BASIC REFERENCE

MANUAL

BRGNS 174117 1719 1P 151 10 IF Il b |

http://www.fastio.com/

FEDERAL COMMUNICATIONS COMMISSION
RADIO FREQUENCY INTERFERENCE
STATEMENT

““This equipment generates and uses radio frequency energy and if not in-
stalled and used properly, that is, in strict accordance with the manufacturer’s
instructions, may cause interference to radio and television reception. It has
been type tested and found to comply with the limits for a Class B comput-
ing device in accordance with the specifications in Subpart J of Part 15 of
FCC Rules, which are designed to provide reasonable protection against such
interference in a residential installation. However, there is no guarantee that
interference will not occur in a particular installation. If this equipment does
cause interference to radio or television reception, which can be determined
by turning the equipment off and on, the user is encouraged to try to correct
the interference by one or more of the following measures:

..... reorient the receiving antenna

relocate the computer with respect to the receiver

move the computer away from the receiver

plug the computer into a different outlet so that computer and receiver
are on different branch circuits.

If necessary, the user should consult the dealer or an experienced radio/tele-
vision technician for additional suggestions.

The user may find the following booklet prepared by the Federal Communi-
cations Commission helpful: ““How to Identify and Resolve Radio-TV In-
terference Problems.”’

This booklet is available from the US Government Printing Office,
Washington, D.C., 20402, Stock No. 004-000-00345-4.”’

Also, only peripherals (computer input/output devices, terminals, printers,
etc.) certified to comply with the Class B limits may be attached to this
computer. Operation with non-certified peripherals is likely to result in
interference to radio and TV reception.

o

COMARABIBIANONMONOONCCCOONIANDOONIYIIY

.

http://www.fastio.com/

e

i] } R
QOVI VIV UVQVDOUOLVLOLVLLYWLLLOL

|

e
VAKXV 2 'V AU IRV IV IV

FJ T

TABLE OF CONTENTS

Chapter 1 GENERAL INFORMATIONccoveniiiiiiiiiiiiiiiiinans
1.1 Installing BASIC ..cnenriiiiiiiiiiiiiiiiiiiieiinc e
1.2 Starting BASICciiiiiiiiiiiiiiiiiniiniiir e
1.3 The BASIC Program MenU......c.cccevvriviiiniiniiininnnisiiienens
1.4 Warm Starts and Cold Starts.......ccceveeviiiniiiiiiiiiiiiniinnn,
1.5 Ending BASIC Operation........cococovvinveriinviinieninenenennnennn.
1.6 Functions of Special Keys in the BASIC Mode

Chapter 2 PROGRAMMING CONCEPTS........ccccoeviiviiiiiiniininnnne,
2.1 Program Lines and Statements...........cocvviieiiiiiiinvnieneneenn,
2.2 Multiple Program AT€aSccceeireiirermvnirennicieeseusnsnenens
2.3 Screen EditOr...oviiieieiniiiieniniiiiiiiiii i eenaes
2.4 Edit MOAE vuoivniiriniiieneiiieieiineenineeaensieneraseieceanraenenenens
2.5 Using the Screen Editor and EDITcccovvviviiiiininininnn.
2.6 Types Of Data....ccceveiininiiiiiiiiiiiiiiiiiiiiiiieiiiisnnerneenenns
2.7 Constants—String Constants and Numeric Constants
2.8 Variables ..ccovvveiiiiiiiiiiiiiiiierrieriei it
2.9 Type Conversion of Numeric Values............ccceeuiiiianinnii.
2.10 Expressions and Operations.......cccocvvviiiiiiiiiiieniainiiininn,
2.11 FUNCHOMNS ceviriieeereeenenernteneansiitaeieiieternessensesesacarencns
2012 FHlES . uuirininiiiieeeiietrienenreneeeensnssesensnssosisnsnensnesnsnsnenanans
2.13 DiSPlay SCreeMvvvnieiiereierieiinriratiictiiieririentieninesseacns
2.14 A Practical Guide to the Screen Modescocevviiieinnnns
2.15 Input/Output Device SUpPPOrtocvvvviiiiniiiiiiiiiiienenrinin.
2.16 Error MeESSAZES cuveuuieieneeinrenreneerecinieinsnsteinrensiisosssssnonaon
2.17 Error Processing Routines.....c..ccccvevviiniiniininiiiiiiiieninnn..

Chapter 3 ENTERING BASIC WITH EXTENDED
FORMAT COMMANDS.......oiiiiiiiiriiiiiniieeincinceees

Chapter 4 COMMANDS AND FUNCTIONS raaeraaans

http://www.fastio.com/

Chapter 5 MICROCASSETTE AND DISK FILESc..oooceeennnns
5.1 Program Filesccocoovirinininiiiiiiiiiiniiiiiiininiiiiiieaees
5.2 Sequential Filescceevviniiniiniiiiniiieniiineiirieriennerireeenee
5.3 RanAOmM FiIES ..ouvieiniiniiiiiinieriniiienieiirecnessssenniieeieraenaces
5.4 MICTOCASSEILES 1 evrrneeneernerieerneaanranessesnncssssssosassssonssasaenaces
5.5 EITOTS teiurirennrererenaeeeanseensseanaeeorassssssssnnsssnsssssssonsssnnseons
5.6 Precautions On Changing Floppy Disks.......cccccvvvuiniinnnnn.

Chapter 6 SEQUENTIAL ACCESS USING DEVICE FILES
6.1 Using the RS-232C Interface.........cocvvvniniiiiiinrnrnciinennnnnne,
6.2 Printer and Display SCreen......ccovvvereiieiniiniiiiiiiiiiiieneanens
6.3 Keyboard......ccoviiieiiiriniiiniiiiiiniiiiiiiiiiraeareraeieaaeaas

Appendix A ERROR CODES AND ERROR MESSAGES
Appendix B TABLE OF RESERVED WORDS

Appendix C PX-8 BASIC CONSOLE ESCAPE SEQUENCES
Appendix D MACHINE LANGUAGE SUBROUTINES
Appendix E DERIVED FUNCTIONS

Appendix F ASCII CHARACTER CODES

Appendix G MEMORY MAP

Appendix H SOME EXAMPLE PROGRAMS

Index

[
[
-

Y
-~
‘\~
~

PN

-
PN
h
-
-/

v

v/
—~
-

-

N

http://www.fastio.com/

Trademark Acknowledgments

CP/M® is a registered trademark of Digital Research™.

BASIC (Copyright 1977 — 1983 by Microsoft and Epson) is upward
compatible with the BASIC-80 specifications of Microsoft, Inc.
MICROCASSETTE™ is a trademark of OLYMPUS OPTICAL
CO., LTD.

NOTICE

All rights reserved. Reproduction of any part of this manual in any form whatsoever without
EPSON's express written permission is forbidden.

The contents of this manuai are subject to change without notice.

All efforts have been made to ensure the accuracy of the contents of this manual.
However, should any errors be detected, EPSON would greatly appreciate being informed
of them.

The above notwithstanding, EPSON can assume no responsibility for any errors in this manu-
al or their consequences

© Copyright 1983 by EPSON CORPORATION.
Nagano, Japan

http://www.fastio.com/

N R P
QLOLVLUVOLYOL

mmmrm

OUUFOOOUH&)EUU

L ARG

Chapter 1 GENERAL INFORMATION }
Chapter 2 PROGRAMMING CUNCEPTS

ENTERING BASIC WITH EXTENDED }

Chapter 3

FORMAT COMMANDS

Chapter 4 COMMANDS AND FUNCTIONS
Chapter 5 MICROCASSETTE AND DISK FILES

Chanter 6 SEQUENTIAL ACCESS USING
p DEVICE FILES

Appendices ’

http://www.fastio.com/

ne

1

OV OOOIOQOLOOOUOUOOLUUOOU

— p— —— — — —
l i

PP e ey e T T
U Kl

O

e
) i

Hala
J o

F
)’

| AL i VNN N I

Introduction

This manual describes EPSON-enhanced Microsoft BASIC for the EPSON
PX-8. The manual covers all aspects of PX-8 BASIC, including points which
must be considered when using the graphic display, the RS-232C communica-
tion functions, disk 1/0 (including RAM disk and use of the microcassette drive
as a disk device), and use of the internal clock to switch the power supply and
initiate programs.

Chapter 1 of this manual introduces PX-8 BASIC, the functions of the PX-8’s
special keys in the BASIC mode, and entry and modification of BASIC programis.

Chapter 2 discusses general concepts which are applicable to programming in
BASIC and considerations applicable to programming in EPSON-enhanced PX-8
BASIC in particular.

Chapter 3 describes methods for entering BASIC using extended BASIC
commands.

Chapter 4 describes use of the statements and functions of PX-8 BASIC.

Chapter 5 describes disk files (including files in RAM disk and use of the
microcassette drive as a disk device) and their handling.

Chapter 6 describes procedures for communication between the PX-8 and other
devices using the RS-232C interface.

The appendices describe various subjects such as error codes and messages, fea-
tures applicable to the PX-8’s display, programming, printers, and so forth,
together with some sample programs.

This manual is intended to be used together with the PX-8 User’s Manual, which
describes operation of the PX-8 and basic procedures for use of the PX-8’s CP/M
operating system.

Finally, there is an index which should be consulted in order to make effective
use of the manual as a work of reference.

http://www.fastio.com/

/|
y O

i

e ey v — ——— v— o —
1 H ! 1

4l N an N s L R R A A
VO OULDOUUVOVUOLOLOULUOLOUUULOULL

™.
)

[g TU" f«r o"o"ffffﬂ

Chapter 1
GENERAL INFORMATION

A program is a series of instructions which control the operations of a com-
puter. Such instructions must be a part of a predefined set which the computer
is designed to understand, and which are combined in accordance with a fixed
set of rules. This set of instructions is referred to as the computer’s language.
The individual instructions (words) used by the language are referred to as com-
mands, statements, or functions, and the rules which govern the manner in which
instructions are combined are referred to as the language’s syntax.

The programming language supplied with the PX-8 is BASIC (Beginner’s All-
purpose Symbolic Instruction Code). BASIC for the EPSON PX-8 is an EPSON-
enhanced version of Microsoft BASIC which has been expanded by EPSON
for use with the PX-8 and which operates under the CP/M operating system
of the PX-8 (see the PX-8 User’s Manual for further information on the CP/M
operating system). BASIC is loaded into the computer’s memory from a ROM
capsule, by executing the “BASIC” program under CP/M.

Among the enhancements which have been made are:

(i) the addition of a powerful screen editor which vastly increases the ease
with which programs are entered, modified and executed

(ii) avariety of graphic statements and functions which take advantage of the
PX-8’s large 480 by 64 dot display

(iii) statements for selecting different modes of screen operation, such as graph-
ics and split screen

(iv) statements and functions which support communication through the PX-8’s
RS-232C serial interface

(v) statements which make it possible to use the PX-8’s built-in microcassette
drive in the same manner as a disk drive

11

http://www.fastio.com/

1

1 3

)

R e R AR R R Y e [T
VIO UV I U OW IV UO0OLUOOLVLLOUVOUUOLLOLULULYUWYLYOOLOLOLO

o rer

FJJd

g1

|

1.1 Installing BASIC

BASIC for the PX-8 is distributed in the form of a ROM capsule which must
be installed in the back of the PX-8 before BASIC can be loaded. The location
of this socket and procedures for changing ROM capsules are as described in
the PX-8 User’s Manual. BASIC can be inserted in either ROM socket 1 or ROM
socket 2 and would be loaded from the ROM drive which has been allocated
to that socket as if it were a program on a conventional floppy disk.

If you are using an applications program ROM as regularly as BASIC, and wish
to have the applications ROM as well as BASIC, you may consider using PIP
to transfer some of the CP/M utility programs from the utility ROM into the
RAM disk area or even onto cassette tape. Details of how to use PIP to do this
are given in the User’s Manual.

NOTES:

1. BASIC cannot be started if the RAM disk size is set to 24K with the CONFIG
command.

2. If a ROM capsule is changed for any reason while in BASIC, execute the RESET
command.

1-3

http://www.fastio.com/

a9
¥

7

VLVLVUVLLUULLULOLOL

{

it there are still a number of possibilities, depending on whether BASIC has
been used previously and on whether you wish to run a BASIC program direct-
ly. The possibilities are as follows:

(i) BASIC.COM is the first file on the MENU.

(ii) BASIC.COM is on the MENU but not the first file.

(iii) BASIC is resident in memory.

(iv) You wish to RUN a stored BASIC program.

(v) You wish to run a BASIC program directly when BASIC is resident.

(i) BASIC.COM is the first file on the MENU

The simplest case is when BASIC has not been used when the PX-8 is switched
on. If the MENU has been set up to show the files on the drives allocated to
the ROM sockets, the appearance of the screen will be as follows if BASIC.COM
is the first file in the main MENU area in the top left hand corner. The com-
mand line will have “BASIC” entered by the computer, together with the drive
name prefix. BASIC.COM with its drive prefix will be flashing in the main menu
area.

B:BASIC

*%% MENU screen *%% @1/01/84 (SUN) 10:00:23 54,5k CP/M ver 2.2 PAGE 1/1
B:BASIC Ctom

Simply pressing the key will load BASIC into memory from the ROM.
BASIC will take a few seconds to load. Section 1.3 describes what to do next.

WARNING:
In loading BASIC into memory, any other programs already there will be destroyed.

(ii) BASIC.COM is not the first file on the MENU
Depending on how the MENU was set up, BASIC.COM may not be the first
file on the MENU. For example

A: GRAPH. BAS

*%% MENU screen *#%x 01/01/84 (SUN) 10:10:37 34.5k CP/M ver 2.2 PABE 1/1
A: GRAFH BAS B:BASIC comM

1-5

http://www.fastio.com/

ol

R R

e e T s B B S A

VOOV UOLUUWULULLLOOUUULVULLVLULUOLUVULUULULULUUL

IS e anl sl as e

L

LABINE

WARNING:
If a BASIC program is RUN in this way, all the BASIC programs in memory
which lie in the BASIC program areas 1-5 WILL BE DESTROYED,

If the MENU is used to run a BASIC program directly when the program is
put onto the command line, it should appear as in (iv) above. If it does not,
you have made an incorrect entry when setting up the MENU option on the
System Display, and should refer to the User’s Manual to see the correct way
to set up BASIC programs.

(v) Running a BASIC program directly when BASIC is resident

The situation may occur that the program is in memory when BASIC is resi-
dent. Whereas it is possible to go to the BASIC program menu and then run
the program as described in the next section, it may be more convenient to run
a program directly from the MENU screen. This can be achieved using the fol-
lowing commands which are described fully in Chapter 3.

/Pmn
where n is a program area from 1 to 5 (e.g. /P:4 means program area 4), will
enter BASIC and login to this area.

*%xx MENU screen *%% @1/01/84 (SUN) 16:31:33 S4.5Sk CP/M ver 2.2 PAGE 1/1
IFid_

BASIC (resident) RB:BASIC comM A: GRAFPH BAS A SAMF1L BAS
“: SAMP2 BAS
/R:n

where n is the program area, will enter BASIC and run the program in the speci-
fied program area.

*#%% MENU screen *%% @1/01/84 (SUN) 16:31:59 S54.5k CF/M ver 2.2 PAGE 1/1]
/R:2
BASIC (resident) B:BASIC oomM A: GRAFH BAS A SAMP 1 BAS
A BAMPZ BAS
1-7

http://www.fastio.com/

Logs in the program area indicated by the cursor, but does
not execute the program in that area.

Since the cursor is shown to the left of “P1:” at this point, pressing the space
bar here logs in program area 1. To select another program area, move the cur-
sor up or down with the “up” and “down” arrow keys before pressing the space
bar.

If no program exists in any area (shown by the length of program text being
0 bytes), then[RETURN] simply logs into that area. On logging into such an area
the screen appears thus

EFPSON BASIC ver-1.0 (L) 1977-1983 by Microsoft and EPSON
14749 Bytes Free

Pl: ©® Bytes

Ok

L]

The “Ok” displayed at the end of this message indicates that BASIC is at the
command level; in other words, that it is ready to accept commands. At this
point the BASIC interpreter may be used in either of two modes: direct (im-
mediate) mode or indirect (execution) mode.

Commands and statements entered in the direct mode are not preceded by pro-
gram line numbers. Instead, they are executed immediately when the
key is pressed. Since commands/statements entered in this mode are executed
as they are input, the results of arithmetic and logical operations are displayed
immediately (they can also be assigned to variables for later use). However, the
commands themselves are lost once they have disappeared from the screen. This
mode is useful for debugging and for using BASIC for simple, non-repetitive
arithmetic operations.

The indirect mode is the mode which is used for entering programs. In this mode,
commands, statements, and functions are preceded by line numbers which indi-
cate the order in which they are to be executed. However, commands and state-
ments entered in the indirect mode are stored in memory without being executed;
execution is deferred until the program is RUN. The indirect mode is used when
working with complicated calculations or operations which must be performed
many times or stored to be recalled for use at a later date.

http://www.fastio.com/

""‘1_111:"!
QLLLLLVLLOLVOUCVLLOLYU

SiDiis i in ISl

VUGUU L

U0

WIJ S S SS G TIT

1.4 Warm Starts and Cold Starts

There are two methods for starting up BASIC: the cold start and the warm start.

1.4.1 Cold starts

A cold start is made when the BASIC interpreter is loaded into the memory
of the PX-8 from ROM capsule. This type of start is made by executing the BAS-
IC command or by selecting the BASIC.COM file from the menu.

NOTE:

The BASIC program areas are cleared whenever a cold start is made. A cold start
must be made whenever the PX-8’s power switch is turned on unless it is made
resident in the PX-8’s memory (the area in which utility programs such as the
BASIC interpreter are stored while they are being executed). In this case, BASIC
can be started up by making a warm start.

1.4.2 Warm starts

A warm start is the procedure by which BASIC is restarted when it is already
present in memory. BASIC becomes resident in memory when loaded, and re-
mains there when the power is turned off if the MENU screen function has been
turned on. In this situation, the screen appears as shown below when the power
switch is turned back on.

*%% MENU screen *%* @1/01/84 (SUN) 10:4@:41 54.5k CP/M ver 2.2 FAGE 1/1
BASIC (resident) B:BASIC CoM

Procedures for turning on the MENU screen function are as follows.

(1) Turn on the computer’s power switch and if the system prompt (“A > or
another drive name) is displayed, proceed as follows:

(2) Press the and (SYSTEM) keys together; this causes the Sys-
tem Display to appear as shown below.

1-11

http://www.fastio.com/

JUowowuu

L&
U U

WIUJdd

(5) Pressing +[C] or the key at this point causes the system
to go immediately to the MENU screen, where BASIC can be loaded and

executed simply by pressing the key. (BASIC can also be loaded
and executed at this point by entering “B:BASIC” or “C:BASIC”, depend-
ing on the ROM socket into which BASIC has been inserted as described
in section 1.1 and which drive it has been allocated to as described in section
1.2(a). Log into one of the BASIC program areas by pressing the space bar,
then return to the system by entering SYSTEM and pressing the
key.) The MENU screen will now appear as shown below.

*%% MENU screen *xx ©01/01/84 (SUN) 10:43:12 54.5k CP/M ver 2.2 PAGE 1/1
BASIC (resident) B:BASIC coM

The words “BASIC (resident)” at the left side of the screen indicate that BASIC
is resident in memory. At this point, these words should be flashing on and off;:
this indicates that BASIC execution will be restarted when the key is
pressed.

BASIC will remain resident in memory until one of the following actions is per-
formed:

(1) One of the system utilities is executed;

(2) A cold start of the system is made (see the PX-8 User’s Manual);

(3) The MENU screen function is turned off from the System Display (see the
PX-8 User’s Manual);

(4) The MENU screen is terminated by pressing the key.

Once BASIC has been made resident, programs in the BASIC program areas
will be retained even if the PX-8’s power switch is turned off and back on again.
Further, the maximum number of files, upper memory limit, and so forth are
maintained from the last time BASIC operation was ended.

WARNING:

If the MENU screen function is switched off via the System Display, BASIC will
not be resident and the programs in the BASIC program areas will be lost. It
is always good practice to save all programs as well as leaving them in memory.

1-13

http://www.fastio.com/

|

FRrFmrar T

VULLLULOLOUOLULUULLLUUULOL

S U J

R
J

GJ U

VIO,

1.6 Functions of Special Keys in the BASIC Mode

The keyboard of the PX-8 includes a number of special keys as indicated in the
figure below.

sTop €sc PAUSE HELP PEY r2 F3 oFa ers | 3 :;;s
- - ——— —) Y I R
! " # $ % & (} - = - + || Home
1 2 3 4 5 6 7 8 9 0 - - 8s
4 5 (] .
™| Q|| W E R T Y U 1 0 P @ - 3 -
1 2 3 il
em | Al s{D|Fla|n|of|] T 7] newm .
0
SHIFT z X C \" B N M < > ; SHIFT ::;:
CAPS CTRL
LOCK
L

Functions of these special keys during BASIC operation are as follows.

to The Programmable Function Keys

These are the PX-8’s programmable function keys. Each key contains two func-
tions, the second of which is accessed by pressing the shift key as well as the
function key. In this case the keys are numbered to , for instance,
when shifted is known as[PF9]. Any string of up to 15 characters can
be assigned to each of these keys with the KEY command of BASIC or the CON-
FIG command of CP/M; afterwards, that string of characters can be entered
simply by pressing the applicable programmable function key. This can greatly
reduce the need to type in commands one character at a time from the keyboard.
See the explanation of the KEY command in Chapter 4 and the discussion of
the CONFIG command in the PX-8 User’s Manual.

There is a third function of each key which is accessed by pressing the
key at the same time as the programmable function key. This causes a machine
code subroutine to be executed. In the case of the key this has been set
to dump the screen to a printer. The others can be set by the user. Procedures
for doing this are described in the PX-8 OS Reference Manual.

1-15

http://www.fastio.com/

together). The PAUSE condition is then released by pressing any key other than
STOP | or [CTRL] and . Pressing either of these will terminate either the
listing or the program execution.

[SCRN DUMP] ([CTRL] + [PF5])

The key outputs the contents of the screen to the printer. The
screen contents are output to the printer as ASCII character codes when screen
modes 0, 1, or 2 (the text modes) are selected, and in bit image format when
the screen mode 3 (the graphic mode) is selected. The same result is obtained
by executing the COPY statement in BASIC. (A detailed explanation of the screen
modes are given in Chapter 2).

This key interrupts execution of BASIC programs and returns the BASIC inter-
preter to the command mode. (The same result is obtained by pressing the
and [C]keys together). Execution of the interrupted program can then be con-
tinued by entering the CONT command. This key is also used to terminate au-
tomatic program line number generation initiated by the AUTO command.

The STOP KEY command can be used to disable or re-enable the key
(see the section on STOP KEY in Chapter 4).

LcTRL | + [sTOP |

Pressing [CTRL | and [STOP | together during write or read access to the microcas-
sette drive forcibly terminates the access operation and generates an error. (This
function cannot be disabled by the STOP KEY command in BASIC).
However, if a search is being performed (if the tape is being wound to a specific
counter reading to prepare for access) + will not stop the drive
until the search is completed.

[CTRL | + [HELP |

Pressing the | CTRL | and [HELP | keys together switches operation back to the
System Display mode. This means that options such as setting the MENU screen,
and setting the alarm and wake independently of BASIC can be carried out just
as at the CP/M command level.

1-17

http://www.fastio.com/

sinhie

alals
VRIRIRY

slele

LUV

“

sielelple

V)

e
VRV RV

U

L LAy

Chapter 2

PROGRAMMING CONCEPTS

This chapter discusses a variety of concepts which are applicable to program-
ming in BASIC for the PX-8. These are presented in logical order, with the most
fundamental concepts presented first. Mastery of the information included in
this chapter is essential to realizing the full potential of the capabilities of BASIC.

2.1 Program Lines and Statements

All BASIC programs are composed of one or more lines, each of which begins
with a line number, ends with a carriage return (or[RETURN)), and includes one
or more commands, statements, or functions. The line numbers indicate the order
in which the lines are stored in memory and executed. Lines numbers are refer-
enced when the program is edited or when the flow of execution is switched
from one point in a program to another. (See the descriptions of the GOTO
and GOSUB statements in Chapter 4). Line numbers must be within the range
0 to 65529.

Commands and statements are words in the BASIC language which instruct the
computer to perform specific operations. Each line of a program may consist
of a single statement, or several statements which may be included on one line;
in the latter case, each statement must be separated from the one following by
a colon, and the total length of each program line cannot exceed 255 characters.

2-1

http://www.fastio.com/

IR IRIRIRIRIRIRIRIR Rty

’2.3 Screen Editor

The screen editor is a feature of EPSON BASIC which makes it easy to enter
and edit the lines of BASIC programs. This ability is central to programming
the PX-8 in BASIC.

The screen editor uses the concept of logical lines for display of commands and
statements (in the direct mode) or program lines (in the indirect mode). A logi-
cal line is a collection of characters which is handled by the screen editor as
one logical unit, regardless of the number of physical screen lines which it may
occupy. Normally, a logical line is terminated by pressing the [RETURN] key.

During typing, logical lines are automatically continued when the cursor moves
from the right side of the screen to the beginning of the following physical line.
This applies regardless of whether the cursor is moved by typing characters or

spaces, or by the key.

There are several methods of editing lines of BASIC programs which have previ-
ously been stored in memory. The most primitive is simply to retype the entire
line using the same line number. The BASIC interpreter automatically replaces
the old line with the new one when the key is pressed.

However, the screen editor makes it possible to edit a logical line (after display-
ing it, if necessary, with the EDIT or LIST commands; these commands are
explained in detail in Chapter 4) by moving the cursor to that line with the cur-
sor controls, then making changes using the screen editor’s control keys. A vari-
ety of keys are provided for use with the screen editor; these keys are described
below.

(2137 [+

At the command level, these keys move the cursor (the. flashing square which
appears on the screen during BASIC operation) in the directions indicated by
the arrows on the key tops. These keys are equipped with a repeat function which
moves the cursor continuously at a steady rate when any of the keys is held down.

TAB

The[TAB]key moves the cursor to the right from its current location to the next
tab position on the screen. The liquid crystal display screen of the PX-8 has
10 tab positions, starting with the column on the far left side of the screen. (A

column consists of one character width in the same position on each line of

2-3

http://www.fastio.com/

CLL LU

mmmM

LLU L

SRR

;0 U

m
(V)

UL

bty

CRRE RS

DEL
Pressing the key deletes the character which is located at the position of
the cursor and moves the remainder of the logical line to the left by one charac-
ter position. No characters are deleted if this key is pressed while the cursor is
at the end of a logical line.

+[E]
Pressing these keys together deletes all characters from the cursor position to
the end of that logical line.

+@
Pressing these keys together deletes all characters from the cursor position to
the end of the screen.

[CLR] ([_sHiIFT_] +[DEL])
This key clears the entire screen and moves the cursor to the home position (the

upper left corner of the screen). The same effect is achieved by pressing
and

[iNs]

Pressing this key once places the screen editor in the insert mode; pressing it
again (or pressing any of the cursor control keys or the key) restores
normal operation. In the insert mode, the cursor and characters from the cur-
sor to the end of the logical line are moved to the right by one position when
any character key is pressed; the character typed is then inserted at the cursor’s
former position. The red INS LED built into the keyboard lights when the screen
editor is in the insert mode, and the cursor changes from block form to under-
line form.

T[hEe screen editor can also be placed in the insert mode by pressing and

together.

Pressing this key executes direct commands in the logical line in which the cur-
sor is located or stores program lines in the computer’s program text area. Oper-
ation is the same no matter where the cursor is located in the logical line.
The same effect is achieved by pressing the and [M] keys together.

STOP

The principal function of this key is to halt program execution. Pressing this
key in the command mode moves the cursor from the logical line in which it

is currently positioned to the beginning of the next logical line. This key is also

2-5

http://www.fastio.com/

L LU RV VR RV N R i U

2.4 EDIT Mode

In addition to the screen editor, PX-8 BASIC features an edit mode which in-
creases the efficiency of program editing by making it possible to scroll to any
point in a program. The edit mode is entered by executing the EDIT command
in the direct mode (see the explanation of the EDIT command in Chapter 4),
and is terminated by pressing the or keys.

The keys used for scrolling, cursor movement and program editing in the edit
mode are basically the same as with the normal screen editor. However, func-
tions of certain keys differ as follows:

(1) Cursor control keys

In the edit mode, the cursor control keys (, , and)
move the cursor in the same manner as when the screen editor is used in
the normal direct mode. However, when the cursor is moved to the logical
line at the top or bottom of the screen, that line is automatically scrolled
as necessary to bring it completely inside the real screen. (This operation
is performed when part of the program has been moved beyond the outside
of the screen by previous scrolling).

@) [Csarr] + 7]

When only part of a logical line is displayed at the top of the screen, press-
ing [sHIFT _Jand [t] together scrolls the screen so that the entire logical
line is displayed, then moves the cursor so that it is positioned at the begin-
ning of that logical line. Otherwise, the screen window is scrolled as neces-
sary to display the logical line preceding that displayed at the top of the screen.

(3 [sHFT] +[3]

When only part of a logical line is displayed at the bottom of the screen,

pressing and together scrolls the screen so that the entire
logical line is displayed, then moves the cursor so that it is positioned at the
beginning of that logical line. Otherwise, the screen window is scrolled as
necessary to display the logical line following that displayed at the bottom
of the screen.

@) +[1]
Pressing and together clears the screen, displays the program’s
first line, and moves the cursor to the beginning of that line.

2-7

http://www.fastio.com/

2.5 Using the Screen Editor and EDIT

The use of the edit and screen editor modes are best seen with the help of an
example:

Use an empty program area or clear the memory in the area currently logged
in by typing NEW and pressing[RETURN |, then type in the following line of a
BASIC program:

10 REM This is a remark statement

When you press[RETURN], but not until you do, the line will be stored as a BASIC
program line. This line can be edited simply by using the screen editor. Use the
cursor keys to move up the screen so that the cursor lies over one of the charac-
ters of the line which has just been typed in.

With the[CTRL Jkey held down, press the [X] key. The cursor now jumps to the
end of the line so that you can add more characters to it.

With the[CTRL Jkey held down, press the[A]'key and see that the cursor returns
to the beginning of the line. Type a “2 so that the line becomes:

20 REM This is a remark statement

Now holding down the[SHIFT_key, press the right cursor key five times. Each
time it is pressed the cursor jumps to the first character of the next word. With
five jumps, it will be on the “r” of “remark”. Use the shifted left cursor key
to move the cursor back in a similar way.

Reposition the cursor at the beginning of “remark” and with the unshifted left
cursor key place the cursor in the space before the“r”. Now press the[INS] key.
The LED next to INS will light to show that the PX-8 is in insert mode, and
the cursor will become a flashing underline character. Type a word such as “new ”

and press the key.

Now if you LIST the program you will find that it consists of the following
two lines:

29

http://www.fastio.com/

Now press + [E] . The line will clear from the cursor onwards and by
pressing[RETURN | the truncated line can be entered, as can be seen by listing
the program again.

If you wish to clear the rest of the virtual screen from the cursor onwards| CTRL
+ [Z] can be used instead.

Add line 40 to the program as follows:
40 PRINT “This is line 40”

Now move the cursor up to the “4” of line 40 and make it into line 60 by over-
typing the “4” with a “6”. Move along the line using the shifted right cursor
key or the alternative + [F] . Alter the “4” to a “6” here also.

When line 60 has been added to the program by pressing the[RETURN |key, add
a further line 70 in the same way. It may be faster to use + to
move to the end of the line then the shifted left cursor key to move the cursor
back to the number “6” in the string. Just as + [F] can be substitut-
ed for the right cursor key, so [CTRL | + can be used to move back instead
of the left cursor key.

Now add the lines:

80FORJ =1TO 10
90 PRINT J * J
100 NEXT J

Until now only the normal screen editor has been used. In most cases this is
all that is required, since a program can be listed and edited by moving around
the screen. The important point to remember is that the line is only altered in
the stored program IF THE[RETURN | KEY IS PRESSED.

The EDIT mode has some advantages if a number of lines are to be edited and
if the editing is to be carried out on a screen with a limited number of lines,
e.g. in screen mode 3.

To illustrate the use of the edit mode, type

SCREEN 3,0,0 : LIST

2-11

http://www.fastio.com/

OLL

!

1 |

voLvuLo

0L

LOLOOLU

v

3

00U

-

WOV JIUVIYLUL

Now type in a line 110 to complete the program:

110 PRINT AS$

There is one other aspect of using the EDIT mode, which applies to any screen
mode, which makes it preferential to using LIST and the screen editor. This may
be illustrated as follows:

Edit line 10 to read as shown so that it runs over more than one line of the screen:

10 REM This is a remark statement which has now been extended to run over
on to the next line of the screen

List the program to line 60. Note that the screen shows only half of line 10.
Move the cursor up to this line and try altering a character. When you

press| RETURN |,a “syntax error” message will be shown because you tried to enter
a line which was not logically correct for BASIC. The screen couldn’t “see’” the

first part of the line so it rejected the line as nonsense.

Clear the screen and list line 10. With the full line present on the screen move
the cursor to the second part of the line and make an alteration. Pressing
the key will cause the change to be accepted. The EDITmode only al-
lows complete lines to appear on the screen, and so prevents the syntax error
obtained using list.

To illustrate this type EDIT and when line 5 has been displayed use the
and keys to display successive lines of the program until line 80 is reached.
At this point, only the part of line 10 which overruns will be displayed on the
screen. Now move the cursor to the top of the screen. As soon as the cursor
reaches the top line, the whole of line 10 is displayed. This would not happen
in the normal screen editor mode.

2-13

http://www.fastio.com/

2.6.2 Control characters

The ASCII character set includes a number of special codes which can be used
in programs to control various devices. These control codes have different func-
tions when used to control the LCD screen or a printer. Also they have further
special functions when used with the screen editor. The following table outlines
the functions of the control characters when acting on just the LCD screen. They
are used in a PRINT statement together with the CHR$ function. For example:

PRINT CHRS (12)

clears the screen.

There are also extended control sequences which consist of a group of character
codes following the ESC code (ASCII 27 decimal, 1B hexadecimal). These are
described in Appendix C.

Dec. | Hex.
code | code

5 05 Deletes characters to the end of the line.
7 07 Sounds the speaker (at about 440 Hz).

8 08 Moves the cursor to the left.

9 09 Moves the cursor to the next tab postion.

Function

10 0A Moves the cursor down one line.

11 0B Moves the cursor to the home position.

12 | oC Clears the virtual screen.

13 0D | Moves the cursor to the beginning of the line.

16 10 In mode 0/1/2, moves the screen window upward.
17 11 In mode 0/1/2, moves the screen window downward.
26 1A Deletes all characters to the end of the screen.

27 1B Escape code.

28 1C Moves the cursor to the right.

29 1D Moves the cursor to the left.

30 1E Moves the cursor upward.

31 1F Moves the cursor downward.

2-15

http://www.fastio.com/

Ordinarily, decimal notation is used for display of the contents of memory or
the results of calculations. However, it is also possible to specify display of in-
teger values in hexadecimal or octal notation.

LR RN tsisigialy

2-17

http://www.fastio.com/

235.988E-07 = 235.988x 10~ 7 = .0000235988
2.359E09 = 2.359x10° = 2359000000

(With double precision floating point constants, the letter “D” is used to indi-
cate the implicit base (10) instead of “E”. See below for a discussion of single
and double precision numeric constants).

2.7.3 Single and double precision numeric constants

PX-8 BASIC allows use of both single and double precision numbers. Single
precision numbers are handled internally as seven significant digits, and are
rounded to 6 digits for display or printout. Double precision numbers are han-
dled internally as 16 significant digits, and are also printed or displayed as 16
digits (with leading zeroes suppressed).

A single precision constant is any numeric constant that fulfills one of the fol-
lowing conditions: :

(1) Consists of seven or fewer digits;
(2) Is represented in exponential form with “E”; or
(3) Has a trailing exclamation point (“!”).

A double precision constant is any numeric constant that fulfils one of the fol-
lowing conditions:

(1) Consists of eight or more digits;
(2) Is represented in exponential form with “D”; or
(3) Has a trailing number sign (“#”).

NOTE:

The “# * character can be assigned different values, depending on the country
in which the computer is being used. Consequently it will correspond to whatever
character is assigned to CHRS$(35).

Single Precision Constants Double Precision Constants
46.8 345692811
—7.09E-06 —1.09432D-06
3489.0 3489.0 #
22.5! 7654321.1234

2-19

http://www.fastio.com/

2.8 Variables

Variables are named locations in memory which are used to hold values during
execution of BASIC programs. Names are assigned to variables by the program-
mer, and the values stored in variables are either assigned by the user during
program execution or assigned as a result of progam execution itself.

The two general types of variables used with BASIC are numeric variables and
string variables. The former are used to store numeric values, and the latter are
used to store character strings. Until a variable is defined it has the value of
zero if it is a numeric variable, and the value of null or empty string if it is a
string variable.

2.8.1 Variable names and type declaration characters

Variable names may consist of up to 40 characters (including all letters, the
decimal point, and all numerals), followed by a type declaration character;
however, the first character of each name must be a letter. Reserved words may
not be used as variable names. (Reserved words are the keywords used in enter-
ing BASIC commands, statements, and functions). Further, the letters “FN”
must not be used at the beginning of any variable name (BASIC interprets words
beginning with the letters “FN” as calls to a user-defined function).

The names of string variables must end with a dollar sign (§); this is the type
declaration character which indicates that a variable is used to hold string data.

Numeric variable names may end with type declaration characters which indi-
cate the type of numeric data which they contain. The type declaration charac-
ters for numeric variables are as follows:

% Integer variable type declaration character

! Single precision variable type declaration character
Double precision variable type declaration character

A single precision numeric variable is assumed if no type declaration character
is specified.

2-21

http://www.fastio.com/

2.9 Type Conversion of Numeric Values

BASIC automatically converts numeric values from one type to another as neces-
sary. This section describes the rules governing numeric type conversion for var-
jous kinds of operations.

(1) Type conversion upon storage of values in variables
If a numeric constant of one type is assigned to a numeric variable of another
type, it is stored after being converted to the type declared for that variable
name. For example, if an integer-type numeric constant is assigned to a sin-
gle precision variable, it is automatically converted to a single precision value
at the time it is stored. Note that a certain amount of error may be introduced
by the process of conversion.

Example 1

16 A%=12.34
20 7
a7
40 PRINT A%
Ok
run

12

Oz

Example 2 §

19 AH=12.754

ssigns single precision number
T12.%4 to integer variable’ A%.

ax a8

TPIGPLAYS CONTENTS OF VARIABLE AX

"Assigns single precision number

15 12.34 to double precision variable A#.
20
25 BH#=27T.45# :*Assigns double precision number
30 112,544 to double precision variable B#.
33 7
40 PRINT A# :*Digplays contents of variable A#.
45 :"Extra digits are result of conversion
59 :Tervor.
55 ¢
68 PRINT B# :"Displays contents of variable BE#.
Ok
run
12. 3400001525879
23,45
Ot

2-23

http://www.fastio.com/

(3) Conversion for logical operations
During logical operations, non-integer operands are converted to integers
and the result is returned as an integer. The operands of logical operations
must be in the range from — 32768 to 32767; otherwise an “Overflow” error
will occur.

1@ PRINT &.34 OR 135

i)

"Converts single precision
*number &.34 to an integer
value (6), then displays the
*logical sum of & and 13,

¥ wr xa e

See section 2.10.3 for an explanation of logical operations.

(4) Type conversion of floating point numbers to integers
When a floating point number is converted to an integer, the decimal frac-
tion is rounded to the nearest whole number.

10 C74=55.88 " Converts single precision number 35,88
:7to integer by rounding to 36, then

"gtores 96 in integer variable CA.

FRINT C4 " Displays contents of variable CXL.

(5) Conversion of single precision numbers to double precision
If a single precision number is assigned to a double precision variable, only
the first seven digits of the converted number are significant. This is because
only six digits of accuracy are provided by single precision numbers.

.

2-25

http://www.fastio.com/

2.10 Expressions and Operations

An expression is any notation within a program which represents a value. Thus
variables, numeric constants and string constants constitute expressions, either
when they appear alone or when combined by operators with other constants
or variables.

Operators are symbols which indicate mathematical or logical operations which
are to be performed on given values. The types of operations which are per-
formed by BASIC can be divided into four categories as follows:

(1) Arithmetic operations
(2) Relational operations
(3) Logical operations

(4) Functional operations

2.10.1 Arithme;ic operations

The arithmetic operations performed by BASIC include exponentiation, nega-
tion, multiplication, division, addition and subtraction. The precedence of these
operations (the order in which they are performed when included in a single
arithmetic expression) is as shown below.

Operator

. Operation Sample
expression
A Exponentiation XAY
- Negation (conversion of the sign of a (-Y)
value)
*,/ Multiplication, division XY, X/Y
MOD Modulus arithmetic XMODY
\ Integer division X\Y
+, - Addition, subtraction X+Y, X-Y

The concepts of integer division and modulus are explained in (1) and (2) below.

The order in which operations are performed can be changed by including parts
of expressions in parentheses according to the normal rules of algebra. When
this is done, the operations within parentheses are performed first according to
the normal rules of precedence.

2-27

http://www.fastio.com/

gRhls

™
URY

ininla
VYU

laie

r,

Examples

PRINT 19 MOD 4
-

Ok
PRINT 25.68 MOD &.99
5
Ok

(3) If division by zero is encountered during evaluation of an expression, the
“Division by zero” message is displayed, machine infinity (the value of
greatest magnitude which can be displayed by the computer) is displayed as
the result, then execution continues.

1é B=7 /6 T Generates "Divisiac
20 sTerror, then
ts) ranfimity din

4¢ -
S@ PRINT'FROGRAM LINE 30" :'Displays "PROGRAM LINE

L
Division by zero
FROGRAM LLINE Z6
Ok

The “Division by zero” message is also displayed and machine infinity
returned when zero is raised to a negative power.

(4) An overflow error 1s tne condition which occurs when the magnitude of the
result of an operation exceeds the maximum value which can be displayed
by the machine or when one of the operands of an operation such as integer
division exceeds the maximum allowed value. Whether or not execution con-
tinues depends on which situation is encountered.

12 Af=H&6 bbb DT Generates "Overflow"
200 Prerror and storss machine

infinity in variable A#.

99 FRINT A# :'Displays contents of O#.

7@ PRINT “"Frogram line 3Iev P Msplays "Frogram line 3av.

2-29

http://www.fastio.com/

UULLL

™

leinieinie
VOLOLUVOLOU

mm
U

NAVSIAIRN

&
V)

—

VE

When arithmetic and relational operators are combined in one expression, the
arithmetic is always performed first. For example, the following expression is
true if the value of X plus Y is less than the value of T—1 divided by Z.

X+Y<(T-1)/Z

16 A=lm1
e PRINT A
60

Ser FRINT 3:2

Fanm
— 1

=]
Ok

In the example above, line 10 tests for equality between the first and second oper-
ands of the relational expression “1=1", then stores the result (- 1, or true) in
variable A. Line 20 then displays the contents of A. Line 30 tests whether the
first operand of the relational expression “3 >4” is greater than the second, then
stores the result (0, or false) in variable B. The result is then displayed by the
statement on line 40. Line 50 evaluates and displays the result of the relational
expression “3>2” (—1, or true).

2-31

http://www.fastio.com/

It
1

gigipishl.

ad

ﬁ
U

AARPAS AR pipipisisisislaiainisisivisisinip)

\glgly

In a logical operation, the operands are converted to signed 16-bit two’s com-
plement integerst in the range from — 32768 to 32767 before their logical con-
nection is checked. (An error will result if any operand is not within this range.)

The specified operation is then performed for each bit of each operand (that
is, for bits which are in the same position in each operand) and the result is
returned as a two’s complement integer which represents the results for all bits.
Some examples of this are shown below.

Example 1

19 FPRINT 67 AND 164
Ok
LN
16
Ol

In binary notation, the two’s complement integer 63 is 111111B and the two’s
complement integer 16 is 010000B. Since 1 AND O yields 0 and 1 AND 1 yields
1, the result is 010000B, or 16.

Example 2

1@ FPRINT 21 XOR 17
O
run
4
Ok

The two’s complement integer 21 is expressed in binary as 10101, while the two’s
complement integer 17 is expressed as 10001; since 1 XOR 1 and 0 XOR 0 yield
0, while 1 XOR 0 yields 1, the result is 00100, or 4.

Example 3

18 PRINT -1 OR -2
Ok

[agRini

-1

Ok

t The first bit of a two’s complement integer indicates whether the integer is positive or negative.
In binary notation, the two’s complement integers from 0 to 32767 are expressed as
0000000000000000B to 0111111111111111B. The integers from —1 to — 32788 are expressed as
1111111111111111B (— 1) to 1000000000000000B (— 32768). The value 1111111111111111B is obtained
by adding 1 to the complement of 0000000000000001B (i.., 1111111111111110B+ 1B=1111111111111111B).
The binary representations of other negative two’s complement integers can be obtained in the
same manner.

2-33

http://www.fastio.com/

URVRVE

]

1

kIS

A

VULULU

VRV

0L

R

VRV VRETRVIFU Y

VOV

VRURVEVEV VY,

2.10.4 String operations

String operations involve manipulation of character strings with operators. For
example, the “+” operator makes it possible to concatenate (link) strings as
shown in the example below.

| Example |

1@ A%="File":BE="mname" @ "Assigns string "File” to A
26 :Tand string "name" to BEs$.
Te T

48 FRINT A%+RE R tenates string

pls] HECF ions A% and Bf and
[=15] H : the result.

e

8@ FRINT "New "+Aa%+E% :°Concatenates string

LY MMexpressions "New ", A%,
1@ :tand B$ and displays the
116 :Tresult.

N

Filename
Mew Filename
Ok

Character strings can also be compared using the same relational operators as
are used with numeric values.

1a A%ﬂ“ﬁLPHA":B$="BETQ“

260 :Assigns string "ALPHA" to A% and
Z0 s Pstring "BETA" to bs$.
46 7

5@ IF A%IBRE THEN 100 ELSE 12¢

L=14) :PJumps to line 199 if value of A% is less
Fa% : "than that of B#$i otherwise, jumps to

86 P line 120,

90

196 PRINT A%3" IS5 LOWER THAN "iR4

11 END 7 Stops program execution.

120 PRINT A%3" T8 NOT LONWER THAN "iB$

LT

ALFHA I8 LOWER THAN BETA

Ok

Strings are compared by taking one character at a time from each string and
comparing their ASCII codes. The strings are equal if all codes are the same;
if the codes differ, the character with the lower ASCII code is regarded as lower.

2-35

http://www.fastio.com/

Riniaiaty

U

alnls
LI

LULTUUGL

UFU (V) UH\? N)

SO0 00083 ddd

2.11 Functions

Functions are operations which return a specific value for a single operand. For
example, the function SIN(X) returns the sine of the numeric value stored in
variable X when the value in X is in radians. A variety of functions are built
into PX-8 BASIC; these are referred to as intrinsic functions, and are described
in Chapter 4.

PX-8 BASIC also allows the programmer to define his own functions; for de-
tails, see the explanation of the DEF FN statement in Chapter 4.

2.11.1 Integer functions

The CINT, FIX, and INT functions all return an integer value for an argument
consisting of a numeric expression. These functions are described in detail in
Chapter 4.

(1) CINT
The CINT function rounds the argument to the nearest integer value.

Examples: CINT(1.1) = 1
CINT(0.9) = 1
CINT(-5.4)= -5
CINT(-5.7)= -6

2) FIX
The FIX function truncates the argument; that is, it discards the decimal
portion.
Examples: FIX(1.1) = 1
FIX©0.9) = 0
FIX(-5.4) = -5

FIX(—-57) =-5
3) INT

The INT function returns the largest integer which is less than or equal to
the argument.

2-37

http://www.fastio.com/

ghl

b "LT‘JL

OHO

-~

-

sislalale}

|
L

SUV

SJT

lslela
VY

g

J‘J J_ ur?d—

Y1 U7 XV ¥ Y 'y 'y VF ' W,

2.12 Files

In general, a file is any set of data records which is output to or input from
an external device (such as a disk drive) under a common identifier. This in-
cludes text files containing the program lines of BASIC programs, machine lan-
guage program files and data files. Files can be stored in the RAM disk,
microcassette tape or on floppy disks; however, they may also be input from
and output to other devices. (See Chapter 5 for information on the types of
file organizations used with BASIC for the PX-8.)

2.12.1 File descriptors

With PX-8 BASIC, files are identified by means of descriptors which consist
of a device name and a file name. Together, these are referred to as the “file
descriptor” and are specified as follows.

< device name> <option> < file name>

(1) Device name -
PX-8 BASIC supports the concept of general device 1/0. This means that
input and output access to all devices can be handled in the same manner,
regardless of whether the device accessed is a floppy disk drive, printer, the
microcassette drive, or the RS-232C interface.

The format of all input and output commands is the same regardless of the
type of 170 device. I/0 devices are distinguished from one another by means
of device names; the devices which can be addressed for 1/0 operations in
this manner are as follows.

Name Device Modes
KYBD: Keyboard Input only
SCRN: LCD screen Output only
LPTO: Printer Output only
COM@: RS-232C interface | Input and output
A: to H: Disk devices Input and output
(Input only for ROM capsule)

Device names may be omitted when specifying file descriptors; however, the cur-
rent CP/M default device is assumed if the device name is omitted.

2-39

http://www.fastio.com/

bl

1
TRIRIRIRIRY

ole

8
L

'V

slale
VRV

Nalale
V]

'ﬁu

ale
"V

AARPI PP

LA PARRRE

2.13 Display Screen

This section discusses the types of screens used with PX-8 BASIC, describes
the various screen modes and the manner in which they are used, and explains
the systems of coordinates which are used in specifying the locations of charac-
ters and graphics on the screen.

2.13.1 Real screen, virtual screen, and virtual screen window

With PX-8 BASIC, several different screen concepts are used for display. These
include the real screen, virtual screens and the virtual screen window .

(1) Real screen
The PX-8 LCD screen permits display of up to 8 lines of 80 characters each
or 480 by 64 dots of graphics. The LCD device on which characters and graph-
ics are physically displayed is referred to as the real screen.

EPSON 1

A N NN

l \ N ‘ 0

|

Y o " " & s " e %0 8 |
(T o e PX-8

(2) Virtual screen
Although the LCD screen of the PX-8 allows display of up to 8 lines of 80
characters each, the concept of virtual screens has been introduced to make
it possible to use application programs which require screens with even larg-
er capacities. A virtual screen is not a physical device like the real screen,
but exists in an area in memory which is referred to as VRAM (video ran-
dom access memory) and is displayed through the “window” provided by
the real screen. This VRAM is connected to the PX-8’s 6301 slave CPU, and
cannot be accessed by the PEEK or POKE commands of BASIC. Except
in the graphics screen mode there are two virtual screens. The two virtual
screens are independent of one another and either can be displayed under
program control. In the split screen modes, it is possible to display both vir-
tual screens on the two halves of the real screen.
2-41

http://www.fastio.com/

~ !

NTYT NY NY NV NV

When display is in the graphic screen mode, all of VRAM is used for storing
the settings (on or off) of all the dots in the LCD screen, rather than codes
representing character data.

(1) Screen mode 0 (the 80-column text screen mode)

In this screen mode, the two virtual screens each have a width of 80 columns
(characters per line). The number of lines in each of the virtual screens can
be set as desired by the user, provided that the total number of lines in the
two screens does not exceed 48 and that each screen contains at least as many
lines as the real screen. The virtual screen window can be switched back and
forth between the two virtual screens, and can be scrolled up or down in
the currently selected virtual screen to display its contents.

Virtual Screen 1 Virtual Screen 2

jat——— 80 columns ———————m= jt—— 80 columng —— g

‘| ind /7/
7

N

n2 lines

Conditions: n1=8 h=7or 8
n2=8
n1+n2=<48

(2) Screen mode 1 (the 39-column text screen mode)
In this screen mode, the virtual screen window is split vertically into two
parts, each with a width of 39 columns. The remaining two columns of the

80 making up the real screen are used to display characters which represent
a boundary between the two halves.

Both sides of the virtual screen window are positioned over the same virtual

screen, and the display at the bottom of the left half of the virtual screen
window is continued at the top of the right half.

2-43

http://www.fastio.com/

thiy

tatatsisielalslalelelninieleiel

ala
(VY

A 4

Yy ¥ XNy ¥V ¥

g

(V)

SETTY

AN\

3

Screen mode 2 (the dual screen mode)

In this screen mode, the virtual screen window is vertically divided into two
parts, each of which displays the contents of one of the virtual screens and
which can be scrolled independently of the other. This makes it possible to
display the contents of both virtual screens at the same time.

The width of each part of the screen window can be set as desired by the
user as long as the total number of columns in both parts is equal to 79.
The remaining column of the real screen is used to display a boundary charac-
ter between the two screen windows.

In this screen mode, the two virtual screens each have a column width which
is equal to the width of the screen window which displays its contents. The
number of lines in each virtual screen can be set as desired by the user in
the range from 8 to 48; however, both virtual screens must have the same
number of lines.

80 columns

l«¢——— m1 columns m2 columns ———————————=

h lines

Screen window 1 Screen window 2

Boundary

m2 columns ————————————————#==

n lines

= // | / /

Screen wmdow 2
h lines

= = n lines %
Screen window 1%
/
Virtual screen 1 Virtual screen 2

Conditions: m1+m2=79
h=7or 8
8=<n=<24

245

http://www.fastio.com/

gislshl,

Vel g7 (7

)
H
(V)

L4

'

ol
(V'Y

COOU DU

= P Py
0

AT

T vy V7 ! Wl w!? 7 Y

J U

\»
>
>
SN
4
-
74
-

7

-

y w1 T N NY NV Ny Vy V¥ N

A

T

2.13.4 Scrolling control

The screen window has two scrolling modes, either of which can be selected by

pressing the [SCRN | key ([_SHIFT]+ [INS |) or by escape sequence. These two
modes are referred to as the tracking mode and the non-tracking mode.

(1) Tracking mode
In this mode, the screen window is scrolled along with the cursor (it “tracks”
the cursor). If the cursor is outside the screen window when this mode is
selected from the non-tracking mode, the screen window immediately moves
to the position of the cursor in the virtual screen.

(2) Non-tracking mode
In this mode, the screen window does not follow the cursor.

The following keys are used for scrolling.

0] +[*] (scroll up)

Pressing these keys together scrolls the screen window upward.

) _sHIFT]+ (scroll down)

Pressing these keys together scrolls the screen window downward.

3) + (top-of-screen)
Pressing these keys together moves the screen window to the top of the select-
ed virtual screen.

(4) CcrRL |+ (end of screen)

Pressing these keys together moves the screen window to the bottom of the
selected virtual screen.

When the screen window is scrolled using the four keys described above, the
cursor does not move from its current position in the virtual screen. This
makes it possible to keep the cursor in one position while the screen is moved,
even if scrolling is done in the tracking mode.

(5)|_SHIFT] +[INS J(change scroll mode)
When the same virtual screen is used both as the write screen and the dis-
play screen, this key switches scrolling back and forth between in the track-
ing mode and the non-tracking mode. The scrolling mode used is switched
each time this key is pressed.

2.47

http://www.fastio.com/

eltiohhl,

L. I A WA I 4

olele)

xﬁi‘ H&! u"'o"o%”h

P
VR VIV OH

AR N R R R AR RN S A NI RA A AN R A T I

"

ST

T X7 Ny ¥ \¥V ¥y Y@ VP

LU

With graphic coordinates, dots are numbered horizontally from 0 on the left
side to 479 on the right, and vertically from 0 at the top of the screen to
63 at the bottom.

(0, 0) (479, 0)

{0, 63) (479, 63)

When the positions of individual dots on the screen are specified directly,
the absolute form (< horizontal position >, < vertical position>) is used,
for example PSET (19, 29) would switch on the twentieth dot across on the
thirtieth row. This type of coordinate specification can be used with all graph-
ic statements and functions.

It is also possible to specify the positions of screen dots in relation to previ-
ously specified dots; in this case, the coordinate specification takes the form
STEP (< horizontal position >, < vertical position >). Here, STEP indicates
that the values specified for (< horizontal position >, < vertical position >)
are to be added to the values contained in a pointer called the last reference
pointer or LRP which indicates the absolute coordinates of a previously speci-
fied dot. Relative coordinate specification can be used with the PSET,
PRESET and LINE statements, and the last reference pointer (LRP) is up-
dated by execution of these statements. Thus the following example will plot
a row of ten dots at intervals of ten horizontal positions. Line 20 sets the
position of the first point absolutely and so when line 40 is executed for
the first time the LRP is the position (20, 10).

1@ SCREEN 3

20 CLS

30 PSET (20,1a)

49 FOR J=1 7O 9

S0 PSET STEP (10,9)
60 NEXT J

Ok

2-49

http://www.fastio.com/

ng @ &y GO

The display on the LCD screen is a window on one or both of the virtual text
screens. In mode 0, 1, or 3 only one of the virtual screens is displayed at a par-
ticular time. In mode 2 they can be displayed side by side.

If the screen mode is changed, the real and virtual screens will be cleared.
However, if only the virtual screen is being changed, the window is changed and
there is no clearing of either virtual screen. In illustrating this and successive
operations, it is necessary to see the effect in each screen mode.

(1) MODE 0

The following sequence of operations shows how switching the display between
the virtual screens leaves the virtual screens intact, and then goes on to illustrate
how to move about the screens.

Type MENU and press| RETURN |, or use the shifted function key [PF4].

From the BASIC menu login to a program area.

You will now be in screen mode 0 and see a portion of the first virtual screen.
Without clearing the screen, type SCREEN 0,1 and press the key;
the screen will clear but for “Ok” and a flashing cursor (this is the second virtu-
al screen).

Now type SCREEN 0,0 and press[RETURN |; the first virtual screen will be
redisplayed as you left it, except that the cursor will have moved down and another
“Ok” will have been written onto the screen.

It is possible to switch screens in the direct mode using the and [¢] or
(=] cursor keys. If you hold down the key and press the [«] cursor key
the display will switch to the first virtual screen. If the first virtual screen is be-
ing displayed, then no change will be apparent. Similarly, pressing the
and cursor key will show the second virtual screen. This can only be used
in the direct mode and not in programs, even in INPUT statements.

The and cursor keys also have a function when pressed together with
the key. They cause the first and last displayable lines respectively of
the current virtual screen to be displayed. Depending on whether the screen is
showing the function key assignments, 7 or 8 lines will be shown.

If the cursor is not on these lines it will not be displayed. Set the screen to the
last lines of the virtual screen and type another key. If the key is not ,

2-51

http://www.fastio.com/

L L T |

TU

U

- Al

- '
sl
U

Slyishizie

F“’\
O

Halalals

NV AP WY Ly (Y

4y
O

NP N

-

APRRPRRRARPFIINS

~ !

q

T XF N7 XV NV NP NP Y

()

thhl

This sets the first virtual screen to 40 lines and the second to 8. It also switches
to the first virtual screen if you were not already displaying it, and turns off
the function key assignments display on the bottom line. Note that there is no
reference to boundary character, because there is no division of the screen in
this screen mode, but the comma as separator must be inserted or an error will
occur. You can see the extent of the first virtual screen by using the cursor keys.
Now press the and |=] keys to display the second virtual screen. Now
if you fill the screen with text, e.g. a listing, you can see that the cursor keys
only allow movement on the real screen (because the virtual screen is the same
size as the real screen).

(2) MODE 1

In changing to screen mode 1, use the SCREEN command to show the first vir-
tual screen and turn the function key assignment display off by typing the fol-
lowing SCREEN command and pressing[RETURN |

SCREEN 1,0,

The screen will clear to give a display with a boundary of two characters width
in the centre of the creen. This boundary marker cannot be changed either in
position or as the character displayed.

Use the cursor keys to move down the screen. You will see that when the cursor
reaches the base of the left-hand side of the screen, instead of disappearing off
the bottom and causing the screen to scroll up, it moves to the top right-hand
part of the screen. Only when the cursor reaches the base of the right-hand side
of the screen does the top line scroll off the left-hand side of the screen. Moreover,
the right-hand side of the screen scrolls up into the left-hand side. This is be-
cause the two halves of the screen are displaying 16 lines of the virtual screen
39 columns wide but in two blocks of 8 lines side by side. This can be seen bet-
ter if the following program is run to fill the screen with numbers on each line.

18 CLS

20 FORJ = 1TO 20
36 PRINT J

40 NEXT

Try the following to see how it differs from screen mode 0.

2-53

http://www.fastio.com/

r

N

~ !

Y NY VY Ny

4

LALLM A LN S R A B

Py oy
ipleioipioh

el
o

The boundary character can be reset using an ASCII character code with the
CHRS$() function. For example type the following to change the character to
the vertical line graphics character (ASCII code 134):

SCREEN ,,,CHR$(134)
Note how both of the virtual screens are cleared when this command is executed.

(4) MODE 3

This screen mode is the mixed graphics and text mode. The dots are individual-
ly addressable, using the various graphics commands. This means that the video
memory is largely devoted to storing the graphics information. Consequently
text is limited to one virtual screen. This virtual screen is the same size as the
real screen (80 columns and 8 lines) and so the various combinations of
and cursor keys do not function in this screen mode.

Type SCREEN 3 and press - You can see you have entered graphics
mode, because there is no longer a flashing cursor. It has changed to an under-
line character, which is the same as the insert cursor in the other screen modes.
Thus the only indication of the PX-8 being in the insert mode is that the INS
LED above the keyboard is lit.

As an example of the use of the graphics screen mode, the following command
will draw a line from the top left-hand corner to the bottom right.

LINE (8, 8)— (480, 64)

2-55

http://www.fastio.com/

ikl

LI TR P |
177

o

U

alsls
VRV

M N N Y Ly Ty (T UV W W’ T N Y g g

R

GUUUU

COUL0L.

“,

- v - 7 « ~¥V 1Ty ¥V W’

M

Al

.

With this type of device, the GET and PUT statements cannot be used con-
currently when a file is opened in the random access mode. Further, record
numbers must be used in sequence each time the GET or PUT statement
is executed. (See the explanations of the GET and PUT statements in Chap-
ter 4.)

When the PX-8’s power is first turned on, the device names of the random ac-
cess devices are as shown below. The name assignments can be changed with
the CONFIG command of CP/M; see the PX-8 User’s Manual for procedures
for doing this. These device names are included in the file descriptor with the
file name as described in section 2.12.

RAM disk.......ccccvvvenen.. A: (in main memory or optional
RAM disk unit)

ROM capsule 1.............. B:

ROM capsule 2............... C:

Floppy disk drives D:, E:, F:, G:

Microcassette drive.......... H:)

2.15.2 Sequential access devices

Sequential access devices are devices which can be open as files for input (the
“I” mode) and/or output (the “O” mode). Sequential access devices supported
by PX-8 BASIC and the modes in which they can be opened are as follows.

KYBD: Keyboard, input only

SCRN: LCD screen, output only,

LPT@: Printer, output only

COM@: RS-232C interface, both input and output

Note that the colon is a part of each of these device names, and must be speci-
fied in the file descriptor whenever one of these devices is prepared for input/out-
put by execution of an OPEN statement. However, no file name is specified
following the device name when one of these devices is opened as a file.

Statements and functions which can be used with sequential access devices are
as shown in section 2.15.7 below.

NOTE:

The format for file specification with the RS-232C interface is slightly different
than that of other sequential access devices. See Chapter 6 for details.

2-57

http://www.fastio.com/

inishaly

™
U

-
» U U

™
J

Apiplp

T

PRSI

2.15.6 Other devices

Communication with a number of other devices can be achieved if they have
an RS-232C serial port. Besides transmitting data of a conventional nature (e.g.
text sent over a modem or acoustic coupler) data can also be sent to control
other equipment. Please consult your dealer for further information.

2-59

http://www.fastio.com/

s

- ' 1TF 3F ¥ €W - - N

r

N R A T A N

a7 rF 1y 1y

- F NV «F ¥ Ry Ty T¥F N7 W

AAnRsislssleicirisisisiaiviataislaisiaieleleielple}

. I

r

\ e

1

2.16 Error Messages

Error messages are displayed when errors are detected during execution of BASIC
commands, statements or functions. If errors occur during program execution,
execution stops and BASIC returns to the command level. However, it is possi-
ble to prevent this by including error processing routines which use the ON
ERROR statement and ERR and ERL functions in programs; see the next sec-
tion and corresponding explanations in Chapter 4 for details.

A complete list of the BASIC error codes, error messages, and causes of errors
is shown in Appendix A.

2-61

http://www.fastio.com/

thiy

U

ale
G

v

sle

ole
iR

~
VU

"y
LUV

.,\
U ¢

<3

.
U

ro

Apigiel

e

A AP

o N7 N T

H ~

-~

el

Chapter 3

ENTERING BASIC WITH
EXTENDED FORMAT
COMMANDS

It is possible to enter BASIC with various commands appended which can set
up the number of files allowed, upper memory limit etc. This chapter summarises

these options.
The full syntax of the BASIC command is as follows:

BASIC [<filename>][/F:<no. of files>][/M:<upper memory limit>]
[/S: < maximum record size > J[/P: < program area no.>] [/R: <program area
no.>]

All command operands indicated in brackets ([]) above are optional; the func-
tions of each of the operands are as described below. The brackets are inserted
to show the separation of the options and should not be typed in.

(1) BASIC < filename >

BASIC TEST1

When the name of a BASIC program file is specified following BASIC, that
program is loaded and executed upon completion of the BASIC command in
the same manner as if RUN “ < filename > > had been entered immediately af-
ter start-up. If no file name extension is specified, .BAS is assumed. If neither
the /R: nor /P: options are specified, BASIC starts operation using program
area 1. See section 2.12 for details on < filename>. The above example would
enter BASIC and proceed to RUN the program which was named TEST1 on
the currently logged in disk drive. It would be placed in program area 1.

31

http://www.fastio.com/

¥t

G

o

Sisleld
VR IRY

(U KV BV

L)

JJI

APPSR

I AN AR ERNE AL LN LA R AN N R L AL AR AL R L R R R R
L

el

(4) BASIC /S: <maximum record length >

BASIC /8:256

The /S: <maximum record length> option sets the maximum record length
which can be used with random access files to the value specified in < > the
maximum record length can be specified in decimal, hexadecimal (&H) or oc-
tal (&O) notation. When an OPEN ‘‘R”’ statement is executed after starting
BASIC, the record size specified in that statement cannot be larger than the
value specified with this option. If this option is not specified when the BASIC
command is executed, the maximum record size is set to 128 bytes.

(5) BASIC /P:<program area no.>

BASIC /P:3

The /P: < program area no. > option specifies the program area which is selected
at the time BASIC is started and automatically logs into that area. The value
of <program area no.> must be specified as a number from 1 to 5.

(6) BASIC /R:<program area no.>

BASIC /R:3

As with the /P: option, the /R: < program area no. > option starts BASIC and
selects and logs in the specified <program area no.>; in addition, this option
immediately executes any BASIC program which is present in the specified pro-
gram area. As with the /P: option, <program area no.> must be specified
as a number from 1 to 5.

If both the /P: and /R: options are omitted, the BASIC program menu described
in section 1.3 is displayed when BASIC is started.

If any errors are made while entering the BASIC command, an error messsge
is displayed and the MENU screen or system prompt is redisplayed (depending
on whether or not the MENU screen function is turned on). This also occurs
if sufficient memory is not available for the BASIC working area (cither be-
cause the upper memory limit or the starting address of BDOS is too low).

http://www.fastio.com/

Chapter 5
MICROCASSETTE AND DISK FILES

This chapter describes procedures for creating and accessing files on microcas-
settes and floppy disks (including the RAM disk) with BASIC. The types of
file covered include program files, random access files and sequential access files.
In reading this chapter, keep in mind that file management is a process which
involves a number of interrelated commands and statements, each of which must
be prepared with consideration for the others. Also be sure to specify file descrip-
tors in accordance with the rules described in the “2.12 Files” section of Chap-
ter 2.

A summary of procedures for handling errors occurring during disk access is
included at the end of this chapter, together with a review of general precau-
tions to be observed in using microcassettes and floppy disks.

1

Lelelel 1l

5.1 Program Files

This section reviews the commands and statements used to manipulate program
files. In specifying these commands/statements, remember that the disk drive
which is currently logged in is assumed unless otherwise specified in <file
descriptor > . Thus if BASIC was entered from the command line with the logged
in drive A:, files would be saved to the RAM disk. If you had entered BASIC

N W W Wy

v I

. from the menu with BASIC resident you may not know which is the currently
~ l‘; logged in drive. Also remember that the CP/M operating system will automati-
P- 3 cally assume that the file name extension is explicitly specified.
L
- E‘ ; SAVE < file descriptor>[|,A|]
= ; ’P
4
- [,; This command writes the program in memory to the disk or microcassette un-
4 ‘ ; der the file name specified in < file descriptor > . If neither the A nor P options
- are specified the program is written to the disk or microcassette in compressed

binary format. If the A (ASCII) option is specified, the file is written as a series
of ASCII characters. If the P (PROTECT) option is specified, the file is saved
in encoded binary format. A program saved using the P (PROTECT) option

LA

8.1

http://www.fastio.com/

;)[’"f

et ten tan ben ban R |
QLOLIVUOOULY

WA N
h/. ':
LS L!

v~
J

|
o

NN NN

~ 7

el AL

NTNT NT N N

~T
3\

P‘LQZ .
4]

i

NAME <old filename > AS <new filename >

This command is used to change the name of a file. Specify the current file name
in <old filename> and the new file name which is to be assigned to the file
in <new filename>. This command can be used to rename any type of file,

5.2 Sequential Files

This section describes procedures for creating, accessing and updating sequen-
tial data files. Sequential files are easier to create than random files, but they
are not as easy to update and take longer to access. As the name implies, the
items included in a sequential file are stored in the file in the order in which
they are written, and must be read back in the same order. Because of these
characteristics, sequential files are often used for address books, dictionaries
or other files which are searched from the beginning when they are used and
relatively rarely updated.

The statements and functions used to write to or read from sequential files are
as follows:

OPEN, CLOSE

PRINT #, PRINT # USING, WRITE #
INPUT #, LINE INPUT #

EOF, LOC

http://www.fastio.com/

v\;/ "’3
N j
24 -

» 7 :
P o)
)
o

i

> 2D
> =2
- @

Continue in this manner so that the following items are input to the file.

NAME SECTION DATE OF BIRTH
JOE SOAP ACCOUNTS 08/05/49
FRED BLOGGS ENTERTAINMENT 01/02/60
BETTY JONES ACCOUNTS- 09/09/55
GLORIA SMITH CUSTOMER SERVICE 03/04/62

Note that starting the program again after it has been terminated (that is, after
the file has been closed) erases all the data entered previously and creates a new
file to which the same name has been assigned.

After the program has been executed, if the command FILES “A: is typed a
file “EMPLOYEE.DAT” should have been added to the directory.

5.2.2 Accessing sequential files
The procedures for accessing sequential files are as follows:

(1) Execute an OPEN statement to open the file in the “I” mode.

(2) Read data from the file into variables in memory by executing either the
INPUT # or the LINE INPUT # statement.

(3) Close the file after input has been completed by executing a CLOSE
statement.

Notes:

1) Data is read from the beginning of the file each time the file is opened.

2) If all data included in the file is to be read at once, a DIM statement must
be executed to dimension one or more variable arrays of the appropriate size.

3) An “Input past end” error will occur if an attempt is made to read data
JSrom a sequential file after the end of that file has been reached.

http://www.fastio.com/

-
-
f’g
&
=
=
té
{2
&

4

r

L S

.

)
®)
©)

After all data included in the original file has been written to the second
file, close the original file and delete it with the KILL command.
Write the new information to the second file.

Rename the second file using the name which was assigned to the original
file, then close the file.

The result is a sequential file which has the same file name as the original file,
and which includes both the original data and the new data. A sample program
illustrating this technique is shown below.

1e
20
o
4¢
50
[21%]
7é
8o
P
100
116
156
146
176¢
ige
196
200
210

230

ON ERROR GOTO Z1é 'L;’If file not found,
: jump to 319,
If file exists, write

it to A:TEMP.
OFEN "I, #1,"A:EMFLOYEE. DAT" T O0pen file EMFLOYEE.
? DAT for input.
OFEN "0",#2,"A: TEMP" :'Open temporary file
A TEMP for output.
IF EGF (1) THEN 18¢ 2" IF EOF is encountered
’ jump to 186,
LINE INPUT#1,A% : "Read data into A%,
FRINTHZ, At :TWrite data in A% to
i Az TEMF,
GOTO 96 : T Next data
CL.OSE#1 :TAfter all data has
? been read, original
? file is closed.
FILL "A:EMPLOYEE.DAT" "Kill original file
INFUT "NAME";N% "Add new file entries,

IF N$="XX" THEN 286
LINE INPUT "SECTION? ":S¢

"If XX is typed, close
"file and end program.

ke as ar e

LINE INFPUT "DATE OF BIRTH? "“;D% :°

PRINTH#2,N&; ", ";1S4: ", ": D% PTWrite data to A: TENMP
FRINT: GOTO 220 t "Next data

CLOSE :"Close A: TEMF,

NAME "A: TEMP" AS "A:EMPLOYEE.DAT": "Change filename back
: to "EMFLOYEE.DAT"

IF ERR=5Z AND ERL=36 THEN PRINT "File not found”

? If A:EMFLOYEE.DAT not
exists, display "File
not found”.

CLOSE: END H

http://www.fastio.com/

L3

=
Lo
I
5
L
I
L
L
=
[

. Bl Bl

AN NSNS

5.3 Random Files

More program steps are required to create and access random files than is the
case with sequential files; however, random files have two advantages which make
them more useful when there are large quantities of data which must be fre-
quently updated. The first is that random files require less disk space for storage
because data is recorded using a packed binary format, whereas sequential files
are written as series of ASCII characters. The second advantage is that random
files allow data to be accessed anywhere on the disk; it is not necessary to read
through each data item in sequence, as is the case with sequential files. Random
access is made possible by storing and accessing data in distinct, numbered units
called records.

The statements and functions which are used with random files are as follows.

OPEN, CLOSE
FIELD, LSET/RSET
GET, PUT

LOC, LOF

MKIS$, CVI

MKSS, CvS

MKDS$, CVD

5.3.1 Creating random access files
The steps required to create random files are as follows:
(1) Open the file in the “R” mode.
For example
OPEN “R”, #2, “STOCKLST.DAT”, 50
opens file number 2 as a random access file named “STOCKLST.DAT”.
The record length is 50 bytes. If the record length is omitted, records
of 128 bytes are assumed.
(2) Next, allocate space in the file buffer for each of the variables which are

to be written to the random access file. This is done using the FIELD com-
mand, for example:

59

http://www.fastio.com/

3

=9
=
~2
h—JD
=9
-3

B R

t

{

VARV N

i
'y

JJdJJd

.
\
{
J

\

The following program example allows data to be input from the keyboard
for storage in a random access file. In this example, one record is written
to the file output buffer each time the PUT statement on line 100 is execut-
ed. The record number which is used by the PUT statement is that which
is input at line 30.

10 OPEN"R",#1,"A: STOCKLST.DAT", 36

:"Open file -(1)
20 FIELD#1,2 AS S%,30 AS N$,4 AS C$
:"FIELD data to variables -{2)

T INFPUT "ENTER STOCK NO.";8%
:? Input data items.
40 IF S%=0 THEN CLOSE:PRINT“END":END
:"Enter © to finish.
50 INPUT "ENTER ITEM NAME";A$
60 INPUT "QUANTITY";C%
7¢ LSET S$=MKI$(SL)
:’LSET data to buffer(file buffer -(3)
80 LSET N&=A%
90 LSET Ce=MKS$ (C%L)

190 PUT#1,8% t"Write data to file. ~(4)
110 GOTO 30 : "Next entry
NOTE:

Once a variable name is specified in a FIELD command, do not use that name
in an INPUT or LET statement. The FIELD statement assigns variable names
to specific positions in the random file buffer, and using an INPUT or LET state-
ment to store values in a variable specified in the FIELD statement will cancel
this assignment and reassign the name to normal string space instead of to the
random file buffer.

5-11

http://www.fastio.com/

L

\)

ﬁ

1

lelale

laluls
T

el

HUHU UT)HQJ

VOVLLL

Aplgle

e
J

A\plsinlsigigiaiaia

With random files, the LOC function returns the current record number; that
is, the record number which is one greater than the number of the record last
accessed by a GET or PUT statement. This function can be used to control the
flow of program execution according to the total number of records which have
been written to the file. For example, the following statement ends program exe-
cution if the current record number for file #1 is greater than 50:

IF LOC(1) >50 THEN END

5.3.3 Hints for increased performance

When BASIC is started, memory is automatically reserved for use as random
file buffers. The amount of memory reserved equals the number of bytes speci-
fied in the /S: option (the maximum record length of random files) times the
number of files specified in the /F: option (the maximum number of files which
can be opened at one time). Specify 0 in the /S: option to conserve memory
if random access files are not to be used. Also, specify /F: <number of files >
in the BASIC command if fewer than three files (the default value) are to be used.

5-13

http://www.fastio.com/

pinivisiaiols

le

nlole

O

\s\o\s\s\o\ninisin\n\ olols

The “s” option specifies whether the stop mode or the non-stop mode is to be
used for reading from and writing to the file as follows:

S — Stop mode
N — Non-stop mode

Data is saved to the tape in blocks of 256 bytes. These blocks are duplicated
on the tape. In order to achieve greater accuracy in reading and writing data
these options allow the tape to be stopped between writing the duplicated blocks.
In a normal BASIC SAVE operation data is always written in non-stop mode.
It is possible to LOAD files in the stop mode, for instance:

LOAD “H:(SPROGRAM”

will load the program named “PROGRAM?” from the tape, stopping between
each block. The tape will physically stop and start during this operation. It takes
longer than normal operation and should only be used for loading BASIC pro-
grams if difficulty is experienced in loading a particular program.

In opening a data file for input it is often possible for a “Disk read” error to
occur if the file was originally written in the non-stop mode and is read in the
same mode. Greater reliability can thus be achieved by using the stop mode for
reading back data.

If the option is omitted when the file is opened in the “I” mode, the mode actu-
ally used is that specified when the file was created. When a new file is created
in the “R” mode, data is written in the stop mode unless otherwise specified.

The “v” option specifies whether data is to be automatically verified after be-
ing written, as follows:

V — Data is automatically verified (with a Cyclic Redundancy Check) from
the beginning of the file through to its close after write access has
been completed.

N— Data is not verified.

When omitted, the value set in the system display is assumed.

5-15

http://www.fastio.com/

P e e

JOOUUOVOLLOOUL U U

ik

ke

\plg\stsigininivis\nivipisinisioiale

(2) Errors occurring during output
CLOSE the applicable file immediately if any of the following errors occur
during output with statements such as PRINT # or PUT. The contents of
the file may be destroyed if output is continued.

Device unavailable
Disk write protected
Disk read error
Disk write error

(3) Errors occuring when a file is closed
Although a file will be closed if an error occurs when a CLOSE statement
is executed, the contents of the file are not assured. Further, if an error oc-
curs when an attempt is made to close more than one file with a single CLOSE
statement there is a possibility that some files will not be closed. If an error
occurs in this situation, additional CLOSE statements must be executed un-
- til no further errors occur.

(4) “Disk write protected” error
This error will occur if a disk is changed without having CLOSEd the files
on the original disk. All files should be closed before a disk is changed, then
the RESET command should be executed.
If the disk is changed without closing the files, the RESET command will
close the files. However, it will be necessary to execute the RESET command
a number of times until no further errors occur before the new disk can

be accessed.

5-17

http://www.fastio.com/

pinipiahishh}

U

- .
U o

-

g

lalalalalalale
UUUOUOU

Apipie

T

slole
AN

A a\Rs

Chapter 6

SEQUENTIAL ACCESS
USING DEVICE FILES

This Chapter describes procedures for sequential access to the RS-232C serial

communications interface and other external 1/0 devices such as the keyboard,
screen and printer.

6.1 Using the RS-232C Interface

The PX-8s RS-232C interface makes it possible to connect the PX-8 to RS-232C
compatible devices such as printers, acoustic couplers, or other PX-8s. Support
for RS-232C interface access is a standard feature of BASIC for the PX-8. The
RS-232C port is handled as a sequential input/output device, and is identified
by the device name “COM@:”,

6.1.1 Opening the RS-232C interface

The RS-232C communications interface is opened for data communication by
executing an OPEN statement. The parameters of this statement specify the mode
in which the interface is to be opened (input or output), the file number whicl:
is to be assigned to the device and the communication protocol and control op-
tions. The communication protocol and control options are specified as a string
of up to seven characters, each of which determines the setting of one of seven
communication options. Devices which are connected to the RS-232C port must

be compatible with the communication protocol under which the interface is
opened.

The format for specification of the OPEN statement and the meanings of the
various communication options are described in detail below.

(1) OPEN statement

The general format of the OPEN statement for opening the RS-232C inter-
face port is the same as that used when opening sequential access files on

6-1

http://www.fastio.com/

-
w
| 94
0
4
L=
K

>
o)

alalelele
COIES IS N~

™
LY

ANSRipgl

r
¥

F

AR\ SN

¢

J

ting of one option. The general format of the string specifying these op-
tions is (blpscxh), where “b” specifies the bit rate, “I”” the word length, “p”
the type of parity check to be made, and “s” the number of stop bits be-
tween characters. Option “c” specifies which of the interface’s four control
lines are to be checked when the interface is opened and during data com-
munication. The “x” option specifies whether or not communication is to
be controlled according to XON/XOFF protocol (that is, whether the PX-8
is to issue or respond to “wait until I catch up” requests during communi-
cation with the device on the other end of the RS-232C line), and the “h”
option indicates whether Shift-In/Shift-Out sequences are to be used to in-
dicate whether characters are upper case or lower case (applicable only when
the data word length is 7 bits and when it is necessary to send characters
whose codes are 128 or greater). These options are summarized in the table
on page 6-4.

WARNING:

When using the XON/XOFF or Shift-In/Shift-Out options, make sure they
are reset to off on exiting from the program. It is only possible to set them
Jrom BASIC and not from the CONFIG program of the CP/M utility ROM.

If care is not taken the XON/XOFF or SI/SO options may be set when they
are not required, this can result in the Jollowing problem when machine code
is being received. The SI, SO, XON or XOFF characters may be part of the
machine code. If the receiving compulter has either or both of the XON/XOFF
or SI/SO options set, when these characters are received they will be inter-
cepted by the RS-232C software and acted upon. This means they will be
lost as part of the machine code Jfile. Moreover, if an SO character is received,
the data following will be changed. It will have the high bit set. This will fur-
ther corrupt the file, Similarly XON/XOFF characters can be intercepted and
cause the transmisssion to hang indefinitely.

When using communications programs other than BASIC ones, a warm start

should be made before setting the RS-232C parameters using the CONFIG
program. This ensures that the SI/SO and XON/XOFF parameters are set
to be off.

6-3

http://www.fastio.com/

slalolalaialsisisishy],

L.
K

i
Ks
K,
=
i

Meanings of each position in the “blpscxh” string are as follows.

b — A hexadecimal integer from &HO to &HF which determines the bit rate
as follows:

0 — Send bit rate = 1200 bps, receive bit rate = 75 bps
1 — Send bit rate = 75 bps, receive bit rate = 1200 bps

2 — 110 bps

3 — Not specifiable
4 — 150 bps

5 — Not specifiable
6 — 300 bps

7 — Not specifiable
8 — 600 bps

9 — Not specifiable
A— 1200 bps

B — Not specifiable
C— 2400 bps

D— 4800 bps

E — 9600 bps

F — 19200 bps

I — A number from 6 to 8 which determines the number of bits per charac-
ter (the data word length):

6: 6 bits/character
7: 7 bits/character
8: 8 bits/character

p — A letter which determines the type of parity check to be made:

N: No parity check
E: Even parity
O: 0dd parity

s — A number which determines the number of stop bits to be included
between each character:

I: 1bit
2: 1.5 bits
3: 2 bits

\

http://www.fastio.com/

pey
J

pisleiolel

ipialgl

lala
VRV

8

UV

\g

dorapspsapaas

the line. This prevents data from being lost due to receive buffer over-
flow when the speed of data transmission is greater than the speed with
which data received can be unloaded from the buffer.

X: XON/XOFF protocol used for send control.
N: XON/XOFF protocol not used for send control.

h — A letter which determines whether the shift-in/shift-out (SI/SO) con-
trol sequences are to be used. The SI/SO control sequences are used
when sending 8-bit data with a data word length of 7 bits. Shift-in/shift-
out control can be used only when the data word length is 7 bits:

S: Shift-in/shift-out control used.
N: Shift-in/shift-out control not used.

The (blpscxh) options can be completely or partially omitted when the com-
munications interface is opened; however, spaces must be specified for op-
tions which are omitted if there are any following options. If b, 1, p or s
are omitted, the default values are those which have been set with the CON-
FIG command. If ¢ is omitted, “F” is used, and if x and/or h are omitted,
“N” is used.

(2) OPEN modes

The RS-232C interface can be opened in either the “I”’ or “O” modes. The
“I” mode is specified for input and the “O” mode is specified for output.
If both input and output are to be performed simultaneously, the interface
must be opened as two files (one for input and one for output). In this case,
the communication protocol and control options used are those specified
in the first OPEN statement executed: the options will be ignored if they
are included in the file descriptor of the second OPEN statement.

16 OPEN"I",#1,"COMO: (48NIFXN) "
20 OPEN"\D" s #2, "COMO: (4BE2F) "

106 PRINT#2,A$
110 INPUT#1,B

In the example above, the option specification (48E2F) on line 20 is ignored
and the output file (#2) is opened using the protocol specified on line 10
(68N3FXN).

6-7

http://www.fastio.com/

For
VRS

TJT&YJ{J“J{J‘JUFJ

Jainipizisisinipiplipipis

O

6.1.2 Output to the RS-232C Interface

Statements and functions used for access to the RS-232C interface are as follows:

Statements

OPEN, CLOSE, INPUT #, LINE INPUT #, PRINT #,
PRINT # USING, LOAD, LIST, RUN, MERGE

Functions
EOF, LOC, LOF, INPUTS
The following statements can be used to output data to the RS-232C port.

PRINT #
PRINT # USING

When data is output using these statements, the data format is the same as when
data is output to a disk drive.

(1) Control line checks for the “O” mode

(a) CTS (Clear To Send)
Output to the RS-232C port becomes possible when the level on this line
becomes HIGH.

(b) DSR (Data Set Ready)
When the DSR send check bit is OFF (when bit 2 of option “¢” is 1),
data is output to the RS-232C port regardless of the level on the DSR
line. When the DSR check bit is ON (“0”), data is output after checking
the level on the DSR line and waiting for it to become HIGH.

(2) Errors applicable to the “O’ mode

(a) Device unavailable
The RS-232C interface cannot be used.

(b) Device time out
The level on the DSR line did not become HIGH within a certain period
of time when output to the RS-232C port was attempted after opening
it in the “O” mode with the DSR send check bit (bit 2 of option “c”)
set to ON (“0”). This error also occurs if the STOP key is pressed while
transmission is being deferred for 'some reason.

6-9

http://www.fastio.com/

N

\ds\sisigipinialgialolollslalalalalalalelolelalalninlnlelale)

(b) Device time out

©

This error occurs if the level on the DSR line does not become HIGH
within a certain period of time after an attempt is made to open the
RS-232C interface in the “I” mode with the DSR receive check bit set
to ON (with bit 1 of option “c” set to 0). The same is true if the level
on the DCD line does not become HIGH within a certain period of time
after an OPEN“I” statement is executed with the DCD check bit set to
ON (with bit 0 of option “¢” set to 0)

Device fault

This error occurs if the RS-232C port is opened for input with the DSR
receive or DCD check bits set to ON (with bits 1 or 0 of option “c” set
to 0), and the level of a corresponding line becomes LOW during input.

(d) Device 1/0 error

)

This error occurs if a parity error, overrun error or framing error occurs
during input. Although this error is reset if input is continued, there is
no assurance that data received into the receive buffer at that time will
be correct.

Input past end
This error occurs if the STOP key is pressed during input from the
RS-232C interface with INPUT #, LINE INPUT# or INPUTS.

6.1.4 RS-232C functions

The four functions used with the RS-232C interface are as follows.

EOF
LoC
LOF
INPUTS

(1) EOF (<file no.>)

This function returns — 1 (true) when the receive buffer is empty, and 0 (false)
when the buffer is not empty.

(2) LOC (<file no.>)

This function returns the number of bytes of data remaining in the receive
buffer.

6-11

http://www.fastio.com/

o

With PX-8 BASIC, a printer and the LCD screen are supported as sequential
output devices. This means that data can be output to the printer or screen us-
ing the file output statements (PRINT # and PRINT # USING), as well as the
dedicated printer/display statements LIST/LLIST and PRINT/LPRINT,

6.2 Printer and Display Screen

YQV 7

N

y ﬁ

. The device name used to open the printer as a device file is “LPT®:”, and that
7 l used to open the display screen is “SCRN:”.

. ’[3[(1) Statements

: Statements which can be used for output to the display screen or printer
4 Ig when it is handled as a device file are as follows:

, (3

. - OPEN, PRINT #, PRINT # USING, CLOSE, LIST “ < file descriptor > ”
’ i

; 3 (2) Errors

. [: The “Device time out” error will occur if the printer is not ready for output
': Ej (because it is offline or out of paper, for instance).

S Eﬁ

> LQ

L2

e

o~

STV

VAR Y

Tl s NT N NN N Y Y G

e

6-13

.

http://www.fastio.com/

ot
x>
x>
x>
~ o4
—
—
o
x>
£
K-,
E:
k.
&
=
LS
L~
_
=
B

Appendix A ERROR CODES AND
ERROR MESSAGES

When an error occurs in a BASIC program, it is detected by the interpreter and
a message is printed. In most cases the error stops the program and will not
allow it to continue. BASIC will return to the direct mode and present the error
message. It will not always be obvious what exactly has caused the error. It may
be something as simple as a mistyped command which BASIC does not recog-
nise, an error of logic or any one of a series of programming faults. This appen-
dix is an attempt to help the user/programmer to find out what exactly he has
done wrong. It is not easy to cover each and every cause of an error, because
some errors are particular to the logic of a program and simply cannot be predict-
ed. However, many are due to definite reasons, and these are described below.

Each error has a code associated with it, which is useful for trapping errors and
also simulating them. See ERROR, ON..ERROR, ERR and ERL in Chapter
4 for details of their use. A list of errors in numerical order is given at the end
of this section. However, as the error is normally encountered as a message, the
details of each error are given in alphabetical order. The number at the left of
each error is the error code.

54 Bad file mode

A statement or function was used with a file of the wrong type.

Possible causes:

() An attempt was made to use PUT, GET or LOF with a sequential file.
(ii)) A non BASIC program file was specified in a LOAD command.

(iii) A file mode other than I, O, or R was specified in an OPEN statement.
(iv) An attempt was made to MERGE a file that was not saved in ASCII format.

64 Bad file descriptor

An illegal file name was specified in a LOAD, SAVE or KILL command or an
OPEN statement (for example, a file name with too many characters).

52 Bad file number

A statement or command references a file that has not been opened, or the file
number specified in an OPEN statement is outside of the range of file numbers
that was specified when BASIC was started.

Al

i
|
1
1
|

http://www.fastio.com/

ot
x>
x>
x>
~ o4
—
—
o
x>
£
K-,
E:
k.
&
=
LS
L~
_
=
B

Appendix A ERROR CODES AND
ERROR MESSAGES

When an error occurs in a BASIC program, it is detected by the interpreter and
a message is printed. In most cases the error stops the program and will not
allow it to continue. BASIC will return to the direct mode and present the error
message. It will not always be obvious what exactly has caused the error. It may
be something as simple as a mistyped command which BASIC does not recog-
nise, an error of logic or any one of a series of programming faults. This appen-
dix is an attempt to help the user/programmer to find out what exactly he has
done wrong. It is not easy to cover each and every cause of an error, because
some errors are particular to the logic of a program and simply cannot be predict-
ed. However, many are due to definite reasons, and these are described below.

Each error has a code associated with it, which is useful for trapping errors and
also simulating them. See ERROR, ON..ERROR, ERR and ERL in Chapter
4 for details of their use. A list of errors in numerical order is given at the end
of this section. However, as the error is normally encountered as a message, the
details of each error are given in alphabetical order. The number at the left of
each error is the error code.

54 Bad file mode

A statement or function was used with a file of the wrong type.

Possible causes:

() An attempt was made to use PUT, GET or LOF with a sequential file.
(ii)) A non BASIC program file was specified in a LOAD command.

(iii) A file mode other than I, O, or R was specified in an OPEN statement.
(iv) An attempt was made to MERGE a file that was not saved in ASCII format.

64 Bad file descriptor

An illegal file name was specified in a LOAD, SAVE or KILL command or an
OPEN statement (for example, a file name with too many characters).

52 Bad file number

A statement or command references a file that has not been opened, or the file
number specified in an OPEN statement is outside of the range of file numbers
that was specified when BASIC was started.

Al

i
|
1
1
|

http://www.fastio.com/

aslsisisiainipipisitisishhl

iatat

UH’OFU "

\o\ringpininisisiglely

(i) Transmission via the RS-232C interface was not enabled within a certain
period of time after an OPEN”QO” statement was executed with the DSR
send check set to ON by option “c” of the communications format specifi-
cation.

(ii)) The STOP key was pressed while output to the RS-232C interface was be-
ing deferred for some reason.

(iii) The DSR or DCD line did not become high within a certain period of time
after an OPEN“]” statement was executed with the DSR receive check or
DCD check set to ON by option “c” of the communications format specifi-
cation.

(iv) The printer was not ready when output to the printer was attempted.

68 Device unavailable

An attempt was made to access a drive which did not contain a floppy disk or
the RS-232C interface was not available. '

66 Direct statement in file

A program line without a line number was encountered during execution of a
LOAD or MERGE command, or an attempt was made to LOAD a data file
or machine language program.

61 Disk full

Either the disk directory or the disk itself has no space left.

76 Disk read error

An error occurred while data was being read from a disk device.

71 Disk write error

An error occurred while data was being written to a disk device.

69 Disk write protect

Possible causes:

(i) An attempt was made to write data to a disk which is protected by a write
protect tab.

(ii) An attempt was made to write data to a disk drive without executing the
RESET command after replacing the disk in that drive.

(iii) An attempt was made to write data to a ROM capsule.

A3

http://www.fastio.com/

‘V

Yy

=
8 >4
g >
2
i
}:
&

v

Al

A4

NY¥Y NV N NV

ARY

= Fr X F XV N7

\delele

12 [Illegal direct

A statement that is illegal in the direct mode (such as DEF FN) was entered
as a direct mode command.

5 IHegal function call
A statement or function was incorrectly specified.
Possible causes:

(i) Specification of a negative number or a number which is too large as an
array variable subscript.

(ii) Specification of zero or a negative number as the argument in the LOG
function.

(iii) Specification of a negative number as the argument of the SQR function.

(iv) Specification of a non-integer exponent with a negative mantissa.

(v) A call to a USR function for which the starting address has not yet been
defined.

(vi) An incorrectly specified argument in any of the following functions or
statements:
ALARM, ALARMS, ASC, CSRLIN, INP, INSTR, LEFTS$, LOCATE,
MIDS$, ON...GOSUB, ON...GOTO, OUT, PEEK, POKE, POWER,
PRESET, PSET, RIGHTS, SCREEN, SPACES, SPC, STRINGS, TAB,
VARPTR, WAIT, WIND.

(vii) Specification of a non-existent line number in a DELETE statement.

(viii) Attempting to erase a non-existent variable array with an ERASE statement.

(ix) Specification of a number other than 1 to 5 as the parameter of a LOGIN,
PCOPY or STAT statement.

(x) Execution of a RENUM command with parameters which do not conform
to the rules for specifying such commands.

(xi) Specification of an undefined array variable or a variable whose value has
not yet been defined in a SWAP statement.

(xii) Execution of the EDIT command when the virtual screen window was less
than 38 columns wide.

(xiii)Specification of a number other than 1 to 10 as the parameter of a KEY
command.

62 Input past end

Possible causes:

(i) An INPUT statement was executed for a file which was empty or one from
which all data had been read. To avoid this error, use the EOF function
to detect the end of the file.

A5

http://www.fastio.com/

pipithizhy

yinielalel

Q

Eanl

ale

JouLl

alaimls
YR

Apiply

ints

rr
VY

\N\ AR

7 Out of memory
Memory available is insufficient for processing required.

Possible causes:

(i) Program is too long.

(ii) The program uses too many variables.

(iii) The subscript range specified in a DIM statement is too large.

(iv) An expression has too many levels of parentheses.

(v) FOR..NEXT loops or GOSUB...RETURN sequences are nested to too many
levels.

(vi) The stack area size or machine language area specified in a CLEAR state-
ment is too large.

(vii) Insufficient memory was available to allow a program to be copied with
the PCOPY statement.

14 Out of string space

Insufficient memory space is available for storage of characters in string variables.

6 Overflow

A numeric value was encountered whose magnitude exceeds the limits prescribed
by PX-8 BASIC. If underflow occurs, zero is assumed and execution continues
without error.

Possible causes:

(i) The result of an integer ca‘lculation was outside the range from -32768 to
32767.

(ii) The result of a single or double precision number calculation was outside
the range from 1.70141E38 to — 1.70141E38.

(iii) One of the operands of a logical operation was not in the range from — 32768
to 32767.

(iv) The argument specified for the CINT function or POINT statement was
outside the range from — 32768 to 32767.

(v) The argument specified for the HEX$ or OCT$ function was outside the
range from — 32768 to 65535.

(vi) The number specified as one of the parameters of the LOCATE or WIND
statements was outside the prescribed range.

26 RESUME without error

A RESUME statement was encountered outside an error processing routine.

A-7

http://www.fastio.com/

giaisisisiaiplslel;

Anlalala
ARV

r
Jo o

Appipls

\ARANS

A

(iii) Unmatched parentheses.

(iv) Wrong delimiting punctuation (commas, full stops, colons or semicolons)
used between statements, expressions or arguments.

(v) Variable name beginning with a character other than a letter.

(vi) Keyword used as the first letters of a variable name.

(vii) Wrong number or type of arguments specified in a function or statement.

(viii)Type of value included in a DATA statement did not match the correspond-

ing variable in the list of variables specified in a READ statement.

72 Tape access error

Possible causes:

(i) An attempt was made to access an access-inhibited microcassette file,

(ii) An attempt was made to mount a tape without executing the REMOVE
command to unmount the previous tape.

(iii) The REMOVE command was executed while the tape in the microcassette
drive was in the unmounted condition.

(iv) An attempt was made to change the setting of the tape counter while the
tape in the microcassette drive was in the mounted condition.

67 Too many files

An attempt was made to create a new disk file after all directory entries were full.

13 Type mismatch
A string expression was used where a numeric expression is required, or vice versa.

Possible causes:

(i) An attempt was made to assign a numeric value to a string variable.
(ii) An attempt was made to assign a string to a numeric variable.

(iii) The wrong type of value was specified as the argument of a function.
8 Undefined line number

A non-existent line number was specified in one of the following commands
or statements — EDIT, GOTO, GOSUB, RESTORE, RUN, RENUM — or when
attempting to delete a non-existent line by typing a number and pressing the
RETURN key.

18 Undefined user function

A call was made to an undefined user function.

Possible causes:

A-9

http://www.fastio.com/

pigishl;

iglaialyl

.Y w7 vy UV W,

1Tw ¥ 7

Lala

0@000

is
J U

A LR A A

mr
V)

I

r“
'Y

v

v X

yy

4

NT NV NV ‘Y

~ !

\dgls

ANy

17 Can’t continue

18 Undefined user function
19 No RESUME

20 RESUME without error
21 Unprintable error

22 Missing operand

23 Line buffer overflow

24 Device time out

25 Device fault

26 FOR without NEXT

28 Communication buffer overflow
29 WHILE without WEND
30 WEND without WHILE
50 FIELD overflow

51 Internal error

52 Bad file number

53 File not found

54 Bad file mode

55 File already open

57 Device 1/0 error

58 File already exists

61 Disk full

62 Input past end

63 Bad record number

64 Bad file descriptor

6 Direct statement in file
67 Too many files

68 Device unavailable

69 Disk write protect

70 Disk read error

71 Disk write error

72 Tape access error

Al

http://www.fastio.com/

W

-

A B

A B

-

pitiizhl

!
Y

lapizhalal

T v

o U

!

alalalale
G

lale
VIRV Y

- 7N NEY s e e

3

Sy
1

"

LA deigialel

Appendix C PX-8 BASIC CONSOLE

ESCAPE SEQUENCES

Whereas BASIC as a high level language has a large number of commands and
functions, it is also possible to print sequences of characters which will allow
further or additional commands which affect output to the screen. This appen-
dix deals with the use of these commands. Some of them are not additonal to
BASIC but duplicate BASIC commands in a way which can make programming
easier for advanced programmers in some circumstances.

The sequences involve the printing of the ESCAPE character, ASCII code 27
decimal (1B in hexadecimal), followed by one or more characters, the values of
which determine the command to be carried out. In the remainder of this ap-
pendix the ESCAPE character is denoted by the letters “ESC”. The User’s Manu-
al contains further information on using the sequences under CP/M or in
machine code programs. Not all the commands are supported in BASIC, for
example because they interact with the screen editor.

The following table lists the character sequences for the commands alphabeti-
cally to make them easy to find. Notes on the use of the commands and
parameters are given in numerical order following the table. The numerical values
are given in decimal notation in the table and headings.

Control Code| Function Control Code| Function
ESC ““%” | Access CGROM directly ESC 213 End locate
ESC 243 Arrow key code ESC 215 Find cursor
ESC 246 Buffer clear key ESC 177 Function key code returned
ESC ¢“C” | Character table ESC 176 Function key string returned
ESC 246 Clear keyboard buffer ESC 211 Function key display select
ESC ““*** | Clear screen ESC ““C” | International Character Sets
ESC 245 CTRL key code ESC 161 INS LED off
ESC 215 Cursor find ESC 160 INS LED on
ESC 243 Cursor key code ESC 242 Key repeat interval time
ESC “="" | Cursor position set ESC 240 Key repeat on/off
ESC 214 Cursor type select ESC 241 Key repeat start time
ESC “P” | Dump screen ESC 244 Key code scroll
ESC “T”’ | Erase to end of line ESC 247 Key shift set
ESC ““Y”” | Erase to end of screen ESC ““T”’ | Line erase
ESC 210 Display characters on real screen ESC 198 Line dot draw
ESC 208 Display mode set ESC 213 Locate end of screen
ESC 198 Dot line write ESC 212 Locate top of screen
C1

http://www.fastio.com/

ESC “070”

Reads the character corresponding to the specified code from the character gener-
ator ROM and displays it at the present cursor position in the currently selected
screen (in the virtual screen for modes 0, 1, and 2, and in the reai screen for
mode 3). The sequence is as follows:

PRINT CHRS$(27); “%” ; CHR$(n)
The value of n is the ASCII code corresponding to the character to be displayed.

ESC [sk ”

Clears the currently selected screen and moves the cursor to the home position.

ESC “__

Moves the cursor to the specified position in the screen being written. In the
tracking mode, the screen window is moved so that the cursor is positioned at
screen centre if the position specified is outside the screen window. The track-
ing mode is turned on and off by pressing the SHIFT and SCRN keys together.
The sequence for moving the cursor is as follows:

PRINT CHR$(Q27); “ = ” ; CHR$(m +31); CHRS(n +31);

Here, m specifies the vertical cursor position and n specifies the horizontal po-
sition. The value of n should be greater than 1 and less than the screen width
in the particular screen mode being used. The value of m should be greater than
1 and less than the number of lines in the virtual screen.

The ESC “=" sequence duplicates the LOCATE command with its first two
parameters.

ESC “C” <character>

Used to select one of the nine international character sets as follows:

The <character > is a letter which corresponds to the character sets of one of
the following countries. It must be an uppercase character.

US ASCII PRINT CHR$(27); “CU”
France PRINT CHR$(27); “CF”
Germany PRINT CHRS(27); “CG”
England PRINT CHR$(27); “CE”
Denmark PRINT CHR$(27); “CD”

C-3

http://www.fastio.com/

-

Al

pish].

QUULOLOUUL

-

e

-

alalsleivinlein
B2 U QUOLU

\

mr

VULV

At

ad

B

ARt A st el ety

blank. This is done as follows:
PRINT CHRS$(27); CHR$(144) ; CHR$(n - 1) ; CHR$(m) ;
Numbers specified for n and m must satisfy all of the following conditions.

=m-1) =®R-1
1=mz=R
m-1+m-1) = R

Here, R is the number of virtual screen lines in mode 0, 1, or 2 and is the num-
ber of screen window lines in mode 3.
ESC CHR$(145)

Scrolls (n— 1) lines down starting at line n so that line n becomes blank. This
is done as follows:

PRINT CHR$(27);CHR$(145); CHR$(n-1); CHR$(m);
Numbers specified for n and m must satisfy all of the following conditions:
f<=m-1)=R-1

1=mz=<R
m-1+m-1) < R

Here, R is the number of virtual screen lines in mode 0, 1, or 2 and is the num-
ber of screen window lines in mode 3.
ESC CHR$(148)

In modes 0, 1, and 2 this escape sequence sets the number of lines n which are
moved by one scrolling operation. The actual scrolling is carried out by printing
an ESC 150 sequence. The number of lines are set up using the following se-
quence:

PRINT CHR$(27); CHR$(148) ; CHRS$(n);

The number specified for n must be greater than 1 and less than the number
of lines in the screen window.

This escape sequence does nothing in mode 3.

ESC CHR$(149)

In modes 0, 1, and 2 this escape sequence determines whether scrolling is per-
formed automatically. The automatic scrolling mode is referred to as the track-

C-5

http://www.fastio.com/

pithh]

LYy

i

= =

A

VRV VNV

ainlsleieiels
CEVEVEY)

sloiw
VEVIREY

O8O

AR siatstatele

Ly O

\$

¢

b

b

ESC CHR$(164)
Lights the NUM LED, but does not select the numeric keypad.

ESC CHR$(165)
Turns off the NUM LED.

ESC CHR$(176)

This ESC code is used to disable the string printed by a programmable function
key. However, with input from the command line or from an INPUT statement
the PX-8 will be returned to the normal string printing mode of the program-
mable function keys. If you wish to determine if any of the programmable func-
tion keys have been pressed, use the ESC CHR$(176) mode in combination with
INPUTS or with INKEYS$. An example of this is shown below.

1@ FRINT CHR$ (&H1E) ; CHRS$ (4HEB) ;
20 PRINT HEX®(ASCCINFUTS(1))) 3" "3
39 GOTO 2

run
E® E1 E2 ET E4 ES E4 E7 EB E9

L S S N D T S I O

[FF7)i(Pre)
ESC CHR$(177)

This ESC code re-enables the programmable function keys so that a string is
printed when they are pressed.

ESC CHR$(198)

In mode 3, this escape sequence draws a line on the graphic screen using the
dot pattern specified by the user. No operation is performed when this sequence
is executed in modes 0, 1, or 2. The elements of the sequence are as follows:

Byte 1: CHR$(27)
Byte 2: CHR$(198)

Byte 3: High byte of horizontal starting position
Byte 4: Low byte of horizontal starting position
Byte 5: High byte of vertical starting position
Byte 6: Low byte of vertical starting position
Byte 7: High byte of horizontal ending position
Byte 8: Low byte of horizontal ending position

Byte 9: High byte of vertical ending position

C-7

http://www.fastio.com/

F’:

2

!

DDLUV I UL OUIUU

-

\ N (P [NN
PR P P R R -

Vwod

™
w

\]

ST,

ST

ARY

CRAARAL R R IR AR A R AR R

\els

YVl)

\g

Byte 1;
Byte 2:
Byte 3:
Byte 4:
Byte 5:
Byte 6:

CHRS$(27)

CHR$(199)

Function code (1:PSET, 0: PRESET)
Vertical dot position — nl

High byte of horizontal dot position}
Low byte of horizontal dot position

Numbers specified for nl and n2 must be in the following ranges:

§=<nl=<630=<n2=<479

ESC CHRS$(208)
Switches the display mode. Mode specification is as follows:

Mode 0

Byte 1:
Byte 2:
Byte 3:
Byte 4:
Byte 5:

Mode 2

Byte 1:
Byte 2:
Byte 3:
Byte 4:
Byte 5:
Byte 6:

nl
n2
m

p

Mode 1
CHR$(27) Byte 1: CHRS$Q27)
CHR$(208) Byte 2: CHR$(208)
CHRS$(0) Byte 3: CHRS$(1)
CHR$(nl) Byte 4: CHR$(nl)
CHR$(n2)

Mode 3
CHRS$(Q27) Byte 1: CHR$Q27)
CHR$(208) Byte 2: CHR$(208)
CHRS$(Q2) Byte 3: CHRS$(3)
CHRS$(nl)
CHRS$(n2)
CHRS$(p)

The meanings of nl, n2, m, and p are as follows:

Number of lines in virtual screen 1

Number of lines in virtual screen 2

Number of columns in virtual screen 1

ASCII code corresponding to desired boundary
character

http://www.fastio.com/

ghth)

o'
]
0

1

VUOOULULUU

14

7 3
-

3

Yo
—

v {
siainlalele
N7

OJ I W

i

¥
O

ARglats\ sl alole

YE XV YR P A

l! vi ¥ Q:F*v Yy

ESC CHR$(211)
Turns on or off display of function key definitions. This is done as follows:

PRINT CHR$(27); CHR$(211) ; CHR$(n)

Function key definitions are displayed when 0 is specified for n, and are not
displayed when 1 is specified. The default value is 1.

ESC CHR$(212)

In modes 0, 1, and 2 this escape sequence moves the screen window to the top
of the virtual screen containing the cursor. No operation is performed if this
sequence is executed in mode 3. The position of the cursor remains unchanged.

ESC CHR$(213)

In modes 0, 1, and 2 this escape sequence moves the screen window to the end
of the virtual screen containing the cursor. No operation is performed if this
sequence is executed in mode 3. The position of the cursor remains unchanged.

ESC CHR$(214)

In modes 0, 1, and 2 this escape sequence selects the type of cursor to be dis-
played. This sequence does nothing if executed in mode 3. The sequence con-
sists of three bytes as follows:

Byte 1: CHR$(27)
Byte 2: CHR$(214)
Byte 3: CHR$(n)

Here, n specifies the type of cursor displayed as follows:

0 Block cursor, flashing

1 Block cursor, non-flashing

2 Underline cursor, flashing

3 Underline cursor, non-flashing

The cursor will be set to the normal flashing block cursor if the return key or
one of the cursor keys is pressed.

C-11

http://www.fastio.com/

-

7}

4

3

P e

JJ Uy

N 7 N

-
J

ey

D

g slely

. N
Q_F

S e

B

inalalels

-~

\f\gle

ehhh),

POV UUOULOYUUU

Note:

User character definitions for codes 224 to 239 can be displayed by pressing the
graph key together with certain other keys on the keyboard. Keys pressed for each
code are as shown in the figure below.

g ' U |1 220
C I T 1111 1236)| (22

1 2 3 4 5 6 7 8 9 0 - A
(225) |1(226))(227)|(228)1(229)|/(230} (23 1)[|(232){| (233)||(224)| (234} 235)

Q |W (E R T Y u I o (P @

A |IS D |F G |H J K L

(237)

* Press together with key.

A sample definition for character code 230 is shown below:

PRINT CHR$(27); CHR$(224) ; CHR$(239) ; CHR$(12);
CHRS$(12) ;CHR$(38) ; CHR$(63) ; CHR$(12) ; CHR$(18);
CHRS$(9) ;CHR$(9);

After executing this sequence, the character corresponding to code 230 can be
displayed by pressing and the key marked “230” in the figure above.

ESC CHR$(249)
Controls the key repeat function. This sequence consists of three bytes as follows:

Byte 1: CHRS$(27)
Byte 2: CHR$(240)
Byte 3: CHR$(n)

If 0 is specified for n, the repeat function is turned off. If 1 is specified, it is
turned on.

ESC CHR$(241)

Sets the starting time for the key repeat function. The sequence consists of three
bytes as follows:

C-13

http://www.fastio.com/

hhl,

U

}

"""

U dUUU

P

aglapidlly

\ s\ s pieind

ESC CHR$(245)
Sets the + arrow key codes. This sequence consists of six bytes as follows:

Byte I: CHRS$(27)
Byte 2: CHR$(245)

Byte 3: Code for + |
Byte 4: Code for + ‘
Byte 5: Code for + |
Byte 6: Code for [CTRL] +

ESC CHR$(246)

Clears the keyboard buffer of all unprocessed input characters.

ESC CHR$(247)

The ESC 247 code allows the programmer to switch the various shift keys on
and off. Thus the numeric key pad can be set on, or the shift key ‘held down’.
The key state is set to normal by the user pressing the appropriate key, so it
is advisable to program with the possiblity in mind that the key may be reset
outside program control.

The sequence of characters is as follows:

Byte 1: CHRS$(27)
Byte 2: CHR$(247)
Byte 3: CHRS$(n)

Numbers which may be specified for n and their meanings are as follows:

n (Decimal) Shift state
0 Normal
2 SHIFT
4 CAPS LOCK
6 CAPS LOCK SHIFT
16 NUM
18 Numeric SHIFT
32 GRPH
34 GRPH SHIFT
64 CTRL
66 CTRL SHIFT

This sequence does nothing if numbers other than those above are specified for n.

C-15

http://www.fastio.com/

1‘)

L

==
L

<

Y

¥

.
o J

-
<L

P T . . - -
VOOV D HOUOU

o~

R

N
o

Al

\de\als

Here, <digit> is a number from 0 to 9 and the argument specified is any
numeric or string expression. <digit> specifies which of the USR routines
is being called, and corresponds to the digit specified in the DEF USR state-
ment for that routine. If <digit> is omitted USRO is assumed. The address
specified in the DEF USR statement determines the starting address of the
subroutine.

When a USR function call is made a value is placed in CPU register A which
specifies the type of argument specified. The value placed in register A may
be any of the following.
Value Type of argument
2 Two-byte integer (two’s complement)

3 String
4 Single precision floating point number
8 Double precision floating point number

If the argument is an integer

FAC+0 contains the lower 8 bits of the argument
FAC+1 contains the upper 8 bits of the argument.

If the argument is a single precision floating point number

FAC+0 contains the lowest 8 bits of the mantissa

FAC+1 contains the middle 8 bits of the mantissa

FAC+2 contains the highest 7 bits of the mantissa (with leading 1
suppressed). Bit 7 is the sign of the number (0 for positive
and 1 for negative)

FAC+3 is the exponent minus 128. The binary point is the bit to
the left of the most significant bit of the mantissa.

If the argument is a double precision floating point number, FAC-4 to FAC-1
contain four more bytes of the mantissa with the lowest 8 bits in FAC-4.

If the argument is a string, the DE register pair points to three bytes called
the “string descriptor.” Byte 0 of the string descriptor contains the length of
the string (0 to 255); and bytes 1 and 2 are the lower and upper 8 bits of
the starting address of the string in string space.

CAUTION:

If the argument is a string literal in the program, the string descriptor will point
to program text. Be careful not to alter or destroy your program in this way.
1o avoid unpredictable results, add +* ” to the string literal in the program.

D-2

http://www.fastio.com/

w' w? w97 LK VY

-

Al

B |

¥

N owr Ny N L Ty Uy VY QY G w N NY
UV IRV AP VPP R U ¥

Y N Na
ut\ "<¥ x‘ P L)
OJJOUl)UO\bbuoif

ARR

N NN
d

349

4"*’

4

"

4. Interrupts
Machine language subroutines can be written to handle interrupts. All inter-
rupt handling routines should save the stack, registers A to L and the PSW.
Since an interrupt received automatically disables all further interrupts, they
should always be re-enabled before returning from the subroutine,

http://www.fastio.com/

|
|
|

T_H‘Wmmmm%mmmmmmmmmm
(M
R E..HH_.ﬂ. ap\wm
JRERERERERERERERERERERERERERERERE S
<3 i L5
@) T N e B S e ot S S N WA) =g
of S E & I EEEELEEEEEEEEE Mw
= g
SEEREREREREREREBEREREREBERERERERIE g 9
o BBl E e e E EE EEEE R
M nr 33
N EEREREREREREREREREREREBERERERERE o O
< g B EEEEEETEEEEE e 83
.I..Q.'Ql.rufa*ﬂuxtnm!l I no
C sw+.,T1f*|r1._J%l-I._ mahm
e G EEE EEEEETEEETE TR — 3 O R
S Sl dr e e 3]e = AW e |- ;4 O MMOH b
<Y I EHFEEEEEEEEE BB EE @ 5§59 =
D o O L I T o T o e RS PV P O o CIE2
) SR RERERERE REACRERERCRERERERERERE 30 8%
S 0 Sl 1o la ln = |2 |5 = =M o s m e | MSd 3
o~
O S8 Bl e EEEEEEE ST 8%
A Sl i lw o o |w e o |z |w = | |a iz |z |o mew
N CRERERERERERERERERERC RERERERERE P 8Sy
F Slm =l lw i w e o o i e e S R .w 1
MR E R RE RN RE RERC AERE RERERERE 28 8¢
m SU& |- |= % | v |~ e [+ e oﬂ. l ﬂ 3 -
2 NFIRERERERERERERERERCRERERENERCRERE TS
1S3 gusuolwn
S BN RERGHE RS NG RCNCRCRERENERERERERE S888%
3 htcr
[~ isiss/ 81 al2 zi8lslel=lglalelclelalel= &tpmﬂ,m
x *fle%| 8188|8555/ 5|8 8 gle|lglg|¢E E%”MW%
: "
A MN00123456789ABCDEF 0((CFU
2~ oo

e e S S I T Tl

http://www.fastio.com/

r vy

“

»

|

ah

VOOV OVIUUUULUO

- e W W W
---!q

~ e N T Y

OO U

TN NY N N T Ny Y T

-

O O O UL

.

N~ N7 NTY w

iSnsniglp

4

AL T

AR

=

1 w0

Appendix G MEMORY MAP

0000H j
System Area
100H

BASIC
interpreter

7D00OH

BASIC work area

BASIC program
variable area

by

String area

Stack area

yyyyH
Machine language
area

BDOS

zzzzH

BIOS entries

RAM disk

User BIOS area

System area (SKB)

FFFFH

yyyyH Can be found at memory addresses 7D38H and 7D39H. Address
7D38H contains the lower byte of yyyyH and address 7D39 con-
tains the higher byte.

zzzzH......... Varies according to the size of RAM disk.
2zzzH can be found in locations 6 and 7 in page zero. From
BASIC, :
PEEK(6)+PEEK(7) * 256
will return the present value of zzzzH.

G-1

http://www.fastio.com/

The pattern which makes up each row is specified by the bit settings of the
number, sent as an ASCII code. It is easiest to design the characters on
squared paper and translate it into numbers, Dots in the pattern which are
turned on correspond to a “1” in the binary number and dots which are
turned off correspond to a “0”, The design which gives the pattern must
be converted from binary into a decimal or hexadecimal number. For those
not familiar with converting the binary numbers to decimal the procedure
is best explained with an example.

L L [T T+T T>T+]

The pattern in the diagram shows which dots of the line will be set. This
particular pattern would correspond to the binary number “00101011”, To
convert the number to decimal, add the numbers above the boxes where
there is dot to be set. Thus 32+8+2+1 gives a total of 43. For a whole
character a pattern would be produced as follows. The numbers at the right
are the ones which would define the row in a program.

128 64 32 16 8 4 2 1

* * = 12

* * * * = 30

* * = 33
* * = 33
* * = 18

* | % =12

* * * * * * = 63
=0

Characters are six dots wide by eight high. The two left-hand positions are
always ignored. The numbers used to define the rows will thus be in the
range 0 to 63 (0 to 3F hexadecimal). Any attempt to use the left-hand two
positions of the full eight bits of the byte will be ignored.

If the bottom row of the character is filled in there will be no space be-
tween the character printed and the character on the next row of the screen.
If you want the two characters to be contiguous, dots on this row should
be set; otherwise the row should be left blank.

H-2

http://www.fastio.com/

N7 e e el e

igls ”ﬂﬁ%’ﬂﬂtﬁt s

™
VR

AR A N . LA IR I

N

v

A "I

S -

N ¥

N~

SN T s 5

e

A\ g o0} o\ ol o ol o]

=

A

100 PRINT CHR$ (X) § CHRS (X+1) 5

119 NEXT:PRINT

120 FOR X=%HE2 TO YHFE STEP 4

130 PRINT CHR$ (X)§CHRS (X+1);

140 NEXT:PRINT'

100G DATA SHO2, LHO2Z, LHA2, LHOZ, XHO2 , LHOT, LHOF , LHOO
1010 DATA &HOO,LH30, XHOO, LH18, 4H24, LHO4, YHIC, LHOO
1020 DATA &HOO, LHOO, LHAG, LHOO, LHOO , LHE , YAHOG . LHOG
1030 DATA LHOO, LHOO, XHOG, LHOD, KHOO, LHEO, LHOG , LHOO
2000 DATA LHOO, LHOTZ, YHOO, LHOT7, kHO4 , LHOZ, WHO1 | LHOD
2010 DATA LHOO, LHOO, LHOO, YHIG, XH10, LH2O, YHIC, LHOG
2020 DATA LHO4, LHOS, LHOB, YHOB, LHOT , LHEG, LHAG ., LHEG
2030 DATA %HOO, LHOG, LHOO, LHOB, HHTO, LHOG, LHOO., LHOO
3e0@ DATA &HOO, $HOG, LHOO, ¥HO, YHO 1 , LHOS, LHEE, LHOS
T010 DATA &HOO, LHOO, XHOO, LHOO, LH20, LHO4, LHOS , WHOA
3020 DATA &HO4, LHOSZ, LHOO, LHOO, 4HOO, LHE , XHOG, LHOG
3036 DATA &HOB, 4HI0, YHOO, LHOO, LHOO, LHOO, LHOG ., LHOG
4000 DATA LHOO, LHOO, X1HOG, LHOG, LHOA, LHE1, LHOL | LHOO
4010 DATA %HOO, LHOD, L1HOG, LH1C, XH24, LHOA, LHIC, LHOAL
4020 DATA &HOO, LHOO, LHOG, LHOT , LHOO,, LHOG, YHOB, LHOG
4030 DATA LHOB,LH16, YH20, 4HOO, XHOG, LHOO , LHEG, LHOG
Sea@ DATA LHOS, LHOO, XHOG, LHOO, LHO4 , LHO4 , YHOF , LHOG
S@10 DATA &HOO, LHOG, XHO®, LHOG, YH24, LH24, LHIC, LHOG
3020 DATA %HOO, LHOG, LHOG, LHOG, LHOG, LHOS , LHA , LHEG
SOI0 DATA LHOO, LHOG, LHOG, LHOO, LHOO, LHOG, LHOO . LHO®
606 DATA LHAO, LHOG LHOO, LHOG, LHOO , LHOG , LHOF | LHOO
6010 DATA &HOO, LHOO, KHOG, LHOG, YHOA, LHOA, LHIC, LHOO
602¢ DATA SHOQ, LHOG, %HOG, LHGO , LHOG, LHOB, LHOG , LHOG
5030 DATA YHOB, LHGB, LHO, LHOB, WHEG, LHOG, LHOO, LHOO
7@0@ DATA SHO1,LHOL, &HOL, $HOL, SHOT, LHO 1, WHO1 |, LHE1
7610 DATA LHOB, LHGO, KHOO , LHOD, LHOG, KHOG, YHOB, LHOO
7020 DATA LHOO, LHOO, LHOG, KHOO, XHOG, LHOG, LHOD, LHOO
763@ DATA SHOO, $HOO, ¥HOD, LHOO, LHOO, LHOG, HHOO., LHOO

Lines 1000 onwards contain the data for successive characters. Each line
contains the data for successive rows of each character. All characters and
data have been entered in hexadecimal notation. See HEXS in Chapter 4
for conversion between decimal and hexadecimal numbers. The four in-
dividual characters making up each large character are defined in the order
top left, top right, bottom left, and bottom right.

Lines 20 to 80 read this data from the DATA statements and download each
character in the same manner as the previous program.

Lines 90 to 140 print the top halves and then the bottom halves of the charac-
ters. Since four user-defined characters are used together to make one large
screen character, the STEP to find the next character in the loops is four.

User-defined characters can only be printed from screen mode 3 — by bit
image mode printing of a screen dump — unless they have also been down-

http://www.fastio.com/

iginiaiaielele
QOVOVOLHLVLL L

r

AR gl

piaahainipipitahhly).

The program disables the key, then initialises variables XP and
YP which are used to position the first character.

The loop forming lines 40 to 70 defines the characters which will be print-
ed if the keys ““A”” to “‘G”’ are pressed. They are stored in the array C$().
The characters are built up as follows: the first two characters are the top
pair of the block of user defined characters. Next, two backspace charac-
ters are added (the ASCII code for a backspace is 8) because the position
of the cursor is one to the right of the characters when they have been print-
ed. This leaves the cursor in the position of the first character of the pair.
By adding a linefeed character (ASCII code 10) the cursor is moved down
one line to the bottom left of the block of four. The bottom row of the
block is now added as the next two characters. If the block is printed at
this stage the cursor will be placed to the right of the bottom of the block
of four user-defined characters. The next group of characters must be print-
ed two places to the left on the top of the first group. This is achieved by
adding a ‘cursor up’ character (ASCII code 30, or 1E in hexadecimal), and
then four backspace characters. This gives a total string length of twelve
characters. When this string is printed, the sequence appearing on the screen
will be as follows: the top two of the block will appear; the cursor will
then move back two positions and down one, print the bottom two charac-
ters, then move up, back four, and be ready to print again.

The program as a whole prints a cursor which is defined as two horizontal
lines using the predefined graphics character whose ASCII code is 133. This
together with the backspaces to move to the left is defined as the variable
CSRS in line 80. To allow a space to be printed, line 90 defines SP$ as
two normal spaces with backspaces added to allow printing from left to
right.

Lines 100 to 190 form the main part of the program. The cursor is placed
on the second line of the screen at the extreme right. It cannot be placed
directly on the edge. When one of the groups of characters from the array
C$() is printed the LOCATE command tests to see if the string length
added to the horizontal position of the LOCATE command is greater than
81. If it is, the complete string will be printed on the next line of the screen.
The strings of the array are twelve characters long — it does not matter
that some are cursor movement control codes. The maximum position the
strings of C$() can be printed from is thus 69. The cursor is printed on
the second line so that when the screen scrolls up on reaching the bottom
line the top half of the character groups are not lost.

H-6

http://www.fastio.com/

"

ginlal

oo’

T LOUUU U

) O

VoOU U

JITTTT N

olaisie\els

\c\glplpio\

of characters are on the line.

Lines 50 to 80 check for input from the keyboard and exclude unwanted
characters. If the space bar is pressed line 70 calculates the position in which
to place two spaces so that the cursor is erased.

Line 90 calculates the position for the first character of the block to be print-
ed whenever a key in the range “A” to “G” is pressed.

Lines 100 and 110 determine which of the the blocks of characters to print
from the ASCII code of the key pressed. The corresponding user-defined
characters are printed in positions calculated according to the number of
blocks already on the line. Line 120 prints the upper pair of the block, and
line 140 the lower pair.

Line 150 then updates the counter for the number of blocks of characters
printed. As with the previous program, when the line is full the cursor is
moved to the next line.

This program is best understood by working through what will actually hap-
pen when the program runs. You can do this by calculating the values of
XP and YP, or having the PX-8 print them to a file or to an external printer.
It is rather difficult to write a program such as this because if the program
has to be altered the recalculation may not be easy. The previous program
is easier to re-program and understand.

http://www.fastio.com/

e

-

Al

A I

plpiniail

4 "’&"L"h"t

A

A

OH\i

lale
RN

7 NV

4

P

A

v

AR RN R psis\ololels

A

N 10N

=4

hhl,

330 IF T=1 AND X=9 THEN ZX=456:ZY=1:60T0 350
340 IX=T*F+X+28:ZY=2

352 LOCATE ZX,ZIY,0:IF SS=0 THEN PRINT CHR$(143); ELSE PRINT

CHR$ (144) 3

360 LOCATE XF(X),YP(X),@

37€ H1=HR (X):M1=ME(X):S1=8D(X)

380 IF AS$(X)="-" THEN GOSUB 2000 ELSE GOSUB 1000

390 PRINT USING “% &";FNS$(HRS,MIN,SEC, *: ") 5 FNS$ (FNP (L (1, X))

SFNP L (2,X)) FNP(L(3, X)), "/");
400 NEXT

410 GOTO 220 .

420 STOP KEY ON:CLS:END

1000
1a10
1020
1039
1¢40
1950
1060
1a7a
1080
2000
2010
2026
20730
2046
2050
2060
J000
Jatla
3020
JIOZO
3040
Ia50
3060
3070
Zoso
Jo9e

SEC=5+51
MIN=M+M1+SEC\&0: SEC=SEC MOD &@
HRS=H+H1+MIN\&6@: MIN=MIN MOD 66
IF HRS<24 THEN 1080
DY=DY+HRS\24: HRS=HRS MOD 24
ND=FNN (MN, YR)
MN=MN+DY\ND: DY=DY MOD ND
IF MN>12 THEN YR=YR+1:MN=MN-12
RETURN ,
SEC=S-51: IF SEC<® THEN SEC=SEC+&@:Mi=M1+1
MIN=M-M1:IF MINC® THEN MIN=MIN+6G:H1=Hi+1
HRS=H-H1: IF HRS>=0 THEN 2060
DY=DY~1+HRS\24: HRS=HRS+ (HRS\24+1) ¥24
ND=FNN(MN-1,YR) : IF DY<1 THEN MN=MN-1:DY=DY+ND
IF MN<L THEN YR=YR-~1:MN=MN+12: DY=FNN (MN, YR)
RETURN =
DATA 9
DATA 05,04,"+", "00:00:00",2, 1,
DATA 30,04,"+","01:00:00",2, 1,
L
H

G

DATA 55,04,"-", "aS:a0:00",1,2,
DATA 65,06, "+", "09:00:00",3, 1,2
DATA 30,06,"+","10:00:00" 2, 1,3
DATA 55,06,"+","01:00:00",2,1,3
DATA 05,08, "+","07:30:00",3,1,2
DATA 36,08, "+","03:00:00",2,1,3
DATA 55,08, "-","04:00:00",1,2,3

H-10

http://www.fastio.com/

-

ght

ik

ale

o"’o""o‘”@ﬁ? u”u %11»1)

Apipiais

rr
J o

Rl .7

N

-

1

ARSI

\glg

.

number of the days in the month and year required. In evaluating the function
P1 will correspond to the number of the month and P2 to the number of the
year. The algorithm is as follows:

If the number of the month is greater than 7 and is even then the number of
days is equal to 31, and if it is odd then the number of days is 30. This is achieved
with the part of the logical statement which reads as follows:

P1>7) *((P1 MOD 2)=0) * 31+ ((P1 MOD 2)=1) *30)

If the month has an even number the expression ((P1 MOD 2)=0) is true and
a value of —1 will be returned; when multiplied by 31 this will give a value of
—31. The expression ((P1 MOD 2)=1) will be false and so return a value of
0. If the number of the month is greater than 7 the expression (P1> 7) will be
true and hence return a value of — 1. Thus the total value returned will be 31.
This is easier to see if the values are placed under the expressions as follows :

(P1>7) % (((P1 MOD 2)=8) * 31+ ((P1 MOD 2)=1)*360)
-1 *((-1)% 31+ (])*30)=31

If the month has a value greater than 7 and is an odd month the expression
((P1 MOD 2)=1) will evaluate as true and the expression ((P1 MOD 2)=0) will
be false. Thus the total value for the complete expression above will be 30.

If the month is less than 7 the expression (P1>7) will be false and by returning
a value of 0 for false makes the whole expression have a value of 0.

A second expression evaluates the part of the algorithm which deals with the

remaining months. This reads as follows:

(P1<8)*((P1 MOD 2)=0) * 36+ ((P1 MOD 2)=1)*31
+(P1=2)*((P2 MOD 4)=#)+((P2 MOD 4)< >@)*2))

This is built up from a similar expression to that for the months from August
onwards. However, it also has to take account of the month of February and
the fact that it has a different number of days in a leap year. Apart from Febru-
ary, note that even months have 30 days and odd months have 31 days in con-
trast to the other part of the year. The part involved with February is

P1=2) * (P2 MOD 4)=60)+((P2 MOD 4)< >#)*2)

If P1 corresponds to February, the expression (P1=2) will be true and thus return
a value of — 1. The rest of the expression involves deciding on whether the year
is a leap year or not. A leap year occurs if the year is divisible by 4. If this is
the case (P2 MOD 4)=0) will be true, otherwise (P2 MOD 4)< >0) will be

H-12

http://www.fastio.com/

ARV

variable is converted to a string the leading space is added to the string. Thus
STR$(15) would give a string of length 3, the string “ 15”. The function
MIDS$(STR$(P),2) returns the string starting with the second character. Thus
if P has the value 5, STR$(P) has the value “ 5” and the value returned by
MIDS$(STR$(P),2) would be “5”, whereas if it were 15 it would be “15”. The
leading zero is added in each case to give “05” and “015” respectively. By tak-
ing the two characters at the right of this string, the zero is lost if the number
had two digits before being converted to a string, but is retained if there was
only one. The string returned by the function is of the form “HH:MM:SS”
in the example described.

Line 60 is a function which is used for manipulating the order of the day, month
and year in the date to cope with the fact that different countries display the
order of these.values in their own way. The order is determined by three items
in the DATA statement associated with that particular country. This makes it
easy to add more countries or change the ones already displayed.

Each DATA statement (lines 3000 — 3090) ends with the three numbers 1,2 and
3. These are in a different order depending on the country. By using this num-
ber with the function defined in line 60, the month, date or year can be found
as follows. The number is passed to the function as the variable P1 will be either
1, 2 or 3, and the value determines which of the statements (P1=1), (P1=2) or
(P1=3) is true. Suppose P1 has the value 1. The statement (P1=1) will be TRUE
and thus return a value of — 1, whereas all the other logical statements will be
false and so return a value of zero. The value returned by the function will be
the value of the variable MN when the signs have been taken into account.

Line 70 initializes the variables used temporarily at various stages in the pro-
gram. The variable OH is used to see if the hour has changed in line 300 and
if it has, a sound is made. Variables T and SS are used to change the display
around the heading as the time changes.

Line 80 reads the number of countries from the first DATA statement in line
3000. This makes it easy to alter the number of countries without having to alter
the program. On the basis of the number read, the following arrays are dimen-
sioned in line 90:

The arrays XP and YP hold the position to print the time and date for each
country;

H-14

http://www.fastio.com/

gialeah)

-
U

In line 270 the day, month and year which were determined in line 240 are trans-
ferred into variables DY, MN and YR which are used for the subtraction and
addition subroutines in lines 1000 to 1080 and 2000 to 2060 respectively.

Line 290 prints the current time and the current date on either side of the main
heading. The date is printed in the format used in Great Britain since the pro-

H

y r"? gram as it stands has the values set for GMT (Greenwich Mean Time). The ord-
. er is found by using the function FNP of line 60, with the values set to 2, then
: I 1 and then 3 to give day, month and then year. The leading zeros and separator
. rf3 are inserted using the function FNS$ of line 50.
)
, r@ Line 300 sounds the hour.
ol
y [Q Line 310 determines the current time, using the function FNT of line 20 to split
.) the string returned by TIMES into hours, minutes and seconds.
> [D Lines 320 to 350 form a routine to change the graphics characters around the
» L2 heading.
L5 et
- E Line 360 takes the location of the position to print the time and date from the
. [‘; arrays XP and YP using the value of X from the loop as index.
. r’ ®)
d . Line 370 determines the time offset for the particular country by indexing the
; L‘; arrays where they were stored when read from the DATA statements.

)

-

JITTIT.

Line 380 checks to see if the time offset is positive or negative, and goes to the
appropriate subroutine to determine the time in that country.

S -

Line 390 formats the printout using the function FNSS$ of line 80. The order
of printing the date is determined from the array L.

AR AR]

When all the countries have been updated line 410 redirects execution to line
220 to repeat the process.

AT

The addition and subtraction of time is carried out in the subroutines which
precede the DATA statements.

N T

-7

Lines 1000 to 1080 form the addition subroutine. These routines are straightfor-
ward arithmetic additions. The seconds are converted to minutes and seconds,
and the process is repeated for hours and minutes. The minutes offset is added
as variable M1, and the hours offset as Hl. When the hours have been deter-

AR PR

D B T T
A

H-16

http://www.fastio.com/

Index

A

Abbreviation for PRINT, 4-157
ABS, 4-5
Absolute value of a number, 4-5
Address
absolute, 4-31
for storage, 4-29
in memory, 4-215
redefine starting, 4-51
return, 4-29
starting, 4-20, D-1
the highest used by BASIC, 4-29, 4-51
ALARM, 4-6
in WAKE mode, 4-8
program to switch PX-8 on and off, 4-10
setting from BASIC, 4-6
using wildcards with, 4-6
ALARMS to obtain ALARM settings, 4-12
AND, 2-32
Algebraic and BASIC expressions, 2-28
Antilogarithms, 4-63, 4-118
Arithmetic operations, 2-27
Array
cancelling definitions, 4-59
dimensioning, 4-53
erasing, 4-59
subscripts, 4-53, 4-142
variables, 4-53, 4-142
subscripts base of, 4-142
subscripts minimum value of, 4-142
ASC, 4-13
ASCII
character set, 2-14, F-1
code, 2-14, 4-25, 4-145, 4-202, Appendix F, H-1
code table, 4-145, Appendix F
control code in, 2-15
format, 4-108, 4-109, 5-2
option for saving BASIC programs, 5-1
string, 4-129, 4-131)
value of the first character of a string, 4-13
ATN, 2.38, 4-14
AUTO, 4-16
Auto line numbering, 4-16

Index-1

http://www.fastio.com/

sl

slsloleininle
VEIETRTRURT

ale
U

mr
(N

JJ

rr
VRV

JV

FITITIS S S IIT

ainhll

CURVRVEY

Calendar/clock
date, 4-45
day of the week, 4-46
time, 4-210
CALL, 4-20
Call
a machine language subroutine, 4-20
user defined function, 4-47
Cancel array definitions, 4-59
Change
filename, 4-133
microcassette tape, 4-132, 4-175
variables, 4-204
Characters special, 4-157
user defined graphics, C-12 Appendix H
CDBL, 4-21
CHAIN, 4-22, 4-35
Chaining and merging BASIC programs, 4-22
Character from ASCII code, 4-25
Checking keyboard input, 4-84, 4-91
CHR$(X), 4-25
CINT, 2-37, 4-26
CLOCK, See calendar, date, day
CLOSE, 2-60, 4-32
Close all files, 4-29
CLEAR clears variables and memory space, 4-29
Clock setting, 4-210
CLR key, 2-5
CLS clear screen command, 4-34
Code
ASCII, F-1
Console Escape Sequences, C-1
Cold start, 1-11
Comma including, 4-87
Commands in BASIC, 2-1, 4-1
Command level, 1-9, 4-110, 4-127
COMO: 2-39, 2-57
COMMON, 4-22, 4-35
Communication protocol, 6-1
Comparison of strings, 2-35
Concatenation of strings, 2-35
Conditional branching, 4-81
CONFIG, 1-2, 1-4, 2-57
Constants
Double precision numerical, 2-19
Fixed point, 2-18

Index-3

http://www.fastio.com/

J’J”JL"&“!

ﬁ

alniaink
LU VRV RV

e
VRV,

mm
UV

[~

sipinints
U U U U

APVRY

AL

CTRL + <« switch to virtual screen 1, 2-6
CTRL + — switch to virtual screen 2, 2-6
CTRL + 1 in edit mode, 2-7
CTRL + | in edit mode, 2-8
CTRL + A, move to beginning of logical line, 2-4, 2-9
CTRL + B, move back one word, 2-4
CTRL + C, halt BASIC program execution, 1-17
CTRL + E, erase rest of line, 2-5
CTRL + F, move to following word, 2-4
CTRL + G, sound speaker
CTRL + H, move cursor to left
CTRL + I, move cursor to next tab position
CTRL +], divide logical line, 2-4, 2-10
CTRL + K, home cursor
CTRL + L, clear screen
CTRL + M, carriage return
CTRL + R, insert mode, 2-5
CTRL + S, to pause listing, 1-16
CTRL + U, moves to virtual screen 2
CTRL + W, moves to virtual screen 1

+

CTRL X, move to end of line, 2-4, 2-9

CTRL + Z, erase reset of screen, 2-5, 2-11
Cursor keys, 2-3
Cursor

current position, 4-40

displaying on screen, 4-115

file access buffer, 4-64

record length, 4-65

switch, 4-115
CV1/CVS/CVD convert strings for random access files, 4-42, 4-131
see also MKI$/MKS$/MKDS$, Chapter 5

D

DATA statement for storing data, 4-43
Data
left-justified, 4-125
“Out of data’’ error, A-6
read 4-43, 4-179
right-justified, 4-125
substitute into variables, 4-172, 4-179
temporary storage of, 4-64
transfer of, 4-64
types of, 2-14
word length, 6-4, 6-5, 6-12

Index-5

http://www.fastio.com/

ol
4

alale
v

Py
LURY)

e
Ry

olololoipials

A

“’F& J J UF’

set, 4-101, 4-167

set or reset, 4-167

turn off, 4-155

turn on, 4-167
Draw

lines, 4-101

rectangle, 4-102
Drive name, 1-4
DSKF, 2-60, 4-54

EDIT command, 2-7, 4-55
EDIT Mode, 2-7, 4-55
cursor keys in, 2-7
termination, 2-7, 4-55
Editing BASIC lines, 2-3 to 2-13
practical guide, 2-9 to 2-13
Editor, 2-3
END, 4-57
End
of file, 4-58
of program execution, 4-57
EOF, 2-60, 4-58
EQV, 2-32
ERASE arrays, 4-59
Erase
dots, 4-101, 4-102, 4-155
lines, 4-101
variables, see CLEAR
ERL, 4-60
ERR, 4-61
ERROR, 4-62
Error(s)
codes, 4-61, Appendix A
fatal, A-2
in direct mode, 4-60
interrupted by, 4-36
messages, 2-61, Appendix A
numerical table of codes, A-10
processing routine, 2-61, 4-60, 4-62, 4-136, 4-180
reécovery procedures, 4-60, 4-61, 4-62, 4-136
rounding, 4-27
simulation of, 4-62
syntax, 4-136
trapping, 4-60, 4-61, 4-62, 4-136
user defined, 4-62

Index-7

http://www.fastio.com/

UUHOELF\FUH

1
(V'Y

\ A\ s\ sininigisie\elels

inishaisinipieisioiehl]

square brackets, 4-2

vertical bars, 4-4
Formatting characters,in international character set, 4-143, 4-164
FRE, 4-72
Functions, 2-37

derived, E-1

formula for obtaining, 4-49

inverse trigonometric, 4-49

user-defined, 4-47

Garbage collection, 4-72, H-15

GET, 2-60, 4-64, 4-74

GOSUB....RETURN, 4-76

GOTO or GO TO, 4-78

Graphic
commands, see draw, LINE, PSET, PRESET
mode, 4-101, 4-155, 4-167
screen coordinates, 2-49, 4-150

H

Hexadecimal, 2-16, 4-79
HEXS, 4-79
HOME key, 2-4

I

IF....THEN ELSE, 2-30, 2-32, 4-61, 4-62, 4-81
IF....THEN GOTO, 4-81
IMP, 2-32
Indirect mode, 1-9, 1-10
INKEYS, 4-84
INP obtaining data from the Input Port, 4-86
INPUT, 2-6, 4-87
INPUT #, 2-60, 4-89
INPUTS, 4-91
Input/Output devices see 1/0 devices
Input
all characters, 4-108
fixed number of characters, 4-91

Index-9

http://www.fastio.com/

UUUYAR

sinisininipieh

g
LU

5&&“

UF-FU

\g\siglele

\g

T

L

Last Reference Pointer, 4-101, 4-155, 4-167
LEFTS, 4-98
LEN, 4-99
LET, 4-100
LINE, 4-101
Line
complete, 4-102
dashed, 4-102
draw, 4-101
feed, 4-226
logical, 2-3
style, 4-101
LINE INPUT, 2-6
LINE INPUT #, 2-60, 4-108
Line numbers see program line numbers
LIST, 2-60, 4-109
LLIST, 4-111
LOAD, 2-60, 4-112
LOC, 2-60, 4-114
LOCATE, 4-40, 4-115
LOF, 2-60, 4-117
LOG, 4-63, 4-118
logarithm (LOG), 4-118
Logical line, 2-3
Logical operation, 2-32
LOGIN, 4-120
Logging in to BASIC program areas, 1-8
Loops, 4-69, 4-218, 4-219
Losing programs, 1-5, 1-7, 1-3
LPOS, 4-121
LPRINT LPRINT USING, 4-122
LRP, 4-101, 4-155, 4-167
LSET, 4-124

Machine code
area, 4-29
program, 4-29
Machine language
programs memory for, 4-29
programs starting address, 4-51
programs used as subroutines by BASIC, 4-51
programs, user-written, 4-51
programs, writing to memory, 4-151

Index-11

http://www.fastio.com/

T

MKI$/MKS$/MKDS$, 4-131
MOD, 2-27
Modulus arithmetic, 2-27, 2-28
Mode
continue, 4-153
screen, see SCREEN
trace, 4-212
MOUNT, 4-132, 4-175

Yl

ipiaipipipiph

' UHO
Z

NAME, 4-133

o 3 Natural logarithms, 4-118
X [: Nested loops, 4-69, 4-70
| E NEW, 4-134
W ! Non Tracking mode, 2-46
E NOT, 2-32
o Null string, 4-84, 4-98, 4-181
. li; Numbers
' [: binary, 2-33
e hexadecimal, 2-16, 4-79, 4-214
L octal, 2-16, 4-135, 4-214
o Numeric
LQ expressions, 4-4

constants, 2-18
data, 2-16
value rounding, 4-26
value whole number, 4-26
Octal, 2-16, 4-135
OCTS, 4-135
ON ERROR GOTO, 4-136
ON GOSUB/ON GOTO, 4-137
OPEN, 4-140
OPEN “I”, 2-60
OPEN “0”, 2-60
OPEN “R”’, 2-60
Operations, 2-27
relational, 2-30
OPTION BASE, 4-142
OPTION COUNTRY, 4-143
OPTION CURRENCY, 4-145
Options
ASCII to save BASIC programs as text files, 5-1

\nigle

Anninisisine

Index-13

http://www.fastio.com/

giRirihh].

ﬂl"ﬂr—!
VLWL

U

lalelalale
VRURTRY

la
U

N

A\l sl ool ol olal pimiale

Azl

control characters of, 4-121
column of, 4-206
list to, 4-111
output mode for, 4-140
output to, 4-122
output screen to, 4-37
print head pointer, 4-121
width of, 4-206
Program
commenting, 4-174
delete from memory, 4-134
merge, 4-127
protect, 4-134, 4-211
transfer between program areas, 4-147
Programmable Function Keys, 1-15
Program areas, 2-2
being resident in, 4-9, 4-17, 4-147
currently logged in, 4-126
executed in, 4-17 .
LOGIN to, 1-8, 4-120
no. 4-120, 4-147
selecting, 2-2, 4-120, 4-126
titling, 2-2, 4-211
transfer between, 4-120, 4-147
Program
error trapping, 4-60, 4-136
with ASCII codes, 4-25
branched, 4-76, 4-78, 4-136, 4-137
continuing, 4-180
resuming, 4-36, 4-60, 4-78
stopping, 4-57, 4-200
using the same data with different, 4-35
Program lines, 2-1
maximum length, 2-1
Program line numbers, 2-1
deleting, 4-52, 4-134
listing, 4-109, 4-111
merging, 4-24, 4-127
non-existent, A-5
renumbering, 4-176
resume execution at a particular, 4-36, 4-180
subroutines, 4-76
Program listings,
pausing, 1-16
PSET, 4-167
PUT, 2-60, 4-64, 4-169
PX-8 BASIC features of

Index-15

http://www.fastio.com/

R

I
i

piviniels]

th)ﬁvno

™
U

el

VRV

iaH

SV STTTY

Screen mode 2 (split screen mode), 2-45, 4-186 to 4-188
Screen mode 3 (graphics mode), 2-46, 4-101, 4-186 to 4-188
SCRN: 2-39, 2-57
SCRN key, 2-49 , 2-52, 2-54 see also the User’s Manual
SCRN DUMP key (CTRL-PF5), 1-17
Scrolling control
Search for a substring, 4-93
Secret mode, C-2, C-4
Sequential
access devices, 2-57
input mode, 4-89
output file, 4-165
output mode, 4-140
open, 4-89, 4-140, 4-165
read data into variables from file, 4-89, 4 108
read items from, 4-89
SGN, 4-190
SIN, 2-38, 4-191
Size
of a file, 4-117
record, 4-117
stack area, 4-29
SOUND, 4-192
SPACES$, 4-195
Space on drive, 4-54
Speaker, 2-58
in ALARM, 4-6
BEEP, 4-19
frequency of sound by, 4-19, 4-192
length of sound by, 4-19, 4-192
to “‘beep”’, 4-25
tone of, 4-19, 4-192
Speeding up programs with garbage collection, 4-72
SPC, 4-196
SQR, 4-197
Stack
clearing, 4-29
space, 4-29
stack area size, 4-29
STAT, 4-198
Statements, 2-1
STOP, 4-200
STOP key, 1-17, 2-5, 4-36
CTRL and STOP key, 1-17
disabling, 1-17, 4-201
STOP KEY, 4-201
STRS, 4-202
String
2-byte, 4-byte or 8-byte, 4-42, 4-131

Index-17

http://www.fastio.com/

w>r
w7 r'!si

-~ yg
vr E

: 5

JJJJJIIJTISI

—

Y A D) Q AT TR I I I

AR\

TIMES, 4-12, 4-210
specified, 4-12
TITLE, 4-211
Trigonometric functions, 2-38, see also ATN, COS, SIN, TAN
deriving, Appendix E
TRON/TROFF, 4-212
Two’s complement binary number, 2-33
Tracking mode, 2-47
Trailing spaces, 4-43
True and False, 2-30, 4-83
Type of variables, 4-50

U

Undefined line number, 4-78

User defined
characters, C-12, H-1
error code, 4-61
function, 4-47

USR, 4-213

VAL, 4-79, 4-214
Variable name(s)
type declaration of, 4-50
array, 2-22, 4-35
clear all, 4-29
destroyed, 4-30
memory location for, 4-29
Variables
passing between programs, 4-35
resetting all, 4-29
system, 4-6, 4-45
numerical type declaration characters, 2-21
type declaration of, 2-21, 4-50
types of, 2-21, 4-43, 4-50
wildcard, 4-6
VARPTR, 4-215
Virtual screen, 2-41, 4-186, 4-189
changing 2-50, 4-186
clear, 2-51, 4-34
Virtual Screen Window, 2-42, 4-40, 4-186

Index-19

http://www.fastio.com/

WUUJU0ddddo00udddbul00bouubLO UL

EPSON OVERSEAS MARKETING LOCATIONS

EPSON AMERICA, INC.
3415 Kashiwa Street

Torrance, CA 90505 US.A.
Phone: (213) 539-9140

Telex: 182412

EPSON UK LTD.

Dorland House

388 High Road,

Wembley, Middlesex, HA9 6UH, UK.
Phone: (01) 902-8892

Telex: 8814169

EPSON DEUTSCHLAND GmbH

Am Seestern 24
4000 Dusseldorf 11
F.R. Germany

Phone: {0211) 5952-0
Telex: 8584786

EPSON ELECTRONICS
(SINGAPORE) PTE. LTD.
No.1 Maritime Square, #02-19
World Trade Centre

Singapore 0409

Phone: 2786071/2

Telex: 39536

EPSON ELECTRONICS
TRADING LTD.
Room 411, Tsimshatsui Centre,
East Wing, 66, Mody Road
Tsimshatsui Kowloon, Hong Kong
Phone: 3-694343/4

3-7213427

3-7214331/3
Telex: 34714

EPSON ELECTRONICS TRADING LTD.

TAIWAN BRANCH
1,8F KY. Wealthy Bldg. 206, Nanking
E. Road, Sec, 2, Taipei, Taiwan, R.OC.
Phone: 536-4339

536-3567
Telex: 24444

EPSON FRANCE S. A.
114, Rue Marius Aufan
92300 Levallois-perret

France

Phone: (1) 758-77-00

Telex: 614169

EPSON AUSTRALIA PTY. LTD.
Unit 3, 17 Rodborough Road

Frenchs Forest, NSW 2086

Australia

Phone: (02) 452-5222

Telex: {71) 75052

http://www.fastio.com/

L 7
w/
w
w

A
-

&

AN

4

N

2

http://www.fastio.com/

[I\N
R
A\
PN
R

ey

=

.

A

o
PN

AR

—r
AN
~

A
¥

™y
PEB OO OO
OO

pee o

http://www.fastio.com/

(vi) and statements which make it possible to control the computer’s power

supply under program instruction.

Other features of this BASIC are as follows.

BASIC can be made resident in RAM after loading it from ROM capsule,
allowing it to be started up almost instantly whenever the PX-8’s power is
turned on.

The BASIC program area in memory is divided into five parts, allowing up
to five different programs to be held simultaneously. This facilitates develop-
ment of programs and makes it possible to use multiple program applications.

The LCD screen can be switched between any of four different screen modes,
which are (1) a full screen text mode in which the screen consists of 7 or 8
lines (depending on whether function key definitions are displayed) of 80
columns each; (2) a split screen mode, in which the screen is divided into
two consecutive halves of 39 characters each; (3) a twin screen mode, in which
two separate areas in display memory are displayed simultaneously; and (4)
a graphic mode which is used for drawing figures and diagrams with PX-8
BASIC’s graphic statements.

The microcassette drive built into the PX-8 is supported as a disk device. This
means it can be used in almost exactly the same manner as if it were a disk
drive. This also applies to auxiliary storage devices such as ROM capsules
(which because they are ROMs can only be read from and not written to),
and an area in random access memory which is referred to as RAM disk.
Floppy disk drives connected to the PX-8’s high speed serial port are treated
as normal disk drives. The ability to use the PX-8’s random access memory
in the same manner as if it were a disk drive (RAM disk) is particularly use-
ful because it allows utilization of disk-based functions which ordinarily would
require a disk drive. The microcassette drive has some limitations. The main
differences are the speed of access and the fact that tape access is sequential,
so that random access file handling is not possible.

Procedures for installing and starting up BASIC are described below. Before
following these procedures, you may wish to use the CONFIG command of
CP/M to select the printer output port (high speed serial or RS-232C) and to
specify the default parameters for communication through the RS-232C inter-
face. See the PX-8 User’s Manual for details.

[\
A
R
5\\\
s
o~
s
s
S

-

BN

~rs
A

oS
24

4
\%
w
';;“)

2

oSN
o

—~
wrs

SN
s

A
e

PN
ws

L2

o
24

s

AN

A

s

P’ 1NN

ENNY
~r

~n
s
PRS

ws

http://www.fastio.com/

1.2 Starting BASIC

When you switch on the PX-8, there are a number of possible states in which
the computer can be. If it is in the middle of an applications program (either
because the power has been switched off with [cTRL | held down, or the power
has automatically switched off because there was no input), then it is necessary
to exit from the program before loading BASIC. The other possiblities are that
the CP/M command line is displayed, or the MENU screen has been set.

(a) USING BASIC FROM THE CP/M COMMAND LINE

Entering BASIC from the CP/M command line is achieved by treating the BASIC
ROM as a program on a disk drive. Thus if the system prompt says “A >, you
would need to type “B:BASIC” or “C:BASIC” followed by the key
in each case, depending on which socket the ROM has been placed in, and which
ROM has been allocated to which drive. (Allocation of drive names is carried
out with the CONFIG program which is described in the User’s Manual. If you
wish to find out in which drive BASIC is located, use the DIR command of
CP/M rather than using the CONFIG program). On pressing[RETURN |, BAS-
IC will be loaded into RAM. If you wish to run a BASIC program directly you
can do so by adding the name of the program and its drive location, as for
example running the program ‘“NAME’’ which is located in drive A: when BAS-
IC is in drive C:

A>C:BASIC A:NAME.BAS

In this case there MUST be a space between the word BASIC and the drive
name in which the program sits. The extension ‘‘.BAS’’ showing that ‘“NAME”’
is a BASIC program is not necessary. However, if a BASIC program has been
named with a different extension (e.g. ‘. GPH’’ so that all graphics programs
are identifiable), then this extension MUST be used; otherwise the computer
cannot find the program. Also in this particular case, since the default drive
name is A: it is not necessary to type it in before the name of the BASIC
program.

(b) ENTERING BASIC FROM THE MENU

The PX-8 has a mode which allows easy loading of programs which are set up
on a menu. A description of how to use the MENU is given in the User’s Manual,
and details of setting up the menu for use with BASIC is given in section 1.4.2
(Warm starts) of this manual.

If you have set up the MENU so that BASIC is one of the files to appear on

1-4

P

eSO Y EP R R ()¢

http://www.fastio.com/

The MENU screen will automatically put the first program in the top left hand
position onto the command line. If, as in the screen above, the first program
is not BASIC.COM, then you must put BASIC onto the command line using
the cursor keys to select it. The screen display will then change as follows

:BASIC

#%% MENU screen #**¥% ©1/01/84 (SUN) 1@:11:11 S54.5%k CP/M ver 2.2 PAGE 1/1
B
A:GRAFPH BAS B:BASIC com

and BASIC.COM will be flashing in the main MENU area. Now BASIC can
be loaded by pressing the key, as in the previous example.

(iii) BASIC is resident in memory
If BASIC had been used when the PX-8 was switched off, instead of the MENU
screen showing BASIC or indeed another program on the command line, the
following display would come up

*%% MENU screen *¥% 91/01/84 (SUN) 10:12:07 S4.5k CP/M ver 2.2 PAGE 1/1

BASIC (resident) A:GRAPH BAS B:BASIC CoM

and the first program position showing “BASIC (resident)” would be flash-
ing. The command line is empty when this occurs. *

Simply pressing will enter BASIC without loading it.

(iv) Running a BASIC program directly

The MENU can also be used to select and RUN a BASIC program directly. If
the program is selected by means of the cursor keys, the screen will appear as
follows.

*%% MENU screen %x%x ©01/01/84 (SUN) 10:26:58 S54.5k CP/M ver 2.2 PAGE 1/1
B:BASIC A: GRAPH. BAS _

BASIC (resident) B:BASIC com At GRAPH BAS A: SAMPL BAS
A SAMP2 BAS

Note the appearance of the command line. This means that BASIC will be loaded
first, and then the program in order to RUN it.

1-6

M
AN
RN
AW

AW

~—rr

“wr
wr

By

wr

A
s

ENN
A4

AN
£ 24

L3N
A4

PSS
L4

A
A4

SN
s

an

.

AR

L

SN

AX
SN
R Y
~-
SN
vr
v/

k74

o .

http://www.fastio.com/

1.3 The BASIC Program Menu

Once BASIC has been started, the BASIC program menu is displayed as shown

below.

EPSON BASIC ver—1.@ (C) 1977-1983 by Microsoft and EPSON
Move cursor, RETURN to run or SPACE to login.

R Pi:
F23
P3:
Pa:
PS:

¢ Bytes
9 Bytes
@ Bytes
@ Bytes
@ Bytes

14749 Bytes Free

This might look slightly different if BASIC was already resident, in which case
a display such as the following could appear.

EPSON BASIC ver—1.0 (C) 1977-1983 by Microsoft and EPSON
Move curser, RETURN to run or SPACE to login.

B P1i:GRAPH
P2:
PZ:
P4:
PS:

27 Bytes
¢ Bytes
¢ Bytes
© Bytes
@ Bytes

14722 Bytes Free

Again, if the command line was of the form shown in (iv) of section 1.2 or the
entry from the CP/M command line was to run a BASIC program directly, the
above menu would only flash up briefly before the program began running.

The BASIC program menu shows the number of bytes of program text con-
tained in each of BASIC’s five program areas (P1 to P5) and the number of
free bytes of memory which are available for use as string area, variables, or
additional program text. (The BASIC interpreter automatically handles alloca-
tion of memory between the three of these as appropriate.)

The following keys can be used while the BASIC program menu is displayed.

(4]

Moves the cursor upward.
Moves the cursor downward.

Logs in (selects) the program area indicated by the cursor
and executes the program which is present in that area.

1-8

S
-~
[|

ﬁ\

RSy

-
-
wr !

-
_~

SN

~r
~

o~
wr

PN
—
)

w

http://www.fastio.com/

From the point of view of the user, the only difference between the direct mode
and the indirect mode is that commands and statements entered in the indirect
mode must be preceded by line numbers. The com:puter automatically switches
from one mode to the other according to whether commands/statements are
preceded by line numbers.

1-10

o

it

COUG F PRI GBO OO OO OO @O PP

I
'y

q

http://www.fastio.com/

*#% SYSTEM DISPLAY *#% 91/61/84 (SUN) 10:41:35
<RAM DISK> @89 kb <AUTO START>
<USER BIOS> @00 256 b <MCT MODE > stop, nonverify <COUNT> &5535
<MENU DRIVE> CBA <MENU FILE> 1 .COM 2. 3. 4 .
- Select number or ESC to exit. B
i=password 2=alarm/wake 3I=auto start =menu S5=MCT
<</ < /mount /dirinit >» /erase /

(3) Now press thet@ key to select the menu specification mode; this causes the
screen to change as follows.

%% SYSTEM DISPLAY ##x @1/01/84 (SUN) 10:42:04

<RAM DISK> 009 kb <AUTO START>

{USER BIOS> 000 256 b <MCT MODE > stop, nonverify <COUNT> 68535
<MENU DRIVE>» CBA <MENU FILE> 1 .COM 2 . 3. 4 .

- Select number or ESC to return.lB
ZMENU> i=off 2=on 3=drive 4=extl S=ext2 6&=ext3 7=ext4d

(4) When the screen changes as shown above, press the [2] key; the display will
also show “<MENU>” towards the top right of the screen to show that
the menu option is set.

x%xx SYSTEM DISPLAY #*%% ©1/01/84 (SUN) 10:44:07 <MENU>

<RAM DISK>» 009 kb <AUTO START:
<USER BIOS» @90 256 b <MCT MODE > stop, nonverify <COUNTX 45535
<MENU DRIVE> CBA <MENU FILE> 1 .COM 2. 3. 4 .
- Select number or ESC to return.|l
“MENU> 1=off 2=on 3=drive 4=extl S=ext2 =exnt3 7=extd

This causes BASIC to become resident in memory the next time it is loaded,
as well as causing the PX-8’s MENU screen to be displayed the next time
BASIC operation is ended. Finish by pressing the key once to return
to the System Display, then once again to redisplay the system prompt
(“A>").

112

NN

RO C Oy B PG OGO

http://www.fastio.com/

1.5 Ending BASIC Operation

BASIC operation is ended and control returned to the CP/M operating system
(or the MENU screen) by typing SYSTEM and pressing the [RETURN key. (This
command can also be executed from within a program.)

Example
10 ...
20 ...
30 ...
SYSTEM
A>
Note:

In the example above, the symbol““[RETURN |” indicates that the operator hits
the key. This also applies to other examples throughout this manual.

BASIC operation is also terminated when the PX-8’s power goes off. This oc-
curs under the following circumstances.

(1) When the PX-8’s power switch is turned off;

(2) When there are no entries typed in from the keyboard for the amount of
time specified with the POWER < duration> command while the PX-8 is
standing by for input (either at the command level or during execution of
an INPUT statement);

(3) When the POWER OFF command is executed.

If the POWER OFF command has been executed, when the PX-8 is turned on
again, the MENU screen will be the resumption point. It is possible to have BAS-
IC operating as it was at the point at which the power was switched off if one
of the following conditions is met:

(1) The power switch is turned off while pressing the key;

(2) The power switch is turned off during execution of a command or program;
or

(3) The power goes off because no entries have been typed in from the keyboard
while the PX-8 is standing by for input.

1-14

o

N
;S
-~

-
s

vy
A
o
S

~wr

A

~r

3\

o~
he 24

-
-’
—~
)
—~
vyy
o~
vy
—~

ey

IS 3
24

A

.,

A

-

N
2

PN
v’
FSN
rr

anx

sy

B3y

~

Y Y

A%

-

RSN

SN

A

-

-~
A4

k24

e

/4

:

http://www.fastio.com/

When BASIC operation is started, the first seven characters of the character string
assigned to each of the programmable function keys is displayed at the bottom
of the screen. Definitions for the unshifted and shifted functions are displayed
together (separated by a slash). Display of these definitions can be turned on
or off as required with the SCREEN command (see Chapter 4) or by using a
control sequence as follows:

PRINT CHR$(27); CHR$(&HD3); CHR$(1) will turn the display off
PRINT CHR$(27); CHR$(&HD3); CHR$(0) will turn the display on
again.

The default settings of the function keys are as follows:

auto (shifted [PF1]) load*
list (shifted [PF2]) save*
edit (shifted [PF3]) system
stat (shifted [PF4]) menuAM
PF5] run AM (shifted [PF5]) login

With function keys such as where there is a carriage return in the com-
mand, the command will be executed as soon as the key is pressed. Some (such
as [PF8]) have been defined without a carriage return to ensure that the user
makes the final decision on their execution, since if a mistake were made the
results could destroy a program. Others (such as [PF6 |) must have further input
or an error message will be generated. There are also commands such as LIST
which can have optional characters added. Thus typing the letter “L” followed
by [PF1], will result in Llist being generated, and a listing will be printed on
an external printer when[RETURN |is pressed. Similarly, pressing and then
the characters “ — 100” will generate LIST-100 and the lines of the program in
the current logged in area will be listed to the screen as far as line 100.

If you are typing many lines of a program using a particular command frequently,
it may be useful to change one of the function keys temporarily using the KEY
function of BASIC. However, the value you use will be lost when BASIC is cold
started and reset to the default values.

The key makes it possible to temporarily suspend listing of a BASIC
program with the LIST command, or to temporarily stop execution of a BASIC
program. (The same result is obtained by pressing the and [S] keys

1-16

RACTEAARRAANNAOOOAONOOOOQCOOO0ONNODONOONINIDY D

http://www.fastio.com/

GOV UOVOVVLVLVUVIVLVLDIPRAVODVOLLVLLVLVLVLLVLLBLLVLLS DS

http://www.fastio.com/

2.2 Multiple Program Areas

In PX-8 BASIC the BASIC program area is divided up into five parts, making
it possible for up to five separate BASIC programs to be present in memory
simultaneously. The program area selected is determined by the /R: or /P: op-
tions when BASIC is started. Once BASIC has been started, program areas can
be switched by executing the LOGIN command (either in the direct mode or
from within a program); this makes it possible to chain execution of programs
between areas.

Further, the TITLE command can be used to assign names to the program areas
displayed in the BASIC program menu; this command includes an optional
parameter which can be specified to prevent the program in the applicable area
from being edited or accidentally erased.

In addition the STAT command makes it possible to determine the status of
the currently selected program area or other program areas.

The BASIC program areas are managed on a dynamic basis; that is, BASIC
allocates memory to each of the areas according to the size of the program that
area contains.

Y

)

-~

!

s
vy

p
“vpr

-~
-y

SN

{

o

Y O

|

BAPIAAONOOAONOO OO

QO

http://www.fastio.com/

the screen). Subsequent tab positions are located in every eighth column. The
same effect is achieved by pressing the and [I] keys together.

The (backspace) key deletes the character located immediately to the left
of the cursor and moves the remainder of that logical line to the left by one
character position. This key does nothing if pressed while the cursor is at the
beginning of a logical line. The same effect is achieved by pressing the
and [H] keys together.

[cTRL] +[A]

Pressing these keys together moves the cursor to the beginning of the logical
line in which it is currently located.

+

Pressing these keys together moves the cursor to the first character of the word
preceding its current position. For the purpose of this function, a word is any
group of letters which is separated from other letters by a space or special charac-
ter. The same result is achieved by pressing the[SHIFT _Jand keys together.

+[F]

Pressing these keys together moves the cursor to the first character of the word
following its current position. The same result is achieved by pressing the
and [+] keys together.

+

Pressing these keys divides the logical line into two parts at the current position
of the cursor. When the cursor is already located at the beginning of a logical
line, it inserts a logical line consisting only of spaces. If the cursor is positioned
to the right of the last character in a logical line, it inserts a logical line consist-
ing entirely of spaces between the current logical line (the line in which the cur-
sor is located) and the following one. ‘

+
Pressing these keys together moves the cursor to the position following the last
character in the current logical line.

[HOME] ([smFT_]+[BS])

Pressing these keys together moves the cursor to the home position without clear-
ing the screen. The same result is achieved by pressing the and [K] keys
together.

2-4

vr

http://www.fastio.com/

used to terminate automatic program line number generation by the AUTO com-
mand. The same result is achieved by pressing the and keys together.

CTRL | +[=]

Pressing these keys together switches the cursor to virtual screen 2. This key
is effective only while BASIC is in the program input mode, and cannot be used
during execution of an INPUT or LINE INPUT statement. (See section 2.13
below for an explanation of the PX-8’s virtual screens.)

+

Pressing these keys together switches the cursor to virtual screen 1. This key is
effective only while BASIC is in the program input mode, and cannot be used
during execution of an INPUT or LINE INPUT statement.

—
~
S
-

—~~

ke 4
PiS
b 44
‘w7y

_—~
wy

~

-~

wr
vy

vy

vy

awm
wr

rs N
wr

an

vr
-
v
'/]

vy

http://www.fastio.com/

©) +
Pressing and together clears the screen, displays the program’s
last line, and moves the cursor to the beginning of that line.

©

Pressing this key clears the screen and terminates operation in the edit mode.

Q)
Pressing the key terminates operation in the edit mode without clear-

ing the screen.

When editing programs, remember that changes made on the screen are not
reflected in the program in memory until the key has been pressed
with the cursor located in that line. This applies both in the edit mode and to
changes made using the screen editor in the normal mode.

Direct mode commands can be executed in the edit mode; however, BASIC
returns to the normal command level after execution is completed (unless the
command executed is the EDIT command).

A A A BN ARAANAACANOANCCELCEODPAPAACAYY DY D,

http://www.fastio.com/

10 REM This is a remark statement
20 REM This is a new remark statement

This means of duplicating lines with the same or similar statements but with
different line numbers can be very useful in saving a great deal of typing, espe-
cially when a program has a number of similar subroutines or loops.

Sometimes it is necessary to split one line into two lines. For example add line
30 to the program to read as follows:

30 FOR N = 1TO 20 : NEXT N

Move the cursor onto line 30 again and move the cursor to the colon using the
shifted right cursor key. Pressing the key will remove the colon if the cur-
sor is directly on top of it. If the cursor is to the right of the colon it can be
removed by using either + [H] orthe key. Now press the [INS]
key and add “ 50 ” so that the line appears as follows:

30 FOR N = 1 TO 20 50 NEXT N

This is an incorrect BASIC line. Move the cursor to the space before the “5”
and press the key while holding down the key. The characters from
“50” onwards will be moved to the next line but will not be added to the BASIC
program. However, if the[RETURN Jkey is pressed a line 50 will be added to the
program. The program will now have the following lines if listed:

10 REM This is a remark statement

20 REM This is a new remark statement
30 FORN = 1TO 20 : NEXT N

50 NEXT N

Note how line 30 has remained unchanged, because in exiting from it the
key was not used. Since in moving the “NEXT N” to line 50, line 30
has been left with a surplus statement, it has to be removed. Move the cursor
to line 30 and use + to move the cursor to the end of the line,
then the shifted left cursor key to move it back to the “N” of “NEXT”. The
unshifted left cursor key can be used to bring it on to the colon. If the shifted
cursor key is used, the cursor will move back too far.

2.10

BAQANNHNETAANIAAOCOOONAONDOOOOODODOOO OO P

http://www.fastio.com/

The screen will clear and show lines of the program from 50 onwards, since the
previous ones have scrolled off the virtual screen; in this screen mode it is limit-
ed to 8 lines, the same as the window. The cursor will be seen as a non-flashing
underline character on the bottom line of the screen. Using LIST would be slow
if it was necessary to edit a number of lines in this screen mode. However, EDIT
makes a considerable difference.

Type EDIT and press the key.

The screen will clear and display line 10. This can be edited normally with the
screen editor. Since the screen displayed is screen mode 3, moving the cursor
to the bottom of the screen with the cursor key will not cause line 10 to scroll
off the top of the screen. However, it is possible to scroll through the program
by using the shifted and cursor keys. The screen editor can be used
as described above when a particular line needs to be altered.

In programming, it is often necessary to know which is the first or last line of
a program, because a new subroutine needs to be added or a constant inserted
at the beginning of the program. If the PX-8 is in EDIT mode, pressing
and the [t] cursor key will place the first line on the top of a blank screen ready
for editing. If the and keys are pressed, the last line of the pro-
gram is displayed instead.

To illustrate the use of these keys, type edit 50, so that line 50 is displayed on
the screen. Now press and the key. The screen will clear and line
10 will be displayed. Press the[SHIFT] and[t] keys. Because there is no lower
line number, the cursor will be placed on a blank line, above line 10. Type in
a line 5 as follows, remembering to press| RETURN |to enter it as a line of the
BASIC program.

5 A$=“THE END”

Now press and the key. You can see that the last line of the pro-
gram is line 100. Whereas the[SHIFT]and keys can be used to move to
a new line, it is better simply to press| RETURN |because the contents of line 100
will still be visible. If the [CTRL] and keys are used the screen will be clear
because line 100 will be scrolled off the top.

vy

vry

A\ /74

http://www.fastio.com/

2.6 Types of Data

2.6.1 Text data — The ASCII character set

The ASCII character set is a set of characters which are internally represented
in the form of 1-bytet numeric codes and converted to characters for display
by the PX-8’s character generator.

The character generator of the PX-8 includes character sets for the following
nine countries.

1. Denmark 2. England
3. France 4. Germany
5. Italy 6. Norway

7. Spain 8. Sweden

9. United States

Any of these character sets can be selected with the OPTION COUNTRY
command.

The ASCII character code table is shown in Appendix F, together with a list
of differences between the U.S. ASCII character set and those of the other eight
countries.

+ The byte is the unit in which data is handled by the PX-8’s central processing unit (CPU);
one byte consists of eight bits, or binary digits. In the binary numbering system, which uses
the numerals 0 and 1, it is possible to represent all numbers from 0 to 255 as numbers of up
to 8 digits. This is the range of numbers which is used for representing characters in the
ASCII character code system.

2-14

{
M

http://www.fastio.com/

2.6.3 Numeric data

All numeric data is converted to binary form for storage in memory or calcula-
tion by the PX-8’s CPU. However, BASIC allows numeric data to be entered
in any of three number bases. These are decimal (base 10), octal (base 8), and
hexadecimal (base 16).

Decimal notation is the familiar numbering system we use in everyday life, with
numerals which range from 0 to 9. With this system, the number of digits re-
quired to express numbers increases by one each time the magnitude of the num-
ber being expressed increases by a factor of ten (1, 10, 100, and so forth.) Decimal
notation can be used to represent both integers and numbers which include
decimal fractions.

Octal notation (also referred to as base 8 numeration) uses only the digits from
0 to 7. With this system, the number of digits required to express numbers in-
creases by one each time the magnitude of the number being expressed increases
by a factor of eight. Octal numbers are indicated by affixing the characters “&0”
or “&” to the beginning of the number. The decimal equivalents of octal num-
bers can be calculated as shown below.

&0347 = 3x8% + 4x8' + 7x8° = 231
&1234 = 1x8 + 2x8 + 3x8! + 4x8° = 668

Numbers entered in octal notation may not include a decimal point; therefore,
octal notation can only be used to represent integer values.

Hexadecimal notation (also referred to as base 16 numeration) uses the digits
from 0 to 9 and the characters from A to F to represent the values from 10 to
15. With this system, the number of digits required to express numbers increases
by one each time the magnitude of the number being expressed increases by a
factor of 16. Hexadecimal numbers are indicated by affixing the characters “&H”
to the beginning of the number. The decimal equivalents of hexadecimal num-
bers can be calculated as follows.

&H76 = 7x16' + 6x16° = 118 .
&H32F = 3x16% + 2x16' + 15x16° = 815

As with octal notation, hexadecimal notation can only be used to represent in-
teger values.

2-16

XTI YA YR EY

1

YOO (Y Yy

3

' SIKIK

http://www.fastio.com/

2.7 Constants — String Constants and Numeric Constants

Constants are fixed values which are writen into a program and used by that
program during its execution. These values may consist of either characters or
numbers; in the former case they are referred to as string constants, and in the
latter case as numeric constants.

2.7.1 String constants

A string constant is any sequence of alphanumeric characters which is enclosed
in quotation marks. Some examples of string constants are shown below.

“EPSON PX-8”

“John Jones”

“$10,000.00”

“The quick brown fox jumped over the lazy yellow dog.”

The length of a string constant cannot exceed the maximum length of a pro-
gram line (255 characters).

2.7.2 Numeric constants

Numeric constants are positive or negative numbers. There are five types of nu-
meric constants, as follows:

(1) Integer constants
Integer constants are whole numbers in the range from — 32768 to +32767.
Such constants can be expressed in either decimal, hexadecimal, or octal form.

(2) Fixed point constants
Fixed point constants are positive or negative numbers which include a
decimal fraction.

(3) Floating point constants

Floating point constants are positive or negative numbers which are represent-
ed in exponential form. A floating point constant consists of an integer or
fixed point constant, followed by the letter E (denoting an implicit base of
10) and an exponent. Either the fixed-point part or the exponent may be
preceded by a minus (“ —) or plus (“+°) sign to indicate that it is positive
or negative; if no sign is present, it is assumed that that portion of the cons-
tant is positive. The exponent must be in the range from —38 to +38.

2-18

A

‘ ‘ N i i g

anamanOOOC

"eRANDNC

AL LLEE

http://www.fastio.com/

a

S

~rr

-

NOTE: -~
When a BASIC program is written, care should be taken to declare the constants o~
correctly. The BASIC interpreter may list numbers in a different form than that "f'
in which they are typed in. BASIC may also insert the trailing signs in the listing. -
For example the following lines: -~
10 PRINT A # 1234567 -
20 PRINT B#* 123456789 o
A

would be listed as: s
or/

10 PRINT A#*1.23457E+06 —~
20 PRINT B # 123456789 # e
o

»

-

-

-

p\

-~

g

-

o

A\’\

—~

o~

‘t\x

_‘)x\

A

P

oy

o

o

2-20 q

http://www.fastio.com/

Examples of variable names are shown below.

Pl # Double precision numeric variable
MINIMUM! Single precision numeric variable
LIMIT% Integer variable

CATEGORY$ String variable

Variables may also be defined in advance as string, integer, single precision, or
double precision with the DEFSTR, DEFINT, DEFSNG, and DEFDBL state-
ments. When variable types are specified in this manner, type declaration charac-
ters are not required. See the explanations of these statements in Chapter 4 for
details.

NOTE:

As with constants, BASIC may add the trailing declaration character when the
program is listed. It is important to be aware that A # is a different variable from
the variable A, unless A has been declared as a double precision variable with
the DEFDBL statement. Also, statements declaring variable types do so for all
variables beginning with a particular character and it is not possible to specify
variable names consisting of more than one character in such statements.

2.8.2 Array variables

An array is a group of variables which is referred to by a common name. Each
variable of an array is identified by one or more subscripts, each of which is
specified as an integer value. The number of subscripts corresponds to the number
of variables in a one-dimensional array (for instance, P(x) where “x” is the in-
teger expression which identifies the individual variable); P(x, y) refers to a specif-
ic variable in a two-dimensional array, and can be thought of as a table containing
a certain number of rows and columns; the number of rows depends on the max-
imum value of x, and the number of columns depends on the maximum value
of y. Theoretically, an array can have any number of dimensions; however, in
practice the number of dimensions and the size of the array are limited by the
amount of memory which is available. The DIM statement is used to define the
number of dimensions of an array and the size of each dimension. See the ex-
planation of the DIM statement in Chapter 4 for details.

http://www.fastio.com/

(2) Conversion in arithmetic and relational operations

If an arithmetic or relational expression includes numeric operands of differ-
ent types, all operands are converted to the same degree of precision (that
of the operand with the highest degree of precision). Further, the results of
arithmetic expressions are returned to the degree of precision of the most
precise operand. Note that error may be introduced when constants are con-
verted from one precision to another. (Note: Relational operations are
described in section 2.10.2 below.)

19 O=LHST L L P Assigns result of arithmetic
29 tToperation &4/7.1# (double precision)
b 2 to double precision variable &,

4
9 PRINT A# :"Displays contents of variable A#.
Ok

I

EAEDT7O4225352113

Ok

In the example above, arithmetic is performed using double precision numbers
and the result is returned in double precision.

H&Hf/T. L ThRssigns result of &#H/7.1 to variable N#.

IO OPRIMT O# :"Displays contents of variable A#.
Ok
A
L B4507047338862249
Ok

Here, the single precision value 7.1 is converted to double precision for arith-
metic and the result is returned as a double precision number. The difference
between the result returned in this example and that returned in the preceding
example is due to conversion error.

2-24

|

'
1

1N OOOELOOMOND

N

\ 24

PN
w7

o

Ad

Py

MMM K
rLoooe

) & O
I

M

http://www.fastio.com/

&.\
&\
When evaluating a function care must be taken to ensure that the value of the ~
expression being evaluated is declared to the precision required. In the follow- -
ing example, only the first seven characters of C# are correct because the square !
root of a single precision number is being converted to a double precision num- -
ber. D # gives a more accurate value because the square root of a double preci- -
sion number is being assigned to a double precision variable. Lines 80 and 90 hdd
show the result of printing a function without and then with double precision o
declarations. o
o
19 A=2 -~
20 B#=2 b
e CH=S0R (A) -
4% DH=GOR (B#) .
50 PRINT "C# =";C# ws
60 PRINT "D# ="j;D# -
Té FRINT "The square root of 2 is"i SEFC(R2#) s
g6 PRINT SOR(1+1) —-
99 PRINT SOR (1#+1#) w7
>
run

CH = 1.414213538169861 o
D# = 1.414213562573099 -
The square root of 2 is 1.4 14213584 EO95 -~
1.41421 —~
1. 41421 3562373095 At
3k -
w7
s
vy
Y
B Y
ad
an
-
4
v

vy

>
2-26 l

http://www.fastio.com/

Sample algebraic expressions and their equivalents in BASIC are shown below.

Algebraic Expression BASIC Expression
X+2Y X+2%Y
X-Y=+2Z X-Y/Z
XXY=+Z X*Y/Z
XY (XAY)A2
XY XA(YA2)
X%x(-Y) X*x(-Y)

When two consecutive operators are included in an expression, they should be
separated by enclosure in parentheses as shown in the last example above.

Y

0]

Integer division

With integer division, the operands of an expression are rounded to integers,
then division is performed and the integer portion of the quotient is returned.
The operator for integer division is the backslash (\). This should not be
confused with standard division for which the operator is the slash (/).

NOTE:
Regardless of the International character set used, internal code CHR3$(92)

is used as the operator for integer division.

The following example of integer division compares the same division tak-
ing the integral part of the result after the division:

10 A=33.05:B=4.62

20 ID=A\B :"Integer division
30 NDZ=A/B : *Normal division
40 PRINT ID,ND%

run

.} 7

Ok

-

When integer division is performed, both operands must be within the range
— 32768 to 32767.

Modulus arithmetic

Modulus arithmetic is the arithmetic operation which returns the remainder
of integer division as an integer. Rounding up can occur as the sécond ex-
ample shows. The operator for modulus arithmetic is MOD. The precedence
of modulus arithmetic is just below that of integer division.

2-28

\é‘é\ﬁﬂﬂ(!(?ﬂﬂ@i‘f“(“@@@@ﬂﬂﬂﬂﬁj

N

Y

¢

b

NOOOH OO G

J
Y

http://www.fastio.com/

PO AY=ELLLEL I \ZT

1060
11a
126
125

138

FRINT A%

:TGenerates an "Overflow” error
: "hecause dividend (66666) is

s Toutside of permitted range
:"for integer division.

: "Not executed because

146 rTprogram execution is
159 tTaborted by error in
160 ' line 96.

run

Overflow
1.701411732192645D+38

Frogram line I

Overflow in 99

Ok

2.10.2 Relational operations

Operations in which two values are compared are referred to as relational oper-
ations. The result returned by such a comparison is either “true” (— 1) or “false”
(0), and is then used to make a decision regarding subsequent program flow.
(See the discussion of the IF.. THEN...ELSE and IF...GOTO statements in Chapter
4)

The relational operators and their meanings are listed below.

Operator Relation tested Example expression
= Equality X=Y
< >, >< | Inequality X< >Y, X><Y
< Less than X<Y
> Greater than X>Y
=, =< Less than or equal to X< =Y, X=<Y
>=, => Greater than or equal to * | X> =Y, X=>Y
NOTE:

The “=" sign is used both for testing equality in relational expressions and in
LET statements for assigning values to variables. However, its meaning is not
the same in both cases. See the discussion of the LET statement in Chapter 4
for details on assigning values to variables.

2-30

VOB TNV HTPPIRHOOO ,?J

vz

ax

VOO O Y GV O O

http://www.fastio.com/

2.10.3 Logical operations

A logical operation uses Boolean arithmetic to define the logical connection
between the results (— 1 or 0) of relational operations. In any given expression,
logical operations are always performed after arithmetic and relational opera-
tions. The results of operators are listed in the table below according to the ord-
er of precedence.

NOT (Negation) XOR (Exclusive — OR)
X NOT X X Y X XOR Y
1] 1 1 [o]
4] 1 1 (o] 1
AND {Logical product) 0 ! !
0 0 o]
X 7 xanov IMP (Inclusion]
1 0 (0] X Y X IMP Y
(o] 1 (4] 1 1 1
]] 0 1 0 o}
OR {Logical sum) 0 ! !
0 0 1
v
)1< T X O1R ' EQV (Equivalence)
1 0 1 X Y X EQV Y
0 1 1 1 1 1
0 o] (o] 1 o] 0
0 1 0
o] [o] 1

Since relational operations can be used to make decisions concerning program
flow, logical operators can be used to connect two or more relational opera-
tions. This allows decisions to be based on multiple conditions. (See the discus-
sion of the IE.THEN...ELSE and IF..GOTO statements in Chapter 4).

Examples

1) IF D<200 AND F<4 THEN 80
This statement causes program execution to branch to line 80 if the contents
of variable D are less than 200 and the contents of variable F are less than 4.
2) IF I<10 OR K< 0 THEN 50
This statement causes program execution to branch to line 50 if the contents
of variable I are less than 10 or the contents of variable K are less than 0.

2-32

& 4\ 4% 4% 4 %

{i% £% £ 4\ €% (% £% 4\ £\

i

% d\ & & 4> 4% 4% B

&\ &% €% &)Y &\ 4N (M

&

"\ &5

http://www.fastio.com/

The two’s complement integer — 1 is expressed in binary as 1111111111111111B,
while the two’s complement integer — 2 is expressed as 1111111111111110B. Since
both 1 OR 1 and 1 OR 0 yield 1, the result is 1111111111111111B, or — 1.

Logical operators can be used to test data bytes for a particular bit pattern. For
instance, the AND operator can be used to mask all but one bit of a status byte
to obtain the status of a device 1/0 port; or, the OR operator can be used to

merge two data bytes to obtain a particular value.

Example

e FOR I=97 TO 122
269 PRINT CHR$(I)3

*from "a" to "z".
MEXT ’

56 FRINT TMoves cursor down

&Hid next line on display.
VA

ga Following lines convert lowercase

Qo 7 character codes to uppercase.

loa FOR I=97 7O 122 T Einary nnnnnnnn

11e PRINT CHRE(I AND 2273)3:7AND 11e11111

138 NEXT Tvields: rn@nnnnn
run

abudefghil jklmnopgrstuvesys
ABCDEFGHIJKLMNOFORSTUVIWXY Z
(15

2-34

"Displays characters

to

http://www.fastio.com/

Comparison ends when different characters are encountered in the two strings
or when the end of one of the strings is reached; in the former case, the string
in which the lesser code is encountered is regarded as smaller, and in the latter
case the shorter string is regarded as smaller.

Spaces included in strings are also significant; for example:

“ALPHA” is smaller than “ALPHA ”
“ALPHA” is greater than “ BETA”

Further examples are:
“AA” is less than “AB”
“FILENAME” is equal to “FILENAME”
“X&” is greater than “CL”
“SMYTH?” is less than “SMYTHE”

Thus, string comparisons can be made to test string values and to sort strings

into alphabetical order. All string constants used in relational expressions must.

be enclosed in quotation marks.

2-36

ACQACAODAPONNNOCELOCOODONDNODOOOOCOLOOOCCCOQCOOO D

http://www.fastio.com/

Examples: INT(.1) =1
INT@09) = 0
INT(-54) =—-6
INT(-57) =—6

2.11.2 Trigonometric functions
PX-8 BASIC supports the following trigonometric functions.

Function Argument Value returned
ATN Tangent of an angle Angle in radians
COS Angle in radians Cosine of an angle
SIN Angle in radians Sine of an angle
TAN Angle in radians Tangent of an angle

If you want to work with angular measurements in degrees, remember that you
will have to convert the arguments of these functions from degrees into radians
(with the ATN function, you will have to convert the result from radians into
degrees). Since 180 degrees is equal to 7 radians, there are 180/« degrees in a
radian. Thus, you can convert degrees to radians by dividing by 180/x. Con-
versely, radians can be converted to degrees by multiplying by 180/. Single and
double precision values corresponding to 180/x are as follows.

Single precision
180/3.1416=57.2958

Double precision
180/3.141592653589795=57.29577951308228

Other trigonometric functions must be derived from these four built-in func-

tions. For example, the secant of an angle is equal to 1 divided by the angle’s
cosine. See Appendix E for derivation of other trigonometric functions.

2.38

|

H\ «% 4 a4 LA\ & 4> £ iy % B

YA A YA Y 2Ny Y

http://www.fastio.com/

NOTE:

Device name LPTW: can be assigned 1o either the RS-232C port,or the serial port
with the CONFIG program of CP/M to indicate the printer connected to that
port. Initially, LPTV: is assigned to the RS-232C port.

(2) Option
<option> is used to set the baud rate and communication format for
the RS-232C interface, the write mode for the microcassette drive, and
so forth. The format of <option> varies according to device.

(3) File name
File names are used to distinguish files within a device from one another.
Specification of file names is mandatory when accessing files in disk
devices; however, file names are meaningless in the case of device files such
as the keyboard and RS-232C interface, and will be ignored if specified.
A <file name> is composed of a primary name of up to 8 alphanu-
meric characters, and an extension consisting of up to 3 alphanumeric
characters. The primary file name is separated from the extension by a
full stop.

SAMP1.BAS

With the LOAD, MERGE, RUN, LIST and SAVE commands, the ex-
tension “BAS” is assumed only if the primary name is specified in the
command’s operand. The FILES, KILL or NAME commands require
extensions to be specified.

2.12.2 File numbers

A file number is a number which is assigned to a device file as an identifier
when that device is opened for input and/or output. The number specified as
the file number must be in the range from] to the maximum specified in the
/F: option when BASIC operation is started.

With PX-8 BASIC, a logical file number must be assigned to each file which
is read or written by a program (except when a program text file is accessed us-
ing the LOAD, MERGE, RUN, LIST or SAVE commands). This is done with
the OPEN statement, which links a specific logical file number to the physical
file defined in the file descriptor. Unless otherwise specified with the /F: option
when BASIC is started, the maximum number of files which can be open at
one time is 3. See the explanation of the OPEN statement in Chapter 4 for the
procedure for assigning file numbers.

2-40

M @A B % T ot Rt Il (R OEY S SN Y dRAN (% (DAY AN dr By € (% 4y Ay L) A 4) &) i) <y B

http://www.fastio.com/

(3) Virtual screen window
Since the real screen is limited to seven or eight lines depending on whether
the function key definitions are displayed, it acts as a window on the virtual
screens. However, scrolling can only be performed in the vertical direction,
either by means of the cursor keys or under program control.

Virtual screen window
Real screen

Function key display area (optional)

When function key definitions are not displayed, the number of lines displayed
by the virtual screen window (also referred to as the screen window) is the same
as the number of lines in the real screen (8). When function key definitions are
displayed, the number of lines displayed is reduced by one (the line used to dis-
play function key definitions).

2.13.2 Screen modes

The PX-8’s LCD screen has four modes of operation. These are referred to as
screen modes 0, 1, 2, and 3. Screen modes 0, 1, and 2 are solely text screen modes;
screen mode 3 is the graphic display mode; and allows text to be mixed with
graphics.

When the display is in one of the text modes, the PX-8’s VRAM is divided into
two sections which are used as two independent virtual screens. In the text modes,
character data consisting of one-byte ASCII codes is written into VRAM; these
codes are converted to character images for display by the PX-8’s display con-
troller.

2-42

http://www.fastio.com/

! In this screen mode, the size of the virtual screen window is 39 characters

x 2h lines (where h is the number of lines in each half of the screen win-
dow).

As with screen mode 0, the virtual screen window can be switched back and
forth between the two virtual screens, both of which have a width of 39
columns. The number of lines in the two virtual screens can be set as desired
by the user within the range from 16 to 48, and both virtual screens must
have the same number of lines.

Boundary

39 columns ~—————————]

|tt-———— 39 columns

“ h lines

Virtual screen window (left side)
{Continued on right side)

{

(Continued from left side}

Virtual screen window (right side}

|#———— 39 columns ——————=1

e 39 columns ————=

n lines

=z
~ Virtual screen window

fleft side) Z22

Vri(tgal screen window
{right side)

~

Virtual screen 1

n lines

Virtual screen 2

16=<2n<48
h=7 or 8

Conditions:

%

FEYNEE R N

4w

http://www.fastio.com/

(4) Screen mode 3 (the graphic screen mode)

This is the screen mode which is used for displaying graphics. In this screen
mode, the PX-8’s display controller works on a bit image basis, rather than
using character codes, making it possible to display a full range of graphics.
Although text can be displayed with the graphics, the size of the virtual screen
in this screen mode is the same as the size of the real screen, that is, the
virtual screen size is 80 columns X 8 lines. When the function key assign-
ments are displayed, there are only 7 usable lines.

Although the screen editor can be used in the same manner in this screen
mode as in the text screen modes, the virtual screen (i.., bit image data in
VRAM) is displayed directly to the real screen and there is no screen win-
dow. Because the real and virtual screens are the same, scrolling of the virtu-
al screen cannot occur. Graphic statements such as PSET, PRESET, LINE
and POINT can only be used in this screen mode.

80 columns

8 lines Virtual screen =Real screen

2.13.3 Selection and display of virtual screens

Display screen modes 0 to 2 each include two virtual screens, only one of which
can be selected at any given time. The screen selected is that in which characters
are displayed when keys are pressed or when PRINT and similar statements are
executed. The SCREEN command in BASIC is used to select the virtual screen.

(1) Screen modes 0 and 1
In these screen modes, only one virtual screen can be displayed at a time,
The virtual screen selected is displayed in the screen window, and characters
typed or output are displayed in the selected virtual screen. The scrolling
control keys and scrolling escape sequences move the virtual screen window
through the virtual screen which is currently selected.

(2) Screen mode 2
In this screen mode, both virtual screens are displayed at the same time.
However, the scrolling control keys and scrolling escape sequences only move
the virtual screen window through the virtual screen which is currently selected
for output (the screen in which typed characters are displayed).

2-46

e 4w -

N e &S, 4.

http://www.fastio.com/

6) +[inNs](find cursor)

When the cursor is not displayed in the screen window, pressing +
[iNs] moves the screen window to the current position of the cursor.

2.13.5 Screen coordinates

(1) Character coordinates

Character coordinates are the coordinates which are used to specify the po-
sition in which characters are displayed on the screen. These coordinates are
used with the LOCATE statement and the SCREEN, POS and CSRLIN func-
tions.

When using character coordinates, the column on the left side of the screen
is numbered 1 and that on the right side of the screen is numbered accord-
ing to screen mode or the maximum screen width specified by the user. In
screen modes 0 and 3, the column on the right side of the screen is num-
bered 80 and in screen mode 1 it is numbered 39. In screen mode 2, the num-
ber of the right hand column is the same as the column width specified for
the selected virtual screen by the user.

In the vertical direction, the top line is numbered 1 and the bottom line is
numbered according to screen mode or the maximum number of screen lines
specified by the user.

P Y i w

™

V'

(1, 1) (Xmax, 1)

{1, Ymax) (Xmax, Ymax)

Xmax: Number of columns in selected virtual screen
Ymax: Number of lines in selected virtual screen

(2) Graphic coordinates
Graphic coordinates are used to specify the positions of individual dots on
the screen. The graphic coordinate system is used with statements such as
PSET, PRESET and LINE, and with graphic functions such as POINT.

2-48

b

P

http://www.fastio.com/

2.14 A Practical Guide to the Screen Modes

Whereas the above description summarises the possibilities for the various screen
modes, it is difficult to appreciate the full facilities without seeing them in ac-
tion. This section is thus meant to be followed actually using the PX-8.

The various screen modes are accessed by using the SCREEN command. The
screen size is set by the WIDTH command. This can be attached to the SCREEN
command to give the full format of the screen command as follows:

SCREEN M, VS,FKS,BC WIDTH C,NL1,NL2
Where M is screen mode 0, 1, 2 or 3
VS is the virtual screen to be displayed.

FKS allows the function key assignments at the base of the screen to be switched
on and off to give the full 8 lines of the LCD screen.

BC sets the boundary character for split screen display in screen mode 2.

WIDTH is a separate command which is used to set the number of columns
and lines of the virtual screens. It would normally be used on its own, but since
in many cases use of the SCREEN command will involve setting the size of the
virtual screens, it has been added to the syntax of the SCREEN command. The
addition does not require a comma to separate the WIDTH command from the
boundary character, but it does require a space as separator. In WIDTH, C sets
the number of columns (in screen modes 1 and 2) and NL1 and NL2 the num-
ber of lines of the two virtual screens. The range of these options varies accord-
ing to the modes and thus will be discussed under each mode.

If one of the parameters is to be changed, ether than the mode, the correct num-
ber of commas must be inserted to denote which parameter is being changed.
To illustrate this the function key assignments can be switched off using the
command

SCREEN, ,#§

because the function key switch is the third parameter.

If a screen mode or virtual screen is not specified, the current values are used.

2-50

http://www.fastio.com/

, R |or [NUM]/[GRAPH] or a key which cannot function (e.g., the[BS

key if the cursor is at the beginning of a line) the window will be returned to
the part where the cursor is located. The character pressed will be printed be-
side the cursor, or the function of the key carried out. You can also return to
the cursor position by pressing the [CTRL] and [INS] keys together.

The cursor can be moved anywhere on the virtual screen using the cursor keys.
Note how the screen moves with the cursor if you move to a line above or below
the real screen. This is the normal tracking mode. It can be changed to the non-
tracking mode, where the cursor can be moved anywhere on the virtual screen,
leaving the window fixed. Pressing the key (shifted [INS]) will switch
between the two modes. Move the cursor off the real screen with the cursor keys
in the non-tracking mode, and then restore the part of the screen containing
the cursor to the window as before using the [CTRL |and [INS |keys. It is possi-
ble to set the cursor to the first character position of the virtual screen with
the key (shifted [BS]) but this does not display the cursor. In combina-
tion with the[cTRL | and[NS] keys as a sequence it can be used to set the dis-
play to the top of the virtual screen with the cursor on that position.

It is still possible to scroll the screen even if the cursor is not in the window,
by using the SHIFT and [t] and cursor keys. This only moves the screen
up or down one line at a time.

The boundary character is not used in screen mode 0.

The WIDTH command is used to set the number of columns and number of
lines of each virtual screen. However, in screen mode 0 it is not possible to alter
the number of columns. It is only possible to display an 80 column screen, with
either of the two virtual screens being displayed at any one time. If using screen
mode 0 a value of 80 must be used for the column width or no value used at all.

The number of lines in each virtual screen can be altered provided the sum of
the lines specified is less than or equal to 48, and that neither screen is made
less than 8. If your program uses only one virtual screen, it is beneficial to in-
crease its size to the maximum, (i.e., 40 since the other screen must be 8 and
the total 48). It is also useful to do this if you are writing a BASIC program
since it is possible to scroll back without having to relist the program. Type

SCREEN 60.0.0, WIDTH 86,40,8
or the equally valid
SCREEN #,9,8, WIDTH ,40,8

2-52

Y TN

http://www.fastio.com/

(i) Change the window between the virtual screens, using [CTRL | and the
and [«] cursor keys.

(i) Change the tracking mode, using the key.

(iii) Scroll using the shifted [*] and keys.

(iv) Look at the first and last displayable lines using the and and

keys.

Only one parameter can be altered in the WIDTH statement in screen mode
1. The screen is set to display two 39-column halves on each side of the screen.
It is not possible to alter this so the WIDTH statement must specify 39 as the
column width, if any value is used, or an error will occur. The number of lines
in each virtual screen is the same in screen mode 1. The number of lines must
be specified in the range 16 to 48 and setting the number of lines for the first
screen also sets the number for the second. Any attempt to set the size of the
second virtual screen will be ignored and no error generated. Thus to set the
number of lines on each screen to 20, the following are valid commands:

WIDTH 39, 26
WIDTH ,20
WIDTH 39, 264, 8

(3) MODE 2

This is the most versatile screen mode. The width of each half of the screen and
boundary character can be set. The number of lines on each virtual screen is
the same as with screen mode 1. For example type

SCREEN 2, 8, 8, “*” WIDTH 24, 40

This will switch to screen mode 2, placing the cursor on the left-hand side of
the screen and removing the function key assignments from the base of the screen.
1t also sets the width of the left-hand side of the screen to 20 columns. The right-
hand side is thus set as 59 since one of the 80 columns is used for the boundary
characters.

Now use the and [+] keys to change the virtual screen. Note how the
cursor moves to the right half of the screen. This is because the two halves of
the screen correspond to the two virtual screens. Use the cursor keys in combi-
nation with the[SHIFT]and | CTRL] keys to explore this mode as with modes
1 and 2.

2-54

http://www.fastio.com/

2.15 Input/Output Device Support

PX-8 BASIC supports data input and output (I/0) to and from a variety of
peripheral devices. These include random access devices such as external floppy
disk drives and RAM disk (a user-specified area in memory which is used in
the same manner as an external disk drive), and sequential access devices such
as the RS-232C interface, printer and LCD screen.

Devices which have full random access capability allow the records of files to
be read or written in any order. All external storage devices used with the PX-8
have some degree of random access capability.

Sequential access devices are devices in which each item of data in a set is input
from or output to the device in the order in which it occurs in that set. With
PX-8 BASIC, sequential file organization may be used for storage of informa-
tion in external access devices such as floppy disk drives, or for input/output
of information when 1/0 devices such as the keyboard and RS-232C interface
are handled as device files.

2.15.1 Random access devices

Random access devices are devices which can be open in either the random (“R”)
or sequential (“I” or “O”) modes. Random access devices supported by PX-8
BASIC include external floppy disk drives, RAM disk, and the PX-8’s built-in
microcassette drive. Collectively, these are referred to as disk devices.

Disk devices can be classified into three categories (types I, I1, and IIT) as follows.

(I) Type I disk devices are external storage devices which can be both read and
written to on a random access basis. Devices included in this category are
RAM disk and external floppy disk drives. All disk I/O statements and
functions can be used with type I devices.

(II) Type II disk devices are devices which can be read (but not written to) on
arandom access basis. Devices included in this category are ROM capsules
in ROM socket 1 and 2. Only read statements/functions can be used with
this type of device.

(II1) Type III disk devices are devices which can both be read and written, but

for which random access support is limited. At present, the only device
which is included in this category is the PX-8’s built-in microcassette drive.

2-56

3 i% 44X

«n

Hy @ €y 42 4% 8 <5

.

http://www.fastio.com/

2.15.3 Speaker

PX-8 BASIC also supports output to a speaker (either the built-in speaker or
an external speaker connected to the SP OUT jack on the back of the PX-8).
No device name is assigned to this device; however, output control is possible
using the BEEP and SOUND statements.

The speaker can also be used to check for the presence of recorded signals on
the tape. This is done by executing the WIND ON statement. (See the explana-
tion of the WIND statement in Chapter 4.)

2.15.4 The analog converter

On the rear of the PX-8 is a socket marked A/D IN. This is the analog-to-digital
converter. It takes an analog voltage and converts it into a number. This num-
ber is proportional to the voltage. The analog-to-digital converter is not sup-
ported by BASIC, but it can be used if a short machine code subroutine is added
to a BASIC program. This machine code subroutine is required to make the
necessary BIOS call to return the digital value corresponding to the analog vol-
tage. An example of its use is given in the User’s Manual, where the voltage
across a variable resistor is determined. This is then used as a paddle in a simple
game. The program shows how the machine code routine to read the A/D port
can be used with a BASIC program.

2.15.5 The bar code reader

Many products are marked with a machine readable coded series of bars. This
allows a numerical value to be read simply by moving a bar code wand across
the bars. A socket for insertion of the wand can be found on the rear of the
PX-8 marked BRCD. Further details are included in the User’s Manual.
Examples of the use of a bar code reader include identifying suitably coded
products, then using the information in a program to count the number of differ-
ent items. Special software is required to perform the task of reading the data.
Such software must be written in machine code, but can be linked to BASIC.
Use of the bar code reader requires the purchase of a separate software pack-
age, and details of how to use the software with BASIC are included with the
package. Please consult your dealer for more information.

2-58

I AN A IE I L L R I N A I I A N I N A N AN A N A N N I A AN I T I s e

http://www.fastio.com/

2.15.7 Commands, statements, and functions usable with 1/0 devices

Commands, statements, and functions which can be used with the various 1/0
devices are as indicated in the table below.

Device KYBD | SCRN | LPT0 | COMO | Disk-I | Disk-II [Disk-III
CLOSE O O O O O O O
DSKF X X X X O O 12
EOF — X X O O O O
GET X X X X O O 13
INPUT # O X X O O O O
INPUTS$ O X X O O O O
LINE INPUT # O X X O O O O
LIST X O O O O X O
LOAD O X X O O O O
LOC — X X O O O O
LOF — X X O O O O
OPEN ’I” O X X O O O 13
OPEN 70” X O @) O O X 13
OPEN ”R” X X X X O O 13
POS X O O O O O O
PRINT # X O O O O X O
PRINT USING # X O O O O X O
PUT X X X X O X 13
SAVE X t1 t1 T1 O X O
WIDTH X X O O X X X
WRITE X O @) O O X O

Disk-I RAM disk, floppy disk drives
Disk-II ROM capsules
Disk-III Microcassette drive

O: Usable % : Not usable —: Meaningless

11 Output is in ASCII format even if binary save or protect save is specified.
12 Value returned is not trustworthy due to the nature of cassette tape.
13 Use is subject to restrictions.

2-60

P R N U

<y

AN A L e

4 T

& e e £ % R L

n A&y & .

http://www.fastio.com/

2.17 Error Processing Routines

When it is possible to anticipate that a certain line of a program will result in
an error or that an error of a particular type will occur, programs can be designed
to include routines which are referred to as error traps, or error processing rou-
tines. The purpose of an error processing routine is either to evaluate and cor-
rect an error or to allow the user of the program to input corrective data;
afterwards, the error processing routine either terminates program execution or
causes it to resume at a particular point, depending on what conditions are written
into the routine.

The ON ERROR GOTO <line no.> statement must be executed in order to
define the starting line number of the error processing routine. After execution
of this statement, occurrence of any error at any line in the program will cause
execution to jump immediately to the line number specified following GOTO.
Afterwards, the ERR and ERL functions can be used to evaluate the type of
error and the point at which it occurred in the program, and the RESUME state-
ment can be used to transfer execution out of the routine and back to a specific
point in the main program.

Errors can also be simulated using the ERROR statement.

See the explanations of the ERROR, ON ERROR GOTO, and RESUME state-
ments and the ERR/ERL functions in Chapter 4 for further information.

2-62

|

dy £y €% (B % & &Y € € N O VY ®

Ay A% &% A% £B b 2 &Y

Y on B % SLY &

& &y &3 &3 4

A2 @,y & .

http://www.fastio.com/

(2) BASIC /F: <no. of files>

BASIC /F:5

The /F: <no. of files> option sets the number of files which can be open simul-
taneously. In the example the number would be 5. If this operand is omitted,
the maximum number of files which can be open simultaneously is set to 3 (the
system default value). The maximum value which can be specified in <no. of
files > is 15. In this statement “files” refers to data files, either for communica-
tion or saving and loading to a disk drive. For example

OPEN “0”, #3,“FILENAME”’

If a file number is used which is greater than the number specified in the op-
tion, a

Bad file number in <line number >
error will occur.

(3) BASIC /M: <upper memory limit >
BASIC /M:&HC000

The /M: <upper memory limit > option specifies the highest address in RAM
which can be used as program or variable area by the BASIC interpreter. The
value specified for <upper memory limit > must be smaller than the starting
address of the basic disk operating system (BDOS). The memory area starting
at the address from <upper memory limit > to the beginning of BDOS can
then be used for storage of machine language programs. Naturally, this reduces
the amount of memory which can be used for variables or storage of BASIC
programs. However, it must be noted that the BDOS starting address will vary
according to the number of bytes of memory reserved for use as the RAM disk.
The starting address of BDOS can be found by looking in page zero. Locations
5, 6 and 7 contain a jump to BDOS. Therefore locations 6 and 7 contain the
starting address of BDOS, in the order LSB, MSB. To obtain this from BASIC
use:

PEEK(6) + PEEK(7) * 256
In the example above, the upper memory limit is specified as a hexadecimal
number; however, it can also be specified as a decimal number. Full details of

this are described in the section on the CLEAR command in Chapter 4.

32

http://www.fastio.com/

http://www.fastio.com/

cannot be listed or edited when it is later reloaded; therefore it is recommended
that you also save an unprotected copy of the program for future listing or editing.

LOAD <file descriptor> [,R]

This command loads the program specified in < file descriptor > into memory
from the disk. If the R option is specified, the program will be automatically
executed as soon as loading is completed. Executing this command without the
R option closes all files which are currently open; however, files will not be closed
if the R option is specified. This makes it possible to chain programs which ac-
cess the same data files.

RUN <file descriptor>[,R]

If <file descrjptor> is omitted, this command executes the program which is
currently in memory. Specifying < file descriptor> causes the specified pro-
gram to be loaded into memory from the disk or microcassette (deleting any
program currently in memory) and to be immediately executed. As with the
LOAD command, all open files are closed upon execution of this command un-
less the R option is specified.

MERGE < file descriptor >

The MERGE command loads the specified program into memory from the disk
or microcassette and merges it with the program in memory. The program merged
must have been stored in ASCII format. If any lines of the program loaded have
the same line numbers as those of the program in memory, those program lines
in memory are replaced with those of the program from the disk or microcas-
sette. BASIC always returns to the command level after execution of a MERGE
command.

-

KILL < file descriptor>

This command deletes the specified file from the disk. The function of this com-
mand is the same regardless of whether the file specified is a system file, a pro-
gram file, or a random or sequential access data file; therefore, great care should
be exercised in using it.

52

http://www.fastio.com/

5.2.1 Creating sequential files
The steps involved in creating and accessing a sequential file are as follows:

(1) Execute an OPEN statement to assign a file number to the file and to open
it in the “O” (output) mode.

(2) Write data to the file using the PRINT # or WRITE # statement.

(3) Close the file by executing a CLOSE statement. This must be done before
the file can be reopened in the “I” mode for input.

Example:
The following is a short program which creates a sequential file of employee
data. The file it creates will be used with subseauent programs. To simplify

programming, type in all the data with the key set to SHIFT ON.

1o OPEN "O",#1,"A:EMPLOYEE.DAT": Open file for output.

20 INPUT "NAME";N$:"Assign name to N$.

30 IF N$="XX" THEN CLOSE:END :*If XX is typed, the

40 * program ends.

S INPUT "SECTION”;S% :"Agsign section to S%.

60 INFPUT "DATE OF BIRTH"iD% : "Assign date of birth to D$
70 PRINT #1,N$3",";S%;",";D$:"Write data to file.

80 PRINT: GOTD 20 : "Moves cursor down.

Try running the program. The following prompt appears on the LCD screen:

NAME?

Type a name of employee (e.g. JOE SOAP) and press the m key: the
following message appears:

SECTION?

Type the name of section where the employee works (e.g. ACCOUNTS) and press
the [RETURN] key: the following message appears:

DATE OF BIRTH?

Type the date of birth of the employee (e.g. 08/05/49) and press the
key: the first message appears again. The above steps are repeated until “XX”
is typed in response to the message “NAME?”,

5-4

oy e

P I

A (B €3 41 €2 A% 4% €% b £B2 B €% €% L2 % <% 2% X . @« =

'r Y

D & € A A 2 &

http://www.fastio.com/

Example:

The following program reads data from the file created by the sample program
in Section 5.2.1 and displays the names of all employees working in the AC-
COUNTS section.

1o OPEN"I",#1,"A:EMPLOYEE. DAT" :"Open file for input.

20 IF EOF(1) THEN GOTO 110 :*If EOF is encountered,
jR{% I file closed and progrém
46 ° ends.

5@ INFUTH#1,N%,5%,D% :"Read data and assign

&G 7 items to N%,5¢% and D$

7¢ IF S$="ACCOUNTS" THEN FRINT N$:°When the section is

86 ACCOUNTS, name is
A displayed on screen.
ioe GOTO 20 i : "Next data record

119 CLOSE:END :"Close file and end
120 ° program

The screen will show the result as follows:

RUN
JOE SOAP
BETTY JONES

The comparison for the “ACCOUNTS” string requires the string not only to
be spelt the same, but that it be all in upper case. This was why the suggestion
was made to set the CAPS LOCK in the program to write the data, otherwise
the program would have had to check for all possibilities, for instance “Accounts”,

“accounts”, etc.

5.2.3 Updating sequential files.

After a sequential file has been written to a disk or microcassette, it is not pos-
sible to add data to that file once it has been clesed. The reason for this is that
the contents of a sequential disk file are destroyed whenever that file is opened
in the “O” mode. To overcome this, the following procedures can be used:

(1) Open the existing file in the “I” mode.
(2) Open a second file on the disk or microcassette in the “0” mode under

a different file name.
(3) Read in data from the original file and write it to the second file, adding

the new data.

e
p
€
2
#
e
&
¢
&
€
€
L3
r
&
-~

http://www.fastio.com/

The contents of the original file could be changed by replacing the contents of
variables before writing them to the second file. This could be done by adding
the following sequence between lines 110 and 150.

111 FPRINT As$

:"Display contents of As$.

112 PRINT "Change entry (Y/N)?"

112 YN$=INPUT$(1)

114 IF YN$="Y" THEN 117
115 IF YN$="N" THEN 15®

116 BOTO 112

117 INPUT "Enter new
118 INPUT "Enter new
119 INPUT "Enter new

120 A$=NN$+", "+DD$+",

"Bo to 117 if Y typed.
"Go to 150 if N typed.
"Go to.112.

name” 5 NN% *Input new entries.
section";85%:°

birthdate";DD$

"+DD% :"Assign new entries..

58

Wait for character input.

4% 4qn (P

da> 4

P §r a4y Iy &\

(P (P (% O d§Y > &

4 M

M € @ €F €3 4 €% &% 4% (B (B 2 Q) & 49

http://www.fastio.com/

l

FIELD #2, 18 AS S$, 38 AS N§, 10 AS C$

This allocates the fields for file number 2. The example distributes the total
length of the record among the variables as follows:

10 bytes for S$, 30; for N$, and 16 for C$
Note that all fields are allocated as strings. Even numeric variables are stored
as strings and must be converted as shown in step (3). Make sure the total
equals the declared record length. If this length is exceeded, a

FIELD overflow in <line number >

error will be generated.

(3) Data is then placed into the random file buffer using the LSET and RSET

commands, depending on whether they require left or right justification.
Only strings can be placed-into the buffer so any numeric values must be
converted to strings first; this is done using the MKI$, MKS$, and MKD$
functions. For example:

LSET S$ = MKIS$(S%) converts and sets an integer.

LSET N$ = MKSS$(Q!) converts a single precision number.
LSET RS = MKD$(R #) converts a double precision number.
LSET N$ = AS sets a string.

(4) Write data to the file from the random file buffer with the PUT statement.

Records can be written in any order (in contrast to sequential files) and thus
to add or change records it is only necessary to reopen the file and write
further records. HOWEVER, with MICROCASSETTE files, the files MUST
be written in sequential order.

(5) When all the data has been written to the file, the file must be closed using

the CLOSE command:

e.g. CLOSE closes all files.
CLOSE #2 simply closes file #2.

Failure to close a file may render the file impossible to be read from or written
to at a later date.

5-10

Y £ %Y ¢ 0})

http://www.fastio.com/

5.3.2 Accessing random files

The following steps are required to retrieve data from a random access file:

(1) Open the file in the “R” mode.

(2) Using the FIELD statement, allocate space in the random file buffer for

variables which are to be read in from the random file.

Note:
If the same program both writes data to a file and reads data from it, it is often
possible to use just one OPEN statement and one FIELD statement.

3

@

Move the desired record into the random file buffer with the GET state-
ment. Any record number can be accessed without reading the whole file
into memory as is the case with sequential files. HOWEVER, with microcas-
sette files, the data MUST be accessed sequentially.

Data in the random file buffer can now be used by the program. Be sure
that numbers which are converted to ASCII strings for storage in the file
are converted back into numeric values for use by the program; that is done
using the CVI, CVS and CVD functions.

The following sample program accesses random file “STOCKLST.DAT” creat-
ed using the program example shown in paragraph 5.3.1 above. Data records
are read in and displayed by entering the stock number (record number) from
the keyboard.

70
80
0

OPEN "R",#1,"A:STOCKLST.DAT", 36

:*Open file in R mode. -—— (1)
FIELD#1,2 AS S%,30 AS N$,4 AS C%
:?’Allocate space for variables. —— (2)

INPUT "ENTER STOCK NO.";S8%
: " Input stock No.
IF S%=0 THEN CLOSE:PRINT"END":END
:’End program.

GET#1,S8%
: "Read record into buffer. - (3)
PRINT USING "###";CVI (S%)§:PRINT" "3
:"Convert strings to numeric values
and display them.
PRINT USING "&"jN%$j:PRINT" "3
PRINT USING "#####"5CVS(CH)
GO0TO Zo

:’Next record

5-12

a &£\ €\ £\ £\ (B

&y &

a»

&\ & (%

DA AR O BAESD OO B D DDA DO 6

.. I)

http://www.fastio.com/

5.4 Microcassettes

The microcassette drive is supported as a disk device, and can be used in gener-
ally the same manner as a disk drive. It is, however, intended as a storage device
which adds to the portability of the PX-8, and not as a device which would sub-
stitute for a disk drive in normal day to day use. It is obviously slower than a
disk drive and has some further limitations. This section summarises the differ-
ences between the use of the microcassette as a disk drive and that of a conven-
tional disk drive.

5.4.1 Restrictions on use

Since the microcassette is essentially a sequential access device, there are a num-
ber of restrictions on its use as a disk device.

(a) Only one microcassette file can be opened at once. If two files are opened
in the input mode, only the second one to be opened can be accessed. When
a file is opened in the output mode no other file can be opened until it
has been closed.

(b) When a microcassette file is opened in the random (“R”) mode it can be
either read from or written to, but not both.

(c) When the GET statement is executed during random access, records must
be read in sequence starting with record number 1. True random access
is not possible. i

(d) As with the GET statement, records must be accessed in sequence starting
with record number 1 when the PUT statement is executed in the random
mode. Further, the file must be one which has been opened for the first
time; it is not possible to write data to a file which was previously created
in the random mode. If an attempt is made to write another record to a
file previously stored on tape a “Tape access error” will be generated.

5.4.2 Opening options

The options for opening a file with the microcassette are the same as for any
other file with two additions. The full syntax is:

OPEN “ |0
I
R

?, #n,“h:(sv)filename.ext”

5-14

€€ <) &) €Y O

s

v 4

a
et

Y

€ & A D MO DB A O £ & () ¢

&)

At @ O M™MH DO D

http://www.fastio.com/

5.5 Errors

5.5.1 Error messages and causes

(1) Disk read error

109

3

“@

&)

An error occurred while data was being read from a disk.

Disk write error
An error occurred while data was being written to a disk.

Device unavailable
Access was attempted to a drive which did not contain a diskette, or the
specified drive. was not connected.

Disk write protected

An attempt was made to write data to a disk which was protected with a
write protect tab.

An attempt was made to write data without executing the RESET com-
mand after the diskette in that drive had been replaced. .

An attempt was made to write data to a file for which the write protect
attribute was set.

An attempt was made to write data to a ROM device.

Tape access error

An attempt was made to access an access-inhibited microcassette file.
An attempt was made to MOUNT a tape without REMOVEing the previ-
ous tape.

An attempt was made to REMOVE a tape which has not been MOUNTed.

3.5.2 Error processing

(4))

Errors occurring when a file is opened
Identify and eliminate the cause of the error, then re-execute the OPEN
statement.

5-16

DO A G DD DB B (Y (U Y) Y (D (Y Sy gy S, 4y Ly &Y €Y (D

http://www.fastio.com/

5.6 Precautions On Changing Floppy Disks
This section may be skipped if you do not use an optional floppy disk drive unit.

Before removing a floppy disk from the drive, be sure to CLOSE all files cur-
rently open on that drive. The reason for this is as follows:

Assume that a file on the disk being replaced is open in the “O” or “R” mode
and that data has been output to that file with the PRINT # or PUT statements.
Write operations to the disk by these statements are not necessarily actually made
until the file is closed. Therefore, if the floppy disk is replaced without execut-
ing the CLOSE statement the contents of the file on that disk are not assured.
Further, if another disk is inserted in place of the one on which the file was
opened, the contents of the disk on that drive may be destroyed when an at-
tempt is made to CLOSE the file.

To avoid the destruction of data to the maximum extent possible, the CP/M
operating system is designed so that disks are automatically write protected on
replacement. If an attempt is made to write data to a disk while it is this condi-
tion a “Disk write protected” error will occur. The write protected condition
can be cleared and write access to the new floppy disk enabled by executing the
RESET command. :

For these reasons, the following procedures should be observed when replacing
floppy disks:

In the direct mode:
CLOSE all files;
Replace disk;
Execute RESET.

During program execution:
100 CLOSE
110 PRINT “Change the disk!”
(Change the disk and press any key)
120 A$ = INPUTS$(1)
130 RESET

5-18

YV LY 6% 2 (B (B (B O I EY €Y (B (0 AYVE 3 OOV

«@

D

Y €% €N

Iy Y)Y

N Y

Y

“V Y)

http://www.fastio.com/

floppy disks or in the RAM disk. However, the format of the file descriptor
differs slightly.

For disk files the format allows an optional device name but the file must
be given a name, for example:

OPEN “0”, #3;/A: TEST FILE”
OPEN “0”, #1,'NAME”

For the RS-232C interface port the format is as follows:
OPEN “<mode>", # <file number>, “ COM#:[(<options >)]”

“COM®:” must always be specified when opening the port, and no file name
is required. However, the options for determining the communication mode
and protocol need not be specified; if they are omitted, the default values
of CP/M are used. After the PX-8 is initialized, these values are as follows;
they remain effective until changed with the CONFIG program of CP/M
or the OPEN statement of BASIC.

Data transfer rate: 4800 bits per second
Word length (bits/character): 8

Parity: None

No. of stop bits: 2

DSR send check: OFF

DSR receive check: OFF

DCD check: OFF

SI/SO control: OFF

XON/XOFF: OFF

Opening an RS-232 port for output would thus take forms such as:

OPEN “0”, #35COMS:” -
OPEN “T”, # 1COM#:(68E3F)”

OPEN “0”, #2,COM#:(68E3AXN)”

¢ Options for Protocol and Control

The <options> specification in the OPEN statement determines the data
communication protocol and the control options. These are specified as a
character string of up to seven characters, each of which determines the set-

6-2

YO OO T NN AN OO OODDBRDTARMNDNIEOCOOELL2RCQCON .

J
]

http://www.fastio.com/

blpscxh protocol format

BIT RATE

1200 send, 75 receive
75 send, 1200 receive
110 : Not specifiable

150 Not specifiable
300 Not specifiable

600 Not specifiable
1200 Not specifiable
2400 4800

9600 19200

o
MOPOORAN=O
NoDONOW

WORD LENGTH

6: 6 bits
7. 7 bits
8: 8 bits

PARITY

N: None
E: Even
O: Odd

STOP BITS

s 1: 1 stop bit
2: 1.5 stop bits
3. 2 stop bits

ACTIVE CONTROL LINES

Value

Oor8 ON ON
Tor9 ON ON
c 2o0r A ON OFF
3orB ON OFF
4orC OFF ON
50rD OFF ON
6orkE OFF * OFF
7 or F OFF OFF

DSR send DSR receive
check check

XON/XOFF

b ¢ X: On
N: Off

SHIFT-IN/SHIFT-OUT

h S: On
N: Off

D O & B YD DN AE R EEN AN D DB (DD LN E €Y (D £ AN BN & & & &) & £ J

http://www.fastio.com/

¢ — A hexadecimal digit from 00H to OFH which determines which of the
four control lines are checked. Correspondence between the settings
of each of the four bits and the control lines to be checked is as follows:

Bit 3 — No meaning

Bit 2 — Data Set Ready (DSR) send check

1: OFF
0. ON
Bit 1 — Data Set Ready (DSR) receive check
1: OFF
0: ON
Bit 0 — Data Carrier Detect (DCD) check
1: OFF
0: ON

Combinations of settings for each hexadecimal digit are as follows:

DSR send DSR receive

check check DCD check
Oor8 ON ON ON
lor9 ON ON OFF
20or A ON OFF ON
3orB ON OFF OFF
4orC OFF ON ON
50orD OFF ON OFF
6 or E OFF OFF ON
7orF OFF OFF OFF

x — A letter which determines whether XON/XOFF (send ON/send OFF)
protocol is to be used for communication control. When XON is speci-
fied and the interface is opened in the “I” mode, the PX-8 automati-
cally outputs control code 19 (13H) during output via the RS-232C
interface in the “O” mode, and automatically interrupts output until
control code 17 (11H) is received from the device at the other end of

6-6

O O . B N . . N - - N W Y W Y Y .- Y Y W W Y v.YwW.v. v

http://www.fastio.com/

(3) Control lines used for communication through the RS-232C interface
(a) DTR (Data Terminal Ready)

DTR is a signal which is output by the PX-8 to indicate that it is ready
for data communications. The level on this line becomes HIGH when
the communications interface is opened in either the “I” or “O” mode,
and becomes LOW when the interface is closed (when it is no longer
open in any mode).

(b) RTS (Request To Send)

©)

RTS is a signal which controls operation of a communication device
(modem or acoustic coupler) connected to the PX-8. The signal on this
line becomes HIGH when the interface is opened in the “O” mode, and
LOW when the interface is closed.

DSR (Data Set Ready)

DSR is a signal which indicates whether the communication device con-
nected to the RS-232C port is ready for operation. When HIGH, the
device connected to the interface port is ready to accept signals controlling
data transmission/reception. When the interface is opened in the “I”
mode with the DSR receive check bit (bit 1 of option “c”) set to “0”
(ON), OPEN statement execution is not completed until the level on the
DSR line becomes HIGH.

(d) DCD (Data Carrier Detect)

This line is used for detecting the data carrier signal from the device
connected to the RS-232C port. When the interface is opened in the “I”
mode with the DCD check bit set to “0” (ON), the OPEN statement
is not completed until the level on the DCD line becomes HIGH.

6-8

BB O d) @rE (Y) & & d £ € € € €% .4

Y Y €Y (

S

O

RN T T T

<
.

R NN I

http://www.fastio.com/

6.1.3 Input from the RS-232C interface

The following statements and functions are used to input data via the RS-232C
interface.

Statements Functions

INPUT # INPUTS$
LINE INPUT #

The format in which data is input from the interface by these statements is ex-
actly the same as in the case of input from disk files.

The INPUT # and LINE INPUT # statements do not allow full freedom of data
format during input because they require pre-determined delimiters and termi-
nation symbols. However, the INPUTS$ function permits input without regard
for delimiters or terminators; thus it can be used with functions such as EOF
and LOF to provide full freedom of format.

(1) Control line checks for the “I” mode

(a) DSR (Data Set Ready)
If the DSR receive check bit is set to ON (if bit 1 of option “c” is set
to 0), the DSR line is monitored during input and an error is generated
if it drops to LOW,

(b) DCD (Data Carrier Detect)
When the interface is opened for input with the DCD check bit set to
ON (with bit 0 of option “c” set to 0), the level of the DCD line is checked
at the time of execution of an OPEN “I” statement for the RS-232C
interface and the port is not opened until the DCD line becomes HIGH.
An error is generated if the level on this line becomes LOW during input.

»

(2) Errors applicable to the “I’’ mode
(a) Device unavailable

This error occurs when the RS-232C interface cannot be used for some
reason.

6-10

BB RBABAOO O DO OO OO O

BB L LN L T LN Wi I WY

http://www.fastio.com/

(3) LOF (<file no.>)
This function returns the number of free bytes remaining in the receive buffer.

NOTE:
The size of the receive buffer is 262 bytes.

(4) INPUTS$(< no. of characters>, < file no.>)
This function inputs the specified <no. of characters> from the RS-232C
interface and returns them as a character string.

6.1.5 Using the LOAD, SAVE and LIST commands with the
RS-232C interface

Programs can be output via the RS-232C interface in ASCII format by using
LIST “COM@:”,A. When this is done, CTRL-Z (code 26, an end mark) is out-
put after transmission of the program has been completed. However, when
SAVE “COMB®:” is executed, the program saved is output in ASCII format
regardless of whether the A option or the P option is specified.

When an ASCII program is loaded via the RS-232C interface with LOAD
““COM#:", loading is terminated when CTRL-Z is received. The same applies
when the program is loaded using RUN ““COM@:*’.

If CTRL-Z is not received after receiving a program through the RS-232C in-

terface, loading can be terminated by pressing together with the
key.

NOTE:

When transferring BASIC programs via the RS-232C interface, either specify
a data word length of 8 bits or use Shift-in/Shift out control with a word length
of 7 bits.

-

6-12

http://www.fastio.com/

6.3 Keyboard

PX-8 BASIC also allows the keyboard to be handled as a sequential access in-
put device. When the keyboard is opened as a file, data input is assigned to vari-
ables using INPUT #, LINE INPUT # and INPUTS (X, <file no.>) instead
of the corresponding dedicated keyboard input statements. This makes it possi-
ble to use common routines for input of data from the keyboard, disk device
files and the RS-232C interface.

The device name used to OPEN the keyboard as a device file is “KYBD:".

(1) Statements
Statements which can be used for input from the keyboard when it is han-
dled as a device file are as follows:

CLOSE, INPUT #, INPUTS$ (X, <file no.>),
LINE INPUT #, LOAD, OPEN “1”

(2) Errors

A “Bad file descriptor” error will occur if an attempt is made to open the
keyboard in the “O” mode.

6-14

LG N

H

PRI AD O

YO O @

g

-

~ry
-
4

A4

s

http://www.fastio.com/

6.3 Keyboard

PX-8 BASIC also allows the keyboard to be handled as a sequential access in-
put device. When the keyboard is opened as a file, data input is assigned to vari-
ables using INPUT #, LINE INPUT # and INPUTS (X, <file no.>) instead
of the corresponding dedicated keyboard input statements. This makes it possi-
ble to use common routines for input of data from the keyboard, disk device
files and the RS-232C interface.

The device name used to OPEN the keyboard as a device file is “KYBD:".

(1) Statements
Statements which can be used for input from the keyboard when it is han-
dled as a device file are as follows:

CLOSE, INPUT #, INPUTS$ (X, <file no.>),
LINE INPUT #, LOAD, OPEN “1”

(2) Errors

A “Bad file descriptor” error will occur if an attempt is made to open the
keyboard in the “O” mode.

6-14

LG N

H

PRI AD O

YO O @

g

-

~ry
-
4

A4

s

http://www.fastio.com/

63 Bad record number

The record number specified in a PUT or GET statement was either zero or
greater than the maximum allowed.

17 Can’t continue

An attempt was made to resume execution of a program when continuation was
not possible.

Possible causes:

(i) Program execution was terminated due to an error.

(i) The program was modified while execution was suspended.

(iii) The STOP key was pressed during execution of an INPUT statement.
(iv) The program had not yet been executed.

28 Communication buffer overflow

The receive buffer overflowed during receipt of data via the RS-232C interface.
This error is likely to occur when the speed with which receive processing is per-
formed is lower than that at which data is being received, but is unlikely if the
communication rate is set to 1200 bps or less.

25 Device fault

The level of the signal on the DSR or DCD line became low during input from
the RS-232C interface after the DSR receive check or DCD check had been set
to ON (by option “c” of the communications format specification in the
OPEN“I” statement executed to open the interface).

57 Device 1/0 error
An error occurred involving input or output to a peripheral device.

Possible causes:

(i) An I/0 error occurred during access to a*disk device. This is a fatal error;
that is, one from which the operating system cannot recover.

(ii) A parity error, overrun error or framing error occurred during input from
the RS-232C interface. In this case, the error condition will be reset if input
is continued, but there is no assurance that data received will be correct.

(iii) The printer power was off or a fault occurred when data was output to the
printer. :

24 Device time out

Possible causes:
A-2

r\tylgﬁﬂﬂﬂnm(p@ﬂﬂl“\ﬂtﬁmt"b(@ﬂﬂﬂﬂﬁ(@@ﬂﬂﬂﬁﬂﬂﬂu

http://www.fastio.com/

11 Division by zero
An operation was encountered which included division by zero.

Possible causes:

() Zero was used as a divisor possibly because a variable or expression was
zero at that point in the program.

(ii) Division was attempted using an undefined variable as a divisor.

16 Duplicate Definition

A variable array was defined more than once.

Possible causes:

(i) A second DIM statement was executed for an array without erasing that
array with an ERASE statement.

(ii) An undeclared array was used, then an attempt was made to re-dimension
that array with a DIM statement.

(iii) The OPTION BASE statement was executed more than once, or was ex-
ecuted after an array had already been dimensioned, either by a DIM state-
ment or implicitly by assignment of a value to a variable with a subscripted
name.

56 FIELD overflow

A FIELD statement attempted to allocate more bytes in a random file buffer
than were specified for that buffer when the file was opened.

58 File already exists

The new file name specified in a NAME statement is already being used with
another file on the disk.

55 File already open

An OPEN “O” statement was executed for*a file which was already open, or
a KILL command was executed for a file that was open.

53 File not found

The file name specified in a LOAD, KILL, NAME or OPEN statement does
not exist on the disk in the accessed drive.

26 FOR without NEXT

- A FOR statement was encountered without a corresponding NEXT.

A-4

v oA n e N

F Y

VEYERN

D AR M2 &2 A% €32 42 d% 4» im™ & <\ a4

http://www.fastio.com/

(ii) The STOP key was pressed while input from the RS-232C interface was
pending with INPUT #, INPUTS or a similar command.

51 Internal error

An internal malfunction occured in BASIC.,

23 Line buffer overflow

An attempt was made to input a line that contains too many characters.

22 Missing operand

Possible causes:

(i) An expression contains an operator without a following operand.

(ii) A required parameter is missing from the AUTO START or LOCATE
commands.

1 NEXT without FOR

A NEXT statement was encountered without a corresponding FOR statement.

Possible causes:

(i) Improperly nested FOR/NEXT loops or variables specified in the wrong
order in a common NEXT statement for loops that end at the same point.

(ii) The variable in a NEXT statement does not correspond to any previously
executed FOR statement variable.

(iii) More than one NEXT statement was specified for one FOR statement.

(iv) Execution branched to a point within a FOR/NEXT loop from elsewhere
in the program.

19 No RESUME

No RESUME statement was included in an error processing routine. All error
processing routines must conclude with an END or RESUME statement.

-

4 Out of DATA

A READ statement was executed when there was no unread data remaining in
the program’s DATA statements.

Possible causes:

(i) Insufficient number of data items in DATA statement(s).
(i}) Incorrect specification of a RESTORE statement.

(iii) Incorrect delimiting punctuation used in a DATA statement.

A-6

1y € € &1 €7 41) € &3 (B (3 €5 &)) 4% 3 4% B W (2 (y) € €2 B £ 4 £ & €% €\ 4% £ ‘J

http://www.fastio.com/

Possible causes:

(i) Transfer of execution to an error processing routine by a GOTO or GOSUB
statement.

(i) Lack of an END statement at the end of the main routine to keep execu-
tion from moving into an error processing routine.

3 RETURN without GOSUB

A RETURN statement was encountered which did not correspond to a previ-
ously executed GOSUB statement.

Possible causes:

(i) Execution was transferred to a subroutine by a GOTO statement.

(ii) The line number specified in a RUN command was a line in a subroutine.

(iii) No END statement was included following a main routine to keep execu-
tion from moving into a subroutine.

16 String formula too complex

The complexity of a string operation is too great.

15 String too long

An attempt was made to create a string whose length exceeds 255 characters.

9 Subscript out of range

The subscript specified in a statement referencing an array element is out51de
the range permitted for that array.

Possible causes: _

(i) Subscript specified was greater than the maximum specified in the DIM
statement defining that array.

(i) Wrong number of subscripts specified in a statement referencing an array
variable. .

(iii) A subscript greater than 10 was used without executing a DIM statement
to define that array.

(iv) Zero was used as a subscript after executing OPTION BASE 1.

2 Syntax error

A statement does not conform to the syntax rules of PX-8 BASIC.

Possible causes:
(i) A space was not left between a command and a parameter, e.g. LISTI10.
(ii) Incorrectly typed keywords.

A-8

<) €5 4% 4% (B

P SN I

‘P (» I

(w &Y v £

P S Y

N

&, A 4y i wm B

&\

B2 E) €A &% a3 € 4 &y € % %

http://www.fastio.com/

(i) The letters FN were used at the beginning of a variable name.

(ii) The function name was specified incorrectly in the DEF FN statement or
when the function was called.

(iii) The user function was called before the corresponding DEF FN statement
was executed.

21 Unprintable error

No error message has been assigned to the error condition which exists. This
message is also issued for error codes 27, 31-49, 56, 59, 60, 65 and 73-255, usually
due to execution of an ERROR statement specifying one of these codes.

30 WEND without WHILE

WEND statement was encountered without a corresponding WHILE.

29 WHILE without WEND
A WHILE statement was encountered without a corresponding WEND.

TABLE OF ERROR CODES AND ERROR MESSAGES

1 NEXT without FOR

2 Syntax error

3 RETURN without GOSUB
4 Out of DATA

5 Illegal function call

6 Overflow

7 Out of memory

8 Undefined line number

9 Subscript out of range *
10 Duplicate Definition
11 Division by zero
12 Illegal direct
13 Type mismatch
14 Out of string space
15 String too long
16 String formula too complex

A-10

/n/;mml\;mJ«\@hﬁmﬁmatitaﬂ-J

D Y- . .

(R LR dMrx e Adm A rx 42 A Am 4> 1A <L d. 4.

http://www.fastio.com/

Appendix B TABLE OF RESERVED
WORDS

ABS
ALARM
ALARMS
AND
ASC
ATN
AUTO
BEEP
CALL
CDBL
CHAIN
CHRS$
CINT
CLEAR
CLOSE
CLS
COMMON
CONT
COPY
COoS
CSNG
CSRLIN
CVD
CVI

CVs
DATA
DATE
DATES$
DAY
DEF
DEFDBL
DEFINT
DEFSNG
DEFSTR
DELETE
DIM
DSKF
EDIT
ELSE
END
EOF
EQV

ERASE
ERL
ERR
ERROR
EXP
FIELD
FILES
FIX

FN
FOR
FRE

MENU
MERGE
MID$
MKD$
MKI$
MKS$
MOD
MOUNT
NAME
NEW
NEXT
NOT
OCT$
OFF

ON
OPEN
OPTION
OR

OuT
PCOPY
PEEK
POINT
POKE
POS
POWER
PRESET
PRINT
PRINT #
PSET
PUT
RANDOMIZE
READ
REM
REMOVE
RENUM
RESET
RESTORE
RESUME
RETURN
RIGHTS
RND
RSET

RUN
SAVE
SCREEN
SGN
SIN
SOUND
SPACE$
SPC
SQR
STAT
STEP
STOP
STR$
STRINGS
SUB
SWAP
SYSTEM
TAB *
TAN
TAPCNT
THEN
TIME
TIME$
TITLE
TO
TROFF
TRON
USING
USR
VAL
VARPTR
WAIT
WEND
WHILE
WIDTH
WIND
WRITE
WRITE #
XOR

T XY I AN W o A dr A

Y 4% 4% 42 /B

L P

I

i 2 4 4 e L2 A £3 4 B A AR My A2 4R D

http://www.fastio.com/

Control Code] Function Control Code] Function
ESC 125 Non secret ESC 148 Scroll step
ESC 165 NUM LED off ESC 149 Scroll mode
ESC 164 NUM LED on ESC 144 Scroll up
ESC 199 PSET/PRESET ESC 151 Screen down n lines
ESC 242 Repeat interval time for keys ESC 150 Scroll up n lines
ESC 240 Repeat on/off for keys ESC 123 Secret mode
ESC 241 Repeat start time for keys ESC 125 Secret mode cancel
JESC “*” | Screen clear ESC 214 Select cursor type
ESC 209 Screen display select ESC 209 Select virtual screen
ESC ““P”” [Screen dump ESC 211 Select function key display
ESC 213 Screen window end ESC 247 Shift key set
ESC ““Y”’ | Screen erase ESC 163 CAPS LED off
ESC 212 Screen window top ESC 162 CAPS LED on
ESC 145 Scroll down ESC 212 Top locate
ESC 244 ‘Scroll key code ESC 224 User defined character

Use of the ESCAPE Code control sequences

C-2

http://www.fastio.com/

Sweden PRINT CHR$(27); “CW”
Italy PRINT CHR$(27); “CI”
Spain PRINT CHRS$(27); “CS”
Norway PRINT CHR$(27); “CN”

This code sequence is equivalent to the BASIC OPTION COUNTRY command.

ESC “P”

In modes 0, 1, and 2 this escape sequence outputs the contents of the screen
window currently being displayed to a printer in ASCII format. In mode 3 it
outputs the contents of the entire physical screen in bit image format. It dupli-
cates the COPY or screen dump function obtained by pressing the CTRL and
PF5 key.

ESC “1T”
Clears the line currently containing the cursor from its present position to the
end of that logical line.

ESC “Y”

Clears the screen from the current position of the cursor to the end of the screen.

ESC CHR$(123)
Causes all characters to be displayed on the screen as blanks (the secret mode).
The secret mode is not active in the System Display.

WARNING:

You should make sure that a program returns the user to normal non-secret mode,
for example with an error handling routine. If the user is placed in immediate
mode and the secret mode is still active, it is impossible to know what is happen-
ing. Also the reset button on the left of the PX-8 must be pressed in order to
see any printed output except for the clock on the MENU screen and the System
Display.

ESC CHR$(125)

Terminates the secret mode.

ESC CHR$(144)

Scrolls (n— 1) lines up, starting at line (n+1) so that line (n+m — 1) becomes

C+4

4 4, 4> 4% 45 (% W

.

‘,

4

LR A 3

13 €% &, 4}

M I @\ €% Cp Ny A AR)y

http://www.fastio.com/

ing mode, and the mode in which automatic scrolling is not performed is referred
to as the non-tracking mode. The tracking mode is used unless otherwise speci-
fied. The escape sequence for determining the tracking mode is as follows:

PRINT CHR$(27); CHR$(149) ; CHRS$(< mode >);

In this sequence, <mode> is specified as either 0 or 1. The tracking mode is
selected when 0 is specified, and the non-tracking mode is selected when 1 is
specified.

ESC CHR$(150)

In modes 0, 1, and 2 this escape sequence displays the contents of the virtual
screen containing the cursor after moving the screen window up n lines where
n is the value specified by ESC CHR$(148), or 1 if ESC CHR$(148) has not
been executed. If scrolling the screen up n lines would move the screen window
beyond the home position, the virtual screen is displayed starting at the home
positon. The cursor remains in its original position in the virtual screen.

ESC CHR$(151)

In modes 0, 1, and 2 this escape sequence displays the contents of the virtual
screen containing the cursor after moving the screen window down n lines, where
n is the value specified by ESC CHR$(148), or 1 if ESC CHR$(148) has not
been executed. If scrolling the screen down n lines would move the screen win-
dow beyond the end of the virtual screen, the screen window is positioned so
that the virtual screen’s last line is displayed in the last line of the screen win-
dow. The cursor remains in its original position in the virtual screen.

ESC CHRS$(169)

Lights the INS LED. It does not put the user in the insert mode.

ESC CHR$(161)
Turns off the INS LED.

ESC CHRS$(162)
Lights the CAPS LED. It does not set the key to the on position.

ESC CHR$(163)
Turns off the CAPS LED.

http://www.fastio.com/

Byte 10: Low byte of vertical ending position
Byte 11: First byte of mask pattern

Byte 12: Second byte of mask pattern

Byte 13: Function

The starting and ending positions are specified as two-byte hexadecimal num-
bers which indicate coordinates in the graphic screen. For example, starting co-
ordinates of 400,20 (&H0190,&HO0014) would be specified as follows:

Byte 3: 1 (&HO1)
Byte 4: 144 (&H90)
Byte 5: 0 (&HO00)
Byte 6: 20 (&H14)

The mask pattern used for drawing the line is specified in bit image format as
described in the explanation of the LINE statement in Chapter 4. Calculations
for diagonal lines are performed automatically. Function is specified as a num-
ber from 1 to 3 with the following meanings:

1: OFF
2: ON
3: Complement

Dot positions corresponding to “1” bits in the mask pattern are reset (turned
off) when 1 is specified for the function and are set (turned on) when 2 is speci-
fied. When 3 is specified, the complements of dots corresponding to “I” bits
are displayed (ON dots corresponding to “1” bits are turned off, and OFF dots
are turned on).

An example of specification of this sequence as follows draws a line from point
(400,18) of the screen to point (18,18):

PRINT CHRS$(27);CHR$(198); CHR$(1); CHR$(144); CHR$(9);
CHRS$(18); CHR$(#); CHR$(18); CHRS$(8); CHR$(18);
CHR$(&HAA); CHRS(&HA A);CHR$(2);

This command duplicates the LINE command of BASIC, but also allows the
dots to be inverted (i.e. switch them on if they are off and vice versa), which
LINE does not.

ESC CHR$(199)

This escape sequence sets or resets the specified points of the graphic screen.
No operation is performed if this sequence is executed in modes 0, 1, or 2. The
sequence consists of six bytes as follows:

C-8

http://www.fastio.com/

The following sequence selects screen mode 2, sets the number of lines in virtu-

al screen 1 to 10, the number of columns to 20 and “#” as the boundary
character.

PRINT CHRS$(27); CHR$(208) ; CHR$(2) ; CHR$(10) ; CHR$(28); “ # 7;

ESC CHR$(269)

In modes 0, 1, or 2 this escape sequence specifies which of the two virtual screens
is to be displayed. The operation is performed if this sequence is executed in
mode 3. This is done as follows:

PRINT CHR$(27) ; CHR$(209) ; CHRS$(n) ;

The first virtual screen is selected when 0 is specified for n, and the second vir-
tual screen is selected when 1 is specified for n. If the third byte is not specified
the default is 1.

ESC CHR$(219)
Displays the specified character in the specified position on the real screen. This
is done as follows:

PRINT CHR$(27); CHR$(219) ; CHR$(x) ; CHR$(y) ; CHR$(p)

The meanings of x, y and p are as follows:

x Vertical position (1 to 8)
y Horizontal position (1 to 80)
p ASCII character code

This sequence makes it possible to output characters to any location in the real
screen, regardless of the position of the cursor or number of lines in the screen
window.

C-10

http://www.fastio.com/

ESC CHRS$(215)

In modes 0, 1, and 2 this escape sequence moves the screen window to the posi-
tion occupied by the cursor. This sequence does nothing if executed in mode
3. The screen window is positioned so that the cursor is located near its centre.

ESC CHRS$(224)

This escape sequence defines those characters corresponding to ASCII codes
224 (&HEO) to 254 (&XHFE). This sequence consists of eleven bytes as follows:

Byte 1: CHR$(27)

Byte 2: CHRS$(224)

Byte 3: Character code

Byte 4: Pattern for dot row 1
Byte 5: Pattern for dot row 2
Byte 6: Pattern for dot row 3
Byte 7: Pattern for dot row 4
Byte 8: Pattern for dot row 5
Byte 9: Pattern for dot row 6
Byte 10: Pattern for dot row 7
Byte 11: Pattern for dot row 8

The pattern making up each dot row is specified as the ASCII code equivalent
of the binary number whose “1” bits correspond to dots which are turned on,
and whose “0” bits correspond to dots which are turned off. For example, specify-
ing CHR$(63) (where 63 is the decimal equivalent of 1111111B) for byte 1 causes
all dots in dot row one to be turned on when the character code specified in
byte 3 is displayed; conversely, specifying CHR$(0) (i.e.,00000000B) causes all
dots in the applicable row to be turned off.

C-12

dy 4% d\v 442y B

&% ;B i% a4\ 4 a .

™ B B Ay A

Y A% €8 B B

-

e

A 9% £33 &) €y €y dA A ¢ B 4N

http://www.fastio.com/

Byte 1: CHR$(27)
Byte 2. CHRS$(241)
Byte 3: CHRS$(n)

The keyboard repeat function starting time is equal to n/64 seconds where n
is a number from 1 to 127.

ESC CHR$(242)

Sets the duration of the key repeat interval. This sequence consists of three bytes
as follows:

Byte I: CHRS$(27)
Byte 2: CHR$(242)
Byte 3: CHRS$(n)

The key repeat interval is equal to n/256 seconds, where n is a number from
1 to 127.

ESC CHR$(243)
Sets the arrow key codes. This sequence consists of six bytes as follows:

Byte 1: CHRS$(27)
Byte 22 CHR3$(243)
Byte 3: Code for
Byte 4: Code for
Byte 5: Code for
Byte 6: Code for

This sequence only changes the arrow key codes during program execution. Nor-
mal code assignments are restored automatically when BASIC returns to the
command mode.

ESC CHR$(244)

>

Sets the scroll key codes. This sequence consists of six bytes as follows:

Byte 1: CHRS$(27)
Byte 2: CHRS$(244)
Byte 3: Code for
Byte 4: Code for
Byte 5: Code for
Byte 6: Code for

(7]
MMM
| (] 1=

++ + +

1%
z
sl
-
EEEE

C-14

O 4) €65 M

(y s\ 4\ 4

) 4 €)Y €Y (%

[§ €3 &) €1 €4 €2 & Y D D &Y & & D &N A 2 2O

http://www.fastio.com/

Appendix D MACHINE LANGUAGE
SUBROUTINES

The CALL and USR statements of BASIC make it possible to execute machine
language subroutines from programs written in BASIC. Such subroutines must
be written into memory in machine language with the POKE statement before
they can be called. It is also possible to use an assembler such as the MACRO-80
assembler and LINK-80 linker/loader to assemble and load routines written in
assembly language; however these programs are not included in the transient
program ROM capsule provided with the PX-8, and must be loaded from a flex-
ible disk which is compatible with CP/M and the PX-8. See any of the various
handbooks available on the Z80 microcomputer or the Z80 assembly language
for the Z80 instruction code set.

When preparing machine language subroutines, remember that the presence of
even a single error in the machine code is likely to result in destruction of all
data included in the PX-8’s memory (including BASIC itself). Therefore, be sure
to back up all data and programs in memory on a disk before attempting to
test or debug such routines.

1. Memory Allocation

Memory space must be reserved for storage of the instruction codes of
machine language subroutines before they can be written into memory with
the POKE statement. This is done using the CLEAR statement of BASIC
or the /M: option of the BASIC command. When using the /M: option, the
starting address of the machine language area is the address specified, and
the ending address is that immediately preceding the starting address of BDOS.
Locations 6 and 7 in page zero hold the current BDOS starting address. This
will change depending on the USER BIOS and RAM disk sizes.

When a machine language subroutine is galled, the stack pointer is set up
for 8 levels (16 bytes) of stack storage. If more stack space is required, BAS-
IC’s stack can be saved and a new stack set up for use by the machine lan-
guage subroutine. BASIC’s stack must be restored, however, before returning
from the subroutine.

2. USR Function Calls
With BASIC, the format used for calling USR functions is as follows.

USRI < digit > J(argument)

D-1

Ay &Y Ay £y D

4, <

&y

S% 4B 4%

Ay aw O (B B P 4 Sy 4

- Y

Y

A gy 48 i

By &Y €y &y AN

& &

http://www.fastio.com/

Example A$="STRING CHARS” + “”»

This will copy the string literal into string space and prevent al-
teration of program text during a subroutine call.

3. CALL Statement

BASIC user function calls may also be made with the CALL statement. A
CALL statement with no arguments generates a simple “CALL” instruction.
The corresponding subroutine should return to the BASIC program via a sim-
ple “RET” instruction (“CALL” and “RET” are Z80 opcodes; see a Z80 refer-
ence manual for details.)

A subroutine CALL with arguments results in a somewhat more. complex
calling sequence. For each argument in the CALL argument list, a parameter
is passed to the subroutine. That parameter is the address of the low byte
of the argument. Therefore, parameters always occupy two bytes each, regard-
less of type.

The method of passing parameters depends on the number of parameters
to be passed as follows:

(1) If the number of parameters is less than or equal to 3, they are passed
in the registers. Parameter 1 will be in HL, 2 (if present) in DE, and 3
(if present) in BC.
(2) If the number of parameters is greater than 3, they are passed as follows:
(a) Parameter 1 in HL.
(b) Parameter 2 in DE.
(c) Parameters 3 through n in a contiguous data block. Register
pair BC will point to the low byte of this data block (i.., to
the low byte of parameter 3).

Note that with this scheme the subroutine must know how many parameters
to expect in order to find them. Conversely, the calling program is responsi-
ble for passing the correct number of parameters. There are no checks for
correct number or type of parameters. *

When accessing parameters in a subroutine, don’t forget that they are pointers
to the actual arguments passed.

NOTE:

1t is entirely up to the programmer to ensure that arguments in the calling pro-
gram match those expected by the subroutine in number, type and length. This
applies to BASIC subroutines as well as those written in machine language.

- N

R 32 A L A% A2 dy £3% 4% 4™ &

http://www.fastio.com/

Appendix E DERIVED FUNCTIONS

Functions that are not inirinsic to PX-8 BASIC may be calculated as follows.

Function BASIC Equivalent

SECANT SEC(X)=1/COS(X)

COSECANT CSC(X)=1/SIN(X)

COTANGENT COT(X)=1/TAN(X)

INVERSE SINE ARCSIN(X)=ATN(X/SQR(I — X * X+1))

INVERSE COSINE ARCCOS(X)= — ATN(X/SQR(1 — X * X))
+1.570796326794897

INVERSE SECANT : ARCSEC(X)=ATN(SQR(X*X — 1))
+{SGN(X) — 1) * 1.570796326794897

INVERSE COSECANT ARCCSC(X)=ATN(1/SQR(X * X — 1))
+(SGN(X) — 1) * 1.570796326794897

INVERSE COTANGENT ARCCOT(X)= — ATN(X) +1.570796326794897

HYPERBOLIC SINE SINH(X) = (EXP(X) — EXP(—X))/2

HYPERBOLIC COSINE COSH(X)=(EXP(X)+EXP(~X))/2

HYPERBOLIC TANGENT TANH(X) =(EXP(X) — EXP(- X))/(EXP(X)
+EXP(— X))

HYPERBOLIC SECANT SECH(X)=2/(EXP(X)+EXP(—- X))

HYPERBOLIC COSECANT CSCH(X)=2/(EXP(X) — EXP(- X))
HYPERBOLIC COTANGENT COTH(X) =(EXP(X)+EXP(~ X))/ (EXP(X)

—EXP(—-X))
INVERSE HYPERBOLIC SINE| ARCSINH(X)=LOG(X+SQR(X*X+1))
INVERSE HYPERBOLIC ARCCOSH(X)=LOG(X+SQR(X*X-1)
COSINE
INVERSE HYPERBOLIC ARCTANH(X)=LOG((1+X)/(1 - X))/2
TANGENT
INVERSE HYPERBOLIC ARCSECH(X)=LOG((SQR(1 - X*X)+1)/X)
SECANT -
INVERSE HYPERBOLIC ARCCSCH(X)=LOG((1+SGN(X) *
COSECANT SQR(A+X*X))/X
INVERSE HYPERBOLIC ARCCOTH(X)=LOG((X+1)/(X-1))/2
COTANGENT

Any of these functions can easily be used in a program by defining it with a
DEF FN statement. This is illustrated in the example below.

Example
Function definition: DEF FN SINH(X) — (EXP(X) — (EXP(X))/2
Function call: A=FNSINH(Y)

E-1

«\y &Y €Y € O

4y &)

A §)3 &) €) €Y €3 €) €% (A (B O €Y €)Y €)Y €Y O (h (B (B (P (% 4V &€V 9Y (% (v &Y

http://www.fastio.com/

Differences between the USASCII character set and the character sets of other

countries are as shown below.

Qountry United | France (Germany|England [Denmark{ Sweden | [taly Spain |Norway
Dec. Code States
35 # # £ i # # fi #
36 £ ¥ £ £ b i £ £ i
64 ® H & @ E & @ 1 E
N L * 2] L £ & * i 13
92 = & pea & i1 @
93 1 £ 0 1 &) & £ &
94 -~ o N o~ - 0
96 ® ® ® : & = e N &
123 X & & L ® & k= ®
124 i |] L 2 & & ! b
125 * & o > b= k=] =] * &
126 K i i U i -
F-2

VY

d »

<

r R Y

L Y

9. 4. 4 41

4. 94

http://www.fastio.com/

Appendix H SOME EXAMPLE
PROGRAMS

This manual is not meant to be a tutorial manual to teach BASIC — there are
many books which teach the use of MICROSOFT BASIC. However, some aspects
of programming are specific to the PX-8. This appendix is meant to illustrate
some of these specific points and provide examples of how the computer can
be programmed in ways which exploit the features of the machine.

1. Use of the User-Defined Characters

Appendix F shows the character set of the PX-8. It is normally only possible
to program the characters which have an ASCII code of 22 and above. It is
possible with a machine code routine to alter the VRAM and reconfigure it to
allow the characters from ASCII code 160 to 254 to be programmed. This is
beyond the scope of this manual. The downloading of a character from soft-
ware is outlined in Appendix C, under the escape sequence ESC CHR$(224).
The following programs and descriptions extend this information by showing
practical examples.

(i) A simple program to illustrate the definition of a character and printing
it to the screen. ‘

A character is defined by sending the sequence:

BYTE 1: CHRS$(27) The ESC character

BYTE 2: CHR$(224) The code to download

BYTE 3: CHRS$(n) The code for the character to be changed
BYTE 4: CHRS$(rl) The pattern for the top row
BYTE 5: CHR$(r2) The pattern for row 2

BYTE 6: CHR$(r3) The pattern for row 3

BYTE 7: CHRS$(r4) The pattern for row 4

BYTE 8: - CHRS$(1r5) The pattern for row 5

BYTE 9: CHR$(r6) The pattern for row 6

BYTE 10: CHRS$(r7) The pattern for row 7

BYTE 11: CHR$(r8) The pattern for the bottom row

H-1

PN OO OO Qe N .

http://www.fastio.com/

(i)

The first program defines the character shown in the diagram and prints
it on the screen. It is downloaded into the user-defined character area as
the character with ASCII code 231 (or E7 in hexadecimal notation).

1¢ CLS

20 PRINT CHR$ (27) 5 CHRS (224) § CHRS (231) §

T@ FOR Y=1 TO 8

40 READ A

5S¢ PRINT CHR$(A);

& NEXT

76 PRINT

89 FPRINT CHR$(231)

90 PRINT
100 DATA 12,30,33,33,18,12,63,@

S

b3

(14

In line 20 it it very important that the semi-colon is placed at the end of
the line. Without this the first two bytes of the row will be interpreted as
the carriage return and line feed, which would normally cause the cursor
to move to the beginning of the next line. Carriage return is ASCII code
13 and line feed is ASCII code 10 in decimal notation. Try leaving the semi-
colon out and note the change in the character. Because these two extra
characters are inserted the bottom two rows defined are lost, with the two
extra rows being inserted at the top to correspond to the line feed and carri-

age return.

The data for the character is read in from the series of DATA statements.
If a series of characters are being defined, they are best arranged in sets
of eight DATA statements on different lines. This makes it easier to find
out which data byte corresponds to which row of which character when
you wish to change the character or are debugging a program.

The next program shows how blocks of graphics characters can be used to
make larger characters. The example shows a set of ARABIC characters
where each character is made up of a block of four user-defined characters.

16 “User defined graphics

20 FOR X=LHE® TO HFE

20 PRINT CHR$(27) ; CHR$ (XHE®) s CHR$ (X) §
40 FOR Y=1 TO 8

%9 READ A

&0 PRINT CHR$(A)J

79 NEXT Y

8¢ NEXT X

85 CLS
90 FOR X=¥HE® TO LHFEB STEF 4

H-3

g, € L % P

-

&£

P €% 4%

O B B P £ g 4, &)

an M

K BN 2N

A

RE.)

am

o A

L

- @ € A

o

http://www.fastio.com/

leaded into a suitable printer which is capable of receiving characters in
a downloadable form. Such a screen dump of the output of the screen ap-
pears as follows when the program has been run:

S d - R |

&
Ok

NOTE:

When using these characters in the following programs you should LOGIN
to another program area before typing them in. If the screen is changed by
either the SCREEN command or WIDTH command, or by going via the
menu, the first two user-defined characters, and possibly more will be al-
tered. Simply using LOGIN will not reset them.

(iii) When combinations of characters are used in this way, it is often more con-
venient if the characters are grouped as a variable, so that simply saying
PRINT AS$ for example prints the block as a whole. This can be achieved
using string concatenation. The following program shows how the ARAB-
IC characters of the previous program can be defined as variables, and how
they can be printed as one character by typing a key. The characters have
been designed so that the cursor moves from right to left to illustrate ways
of using control codes.

16 STOP KEY OFF
2@ BCREEN 3,0,
30 OXF = 13 YP =
49 FOR N = @ TO
S0 d = 4 % N

&% CHEN) = CHR$ (LHEO+J) + CHRS (YXHE@+JI+1) +CHRS (8) +CHRS (8) +CHRS
(10) +CHR$ (LHEO+J+2) +CHRS (XHEO+J+3) +CHRS (SH1E) +STRINGS (4, 8)

cLS

[)

79 NEXT N

8¢ CSRe = CHR$ (1733) +CHR$ (1323) +8TRINGH (2, 8) '
90 8P% = " " + STRING%(4,8) -
100 LOCATE XF+&68,YP*2,0

110 FRINT CSR$;

12¢ A% = INKEY$ @ IF A% = "" THEN 12¢

1720 IF A% = CHR$(27) THEN CLS : STOP,KEY ON : END
143 IF A = " " THEN PRINT SP$;: GOTO 180

150 IF A% < "A" OR A% > "G" THEN 120

160 ¥V = 71 - ASC{AS)

170 PRINT C$(V);

180 XP = XF + 1 ¢ IF XP > 34 THEN XF = 1 1 YP = YF + 1: IF Y
F > 4 THEN CLS : YP = | ¢ GOTO 109 ELSE GOTO 109

196 GOTOD 110 -

boa Eu,_'_,.|w.l&a__a_¢_3 Ef:-.;._-:;—_lwl |_'nm__:'3-,_-)('§_zl':n Jb&u,.fw
ok ek

H-5

¢

B P B L O HHHESST H DO

g

7.

&
-/

v

AAQAQAEEOHH DO B

http://www.fastio.com/

(iv)

Line 110 prints the cursor and line 120 waits for a key to be pressed. Lines
130 to 150 test which key has been pressed. The [Esc] key (ASCII code
27) allows the user to exit from the program. Line 140 prints a space and
line 150 eliminates all characters other than those in the range ““A”’ to ““G”’.

When a key in the permitted range is pressed, the ASCII code is subtract-
ed from the constant 71 to index the array C$(), and the corresponding
character is printed. The counter XP is then incremented so that a check
can be made on the number of characters per line. When this is exceeded
the line counter YP is incremented and the cursor moved to the right hand
position on the next line. When the screen is full it is cleared.

The program loops back to line 110 to print the cursor and wait for another
character, until the user exits by pressing the [ESc] key.

The restrictions of the LOCATE command in the previous program can
be overcome if the position of the characters is calculated instead of being
printed as a block having previously been defined in a string. This allows
the characters to go up the edge of the screen, but does requires some
sophisticated numerical computation.

10 STOP KEY OFF

20 SCREEN 3,,0:CLS

30 XP=1:YP=1

49 LOCATE 81-XP*Z,YF*2+1:PRINT CHR$ (133) ;CHRS (133) ;

50 AS=INKEY$: IF A$="" THEN S6

69 IF A$=CHR$ (27) THEN CLS:STOF KEY ON:END

79 IF A$=" " THEN LOCATE B1-XP#2,YP¥2+1,@:FRINT" ";:60T0 150
80 IF A$<"A" OR A$>"G" THEN 50

90 LOCATE B1-XP*Z,YP*2,0

100 V=71-ASC (A%)

110 C=&HE@+V*4

126 PRINT CHR$(C) i CHRS (C+1) 3

1360 LOCATE 81-XP*2,YF#*2+1,0

149 PRINT CHR$(C+2) i CHRS (C+3) 3

150 XP=XP+1:IF XP40 THEN XP=1:YP=YP+1l:IF YF3>4 THEN CLS:YF=1
160 GOTO 40

-

RN R R | g a2l Ba, s, ga
I Foal 3 B Sl 3 g

This program is a modification of the previous one.

After initialising the variables in lines 10 to 30, the main body of the pro-
gram begins at line 40 by printing the cursor, using the same characters as
in the previous program. The position is calculated by means of the coun-
ter XP which is used later in the program to determine how many blocks

H-7

v 4 HLvw £33 2B

£\ &

(D £ 4L &> €% B 4% &

e)

gD A AN MW B B

(B O

gH A A AN AN B

€3 &) €

kY

http://www.fastio.com/

2. A Clock Program

oo 1d Time Dlocko 9183024
oooono;o-go::--:oo::-

o
LA
7Y

gl
)
g

10 STOP KEY OFF

260 DEF FNT(F1%,F2%)=VAL (MID$ (F1%$, INSTR ("HMS",P2$) #3-2))

70 DEF FND(P1%$,P2%)=VAL (MID$ (P1%, INSTR("MDY",P2$) ¥3-2))

4@ DEF FNN(F1,P2) = (P137)%(((P1 MOD 2)=0)*31+((FP1 MOD 2)=1)
3IG) + (P1<B) (((P1 MOD 2)=0) %30+ ((P1 MOD 2)=1) %31+ (P1=2)#((
(F2 MOD 4)=@) + ((F2 MOD 4)<:>®)%2))

S50 DEF FNS$(P1,P2,P3,P4%)=RIGHT$("0"+MID$ (STR$ (P1),2),2) +P4s
+RIGHTS (""" +MID$ (STR$ (P2) , 2) , 2) +P4$+RIGHTS ("G"+MID$ (STR$ (PX)
,2),2)

60 DEF FNF (F1)=—MN*(P1=1)-DY* (P1=2) ~YR* (P1=3)

70 DH=FNT(TIMES,"H"):T=0:55=0

86 READ MAX

9@ DIM XP (MAX),YP(MAX) ,ASS$ (MAX) , HR (MAX) , ME (MAX) , SD (MAX) ,L (3,
MAX)

1060 FOR X=1 TO MAX

11 READ XP(X),YP(X),AS$ (X} ,NT$,L (1,X),L(2,X),L(3,X)

120 HR (X)=FNT (NT$, "H")

130 ME (X)=FNT (NT$, "M")

140 SD(X)=FNT (NT$,"S")

150 NEXT

160 SCREEN @,0,0:CLS

170 LOCATE 29,1:PRINT CHR$(143); "World Time Clock";CHRS (143)
180 LOCATE 30,2:PRINT STRING$ (16, 143)

1990 PRINT" London (GMT) Paris
New York"
200 PRINT:PRINT" Tokyo Canberra
Bonn"
210 PRINT:PRINT" Singapore City Moscow
Brazilia"
220 A=FRE (9) : A=FRE (A%$) -

239 H=FNT(TIME$, "H") :M=FNT(TIMES$, "M") : S=FNT (TIME%, "S")
240 TD=FND(DATES, "D") : TM=FND(DATES, "M") : TY=FND(DATES, "Y")
250 T=1-T:IF T=0 THEN S5=1-5S

260 FOR X=1 TO MAX

27@ DY=TD:MN=TM: YR=TY

280 INS=INKEY$:IF IN$=CHR$(3) THEN 42¢

290 LOCATE 19,1:PRINT TIME$:LOCATE S50, 1:PRINT FNS$ (FNP(2),FN
P(1),FNP(3),"/")

300 IF OH<>H THEN SOUND 120@,5:0H=H

310 H=FNT(TIMES$, "H") :M=FNT(TIMES$, "M") :S=FNT (TIMES$, "S")
320 IF T=@ AND X=1 THEN ZX=29:ZY=1:60T0 350

H-9

A A7 £59 M

(R £% &£ 4> &) 9 . & M & &

W 4B AN M A AkE A i ™ AP

& W

Y o .

~ Y

http://www.fastio.com/

This program, while being useful, is meant to illustrate the use of string han-
dling and other commands in BASIC in a practical program. It also contains
subroutines which handle the time and date. These will be of use in program-
ming the PX-8 in combination with the ALARM command. When combined
with the type of program given as an example in the ALARM section of Chap-
ter 4 these subroutines allow a wide range of time based applications for the PX-8.

The program shows the time at various places arotind the world relative to GMT.

Line 10 switches off the [siop lkey while the program is running, allowing lines
280 and 420 to end the program in an orderly manner by re-enabling the key
only when the user wishes to cease program execution.

Lines 20 to 60 define a number of functions which allow values to be deter-
mined related to the date and time.

Line 20 defines a function which returns the hours, minutes or seconds from
the TIMES string. Line 30 performs the same function on the DATES$ string.
They are used in lines 230 and 240 and elsewhere in the program. As an example
of their operation, consider the problem of returning the minutes from the time
in the second statement in line 310:

M=FNT(TIMES$,“M”)

The two strings TIMES$ and “M” are substituted for the values of P1$ and P2$
respectively in function FNT. The INSTR function is then used to return a value
of 1, 2 or 3 depending on whether string P23 is “H”,“M” or “S” since P2$
is being searched for in the string “HMS?”. In this example it is “M”, so INSTR
returns a value of 2. The characters corresponding to the value of the hour be-
gin at position 1 in the TIMES$ string, the minutes at position 4 and the seconds
at position 7. By multiplying the value returned by the INSTR function by 3
and subtracting two, the value returned will correspond to the correct position.
The function MIDS$ is then used to extract the string beginning with this posi-
tion, and the numerical value of the minutés is found using the VAL function.
This value is then stored in the variable M.

Line 40 defines a function which returns the value of the number of days in
the month. It is used in the two subroutines which add or subtract the time differ-
ence, for example in line 1050. In this example, MN is a variable which contains
the number of the month and YR is a variable containing the last two digits
of the year. These values are passed to the variables P1 and P2 in the function
FNN. The function uses an algorithm involving logical operations to return the

H-11

£y AN Ay £y 8

- %

Y

i Sy Sa Iy (T 4

'R E N

s

AP 4P G\ N Wy Ay O

€

Oy owmy

Ty N SO

Sy €3y <

http://www.fastio.com/

true. This means that the expression will return a total value of 1 if the year
is a leap year and 2 if it is not. The way this is built up is again easier to see
if the values are placed under the expressions:

(P1=2)* (P2 MOD 4)=0)+((P2 MOD 4) < >8)*2)
leap -1 *((-1)+(g)*2)=1
non-leap —1 * (([})+(-1)%2)=2

If the month is not February the expression (P1=2) is false and therefore returns
0 and so the whole expression evaluates to 0.

If the rest of the expression is broken down so that the part concerned with
February is marked FEB, the decision as to the days of the months becomes:

(P1<8)*(((P1 MOD 2)=#) *36+((P1 MOD 2)=1)*31+FEB)

Apart from allowing for February the logic is the same as in the other months
of the year except that even months have 30 days and odd months 31.

Suppose that the month is February. A value of — 30 will be returned by the
expression ((P1 MOD 2)=0) * 30 since February is an even month, and also FEB
will return a value of 1 for a leap year, and 2 for a non leap year: The total
expression thus gives 28 days for February in a normal year and 29 in a leap
year, as follows:

(P1< 8) * (P1 MOD 2)=0) * 30 +((P1 MOD 2)=1)*31+FEB)

leap -1 * ((-1)#30+([)#31+ 1)=29
non leap —1 * ((-1)* 30+ (g)31+ 1)=30

Although this might seem complicated to begin with, it is extremely compact,
and therefore the program runs faster. Try writing the same algorithm as a ser-
ies of IF..THEN statements and see how many lines it involves.

Line 50 defines a function to cope with the case where the number returned
for any part of the date or time is not a two digit number. It adds the leading
“0” if required. It is used in line 390 to print the time and date. For example
FNS$(HRS,MIN,SEC, ““: ") passes the values for the hour, the minutes, the se-
conds and the separator “:” to the variables P1,P2,P3 and P4$ of the function.
Each numerical value is then converted to a string, using the string expression:

RIGHTS (“9”+MIDS$S(STR$(P),2),2)

A number is always printed with a leading and trailing space, so that an expres-
sion such as PRINT “PROFIT”;PR; “percent” does not print “PROFIT 20 per-
cent” but a legible “PROFIT 20 percent”. When a number or a numerical

H-13

http://www.fastio.com/

The array ASS$ is used to hold the variable which denotes whether the time is
ahead of or behind the local time;

The three arrays HR, ME and SD hold the values by which the time is different,
and L the order in which the date is displayed for each country as used in the
function FNP in line 60.

The loop 100 to 150 reads the values into the arrays from the data statements,
using the function FNT to convert the time difference from a string into the
appropriate numerical value.

Lines 160 to 210 set up the screen. The graphics character of ASCII code 143
is printed around the title, and is used later to give a visual indication of the

seconds ticking by.

Line 220 is an important line in helping the program run without delays. A large

number of variables are used and they are constantly changing. Initially BASIC-

stores them until it begins to run out of space, then it has to clear out the un-
wanted old values to make space to work. This is known as “garbage collec-
tion” and when it occurs with a large number of variables, it can cause the
program to appear to have stopped working for a time. By executing the func-
tions A=FRE(0) and A=FRE(AS$), both the areas used for numerical and for
string variables are cleaned up. Although the program will actually stop whilst
this process is carried out, many small stops are invisible to the user because
they are forced to happen. This line is the start of the main program loop and
so happens before the screen is changed each time.

Lines 230 and 240 use the functions FNT and FND to determine the current
hour and day, date and year from the internal clock in the PX-8. The hour is
used in line 300 to sound the hour if there has been a change. If the hour is
not set in line 230, the hour will be sounded when the program starts because
H will have the value zero and will be seen as not equal to the variable OH in
line 300.

Line 250 sets the variables T and SS which are used in lines 320 to 350 to define
the position of the changing graphics character around the heading.

The loop in lines 260 to 400 prints out each time and date. The particular coun-

try is indexed by the loop counter X. Line 280 checks whether the key
or + [€] has been pressed. If it has an orderly exit is made in line 420.

H-15

£\Y L v 4% B

1 . 3 . &

1

I w £ '3 £

Y

1

£ Ty

2

44 F &

A

X, I

http://www.fastio.com/

mined a correction is made for the day and if necessary the year. The function
FNN of line 40 is used in line 2040 to determine the number of days in the month.

Lines 2000 to 2060 form a similar subroutine to subtract the time.

H-17

L

n ﬂ ﬂ ﬁ % ¢ ‘9 ‘» D DA D & &) N DB B T (B (% € &5 & 1B % an & A o e

http://www.fastio.com/

AUTO START, 4-17
Autostarting the PX-8, 4-17

‘“Bad file mode”’ error, 4-32
Back spacing, 2-4
BASIC
command syntax format, 4-2
editing lines, 2-3, 2-7
ending, 1-14
enhancements to, 1-1
entering from CP/M, 1-4
entering from the MENU, 1-4
entering with extended format commands, Chapter 3
EPSON enhanced PX-8, 1-1
extensions to, 1-7, 3-1
features of, 1-2
free memory available, 4-72
garbage collection, 4-72
installing, 1-3
Microsoft, 1-1
program, 2-1
program areas of, 1-2, 1-8
program area selection, 1-8
program menu, 1-8
program names, 1-4
“resident”’ 1-6, 1-12, 1-13
starting, 1-2, 1-4
terminated, 1-14
BEEP, 4-19
BS key, 2-4
Binary digits, 2-14, 2-16, 4-102
Boundary character, 2-44, 2-45, 2-52, 2-53, 2-54
Box, 4-102
Buffer
file output, 4-64, 4-74, 4-124, 4-152, 4-169, Chapter 5
printer output, 4-121
random file, 4-124, 4-131
RS-232C receive, 4-117
Byte, 2-14
(s),free in RS-232C buffer, 4-117

Index-2

Yy €% (% (3 €3 & gy €% % B (B B P (B LY O O (B YA EH IO DO O®

4

13 4% €3 €)% 43 €4y ¢

http://www.fastio.com/

Floating point, 2-18

Integer, 2-18

list of, 4-43

numeric, 2-18

single precision numeric, 2-19

string, 2-18

substitute, 4-43

types of, 2-18, 4-43
CONT, 4-36
Control characters, 2-15

see also CTRL and the respective keys
Control key, see CTRL
Converted numbers containing random digits, 2-23, 4-21
Conversion

for logical operations, 2-25

in arithmetic and relational operations, 2-24

of floating point numbers to integers, 2-25

of hexadecimal numbers to decimal, 4-79

of Logs and Antilogs, 4-118

of line style, 4-102

of numbers to integers, 4-26

of numbers to strings, 4-202

of numeric expressions, 2-23, 4-21, 4-26

of numeric values, 4-39, 4-124, 4-131

of radians to degrees, 4-14, 4-49

of single precision to double precision 2-25, 4-21

problems arising from, 2-23, 2-26, 4-83

string to numbers 4-42, 4-183, 4-214

to double precision numbers 4-21, 4-26

to single precision numbers 4-26, 4-39
Coordinates

absolute screen, 4-101

graphic, 2-48, 2-49, 4-101, 4-150, 4-155, 4-167
COPY, 4-37
COS, 2-38, 4-38

incorrect values 4-38
“CP/M?”, command line, 1-4, 4-151

return to, 1-14, 4-205
“CP/M”’, system prompt, 1-4 *
“CP/M’’, warm starts, 4-205
CSNG conversion to single precision numbers, 4-39
CSRLIN returns cursor line, 4-40
CTRL, see also Control key and the User’s Manual
CTRL key

with cursor keys, 2-51

with HELP key, 1-17

with INS key, 2-52

with PF5 key, 1-15

with STOP key, 1-17

Index-4

YOO OO O OO0

€

http://www.fastio.com/

DATES, 4-45
Date incorrect day, 4-46
DAY, 4-46
Decimal, 2-16
Declaring types variables, 4-50
Defining functions, 4-47
numerical variables, 4-50
DEFDBL, 4-50
DEF FN, 4-47
DEF INT, 4-50
DEF SNG, 4-50
DEF USR for call machine language subroutines, 4-51
DEL key, 2-5
DELETE, 4-52
Delimiters
between items, 4-89, 4-91, 4-108, 4-165, 4-226
explicit 4-165, 4-226
Derived functions, E-1
Destroy
contents of files, 4-32
variables, 4-29, 4-126, 4-184
Device
names for file descriptors, 2-39
Difference
between INPUT # and LINE INPUT # , 4-108
between International Character Sets, F-2
Dimensioning of arrays, 2-22, 4-53
DIM, 2-22, 4-53, 4-59
Directory of disk, 4-66
printing, 4-67
Direct mode, 1-9
Display data in specified format, 4-158
Display screen
changing mode of, 4-186
changing width of, 4-186, 4-221
drawing graphics on, see LINE, PRESET,PSET
hard copy of, 1-17, 4-37
locating characters on, 4-115
output to printer’’, 1-17, 4-37 -
Division, 2-27
Integer, 2-28
““Division by zero’’ error, 2-29
Dot
coordinates, 4-101, 4-167
display, 4-167
erase, 4-102
reset, 4-102, 4-155
return setting of, 4-150
segment, 4-101

Index-6

4y 4 /9

4y 4

4y o\

N

4

«» d £ € B Vv

Y P2 N

4% 4%

R 2 dr €A 22 dr d2 € €32 %™ N &\ A d> 4>

http://www.fastio.com/

Errors
interrupted by, 4-36
rounding, 4-27
ESC key see also User’s Manual
in edit mode, 2-7
sequences, C-1
Execution
interrupted, 4-36
stopping, 4-136
resume, 4-36
EXP, 4-63
Exponentiation, 2-27, 4-62
Expressions, 2-27

FIELD, 4-64

F

FILES obtaining the disk directory, 4-66

Files, 2-39

File(s)\CHAPTER 5
closing, 4-32
creating, 5-1
data, 4-112
disk, 4-117, 5-1

disk device file, 4-140, Chapter 5

keeping open while loading a new program, 4-112

microcassette, 5-1
name extension, 4-112, 4-127

number, 2-40, 4-64, 4-89, 4-91, 4-114, 4-165, 6-2

program, 5-1
random access, 5-9
sequential, 5-3
FIX, 2-37, 4-26, 4-68
Fixed point constants, 2-18
Floating point constants, 2-18
FOR NEXT, 4-69
Format for communications, 6-4
Format notation of commands
JorKk, 44
XorY,4-4
X$ or Y$, 44
abbreviations in, 4-4
angle brackets, 4-2, 4-3
format notation, 4-2
full stops in, 4-4
options in, 4-3
quotation mark, 4-2
reserved words, 4-2

Index-8

4% €% (Y (7

R

(v oy §y 4

v

http://www.fastio.com/

INS key, 2-5
Inserting characters, 2-5
INSTR, 4-93
INT, 2-37, 4-26, 4-94
Integer
division symbol, 2-28
errors, 4-26
expressions, 4-4, 4-93
ways of obtaining, 2-37, 4-26
International character sets, F-2, see also User’s Manual
Denmark, 2-14, 4-143, F-2
England, 2-14, 4-143, F-2
France, 2-14, 4-143, F-2
Germany, 2-14 4-143, F-2
Italy, 2-14, 4-143, F-2
Norway, 2-14, 4-143, F-2
Spain, 2-14, 4-143, F-2
Sweden, 2-14, 4-143, F-2
U.S.A., 2-14, 4-143, F-2
International currency symbols, 4-145
International formatting characters, 4-164
170 device support, 2-56
1/0 devices
and BASIC commands statements and functions, 2-60
as file descriptors, 2-39, 2-56, 2-60
input/output modes for, 4-140
range of, 2-39, 2-60
RAM disk, 4-112
RS-232C interface, 6-1
summary table of, 2-60
Interruption of BASIC program, 1-17

KEY command to set PF keys, 4-95
KEY LIST/KEY LLIST to list PF, 4-95
Keyboard
buffer, 4-84, 4-91
checking for input, 4-84, 4-91
defining function keys, 4-95
display of key definitions, 4-186
input of data from, 6-14
Programmable Function Keys, 1-15, 4-95
KILL, 4-97
KYBD: 2-39, 2-57, 2-60

Index-10

ra ./}

Ey &, 7) €y <)Y

AR

om

gy 4% €

Yy &Y &% % (% (P «»

gy @ gy

£

&Yy &y

ay &) €3 ¢y 4

&\ €

http://www.fastio.com/

subroutine, Appendix D
subroutine, calling, 4-20
subroutine, parameters for, 4-20
subroutine, starting address of, 4-20, 4-29
see also USR
Memory
buffer for random access files, 4-64
destruction of data in, D-1
for machine language programs, 4-29
location, 4-29, 4-149
map, 4-151, G-1
““Out of memory’’ error, A-7
upper boundary, 4-29
write data into, 4-151
MENU, 4-17, 4-126
MENU
entering BASIC from, 1-4 to 1-6
setting up to run BASIC programs, 1-7, User’s Manual
MERGE, 4-127
Messages
“?Redo from start’’, 4-87
““Bad file mode’’, 4-32, 4-127
““Division by zero’’, 2-29
“Duplicate definition”’, 4-142
‘‘Field overflow’’, 4-65, 4-170
““File already exists’’, 4-133
‘“File not found’’, 4-66, 4-133
““Illegal function call’’, 4-93, 4-120, 4-134, 4-137, 4-147
““Out of data’’, 4-172
“Overflow’’, 2-29
“RESUME without error’’, 4-180
““Tape access error’’, 4-132, 5-14, 5-16
“Type mismatch error’’ 4-50, 4-204
““‘Undefined line number’’ 4-78
““Undefined line xxxxx in yyyyy”’,”’, 4-176
MICROCASSETTE drive (Drive H:)
counter, 4-209, 4-224
files on, 5-1
MOUNT, 4-132, 4-175 -
open mode for, 4-140
play mode, 4-224
REMOVE, 4-132, 4-175
removing tape, 4-175
restriction on use, 5-14
sound output to speaker, 4-224
tape directory, 4-132, 4-175
WIND, 4-224
write directory to, 4-175
MIDS, 4-129

Index-12

|

& € €2 €Y &> ®

P P €y &> 4> ¥» > & &>

e 3

e

4 4

{3 &y & 45 d>»

4% 1%

[y €% €3 €3 €» €Y ¢y &)

http://www.fastio.com/

asterisks as wildcards, 4-6
communications ‘‘blpscxh”’, 6-4
wildcard, 4-6, 4-66
OR, 2-32
OUT, 4-146
Output
data to a printer, 4-37, 4-121, 4-122
program in memory to devices, 4-185
screen to printer 4-37 ‘‘Overflow error’’, 2-29

P

PAUSE key, 1-16
PCOPY, 4-147
PEEK, 4-149
PF keys, 1-15, 1-16
setting, see KEY, 4-95
PI (ratio of circumference to diameter of a circle), 4-14
POINT, 4-150
Points of graphic screen see Dot, LINE, PRESET, PSET
Pointer
last reference, 4-101
print head, 4-121, 4-152
POKE, 4-151
POS, 2-60, 4-152
Position
of cursor, 4-152
of file output buffer, 4-152
of print head, 4-152
POWER, 4-153
ALARM, 4-153
Power
automatically turn off, 4-153
duration, 4-153
on and off, 4-153
switch, 4-153
turn back on, 4-153
turn off, 4-153 .
Practical Guide to the Screen Modes, 2-50
Precision single and double, 4-42
PRESET, 4-155
PRINT, 4-156
PRINT abbreviation for, 4-157
PRINT #, 2-60, 4-165
PRINT USING, 4-158
PRINT # USING, 2-60, 4-165
Printer
LPOS, 4-121

Index-14

« %Y 4% B

EUR 3

4 %

-2 YA Y AR AL YA YR N

¥,

Ay A

o 4% 232 #2 £8 d32 4D A8 4 ® A) &\ A& dr 4>

http://www.fastio.com/

Q

Question mark abbreviation for PRINT, 4-157
Quotation marks character, 4-89, 4-91, 4-106

R

Random Access
devices, 2-56
file buffer, 4-64, 4-74, 4-124, 4-169
file, field, 4-64
record length, 4-64
RANDOMIZE, 4-83, 4-171
Random numbers in fixed ranges, 4-182
READ, 4-172
Real Screen, 2-41
REM, 4-174
REMOVE, 4-175
RENUM, 4-176
Replace string, 4-129
Reset screen mode and size, 4-127, 4-186
RESET, 4-178
RESTORE, 4-179
RESUME, 4-180
Resuming an interrupted program, 4-36
RETURN key, 1-14, 2-5
RIGHTS, 4-181
RND, 4-182
ROM Capsules, 2-60
RUN, 4-184
RUN and GOSUB, 4-76

SAVE, 2-60, 4-185
SCREEN, 4-186, 4-189
Screen
character coordinates, 2-48
graphic coordinates, 2-49
dump to printer, 1-17, 4-37
SCREEN command, 2-50 to 2-55, 4-186
Screen Editor, 2-3
Screen Modes, 2-42
practical guide, 2-50

Screen Mode 0 (80 column text screen mode), 2-43, 2-51, 4-186 to 4-188
Screen Mode 1 (39 column text screen mode) 2-43, 4-186 to 4-188

Index-16

d4Y 4\ £ 2

-\ 4

&

’E U N Ut B e B AN b ANNE Y 2 WY, £

&5 €Z 4

€y dy A% 4% &% Ay &\ =«

& €6\ d»

@, @€\

http://www.fastio.com/

alarm message, 4-6, 4-12
auto start, 4-17
character, 4-91
comparisons, 2-35
concatenation, 2-35
expressions, 4-4
first occurrence of, 4-93
format, 4-158 to 4-164
joining, 2-35
justify, 4-125, 4-158
length of 4-99
literals, 4-93
manipulation see LEN, LEFT$, MID$, RIGHTS$
null, 4-13, 4-93
numeric to string, 4-202
operations, 2-35
prompt, 4-106
searching, 4-93
string to numeric, 4-214
substitute in a, 4-129
values, 4-42
variables, 4-21
STRINGS, 4-203
Suppress carriage return after INPUT, 4-87
Subroutines, 4-76
SWAP, 4-204
Switching the PX-8 on and off under program control, 4-10
SYSTEM, 4-205
System Display, 1-12, 1-17
System variables, 4-45, 4-46

TAB, 4-206
TAB key, 2-3
TAN, 2-38, 4-208 »
TAPCNT, 4-209 '
TIME alarm, 4-6

altering, 4-10, 4-210

clear alarm or wake, 4-10

control of, 4-10

setting, 4-6, 4-210

system variable of, 4-6

Index-18

http://www.fastio.com/

WAIT, 4-218
WAKE from ALARM setting, 4-8
Warm start, 1-11
WHILE...WEND, 4-219
WIND ON, 2-58, 4-224
OFF, 4-224
WIDTH, 2-60, 4-221
in SCREEN command 2-50, 2-52, 2-54, 4-186 to 4-188
WRITE, 2-60, 4-225
WRITE #, 4-226

X

XOR, 2-32

Index-20

¥ {

{

Q@A

http://www.fastio.com/

	./brm0_00.tif
	./brm0_01.tif
	./brm0_02.tif
	./brm0_03.tif
	brm1-3
	./brm1_01.tif
	./brm1_02-03.tif
	./brm1_04-05.tif
	./brm1_06-07.tif
	./brm1_08-09.tif
	./brm1_10-11.tif
	./brm1_12-13.tif
	./brm1_14-15.tif
	./brm1_16-17.tif
	./brm2_01.tif
	./brm2_02-03.tif
	./brm2_04-05.tif
	./brm2_06-07.tif
	./brm2_08-09.tif
	./brm2_10-11.tif
	./brm2_12-13.tif
	./brm2_14-15.tif
	./brm2_16-17.tif
	./brm2_18-19.tif
	./brm2_20-21.tif
	./brm2_22-23.tif
	./brm2_24-25.tif
	./brm2_26-27.tif
	./brm2_28-29.tif
	./brm2_30-31.tif
	./brm2_32-33.tif
	./brm2_34-35.tif
	./brm2_36-37.tif
	./brm2_38-39.tif
	./brm2_40-41.tif
	./brm2_42-43.tif
	./brm2_44-45.tif
	./brm2_46-47.tif
	./brm2_48-49.tif
	./brm2_50-51.tif
	./brm2_52-53.tif
	./brm2_54-55.tif
	./brm2_56-57.tif
	./brm2_58-59.tif
	./brm2_60-61.tif
	./brm2_62-3_01.tif
	./brm3_02-03.tif

	brm5-6
	./brm5_01.tif
	./brm5_02-03.tif
	./brm5_04-05.tif
	./brm5_06-07.tif
	./brm5_08-09.tif
	./brm5_10-11.tif
	./brm5_12-13.tif
	./brm5_14-15.tif
	./brm5_16-17.tif
	./brm5_18-6_01.tif
	./brm6_02-03.tif
	./brm6_04-05.tif
	./brm6_06-07.tif
	./brm6_08-09.tif
	./brm6_10-11.tif
	./brm6_12-13.tif
	./brm6_14.tif

	brmA-H
	./brmA_01.tif
	./brmA_02-03.tif
	./brmA_04-05.tif
	./brmA_06-07.tif
	./brmA_08-09.tif
	./brmA_10-11.tif
	./brmB_01-C_01.tif
	./brmC_02-03.tif
	./brmC_04-05.tif
	./brmC_06-07.tif
	./brmC_08-09.tif
	./brmC_10-11.tif
	./brmC_12-13.tif
	./brmC_14-15.tif
	./brmD_01-02.tif
	./brmD_03-04.tif
	./brmE_01-F_01.tif
	./brmF_02-G_01.tif
	./brmH_01-02.tif
	./brmH_03-04.tif
	./brmH_05-06.tif
	./brmH_07-08.tif
	./brmH_09-10.tif
	./brmH_11-12.tif
	./brmH_13-14.tif
	./brmH_15-16.tif
	./brmH_17-I_01.tif

	brmIdx
	./brmH_17-I_01.tif
	./brmI_02-03.tif
	./brmI_04-05.tif
	./brmI_06-07.tif
	./brmI_08-09.tif
	./brmI_10-11.tif
	./brmI_12-13.tif
	./brmI_14-15.tif
	./brmI_16-17.tif
	./brmI_18-19.tif
	./brmI_20.tif

	Basic Reference Manual u
	./brm0_00.tif
	./brm0_01.tif
	./brm0_02.tif
	./brm0_03.tif
	brm1-3
	./brm1_01.tif
	./brm1_02-03.tif
	./brm1_04-05.tif
	./brm1_06-07.tif
	./brm1_08-09.tif
	./brm1_10-11.tif
	./brm1_12-13.tif
	./brm1_14-15.tif
	./brm1_16-17.tif
	./brm2_01.tif
	./brm2_02-03.tif
	./brm2_04-05.tif
	./brm2_06-07.tif
	./brm2_08-09.tif
	./brm2_10-11.tif
	./brm2_12-13.tif
	./brm2_14-15.tif
	./brm2_16-17.tif
	./brm2_18-19.tif
	./brm2_20-21.tif
	./brm2_22-23.tif
	./brm2_24-25.tif
	./brm2_26-27.tif
	./brm2_28-29.tif
	./brm2_30-31.tif
	./brm2_32-33.tif
	./brm2_34-35.tif
	./brm2_36-37.tif
	./brm2_38-39.tif
	./brm2_40-41.tif
	./brm2_42-43.tif
	./brm2_44-45.tif
	./brm2_46-47.tif
	./brm2_48-49.tif
	./brm2_50-51.tif
	./brm2_52-53.tif
	./brm2_54-55.tif
	./brm2_56-57.tif
	./brm2_58-59.tif
	./brm2_60-61.tif
	./brm2_62-3_01.tif
	./brm3_02-03.tif

	brm5-6
	./brm5_01.tif
	./brm5_02-03.tif
	./brm5_04-05.tif
	./brm5_06-07.tif
	./brm5_08-09.tif
	./brm5_10-11.tif
	./brm5_12-13.tif
	./brm5_14-15.tif
	./brm5_16-17.tif
	./brm5_18-6_01.tif
	./brm6_02-03.tif
	./brm6_04-05.tif
	./brm6_06-07.tif
	./brm6_08-09.tif
	./brm6_10-11.tif
	./brm6_12-13.tif
	./brm6_14.tif

	brmA-H
	./brmA_01.tif
	./brmA_02-03.tif
	./brmA_04-05.tif
	./brmA_06-07.tif
	./brmA_08-09.tif
	./brmA_10-11.tif
	./brmB_01-C_01.tif
	./brmC_02-03.tif
	./brmC_04-05.tif
	./brmC_06-07.tif
	./brmC_08-09.tif
	./brmC_10-11.tif
	./brmC_12-13.tif
	./brmC_14-15.tif
	./brmD_01-02.tif
	./brmD_03-04.tif
	./brmE_01-F_01.tif
	./brmF_02-G_01.tif
	./brmH_01-02.tif
	./brmH_03-04.tif
	./brmH_05-06.tif
	./brmH_07-08.tif
	./brmH_09-10.tif
	./brmH_11-12.tif
	./brmH_13-14.tif
	./brmH_15-16.tif
	./brmH_17-I_01.tif

	brmIdx
	./brmH_17-I_01.tif
	./brmI_02-03.tif
	./brmI_04-05.tif
	./brmI_06-07.tif
	./brmI_08-09.tif
	./brmI_10-11.tif
	./brmI_12-13.tif
	./brmI_14-15.tif
	./brmI_16-17.tif
	./brmI_18-19.tif
	./brmI_20.tif

