word which line number to start after
bv_nxstm $8a byte which statement to start after
bv_comln $8b byte command line save ($ff) or not (0)
bv_stopn $8c word which stop number set
bv_edit $8e byte program has been edited ($ff) or not (0)
bv_brk $8f byte there has been a break (0) or not ($80)
bv_unrvl $90 byte need to unravel ($ff) or not (0)
bv_cnstm $91 byte statement to CONTINUE from
bv_cnlno $92 word line to CONTINUE from
bv_dalno $94 word current DATA line number
bv_dastm $96 byte current DATA statement number
bv_daitm $97 byte next DATA item to read

bv_cnind $98 word in-line loop index to CONTINUE with
bv_cninl $9a byte in-line loop flag for CONTINUE
bv_lsany $9b byte whether checking list ($ff) or not (0)
bv_lsbef $9c word invisible top line
bv_lsbas $9e word bottom line in window
bv_lsaft $a0 word invisible bottom line
bv_lenln $a2 word length of window line
bv_maxln $a4 word max nr of window lines

The 2 words immediately following this will be overwritten
on changing lenln and maxln

bv_totln $a6 word nr of window lines so far

bv_auto $aa byte whether AUTO/EDIT on ($ff) or off (0)
bv_print $ab byte print fromprtok ($ff) or leave in buffer (0)
bv_edlin $ac word line number to edit next
bv_edinc $ae word increment on edit range

bv_tkpos $b0 long pos of A4 in tklist on entry to PROC
bv_ptemp $b4 long temp pointer for GO_PROC
bv_undo $b8 byte undo rt stack IMMEDIATELY then redo procedure

bv_arrow $b9 byte down ($ff) or up ($01) or no (0) arrow

bv_lsfil $ba word fill window when relisting at least to here
bv_wrlno $bc word when error line number [QDOS V1.10+]
bv_wrstm $be byte when error statement [QDOS V1.10+]
bv_wrinl $bf byte when error in-line ($ff) or not (0) [QDOS V1.10+]
bv_wherr $c0 byte processing when error ($80) or not (0) [QDOS V1.10+]
bv_error $c2 long last error code [QDOS V1.10+]
bv_erlin $c6 word line number of last error [QDOS V1.10+]
bv_wvnum $c8 word number of watched (WHEN) variables [QDOS V1.10+]
bv_wvbas $ca long base of WHEN variable table wrt VVBAS [QDOS V1.10+]

bv_end $100

QDOS/SMS Reference Manual 28/10/98 Section 18 7

18.4.1 Offsets on BASIC Channel Definitions

The following section gives the format of an entry in the SuperBASIC channel table. These
entries can be monitored or modified by user-defined SuperBASIC procedures which need to
have a channel attached using a '#n' construct.

ch.id $00 long channel ID
ch.ccpy $04 float current cursor position, y
ch.ccpy $0a float current cursor position, x
ch.angle $10 float turtle angle
ch.pen $16 byte pen status (0 is up, 1 is down)
ch.chpos $20 word character position on line
ch.width $22 word width of line in characters
ch.spare $24 .. spare ..

ch.lench $28 length of channel definition block

18.4.2 BASIC Token Values

The following section defines the token values used for the internal storage of a SuperBASIC
program.

tkb.space $80 spaces in the listing - two bytes: token, count

tkw.keyw $81 all sorts of keywords:
tkw.end $8101 END
tkw.for $8102 FOR
tkw.if $8103 IF
tkw.rep $8104 REPeat
tkw.sel $8105 SELect
tkw.when $8106 WHEN
tkw.def $8107 DEFine
tkw.proc $8108 PROCedure
tkw.fn $8109 FuNction
tkw.go $810a GO
tkw.to $810b TO
tkw.sub $810c SUB
tkw.err $810e ERRor
tkw.rest $8111 RESTORE
tkw.next $8112 NEXT
tkw.exit $8113 EXIT
tkw.else $8114 ELSE
tkw.on $8115 ON
tkw.ret $8116 RETurn
tkw.rmdr $8117 REMAINDER
tkw.data $8118 DATA
tkw.dim $8119 DIM
tkw.loc $811a LOCal
tkw.let $811b LET
tkw.then $811c THEN
tkw.step $811d STEP
tkw.rem $811e REMark
tkw.mist $811f MISTake

QDOS/SMS Reference Manual 28/10/98 Section 18 8

tkb.odds $84 all sorts of separators:
tkw.lequ $8401 (LET) =
tkw.coln $8402 :
tkw.hash $8403 #
tkw.comma $8404 ,
tkw.lpar $8405 (
tkw.rpar $8406)
tkw.lbrc $8407 {
tkw.rbrc $8408 }
tkw.space $8409 space (significant)
tkw.eol $840a end of line

tkb.oper $85 all sorts of operators:
tkw.plus $8501 +
tkw.minus $8502 -
tkw.mulf $8503 *
tkw.divf $8504 /
tkw.ge $8505 >=
tkw.gt $8506 >
tkw.apeq $8507 ==
tkw.eq $8508 =
tkw.ne $8509 <>
tkw.le $850a <=
tkw.lt $850b <
tkw.bor $850c ||
tkw.band $850d &&
tkw.bxor $850e ^^
tkw.power $850f ^
tkw.cnct $8510 &
tkw.or $8511 OR
tkw.and $8512 AND
tkw.xor $8513 XOR
tkw.mod $8514 MOD
tkw.div $8515 DIV
tkw.instr $8516 INSTR

tkw.neg $8601 negate
tkw.pos $8602 positive!!
tkw.bnot $8603 ~~
tkw.not $8604 ~

tkb.name $8800 name
The name token is followed by a word index to the name table

tkw.quote $8b22 string delimited by "quotes"
tkw.apost $8b27 string delimited by 'apostrophes'
tkw.text $8c00 text (after REMark)

The string and text tokens are followed by a word (nr. of chars)
and the characters (with a pad byte if odd)

tkb.lno $8d00 line number (word)

tkb.seps $8e all sorts of formatting separators:
tkw.scoma $8e01 separator comma
tkw.scoln $8e02 semicolon
tkw.bslsh $8e03 backslash
tkw.bar $8e04 bar
tkw.sto $8e05 separator TO

A number constant is represented by $Feeemmm with $0eeemmmm (eee: exponent, mmmm:
mantissa) being the actual floating point number.

QDOS/SMS Reference Manual 28/10/98 Section 18 9

18.5 Job Header and Save Area Definitions

The location of the job table can be found by looking at the system variables SYS_JBTB and
SYS_JBTT. Each entry in the table is a longword pointing to a block of $68 bytes in the format
given here.

jcb_len * $0000 long LENgth of job in tpa
jcb_strt $0004 long STaRT address
jcb_ownr $0008 long OWNeR of this job
jcb_rflg $000c long pointer to job Released FLaG (cleared on release)
jcb_tag * $0010 word job TAG (set by MT.CJOB)
jcb_pacc $0012 word Priority ACCumulator

set to zero when the job is executing, incremented on
each scheduler call if the job is active but not executing

jb_pinc $0013 byte priority increment [QL]
the actual priority of the job, set to zero if the job is
inactive. SuperBASIC activates jobs at priority $20

jcb_wait * $0014 word job WAIT counter: >0 number of frame times to release
jcb.nsus 0 not suspended
jcb.wait -1 wait forever
jcb.wjob -2 wait for job
jcb_rela $0016 byte set if next IO call is RELative Address [QDOS, SMSQ]
jcb_prio $0016 word job priority (composite) [SMS2]
jcb_prab $0016 byte job priority (absolute) [SMS2]
jcb_prin $0017 byte job priority (increment) [SMS2]
jcb_wflg $0017 byte set if there is a job waiting on completion of this one

[QDOS, SMSQ]
jcb_wjid $0018 long Waiting Job ID
jcb_exv $001c long pointer to EXeption vector

jcb_save $0020 job SAVE area
jcb_d0 $0020 saved d0
jcb_d1 $0024 saved d1
jcb_d2 $0028 saved d2
jcb_d3 $002c saved d3
jcb_d4 $0030 saved d4
jcb_d5 $0034 saved d5
jcb_d6 $0038 saved d6
jcb_d7 $003c saved d7
jcb_a0 $0040 saved a0
jcb_a1 $0044 saved a1
jcb_a2 $0048 saved a2
jcb_a3 $004c saved a3
jcb_a4 $0050 saved a4
jcb_a5 $0054 saved a5
jcb_a6 $0058 saved a6
jcb_a7 $005c saved a7
jcb_sr $0060 saved sr
jcb_ccr $0061 saved ccr
jcb_pc $0062 saved pc

jcb_reln $0066 byte set if next IO call is RELative Address [SMS2]
jcb_evts $0066 byte 8 bit event vector [SMSQ 2.71+]
jcb_evtw $0067 byte 8 bit events waited for [SMSQ 2.71+]

jcb_end $0068 end of header

QDOS/SMS Reference Manual 28/10/98 Section 18 10

Thus the job identified by job-ID starts at ((SYS_JBTB)+4*job-ID.w), and the most significant
word of job-ID must match the tag held at JCB_TAG on from this address (otherwise that job no
longer exists). A negative job-ID implies that the job no longer exists, as does a value of job-ID.w
which is greater than the length of the job table held in SYS_JBTP.

Entries marked by * should not be modified. Other entries may be modified by a trap, or may be
changed directly with caution.

18.6 Memory Block Table Definitions

The following keys define the format of a slave block table entry.

sbt_stat $00 byte STATus of block - see below
sbt_phys $01 byte PHYsical sector on drive [DD2]
sbt_prio $01 byte block priority [QL]
sbt_phyg $02 word PHYsical group on drive [DD2]
sbt_sect $02 word sector number (Microdrive*2) [QL]
sbt_file $04 word FILE number
sbt_blok $06 word BLOcK number
sbt_end $08

sbt.len $0008 length of slave block table entry
sbt.size $0200 size of slave block

The most significant 4 bits of the status byte contain the pointer to the physical device block
SYS_FSDD, the least significant are the status codes:
status byte usage

sbt.unav %0000 block is unavailable to the file system
sbt.mpty %0001 block eMPTY
sbt.read %1001 awaiting READ
sbt.true %0011 block is TRUE representation of file
sbt.veri %1011 awaiting VERIfy
sbt.writ %0111 awaiting WRITe (updated)

Masks:

sbt.driv %11110001+$ffffff00mask of pointer to DRIVe
sbt.drvv %11110011+$ffffff00mask of DRiVe Valid bits
sbt.stat %00001111 mask of STATus bits
sbt.actn %00001100 mask of ACTioN bits
sbt.inus %00001110 mask of IN USe bits

slave block status bits (least significant four)

sbt..fsb 0 Filing System Block
sbt..rrq 3 Read ReQuest
sbt..wrq 2 Write ReQuest
sbt..vld 1 block is VaLiD

QDOS/SMS Reference Manual 28/10/98 Section 18 11

18.7 Channel Definitions

The position of a channel definition block corresponding to a given channel ID can be found using
a similar method to that used for finding the block for a job described in section 3.1. The relevant
system variables are SYS_CHTB and SYS_CHTT.

Channel definition header for all channels:

chn_len $0000 long LENgth of channel block
chn_drvr $0004 long address of driver linkage
chn_ownr $0008 long OWNeR of this channel
chn_rflg $000c long pointer to channel Closed FLaG in channel table, MSB set

to $ff on close
chn_tag $0010 word channel TAG
chn_stat $0012 byte STATus 0 ok, $ff waiting (A1 abs), $80 waiting (A1 rel A6)
chn_actn $0013 byte IO action (stored value of d0)
chn_jbwt $0014 long JoB WaiTing for IO

chn_end $0018 end of header

Extended channel definition for Pipes (plain serial queues):

chn_qin $0018 long pointer to input queue (or 0 if output pipe)
chn_qout $001c long pointer to output queue (or 0 if input pipe)
chn_qend $0020 end of definition (for input pipe) or queue header followed

by queue (for output pipe)

Device driver header:

chn_next $0000 long pointer to next driver
chn_inot $0004 long entry for input and output
chn_open $0008 long entry for open
chn_clos $000c long entry for close

The following are for directory devices (file system) only:

chn_slav $0010 long entry for slaving blocks
chn_renm $0014 long entry for rename [QL]
chn_frmt $001c long entry for format medium
chn_dfln $0020 long length of physical definition block
chn_dnam $0024 string drive name

QDOS/SMS Reference Manual 28/10/98 Section 18 12

18.8 File System Definition Blocks:

chn_link $0018 long LINKed list of channel blocks
chn_accs $001c byte ACCeSs mode
chn_drid $001d byte DRive ID
chn_qdid $001e word Qdos thinks this is file ID
chn_fpos $0020 long File POSition
chn_feof $0024 long File EOF
chn_csb $0028 long current slave block
chn_updt $002c byte file UPDaTed
chn_usef $002d byte file USE Flags [DD2]
chn..usd 7 file used
chn..dst 0 date set
chn..vst 1 version set
chn_name $0032 string file NAME
chn.nmln $24 max file NaMe LeNgth
chn_ddef $0058 long pointer to physical definition block [DD2]
chn_drnr $005c word DRive NumbeR [DD2]
chn_flid $005e word FiLe ID [DD2]
chn_sctl $005e word SeCTor Length (direct sector IO) 0:128 1:256 etc [DD2]
chn_opwk $0060 long $40 (hdr.len) bytes of working space for open [DD2]
chn_sdid $0062 word (Sub-)Directory ID [DD2]
chn_sdps $0064 long (Sub-)Directory entry PoSition [DD2]
chn_sdef $0068 long (Sub-)Directory End of File (wrong if IOA.KDIR) [DD2]
chn_spr $0070 $30 b spare [DD2]
chn_fend $00a0 File system channel end [DD2]

The common part of a physical definition block

fs.nmlen $24 max length of file name
fs.hdlen $40 length of file system header

fs_drivr $10 long pointer to driver
fs_drivn $14 byte drive number
fs_mname $16 string medium name (maximum ten characters)
fs_files $22 byte number of files open

18.8.1 Microdrive Physical Definition Block [QL]

md_fail $24 byte failure count - this increases by 1 with every revolution for
each operation until it either reaches 4 (for write or verify) or 8 (for
read), after which the system notifies a file error.

md_spare $25 3 bytes
md_map $28 $ff*2 b microdrive sector map
md_lsect $226 word number of last sector allocated
md_pendg $228 $100 w map of pending operations - a word for each sector
md_end $428

QDOS/SMS Reference Manual 28/10/98 Section 18 13

18.9 Device Driver Linkage Block
for details refer to section 7.1

iod_sqfb -$08 long SMSQ IO facility bits
iod..ssr 0 bit set for serial
iod..swi 1 bit set for window operations
iod..sfi 2 bit set for filing system ops
iod..sdl 8 bit set for delete
iod..ssb 16 bit set for slave block
iod..scn 18 bit set for channel name
iod..sfm 19 bit set for format
iod..sdd 20 bit set for directory device

iod_sqio -$04 long SMSQ IO compatible flag
iod.sqio 'SQIO'

iod_xilk $00 long external interrupt linkage
iod_xiad $04 long external interrupt service routine address
iod_pllk $08 long polling interrupt linkage
iod_plad $0c long polling interrupt service routine address
iod_shlk $10 long scheduler loop linkage
iod_shad $14 long scheduler loop service routine address
iod_iolk $18 long io driver linkage
iod_ioad $1c long input / output routine address
iod_open $20 long open routine address
iod_clos $24 long close routine address
iod_iend $28 end of minimum device driver linkage
iod_fslv $28 long forced slaving address
iod_spr1 $2c spare
iod_cnam $30 long set channel name
iod_frmt $34 long format routine address
iod_plen $38 long Physical definition block LENgth
iod_dnus $3c string Drive Name (current USage)
iod_dnam $42 string Drive NAMe [SMSQ]

18.9.1 Screen Driver Data Block Definition

sd_xmin $18 word window top LHS
sd_ymin $1a word
sd_xsize $1c word window size
sd_ysize $1e word
sd_borwd $20 word border width
sd_xpos $22 word cursor position
sd_ypos $24 word
sd_xinc $26 word cursor increment
sd_yinc $28 word

sd_font $2a 2*long font addresses

sd_scrb $32 long base address of screen

sd_pmask $36 long paper colour mask
sd_smask $3a long strip colour mask
sd_imask $3e long ink colour mask

QDOS/SMS Reference Manual 28/10/98 Section 18 14

sd_cattr $42 byte character attributes
sd..unot 0 underline mode
sd..flsh 1 flash mode
sd..strp 2 transparent strip
sd..xor 3 XOR mode
sd..hi 4 double height characters
sd..wide 5 extended width characters
sd..dbl 6 double width characters
sd..grf 7 graphics positioned character

sd_curf $43 byte cursor flag 0=suppressed, >0=visible, <0 invisible
sd_pcolr $44 byte paper colour byte
sd_scolr $45 byte strip colour byte
sd_icolr $46 byte ink colour byte
sd_bcolr $47 byte border colour byte

sd_nlsta $48 byte new line status (>0 implicit, <0 explicit) [SMS]
sd_nlsta $48 byte new line status (>0 pending, <0 done). [QDOS]

sd_fmod $49 byte fill mode (0=off, 1=on)
sd_yorg $4a float graphics window y-origin
sd_xorg $50 float graphics window x-origin
sd_scal $56 float graphics scale factor
sd_fbuf $5c long pointer to fill buffer
sd_fuse $60 long pointer to user-defined fill vectors [QL]
sd_linel $64 word line length in bytes [QDOS V1.10+]
sd_end $68 length of screen driver [QODS V1.10+]
sd_end $66 ... in QDOS before V1.10

18.9.2 Serial channel Definition Block [QL]

ser_chnq $18 word port number: 1 or 2
ser_par $1a word parity: 0 none, 1 odd, 2 even, 3 mark, 4 space
ser_thxs $1c word transmit handshake flag: -1 ignore, 0 handshake
ser_prot $1e word protocol flag: -1 for R, 0 for Z, +1 for C
ser_rxq $20 $62 b receive queue header followed by queue
ser_txq $82 $62 b transmit queue header followed by queue
ser_end $e4

18.9.3 Network channel Definition Block [QL]

net_hedr $18 byte destination station number
net_self $19 byte number of station which opened channel
net_blkl $1a byte lsb of data block number
net_blkh $1b byte msb of data block number
net_type $1c byte packet type: 0 for data, 1 last packet (EOF)
net_nbyt $1d byte number of bytes in data block
net_dchk $1e byte data checksum
net_hchk $1f byte header checksum
net_data $20 $ff b data block
net_rpnt $11f byte pointer to current position in data block
net_end $120

QDOS/SMS Reference Manual 28/10/98 Section 18 15

18.10 Queue Header Definitions

The following is the format of the header of a queue manipulated using the system's built-in
queue handling routines.

q_eoff $00 byte end of file flag (MSbit)
q_nextq $00 long link to next queue
q_end $04 long pointer to end of queue
q_nextin $08 long pointer to next location to put byte in
q_nxtout $0c long pointer to next location to take byte from
q_queue $10 start of queue

18.11 Arithmetical Interpreter Operation Codes

The following are the codes for the operations which can be performed on the QL through the
vectored routines which access the arithmetic interpreter.

qa.end $00 END of multiple operation
qa.nint $02 round fp to Nearest INTeger
qa.int $04 truncate fp to INTeger
qa.nlint $06 round fp to Nearest Long INTeger
qa.float $08 FLOAT integer
qa.add $0a ADD (top of stack to next of stack)
qa.sub $0c SUBtract (tos from nos)
qa.mul $0e MULtiply (tos by nos)
qa.div $10 DIVide (tos into nos)
qa.abs $12 ABSolute value
qa.neg $14 NEGate
qa.dup $16 DUPlicate
qa.cos $18 COSine
qa.sin $1a SINe
qa.tan $1c TANgent
qa.cot $1e COTangent
qa.asin $20 ArcSINe
qa.acos $22 ArcCOSine
qa.atan $24 ArcTANgent
qa.acot $26 ArcCOTangent
qa.sqrt $28 SQuare RooT
qa.log $2a Log (Natural)
qa.l10 $2c Log base 10
qa.exp $2e Exponential
qa.pwrf $30 raise to PoWeR (Floating point) (nos to power of tos)
qa.maxop $30

QDOS/SMS Reference Manual 28/10/98 Section 18 16

The following arithmetic-keys are available only in SMS2, SMSQ and Minerva:

qa.one $01 push constant 1 (float)
qa.zero $03 push constant 0 (float)
qa.n $05 followed by a signed byte, to push -128 to 127 (float)
qa.k $07 plus a byte, nibbles select mantissa and adjust exponent.

Following byte values may be:
qak.pi180 $56
qak.loge $69
qak.pi6 $79
qak.ln2 $88-$100
qak.sqrt3 $98-$100
qak.pi $a8-$100
qak.pi2 $a7-$100

qa.flong $09 float a long integer
qa.halve $0d TOS / 2
qa.doubl $0f TOS * 2
qa.recip $11 1 / TOS
qa.roll $13 (TOS)B, C, A -> (TOS)A, B, C (roll 3rd to top)
qa.over $15 adjust stack, NOS-> TOS
qa.swap $17 NOS <-> TOS
qa.arg $25 arg(TOS,NOS)=a, solves TOS=k*cos(a) & NOS=k*sin(a)
qa.mod $27 sqrt(TOS^2+NOS^2)
qa.squar $29 TOS * TOS
qa.power $2f NOS ^ TOS, where TOS is a signed short int

qa.load $00 keys for load and store
qa.stor $01

18.12 IPC Link Commands

These can be used with the SMS.HDOP trap.

rset_cmd 0 system reset [QL]
stat_cmd 1 report input status [QL]
ops1_cmd 2 open RS232 channel 1 [QL]
ops2_cmd 3 open RS232 channel 2 [QL]
cls1_cmd 4 close RS232 channel 1 [QL]
cls2_cmd 5 close RS232 channel 2 [QL]
rds1_cmd 6 read RS232 channel 1 [QL]
rds2_cmd 7 read RS232 channel 2 [QL]
rdkb_cmd 8 read keyboard [QL]
kbdr_cmd 9 keyboard read directly
inso_cmd 10 initiate sound process
kiso_cmd 11 kill sound process
mdrs_cmd 12 microdrive reduced sensitivity [QL]
baud_cmd 13 change baud rate [QL]
rand_cmd 14 random number generator [QL]
test_cmd 15 test [QL]

QDOS/SMS Reference Manual 28/10/98 Section 18 17

18.13 Hardware Keys

The following are the addresses of the registers within the QL hardware. [QL]

pc_clock $18000 real time clock in seconds (long word)

The following are the masks used to access the transmit control register (pc_tctrl and sys_tmod).

pc_tctrl $18002 transmit control
pc..sern 3 serial port number or 0=mdv, 1=net
pc..serb 4 0=serial IO, 1=mdv or net
pc..diro 7 direct output bit
pc.bmask %00000111 system baud rate
pc.notmd %11100111 all bits except mode control
pc.mdvmd %00010000 microdrive mode (set if you can access microdrives)
pc.netmd %00011000 network mode (set if you can access net)

pc_ipcwr $18003 IPC write
pc.ipcwr %00001100 IPC write bit
pc..ipcw 1 ... 1
pc.ipcrd %00001110 IPC read bit

The following is the format of the microdrive control/systems register.

pc_mctrl $18020 microdrive control status and IPC status
If you write to this register, the following bits can be used:
pc..sel 0 mcirodrive select bit
pc..sclk 1 microdrive select clock bit
pc..writ 2 microdrive write (set=enable write)
pc..eras 3 microdrive erase (set=enable erase)
The following masks can therefore be useful:
pc.read %0010 read (or idle) mode
pc.select %0011 select bit set
pc.desel %0010 select bit not set
pc.erase %1010 enable erase/stop write to drive
pc.write %1110 enable both erase and write to drive

If you rad the register, you will however, have access to the following information in the specified
bits:
pc_ipcrd $18020 IPC read (is the same)
pc..txfl 1 set if microdrive Xmit buffer is full
pc..rxrd 2 set if microdrive read buffer is ready
pc..gap 3 gap
pc..dtr1 4 DTR on port 1 (clear if device is ready)
pc..cts2 5 CTS on port 2 (clear if device is ready)
pc..ipca 6 IPC acknowledge
pc..ipcd 7 IPC data bit

The following is the format of the interrupt register.

pc_intr $18021 interrupt control/status
pc.intrg %00000001 gap interrupt
pc.intri %00000010 interface interrupt
pc.intrt %00000100 transmit interrupt
pc.intrf %00001000 frame interrupt
pc.intre %00010000 external interrrupt
pc.maskg %00100000 gap mask
pc.maski %01000000 interface mask
pc.maskt %10000000 transmit mask

QDOS/SMS Reference Manual 28/10/98 Section 18 18

pc_tdata $18022 transmit data
pc_trak1 $18022 microdrive read track 1
pc_trak2 $18023 microdrive read track 2

The following ist the format of the display control register.

mc_stat $18063 display control register

mc..blnk 1 blanks display
mc..m256 3 sets MODE 8 (256 pixels across)
mc..scrn 7 sets the screen base ($20000 or $28000, if set)

The following is a list of addresses available when a QIMI (QL Internal Mouse Interface) is
installed in a QL. Warning: you should not access the mouse via these hardware addresses, you
should always access it by using the Pointer Interface!

mi_button $1bf9c Mouse button state
mib..left 4 left button
mib..rigth 5 right button

mi_status $1bfbc Status register
mis..diry 0 Y direction
mis..intx 2 Interrupt X direction
mis..dirx 4 X direction
mis..inty 5 Interrupt Y direction

mi_clrint $1bfbe Clear interrupt service

QDOS/SMS Reference Manual 28/10/98 Section 18 19

18.14 Trap Keys

This section gives a summary of all of the Qdos traps, together with their access keys passed in
D0. All keys are in hex.

18.14.1 Trap 1 Keys (System Traps)

do.sms2 1 SMS2 trap entry
do.smsq 1 SMSQ trap entry
sms.myjb -1 SMS key for MY JoB

sms.info $00 get INFOrmation on SMS

sms.crjb $01 CReate JoB
sms.injb $02 get INformation on JoB
sms.rmjb $04 ReMove JoB
sms.frjb $05 Forced Remove JoB
sms.frtp $06 find largest FRee space in TPa

sms.exv $07 set EXception Vector

sms.ssjb $08 SuSpend a JoB
sms.usjb $09 UnSuspend a JoB
sms.acjb $0a ACtivate a JoB
sms.spjb $0b Set Priority of JoB

sms.alhp $0c ALlocate in HeaP
sms.rehp $0d RElease to HeaP

sms.arpa $0e Allocate in Resident Procedure Area

sms.dmod $10 set or read the Display MODe

sms.hdop $11 do a Hardware Dependent OPeration
sms.comm $12 set COMMuncation baud rate etc.

sms.rrtc $13 Read Real Time Clock
sms.srtc $14 Set Real Time Clock
sms.artc $15 Adjust Real Time Clock

sms.ampa $16 Allocate space in Moveable Program Area (SuperBASIC)
sms.rmpa $17 Release space to Moveable Program Area (SuperBASIC)

sms.achp $18 Allocate space in Common HeaP
sms.rchp $19 Release space in Common HeaP

sms.lexi $1a Link in EXternal Interrupt action
sms.rexi $1b Remove EXternal Interrupt action
sms.lpol $1c Link in POLled action
sms.rpol $1d Remove POLled action
sms.lshd $1e Link in ScHeDuler action
sms.rshd $1f Remove ScHeDuler action
sms.liod $20 Link in IO Device driver
sms.riod $21 Remove IO Device driver
sms.lfsd $22 Link in Filing System Device driver
sms.rfsd $23 Remove Filing System Device driver

sms.trns $24 Set (QDOS) TRaNSlate or messages [QDOS V1.10+]
sms.xtop $25 eXTernal OPeration [SMSQ]

QDOS/SMS Reference Manual 28/10/98 Section 18 20

sms.lthg $26 Link in THinG [SMS, EXT]
sms.rthg $27 Remove THinG [SMS, EXT]
sms.uthg $28 Use THinG [SMS, EXT]
sms.fthg $29 Free THinG [SMS, EXT]
sms.zthg $2a Zap THinG [SMS, EXT]
sms.nthg $2b Next THinG [SMS, EXT]
sms.nthu $2c Next Thing User [SMS, EXT]

sms.iopr $2e IO PRiority [SMSQ]
sms.cach $2f CACHe handling [SMSQ]

sms.lldm $30 Link in Language Dependent Module(s) [SMSQ]
sms.lenq $31 Language ENQuiry [SMSQ]
sms.lset $32 Language SET [SMSQ]
sms.pset $33 Printer translate SET [SMSQ]
sms.mptr $34 find a Message PoinTeR [SMSQ]
sms.fprm $35 Find PReferred Module [SMSQ]

sms.schp $38 Shrink alloaction in common heap [SMSQ]

sms.sevt $3a Send event to job [SMSQ 2.71+]
sms.wevt $3b Wait for event [SMSQ 2.71+]

18.14.2 Trap 2 Keys (I/O Allocation Traps)

do.ioa 2 trap #2
do.rlioa 4 trap #4

ioa.open $01 OPEN IOSS channel
ioa.clos $02 CLOSe IOSS channel
ioa.frmt $03 FoRMaT medium on device
ioa.delf $04 DELete file from device
ioa.sown $05 Set OWNer of channel
ioa.cnam $06 Fetch channel name

Ownership keys

no.owner 0
myself -1

IOA.OPEN keys (d3.b)

ioa.kexc $00 Key for EXClusive use (read/write)
ioa.kshr $01 Key for SHaRed access (read only)
ioa.knew $02 Key for NEW file (empty, read/write)
ioa.kovr $03 Key for OVeRwrite (delete contents if it exists)
ioa.kdir $04 Key for DIRectory file
ioa.krnm $05 Key for ReNaMe [DD2]

QDOS/SMS Reference Manual 28/10/98 Section 18 21

18.14.3 Trap 3 Keys (I/O Traps)

do.io 3 trap #3
do.relio 4 trap #4

iob.test $00 TEST input
iob.fbyt $01 Fetch BYTe from input
iob.flin $02 Fetch LINe from input
iob.fmul $03 Fetch MULtiple characters/bytes
iob.elin $04 Edit LINe of characters
iob.sbyt $05 Send BYTe to output
iob.smul $07 Send MULtiple bytes

iow.xtop $09 eXTernal OPeration on screen
iow.pixq $0a PIXel coordinate Query
iow.chrq $0b CHaRacter coordinate Query
iow.defb $0c DEFine Border
iow.defw $0d DEFine Window
iow.ecur $0e Enable CURsor
iow.dcur $0f Disable CURsor
iow.scur $10 Set CURsor position (character coordinates)
iow.scol $11 Set cursor COLumn
iow.newl $12 put cursor on a NEW Line
iow.pcol $13 move cursor to Previous COLumn
iow.ncol $14 move cursor to Next COLumn
iow.prow $15 move cursor to Prevous ROW
iow.nrow $16 move cursor to Next ROW
iow.spix $17 Set cursor to PIXel position
iow.scra $18 SCRoll All of window
iow.scrt $19 SCRoll Top of window (above cursor)
iow.scrb $1a SCRoll Bottom of window (below cursor)
iow.pana $1b PAN All of window
iow.panl $1e PAN cursor Line
iow.panr $1f PAN Right hand end of cursor line
iow.clra $20 CLeaR All of window
iow.clrt $21 CLeaR Top of window (above cursor)
iow.clrb $22 CLeaR Bottom of window (below cursor)
iow.clrl $23 CLeaR cursor Line
iow.clrr $24 CLeaR Right hand side of cursor line
iow.font $25 set / read FOuNT (font U.S.A.)
iow.rclr $26 ReCoLouR a window
iow.spap $27 Set PAPer colour
iow.sstr $28 Set STRip colour
iow.sink $29 Set INK colour
iow.sfla $2a Set FLash Attribute
iow.sula $2b Set UnderLine Attribute
iow.sova $2c Set OVerwrite Attributes
iow.ssiz $2d Set character SIZe
iow.blok $2e fill a BLOcK with colour
iow.donl $2f DO a pending newline

iog.dot $30 draw (list of) DOTs
iog.line $31 draw (list of) LINEs
iog.arc $32 draw (list of) ARCs
iog.elip $33 draw ELlIPse
iog.scal $34 set graphics SCALe
iog.fill $35 set area FILL
iog.sgcr $36 Set Graphics CuRsor position

QDOS/SMS Reference Manual 28/10/98 Section 18 22

iof.chek $40 CHEcK all pending operations on file
iof.flsh $41 FLuSH all buffers
iof.posa $42 set file POSition to Absolute address
iofp.off $F0FFF0FF key in d1 returns sector 0 offset (direct sector access)
iof.posr $43 move file POSition Relative to current position
iof.minf $45 get Medium INFormation
iof.shdr $46 Set file HeaDeR
iof.rhdr $47 Read file HeaDeR
iof.load $48 (scatter) LOAD file
iof.save $49 (scatter) SAVE file
iof.rnam $4a ReNAMe file [EXT]
iof.trnc $4b TRuNCate file to current position [EXT]
iof.date $4c set or get file DATEs [EXT,DD2]
iofd.get -1 d1 key, GET date (or version)
iofd.cur 0 d1 key, set CURrent date (or version)
iofd.upd 0 d2 key, set/get UPDate date
iofd.bak 2 d2 key, set/get BAcKup date
iof.mkdr $4d MaKe DiRectory [DD2]
iof.vers $4e set or get VERSion (d1 keys as iof.date) [DD2]
iof.xinf $4f get eXtended INFormation [DD2]

All keys higher than $4f are for pointer-driven CON devices. Please refer to the QPTR manual.

Timeout keys

no.wait 0
forever -1

18.15 List of Vectored Routines

The following is a list of the vectored routines, together with the addresses of their associated
vectors.

mem.achp $00c0 Allocate space in Common HeaP
mem.rchp $00c2 Return space to Common HeaP

mem.alhp $00d8 ALlocate in HeaP
mem.rehp $00da REturn to HeaP

mem.llst $00d2 Link into LiST
mem.rlst $00d4 Remove from LiST

opw.wind $00c4 Open WINDow using name
opw.con $00c6 Open CONsole
opw.scr $00c8 Open SCReen

ut.wersy $00ca Write an ERror to SYstem window
ut.werms $00cc Write an ERror MeSsage
ut.wint $00ce Write an INTeger
ut.wtext $00d0 Write TEXT

ut.cstr $00e6 Compare STRings

ioq.setq $00dc SET up a Queue in standard form
ioq.test $00de TEST a queue for pending byte / space available
ioq.pbyt $00e0 Put a BYTe into a queue
ioq.gbyt $00e2 Get a BYTe out of a queue
ioq.seof $00e4 Set EOF in queue

QDOS/SMS Reference Manual 28/10/98 Section 18 23

iou.ssq $00e8 Standard Serial Queue handling
iou.ssio $00ea Standard Serial IO
iou.dnam $0122 decode Device NAMe

cv.datil $00d6 DATE and time (6 words) to Integer Long [SMS]
cv.ildat $00ec Integer (Long) to DAte and Time string
cv.ilday $00ee Integer (Long) to DAY string
cv.fpdec $00f0 Floating Point to ascii DECimal
cv.iwdec $00f2 integer (word) to ascii decimal
cv.ibbin $00f4 integer (byte) to ascii binary
cv.iwbin $00f6 integer (word) to ascii binary
cv.ilbin $00f8 integer (long) to ascii binary
cv.ibhex $00fa integer (byte) to ascii hexadecimal
cv.iwhex $00fc integer (word) to ascii hexadecimal
cv.ilhex $00fe integer (long) to ascii hexadecimal
cv.decfp $0100 decimal to floating point
cv.deciw $0102 decimal to integer word
cv.binib $0104 binary ascii to integer (byte)
cv.biniw $0106 binary ascii to integer (word)
cv.binil $0108 binary ascii to integer (long)
cv.hexib $010a hexadecimal ascii to integer (byte)
cv.hexiw $010c hexadecimal ascii to integer (word)
cv.hexil $010e hexadecimal ascii to integer (long)

sb.inipr $0110 INITialise PRocedure table
sb.gtint $0112 GeT INTeger
sb.gtfp $0114 GeT Floating Point
sb.gtstr $0116 GeT STRing
sb.gtlin $0118 GeT Long INteger
sb.putp $0120 PUT Parameter

qa.resri $011a QL Arithmetic Reserve Room on stack
qa.op $011c QL Arithmetic OPeration
qa.mop $011e QL Arithmetic Multiple OPeration

From now on add $4000 to all.

md.read $0124 Microdrive: read a sector [QL]
md.write $0126 Microdrive: write a sector [QL]
md.verif $0128 Microdrive: verify a sector [QL]
md.rdhdr $012a Microdrive: read a sector header [QL]

sb.parse $012c parse; (a2) points to table
sb.graph $012e main syntax graph
sb.expgr $0130 expression graph
sb.strip $0132 strip spaces from tokenised line
sb.paerr $0134 parser error
sb.ledit $0136 edit line into program (just line number deletes)
sb.expnd $0138 expand / print line(s) (+$4004 A4 points to program)
sb.paini $013a initialise parser

QDOS/SMS Reference Manual 28/10/98 Section 18 24

18.16 Keys for Things

The following are keys for the Thing linkage block. The items marked with * are filled in by LTHG.

th_nxtth * $00 long link to NeXT THing
th_usage * $04 long thing's USAGE list
th_frfre * $08 long address of "close" routine for FoRced FREe
th_frzap * $0c long address of "close" routine for FoRced ZAP
th_thing $10 long pointer to THING itself
th_use $14 long code to USE a thing
th_free $18 long code to FREE a thing
th_ffree $1c long code to Force FREE a thing
th_remov $20 long code to tidy before REMOVing thing
th_nshar $24 byte Non-SHAReable Thing if top bit set
th_check * $25 byte CHECK byte
th_verid $26 long version ID
th_name $2a string name of thing
th.len $2c basic length of thing linkage

Usage list header/entry

thu_link $10 long link to first/next usage block
thu.ulnk $20 size of usage list header/entry

Standard Thing header (offsets are relative to thh_flag)

thh_flag $00 long Thing header flag
thh.flag 'THG%' standard value of thing header flag
thh_type $04 long type of thing
tht..lst 24 bit set for list of things
tht.util $00000000 utility thing
tht.exec $00000001 executable thing
tht.data $00000002 shared data
tht.extn $01000003 extensions (user mode)
tht.exts $01000004 extensions for system (supervisor mode)

Thing Itself Header (after Standard Thing Header)

thh_entr $08 Thing ENTRy routine
thh_exec $0c Thing EXEC routine

List of Things header (after Standard Thing Header)

thh_next $08 long offset of next (or 0)
thh_exid $0c long extra ID

Executable Thing header extension (after Standard Thing Header)

thh_hdrs $08 long offset of start of header
thh_hdrl $0c long length of header
thh_data $10 long size of data area rired
thh_strt $14 long offset of start of code (0 to start at header)

Extension Thing Header (after Standard Thing Header and List of Things Header)

thh_pdef $10 long offset of parameter definitions or 0
thh_pdes $14 long offset of parameter descriptions or 0
thh_code $18 start of code

Thing parameter definitions

QDOS/SMS Reference Manual 28/10/98 Section 18 25

thp.rep $ffff start and end delimiter for repeated group

thp..ptr 15 bit set for pointer parameter
thp..cal 14 bit set for call parameter
thp..ret 13 bit set for return paramter
thp..opt 12 bit set if parameter is optional
thp..nnl 11 bit set if negative for null - NOT thp..ptr
thp..arr 11 bit set for array - thp..ptr

thp..sgn 1 bit set if value is signed
thp..chr 2 bit set if character allowed
thp..byt 3 bit set if byte value allowed/rired
thp..wrd 4 bit set if word value allowed/rired
thp..lng 5 bit set if long value allowed/rired
thp..cid 6 bit set for channel ID
thp..fp8 7 bit set for eight byte floating point

The following bits are only allowed for pointer parameters:

thp..str 8 standard string
thp..sst 9 sub-string

thp.char $0004 character
thp.ubyt $0008 unsigned byte
thp.sbyt $000a signed byte
thp.uwrd $0010 unsigned word
thp.swrd $0012 signed word
thp.ulng $0020 unsigned long
thp.slng $0022 signed long
thp.chid $0040 channel ID
thp.fp8 $0082 eight byte floating point
thp.str $0100 string
thp.sstr $0200 sub-string
thp.nnul 1<<thp..nnl negative null (-1)
thp.arr 1<<thp..arr array
thp.opt 1<<thp..opt optional
thp.upd 1<<thp..ptr+1<<thp..cal+1<<thp..ret updated parameter
thp.call 1<<thp..ptr+1<<thp..cal call parameter
thp.ret 1<<thp..ptr+1<<thp..ret return parameter
thp.ptr 1<<thp..ptr call or return parameter

QDOS/SMS Reference Manual 28/10/98 Section 18 26

18.17 Keys for HOTKEY Thing

HOTKEY linkage block:

hk.fitem $0014 find item
hk.crjob $0018 hotkey create job
hk.kjob $001c hotkey kill job
hk.set $0020 hotkey set
hks.off -1 turn off
hks.on 0 turn on
hks.rset 1 reset
hks.set 2 set
hk.remov $0024 hotkey remove
hk.do $0028 hotkey do
hk.stbuf $002c hotkey stuff buffer
hk.gtbuf $0030 hotkey get buffer (d0=0 current -1 prev)
hk.guard $0034 hotkey guardian / grabber (V2.04 onwards)

The HOTKEY item:

hki_id $0000 word hotkey id
hki.id 'hi'
hki_type $0002 word hotkey item type
hki..trn 0 bit set if item is transient thing
hki.llrc -8 last line recall
hki.stpr -6 stuff kbd with prevous string from buffer
hki.stbf -4 stuff keyboard queue from buffer
hki.stuf -2 stuff keyboard queue with string
hki.cmd 0 pick SuperBASIC and stuff command
hki.nop 2 just do code
hki.xthg 4 execute thing
hki.xttr 5 as hki.xthg but thing is transient
hki.xfil 6 execute file
hki.pick 8 pick job
hki.wake 10 pick and wake job (execute thing if fails)
hki.wktr 11 as hki.wake but thing is transient
hki.wkxf 12 pick and wake job (execute file if fails)
hki_ptr $0004 long pointer to (preprocessing) code, stuff buffer
hki_name $0008 string item name

Executable program header definitions:

hkh.hlen 10 header length for zero length name
hkh.plen 20 preamble length

hkh_jsgd $00 JSR [$4eb9]
hkh_gard $02 ... guardian
hkh_wdef $06 window definition
hkh.unlk -1 guardian window size for unlockable
hkh.nogd 0 guardian window size for no guardian
hkh_brdr $0e border colour
hkh_gmem $10 memory (in KBytes)
hkh_jpa6 $12 JMP (A6) [$4ed6]

QDOS/SMS Reference Manual 28/10/98 Section 18 27

19. SMSQ

This chapter deals specifically with SMSQ (and SMSQ/E, of course). It is a separate chapter so
that you can see the advantages of SMSQ at one glance. All the descriptions listed here will be
referenced from the other chapters later, and additional traps will also be put into the right
chapters 13 to 15. Some features are integrated into the relevant parts of the manual already.

As SMSQ/E is a growing system which will be expanded depending on user's requirements, this
manual can reflect the features of SMSQ at the current situation only. It is quite possible that a
number of features are not available on earlier versions of SMSQ. At the time of writing, the
version of SMSQ is V2.61. In case features are not supported by earlier versions, there should be
no serious problem: unused system variables were set to 0, non-existing traps will either return
ERR.IPAR or ERR.NIMP, or the call will have no effect at all.19.1 Language handling in SMSQ
19.1.1 Principles

During normal operation, the "language" dependent parts of the operating system are maintained
as tables appropriate to the "current" language. In order to ensure that current language may be
changed, the system also maintains a list of language dependent modules. When the current
language is changed, the list is scanned to find the appropriate language modules to be made
current.

The language dependent module list, and the modules themselves, may be maintained in the
filing system or in memory. The module structure is the same in either case.

19.1.2 Classification of Language Dependent Modules

The language dependent modules are classified according to their contents rather than their
usage.

Printer Translate Tables
An "old format" printer translate table has a "table of tables" which is the language code (word)
and two word pointers (relative to the address of the language code) to two translate tables. The
first translate table has 256 bytes of direct single byte translates. The second translate table has
a byte entry count followed by 4 byte entries terminated by a zero byte. For each non-zero
character, if the first translate table entry is zero, then the second table is searched. The first byte
of each four byte entry is the untranslated character, followed by the three bytes this character
should be translated to.

Keyboard Tables
A keyboard table has a table of tables which is the language code (word) and two word pointers
(relative to the address of the language code) to two keyboard tables. The first keyboard table is
four sets characters generated by each key for the four combinations of the "shift" and "control"
keys. The second is a table of "non-spacing idents" (^, ~ etc.) which is normally 256 bytes of
zero. The form of these keyboard tables depends on the type of keyboard and the associated
driver.

Message Tables
A message table is the language code (word) followed by a table of word pointers (relative to the
address of the language code) to error or other messages. Messages are numbered from 1. The
message codes are formed by combining the message number and the message group (shifted)
and negating the result to form a code. The offset of a message pointer from the language code
is twice the message number.

To provide compatibility with older formats, the first message (number = -1) follows directly after
the table. This means that the first word in the table also defines the size of the table.

QDOS/SMS Reference Manual 18/03/96 Section 19 1

The system can have several message tables: the message codes are grouped. At present, there
is a limit of 256 message groups (numbered from 0 to 1020 in steps of 4) with a maximum of 128
messages per group.

In order to find the "correct" message, a message code is split into a message group and offset.neg.w d0 make the code positivemoveq #$7f,d1and.w d0,d1 bits 0 to 6 are the message numbersub.w d1,d0 bits 7 to 14 are the message groupadd.w d1,d1 shift to get offset in message tablelsr.w #5,d0 shift to get group number
or add.w d0,d0 double up codeneg.w d0 and make positivemoveq #0,d1move.b d0,d1 offset in message tableclr.b d0 clear message number from grouplsr.w #6,d0 and shift to get group number

Language Preference Tables
A language preference table defines the preferred default languages to be used if the required
language modules cannot be found.

ldp_ireg $00 4 chars international car registration code, space filled
ldp_defs $04 n words table of preferred language codes, terminated by 0

The international car registration code makes it possible to specify the language, for example, as
"D" for German.

In general, the first preferred language code in the table will be the same as the language code in
the module linkage structure.

The default of last resort is the first language preference table in the language dependent module
list.

19.1.3 Language Dependent Module Structure

There is a common structure which is used as a link for all the types of module. The first word of
this structure is only used when linking in new language dependent modules. It allows several
modules to be defined in one block and for them all to be linked in at the same time.

ldm_type $00 word type of module
0 = preference table
1 = keyboard table
2 = printer translate table
3 = message table

ldm_group $02 word module group e.g. for messages table modules, the
message group.

ldm_lang $04 word language code - usually the international dialing code of
the country of origin

ldm_next $06 word relative pointer to next module in this block, 0 for the last
module in the block

ldm_module $08 long relative pointer to the module itself

QDOS/SMS Reference Manual 18/03/96 Section 19 2

19.1.4 Language Specification

A language may be specified either by an international dialling code or an international car regi-
stration code. These codes may be modified by the addition of a digit where a country has more
than one language.

Language Code Car Registration Language and Country
33 F French (in France)
44 GB English (in England)
49 D German (in Germany)

19.1.5 Implementation

The initial implementation is memory resident and uses a table of pointers to the language de-
pendent modules rather than a true list. Each of the pointers points to a language dependent
module. If the table overflows, it is re-allocated.

In general, new language dependent modules are add to the end of the list, thus ensuring that
the first language variation for each module that is linked in is the default default.

All the language preference tables are, however, placed at the start of the list: not only is the ap-
propriate language preference table always available before the list is scanned, but also the
system "default of defaults" is replaced by any user preferences added to the list.

System Variables

sys_xact $0144 byte set if printer translate is active
sys_xtab $0146 long pointer to printer translate tables
sys_erms $014a long (QDOS compatible) pointer to message group 0
sys_mstab $014e long pointer to a 256 long word table of pointers to message

groups. All undefined message groups have a zero ptr.
sys_lang $0166 word current language code
sys_ldmlst $0168 long pointer to language dependent module list

QDOS/SMS Reference Manual 18/03/96 Section 19 3

19.1.6 SMSQ OS Entries

There are a number of SMSQ OS entries for handling language dependencies.
sms.trns $24 QDOS compatible (MT.TRA) entry
sms.lldm $30 link in language dependent modules
sms.lenq $31 enquire language code
sms.lset $32 set current language
sms.pset $33 set printer translate tables
sms.mptr $34 find message pointer
sms.fprm $35 find preferred module

| |
| Trap #1 D0=$24 SMS.TRNS |
| |
| QDOS compatible translate |
| |
| Call parameters Return parameters |
| |
| D1.L printer translate code D1 ??? |
| D2.L message table address or 0 D2 preserved |
| D3+ all preserved |
| |
| |
| Error returns: |
| |
| IPAR D2 is odd or does not point to $4AFB flag |
| |

If D2 is not zero and it points to a message table with language code $4AFB, this address is used
for message group 0.

The printer translate tables are then set according to the value in D1 (see sms.pset).

| |
| Trap #1 D0=$30 SMS.LLDM |
| |
| Link in Language Dependent Module |
| |
| Call parameters Return parameters |
| |
| A1 pointer to language dependent module A1 preserved |
| |
| Error returns: |
| |
| always okay |
| |

This links all the language dependent modules in the list (A1) into the language dependent
module list.

QDOS/SMS Reference Manual 18/03/96 Section 19 4

| |
| Trap #1 D0=$31 SMS.LENQ |
| |
| Language Enquiry |
| |
| Call parameters Return parameters |
| |
| D1.L language code or 0 D1 language code |
| D2.L car registration (space filled) or 0 D2 car registration |
| D3+ all preserved |
| |
| |
| Error returns: |
| |
| always okay |
| |

This finds the car registration code corresponding to the the language code in D1 (if not zero) or
the language code corresponding to the international car registration letters (in the most signi-
ficant bytes of D2, space filled) or, if both D1 and D2 are 0, the current language and car regi-
stration letters.

The current language code is not changed.

If no corresponding language code can be found, the default language (the first language pre-
ference linked in by sms.lldm) is returned.

| |
| Trap #1 D0=$32 SMS.LSET |
| |
| Language Set |
| |
| Call parameters Return parameters |
| |
| D1.L language code or 0 D1 language code |
| D2.L car registration (space filled) or 0 D2 car registration |
| D3+ all preserved |
| |
| |
| Error returns: |
| |
| always okay |
| |

This finds the car registration code corresponding to the the language code in D1 (if not zero) or
the language code corresponding to the international car registration letters (in the most signi-
ficant bytes of D2, space filled) or, if both D1 and D2 are 0, the current language and car
registration letters.

The current language code is set to the returned value of D1.

If no corresponding language code can be found, the default language (the first language pre-
ference linked in by sms.lldm) is set.

QDOS/SMS Reference Manual 18/03/96 Section 19 5

| |
| Trap #1 D0=$33 SMS.PSET |
| |
| Set Printer Translate |
| |
| Call parameters Return parameters |
| |
| D1.L printer translate code D1 ??? |
| |
| |
| Error returns: |
| |
| always okay |
| |

This sets the printer translate tables according to the value in D1.

There are three printer translate codes which provide backwards compatibility with the QDOS
MT.TRA call.
 - To disable translate, D1 should be 0.
 - To (re-)enable translate, D1 should be 1.
 - To set a user translate, D1 should be the address of a special translate table (language code

$4AFB).
With D1 = 1, the operation is not fully QDOS compatible in that, if a user translate has been
requested, then the call to (re-)enable the translate will retain the user translate address. This is a
facility which was not available in QDOS.

There are two new codes to set a language dependent table and two to set language indepen-
dent translates.
 - To select a language dependent translate without enabling the translate, the language code

should be in the MSW of D1 and the LSW should be -1.
 - To select a language dependent translate and enable the translate, the language code should

be in the MSW of D1 and the LSW should be 1.
 - To select, IBM or GEM translates, D1 should be 3, or 5 respectively.

| |
| Trap #1 D0=$34 SMS.MPTR |
| |
| Find Message Pointer |
| |
| Call parameters Return parameters |
| |
| A1 message code (negative) A1 pointer to message |
| |
| |
| Error returns: |
| |
| always okay |
| |

This takes the message code in A1 (which may be an address with the MSB set or it may be the
message group + message number negated) and finds the pointer to the message (or to an

QDOS/SMS Reference Manual 18/03/96 Section 19 6

"unknown error" message).

| |
| Trap #1 D0=$35 SMS.FPRM |
| |
| Find Preferred Module |
| |
| Call parameters Return parameters |
| |
| D1.L language code or 0 D1 preserved |
| D2.L car registration (space filled) or 0 D2 preserved |
| D3.L group number / module type D3 preserved |
| |
| |
| Error returns: |
| |
| always okay |
| |

This finds the preferred language module of the type and group requested.

QDOS/SMS Reference Manual 18/03/96 Section 19 7

19.4 Additional Trap #3 calls
| |
| Trap #3 D0=$25 IOW.FONT |
| |
| Set or reset the default system fount |
| |
| Call parameters Return parameters |
| |
| D1 D1 ??? |
| D2 "DEFF" D2.L preserved |
| D3.W timeout D3.L preserved |
| D4+ all preserved |
| |
| A0 channel ID A0 preserved |
| A1 base of fount A1 ??? |
| A2 base of second fount A2 preserved |
| A3 A3 preserved |
| A4+ all preserved |
| |
| Error returns: |
| |
| NC not complete |
| ICHN channel not open |
| |

This sets or resets the default system font. Each of the two fount addresses can either be the
address of a newly supplied fount, or -1 to keep the current setting, or 0 to select the default font
which is inbuilt into the system.

QDOS/SMS Reference Manual 18/03/96 Section 19 8

| |
| Trap #3 D0=$6 IOB.SUML |
| |
| Send a string of untranslated bytes |
| |
| Call parameters Return parameters |
| |
| D1 D1.W number of bytes sent |
| D2.W number of bytes to be sent D2.W preserved |
| D3.W timeout D3.L preserved |
| D4+ all preserved |
| |
| A0 channel ID A0 preserved |
| A1 base of buffer A1 updated pointer to buffer |
| A2 A2 preserved |
| A3 A3 preserved |
| A4+ all preserved |
| |
| Error returns: |
| |
| NC not complete |
| ICHN channel not open |
| DVFL drive full |
| |

Please refer to section 5.3.3 for details of the special treatment afforded to newlines on the
console or screen device.

This trap is similar to IOB.SMUL ($7) but it does not translate the characters. Therefore, the
setting of translation tables is ignored as well as the parameter in the device open call (e.g.
SERd, SERt, PARd, PARt). A save way of sending graphics data or control codes to the printer,
as they will never be translated into other byte patterns.

QDOS/SMS Reference Manual 18/03/96 Section 19 9

19.5 SMSQ Cache Handling
19.5.1 Principles

SMSQ is implemented on four distinct hardware platforms with a number of variations using four
different MC68000 series processors: MC68000, MC68020, MC68030 and MC68040.
Of these processors, only the MC68000 does not suffer from cache problems.

MC68020
The MC68020 has a single instruction cache which treats supervisor mode addresses as being
distinct from user mode addresses. Since there is little, if any, code which is executed in both
supervisor mode and user mode, the cache is very small (<100 instructions), and this code is
unlikely to be modified, the distinction between supervisor mode and user mode will at worst
result in some efficiency.

The instruction cache will need to be cleared whenever executable code is loaded on top of
executable code which is already in the cache. As executable code can be LOADed and CALLed
or it can be EXECUTED, the instruction cache must be invalidated on every iof.load operation,
and, possibly, on every iob.fmul operation. As any IO operation will have enough instructions to
completely overwrite the cache, and will usually be called from user mode, there is no serious
overhead associated with invalidating the cache on every IO operation.

Executable code can also be set up by programs. It is, therefore, necessary to invalidate the
cache on every job activation call, and any call to set up interrupt, polled or scheduled tasks. This
will occur automatically if the caches are invalidated on every entry.

Self modifying code in programs should not pose a problem, but the precaution of disabling the
caches and suspending the scheduler for a few ticks after starting a job has proved valuable for
the MC68040 and should be retained for all processors.

MC68030
The MC68030 has separate instruction and data caches which treat supervisor mode addresses
as being distinct from user mode addresses. This seems to be a fundamental design error in the
processor which it is necessary to circumvent. The data cache supports only cache write through
memory updates. This means that the memory is always up to date with the data cache. The
instruction cache will not necessarily be up to date with the memory. Even worse, supervisor
mode entries in the cache may not be up to date with user mode entries and vice versa. For
operating system code to be able to access data set or modified in user mode (i.e. any output
operation and many management operations) it is necessary to invalidate the data cache on
every operating system entry.

The instruction cache will need to be cleared whenever executable code is loaded on top of
executable code which is already in the cache. As executable code can be LOADed and CALLed
or it can be EXECUTED, the instruction cache must be invalidated on every iof.load operation,
and, possibly, on every iob.fmul operation. As any IO operation will have enough instructions to
completely overwrite the cache, and will usually be called from user mode, there is no serious
overhead associated with invalidating the cache on every IO operation.

Executable code can also be set up by programs. It is, therefore, necessary to invalidate the
cache on every job activation call, and any call to set up interrupt, polled or scheduled tasks. This
will occur automatically if the caches are invalidated on every entry.

Self modifying code in programs should not pose a problem, but the precaution of disabling the
caches and suspending the scheduler for a few ticks after starting a job has proved valuable for
the MC68040 and should be retained for all processors.

The data cache will also need to be invalidated if there is a DMA access. For external caches,
this should be performed automatically by the external cache hardware. The internal caches need
to be invalidated on any DMA read operation.

QDOS/SMS Reference Manual 18/03/96 Section 19 10

MC68040
The MC68040 has separate instruction and data caches which are accessed by the real address.
Unlike the MC68020 and MC68030, code in supervisor mode can read data written in user mode
and vice versa. There is, therefore, no need for the caches to be invalidated on every operating
system entry.

The MC68040 also provide "snooping" to detect other "bus masters" which may update the
memory (e.g. DMA devices). The designers, however, failed to notice that the "Harvard"
architecture of the MC68040 requires the implementation of the processor as two separate bus
masters, which of course, should require to snoop each other as well as the external bus. (As the
instruction unit is a read only bus master, the data unit bus master will, however, never need to
snoop the instruction unit.) As a result, the instruction cache will not necessarily be up to date
with either the memory or the data cache.

The instruction cache will need to be cleared whenever executable code is loaded on top of
executable code which is already in the cache. As executable code can be LOADed and CALLed
or it can be EXECUTED, the instruction cache must be invalidated on every iof.load operation,
and, possibly, on every iob.fmul operation (this is not done in current versions).

Executable code can also be set up by programs. It is, therefore, necessary to invalidate the
cache on every job activate call, and any call to set up interrupt, polled or scheduled tasks.

Self modifying code in programs should not pose a problem, but the precaution of disabling the
caches and suspending the scheduler for a few ticks after starting a job has proved valuable for
this processor.

The data cache should not need to be invalidated if there is a DMA access: the bus snooping
should take care of this.

It is assumed that the data cache will be in write through mode.

MC68060
The cache architecture of the MC68060 is, in most respects, compatible with the MC68040. The
branch cache should be handled the same as the instruction cache.

QDOS/SMS Reference Manual 18/03/96 Section 19 11

19.5.2 Cache Manipulations

Not all of the fundamental operations are required for cache handling.N a m e O p e r a t i o n U s a g e
CINVB Invalidate both caches Change from user to supervisor mode

CINVD Invalidate data cache Before or after DMA read

CINVI Invalidate instruction cache Before executing new code i.e.
 on resetting vectors
 on load operations

CDISB Disable both caches User CACHE-OFF request

CDISI Disable instruction cache Before activating a job

CENAB Enable both caches User CACHE_ON request

CENAI Enable instruction cache 17 ticks after activating a job

Note that either the CDIS or the CENA operations must include a cache disable operation. For
simplicity this is included in the CENA operations only.

Most of these operations are performed with one or two MOVEC instructions.$4E7An002 MOVEC CACR,Dn Get cache control register$4E7Bn002 MOVEC Dn,CACR Set cache control register
The main problem is that the different processors have different organisations of the cache
control register3 1 3 0 2 9 2 8 2 7 2 3 2 2 2 1 1 5 1 4 1 3 1 2 1 1 1 0 9 8 4 3 2 1 0

020 II IC IF IE

030 DB DI DC DF DE IB II IC IF IE

040 DE IE

060 DE DF DS DP D2 BC BI BIU IE IF I2

Where I. is the instruction cache
D. is the data cache
B. is the branch cache
.E is enable when set
.F is freeze when set
.C is clear entry when set
.I is invalidate (clear all) when set
.IU is invalidate user mode entries when set
.B is burst access enabled when set
.S is write store buffer enabled when set
.P is push without invalidate when set
.2 is half cache mode when set

The absence of invalidate bits in the MC68040 and MC68060 means that a separate instruction
is required for this.

QDOS/SMS Reference Manual 18/03/96 Section 19 12

19.5.3 Encoding the Cache Operations

CINVBM C 6 8 0 2 0 M C 6 8 0 3 0M C 6 8 0 4 0 M C 6 8 0 6 0$4E7An002 MOVEC CACR,Dn Not requiredOR.W #$808,Dn$4E7Bn002 MOVEC Dn,CACR
CINVDM C 6 8 0 2 0 M C 6 8 0 3 0M C 6 8 0 4 0 M C 6 8 0 6 0$4E7An002 MOVEC CACR,Dn $F458 CINVA DOR.W #$800,Dn$4E7Bn002 MOVEC Dn,CACR
CINVIM C 6 8 0 2 0 M C 6 8 0 3 0M C 6 8 0 4 0 M C 6 8 0 6 0$4E7An002 MOVEC CACR,Dn $F498 CINVA IOR.W #$8,Dn$4E7Bn002 MOVEC Dn,CACR
CDISBM C 6 8 0 2 0 M C 6 8 0 3 0M C 6 8 0 4 0 M C 6 8 0 6 0MOVEQ #0,Dn MOVEQ #0,Dn$4E7Bn002 MOVEC Dn,CACR $4E7Bn002 MOVEC Dn,CACR
CDISIM C 6 8 0 2 0MOVEQ #0,Dn$4E7Bn002 MOVEC Dn,CACRM C 6 8 0 3 0 M C 6 8 0 4 0M C 6 8 0 6 0$4E7An002 MOVEC CACR,Dn $4E7An002 MOVEC CACR,DnCLR.B Dn CLR.W Dn$4E7Bn002 MOVEC Dn,CACR $4E7Bn002 MOVEC Dn,CACR
CENABM C 6 8 0 2 0 M C 6 8 0 3 0M C 6 8 0 4 0 M C 6 8 0 6 0MOVE.W #$1919,Dn $F4D8 CINVA DI$4E7Bn002 MOVEC Dn,CACR MOVE.L #$C0808000,Dn$4E7Bn002 MOVEC Dn,CACR
CENAIM C 6 8 0 2 0 M C 6 8 0 3 0M C 6 8 0 4 0 M C 6 8 0 6 0MOVE.W #$1819,Dn $F4D8 CINVA I$4E7Bn002 MOVEC Dn,CACR MOVE.L #$C0808000,Dn$4E7Bn002 MOVEC Dn,CACR
QDOS/SMS Reference Manual 18/03/96 Section 19 13

19.5.4 Using The Cache Operations

The operating system and device driver code makes no assumptions about the nature of the
processor: no cache dependencies are embedded in the code.

CINVB
CINVB is used on all trap #0, #1, #2 and #3 entries. It is implemented as a stub of code before
the standard vector entry. For the MC68020 and MC68030 processors, the vector is moved by 10
bytes to include the cache invalidate.

CINVD
A call to CINVD is built into the any device drivers which use DMA. CINVD is implemented as a
routine, in the base area, set up for the particular processor.

CINVI
A call to CINVI is built into the IO sub-system for the IOB.FMUL and IOF.LOAD operations. Since
all IO operations will have invalidate both caches for the 020 and 030, this is only necessary for
the 040 and 060. It is also called by any code which resets executable action routine vectors (e.g.
DV3_SETFD). CINVI is implemented as a routine, in the base area, set up for the particular
processor.

CDISB
A call to CDISB is built into the "set cache" operating system call. CDISB is implemented as a
routine, in the base area, set up for the particular processor.

CDISI
A call to CDISI is built into the "activate job" operating system call. CDISI is implemented as a
routine, in the base area, set up for the particular processor.

CENAB
A call to CENAB is built into the "set cache" operating system call. CENAB is implemented as a
routine, in the base area, set up for the particular processor.

CENAI
A call to CENAI is built into the polled scheduler entry. CENAI is implemented as a routine, in the
base area, set up for the particular processor.

System Variables

sys_castat $C8 word MSB set if cache fully enabled
sys_casup $C9 byte I cache suppressed timer, counts down to -1

Testing the word sys_castat will yield
NZ if the caches are enabled or may be enabled,
GT if the instruction cache is temporarily suppressed,
LT if the instruction cache is enabled,
Z if the caches are disabled or there is no cache.

QDOS/SMS Reference Manual 18/03/96 Section 19 14

Appendix A Updates & Hints
This appendix contains changes on other system software and standards which are not described
in the QDOS Reference Manual. As the update support for the QDOS Reference Manual is the
only real update service on any technical QDOS-related printed matter, it now informs you about
all kind of changes.Additional information on WM.ERSTR
The QPTR manual did not mention that there is a limit on own error messages.
An own error messages is easy to create:LEA own_msg,A0 ; get addressMOVE.L A0,D0 ; into our "error" registerBSET #31,D0 ; an error is negative
Now the limit: the length of the string is limited to 40 ($28) characters. If it is longer, "unknown
error" is returned instead!Additional information on WM.LDRAW
WM.LDRAW clears the change bit in the status are of every item which is selectively redrawn.Additions to the CONFIG standard
The attributes for strings have been extended, to allow menu-driven CONFIG programs better
options for a selection, depending on the type. There are two additional bits used in the string
attributes: 8 and 9. These define the type of string, so that the CONFIG program can treat these
strings in a special way. The possible combinations are:

cfs.sspc %0000000000000001 string strip spaces
cfs.file %0000000100000000 string is filename
cfs.dir %0000001000000000 string is directory
cfs.ext %0000001100000000 string is extension

At present, these features are supported by the new MenuConfig, and ignored by the standard
config.Additions to IOP.RPTR and Pointer Record
Bits 23 to 8 of the event vector in the pointer record are already used by the Window Manager.
The 8 job events are, therefore, mapped into the most significant 8 bits (pp_jevnt) of the event
vector within the pointer record and for the IOP.RPTR operating system call.

Note that while all pointer events that have occurred since the call are filled into pt_pevnt in the
pointer record, only those job events (including pending events) which caused the return are filled
into pt_jevnt.New Pointer Event
Pointer event bit 6 (number 64) is now used to indicate that the pointer sprite has hit the edge of
the screen.

QDOS/SMS Reference Manual 18/03/96 Appendix A 1

	Title.pdf
	Sec0 (Why)
	Sec1 (About)
	Sec2 (Introduction to QDOS)
	Sec3 (Machine code programming)
	Sec4 (Memory allocation)
	Sec5 (IO)
	Sec6 (Device drivers)
	Sec7 (Directory device drivers)
	Sec8 (Built-in device drivers)
	Sec9 (SuperBASIC)
	Sec10 (Hardware)
	Sec11 (Peripherie)
	Sec12 (Non English QL)
	Sec13 (Trap #1)
	Sec14 (Trap #2)
	Sec15 (Trap #3)
	Sec16 (Vecs)
	Sec17 (Things)
	Sec18 (Keys)
	Sec19 (SMSQ)
	Append

